Modern Applied
Statistics with S

Fourth edition

by
W. N. Venables and B. D. Ripley
Springer (mid 2002)

Final 15 March 2002

Preface

S is a language and environment for data analysis originally developed at Bell
Laboratories (of AT&T and now Lucent Technologies). It became the statisti-
cian’s calculator for the 1990s, allowire@sy access to the computing power and
graphical capabilities of modern workstations and personal computers. Various
implementations have been available, curre®iPLUS, a commercial system
from the Insightful Corporatiohin Seattle, andR,? an Open Source system writ-

ten by a team of volunteers. Both can be runfindows and a range o/NIX /

Linux operating system® also runs on Macintoshes.

This is the fourth edition of a book vith first appeared in 1994, and tSe
environment has grown rapidly since. This book concentrates on using the current
systems to do statistics; there is a companion volume (Venables and Ripley, 2000)
which discusses programming in teelanguage in much greater depth. Some
of the more specialized functionality of ttf&environment is covered ian-line
complements, additional sections and chapters which are available on the World
Wide Web. The datasets adfunctions that we use are supplied with m&st
environments and are also available on-line.

This is not a text in statistical theory, but does cover modern statistical method-
ology. Each chapter summarizes the methods discussed, in order to set out the
notation and the precise method implemente8.iit will help if the reader has
a basic knowledge of the topic of the chapter, but several chapters have been suc-
cessfully used for specialized courses in statistical methods.) Our aim is rather
to show how we analyse datasets usthdn doing so we aim to show both how
S can be used and how the availability of a powerful and graphical system has
altered the way we approach data analysis and allows penetrating analyses to be
performed routinely. Oncealculation became easy, the statistician's energies
could be devoted to understanding his or her dataset.

The coreS language is not very large, but it is quite different from most other
statistics systems. We describe the language in some detail in the first three chap-
ters, but these are probably best skimmed at first reading. Once the philosophy of
the language is grasped, its consistency and logical design will be appreciated.

The chapters on applyirg to statistical problems afargely self-contained,
although Chapter 6 describes the language used for linear models that is used in
several later chapters. We expect that most readers will want to pick and choose
among the later chapters.

This book is intended both for would-be usersoés an introductory guide

http://www.insightful.com.
’http://www.r-project.org.

vi Preface

and for class use. The level of course for which it is suitable differs from country
to country, but would generally range from the upper years of an undergraduate
course (especially the early chapters) to Masters’ level. (For example, almost all
the material is covered in the M.Sc. in Applied Statistics at Oxford.) On-line
exercises (and selected answers) are provided, but these should not detract from
the best exercise of all, usirgito study datasets with which the reader is familiar.
Our library provides many datasets, some of which are not used in the text but
are there to provide source material for exercises. Nolan and Speed (2000) and
Ramsey and Schafer (1997, 2002) are also good sources of exercise material.
The authors may be contacted by electronic mail at

MASS@stats.ox.ac.uk

and would appreciate being informed of errors and improvements to the contents
of this book. Errata and updates are available from our World Wide Web pages
(see page 461 for sites).

Acknowledgements:

This book would not be possible without tBeenvironment which has been prin-
cipally developed by John Chambers, with substantial input from Doug Bates,
Rick Becker, Bill Cleveland, Trevor Hastie, Daryl Pregibon and Allan Wilks. The
code for survival analysis is the work of Terry Therneau. FHeLUS andR im-
plementations are the work of much larger teams acknowledged in their manuals.
We are grateful to the many people who have read and commented on draft
material and who have helped us test the software, as well as to those whose prob-
lems have contributed to our understanding and indirectly to examples and exer-
cises. We cannot name them all, but in particular we would like to thank Doug
Bates, Adrian Bowman, Bill Dunlap, Kurt Hornik, Stephen Kaluzny,el&i-
heiro, Brett Presnell, Ruth Ripley, Charles Roosen, David Smith, Patty Solomon
and Terry Therneau. We thank Insightful Inc. for early access to versions of
S-PLUS.

Bill Venables
Brian Ripley
January 2002

Contents

Preface %

Typographical Conventions Xi

1 Introduction 1
1.1 AQuickOverviewofs 3
1.2 UsiNgS 5
1.3 Anintroductory Session 6
1.4 WhatNext? e 12

2 DataManipulation 13
21 Objects 13
22 Connections 20
2.3 DataManipulation o 27
2.4 Tables and Cross-Classification 37

3 TheS Language 41
3.1 Languagelayout, 41
3.2 MoreonSObjects 44
3.3 Arithmetical Expressions 47
3.4 Character Vector Operations 51
3.5 FormattingandPrinting 54
3.6 Calling Conventions for Functions. 55
3.7 ModelFormulae. 56
3.8 ControlStructures 58
3.9 Arrayand MatrixOperations 60
3.10 Introduction to Classes and Methods 66

4 Graphics 69
4.1 GraphicsDevices e 71
4.2 Basic Plotting Functions L. 72

Vii

viii

Contents

4.3 EnhancingPlots 77
4.4 Fine Control of Graphics 82
45 TrellisGraphics 89
Univariate Statistics 107

5.1 Probability Distributions 107
5.2 GeneratingRandomData 110
53 DataSummaries. 111
5.4 Classical Univariate Statistics 115
5,5 RobustSummaries o 119
5.6 Density Estimation 126
5.7 Bootstrap and Permutation Methods133
Linear Statistical Models 139

6.1 An Analysis of Covariance Example 139
6.2 Model Formulae and Model Matrices 144
6.3 RegressionDiagnostics L. 151
6.4 Safe Prediction 155
6.5 Robustand Resistant Regression 156
6.6 Bootstrapping LinearModels 163
6.7 Factorial Designs and Designed Experiments 165
6.8 AnUnbalanced Four-Way Layout 169
6.9 Predicting Computer Performance 177
6.10 Multiple Comparisonso 178
Generalized Linear Models 183

7.1 Functions for Generalized Linear Modelling 187

7.2 BinomialData. 190
7.3 Poisson and MultinomialModels 199
7.4 A Negative Binomial Family 206
7.5 Over-Dispersion in Binomial and PoissonGLMs 208
Non-Linear and Smooth Regression 211

8.1 AniIntroductoryExample 211
8.2 Fitting Non-Linear Regression Models 212
8.3 Non-Linear Fitted Model Objects and Method Functions . . . 217

8.4 Confidence Intervals for Parameters 220

85 Profiles 226

Contents iX

9

10

11

12

13

8.6 Constrained Non-Linear Regression 227
8.7 One-Dimensional Curve-Fitting 228
8.8 AdditiveModels 232
8.9 Projection-PursuitRegression 238
8.10 NeuralNetworks 243
8.11 Conclusions 249
Tree-Based M ethods 251

9.1 PartitioningMethods. L. 253
9.2 Implementationimpart 258
9.3 Implementationinree 266
Random and Mixed Effects 271
10.1 LinearModels 272
10.2 Classic NestedDesigns 279
10.3 Non-Linear Mixed EffectsModels 286
10.4 Generalized Linear MixedModels 292
105 GEEModels. 299
Exploratory Multivariate Analysis 301
11.1 VisualizationMethods 302
11.2 ClusterAnalysis 315
11.3 FactorAnalysis 321
11.4 Discrete Multivariate Analysis 325
Classification 331
12.1 DiscriminantAnalysis, 331
12.2 ClassificationTheory 338
12.3 Non-ParametricRules 341
12.4 NeuralNetworks 342
12.5 Support Vector Machines 344
12.6 ForensicGlass Example 346
12.7 CalibrationPlots 349
Survival Analysis 353
13.1 Estimators of SurvivorCurves 355
13.2 ParametricModels 359

13.3 Cox Proportional Hazards Model 365

X Contents

13.4 FurtherExamples 371
14 Time Series Analysis 387
14.1 Second-Order Summaries. 389
142 ARIMAModels 397
14.3 Seasonality 403
14.4 Nottingham TemperatureData 406
14.5 Regression with AutocorrelatedErrors 411
14.6 Models for Financial Series 414
15 Spatial Statistics 419
15.1 Spatial Interpolation and Smoothing 419
152 Kriging 425
15.3 PointProcess Analysis 430
16 Optimization 435
16.1 Univariate Functions, 435
16.2 Special-Purpose Optimization Functions 436
16.3 General Optimization 436
Appendices
A Implementation-Specific Details 447
A.1 UsingS-PLUS underUnix/Linux. 447
A.2 UsingS-PLUSunderWindows 450
A.3 UsingRunderUnix/Linux 453
A.4 UsingRunderWindows 454
A5 ForEmacsUsers 455
B TheS-PLUS GUI 457
C Datasets, Softwareand Libraries 461
C.1 OurSoftware 461
C.2 UsinglLibraries 462
References 465

Index 481

Typographical Conventions

Throughout this bools language constructs and commands to the operating sys-
tem are set in a monospaced typewriter fatike this. The character may
appear as on your keyboard, screen or printer.

We often use the prompts for the operating system (it is the standard prompt
for the UNIX Bourne shell) and> for S. However, we daot use prompts for
continuation lines, which are indicated by indentation. One reason for this is
that the length of line available to use in a book column is less than that of a
standard terminal window, so we have had to break lines that were not broken at
the terminal.

Paragraphs or comments that apply to only 8nenvironment are signalled
by a marginal mark:

e This is specific t&3-PLUS (version 6 or later). S+
e This is specific t&3-PLUS underwWindows. S+Win
e This is specific tdr. R

Some of theS output has been edited. Where complete lines are omitted,
these are usually indicated by

in listings; however modtlank lines have been silently removed. Much of the
output was generated with the options settings

options(width = 65, digits = 5)

in effect, whereas the defaults are arow and 7. Not all functions consult
these settings, so on occasion we have had to manually reduce the precision to
more sensible values.

Xi

Chapter 1

Introduction

Statistics is fundamentally concerned with the understanding of structure in data.
One of the effects of the information-technology era has been to make it much
easier to collect extensive datasets with minimal human intervention. Fortunately,
the same technological advances allow the users of statistics access to much more
powerful ‘calculators’ to manipulate and display data. This book is about the
modern developments in applied statistics that have been made possible by the
widespread availability of workstations with high-resolution graphics and ample
computational power. Workstations need software, andtheystem developed

at Bell Laboratories (Lucent Technologies, formerly AT&T) provides a very flex-
ible and powerful environment in whidio implement new statistical ideas. Lu-
cent’s current implementation & is exclusively licensed to the Insightful Cor-
poratiorf, which distributes an enhanced system cafie@lUS.

An Open Source system call&} has emerged that provides an independent
implementation of th& language. It is similar enough that almost all the exam-
ples in this book can be run under

An S environment is an integrated suite of software facilities for data analysis
and graphical display. Among other things it offers

e an extensive and coherent collection of tools for statistics and data analysis,

e a language for expressing statistical models and tools for using linear and
non-linear statistical models,

e graphical facilities for data analysis and display either at a workstation or
as hardcopy,

¢ an effective object-oriented programming language that can easily be ex-
tended by the user community.

The termenvironment is intended to characterize it as a planned and coherent
system built around a language and a cditecof low-level facilities, rather than
the ‘package’ model of an incremental agtton of very specific, high-level and

1The names arose long ago as a compromise name (Becker, 1994), in the spirit of the program-
ming languageC (also from Bell Laboratories).

http://www.insightful.com

Shttp://wuw.r-project.org

2 Introduction

sometimes inflexible tools. Its great strength is that functions implementing new
statistical methods can be built on top of the low-level facilities.

Furthermore, most of the environment is open enough that users can explore
and, if they wish, change the design decisions made by the original implementors.
Suppose you do not like the output given e tregression facility (as we have
frequently felt about statistics packages).Siyou can write your own summary
routine, and the system one can be used as a template from which to start. In
many cases sufficiently persistent users can find out the exact algorithm used by
listing the S functions invoked. AR is Open Sourcegll the details are open to
exploration.

Both S-PLUS andR can be used und&indows, many versions of/NIX and
underLinux; R also runs undevlacOS (versions 8, 9 and XFkreeBSD and other
operating systems.

We have made extensive use of the ability to extend the environment to im-
plement (or re-implement) statistical ideas witl§inAll the S functions that are
used and our datasets are available achine-readable fan and come with all
versions ofR andWindows versions ofS-PLUS; see Appendix C for details of
what is available and how to install it if necessary.

System dependencies

We have tried as far as is practicable to make our descriptions independent of the
computing environment and the exact versiosafLUS or R in use. We confine
attention to versiong and later ofS-PLUS, and1.5.0 or later ofR.

Clearly some of the details must depend on the environment; weluBedIS
6.0 on Solaris to compute the examples, but have also tested them @BeUS
for Windows version6.0 release 2, and usingS-PLUS 6.0 on Linux. The out-
put will differ in small respects, for th&/indows run-time system uses scientific
notation of the form4. 17e-005 rather thand. 17e-05.

Where timings are given they refer PLUS 6.0 running undeiLinux on
one processor of a dual 1 GHz Pentium Il PC.

One system dependency is the mouse buttons; we refer to buttons 1 and 2,
usually the left and right buttons dwindows but the left and middle buttons
on UNIX / Linux (or perhaps both together of two). Macintoshes only have one
mouse button.

Reference manuals

The basicS references are Becker, Chambers and Wilks (1988) for the basic
environment, Chambers and Hastie (19f®)the statistical modelling and first-
generation object-oriented programming and Chambers (1998); these should be
supplemented by checking the on-line help pages for changes and corrections as
S-PLUS andR have evolved considerably since these books were written. Our
aim is not to be comprehensive nor to replace these manuals, but rather to explore
much further the use @& to perform statistical analyses. Our companion book,
Venables and Ripley (2000), covers many more technical aspects.

1.1 A Quick Overview of S 3

Graphical user interfaces (GUIs)

S-PLUS for Windows comes with a GUI shown in Figure B.1 on page 458. This
has menus and dialogs for many simple statistical and graphical operations, and
there is aStandard Edition that only provides the GUI interface. We do not
discuss that interface here as it does not provide enough power for our material.
For a detailed description see the system manuals or Krause and Olson (2000) or
Lam (2001).

The UNIX / Linux versions ofS-PLUS 6 have a similar GUI written in Java,
obtained by starting wittBplus -g: this too has menus and dialogs for many
simple statistical operations.

TheWindows, ClassicMacOS andGNOME versions ofR have a much sim-
pler console.

Command line editing

All of these environments provide command-line editing using the arrow keys,
including recall of previous commands. However, it is not enabled by default in
S-PLUS onUNIX/ Linux: see page 447.

1.1 A Quick Overview of S

Most things done irg are permanent; in particular, data, results and functions are
all stored in operating system filésThese are referred to abjects.

Variables can be used as scalars, matrices or array$§ pralides extensive
matrix manipulation facilities. Furthermore, objects can be made up of collections
of such variables, allowing complex objects such as the result of a regression
calculation. This means that the result of a statistical procedure can be saved
for further analysis in a future sessiomypically the calculation is separated
from the output of results, so one can perform a regression and then print various
summaries and compute residuals and leverage plots from the saved regression
object.

TechnicallyS is a function language. Elementary commands consist of either
expressions or assignments. If an expression is given as a command, it is evalu-
ated, printed and the value is discarded. An assignment evaluates an expression
and passes the value to a variable but the result is not printed automatically. An
expression can be as simple as+ 3 or a complex function call. Assignments
are indicated by thassignment operator <-. For example,

> 2+ 3

[1]1 5

> sqrt(3/4)/(1/3 - 2/pi~2)
[1] 6.6265

> library(MASS)

4These should not be manipulated directly, however. Atsaprks with an in-memory workspace
containing copies of many of these objects.

4 Introduction

> data(chem) # needed in R only

> mean(chem)

[1] 4.2804

> m <- mean(chem); v <- var(chem)/length(chem)
> m/sqrt(v)

[1] 3.9585

Here > is theS prompt, and the[1] states that the answer is starting at the first
element of a vector.

More complex objects will have printed a short summary instead of full de-
tails. This is achieved by an object-orted programming mechanism; complex
objects havelasses assigned to them that determine how they are printed, sum-
marized and plotted. This process is taken furth&-lPLUS in whichall objects
have classes.

S can be extended by writing new functions, which then can be used in the
same way as built-in functions (and can even replace them). This is very easy; for
example, to define functions to compute the standard deviaimhthe two-tailed
P value of at statistic, we can write

std.dev <- function(x) sqrt(var(x))
t.test.p <- function(x, mu = 0) {

n <- length(x)

t <- sqrt(n) * (mean(x) - mu) / std.dev(x)

2 *x (1 - pt(abs(t), n - 1)) # last value is returned
}

It would be useful to give both the statistic and itsP value, and the most
common way of doing this is by returning a list; for example, we could use

t.stat <- function(x, mu = 0) {
n <- length(x)
t <- sqrt(n) * (mean(x) - mu) / std.dev(x)
list(t = t, p = 2 * (1 - pt(abs(t), n - 1)))

}

z <- rnorm(300, 1, 2) # generate 300 N(1, 4) variables.
t.stat(z)

$t:

[1] 8.2906

$p:

[1] 3.9968e-15

unlist(t.stat(z, 1)) # test mu=1, compact result
t p
-0.56308 0.5738
The first call tot . stat prints the result as a list; the second tests the non-default
hypothesisy = 1 and usingunlist prints the result as a numeric vector with
named components.
Linear statistical models can be specified by a version of the commonly used
notation of Wilkinson and Rogers (1973), so that

5S-PLUS andR have functionsstdev and sd, respectively.

1.2 Usings)

time ~ dist + climb
time ~ transplant/year + age + prior.surgery

refer to a regression ofime on bothdist and climb, and of time on year
within each transplant group and on agétiva different intercept for each type

of prior surgery. This notation has been extended in many ways, for example to
survival and tree models and to allow smooth non-linear terms.

1.2 Using S

How to initialize and start up you8 environment is discussed in Appendix A.

Bailing out

One of the first things we like to know with a new program is how to get out
of trouble. S environments are generally vetglerant, and can be interrupted
by Ctrl-C.® (UseEsc on GUI versions undewindows.) This will interrupt the
current operation, back out gracefully (so, with rare exceptions, it is as if it had
not been started) and return to the prompt.

You can terminate yous session by typing

qO)

at the command line or froiBxit on theFile menu in a GUI environment.

On-line help

There is a help facility that can be invoked from the command line. For example,
to get information on the functiopar the command is

> help(var)
A faster alternative (to type) is
> 7var

For a feature specified by special characters and in a few other cases (one is
"function"), the argument must be enclosed in double or single quotes, making
it an entity known inS as a character string. For example, two alternative ways
of getting help on the list component extraction functigi, are

> help("[[")
> ?n [[u

Many S commands have additional help fame. object describing their result:
for example,1m underS-PLUS has a help page farm. object.

Further help facilities for some versions 8fPLUS andR are discussed in
Appendix A. Many versions can have their manuals on-line in PDF format; look
under theHelp menu in thewindows versions.

6This means hold down the key mark&dntrol or Ctrl and hit the second key.

1.3 An Introductory Session

Introduction

The best way to lear® is by using it. We invite readers to work through the
following familiarization session and see what happens. First-time users may not
yet understand every detail, but the best plan is to type what you see and observe

what happens as a result.

Consult Appendix A, and start yo&environment.
The whole session takes most first-time users one to two hours at the appro-
priate leisurely pace. The left column gives commands; the right column gives

brief explanations and suggestions.

A few commands differ between environments, and these are prefixedby
or# S:. Choose the appropriate one(s) and omit the prefix.

library (MASS)

?help

S: trellis.device()

A command to make our datasets avail-
able. Your local advisor can tell you the
correct form for your system.

Read the help page about how to use
help.

Start up a suitable device.

x <= rnorm(1000)
y <= rnorm(1000)

truehist(c(x,y+3), nbins=25)

7?truehist

contour(dd <- kde2d(x,y))

Generate 1000 pairs of normal variates

Histogram of a mixture of normal dis-
tributions. Experiment with the number
of bins (25) and the shift (3) of the sec-
ond component.

Read about the optional arguments.
2D density plot.

Greyscale or pseudo-colour plot.

image (dd)
x <- seq(1l, 20, 0.5)
X

w<-1+ x/2
y <= x + wxrnorm(x)

dum <- data.frame(x, y, w)
dum
rm(x, y, w)

fm <- Im(y ~ x, data = dum)
summary (fm)

Make z = (1,1.5,2,...,19.5,20) and

list it.
w will be used as a ‘weight’ vector and

to give the standard deviations of the er-
rors.

Make adata frame of three columns
namedx, y and w, and look at it. Re-
move the originak, y andw.

Fit a simple linear regression af on
x and look at the analysis.

1.3 AnIntroductory Session

fml <- 1lm(y ~ x, data = dum,
weight = 1/w"2)
summary (fm1)

R: library(modreg)

1rf <- loess(y ~ x, dum)

attach(dum)

plot(x, y)

lines(spline(x, fitted(1lrf)),
col = 2)

abline(0, 1, 1ty = 3, col = 3)

abline(fm, col = 4)

abline(fml, 1ty = 4, col = 5)

plot(fitted(fm), resid(fm),
xlab = "Fitted Values",
ylab = "Residuals")

qgqnorm(resid(fm))
qqline(resid(fm))

Since we know the standard deviations,
we can do a weighted regression.

R only

Fit a smooth regression curve using a
modern regression function.

Make the columns in the data frame
visible as variables.

Make a standard scatterplot. To this
plot we will add the three regression
lines (or curves) as well as the known
true line.

First add in the local regression curve
using a spline interpolation between the
calculated points.

Add in the true regression line (inter-
cept 0, slope 1) with a different line
type and colour.

Add in the unweighted regression line.
abline() is able to extract the infor-
mation it needs from the fitted regres-
sion object.

Finally add in the weighted regression
line, in line type 4. This one should
be the most accurate estimate, but may
not be, of course. One such outcome is
shown in Figure 1.1.

You may be able to make a hardcopy
of the graphics window by selecting the
Print option from a menu.

A standard regression diagnostic plot to
check for heteroscedasticity, that is, for
unequal variances. The data are gener-
ated from a heteroscedastic process, so
can you see this from this plot?

A normal scores plot to check for skew-
ness, kurtosis and outliers. (Note that
the heteroscedasticity may show as ap-
parent non-normality.)

Introduction

Residuals
0 10 20

-10

0 10 20

resid(fm)

-10

5 10 15 20 0

5

Fitted Values

10 15 20 -2 -1 0 1 2
Quantiles of Standard Normal

Figure 1.1: Four fits and two residual plots for the artificial heteroscedastic regression

data.

detach()
rm(fm, fml, 1rf, dum)

Remove the data frame from the search
path and clean up again.

We look next at a set of data on record times of Scottish hill races against

distance and total height climbed.

R: data(hills)
hills

S: splom(~ hills)
R: pairs(hills)

S: brush(hills)

Click on theQuit button in the
graphics window to continue.

attach(hills)

plot(dist, time)
identify(dist, time,
row.names (hills))

abline(Im(time ~ dist))

R: library(lgs)
abline(lgs(time ~ dist),
lty = 3, col = 4)

detach()

List the data.

Show a matrix of pairwise scatterplots
(Figure 1.2).

Try highlighting points and see how
they are linked in the scatterplots (Fig-
ure 1.3). Also try rotating the points in
3D.

Make columns available by name.

Use mouse button 1 to identify outlying
points, and button 2 to quit. Their row
numbers are returned. On a Macintosh
click outside the plot to quit.

Show least-squares regression line.
Fit a very resistant line. See Figure 1.4.

Clean up again.

We can explore further the effect of outliers on a linear regression by designing

our own examples interactively. Try this several times.

plot(c(0,1), c(0,1), type="n")

xy <- locator(type = "p")

Make our own dataset by clicking with
button 1, then with button 2 (outside the
plot on a Macintosh) to finish.

1.3 AnIntroductory Session 9

5] o[
o o 200 150 200
o o
o o
F 150
o o time 100 -
° o
°© oo °© @
00 ° o
oFo CL% o0 50
Q@g o ° ° 50 100
o T T [S)
4000 6000
- 6000
o4 50
o . o
- 4000 climb 4000 -
8 o)
0 o
oooO 6 o o 20004 © [PO o ©° o
00 o
2 o
3 % 2000 4000 Z%%? °
Q) Q)
15 20 25
t 25
k20 o o
o o
. o o
t 15 dist 15 o o
10 oo o 0 @
o @ o 00
5| 8B g :
5 10 15 o8, 8 o

‘ persistent ‘

clirab

transient

‘ no label ‘
label

brudhkize

Calmpapple
Seolty
Trapram

Lrollar
Lomonds
Caurn Table
gildan Twa
Alrngorm
(Hnock Hill
gla:k I—éi]l
reag Bea
Kildc%n Hl.l%

down more

time

dist clirnb

tress Bumon T to highlight, Burton 2 to dewnlight

Figure 1.3: Screendump of &rush plot of datasethills (UNIX).

10 Introduction

Bens of Jura *

200

airig Ghruf‘/

Two Breweries * L
Moffat.Chase

150

time
100

*Seven Hills

« Knock Hill

50

g 10 15 20 25
dist

Figure 1.4: Annotated plot of time versus distance fat11ls with regression line and
resistant line (dashed).

abline(1m(y ~ x, xy), col = 4) Fit least-squares, a robust regression

abline(rlm(y ~ x, xy, and a resistant regression line. Repeat
method = "MM"), to try the effect of outliers, both verti-
1ty = 3, col = 3) cally and horizontally.

abline(lgs(y ~ x, xy),
lty = 2, col = 2)

rm(xy) Clean up again.

We now look at data from the 1879 experiment of Michelson to measure the
speed of light. There are five experiments (coluBwpt); each has 20 runs
(columnRun) and Speed is the recorded speed of light, in km/sec, less 299 000.
(The currently accepted value on this scale is 734.5.)

R: data(michelson)
attach(michelson) Make the columns visible by name.

search() Thesearch pathis a sequence of places,
either directories or data frames, where
S-PLUS looks for objects required for

calculations.
plot (Expt, Speed, Compare the five experiments with
main="Speed of Light Data", simple boxplots. The result is shown
xlab="Experiment No.") in Figure 1.5.

fm <- aov(Speed ~ Run + Expt) Analyse as arandomized block design,
summary (fm) with runs andexperiments as factors.

Df Sum of Sq Mean Sq F Value Pr(F)
Run 19 113344 5965 1.1053 0.36321

1.3 AnIntroductory Session 11

Speed of Light Data

1000

890

q
-
N
)
[

790

1 2 3 4 5
Experiment No

Figure 1.5: Boxplots for the speed of light data.

Expt 4 94514 23629 4.3781 0.00307
Residuals 76 410166 5397
fm0 <- update(fm, .~ . - Run) Fit the sub-modeomitting the non-
anova(fm0, fm) sense factorruns, and compare using

a formal analysis of variance.

Analysis of Variance Table
Response: Speed

Terms Resid. Df RSS Test Df Sum of Sq F Value Pr(F)

1 Expt 95 523510
2 Run + Expt 76 410166 +Run 19 113344 1.1053 0.36321
detach() Clean up before moving on.

rm(fm, fmO)

The S environment includes the equivalent of a comprehensive set of statis-
tical tables; one can work ouP values or critical values for a wide range of
distributions (see Table 5.1 on page 108).

1 - pf(4.3781, 4, 76) P value from the ANOVA table above.
qf (0.95, 4, 76) corresponding 5% critical point.
qO Quit your S environment. R will ask

if you want to save the workspace: for
this session you probably do not.

12 Introduction

1.4 What Next?

We hope that you now have a flavour®find are inspired to delve more deeply.
We suggest that you read Chapter 2, perhaps cursorily at first, and then Sec-
tions 3.1-7 and 4.1-3. Thereatfter, tackle the statistical topics that are of inter-
est to you. Chapters 5 to 16 are fairly independent, and contain cross-references
where they do interact. Chapters 7 anduidbon Chapter 6, especially its first
two sections.

Chapters 3 and 4 come early, because they are &wattabout statistics, but
are most useful to advanced users who are trying to find out what the system is
really doing. On the other hand, those programming ingt@nguage will need
the material in our companion volume &programming, Venables and Ripley
(2000).

Note to R users

The S code in the following chapters is written to work wigtPLUS 6. The
changes needed to use it withare small and are given in the scripts available
on-line in thescripts directory of theMASS package foR (which should be
part of everyR installation).

Two issues arise frequently:

e Datasets need to be loaded explicitly ifpas in the

data(hills)
data(michelson)

lines in the introductory session. So if datageb appears to be missing,
make sure that you have runibrary (MASS) and then trydata(foo).

We generally do not mention this unless something different has to be done
to get the data iR.

e Many of the packages are not attached by defaulR gourrently) needs
far more use of th&ibrary function.

Note too thaR has a different random number stream and so results depending
on random partitions of the data may beatquifferent from those shown here.

Chapter 2

Data Manipulation

Statistics is fundamentally about understang data. We start by looking at how
data are represented$ then move on to importing, exporting and manipulating
data.

2.1 Objects

Two important observations about tBdanguage are that

‘Everything inS is an object.’
‘Every object inS has a class.’

So data, intermediate results and even the result of a regression are stred in
objects, and the classf the object both describes whthe object contains and
what many standard functions do with it.

Objects are usually accessed by name. Synt&at@mes for objects are made
up from the letterd,the digits 0-9 in any non-initial position and also the period,
‘.7, which behaves as a letter except in names such3¥s where it acts as a
decimal point. There is a set of reserved names

FALSE Inf NA NaN NULL TRUE
break else for function if in next repeat while

and inS-PLUS return, F andT. Itis a good idea, and sometimes essential, t3
avoid the names of system objects like

cqs tCDFITdiff mean pi range rank var

Note thatS is case sensitive, so Alfred and alfred are distinctS names, and
that the underscore,_'’, is not allowed as part of a standard name. (Periods are
often used to separate words in namas:alternative style is to capitalize each
word of a name.)

Normally objects the users create are stored in a workspace. How do we
create an object? Here is a simple example, some powers bfe make use of
the sequence operator * which gives a sequence of integers.

1In R all objects have classes only if the&thods package is in use.
2In R the set of letters is determined by the laaind so may include accented letters. This will
also be the case B-PLUS 6.1.

13

S+

S+Win

14 Data Manipulation

> -2:2

11 -2 -1 0 1 2

> powers.of.pi <- pi~(-2:2)

> powers.of.pi

[1] 0.10132 0.31831 1.00000 3.14159 9.86960
> class(powers.of.pi)

[1] "numeric"

which gives avector of length 5. It contains real numbers, so has class called
"numeric". Notice how we can examine an object by typing its name. This is
the same as calling the functigrrint onit, and the functiorsummary will give
different information (normally less, but sometimes more).

> print(powers.of.pi)
[1] 0.10132 0.31831 1.00000 3.14159 9.86960
> summary (powers.of.pi)

Min. 1st Qu. Median Mean 3rd Qu. Max.
0.1013 0.3183 1.0000 2.8862 3.1416 9.8696

In S-PLUS the objectpowers.of .pi is stored in the file system under the
.Data directory in the project directory, and is available in the project until
deleted with

rm(powers.of.pi)

or over-written by assigning something else to that name. (Under some settings,
S-PLUS 6 for Windows prompts the user at the end of the session to save to
the main workspace all, none or some of the objects created or changed in that
session.)

R stores objects in a workspace kept in memory. A prorapthe end of the
session will ask if the workspace should be saved to disk (in a.fieata);
a new session will restore the saved workspace. ShouldRtkession crash
the workspace will be lost, so it can be saved during the session by running
save.image () or from a file menu on GUI versions.

S has no scalars, but the building blocks for storing datavesters of various
types. The most common classes are

e '"character", a vector of character strings of varying (and unlimited)
length. These are normally entered and printed surrounded by double
quotes, but single quotes can be used.

e '"numeric", avector of real numbers.
e '"integer", a vector of (signed) integers.

e "logical", avector of logical (true or false) values. The values are output
asT andF in S-PLUS and asTRUE andFALSE in R, although each system
accepts both conventions for input.

e '"complex", avector of complex numbers.

3Prompting for saving and restoring can be changed by command-line options.

2.1 Objects 15

e "list", avector ofS objects.

We have not yet revealed the whole story; for the first five classes there is an
additional possible valuegyA , which meansot available. See pages 19 and 53
for the details.

The simplest way to access a part of a vector is by number, for example,

> powers.of .pi[5]
[1] 9.8696

Vectors can also havemes, and be accessed by name.

names (powers.of .pi) <- -2:2
powers.of.pi
-2 -10 1 2
0.10132 0.31831 1 3.1416 9.8696
powers.of.pi["2"]
2
9.8696
> class(powers.of.pi)
[1] "named"

The class has changed to reflect the additional structure of the object. There are
several ways to remove the names.

> as.vector(powers.of.pi) # or c(powers.of.pi)
[1] 0.10132 0.31831 1.00000 3.14159 9.86960

> names(powers.of.pi) <- NULL

> powers.of.pi

[1] 0.10132 0.31831 1.00000 3.14159 9.86960

This introduces us to another objeLL, which represent nothing, the empty
set.

Factors

Another vector-like class is much usedSnFactors are sets of labelled observa-
tions with a pre-defined set of labels, not all of which need occur. For example,

> citizen <- factor(c("uk", "us", "no", "au", "uk", "us", "us"))
> citizen
[1] uk us no au uk us us

Although this is entered as a character vector, it is printed without quotes. Inter-
nally the factor is stored as a set of codes, and an attribute givingwtie:

> unclass(citizen)

[11 3421344
attr(, "levels"):

[1] "au" "no" "uk" "us"

If only some of the levels occur, all are printed (and they always aRy.in R

16 Data Manipulation

> citizen[5:7]

[1] uk us us

Levels:

[1] "au" "no" "uk" "us"

(An extra argument may be included when subsetting factors to include only those
levels that occur in the subset. For examplétizen[5:7, drop=T].)

Why might we want to use this rather strange form? Using a factor indicates
to many of the statistical functions that this is a categorical variable (rather than
just a list of labels), and so it is treated specially. Also, having a pre-defined set
of levels provides a degree of validation on the entries.

By default the levels are sorted into alphabetical order, and the codes assigned
accordingly. Some of the statistical furanis give the first level a special status,
so it may be necessary to specify the levels explicitly:

> citizen <- factor(c("uk", "us", "no", "au", "uk", "us", "us"),
levels = c("us", "fr", "no", "au", "uk"))

> citizen

[1] uk us no au uk us us

Levels:

[1] "us" "fr" "no" "au" "uk"

Function relevel can be used to change the ordering of the levels to make a
specified level the first one; see page 383.
Sometimes the levels of a categoricalighle are naturally ordered, as in

> income <- ordered(c("Mid", "Hi", "Lo", "Mid", "Lo", "Hi", "Lo"))
> income
[1] Mid Hi Lo Mid Lo Hi Lo

Hi < Lo < Mid
> as.numeric(income)
[11 3123212

Again the effect of alphabetic ordering is not what is required, and we need to set
the levels explicitly:

> inc <- ordered(c("Mid", "Hi", "Lo", "Mid", "Lo", "Hi", "Lo"),
levels = c("Lo", "Mid", "Hi"))

> inc

[1] Mid Hi Lo Mid Lo Hi Lo

Lo < Mid < Hi

Ordered factors are a special case of factors that some functions (including
print) treat in a special way.

The functioncut can be used to create ordered factors by sectioning contin-
uous variables into discrete class intervals. For example,

> # R: data(geyser)
> erupt <- cut(geyser$duration, breaks = 0:6)
> erupt <- ordered(erupt, labels=levels(erupt))

2.1 Objects 17

> erupt
[1] 4+ thru 5 2+ thru 3 3+ thru 4 3+ thru 4 3+ thru 4
[6] 1+ thru 2 4+ thru 5 4+ thru 5 2+ thru 3 4+ thru 5

0+ thru 1 < 1+ thru 2 < 2+ thru 3 < 3+ thru 4 < 4+ thru 5 <
5+ thru 6

(R labels these differently.) Note that the intervals are of the férmm + 1], so R
an eruption of 4 minutes is put in categoBy thru 4. We can reverse this by
the argumentieft.include = T.*

Data frames

A data frame is the type of object normally usedSrto store a data matrix. It
should be thought of as a list of variables of the same length, but possibly of
different types (numeric, factor, character, logical, ...). Consider our data frame
painters.:

> # R: data(painters)
> painters
Composition Drawing Colour Expression School

Da Udine 10 8 16 3 A
Da Vinci 15 16 4 14 A
Del Piombo 8 13 16 7 A
Del Sarto 12 16 9 8 A
Fr. Penni 0 15 8 0 A

which has four numerical variables and daetor variable. It is printed in a way
specific to data frames. The components are printed as columns and there is a set
of names, therow.names, common to all variables. The row names should be
unique®

> row.names (painters)

[1] "Da Udine" "Da Vinci" "Del Piombo"
[4] "Del Sarto" "Fr. Penni" "Guilio Romano"
[7] "Michelangelo" "Perino del Vaga" "Perugino"

The column names are given by themes function.
Applying summary gives a summary of each column.

> summary(painters) # try it!

Data frames are by far the commonest way to store data $rervironment.
They are normally imported by reading a file or from a spreadsheet or database.
However, vectors of the same length can be collected into a data frame by the
function data.frame.

mydat <- data.frame(MPG, Dist, Climb, Day = day)

4InRuseright = FALSE.
5In S-PLUS there is adup . names . ok argument which should be avoided.

18 Data Manipulation

However, all character columnsra converted to factors unless their names are
included inI() so, for example,

mydat <- data.frame(MPG, Dist, Climb, Day = I(day))

preservesiay as a character vectabay.

The row names are taken from the names of the first vector found (if any)
which has names without duplicates, otherwise numbers are used.

Sometimes it is convenient to make the columns of the data frame available
by name. This is done bgttach and undone byletach:

> attach(painters)
> School
[1] AAAAAAAAAABBBBBBCCCCCCDDDDDDD

[30] DDDEEEEEEEFFFFGGGGGGGHHHH
> detach("painters")

Be wary of masking system obje&snd detach as soon as you are done with
this.

Matrices and arrays

A data frame may be printed like a matrix, but it is not a matrix. Matrices like
vectorg have all their elements of the same type. Indeed, a good way to think of
a matrix inS is as a vector with some special instructions as to how to lay it out.
The matrix function generates a matrix:

> mymat <- matrix(1:30, 3, 10)
> mymat

[,11 [,21 (,3] [,4] (,51 [,6] [,71 [,8] [,9] [,10]
[1,] 1 4 7 10 13 16 19 22 25 28
[2,] 2 5 8 11 14 17 20 23 26 29
[3,] 3 6 9 12 15 18 21 24 27 30
> class(mymat)
[1] "matrix"
> dim(mymat)
[11 3 10

Note that the entries are (by default) laid out down columns, the class is one
not seen before, and théim function gives the dimensions. Use argument
byrow = T to fill the matrix along rows.

Matrices have two dimensions: arrays have one, two, three or more dimen-

sions. We can create an array using tiweray function or by assigning the
dimension.

> myarr <- mymat

> dim(myarr) <- c(3, 5, 2)
> class(myarr)

[1] "array"

6See page 43.
"Except lists, but a list can be matrix $1

2.1 Objects 19

> myarr

[,11 (,21 [,3] [,4] [,5]
[1,] 1 4 7 10 13
[2,] 2 5 8 11 14
[3,] 3 6 9 12 15

[,11 [,21 [,3] [,4] [,5]
[1,] 16 19 22 25 28
[2,] 17 20 23 26 29
[3,] 18 21 24 27 30
> dim(myarr)
[1] 352

Matrices and arrays can also have names for the dimensions, knadim-as
names. The simple way to add them is to just to assign them, usitig. where
we do not want a to specify a set of names.

> dimnames (myarr) <- list(letters[1:3], NULL, c("(i)", "(ii)"))
> myarr

s (D)

(,11 0,21 [,3] [,4] [,5]
1 4 7 10 13
2 5 8 11 14
3 6 9 12 15

o oM

, » (i1)

[,11 [,21 [,3] [,4] [,5]
16 19 22 25 28
17 20 23 26 29

c 18 21 24 27 30

T o

We can begin to see how arrays may be useful to represent multi-dimensional
tables.

Missing and special values

We have already mentioned the special value If we assignNA to a new
variable we see that it imgical

> newvar <- NA
> class(NA)
[1] "logical"

It is important to realize the® works in a three-valued logic, and that

> newvar > 3
[1] NA

20 Data Manipulation

is perfectly logical in that system. As we do not know the valuaefvar (itis
‘not available’) we cannot know if it bigger or smaller than 3. In all such c&ses
does not guess, it returng. .

There are missing numeric, integer, complex aRd(ly) character values,
and these are also printed &6. Coercion occurs as heeded, so

> x <= c(pi, 4, 5)

> x[2] <- NA

> x

[1] 3.1416 NA 5.0000
> class(x)

[1] "numeric"

shows that this is a numeritA . To test which elements of an object are missing,
use the functionis.na

> is.na(x)
[1] FTF

There are other special numeric (acmmplex) values that can cause confu-
sion. As far as we know all currei® environments support IEC 60559 arith-
metic® which has the special valueN, Inf and -Inf. The valuesInf and
-Inf can be entered as such and can also occur in arithmetic:

> 1/0
[1] Inf

The valu€ NaN means ‘not a number’ and represent results suclh/As In
S-PLUS they are printed a®lA, in R as NaN and in bothis.na treats them as
missing.

> x <- c(-1, 0, 1)/0

> X

[1] -Inf NA Inf ## NaN in R
> is.na(x)

[11 FTF

> x > Inf

[1] FNA F

Notice the logic is not perfect; even though the second element is missing we
know it cannot exceednf , butS does not.
For more on this topic see Venables and Ripley (2000, p. 22).

2.2 Connections

Connections between a statistical environment and the outside world are increas-
ingly important. Here ‘connections’ is used both in the general sense and a spe-
cific sense, a set dd classes to connect to the world rather than just to files.

8More commonly referred to as IEEE 754.
9There are actually many such values.

2.2 Connections 21

There is a clas$ connection" for S objects that provide such connections; this
specializes to a classfile" for files, but there are also (in some of the imple-
mentations) connections to terminals, pipes, fifos, sockets, character vectors,
We will only scratch the surface here.

Another set of connections are to data repositories, either to import/export
data or to directly access data in another system. This is an area in its infancy.

For most users th8 environment is only one of the tools available to manip-
ulate data, and it is often productive to use a combination of tools, pre-processing
the data before reading into teenvironment.

Data entry

For all but the smallest datasets the easiest way to get data it@mavironment
is to import it from a connection such as a file. For small datasets two ways are

> x <- c(2.9, 3.1, 3.4, 3.4, 3.7, 3.7, 2.8, 2.5)

> x <- scan()
1: 2.9 3.1 3.4 3.4 3.7 3.7 2.8 2.5
9:

where in the second method input is terminated by an empty line or the end-
of-file character (probably Ctrl-D).T6 enter a character vector this way use
scan(what = ""))

Windows versions ofS-PLUS and all versions oR have a spreadsheet-likes+win
data window that can be used to enter or edit data frames. It is perhaps easiest to
start with a dummy data frame:

> mydf <- data.frame(dist = 0., climb = 0., time = 0.)
> Edit.data(mydf) ## S-PLUS for Windows only

FunctionEdit.data brings up a spreadsheet-like grid: see Figure 2.1. It works
on matrices and vectors too. Alternatively open an Objects Explorer, right click
on the object and seleEtlit..., or use theSelect Data... item on theData menu.

In R create a dummy data frame and then use R

> fix(mydf) ## R

to bring up a data grid. Se®edit.data.frame for further details.

Importing using read.table

The functionread.table is the most convenient way to read in a rectangular
grid of data. Because such grids can have many variations, it has many arguments.
The first argumentis calletifile" , but specifies a connection. The simplest

use is to give a character string naming the file. One warning/fadows users:
specify the directory separator either'aé" or as"\\" (butnot "\").
The basic layout is one record per row of input, with blank rows being ignored.
There are a number of issues to consider:

S+

22

Data Manipulation

[aiDixs
1 = h | 4 K -
et chmh L | — B
I Gresrrmaills E 0 [1
2 Carnefy N =) 1k
i Cre Mgran 2,0 XN M - am,
4 Bati Fhisi i mELm 15 50
% fon Lomard o 2o
a Safe o e T
R | T T 150 S 0 Fiet | T
8 Casrpapole i a0 "3
9 T =00 . o
i) Flagrain " 91 (0 =,
1l L] iFwii S0 > g
12 O far = {77 =EEL K] JE 3
LS| [

Figure 2.1: A data-window view (fromS-PLUS 6 underWindows) of the first few rows
of the hills dataset. For details of data windows see page 460.

(a) Separator The argumentkep specifies how the columns of the file are to

(b)

(©

(d)

(e)

be distinguished. Normally looking at the file will reveal the right separator,
but it can be important to distinguish between the defagjf = "" that uses
any white space (spaces, tabs or newlinesp = " " (a single space) and
sep = "\t" (tab).

Row names It is best to have the row names as the first column in the file,
or omit them altogether (when the rows are numbered, starting at 1).

The row names can be specified as a character vector argumsweames,

or as the number or name of a column to be used as the row names. If there
is a header one column shorter than the body of the file, the first column in
the file is taken as the row names. OtherwssBLUS grabs the first suitable
column (non-numeric, no duplicates), or if there is none, numbers the rows.
You can force numbered rows by argumepts . names = NULL.

Header line Itis convenientto include a first line of input giving the names
for the columns. We recommend that you include the argunheatier
explicitly. Conventionally the header line excludes the row names and so
has one entry fewer than subsequent rows if the file contains row names. (If
header is not specifiedS setsheader = T if and only if this is true.) If

the names given are not syntatically vaichames they will be converted (by
replacing invalid characters by. °).

Missing values By default the character stringA in the file is assumed

to represent missing values, but this can be changed by the argument
na.strings, a character vector of zero, onemore representations of miss-

ing values. To turn this off, usea.strings = character(0).

In otherwise numeric columns,dik fields are treated as missing.

Quoting By default character strings may be quoted'bypr > and in each

2.2 Connections 23

case all characters on the line up to the matching quote are regarded as part
of the string.

In R the set of valid quoting characters (which might be none) is specifiedrby
the quote argument; fosep = "\n" this defaults toquote = "", a useful

value if there are singleton quotes in the data file. If no separator is specified,
quotes may be escaped by preceding them with a backslash; however, if a
separator is specified they should be escaped by doubling them, spreadsheet-
style.

(f) Type conversion By default, read.table tries to work out the correct
class for each column. If the columpmtains just numeri€logical) values
and one of thena.strings it is converted to"numeric" ("logical").
Otherwise it is converted to a factor. The logical argumestis controls
the conversion to factors (only); it can be of length one or give an entry for
each column (excluding row names).

R has more complex type conversion rules, and can produce integer and gom-
plex columns: it is also possible toesqgify the desired class for each column.

(g) White space in character fields If a separator is specified, leading and trail-
ing white space in chacter fields is regarded as part of the field.

Post-processing

There are some adjustments that are often needed aftertssidgtable . Char-

acter variables will have been read as factors (modulo the use.dfs), with lev-

els in alphabetical order. We might want another ordering, or an ordered factor.
Some example¥’

whiteside$Insul <-

factor(whiteside$Insul, levels = c("Before", "After"))
Insurance$Group <- ordered(Insurance$Group,

labels = c("<11", "1-1.51", "1.5-21", ">21"))

Also, numeric variables will have been made into a numeric column, even if they
are really factor levels:

Insurance$District <- factor(Insurance$District)

Importing from other systems

Often the safest way to import data from another system is to export it as a tab- or
comma-delimited file and useead.table. However, more direct methods are
available.

S-PLUS has a functionimportData, and on GUI versions a dialog-box in-s+
terface via thdmport Data... item on itsFile menu. This can import from a
wide variety of file formats, and alsdrdctly from relational databasés. The
file formats include plain texgxcel,*? Lotus 123 andQuattro spreadsheets, and

10A| from the scripts used to make theass library section.
which databases is system-dependent.
12yt only up to the long superseded version 40X / Linux.

24 Data Manipulation

[iwpore fromocec =l =l
ooec | Fam |
From
Do [T - |
Kol Sipaicn | 1 oy 5 o |
T ghie M |ri =|
SLI Ll Sl ™ b el J

|

To
Dai e Jrass =|
St ol |<EHES =|
7 Irast o sist ool
™ Drespits Lags
0k | Concal | sopw | 1 [cumen Hee |

Figure 2.2 S-PLUS 6 GUI interface to importing from ODBC: thAccess database is
selected from a pop-up dialog box when that type of ‘Data Source’ is selected.

variousSAS, SPSS, Stata, SysStat, Minitab andMatlab formats. Files can be
read in sequential blocks of rows vigenData and readNextDataRows.

Importing data in the GUI usually brings up a data grid showing the data; it is
also saved as aB object. We will illustrate this by importing a copy of our data
framehills from anAccess database. The data had been stored in tabld s
in anAccess database, and an ODBC ‘Data Source Nam&itacc entered via
the control panel ODBC applét.

hills2 <- importData(type = "ODBC",
odbcConnection = "DSN=testacc", table = "hills")

Users unfamiliar with ODBC will find the GUI interface easier to use; see Fig-
ure 2.2.

If you have MicrosoftExcel installed, data frames can be linked to ranges of
Excel spreadsheets. Open the spreadsheet vi©open item on theFile menu
(which brings up an embeddé&ckcel window) and select the ‘Link Wizard’ from
the toolbar.

R can import from several file formats and relational database systems; see
the R Data Import/Export manual.

Using scan

Functionread.table is an interface to a lower-level functiogcan. Itis rare
to usescan directly, but it does allow more flexibility, including the ability to

131n the Administrative Tools folder in Windows 2000 and XP.

2.2 Connections 25

bypass completely the type conversionefd . table and to have records span-
ning more than one input line (with argumenilti.line = T).

Using readLines

If all you need is to read a set of characstrings from a file, one string per line,
thenreadLines is the fastest and most convenient tool. Often the simplest way
to read complicated formats is to reaeth line-by-line and then manipulate the
lines inside thes environment.

Data export

Once again there are many possibilities. Functiotite . table will write a data
frame to a connection, most often a file. Its default usage

> write.table(painters, file = "painters.dat")

writes a data frame, matrix or vector to a file in a comma-separated format with
row and column names, something like (fr&PLUS)

row.names,Composition,Drawing,Colour,Expression,School
Da Udine,10, 8,16, 3,A

Da Vinci,15,16, 4,14,A

Del Piombo, 8,13,16, 7,A

Del Sarto,12,16, 9, 8,A

There are a number of points to consider.

(a) Header line Note that that is not quite the format of header line that
read.table expects, andR will omit the first field unless argumentr
col.names = NA is supplied.

The header line can be suppresse8-iPLUS by dimnames.write = "row"
and inR by col.names = FALSE.

(b) Row names These can be suppressed &jmnames.write = "col" in
S-PLUS androw.names = FALSE inR. InS-PLUS dimnames.write = F
omits both row and column names.

(c) Separator The comma is widely used in English-speaking countries as it is
unlikely to appear in a field, and such files are known as CSV files. In some
locales the comma is used as a decimahp@nd there the semicolon is used
as afield separator in CSV fields (usep = ";"). Atab (usesep = "\t")
is often the safest choice.

(d) Missing values By default missing values are output &4 ; this can be
changed by the argument .

(e) Quoting In S-PLUS character strings are not quoted by default. With as+
gumentquote.strings = T all character strings are double-quoted. Other
guoting conventions are possible, for examglete.strings = c("¢",

"> 1) Quotes within strings are not treated specially.

S+

S+

26 Data Manipulation

In R character stringsare quoted by default, this being suppressed by
quote = FALSE, or selectively by giving a numeric vector fafuote. Em-
bedded quotes are escaped, eitheNasor doubled (Excel-style, set by
gmethod = "double").

(f) Precision The precision to which real (and complex) numbers are output is
controlled by the setting ofptions ("digits"). You may need to increase
this.

Using write.table can be very slow for large data frames; if all that is
needed is to write out a numeidc character matrix, functionrite.matrix in
our library sectionMASS can be much faster.

S-PLUS has functionexportData, and onWindows a dialog-box interface
to it via itemExport Data... on theFile menu. This can write files in similar for-
mats toimportData (but not to databases). The arguments are similar to those of
write.table but with confusingly different names, for examplelimiter,
colNames, rowNames and quote (which defaults to true). Files can be ex-
ported in blocks of rows viapenData and writeNextDataRows.

Saving objects

Sometimes one needs to savesambject for future reference or to take to another
machine. If it is a data frame, the simplest way is often to export to a text file.
However, there are ways to saaed restore arbitrary objects.

In S-PLUS the recommended way is to save the object usiaga . dump and
restore it usinglata.restore. To save and restore three objects we can use

data.dump(c("obji", "obj2", "obj3"), file = "mydump.sdd")
data.restore(file = "mydump.sdd")

UnderWindows the . sdd extension is associated with such dumps.
In R we can usesave and load. A simple usage is

save(objl, obj2, obj3, file = "mydump.rda", ascii = FALSE)
load(file = "mydump.rda")

which gives a binary dump (usually in a machine-independent format). To send
the result by email or to ensure a greatbance of machine-independence, use
ascii = TRUE. Compression can be specifigid compress = TRUE, and is
useful for archival storage & objects.

Note that none of these methods is guaranteed to work across different archi-
tectures (but they usually do) nor across different versiois®EUS or R.

More on connections

So far we have made minimal use of connections; by default functions such as
read.table and scan open a connection to a file, read (or write) the file, and
close the connection. However, users can manage the process themselves: sup-
pose we wish to read a file which has a header and some text comments, and then
read and process 1000 records at a time. For example,

2.3 Data Manipulation 27

con <- open("data.dat", "r") # open the file for reading
header <- scan(con, what=list(some format), n=1, multi.line=T)
compute the number of comment lines from ‘header’
comments <- readLines(con, n = ncomments)
repeat {

z <- scan(con, what = list(record format), n = 1000)

if (length(z[[1]1])) break;

process z (which might be less than 1000 records)
}

close(con)

This approach is particularly useful with binary files of known format, where
readRaw (S-PLUS) or readBin (R) can be used to read sections of a particular
format (say character or float type). Itdkso helpful for creating formatted output
a piece at atime.

Connections can also be used to input from other sources. Suppose the data
file contains comment lines starting with. Now R’S read.table and scan R
can handle these directly, but we could also make usepdfi@ connection by

DF <- read.table(pipe("sed -e /~[\\tl##/d data.dat"), header = T)

A similar approach can be used to edit the data file, for example to chuthge
use of comma as a decimal separator toby sed -e s/,/./g.

Taking this approach further, a connection can (on suitable systems) read from
or write to a fifo or socket and so wait for data to become available, process it and
pass it on to a display program.

2.3 Data Manipulation

S-PLUS for Windows has a set of dialog boxes accessed fronbdsa menu for
data manipulation. These can be useful for simple operations, but are very limited
compared to th& language as used on, say, page 380.

The primary means of data manipulationSns indexing. This is extremely
powerful, and most people coming$dake a while to appreciate the possibilities.
How indexing works in detail varies by the class of the object, and we only cover
the more common possibilities here.

Indexing vectors

We have already seen several examples of indexing vectors. The complete story
needs to take into account that indexing can be done on the left-hand side of an
assignment (to select parts of a vectordplace) as well on the right-hand side.

The general form i [ind] whereind is on of the following forms:

14This may only work on aJNIX-like system.
15R has argumentiec to specify the decimal point character, é8PLUS 6.1 consults the locale.

28 Data Manipulation

1. A vector of positive integers. In this case the values in the index vector nor-
mally lie in the set{1, 2, ..., length(x)}. The corresponding ele-
ments of the vector are selected, in that order, to form the result. The index
vector can be of any length and the result is of the same length as the in-
dex vector. For example; [6] is the sixth component af and x[1:10]
selects the first 10 elements af(assuminglength(x) > 10). For an-
other example, we use the datagetters, a character vector of length
26 containing the lower-case letters:

> letters[1:3]

[1] nan npn nen

> letters[c(1:3,3:1)]

[1] llall Ilbll IICII ”C” Ilbll Ilall

Such indices can also include zero. z&ro index on the right-hand side
passes nothing, and a zero index in a vector to which something is being
assigned accepts nothing.

2. Alogical vector. The index vector must be of the same length as the vector
from which elements are to be selected. Values correspondifigitothe
index vector are selected and those correspondiny®o NA are omitted.

For example,

y <= x[!is.na(x)]

creates an objecg that will contain the non-missing values af, in the
same order as they originally occurred. Note thakifhas any missing
values,y will be shorter thanx. Also,

x[is.na(x)] <- 0

replaces any missing values inby zeros.

3. Avector of negative integers. This specifies the values to becluded rather
than included. Thus

>y <= x[-(1:5)]

drops the first five elements of. Zero values are handled in the same way
asin casd.

4, A vector of character strings. This possibility applies only where a vector
has names. In that case a subvector of the names vector may be used in the
same way as the positive integers in casEor example,

> # R: data(state)

> longitude <- state.center$x

> names(longitude) <- state.name

> longitude[c("Hawaii", "Alaska")]
Hawaii Alaska

-126.25 -127.25

finds the longitude of the geographic centre of the two most western states
of the USA. Thenames attribute is retained in the result.

2.3 Data Manipulation 29

5. Empty. This implies all possible values for the index. It is really only useful
on the receiving side, where it replaces the contents of the vector but keeps
other aspects (the class, the length, the names, ...).

What happens if the absolute value of an index falls outside the range
1, ..., length(x)? Inan expression this giver if positive and imposes no
restriction if negative. In a replacement, a positive index greatertkeagth (x)
extends the vector, assignirngis to any gap, and a negative index less than
-length(x) isignored inS-PLUS but an error irR. R

If the sub-vector selected for replacent is longer than the right-hand side,
the S recycling rule comes into play. That is, the right-hand side is recycled as
often as necessary; if this involves partial recycling there will be a warning or
error message.

Indexing data frames, matrices and arrays

Matrices and data frames may be indexed by giving two indices in the form
mydf [i, j] wherei and j can take any of the five forms shown for vectors. If
character vectors are used as indices, they refer to column names, row names or
dimnames as appropriate.

Matrices are just arrays with two dimensions, and the principle extends to
arrays: for ak—dimensional array givé indices from the five forms. Indexing
array$® has an unexpected quirk: if one of the dimensions of the result is of
length one, it is dropped. Suppress this by adding the arguthent = F. For
example,

> myarr([1, 2:4,]
(1) (1)
1,17 4 19
2,1 7 22
[3,] 10 25
> myarr([1, 2:4, , drop = F]

» > (1)
(,11 [,21 [,3]
a 4 7 10

s > (A1)
[,11 [,2]1 [,3]
a 19 22 25

Forgettingdrop = F is a common error. Conversely, the functidsop will
drop all length-one dimensions.

Columns in a data frame are most commonly selected b theerator, for
examplepainters$School.

18But not data frames.

30 Data Manipulation

There are several other forms of indexing that you might meet, although we
do not recommend them for casual use; they are discussed in Venables and Rip-
ley (2000, pp. 23-27). Columns of a data frame can be selected by using a one-
dimensional index, for examplgainters[c("Colour", "School")]. Anar-
ray is just a vector with dimensions, and so can be indexed as a vector. Arrays
and data frames can also be indexed by matrices.

Selecting subsets

A common operation is to select just those rows of a data frame that meet some
criteria. This is a job for logical indexing. For example, to select all those rows of
the painters data frame withColour > 17 we can use

> attach(painters)
> painters[Colour >= 17,]
Composition Drawing Colour Expression School

Bassano 6 8 17 0 D
Giorgione 8 9 18 4 D
Pordenone 8 14 17 5 D

Titian 12 15 18 6 D
Rembrandt 15 6 17 12 G
Rubens 18 13 17 17 G
Van Dyck 15 10 17 13 G

We often want to select on more than aréerion, and we can combine logical
indices by the ‘and’, ‘or’ and ‘not’ operatorg, | and! . For example,

> painters[Colour >= 15 & Composition > 10,]
> painters[Colour >= 15 & School != "D",]

Now suppose we wanted to select those from schools A, B and D. We can
select a suitable integer index usimngtch (see page 53) or a logical index using
is.element.

painters[is.element(School, c("A", "B", "D")),]
painters[School %in)% c("A", "B", "D"),] ## R and S+6.1 only

One needs to be careful with theseecks, and consider what happens if part
of the selection criterion ifNA. Thus School != "D" not only omits those
known to be in schooD, but also any for which the school is unknown, which
are kept by!is.element (School, "D").

One thing that does not work as many people expegti®ol == c("A",

"B", "D"). Thattests the first element agairiat" , the second againsB" , the
third against"C", the fourth against'A", and so on.

The ifelse function can also be useful in selecting a subset. For example,
to select the better cfolour and Expression we could use a matrix index

painters[cbind(1:nrow(painters), ifelse(Colour > Expression, 3, 4))]

Partial matching can be useful, and is best doneeqylar expressions (see
page 53). For example, to select thosénpers whose names end in ‘io’ we can
use

2.3 Data Manipulation 31

painters[grep("io$", row.names(painters)),]
We must remember to clean up:

> detach("painters")

Sub-sampling
Sub-sampling is also done by indexing. For a random sampie mafws of data
frame fg1 we can use

fglsubl <- fgl[sort(sample(l:nrow(fgl), m)),]

Using sort keeps the rows in their original order.

Sometimes one wants a, say, 10% sample where this means not a fixed-size
random sample of 10% of the original size, but a sample in which each row ap-
pears with probability 0.1, independently. For this, use

fglsub2 <- fgl[rbinom(nrow(fgl), 1, 0.1) == 1,]

For systematic sampling we can use &y function described on page 50.
For example, to sample every 10th row use

fglsub3 <- fgllseq(l, nrow(fgl), by = 10),]

Re-coding missing values

A common problem with imported data is to re-code missing values, which may
have been coded a999’ or * .’, say. Often this is best avoided by using the
na.strings argumenttoread.table or by editing the data before input, but
this is not possible with direct (e.g., ODBC) connections.

An actual example was an import from SPSS in whizth99 and 999 all
represented ‘missing’. For a vectarthis can be recoded by

z[is.element(z, c(9, 99, 999))] <- NA

If* . "has been used itis likely that the vector has been imported as a character
vector, in which case

z[z == "."] <- NA
z <- as.numeric(z)

may be needed.

Combining data frames or matrices

The functionscbind and rbind combine data frames, matrices or vectors
column-wise and row-wise respectively.

Compatible data frames can be joined &yind, which adds columns of the
same length, andbind, which stacks data frames vertically. The result is a
data frame with appropriate names and riames; the names can be changed by
naming the arguments as on page 191.

The functions can also be applied to m@ts and vectors; the result is a ma-
trix. If one just wants to combine vectors to form a data frame,dse . frame

32 Data Manipulation

andnot cbind; cbind-ing a mixture of numeric and character variables will
result in a character matrix.

Repeated use ofbind and (especially)bind is inefficient; it is better to
create a matrix (or data frame) of the desired final size (or an overestimate) and
then assign to sections of it using indexing.

Function merge (see page 35) allows more general combinations of data
frames.

Sorting

The S function sort at its simplest takes one vector argument and returns a
vector of sorted values. The vector be sorted may be numeric or character,
and if there is a names attribute the correspondence of names is preserved. The
ordering of tied values is preserved. HaWwaracter vectors are sorted is locale-
specific inR andS-PLUS 6.1; S-PLUS 6.0 uses the ASCII collating sequence.

To reverse the ordering of a vector, use the functiem .

More often we want to sort several values in parallel: for example to sort the
painters data frame by the painter's name. We can do that by

painters[sort.list(row.names(painters)),]

The functionsort.list produces a (positive integer) index vector that will ar-
range its argument in increasing order. To put a numeric vectoto decreasing
order, usesort.list (-x); for any vectorx one can use-ev(sort.list(x)),
but that will also reverse tied entries.

Function order generalizessort.list to an arbitrary number of argu-
ments. It returns the index vector that would arrange the first in increasing order,
with ties broken by the second, and so on. For example, to print employees ar-
ranged by age, by salary within age, and by employment number within salary,
we might use:

attach(Employees)
Employees [order (Age, Salary, No),]
detach("Employees")

All these functions have an argumeit . 1ast that determines the handling
of missing values. Withha.last = NA (the default forsort) missing values
are deleted; withna.last = T (the default forsort.list and order) they
are put last, and withha.last = F they are put first.

Data transformations

There are of course many possible transformations, and here we only consider a
few of the more common ones. Unless otherwise stated, we assume that the data
are stored in a data frame.

2.3 Data Manipulation 33

Individual variables

Individual variables are most easily accessed bystbperator, which can also be
used to add new variables (at the right edge). Here are some examples from later
in the book:

> hills$ispeed <- hills$time/hills$dist # ratio of two vars
> Cf$Tetrahydrocortisone <- log(Cf$Tetrahydrocortisone)
> levels(Quine$Eth) <- c("Aboriginal", "Non-aboriginal')

One set of transformations that is sdimmees needed is to convert a factor with
numeric levels to numbers, anite versa. Use

a.num <- as.numeric(as.character(a.num.fac)) # or
a.num <- as.numeric(levels(a.mu.fac)) [a.num.fac] # more efficient

a.fac <- factor(a.num, levels = sort(unique(a.num)))

Not specifyinglevels in the last example would sort the levels as strings, using
w2n > 10" for example.

To merge levels of a factor, re-assign the levels giving two or more levels the
same label.

Sets of columns

Some operations can be applied to whole data frames, for exabegleso in
Chapter 11 we haveog(ir). More often we want to take logs of some of the
variables, say all numeric variables. We can apply this todhebs dataset we
consider in Chapter 11.

lcrabs <- crabs # make a copy
lcrabs[, 4:8] <- log(crabs[, 4:8])

One common operation to use in this waisale, which by default centres each
variable to have zero mean and then resea&b unit variance. (Either operation
can be de-selected via argumentaiter andscale.)

Other operations can only be applied to vectors, and so must be applied to
each column in turn. This is the purpose of the functicipply, so we could
scale the columns ofrabs by

scrabs <- crabs # make a copy

scrabs[, 4:8] <- lapply(scrabs[, 4:8], scale)

or to just centre the variables

scrabs[, 4:8] <- lapply(scrabs[, 4:8], scale, scale = F)

albeit less efficiently. Notice how extra arguments can be given, and are passed
on to the function called for each column. For an example where variables are
scaled to[0, 1] see page 348.

Suppose we wanted to standardizal the numerical variables. We could use

scrabs <- crabs # make a copy
scrabs[] <- lapply(scrabs,
function(x) {if(is.numeric(x)) scale(x) else x})

1"Transform to zero mean and unit variance.

34 Data Manipulation

using a simplanonymousfunction (and if ... else; see page 58). The right-
hand side gives a list without row names, which we use to replace all the columns
in the data frame.

We can find out which variables are numeric by

> sapply(crabs, is.numeric)
sp sex index FL RW CL CW BD
F F T T T T T T

Function sapply is very similar tolapply, but attempts to simplify the result
to a vector or matrix.

Operations on rows

Operating on each row is much trickeiVhereas each column is a variable of a
single class, a row can be rather diverse. However, in the special case that all
columns are numeric, or all are character or factor, we can make progress by
coercing the data frame to aymeric or character) matrix.

Functionapply operates on array$,but here we need only the special case
of row-wise operations on a matrix. For example, on page 204 we use

> house.cpr <- apply(house.pr, 1, cumsum)

to form cumulative probabilities row-wise in a matrix giving multinomial proba-
bilities for each case (row).

A data frame used as the first argumentapply will automatically be co-
erced to a matrix.

Splitting

We can consider groups ofws by splitting a data framen one or more factors.
The functionsplit takes as arguments a vector, matrix or data frame and a

factor defining groups. The value is a list, one component for each group. For

example, in Chapter 14 we use

boxplot(split(nott, cycle(nott)), names = month.abb)

to split a time series by month, and perform a boxplot on each sub-series.

For data frames it is often more convenientto bge This takes a data frame
and splits it by the second argumenKDICES, passing each data frame in turn to
its FUN argument.INDICES can be a factor or a list of factors. For example, to
summarize the measurements in each sex—species greujaiz we can use

> by(crabs[, 4:8], list(crabs$sp, crabs$sex), summary)

crabs$sp:B
crabs$sex:F
FL RW CL CW
Min. 0 7.2 Min. : 6 Min. :14.7 Min. :17.1
1st Qu.:11.5 1st Qu.:10. 1st Qu.:23.9 1st Qu.:27.9

Median :27.9 Median :32.4
Mean :28.1 Mean :32.6

Median :13.1 Median :12.
Mean :13.3 Mean 112,

= N O O

185ee page 65 for a fuller description apply .

2.3 Data Manipulation 35

3rd Qu.:15.3 3rd Qu.:13.9 3rd Qu.:32.8 3rd Qu.:37.8
Max. :19.2 Max. :16.9 Max. :40.9 Max. :47.9

Function aggregate is similar to by, but for functions that return a single
number so the result can be a data frame. For example,

> aggregate(crabs[, 4:8], by = list(sp=crabs$sp, sex=crabs$sex),
median)
sp sex FL RW CL CwW BD
B F 13.15 12.20 27.90 32.35 11.60
F 18.00 14.65 34.70 39.55 15.65
M 15.10 11.70 32.45 37.10 13.60
M 16.70 12.10 33.35 36.30 15.00

> w N
O w o

Itis importantto ensure that the funatiased is applicable to each column, which
is why we must omit the factor columns here.

Merging
The functionmerge provides gjoin of two data frames as databases. That is,
it combines pairs of rows that have common values in specified columns to a
row with all the information contained in either data frame, allowing many—many
matches. Us@merge for full details.

As an example, consider using two data frames as the equivalent of relations
in a database, and joining them.

> authors
surname nationality deceased
1 Tukey Us yes
2 Venables Australia no
3 Tierney Us no
4 Ripley UK no
5 McNeil Australia no
> books
name title
1 Tukey Exploratory Data Analysis
2 Venables Modern Applied Statistics
3 Tierney LISP-STAT
4 Ripley Spatial Statistics
5 Ripley Stochastic Simulation
6 McNeil Interactive Data Analysis
> merge (authors, books, by.x = "surname", by.y = "name")
surname nationality deceased title
1 McNeil Australia no Interactive Data Analysis
2 Ripley UK no Spatial Statistics
3 Ripley UK no Stochastic Simulation
4 Tierney Us no LISP-STAT
5 Tukey Us yes Exploratory Data Analysis
6 Venables Australia no Modern Applied Statistics

S+Win

36 Data Manipulation

)] x]
From Ta
Diabs el Iu 3 [t Sl |Ii: 3

Shack Cokiniea M2z w Sisck Cokine |-' 'l'l
Flephosis Cok |':-'a--:;-;|-e -| Feaphosis Cok |':wm.-!g¢ -|

¥ Cissle g Cobamn Goplhen DoEE 7]

ur:||:m|m||j|nnm H-up|

Figure 2.3: Dialog box to stackur to form mr2.

Reshaping
Sometimes spreadsheet data are in a @ohformat that gives the covariates

for each subject followed by all the obsations on that subject. Consider the
following extract of data framexr from repeated MRI brain measurements

Status Age Vi V2 V3 V4
P 23646 45190 50333 55166 56271
CC 26174 35535 38227 37911 41184
CC 27723 25691 25712 26144 26398
CC 27193 30949 29693 29754 30772
CC 24370 50542 51966 54341 54273
CC 28359 58591 58803 59435 61292
CC 25136 45801 45389 47197 47126

There are two covariates and up to four measurements on each subject, exported
from Excel.

Such data are sometimes said to bgtéked form, an unstacking them would
give a data frame with variablestatus, Age, V andReplicate, the latter a
factor with levels corresponding to the four columns.

The S-PLUS for Windows GUI has operations to perform stacking and un-
stacking that call the functionsenuStackColumn and menuUnStackColumn.
The dialog box needed for this example is shown in Figure 2.3, which when ap-
plied to the seven rows shown above gives

> mr2
V Status Age Replicate
1 45190 P 23646 Vi
2 35535 CC 26174 Vi
3 25691 CC 27723 Vi
4 30949 CC 27193 Vi
5 50542 CC 24370 Vi
6 58591 CC 28359 Vi
7 45801 CC 25136 Vi
8 50333 P 23646 V2
9 38227 CC 26174 V2

2.4 Tables and Cross-Classification 37

R has functionsstack and unstack to do the basic work, andeshape R
that applies to whole data frames. Here we could use

> reshape(mr, idvar = "Person", timevar = "Scan",
varying = list(c("V1","V2","V3","V4")), direction = "long")

Status Age Scan V1 Person

1.1 P 23646 1 45190 1

2.1 CC 26174 1 35535 2

3.1 CC 27723 1 25691 3

4.1 CC 27193 1 30949 4

5.1 CC 24370 1 50542 5

6.1 CC 28359 1 58591 6

7.1 CC 25136 1 45801 7

2.4 Tables and Cross-Classification

Thus far we have concentrated on data frames, which are the most common
form of data storage i8. Here we look at data manipulations related to cross-
tabulation, using ouguine data frame for illustration. The study giving rise to

the dataset is described more fully on page 169; the data frame has four factors,
Sex, Eth (ethnicity—two levels),Age (four levels) andLrn (Learner group—

two levels) and a quantitative respondeys, the number of days the child in the
sample was away from school in a year.

Cross-tabulation

Sometimes all we need are summary tables. The main function for this purpose is
table which returns a cross-tabulation as an array of frequencies (counts). For
example,

> attach(quine)

> table(Age)

FO F1 F2 F3

27 46 40 33

> table(Sex, Age)
FO F1 F2 F3

F 10 32 19 19

M 17 14 21 14

Note that the factor levels become the appropriaiees or dimnames attribute
for the frequency array (and the factor names are print&kiat not inS-PLUS). R
If the arguments given teable are not factors they are coerced to factors.
The functioncrosstabs (xtabs in R) may also be used. It takes a formul&
and data frame as its first two arguments, so the data frame need not be attached.
A call to crosstabs for the same table is

38 Data Manipulation

> tab <- crosstabs(~ Sex + Age, quine) # xtabs in R
> unclass(tab)
FO F1 F2 F3
F 10 32 19 19
M 17 14 21 14

The print method for objects of classrosstabs" gives extra information of
no interest to us here, but the object behaves in calculations as a frequency table.

Calculations on cross-classifications

The combination of a vector and a labelling factor or factors is an example of

what is called aagged array, since the group sizes can be irregular. (When the

group sizes are all equal the indexing may be done more efficiently using arrays.)
To calculate the average number of days absent for each age group (used on

page 170) we can use the functieapply, the analogue ofapply and apply

for ragged arrays.

> tapply(Days, Age, mean)
FO F1 F2 F3
14.852 11.152 21.05 19.606

The first argument is the vector for which functions on the groups are required,
the second argumenINDICES, is the factor defining the groups and the third
argument,FUN, is the function to be evaluated on each group. If the function
requires more arguments they may be included as additional arguments to the
function call, as in
> tapply(Days, Age, mean, trim = 0.1)
FO F1 F2 F3
12.565 9.0789 18.406 18.37

for 10% trimmed means.

If the second argument islist of factors the function is applied to each group
of the cross-classification given byetHactors. Thus to find the average days
absent for age-by-sex classes we could use

> tapply(Days, list(Sex, Age), mean)
FO F1 F2 F3

F 18.700 12.969 18.421 14.000

M 12.588 7.000 23.429 27.214

To find the standard errors of these we could use an anonymous function as the
third argument, as in

> tapply(Days, list(Sex, Age),
function(x) sqrt(var(x)/length(x)))

FO F1 F2 F3

F 4.2086 2.3299 5.3000 2.9409

M 3.7682 1.4181 3.7661 4.5696

There is a more complicated example on page 318.
As with table, coercion to factor takes place where necessary.

2.4 Tables and Cross-Classification 39

Frequency tables as data frames

Consider the general problem of taking a setrofactors and constructing the
completen-way frequency table as a data frame, that is, as a frequency vector
and a set ofn classifying factors. We can illustrate this with th@ine data
frame. First we remove any non-factor components from the data frame.

quineF0 <- quine[sapply(quine, is.factor)]

In S-PLUS the functiontable takes as arguments a series of objects, so we
need to construct a suitable c&ll The functiondo.call takes two arguments:

the name of a function (as a characteimgf) and a list. The result is a call to
that function with the list supplying the arguments. List names become argument
names. Hence we may find the frequency table using

tab <- do.call("table", quineF0)

The result is a multi-way array of frequencies.

Next we find the classifying factors, which correspond to the indices of this
array. A convenient way is to usexpand . grid.?? This function takes any num-
ber of vectors and generates a data frammesisting of all possible combinations
of values, in the correct order to match the elements of a multi-way array with
the lengths of the vectors as the index sizes. Argument names become compo-
nent names in the data frame. Alternativedypand.grid may take a single list
whose components are used as individual vector arguments. Hence to find the
index vectors for our data frame we may use

QuineF <- expand.grid(lapply(quineF0, levels))
Finally we put together the frequency vector and classifying factors.

> QuineF$Freq <- as.vector(tab)
> QuineF
Eth Sex Age Lrn Freq
1 A F FO AL 4
2 N F FO AL 4
3 A M FO AL 5

30 N F F3 SL 0
31 M F3 SL 0
32 N M F3 SL 0

=

We useas.vector to remove all attributes of the table.

N R table(quineF0) will work.
20Which we use in several places in this book; see its index entry.

Chapter 3

The S Language

S is a language for the manipulation of objects. It aims to be both an interactive
language (like, for example,l@NIX shell language) and a complete programming
language with some convenient object-oriented features. This chapter is intended
for reference use by interactive users; Venables and Ripley (2000) covers more
aspects of the language for programmers.

3.1 Language Layout

Commands t& are either expressions or assignments. Commands are separated
by either a semi-colon; , or a newline. A# marks the rest of the line as com-
ments, so comments can be placed at ends of lines.

TheS promptis> unless the command is syntactically incomplete, when the
prompt changes ta.> The only way to extend a command over more than one
line is by ensuring that ifs syntactically incomplete until the final line.

An expression command is evaluated and (normally) printed. For example,

>1 - pi+ exp(1.7)
[1] 3.3324

This rule allows any object to be printed by giving its name. Note ghatis
the value of 7. Giving the name of an object will normally print it or a short
summary; this can be done explicitly using the functigint, and summary
will often give a full description.

An assignment command evaluates an expression and passes the value to a
variable but the result is not printed. The recommended assignment syisbol
the combination, ¥-", so an assignment i looks like

a <- 6

which gives the object the value6. To improve readbility of your code we
strongly recommend that you put at least one space before and after binary op-
erators, especially the assignment symbol. Assignments using the right-pointing

1These prompts can be altered; se®mpt and continue under 7options.
2We regard the use of *” for assignments as unreadable, but it is allowed. Alse’ tan often
be used, but the exceptions are hard to get rigistFLUS.

41

42 The S Language

combination “->" are also allowed to make assignments in the opposite direction,
but these are never needed and are little used in practice.

An assignment is a special case of an expression with value equal to the value
assigned. When this value is itself passed by assignment to another object the
result is a multiple assignment, as in

b<-ac<-6

Multiple assignments are evaluated from right to left, so in this example the value
6 is first passed ta and then tob.

It is useful to remember that the most recently evaluated non-assignment ex-
pression in the session is stored as the variahlest . value® and so may be
kept by an assignment such as

keep <- .Last.value

This is also useful if the result of an expression is unexpectedly not printed; just
useprint(.Last.value).
If you want to both assign a valwad print it, just enclose the assignment in
parentheses, for example,
> (z <- 1 - pi + exp(1.7))
[1] 3.3324

Executing commands from, or diverting output to, a file

If commands are stored on an external file, saymands. q in the current di-
rectory, they may be executed at any time irSasession with the command

source ("commands.q")

It is often helpful to use thecho argument ofsource to have the commands
echoed. Similarly

sink("record.lis")

will divert all subsequent output from the session window to an external file
record.lis. Functionsink can be called repeatedly, witsiink () restoring
output to the previous diversion, eventually back to the terminal.

Managing S objects

It can be important to understand whe&eeeps its objects and where it looks
for objects on which to operate. The objects thatreates at the interactive level
during a session are stored in a workspace (see page 14). On the other hand,
objects created at a higher level, sughwéthin a function, are kept in what is
known as docal frame or environment that is only transient, and such objects
vanish when the function is exited.

WhensS looks for an object, it searchesrttugh a sequence of places known
as thesearch path. Usually the first entry in the search path is the workspace, now
called the workinghapter in S-PLUS. The names of the places currently making
up the search path are given by invoking the functiearch. For example,

3If the expression consists of a simple name suchxasnly, the .Last.value object is not
changed.

3.1 LanguageLayout 43

> search()

[1] "/home/ripley/MySwork" "splus" "stat"
[4] "data" "trellis" "nlme3"
[7] "main"

To get the names of all objects currently held in the first place on the search path,
use the command

objects()

The names of the objects held in any database in the search path can be displayed
by giving the objects function an argument. For example,

objects(2)

lists the contents of the database at position 2 of the search path. It is also possible
to list selectively by a regular expression (page 53), usingpexpr . pattern
(S-PLUS) or pattern (R) argument ofobjects. Users ofS-PLUS underWin- R
dows can explore objects graphically; see page 460. S+Win
The databases on the search path can be of two main types. As well as chap-
ters/workspaces, they can also $dists, usually data frames. The database at
position 1 is called thevorking database. A library section® is a specialized use
of a database, discussed in Appendix C.2. Extra chapters, lists or data frames can
be added to this list with thettach function and removed with théetach
function. Normally a new database is attached at position 2,dantdch () re-
moves the entity at position 2, normally the result of the lastach. All the
higher-numbered databases are moved up or down accordingly. If a list is at-
tached, a copy is used, so any subsequent changes to the original list will not be
reflected in the attached copy.
The functionf ind (object) discovers where an object appears on the search
path, perhaps more than once. For example,

> find("objects")
[1] "splus"

If an object is found more than once in the search path, the first occurrence is used.
This can be useful way to override system functions, but more often it occurs by
mistake. Use the functionsonflicts or masked® to see if this has happened.

To examine an object which is masked or has a non-standard name, we need
to use the functiorget . For example,

get (" [<-.data.frame", where = 2) ## pos = 4 in R

allows experts to look at indexing for data frames. Functetists checks if an
object of a given name exists.

When a command would alter an object that is not on the working database,
a copy must be made on the working database firstdoes this silently, but
S-PLUS does not and will report an error, so a manual copy must be made. Ob-
jects are usually altered through assigammwith a replacement function, for ex-
ample (page 154),

4Or package in R usage.
5S-PLUS only.

44 The S Language

> hills <- hills # only needed in S-PLUS
> hills$ispeed <- hills$time/hills$dist

To remove objects permanently froimetworking database, the functiatm
is used with arguments giving the names of the objects to be discarded, as in

rm(x, y, z, ink, junk)

If the names of objects to be removed are held in a character vector it may be
specified by the named argumentst. An equivalent form of the preceding
command is

rm(llst = C(qul’ ||y||’ "Z", llinkll’ njunku))
The functionremove can be used to remove objects from databases other than
the workspace.

3.2 More on S Objects

We saw at the beginning of Chapter 2 that every object héasa It also has a
length reported by thelength function,

> length(letters)
[1]1 26

Lists

A list is a vector of othe objects, calledcomponents. Lists are used to collect
together items of different classes. For example, an employee record might be
created by

Empl <- list(employee = "Anna", spouse = "Fred", children = 3,

child.ages = c(4, 7, 9))

The components of a list are always numbered and may always be referred to as
such. If the components were given names (either when created as here or via the
names function), they may be invoked by name using ¢haperator as in

> Empl$employee

[1] "Anna"

> Empl$child.ages[2]

[11 7

Names of components may be abbreviated to the minimum number of letters
needed to identify them uniquely. Thu&npl$employee may be minimally
specified asEmpl$e since it is the only component whose name begins with
the letter ‘e’, butEmpl$children must be specified as at leastpl$childr
because of the presence of another component catbed$child.ages. Note
that the names of a list are not necessarily unique, when name-matching will give
the first occurrence.

Individual components are extracted by thHd operator. HereEmpl
is a list of length 4, and the individual components may be referred to as
Empl[[1]], Empl[[2]], Empl[[3]] and Empl[[4]1]. We can also use
Empl[["spouse"]] oreven

3.2 MoreonS Objects 45

x <- "spouse"; Empl[[x]]

It is important to appreciate the difference betweleand [[. The [form
extracts sub-vectors, stmpl [2] is a list of length one, wherea&npl [[2]] is
the component (a character vector of length one).

The functionunlist converts a list to an atomic vector:

> unlist (Empl)
employee spouse children child.agesl child.ages2 child.ages3

"Anna" "Fred" "3" ngn L dll ngn
> unlist(Empl, use.names = F)
[1] ”Anna" "Fred" nsn ||4|| ||7|| ||9||

which can be useful for a compact pont (as here). (Mixed classes will all be
converted to character, giving a character vector.)

Attributes

Most object8 can haveattributes, other objects attached by name to the object.
The dimension and dimnames (if any) of an array are attributes:

> attributes(myarr)

$dim:

[1] 352

$dimnames:

$dimnames [[1]]:

[1] "a" "b" "c"
$dimnames[[2]]:
character(0) ## NULL in R
$dimnames [[3]]:

(17 "@Hy" @i

> attr(myarr, "dim")
(1] 3 5 2

The attributes are a list. Notice the notation $arimnames [[2]]: this is a zero-
length character vector.

Attributes are often used to store ancillary information; we use them to store
gradients and Hessians (pages 215 4ad) and probabilities of classification
(page 347).

A construct you may see occasionally is

z <- structure(x, somename = value)
which is a shorthand way of doing

z <- x; attr(z, "somename") <- value

6 NULL cannot inR.

46 The S Language

Concatenation
The concatenate functiom,, is used to concatenate vectors, including lists, so
Empl <- c(Empl, service = 8)

would add a component for years of service.
The function ¢ has a named argumemtcursive; if this is true the list
arguments are unlisted before being joined together. Thus

c(list(x = 1:3, a = 3:6), list(y = 8:23, b = c(3, 8, 39)))

is a list with four (vector) components, but addingcursive = T gives a vec-
tor of length 26. (Try both to see.)

S-PLUS has a functionconcat that concatenates vectors and omits the
names, whereas keeps all the names (even if this results in duplicates).

Coercion

There is a series of functions named . xxx that convert to the specified type
in the best way possible. For examples .matrix will convert a numerical
data frame to a numerical matrix, and a data frame with any character or factor
columns to a charactenatrix. The functionas.character is often useful to
generate names and other labels.

Functionsis.xxx test if their argument is of the required type. These do not
always behave as one might guess; for exampte vector (powers.of .pi)
will be false as this tests for a ‘pure’ vector without any attributes such as ndmes.
Similarly, as.vector has the (often useful) side effect of discarding all at-
tributes.

Many of these functions are being superseded by the more general fufctions
as andis, which have as arguments an object and a class.

> # R: library(methods)

> as(powers.of.pi, "vector")

[1] 0.10132 0.31831 1.00000 3.14159 9.86960
> as(powers.of.pi, "numeric")

[1] 0.10132 0.31831 1.00000 3.14159 9.86960
> is(powers.of.pi, "numeric")

(11T

> as(powers.of.pi, "character")

[1] "0.101321183642338" "0.318309886183791" "1"
[4] "3.14159265358979" "9.86960440108936"
> is(powers.of.pi, "vector")

(11T

> as(powers.of.pi, "integer")

[11 001309

> is(mymat, "array")

(11T

Note carefully the last onexymat does not have clas&array", but "matrix"
which is a specialized version dfarray" .

R allows names, only.
8In packagemethods in R.

3.3 Arithmetical Expressions 47

3.3 Arithmetical Expressions

We have seen that a basic unit3ns a vector. Arithmetical operations are per-
formed on numeric (and integer) vectors, element by element. The standard op-
erators + - * / - are available, where is the power (or exponentiation)
operator (givingz?).

Vectors may be empty. The expressimmmeric (0) is both the expression to
create an empty numeric vector and the wayg represented when printed. It has
length zero. It may be described as “a wrctuch that if there were any elements
in it, they would be numbers!”

Vectors can be complex, and almosttak rules for arithmetical expressions
apply equally to complex quantities. A complex number is entered in the form
3.1 + 2.71i, with no space before the. FunctionsRe and Im return the real
and imaginary parts. Note that complex arithmetic is not used unless explicitly
requested, seqrt (x) for x real and negative produces an error. If the complex
square root is desired usert (as.complex(x)) Or sqrt(x + 0i).

The recycling rule

The expressioly + 2 is a syntactically natural way to adzlto each element of

the vectory, but 2 is a vector of lengthh and y may be a vector of any length.

A convention is needed to handle vectors occurring in the same expression but
not all of the same length. The value of the expression is a vector with the same
length as that of the longest vector occurring in the expression. Shorter vectors
arerecycled as often as need be until they match the length of the longest vector.
In particular, a single number is repeated the appropriate number of times. Hence

x <- c(10.4, 5.6, 3.1, 6.4, 21.7)
y <= c(x, %)
v<-2x*xx+y+1

generates a new vecter of length 10 constructed by

1. repeating the numbex five times to match the length of the vectorand
multiplying element by element, and

2. adding together, element by elemedx repeated twicey as it stands
and 1 repeated ten times.

Fractional recycling is allowed iR, with a warning, but ir5-PLUS it is an error.
There is one exception to the recycling rule: normally an operation with a
zero-length vector gives a zero-length result.

Some standard S functions
Some examples of standard functions follow.

1. There are several functions to convert to integetsind will normally be
preferred, and rounds to the nearest integer. (It can also round to any num-
ber of digits in the formround(x, 3). Using a negative number rounds

48

The S Language

to a power of 10, so thatound(x, -3) rounds to thousands.) Each of
trunc, floor and ceiling round in a fixed direction, towards zero,
down and up, respectively.

. Other arithmetical operators a¥¢’, for integer divide and,% for modulo

reduction?

. The common functions are available, includisigs , sign, log, logl0,

sqrt, exp, sin, cos, tan, acos, asin, atan, cosh, sinh and
tanh with their usual meanings. Note that the value of each of these is
a vector of the same length as its argumentSIRLUS logb is used for

‘log to base’ whereas iR log has a second argument, the base of the
logarithms (defauli). R also haslog?.

Less common functions argamma, lgamma (log, I'(x)) and its deriva-
tives digamma and trigamma.

. There are functionsum andprod to form the sum and product of a whole

vector, as well as cumulative versiongmsum and cumprod.

. The functionsmax(x) and min(x) select the largest and smallest ele-

ments of a vectok. The functionscummax and cummin give cumulative
maxima and minima.

. The functionspmax(...) andpmin(...) take an arbitrary number of

vector arguments and return the elmby-element maximum or mini-
mum values, respectively. Thus the result is a vector of length that of the
longest argument and the recycling rule is used for shorter arguments. For
example,

xtrunc <- pmax(0, pmin(1, x))

is a vector likex but with negative elements replaced byand elements
larger thani replaced by1.

. The functionrange (x) returnsc(min(x), max(x)). If range, max

or min is given several arguments these first concatenated into a single
vector.

. Two useful statistical functions ameean(x) which calculates the sam-

ple mean, which is the same asam(x) /length(x), and var (x) which
gives the sample varianceum ((x-mean (x)) “2)/ (length(x)-1).10

. The functionduplicated produces a logical vector with value only

where avalue in its argument has occurred previouslyaridjue removes
such duplicated values. (These functions also have methods for data frames
that operate row-wise.)

9The result ofel %/% e2 is floor(el/e2) if e2 != 0 and 0 if e2 == 0. The result of
el %% e2is el - floor(el/e2)*e2 if e2!=0 andel otherwise (see Knuth, 19681.2.4). Thus
%/% and %% always satisfyel == (el1%/%e2)*e2 + ell%e2.

101 the argument tovar is ann x p matrix the value is & x p sample covariance matrix obtained
by regarding the rows as sample vectors.

3.3 Arithmetical Expressions 49

10. Set operations may be done with the functiamson, intersect and
setdiff, which enact the set operations U B, AN B and AN B,
respectively. Their arguments (ahénce values) may be vectors of any
mode but, like true sets, they should contain no duplicated values.

Logical expressions

Logical vectors are most often generatectbgditions. The logical binary opera-

tors are<, <=, >, >= (which have self-evident meanings} for exact equality

and != for exact inequality. Ifc1 and c2 are vector valued logical expressions,
cl & c2 is their intersection (‘and’)c1 | c2 is their union (‘or’) and!c1l is

the negation ofc1. These operations are performed separately on each compo-
nent with the recycling rule (page 47) applying for short arguments.

The unary operatort denotes negation. There is one trap with this in
S-PLUS: if used at the beginning of a line it is taken to be a shell escape; sx-
tra parentheses can be used to avoid this.

Character vectors may be used in logical comparisons suchams" <
"belinda", in which case lexicographic ordering is applied using the current
collating sequence.

Logical vectors may be used in ordinary arithmetic. Theyaeced into
numeric vectors, false values becomiagand true values becoming For ex-
ample, assuming the value or valuessih are positive

N.extreme <- sum(y < ybar - 3*sd | y > ybar + 3*sd)

would count the number of elements in that were farther tharg+sd from
ybar on either side. The right-hand side can be expressed more concisely as
sum(abs (y-ybar) > 3*sd).

The functionxor computes (element-wise) the exclusive or of its two argu-
ments.

The functionsany and all are useful to collapse a logical vector.

Sometimes one needs to test if two objects are ‘the same’. That can be made
precise in various ways, and two are provide&irLogical functionidentical
tests for exact equality. Functio#ill.equal makes a suitable approximate test
(for example, it allows for rounding error in numeric components) and either re-
turns TRUE or a character vector describing the difference(s). Thus to test for
‘equality’ one uses (see page 58 k)

res <- all.equal(objl, obj2)
if (! (is.logical(res) && res)) warning("objects differ")

Operator precedence

The formal precedence of operators is given in Table 3.1. However, as usual it
is better to use parentheses to group egpions rather than rely on remembering
these rules. They can be found on-line frawilp (Syntax) .

50 The S Language

Table 3.1: Precedence of operators, from highest to lowest.

list element extraction
slot extraction
[C vector and list element extraction
exponentiation
- unary minus
: sequence generation
W Wl hxkh and other special operatdts. . %
* / multiply and divide
+ addition, subtraction
<> <= >= == |I= comparison operators
! logical negation
&

)M © &4

| && || logical operators& && above| || inR)
formula
<= => _= assignment

Generating regular sequences

There are several ways @B to generate sequences of numbers. For example,
1:30 is the vectorc(1, 2, ..., 29, 30). The colon operator has a high
precedence within an expression, 8e1:15 is the vectorc(2, 4, 6, ...,

28, 30). Putn <- 10 and compare the sequencesn-1 and1: (n-1).

A construction such as0:1 may be used to generate a sequence in reverse
order.

The functionseq is a more general facility for generating sequences. It has
five arguments, only some of which may be specified in any one call. The first
two arguments, nametirom and to, if given, specify the beginning and end of
the sequence, and if these are the only two arguments the result is the same as the
colon operator. Thatisseq(2, 10) andseq(from = 2, to = 10) give the
same vector ag: 10.

The third and fourth arguments teeq are namecdy and length, and spec-
ify a step size and a length for the sequence.bif is not given, the default
by = 1 is used. For example,

s3 <- seq(-5, 5, by = 0.2)
s4 <- seq(length = 51, from = -5, by = 0.2)
generate in botks3 and s4 the vector (5.0,-4.8,—4.6, ..., 4.6, 4.8,5.0).

The fifth argument is namedlong and has a vector as its value. If it is the
only argument given it creates a sequence2, ..., length(vector), orthe
empty sequence if the value is empty. (This makeg(along = x) preferable
to 1:1length(x) in most circumstances.) If specified rather thanor length
its length determines the length of the result.

A companion function ixep which can be used to repeat an object in various
ways. The simplest forms are

3.4 Character Vector Operations 51

sb <- rep(x, times = 5) # repeat whole vector
sb <- rep(x, each = 5) # repeat element-by-element

which will put five copies ofx end-to-end ins5, or make five consecutive copies
of each element.

A times = v argument may specify a vector of the same length as the first
argument,x. In this case the elements of must be non-negative integers, and
the result is a vector obtained by repeating each elementamumber of times
as specified by the corresponding elementrofSome examples will make the
process clear:

x <- 1:4 # puts c(1,2,3,4) into x
i <- rep(2, 4) # puts c(2,2,2,2) into i
y <- rep(x, 2) # puts c(1,2,3,4,1,2,3,4) into y
z <- rep(x, i) # puts c(1,1,2,2,3,3,4,4) into z
w <- rep(x, x) # puts c(1,2,2,3,3,3,4,4,4,4) into w

As a more useful example, consider a two-way experimental layout with four row
classes, three column classes and two observations in each of the twelve cells. The
observations themselves are held in a vegtaf length 24 with column classes
stacked above each other, and row classes in sequence within each column class.
Our problem is to generate two indicator vectors of length 24 that will give the
row and column class, respectively,adch observation. Since the three column
classes are the first, middle and lagftgiobservations each, the column indicator

is easy. The row indicator requires two callsttep :

(colc <- rep(1:3, each = 8))

1] 111111112222222233333333
(rowc <- rep(rep(1l:4, each = 2), 3))

[1] 112233441122334411223344

V V V VvV

These can also be generated arithmetically using-the ing function

1 + (ceiling(1:24/8) - 1) %% 3 —-> colc; colc
1] 111111112222222233333333
1 + (ceiling(1:24/2) - 1) %% 4 —-> rowc; rowc
[1] 11 2233441122334411223344

vV V V VvV

In general the expression + (ceiling(l:n/r) - 1) %% m generates a se-
guence of lengtlm consisting of the numbers, 2, ..., m each repeated
times. This is often a useful idiom (for whigh has a functiongl).

3.4 Character Vector Operations

The form of character vectors can be unexpected and should be carefully appre-
ciated. Unlike sayC, they are vectors of character strings, not of characters, and
most operations are performed separately on each component.

Note that"" is a legal character string with no characters in it, known as the
empty string. This should be contrasted witharacter (0) which is the empty
character vector. As vectors has length 1 andharacter (0) has length 0.

R

52 The S Language

S follows C conventions in entering charactgrings, so special characters
need to be escaped. Thisis entered as\\, and\b \n \r \t (backspace,
newline, tab, carriage return) are available, as well as octal values siafi@as
These are escaped when printingfayint but not when output byat .

There are several functions for operating on character vectors. The function
nchar gives (as a vector) the number of characters in each element of its character
vector argument. The functiopaste takes an arbitrary number of arguments,
coerces them to strings or character vestf necessary and joins them, element
by element, as character vectors. For example,

> paste(c("X", "Y"), 1:4)
[1] "Y q" ony Qnw onx 3m uwy 4n

Any short arguments are recycled in the usual way. By default the joined elements
are separated by a blank; this may be changed by using the argeeensften
the empty string:

> paste(c("X", "Y"), 1:4, sep = "")
[1] nXq{n nygn nwy3m nygn

Another argumentcollapse, allows the result to be concatenated into a single
string. It prescribes another character string to be inserted between the compo-
nents during concatenation. If it MULL, the default, orcharacter (0), no such

global concatenation takes place. For example,

> paste(c("X", "Y"), 1:4, sep = "", collapse =" + ")
[1] "X1 + Y2 + X3 + Y4"

Substrings of the strings of a character vector may be extracted (element-by-
element) using theubstring function. It has three arguments

substring(text, first, last = 1000000)

where text is the character vectof,irst is a vector of first character positions

to be selected antlast is a vector of character positions for the last character to
be selected. Ifirst or last are shorter vectors thatext they are recycled.

For example, the datasetate.name is a character vector of length 50 contain-
ing the names of the states of the United States of America in alphabetic order.
To extract the first four letters in the names of the last seven states:

> # R: data(state)
> substring(state.name[44:50], 1, 4)
[1] IIUtahll Ilvermll "Virg” llwashll Ilwestll Ilwiscll llwyomll

Note the use of the index vectdr4:50] to select the last seven states.
The functionabbreviate provides a more general mechanism for generat-
ing abbreviations. In this example it gives3APLUS (R is slightly different)

> as.vector(abbreviate(state.name[44:50]))

[1] IIUtahll "Vrmn" "Vrgn" llwshnll Ilwsvrll Ilwscnll llwymnll

> as.vector(abbreviate(state.name[44:50], use.classes = F))
[1] "Utah" "Verm" "Virg" "Wash" "WVir" "Wisc" "Wyom"

3.4 Character Vector Operations 53

We usedas.vector to suppress the names attribute that contains the unabbrevi-
ated names!

Simple matching is done by the functiaa.tch. This matches (exactly) each
element of its first argument againsetkelements of its second argument, and
returns a vector of indices into the second argument omidatch argument
(which defaults toNA) if there is no match.

Missing values

S-PLUS has no support for missing values in character vectors; factors should-be
used instead. There is a classtring" described in Chambers (1998) but not
fully implemented inS-PLUS.

R has some support for missing values in character vectors, but with the pos-
sibility of confusion. The value printed as&NA" may represent a missing value,
but it can also represent a characteingt, e.g. North America. For example,

> x <- c("a", NA, paste("N", "A", sep=""))
> X

[1] uau NNA'" "NA"

> is.na(x)

[1] FALSE TRUE FALSE

Handle with care!

Regular expressions

Regular expressions are powerful ways to match character patterns familiar to
users of such tools ased, grep, awk andperl. For example, . ' matches any
character (use\'.” to match ‘. ") and ‘ . x’ matches zero or more occurrences of
any character, that is, any character string. The beginning is matchedr/the

end bys.

The functiongrep searches for patterns given by a regular expression in a
vector of character strings, and returns the indices of the strings in which a match
is found.

Functionregexpr also matches one regular expression to a character vector,
returning more details of the match, the first matching position and the match
length. For example,

> grep("na$", state.name)
[1] 3 14 18 26 33 40
> regexpr("na$", state.name)

[j-1-1 6-1-1-1-1-1-1-1-1-1-1 6-1-1-1 8-1
[20] -1 -1 -1-1-1-1 6-1-1-1-1-1-113-1-1-1-1-1
[39] -1 13 -1-1-1-1-1-1-1-1-1-1
attr(, "match.length"):

tMJ-1-1+ 2-1-1-1-1-1-1-1-1-1-1 2-1-1-1 2-1
[200 -t -1 -1-1-1-1 2-1-1-1-1-1-1 2-1-1-1-1-1
(39] -1 2-1-1-1-1-1-1-1-1-1-1
> state.name[regexpr("na$", state.name)> 0]

[1] "Arizona" "Indiana" "Louisiana"
[4] "Montana" "North Carolina" "South Carolina"

54 The S Language

The functionsregMatch andregMatchPos of S-PLUS have a very similar role,
but encode the answer somewhat differently. They can match multiple regular
expressions, recycling arguments as needed.

3.5 Formatting and Printing

Function print does not allow much control over the layout of a report. The
function cat is similar to paste with argumentcollapse = "" in that it co-
erces its arguments to character stringd eoncatenates them. However, instead
of returning a character string result it prints out the result in the session window
or optionally on an external file. For example, to print out today’s date on our
UNIX systemt!

> d <- date()

> cat("Today’s date is:", substring(d, 1, 10),
substring(d, 25, 28), "\n")

Today’s date is: Sun Jan 6 2002

Note that an explicit newline'(\n") is needed. Functiorat, unlike print,
interprets escaped clanters (see page 52).

Other arguments teat allow the output to be broken into lines of specified
length, and optionally labelled:

> cat(1, 2, 3, 4, 5, 6, fill = 8, labels = letters)
al?2
c 34
eb 6

andfill = T fills to the current output width.
Function cat effectively usesas(, "character") to convert an object,
and so converts numbers$PLUS at full precision, as in

> cat(powers.of.pi, "\n")
0.101321183642338 0.318309886183791 1 3.14159265358979

Often it is best to manage that conversion ourselves usingnat , which pro-
vides the most general way to prepare data for output. It coerces data to character
strings in a common format.

> format (powers.of.pi)
-2 -1 0 1 2
"0.10132" "0.31831" "1.00000" "3.14159" "9.86960"
> cat(format(powers.of.pi), "\n", sep=" ")
0.1013212 0.3183099 1.0000000 3.1415927 9.8696044

For example, th&-PLUS print function print . summary . lm for summaries
of linear regressions contains the lines

11The format for others may well differ.

3.6 Calling Conventions for Functions 55

cat("\nCoefficients:\n")

print (format (round(x$coef, digits = digits)), quote = F)

cat("\nResidual standard error:",
format (signif (x$sigma, digits)), "on", rdf,
"degrees of freedom\n")

cat("Multiple R-Squared:", format(signif (x$r.squared, digits)),
“\n")

cat("F-statistic:", format(signif(x$fstatistic[1], digits)),
"on", x$fstatistic[2], "and", x$fstatistic[3],
"degrees of freedom, the p-value is", format(signif(1 -
pf (x$fstatistic[1], x$fstatistic[2], x$fstatistic[3]),
digits)), "\n")

Note the use obignif andround to specify the accuracy required. (Fesund
the number of digits is specified, whereas fdrgnif it is the number of signifi-
cant digits.)

There is a tendency to output values such0ag870000000000001, even
after rounding to (here) three digits. (Not froprint, but from write, cat,
paste, as.character and so on.) Us&€ormat to avoid this.

By default the accuracy of printed afarmatted values is controlled by the
options parametedigits, which defaultsto 7.

3.6 Calling Conventions for Functions

Functions may have their argumegtecified or unspecified when the function is
defined. (We saw how to write simple functions on page 4.)

When the arguments are unspecified there may be an arbitrary number of
them. They are shown as.. when the function is defined or printed. Ex-
amples of functions with unspecified arguments include the concatenation func-
tion c(...) and the parallel maximum and minimum functiopsax (. . .) and
pmin(...).

Where the arguments are specified there are two conventions for supplying
values for the arguments when the function is called:

1. arguments may be specified in the same order in which they occur in the
function definition, in which case the values are supplied in order, and

2. arguments may be specified asme = value, when the order in which
the arguments appear is irrelevant. The name may be abbreviated providing
it partially matches just one named argument.

It is important to note that these two conventions may be mixed. A call to a
function may begin with specifying the arguments in positional form but specify
some later arguments in the named form. For example, the two calls

t.test(xl, yl, var.equal = F, conf.level = 0.99)
t.test(conf.level = 0.99, var.equal = F, x1, y1)

56 The S Language

are equivalent.

Functions with named arguments also have the option of specitigfagilt
values for those arguments, in which case if a value is not specified when the
function is called the default value is used. For example, the fundtictrest
has inS-PLUS an argument list defined as

t.test <- function(x, y = NULL, alternative = "two.sided",
mu = O, paired = F, var.equal = T, conf.level = 0.95)

so that our previous calls can also be specified as
t.test(x1l, y1, , , , F, 0.99)

and in all cases the default values farternative, mu andpaired are used.
Using the positional form and omitting values, as in this last example, is rather
prone to error, so the named form is preferred except for the first couple of argu-
ments.

Some functions (for examplpaste) have both unspecified and specified ar-
guments, in which case the specified arguments occurring after.th@argument
on the definition must be named exactly if they are to be matched at all.

The argument names and any default values fog danction can be found
from the on-line help, by printing the function itself or succinctly using thgs
function. For example, i8-PLUS,

> args(hist) ## look at hist.default in R

function(x, nclass = "Sturges", breaks, plot = TRUE, probability
= FALSE, include.lowest =T, ...,
xlab = deparse(substitute(x)))

NULL

shows the arguments, their order and those default values that are specified for the
hist function for plotting histograms. (The return value framgs always ends
with NULL.) Note that even when no default value is specified the argument itself
may not need to be specified. If no value is given bakeaks when thehist
function is called, default values are calculated within the function. Unspecified
arguments are passed on to a plotting function called from withist.

Functions are considered in much greater detail in Venables and Ripley
(2000).

3.7 Model Formulae

Model formulae were introduced in®as a compact way to specify linear mod-
els, but have since been adopted for so many diverse purposes that they are now
best regarded as an integral part of Siéanguage. The various uses of model
formulae all have individual features thate treated in the appropriate chapter,
based on the common features described here.

A formula is of the general form

response ~ expression

3.7 Model Formulae 57

where the left-hand side;esponse, may in some uses be absent and the right-
hand side,expression, is a collection of terms joined by operators usually
resembling an arithmetical expression. The meaning of the right-hand side is
context dependent. For example, in non-linear regression it is an arithmetical ex-
pression and all operators have thesual arithmetical meaning. In linear and
generalized linear modelling it specifies the form of the model matrix and the
operators have a different meaning. In Trellis graphics it is used to specify the
abscissa variable for a plot, but a vertical bar,operator is allowed to indicate
conditioning variables.

It is conventional (but not quite universal) that a function that interprets a
formula also has argumentgights, data, subset andna.action. Then
the formula is interpreted in theontext of the argumentdata which must be
a list, usually a data frame; the objects named on either side of the formula are
looked for firstindata and then searched for in the usual WAyl he weights
and subset arguments are also interpreted in the context of the data frame.

We have seen a few formulae in Chapter 1, all for linear models, where the re-
sponse is the dependent variable and the right-hand side specifies the explanatory
variables. We had

fm <- Im(y ~ x, data = dum)
abline(lm(time ~ dist))

fm <- aov(Speed ~ Run + Expt)
fm0 <- update(fm, . ~ . - Run)

Notice that in these cases indicates inclusion, not addition, and exclusion.
In most cases we had already attached the data frame, so we did not specify it via
a data argument. The functiatpdate is a very useful way to change the call to
functions using model formulae; it reissues the call having updated the formula
(and any other arguments specified when it is called). The formula tefhinés
a special meaning in a call tapdate; it means ‘what is there already’ and may
be used on either side of the

It is implicit in this description that the objects referred to in the formula are
of the same length, or constants that can be replicated to that length; they should
be thought of as all being measured on the same set of cases. Other arguments
allow that set of cases to be alteresljbset is an expression evaluated in the
context ofdata that should evaluate to a valid indexing vector (of types 1, 2 or
4 on pages 27 and 28). Thea.action argument specifies what is to be done
when missing values are found by specifying a function to be applied to the data
frame of all the data needed to prosdise formula. The default action 8tPLUS
is usuallyna.fail, which reports an error and stops, but some functions have
more accommodating defaultR @efaults tona.omit which drops every caser
containing a missing value.)

Further details of model formulae are given in later chapters. Many of these
involve special handling of factors and functions appearing on the right-hand side
of a formula.

12For S-PLUS this as described in Section 3.R has been experimenting with looking in the
environment of formula which usually means starting the search whesemula was defined.

58 The S Language

3.8 Control Structures

Control structures are the commands that make decisions or execute loops.
The if statement has the form

if (condition) true.branch else false.branch

First the expressiorondition is evaluated. ANA condition is an error. If
the resultis true (or numeric and non-zero) the value ofithestatement is that of
the expressiortrue . branch, otherwise that of the expressidalse.branch.
The else partis optional and omitting it is equivalent to usingl'se NULL". If
condition has a vector value only the first component is used and a warning is
issued. Theif function can be extended over several litéand the statements
may be compound statements enclosed in brdcés

Two additional logical operatorg;& and | |, are useful withif statements.
Unlike & and |, which operate component-wise on vectors, these operate on
scalar logical expressions. Wittk the right-hand expression is only evaluated if
the left-hand one is true, and withl only if it is false. This conditional evalua-
tion property can be used as a safety feature, as on page 49.

We saw the vector functionfelse on page 30. That does evaluate both its
arguments.

Loops: The for, while and repeat Statements

A for loop allows a statement to be iterated as a variable assumes values in a
specified sequence. The statement has the form

for(variable in sequence) statement

where in is a keyword,variable is the loop variable andequence is the
vector of values it assumes as the loop proceeds. This is often of thetfort
or seq(along = x) butit may be a list, in which caseariable assumes the
value of each component in turn. Theatement part will often be a grouped
statement and hence enclosed within brages,.

The while andrepeat loops do not make use of a loop variable:

while (condition) statement
repeat statement

In both cases the commands in the body of the loop are repeated. Wdrna
loop the normal exit occurs whetondition becomes false; theepeat state-
ment continues indefinitely unless exited bpeeak statement.

A next statement within the body of fior, while or repeat loop causes
a jump to the beginning of the next iteration. Theeak statement causes an
immediate exit from the loop.

13A little care is needed when enteringf ... else Statements to ensure that the input is not
syntactically complete before thelse clause, and braces can help with achieving this.

3.8 Control Sructures 59

A single-parameter maximum-likelihood example

For a simple example with a statistical context we estimate the pararhedér
the zero-truncated Poissdistribution by maximuniikelihood. The probability
distribution is specified by

Pr(Y:y):(© y=12,...

1—e M)yl

and corresponds to observing only non-zero values of a Poisson count. The mean
is E(Y) = A(/1 — e~*). The maximum likelihood estimate is found by

equating the sample mean to its expectatjor \(/1 — 6_5‘) . If this equation is
written as\ = 7 (1 — e—), Newton’s method leads to the iteration scheme

5 e ;\m _ y(l _ e*/\m)
m+1 — Am —

1-y e=Am
First we generate our artificiaample from a distribution withh = 1.

> yp <- rpois(50, lambda = 1) # full Poisson sample of size 50
> table(yp)
0 1 235
21 12 14 2 1
>y <~ yplyp > 0] # truncate the zeros; n = 29

We use a termination condition based both on convergence of the process and an
iteration count limit, for safety. An obvious starting valueNs = 3.

> ybar <- mean(y); ybar

[1] 1.7586

> lam <- ybar

> it <- 0 # iteration count

> del <- 1 # iterative adjustment

\

while (abs(del) > 0.0001 &% (it <- it + 1) < 10) {

del <- (lam - ybar*(1 - exp(-lam)))/(1 - ybarkexp(-lam))
lam <- lam - del

cat(it, lam, "\n") }

.32394312696735

.26142504977282

.25956434178259

.25956261931933

W N -
L

To generate output from a loop in progress, an explicit call to a function such
asprint or cat has to be used. For tracing outptdt is usually convenient
since it can combine several items. Nomens are coerced to character in full
precision; usingformat (1am) in place oflam is the simplest way to reduce the
number of significant digits to theptions default.

60 The S Language

3.9 Array and Matrix Operations

Arrays may be used in ordinary arithmetic expressions and the result is an array
formed by element-by-elemeaperations on the data vector. Thém attributes

of operands generally need to be the same, and this becomes the dimension vector
of the result. So ifA, B and C are all arrays of the same dimensions,

D <- 2%xA*xB + C + 1

makesD a similar array with its data vector the result of the evident element-by-
element operations. The precise rules concerning mixed array and vector calcula-
tions are complex (Venables and Ripley, 2000, p. 27).

Elementary matrix operations

We have seen that a matrix is merely a data vector withia attribute spec-
ifying a double index. Howevel$ contains many operators and functions for
matrices; for example (X) is the transpose function. The functidharow (A)

and ncol (A) give the number of rows and columns in the matkixThere are
functionsrow and col that can be applied to matrices to produce a matrix of
the same size filled with the row or column number. Thus to produce the upper
triangle of a square matrix we can use

Alcol(A) >= row(A)]

This uses a logical vector index and so returns the upper triangle in column-major
order. For the lower triangle we can use or the functionlower.tri. Afew S
functions want the lower triangle of a symmetric matrix in row-major order; note
that this is the upper triangle in column-major order.

Matrices can be built up from other vectors and matrices by the functions
cbind and rbind; see page 31.

The operator*%, is used for matrix multiplication. Vectors that occur in
matrix multiplications are promoted either to row or to column vectors, whichever
is multiplicatively coherent. Note that andB are square matrices of the same
size, thenA * B is the matrix of element-by-element products wherkedé+y, B
is the matrix product. I is a vector, then

x %xh A Uxh x

is a quadratic formzTAx, wherez is the column vector and' denotes trans-
pose.

Note thatx %*% x seems to be ambiguous, as it could mean either or
xz”. A more precise definition of,x% is that of an inner product rather than a
matrix product, so in this case’x is the result. (Forzz” usex %o% x; see
below.)

The functioncrossprod forms ‘crossproducts’, meaning that

XT.y <- crossprod(X, y)

14Note that the names are singulit is all too easy to writenrows !

3.9 Array and Matrix Operations 61

calculates X7y. This matrix could be calculated as(X) %% y but using
crossprod is more efficient. If the second argument is omitted it is taken to
be the same as the first. Thusossprod(X) calculates the matrixX ' X.

An important operation on arrays is tbater product. If a andb are two
numeric arrays, their outer productis an array whose dimension vector is obtained
by concatenating their two dimension vectors (order is important), and whose data
vector is obtained by forming all possible products of elements of the data vector
of a with those ofb. The outer product is formed by the opera¥af, :

ab <- a %o% b
or by the functionouter:

ab <- outer(a, b, "x")
ab <- outer(a, b) # as "x" is the default.

Multiplication may be replaced by an arbitrary function of two variables (or its
name as a character string). For example, if we wished to evaluate the function

cos(y)

flz,y) = Tr a2

over a regular grid of values with- and y-coordinates defined by tt&vectors
x andy, respectively, we could use

z <- outer(x, y, function(x, y) cos(y)/(1 + x72))

using an anonymous function.

The functiondiag either creates a diagonal matrix from a vector argument
or extracts as a vector the diagonal of a matrix argument. Used on the assignment
side of an expression it allows the diagonal of a matrix to be repl&tceebr
example, to form a covariance matrix in multinomial fitting we could use

p <- dbinom(0:4, size = 4, prob = 1/3) # an example
CC <= =(p %o% p)
diag(CC) <- p + diag(CC)

structure(3°8 * CC, dimnames = 1ist(0:4, 0:4)) # convenience

0 1 2 3 4

1040 -512 -384 -128 -16

-512 1568 -768 -256 -32

-384 -768 1368 -192 -24

-128 -266 -192 584 -8
4 -16 -32 -24 -8 80

vV V V Vv

W N = O

In addition diag(n) for a positive integem generates am x n identity ma-

trix. This is an exception to the behaviour for vector arguments; it is safer to use
diag(x, length(x)) which will give a diagonal matrix with diagonal for a
vector of any length, even one.

15This is one of the few places where the recycling rule is disabled; the replacement must be a scalar
or of the correct length.

62 The S Language

More functions operating on matrices

The standard operations of linear algebra are either available as functions or can
easily be programmed, makirtg a flexible matrix manipulation language (if
rather slower than specialized matrix languages).

The functionsolve inverts matrices and solves systems of linear equations;
solve(A) invertsA and solve(A, b) solvesA %x% x = b. (If the system is
over-determined, the least-squares fit is found, but matrices of less than full rank
give an error.)

The functionchol returns the Choleski decompositich= U”U of a non-
negative definite symmetric matrix. (Note that there is another convention, in
which the lower-triangular formd = LLT with L = U7 is used.) Function
backsolve solves upper triangular systems of matrices, and is often used in con-
junction with chol. (R has forwardsolve, the analogue for lower-triangular
matrices.)

Eigenvalues and eigenvectors

The functioneigen calculates the eigenvalues and eigenvectors of a square ma-
trix. The result is a list of two componentgsalues and vectors. If we need
only the eigenvalues we can use:

eigen(Sm, only.values = T)$values

Real symmetric matrices have real aigalues, and the calculation for this
case can be much simpler and more stable. Argumgnhetric may be used
to specify whether a matrix is (to be regarded as) symmetric. The default value is
T if the matrix exactly equals its transpose, otherwiise

Singular value decomposition and generalized inverses

An n x p matrix X has asingular value decomposition (SVD) of the form
X =UAVT

whereU andV aren x min(n,p) andp x min(n,p) matrices of orthonormal
columns, andA is a diagonal matrix. Conventionally the diagonal elementa of

are ordered in decreasing order; the number of non-zero elements is the rank of
X. A proof of its existence can be found in Golub and Van Loan (1989), and a
discussion of thetatistical value of SVDs in Thisted (1988), Gentle (1998) and
Monahan (2001).

The functionsvd takes a matrix argumet and calculates the singular value
decomposition. The components of the resultarand v, the orthonormal ma-
trices andd, a vector of singular values. If eithdd or V' is not required its
calculation can be avoided by the argument= 0 or nv = 0.

3.9 Array and Matrix Operations 63

The QR decomposition

A faster decomposition to calculate than the SVD is the QR decomposition, de-
fined as
M=QR

where, if M is n x p, Q is ann x n matrix of orthonormal columns (that is,

an orthogonal matrix) and® is ann x p matrix with zero elements apart from

the first p rows that form an upper triangular matrix (see Golub and Van Loan,
1989,85.2). The functionqr (M) implements the algorithm detailed in Golub &
Van Loan, and hence returns the result in a somewhat inconvenient form to use
directly. The resultis a list that can be used by other tools. For example,

M.qr <- qr(M) # QR decomposition
Q <- gr.Q(M.qr) # Extract a Q (n x p) matrix
R <- gqr.R(M.qr) # Extract an R (p x p) matrix

y.res <- gr.resid(M.qr, y) # Project onto error space

The last command finds the residual vector after projecting the vegctoto the
column space off. Other tools that use the result gf include qr.fitted for
fitted values andyr . coef for regression coefficients.

Note that by defaultyr .R only extracts the firsp rows of the matrixRk and
qr.Q only the firstp columns of), which form an orthonormal basis for the
column space of\f if M is of maximal rank. To find the complete form ¢J
we need to calljr.Q with an extra argumentomplete = T. The columns of
Q@ beyondtherth, wherer < p is the rank of M, form an orthonormal basis for
the null space okernel of A, which is occasionally useful for computations. A
simple function to extract it is

Null <- function(M) {
tmp <- qr(M)
set <- if (tmp$rank == 0) 1:ncol(M) else -(1:tmp$rank)
qr.Q(tmp, complete = T)[, set, drop = F]

}

Determinant and trace

There are several ways to write determinant functions. Often it is known in ad-

vance that a determinant will be non-negative or that its sign is not needed, in
which case methods to calculate the absolute value of the determinant suffice. In
this case it may be calculated as the product of the singular values, or slightly
faster but possibly less accurately from tfg?-decomposition as

absdet <- function(M) abs(prod(diag(qr(M)$qr)))

If the sign is unknown and important, the determinant may be calculated as
the product of the eigenvalues. These will in general be complex and the result
may have complex roundoff error even though the exact result is known to be real,
so a simple function to perform the calculation is

det <- function(M) Re(prod(eigen(M, only.values = T)$values))

64 The S Language

(R has adet function covering both methods.) R
The following trace function is so simple the only reason for having it might
be to make code using it more readable.

tr <- function(M) sum(diag(M))

More linear algebra

An S environment will never be competitive on speed with specialized matrix-
manipulation systems, but for most statistical problems linear algebra is a small
part of the task. Where it is not, more advanced facilities are available in some
environments.

S-PLUS has a library sectioMatrix on some platform’$ and R has a
similar contributed packadé Matrix on CRAN. These use objects of class
"Matrix" to represent rectangular matrices with specializations to triangular,
symmetric/Hermitian, orthogonal, djanal matrices and son. Functions are
provided for determinanidet), norm form) and condition numberrcond) as
well as methods fof,x%, eigen, solve, svd andt.

R has functionsLa.eigen and La.svd based likeMatrix on LAPACK
routines (Anderson and ten others, 1999). These are stabler and often much faster
than eigen and svd. On many platform® can be built to take advantage of
enhanced BLAS routines which canesal up linear algebra considerably.

Vectorized calculations

Users coming t& from other languages are often slow to take advantage of the
power of S to do vectorized calculations, thes, calculations that operate on
entire vectors rather than on individual components in sequence. This often leads
to unnecessary loops. For example, consider calculating the Pearson chi-squared
statistic for testing independence in a two-way contingency table. This is defined

as

i=1 j=1

Two nestedfor loops may seem to be necessary, but in fact no explicit loops are
needed. If the frequencief; are held as a matrix the mosfficient calculation
in S uses matrix operations:

fi. <= £ %*% rep(l, ncol(f))
f.j <= rep(1, nrow(£)) %xJ £
e <- (fi. %*% f£.j)/sum(£fi.)
X2p <- sum((f - e)"2/e)

Explicit loops inS should be regarded as potentially expensive in time and
memory use and ways of avoiding them should be considered. (Note that this will
be impossible with genuinely iterative calculations such as our Newton scheme
on page 59.)

16Byt not onwindows.
17By Douglas Bates and Saikat DebRoy; not for clasicOS.

3.9 Array and Matrix Operations 65

The functions apply and sweep

The functionapply allows functions to operate on an array using sections suc-
cessively. For example, consider the dataiseits *8 which is a50 x 4 x 3 array
of four observations on 50 specimens of each of three species. Suppose we want
the means for each variable by species; we carapgd y.

The arguments oépply are

1. the name of the array;

2. an integer vectoMARGIN giving the indices defining the sections of the
array to which the function is to be separately applied. It is helpful to note
that if the function applied has a scalar result, the resulaggly is an
array with dim (X) [MARGIN] as its dimension vector;

3. the function, or the name of the functiaiwN to be applied separately to
each section;

4. any additional arguments needeyl the function as it is applied to each
section.

Thus we need to use

> apply(iris, c(2, 3), mean)
Setosa Versicolor Virginica

Sepal L. 5.006 5.936 6.588
Sepal W. 3.428 2.770 2.974
Petal L. 1.462 4.260 5.5562
Petal W. 0.246 1.326 2.026

> apply(iris, c(2, 3), mean, trim = 0.1)
Setosa Versicolor Virginica

Sepal L. 5.0025 5.9375 6.5725
Sepal W. 3.4150 2.7800 2.9625
Petal L. 1.4600 4.2925 5.5100
Petal W. 0.2375 1.3250 2.0325

where we also show how arguments can be passed to the function, in this case to
give a trimmed mean. If we want the overall means we can use

> apply(iris, 2, mean)
Sepal L. Sepal W. Petal L. Petal W.
5.8433 3.0573 3.758 1.1993

Note how dimensions have been dropped to give a vector. If the resEitbfs

itself a vector of lengthd, say, then the result afpply is an array with dimension
vectorc(d, dim(X) [MARGIN]), with single-element dimensions dropped. Also
note that matrix results are reduced to vectors; if we ask for the covariance matrix
for each species,

ir.var <- apply(iris, 3, var)

we getal6 x 3 matrix. We can add back the correct dimensions, but in so doing
we lose thedimnames. We can restore both by

183ris3 inR, sousedata(iris3) and the appropriate substitutions below.

66 The S Language

ir.var <- array(ir.var, dim = dim(iris) [c(2, 2, 3)],
dimnames = dimnames(iris)[c(2, 2, 3)1)

The functionapply is often useful to replace expliétloops. Note too that
for linear computations it is rather ineffiairt. We can form the means by matrix
multiplication:

> matrix(rep(1/50, 50) %*}, matrix(iris, nrow = 50), nrow = 4,
dimnames = dimnames(iris) [-1])
a Setosa Versicolor Virginica

Sepal L. 5.006 5.936 6.588
Sepal W. 3.428 2.770 2.974
Petal L. 1.462 4.260 5.5562
Petal W. 0.246 1.326 2.026

which will be very much faster on larger @xples, but is much less transparent.
We can also make use of functions suchc@dMeans and rowMeans (and in
S-PLUS colVars, rowVars and colStdev) if these will do what we want.
For example,

colMeans(iris)

averages across the first dimension.
The functionaperm is often useful with array/matrix arithmetic of this sort.
It permutes the indices, so thaperm(iris, c(2, 3, 1)) isa4 x 3 x 50
array. (Note that the matrix transpose operation is a special case.) We can get the
overall means of each measurement by

colMeans(aperm(iris, c(1, 3, 2)), dims = 2)

Function sweep

The functionsapply and sweep are often used together. For example, having
found the means of theris data, we may want to remove them by subtraction
or perhaps division. We can use sweep in each case:

ir.means <- colMeans(iris)
sweep(iris, c(2, 3), ir.means)
log(sweep(iris, c(2, 3), ir.means, "/"))

Of course, we could have subtracted the log means in the second case.

3.10 Introduction to Classes and Methods

The primary purpose of th® programming environment is to construct and ma-
nipulate objects. These objects may be fairly simple, such as numeric vectors,
factors, arrays or data frames, or reasonably complex such as an object conveying
the results of a model-fitting process. The manipulations fall naturally into broad
categories such as plotting, printing, summarizing and so forth. They may also

19There is an internal loop iR.

3.10 Introduction to Classes and Methods 67

involve several objects, for example performing an arithmetic operation on two
objects to construct a third.

SinceS is intended to be an extensible environment new kinds of object are
designed by users to fill new needs, but it will usually be convenient to manipulate
them using familiar functions such afot, print and summary. For the new
kind of object the standard manipulations will usually have an obvious purpose,
even though the precise action required differs at least in detail from any previous
action in this category.

Consider thesummary function. If a user designs a new kind of object called,
say, a ‘newfit” object, it will often be useful to make available a method of
summarizing such objects so that the intpat features are easy to appreciate and
the less important details are suppressed. One way of doing this is to write a new
function, saysummary.newfit, which could be used to perform the particular
kind of printing action needed. lhyobj is a particularnewfit object it could
then be summarized using

> summary.newfit (myobj)

We could also write functions with namegf ot .newfit, residuals.newfit,
coefficients.newfit for the particular actions appropriate fapwfit ob-

jects for plotting, summarizing, extracting residuals, extracting coefficients and
so on. It would be most convenient if the user could just tgp@mary (myobj),

and this is one important idea behiolject-oriented programming. To make it

work we need to have a standard method by which the evaluator may recognise
the different classes of object being presented to i§ this is done by giving the
objectaclass. Thereis aclass replacement function available to set the class,
which would normally be done when the object was created. For example,

> class(myobj) <- "newfit"

Functions likesummary, plot andresiduals are calledyeneric functions.
They have the property of adapting their action to match the class of object pre-
sented to them. The specific implementations sucBwasary.1m are known
asmethod functions. It may not be completely clear if a functimgeneric, but
S-PLUS has the testisGeneric.

At this point we need to emphasize that curr8ieLUS, earlier versions of
S-PLUS andR handle classes and generic functions internally quite differently,
and the details are given in Venables and Ripley (2000). However, there is fairly
extensive backwards compatibility, and mostsPLUS uses the compatibility
features. You may notice when listing functions that many classesPhUS are
set byoldClass not class.

Method dispatch

Generic functions use the class of their first few arguments to decide which
method function to use. In the simple cases the generic function will consist
of a call toUseMethod as in

> summary
function(object, ...) UseMethod("summary")

68 The S Language

Then a call tomethods will list all the method functions currently available, for
example

> methods (summary)

splus splus splus

"summary.agnes" "summary.aov" "summary.aovlist"
splus splus
"summary.bootstrap" "summary.censorReg"
splus splus

"summary.censorReglList" "summary.clara"
splus main
"summary.compare.fits" "summary.connection"

in S-PLUS 6.0. The method for the closest matching class is used; the details of
‘closest matching’ are complex and given in Venables and Ripley (2000). How-
ever, the underlying idea is simple. Objects from linear models have tlass
those from generalized linear models clasglm" and those from analysis of
variance models classaov". Each of the last two classes is definedrberit
from class "1m", so if there is no specific method function for the class, that
for "1m" will be tried. This can greatly reduce the number of method func-
tions needed. Furthermore, method functions can build on those from simpler
classes; for examplegredict . glm works by manipulating the results of a call
to predict.1lm.

Function plot in S-PLUS works in both the current class system and in
back-compatibility mode. To see all its methods one needs

> showMethods("plot")

Database X y
[1,] "splus" "ANY" "ANY"
[2,] "splus" "ANY" "missing"
[3,] "splus" "timeSeries" "ANY"

[4,] "splus" "signalSeries" "ANY"
> methods("plot")
nlme3 nlme3 splus splus
"plot.ACF" "plot.Variogram" "plot.acf" "plot.agnes"

splus nlme3 splus
"plot.arima" "plot.augPred" "plot.censorReg"

Method dispatch is very general; the meaning of arithmetic and logical oper-
ators such as and & may depend on the classes of the operands.

Chapter 4

Graphics

Both S-PLUS andR provide comprehensive graphics facilities for static two-
dimensional plots, from simple facilitsefor producing common diagnostic plots

by plot (object) to fine control over publication-quality graphs. In consequence,
the number of graphics parameters is huge. In this chapter, we build up the com-
plexity gradually. Most readers will not need the material in Section 4.4, and
indeed the material there is not used elsewhere in this book. Howevéause
needed to make use of it, especially in matching existing graphical styles.

Some graphical ideas are best exploredheir statistical context, so that,
for example, histograms are covered in Chapter 5, survival curves in Chapter 13,
biplots in Chapter 11 and time-series graphics in Chapter 14. Table 4.1 gives an
overview of the high-level graphics commands with page references.

There are many books on graphical design. Cleveland (1993) discusses most
of the methods of this chapter and the detailed design choices (such as the aspect
ratios of plots and the presence of grittgt can affect the perception of graphical
displays. As these are to some extent a matter of personal preference and this
is also a guide t&, we have kept to the default choices. Spence (2001) and
Wilkinson (1999) and the classics of Tufte (1983, 1990, 1997) discuss the visual
exploration of data.

Trellis graphics (Beckest al., 1996) are a later addition ®with a somewhat
different style and philsophy to the basic plotting functions. We describe the
basic functions first, then the Trellis functions in Section &%has a variant on
Trellis in its lattice package. Th&Vindows version ofS-PLUS has a very
different (and less powerful) style of ajt-oriented editable graphics which we
do not cover. One feature we do find useful is the ability to interactively change
the viewpoint in perspective plots (see page 422). Tie packagéfor R under
Windows provides similar facilities.

There are quite a few small differences in Rgraphics model, and the de-
scription here tries to be completely accurate onlySé?LUS 6.

LAvailable athttp: //www.stats.uwo.ca/faculty/murdoch/software/.

69

70

Graphics

Table 4.1: High-level plotting functions. Page references are given to the most complete
description in the text. Those marked byhave alternatives in Trellis.

Function Page Description

abline 74 Add lines to the current plot in slope-intercept form.

axis 80 Add an axis to the plot.

barplot 72 Bargraphs.

biplot 312 Represent rows and columns of a data matrix.

brush spin 75 Dynamic graphics. n®.

contour ' 76 Contour plot. The Trellis equivalent issntourplot .

dotchart ' Produce a dot chart.

eqscplot 75 Plot with geometrically equal scales (our library).

faces Chernoff’s faces plot of multivariate data.

frame 78 Advance to next figure region.

hist 112 Histograms. We prefer our functiarruehist .

hist2d 130 Two-dimensional histogram calculations.

identify locator 80 Interact with an existing plot.

image t 76 High-density image plot functions. The Trellis version

image.legend IS levelplot.

interaction.plot Interaction plot for a two-factor experiment.

legend 81 Add a legend to the current plot.

matplot 88 Multiple plots specified by the columns of a matrix.

mtext 81 Add text in the margins.

pairs ' 75 All pairwise plots between multiple variables. The Trel-
lis version issplom.

par 83 Set or ask about graphics parameters.

persp ! perspp 76 Three-dimensional perspective plot functions. Similar

persp.setup Trellis functions are calledireframe and cloud.

pief Produce a pie chart.

plot Generic plotting function.

polygon Add polygon(s) to the present plot, possibly filled.

points lines 73 Add points or lines to the current plot.

qqplot qgnorm 108 Quantile-quantile and normal Q-Q plots.

rect (R only) Add rectangles, possibly filled.

scatter.smooth 230 Scatterplot with a smooth curve.

segments arrows 88 Draw line segments or arrows on the current plot.

stars Star plots of multivariate data.

symbols Draw variable-sized symbols on a plot.

text 73 Add text symbols to the current plot.

title 79 Add title(s).

4.1 GraphicsDevices 71

Table 4.2: Some of the graphical devices available.

S-PLUS :
motif UNIX: X11-windows systems.
graphsheet Windows, screen, printer, bitmaps.
win.printer Windows, a wrapper for agraphsheet .
postscript PostScript printers.
hplj UNIX: Hewlett-Packard LaserJet printers.
hpgl Hewlett-Packard HP-GL plotters.
pdf .graph Adobe’s PDF format.
wnf . graph Windows metafiles.
java.graph Java device.

R:
X11 UNIX: X11-windows systems.
windows Windows, screen, printer, metafiles.
macintosh classic MacOS screen device.
postscript PostScript printers.
pdf PDF files.
xfig files for XFig.
png PNG bitmap graphics.
jpeg JPEG bitmap graphics.
bitmap several bitmap formatéa GhostScript.

4.1 Graphics Devices

Before any plotting commands can be used, a graphics device must be opened
to receive graphical output. Most coromly this is a window on the screen of a
workstation or a printer. A list of supported devices on the current hardware with
some indication of their capabilities is available from the on-line help system by
7Devices. (Note the capital letter.)

A graphics device is opened by giving the command in Table 4.2, possibly
with parameters giving the size and position of the window; for example, using
S-PLUS on UNIX,

motif ("-geometry 600x400-0+0")

opens a small graphics window initially positioned in the top right-hand corner of
the screen. All currer® environments will automatically open a graphics device

if one is needed, but we often choose to open the device ourselves and so take
advantage of the ability to customize it.

To make a device request permission before each new plot to clear the
screen use eithepar(ask = T) (which affects just the current device) or
dev.ask(ask = T) (notR: applies to every device). R

All open graphics devices may be closed usigaphics.off (); quitting
the S session does this automatically.

72 Graphics

UK deaths from lung disease

26140 26101 25718

)

23229 23951 5q38

25000
25000

15000
15000

Males

I Females

0 5000
0 5000

1974 1975 1976 1977 1978 1979 1974 1975 1976 1977 1978 1979

Figure 4.1: Two different styles of bar chart showing the annual UK deaths from certain
lung diseases. In each case the lower block is for males, the upper block for females.

It is possible to have several graphical devices open at once. By default the
most recently opened one is used, Batr. set can be used to change the current
device (by number). The functiogev.list lists currently active devices, and
dev.off closes the current device, or one specified by number. There are also
commandsiev. cur, dev.next anddev.prev which return the number of the
current, next or previous device on the list. Thev.copy function copies the
current plot to the specified device (by default the next device on the list).

Note that for some devices little or no output will appear on a file until
dev.off or graphics.off is called.

Many of the graphics devices on windowing systems have menus of choices,
for example, to make hardcopies and to alter the colour scheme in use. The
S-PLUS motif device has aCopy option on its Graph menu that allows a
(smaller) copy of the current plot to be copied to a new window, perhaps for com-
parison with later plots. (The copy window can be dismissed bytiete item
on itsGraph menu.)

There are some special considerations for usergrabhsheet devices on
S-PLUS for Windows: see page 451.

4.2 Basic Plotting Functions

The functionplot is a generic function that, when applied to many typeSs of
objects, will give one or more plots. Many of the plots appropriate to univariate
data such as boxplots and histograms are considered in Chapter 5.

Bar charts

The function to display barcharts imrplot. This has many options (described
in the on-line help), but some simple uses are shown in Figure 4.1. (Many of the
details are covered in Section 4.3.)

R: data(mdeaths); data(fdeaths); library(ts)
lung.deaths <- aggregate(ts.union(mdeaths, fdeaths), 1)

4.2 Basic Plotting Functions 73

barplot (t(lung.deaths), names = dimnames(lung.deaths) [[1]],
main = "UK deaths from lung disease")
legend(locator(1), c("Males", "Females"), fill = c(2, 3))
loc <- barplot(t(lung.deaths), names = dimnames(lung.deaths) [[1]],
angle = c(45, 135), demnsity = 10, col = 1)
total <- rowSums(lung.deaths)
text (loc, total + par("cxy")[2], total, cex = 0.7) #R: xpd = T

Line and scatterplots

The default plot function takes argumentsand y, vectors of the same length, or

a matrix with two columns, or a list (or data frame) with componenendy and
produces a simple scatterplot. The axes, scales, titles and plotting symbols are all
chosen automatically, but can be overridaéth additional graphical parameters
that can be included as named argumémthe call. The most commonly used
ones are:

type = "c" Type of plot desired. Values farare:
p for points only (the default),
1 for lines only,
b for both points and lines (the lines miss the points),
s, S for step functions { specifies the level of the step at the left
end,s at the right end),
o for overlaid points and lines,
h for high-density vertical line plotting, and
n for no plotting (but axes are still found and set).

]
=

axes If F all axes are suppressed (defanlaxes are automatically con-

structed).

xlab = "string" Give labels for the:- and/ory-axes (default: the names, including
ylab = "string" suffices, of thex- andy-coordinate vectors).

sub = "string" sub specifies a title tappear under the-axis label anahain a title
main = "string" forthe top of the plotin larger letters (default: both empty).

xlim = c(lo ,hi) Approximate minimum and maximum values for and/ory-axis
c(lo, hi) settings. These values are normally automatically rounded to make

them ‘pretty’ for axis labelling.

ylim

The functionspoints, lines, text and abline can be used to add to a
plot, possibly one created withype = "n". Brief summaries are:

points(x,y,...) Add points to an existing plot (possibly using a different
plotting character). The plotting character is setfah=
and the size of the character lgx= or mkh=.

lines(x,y,...) Add lines to an existing plot. The line type is set byy=
and width by1lwd=. The type options may be used.

text(x,y,labels,...) Add text to a plot at points given by,y. labels is an
integer or character vectorabels[i] is plotted at point
(x[i],y[i]). The default isseq(along=x).

S+

74 Graphics

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

O A 4+ X ¢ VXK X ¢ &6 ¥ H B O B @ Ao o

19 20 21 22 23 24 25 26 27 19 20 21 22 23 24 25
@ e OO OC AV

Figure 4.2: Plotting symbols or marks, specified lp¢h = n. Those on the left of the
second row are only available ographsheet devices, and those on the right of the
second row only irR (where the fill colour for 21 to 25 has been taken as light grey).

abline(a, b, ...) Draw a line in intercept and slope formg,$), across an
abline(h = ¢, ...) existing plot.h = ¢ may be used to specify-coordinates
abline(v = c, ...) for the heights of horizontal lines to go across a plot, and
abline(Imobject, . . .) = c similarly for the x-coordinates for vertical lines. The

coefficients of a suitablemobject are used.

These are the most commonly used graphics functions; we have shown exam-
ples of their use in Chapter 1, and show many more later. (There are also functions
arrows and symbols that we do not use in this book.) The plotting characters
available forplot and points can be characters of the forpch = "o" or
numbered from 0 to 27, which uses the marks shown in Figure 4.2.

Size of text and symbols

Confusingly, the size of plotting characters is selected in one of two very different
ways. For plotting characters (lpch = "o") or text (by text), the parameter
cex (for ‘character expansion’) is used. This defaults to the global setting (which
defaults to 1), and rescales the character by that fact@-RhUS for a mark set

by pch = n, the size is controlled by thekh parameter which gives the height
of the symbolin inches. (This will be clear for printers; for screen devices the
default device region is about 8ir 6in and this is not changed by resizing the
window.) However, ifmkh = 0 (the default, and always iR) the size is then
controlled bycex and the default size of each symbol is approximately thax of
Care is needed in changingx on a call toplot, as this may also change the
size of the axis labels. It is better to use, for example,

plot(x, y, type = "n") # axes only
points(x, y, pch = 4, mkh = 0, cex = 0.7) # add the points

If cex is used to change the size of all the text on a plot, it will normally be
desirable to sehex to the same value to change the interline spacing. An alter-
native to specifyingcex is csi, which specifies the absolute size of a character
(ininches). (Thereis nasi.)

The default text size can be changed for some graphics devices, for example,
by argumentpointsize for the postscript, win.printer, windows and
macintosh devices.

2In R these are controlled byex.axis ; there are alsaex.main, cex.sub and cex.lab, the
last for the axis titles.

4.2 Basic Plotting Functions 75

Equally scaled plots

There are many plots, for example, in multivariate analysis, that represent dis-
tances in the plane and for which it is essential to have a scaling of the axes that
is geometrically accurate. This can be done in many ways, but most easily by our
function eqscplot which behaves as the default plot function but shrinks the
scale on one axis until geonniglal accuracy is attained.

Warning: when screen devices (except graphsheet) are resized the
S-PLUS process is not informed, seqscplot can only work for the original
window shape.

R has an argumenisp that can be given to many high-level plotting funcr
tions and fixes scales so that units areasp times as large ag units, even
across window resizing.

Multivariate plots

The plots we have seen so far deal with one or two variables. To view more
we have several possibilities. geatterplot matrix or pairs plot shows a matrix

of scatterplots for each pair of variables, as we saw in Figure 1.2, which was
produced bysplom(~ hills). Enhanced versions of such plots artode of
Trellis graphics, so we do not discuss how to make them in the base graphics
system.

Dynamic graphics

S-PLUS has limited facilities for dynamic plot® has none. Both can work with
XGobi andGGobi (see page 302) to add dynamic brushing, selecting and rotating.
The S-PLUS function brush allows interaction with the (lower half) of a
scatterplot matrix. An example is shown in Figure 1.3 on page 9. As it is much

easier to understand these by using them, we suggest you try

brush(hills)

and experiment.

Points can be highlighted (marked with a symbol) by moving the brush (a
rectangular window) over them with button 1 held down. When a point is high-
lighted, it is shown highlighted in all the displays. Highlighting is removed by
brushing with button 2 held down. It is also possible to add or remove points by
clicking with button 1 in the scrolling list of row names.

One of four possible (device-dependent) marking symbols can be selected by
clicking button 1 on the appropriate one in the display box on the right. The
marking is by default persistent, but this can be changed to ‘transient’ in which
only points under the brush are labelled (and button 1 is held down). It is also
possible to select marking by row label as well as symbol.

The brush size can be altered und@tX by picking up a corner of the brush
in the brush size box with the mouse button 1 and dragging to the required
size. UnderwWindows, move the brush to the background of the maitush
window, hold down the left mouse button and drag the brush to the required size.

76 Graphics

T T T T
[1 2 3 4 B 6 0 1 2 3

T T
5 6

(a) by contour (b) by contourplot

Figure 4.3: Contour plots ofloess smoothing of thetopo dataset. Note the differences
in the axes and the way points are depicted.

The plot produced byrush will also show a three-dimensional plot (unless
spin = F), and this can be produced on its own fyin. UnderUNIX clicking
with mouse button 1 will select three of the variables for the y- and z-axes.
The plot can be spun in several directions and resized by clicking in the appropri-
ate box. Thespeed box contains a vertical line or slider indicating the current
setting.

Plots from brush and spin can only be terminated by clicking with the
mouse button 1 on thquit box or button.

Obviouslybrush and spin are available only on suitable screen devices, in-
cludingmotif and graphsheet. Hardcopy is possible only by directly printing
the window used, not by copying the plot to a printer graphics device.

Plots of surfaces

The functionscontour, persp and image allow the display of a function de-
fined on a two-dimensional regular grid. Their Trellis equivalents give more el-
egant output, so we do not discuss them in detail. The functiaftour al-
lows more control tharcontourplot.? We anticipate an example from Chap-
ter 15 of plotting a smooth topographic sacé for Figure 4.3, and contrast it with
contourplot.

R: library(modreg)

topo.loess <- loess(z ~ x * y, topo, degree = 2, span = 0.25)

topo.mar <- list(x = seq(0, 6.5, 0.2), y = seq(0, 6.5, 0.2))

topo.lo <- predict(topo.loess, expand.grid(topo.mar))

par(pty = "s") # square plot

contour (topo.mar$x, topo.mar$y, topo.lo, xlab = "", ylab = "",
levels = seq(700,1000,25), cex = 0.7)

3At the time of writing contourplot was not available in thR packagelattice.

4.3 Enhancing Plots 77

F M

Figure4.4: Aternary plot of the compositions of 23 rocks from Aitchison (1986).

points(topo$x, topo$y)
par(pty = "m")

contourplot(z ~ x * y, mat2tr(topo.lo), aspect = 1,

at = seq(700, 1000, 25), xlab = "", ylab = "",
panel = function(x, y, subscripts, ...) {
panel.contourplot(x, y, subscripts, ...)

panel.xyplot (topo$x,topo$y, cex = 0.5)
}
)

This generates values of the surface on a reg@Bx 33 grid generated by

expand.grid. Our MASS library provides the functiongon2tr and mat2tr

to convert objects designed for input toantour and matrices as produced by

predict.loess into data frames suitable for the Trellis 3D plotting routines.
TheS-PLUS for Windows GUI andR underwindows have ways to visualize

such surfaces interactively; see pages 69 and 422.

Making new types of plots

The basic components described so far can be used to create new types of plot as
the need arises.

Ternary plots are used for compositional data (Aitchison, 1986) where there
are three components whose proportions add to one. These are represented by a
point in an equilateral triangle, where the distances to the sides add to a constant.
These are implemented in a functiaernary which is given on the help page
of the MASS datasetSkye; see Figure 4.4.

4.3 Enhancing Plots

In this section we cover a number of ways that are commonly used to enhance
plots, without reaching the level of detail of Section 4.4.

78 Graphics

Some plots (such as Figure 1.1) are square, whereas others are rectangular.
The shape is selected by the graphics parameter Settingpar (pty = "s")
selects a square plotting region, whergas (pty = "m") selects a maximally
sized (and therefore usually non-square) region.

Multiple figures on one plot

We have already seen several examples of plotting two or more figures on a single
device surface, apart from scatterphoatrices. The graphics parametergrow

and mfcol subdivide the plotting region into an array of figure regions. They
differ in the order in which the regions are filled. Thus

par (mfrow = c(2, 3))
par(mfcol = c(2, 3))

both select & x 3 array of figures, but with the first they are filled along rows,
and with the second down columns. A négure region is selected for each new
plot, and figure regions can be skipped by usfiigme.

All but two* of the multi-figure plots irthis book were produced withfrow.
Most of the side-by-side plots were produced withr (mfrow = c(2, 2)), but
using only the first two figure regions.

The split.screen function provides an alternative and more flexible way
of generating multiple displays on a graphics device. An initial call such as

split.screen(figs = c(3, 2))

subdivides the current device surface int8 a 2 array ofscreens. The screens
created in this example are numbered 1 td¥yows, and the original device
surface is known as screen 0. The current screen is then screen 1 in the upper left
corner, and plotting output will fill the screen as it would a figure. Unlike multi-
figure displays, the next plot will use the same screen unless another is specified
using thescreen function. For example, the command

screen(3)

causes screen 3 to become the next current screen.
On screen devices the functigtrompt.screen may be used to define a
screen layout interactively. The command

split.screen(prompt.screen())

allows the user to define a screen layout by clicking mouse button 1 on diagonally
opposite corners. In our experience this requires a steady hand, although there is a
delta argument toprompt.screen that can be used to help in aligning screen
edges. Alternatively, if thefigs argument tosplit.screen is specified as an

N x 4 matrix, this divides the plot intaV screens (possibly overlapping) whose
corners are specified by givingel, zu, yl,yl) as the row of the matrix (where

the whole region ig0, 1,0, 1)).

4Figures 6.2 and 6.3, where tha g parameter was used.

4.3 Enhancing Plots 79

The split.screen function may be used to subdivide the current screen
recursively, thus leading to irregularangements. In this case the screen num-
bering sequence continues from where it had reached.

Split-screen mode is terminated by a calldbose.screen(all = T); in-
dividual screens can be shut bjose.screen(n).

The functionsubplot °® provides a third way to subdivide the device surface.
This has calsubplot (fun, ...) which adds the graphics output 6fin to an
existing plot. The size and position can be determined in many ways (see the
on-line help); if all but the first argument is missing a callltecator is used to
ask the user to click on any two opposite corners of the plot rejjion.

Use of thefig parameter topar provides an even more flexible way to
subdivide a plot; see Section 4.4 and Figure 6.2 on page 153.

With multiple figures it is normally necessary to reduce the size of the text. If
either the number of rows or columns set bffrow or mfcol is three or more,
the text size is halved by settingex = 0.5 (andmex = 0.5; see Section 4.4).
This may produce characters that are too small and some resetting may be appro-
priate. (On the other hand, forax 2 layout the characters will usually be too
large.) For all other methods of subdividing the plot surface the user will have to
make an appropriate adjustmentd¢ex and mex or to the default text size (for
example by changingointsize onthepostscript and other devices).

Adding information

The basic plots produced bylot often need additional information added to
give context, particularly if they are not going to be used with a caption. We have
already seen the use aflab, ylab, main and sub with scatterplots. These
arguments can all be used with the functiott1le to add titles to existing plots.
The first argument imain, SO

title("A Useful Plot?")

adds a main title to the current plot.

Further points and lines are added by gheints and 1ines functions. We
have seen how plot symbols can be selected with=. The line type is selected
by 1ty=. This is device-specific, but usually includes solid lines (1) and a vari-
ety of dotted, dashed and dash-dot lines. Line width is selectetlwky, with
standard width being 1, and the effect being device-dependent.

Using colour

The colour model 06-PLUS graphics is quite complex. Colours are referred to

as numbers, and set by the parameiger. Sometimes only one colour is allowed
(e.g.,points) and sometimegol can be a vector giving a colour for each plot

item (e.g.,text). There will always be at least two colours, 0 (the background,
useful for erasing by over-plotting) and 1. However, how many colours there are
and what they appear as is set by the device. Furthermore, there are separate

5Not in R, which has another approach callegyout .
6Not the figure region; Figure 4.5 grage 81 shows the distinction.

80 Graphics

colour groups, and what they are is device-specific. For example,f devices
have separate colour spaces for linesl(iding symbols),éxt, polygons (includ-
ing histograms, bar charts and pie charts) and imagesgaaphsheet devices
have two spaces, one for lines and text, the other for polygons and images. Thus
the colours can appear completely diffatly when a graph is copied from device
to device, in particular on screen and on a hardcopy. It is usually a good idea to
design a colour scheme for each device.

Itis necessary to read the device help page thoroughly (angbfetscript,
also that forps . options. send).

R has a different and more coherentair model involving named colours,
user-settable palettes and even transparency. See the help gepicste and
colors for more details.

I dentifying pointsinteractively

The functionidentify has a similar calling sequence text. The first two ar-
guments give the:- and y-coordinates of points on a plot and the third argument
gives a vector of labels for each point. (The first two arguments may be replaced
by a single list argument with two of its components nanmednd y, or by a
two-column matrix.) The labels may k@echaracter string vector or a numeric
vector (which is coerced to characteffjhen clicking with mouse button 1 near

a point on the plot causes its label to be plotted; labelling all points or clicking
anywhere in the plot with button 2 terminates the prode@he precise position

of the click determines the label position, in particular to left or right of the point.)
We saw an example in Figure 1.4 on page 10. The function returns a vector of
index numbers of the points that were labelled.

In Chapter 1 we used th&ocator function to add new points to a plot.
This function is most often used in the forirocator (1) to return the(z,y)
coordinates of a single button click to place a label or legend, but can also be used
to return the coordinates of a series of points, terminated by clicking with mouse
button 2.

Adding further axes and grids

It is sometimes useful to add further axis scales to a plot, as in Figure 8.1 on
page 212 which has scales for both kilograms and pounds. This is done by the
function axis. There we used

attach(wtloss)

oldpar <- par() # R: oldpar <- par(mo.readonly = TRUE)

alter margin 4; others are default

par(mar = c(5.1, 4.1, 4.1, 4.1))

plot(Days, Weight, type = "p", ylab = "Weight (kg)")
Wt.1lbs <- pretty(range(Weight*2.205))

axis(side = 4, at = Wt.1lbs/2.205, lab = Wt.lbs, srt = 90)
mtext ("Weight (1b)", side = 4, line = 3)

detach()

“With R on a Macintosh (which only has one mousdtbn) click outside the plot window to
terminate locator or identify.

4.3 Enhancing Plots 81

Margin 3
o <
c c
> o
S s
= =

Plot Region

Figure Region Margin 1

Figure 4.5: Anatomy of a graphics figure.

par (oldpar)

This adds an axis on side 4 (labelled clockwise from the bottom; see Figure 4.5)
with labels rotated by0° (srt = 90, notneeded iR where unlikeS-PLUS the R
rotation is controlled by the setting dfas) and then usesitext to add a label
‘underneath’ that axis. Other parameters are explained in Section 4.4. Please read
the on-line documentation very carefully to determine which graphics parameters
are used in which circumstances.

Grids can be added by usingkis with long tick marks, setting parameter
tck = 1 (yes, obviously). For example, a dotted grid is created by

axis(l, tck = 1, 1ty = 2); axis(2, tck =1, 1ty = 2)

and the location of the grid lines can be specified using.

Adding legends

Legends are added by the functidagend. Since it can label many types of vari-
ation such as line type and width, plot symbol, colour, and fill type, its description
is very complex. All calls are of the form

legend(x, y, legend, ...)

wherex andy give either the upper left corner of the legend box or both upper
left and lower right corners. These are often most conveniently specified on-
screen by usinqocator (1) or locator(2). Argumentlegend is a character
vector giving the labels for each variati. Most of the remaining arguments are
vectors of the same length a:gend giving the appropriate coding for each
variation, by 1ty=, lwd=, col=, fill=, angle= and density=. Argument
pch is a single character string concatenating the symbols; for numeratain
S-PLUS use the vector argumentrks.

By default the legend is contained in a box; the drawing of this box can be
suppressed by argumebty = "n".

The Trellis functionkey provides a more flexible approach to constructing
legends, and can be used with basic plots. (See page 104 for further details.)

82 Graphics

Non-English labels

Non-native English speakers will often want to include characters from their other
languages in labels. For Western European languages written in 1ISO-latin1 en-
coding this will normally work; it does for all th& devices and fomotif and
graphsheet devices inS-PLUS. To use such characters with thestscript

device undeB-PLUS, set

ps.options(setfont = ps.setfont.latinl)

If you are unable to enter the characters from the keyboard, octal escapes of
the form"\341" (which encodes) can be used.

R’s postscript device allows arbitrary encodings via éacoding param-
eter, andS-PLUS’s ps.setfont.latinl could be modified to use a different
encoding such as ISO-latin2.

Mathematicsin labels

Users frequently wish to include the odd subscript, superscript and mathematical
symbol in labels. There is no general solution, but for$HRLUS postscript

driver® Alan Zaslavsky's packaggostscriptfonts adds these features. We
can label Figure 7.3 (on page 209) By (from font 13, the PostScript symbol
font).

library(postscriptfonts)
x <- 0:100
plik <- function(lambda)
sum(dpois(x, lambda) * 2 * ((lambda - x) +
x * log(pmax(1l, x)/lambda)))
lambda <- c(le-8, 0.05, seq(0.1, 5, 0.1))
plot(lambda, sapply(lambda, plik), type = "1",

ylim = c(0, 1.4), ylab = "", xlab = "")
abline(h = 1, 1ty = 3)
mixed.mtext(texts = "1", side = 1, line = 3, font = 13) # xlab
mixed.mtext (texts = "E~f13~d~.1~fl~.(deviance)", adj = 0.5,
side = 2, line = 3, font = 13) # ylab

R has rather general facilities to label with mathematics: 8peotmath
and Murrell and Ihaka (2000). Here we could use (on most devices, including
on-screen)

plot(lambda, sapply(lambda, plik), type = "1", ylim = c(0, 1.4),
xlab = expression(lambda),
ylab = expression(paste(E[lambdal, "(deviance)")))

4.4 Fine Control of Graphics

The graphics process is controlleddmaphics parameters, which are set for each
graphics device. Each time a new device is opened these parameters for that

8UnderUNIX or Windows.

4.4 Fine Control of Graphics 83

device are reset to their default values. Graphics parameters may be set, or their
current values queried, using tper function. If the argumentstpar are of the

name = value form the graphics parametamme is set tovalue, if possible,

and other graphics parameters may be reset to ensure consistency. The value
returned is a list giving the previous parameter settings. Instead of supplying the
arguments asame = value pairs,par may also be given a single list argument

with named components.

If the arguments topar are quoted character string$name", the current
value of graphics parametemme is returned. If more than one quoted string is
supplied the value is a list of the requested parameter values, with named com-
ponents. The calbar() with no arguments returns a list of all the graphics
parameters.

Some of the many graphics parameters are given in Tables 4.3 and 4.4 (on
pages 84 and 87). Those in Table 4.4 can also be supplied as arguments to high-
level plot functions, when they apply just to the figure produced by that call. (The
layout parameters are ignored by the high-level plot functions.)

The figure region and layout parameters

When a device is opened it makes available a rectangular surfacdevibe re-

gion, on which one or more plots may appear. Each plot occupies a rectangular
section of the device surface callefigure. A figure consists of a rectangulgaliot

region surrounded by anargin on each side. The margins or sides are numbered
one to four, clockwise starting from the bottom. The plot region and margins
together make up thiégure region, as in Figure 4.5 on page 81. The device sur-
face, figure region and plot region have thaartical sides parallel and hence their
horizontal sides also parallel.

The size and position of figure and plot regions on a device surface are con-
trolled bylayout parameters, most of which are listed in Table 4.3. Lengths may
be set in either absolute or relative units. Absolute lengths dreles, whereas
relative lengths are itext lines (so relative to the current font size).

Margin sizes are set usingar for text lines ormai for inches. These are
four-component vectors giving the sizes of the lower, left, upper and right margins
in the appropriate units. Changing one causes a consistent change in the other;
changingmex will changemai but notmar.

Positions may be specified in relative units using the unit square as a coordi-
nate system for which some enclosing region, such as the device surface or the
figure region, is the unit square. The g parameter is a vector of length four
specifying the current figure as a fraction of the device surface. The first two
components give the lower and uppetlimits and the second two give thg-
limits. Thus to put a point plot in the left-hand side of the display and a Q-Q plot
on the right-hand side we could use:

postscript(file = "twoplot.ps") # open a postscript device
par(fig = c(0, 2/3, 0, 1)) # set a figure on the left
plot(x, y) # point plot

par(fig = c(2/3, 1, 0, 1)) # set a figure on the right

84

Graphics

Table 4.3: Some graphics layout parameters with example settings.

din, fin, pin

fig

font

mai, mar

mex

mfg

mfrow, mfcol

new

oma, omi, omd

plt

pty
uin

usr

Absolute device size, figure size and plot region size in inches.

fin = c(6, 4)

Define the figure region as a fraction of the device region.

fig = c(0, 0.5, 0,1)

Small positive integer determining a text font for characters and hence
an interline spacing. Fd8-PLUS’s postscript device one of the
standard PostScript fonts given Ips.options("fonts") . In R

font 1 is plain, font 2 italic, font 3 bold, font 4 bold italic and font 5 is
the symbol font. font = 3

The four margin sizes, in inchea4i), or in text line units par, that

is, relative to the current font size). Note thatar need not be an
integer. mar = ¢c(3, 3, 1, 1) + 0.1

Number of text lines per interline spacing.mex = 0.7

Define a position within a specified multi-figure display.

mfg = c(2, 2, 3, 2)

Define a multi-figure display. mfrow = c(2, 2)

Logical value indicating whether the current figure has been used.
new = T

Define outer margins in text lines or inches, or by defining the size of
the array of figures as a fraction of the device region.

oma = c(0, 0, 4, 0)

Define the plot region as a fraction of the figure region.

plt = ¢(0.1, 0.9, 0.1, 0.9)

Plot type, or shape of plotting regiofis" or "m"

(notR) Return inches per user coordinate forand y.

Limits for the plot region in user coordinates.

usr = ¢(0.5, 1.5, 0.75, 10.25)

qqnorm(resid(obj))

dev.off ()

diagnostic plot

The left-hand figure occupie®/3 of the device surface and the right-hand figure
1/3. For regular arrays of figures it is simpler to usrow or split.screen.
Positions in the plot region may also be specified in absalste coor-

dinates.

Initially user coordinates and relative coordinates coincide, but any

high-level plotting function changes the user coordinates so thattted y-
coordinates range from their minimum to maximum values as given by the plot
axes. The graphics parametesr is a vector of length four giving the lower
and upperz- and y-limits for the user coordinate system. Initially its setting is

usr =

> motif ()

> par("usr")
(110101

c(0,1,0,1). Consider another simple example:

open a device
usr coordinates

4.4 Fine Control of Graphics 85

M Tooosoossossossossoooe din[l] ------------------------- =
) AT
omi[3] ! H
v 1
) 1
mai[3] | | e 1
Y ,
) :
£ 7 5
mai[l] ! H
Y ,
5 :
E H
o
S
£
o
B mfg = ¢(2,2,3,2) f
) ! E
g : :
--g- i |
i S :
[xB = '
£ . i
o : 1
e g :
S‘""Pin[ll'"*; :
' ' - fin[d] --------- > ;
v '
; !
omi[l] | mfrow = ¢(3,2) E
{ e

Figure 4.6: An outline of a3 x 2 multi-figure display with outer margins showing some
graphics parameters. The current figure is at posifiar2) and the display is being filled
by rows. In this figure £in[1] " is used as a shorthand ferar ("£in") [1], and so on.

> x <= 1:20

>y <= x + rnorm(x) # generate some data

> plot(x, y) # produce a scatterplot

> par("usr") # user coordinates now match the plot

[1] 0.2400 20.7600 1.2146 21.9235

Any attempt to plot outside the user coordinate limits causes a warning message
unless the general graphics parametgd is set toT.

Figure 4.6 shows some of the layoutrgaeters for a multi-figure layout.
Such an array of figures may occupy the entire device surface, or it may have
outer margins, which are useful for annotations that refer to the entire array. Outer
margins are set with the parametera (in text lines) oromi (in inches). Alter-
natively omd may be used to set the region containing the array of figures in a

86 Graphics

similar way to whichf ig is used to set one figure. This implicitly determines the
outer margins as the complementary region. In contrast to what happens with the
margin parametersar and mai, a change tanex will leave the outer margin
size, omi, constant but adjust the number of text linesa.

Text may be put in the outer margins by usimgext with parameter
outer = T.

Common axes for figures

There are at least two ways to ensuratteeveral plots share a common axis or
axes.

1. Use the same&lim or ylim (or both) setting on each plot and ensure
that the parameters governing the way axes are formed, sutibas as,
xaxs and allies, do not change.

2. Setup the desired axis system with the first plot and thempasdo set the
low-level parameterxaxs = "d", yaxs = "d" or both as appropriate.
This ensures that the axis or axes are not changed by further high-level plot
commands on the same device.

An example: A Q-Q normal plot with envelope

In Chapter 5 we recommend assessing distributional form by quantile-quantile
plots. A simple way to do this is to plot the sorted values against quantile approx-
imations to the expected normal order statistics and draw a line through the 25 and
75 percentiles to guide the eye, performed for the varighleant . Mortality

of the Swiss provinces data (on fertilignd socio-economic factors on Swiss
provinces in about 1888) by

in R just use data(swiss)

swiss <- data.frame(Fertility = swiss.fertility, swiss.x)
attach(swiss)

qgqnorm(Infant.Mortality)

qqline(Infant.Mortality)

The reader should check the result and compare it with the style of Figure 4.7.
Another suggestion to assess departures is to compare the sample Q-Q plot
with the envelope obtained from a numlgf other Q-Q plots from generated
normal samples. This is discussed in (Atkinson, 19852) and is based on an
idea of Ripley (see Ripley, 1981, Chapter 8). The idea is simple. We generate
a number of other samples of the same size from a normal distribution and scale
all samples to mean 0 and variance 1 to remove dependence on location and scale
parameters. Each sample is then sartemt each order statistic the maximum and
minimum values for the generated samples form the upper and lower envelopes.
The envelopes are plotted on the Q-Q plot of the scaled original sample and form
a guide to what constitutes serious deions from the exgcted behaviour under
normality. Following Atkinson our calculation uses 19 generated normal samples.
We begin by calculating the envelope and tipoints for the Q-Q plot.

4.4 Fine Control of Graphics 87

Table 4.4: Some of the more commonly used general and high-level graphics parameters
with example settings.

Text:
adj
cex
csi
font
srt

cin cxy

Symbols:
col
1ty
1wd
mkh
pch

AXxes:
bty
exp
lab
las
log

mgp
tck

Xaxp yaxp
Xaxs yaxs

xaxt yaxt

High Level:
ann
ask
axes
main
sub
type
xlab ylab
xlim ylim

xpd

Text justification. 0 = left justify, 1 = right justify, 0.5 = centre.
Character expansion. cex = 2

Height of font (inches). csi = 0.11

Font number: device-dependent.

String rotation in degrees. srt = 90

Character width and height in inches anslr coordinates (for infor-
mation, not settable).

Colour for symbol, line or region. col = 2

Line type: solid, dashed, dotted, etc.1ty = 2

Line width, usually as a multiple of default width. 1wd = 2

Mark height (inches). Ignored iR. mkh = 0.05

Plotting character or mark. pch = "*" or pch = 4 for marks.
(See page 74.)

Box type, as'o", "1", "7", "c", "n".

(notR) Notation for exponential labels. exp = 1

Tick marks and labels. 1lab = c(3, 7, 4)

Label orientation. 0 = parallel to axis, 1 = horizontal, 2 = vertical.
Control log axis scales. log = "y"

Axis location. mgp = c(3, 1, 0)

Tick mark length as signed fraction of the plot region dimension.
tck = -0.01

Tick mark limits and frequency. xaxp = c(2, 10, 4)
Style of axis limits. xaxs = "i"
Axis type. "n" (null), "s" (standard),"t" (time)or "1" (log).

(R only) Should titles and axis labels be plotted?
Prompt before going on to next plot?ask = F

Print axes? axes = F

Main title. main = "Figure 1"

Subtitle. sub = "23-Jun-2002"

Type of plot. type = "n"

Axis labels. ylab = "Speed in km/sec"

Axis limits. xlim = c(0, 25)

May points or lines go outside the plot region?xpd = T

88 Graphics

PP R A RN BRI B
20 -15 -10 -05 0.0

ol b b e b
0.5 1.0 1.5 2.0
Quantiles of Standard Normal

Figure4.7: The Swiss fertility data. A Q-Q normal plot with envelope for infant mortality.

samp <- cbind(Infant.Mortality, matrix(rnorm(47%x19), 47, 19))
samp <- apply(scale(samp), 2, sort)

rs <- samp[, 1]

xs <- qgnorm(rs, plot = F)$x

env <- t(apply(samp[, -1], 1, range))

As an exercise in building a plot with specific requirements we now present
the envelope and Q-Q plot in a style very similar to Atkinson’s. To ensure that
the Q-Q plot has a-axis large enough to take the envelope we could calculate
the y-limits as before, or alternatively use a matrix plot witgpe = "n" for
the envelope at this stage. The axes and their labels are also suppressed for the
present:

matplot(xs, cbind(rs, env), type = "pnn",
pch = 4, mkh = 0.06, axes = F, xlab = "", ylab = "")

The argument settingype = "pnn" specifies that the first columrnr§) is to
produce a point plot and the remaining twenf) no plot at all, but the axes will
allow for them. Settingpch = 4 specifies a ‘cross’ style plotting symbol (see
Figure 4.2) similar to Atkinson’s, andkh = 0.06 establishes a suitable size for
the plotting symbol.

Atkinson uses small horizontal bars to represent the envelope. We can now
calculate a half length for these bars so that they do not overlap and do not extend
beyond the plot region. Then we can add the envelope bars gsifitents:

xyul <- par("usr")

smidge <- min(diff(c(xyull[1], xs, xyull[2])))/2
segments(xs - smidge, env[, 1], xs + smidge, env[, 1])
segments(xs - smidge, env[, 2], xs + smidge, env[, 2])

Atkinson’s axis style differs from the defa@tstyle in several ways. There are
many more tick intervals; the ticks are inside the plot region rather than outside;

45 Trellis Graphics 89

there are more labelled ticks; and the labelled ticks are longer than the unlabelled.
From experience ticks along theaxis at0.1 intervals with labelled ticks af).5
intervals seems about right, but this is usually too close onythais. The axes
require four calls to thexis function:

xul <- trunc(10*xyul[1:2])/10

axis(1, at=seq(xul[1], xul[2], by = 0.1), labels = F, tck = 0.01)
xi <- trunc(xyul[1:2])
axis(1, at = seq(xi[1], xi[2], by = 0.5), tck = 0.02)

yul <- trunc(5*xyul[3:4])/5

axis(2, at = seq(yul[1], yul[2], by = 0.2), labels = F, tck= 0.01)

yi <- trunc(xyul[3:4])

axis(2, at = yil[1]l:yi[2], tck = 0.02)

Finally we add the L-box, put the-axis title at the centre and thgaxis title
at the top:

box(bty = "1") # lower case "L"

S: ps.options()$fonts

mtext ("Quantiles of Standard Normal", side=1, line=2.5, font=3)

S: mtext("Ri", side = 2, line = 2, at = yul[2], font = 10)

R: mtext(expression(R[i]), side = 2, line = 2, at = yul[2])
where inS-PLUS fonts 3 and 10 are Times-Roman and Times-Italic on the device
used postscript underUNIX), found from the list given byps.options().

The final plot is shown in Figure 4.7 on page 88.

4.5 Trellis Graphics

Trellis graphics were developed to provide a consistent graphical ‘style’ and to
extend conditioning plots; the style is a development of that used in Cleveland
(1993).

Trellis is very prescriptive, and changing the display style is not always an
easy matter.

It may be helpful to understand that Trellis is written entirely in $i&an-
guage, as calls to the basic plotting routines. Two consequences are that it can be
slow and memory-intensive, and that it takes over many of the graphics parame-
ters for its own purposes. (Global settings of graphics parameters are usually not
used, the outer margin parametersi being a notable exception.) Computation
of a Trellis plot is done in two passes: once when a Trellis object is produced, and
once when that object is printed (producing the actual plot).

The trellis library contains a large number of examples: use

7trellis.examples

to obtain an up-to-date list. These are all functions that can be called to plot the
example, and listed to see how the effect was achieved.

R has a similar system in its packagettice; however, that is built on a
different underlying graphics model callegid and mixes (even) less well with
traditionalS graphics. This runs most of the examples shown here, but the output
will not be identical.

90 Graphics

Trellis graphical devices

The trellis.device graphical device is provided by therellis library. It

is perhaps more accurate to call it a metaide, for it uses one of the underlying
graphical deviced but customizes the parameters of the device to use the Trellis
style, and in particular its colour schemes.

Trellis graphics is intended to be used ortgaellis.device device, and
may give incorrect results on other devices.

Trellis devices by default use colour for screen windows and greylevels for
printer devices. The settings for a particular device can be seen by running the
commandshow.settings (). These settings are not the same for all colour
screens, nor for all printer devices. Trellis colour schemes have a mid-grey back-
ground on colour screens (but not colounpers). If a Trellis plot is used without
a graphics device already in use, a suitable Trellis device is started.

Trellis model formulae

Trellis graphics functions make use bttlanguage for model formulae described

in Section 3.7. The Trellis code for hdling model formulae to produce a data
matrix from a data frame (specified by tdata argument) allows the argument
subset to select a subset of the rows of the data frame, as one of the first three
forms of indexing vector described on page 27. (Character vector indices are not
allowed.)

There are a number of inconsistencies in the use of the formula language.
Thereis nona.action argument, and missing valuegdrandled inconsistently;
generally rows withNAs are omitted, busplom fails if there are missing values.
Surprisingly,splom uses a formula, but does not acceptsta argument.

Trellis uses an extension to the model formula language, the opergtor *
which can beread as ‘given’. Thusdfis a factor,lhs ~ rhs | a will produce
a plot for each level ok of the subset of the data for which has that level (so
estimating the conditional distribution gives). Conditioning on two or more
factors gives a plot for each combinatiof the factors, and is specified by an
interaction, for example| axb. For the extension of conditioning to continuous
variates via what are known akingles, see page 101.

Trellis plot objects can be kept, angpdate can be used to change them, for
example, to add a title or change the axis labels, before re-plotting by printing
(often automatically as the result of the callipdate).

Basic Trellis plots

As Table 4.5 shows, the basic styles of plot exist in Trellis, but with different
names and different default styles. Their usage is best seen by considering how to
produce some figures in the Trellis style.

Figure 1.2 (page 9) was produced bylom(~ hills). Trellis plots of scat-
terplot matrices read from bottom to top (as do all multi-panel Trellis displays,

QCurrentIy motif, postscript, graphsheet, win.printer, pdf.graph, wmf.graph and
java.graph where these are available.

45 Trellis Graphics 91

Table 4.5: Trellis plotting functions. Page references are given to the most complete de-
scription in the text.

Function Page Description

xyplot 94 Scatterplots.

bwplot 92 Boxplots.

stripplot 98 Display univariate data against a numerical variable.
dotplot ditto in another style,

histogram ‘Histogram’, actually a frequency plot.

densityplot Kernel density estimates.

barchart Horizontal bar charts.

piechart Pie chart.

splom 90 Scatterplot matrices.

contourplot 76 Contour plot of a surface on a regular grid.
levelplot 94 Pseudo-colour plot of a surface on a regular grid.
wireframe 94 Perspective plot of a surface evaluated on a regular grid.
cloud 104 A perspective plot of a cloud of points.

key 104 Add a legend.

color.key 94 Add a color key (as used hyevelplot).
trellis.par.get 93 Save Trellis parameters.

trellis.par.set 93 Reset Trellis parameters.

equal.count 102 Compute a shingle.

like graphs rather than matrices, despite the meaning of the rgmen). By
default the panels in aplom plot are square.

Figure 4.8 is a Trellis version of Figure 1.4. Note that thaxis numbering is
horizontal by default (equivalent to the optigrar (1as = 1)), and that points
are plotted by open circles rather than filled circles or stars. It is not possible to
add to a Trellis plot? so the Trellis call has to include all the desired elements.
This is done by writing goanel function, in this case

R: library(lgs)
xyplot(time ~ dist, data = hills,
panel = function(x, y, ...) {
panel.xyplot(x, y, ...)
panel.lmline(x, y, type = "1")
panel.abline(1lgs(y ~ x), 1ty = 3)
identify(x, y, row.names(hills))
}

10As the user coordinate system is not retained; but the plot call can be updatgstibye and
re-plotted.

92 Graphics

200 Bens of Jura

Two Breweries ©

150 Mo/ff/aaC’hase

time

100 +

©-Seven Hills

© Knock Hill

o

50

5 10 15 20 25

dist
Figure 4.8: A Trellis version of Figure 1.4 (page 10).

Speed of Light Data

o SN
s . i
z
€ .
I 1 oo
= i
o
X
& -
o e IO
T T T T
700 800 900 1000
Speed

Figure4.9: A Trellis version of Figure 1.5 (page 11).

)

Figure 4.9 is a Trellis version of Figure 1.5. Boxplots are known as box-and-
whisker plots, and are displayed horizontally. This figure was produced by

bwplot (Expt ~ Speed, data = michelson, ylab = "Experiment No.")
title("Speed of Light Data")

Note the counter-intuitive way the formula is used. This plot corresponds to a
one-way lgout spitting Speed by experiment, so it is tempting to uSpeed as

the response. It may help to remember that the formula is of thex form for

the z- and y-axes of the plot. (The same ordering is used for all the univariate
plot functions.)

45 Trellis Graphics 93

S
o
o @°

Bo
&P 0 o
R X
.

[infant.Mortality.
H .

TR Bl

Fertility

Figure 4.10: A Trellis scatterplot matrix display of the Swiss provinces data.

Figure 4.10 is an enhanced scattetpteatrix, again using a panel func-
tion to add to the basic display. Now we see the power of panel functions,
as the basic plot commands can easily be applied to multi-panel displays. The
aspect = "fill" command allows the array of plots to fill the space; by de-
fault the panels are square as in Figure 1.2.

splom(~ swiss, aspect = "fill",
panel = function(x, y, ...) {
panel.xyplot(x, y, ...); panel.loess(x, y, ...)
}
)

Most Trellis graphics functions have groups parameter, which we can il-
lustrate on thestormer data used in Section 8.4 (see Figure 4.11).

sps <- trellis.par.get("superpose.symbol")
sps$pch <- 1:7
trellis.par.set("superpose.symbol", sps)
xyplot(Time ~ Viscosity, data = stormer, groups = Wt,
panel = panel.superpose, type = "b",
key = list(columns = 3,
text = list(paste(c("Weight: o oy
unique (stormer$wWt), "gms")),
points = Rows(sps, 1:3)
)

94 Graphics

4

Weight: 20 gms o 50 gms a 100 gms
| | | | | |

250 — / ~

[.
g 150 o L
= /
(o]
100 //// e =
-k
50 4 s -
o ho—mmm T
- I I I I I I
50 100 150 200 250 300

Viscosity

Figure4.11: A Trellis plot of the stormer data.

Here we have changed the default plotting symbols (which differ by device) to
the first severpch characters shown in Figure 4.2 on page 74. (We could just use
the argumenpch = 1:7 to xyplot, but then specifying the key becomes much
more complicated.)

Figure 4.12 shows further Trellis plots of the smooth surface shown in
Figure 4.3. Once again panel functions are needed to add the points. The
aspect = 1 parameter ensures a square plot. Tepe = T parameter to
wireframe is optional, producing the superimposed greylevel (or pseudo-colour)
plot.

topo.plt <- expand.grid(topo.mar)
topo.plt$pred <- as.vector(predict(topo.loess, topo.plt))
levelplot(pred ~ x * y, topo.plt, aspect = 1,

at = seq(690, 960, 10), xlab = "", ylab = "",
panel = function(x, y, subscripts, ...) {
panel.levelplot(x, y, subscripts, ...)

panel.xyplot (topo$x,topo$y, cex = 0.5, col = 1)
}
)
wireframe(pred ~ x * y, topo.plt, aspect = c(1, 0.5),
drape = T, screen = list(z = -150, x = -60),
colorkey = list(space="right", height=0.6))

(The arguments given byolorkey refer to thecolor.key function.) There is
no simple way to add the points to the perspective display.

Trellises of plots

In multivariate analysis we necessarily look at several variables at once, and we
explore here several ways to do so. We can produce a scatterplot matrix of the
first three principal components of the-abs data (see page 302) by

45 Trellis Graphics 95

950

S
S
TN S
“““‘\‘\“‘\\“-“ S
pred “\ :““““““ 850
‘:““

Figure 4.12: Trellis levelplot and wireframe plots of a loess smoothing of the
topo dataset.

lcrabs.pc <- predict(princomp(log(crabs[,4:8])))
crabs.grp <- c("B", "b", "0", "o")[rep(1l:4, each = 50)]
splom(~ lcrabs.pc[, 1:3], groups = crabs.grp,
panel = panel.superpose,
key = list(text = list(c("Blue male", "Blue female",
"Orange Male", "Orange female")),
points = Rows(trellis.par.get("superpose.symbol"), 1:4),
columns = 4)

)

A ‘black and white’ version of this plot is shown in Figure 4.13. On a ‘colour’
device the groups are distinguished by colour and are all plotted with the same
symbol (o).

However, it might be clearer to display these results as a trellispafom
plots, by

sex <- crabs$sex; levels(sex) <- c("Female", "Male")
sp <- crabs$sp; levels(sp) <- c("Blue", "Orange")

96 Graphics

Blue male © Blue female + Orange Male > Orange female s
+ + ++ k010 J J j
N s+ 000 005 010
+§+§s + s S s *
85, 3 §° Sss S 4
A S: § Rt P
+y 4
s|_ s s T
> it +lss ss S> L HEE
&> >t S+ o ++‘-'i'-+ E 0.00 Comp. 3 0,00
> o
$>35; %» N S
>, 8 (%)c?o < 2°% 050,88 0,05
5% oGy o0
0~ 04 & S o
010 -
° ° 010 005 om
T T -
+0 0"+ E(‘ﬂ- + 010 0.00 005 010 DO @ + {"1‘*‘:—*’ "
+ o o% Oco +
© & &t &""%0#:_*'2 ° ano + W"ﬂ* +
+9 @ Fod®" 4+l on oo 2% £,
° ses F00 4 o %o} **+ Ss
> %‘ L 00 o >O> +
>50 §S o Comp. 2 ® BzoxS
> 58 >>SSSSS >>32=y s
LRSS ¥
> 3531% §§§s %5 s
> > S 0107 >>
> >>>S S >>» %S
s 0‘155 00 005 015 4 ss
+ ++
05 00 05 s s +OH o T
L oos S S Sso o +£o§;o 0o9 2 i 5
s q o +
2 S%ﬁs @ :&3‘* o OO Lo > © s
[oo s g% S st
B+ * s
Comp. 1 > %ﬁ*ﬁe & &9336‘?5;5 ’#fs
L o5 054 > DO S +8 m% > +
ot > +
> 9S>> Sy 37 f?—
10 > _d el
> 3 o > (?
¥
s o o
R A > >

Figure 4.13: A scatterplot matrix of the first three principal components of thebs
data.

splom(~ lcrabs.pc[, 1:3] | sp*sex, cex = 0.5, pscales = 0)

as shown in Figure 4.14. Notice how this is the easiest method to code. It is at the
core of the paradigm of Trellis, which is to display many plots of subsets of the
data in some meaningful layout.

Now consider data from a multi-factor study, Quine’s data on school absences
discussed in Sections 6.6 and 7.4. It will help to set up more informative factor
labels, as the factor names are not given (by default) in trellises of plots.

Quine <- quine
levels(Quine$Eth) <- c("Aboriginal", "Non-aboriginal")
levels(Quine$Sex) <- c("Female", "Male")
levels(Quine$Age) <- c("primary", "first form",

"second form", "third form")
levels(Quine$Lrn) <- c("Average learner", "Slow learner")
bwplot(Age ~ Days | Sex*Lrn*Eth, data = Quine)

This gives an array of eight boxplots, which by default takes up two pages. On
a screen device there will be no pause between the pages unless the argument
ask = T is set forpar. Itis more convenientto see all the panels on one page,
which we can do by asking for a different layout (Figure 4.15). We also suppress
the colouring of the strip labels by usingtyle = 1; there are currently six
preset styles.

bwplot(Age ~ Days | Sex*Lrn*Eth, data = Quine, layout = c(4, 2),
strip = function(...) strip.default(..., style = 1))

45 TrellisGr

aphics

Male Male
Blue - Orange _
£oo o °8e
. o e 2988
Y
% 4c,. 5o, | Comp.3 - 5% 8| Comp. 3
oF =g
WQ% . o8 8 % oo @3
° s) D«E% o S o ° f:% ,aﬂgﬂ u%‘éhug
° of o | Comp.2 | ¢q Comp. 2
D Y €
s Ay °5§§0
Comp. 1 abee g0 Comp. 1 e T®,
e - o o
Female Female
Blue Orange
Be,o o -
: R
PR - H@@; Comp. 3 °e Comp. 3
" %o Comp. 2 £ e, Comp. 2 e
0 50980 o o o % 808 o
e | = 178 &
DBD - ﬂnﬂ
g ° ER B A E¥
e | B L]
Comp.1 | %8 B Comp. 1 S A
o8 oo o o ©

third form

second form

first form

primary

third form

second form

first form

primary

Figure 4.15: A multi-panel boxplot of Quir’s school attendance data.

Figure 4.14: A multi-panel version of Figure 4.13.

0

80
1|

20 40 60

0 40 60

20

I I I
Non-aboriginal

80

I I I 11
Non-aboriginal

I I I
Non-aboriginal

I I I
Non-aboriginal

Average learner Average learner Slow learner Slow learner
Male Female Male

Female

. o O
el © ¢ o
Aboriginal Aboriginal Aboriginal Aboriginal
Average |earner Average learner Slow learner Slow learner
Male Female Male

Female

E 2

T
0

Days

T T T
20 40

98

Average learner

o Slow learner +
0 20 40

60

Graphics

80

|
Sex: Male

|
Sex: Male

Eth: Aboriginal Eth: Non-aboriginal
third form o 0o O o 00° %o o}
second form + @ + 000 ++ @ow o0 + 0o+ +
first form b o & + +
primary +6 +F © LoD +
Sex: Female Sex: Female
Eth: Aboriginal Eth: Non-aboriginal
third form Q80 0o O o0 0 0 Op 0 o)
second form o + # + + + + | Byt
first form @& +0t 0t 4 + #+ @+ o
primary +0 O o o @ O+ O
T T T T 1 T T
0 20 40 60 80

Days of absence

Figure4.16: A stripplot of Quine’s school attendance data.

A stripplot allows usto look at the actual data. We jitter the points slightly
to avoid overplotting.

stripplot(Age ~ Days | Sex*Lrn*Eth, data = Quine,
jitter = T, layout = c(4, 2))

stripplot (Age ~ Days | Eth*Sex, data = Quine,

groups = Lrn, jitter =T,

panel = function(x, y, subscripts, jitter.data = F,
if(jitter.data) y <- jitter(y)
panel.superpose(x, y, subscripts, ...)

},

xlab = "Days of absence",

between = list(y = 1), par.strip.text = list(cex = 0.7),

key = list(columns = 2, text = list(levels(Quine$Lrn)),
points = Rows(trellis.par.get("superpose.symbol"), 1:2)
),

strip = function(...)
strip.default(..., strip.names = c(T, T), style = 1)

Do

)

The second form of plot, shown in Figure 4.16, uses different symbols to distin-
guish one of the factors. We include the factor name in the strip labels, using a
customstrip function.

The Trellis functiondotplot is very similar tostripplot; its panel func-
tion includes horizontal lines at each level. Functistripplot uses the styles
of xyplot whereasdotplot has its own set of defaults; for example, the default
plotting symbol is a filled rather than open circle.

45 Trellis Graphics 99

Ca Ba Fe
Head |oo o ammwoo 0 oamm 00 o mm o ® ooo
Tabl o o oo oo o o
Con o o oo am oo oo o o o o
Veh o o co o ® o o o
WinNF 0O emmIITDO 0ID @ @ oo o|awo oo 0 0 © W™ ® 0@
WinF O oo o 0 0 @O 0o 000 ®

T T T T T T T T T T T T T T T T T T T
6 8 10 12 14 1600 05 10 15 20 25 30 00 0.1 0.2 0.3 0.4 0.5

Al Si K
Head @o oo @mo ano oo o © o o o |mooo @o o
Tabl | o o o amo o w® o o ofo
Con ocmoom o @ of|o oo ® 000 © 00 omooo o o
Veh @000 oam @o o 00 oan omxo a @
WinNF 0000 DT ® 00 0 ® wowmmewoo o o o
WinF O @ OWO CIMNENINOO O OWENDD CIENO O amoEs

RI Na Mg
Head | o @mo o o oo o 000 @mommo O o ® o a
Tabl [0 o om omm o o|o o o mo
Con o o0 omom o o o amm o oo oo o
Veh apapo o0 0 ommmo oo @mooo
WinNF 0 Gmmwmn o0co 00 com o o|oooo oo oo o o o o 0o co
WinF o @ oo omw o GO © ow o o
T T T T T T T T T T T T T
5 0 5 10 15 12 14 16 0 1 2 3 4

Figure4.17: Plot bystripplot of the forensic glass datasegl.

As a third example, consider our datasgfl. This has 10 measurements
on 214 fragments of glass from forensic testing, the measurements being of the
refractive index and composition (percent weight of oxides of Na, Mg, Al, Si, K,
Ca, Ba and Fe). The fragments have been classified by six sources. We can look
at the types for each measurement by

fglo <- fgl[, -10] # omit type.
fgl.df <- data.frame(type = rep(fgl$type, 9),

y = as.vector(as.matrix(£gl0)),

meas = factor(rep(1:9, each = 214), labels = names(£fgl0)))
stripplot(type ~ y | meas, data = fgl.df,

scales = list(x = "free"), xlab = "", cex = 0.5,

strip = function(...) strip.default(style =1, ...))

Layout of atrellis

A trellis of plots is generated as a sequence of plots that are then arranged in
rows, columns and pages. The sequence is determined by the order in which the
conditioning factors are given: the first varying fastest. The order of the levels of
the factor is that of itsLevels attribute.

100 Graphics

1 1l 1 1 11

1 1 1 1
Prob Prob Prob Prob Prob Poss Poss
13] 0—0 o~ . I
1.2 4 - o O/ - - 5T
11 0% o7 4 g & o7
) -
10 p—0"T" b—o — 3/ e D/D/ =0 L
Neg Neg Neg Neg Neg Neg Neg Neg
, . ° 13
° g F12
o 0-0
1S 1 — - —0- o - — o'o/,— o - - it
=} =5 b—©& ~ o b0 "0 =~ b=~ " 3-/"_ b—07g 10
g Neg Neg Neg Neg Neg Neg Neg Neg
c 13 -
g 12 - -
L 11 _ __—9 B 60 - o+
% 10— ~ b—0" 000 b %<0 p o070 b —06 — 05 = Lo — B
s Neg Neg Neg Neg Neg Neg Neg Neg
c . 13
[
> 1 o [12
7 _ _———0 _ _ _ _ -9 o- o/ N
e /’D’ - - - 4CL - - ’O'/Q - P
=3 o <. o p—=o c P~ ..0 pP— g 10
Neg Neg Neg Neg Neg Neg Neg Neg
13 -
12 - -
11+ o _ _ _ o o _ _ r
10 p—&0~ " pb—0 ~ —0- ~ b=g ~ b—e—07 T -~ b—=g ~ }:D" -

T T T TT T T TT T T TT T TT T T TT T TT T T TT T
0.0 1.0 0.0 1.0 0.0 1.0 0.0 1.0

scan interval (years)

Figure 4.18: The presentation of results from a study of 39 subjects. In a real applica-
tion this could be larger and so less dominated by the labels. Colour could be used to
distringuish groups, too.

How the sequence of plots is displayed on the page(s) is controlled by an
algorithm that tries to optimize the use of the space available, but it can be con-
trolled by thelayout parameters. A specificatidrayout = c(c,r, p) asks for
¢ columns,r rows andp pages. (Note the unusual ordering.) Usiag= 0
allows the algorithm to choose the number of columm$s used to produce only
the firstp pages of a many-page trellis.

If the number of levels of a factor is large and not easily divisible (for example,
seven), we may find a better layout by leaving some of the cells of the trellis empty
using theskip argument. Figure 4.18 shows another us@#&fout and skip.

The between parameter can be used to specify gaps in the trellis layout, as
in Figure 4.16. Itis a list withx andy components, numeric vectors that specify
the gaps in units of character height. Thege parameter can be used to invoke
a function (with argument:, the page number) to label each page. The default
page function does nothing.

Subscripts and groups

The subscripts argument of the panel function is supplied if the Trellis func-
tion is called with argumensubscripts = T.!' Then its value is a numeric
vector of indices of cases (normally rows @fta) that have been passed to that
panel.

11And it seems sometimes even if it is not.

45 Trellis Graphics 101

Figure 4.18 shows the use of Trellis to present the results of a real study. There
were 39 subjects in three groups (markedtee strips), each being brain-scanned
2—4 times over up to 18 months. The plot shows the data and for each patient a
dashed line showing the mean rate of change for the alloted group. Two patients
whose panels are marked with a dot were later shown to have been incorrectly
allocated to the ‘normals’ group.

Note how we arrange the layout to separate the groups. We make use of the
subscripts argument to the panel function to identify the subject; vegtos
holds a set of predictions at the origin and after 1.5 years from a linear mixed-
effects model.

xyplot(ratio ~ scant | subject, data = A5,
xlab = "scan interval (years)",
ylab = "ventricle/brain volume",
subscripts = T, ID = A5$ID,
strip = function(factor, ...)
strip.default(..., factor.levels = labs, style = 1),
layout = c(8, 5, 1),
skip = c(rep(F, 37), rep(T, 1), rep(F, 1)),
panel = function(x, y, subscripts, ID) {
panel.xyplot(x, y, type = "b", cex = 0.5)
which <- unique(ID[subscripts])
panel.xyplot(c(0, 1.5), pr3[names(pr3) == which],
type = "1", lty = 3)
if (which == 303 || which == 341) points(1.4, 1.3)
1)

Note how other arguments, hei®, are passed to the panel function as addi-
tional arguments. One special extra argumergrsups which is interpreted by
panel.superpose, as in Figure 4.11.

Conditioning plots and shingles

The idea of a trellis of plots conditioningn combinations of one or more factors
can be extended to conditioning on real-valued variables, in what are known as
conditioning plots orcoplots. Two variables are plotted against each other in

a series of plots with the values of further variable(s) restricted to a series of
possibly overlapping ranges. This needs an extension of the concept of a factor
known as ashingle.*?

Suppose we wished to examine the relationship betweeartility and
Education in the Swiss fertility data as the variabtgatholic ranges from
predominantly non-Catholic to mainly Catholic provinces. We add a smooth fit
to each panel (andpan controls the smoothness: see page 423).

Cath <- equal.count(swiss$Catholic, number = 6, overlap = 0.25)
xyplot(Fertility ~ Education | Cath, data = swiss,

span = 1, layout = c(6, 1), aspect = 1,

panel = function(x, y, span) {

12In American usage this is a rectangular woodenlsild partially overlapping on roofs or walls.

102 Graphics

0 10 20 30 40 50 0 10 20 30 40 50 0 10 20 30 40 50
T R S R B N | L

: Ca(‘h . : : Cal‘h : . : Cat‘h Cath : : Catr‘| : cmr‘\
90 €3] [e]e)] L
® 3
4 e} L
2 ° ® o o &~
= 70 {0204 o e} r
= & o o O
O 013 o© L
iy o o
50 o F
a0 El L
—— . . — — o, ——
o 10 20 ® 4 % 0 1 2 3 w s 0 10 20 3 4 %
Education

Figure 4.19: A conditioning plot for the Swiss provinces data.

20 30 40 50
| [|

| | |
Cath2 Cath2
Agr Agr
- &) %U ~ 90
- & —=o ~ 80
4 06,4 70
— ~ 60
2> T ~ 50
= - ~ 40
s
a') Cath2 Cath2
[T Agr Agr
90 — -
80 - I
o T30 B
60 — o L
50 — -
40 -
T T T T T T T T T T T T
0 10 20 30 40 50 0 10 20 30 40 50
Education

Figure 4.20: Another conditioning plot with two conditioning shingles. The upper row
shows the predominantly Catholic provinces.

panel.xyplot(x, y); panel.loess(x, y, span)

)

The result is shown in Figure 4.19, with the strips continuing to show the (now
overlapping) coverage for each panel. Fertility generally falls as education rises
and rises as the proportion of Catholics in the population rises. Note that the level
of education is lower in predominantly Catholic provinces.

The functionequal . count is used to construct a shingle with suitable ranges
for the conditioning intervals.

Conditioning plots may also have more than one conditioning variable. Let us
condition on Catholic and agriculture simultaneously. Since the dataset is small it
seems prudent to limit the number of panels to six in all.

Cath2 <- equal.count(swiss$Catholic, number = 2, overlap = 0)
Agr <- equal.count(swiss$Agric, number = 3, overlap = 0.25)
xyplot (Fertility ~ Education | Agr * Cath2, data = swiss,
span = 1, aspect = "xy",
panel = function(x, y, span) {
panel.xyplot(x, y); panel.loess(x, y, span)

}

45 Trellis Graphics 103

|
I O)
P R

Figure4.21: A plot of the shingleCath.

The result is shown in Figure 4.20. Inmgral, the fertility rises with the propor-
tion of Catholics and agriculture and falls with education. There is no convincing
evidence of substantial interaction.

Shingles have levels, and can be printed and plotted:

> Cath
Data:

[1] 10.0 84.8 93.4 33.8 5.2 90.6 92.9 97.2 97.7 91.4
Intervals:

min max count

2.2 4.5 10
4.2 7.7 10

Overlap between adjacent intervals:
[11 32323
> levels(Cath)

min max

2.2 4.5

> plot(Cath, aspect = 0.3)

Multiple displays per page

Recall from page 89 that a Trellis object is plotted by printing it. The method
print.trellis has optional argumentisosition, split andmore. The ar-
gumentmore should be set ta for all but the last part of a figure. The position
of individual parts on the device surface can be set by eiépait or position.

A split argumentis of the forme (z, y, nz, ny) for four integers. The second
pair gives a division into anxz x ny layout, just like themfrow andmfcol ar-
guments topar. The first pair gives the rectangle to be used within that layout,
with origin at the bottom left.

A position argumentis of the form (xmin, ymin, xmax, ymax) giving the
corners of the rectangle within which to plot the object. (This is a different order
from split.screen.) The coordinate system for this rectangld(s1] for both
axes, but the limits can be chosen outside this range.

The print.trellis works by manipulating the graphics parameteri,
so the outer margin settings are preserved. However, none of the basic meth-
ods (page 78) of subdividing the device surface will work, and if a trellis print

104 Graphics

fails omi is not reset. (Usingpar (omi = rep(0, 4), new = F) will reset
the usual defaults.)

Fine control

Detailed control of Trellis plots may be accomplished by a series of arguments
described in the help page fetrellis.args, with variants for thewireframe
and cloud perspective plots undefrellis.3d.args.

We have seen some of the uses of panel functions. Some care is needed with
computations inside panel functions that use any data (or user-defined objects or
functions) other than their arguments. First, the computations will occur inside a
deeply nested set of function calls, sare is needed to ensure that the data are
visible, often best done by passing the data as extra arguments. Second, those
computations will be done at the time the result is printed (that is, plotted) and so
the data need to be in the desired state at plot time, not just when the trellis object
is created.

If non-default panel functions are used, we may want these to help control
the coordinate system of the plots, for example, to use a fitted curve to decide
the aspect ratio of the panels. This is the purpose ofpttepanel argument,
and there are prepanel functions corresponding todesityplot, 1mline,
loess, qq, qgqmath and qgmathline panel functions. These will ensure that
the whole of the fitted curve is visible, and they may affect the choice of aspect
ratio.

The parameteaspect controls the aspect ratio of the panels. A numerical
value (most usefully one) sets the ratibfill" adjusts the aspect ratio to fill
the space available antky" attempts to bank the fitted curves #945°. (See
Figure 4.20.)

The scales argument determines how the and y axes are drawn. It
is a list of components ohame = value form, and components and y
may themselves be lists. The defaultlation = "same" ensures that the
axes on each panel are identical. Withlation = "sliced" the same num-
bers of data units are used, but the origin may vary by panel, whereas with
relation = "free" the axes are drawn to accommodate just the data for that
panel. One can also specify most of the parameters okttie function, and
alsolog = T to obtain alog,, scale or everiog = 2 for alog, scale.

The functionsplom has an argumentarnames which sets the names of the
variables plotted on the diagonal. The argumpstales determines how the
axes are plotted; setscales = 0 to omitthem.

Keys

The functionkey is a replacement foLegend, and can also be used as an argu-

ment to Trellis functions. If used in this way, the Trellis routines allocate space

for the key, and repeat it on each page if the trellis extends to multiple pages.
The call of key specifies the location of the key by the argumentg and

corner. By default corner = c(0, 1), when the coordinatéx,y) specifies

the upper left corner of the key. Any other coordinate of the key can be specified

45 Trellis Graphics 105

by settingcorner, but the size of the key is computed from its contents. (If the
argumentplot = F, the function returns a two-element vector of the computed
width and height, Wich can be used to allocate space.) When is used as an
argument to a Trellis function, the position is normally specified nokband y

but by the argumengépace which defaults to"top".

Most of the remaining arguments ey will specify the contents of the
key. The (optional) argumentsoints, lines, text and rectangles (for
barchart) will each specify a column of the key in the order in which they ap-
pear. Each argument must b&s giving the graphics parameters to be used (and
for text, the first argument must be the character vector to be plotted). (The func-
tion trellis.par.get is useful to retrieve the actual settings used for graphics
parameters.)

The third group of arguments taey fine-tunes its appearance—should
it be transparenttansparent = T), the presence of a border (specified by
giving the border colour as argumenbrder), the spacing between columns
(between.columns in units of character width), the background colour, the
font(s) used, the existence of a title and so on. Consult the on-line help for the
current details. The argumenblumns specifies the number of columns in the
key—we used this in Figures 4.11 and 4.13.

Perspective plots

The argumentspect is a vector of two values for the perspective plots, giving
the ratio of they and = sizes to ther size; its effect can be seen in Figure 4.12.
The argumentdlistance, perspective and screen control the perspec-
tive view used. Ifperspective = T (the default), thedistance argument
(default 0.2) controls the extent of the perspective, although not on a physical
distance scale as 1 corresponds to viewing from infinity. $bheeen argument
(default1list(z = 40, x = -60)) is a list giving the rotations (in degrees) to
be applied to the specified axis in turn. The initial coordinate system:hasnt-
ing right, z up andy into the page.
The argumentoonm (default 1) may be used to scale the final plot, and the
argumentpar . box controls how the lines forming the enclosing box are plotted.

Chapter 5

Univariate Statistics

In this chapter we cover a number of topics from classical univariate statistics plus
some modern versions.

5.1 Probability Distributions

In this section we confine attention tmivariate distributions, that is, the distri-
butions of random variableX taking values in the real lin&.

The standard distributions used in statistics are defined by probability density
functions (for continuoudistributions) or probability function®(X = n) (for
discrete distributions). We refer to bothdensities since the probability functions
can be viewed mathematically as densities (with respect to counting measure).
The cumulative distribution function or CDF is F(x) = P(X < x) which is
expressed in terms of the density by a sum for discrete distributions and as an
integral for continuous distributions. Thygiantile function Q(u) = F~1(u) is
the inverse of the CDF where this exists. Thus the quantile function gives the
percentage points of the distribution. (For discrete distributions the quantile is the
smallest integern such thatF'(m) > w.)

S has built-in functions to compute the density, cumulative distribution func-
tion and quantile function for many standard distributions. In many cases the
functions cannot be written in terms of sthiard mathematical functions, and the
built-in functions are very accurate approximations. (But this is also true for the
numerical calculation of cosines, for example.)

The first letter of the name of th&function indicates the function so, for ex-
ample,dnorm, pnorm, gnorm are respectively, the density, CDF and quantile
functions for the normal distribution. The rest of the function name is an abbrevi-
ation of the distribution name. The distributions availafaee listed in Table 5.1.

The first argument of the function is always the observation val@@®r quan-
tile) for the densities and CDF functions, and the probabfjitior quantile func-
tions. Additional arguments specify the parameters, with defaults for ‘standard’
versions of the distributions where appropriate. Precise descriptions of the param-
eters are given in the on-line help pages.

More are available in the packageSuppDists by Bob Wheeler.

107

108 Univariate Satistics

Tableb5.1: S function names and parameters for standard probability distributions.

Distribution S name Parameters

beta beta shapel, shape2
binomial binom size, prob
Cauchy cauchy location, scale
chi-squared chisq daf

exponential exp rate

F f df1l, df2
gamma gamma shape, rate
geometric geom prob
hypergeometric hyper m, n, k
log-normal lnorm meanlog, sdlog
logistic logis location, scale
negative binomial nbinom size, prob
normal norm mean, sd
Poisson pois lambda

T t df

uniform unif min, max

Weibull weibull shape, scale
Wilcoxon wilcox m, n

These functions can be used to replace statistical tables. For example, the
5% critical value for a (two-sided} test on 11 degrees of freedom is given
by qt(0.975, 11), and theP value associated with a Poisson(25)-distributed
count of 32 is given by (by conventiorl) - ppois(31, 25). The functions can
be given vector arguments to calculate sevdtalalues or quantiles.

Q-Q Plots

One of the best ways to compare the distribution of a samphéth a distribution
is to use a Q-Q plot. The normal probability plot is the best-known example. For
a samplex the quantile function is the inverse of the empirical CDF; that is,

quantile(p) = min {z | proportionp of the data< z }

The functionquantile calculates the quantiles of a single set of data. The func-
tion qgplot(x, y, ...) plotsthe quantile functions of two samplesand y
against each other, and so compahesitdistributions. The functioqgqnorm(x)
replaces one of the samples by the quantiles of a standard normal distribution.
This idea can be applied quite generally. For example, to test a sample against a
tg distribution we might use

plot(gt(ppoints(x), 9), sort(x))

5.1 Probability Distributions 109

-3 -2 -1 0 1 2 3
Quantiles of Standard Normal

Figure 5.1: Normal probability plot of 250 simulated points from the distribution.

where the functiorppoints computes the appropriate set of probabilities for the

plot. These values ar@ — 1/2)/n,? and are generated in increasing order. R
The functionqqline helps assess how straightignorm plot is by plotting

a straight line through the upper and lower quartiles. To illustrate this we gener-

ate 250 points from & distribution and compare them to a normal distribution

(Figure 5.1).

x <- rt(250, df = 9)
Par(Pty = ”S”)
qgnorm(x); qqline(x)

The greater spread of the extreme dilaa for the data is indicative of a long-
tailed distribution.

This method is most often applied to residuals from a fitted model. Some
people prefer the roles of the axes to be reversed, so that the data goeatie
and the theoretical values on theaxis; this is achieved by givinggnorm by
the argumentiatax = T.

Fitting univariate distributions

Users sometimes find it surprising tf&tdoes not come with faciliti€go fit the
standard univariate distributions to ate vector. We decided to write a general-
purpose maximume-likelihood fitting routrthat can be applied to any of the uni-
variate distributions in Table 5.1. Of course, in many chsies maximum likeli-
hood estimators are known in closed form. Functidrdistr in MASS fits one

or more continuous parameters with or without constraints. For example,

2In R and in earlielS-PLUS versions, (i — 3/8)/(n + 1/4) for n < 10.

SWe understand that these are available in the extrafwgtonmental Statistics module for
S-PLUS.

4Including binomial, exponential geometriog-normal, normal, Poisson and uniform.

110 Univariate Satistics

> x <- rgamma(100, shape = 5, rate = 0.1)
> fitdistr(x, "gamma")
shape rate
4.9614 0.099018
(0.66552) (0.014112)
> x2 <- rt(250, df = 9)
> fitdistr(x2, "t", df = 9)
m s
0.12754 1.0963
(0.075919) (0.058261)
> fitdistr(x2, "t")
m s df
0.12326 1.0502 6.2594
(0.075343) (0.078349) (2.9609)

Note thatfitdistr does not protect you for what may be rather ill-advised at-
tempts, including estimating for a ¢ distribution (Langest al., 1989; Fernandez
and Steel, 1999). The estimated standard errors in parentheses are from the ob-
served information matrix.

Some lateral thinking gives other ways to fit some distributions. Function
survReg® discussed in Chapter 13 fits parametric models of the form (13.10),
which reduce in the special case of ho covariates and no censoring to

UT)~pu+oe

The dist argument specifies the distribution efas one ofweibull (the de-
fault), exponential, rayleigh, lognormal Or loglogistic, all with a log
transformation?, or extreme, logistic, gaussian or t with an identity
transformation.

Multivariate distributions

S-PLUS supplies functionsimvnorm, pmvnorm and rmvnorm, but pmvnorm
applies only to bivariate distributions (except in the trivial case of independent
components). These specify the distribution via the mean and either of the vari-
ance matrix or the correlation matrix and the standard deviations of the compo-
nents.

Our library sectionMASS has functionmvrnorm that also allows producing
samples with specified empirical mean vector and covariance matrix.

The R packagemvtnorm by Torsten Hothorn has functionsavnorm and
pmvt for normal, central and non-centraldistributions in two or more dimen-
sions, as well asimvnorm and rmvnorm

5.2 Generating Random Data

There ares functions to generate independesmdom samples from all the prob-
ability distributions listed in Table 5.1. These have prefiand first argument ,

5

survreg in packagesurvival in R.

5.3 Data Summaries 111

the size of the sample required. For most of the functions the parameters can be
specified as vectors, allowing the samples to be non-identically distributed. For
example, we can generate 100 samples from the contaminated normal distribu-
tion in which a sample is froniv (0, 1) with probability 0.95 and otherwise from
N(0,9), by

contam <- rnorm(100, 0, (1 + 2*rbinom(100, 1, 0.05)))

The functionsample resamples from a data vector, with or without replacement.
It has a number of quite different forms. Heitieis an integerx is a data vector

andp is a probability distributionont, ..., length(x):

sample(n) select a random permutation from. .., n
sample (x) randomly permutex, for length(x) > 1.
sample(x, replace = T) a bootstrap sample

sample(x, n) samplen items fromx without replacement

sample(x, n, replace = T) samplen items fromx with replacement
sample(x, n, replace = T, prob=p) probability sample ofr items fromx.

The last of these provides a way to sample from an arbitrary (finite) discrete
distribution; setx to the vector of values angrob to the corresponding proba-
bilities.

The numbers produced by these functions are of cqusesselo-random rather
than genuinely random. The state of the generator is controlled by a set of integers
stored in theS object .Random.seed. Wheneversample or an ‘r’ function
is called, .Random. seed is read in, used to initialize the generator, and then
its current value is written back out at the end of the function call. If there is
no .Random.seed in the current working database, one is created with default
values (a fixed value i8-PLUS, from the current time iR).

To re-run a simulation call the functioget . seed initially. This selects from
one of at least 1024 pre-selected seeds.

Details of the pseudo-random number generators are given in our on-line com-
plements

5.3 Data Summaries

Standard univariate summaries suchmg&n, median and var are available.
The summary function returns the mean, quartiles and the number of missing
values, if non-zero.

The var function will take a data matrix angdive the variance-covariance
matrix, andcor computes the correlations, either from two vectors or a data ma-
trix. The functioncov.wt returns the means and variahoeatrix and optionally
the correlation matrix of a data matrix. As its name implies, the rows of the data
matrix can be weighted in these summaries.

6See page 461 for where to obtain these.
" cov.wt does not adjust its divisor for the estimation of the mean, using divis@ven when
unweighted.

112 Univariate Satistics

The functionquantile computes quantiles at specified probabilities, by de-
fault (0,0.25,0.5,0.75,1) giving a “five number summary” of the data vector.
This function linearly interpolates, so if(1), ..., z(,) is the ordered sample,

quantile(x, p) = [1—(p(n —1) = [p(n — 1))] 214 |p(n—1))
+[p(n—1) = [p(n = 1] 224 |p(n-1))

where | | denotes the ‘floor’ or integer part of. (This differs from the definitions
of a quantile given earlier for use with a Q-Q plot. Hyndman and Fan (1996) give
several other definitions as used in other systems, and s8maigle to implement
them.) There are also standard functiafas, min and range.

The functionsmean and cor (notR) will compute trimmed summaries us-
ing the argumentrim. More sophisticated robust summaries are discussed in
Section 5.5.

These functions differ in the way they handle missing values. Functions
mean, median, max, min, range and quantile have an argumenta.rm
that defaults to false, but can be used to remove missing values. The functions
var and cor allow several options for the handling of missing values.

Histograms and stem-and-leaf plots

The standard histogram functionisist (x, ...) which plots a conventional
histogram. More control is available via the extra argumepitepability = T
gives a plot of unit total area rather than of cell counts.

The argumenticlass of hist suggests the number of bins, abdeaks
specifies the breakpoints between bins. One problem isdbaiss is only a
suggestion, and it is often exceeded. Artis that the definition of the bins that
is of the form [z, 1], (21, z2), - . ., ot the convention most people prefer.

The default fornclass is [log, n + 1]. This is known as Sturges’ formula,
corresponding to a bin width of ran@g/(log, n + 1), based on a histogram of
a normal distribution (Scott, 1992, p. 4&ote that outliers may inflate the range
dramatically and so increase the bin width in the centre of the distribution. Two
rules based on compromises between flas bnd variance of the histogram for a
reference normal distribution are to choose bin width as

h = 3.56n~1/3 (5.1)
h = 2Rn™1/3 (5.2)

due to Scott (1979) and Freedman and Diaconis (1981), respectively. Here
¢ is the estimated standard deviation aftd the inter-quartile range. The
Freedman-Diaconis formula is immune datliers, and chooses rather smaller
bins than the Scott formula. These are availablenaiass = "fd" and
nclass = "scott".

These are not always satisfactory, as Figure 5.2 shows. (The suggested num-
bers of bins are 8, 5, 25, 7, 42 and 35; the numbers actually used differ in different

8The special treatment of is governed by the switcinclude.lowest which defaults toT .
In R argumentright = FALSE can be used to select left-closed and right-open bins.

5.3 Data Summaries 113

o~
ol — I.- - ° — -— ° --II II--
1 2 3 4 5 4 2 0 2 4

0 5 10 15 20 25 30 -
duration chem tperm

60 80
0
200

15
150

40
10
100

20
5
5

8 ®
(=3
©
8 ©
o
©
S <
(=]
<
8 N ‘ O “ “
I) | |
ol .- - ° | | ol -m ||I||| |||I|| [T
1 2 3 4 5 5 10 15 20 25 30 -4 -2 0 2 4
duration chem tperm

Figure5.2: Histograms drawn byist with bin widths chosen by the Scott rule (5.1) (top
row) and the Freedman-Diaconis rule (5.2) (bottom row) for dataggtser$duration,
chem and tperm. Computed irs-PLUS 6.0.

implementations.) Columduration of data framegeyser gives the duration

(in minutes) of 299 eruptions of the Old Faithful geyser in the Yellowstone Na-
tional Park (from Azzalini and Bowman, 1990¢hem is discussed later in this
section andsperm in Section 5.7.

The beauty ofS is that it is easy to write one’s own function to plot a his-
togram. Our function is calledruehist (in MASS). The primary control is by
specifying the bin widthh, but suggesting the number of bins by argumesins
will give a ‘pretty’ choice of h. Functiontruehist is used in Figures 5.5 and
later.

A stemrand-leaf plot is an enhanced histogram. The data are divided into
bins, but the ‘height’ is replaced byemext digits in order. We apply this to
swiss.fertility, the standardized fertility measure for each of 47 French-
speaking provinces of Switzerland at about 1888. The output here is from
S-PLUS; R’s is somewhat different.

> # R: data(swiss); swiss.fertility <- swiss[, 1]
> stem(swiss.fertility)

N = 47 Median = 70.4
Quartiles = 64.4, 79.3

114 Univariate Satistics

Decimal point is 1 place to the right of the colon

H)

. 35

: 46778

: 024455555678899
: 00222345677899
: 0233467

. 222

© 00N O O W

Apart from giving a visual picture of the data, this gives more detail. The actual
data, in sorted order, ags, 43, 45, 54, ... and this can be read from the
plot. Sometimes the pattern of numbers (all odd? many Os and 5s?) gives clues.
Quantiles can be computed (roughly) from filet. If there are outliers, they are
marked separately:

> stem(chem)

N = 24 Median = 3.385
Quartiles = 2.75, 3.7

Decimal point is at the colon

2 : 22445789

3 : 00144445677778
4 .

5

High: 28.95

(This dataset on measurements of copper in flour from the Analytical Methods
Committee (1989a) is discussed further iecBon 5.5.) Sometimes the result is
less successful, and manual override is needed:

> stem(abbey)

N = 31 Median = 11
Quartiles = 8, 16

Decimal point is at the colon

5: 2

6 : 59

7 : 0004
8 : 00005
26 :

27

28 : 0

5.4 Classical Univariate Satistics 115

High: 34 125
> stem(abbey, scale = -1) ## use scale = 0.4 in R

N = 31 Median = 11
Quartiles = 8, 16

Decimal point is 1 place to the right of the colon

0 : B6777778888899
1 : 011224444

1 : 6778

2 : 4

2 : 8

High: 34 125

Here the scale argument sets the backbone to be 10s rather than units. In
S-PLUS the n1 argument controls the number of rows per backbone unit as 2, 5
or 10. The details of the design of stem-and-leaf plots are discussed by Mosteller
and Tukey (1977), Velleman and Hoaglin (1981) and Hoaglin, Mosteller and
Tukey (1983).

Boxplots

A boxplot is a way to look at the overall shape of a set of data. The central

box shows the data between the ‘hinges’ (roughly quartiles), with the median
represented by a line. ‘Whiskers’ go out to the extremes of the data, and very
extreme points are shown by themselves.

par(mfrow = c(1, 2)) # Figure 5.3

boxplot(chem, sub = "chem", range = 0.5)

boxplot (abbey, sub = "abbey")

par (mfrow = c(1, 1))

bwplot(type ~ y | meas, data = fgl.df, scales = list(x="free"),
strip = function(...) strip.default(..., style=1), xlab = "")

Note how these plots are dominated by the outliers.

There is a bewildering varig of optional parameters t®oxplot docu-
mented in the on-line help page. It is possible to plot boxplots for groups side
by side (see Figure 14.16 on page 408) but the Trellis fundiigslot (see Fig-
ure 5.4 on page 116 and Figure 4.9 on page 92) will probably be preferred.

5.4 Classical Univariate Statistics

S-PLUS andR each have a section on classical statistics. The same functions are
used to perform tests and to calculate confidence intervals.

116 Univariate Satistics

30

120

20 25
100

80

15
60

10
40

== —

chem abbey

Figure 5.3: Boxplots for thechem and abbey data.

Ba Fe
o e | om
’ ¢
‘o o) ° °
4o
o|gmo °
$o o

T T T T T T T
1600 05 10 15 20 25 3000 01 02 03 04 05

WinF |0 ® a-{a}-
05 10 15 20 25 30 3570

o 00000

Figure 5.4: Boxplots by type for thefgl dataset.

Table 5.2 shows the amounts of shoe wear in an experiment reported by Box,
Hunter and Hunter (1978). There were two materialsgnd B) that were ran-
domly assigned to the left and right shoes of 10 boys. We use these data to illus-
trate one-sample and paired and unpaired two-sample tests. (The rather volumi-
nous output has been edited.)

First we test for a mean of 10 and give a confidence interval for the mean,
both for materialA.

> attach(shoes)
> t.test(A, mu = 10)

5.4 Classical Univariate Satistics 117

Table 5.2: Data on shoe wear from Box, Hunter and Hunter (1978).

boy A B

1 13.2 (L) 14.0 (R)
2 8.2 (L) 8.8 (R)
3 10.9 (R) 11.2 (L)
4 14.3 (L) 14.2 (R)
5 10.7 (R) 11.8 (L)
6 6.6 (L) 6.4 (R)
7 9.5 (L) 9.8 (R)
8 10.8 (L) 11.3 (R)
9 8.8 (R) 9.3 (L)
10 13.3 (L) 13.6 (R)

One-sample t-Test

data: A
t = 0.8127, df = 9, p-value = 0.4373
alternative hypothesis: true mean is not equal to 10
95 percent confidence interval:

8.8764 12.3836
sample estimates:
mean of x

10.63

> t.test(A)$conf.int
[1] 8.8764 12.3836
attr(, "conf.level"):
[1] 0.95

> wilcox.test(A, mu = 10)
Exact Wilcoxon signed-rank test

data: A
signed-rank statistic V = 34, n = 10, p-value = 0.5566
alternative hypothesis: true mu is not equal to 10

Next we consider two-sample paired and unpaired tests, the latter assuming
equal variances or not. Note that we are using this example for illustrative pur-
poses; only the paired analyses are really appropriate.

> var.test(A, B)
F test for variance equality

data: A and B

118

F = 0.9474, num df = 9, denom df = 9, p-value
95 percent confidence interval:
0.23532 3.81420
sample estimates:
variance of x variance of y
6.009 6.3427

Univariate Satistics

= 0.9372

> t.test(A, B, var.equal = T) # default in S-PLUS

Standard Two-Sample t-Test

data: A and B
t = -0.3689, df = 18, p-value = 0.7165
95 percent confidence interval:
-2.7449 1.9249
sample estimates:
mean of x mean of y
10.63 11.04

> t.test(A, B, var.equal = F) # default in R
Welch Modified Two-Sample t-Test
data: A and B
t = -0.3689, df = 17.987, p-value = 0.7165
95 percent confidence interval:
-2.745 1.925
> wilcox.test(A, B)

Wilcoxon rank-sum test

data: A and B

rank-sum normal statistic with correction Z = -0.5293,

p-value = 0.5966
> t.test(A, B, paired = T)
Paired t-Test

data: A and B
t = -3.3489, df = 9, p-value = 0.0085
95 percent confidence interval:
-0.68695 -0.13305
sample estimates:
mean of x - y
-0.41

> wilcox.test(A, B, paired = T)

5.5 Robust Summaries 119

Wilcoxon signed-rank test

data: A and B
signed-rank normal statistic with correction Z = -2.4495,
p-value = 0.0143

The sample size is rather small, and one might wonder about the validity of
the t-distribution. An alternative for a randomized experiment such as this is to
base inference on the permutation distributiorof B-A. Figure 5.5 shows that
the agreement is very good. The computation of the permutations is discussed in
Section 5.7.

The full list of classical tests iB-PLUS is:

binom.test chisq.test cor.test fisher.test
friedman.test kruskal.test mantelhaen.test mcnemar.test
prop.test t.test var.test wilcox.test
chisq.gof ks.gof

Many of these have alternative methods—fesr.test there are methods
"pearson", "kendall" and"spearman". We have already seen one- and two-
sample versions of . test andwilcox.test, andvar.test which compares
the variances of two samples. The functiosr . test tests for non-zero corre-
lation between two samples, either classically or via rafkbas all the.test R
functions, and many more univariate tests.

Functions chisq.gof and ks.gof (not in R) compute chi-square andr
Kolmogorov—Smirnov tests of goodness-of-fit. Functiodf . compare plots
comparisons of cumulative distributions such as the right-hand panel of Fig-
ure 5.5.

par(mfrow = c(1, 2))

truehist(tperm, xlab = "diff")

x <- seq(-4, 4, 0.1)

lines(x, dt(x, 9))

S: cdf.compare(tperm, distribution = "t", df = 9)

R: alternative in the scripts

legend (-5, 1.05, c("Permutation dsn","t_9 cdf"), 1ty = c(1, 3))

5.5 Robust Summaries

Outliers are sample values that cause surprise in relation to the majority of the
sample. This is not a pejorative termuitliers may be correct, but they should
always be checked for transcription errors. They can play havoc with standard
statistical methods, and mangbust andresistant methods have been developed
since 1960 to be less sensitive to outliers.

%Use library(help = ctest) to see the current list. For some exact distributions see package
exactRankTests by Torsten Hothorn.

120 Univariate Satistics

Empirical and Hypothesized t CDFs

—— Permutation dsn
- t9cdf

0.4
1.0

0.3
0.8

0.6

0.2
0.4

0.1
0.2

0.0
0.0

-4 2 0 2 4 -4 2 0 2 4

diff solid line is the empirical d.f.

Figure 5.5: Histogram and empirical CDF of the permutation distribution of the paired
t—test in the shoes example. The density and CDEyoére shown overlaid.

The sample meafy can be upset completely by a single outlier; if any data
value y; — +oo, theny — +o0. This contrasts with the sample median, which
is little affected by moving any single value thoo. We say that the median is
resistant to gross errors whereas the mean is not. In fact the median will tolerate
up to 50% gross errors before it can be made arbitrarily large; we sdyrétk-
down point is 50% whereas that for the mean is 0%. Although the mean is the
optimal estimator of the location of the normal distribution, it can be substantially
sub-optimal for distributions close to the normal. Robust methods aim to have
high efficiency in a neighbourhood of the assumed statistical model.

There are several books on robust statistics. Huber (1981) is rather theoret-
ical, Hampelet al. (1986) and Staudte and Sheather (1990) less so. Rousseeuw
and Leroy (1987) is principally concerned with regression, but is very practical.
Robust and resistant methods have long been one of the stren@hs of

Why will it not suffice to screen data and remove outliers? There are several
aspects to consider.

1. Users, even expert statisticians, do not always screen the data.

2. The sharp decision to keep or reject an observation is wasteful. We can
do better by down-weighting dubious observations than by rejecting them,
although we may wish to reject completely wrong observations.

3. It can be difficult or even impossible to spot outliers in multivariate or
highly structured data.

4. Rejecting outliers affects the digtution theory, which ought to be ad-
justed. In particular, variances will be underestimated from the ‘cleaned’
data.

5.5 Robust Summaries 121

For a fixed underlying distribution, we define theative efficiency of an es-
timator 0 relative to another estimatar by

variance ofé

RE(6;0) = — _
variance of6

sinced needs onlyRE times as many observations @gor the same precision,
approximately. The asymptotic relative efficiency RE') is the limit of the RE

as the sample sizee — oo. (It may be defined more widely via asymptotic
variances.) If9 is not mentioned, it is assumed to be the optimal estimator. There
is a difficulty with biased estimators whose variance can be small or zero. One
solution is to use the mean-square error, another to rescalg Byf). Iglewicz
(1983) suggests using vdog é) (which is scale-free) for estimators of scale.

We can apply the concept ol RE to the mean and median. At the nor-
mal distribution ARFE(medianmean = 2/7 ~ 64%. For longer-tailed dis-
tributions the median does better; for thiedistribution with five degrees of
freedom (which is often a better model of error distributions than the normal)
ARE(medianmear) ~ 96%.

The following example from Tukey (1960) is more dramatic. Suppose we
haven observationsy; ~ N(u,0?),i = 1,...,n and we want to estimate?.
Considers? = s? and 52 = d?w/2 where

1 —
d=—-3 [¥i-Y]|

(3

and the constant is chosen since for the norihat /2 /7 0. The ARE(5?; s2)
=0.876. Now suppose that eadh is from N (u, 0?) with probability 1 — e and
from N(u,90%) with probability e. (Note that both the overall variance and the
variance of the uncontaminated observations are proportionsl.joWe have

e (%) ARE(5%s%)

0 0.876
0.1 0.948
0.2 1.016
1 1.44
5 2.04

Since the mixture distribution witk = 1% is indistinguishable from normality
for all practical purposes, the optimality of is very fragile. We say it lacks
robustness of efficiency.

There are better estimators of than d./7/2 (which has breakdown point
0%). Two alternatives are proportional to

IQR = X(3n/4) = X(n/a)
MAD = median{|Y; — median(Y;)|}
i J

122 Univariate Satistics

(Order statistics are linearly interpolated where necessary.) At the normal,

MAD — median{|Y — p|} ~ 0.67450
IQR — o [®71(0.75) — ®71(0.25)] ~ 1.350

(We refer toMAD/0.6745 as the MAD estimator, calculated by functiand .)
Both are not very efficient but are very resistant to outliers in the data. The MAD
estimator hasARFE 37% at the normal (Staudte and Sheather, 1990, p. 123).
Considern independent observations; from a location family with pdf
fly — p) for a function f symmetric about zero, so it is clear thatis the
centre (median, mean if it exists) of the distribution\df We also think of the
distribution as being not too far from the normal. There are a number of obvious
estimators ofy, including the sample mean, the sample median, and the MLE.
Thetrimmed mean is the mean of the centrdl — 2« part of the distribution,
so an observations are removed from each end. This is implemented by the
function mean with the argumenttrim specifying . Obviously, trim = 0
gives the mean andrim = 0.5 gives the median (although it is easier to use
the functionmedian). (If an is not an integer, the integer partis used.)
Most of the location estimators we consider &eestimators. The name
derives from ‘MLE-like’ estimators. If we have density, we can define
p = —log f. Then the MLE would solve

min Y - —log f(y; — 1) = min } _ p(y: —)

and this makes sense for functiopsnot corresponding to pdfs. Let = p’ if

this exists. Then we will have_, ¢ (y; —) =0 or >, w; (y; — it) = 0 where

w; = Y(y; — 1)/ (y; — fv). This suggests an iterative method of solution, updating
the weights at each iteration.

Examples of M-estimators

The mean corresponds gx) = 22, and the median tg(x) = |z|. (For evenn
any median will solve the problem.) The function

_[x |zl <c
V(@) { 0 otherwise
corresponds tanetric trimming and large outliers have no influence at all. The

function
—c < —c
P(z) = {¢ lz] < ¢

C x> c

is known asmetric Winsorizing'® and brings in extreme observations fio+ c.
The corresponding-log f is

() = x? if |2| <c
PRI = e(2]z| — ¢) otherwise

10A term attributed by Dixon (1960) to Charles P. Winsor.

5.5 Robust Summaries 123

Trimmed mean Huber

psi
psi

Tukey bisquare Hampel

00 05 10

psi
psi

-1.0

&
A
Y
o
N
I
e
&
A
Y
o
N
IS
B

Figure5.6: The y-functions for four common M-estimators.

and corresponds to a density with a Gaussian centre and double-exponential tails.
This estimator is due to Huber. Note that its limitas- 0 is the median, and as
¢ — oo the limit is the mean. The value = 1.345 gives 95% efficiency at the

normal.
-4

Tukey’shiweight has
where [|+ denotes the positive part of. This implements ‘soft’ timming. The
value R = 4.685 gives 95% efficiency at the normal.

Hampel'sy has several linear pieces,

|z| 0<|z|<a

N a a<|x|<b

¥(x) = sgn(x) alc—|z))/(c—b) b<|z|<c
0 ¢ <zl

for example, witha = 2.2s,b = 3.7s,¢ = 5.9s. Figure 5.6 illustrates these
functions.

There is a scaling problem with the last four choices, since they depend on a
scale factor ¢, R or s). We can apply the estimator to rescaled results, that is,

mgnzi:p (%)

124 Univariate Satistics

-10 -5 0 5 10

Figure5.7: Function+) for maximum-likelihood fitting oftss (solid) andts (dashed).

for a scale factors, for example the MAD estimator. Alternatively, we can esti-
mate s in a similar way. The MLE for density ! f((x — i) /s) gives rise to the

equation
Yi — | Yi — b
Ze(t) () -

which is not resistant (and is biased at the normal). We modify this to

Yi —
> ox <—M> =(n—1)y
3 S
for boundedy, where~ is chosen for consistency at the normal distribution, so
v = E x(N). The main example is “Huber’s proposal 2” with

X(z) = ¥(2)* = min(|z], c)? (5.3)

In very small samples we need to take account of the variability of perform-
ing the Winsorizing.

If the location s is known we can apply these estimators with- 1 replaced
by n to estimate the scale alone.

It is interesting to compare these estimators with maximume-likelihood esti-
mation for a real long-tailed distribution, say . Figure 5.7 shows the functions
¥ = (—log f)’ for v = 25,5, both of which show mildly re-descending form.

S-PLUS provides functionslocation.m for location M-estimation and
mad, and scale.tau does scale estimation. Our library sectibaSS supplies
functionshuber and hubers for the Huber M-estimator with MAD and “pro-
posal 2" scale respectively, with default= 1.5.

Examples

We give two datasets taken from analytical chemistry (Abbey, 1988; Analytical
Methods Committee, 1989a,b). The datasghey contains 31 determinations of
nickel content {1g g—') in SY-3, a Canadian syenite rock. Dataskem contains

24 determinations of coppey g—') in wholemeal flour; these data are part of
a larger study that suggests= 3.68.

5.5 Robust Summaries 125

> sort(chem)

[1] 2.20 2.20 2.40 2.40 2.50 2.70 2.80 2.90 3.03
[10] 3.03 3.10 3.37 3.40 3.40 3.40 3.50 3.60 3.70
[19] 3.70 3.70 3.70 3.77 5.28 28.95
> mean(chem)

[1] 4.2804

> median(chem)

[1] 3.385

> # S: location.m(chem)
[1] 3.1452

> # S: location.m(chem, psi.fun = "huber")
[1] 3.2132
> mad(chem)
[1] 0.52632
> # S: scale.tau(chem)
[1] 0.639
> # S: scale.tau(chem, center = 3.68)
[1] 0.91578
> unlist (huber(chem))
mu s
3.2067 0.52632
> unlist (hubers(chem))
mu s
3.2055 0.67365
> fitdistr(chem, "t", list(m = 3, s = 0.5), df = 5)
m s
3.1854 0.64217

The sample is clearly highly asymmetric with one value that appears to be out by
a factor of 10. It was checked and reported as correct by the laboratory. With
such a distribution the various estimators are estimating different aspects of the
distribution and so are not comparable. Only for symmetric distributions do all the

location estimators estimate the samerditg and although the true distribution

is unknown here, it is unlikely to be symmetric.

> sort(abbey)

[1] 5.2 6.5
[10] 8.0 8.0
[191 12.0 13.7 1
[28] 24.0 28.0 3
> mean (abbey)

[1] 16.006

> median(abbey)

[1] 11

> # S: location.m(abbey)

[1] 10.804

> # S: location.m(abbey, psi.fun = "huber")
[1] 11.517

7.0 7.0 7.4 8.0 8.0
. 10.0 11.0 11.0 12.0
14.0 16.0 17.0 17.0 18.0

O O O O
[Ye]
o

S 0 o
o O o ©
=
O © N

S+

126 Univariate Satistics

> unlist (hubers (abbey))
mu S
11.732 5.2585

> unlist (hubers(abbey, k = 2))
mu s
12.351 6.1052

> unlist (hubers(abbey, k = 1))

mu s

11.365 5.5673

> fitdistr(abbey, "t", list(m = 12, s = 5), df = 10)
m s

11.925 7.0383

Note how reducing the constagt(representing:) reduces the estimate of loca-
tion, as this sample (like many in analytical chemistry, where most gross errors
stem from contamination) has a long right tail.

5.6 Density Estimation

The non-parametric estimation of probability density functions is a large topic;
several books have been devoted to it, notably Silverman (1986), Scott (1992),
Wand and Jones (1995) and Simonoff (1996). Bowman and Azzalini (1997) con-
centrate on providing an introduction to kernel-based methods, providing an easy-
to-use packagem.'!

The histogram withprobability = T is of course an estimator of the den-
sity function. The histogram depends on the starting point of the grid of bins.
The effect can be surprisingly large; see Figure 5.8. The figure also shows that by
averaging the histograms we can obtamach clearer view of the distribution.

This idea of araverage shifted histogram or ASH density estimate is a useful
motivation and is discussed in detail in Scott (1992). However, the commonest
from of density estimation is kernel density estimate of the form

A _ 1 & T — T
flo) = 5 oK (57 5.4)
j=1
for a samplexy,...,z,, a fixed kernelK () and a bandwidthb; the kernel is

normally chosen to be a probability density function.

S-PLUS has a functiomensity. The default kernel is the normal (argument
window="g" for Gaussian), with alternative&rectangular", "triangular"
and "cosine" (the latter being(1 + coswz)/2 over [—1,1]). The bandwidth
width is the length of the non-zero section for the alternatives, and four times the
standard deviation for the normal. (Note that these definitions are twice and four
times those most commonly used.)

R also has a functiodensity, with bandwidth specified asw,'? a multiple

UAvailable for S-PLUS from http://www.stats.gla.ac.uk/~adrian/sm and http://
azzalini.stat.unipd.it/Book_sm, and forR from CRAN.

5.6 Density Estimation 127

0.6
0.6
0.6

0.4
0.4
0.4

0.2
0.2
0.2

° of — || of I
o o o
0 1 2 3 4 5 6 0 1 2 3 4 5 6 0 1 2 3 4 5 6
duration duration duration
© [] ©
o o o
< < o<
t IS
o o ? o
2
m
o~ o~ N
=] =} [}
o o o
o [S] S
0 1 2 3 4 5 6 0 1 2 3 4 5 6 0 1 2 3 4 5 6

duration duration duration

Figure 5.8: Five shifted histograms with bin width 0.5 and the frequency polygon of their
average, for the Old Faithful geyseuration data. The code used is in the scripts for
this chapter.

of the standard deviation of the kernel specifieddanel .13 There is a wider
range of kernels but once again the normal kernel is the default.

The choice of bandwidth is a compromise between smoothing enough to re-
move insignificant bumps and not smoothing too much to smear out real peaks.
Mathematically there is a compromise between the biasf'@f), which in-
creases a9 is increased, and the variance which decreases. Theory (see (5.6)
on page 129) suggests that the bandwidth should be proportionat ¢, but
the constant of proportionality depends on the unknown density.

The default choice of bandwidth B-PLUS is not recommendable. There are
better-supported rules of thumb such as

b =1.06 min(6, R/1.34)n~'/5 (5.5)

for the IQR R and the Gaussian kernel of bandwidth the standard deviation (to
be quadrupled for use witB-PLUS) (Silverman, 1986, pp. 45-47), invoked by
width = "nrd". The default inR is the variant with1.06 replaced by0.9 R
(Silverman, 1986, (3.31) on p. 48).

12yidth can be used for compatibility wit-PLUS.
13 yindow can also be used.

128 Univariate Satistics

12
12

@ @
o o
< <
o o
o o
<} o
1 2 3 4 5 6 1 2 3 4 5 6
duration duration

Figure5.9: Density plots for the Old Faithful duration data. Superimposed on a histogram
are the kernel density estimates with a Gaarsdernel and normal reference bandwidth
(left) and the Sheather—Jones ‘direct plug-in’ (right, solid) and ‘solve-the-equation’ (right,
dashed) bandwidth estimates with a Gaussian kernel.

For other kernels there are theoretical scaling factors to give ‘equivalent’ ker-
nels (Scott, 1992, pp. 141-2), but these are very close to scaling to the same
standard deviation for the kernel (and so are not needB&iparametrization).

We return to the geyser duration data. Here the bandwidth suggested by (5.5)
is too large (Figure 5.9). (Scott, 1995.5.1.2) suggests that the value

bos = 1.1446n=1/°

provides an upper bound on the (Gaussian) bandwidths one would want to con-
sider, again to be quadrupled for usedensity. The normal reference given by
(5.5) is only slightly below this uppdsound, and will be too large for densities
with multiple modes: see Figure 5.9, the left panel of which was generated by

attach(geyser)
truehist(duration, nbins = 15, xlim = c(0.5, 6), ymax = 1.2)
lines(density(duration, width = "nrd"))

Note that the data in this example are (negatively) serially correlated, so the theory
for independent data must be viewed as only a guide.

Bandwidth selection

Ways to find compromise value(s) &f automatically are discussed by Scott
(1992). These are based on estimatingrtiean integrated square error

MISE=E [|fz:b) - o) do = [E\f(zib) - flo)f do
and choosing the smallest value as a functioh.ofVe can expand/ISFE as
MISE = E / f(z;b)?de — 2Ef(X;b) + / f(z)?dz

where the third term is constant and so can be dropped.

5.6 Density Estimation 129

A currently favoured approach is to make an asymptotic expansiaun b$ £
of the form

MISE = L [K24 1p% [(f)2{ [22K}* + O(1/nb + b*)

so if we neglect the remainder, the optimal bandwidth would be

1/5
e — Jx*
bamisE = [nf(f”)z{fHCQK}z] (5.6)

The ‘direct plug-in’ estimators use (5.6), which involves the integféf”).

This in turn is estimated using the second derivative of a kernel estimator with
a different bandwidth, chosen by repeating the process, this time using a refer-
ence bandwidth. The ‘solve-the-equation’ estimators solve (5.6) when the band-
width for estimating [(f”')? is taken as function ob (in practice proportional to

b°/7). Details are given by Sheather and Jones (1991) and Wand and Jones (1995,
§3.6); this is implemented for the Gaussian kernel in functibasdwidth.sj
(S-PLUS) andbw.SJ (R). The right panel of Figure 5.9 was generated by

truehist(duration, nbins = 15, xlim = c(0.5, 6), ymax = 1.2)
lines(density(duration, width = "SJ", n = 256), lty = 3)
R: lines(density(duration, width = "SJ-dpi", n = 256), lty = 1)
S: lines(density(duration, n = 256,
width = bandwidth.sj(duration, method = "dpi")),
1ty = 1)

There have been a number of comparative studies of bandwidth selection rules
(including Park and Turlach, 1992, and Cao, Cuevas and @endanteiga,
1994) and a review by Jones, Marron and Sheather (1996). ‘Second generation’
rules such as Sheather—-Jones seem to be preferred and indeed to be close to opti-
mal.

As another example, consider our datagelaxies from Roeder (1990),
which shows evidence of at least four peaks (Figure 5.10).

gal <- galaxies/1000
plot(x = c(0, 40), y = c(0, 0.3), type = "n", bty = "1",
xlab = "velocity of galaxy (1000km/s)", ylab = "density")
rug(gal)
S: lines(density(gal, width = bandwidth.sj(gal, method = "dpi"),
n = 266), 1ty = 1)
R: lines(density(gal, width = "SJ-dpi", n = 256), lty = 1)
lines(density(gal, width = "SJ", n = 256), lty = 3)
see later for explanation
library(logspline)
x <- seq(5, 40, length = 500)
lines(x, dlogspline(x, logspline.fit(gal)), 1ty = 2)

S+

130 Univariate Satistics

density
0.15 0.20 0.25 0.30

0.10

0.05

30 40

0.0

. = I — '/u'\'!u u T
0 10 20

velocity of galaxy (1000km/s)
Figure 5.10: Density estimates for the 82 points of thglaxies data. The solid and
dashed lines are Gaussian kernel density estimates with bandwidths chosen by two variants
of the Sheather—Jones method. The dotted line is a logspline estimate.

End effects

Most density estimators will not work well when the density is non-zero at an
end of its support, such as the exponential and half-normal densities. (They are
designed for continuous densities and thidigcontinuity.) One trick is to reflect

the density and sample about the endpoint, saylhus we compute the density

for the samplec (x, 2a-x), and take double its density dn, co) (or (—o0, d]

for an upper endpoint). This will impose a zero derivative on the estimated den-
sity at a, but the end effect will be much less severe. For details and further tricks
see Silverman (19863.10). The alternative is to modify the kernel near an end-
point (Wand and Jones, 199f.1), but we know of n® implementation of such
boundary kernels.

Two-dimensional data

It is often useful to look at densities in two dimensions. Visualizing in more
dimensions is difficult, although Scott (1992) provides some examples of visual-
ization of three-dimensional densities.

The dataset on the Old Faithful geyser has two componéntsgtion, the
duration which we have studied, amditing, the waiting time in minutes until
the next eruption. There is also evidemaf non-independence of the durations.
S-PLUS provides a functiorhist2d for two-dimensional histograms, but its out-
put is too rough to be useful. We apply two-dimensional kernel analysis directly;
this is most straightforward for the normal kernel aligned with axes, that is, with
variance dia@h2, h2). Then the kernel estimate is

5.6 Density Estimation 131

100
100

waiting
80
waiting
80

60
60

40
40

1 2 3 4 5 6 1 2 3 4 5 6

previous duration previous duration

waiting
80 100
:
L}
0.01020304050607

60
.

40

previous duration

Figure 5.11: Scatter plot and two-dimensional density plots of the bivariate Old Faithful
geyser data. Note the effects of the observations of duration rounded to two or four minutes.
The code to produce this plot is in the scripts.

which can be evaluated on a grid 8" where X;, = ¢((g9z; — x5)/h.) and
(gz;) are the grid points, and similarly far. Our functionkde2d 1 implements
this; the results are shown in Figure 5.11.

geyser2 <- data.frame(as.data.frame(geyser)[-1,],
pduration = geyser$duration[-299])
attach(geyser2)
par(mfrow = c(2, 2))
plot(pduration, waiting, xlim = c(0.5, 6), ylim = c(40, 110),
xlab = "previous duration", ylab = "waiting")
f1 <- kde2d(pduration, waiting, n = 50, lims=c(0.5, 6, 40, 110))
image(f1, zlim = c(0, 0.075),
xlab = "previous duration", ylab = "waiting")
f2 <- kde2d(pduration, waiting, n = 50, lims=c(0.5, 6, 40, 110),
h = c(width.SJ(duration), width.SJ(waiting)))
image(f2, zlim = c(0, 0.075),
xlab = "previous duration", ylab = "waiting")
S: persp(f2, eye = c(50, -1000, 0.5),
R: persp(f2, phi = 30, theta = 20, d = 5,
xlab = "previous duration", ylab = "waiting", zlab = "")

Users ofS-PLUS or R underwWindows can explore interactively the fitted density
surface, as illustrated on page 422.

An alternative approach using binning and the 2D fast Fourier transform is
taken by Wand’s functiomkde2D in library sectionKernSmooth.

14This predates a similar function of the same nameseat1ib.

132 Univariate Satistics

Density estimation via model fitting

There are several proposals (Simonoff, 1996, pp. 67—70, 90-92) to use a univari-
ate density estimator of the form

f(y) = expy(y;0) (5.7

for a parametric familyg(-; 8) of smooth functions, most often splines. The fit
criterion is maximum likelihood, possibly with a smoothness penalty. The advan-
tages of (5.7) are that it automatically provides a non-negative density estimate,
and that it may be more natural to consider ‘'smoothness’ on a relative rather than
absolute scale.

The library sectionlogspline by Charles Kooperberg implements one vari-
ant on this theme by Kooperberg and Stone (1992). This uses a cubic spline (see
page 229) forg in (5.7), with smoothness controlled by the number of knots
selected. There is an AIC-like penalty; the number of the knots is chosen to max-
imize

Zg(yi; 5) —nlog [expg(y; 5) dy — a x number of parameters (5.8)
i=1

The default value ot: is logn (sometimes known as BIC) but this can be spec-
ified by argumentpenalty of logspline.fit. The initial knots are selected

at quantiles of the data and then deleted one at a time using the Wald criterion for
significance. Finally, (5.8) is used to choose one of the knot sequences considered.

Local polynomial fitting

Kernel density estimation can be seen as fitting a locally constant function to the
data; other approaches to density estimation use local polynomials (Fan and Gij-
bels, 1996; Loader, 1999) which have the advantage of being much less sensitive
to end effects. There a&implementations in the library sectiof&rnSmooth
by Wand andlocfit by Loader.

We compare kernel density and local polynomial estimators fogtiexies
data. The difference for the same bandwidik negligible except at the ends.

library(KernSmooth)

plot(x = c(0, 40), y = c(0, 0.3), type = "n", bty = "1",
xlab = "velocity of galaxy (1000km/s)", ylab

rug(gal)

lines(bkde(gal, bandwidth = dpik(gal)))

lines(locpoly(gal, bandwidth = dpik(gal)), 1ty = 3)

"density")

15 gpik is Wand’s implementation of SJ-dpi" .

5.7 Bootstrap and Permutation Methods 133

density
0.15 0.20 0.25 0.30

0.10

0.05

0.0

/
L L 1T T [
0 10 20 30 40
velocity of galaxy (1000km/s)

Figure 5.12: Density estimates fogalaxies by kernel (solid line) and local polynomial
(dashed line) methods.

5.7 Bootstrap and Permutation Methods

Several modern methods of what is often caltunputer-intensive statistics

make use of extensive repeated calculations to explore the sampling distribution
of a parameter estimater Suppose we have a random sample. . . , z,, drawn
independently from one member of a parametric fandilyy | 6 € ©} of distri-
butions. Suppose further thdt= T'() is asymmetric function of the sample,

that is, does not depend on the sample order.

The bootstrap procedure (Efron and Tibshirani, 1993; Davison and Hinkley,
1997) is to takem samples fromz with replacement and to calculated* for
these samples, where conventionally the asterisk is used to denote a bootstrap
resample. Note that the new samples consist of an integer number of copies of
each of the original data patis, and so will normally have ties. Efron’s idea was
to assess the variability af about the unknown trué by the variability of *
abouté. In particular, the bias ob may be estimated by the mean®f — 6.

As an example, suppose that we needed to know the medianf the
galaxies data. The obvious estimator is the sample median, which is 20833
km/s. How accurate is this estimator? Tlhege-sample theory says that the me-
dian is asymptotically normal with mean and variancel /4n f(m)?2. But this
depends on the unknown density at the median. We can use our best density es-
timators to estimatef(m), but as we have seen we can find considerable bias
and variability if we are unlucky enough to encounter a peak (as in a unimodal
symmetric distribution). Let us try the bootstrap:

density(gal, n = 1, from = 20.833, to = 20.834, width = "SJ")3$y
[1] 0.13009

1/(2 * sqrt(length(gal)) * 0.13)

[1] 0.42474

set.seed(101); m <- 1000; res <- numeric(m)

for (i in 1:m) res[i] <- median(sample(gal, replace = T))

134 Univariate Satistics

2.0

20.0 20.5 21.0 215 22.0
res

Figureb5.13: Histogram of the bootstrap distribution for the median of fadaxies data,
with a kernel density estimate (solid) and a logspline density estimate (dashed).

mean(res - median(gal))
[1] 0.032258

sqrt (var(res))

[1] 0.50883

which took less than a second and confirms the adequacy of the large-sample
mean and variance for our example. In this example the bootstrap resampling can

be avoided, for the bootstrap distribution of the median can be found analytically
(Efron, 1982, Chapter 10; Staudte and Sheather, 1990, p. 84), at least for odd
The bootstrap distribution of; abouté is far from normal (Figure 5.13).

truehist(res, h = 0.1)

R: lines(density(res, width = "SJ-dpi", n = 256)

S: lines(density(res, width = bandwidth.sj(res, method = "dpi"),

n = 256))
quantile(res, p = c(0.025, 0.975))
2.5% 97.5%

20.175 22.053
x <- seq(19.5, 22.5, length = 500)
lines(x, dlogspline(x, logspline.fit(res)), 1lty = 3)

In larger problems it is important to do bootstrap calculations efficiently, and
there are two suites & functions to do soS-PLUS hasbootstrap, and library
sectiot® boot which is very comprehensive.

library(boot)

set.seed(101)

gal.boot <- boot(gal, function(x, i) median(x[i]), R = 1000)
gal.boot

V V V VvV

16written by Angelo Canty to support Davison and Hinkley (1997). Availablestéi_US andR.

5.7 Bootstrap and Permutation Methods 135

D]
- <
o
N
@
o
= <
-
N
<
o
=
g 5 .o
20.0 20.5 21.0 21.5 22.0 225 -3 -2 -1 0 1 2 3
t* Quantiles of Standard Normal
i
|2
B vowesuie g 4 goretedf - s
2 : — 33 Rt — - ¢ Y HEARNCRR. A
= T 4 _es—sstee muepre s _o __— —
s 2 i = LI TP O
S o . = .
P
° PR
g B e L ik e e
< 0
©® 9 = P Y I R LNt}
o
)
) s s @ s s ® n
< E % e s a7 3 s
g @ o w7 w0 Tm ' @
! w 5 Ve L s
o v 6 7 63 61 65 73 49 64
=
P
1 0 1 2

standardized jackknife value

Figure 5.14: Plot for bootstrapped median from thalaxies data. The top row shows

a histogram (with dashed line the observed value) and a Q-Q plot of the bootstrapped sam-
ples. The bottom plot is fromjack.after.boot and displays the effects of individual
observations (here negligible).

Bootstrap Statistics
original bias std. error
t1x* 20.834 0.038747 0.52269

boot.ci(gal.boot, conf = c(0.90, 0.95),
type = c("norm", "basic", "perc", "bca"))

Intervals

Level Normal Basic
90% (19.94, 21.65) (19.78, 21.48)
95% (19.77, 21.82) (19.59, 21.50)

Level Percentile BCa
90% (20.19, 21.89) (20.18, 21.87)
95% (20.17, 22.07) (20.14, 21.96)

> plot(gal.boot) # Figure 5.14

The bootstrap suite of functions has fewer options:

136 Univariate Satistics

> # bootstrap is in S-PLUS only
> gal.bt <- bootstrap(gal, median, seed = 101, B = 1000)
> summary(gal.bt)

Summary Statistics:
Observed Bias Mean SE
median 20.83 0.03226 20.87 0.5088

Empirical Percentiles:
2.5% 5% 95% 97.5%
median 20.18 20.19 21.87 22.05

BCa Confidence Limits:

2.5} 5% 95% 97.5%
median 20.18 20.19 21.87 22.07
> plot(gal.bt)
> qgnorm(gal.bt)

The limits can also be obtained by

> limits.emp(gal.bt)

2.5% 5% 95%, 97.5%
median 20.175 20.188 21.867 22.053
> limits.bca(gal.bt)

2.5% 5% 95% 97.5%
median 20.179 20.193 21.867 22.072

One approach to a confidence interval for the paramgtsrto use the quan-
tiles of the bootstrap distributions; this is termed pleecentile confidenceinterval
and was the original approach suggested by Efron. The bootstrap distribution here
is quite asymmetric, and the intervals based on normality are not adequate. The
‘basic’ intervals are based on the idea that the distributio@oﬁ 6 mimics that
of 6 — 6. If this were so, we would get & — o confidence interval as

l-a=PL<0-0<U)~P(L<b; —0<U)

so the interval is(d — U,§ — L) where L + 6 and U + 6§ are thea/2 and
1 — a/2 points of the bootstrap distribution, say,,» and k;_, /2. Then the
basic bootstrap interval is

(O—U0—L)= (0—[k1_a—0],0 — [kayo—0]) = (20 — k1 _0/2,20 — ko o)

which is the percentile interval reflected about the estintatdn asymmetric
problems the basic and percentile intervals will differ considerably (as here), and
the basic intervals seem more rational.

The BC, intervals are an attempt to shift and scale the percentile intervals to
compensate for their biases, apparently unsuccessfully in this example. The idea
is that if for some unknown increasing transformatipwe hadg(6)—g(6) ~ Fy
for a symmetric distributionFy, the percentile intervals would be exact. Suppose
rather that if¢ = g(0),

9(0) = g(0) ~ N(wa(¢),0%(¢)) witho(¢) =1+a¢

5.7 Bootstrap and Permutation Methods 137

Standard calculations (Davison and Hinkley, 1997, p. 204) show that then-
fidence limit is given by they percentile of the bootstrap distribution, where
W+ Zqo

N wHtza

@ (u}+_1 —»a(u1+»za))

anda andw are estimated from the bootstrap samples.

The median (and other sample quantiles) is appreciably affected by discrete-
ness, and it may well be better to sample from a density estimate rather than from
the empirical distribution. This is known as temoothed bootstrap. We can do
that neatly withboot, using a Gaussian bandwidth of 2 and so standard deviation
0.5.

sim.gen <- function(data, mle) {

n <- length(data)

data[sample(n, replace = T)] + mle*rnorm(n)
}
gal.boot2 <- boot(gal, median, R = 1000,

sim = "parametric", ran.gen = sim.gen, mle = 0.5)
boot.ci(gal.boot2, conf = c(0.90, 0.95),

type = c("norm","basic","perc"))

Intervals :
Level Normal Basic Percentile
90% (19.93, 21.48) (19.83, 21.36) (20.31, 21.83)
95% (19.78, 21.63) (19.72, 21.50) (20.17, 21.95)

The constants andw inthe BC, interval cannot be estimated ot in this
case. The smoothed bootstrap slightly inflates the sample variance (here by 1.2%)
and we could rescale the sample if this was appropriate.

For a smaller but simpler example, we return to the differences in shoe wear
between materials. There is a fifth type of confidence intervalithat . ci can
calculate, which needs a variance estimate of the statistié* from each boot-
strap sample. Then the confidence interval can be based on the basic confidence
intervals for thestudentized statistics (#* — #)/v/v*. Theory suggests that the
studentized confidence interval may be the most reliable of all the methods we
have discussed.

> attach(shoes)
> t.test(B - A)
95 percent confidence interval:
0.13305 0.68695
> shoes.boot <- boot(B - A, function(x,i) mean(x[i]), R = 1000)

> boot.ci(shoes.boot, type = c("norm", "basic", "perc", "bca"))
Intervals :
Level Normal Basic

957 (0.1767, 0.6296) (0.1800, 0.6297)

Level Percentile BCa
95% (0.1903, 0.6400) (0.1900, 0.6300)

138 Univariate Satistics

mean.fun <- function(d, i) {
n <- length(i)
c(mean(d[i]), (m-1)*var(d[i])/n"~2)
}
> shoes.boot2 <- boot(B - A, mean.fun, R = 1000)
> boot.ci(shoes.boot2, type = "stud")

Intervals :
Level Studentized
95% (0.1319, 0.6911)

We have only scratched the surface of bootstrap methods; Davison and Hink-
ley (1997) provide an excellent practically-oriented accofmipftware and prac-
tical exercises.

Permutation tests

Inference for designed experiments issofbased on the distribution over the ran-
dom choices made during the experimedtdign, on the belief that this random-
ness alone will give distributions that can be approximated well by those derived
from normal-theory methods. There is considerable empirical evidence that this
is so, but with modern computing power we can check it for our own experiment,
by selecting a large number of re-labellings of our data and computing the test
statistics for the re-labelled experiments.

Consider again the shoe-wear data of Section 5.4. The most obvious way to
explore the permutation distribution of thieest ofd = B-A is to select random
permutations, but as the permutation distribution has @hly= 1024 points we
can use the exact distribution for Figure 5.5. (The code to generate this efficiently
is in the scripts.)

Chapter 6

Linear Statistical Models

Linear models form the core of classical statistics and are still the basis of much
of statistical practice; many modern modelling and analytical techniques build on
the methodology developed for linear models.

In S most modelling exercises are conducted in a fairly standard way. The
dataset is usually held in a singlata frame object. A primary model is fitted us-
ing amodel fitting function, for which aformula specifying the form of the model
and the data frame specifying the vatiebto be used are the basic arguments.
The resultingfitted model object can be interrogated, analysed and even modi-
fied in various ways using generic functions. The important point to note is that
the fitted model object carries with it the information that the fitting process has
revealed.

Although most modelling exercises conin to this rough paradigm some fea-
tures of linear models are special. Tloemula for a linear model specifies the
response variable and the explanatory variables (or factors) used to model the
mean response by a version of the Wilkinson—Rogers notation (Wilkinson and
Rogers, 1973) for specifying models that we discuss in Section 6.2

We begin with an example to give a feel for the process and to present some
of the details.

6.1 An Analysis of Covariance Example

The data framevhiteside contains a dataset collected in the 1960s by Mr Derek
Whiteside of the UK Building Research Station and reported in the collection of
small datasets edited by Haetal. (1994, No. 88, p. 69). Whiteside recorded
the weekly gas consumption and average external temperature at his own house
in south-east England during two ‘heating seasbusie before and one after
cavity-wall insulation was installed. The object of the exercise was to assess the
effect of the insulation on gas consumption.

The variables in data framehiteside are Insul, a factor with levels
Before and After, Temp, for the weekly average external temperature in de-
grees Celsius andas, the weekly gas consumption in 1 000 cubic feet units. We
begin by plotting the data in two panels showing separate least-squares lines.

1We are grateful to Dr Kevin McConway for clarification.

139

140 Linear Satistical Models

|
Before

Gas consumption (1000 cubic feet)

Average external temperature (deg. C)

Figure 6.1: Whiteside’s data showing the effect of insulation on household gas consump-
tion.

xyplot(Gas ~ Temp | Insul, whiteside, panel =

function(x, y, ...) {
panel.xyplot(x, y, ...)
panel.lmline(x, y, ...)
}, xlab = "Average external temperature (deg. C)",
ylab = "Gas consumption (1000 cubic feet)", aspect = "xy",
strip = function(...) strip.default(..., style = 1))

The resultis shown in Figure 6.1 Within the range of temperatures given a straight
line model appears to be adequate. The plot shows that insulation reduces the
gas consumption for equal external temperatures, but it also appears to affect the
slope, that is, the rate at which gas consumption increases as external temperature
falls.

To explore these issues quantitatively we will need to fit linear models, the
primary function for which islm. The main arguments tom are

Im(formula, data, weights, subset, na.action)

where

formula isthe model formula (the only required argument),

data is an optional data frame,

weights is a vector of positive weights, if non-uniform weights are
needed,

subset is an index vector specifying a subset of the data to be used (by
default all items are used),

na.action is a function specifying how missing values are to be handled

(by default, missing values are not allowed3#PLUS but cause cases
to be omitted irR.).

If the argumentdata is specified, it gives a data frame from which variables
are selected ahead of the search path. Kiigrwith data frames and using this
argument is strongly recommended.

6.1 An Analysisof Covariance Example 141

It should be noted that settinga.action = na.omit will allow models to
be fitted omitting cases that have misss@mponents on a required variable. If
any cases are omitted the fitted values @aesidual vector will no longer match
the original observation vector in length; use.action = na.exclude if the
fitted values (and so on) should inclutigs.

Formulae have been discussed in outline in Section 3.7 on page 56 kbe
right-hand side specifies the explanatory variables. Operators on the right-hand
side of linear model formulae have the special meaning of the Wilkinson—Rogers
notation and not their arithmetical meaning.

To fit the separate regressions of gas consumption on temperature as shown in
Figure 6.1 we may use

gasB <- 1m(Gas ~ Temp, data = whiteside, subset = Insul=="Before")
gasA <- update(gasB, subset = Insul=="After")

The first line fits a simple linear regregnifor the ‘before’ temperatures. The
right-hand side of the formula needs only to specify the varidklep since an
intercept term (corresponding to a colaraf unities of the model matrix) is al-
ways implicitly included. It may be explicitly included usingy + Temp, where
the + operator impliesnclusion of a term in the model, not addition.

The functionupdate is a convenientway to modify a fitted model. Its first ar-
gumentis a fitted model object that results from one of the model-fitting functions
such aslm. The remaining arguments afpdate specify the desired changes to
arguments of the call that generatee thbject. In this case we simply wish to
switch subsets fronTnsul=="Before" t0 Insul=="After"; the formula and
data frame remain the same. Notice that variables used iathget argument
may also come from the data frame and need not be visible on the (global) search
path.

Fitted model objects have an appropriakass, in this case"1m". Generic
functions to perform further operations on the object include

print for a simple display,

summary for a conventional regression analysis output,

coef (or coefficients) for extracting the regression coefficients,
resid (or residuals) for residuals,

fitted (or fitted.values) for fitted values,

deviance for the residual sum of squares,

anova for a sequential analysis of variance table, or a comparison of sev-
eral hierarchical models,

predict for predicting means for new data, optionally with standard er-
rors, and

plot for diagnostic plots.
Many of these method functions are very simple, merely extracting a component

of the fitted model object. The only comparidikely to be accessed for which no
extractor function is suppli€ds df .residual, the residual degrees of freedom.

2|n S-PLUS: there is adf .residual function inR.

142 Linear Satistical Models

The output fromsummary is self-explanatory. Edited results for our fitted
models are

> summary(gasB)

Coefficients:

Value Std. Error t value Pr(>|tl)
(Intercept) 6.854 0.118 57.876 0.000
Temp -0.393 0.020 -20.078 0.000

Residual standard error: 0.281 on 24 degrees of freedom
> summary (gasA)

Coefficients:

Value Std. Error t value Pr(>|tl)
(Intercept) 4.724 0.130 36.410 0.000
Temp -0.278 0.025 -11.036 0.000

Residual standard error: 0.355 on 28 degrees of freedom

The difference in residual variances is relatively small, but the formal textbook
F-test for equality of variances could dgige done. The sample variances could
be extracted in at least two ways, for example

varB <- deviance(gasB)/gasB$df.resid # direct calculation
varB <- summary(gasB)$sigma”2 # alternative

It is known this F-test is highly non-robust to non-normality (see, for example,
Hampelet al. (1986, pp. 55, 188)) so its usefulness here would be doubtful.
To fit both regression models in the sariEn" model object we may use

> gasBA <- Im(Gas ~ Insul/Temp - 1, data = whiteside)
> summary(gasBA)

Coefficients:

Value Std. Error t value Pr(>|tl)

InsulBefore 6.854 0.136 50.409 0.000
InsulAfter 4.724 0.118 40.000 0.000
InsulBeforeTemp -0.393 0.022 -17.487 0.000
InsulAfterTemp -0.278 0.023 -12.124 0.000

Residual standard error: 0.323 on 52 degrees of freedom

Notice that the estimates are the same but the standard errors are different because
they are now based on the pooled estimate of variance.

Terms of the forma/x, wherea is a factor, are best thought of as “separate
regression models of type + x within the levels ofa.” In this case an intercept
is not needed, since it is replaced by two aegte intercepts for the two levels of
insulation, and the formula term 1 removes it.

We can check for curvature in the mean function by fitting separate quadratic
rather than linear regressions in the two groups. This may be done as

6.1 An Analysisof Covariance Example 143

> gasQ <- 1lm(Gas ~ Insul/(Temp + I(Temp~2)) - 1, data = whiteside)
> summary (gasQ)$coef
Value Std. Error t value Pr(>ltl)
InsulBefore 6.7592152 0.1507868 44.8263 0.0000e+00
InsulAfter 4.4963739 .1606679 27.9855 0.0000e+00
InsulBeforeTemp -0.3176587 .0629652 -5.0450 6.3623e-06
InsulAfterTemp -0.1379016 .0730580 -1.8876 6.4896e-02
InsulBeforeI(Temp~2) -0.0084726 .0066247 -1.2789 2.0683e-01
InsulAfterI(Temp~2) -0.0149795 .0074471 -2.0114 4.9684e-02

O O O O O

The ‘identity’ function I(...) is used in this context and witdata.frame
(see page 18). It evaluates its argument with operators having their arithmetical
meaning and returns the result. Hence it allows arithmetical operators to be used
in linear model formulae, although if any function call is used in a formula their
arguments are evaluated in this way.
The separate regression coefficients show that a second-degree term is possi-
bly needed for theifter group only, but the evidence is not overwhelmihgle
retain the separate linear regressions model on the grounds of simplicity.
An even simpler model that might be considered is one with parallel regres-
sions. We can fit this model and test it within the separate regression model using
> # R: options(contrasts = c("contr.helmert", "contr.poly"))
> gasPR <- 1lm(Gas ~ Insul + Temp, data = whiteside)
> anova(gasPR, gasBA)
Analysis of Variance Table

Terms Resid. Df RSS Test Df Sum of Sq F Value

1 Insul + Temp 53 6.7704
2 Insul/Temp - 1 52 5.4252 1 vs. 2 1 1.3451 12.893
Pr(F)

1
2 0.00073069

When anova is used with two or more nested models it gives an analysis of
variance table for those models. In this case it shows that separate slopes are
indeed necessary. Note the unusual layout of the analysis of variance table. Here
we could conduct this test in a simpler and more informative way. We now fit the
model with separate slopes usiaglifferent parametrization:

> options(contrasts = c("contr.treatment", "contr.poly"))
> gasBAl <- 1m(Gas ~ Insulx*Temp, data = whiteside)
> summary (gasBA1l) $coef
Value Std. Error t value Pr(>[t])
(Intercept) 6.85383 0.135964 50.4091 0.0000e+00
Insul -2.12998 0.180092 -11.8272 2.2204e-16
Temp -0.39324 0.022487 -17.4874 0.0000e+00
Insul:Temp 0.11530 0.032112 3.5907 7.3069e-04

3Notice that when the quadratic terms are presest-fiegree coefficients mean ‘the slope of the
curve at temperature zero’, so a non-significant@aloes not mean that the linear term is not needed.
Removing the non-significant linear term for thééa’' group, for example, would be unjustified.

144 Linear Satistical Models

The call tooptions is explained more fully in Section 6.2; for now we note that

it affects the way regression models are parametrized when factors are used. The
formula Insul*Temp expandstol + Insul + Temp + Insul:Temp and the
corresponding coefficients are, in order, the intercept for the ‘before’ group, the
difference in intercepts, the slope for the ‘before’ group and théerence in
slopes. Since this last term is significant we conclude that the two separate slopes
are required in the model. Indeed note that fiiestatistic in the analysis of vari-

ance table is the square of the firtastatistic and that the tail areas are identical.

6.2 Model Formulae and Model Matrices

This section contains some rather tedahmaterial and might be skimmed at first
reading.

A linear model is specified by the response vecgornd by the matrix of
explanatory variables, anodel matrix, X. The model formula conveys both
pieces of information, the left-hand sideopiding the response and the right-hand
side instructions on how to generate thedel matrix according to a particular
convention.

A multiple regression with three quantitative determining variables might be
specified asy ~ x1 + x2 + x3. This would correspond to a model with a fa-
miliar algebraic specification

Yi = Bo + Brzir + Bexiz + B3Ti3 + €, i=1,2,...,n
The model matrix has the partitioned form
X = [1 L1 L2 :l?d]

The intercept term/, corresponding to the leading column of onesXi is
implicitly present; its presence may be confirmed by giving a formula such as
y ~ 1 + x1 + x2 + x3, but wherever thel occurs in the formula the column

of ones will always be the first column of the model matrix. It may be omitted
and a regression through the origin fitted by giving a term in the formula, as
iny ~x1 +x2 + x3 - 1.

Factor terms in a model formula are usedspecify classifications leading to
what are often called analysis of variance models. Suppogea factor. An
analysis of variance model for the one-way layout definec lipight be written
in the algebraic form

Yij = 1+ oy + €5 1=1,2,...,ny; i=12...k

where there aré: classes and the; is the size of thejth. Let n = 3, n;.
This specification is over-parametrized, but we could write the model matrix in
the form

X =[1X,]

where X, isann x k binary incidence (or ‘dummy variable’) matrix where each
row has a single unity in the column of the class to which it belongs.

6.2 Model Formulae and Model Matrices 145

The redundancy comes from the fact that the columnX pfadd to1, making
X of rank k rather thank + 1. One way to resolve the redundancy is to remove
the column of ones. This amounts to settipg= 0, leading to an algebraic
specification of the form

Yij = Qj + €5 i:1,2,..‘,nj;j:1,2,.‘.,k

so thea; parameters are the class means. This formulation may be specified by
y ~a- 1

If we do not break the redundancy by removing the intercept term it must be
done some other way, since otherwise the parameters are not identifiable. The
way this is done ir§ is most easily described in terms of the model matrix. The
model matrix generated has the form

X+ =1 X.C,)

where C,, thecontrast matrix for a, is a k x (k — 1) matrix chosen so thak'*
has rankk, the number of columns. A necessary (and usually sufficient) condition
for this to be the case is that the square maftix’,] be non-singular.

The reduced model matriX* in turn defines a linear model, but the parame-
ters are often not directly interpretable and an algebraic formulation of the precise
model may be difficult to write down. Neueless, the relationship between the
newly defined and original (redundant) parameters is clearly given by

a=Ca” (6.1)

where « are the originale parameters andv* are the new.

If c. is a non-zero vector such thaf C, = 0 it can be seen immediately
that usinga* as parameters amounts to estimating the original parameters,
subject to thadentification constraint ¢« = 0 which is usually sufficient to
make them unique. Such a vector (or matréx) is called anannihilator of C,
or a basis for the orthogonal complement of the rangé€'of

If we fit the one-way layout model using the formula

y ~ a
the coefficients we obtain will be estimates pfand a*. The corresponding

constrained estimates of the may be obtained by multiplying by the contrasts
matrix or by using the functiodummy . coef. Consider an artificial example:

> dat <- data.frame(a = factor(rep(1:3, 3)),
y = rnorm(9, rep(2:4, 3), 0.1))
> obj <- Im(y ~ a, dat)
> (alf.star <- coef(obj))
(Intercept) al a2
2.9719 0.51452 0.49808
> Ca <- contrasts(dat$a) # contrast matrix for ‘a’
> drop(Ca %x% alf.star[-1])
1 2 3
-1.0126 0.016443 0.99615

S+

146 Linear Satistical Models

> dummy . coef (obj)
$" (Intercept)":
[1] 2.9719

$a:
1 2 3
-1.0126 0.016443 0.99615

Notice that the estimates @f sum to zero because the contrast matrix used here
implies the identification constraint” o = 0.

Contrast matrices

By defaultS-PLUS uses so-calleHelmert contrast matrices for unordered factors
and orthogonal polynomial contrast matrices for ordered factors. The forms of
these can be deduced from the following artificial example:

> N <- factor(Nlevs <- ¢(0,1,2,4))
> contrasts(N)

[,11 [,2] [,3]
0 -1 -1 -1
1 1 -1 -1
2 0 2 -1
4 0 0 3
> contrasts(ordered(N))
.L .qQ .C

0 -0.67082 0.5 -0.22361
1 -0.22361 -0.5 0.67082
2 0.22361 -0.5 -0.67082
4 0.67082 0.5 0.22361

For thepoly contrasts it can be seen that the corresponding parametecsin
be interpreted as the coefficients in an orthogonal polynomial model of degree
r — 1, provided the ordered levels are equally spaced (which is not the case for
the exampleand the class sizes are equal. Th& parameters corresponding to
the Helmert contrasts also have an easy interpretation, as we see in the following.
Since both the Helmert and polynomial contrast matrices sali$fg' = 0, the
implied constraint onoe will be 17« = 0 in both cases.

The default contrast matrices can be changed by resettingdherasts
option. This is a character vector of length two giving the names of the functions
that generate the contrast matrices for unordered and ordered factors respectively.
For example,

options(contrasts = c("contr.treatment", "contr.poly"))

sets the default contrast matrix function for factorstmtr . treatment and for
ordered factors taontr.poly (the original default). (Thiss the default inR.)
Four supplied contrast functions are as follows:

contr.helmert forthe Helmert contrasts.

6.2 Model Formulae and Model Matrices 147

contr.treatment for contrasts such that each coefficient represents a comparison of
that level with level 1 (omitting level ltself). This correponds to the constraint
a1 = 0. Note that in this parametrization the coefficients moecontrasts in the
usual sense.

contr.sum where the coefficients are constrained to add to zero; that is, in this case the
components ofr* are the same as the firgst- 1 components ofx, with the latter
constrained to add to zero.

contr.poly forthe equally spaced, equally replicated orthogonal polynomial contrasts.

Others can be written using these as templates (as we do with our function
contr.sdif, used on pages 293 and 294). We recommend the use of the treat-
ment contrasts for unbalanced layouts, including generalized linear models and
survival models, because the unconstea coefficients obtained directly from
the fit are then easy to interpret.

Notice that thehelmert, sum and poly contrasts ensure the rank condition
on C is met by choosing” so that the columns of1 C'| are mutually orthog-
onal, whereas thereatment contrasts choos€' so that[1C] is in echelon
form.

Contrast matrices for particular facs may also be set as an attribute of the
factor itself. This can be done either by thentrasts replacement function
or by using the functiorc which takes three arguments: the factor, the matrix
from which contrasts are to be taken (or the abbreviated name of a function that
will generate such a matrix) and the nber of contrasts. On some occasions a
p-level factor may be given a contrast matrix with fewer thar 1 columns, in
which case it contributes fewer tharn- 1 degrees of freedom to the model, or the
unreduced parameters have additional constraints placed on them apart from
the one needed for identification. An ahative method is to use the replacement
form with a specific number of contrasts as the second argument. For example,
suppose we wish to create a factir that would generate orthogonal linear and
guadratic polynomial terms, only. Two equivalent ways of doing this would be

N2 <- N
contrasts(N2, 2) <- poly(Nlevs, 2)
N2 <- C(N, poly(Nlevs, 2), 2) # alternative
contrasts (N2)
1 2
0 -0.591608 0.56408
1 -0.253546 -0.32233
2 0.084515 -0.64466
4 0.760639 0.40291

vV V V Vv

In this case the constraints imposed on theparameters are not merely for iden-
tification but actually change the model subspace.
Parameter interpretation

The poly contrast matrices lead tee* parameters that are sometimes inter-
pretable as coefficients in an orthogonal polynomial regressiont¥hetment

148 Linear Satistical Models

contrasts setv; = 0 and choose the remainings as thea*s. Other cases are
often not so direct, but an interpretation is possible.

To interpret thea* parameters in general, consider the relationship (6.1).
Since the contrast matriK' is of full column rank it has a unique left inverse
C™, so we can reverse this relationship to give

o' =Cta where ¢ = (CTc)toT (6.2)

The pattern in the matrixC* then provides an interpretation of each uncon-
strained parameter as a linear functidrthee (usually) readily appreciated con-
strained parameters. For example, consider the Helmert contrasts=fot. To
exhibit the pattern inC*™ more clearly we use the functiofiractions from
MASS for rational approximation and display.

> fractions(ginv(contr.helmert(n = 4)))
(11 [,21 [,3]1 [,4]

1,1 -1/2 1/2 0 0

(2,1 -1/6 -1/6 1/3 0

3,1 -1/12 -1/12 -1/12 1/4

Henceaj = (a2 — a1), a3 = 3{as — 3(c1 + a2)} and in generak} is
a comparison ofy;4; with the average of all precedings, divided byj + 1.
This is a comparison of the (unweighted) mean of class 1 with that of the
preceding classes.
It can sometimes be important to use contrast matrices that give a simple inter-
pretation to the fitted coefficients. This can be done by noting todt)* = C.
For example, suppose we wished to choose contrasts so tha} the; 1 —a;,
that is, the successive differences of class effectssFers, say, theC* matrix
is then given by

> Cp <- diag(-1, 4, 5); Cplrow(Cp) == col(Cp) - 1] <- 1
> Cp
(,11 [,2] (,3] [,4] [,5]
[1,] -1 1 0 0 0
[2,] 0o -1 1 0o 0
[3,1] 0 0o -1 1 0
[4,] 0 0 o -1 1

Hence the contrast matrix to obtain these linear functions as the estimated coeffi-
cients is

> fractions(ginv(Cp))
(.11 [,21 [,3] [,4]
[1,] -4/5 -3/5 -2/5 -1/5
[2,] 1/5 -3/5 -2/5 -1/5
[3,] 1/6 2/5 -2/5 -1/5
(4,1 1/5 2/5 3/5 -1/5
(5,1 1/5 2/6 3/5 4/5

Note that again the columns have zero sums, so the implied constraint is that the
effects add to zero. (If it were not obvious we could find the induced constraint

6.2 Model Formulae and Model Matrices 149

using our functiomiull (page 63) to find a basis for the null space of the contrast
matrix.)

The pattern is obvious from this example and a contrast matrix function for the
general case can now be written. To be usable as a componentafibeasts
option such a function has to conform with a fairly strict convention, but the key
computational steps are

contr <- col(matrix(nrow = n, ncol = n - 1))
upper.tri <- !lower.tri(contr)

contr [upper.tri] <- contr[upper.tri] - n
contr/n

The complete function is supplied asntr.sdif in MASS. We make use of it
on pages 293 and 294.

Higher-way layouts
Two- and higher-way layouts may be specified by two or more factors and formula
operators. The way the model matrix is generated is then an extension of the
conventions for a one-way layout.
If a and b are r- and s-level factors, respectively, the model formula
y ~ a+b specifies an additive model for the two-way layout. Using the redundant
specification the algebraic formulation would be
Yijk = 1+ o + 05 + €iji
and the model matrix would be
X =[1X. Xy

The reduced model matrix then has the form

X* = [1 X,Ca XuCy)

However, if the intercept term is explicitly removed using, say; a + b - 1,
the reduced formis
X* = [X. X Gy

Note that this is asymmetric ia andb and order-dependent.
A two-way non-additive model has a redundant specification of the form

Yijk = 1+ o + B + vij + €ijik
The model matrix can be written as
X = [1 Xa Xb XaiXb]

where we use the notatioA: B to denote the matrix obtained by taking each col-
umn of A and multiplying it element-wise by each columnBf In the example
X.: X, generates an incidence matrix for the sub-classes defined jointydmd

b. Such a model may be specified by the formula

150 Linear Satistical Models

y~a+b+ ab

or equivalently byy ~ axb. The reduced form of the model matrix is then
X* = [1 XaCa Xbe (XaCa):(Xbe)]

It may be seen thatX,C,):(X1,Ch) = (Xa:Xs)(Ch ® Ca), Where ® denotes
the Kronecker product, so the relationship between thparameters and the
correspondingy*s is

7=(Co®Ca)y"

The identification constraints can be most easily specified by wriings an
r x s matrix. If this is done, the relationship has the fosm= C,~*C{ and the
constraints have the form! v = 07 and vc, = 0, separately.

If the intercept term is removed, however, such as by using axb - 1,
the form is different, namely,

X* = [Xa X0 XIT:(XCh)]

where (somewhat confusingl;&)ﬁ‘” is a matrix obtained by removing thast
column of X,. Furthermore, if a model is specified g5~ - 1 + a + a:b

the model matrix generated i@(a Xa:(Xbe)]. In general addition of a term

a:b extends the previously constructed design matrix to a complete non-additive
model in some non-redundant way (unless the design is deficient, of course).

Eventhoughaxb expandste + b + a:b,itshould be notedthat + a:b
is not always the safi@sa*b - b orevena + b - b + a:b. When used in
model-fitting functions the last two formulae construct the design matrix fr
and only then remove any columns corresponding todherm. (The result
is not a statistically meaningful model.) Model matrices are constructed within
the fitting functions by arranging the positive terms in order of their complexity,
sequentially adding columns to the modwtrix according to the redundancy res-
olution rules and then removing any generated columns corresponding to negative
terms. The exception to this rule is theercept term which is always removed
initially. (With update, however, the formula is expanded and all negative terms
are removedefore the model matrix is constructed.)

The modela + a:b generates the same matrix agb, which expands in
S-PLUS to a + b %in% a. There is no compelling reason for the additional
operatof? %inY%, but it does serve to emphasize that the slash operator should be
thought of as specifying separate submodels of the form b for each level of
a. The operator behaves like the colon formula operator when the second main
effect term is not given, but is conventionally reserved for nested models.

Star products of more than two terms, suchaa®*c, may be thought of as
expanding(1 + a):(1 + b): (1 + ¢) according to ordinar algebraic rules
and may be used to define higher-way non-additive layouts. There is also a power
operator,~, for generating models up to a specified degree of interaction term.

4In S-PLUS: it is always the same iR.
SWhich R does not have.

6.3 Regression Diagnostics 151

For example,(a+b+c) ~3 generates the same modelasb*c but (a+b+c) "2
has the highest order interaction absent.

Combinations of factors and non-factors with formula operators are useful in
an obvious way. We have seen already thax - 1 generates separate simple
linear regressions or within the levels ofa. The same model may be specified
asa + a:x - 1, whereasa*x generates an equivalent model using a different
resolution of the redundancy. It should be noted that+ y + z)~3 doesnot
generate a general third-degree polynomial regression in the three variables, as
might be expected. This is because terms of the farm are regarded as the
same asx, not asI(x~2). However, inS-PLUS a single term such ag~2 is s+
silently promoted toI (x~2) and interpreted as a power.

6.3 Regression Diagnostics

The message in the Whiteside example is relatively easy to discover and we did
not have to work hard to find an adequate linear model. There is an extensive
literature (for example Atkinson, 1985) @xamining the fit of linear models to
consider whether one or more points are not fitted as well as they should be or
have undue influence on the fitting of th@del. This can be contrasted with the
robust regression methods we discuss in Section 6.5, which automatically take
account of anomalous points.

The basic tool for examining the fit is the residuals, and we have already
looked for patterns in residuals and assessed the normality of their distribution.
The residuals are not independent (they sum to zero if an intercept is present) and
they do not have the same variance. Indelkeélir variance-covariance matrix is

var(e) = o*[I — H| (6.3)

where H = X (XTX)~'XT is the orthogonal projector matrix onto the model
space, ohat matrix. If a diagonal entryh;; of H is large, changingy; will

move the fitted surface appreciably towards the altered value. For this régson

is said to measure theverage of the observationy;. The trace ofH is p, the
dimension of the model space, so ‘large’ is taken to be greater than two or three
times the averagen/n.

Having large leverage has two consequences for the corresponding residual.
First, its variance will be lower than average from (6.3). We can compensate for
this by rescaling the residuals to have unit variance. Samsdardized residuals
are .

7

RV 1-— h”

where as usual we have estimaiet! by s2, the residual mean square. Second,

if one error is very large, the variance estimate will be too large, and this
deflates all the standardized residuals. Let us consider fitting the model omitting
observationi. We then get a prediction for the omitted observatigg, and an

152 Linear Satistical Models

estimate of the error variance%i), from the reduced sample. Tisudentized
residualsare R

Yi —Yu)
var (y: =)

but with o replaced bys;). Fortunately, it is not necessary to re-fit the model
each time an observation is omitted, since it can be shown that

* I n—p-— 622 12
i-d /55
Notice that this implies that the standardized residuajsmust be bounded by
+/n —p.

The terminology used here is not universally adopted; in particular studentized
residuals are sometimes callgdkknifed residuals.

It is usually better to compare studentized residuals rather than residuals; in
particular we recommend that they be used for normal probability plots.

We have provided functionstudres and stdres to compute studentized
and standardized residuals. There is a functiam, but this expects the model
matrix as its argument. (There is a useful functi@n, influence, for most of
the fundamental calculations. The diagonal of the hat matrix can be obtained by
lm.influence(lmobject)$hat.)

Scottish hill races

As an example of regression diagnostics, let us return to the data on 35 Scottish
hill races in our data frameéills considered in Chapter 1. The data come
from Atkinson (1986) and are discussed further in Atkinson (1988) and Staudte
and Sheather (1990). The columns are the overall race distance, the total height
climbed and the record time. In Chapter 1 we considered a regressioimef

on dist. We can now include:1imb:

> (hills.lm <- 1m(time ~ dist + climb, data = hills))
Coefficients:
(Intercept) dist climb
-8.992 6.218 0.011048

Degrees of freedom: 35 total; 32 residual
Residual standard error: 14.676
> frame(); par(fig = c(0, 0.6, 0, 0.55))

> plot(fitted(hills.1lm), studres(hills.lm))

> abline(h = 0, 1ty = 2)

> identify(fitted(hills.1lm), studres(hills.lm),
row.names (hills))

> par(fig = c(0.6, 1, 0, 0.55), pty = "s")

> qgnorm(studres(hills.1m))

> qqline(studres(hills.1m))

> hills.hat <- 1m.influence(hills.lm)$hat

> cbind(hills, lev = hills.hat) [hills.hat > 3/35,]

6.3 Regression Diagnostics 153

* Knock Hill

Bens of Jura «

studres(hills.Im)
studres(hills.Im)

50 100 150 -2 -1 0 1 2

fitted(hills.Im) Quantiles of Standard Normal

Figure 6.2: Diagnostic plots for Scottish hills data, unweighted model.

dist climb time lev

Bens of Jura 16 7500 204.617 0.42043
Lairig Ghru 28 2100 192.667 0.68982
Ben Nevis 10 4400 85.583 0.12158

Two Breweries 18 5200 170.250 0.17158
Moffat Chase 20 5000 159.833 0.19099

so two points have very high leverage, two points have large residual8eaad
of Juraisin both sets. (See Figure 6.2.)

If we look atKnock Hill we see that the prediction is over an hour less than
the reported record:

> cbind(hills, pred = predict(hills.lm)) ["Knock Hill",]
dist climb time pred
Knock Hill 3 350 78.65 13.529

and Atkinson (1988) suggests that the record is one hour out. We drop this obser-
vation to be safe:

> (hillsl.lm <- update(hills.lm, subset = -18))
Coefficients:
(Intercept) dist climb
-13.53 6.3646 0.011855

Degrees of freedom: 34 total; 31 residual
Residual standard error: 8.8035

SinceKnock Hill did not have a high leverage, deleting it did not change the
fitted model greatly. On the other harBéns of Jura had both a high leverage
and a large residual and so does affect the fit:

> update(hills.lm, subset = -c(7, 18))
Coefficients:
(Intercept) dist climb
-10.362 6.6921 0.0080468

Degrees of freedom: 33 total; 30 residual
Residual standard error: 6.0538

154 Linear Satistical Models

If we consider this example carefullye find a number of unsatisfactory fea-
tures. First, the prediction is negagifor short races. Extrapolation is often un-
safe, but on physical grounds we would expect the model to be a good fit with a
zero intercept; indeed hillkalkers use a prediction of this sort (3 miles/hour plus
20 minutes per 1000 feet). We can seenfrthe summary that the intercept is
significantly negative:

> summary(hillsl.lm)

Coefficients:

Value Std. Error t value Pr(>|t])

(Intercept) -13.530 2.649 -5.108 0.000
dist 6.365 0.361 17.624 0.000
climb 0.012 0.001 9.600 0.000

Furthermore, we would not expect the predictions of times that range from
15 minutes to over 3 hours to be equally accurate, but rather that the accuracy be
roughly proportional to the time. This suggests a log transform, but that would be
hard to interpret. Rather we weight the fit using distance as a surrogate for time.
We want weights inversely proportional to the variance:

> summary(update(hillsl.lm, weights = 1/dist”2))

Coefficients:

Value Std. Error t value Pr(>|tl)

(Intercept) -5.809 2.034 -2.855 0.008
dist 5.821 0.536 10.858 0.000

climb 0.009 0.002 5.873 0.000

Residual standard error: 1.16 on 31 degrees of freedom

The intercept is still significantly non-zero. If we are prepared to set it to zero
on physical grounds, we can achieve the same effect by dividing the prediction
equation by distance, and regressing meespeed (time/distance) on gradient
(climb/distance):

> Im(time ~ -1 + dist + climb, hills[-18,], weights = 1/dist"2)
Coefficients:

dist climb

4.9 0.0084718

Degrees of freedom: 34 total; 32 residual
Residual standard error (on weighted scale): 1.2786
> hills <- hills # make a local copy (needed in S-PLUS)
> hills$ispeed <- hills$time/hills$dist
> hills$grad <- hills$climb/hills$dist
> (hills2.1m <- 1lm(ispeed ~ grad, data = hills[-18, 1))
Coefficients:

(Intercept) grad

4.9 0.0084718

6.4 SafePrediction 155

Bens of Jura *

studres(hills2.Im)
studres(hills2.Im)

Black Hill Creag Dubh .

100 200 300 400 500 -2 -1 0 1 2

grad Quantiles of Standard Normal

Figure 6.3: Diagnostic plots for Scottish hills data, weighted model.

Degrees of freedom: 34 total; 32 residual
Residual standard error: 1.2786
> frame(); par(fig = c(0, 0.6, 0, 0.55))

> plot(hills$grad[-18], studres(hills2.lm), xlab = "grad")
> abline(h = 0, 1ty = 2)
> identify(hills$grad[-18], studres(hills2.1lm),
row.names (hills) [-18])
> par(fig = ¢(0.6, 1, 0, 0.55), pty = "s") # Figure 6.3
> qgnorm(studres(hills2.1m))
> gqqline(studres(hills2.1lm))
> hills2.hat <- 1m.influence(hills2.1m)$hat
> cbind(hills[-18,], lev = hills2.hat) [hills2.hat > 1.8%2/34,]

dist climb time ispeed grad lev
Bens of Jura 16 7500 204.617 12.7886 468.75 0.11354
Creag Dubh 4 2000 26.217 6.5542 500.00 0.13915

The two highest-leverage cases are rthe steepest two races, and are outliers
pulling in opposite directions. We could cader elaborating the model, but this
would be to fit only one or two exceptional points; for most of the data we have
the formula of 5 minutes/mile plus 8 minutes per 1000 feet. We return to this
example on page 162 where robust fits do support a zero intercept.

6.4 Safe Prediction

A warning is needed on the use of theedict method function when polyno-

mials are used (and also splines, see Section 8.8). We illustrate this by the dataset
wtloss, for which a more appropriate analysis is given in Chapter 8. This has a
weight lossWeight againstDays. Consider a quadratic polynomial regression
model of Weight on Days. This may be fitted by either of

quadl <- I1m(Weight ~ Days + I(Days~2), data = wtloss)
quad2 <- I1m(Weight ~ poly(Days, 2), data = wtloss)

S+

156 Linear Satistical Models

The second uses orthogonal polynomials and is the preferred form on grounds of
numerical stability.

Suppose we wished to predict future weight loss. The first step is to create a
new data frame with a variablte containing the new values, for example,

new.x <- data.frame(Days = seq(250, 300, 10),
row.names = seq(250, 300, 10))

The predict method may now be used:

> predict(quadl, newdata = new.x)
250 260 270 280 290 300
112.51 111.47 110.58 109.83 109.21 108.74
> predict(quad2, newdata = new.x) # from S-PLUS 6.0
250 260 270 280 290 300
244 .56 192.78 149.14 113.64 86.29 67.081

The first form gives correct answers but the second does ®8hUS!

The reason for this is as follows. The-edict method forlm objects works
by attaching the estimated coefficients to a new model matrix that it constructs
using the formula and the new data. In the first case the procedure will work, but
in the second case the columns of the model matrix are diffexent orthogonal
polynomial basis, and so the old coefficients do not apply. The same will hold
for any function used to define the modeltiganerates mathematically different
bases for old and new data, such as spline bases usitng ns. R retains enough
information to predict from the old data.

The remedy ir5-PLUS is to use the method functiopredict . gam:

> predict.gam(quad2, newdata = new.x) # S-PLUS only
250 260 270 280 290 300
112.51 111.47 110.58 109.83 109.21 108.74

This constructs a new model matrix by putting old and new data together, re-
estimates the regression using the old data only and predicts using these estimates
of regression coefficients. This can involve appreciable extra computation, but
the results will be correct for polynomials, but not exactly so for splines since the
knot positions will change. As a checkredict.gam compares the predictions
with the old fitted values for the original data. If these are seriously different, a
warning is issued that the process has probably failed.

In our view this is a serious flaw ipredict . 1m. It would have been better to
use the safe method as the default and providersafe argument for the faster
method as an option.

6.5 Robust and Resistant Regression

There are a number of ways to perform robust regressioS-RLUS, but

many have drawbacks and are not mentioned here. First consider an example.
Rousseeuw and Leroy (1987) give data on annual numbers of Belgian telephone
calls, given in our datasethones.

6.5 Robust and Resistant Regression 157

200

— least squares
- M-estimate

calls
150

100

50

T T T
50 55 60 65 70

year

Figure 6.4: Millions of phone calls in Belgium1950-73, from Rousseeuw and Leroy
(1987), with three fitted lines.

R: library(lgs)
phones.1lm <- 1lm(calls ~ year, data = phones)
attach(phones); plot(year, calls); detach()
abline (phones.lm$coef)
abline(rlm(calls ~ year, phones, maxit=50), lty = 2, col = 2)
abline(lgs(calls ~ year, phones), 1lty = 3, col = 3)
legend(locator(1), 1ty = 1:3, col = 1:3,
legend = c("least squares", "M-estimate", "LTS"))

Figure 6.4 shows the least squares line, an M-estimated regression and the least
trimmed squares regression (Section 6.5). The line is —56.16 + 1.16 year.
Rousseeuw & Leroy’s investigations showed that for 19649 the total length of
calls (in minutes) had been recordedhex than the number, with each system
being used during parts of 1963 and 1970.

Next some theory. In a regression problem there are two possible sources
of errors, the observationg and the corresponding row vector pfregressors
x;. Most robust methods in regression only consider the first, and in some cases
(designed experiments?) errors in the regressors can be ignored. This is the case
for M-estimators, the only ones we consider in this section.

Consider a regression problem withcases(y;, ;) from the model

y=xfB+e€

for a p-variate row vectore.

158 Linear Satistical Models

M-estimators

If we assume a scaled pdf(e/s)/s for e and setp = —log f, the maximum
likelihood estimator minimizes
—~ (yi—xib
Zp — + nlogs (6.4)

i=1

Suppose for now that is known. Lety) = p’. Then the MLEb of 3 solves

;m,«/} <y%’b> —0 (6.5)

Let r; = y; — ;b denote the residuals.

The solution to equation (6.5) or to minimizing over (6.4) can be used to define
an M-estimator of.

A common way to solve (6.5) is by iterated re-weighted least squares, with

weights
wi = P (wa) / (M) (6.6)
S S

The iteration is guaranteed to converge onlydomvex p functions, and for re-
descending functions (such as thos$elokey and Hampel; page 123) equation
(6.5) may have multiple roots. In such cases it is usual to choose a good starting
point and iterate carefully.

Of course, in practice the scaleis not known. A simple and very resistant
scale estimator is the MAD about some centre. This is applied to the residuals
about zero, either to the current residuals within the loop or to the residuals from
a very resistant fit (see the next subsection).

Alternatively, we can estimate in an MLE-like way. Finding a stationary
point of (6.4) with respect ta gives

ZQ/’ (yz —Swzb> <y2 —Swzb> .

which is not resistant (and is biased at the normal). As in the univariate case we

modify this to
> ox (y _S"’”‘b) = (n—pn 6.7)

Our function rlm

Our MASS library section introduces a new clastm and model-fitting function
rlm, building on 1m. The syntax in general follow3m. By default Huber's M-
estimator is used with tuning parameter= 1.345. By default the scales is
estimated by iterated MAD, but Huber’s proposal 2 can also be used.

6.5 Robust and Resistant Regression 159

> summary(lm(calls ~ year, data = phones), cor = F)
Value Std. Error t value Pr(>|tl)
(Intercept) -260.059 102.607 -2.535 0.019
year 5.041 1.658 3.041 0.006
Residual standard error: 56.2 on 22 degrees of freedom
> summary(rlm(calls ~ year, maxit = 50, data = phones), cor = F)
Value Std. Error t value

(Intercept) -102.622 26.608 -3.857
year 2.041 0.430 4.748
Residual standard error: 9.03 on 22 degrees of freedom
> summary(rlm(calls ~ year, scale.est = "proposal 2",
data = phones), cor = F)
Coefficients:
Value Std. Error t value
(Intercept) -227.925 101.874 -2.237
year 4.453 1.646 2.705

Residual standard error: 57.3 on 22 degrees of freedom

As Figure 6.4 shows, in this example there is a batch of outliers from a different
population in the late 1960s, and these should be rejected completely, which the
Huber M-estimators do not. Let us try a re-descending estimator.

> summary(rlm(calls ~ year, data = phones, psi = psi.bisquare),

cor = F)
Coefficients:
Value Std. Error t value
(Intercept) -52.302 2.753 -18.999
year 1.098 0.044 24.685

Residual standard error: 1.65 on 22 degrees of freedom

This happened to work well for the default least-squares start, but we might want
to consider a better starting point, such as that giveadyt = "1ts".

Resistant regression

M-estimators are not very resistant to outliers unless they have redescefding
functions, in which case they need a gaidrting point. A succession of more
resistant regression estimators was defined in the 1980s. The first to become
popular was

mbin meidiariyz- — x;b|?

called thdeast median of squares (LMS) estimator. The square is necessary if
is even, when the central median is tak&his fit is very resistant, and needs no
scale estimate. It is, however, very inefficient, converging at tdtgn. Further-
more, it displays marked sensitivity to central data values; see Hettmansperger
and Sheather (1992) and Davies (19833).

Rousseeuw suggested least trimmed squares (LTS) regression:

q
- 2
min E 1 ly: — bl (;

=

160 Linear Satistical Models

as this is more efficient, but sharesthame extreme resistance. The recom-
mended sum is over the smallest= | (n +p+1)/2| squared residuals. (Earlier
accounts differed.)

This was followed byS-estimation, in which the coefficients are chosen to

find the solution to .
Yi — ;b
> X(*COS) =(n—-p)B

=1
with smallest scales. Here x is usually chosen to be the integral of Tukey’s
bisquare function

x(u) = u® — 3u* 4 3u?, |u| < 1, 1, Jul =21

co = 1.548 and 8 = 0.5 is chosen for consistency at the normal distribution of
errors. This gives efficiency 28.7% at the normal, which is low but better than
LMS and LTS.

In only a few special cases (such as LMS for univariate regression with inter-
cept) can these optimizatigproblems be solved exactly, and approximate search
methods are used.

S implementation

Various versions 08-PLUS have (different) implementations of LMS and LTS
regression in functiondmsreg and 1tsreg®, but as these are not fully doc-
umented and give different results inffdrent releases, we prefer our function
1gs.” The default method is LTS.

> 1gs(calls ~ year, data = phones)

Coefficients:
(Intercept) year
-56.2 1.16

Scale estimates 1.25 1.13

> 1gs(calls ~ year, data = phones, method = "lms")
Coefficients:

(Intercept) year

-55.9 1.15

Scale estimates 0.938 0.909

> 1gs(calls ~ year, data = phones, method = "S")

Coefficients:
(Intercept) year
-52.5 1.1

Scale estimates 2.13

Two scale estimates are given for LMS and LTS: the first comes from the fit
criterion, the second from the variance of the residuals of magnitude no more
than 2.5 times the first scale estimate. All the scale estimates are set up to be

6ln S-PLUS this now uses 10% trimming.
“Adopted byR in its packagelgs .

6.5 Robust and Resistant Regression 161

consistent at the normal, but measure different things for highly non-normal data
(as here).

MM-estimation

It is possible to combine the resistance of these methods with the efficiency of M-
estimation. The MM-estimator proposed by Yohai, Stahel and Zamar (1991) (see
also Marazzi, 1993;9.1.3) is an M-estimator starting at the coefficients given by
the S-estimator and with fixed scale giviey the S-estimator. This retains (for
¢ > c¢g) the high-breakdown point of the S-estimator and the high efficiency at
the normal. At considerable computational expense, this gives the best of both
worlds.

Our functionrlm has an option to implement MM-estimation.

> summary(rlm(calls ~ year, data=phones, method="MM"), cor = F)

Coefficients:
Value Std. Error t value
(Intercept) -52.423 2.916 -17.978
year 1.101 0.047 23.367

Residual standard error: 2.13 on 22 degrees of freedom

S-PLUS has a functionlmRob in library sectionrobust that implements a s+
slightly different MM-estimator with similar properties, and comes with a full set
of method functions, so it can beadroutinely as a replacement fon. Let us
try it on the phones data.

> library(robust, first = T) # S-PLUS only
> phones.lmr <- 1lmRob(calls ~ year, data = phones)
> summary (phones.lmr, cor = F)

Coefficients:
Value Std. Error t value Pr(>|t])
(Intercept) -52.541 3.625 -14.493 0.000
year 1.104 0.061 18.148 0.000

Residual scale estimate: 2.03 on 22 degrees of freedom
Proportion of variation in response explained by model: 0.494

Test for Bias:

Statistics P-value
M-estimate 1.401 0.496
LS-estimate 0.243 0.886
> plot(phones.lmr)

This works well, rejecting all the spurious observations. The ‘test for bias’ is of
the M-estimator against the initial S-estimator; if the M-estimator appears biased
the initial S-estimator is returned.

Library sectionrobust provides a wide range of robust techniques.

162 Linear Satistical Models

Scottish hill races revisited

We return to the data on Scottish hidlages studied in the introduction and Sec-
tion 6.3. There we saw one gross outlier and a number of other extreme observa-
tions.

> hills.1m
Coefficients:
(Intercept) dist climb
-8.992 6.218 0.011048
Residual standard error: 14.676

> hillsl.1m # omitting Knock Hill
Coefficients:
(Intercept) dist climb
-13.53 6.3646 0.011855
Residual standard error: 8.8035

> rlm(time ~ dist + climb, data = hills)
Coefficients:
(Intercept) dist climb
-9.6067 6.5507 0.0082959
Scale estimate: 5.21

> summary(rlm(time ~ dist + climb, data = hills,
weights = 1/dist”2, method = "MM"), cor = F)

Coefficients:
Value Std. Error t value
(Intercept) -1.802 1.664 -1.083
dist 5.244 0.233 22.549
climb 0.007 0.001 9.391

Residual standard error: 4.84 on 32 degrees of freedom

> lgs(time ~ dist + climb, data = hills, nsamp = "exact")
Coefficients:

(Intercept) dist climb

-1.26 4.86 0.00851

Scale estimates 2.94 3.01

Notice that the intercept is no longer significant in the robust weighted fits. By
default 1gs uses a random search, but here exhaustive enumeration is possible,
S0 we use it.

If we move to the model for inverse speed:

> summary(hills2.1lm) # omitting Knock Hill

Coefficients:
Value Std. Error t value Pr(>|t|)
(Intercept) 4.900 0.474 10.344 0.000
grad 0.008 0.002 5.022 0.000

Residual standard error: 1.28 on 32 degrees of freedom

6.6 Bootstrapping Linear Models 163

> summary(rlm(ispeed ~ grad, data = hills), cor = F)

Coefficients:
Value Std. Error t value
(Intercept) 5.176 0.381 13.585
grad 0.007 0.001 5.428

Residual standard error: 0.869 on 33 degrees of freedom
method="MM" results are very similar.
> # S: summary(lmRob(ispeed ~ grad, data = hills))
Value Std. Error t value Pr(>|t|)
(Intercept) 5.082 0.403 12.612 0.000
grad 0.008 0.002 5.0656 0.000

Residual scale estimate: 0.819 on 33 degrees of freedom

> 1gs(ispeed ~ grad, data = hills)

Coefficients:
(Intercept) grad
4.75 0.00805

Scale estimates 0.608 0.643

The results are in close aggment with the least-squareesults after removing
Knock Hill.

6.6 Bootstrapping Linear Models

In frequentist inference we have to consider what might have happened but did
not. Linear models can arise exactly or approximately in a number of ways. The
most commonly considered form is

Y=X0+¢€

in which only € is considered to be random. This supposes that in all (hypothet-
ical) repetitions the same points would have been chosen, but the responses
would vary. This is a plausible assumption for a designed experiment such as the
N, P, K experiment on page 165 and for an observational study such as Quine’s
with prespecified factors. It is less clearly suitable for the Scottish hill races, and
clearly not correct for Whiteside’s gas consumption data.

Another form of regression is sometimes referred to agdahdom regressor
case in which the pairéz;, y;) are thought of as a random sample from a pop-
ulation and we are interested in the regression funcfin) = E(Y | X =)
which is assumed to be linear. This seems appropriate for the gas consumption
data. However, it is common to perform conditional inference in this case and
condition on the observeds, converting this to a fixed-design problem. For ex-
ample, in the hill races the inferencesadin depend on whether certain races,
notably Bens of Jura, were included in the sample. As they were included, con-
clusions conditional on the set of races seems most pertinent. (There are other

164 Linear Satistical Models

ways that linear models can arise, incluglicalibration problems and where both
x andy are measured with error about a true linear relationship.)

These considerations are particularly relevant when we consider bootstrap re-
sampling. The most obvious form of bootstrapping is to randomly sample pairs
(x4, ;) with replacementwhich corresponds to randomly weighted regressions.
However, this may not be appropriate in not mimicking the assumed random vari-
ation and in some examples in producing singular fits with high probability. The
main alternativemodel-based resampling, is to resample the residuals. After fit-
ting the linear model we have

yi=zif+e

and we create a new datasetiy= z; 3+ ef where the(ef) are resampled with
replacement from the residuals;). There are a number of possible objections to
this procedure. First, the residuals need not have mean zero if there is no intercept
in the model, and it is usual to subtract their mean. Second, they do not have the
correct variance or even the same vac@anThus we can adjust their variance by
resampling themodified residuals r; = e;/+/1 — h;;, which have variancer?

from (6.3).

We see bootstrapping asuirgg little place in least-squares regression. If the
errors are close to normal, the standard theory suffices. If not, there are better
methods of fitting than least-squares,p@rhaps the data should be transformed
as in thequine dataset on page 171.

The distribution theory for the estimated coefficients in robust regression is
based on asymptotic theory, so we couse bbootstrap estimates of variability as
an alternative. Resampling the residuals seems most appropriate fsiidhes
data.

library(boot)
fit <- 1lm(calls ~ year, data = phones)
ph <- data.frame(phones, res = resid(fit), fitted = fitted(fit))
ph.fun <- function(data, i) {
d <- data
d$calls <- d$fitted + d$res[i]
coef (update(fit, data=d))
}

(ph.1lm.boot <- boot(ph, ph.fun, R = 999))

original bias std. error

tl* -260.0592 0.210500 95.3262
t2% 5.0415 -0.011469 1.5385

fit <- rlm(calls ~ year, method = "MM", data = phones)
ph <- data.frame(phones, res = resid(fit), fitted = fitted(fit))
(ph.rlm.boot <- boot(ph, ph.fun, R = 999))

8Davison and Hinkley (1997) call thisase-based resampling.

6.7 Factorial Designs and Designed Experiments 165

Table 6.1: Layout of a classic N, P, K fractional factorial design. The response is yield (in
Ibs/(1/70)acre-plot).

pk np — nk n npk k p
49.5 62.8 46.8 57.0 62.0 48.8 45.5 44.2
n npk k p np — nk pk
59.8 58.5 55.5 56.0 52.0 51.5 49.8 48.8
p npk n k nk np pk —

62.8 55.8 69.5 55.0 57.2 59.0 53.2 56.0

original bias std. error
t1x -52.4230 2.354793 26.98130
t2% 1.1009 -0.014189 0.37449

(The r1m bootstrap runs took about fifteen minufeand readers might like to
start with a smaller number of resamples.) These results suggest that the asymp-
totic theory forrim is optimistic for this example, but as the residuals are clearly
serially correlated the validity of the bootstrap is equally in doubt. Statistical in-
ference really does depend on what opesiders might have happened but did
not.

The bootstrap results can be investigated further by using, andboot . ci
will give confidence intervals for the coefficients. The robust results have very
long tails.

6.7 Factorial Designs and Designed Experiments

Factorial designs are powerful tools in the design of experiments. Experimenters
often cannot afford to perform all the runs needed for a complete factorial ex-
periment, or they may not all be fitted into one experimental block. To see what
can be achieved, consider the following N, P,riti(ogen, phosphate, potassium)
factorial experiment on the growth of peas which was conducted on six blocks
shown in Table 6.1.

Half of the design (technically a fractional factorial design) is performed in
each of six blocks, so each half occurs thigees. (If we consider the variables to
take valuest-1, the halves are defined by even or odd parity, equivalently product
equal to+1 or —1.) Note that the NPK interaction cannot be estimated as it is
confounded with block differences, specifically with, + b3 + by — by — bs — bg).

An ANOVA table may be computed by

> (npk.aov <- aov(yield ~ block + N*P*K, data = npk))

Terms:

9UsingS-PLUS underLinux; R took 90 seconds.

166 Linear Satistical Models

block N P K N:P N:K
Sum of Squares 343.29 189.28 8.40 95.20 21.28 33.14
Deg. of Freedom 5 1 1 1 1 1

P:K Residuals
Sum of Squares 0.48 185.29
Deg. of Freedom 1 12

Residual standard error: 3.9294
1 out of 13 effects not estimable
Estimated effects are balanced
> summary (npk.aov)
Df Sum of Sq Mean Sq F Value Pr(F)

block 5 343.29 68.66 4.447 0.01594
N 1 189.28 189.28 12.259 0.00437
P 1 8.40 8.40 0.544 0.47490
K 1 95.20 95.20 6.166 0.02880
N:P 1 21.28 21.28 1.378 0.26317
N:K 1 33.14 33.14 2.146 0.16865
P:K 1 0.48 0.48 0.031 0.86275
Residuals 12 185.29 15.44
> alias(npk.aov)
Complete
(Intercept) blockl block2 block3 block4 block5 N P K
N:P:K 1 0.33 0.17 -0.3 -0.2
N:P N:K P:K
N:P:K

> coef (npk.aov)
(Intercept) blockl block2 block3 block4 blockb
54.875 1.7125 1.6792 -1.8229 -1.0137 0.295
N P K N:P N:K P:K
2.8083 -0.59167 -1.9917 -0.94167 -1.175 0.14167

Note how theN:P:K interaction is silently omitted in the summary, although its
absence is mentioned in printingk.aov. The alias command shows which
effect is missing (the particular combinations corresponding to the use of Helmert
contrasts for the factoslock).

Only theN andX main effects are significant (we ignore blocks whose terms
are there precisely because we expeenttio be important and so we must allow
for them). For two-level factors the Helmert contrast is the same as the sum
contrast (up to sign) giving-1 to the first level andt-1 to the second level. Thus
the effects of adding nitrogen and potassium &@2 and —3.98, respectively.

This interpretation is easier to see with treatment contrasts:

> options(contrasts = c("contr.treatment", "contr.poly"))
> npk.aovl <- aov(yield ~ block + N + K, data = npk)
> summary.lm(npk.aovl)

Coefficients:

6.7 Factorial Designs and Designed Experiments 167

Value Std. Error t value Pr(>|tl)

N 5.617 1.609 3.490 0.003
K -3.983 1.609 -2.475 0.025

Residual standard error: 3.94 on 16 degrees of freedom

Note the use ofsummary.lm to give the standard errors. Standard errors of
contrasts can also be found from the functie®. contrast. The full form is
quite complex, but a simple use is:

> se.contrast(npk.aovl, list(N == "0", N == "1"), data = npk)
Refitting model to allow projection
[1] 1.6092

For highly regular designs such as this standard errors may also be found along
with estimates of means, effects and other quantities usidgl . tables.

> model.tables(npk.aovl, type = "means", se = T)

N
0 1
52.067 57.683

Standard errors for differences of means
block N K
2.7872 1.6092 1.6092

replic. 4.0000 12.0000 12.0000

Generating designs

The three functior’§ expand.grid, fac.design andoa.design can each be
used to construct designs such as our example.

Of these, expand.grid is the simplest. It is used in a similar way to
data.frame; the arguments may be named and the result is a data frame with
those names. The columns contain alntmnations of values for each argument.

If the argument values are numeric the column is numeric; if they are anything
else, for example, character, the column is a factor. Consider an example:

> mp <= c("=", "+")

> (NPK <- expand.grid(N = mp, P = mp, K = mp))
N P K

1___

2+ - -

3-+ -

4 + + -

5 - - +

6 + — +

7 -+ +

8 + + +

100nly expand.grid isinR.

168 Linear Satistical Models

Note that the first column changes fastest and the last slowest. This is a single
complete replicate.

Our example used three replicates, egglit into two blocks so that the block
comparison is confounded with the highest-order interaction. We can construct
such a design in stages. First we find a half-replicate to be repeated three times
and form the contents of three of the blocks. The simplest way to do this is to use
fac.design:

blocks13 <- fac.design(levels = c(2, 2, 2),
factor= list(N=mp, P=mp, K=mp), rep = 3, fraction = 1/2)

The first two arguments give the numbers of levels and the factor names and level
labels. The third argument gives the number of replications (default 1). The
fraction argument may only be used f@P factorials. It may be given either

as a small negative power of 2, as here, or dsfiming contrast formula. When
fraction is numerical the function chooses a defining contrast that becomes the
fraction attribute of the result. For half-replicates the highest-order interaction
is chosen to be aliased with the mean. To find the complementary fraction for
the remaining three blocks we need to use the defining contrast formula form for
fraction:

blocks46 <- fac.design(levels = c(2, 2, 2),
factor = list(N=mp, P=mp, K=mp), rep = 3, fraction = ~ -N:P:K)

(This is explained in the following.) To complete our design we put the blocks
together, add in th@lock factor and randomize:

NPK <- design(block = factor(rep(1:6, each = 4)),
rbind (blocks13, blocks46))

i <- order(runif (6) [NPK$block], runif(24))

NPK <- NPK[i,] # Randomized

Using design instead ofdata.frame creates an object of clasksign that
inherits fromdata. frame. For most purposes designs and data frames are equiv-
alent, but some generic functions suctpast, formula andalias have useful
design methods.

Defining contrast formulae resemble model formulae in syntax only; the
meaning is quite distinct. There is no left-hand side. The right-hand side con-
sists of colon products of factors only, separated+bypr - signs. A plus (or
leading blank) specifies that the treatments vgtisitive signs for that contrast
are to be selected and a minus those wighative signs. A formula such as
~A:B:C-A:D:E specifies a quarter-replicate consisting of the treatments that have
a positive sign in theABC' interaction and a negative sigh iD E.

Box, Hunter and Hunter (197812.5) consider 2”~* design used for an
experiment in riding up a hill on a bicycle. The seven factors are Seat (up or
down), Dynamo (off or on), Handlebars (up or down), Gears (low or medium),
Raincoat (on or off), Breakfast (yes or no) and Tyre pressure (hard or soft). A
resolution Il design was used, so the main effects are not aliased with each other.

6.8 An Unbalanced Four-Way Layout 169

Such a design cannot be constructed using a numerical fractibpadndesign,
so the defining contrasts have to be known. Bbal. use the design relations:

D=AB, E=AC, F=BC, G=ABC

which meanthatdBD, ACE, BCF and ABCG are all aliased with the mean,
and form the defining contrasts of the fraction. Whether we choose the positive
or negative halves is immaterial here.
> lev <- rep(2, 7)
> factors <- list(S=mp, D=mp, H=mp, G=mp, R=mp, B=mp, P=mp)
> (Bike <- fac.design(lev, factors,
fraction = ~ S$:D:G + S:H:R + D:H:B + S:D:H:P))

-
|

+

+

+

+
|
|

+
1
|
I+ +

+ o+
I+
+ 1

0N O W
+ o+ o+ o+
+ + + +

Fraction: ~ S:D:G + S:H:R + D:H:B + S:D:H:P

(We choseP for pressure rather tham for tyres sinceT and F are reserved
identifiers.)
We may check the symmetry of the design ustregplications:
> replications(~."2, data = Bike)
SDHGRBPS:DS:HS:GS:R S:BS:PD:HD:GD:R D:BD:P H:G
4444444 2 2 2 2 2 2 2 2 2 2 2 2
H:R H:B H:P G:R G:B G:P R:B R:P B:P
2 2 2 2 2 2 2 2 2
Fractions may be specified either in a callftac . design or subsequently using
the fractionate function.
The third function,oa.design, provides some resolution Il designs (also
known asmain effect plans or orthogonal arrays) for factors at two or three levels.
Only low-order cases are provided, but these are the most useful in practice.

6.8 An Unbalanced Four-Way Layout

Aitkin (1978) discussed an observational study of S. Quine. The response is the
number of days absent from school in a year by children from a large town in
rural New South Wales, Australia. Thohildren were classified by four factors,

namely,
Age 4 levels: primary, first, second or third form
Eth 2 levels: aboriginal or non-aboriginal
Lrn 2 levels: slow or average learner
Sex 2 levels: male or female.

170 Linear Satistical Models

The dataset is included in the paper of Aitkin (1978) and is available as data
frame quine in MASS. This has been explored several times already, but we now
consider a more formal statistical analysis.

There were 146 children in the study. The frequencies of the combinations of
factors are

> attach(quine)
> table(Lrn, Age, Sex, Eth)

, » F, A , » F, N

FO F1 F2 F3 FO F1 F2 F3
AL 4 5 1 9 AL 4 6 110
SL 110 8 O SL 111 9 0
, » M, A , » M, N

FO F1 F2 F3 FO F1 F2 F3
AL 5 2 7 7 AL 6 2 7 7
SL 3 3 4 O SL 3 7 3 O

(The output has been slightly rearrangedstive space.) The classification is
unavoidably very unbalanced. There are no slow learners in fegmbut all

28 other cells are non-empty. In his paper Aitkin considers a normal analysis
on the untransformed response, but in the reply to the discussion he chooses a
transformed responsiyg(Days+ 1).

A casual inspection of the data shows that homoscedasticity is likely to be
an unrealistic assumption on the original scale, so our first step is to plot the cell
variances and standard detias against the cell means.

Means <- tapply(Days, list(Eth, Sex, Age, Lrn), mean)

Vars <- tapply(Days, list(Eth, Sex, Age, Lrn), var)

SD <- sqrt(Vars)

par(mfrow = c(1, 2))

plot(Means, Vars, xlab = "Cell Means", ylab = "Cell Variances")
plot(Means, SD, xlab = "Cell Means", ylab = "Cell Std Devn.")

Missing values are silently omitted from the plot. Interpretation of the result in
Figure 6.5 requires some caution becauséhefsmall and widely different de-
grees of freedom on which each variance is based. Nevertheless the approximate
linearity of the standard deviations against the cell means suggests a logarithmic
transformation or something similar is appropriate. (See, for example, Rao, 1973,
§69.)

Some further insight on the transformation needed is provided by considering
a model for the transformed observations

y(x):{(y’\—l)/A A#0
logy A=0

where herey = Days+ «. (The positive constant is added to avoid problems
with zero entries.) Rather than includeas a second parameter we first consider
Aitkin’s choice of a = 1. Box and Cox (1964) show that the profile likelihood
function for X is R

L()\) = const— ZlogRSYz")

6.8 An Unbalanced Four-Way Layout 171

% N
o
0 3 & &
3 z o
& S a8«
g8 e
> 5 n 2
Z g 2
8 ¥ 8 o
o
&7 o |
o 4) L] o 4
10 20 30 10 20 30
Cell Means Cell Means
Figure 6.5: Two diagnostic plots for the Quine data.
where :(V) = 4 /gA=1 "4 is the geometric mean of the observations and

RSSzW) is the residual sum of squares for the regression(of.

Box & Cox suggest using the profile likelihood function for the largest linear
model to be considered as a guide in choosing a value\fowhich will then
remain fixed for any remaining analyses. ldeally other considerations from the
context will provide further guidance in the choice af and in any case it is
desirable to choose easily interpretable values such as square-root, log or inverse.

Our MASS functionboxcox calculates and (optionally) displays the Box—Cox
profile likelihood function, together with a horizontal line showing what would be
an approximate 95% likelihood ratio confidence interval forThe function is
generic and several calling protocols are allowed but a convenient one to use here
is with the same arguments as together with an additional (named) argument,
lambda, to provide the sequence at which the marginal likelihood is to be evalu-
ated. (By default the result is extended using a spline interpolation.)

Since the dataset has four empty cells the full matigl*Sex*Age*Lrn has a
rank-deficient model matrix. Hence &3PLUS we must usesingular.ok = T S+
to fit the model.

boxcox(Days+1l ~ Eth*Sex*Age*Lrn, data = quine, singular.ok = T,
lambda = seq(-0.05, 0.45, len = 20))

(Alternatively the first argument malye a fitted model object that supplies all
needed information apart frorbambda.) The result is shown on the left-hand
panel of Figure 6.6 which suggests strongly that a log transformation is not opti-
mal whena = 1 is chosen. An alternative one-pameter family of transforma-
tions that could be considered in this case is

t(y, o) = log(y + @)

Using the same analysis as presented in Box and Cox (1964) the profile log like-
lihood for « is easily seen to be

z(a) = const— & log RSYlog(y + «) Z log(y +)

172 Linear Satistical Models

log-Likelihood
log Likelihood

lambda

Figure 6.6: Profile likelihood for a Box—Cox transformation model with displacement
a =1, left, and a displaced log transformation model, right.

It is interesting to see how this may be calculated directly using low-level tools,
in particular the functiongr for the QR-decomposition andr.resid for or-
thogonal projection ontche residual space. Readers are invited to look at our
functionslogtrans.default andboxcox.default.

logtrans(Days ~ Age*Sex*Eth*Lrn, data = quine,
alpha = seq(0.75, 6.5, len = 20), singular.ok = T)

The result is shown in the right-hancmpel of Figure 6.6. If a displaced log
transformation is chosen a value= 2.5 is suggested, and we adopt this in our
analysis. Note thaty = 1 is outside the notional 95% confidence interval. It can
also be checked that withh = 2.5 the log transform is well within the range of
reasonable Box—Cox transformations to choose.

Model selection

The complete modelEth*Sex*Age*xLrn, has a different parameter for each
identified group and hence contains jadissible simpler models for the mean as
special cases, but has little predictive or explanatory power. For a better insight
into the mean structure we need to find more parsimonious models. Before con-
sidering tools to prune or extend regression models it is useful to make a few
general points on the process itself.

Marginality restrictions

In regression models it is usually the case that not all terms are on an equal footing
as far as inclusion or removal is concerned. For example, in a quadratic regression
on a single variabler one would normally consider removing only the highest-
degree termg?, first. Removing the first-degree term while the second-degree
one is still present amounts to forcing the fitted curve to be flat at 0, and
unless there were some good reason from the context to do this it would be an
arbitrary imposition on the model. Another way to view this is to note that if
we write a polynomial regression in terms of a new variabfe= = — o the

6.8 An Unbalanced Four-Way Layout 173

model remains in predictive terms the same, but only the highest-order coefficient
remains invariant. If, as is usually the case, we would like our model selection
procedure not to depend on the arbitrary choice of origin we must work only with
the highest-degree terms at each stage.

The linear term inz is said to bemarginal to the quadratic term, and the
intercept term is marginal to both. In a similar way if a second-degree term in two
variables,z, x», is present, any linear terms in either variable or an intercept term
are marginal to it.

There are circumstances where a regression through the origin does make
sense, but in cases where the origin is arbitrary one would normally only consider
regression models where for each term present all terms marginal to it are also
present.

In the case of factors the situation is even more clear-cut. A two-factor in-
teractiona:b is marginal to any higher-order interaction that containand b.

Fitting a model such aa + a:b leads to a model matrix where the columns
corresponding ta:b are extended to compensate for the absent marginal term,
b, and the fitted values are the same as if it were present. Fitting models with
marginal terms removed such as wiihb - b generates a model with no read-

ily understood statistical meanitigbut updating models specified in this way
using update changes the model matrix so that the absent marginal term again
has no effect on the fitted model. In other words, removing marginal factor terms
from a fitted model is either statistically meaningless or futile in the sense that the
model simply changes its parame#tion to something equivalent.

Variable selection for the Quine data

The anova function when given a single fitted-model object argument constructs

a sequential analysis of variance table. That is, a sequence of models is fitted
by expanding the formula, arranging the terms in increasing order of marginality
and including one additional term for eaw of the table. The process is order-
dependent for non-orthogonal designs and several different orders may be needed
to appreciate the analysis fully if theon-orthogonality is severe. For an orthog-
onal design the process is not order-dependent provided marginality restrictions
are obeyed.

To explore the effect of adding or dropping terms from a model our two func-
tions addterm and dropterm are usually more convenient. These allow the
effect of, respectively, adding or removing individual terms from a model to be
assessed, where the model is defined by a fitted-model object given as the first
argument. Foraddterm a second argument is required to specify the scope of
the terms considered for inclusion. This may be a formula or an object defining a
formula for a larger model. Terms are included or removed in such a way that the
marginality principle for factor terms is obeyed; for purely quantitative regressors
this has to be managed by the user.

Marginal terms are sometimes removed in this way in order to calculate what are known as
‘Type Il sums of squares’ but we have yet to see a situation where this makes compelling statisti-
cal sense. If they are needed, they can be computeshiayary . aov in S-PLUS.

174 Linear Satistical Models

Both functions are generic and compute the change in AIC (Akaike, 1974)
AIC = —2 maximized log-likelihoodt 2 # parameters

Since the log-likelihood is defined only up to a constant depending on the data,
this is also true of AIC. For a regression model withobservationsp parame-
ters and normally-distributed errors the log-likelihood is

L(B,0%y) = const— 5 loga® — 35|y — X8|
and on maximizing ovepy we have
L(B, o%;y) = const— 5 log o #RSS
Thus if o2 is known, we can take

AIC = RSS+ 2p 4+ const

o2

but if o2 is unknown,

L(B, 7%, y) = const— %log'&Z -2 52 =RSYn

and so
AIC = nlog(RSS/n) + 2p + const

Forknown 2 itis conventional to use Mallows”),,
C, =RSYo*+2p—n

(Mallows, 1973) and in this caseddterm and dropterm label their output as
Cp.

For an example consider removing the four-way interaction from the complete
model and assessing which three-way terms might be dropped next.

> quine.hi <- aov(log(Days + 2.5) ~ .74, quine)
> quine.nxt <- update(quine.hi, . ~ . - Eth:Sex:Age:Lrn)
> dropterm(quine.nxt, test = "F")

Single term deletions

Df Sum of Sq RSS AIC F Value Pr(F)

<none> 64.099 -68.184
Eth:Sex:Age 3 0.9739 65.073 -71.982 0.6077 0.61125
Eth:Sex:Lrn 1 1.5788 65.678 -66.631 2.9557 0.08816
Eth:Age:Lrn 2 2.1284 66.227 -67.415 1.9923 0.14087

Sex:Age:Lrn 2 1.4662 65.565 -68.882 1.3725 0.25743

Clearly droppingEth: Sex: Age most reduces AIC but droppingth: Sex:Lrn
would increase it. Note that only non-marginal terms are included; none are sig-
nificant in a conventional’-test.

Alternatively we could start from the simplest model and consider adding
terms to reduce’,,; in this case the choice of scale parameter is important, since
the simple-minded choice is inflated and may over-penalize complex models.

6.8 An Unbalanced Four-Way Layout 175

> quine.lo <- aov(log(Days+2.5) ~ 1, quine)
> addterm(quine.lo, quine.hi, test = "F")
Single term additions

Df Sum of Sq RSS AIC F Value Pr(F)

<none> 106.79 -43.664
Eth 1 10.682 96.11 -57.052 16.006 0.00010
Sex 1 0.597 106.19 -42.483 0.809 0.36981
Age 3 4.747 102.04 -44.303 2.202 0.09048
Lrn 1 0.004 106.78 -41.670 0.006 0.93921

It appears that onlgth and Age might be useful, although in fact all factors are
needed since some higher-way interactions lead to large decreases in the residual
sum of squares.

Automated model selection

Our functionstepAIC may be used to automate the process of stepwise selection.
It requires a fitted model to define the starting process (one somewhere near the
final model is probably advantageous), a list of two formulae defining the upper
(most complex) and lower (most simple) models for the process to consider and
a scale estimate. If a large model &dexted as the starting point, tkeope and
scale arguments have generally reasonable defaults, but for a small model where
the process is probably to be one of adding terms, they will usually need both to
be supplied. (A further argumendirection, may be used to specify whether
the process should only add terms, only remove terms, or do either as needed.)
By default the function produces a verbose account of the steps it takes which
we turn off here for reasons of space, but which the user will often care to note.
The anova component of the result shows the sequence of steps taken and the
reduction in AIC orC,, achieved.

> quine.stp <- stepAIC(quine.nxt,
scope = list(upper = ~Eth*Sex*Age*Lrn, lower = ~1),
trace = F)

> quine.stp$anova

Step Df Deviance Resid. Df Resid. Dev AIC
1 120 64.099 -68.184
2 - Eth:Sex:Age 3 0.9739 123 65.073 -71.982
3 - Sex:Age:Lrn 2 1.5268 125 66.600 -72.597

At this stage we might want to look further at the final model from a significance
point of view. The result ofstepAIC has the same class as its starting point
argument, so in this cas@ropterm may be used to check each remaining non-
marginal term for significance.

> dropterm(quine.stp, test = "F")
Df Sum of Sq RSS AIC F Value Pr(F)
<none> 66.600 -72.597
Sex:Age 3 10.796 77.396 -56.663 6.7542 0.00029
Eth:Sex:Lrn 1 3.032 69.632 -68.096 5.6916 0.01855
Eth:Age:Lrn 2 2.096 68.696 -72.072 1.9670 0.14418

176 Linear Satistical Models

The termEth:Age:Lrn is not significant at the conventional 5% significance
level. This suggests, correctly, that selecting terms on the basis of AIC can be
somewhat permissive in its choice of terms, being roughly equivalent to choosing
an F-cutoff of 2. We can proceed manually

> quine.3 <- update(quine.stp, . ~ . - Eth:Age:Lrn)
> dropterm(quine.3, test = "F")
Df Sum of Sq RSS AIC F Value Pr(F)
<none> 68.696 -72.072
Eth:Age 3 3.031 71.727 -71.768 1.8679 0.13833
Sex:Age 3 11.427 80.123 -55.607 7.0419 0.00020
Age:Lrn 2 2.815 71.511 -70.209 2.6020 0.07807
Eth:Sex:Lrn 1 4.696 73.391 -64.419 8.6809 0.00383
> quine.4 <- update(quine.3, . ~ . - Eth:Age)
> dropterm(quine.4, test = "F")
Df Sum of Sq RSS AIC F Value Pr(F)
<none> 71.727 -71.768
Sex:Age 3 11.566 83.292 -55.942 6.987 0.000215
Age:Lrn 2 2.912 74.639 -69.959 2.639 0.075279
Eth:Sex:Lrn 1 6.818 78.545 -60.511 12.357 0.000605
> quine.5 <- update(quine.4, . ~ . - Age:Lrn)

> dropterm(quine.5, test = "F")

Model:
log(Days + 2.5) ~ Eth + Sex + Age + Lrn + Eth:Sex + Eth:Lrn
+ Sex:Age + Sex:Lrn + Eth:Sex:Lrn
Df Sum of Sq RSS AIC F Value Pr(F)
<none> 74.639 -69.959
Sex:Age 3 9.9002 84.539 -57.774 5.836 0.0008944
Eth:Sex:Lrn 1 6.2988 80.937 -60.130 11.140 0.0010982

or by settingk = 4 in stepAIC. We obtain a model equivalent $@x/ (Age +
Eth*Lrn) which is the same as that found by Aitkin (1978), apart from his choice
of a =1 for the displacement constant. (However, when we consider a negative
binomial model for the same data in Section 7.4 a more extensive model seems to
be needed.)

Standard diagnostic checks on the residuals from our final fitted model show
no strong evidence of any failure of the assumptions, as the reader may wish to
verify.

It can also be verified that had we started from a very simple model and
worked forwards we would have stopped much sooner with a much simpler
model, even using the same scale eatan This is because the major reduc-
tions in the residual sum of squares only occur when the third-order interaction
Eth:Sex:Lrn is included.

There are other tools i8-PLUS for model selection callegtepwise and
leaps,*? but these only apply for quantitative regressors. There is also no possi-
bility of ensuring that marginality restrictions are obeyed.

12There are equivalent functions in tRepackageleaps on CRAN.

6.9 Predicting Computer Performance 177

log-Likelihood
-1300 -1250

-1350
log-Likelihood
-1450 -1400 -1350 -1300 -1250

-1400

Figure6.7: Box—Cox plots for thecpus data. Left: original regressors. Right: discretized
regressors.

6.9 Predicting Computer Performance

Ein-Dor and Feldmesser (1987) studied data on the performance on a benchmark
of a mix of minicomputers and mainframes. The measure was normalized relative
to an IBM 370/158-3. There were six machine characteristics: the cycle time
(nanoseconds), the cache size (Kb), the main memory size (Kb) and number of
channels. (For the latter two there are minimum and maximum possible values;
what the actual machine tested had ispedfied.) The original paper gave a
linear regression for the square root of performance, but log scale looks more
intuitive.

We can consider the Box—Cox family of transformations, Figure 6.7.

boxcox(perf ~ syct + mmin + mmax + cach + chmin + chmax,
data = cpus, lambda = seq(0, 1, 0.1))

which tends to suggest a power of around 0.3 (and excludes both 0 and 0.5 from
its 95% confidence interval). However, this does not allow for the regressors to be
transformed, and many of them would be most naturally expressed on log scale.
One way to allow the variables to be transformed is to discretize them; we show
a more sophisticated approach in Section 8.8.

cpusl <- cpus
attach(cpus)
for(v in names(cpus) [2:7])
cpusl[[v]] <- cut(cpus[[v]], unique(quantile(cpus[[v]])),
include.lowest = T)
detach()
boxcox(perf ~ syct + mmin + mmax + cach + chmin + chmax,
data = cpusl, lambda = seq(-0.25, 1, 0.1))

which does give a confidence interval including zero.

The purpose of this study is to predict computer performance. We randomly
select 100 examples for fitting the models and test the performance on the remain-
ing 109 examples.

178 Linear Satistical Models

set.seed(123)
cpus2 <- cpus[, 2:8] # excludes names, authors’ predictions
cpus.samp <- sample(1:209, 100)
cpus.lm <- 1m(loglO(perf) ~ ., data = cpus2[cpus.samp,])
test.cpus <- function(fit)
sqrt (sum((logl0(cpus2[-cpus.samp, "perf"]) -
predict(fit, cpus2[-cpus.samp,]))~2)/109)
> test.cpus(cpus.1lm)
[1] 0.21295
> cpus.lm2 <- stepAIC(cpus.lm, trace = F)
> cpus.lm2$anova

V V. V Vv V

Step Df Deviance Resid. Df Resid. Dev AIC
1 93 3.2108 -329.86
2 - syct 1 0.013177 94 3.2240 -331.45
> test.cpus(cpus.lm2)
[1] 0.21711

So selecting a smaller model does not improve the performance on this random
split. We consider a variety of non-linear mdsifor this example in later chapters.

6.10 Multiple Comparisons

As we all know, the theory op-values of hypothesis tests and of the coverage
of confidence intervals applies to pré&apned analyses. However, the only cir-
cumstances in which an adjustment is routinely made for testing after looking at
the data is in multiple comparisons of contrasts in designed experiments. This is
sometimes known gsost hoc adjustment.

Consider the experiment on yields of barley in our dataseter.'® This has
the yields of five varieties of barley at six experimental farms in both 1931 and
1932; we average the results for the two years. An analysis of variance gives

> immer.aov <- aov((Y1l + Y2)/2 ~ Var + Loc, data = immer)
> summary (immer.aov)

Df Sum of Sq Mean Sq F Value Pr(F)

Var 4 2655 663.7 5.989 0.0024526

Loc 5 10610 2122.1 19.148 0.0000005
Residuals 20 2217 110.8

The interest is in the difference ineld between varieties, and there is a
statistically significant difference.We can see the mean yields by a call to
model.tables.

> model.tables(immer.aov, type = "means", se = T, cterms = "Var")
Var

M P S T v
94.39 102.54 91.13 118.20 99.18

13The Trellis datasebarley discussed in Cleveland (1993) is a more extensive version of the
same dataset.

6.10 Multiple Comparisons 179

M-P -————— ~——F-——-)

M-S c————te&————— B
M-T c———— -————— 9
M-V c————- ~—————9

P-S c—t———®—————9)
P-T -F—————— *-————— -

P-v - ——— -

ST - -~ ————— -
S-v - - —————-)

TV - -~ ————— -

-50 -40 -30 -20 -10 0 10 20 30 40
simultaneous 95 % confidence limits, Tukey method
response variable: Var

Figure 6.8: Simultaneous 95% confidence intervals for variety comparisons ititfer
dataset.

Standard errors for differences of means
Var
6.078
replic. 6.000

This suggests that variety is different from all the others, as a pairwise signif-
icant difference at 5% would exceetl078 x t20(0.975) ~ 12.6; however the
comparisons to be made have been selected after looking at the fit.
Functionmulticomp# allows us to computsimultaneous confidence inter-
vals in this problem, that is, confidence intervals such that the probability that
they cover the true values for all of the comparisons considered is bounded above
by 5% for 95% confidence intervals. We can also plot the confidence intervals
(Figure 6.8) by

> multicomp(immer.aov, plot = T) # S-PLUS only
95 7 simultaneous confidence intervals for specified
linear combinations, by the Tukey method

critical point: 2.9925
response variable: (Y1 + Y2)/2

intervals excluding O are flagged by ’**x*x’

Estimate Std.Error Lower Bound Upper Bound

M-P -8.15 6.08 -26.300 10.00
M-S 3.26 6.08 -14.900 21.40
M-T -23.80 6.08 -42.000 -5.62 *kkk
M-V -4.79 6.08 -23.000 13.40
P-S 11.40 6.08 -6.780 29.60
P-T -15.70 6.08 -33.800 2.53
P-v 3.36 6.08 -14.800 21.50
S-T -27.10 6.08 -45.300 -8.88 *kkk

14pvailable inS-PLUS, but not inR.

180 Linear Satistical Models

S-v -8.05 6.08 -26.200 10.10
T-V 19.00 6.08 0.828 37.20 *kkk

This does not allow us to conclude that varietyhas a significantly different
yield than varietyp.
We can do the Tukey multiple comparison tesRity

> (tk <- TukeyHSD(immer.aov, which = "Var"))
Tukey multiple comparisons of means
95% family-wise confidence level

Fit: aov(formula = (Y1 + Y2)/2 ~ Var + Loc, data = immer)
$Var

diff lwr upr
P-M 8.1500 -10.0376 26.33759
S-M -3.2583 -21.4459 14.92925
T-M 23.8083 5.6207 41.99592
V-M 4.7917 -13.3959 22.97925
S-P -11.4083 -29.5959 6.77925
T-P 15.6583 -2.5293 33.84592
V-P -3.3583 -21.5459 14.82925
T-S 27.0667 8.8791 45.25425
V-S 8.0500 -10.1376 26.23759
V-T -19.0167 -37.2043 -0.82908

> plot(tk)

We may want to restrict the set of comparisons, for example to comparisons
with a control treatment. The dataseits is discussed on page 282; here we
ignore the split-plot structure.

> oatsl <- aov(Y ~ N + V + B, data = oats)
> summary (oatsl)
Df Sum of Sq Mean Sq F Value Pr(F)

N 3 20020 6673.5 28.460 0.000000

vV 2 1786 893.2 3.809 0.027617

B 5 15875 3175.1 13.540 0.000000
Residuals 61 14304 234.5

> multicomp(oatsl, focus = "V") # S-PLUS only

95 % simultaneous confidence intervals for specified
linear combinations, by the Tukey method

critical point: 2.4022
response variable: Y

intervals excluding O are flagged by ’*¥*x’

Estimate Std.Error Lower Bound
Golden.rain-Marvellous -5.29 4.42 -15.90

6.10 Multiple Comparisons 181

Golden.rain-Victory 6.88 4.42 -3.74
Marvellous-Victory 12.20 4.42 1.55
Upper Bound
Golden.rain-Marvellous 5.33
Golden.rain-Victory 17.50
Marvellous-Victory 22.80 *kkxk

> # R: (tk <- TukeyHSD(oatsl, which = "V"))
Tukey multiple comparisons of means
95% family-wise confidence level

Fit: aov(formula = Y ~ N + V + B, data = oats)

$v

diff lwr upr
Marvellous-Golden.rain 5.2917 -5.3273 15.9107
Victory-Golden.rain -6.8750 -17.4940 3.7440
Victory-Marvellous -12.1667 -22.7857 -1.5477
> plot(tk)
> multicomp(oatsl, focus = "N", comparisons = "mcc", control = 1)

Estimate Std.Error Lower Bound Upper Bound

0.2cwt-0.0cwt 19.5 5.1 7.24 31.8 *xkk
0.4cwt-0.0cwt 34.8 5.1 22.60 47 .1 Hxkck
0.6cwt-0.0cwt 44.0 5.1 31.70 56.3 *xkkx

Note that we need to specify the controldévperversely by default the last level
is chosen. We might also want to know if all the increases in nitrogen give signif-
icant increases in yield, which we can examine by

> lmat <- matrix(c(0,-1,1,rep(0, 11), 0,0,-1,1, rep(0,10),
0,0,0,-1,1,rep(0,9)), , 3,
dimnames = 1list(NULL,
c("0.2cwt-0.0cwt", "O0.4cwt-0.2cwt", "O0.6cwt-0.4cwt")))
> multicomp(oatsl, lmat = lmat, bounds = "lower",
comparisons = "none")

Estimate Std.Error Lower Bound

0.2cwt-0.0cwt 19.50 5.1 8.43 *xxk
0.4cwt-0.2cwt 15.30 5.1 4.27 *kkx
0.6cwt-0.4cwt 9.17 5.1 -1.90

There is a bewildering variety of ntatds for multiple comparisons reflected
in the options formulticomp. Miller (1981), Hsu (1996) and Yandell (1997,
Chapter 6) give fuller details. Do remember that this tackles only part of the
problem; the analyses here have been done after selecting a model and specific
factors on which to focus. The allowance for multiple comparisons is only over
contrasts of one selecteddtor in one selected model.

Chapter 7

Generalized Linear Models

Generalized linear models (GLMs) extend linear models to accommodate both
non-normal response distributions and transformations to linearity. (We assume
that Chapter 6 has been read before this chapter.) The essay by Firth (1991) gives
a good introduction to GLMs; the comprehensive reference is McCullagh and
Nelder (1989).

A generalized linear model may be described by the following assumptions.

e There is a responsg observed independently at fixed values of stimulus
variableszy, ..., zp.

e The stimulus variables may only influence the distributionyothrough a
single linear function called thiénear predictor n = S1z1 + - - - + Bpxyp.

e The distribution ofy has density of the form

T (yi; 05, 0) = exp [A; {yibhi — v(0:)} [+ T(yi,] As)] (7.1)

where ¢ is a scale parameter (possibly known), A; is a known prior
weight and parametet; depends upon the linear predictor.

e The meanu is a smooth invertible function of the linear predictor:

p=mn), n=m""(n) =L

The inverse functior((-) is called thdink function.

Note thaté is also an invertible function ofi, in fact = (7/)~!(u) as we show
in the following. If ¢ were known the distribution of would be a one-parameter
canonical exponential family. An unknowp is handled as a nuisance parameter
by moment methods.

GLMs allow a unified treatment of statistical methodology for several impor-
tant classes of models. We consider a few examples.

Gaussian For a normal distributionp = ¢ and we can write
1
log f(y) = {yp — 51* = 39°} — 3 log(27¢)

so 6 = u andv(6) = 62 /2.

183

184 Generalized Linear Models

Table 7.1: Families and link functions. The default link is denoted by D.

Family Name
Link binomial Gamma gaussian lg;iéii;; poisson
logit D
probit .
cloglog °
identity ° D °
inverse
log ° D
1/mu"~2 D
sqrt .

Poisson For a Poisson distribution with mean we have

log f(y) = ylog u — p — log(y!)
sof =logu, ¢ =1 and~(#) = u = e’.

Binomial For a binomial distribution with fixed number of triats and param-
eter p we take the response to he = s/a where s is the number of
‘successes’. The density is

log f(y) = a |ylog] P + log(1 — p)} + log <aay>

-D
so we takeA; = a;, ¢ = 1, 6 to be the logit transform op and () =
—log(1 — p) = log(1 + €?).

The functions supplied wits for handling generalized linear modelling dis-
tributions includegaussian, binomial, poisson, inverse.gaussian and
Gamma.

Each response distribution allows a variety of link functions to connect the
mean with the linear predictor. Those automatically available are given in Ta-
ble 7.1. The combination of response distribution and link function is called the
family of the generalized linear model.

For n observations from a GLM the log-likelihood is

0, 0:Y) =Y [Ai i — 1(00)} /o + T(yi, 0/ Ai)] (7.2)

?

and this has score function fér of
U®) =Ai{yi—~'(0:)} /o (7.3)

From this it is easy to show that

E(yi) =i =7"(6) var (y;) = Aﬁiﬁ’"(@z‘)

7 Generalized Linear Models 185

Table 7.2: Canonical (default) links and variance functions.

Family Canonical link Name | Variance Name
binomial log(p/(1 — w)) logit w(l—p) mu(l-mu)
Gamma -1/ inverse T mu~2
gaussian n identity 1 constant
inverse.gaussian 72/,u2 1/mu”~2 ,u3 mu~3
poisson log log w mu

(See, for example, McCullagh and Nelder, 1982.2.) It follows immediately
that 21()
o7l(0, p3y
E| ——————~ | =0
(96 9)

Hencef and ¢, or more generally3 and ¢, areorthogonal parameters.

The function defined by (1) = v (8()) is called thevariance function.

For each response distribution the link functibe= (v/)~! for which 6 = ¢
is called thecanonical link. If X is the model matrix, sap = X3, it is easy
to see that withy known, A = diagA; and the canonical link thak ™ Ay is
a minimal sufficient statistic fo3. Also using (7.3) the score equations for the
regression parametef® reduce to

XTAy =XTAp (7.4)

This relation is sometimes described by saying that the “observed and fitted values
have the same (weighted) marginal totals.” Equation (7.4) is the basis for certain
simple fitting procedures, for example, Stevens’ algorithm for fitting an additive
model to a non-orthogonal two-way layout by alternate row and column sweeps
(Stevens, 1948), and the Deming and Stephan (194{pm@tive proportional
scaling algorithm for fitting log-linear models to frequency tables (see Darroch
and Ratcliff, 1972).

Table 7.2 shows the canonical links and variance functions. The canonical link
function is the default link for the families catered for by theoftware (except
for the inverse Gaussian, where the factor of two is dropped).

Iterative estimation procedures

Since explicit expressions for the maximum likelihood estimators are not usually
available, estimates must be calculated iteratively. It is convenient to give an
outline of the iterative procedure here; for a more complete description the reader
is referred to McCullagh and Nelder (1982.5, pp. 40ff) or Firth (1991§3.4).
The scheme is sometimes known by the acronym IWLS]téwative weighted
least squares.

An initial estimate to the linear predir is found by some guarded version of
No = £(y). (Guarding is necessary to prevent problems such as taking logarithms

186 Generalized Linear Models

of zero.) Definevorking weights W andworking values z by

_ A (dp)? L Y=k
V(dn> L ET T ugan

Initial values forWW, and z; can be calculated from the initial linear predictor.

At iteration £ a new approximation to the estimate ¢f is found by a
weighted regression of the working valueg on X with weights Wj. This
provides a new linear predictor and hence new working weights and values which
allow the iterative process to continue. The difference between this process and
a Newton—Raphson scheme is that the Hessian matrix is replaced by its expecta-
tion. This statistical simplification was apparently first used in Fisher (1925), and
is often calledrisher scoring. The estimate of the large sample variance@oi‘s
@(XT/WX)*, which is available as a by-product of the iterative process. It is
easy to see that the iteration scheme@odoes not depend on the scale parameter

@.

This iterative scheme depends on the response distribution only through its
mean and variance functions. This has led to ideaguasi-likelihood, imple-
mented in the familyquasi.

The analysis of deviance

A saturated model is one in which the parametefs, or almost equivalently the
linear predictorsy;, are free parameters. It is thelear from (7.3) that the maxi-
mum likelihood estimator of); = 6(y;) is obtained byy; = 7’(0:) = [1; which
is also a special case of (7.4). Denote the saturated modgl by

Assume temporarily that the scale parameteis known and has valué.
Let M be a model involvingp < n regression parameters, and &t be the
maximum likelihood estimate of); under M. Twice the log-likelihood ratio

statistic for testingM within S is given by
D =23 A [{wb:) -7 0w | = {wifi @)} 75)
=1

The quantity D, is called thedeviance of model M, even when the scale pa-
rameter is unknown or is known to have a value other than one. In the latter
case D/, the difference in twice the log-likelihood, is known as tualed
deviance. (Confusingly, sometimes either is called ttesidual deviance, for ex-
ample, McCullagh and Nelder, 1989, p. 119.)

For a Gaussian family with identity link the scale parametes the variance
and D, is the residual sum of squares. Hence in this case the scaled deviance
has distribution

D/ ~ Xy (7.6)
leading to the customary unbiased estimator
. Dy
o= (7.7)

n—p

7.1 Functionsfor Generalized Linear Modelling 187

An alternative estimator is the sum of squares of the standardized residuals di-
vided by the residual degrees of freedom

~_ 1 (yi — ju)?
v n—p ZZ: V(fii)/ A (78)

where V' (u) is the variance function. Note that = ¢ for the Gaussian family,
but in general they differ.

In other cases the distribution (7.6) for the deviance untilermay be ap-
proximately correct suggesting as an approximately unbiased estimatorof
It should be noted that sufficient (if nalways necessary) conditions under which
(7.6) becomes approximately true are that the individual distributions for the com-
ponentsy; should become closer to normal form and the link effectively closer
to an identity link. The approximation will oftemot improve as the sample size
n increases since the number of parameters usdalso increases and the usual
likelihood ratio approximation argumedoes not apply. Nevertheless, (7.6) may
sometimes be a good approximation, for example, in a binomial GLM with large
values ofa;. Firth (1991, p. 69) discusses this approximation, including the ex-
treme case of a binomial GLM with only one trial per case, that is, wijth= 1.

Let My C M be a submodel witly < p regression parameters and consider
testing My within M. If ¢ is known, by the usual likelihood ratio argument
under M, we have a test given by

Dy — Dy
MM 52, (7.9)

¥
where < denotes “is approximately distributed as.” The distribution is exact
only in the Gaussian family with identity link. If» is not known, by analogy
with the Gaussian case it is customary to use the approximate result

(Dany — D)

» 5 Fy g (7.10)
(P(p—Q) pP—q; p

although this must be used with some caution in non-Gaussian cases.

7.1 Functions for Generalized Linear Modelling

The linear predictor part of a gendizd linear model may be specified by a
model formula using the same notation and conventions as linear models. Gener-
alized linear models also require the family to be specified, that is, the response
distribution, the link function and perhaps the variance functiomfiorsi mod-
els.

The fitting function isglm for which the main arguments are

glm(formula, family, data, weights, control)

188 Generalized Linear Models

The family argumentis usually given as the name of one of the standard family
functions listed under “Family Name” in Table 7.1. Where there is a choice of
links, the name of the link may also be supplied in parentheses as a parameter,
for examplebinomial (1ink=probit). (The variance function for thquasi

family may also be specified in this way.) For user-defined families (such as our
negative.binomial discussed in Section 7.4) other arguments to the family
function may be allowed or even required.

Prior weightsA; may be specified using theeights argument.

The iterative process can be controlled by many parameters. The only ones
that are at all likely to need altering amaxit, which controls the maximum
number of iterations and whose default value1of is occasionally too small,
trace which will often be set astrace=T to trace the iterative process, and
epsilon which controls the stopping rule for convergence. The convergence
criterion is to stop if

|devianc&’ — devianc€ V| < ¢(devianc€ V) + ¢)

(This comes from reading th®-PLUS codéand is not as described in Cham-
bers and Hastie, 1992, p. 243.) It is quite often necessary to reduce the tolerance
epsilon whose default value i40~*. Under some circumstances the conver-
gence of the IWLS algorithm can be extremely slow, when the change in deviance
at each step can be small enough for premature stopping to occur with the default
€.

Generic functions with methods foglm objects includecoef, resid,
print, summary and deviance. It is useful to have glm method function
to extract the variance-covariance matrix of the estimates. This can be done using
part of the result oksummary:

vcov.glm <- function(obj) {
so <- summary(obj, corr = F)
so$dispersion * so$cov.unscaled

}

Our library sectioMASS contains the generic function,cov, and methods for
objects of classedm andnls as well asglm.

For glm fitted-model objects thenova function allows an additional ar-
gument test to specify which test is to be used. Two possible choices are
test = "Chisq" for chi-squared tests using (7.9) andst = "F" for F-tests
using (7.10). The defaultisest = "Chisq" for the binomial and Poisson fam-
ilies, otherwisetest = "F".

The scale parametef is used only within thesummary and anova methods
and for standard errors for prediction. It can be supplied viadhgpersion
argument, defaulting to 1 for binomial and Poisson fits, and to (7.8) otherwise.
(See Section 7.5 for estimating in the binomial and Poisson families.)

1R adds 0.1 rather thane .

7.1 Functionsfor Generalized Linear Modelling 189

Prediction and residuals

The predict method function forglm has atype argument to specify what
is to be predicted. The default isype = "1ink" which produces predictions
of the linear predictom. Predictions on the scale of the mean(for example,
the fitted valuesu;) are specified bytype = "response". Thereis ase.fit
argument that if true asks for standard errors to be returned.

For glm models there are four types of residual that may be requested, known
asdeviance, working, Pearson andresponseresiduals. The response residuals are
simply y; — 1;. The Pearson residuals are a standardized version of the response
residuals,(y; — f;)/+/Vi. The working residuals come from the last stage of the
iterative process(y; — fi;) / dpi/dn;. The deviance residualg; are defined
as the signed square roots of the summands of the deviance (7.5) taking the same
sign asy; — [i;.

For Gaussian families all four types of residual are identical. For binomial
and Poisson GLMs the sum of the squared Pearson residuals is the Pearson chi-
squared statistic, which often approximates the deviance, and the deviance and
Pearson residuals are usually then very similar.

Method functions for theresid function have an argumerntype that de-
faults to type = "deviance" for objects of classglm. Other values are
"response", "pearson" or "working";these may be abbreviated to the initial
letter. Deviance residuals are the most useful for diagnostic purposes.

Concepts of leverage and its effect on the fit are as important for GLMs as
they are in linear regression, and are discussed in some detail by Davison and
Snell (1991) and extensively for binomial GLMs by Collett (1991). On the other
hand, they seem less often used, as GLMs are most often used either for simple
regressions or for contingency tableteve, as in designed experiments, high
leverage cannot occur.

Model formulae

The model formula language for GLMs isightly more general than that de-
scribed in Section 6.2 for linear models in that the functidifset may be used.

Its effect is to evaluate its argument and to add it to the linear predictor, equivalent
to enclosing the argument in() and forcing the coefficient to be one.

Note thatoffset can be used with the formulae afn or aov, but it is
completely ignored ir8-PLUS, without any warning. Of course, with ordinary
linear models the same effect can be achieved by subtracting the offset from the
dependent variable, but if the more intuitive formula with offset is desired, it can
be used withglm and thegaussian family. For example, library sectioMASS
contains a datasetnorexia that contains the pre- and post-treatment weights
for a clinical trial of three treatment methods for patients with anorexia. A natural
model to consider would be

ax.1l <- glm(Postwt ~ Prewt + Treat + offset(Prewt),
family = gaussian, data = anorexia)

190 Generalized Linear Models

Sometimes as here a variable is included both as a free regressor and as an offset to
allow a test of the hypothesis that the regression coefficient is one or, by extension,
any specific value.

If we had fitted this model omitting the offset but usi®gstwt - Prewt
on the left side of the formula, predictions from the model would have been of
weight gains, not the actual post-treatment weights. Hence another reason to use
an offset rather than an adjusted dependariable is to allow direct predictions
from the fitted model object.

The default Gaussian family

A call to glm with the defaultgaussian family achieves the same purpose as

a call to 1m but less efficiently. Thegaussian family is not provided with a
choice of links, so no argument is allowed. If a problem requires a Gaussian fam-
ily with a non-identity link, this can usually be handled using teasi fam-

ily. (Indeed yet another, even more inefficient, way to emulaiewith glm is

to use the familyquasi(link = identity, variance = constant).) Al-
though thegaussian family is the default, it is virtually never used in practice
other than when an offset is needed.

7.2 Binomial Data

Consider first a small example. Collett (1991, p. 75) reports an experiment
on the toxicity to the tobacco budworideliothis virescens of doses of the
pyrethroidtrans-cypermethrin to which the moths were beginning to show re-
sistance. Batches of 20 moths of each sex were exposed for three days to the
pyrethroid and the number in each batch that were dead or knocked down was
recorded. The results were

Dose
Sex 1 2 4 8 16 32

Male 1 4 9 13 18 20
Female 0 2 6 10 12 16

The doses were ing. We fit a logistic regression model usingg, (dose) since
the doses are powers of two. To do so we must specify the numbers of trials of
a;. This is done usinglm with the binomial family in one of three ways.

1. If the response is a humeric vector it is assumed to hold the data in ratio
form, y; = s;/a;, in which case thea;s must be given as a vector of
weights using theweights argument. (If thea; are all one the default
weights suffices.)

2. If the response is a logical vector or a two-level factor it is treated as a 0/1
numeric vector and handled as previously.
If the response is a multi-level factor, the first level is treated as 0 (failure)
and all others as 1 (success).

7.2 Binomial Data 191

3. If the response is a two-column matrix it is assumed that the first column
holds the number of successes, and the second holds the number of fail-
ures,a; — s;, for each trial. In this case nweights argumentis required.

The less-intuitive third form allows the fitting function BPLUS to select a
better starting value, so we tend to favour it.
In all cases the response is the relative frequepcy s;/a;, So the meang;
are the probabilitiep;. Hencefitted yields probabilities, not binomial means.
Since we have binomial data we use the third possibility:

options(contrasts = c("contr.treatment", "contr.poly"))
ldose <- rep(0:5, 2)

numdead <- c(1, 4, 9, 13, 18, 20, 0, 2, 6, 10, 12, 16)
sex <- factor(rep(c("M", "F"), c(6, 6)))

SF <- cbind(numdead, numalive = 20 - numdead)
budworm.lg <- glm(SF ~ sex*ldose, family = binomial)
summary (budworm.lg, cor = F)

V V. V V V V VvV

Coefficients:
Value Std. Error t value
(Intercept) -2.99354 .55253 -5.41789
sex 0.17499 .77816 0.22487
ldose 0.90604 .16706 5.42349
sex:1ldose 0.35291 .26994 1.30735

o O O O

Null Deviance: 124.88 on 11 degrees of freedom
Residual Deviance: 4.9937 on 8 degrees of freedom

This shows slight evidence of a difference in slope between the sexes. Note that
we use treatment contrasts to make intetgtion easier. Since female is the first
level of sex (they are in alphabetical order) the parameterdex:1dose rep-
resents the increase in slope foales just as the parameter faex measures the
increase in intercept. We can plot the data and the fitted curves by

plot(c(1,32), c(0,1), type = "n", xlab = "dose",
ylab = "prob", log = "x")
text (2" 1dose, numdead/20, labels = as.character(sex))
1d <- seq(0, 5, 0.1)
lines(271d, predict(budworm.lg, data.frame(ldose = 1d,
sex = factor(rep("M", length(ld)), levels = levels(sex))),
type = "response"), col = 3)
lines(271d, predict(budworm.lg, data.frame(ldose = 1d,
sex = factor(rep("F", length(ld)), levels = levels(sex))),
type = "response"), 1ty = 2, col = 2)

see Figure 7.1. Note that when we set up a factor for the new data, we must
specify all the levels or both lines would refer to level onesek. (Of course,

here we could have predicted for both esxand plotted separately, but it helps to
understand the general mechanism needed.)

192 Generalized Linear Models

prob
0.6 0.8 1.0

0.4

0.2

0.0

dose

Figure 7.1: Tobacco budworm destruction versus dosagearfs-cypermethrin by sex.

The apparently non-significant sex effect in this analysis has to be interpreted
carefully; it is marginal to thesex:1dose term. Since we are fitting separate
lines for each sex, it tests the (uninteneg) hypothesis that the lines do not differ
at zero log-dose. If we re-parametrizeddcate the intercepts at dose 8 we find

> budworm.lgA <- update(budworm.lg, . ~ sex * I(ldose - 3))
> summary (budworm.lghA, cor = F)$coefficients
Value Std. Error t value
(Intercept) -0.27543 0.23049 -1.1950
sex 1.23373 0.37694 3.2730
I(ldose - 3) 0.90604 0.16706 5.4235
sex:I(ldose - 3) 0.35291 0.26994 1.3074

which shows a significant difference between the sexes at dose 8. The model
fits very well as judged by the residual deviance (4.9937 is a small value for a
x2 variate, and the estimated probabilities are based on a reasonable number of
trials), so there is no suspicion of cature. We can confirm this by an analysis

of deviance:

> anova(update (budworm.lg, . ~ . + sex * I(ldose”2)),
test = "Chisq")

Terms added sequentially (first to last)
Df Deviance Resid. Df Resid. Dev Pr(Chi)

NULL 11 124.88
sex 1 6.08 10 118.80 0.01370
ldose 1 112.04 9 6.76 0.00000
I(ldose™2) 1 0.91 8 5.85 0.34104
sex:ldose 1 1.24 7 4.61 0.26552
sex:I(1dose"2) 1 1.44 6 3.17 0.23028

This isolates a further two degreesfofedom that if curvature were apprecia-
ble would most likely be significant, but are not. Note hawova when given
a single fitted-model object produces a sequential analysis of deviance, which

7.2 Binomial Data 193

will nearly always be order-dependent fgim objects. The additional argu-
menttest = "Chisq" totheanova method may be used to specify tests using
equation (7.9). The default correspondstigst = "none". The other possible
choices are€'F" and "Cp", neither of which is appropriate here.

Our analysis so far suggests a model with parallel lines (on logit scale) for
each sex. We estimate doses corresponding to a given probability of death. The
first step is to re-parametrize the modeldive separate intercepts for each sex
and a common slope.

> budworm.1g0 <- glm(SF ~ sex + ldose - 1, family = binomial)
> summary (budworm.1lg0, cor = F)$coefficients
Value Std. Error t value
sexF -3.4732 0.46829 -7.4166
sexM -2.3724 0.38539 -6.1559
ldose 1.0642 0.13101 8.1230

Let &, be the log-dose for which therobability ofresponse igp. (Historically
2%0.5 was called the “50% lethal dose” or LD50.) Clearly

(p) — Bo 9 1 0 Up) =B &

=76 W BH o B A

where gy and 3, are the slope and intercept. Our library sectif$S contains
functions to calculate and prirg, and its asymptotic standard error, namely,

dose.p <- function(obj, cf = 1:2, p = 0.5) {
eta <- family(obj)$link(p)
b <- coef (obj) [cf]
x.p <- (eta - b[1])/b[2]
names(x.p) <- paste("p =", format(p), ":", sep = "")
pd <- - cbind(1, x.p)/b[2]
SE <- sqrt(((pd %*% vcov(obj) [cf, cf]l) * pd) %% c(1, 1))
structure(x.p, SE = SE, p = p, class = "glm.dose")

}
print.glm.dose <- function(x, ...) {
M <- cbind(x, attr(x, "SE"))
dimnames (M) <- list(names(x), c("Dose", "SE"))
x <- M
NextMethod ("print")
}

Notice how thefamily function can be used to extract the link function, which
can then be used to obtain values of thedéinpredictor. For females the values
of ¢, atthe quartiles may be calculated as

> dose.p(budworm.1g0, cf = c(1,3), p = 1:3/4)
Dose SE

0.25: 2.2313 0.24983

0.50: 3.2636 0.22971

0.75: 4.2959 0.27462

el el o]
nnu

194 Generalized Linear Models

For males the corresponding log-doses are lower.

In biological assays thegrobit link used to be more conventional and the tech-
nique was callegbrobit analysis. Unless the estimated probabilities are concen-
trated in the tails, probit and logit links tend to give similar results with the values
of &, near the centre almost the same. We can demonstrate this for the budworm
assay by fitting a probit model and comparing the estimates dor females.

> dose.p(update (budworm.1g0, family = binomial(link = probit)),
cf = c(1, 3), p=1:3/4)
Dose SE
p = 0.25: 2.1912 0.23841
p = 0.50: 3.2577 0.22405
p =0.75: 4.3242 0.26685

The differences are insignificant. Thigcurs because the logistic and standard
normal distributions can approximate each other very well, at least between the
10th and 90th percentiles, by a simple scale change in the abscissa. (See, for
example, Cox and Snell, 1989, p. 21.) Thenarche data frame inMASS has

data with a substantial proportion of thesponses at very ¢in probalfdities and
provides an example where probit agit models appear noticeably different.

A binary data example: Low birth weight in infants

Hosmer and Lemeshow (1989) give a dataset on 189 births at a US hospital, with
the main interest being in low birth weight. The following variables are available
in our data frameéirthwt:

low birth weight less than 2.5kg (0/1),

age age of mother in years,

lwt weight of mother (Ibs) at last menstrual period,
race white / black / other,

smoke smoking status during pregnancy (0/1),

ptl number of previous premature labours,

ht history of hypertension (0/1),

ui has uterine irritability (0/1),

ftv number of physician visits in the first trimester,
bwt actual birth weight (grams).

Although the actual birth weights are available, we concentrate here on predicting
if the birth weight is low from the remaining variables. The dataset contains a
small number of pairs of rows that are identical apart from the ID; it is possible
that these refer to twins but idgeal birth weights seem unlikely.

We use a logistic regression with a binomial (in fact 0/1) response. It is worth
considering carefully how to use the variables. It is unreasonable to expect a
linear response witlpt1. Since the numbers with values greater than one are so
small we reduce it to an indicator of past history. Similadlyy can be reduced
to three levels. With non-Gaussian GLMs it is usual to use treatment contrasts.

7.2 Binomial Data 195

options(contrasts = c("contr.treatment", "contr.poly"))
attach(birthwt)
race <- factor(race, labels = c("white", "black", "other"))
table(ptl)
0 123
159 24 5 1
> ptd <- factor(ptl > 0)
> table(ftv)
0 1 2346
100 47 30 7 4 1
> ftv <- factor(ftv)
> levels(ftv) [-(1:2)] <= "2+"
> table(ftv) # as a check
0 1 2+
100 47 42
> bwt <- data.frame(low = factor(low), age, lwt, race,
smoke = (smoke > 0), ptd, ht = (ht > 0), ui = (ui > 0), ftv)
> detach(); rm(race, ptd, ftv)

vV V V VvV

We can then fit a full logistic regression, and omit the rather large correlation
matrix from the summary.

> birthwt.glm <- glm(low ~ ., family = binomial, data = bwt)
> summary(birthwt.glm, cor = F)

Coefficients:
Value Std. Error t value
(Intercept) 0.823013 .2440732 0.66155

[y

ftvl -0.436379
ftv2+ 0.179007

.4791611 -0.91071
.4562090 0.39238

age -0.037234 0.0386777 -0.96267
lwt -0.015653 0.0070759 -2.21214
raceblack 1.192409 0.5357458 2.22570
raceother 0.740681 0.4614609 1.60508
smoke 0.755525 0.4247645 1.77869
ptd 1.343761 0.4804445 2.79691
ht 1.913162 0.7204344 2.65557
ui 0.680195 0.4642156 1.46526

0

0

Null Deviance: 234.67 on 188 degrees of freedom
Residual Deviance: 195.48 on 178 degrees of freedom

Since the responses are binary, even if the model is correct there is no guarantee
that the deviance will have even an approximately chi-squared distribution, but
since the value is about in line with its degrees of freedom there seems no serious
reason to question the fit. Rather than select a series of sub-models by hand,
we make use of thetepAIC function. By default argumentrace is true and
produces voluminous output.

> birthwt.step <- stepAIC(birthwt.glm, trace = F)
> birthwt.step$anova

196 Generalized Linear Models

Initial Model:

low ~ age + lwt + race + smoke + ptd + ht + ui + ftv
Final Model:

low ~ lwt + race + smoke + ptd + ht + ui

Step Df Deviance Resid. Df Resid. Dev AIC

1 178 195.48 217.48
2 - ftv 2 1.3582 180 196.83 214.83
3 - age 1 1.0179 181 197.85 213.85
> birthwt.step2 <- stepAIC(birthwt.glm, ~ ."2 + I(scale(age)~2)

+ I(scale(lwt)~2), trace = F)
> birthwt.step2$anova
Initial Model:
low ~ age + lwt + race + smoke + ptd + ht + ui + ftv
Final Model:
low ~ age + lwt + smoke + ptd + ht + ui + ftv + age:ftv
+ smoke:ui

Step Df Deviance Resid. Df Resid. Dev AIC

1 178 195.48 217.48
2 + age:ftv 2 12.475 176 183.00 209.00
3 + smoke:ui 1 3.057 175 179.94 207.94
4 - race 2 3.130 177 183.07 207.07

> summary (birthwt.step2, cor = F)$coef
Value Std. Error t value

ageftvl -0.161809 .096472 -1.67726
ageftv2+ -0.410873 .117548 -3.49537
smoke:ui -1.916401 0.970786 -1.97407

> table(bwt$low, predict(birthwt.step2) > 0)

(Intercept) -0.582520 1.418729 -0.41059
age 0.075535 0.053880 1.40190
lwt -0.020370 0.007465 -2.72878

smoke 0.780057 0.419249 1.86061
ptd 1.560205 0.495741 3.14722
ht 2.065549 0.747204 2.76437
ui 1.818252 0.664906 2.73460
ftvl 2.920800 2.278843 1.28170
ftv2+ 9.241693 2.631548 3.51188
0
0

FALSE TRUE
0 116 14
1 28 31

Note that although botlage and ftv were previously dropped, their interaction

is now included, the slopes aige differing considerably within the threétv
groups. The AIC criterion penalizes terms less severely than a likelihood ratio or
Wald’s test would, and so although adding the tesimke : ui reduces the AIC,

its ¢-statistic is only just significant at the 5% level. We also considered three-way
interactions, but none were chosen.