
Modern Applied
Statistics with S

Fourth edition

by

W. N. Venables and B. D. Ripley

Springer (mid 2002)

Final 15 March 2002

Preface

S is a language and environment for data analysis originally developed at Bell
Laboratories (of AT&T and now Lucent Technologies). It became the statisti-
cian’s calculator for the 1990s, allowingeasy access to the computing power and
graphical capabilities of modern workstations and personal computers. Various
implementations have been available, currentlyS-PLUS, a commercial system
from the Insightful Corporation1 in Seattle, andR,2 an Open Source system writ-
ten by a team of volunteers. Both can be run onWindows and a range ofUNIX /
Linux operating systems:R also runs on Macintoshes.

This is the fourth edition of a book which first appeared in 1994, and theS
environment has grown rapidly since. This book concentrates on using the current
systems to do statistics; there is a companion volume (Venables and Ripley, 2000)
which discusses programming in theS language in much greater depth. Some
of the more specialized functionality of theS environment is covered inon-line
complements, additional sections and chapters which are available on the World
Wide Web. The datasets andS functions that we use are supplied with mostS
environments and are also available on-line.

This is not a text in statistical theory, but does cover modern statistical method-
ology. Each chapter summarizes the methods discussed, in order to set out the
notation and the precise method implemented inS. (It will help if the reader has
a basic knowledge of the topic of the chapter, but several chapters have been suc-
cessfully used for specialized courses in statistical methods.) Our aim is rather
to show how we analyse datasets usingS. In doing so we aim to show both how
S can be used and how the availability of a powerful and graphical system has
altered the way we approach data analysis and allows penetrating analyses to be
performed routinely. Oncecalculation became easy, the statistician’s energies
could be devoted to understanding his or her dataset.

The coreS language is not very large, but it is quite different from most other
statistics systems. We describe the language in some detail in the first three chap-
ters, but these are probably best skimmed at first reading. Once the philosophy of
the language is grasped, its consistency and logical design will be appreciated.

The chapters on applyingS to statistical problems arelargely self-contained,
although Chapter 6 describes the language used for linear models that is used in
several later chapters. We expect that most readers will want to pick and choose
among the later chapters.

This book is intended both for would-be users ofS as an introductory guide

1http://www.insightful.com.
2http://www.r-project.org.

v

vi Preface

and for class use. The level of course for which it is suitable differs from country
to country, but would generally range from the upper years of an undergraduate
course (especially the early chapters) to Masters’ level. (For example, almost all
the material is covered in the M.Sc. in Applied Statistics at Oxford.) On-line
exercises (and selected answers) are provided, but these should not detract from
the best exercise of all, usingS to study datasets with which the reader is familiar.
Our library provides many datasets, some of which are not used in the text but
are there to provide source material for exercises. Nolan and Speed (2000) and
Ramsey and Schafer (1997, 2002) are also good sources of exercise material.

The authors may be contacted by electronic mail at

MASS@stats.ox.ac.uk

and would appreciate being informed of errors and improvements to the contents
of this book. Errata and updates are available from our World Wide Web pages
(see page 461 for sites).

Acknowledgements:

This book would not be possible without theS environment which has been prin-
cipally developed by John Chambers, with substantial input from Doug Bates,
Rick Becker, Bill Cleveland, Trevor Hastie, Daryl Pregibon and Allan Wilks. The
code for survival analysis is the work of Terry Therneau. TheS-PLUS andR im-
plementations are the work of much larger teams acknowledged in their manuals.

We are grateful to the many people who have read and commented on draft
material and who have helped us test the software, as well as to those whose prob-
lems have contributed to our understanding and indirectly to examples and exer-
cises. We cannot name them all, but in particular we would like to thank Doug
Bates, Adrian Bowman, Bill Dunlap, Kurt Hornik, Stephen Kaluzny, Jos´e Pin-
heiro, Brett Presnell, Ruth Ripley, Charles Roosen, David Smith, Patty Solomon
and Terry Therneau. We thank Insightful Inc. for early access to versions of
S-PLUS.

Bill Venables
Brian Ripley
January 2002

Contents

Preface v

Typographical Conventions xi

1 Introduction 1

1.1 A Quick Overview ofS . 3

1.2 UsingS . 5

1.3 An Introductory Session 6

1.4 What Next? . 12

2 Data Manipulation 13

2.1 Objects . 13

2.2 Connections . 20

2.3 Data Manipulation . 27

2.4 Tables and Cross-Classification 37

3 The S Language 41

3.1 Language Layout . .. 41

3.2 More onS Objects . 44

3.3 Arithmetical Expressions . 47

3.4 Character Vector Operations . 51

3.5 Formatting and Printing 54

3.6 Calling Conventions for Functions. 55

3.7 Model Formulae . 56

3.8 Control Structures . 58

3.9 Array and Matrix Operations . 60

3.10 Introduction to Classes and Methods 66

4 Graphics 69

4.1 Graphics Devices . 71

4.2 Basic Plotting Functions 72

vii

viii Contents

4.3 Enhancing Plots . 77

4.4 Fine Control of Graphics . 82

4.5 Trellis Graphics 89

5 Univariate Statistics 107

5.1 Probability Distributions 107

5.2 Generating Random Data 110

5.3 Data Summaries . 111

5.4 Classical Univariate Statistics . 115

5.5 Robust Summaries . 119

5.6 Density Estimation . 126

5.7 Bootstrap and Permutation Methods 133

6 Linear Statistical Models 139

6.1 An Analysis of Covariance Example 139

6.2 Model Formulae and Model Matrices 144

6.3 Regression Diagnostics 151

6.4 Safe Prediction . 155

6.5 Robust and Resistant Regression 156

6.6 Bootstrapping Linear Models . 163

6.7 Factorial Designs and Designed Experiments 165

6.8 An Unbalanced Four-Way Layout. 169

6.9 Predicting Computer Performance 177

6.10 Multiple Comparisons 178

7 Generalized Linear Models 183

7.1 Functions for Generalized Linear Modelling 187

7.2 Binomial Data . 190

7.3 Poisson and Multinomial Models 199

7.4 A Negative Binomial Family . 206

7.5 Over-Dispersion in Binomial and Poisson GLMs 208

8 Non-Linear and Smooth Regression 211

8.1 An Introductory Example 211

8.2 Fitting Non-Linear Regression Models 212

8.3 Non-Linear Fitted Model Objects and Method Functions. 217

8.4 Confidence Intervals for Parameters 220

8.5 Profiles . 226

Contents ix

8.6 Constrained Non-Linear Regression 227

8.7 One-Dimensional Curve-Fitting 228

8.8 Additive Models . 232

8.9 Projection-Pursuit Regression 238

8.10 Neural Networks . 243

8.11 Conclusions . 249

9 Tree-Based Methods 251

9.1 Partitioning Methods. 253

9.2 Implementation inrpart . 258

9.3 Implementation intree . 266

10 Random and Mixed Effects 271

10.1 Linear Models . 272

10.2 Classic Nested Designs . 279

10.3 Non-Linear Mixed Effects Models 286

10.4 Generalized Linear Mixed Models 292

10.5 GEE Models . 299

11 Exploratory Multivariate Analysis 301

11.1 Visualization Methods 302

11.2 Cluster Analysis . 315

11.3 Factor Analysis . 321

11.4 Discrete Multivariate Analysis 325

12 Classification 331

12.1 Discriminant Analysis . 331

12.2 Classification Theory . 338

12.3 Non-Parametric Rules . 341

12.4 Neural Networks . 342

12.5 Support Vector Machines 344

12.6 Forensic Glass Example . 346

12.7 Calibration Plots . 349

13 Survival Analysis 353

13.1 Estimators of Survivor Curves 355

13.2 Parametric Models . 359

13.3 Cox Proportional Hazards Model 365

x Contents

13.4 Further Examples . 371

14 Time Series Analysis 387

14.1 Second-Order Summaries 389

14.2 ARIMA Models . 397

14.3 Seasonality .. 403

14.4 Nottingham Temperature Data 406

14.5 Regression with Autocorrelated Errors 411

14.6 Models for Financial Series . 414

15 Spatial Statistics 419

15.1 Spatial Interpolation and Smoothing 419

15.2 Kriging . 425

15.3 Point Process Analysis . 430

16 Optimization 435

16.1 Univariate Functions . 435

16.2 Special-Purpose Optimization Functions 436

16.3 General Optimization . 436

Appendices

A Implementation-Specific Details 447

A.1 UsingS-PLUS under Unix / Linux 447

A.2 UsingS-PLUS underWindows 450

A.3 UsingR under Unix / Linux . 453

A.4 UsingR underWindows . 454

A.5 For Emacs Users . 455

B The S-PLUS GUI 457

C Datasets, Software and Libraries 461

C.1 Our Software . 461

C.2 Using Libraries . 462

References 465

Index 481

Typographical Conventions

Throughout this bookS language constructs and commands to the operating sys-
tem are set in a monospaced typewriter fontlike this . The character~ may
appear as~ on your keyboard, screen or printer.

We often use the prompts$ for the operating system (it is the standard prompt
for the UNIX Bourne shell) and> for S. However, we donot use prompts for
continuation lines, which are indicated by indentation. One reason for this is
that the length of line available to use in a book column is less than that of a
standard terminal window, so we have had to break lines that were not broken at
the terminal.

Paragraphs or comments that apply to only oneS environment are signalled
by a marginal mark:

• This is specific toS-PLUS (version 6 or later). S+

• This is specific toS-PLUS underWindows. S+Win

• This is specific toR. R

Some of theS output has been edited. Where complete lines are omitted,
these are usually indicated by

....

in listings; however mostblank lines have been silently removed. Much of theS
output was generated with the options settings

options(width = 65, digits = 5)

in effect, whereas the defaults are around80 and 7 . Not all functions consult
these settings, so on occasion we have had to manually reduce the precision to
more sensible values.

xi

Chapter 1

Introduction

Statistics is fundamentally concerned with the understanding of structure in data.
One of the effects of the information-technology era has been to make it much
easier to collect extensive datasets with minimal human intervention. Fortunately,
the same technological advances allow the users of statistics access to much more
powerful ‘calculators’ to manipulate and display data. This book is about the
modern developments in applied statistics that have been made possible by the
widespread availability of workstations with high-resolution graphics and ample
computational power. Workstations need software, and theS1 system developed
at Bell Laboratories (Lucent Technologies, formerly AT&T) provides a very flex-
ible and powerful environment in whichto implement new statistical ideas. Lu-
cent’s current implementation ofS is exclusively licensed to the Insightful Cor-
poration2, which distributes an enhanced system calledS-PLUS.

An Open Source system calledR3 has emerged that provides an independent
implementation of theS language. It is similar enough that almost all the exam-
ples in this book can be run underR.

An S environment is an integrated suite of software facilities for data analysis
and graphical display. Among other things it offers

• an extensive and coherent collection of tools for statistics and data analysis,

• a language for expressing statistical models and tools for using linear and
non-linear statistical models,

• graphical facilities for data analysis and display either at a workstation or
as hardcopy,

• an effective object-oriented programming language that can easily be ex-
tended by the user community.

The termenvironment is intended to characterize it as a planned and coherent
system built around a language and a collection of low-level facilities, rather than
the ‘package’ model of an incremental accretion of very specific, high-level and

1The nameS arose long ago as a compromise name (Becker, 1994), in the spirit of the program-
ming languageC (also from Bell Laboratories).

2http://www.insightful.com
3http://www.r-project.org

1

2 Introduction

sometimes inflexible tools. Its great strength is that functions implementing new
statistical methods can be built on top of the low-level facilities.

Furthermore, most of the environment is open enough that users can explore
and, if they wish, change the design decisions made by the original implementors.
Suppose you do not like the output given by the regression facility (as we have
frequently felt about statistics packages). InS you can write your own summary
routine, and the system one can be used as a template from which to start. In
many cases sufficiently persistent users can find out the exact algorithm used by
listing theS functions invoked. AsR is Open Source,all the details are open to
exploration.

BothS-PLUS andR can be used underWindows, many versions ofUNIX and
underLinux; R also runs underMacOS (versions 8, 9 and X),FreeBSD and other
operating systems.

We have made extensive use of the ability to extend the environment to im-
plement (or re-implement) statistical ideas withinS. All the S functions that are
used and our datasets are available in machine-readable form and come with all
versions ofR andWindows versions ofS-PLUS; see Appendix C for details of
what is available and how to install it if necessary.

System dependencies

We have tried as far as is practicable to make our descriptions independent of the
computing environment and the exact version ofS-PLUS or R in use. We confine
attention to versions6 and later ofS-PLUS, and1.5.0 or later ofR.

Clearly some of the details must depend on the environment; we usedS-PLUS
6.0 onSolaris to compute the examples, but have also tested them underS-PLUS
for Windows version6.0 release 2, and usingS-PLUS 6.0 on Linux. The out-
put will differ in small respects, for theWindows run-time system uses scientific
notation of the form4.17e-005 rather than4.17e-05 .

Where timings are given they refer toS-PLUS 6.0 running underLinux on
one processor of a dual 1 GHz Pentium III PC.

One system dependency is the mouse buttons; we refer to buttons 1 and 2,
usually the left and right buttons onWindows but the left and middle buttons
on UNIX / Linux (or perhaps both together of two). Macintoshes only have one
mouse button.

Reference manuals

The basicS references are Becker, Chambers and Wilks (1988) for the basic
environment, Chambers and Hastie (1992)for the statistical modelling and first-
generation object-oriented programming and Chambers (1998); these should be
supplemented by checking the on-line help pages for changes and corrections as
S-PLUS andR have evolved considerably since these books were written. Our
aim is not to be comprehensive nor to replace these manuals, but rather to explore
much further the use ofS to perform statistical analyses. Our companion book,
Venables and Ripley (2000), covers many more technical aspects.

1.1 A Quick Overview of S 3

Graphical user interfaces (GUIs)

S-PLUS for Windows comes with a GUI shown in Figure B.1 on page 458. This
has menus and dialogs for many simple statistical and graphical operations, and
there is aStandard Edition that only provides the GUI interface. We do not
discuss that interface here as it does not provide enough power for our material.
For a detailed description see the system manuals or Krause and Olson (2000) or
Lam (2001).

TheUNIX / Linux versions ofS-PLUS 6 have a similar GUI written in Java,
obtained by starting withSplus -g : this too has menus and dialogs for many
simple statistical operations.

TheWindows, ClassicMacOS andGNOME versions ofR have a much sim-
pler console.

Command line editing

All of these environments provide command-line editing using the arrow keys,
including recall of previous commands. However, it is not enabled by default in
S-PLUS onUNIX / Linux: see page 447.

1.1 A Quick Overview of S

Most things done inS are permanent; in particular, data, results and functions are
all stored in operating system files.4 These are referred to asobjects.

Variables can be used as scalars, matrices or arrays, andS provides extensive
matrix manipulation facilities. Furthermore, objects can be made up of collections
of such variables, allowing complex objects such as the result of a regression
calculation. This means that the result of a statistical procedure can be saved
for further analysis in a future session.Typically the calculation is separated
from the output of results, so one can perform a regression and then print various
summaries and compute residuals and leverage plots from the saved regression
object.

TechnicallyS is a function language. Elementary commands consist of either
expressions or assignments. If an expression is given as a command, it is evalu-
ated, printed and the value is discarded. An assignment evaluates an expression
and passes the value to a variable but the result is not printed automatically. An
expression can be as simple as2 + 3 or a complex function call. Assignments
are indicated by theassignment operator <- . For example,

> 2 + 3
[1] 5
> sqrt(3/4)/(1/3 - 2/pi^2)
[1] 6.6265
> library(MASS)

4These should not be manipulated directly, however. Also,R works with an in-memory workspace
containing copies of many of these objects.

4 Introduction

> data(chem) # needed in R only
> mean(chem)
[1] 4.2804
> m <- mean(chem); v <- var(chem)/length(chem)
> m/sqrt(v)
[1] 3.9585

Here > is theS prompt, and the[1] states that the answer is starting at the first
element of a vector.

More complex objects will have printed a short summary instead of full de-
tails. This is achieved by an object-oriented programming mechanism; complex
objects haveclasses assigned to them that determine how they are printed, sum-
marized and plotted. This process is taken further inS-PLUS in whichall objects
have classes.

S can be extended by writing new functions, which then can be used in the
same way as built-in functions (and can even replace them). This is very easy; for
example, to define functions to compute the standard deviation5 and the two-tailed
P value of at statistic, we can write

std.dev <- function(x) sqrt(var(x))
t.test.p <- function(x, mu = 0) {

n <- length(x)
t <- sqrt(n) * (mean(x) - mu) / std.dev(x)
2 * (1 - pt(abs(t), n - 1)) # last value is returned

}

It would be useful to give both thet statistic and itsP value, and the most
common way of doing this is by returning a list; for example, we could use

t.stat <- function(x, mu = 0) {
n <- length(x)
t <- sqrt(n) * (mean(x) - mu) / std.dev(x)
list(t = t, p = 2 * (1 - pt(abs(t), n - 1)))

}
z <- rnorm(300, 1, 2) # generate 300 N(1, 4) variables.
t.stat(z)
$t:
[1] 8.2906
$p:
[1] 3.9968e-15

unlist(t.stat(z, 1)) # test mu=1, compact result
t p

-0.56308 0.5738

The first call tot.stat prints the result as a list; the second tests the non-default
hypothesisµ = 1 and usingunlist prints the result as a numeric vector with
named components.

Linear statistical models can be specified by a version of the commonly used
notation of Wilkinson and Rogers (1973), so that

5S-PLUS andR have functionsstdev and sd, respectively.

1.2 Using S 5

time ~ dist + climb
time ~ transplant/year + age + prior.surgery

refer to a regression oftime on both dist and climb, and of time on year
within each transplant group and on age, with a different intercept for each type
of prior surgery. This notation has been extended in many ways, for example to
survival and tree models and to allow smooth non-linear terms.

1.2 Using S

How to initialize and start up yourS environment is discussed in Appendix A.

Bailing out

One of the first things we like to know with a new program is how to get out
of trouble. S environments are generally verytolerant, and can be interrupted
by Ctrl-C.6 (UseEsc on GUI versions underWindows.) This will interrupt the
current operation, back out gracefully (so, with rare exceptions, it is as if it had
not been started) and return to the prompt.

You can terminate yourS session by typing

q()

at the command line or fromExit on theFile menu in a GUI environment.

On-line help

There is a help facility that can be invoked from the command line. For example,
to get information on the functionvar the command is

> help(var)

A faster alternative (to type) is

> ?var

For a feature specified by special characters and in a few other cases (one is
"function"), the argument must be enclosed in double or single quotes, making
it an entity known inS as a character string. For example, two alternative ways
of getting help on the list component extraction function,[[, are

> help("[[")
> ?"[["

ManyS commands have additional help forname.objectdescribing their result:
for example,lm underS-PLUS has a help page forlm.object.

Further help facilities for some versions ofS-PLUS andR are discussed in
Appendix A. Many versions can have their manuals on-line in PDF format; look
under theHelp menu in theWindows versions.

6This means hold down the key markedControl or Ctrl and hit the second key.

6 Introduction

1.3 An Introductory Session

The best way to learnS is by using it. We invite readers to work through the
following familiarization session and see what happens. First-time users may not
yet understand every detail, but the best plan is to type what you see and observe
what happens as a result.

Consult Appendix A, and start yourS environment.
The whole session takes most first-time users one to two hours at the appro-

priate leisurely pace. The left column gives commands; the right column gives
brief explanations and suggestions.

A few commands differ between environments, and these are prefixed by# R:
or # S:. Choose the appropriate one(s) and omit the prefix.

library(MASS) A command to make our datasets avail-
able. Your local advisor can tell you the
correct form for your system.

?help Read the help page about how to use
help.

S: trellis.device() Start up a suitable device.

x <- rnorm(1000)
y <- rnorm(1000)

Generate 1 000 pairs of normal variates

truehist(c(x,y+3), nbins=25) Histogram of a mixture of normal dis-
tributions. Experiment with the number
of bins (25) and the shift (3) of the sec-
ond component.

?truehist Read about the optional arguments.

contour(dd <- kde2d(x,y)) 2D density plot.

image(dd) Greyscale or pseudo-colour plot.

x <- seq(1, 20, 0.5)
x

Makex = (1, 1.5, 2, . . . , 19.5, 20) and
list it.

w <- 1 + x/2
y <- x + w*rnorm(x)

w will be used as a ‘weight’ vector and
to give the standard deviations of the er-
rors.

dum <- data.frame(x, y, w)
dum
rm(x, y, w)

Make a data frame of three columns
namedx, y and w, and look at it. Re-
move the originalx, y and w.

fm <- lm(y ~ x, data = dum)
summary(fm)

Fit a simple linear regression ofy on
x and look at the analysis.

1.3 An Introductory Session 7

fm1 <- lm(y ~ x, data = dum,
weight = 1/w^2)

summary(fm1)

Since we know the standard deviations,
we can do a weighted regression.

R: library(modreg) R only

lrf <- loess(y ~ x, dum) Fit a smooth regression curve using a
modern regression function.

attach(dum) Make the columns in the data frame
visible as variables.

plot(x, y) Make a standard scatterplot. To this
plot we will add the three regression
lines (or curves) as well as the known
true line.

lines(spline(x, fitted(lrf)),
col = 2)

First add in the local regression curve
using a spline interpolation between the
calculated points.

abline(0, 1, lty = 3, col = 3) Add in the true regression line (inter-
cept 0, slope 1) with a different line
type and colour.

abline(fm, col = 4) Add in the unweighted regression line.
abline() is able to extract the infor-
mation it needs from the fitted regres-
sion object.

abline(fm1, lty = 4, col = 5) Finally add in the weighted regression
line, in line type 4. This one should
be the most accurate estimate, but may
not be, of course. One such outcome is
shown in Figure 1.1.

You may be able to make a hardcopy
of the graphics window by selecting the
Print option from a menu.

plot(fitted(fm), resid(fm),
xlab = "Fitted Values",
ylab = "Residuals")

A standard regression diagnostic plot to
check for heteroscedasticity, that is, for
unequal variances. The data are gener-
ated from a heteroscedastic process, so
can you see this from this plot?

qqnorm(resid(fm))
qqline(resid(fm))

A normal scores plot to check for skew-
ness, kurtosis and outliers. (Note that
the heteroscedasticity may show as ap-
parent non-normality.)

8 Introduction

•
•
•
•
•••

•

•

•
•
•
•

•

•

•

•

•

•

•

•

•
•

•
••

•

•
•

•

•

•

•

•

•

•

•

•

•

x

y

5 10 15 20

0
10

20
30

40

•
•
•
•
•••

•

•

•
•

•
•

•

•

•

•

•

•

•

•

•
•

•
••

•

•

•

•

•

•

•

•

•

•

•

•

•

Fitted Values
R

es
id

ua
ls

0 5 10 15 20

-1
0

0
10

20

•
•

•
•

•••

•

•

•
•

•
•

•

•

•

•

•

•

•

•

•
•

•
••

•

•

•

•

•

•

•

•

•

•

•

•

•

Quantiles of Standard Normal

re
si

d(
fm

)

-2 -1 0 1 2

-1
0

0
10

20

Figure 1.1: Four fits and two residual plots for the artificial heteroscedastic regression
data.

detach()
rm(fm, fm1, lrf, dum)

Remove the data frame from the search
path and clean up again.

We look next at a set of data on record times of Scottish hill races against
distance and total height climbed.

R: data(hills)

hills List the data.

S: splom(~ hills)
R: pairs(hills)

Show a matrix of pairwise scatterplots
(Figure 1.2).

S: brush(hills)

Click on theQuit button in the
graphics window to continue.

Try highlighting points and see how
they are linked in the scatterplots (Fig-
ure 1.3). Also try rotating the points in
3D.

attach(hills) Make columns available by name.

plot(dist, time)
identify(dist, time,

row.names(hills))

Use mouse button 1 to identify outlying
points, and button 2 to quit. Their row
numbers are returned. On a Macintosh
click outside the plot to quit.

abline(lm(time ~ dist)) Show least-squares regression line.

R: library(lqs)
abline(lqs(time ~ dist),

lty = 3, col = 4)

Fit a very resistant line. See Figure 1.4.

detach() Clean up again.

We can explore further the effect of outliers on a linear regression by designing
our own examples interactively. Try this several times.

plot(c(0,1), c(0,1), type="n")
xy <- locator(type = "p")

Make our own dataset by clicking with
button 1, then with button 2 (outside the
plot on a Macintosh) to finish.

1.3 An Introductory Session 9

 5 10 15

15 20 25

15

20

25

 5

10

15dist

2000 4000

4000 6000

4000

6000

2000

4000climb

 50 100

150 200

150

200

 50

100time

Figure 1.2: Scatterplot matrix for data on Scottish hill races.

Figure 1.3: Screendump of abrush plot of datasethills (UNIX).

10 Introduction

•

•

•

•

•
•

•

•
•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

• •
•

•
•

•

•

•

•

•

•

•

dist

tim
e

5 10 15 20 25

50
10

0
15

0
20

0

Knock Hill

Bens of Jura
Lairig Ghru

Two Breweries
Moffat Chase

Seven Hills

Figure 1.4: Annotated plot of time versus distance forhills with regression line and
resistant line (dashed).

abline(lm(y ~ x, xy), col = 4)
abline(rlm(y ~ x, xy,

method = "MM"),
lty = 3, col = 3)

abline(lqs(y ~ x, xy),
lty = 2, col = 2)

Fit least-squares, a robust regression
and a resistant regression line. Repeat
to try the effect of outliers, both verti-
cally and horizontally.

rm(xy) Clean up again.

We now look at data from the 1879 experiment of Michelson to measure the
speed of light. There are five experiments (columnExpt); each has 20 runs
(columnRun) and Speed is the recorded speed of light, in km/sec, less 299 000.
(The currently accepted value on this scale is 734.5.)

R: data(michelson)
attach(michelson) Make the columns visible by name.

search() Thesearch path is a sequence of places,
either directories or data frames, where
S-PLUS looks for objects required for
calculations.

plot(Expt, Speed,
main="Speed of Light Data",
xlab="Experiment No.")

Compare the five experiments with
simple boxplots. The result is shown
in Figure 1.5.

fm <- aov(Speed ~ Run + Expt)
summary(fm)

Analyse as a randomized block design,
with runs andexperiments as factors.

Df Sum of Sq Mean Sq F Value Pr(F)
Run 19 113344 5965 1.1053 0.36321

1.3 An Introductory Session 11

70
0

80
0

90
0

10
00

Speed of Light Data

S
pe

ed

1 2 3 4 5

Experiment No.

Figure 1.5: Boxplots for the speed of light data.

Expt 4 94514 23629 4.3781 0.00307
Residuals 76 410166 5397

fm0 <- update(fm, .~ . - Run)
anova(fm0, fm)

Fit the sub-model omitting the non-
sense factor,runs, and compare using
a formal analysis of variance.

Analysis of Variance Table
Response: Speed

Terms Resid. Df RSS Test Df Sum of Sq F Value Pr(F)
1 Expt 95 523510
2 Run + Expt 76 410166 +Run 19 113344 1.1053 0.36321

detach()
rm(fm, fm0)

Clean up before moving on.

TheS environment includes the equivalent of a comprehensive set of statis-
tical tables; one can work outP values or critical values for a wide range of
distributions (see Table 5.1 on page 108).

1 - pf(4.3781, 4, 76) P value from the ANOVA table above.
qf(0.95, 4, 76) corresponding 5% critical point.

q() Quit your S environment. R will ask
if you want to save the workspace: for
this session you probably do not.

12 Introduction

1.4 What Next?

We hope that you now have a flavour ofS and are inspired to delve more deeply.
We suggest that you read Chapter 2, perhaps cursorily at first, and then Sec-
tions 3.1–7 and 4.1–3. Thereafter, tackle the statistical topics that are of inter-
est to you. Chapters 5 to 16 are fairly independent, and contain cross-references
where they do interact. Chapters 7 and 8 build on Chapter 6, especially its first
two sections.

Chapters 3 and 4 come early, because they are aboutS not about statistics, but
are most useful to advanced users who are trying to find out what the system is
really doing. On the other hand, those programming in theS language will need
the material in our companion volume onS programming, Venables and Ripley
(2000).

Note to R users

The S code in the following chapters is written to work withS-PLUS 6. The
changes needed to use it withR are small and are given in the scripts available
on-line in thescripts directory of theMASS package forR (which should be
part of everyR installation).

Two issues arise frequently:

• Datasets need to be loaded explicitly intoR, as in the

data(hills)
data(michelson)

lines in the introductory session. So if datasetfoo appears to be missing,
make sure that you have runlibrary(MASS) and then trydata(foo) .
We generally do not mention this unless something different has to be done
to get the data inR.

• Many of the packages are not attached by default, soR (currently) needs
far more use of thelibrary function.

Note too thatR has a different random number stream and so results depending
on random partitions of the data may be quite different from those shown here.

Chapter 2

Data Manipulation

Statistics is fundamentally about understanding data. We start by looking at how
data are represented inS, then move on to importing, exporting and manipulating
data.

2.1 Objects

Two important observations about theS language are that

‘Everything inS is an object.’
‘Every object inS has a class.’

So data, intermediate results and even the result of a regression are stored inS
objects, and the class1 of the object both describes what the object contains and
what many standard functions do with it.

Objects are usually accessed by name. SyntacticS names for objects are made
up from the letters,2 the digits 0–9 in any non-initial position and also the period,
‘ . ’, which behaves as a letter except in names such as.37 where it acts as a
decimal point. There is a set of reserved names

FALSE Inf NA NaN NULL TRUE
break else for function if in next repeat while

and inS-PLUS return , F and T. It is a good idea, and sometimes essential, toS+

avoid the names of system objects like

c q s t C D F I T diff mean pi range rank var

Note thatS is case sensitive, so Alfred and alfred are distinctS names, and
that the underscore, ‘_ ’, is not allowed as part of a standard name. (Periods are
often used to separate words in names:an alternative style is to capitalize each
word of a name.)

Normally objects the users create are stored in a workspace. How do we
create an object? Here is a simple example, some powers ofπ. We make use of
the sequence operator ‘: ’ which gives a sequence of integers.

1In R all objects have classes only if themethods package is in use.
2In R the set of letters is determined by the locale, and so may include accented letters. This will

also be the case inS-PLUS 6.1.

13

14 Data Manipulation

> -2:2
[1] -2 -1 0 1 2
> powers.of.pi <- pi^(-2:2)
> powers.of.pi
[1] 0.10132 0.31831 1.00000 3.14159 9.86960
> class(powers.of.pi)
[1] "numeric"

which gives avector of length 5. It contains real numbers, so has class called
"numeric" . Notice how we can examine an object by typing its name. This is
the same as calling the functionprint on it, and the functionsummary will give
different information (normally less, but sometimes more).

> print(powers.of.pi)
[1] 0.10132 0.31831 1.00000 3.14159 9.86960
> summary(powers.of.pi)

Min. 1st Qu. Median Mean 3rd Qu. Max.
0.1013 0.3183 1.0000 2.8862 3.1416 9.8696

In S-PLUS the objectpowers.of.pi is stored in the file system under theS+

.Data directory in the project directory, and is available in the project until
deleted with

rm(powers.of.pi)

or over-written by assigning something else to that name. (Under some settings,
S-PLUS 6 for Windows prompts the user at the end of the session to save toS+Win

the main workspace all, none or some of the objects created or changed in that
session.)

R stores objects in a workspace kept in memory. A prompt3 at the end of theR

session will ask if the workspace should be saved to disk (in a file.RData);
a new session will restore the saved workspace. Should theR session crash
the workspace will be lost, so it can be saved during the session by running
save.image() or from a file menu on GUI versions.

S has no scalars, but the building blocks for storing data arevectors of various
types. The most common classes are

• "character" , a vector of character strings of varying (and unlimited)
length. These are normally entered and printed surrounded by double
quotes, but single quotes can be used.

• "numeric" , a vector of real numbers.

• "integer" , a vector of (signed) integers.

• "logical" , a vector of logical (true or false) values. The values are output
asT andF in S-PLUS and asTRUE andFALSE in R, although each systemR

accepts both conventions for input.

• "complex" , a vector of complex numbers.

3Prompting for saving and restoring can be changed by command-line options.

2.1 Objects 15

• "list" , a vector ofS objects.

We have not yet revealed the whole story; for the first five classes there is an
additional possible value,NA , which meansnot available. See pages 19 and 53
for the details.

The simplest way to access a part of a vector is by number, for example,

> powers.of.pi[5]
[1] 9.8696

Vectors can also havenames, and be accessed by name.

names(powers.of.pi) <- -2:2
powers.of.pi

-2 -1 0 1 2
0.10132 0.31831 1 3.1416 9.8696

powers.of.pi["2"]
2

9.8696
> class(powers.of.pi)
[1] "named"

The class has changed to reflect the additional structure of the object. There are
several ways to remove the names.

> as.vector(powers.of.pi) # or c(powers.of.pi)
[1] 0.10132 0.31831 1.00000 3.14159 9.86960
> names(powers.of.pi) <- NULL
> powers.of.pi
[1] 0.10132 0.31831 1.00000 3.14159 9.86960

This introduces us to another objectNULL , which represent nothing, the empty
set.

Factors

Another vector-like class is much used inS. Factors are sets of labelled observa-
tions with a pre-defined set of labels, not all of which need occur. For example,

> citizen <- factor(c("uk", "us", "no", "au", "uk", "us", "us"))
> citizen
[1] uk us no au uk us us

Although this is entered as a character vector, it is printed without quotes. Inter-
nally the factor is stored as a set of codes, and an attribute giving thelevels:

> unclass(citizen)
[1] 3 4 2 1 3 4 4
attr(, "levels"):
[1] "au" "no" "uk" "us"

If only some of the levels occur, all are printed (and they always are inR). R

16 Data Manipulation

> citizen[5:7]
[1] uk us us
Levels:
[1] "au" "no" "uk" "us"

(An extra argument may be included when subsetting factors to include only those
levels that occur in the subset. For example,citizen[5:7, drop=T] .)

Why might we want to use this rather strange form? Using a factor indicates
to many of the statistical functions that this is a categorical variable (rather than
just a list of labels), and so it is treated specially. Also, having a pre-defined set
of levels provides a degree of validation on the entries.

By default the levels are sorted into alphabetical order, and the codes assigned
accordingly. Some of the statistical functions give the first level a special status,
so it may be necessary to specify the levels explicitly:

> citizen <- factor(c("uk", "us", "no", "au", "uk", "us", "us"),
levels = c("us", "fr", "no", "au", "uk"))

> citizen
[1] uk us no au uk us us
Levels:
[1] "us" "fr" "no" "au" "uk"

Function relevel can be used to change the ordering of the levels to make a
specified level the first one; see page 383.

Sometimes the levels of a categorical variable are naturally ordered, as in

> income <- ordered(c("Mid", "Hi", "Lo", "Mid", "Lo", "Hi", "Lo"))
> income
[1] Mid Hi Lo Mid Lo Hi Lo

Hi < Lo < Mid
> as.numeric(income)
[1] 3 1 2 3 2 1 2

Again the effect of alphabetic ordering is not what is required, and we need to set
the levels explicitly:

> inc <- ordered(c("Mid", "Hi", "Lo", "Mid", "Lo", "Hi", "Lo"),
levels = c("Lo", "Mid", "Hi"))

> inc
[1] Mid Hi Lo Mid Lo Hi Lo

Lo < Mid < Hi

Ordered factors are a special case of factors that some functions (including
print) treat in a special way.

The functioncut can be used to create ordered factors by sectioning contin-
uous variables into discrete class intervals. For example,

> # R: data(geyser)
> erupt <- cut(geyser$duration, breaks = 0:6)
> erupt <- ordered(erupt, labels=levels(erupt))

2.1 Objects 17

> erupt
[1] 4+ thru 5 2+ thru 3 3+ thru 4 3+ thru 4 3+ thru 4
[6] 1+ thru 2 4+ thru 5 4+ thru 5 2+ thru 3 4+ thru 5
....

0+ thru 1 < 1+ thru 2 < 2+ thru 3 < 3+ thru 4 < 4+ thru 5 <
5+ thru 6

(R labels these differently.) Note that the intervals are of the form(n, n + 1], so R

an eruption of 4 minutes is put in category3+ thru 4. We can reverse this by
the argumentleft.include = T .4

Data frames

A data frame is the type of object normally used inS to store a data matrix. It
should be thought of as a list of variables of the same length, but possibly of
different types (numeric, factor, character, logical, . . .). Consider our data frame
painters :

> # R: data(painters)
> painters

Composition Drawing Colour Expression School
Da Udine 10 8 16 3 A
Da Vinci 15 16 4 14 A

Del Piombo 8 13 16 7 A
Del Sarto 12 16 9 8 A
Fr. Penni 0 15 8 0 A

....

which has four numerical variables and onefactor variable. It is printed in a way
specific to data frames. The components are printed as columns and there is a set
of names, therow.names , common to all variables. The row names should be
unique.5

> row.names(painters)
[1] "Da Udine" "Da Vinci" "Del Piombo"
[4] "Del Sarto" "Fr. Penni" "Guilio Romano"
[7] "Michelangelo" "Perino del Vaga" "Perugino"

....

The column names are given by thenames function.
Applying summary gives a summary of each column.

> summary(painters) # try it!

Data frames are by far the commonest way to store data in anS environment.
They are normally imported by reading a file or from a spreadsheet or database.
However, vectors of the same length can be collected into a data frame by the
function data.frame.

mydat <- data.frame(MPG, Dist, Climb, Day = day)

4In R use right = FALSE .
5In S-PLUS there is adup.names.ok argument which should be avoided.

18 Data Manipulation

However, all character columns are converted to factors unless their names are
included inI() so, for example,

mydat <- data.frame(MPG, Dist, Climb, Day = I(day))

preservesday as a character vector,Day.
The row names are taken from the names of the first vector found (if any)

which has names without duplicates, otherwise numbers are used.
Sometimes it is convenient to make the columns of the data frame available

by name. This is done byattach and undone bydetach :

> attach(painters)
> School
[1] A A A A A A A A A A B B B B B B C C C C C C D D D D D D D

[30] D D D E E E E E E E F F F F G G G G G G G H H H H
> detach("painters")

Be wary of masking system objects,6 and detach as soon as you are done with
this.

Matrices and arrays

A data frame may be printed like a matrix, but it is not a matrix. Matrices like
vectors7 have all their elements of the same type. Indeed, a good way to think of
a matrix inS is as a vector with some special instructions as to how to lay it out.
The matrix function generates a matrix:

> mymat <- matrix(1:30, 3, 10)
> mymat

[,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10]
[1,] 1 4 7 10 13 16 19 22 25 28
[2,] 2 5 8 11 14 17 20 23 26 29
[3,] 3 6 9 12 15 18 21 24 27 30
> class(mymat)
[1] "matrix"
> dim(mymat)
[1] 3 10

Note that the entries are (by default) laid out down columns, the class is one
not seen before, and thedim function gives the dimensions. Use argument
byrow = T to fill the matrix along rows.

Matrices have two dimensions: arrays have one, two, three or more dimen-
sions. We can create an array using thearray function or by assigning the
dimension.

> myarr <- mymat
> dim(myarr) <- c(3, 5, 2)
> class(myarr)
[1] "array"

6See page 43.
7Except lists, but a list can be matrix inS.

2.1 Objects 19

> myarr

, , 1
[,1] [,2] [,3] [,4] [,5]

[1,] 1 4 7 10 13
[2,] 2 5 8 11 14
[3,] 3 6 9 12 15

, , 2
[,1] [,2] [,3] [,4] [,5]

[1,] 16 19 22 25 28
[2,] 17 20 23 26 29
[3,] 18 21 24 27 30
> dim(myarr)
[1] 3 5 2

Matrices and arrays can also have names for the dimensions, known asdim-
names. The simple way to add them is to just to assign them, usingNULL where
we do not want a to specify a set of names.

> dimnames(myarr) <- list(letters[1:3], NULL, c("(i)", "(ii)"))
> myarr

, , (i)
[,1] [,2] [,3] [,4] [,5]

a 1 4 7 10 13
b 2 5 8 11 14
c 3 6 9 12 15

, , (ii)
[,1] [,2] [,3] [,4] [,5]

a 16 19 22 25 28
b 17 20 23 26 29
c 18 21 24 27 30

We can begin to see how arrays may be useful to represent multi-dimensional
tables.

Missing and special values

We have already mentioned the special valueNA . If we assignNA to a new
variable we see that it islogical

> newvar <- NA
> class(NA)
[1] "logical"

It is important to realize thatS works in a three-valued logic, and that

> newvar > 3
[1] NA

20 Data Manipulation

is perfectly logical in that system. As we do not know the value ofnewvar (it is
‘not available’) we cannot know if it bigger or smaller than 3. In all such casesS
does not guess, it returnsNA .

There are missing numeric, integer, complex and (R only) character values,R

and these are also printed asNA . Coercion occurs as needed, so

> x <- c(pi, 4, 5)
> x[2] <- NA
> x
[1] 3.1416 NA 5.0000
> class(x)
[1] "numeric"

shows that this is a numericNA . To test which elements of an object are missing,
use the functionis.na

> is.na(x)
[1] F T F

There are other special numeric (andcomplex) values that can cause confu-
sion. As far as we know all currentS environments support IEC 60559 arith-
metic,8 which has the special valuesNaN , Inf and -Inf . The valuesInf and
-Inf can be entered as such and can also occur in arithmetic:

> 1/0
[1] Inf

The value9 NaN means ‘not a number’ and represent results such as0/0 . In
S-PLUS they are printed asNA , in R as NaN and in bothis.na treats them as
missing.

> x <- c(-1, 0, 1)/0
> x
[1] -Inf NA Inf ## NaN in R
> is.na(x)
[1] F T F
> x > Inf
[1] F NA F

Notice the logic is not perfect; even though the second element is missing we
know it cannot exceedInf , butS does not.

For more on this topic see Venables and Ripley (2000, p. 22).

2.2 Connections

Connections between a statistical environment and the outside world are increas-
ingly important. Here ‘connections’ is used both in the general sense and a spe-
cific sense, a set ofS classes to connect to the world rather than just to files.

8More commonly referred to as IEEE 754.
9There are actually many such values.

2.2 Connections 21

There is a class"connection" for S objects that provide such connections; this
specializes to a class"file" for files, but there are also (in some of the imple-
mentations) connections to terminals, pipes, fifos, sockets, character vectors,
We will only scratch the surface here.

Another set of connections are to data repositories, either to import/export
data or to directly access data in another system. This is an area in its infancy.

For most users theS environment is only one of the tools available to manip-
ulate data, and it is often productive to use a combination of tools, pre-processing
the data before reading into theS environment.

Data entry

For all but the smallest datasets the easiest way to get data into anS environment
is to import it from a connection such as a file. For small datasets two ways are

> x <- c(2.9, 3.1, 3.4, 3.4, 3.7, 3.7, 2.8, 2.5)

> x <- scan()
1: 2.9 3.1 3.4 3.4 3.7 3.7 2.8 2.5
9:

where in the second method input is terminated by an empty line or the end-
of-file character (probably Ctrl-D). (To enter a character vector this way use
scan(what = "") .)

Windows versions ofS-PLUS and all versions ofR have a spreadsheet-likeS+Win

data window that can be used to enter or edit data frames. It is perhaps easiest to
start with a dummy data frame:

> mydf <- data.frame(dist = 0., climb = 0., time = 0.)
> Edit.data(mydf) ## S-PLUS for Windows only

FunctionEdit.data brings up a spreadsheet-like grid: see Figure 2.1. It works
on matrices and vectors too. Alternatively open an Objects Explorer, right click
on the object and selectEdit..., or use theSelect Data... item on theData menu.

In R create a dummy data frame and then use R

> fix(mydf) ## R

to bring up a data grid. See?edit.data.frame for further details.

Importing using read.table

The functionread.table is the most convenient way to read in a rectangular
grid of data. Because such grids can have many variations, it has many arguments.

The first argument is called"file" , but specifies a connection. The simplest
use is to give a character string naming the file. One warning forWindows users:
specify the directory separator either as"/" or as"\\" (butnot "\").

The basic layout is one record per row of input, with blank rows being ignored.
There are a number of issues to consider:

22 Data Manipulation

Figure 2.1: A data-window view (fromS-PLUS 6 underWindows) of the first few rows
of the hills dataset. For details of data windows see page 460.

(a) Separator The argumentsep specifies how the columns of the file are to
be distinguished. Normally looking at the file will reveal the right separator,
but it can be important to distinguish between the defaultsep = "" that uses
any white space (spaces, tabs or newlines),sep = " " (a single space) and
sep = "\t" (tab).

(b) Row names It is best to have the row names as the first column in the file,
or omit them altogether (when the rows are numbered, starting at 1).

The row names can be specified as a character vector argumentrow.names ,
or as the number or name of a column to be used as the row names. If there
is a header one column shorter than the body of the file, the first column in
the file is taken as the row names. OtherwiseS-PLUS grabs the first suitableS+

column (non-numeric, no duplicates), or if there is none, numbers the rows.
You can force numbered rows by argumentrow.names = NULL .

(c) Header line It is convenient to include a first line of input giving the names
for the columns. We recommend that you include the argumentheader
explicitly. Conventionally the header line excludes the row names and so
has one entry fewer than subsequent rows if the file contains row names. (If
header is not specified,S setsheader = T if and only if this is true.) If
the names given are not syntatically validS names they will be converted (by
replacing invalid characters by ‘. ’).

(d) Missing values By default the character stringNA in the file is assumed
to represent missing values, but this can be changed by the argument
na.strings , a character vector of zero, one ormore representations of miss-
ing values. To turn this off, usena.strings = character(0) .

In otherwise numeric columns, blank fields are treated as missing.

(e) Quoting By default character strings may be quoted by" or ’ and in each

2.2 Connections 23

case all characters on the line up to the matching quote are regarded as part
of the string.

In R the set of valid quoting characters (which might be none) is specified byR

the quote argument; forsep = "\n" this defaults toquote = "" , a useful
value if there are singleton quotes in the data file. If no separator is specified,
quotes may be escaped by preceding them with a backslash; however, if a
separator is specified they should be escaped by doubling them, spreadsheet-
style.

(f) Type conversion By default, read.table tries to work out the correct
class for each column. If the column contains just numeric(logical) values
and one of thena.strings it is converted to"numeric" ("logical").
Otherwise it is converted to a factor. The logical argumentas.is controls
the conversion to factors (only); it can be of length one or give an entry for
each column (excluding row names).

R has more complex type conversion rules, and can produce integer and com-R

plex columns: it is also possible to specify the desired class for each column.

(g) White space in character fields If a separator is specified, leading and trail-
ing white space in character fields is regarded as part of the field.

Post-processing

There are some adjustments that are often needed after usingread.table . Char-
acter variables will have been read as factors (modulo the use ofas.is), with lev-
els in alphabetical order. We might want another ordering, or an ordered factor.
Some examples:10

whiteside$Insul <-
factor(whiteside$Insul, levels = c("Before", "After"))

Insurance$Group <- ordered(Insurance$Group,
labels = c("<1l", "1-1.5l", "1.5-2l", ">2l"))

Also, numeric variables will have been made into a numeric column, even if they
are really factor levels:

Insurance$District <- factor(Insurance$District)

Importing from other systems

Often the safest way to import data from another system is to export it as a tab- or
comma-delimited file and useread.table . However, more direct methods are
available.

S-PLUS has a functionimportData , and on GUI versions a dialog-box in-S+

terface via theImport Data... item on itsFile menu. This can import from a
wide variety of file formats, and also directly from relational databases.11 The
file formats include plain text,Excel,12 Lotus 123 andQuattro spreadsheets, and

10All from the scripts used to make theMASS library section.
11Which databases is system-dependent.
12But only up to the long superseded version 4 onUNIX / Linux.

24 Data Manipulation

Figure 2.2: S-PLUS 6 GUI interface to importing from ODBC: theAccess database is
selected from a pop-up dialog box when that type of ‘Data Source’ is selected.

variousSAS, SPSS, Stata, SysStat, Minitab andMatlab formats. Files can be
read in sequential blocks of rows viaopenData and readNextDataRows.

Importing data in the GUI usually brings up a data grid showing the data; it is
also saved as anS object. We will illustrate this by importing a copy of our data
framehills from anAccess database. The data had been stored in tablehills
in anAccess database, and an ODBC ‘Data Source Name’testacc entered via
the control panel ODBC applet.13

hills2 <- importData(type = "ODBC",
odbcConnection = "DSN=testacc", table = "hills")

Users unfamiliar with ODBC will find the GUI interface easier to use; see Fig-
ure 2.2.

If you have MicrosoftExcel installed, data frames can be linked to ranges of
Excel spreadsheets. Open the spreadsheet via theOpen item on theFile menu
(which brings up an embeddedExcel window) and select the ‘Link Wizard’ from
the toolbar.

R can import from several file formats and relational database systems; seeR

theR Data Import/Export manual.

Using scan

Function read.table is an interface to a lower-level functionscan . It is rare
to usescan directly, but it does allow more flexibility, including the ability to

13In theAdministrative Tools folder in Windows 2000 andXP.

2.2 Connections 25

bypass completely the type conversion ofread.table and to have records span-
ning more than one input line (with argumentmulti.line = T).

Using readLines

If all you need is to read a set of character strings from a file, one string per line,
then readLines is the fastest and most convenient tool. Often the simplest way
to read complicated formats is to read them line-by-line and then manipulate the
lines inside theS environment.

Data export

Once again there are many possibilities. Functionwrite.table will write a data
frame to a connection, most often a file. Its default usage

> write.table(painters, file = "painters.dat")

writes a data frame, matrix or vector to a file in a comma-separated format with
row and column names, something like (fromS-PLUS)

row.names,Composition,Drawing,Colour,Expression,School
Da Udine,10, 8,16, 3,A
Da Vinci,15,16, 4,14,A
Del Piombo, 8,13,16, 7,A
Del Sarto,12,16, 9, 8,A
....

There are a number of points to consider.

(a) Header line Note that that is not quite the format of header line that
read.table expects, andR will omit the first field unless argumentR

col.names = NA is supplied.

The header line can be suppressed inS-PLUS by dimnames.write = "row"
and inR by col.names = FALSE .

(b) Row names These can be suppressed bydimnames.write = "col" in
S-PLUS androw.names = FALSE in R. In S-PLUS dimnames.write = F
omits both row and column names.

(c) Separator The comma is widely used in English-speaking countries as it is
unlikely to appear in a field, and such files are known as CSV files. In some
locales the comma is used as a decimal point, and there the semicolon is used
as a field separator in CSV fields (usesep = ";"). A tab (usesep = "\t")
is often the safest choice.

(d) Missing values By default missing values are output asNA ; this can be
changed by the argumentna .

(e) Quoting In S-PLUS character strings are not quoted by default. With ar-S+

gumentquote.strings = T all character strings are double-quoted. Other
quoting conventions are possible, for examplequote.strings = c("‘",
"’"). Quotes within strings are not treated specially.

26 Data Manipulation

In R character stringsare quoted by default, this being suppressed byR
quote = FALSE , or selectively by giving a numeric vector forquote . Em-
bedded quotes are escaped, either as\" or doubled (Excel-style, set by
qmethod = "double").

(f) Precision The precision to which real (and complex) numbers are output is
controlled by the setting ofoptions("digits"). You may need to increase
this.

Using write.table can be very slow for large data frames; if all that is
needed is to write out a numericor character matrix, functionwrite.matrix in
our library sectionMASS can be much faster.

S-PLUS has functionexportData , and onWindows a dialog-box interfaceS+

to it via itemExport Data... on theFile menu. This can write files in similar for-
mats toimportData (but not to databases). The arguments are similar to those of
write.table but with confusingly different names, for exampledelimiter ,
colNames , rowNames and quote (which defaults to true). Files can be ex-
ported in blocks of rows viaopenData and writeNextDataRows.

Saving objects

Sometimes one needs to save anS object for future reference or to take to another
machine. If it is a data frame, the simplest way is often to export to a text file.
However, there are ways to saveand restore arbitrary objects.

In S-PLUS the recommended way is to save the object usingdata.dump andS+

restore it usingdata.restore . To save and restore three objects we can use

data.dump(c("obj1", "obj2", "obj3"), file = "mydump.sdd")
data.restore(file = "mydump.sdd")

UnderWindows the .sdd extension is associated with such dumps.
In R we can usesave and load . A simple usage isR

save(obj1, obj2, obj3, file = "mydump.rda", ascii = FALSE)
load(file = "mydump.rda")

which gives a binary dump (usually in a machine-independent format). To send
the result by email or to ensure a greaterchance of machine-independence, use
ascii = TRUE . Compression can be specifiedvia compress = TRUE , and is
useful for archival storage ofR objects.

Note that none of these methods is guaranteed to work across different archi-
tectures (but they usually do) nor across different versions ofS-PLUS or R.

More on connections

So far we have made minimal use of connections; by default functions such as
read.table and scan open a connection to a file, read (or write) the file, and
close the connection. However, users can manage the process themselves: sup-
pose we wish to read a file which has a header and some text comments, and then
read and process 1000 records at a time. For example,

2.3 Data Manipulation 27

con <- open("data.dat", "r") # open the file for reading
header <- scan(con, what=list(some format), n=1, multi.line=T)
compute the number of comment lines from ‘header’
comments <- readLines(con, n = ncomments)
repeat {

z <- scan(con, what = list(record format), n = 1000)
if(!length(z[[1]])) break;
process z (which might be less than 1000 records)

}
close(con)

This approach is particularly useful with binary files of known format, where
readRaw (S-PLUS) or readBin (R) can be used to read sections of a particular
format (say character or float type). It isalso helpful for creating formatted output
a piece at a time.

Connections can also be used to input from other sources. Suppose the data
file contains comment lines starting with# . Now R’s read.table and scan R

can handle these directly, but we could also make use of apipe connection by14

DF <- read.table(pipe("sed -e /^[\\t]*#/d data.dat"), header = T)

A similar approach can be used to edit the data file, for example to change15 the
use of comma as a decimal separator to ‘. ’ by sed -e s/,/./g .

Taking this approach further, a connection can (on suitable systems) read from
or write to a fifo or socket and so wait for data to become available, process it and
pass it on to a display program.

2.3 Data Manipulation

S-PLUS for Windows has a set of dialog boxes accessed from itsData menu for
data manipulation. These can be useful for simple operations, but are very limited
compared to theS language as used on, say, page 380.

The primary means of data manipulation inS is indexing. This is extremely
powerful, and most people coming toS take a while to appreciate the possibilities.
How indexing works in detail varies by the class of the object, and we only cover
the more common possibilities here.

Indexing vectors

We have already seen several examples of indexing vectors. The complete story
needs to take into account that indexing can be done on the left-hand side of an
assignment (to select parts of a vector toreplace) as well on the right-hand side.

The general form isx[ind] whereind is on of the following forms:

14This may only work on aUNIX-like system.
15R has argumentdec to specify the decimal point character, andS-PLUS 6.1 consults the locale.

28 Data Manipulation

1. A vector of positive integers. In this case the values in the index vector nor-
mally lie in the set{1, 2, ..., length(x)}. The corresponding ele-
ments of the vector are selected, in that order, to form the result. The index
vector can be of any length and the result is of the same length as the in-
dex vector. For example,x[6] is the sixth component ofx and x[1:10]
selects the first 10 elements ofx (assuminglength(x) � 10). For an-
other example, we use the datasetletters , a character vector of length
26 containing the lower-case letters:

> letters[1:3]
[1] "a" "b" "c"
> letters[c(1:3,3:1)]
[1] "a" "b" "c" "c" "b" "a"

Such indices can also include zero. Azero index on the right-hand side
passes nothing, and a zero index in a vector to which something is being
assigned accepts nothing.

2. A logical vector. The index vector must be of the same length as the vector
from which elements are to be selected. Values corresponding toT in the
index vector are selected and those corresponding toF or NA are omitted.
For example,

y <- x[!is.na(x)]

creates an objecty that will contain the non-missing values ofx , in the
same order as they originally occurred. Note that ifx has any missing
values,y will be shorter thanx. Also,

x[is.na(x)] <- 0

replaces any missing values inx by zeros.

3. A vector of negative integers. This specifies the values to beexcluded rather
than included. Thus

> y <- x[-(1:5)]

drops the first five elements ofx. Zero values are handled in the same way
as in case1.

4. A vector of character strings. This possibility applies only where a vector
has names. In that case a subvector of the names vector may be used in the
same way as the positive integers in case1. For example,

> # R: data(state)
> longitude <- state.center$x
> names(longitude) <- state.name
> longitude[c("Hawaii", "Alaska")]

Hawaii Alaska
-126.25 -127.25

finds the longitude of the geographic centre of the two most western states
of the USA. Thenames attribute is retained in the result.

2.3 Data Manipulation 29

5. Empty. This implies all possible values for the index. It is really only useful
on the receiving side, where it replaces the contents of the vector but keeps
other aspects (the class, the length, the names, . . .).

What happens if the absolute value of an index falls outside the range
1, ..., length(x)? In an expression this givesNA if positive and imposes no
restriction if negative. In a replacement, a positive index greater thanlength(x)
extends the vector, assigningNAs to any gap, and a negative index less than
-length(x) is ignored inS-PLUS but an error inR. R

If the sub-vector selected for replacement is longer than the right-hand side,
the S recycling rule comes into play. That is, the right-hand side is recycled as
often as necessary; if this involves partial recycling there will be a warning or
error message.

Indexing data frames, matrices and arrays

Matrices and data frames may be indexed by giving two indices in the form
mydf[i, j] wherei andj can take any of the five forms shown for vectors. If
character vectors are used as indices, they refer to column names, row names or
dimnames as appropriate.

Matrices are just arrays with two dimensions, and the principle extends to
arrays: for ak –dimensional array givek indices from the five forms. Indexing
arrays16 has an unexpected quirk: if one of the dimensions of the result is of
length one, it is dropped. Suppress this by adding the argumentdrop = F . For
example,

> myarr[1, 2:4,]
(i) (ii)

[1,] 4 19
[2,] 7 22
[3,] 10 25
> myarr[1, 2:4, , drop = F]

, , (i)
[,1] [,2] [,3]

a 4 7 10

, , (ii)
[,1] [,2] [,3]

a 19 22 25

Forgettingdrop = F is a common error. Conversely, the functiondrop will
drop all length-one dimensions.

Columns in a data frame are most commonly selected by the$ operator, for
examplepainters$School.

16But not data frames.

30 Data Manipulation

There are several other forms of indexing that you might meet, although we
do not recommend them for casual use; they are discussed in Venables and Rip-
ley (2000, pp. 23–27). Columns of a data frame can be selected by using a one-
dimensional index, for examplepainters[c("Colour", "School")] . An ar-
ray is just a vector with dimensions, and so can be indexed as a vector. Arrays
and data frames can also be indexed by matrices.

Selecting subsets

A common operation is to select just those rows of a data frame that meet some
criteria. This is a job for logical indexing. For example, to select all those rows of
the painters data frame withColour � 17 we can use

> attach(painters)
> painters[Colour >= 17,]

Composition Drawing Colour Expression School
Bassano 6 8 17 0 D

Giorgione 8 9 18 4 D
Pordenone 8 14 17 5 D

Titian 12 15 18 6 D
Rembrandt 15 6 17 12 G

Rubens 18 13 17 17 G
Van Dyck 15 10 17 13 G

We often want to select on more than onecriterion, and we can combine logical
indices by the ‘and’, ‘or’ and ‘not’ operators& , | and! . For example,

> painters[Colour >= 15 & Composition > 10,]
> painters[Colour >= 15 & School != "D",]

Now suppose we wanted to select those from schools A, B and D. We can
select a suitable integer index usingmatch (see page 53) or a logical index using
is.element .

painters[is.element(School, c("A", "B", "D")),]
painters[School %in% c("A", "B", "D"),] ## R and S+6.1 only

One needs to be careful with these checks, and consider what happens if part
of the selection criterion isNA . Thus School != "D" not only omits those
known to be in schoolD , but also any for which the school is unknown, which
are kept by!is.element(School, "D") .

One thing that does not work as many people expect isSchool == c("A",
"B", "D"). That tests the first element against"A" , the second against"B" , the
third against"C" , the fourth against"A" , and so on.

The ifelse function can also be useful in selecting a subset. For example,
to select the better ofColour and Expression we could use a matrix index

painters[cbind(1:nrow(painters), ifelse(Colour > Expression, 3, 4))]

Partial matching can be useful, and is best done byregular expressions (see
page 53). For example, to select those painters whose names end in ‘io’ we can
use

2.3 Data Manipulation 31

painters[grep("io$", row.names(painters)),]

We must remember to clean up:

> detach("painters")

Sub-sampling

Sub-sampling is also done by indexing. For a random sample ofm rows of data
frame fgl we can use

fglsub1 <- fgl[sort(sample(1:nrow(fgl), m)),]

Using sort keeps the rows in their original order.
Sometimes one wants a, say, 10% sample where this means not a fixed-size

random sample of 10% of the original size, but a sample in which each row ap-
pears with probability 0.1, independently. For this, use

fglsub2 <- fgl[rbinom(nrow(fgl), 1, 0.1) == 1,]

For systematic sampling we can use theseq function described on page 50.
For example, to sample every 10th row use

fglsub3 <- fgl[seq(1, nrow(fgl), by = 10),]

Re-coding missing values

A common problem with imported data is to re-code missing values, which may
have been coded as ‘999 ’ or ‘ . ’, say. Often this is best avoided by using the
na.strings argument toread.table or by editing the data before input, but
this is not possible with direct (e.g., ODBC) connections.

An actual example was an import from SPSS in which9 , 99 and 999 all
represented ‘missing’. For a vectorz this can be recoded by

z[is.element(z, c(9, 99, 999))] <- NA

If ‘ . ’ has been used it is likely that the vector has been imported as a character
vector, in which case

z[z == "."] <- NA
z <- as.numeric(z)

may be needed.

Combining data frames or matrices

The functionscbind and rbind combine data frames, matrices or vectors
column-wise and row-wise respectively.

Compatible data frames can be joined bycbind , which adds columns of the
same length, andrbind , which stacks data frames vertically. The result is a
data frame with appropriate names and row names; the names can be changed by
naming the arguments as on page 191.

The functions can also be applied to matrices and vectors; the result is a ma-
trix. If one just wants to combine vectors to form a data frame, usedata.frame

32 Data Manipulation

and not cbind ; cbind-ing a mixture of numeric and character variables will
result in a character matrix.

Repeated use ofcbind and (especially)rbind is inefficient; it is better to
create a matrix (or data frame) of the desired final size (or an overestimate) and
then assign to sections of it using indexing.

Function merge (see page 35) allows more general combinations of data
frames.

Sorting

The S function sort at its simplest takes one vector argument and returns a
vector of sorted values. The vector tobe sorted may be numeric or character,
and if there is a names attribute the correspondence of names is preserved. The
ordering of tied values is preserved. Howcharacter vectors are sorted is locale-
specific inR andS-PLUS 6.1; S-PLUS 6.0 uses the ASCII collating sequence.

To reverse the ordering of a vector, use the functionrev .
More often we want to sort several values in parallel: for example to sort the

painters data frame by the painter’s name. We can do that by

painters[sort.list(row.names(painters)),]

The functionsort.list produces a (positive integer) index vector that will ar-
range its argument in increasing order. To put a numeric vectorx into decreasing
order, usesort.list(-x); for any vectorx one can userev(sort.list(x)) ,
but that will also reverse tied entries.

Function order generalizessort.list to an arbitrary number of argu-
ments. It returns the index vector that would arrange the first in increasing order,
with ties broken by the second, and so on. For example, to print employees ar-
ranged by age, by salary within age, and by employment number within salary,
we might use:

attach(Employees)
Employees[order(Age, Salary, No),]
detach("Employees")

All these functions have an argumentna.last that determines the handling
of missing values. Withna.last = NA (the default forsort) missing values
are deleted; withna.last = T (the default forsort.list and order) they
are put last, and withna.last = F they are put first.

Data transformations

There are of course many possible transformations, and here we only consider a
few of the more common ones. Unless otherwise stated, we assume that the data
are stored in a data frame.

2.3 Data Manipulation 33

Individual variables

Individual variables are most easily accessed by the$ operator, which can also be
used to add new variables (at the right edge). Here are some examples from later
in the book:

> hills$ispeed <- hills$time/hills$dist # ratio of two vars
> Cf$Tetrahydrocortisone <- log(Cf$Tetrahydrocortisone)
> levels(Quine$Eth) <- c("Aboriginal", "Non-aboriginal")

One set of transformations that is sometimes needed is to convert a factor with
numeric levels to numbers, andvice versa. Use

a.num <- as.numeric(as.character(a.num.fac)) # or
a.num <- as.numeric(levels(a.mu.fac))[a.num.fac] # more efficient

a.fac <- factor(a.num, levels = sort(unique(a.num)))

Not specifyinglevels in the last example would sort the levels as strings, using
"2" > "10" for example.

To merge levels of a factor, re-assign the levels giving two or more levels the
same label.

Sets of columns

Some operations can be applied to whole data frames, for examplelog , so in
Chapter 11 we havelog(ir) . More often we want to take logs of some of the
variables, say all numeric variables. We can apply this to thecrabs dataset we
consider in Chapter 11.

lcrabs <- crabs # make a copy
lcrabs[, 4:8] <- log(crabs[, 4:8])

One common operation to use in this way isscale, which by default centres each
variable to have zero mean and then rescales to unit variance. (Either operation
can be de-selected via argumentscenter and scale .)

Other operations can only be applied to vectors, and so must be applied to
each column in turn. This is the purpose of the functionlapply , so we could
scale the columns ofcrabs by

scrabs <- crabs # make a copy
scrabs[, 4:8] <- lapply(scrabs[, 4:8], scale)
or to just centre the variables
scrabs[, 4:8] <- lapply(scrabs[, 4:8], scale, scale = F)

albeit less efficiently. Notice how extra arguments can be given, and are passed
on to the function called for each column. For an example where variables are
scaled to[0, 1] see page 348.

Suppose we wanted to standardize17 all the numerical variables. We could use

scrabs <- crabs # make a copy
scrabs[] <- lapply(scrabs,

function(x) {if(is.numeric(x)) scale(x) else x})

17Transform to zero mean and unit variance.

34 Data Manipulation

using a simpleanonymous function (andif ... else ; see page 58). The right-
hand side gives a list without row names, which we use to replace all the columns
in the data frame.

We can find out which variables are numeric by

> sapply(crabs, is.numeric)
sp sex index FL RW CL CW BD
F F T T T T T T

Functionsapply is very similar tolapply , but attempts to simplify the result
to a vector or matrix.

Operations on rows

Operating on each row is much tricker. Whereas each column is a variable of a
single class, a row can be rather diverse. However, in the special case that all
columns are numeric, or all are character or factor, we can make progress by
coercing the data frame to a (numeric or character) matrix.

Functionapply operates on arrays,18 but here we need only the special case
of row-wise operations on a matrix. For example, on page 204 we use

> house.cpr <- apply(house.pr, 1, cumsum)

to form cumulative probabilities row-wise in a matrix giving multinomial proba-
bilities for each case (row).

A data frame used as the first argument ofapply will automatically be co-
erced to a matrix.

Splitting

We can consider groups of rows by splitting a data frameon one or more factors.
The functionsplit takes as arguments a vector, matrix or data frame and a

factor defining groups. The value is a list, one component for each group. For
example, in Chapter 14 we use

boxplot(split(nott, cycle(nott)), names = month.abb)

to split a time series by month, and perform a boxplot on each sub-series.
For data frames it is often more convenient to useby . This takes a data frame

and splits it by the second argument,INDICES, passing each data frame in turn to
its FUN argument.INDICES can be a factor or a list of factors. For example, to
summarize the measurements in each sex–species group incrabs we can use

> by(crabs[, 4:8], list(crabs$sp, crabs$sex), summary)
crabs$sp:B
crabs$sex:F

FL RW CL CW
Min. : 7.2 Min. : 6.5 Min. :14.7 Min. :17.1
1st Qu.:11.5 1st Qu.:10.6 1st Qu.:23.9 1st Qu.:27.9
Median :13.1 Median :12.2 Median :27.9 Median :32.4
Mean :13.3 Mean :12.1 Mean :28.1 Mean :32.6

18See page 65 for a fuller description ofapply .

2.3 Data Manipulation 35

3rd Qu.:15.3 3rd Qu.:13.9 3rd Qu.:32.8 3rd Qu.:37.8
Max. :19.2 Max. :16.9 Max. :40.9 Max. :47.9

....

Function aggregate is similar to by, but for functions that return a single
number so the result can be a data frame. For example,

> aggregate(crabs[, 4:8], by = list(sp=crabs$sp, sex=crabs$sex),
median)

sp sex FL RW CL CW BD
1 B F 13.15 12.20 27.90 32.35 11.60
2 O F 18.00 14.65 34.70 39.55 15.65
3 B M 15.10 11.70 32.45 37.10 13.60
4 O M 16.70 12.10 33.35 36.30 15.00

It is important to ensure that the function used is applicable to each column, which
is why we must omit the factor columns here.

Merging

The functionmerge provides ajoin of two data frames as databases. That is,
it combines pairs of rows that have common values in specified columns to a
row with all the information contained in either data frame, allowing many–many
matches. Use?merge for full details.

As an example, consider using two data frames as the equivalent of relations
in a database, and joining them.

> authors
surname nationality deceased

1 Tukey US yes
2 Venables Australia no
3 Tierney US no
4 Ripley UK no
5 McNeil Australia no
> books

name title
1 Tukey Exploratory Data Analysis
2 Venables Modern Applied Statistics ...
3 Tierney LISP-STAT
4 Ripley Spatial Statistics
5 Ripley Stochastic Simulation
6 McNeil Interactive Data Analysis

> merge(authors, books, by.x = "surname", by.y = "name")
surname nationality deceased title

1 McNeil Australia no Interactive Data Analysis
2 Ripley UK no Spatial Statistics
3 Ripley UK no Stochastic Simulation
4 Tierney US no LISP-STAT
5 Tukey US yes Exploratory Data Analysis
6 Venables Australia no Modern Applied Statistics ...

36 Data Manipulation

Figure 2.3: Dialog box to stackmr to form mr2 .

Reshaping

Sometimes spreadsheet data are in a compact format that gives the covariates
for each subject followed by all the observations on that subject. Consider the
following extract of data framemr from repeated MRI brain measurements

Status Age V1 V2 V3 V4
P 23646 45190 50333 55166 56271

CC 26174 35535 38227 37911 41184
CC 27723 25691 25712 26144 26398
CC 27193 30949 29693 29754 30772
CC 24370 50542 51966 54341 54273
CC 28359 58591 58803 59435 61292
CC 25136 45801 45389 47197 47126
....

There are two covariates and up to four measurements on each subject, exported
from Excel.

Such data are sometimes said to be instacked form, an unstacking them would
give a data frame with variablesStatus , Age , V and Replicate , the latter a
factor with levels corresponding to the four columns.

The S-PLUS for Windows GUI has operations to perform stacking and un-S+Win

stacking that call the functionsmenuStackColumn and menuUnStackColumn .
The dialog box needed for this example is shown in Figure 2.3, which when ap-
plied to the seven rows shown above gives

> mr2
V Status Age Replicate

1 45190 P 23646 V1
2 35535 CC 26174 V1
3 25691 CC 27723 V1
4 30949 CC 27193 V1
5 50542 CC 24370 V1
6 58591 CC 28359 V1
7 45801 CC 25136 V1
8 50333 P 23646 V2
9 38227 CC 26174 V2
....

2.4 Tables and Cross-Classification 37

R has functionsstack and unstack to do the basic work, andreshape R

that applies to whole data frames. Here we could use

> reshape(mr, idvar = "Person", timevar = "Scan",
varying = list(c("V1","V2","V3","V4")), direction = "long")
Status Age Scan V1 Person

1.1 P 23646 1 45190 1
2.1 CC 26174 1 35535 2
3.1 CC 27723 1 25691 3
4.1 CC 27193 1 30949 4
5.1 CC 24370 1 50542 5
6.1 CC 28359 1 58591 6
7.1 CC 25136 1 45801 7

....

2.4 Tables and Cross-Classification

Thus far we have concentrated on data frames, which are the most common
form of data storage inS. Here we look at data manipulations related to cross-
tabulation, using ourquine data frame for illustration. The study giving rise to
the dataset is described more fully on page 169; the data frame has four factors,
Sex, Eth (ethnicity—two levels),Age (four levels) andLrn (Learner group—
two levels) and a quantitative response,Days, the number of days the child in the
sample was away from school in a year.

Cross-tabulation

Sometimes all we need are summary tables. The main function for this purpose is
table which returns a cross-tabulation as an array of frequencies (counts). For
example,

> attach(quine)
> table(Age)
F0 F1 F2 F3
27 46 40 33

> table(Sex, Age)
F0 F1 F2 F3

F 10 32 19 19
M 17 14 21 14

Note that the factor levels become the appropriatenames or dimnames attribute
for the frequency array (and the factor names are printed inR but not inS-PLUS). R

If the arguments given totable are not factors they are coerced to factors.
The functioncrosstabs (xtabs in R) may also be used. It takes a formulaR

and data frame as its first two arguments, so the data frame need not be attached.
A call to crosstabs for the same table is

38 Data Manipulation

> tab <- crosstabs(~ Sex + Age, quine) # xtabs in R
> unclass(tab)

F0 F1 F2 F3
F 10 32 19 19
M 17 14 21 14
....

The print method for objects of class"crosstabs" gives extra information of
no interest to us here, but the object behaves in calculations as a frequency table.

Calculations on cross-classifications

The combination of a vector and a labelling factor or factors is an example of
what is called aragged array, since the group sizes can be irregular. (When the
group sizes are all equal the indexing may be done more efficiently using arrays.)

To calculate the average number of days absent for each age group (used on
page 170) we can use the functiontapply, the analogue oflapply and apply
for ragged arrays.

> tapply(Days, Age, mean)
F0 F1 F2 F3

14.852 11.152 21.05 19.606

The first argument is the vector for which functions on the groups are required,
the second argument,INDICES, is the factor defining the groups and the third
argument,FUN, is the function to be evaluated on each group. If the function
requires more arguments they may be included as additional arguments to the
function call, as in

> tapply(Days, Age, mean, trim = 0.1)
F0 F1 F2 F3

12.565 9.0789 18.406 18.37

for 10% trimmed means.
If the second argument is alist of factors the function is applied to each group

of the cross-classification given by the factors. Thus to find the average days
absent for age-by-sex classes we could use

> tapply(Days, list(Sex, Age), mean)
F0 F1 F2 F3

F 18.700 12.969 18.421 14.000
M 12.588 7.000 23.429 27.214

To find the standard errors of these we could use an anonymous function as the
third argument, as in

> tapply(Days, list(Sex, Age),
function(x) sqrt(var(x)/length(x)))

F0 F1 F2 F3
F 4.2086 2.3299 5.3000 2.9409
M 3.7682 1.4181 3.7661 4.5696

There is a more complicated example on page 318.
As with table, coercion to factor takes place where necessary.

2.4 Tables and Cross-Classification 39

Frequency tables as data frames

Consider the general problem of taking a set ofn factors and constructing the
completen-way frequency table as a data frame, that is, as a frequency vector
and a set ofn classifying factors. We can illustrate this with thequine data
frame. First we remove any non-factor components from the data frame.

quineFO <- quine[sapply(quine, is.factor)]

In S-PLUS the function table takes as arguments a series of objects, so we
need to construct a suitable call.19 The functiondo.call takes two arguments:
the name of a function (as a character string) and a list. The result is a call to
that function with the list supplying the arguments. List names become argument
names. Hence we may find the frequency table using

tab <- do.call("table", quineFO)

The result is a multi-way array of frequencies.
Next we find the classifying factors, which correspond to the indices of this

array. A convenient way is to useexpand.grid.20 This function takes any num-
ber of vectors and generates a data frameconsisting of all possible combinations
of values, in the correct order to match the elements of a multi-way array with
the lengths of the vectors as the index sizes. Argument names become compo-
nent names in the data frame. Alternatively,expand.grid may take a single list
whose components are used as individual vector arguments. Hence to find the
index vectors for our data frame we may use

QuineF <- expand.grid(lapply(quineFO, levels))

Finally we put together the frequency vector and classifying factors.

> QuineF$Freq <- as.vector(tab)
> QuineF

Eth Sex Age Lrn Freq
1 A F F0 AL 4
2 N F F0 AL 4
3 A M F0 AL 5

....
30 N F F3 SL 0
31 A M F3 SL 0
32 N M F3 SL 0

We useas.vector to remove all attributes of the table.

19In R table(quineFO) will work.
20Which we use in several places in this book; see its index entry.

Chapter 3

The S Language

S is a language for the manipulation of objects. It aims to be both an interactive
language (like, for example, aUNIX shell language) and a complete programming
language with some convenient object-oriented features. This chapter is intended
for reference use by interactive users; Venables and Ripley (2000) covers more
aspects of the language for programmers.

3.1 Language Layout

Commands toS are either expressions or assignments. Commands are separated
by either a semi-colon,; , or a newline. A# marks the rest of the line as com-
ments, so comments can be placed at ends of lines.

TheS prompt is> unless the command is syntactically incomplete, when the
prompt changes to+.1 The only way to extend a command over more than one
line is by ensuring that itis syntactically incomplete until the final line.

An expression command is evaluated and (normally) printed. For example,

> 1 - pi + exp(1.7)
[1] 3.3324

This rule allows any object to be printed by giving its name. Note thatpi is
the value ofπ. Giving the name of an object will normally print it or a short
summary; this can be done explicitly using the functionprint , and summary
will often give a full description.

An assignment command evaluates an expression and passes the value to a
variable but the result is not printed. The recommended assignment symbol2 is
the combination, “<- ”, so an assignment inS looks like

a <- 6

which gives the objecta the value6. To improve readability of your code we
strongly recommend that you put at least one space before and after binary op-
erators, especially the assignment symbol. Assignments using the right-pointing

1These prompts can be altered; seeprompt and continue under ?options .
2We regard the use of “” for assignments as unreadable, but it is allowed. Also, “= ” can often

be used, but the exceptions are hard to get right inS-PLUS.

41

42 The S Language

combination “-> ” are also allowed to make assignments in the opposite direction,
but these are never needed and are little used in practice.

An assignment is a special case of an expression with value equal to the value
assigned. When this value is itself passed by assignment to another object the
result is a multiple assignment, as in

b <- a <- 6

Multiple assignments are evaluated from right to left, so in this example the value
6 is first passed toa and then tob.

It is useful to remember that the most recently evaluated non-assignment ex-
pression in the session is stored as the variable.Last.value3 and so may be
kept by an assignment such as

keep <- .Last.value

This is also useful if the result of an expression is unexpectedly not printed; just
useprint(.Last.value).

If you want to both assign a valueand print it, just enclose the assignment in
parentheses, for example,

> (z <- 1 - pi + exp(1.7))
[1] 3.3324

Executing commands from, or diverting output to, a file

If commands are stored on an external file, say,commands.q in the current di-
rectory, they may be executed at any time in anS session with the command

source("commands.q")

It is often helpful to use theecho argument ofsource to have the commands
echoed. Similarly

sink("record.lis")

will divert all subsequent output from the session window to an external file
record.lis. Functionsink can be called repeatedly, withsink() restoring
output to the previous diversion, eventually back to the terminal.

Managing S objects

It can be important to understand whereS keeps its objects and where it looks
for objects on which to operate. The objects thatS creates at the interactive level
during a session are stored in a workspace (see page 14). On the other hand,
objects created at a higher level, such as within a function, are kept in what is
known as alocal frame or environment that is only transient, and such objects
vanish when the function is exited.

WhenS looks for an object, it searches through a sequence of places known
as thesearch path. Usually the first entry in the search path is the workspace, now
called the workingchapter in S-PLUS. The names of the places currently making
up the search path are given by invoking the functionsearch . For example,

3If the expression consists of a simple name such asx, only, the .Last.value object is not
changed.

3.1 Language Layout 43

> search()
[1] "/home/ripley/MySwork" "splus" "stat"
[4] "data" "trellis" "nlme3"
[7] "main"

To get the names of all objects currently held in the first place on the search path,
use the command

objects()

The names of the objects held in any database in the search path can be displayed
by giving theobjects function an argument. For example,

objects(2)

lists the contents of the database at position 2 of the search path. It is also possible
to list selectively by a regular expression (page 53), using theregexpr.pattern
(S-PLUS) or pattern (R) argument ofobjects . Users ofS-PLUS underWin- R

dows can explore objects graphically; see page 460. S+Win

The databases on the search path can be of two main types. As well as chap-
ters/workspaces, they can also beS lists, usually data frames. The database at
position 1 is called theworking database. A library section4 is a specialized use
of a database, discussed in Appendix C.2. Extra chapters, lists or data frames can
be added to this list with theattach function and removed with thedetach
function. Normally a new database is attached at position 2, anddetach() re-
moves the entity at position 2, normally the result of the lastattach. All the
higher-numbered databases are moved up or down accordingly. If a list is at-
tached, a copy is used, so any subsequent changes to the original list will not be
reflected in the attached copy.

The functionfind(object) discovers where an object appears on the search
path, perhaps more than once. For example,

> find("objects")
[1] "splus"

If an object is found more than once in the search path, the first occurrence is used.
This can be useful way to override system functions, but more often it occurs by
mistake. Use the functionsconflicts or masked 5 to see if this has happened.

To examine an object which is masked or has a non-standard name, we need
to use the functionget . For example,

get("[<-.data.frame", where = 2) ## pos = 4 in R

allows experts to look at indexing for data frames. Functionexists checks if an
object of a given name exists.

When a command would alter an object that is not on the working database,
a copy must be made on the working database first.R does this silently, but
S-PLUS does not and will report an error, so a manual copy must be made. Ob-
jects are usually altered through assignment with a replacement function, for ex-
ample (page 154),

4Or package in R usage.
5S-PLUS only.

44 The S Language

> hills <- hills # only needed in S-PLUS
> hills$ispeed <- hills$time/hills$dist

To remove objects permanently from the working database, the functionrm
is used with arguments giving the names of the objects to be discarded, as in

rm(x, y, z, ink, junk)

If the names of objects to be removed are held in a character vector it may be
specified by the named argumentlist . An equivalent form of the preceding
command is

rm(list = c("x", "y", "z", "ink", "junk"))

The functionremove can be used to remove objects from databases other than
the workspace.

3.2 More on S Objects

We saw at the beginning of Chapter 2 that every object has aclass. It also has a
length reported by thelength function,

> length(letters)
[1] 26

Lists

A list is a vector of otherS objects, calledcomponents. Lists are used to collect
together items of different classes. For example, an employee record might be
created by

Empl <- list(employee = "Anna", spouse = "Fred", children = 3,
child.ages = c(4, 7, 9))

The components of a list are always numbered and may always be referred to as
such. If the components were given names (either when created as here or via the
names function), they may be invoked by name using the$ operator as in

> Empl$employee
[1] "Anna"
> Empl$child.ages[2]
[1] 7

Names of components may be abbreviated to the minimum number of letters
needed to identify them uniquely. ThusEmpl$employee may be minimally
specified asEmpl$e since it is the only component whose name begins with
the letter ‘e’, butEmpl$children must be specified as at leastEmpl$childr
because of the presence of another component calledEmpl$child.ages. Note
that the names of a list are not necessarily unique, when name-matching will give
the first occurrence.

Individual components are extracted by the[[operator. HereEmpl
is a list of length 4, and the individual components may be referred to as
Empl[[1]] , Empl[[2]] , Empl[[3]] and Empl[[4]]. We can also use
Empl[["spouse"]] or even

3.2 More on S Objects 45

x <- "spouse"; Empl[[x]]

It is important to appreciate the difference between[and [[. The [form
extracts sub-vectors, soEmpl[2] is a list of length one, whereasEmpl[[2]] is
the component (a character vector of length one).

The functionunlist converts a list to an atomic vector:

> unlist(Empl)
employee spouse children child.ages1 child.ages2 child.ages3
"Anna" "Fred" "3" "4" "7" "9"

> unlist(Empl, use.names = F)
[1] "Anna" "Fred" "3" "4" "7" "9"

which can be useful for a compact printout (as here). (Mixed classes will all be
converted to character, giving a character vector.)

Attributes

Most objects6 can haveattributes, other objects attached by name to the object.
The dimension and dimnames (if any) of an array are attributes:

> attributes(myarr)
$dim:
[1] 3 5 2
$dimnames:
$dimnames[[1]]:
[1] "a" "b" "c"
$dimnames[[2]]:
character(0) ## NULL in R
$dimnames[[3]]:
[1] "(i)" "(ii)"

> attr(myarr, "dim")
[1] 3 5 2

The attributes are a list. Notice the notation for$dimnames[[2]]: this is a zero-
length character vector.

Attributes are often used to store ancillary information; we use them to store
gradients and Hessians (pages 215 and442) and probabilities of classification
(page 347).

A construct you may see occasionally is

z <- structure(x, somename = value)

which is a shorthand way of doing

z <- x; attr(z, "somename") <- value

6 NULL cannot inR.

46 The S Language

Concatenation

The concatenate function,c , is used to concatenate vectors, including lists, so

Empl <- c(Empl, service = 8)

would add a component for years of service.
The function c has a named argumentrecursive ; if this is true the list

arguments are unlisted before being joined together. Thus

c(list(x = 1:3, a = 3:6), list(y = 8:23, b = c(3, 8, 39)))

is a list with four (vector) components, but addingrecursive = T gives a vec-
tor of length 26. (Try both to see.)

S-PLUS has a functionconcat that concatenates vectors and omits the
names, whereasc keeps all the names (even if this results in duplicates).

Coercion

There is a series of functions namedas.xxx that convert to the specified type
in the best way possible. For example,as.matrix will convert a numerical
data frame to a numerical matrix, and a data frame with any character or factor
columns to a charactermatrix. The functionas.character is often useful to
generate names and other labels.

Functionsis.xxx test if their argument is of the required type. These do not
always behave as one might guess; for example,is.vector(powers.of.pi)
will be false as this tests for a ‘pure’ vector without any attributes such as names.7

Similarly, as.vector has the (often useful) side effect of discarding all at-
tributes.

Many of these functions are being superseded by the more general functions8

as and is , which have as arguments an object and a class.

> # R: library(methods)
> as(powers.of.pi, "vector")
[1] 0.10132 0.31831 1.00000 3.14159 9.86960
> as(powers.of.pi, "numeric")
[1] 0.10132 0.31831 1.00000 3.14159 9.86960
> is(powers.of.pi, "numeric")
[1] T
> as(powers.of.pi, "character")
[1] "0.101321183642338" "0.318309886183791" "1"
[4] "3.14159265358979" "9.86960440108936"
> is(powers.of.pi, "vector")
[1] T
> as(powers.of.pi, "integer")
[1] 0 0 1 3 9
> is(mymat, "array")
[1] T

Note carefully the last one:mymat does not have class"array" , but "matrix"
which is a specialized version of"array" .

7R allows names, only.
8In packagemethods in R.

3.3 Arithmetical Expressions 47

3.3 Arithmetical Expressions

We have seen that a basic unit inS is a vector. Arithmetical operations are per-
formed on numeric (and integer) vectors, element by element. The standard op-
erators + - * / ^ are available, wherê is the power (or exponentiation)
operator (givingxy).

Vectors may be empty. The expressionnumeric(0) is both the expression to
create an empty numeric vector and the way it is represented when printed. It has
length zero. It may be described as “a vector such that if there were any elements
in it, they would be numbers!”

Vectors can be complex, and almost allthe rules for arithmetical expressions
apply equally to complex quantities. A complex number is entered in the form
3.1 + 2.7i , with no space before thei. FunctionsRe and Im return the real
and imaginary parts. Note that complex arithmetic is not used unless explicitly
requested, sosqrt(x) for x real and negative produces an error. If the complex
square root is desired usesqrt(as.complex(x)) or sqrt(x + 0i).

The recycling rule

The expressiony + 2 is a syntactically natural way to add2 to each element of
the vectory , but 2 is a vector of length1 and y may be a vector of any length.
A convention is needed to handle vectors occurring in the same expression but
not all of the same length. The value of the expression is a vector with the same
length as that of the longest vector occurring in the expression. Shorter vectors
arerecycled as often as need be until they match the length of the longest vector.
In particular, a single number is repeated the appropriate number of times. Hence

x <- c(10.4, 5.6, 3.1, 6.4, 21.7)
y <- c(x, x)
v <- 2 * x + y + 1

generates a new vectorv of length 10 constructed by

1. repeating the number2 five times to match the length of the vectorx and
multiplying element by element, and

2. adding together, element by element,2*x repeated twice,y as it stands
and 1 repeated ten times.

Fractional recycling is allowed inR, with a warning, but inS-PLUS it is an error.
There is one exception to the recycling rule: normally an operation with a

zero-length vector gives a zero-length result.

Some standard S functions

Some examples of standard functions follow.

1. There are several functions to convert to integers;round will normally be
preferred, and rounds to the nearest integer. (It can also round to any num-
ber of digits in the formround(x, 3). Using a negative number rounds

48 The S Language

to a power of 10, so thatround(x, -3) rounds to thousands.) Each of
trunc , floor and ceiling round in a fixed direction, towards zero,
down and up, respectively.

2. Other arithmetical operators are%/% for integer divide and%% for modulo
reduction.9

3. The common functions are available, includingabs , sign , log , log10 ,
sqrt , exp , sin , cos , tan , acos , asin , atan , cosh , sinh and
tanh with their usual meanings. Note that the value of each of these is
a vector of the same length as its argument. InS-PLUS logb is used for
‘log to base’ whereas inR log has a second argument, the base of theR

logarithms (defaulte). R also haslog2 .

Less common functions aregamma , lgamma (loge Γ(x)) and its deriva-
tives digamma and trigamma .

4. There are functionssum andprod to form the sum and product of a whole
vector, as well as cumulative versionscumsum and cumprod.

5. The functionsmax(x) and min(x) select the largest and smallest ele-
ments of a vectorx. The functionscummax and cummin give cumulative
maxima and minima.

6. The functionspmax(...) and pmin(...) take an arbitrary number of
vector arguments and return the element-by-element maximum or mini-
mum values, respectively. Thus the result is a vector of length that of the
longest argument and the recycling rule is used for shorter arguments. For
example,

xtrunc <- pmax(0, pmin(1, x))

is a vector likex but with negative elements replaced by0 and elements
larger than1 replaced by1.

7. The functionrange(x) returnsc(min(x), max(x)). If range , max
or min is given several arguments these arefirst concatenated into a single
vector.

8. Two useful statistical functions aremean(x) which calculates the sam-
ple mean, which is the same assum(x)/length(x), and var(x) which
gives the sample variance,sum((x-mean(x))^2)/(length(x)-1).10

9. The functionduplicated produces a logical vector with valueT only
where a value in its argument has occurred previously andunique removes
such duplicated values. (These functions also have methods for data frames
that operate row-wise.)

9The result ofe1 %/% e2 is floor(e1/e2) if e2 != 0 and 0 if e2 == 0. The result of
e1 %% e2 is e1 - floor(e1/e2)*e2 if e2!=0 and e1 otherwise (see Knuth, 1968,§1.2.4). Thus
%/% and %% always satisfye1 == (e1%/%e2)*e2 + e1%%e2.

10If the argument tovar is an n×p matrix the value is ap×p sample covariance matrix obtained
by regarding the rows as sample vectors.

3.3 Arithmetical Expressions 49

10. Set operations may be done with the functionsunion , intersect and
setdiff , which enact the set operationsA ∪ B, A ∩ B and A ∩ B ,
respectively. Their arguments (andhence values) may be vectors of any
mode but, like true sets, they should contain no duplicated values.

Logical expressions

Logical vectors are most often generated byconditions. The logical binary opera-
tors are< , <= , > , >= (which have self-evident meanings),== for exact equality
and != for exact inequality. Ifc1 and c2 are vector valued logical expressions,
c1 & c2 is their intersection (‘and’),c1 | c2 is their union (‘or’) and!c1 is
the negation ofc1. These operations are performed separately on each compo-
nent with the recycling rule (page 47) applying for short arguments.

The unary operator! denotes negation. There is one trap with this in
S-PLUS: if used at the beginning of a line it is taken to be a shell escape; ex-S+

tra parentheses can be used to avoid this.
Character vectors may be used in logical comparisons such as"ann" <

"belinda", in which case lexicographic ordering is applied using the current
collating sequence.

Logical vectors may be used in ordinary arithmetic. They arecoerced into
numeric vectors, false values becoming0 and true values becoming1. For ex-
ample, assuming the value or values insd are positive

N.extreme <- sum(y < ybar - 3*sd | y > ybar + 3*sd)

would count the number of elements iny that were farther than3*sd from
ybar on either side. The right-hand side can be expressed more concisely as
sum(abs(y-ybar) > 3*sd).

The functionxor computes (element-wise) the exclusive or of its two argu-
ments.

The functionsany and all are useful to collapse a logical vector.
Sometimes one needs to test if two objects are ‘the same’. That can be made

precise in various ways, and two are provided inS. Logical functionidentical
tests for exact equality. Functionall.equal makes a suitable approximate test
(for example, it allows for rounding error in numeric components) and either re-
turns TRUE or a character vector describing the difference(s). Thus to test for
‘equality’ one uses (see page 58 for&&)

res <- all.equal(obj1, obj2)
if(!(is.logical(res) && res)) warning("objects differ")

Operator precedence

The formal precedence of operators is given in Table 3.1. However, as usual it
is better to use parentheses to group expressions rather than rely on remembering
these rules. They can be found on-line fromhelp(Syntax) .

50 The S Language

Table 3.1: Precedence of operators, from highest to lowest.

$ list element extraction
@ slot extraction
[[[vector and list element extraction
^ exponentiation
- unary minus
: sequence generation
%% %/% %*% and other special operators%...%
* / multiply and divide
+ - addition, subtraction
< > <= >= == != comparison operators
! logical negation
& | && || logical operators (& && above| || in R)
~ formula
<- -> = assignment

Generating regular sequences

There are several ways inS to generate sequences of numbers. For example,
1:30 is the vectorc(1, 2, ..., 29, 30). The colon operator has a high
precedence within an expression, so2*1:15 is the vectorc(2, 4, 6, ...,
28, 30). Put n <- 10 and compare the sequences1:n-1 and 1:(n-1).

A construction such as10:1 may be used to generate a sequence in reverse
order.

The functionseq is a more general facility for generating sequences. It has
five arguments, only some of which may be specified in any one call. The first
two arguments, namedfrom and to , if given, specify the beginning and end of
the sequence, and if these are the only two arguments the result is the same as the
colon operator. That is,seq(2, 10) and seq(from = 2, to = 10) give the
same vector as2:10.

The third and fourth arguments toseq are namedby andlength , and spec-
ify a step size and a length for the sequence. Ifby is not given, the default
by = 1 is used. For example,

s3 <- seq(-5, 5, by = 0.2)
s4 <- seq(length = 51, from = -5, by = 0.2)

generate in boths3 and s4 the vector (−5.0,−4.8,−4.6, . . . , 4.6, 4.8, 5.0).
The fifth argument is namedalong and has a vector as its value. If it is the

only argument given it creates a sequence1, 2, ..., length(vector), or the
empty sequence if the value is empty. (This makesseq(along = x) preferable
to 1:length(x) in most circumstances.) If specified rather thanto or length
its length determines the length of the result.

A companion function isrep which can be used to repeat an object in various
ways. The simplest forms are

3.4 Character Vector Operations 51

s5 <- rep(x, times = 5) # repeat whole vector
s5 <- rep(x, each = 5) # repeat element-by-element

which will put five copies ofx end-to-end ins5, or make five consecutive copies
of each element.

A times = v argument may specify a vector of the same length as the first
argument,x. In this case the elements ofv must be non-negative integers, and
the result is a vector obtained by repeating each element inx a number of times
as specified by the corresponding element ofv. Some examples will make the
process clear:

x <- 1:4 # puts c(1,2,3,4) into x
i <- rep(2, 4) # puts c(2,2,2,2) into i
y <- rep(x, 2) # puts c(1,2,3,4,1,2,3,4) into y
z <- rep(x, i) # puts c(1,1,2,2,3,3,4,4) into z
w <- rep(x, x) # puts c(1,2,2,3,3,3,4,4,4,4) into w

As a more useful example, consider a two-way experimental layout with four row
classes, three column classes and two observations in each of the twelve cells. The
observations themselves are held in a vectory of length 24 with column classes
stacked above each other, and row classes in sequence within each column class.
Our problem is to generate two indicator vectors of length 24 that will give the
row and column class, respectively, ofeach observation. Since the three column
classes are the first, middle and last eight observations each, the column indicator
is easy. The row indicator requires two calls torep :

> (colc <- rep(1:3, each = 8))
> [1] 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 3 3 3 3 3 3 3 3
> (rowc <- rep(rep(1:4, each = 2), 3))
> [1] 1 1 2 2 3 3 4 4 1 1 2 2 3 3 4 4 1 1 2 2 3 3 4 4

These can also be generated arithmetically using theceiling function

> 1 + (ceiling(1:24/8) - 1) %% 3 -> colc; colc
> [1] 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 3 3 3 3 3 3 3 3
> 1 + (ceiling(1:24/2) - 1) %% 4 -> rowc; rowc
> [1] 1 1 2 2 3 3 4 4 1 1 2 2 3 3 4 4 1 1 2 2 3 3 4 4

In general the expression1 + (ceiling(1:n/r) - 1) %% m generates a se-
quence of lengthn consisting of the numbers1, 2, ..., m each repeatedr
times. This is often a useful idiom (for whichR has a functiongl).

3.4 Character Vector Operations

The form of character vectors can be unexpected and should be carefully appre-
ciated. Unlike sayC, they are vectors of character strings, not of characters, and
most operations are performed separately on each component.

Note that"" is a legal character string with no characters in it, known as the
empty string. This should be contrasted withcharacter(0) which is the empty
character vector. As vectors,"" has length 1 andcharacter(0) has length 0.

52 The S Language

S follows C conventions in entering characterstrings, so special characters
need to be escaped. Thus\ is entered as\\, and\b \n \r \t (backspace,
newline, tab, carriage return) are available, as well as octal values such as\176.
These are escaped when printing byprint but not when output bycat .

There are several functions for operating on character vectors. The function
nchar gives (as a vector) the number of characters in each element of its character
vector argument. The functionpaste takes an arbitrary number of arguments,
coerces them to strings or character vectors if necessary and joins them, element
by element, as character vectors. For example,

> paste(c("X", "Y"), 1:4)
[1] "X 1" "Y 2" "X 3" "Y 4"

Any short arguments are recycled in the usual way. By default the joined elements
are separated by a blank; this may be changed by using the argumentsep , often
the empty string:

> paste(c("X", "Y"), 1:4, sep = "")
[1] "X1" "Y2" "X3" "Y4"

Another argument,collapse , allows the result to be concatenated into a single
string. It prescribes another character string to be inserted between the compo-
nents during concatenation. If it isNULL , the default, orcharacter(0), no such
global concatenation takes place. For example,

> paste(c("X", "Y"), 1:4, sep = "", collapse = " + ")
[1] "X1 + Y2 + X3 + Y4"

Substrings of the strings of a character vector may be extracted (element-by-
element) using thesubstring function. It has three arguments

substring(text, first, last = 1000000)

wheretext is the character vector,first is a vector of first character positions
to be selected andlast is a vector of character positions for the last character to
be selected. Iffirst or last are shorter vectors thantext they are recycled.
For example, the datasetstate.name is a character vector of length 50 contain-
ing the names of the states of the United States of America in alphabetic order.
To extract the first four letters in the names of the last seven states:

> # R: data(state)
> substring(state.name[44:50], 1, 4)
[1] "Utah" "Verm" "Virg" "Wash" "West" "Wisc" "Wyom"

Note the use of the index vector[44:50] to select the last seven states.
The functionabbreviate provides a more general mechanism for generat-

ing abbreviations. In this example it gives inS-PLUS (R is slightly different)R

> as.vector(abbreviate(state.name[44:50]))
[1] "Utah" "Vrmn" "Vrgn" "Wshn" "WsVr" "Wscn" "Wymn"
> as.vector(abbreviate(state.name[44:50], use.classes = F))
[1] "Utah" "Verm" "Virg" "Wash" "WVir" "Wisc" "Wyom"

3.4 Character Vector Operations 53

We usedas.vector to suppress the names attribute that contains the unabbrevi-
ated names!

Simple matching is done by the functionmatch. This matches (exactly) each
element of its first argument against the elements of its second argument, and
returns a vector of indices into the second argument or thenomatch argument
(which defaults toNA) if there is no match.

Missing values

S-PLUS has no support for missing values in character vectors; factors should beS+

used instead. There is a class"string" described in Chambers (1998) but not
fully implemented inS-PLUS.

R has some support for missing values in character vectors, but with the pos-R

sibility of confusion. The value printed as"NA" may represent a missing value,
but it can also represent a character string, e.g. North America. For example,

> x <- c("a", NA, paste("N", "A", sep=""))
> x
[1] "a" "NA" "NA"
> is.na(x)
[1] FALSE TRUE FALSE

Handle with care!

Regular expressions

Regular expressions are powerful ways to match character patterns familiar to
users of such tools assed, grep, awk andperl. For example, ‘. ’ matches any
character (use ‘\.’ to match ‘. ’) and ‘.* ’ matches zero or more occurrences of
any character, that is, any character string. The beginning is matched by^ and the
end by$.

The functiongrep searches for patterns given by a regular expression in a
vector of character strings, and returns the indices of the strings in which a match
is found.

Functionregexpr also matches one regular expression to a character vector,
returning more details of the match, the first matching position and the match
length. For example,

> grep("na$", state.name)
[1] 3 14 18 26 33 40
> regexpr("na$", state.name)
[1] -1 -1 6 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 6 -1 -1 -1 8 -1

[20] -1 -1 -1 -1 -1 -1 6 -1 -1 -1 -1 -1 -1 13 -1 -1 -1 -1 -1
[39] -1 13 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1
attr(, "match.length"):
[1] -1 -1 2 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 2 -1 -1 -1 2 -1

[20] -1 -1 -1 -1 -1 -1 2 -1 -1 -1 -1 -1 -1 2 -1 -1 -1 -1 -1
[39] -1 2 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1
> state.name[regexpr("na$", state.name)> 0]
[1] "Arizona" "Indiana" "Louisiana"
[4] "Montana" "North Carolina" "South Carolina"

54 The S Language

The functionsregMatch andregMatchPos of S-PLUS have a very similar role,
but encode the answer somewhat differently. They can match multiple regular
expressions, recycling arguments as needed.

3.5 Formatting and Printing

Function print does not allow much control over the layout of a report. The
function cat is similar to paste with argumentcollapse = "" in that it co-
erces its arguments to character strings and concatenates them. However, instead
of returning a character string result it prints out the result in the session window
or optionally on an external file. For example, to print out today’s date on our
UNIX system:11

> d <- date()
> cat("Today’s date is:", substring(d, 1, 10),

substring(d, 25, 28), "\n")
Today’s date is: Sun Jan 6 2002

Note that an explicit newline ("\n") is needed. Functioncat , unlike print ,
interprets escaped characters (see page 52).

Other arguments tocat allow the output to be broken into lines of specified
length, and optionally labelled:

> cat(1, 2, 3, 4, 5, 6, fill = 8, labels = letters)
a 1 2
c 3 4
e 5 6

and fill = T fills to the current output width.
Function cat effectively usesas(, "character") to convert an object,

and so converts numbers inS-PLUS at full precision, as in

> cat(powers.of.pi, "\n")
0.101321183642338 0.318309886183791 1 3.14159265358979

Often it is best to manage that conversion ourselves usingformat , which pro-
vides the most general way to prepare data for output. It coerces data to character
strings in a common format.

> format(powers.of.pi)
-2 -1 0 1 2

"0.10132" "0.31831" "1.00000" "3.14159" "9.86960"
> cat(format(powers.of.pi), "\n", sep=" ")
0.1013212 0.3183099 1.0000000 3.1415927 9.8696044

For example, theS-PLUS print functionprint.summary.lm for summaries
of linear regressions contains the lines

11The format for others may well differ.

3.6 Calling Conventions for Functions 55

cat("\nCoefficients:\n")
print(format(round(x$coef, digits = digits)), quote = F)
cat("\nResidual standard error:",

format(signif(x$sigma, digits)), "on", rdf,
"degrees of freedom\n")

cat("Multiple R-Squared:", format(signif(x$r.squared, digits)),
"\n")

cat("F-statistic:", format(signif(x$fstatistic[1], digits)),
"on", x$fstatistic[2], "and", x$fstatistic[3],
"degrees of freedom, the p-value is", format(signif(1 -
pf(x$fstatistic[1], x$fstatistic[2], x$fstatistic[3]),
digits)), "\n")

Note the use ofsignif andround to specify the accuracy required. (Forround
the number of digits is specified, whereas forsignif it is the number of signifi-
cant digits.)

There is a tendency to output values such as0.6870000000000001, even
after rounding to (here) three digits. (Not fromprint , but from write , cat ,
paste , as.character and so on.) Useformat to avoid this.

By default the accuracy of printed andformatted values is controlled by the
options parameterdigits , which defaults to 7.

3.6 Calling Conventions for Functions

Functions may have their argumentsspecified or unspecified when the function is
defined. (We saw how to write simple functions on page 4.)

When the arguments are unspecified there may be an arbitrary number of
them. They are shown as... when the function is defined or printed. Ex-
amples of functions with unspecified arguments include the concatenation func-
tion c(...) and the parallel maximum and minimum functionspmax(...) and
pmin(...).

Where the arguments are specified there are two conventions for supplying
values for the arguments when the function is called:

1. arguments may be specified in the same order in which they occur in the
function definition, in which case the values are supplied in order, and

2. arguments may be specified asname = value , when the order in which
the arguments appear is irrelevant. The name may be abbreviated providing
it partially matches just one named argument.

It is important to note that these two conventions may be mixed. A call to a
function may begin with specifying the arguments in positional form but specify
some later arguments in the named form. For example, the two calls

t.test(x1, y1, var.equal = F, conf.level = 0.99)
t.test(conf.level = 0.99, var.equal = F, x1, y1)

56 The S Language

are equivalent.
Functions with named arguments also have the option of specifyingdefault

values for those arguments, in which case if a value is not specified when the
function is called the default value is used. For example, the functiont.test
has inS-PLUS an argument list defined as

t.test <- function(x, y = NULL, alternative = "two.sided",
mu = 0, paired = F, var.equal = T, conf.level = 0.95)

so that our previous calls can also be specified as

t.test(x1, y1, , , , F, 0.99)

and in all cases the default values foralternative , mu and paired are used.
Using the positional form and omitting values, as in this last example, is rather
prone to error, so the named form is preferred except for the first couple of argu-
ments.

Some functions (for examplepaste) have both unspecified and specified ar-
guments, in which case the specified arguments occurring after the... argument
on the definition must be named exactly if they are to be matched at all.

The argument names and any default values for anS function can be found
from the on-line help, by printing the function itself or succinctly using theargs
function. For example, inS-PLUS,

> args(hist) ## look at hist.default in R
function(x, nclass = "Sturges", breaks, plot = TRUE, probability

= FALSE, include.lowest = T, ...,
xlab = deparse(substitute(x)))

NULL

shows the arguments, their order and those default values that are specified for the
hist function for plotting histograms. (The return value fromargs always ends
with NULL.) Note that even when no default value is specified the argument itself
may not need to be specified. If no value is given forbreaks when thehist
function is called, default values are calculated within the function. Unspecified
arguments are passed on to a plotting function called from withinhist.

Functions are considered in much greater detail in Venables and Ripley
(2000).

3.7 Model Formulae

Model formulae were introduced intoS as a compact way to specify linear mod-
els, but have since been adopted for so many diverse purposes that they are now
best regarded as an integral part of theS language. The various uses of model
formulae all have individual features thatare treated in the appropriate chapter,
based on the common features described here.

A formula is of the general form

response ~ expression

3.7 Model Formulae 57

where the left-hand side,response , may in some uses be absent and the right-
hand side,expression , is a collection of terms joined by operators usually
resembling an arithmetical expression. The meaning of the right-hand side is
context dependent. For example, in non-linear regression it is an arithmetical ex-
pression and all operators have their usual arithmetical meaning. In linear and
generalized linear modelling it specifies the form of the model matrix and the
operators have a different meaning. In Trellis graphics it is used to specify the
abscissa variable for a plot, but a vertical bar,| , operator is allowed to indicate
conditioning variables.

It is conventional (but not quite universal) that a function that interprets a
formula also has argumentsweights , data , subset and na.action . Then
the formula is interpreted in thecontext of the argumentdata which must be
a list, usually a data frame; the objects named on either side of the formula are
looked for first indata and then searched for in the usual way.12 The weights
and subset arguments are also interpreted in the context of the data frame.

We have seen a few formulae in Chapter 1, all for linear models, where the re-
sponse is the dependent variable and the right-hand side specifies the explanatory
variables. We had

fm <- lm(y ~ x, data = dum)
abline(lm(time ~ dist))
fm <- aov(Speed ~ Run + Expt)
fm0 <- update(fm, . ~ . - Run)

Notice that in these cases+ indicates inclusion, not addition, and- exclusion.
In most cases we had already attached the data frame, so we did not specify it via
a data argument. The functionupdate is a very useful way to change the call to
functions using model formulae; it reissues the call having updated the formula
(and any other arguments specified when it is called). The formula term “. ” has
a special meaning in a call toupdate ; it means ‘what is there already’ and may
be used on either side of the~.

It is implicit in this description that the objects referred to in the formula are
of the same length, or constants that can be replicated to that length; they should
be thought of as all being measured on the same set of cases. Other arguments
allow that set of cases to be altered;subset is an expression evaluated in the
context ofdata that should evaluate to a valid indexing vector (of types 1, 2 or
4 on pages 27 and 28). Thena.action argument specifies what is to be done
when missing values are found by specifying a function to be applied to the data
frame of all the data needed to process the formula. The default action inS-PLUS
is usually na.fail , which reports an error and stops, but some functions have
more accommodating defaults. (R defaults tona.omit which drops every caseR

containing a missing value.)
Further details of model formulae are given in later chapters. Many of these

involve special handling of factors and functions appearing on the right-hand side
of a formula.

12For S-PLUS this as described in Section 3.1.R has been experimenting with looking in the
environment of formula which usually means starting the search whereformula was defined.

58 The S Language

3.8 Control Structures

Control structures are the commands that make decisions or execute loops.
The if statement has the form

if (condition) true.branch else false.branch

First the expressioncondition is evaluated. ANA condition is an error. If
the result is true (or numeric and non-zero) the value of theif statement is that of
the expressiontrue.branch, otherwise that of the expressionfalse.branch.
The else part is optional and omitting it is equivalent to using “else NULL ”. If
condition has a vector value only the first component is used and a warning is
issued. Theif function can be extended over several lines,13 and the statements
may be compound statements enclosed in braces{ } .

Two additional logical operators,&& and ||, are useful withif statements.
Unlike & and |, which operate component-wise on vectors, these operate on
scalar logical expressions. With&& the right-hand expression is only evaluated if
the left-hand one is true, and with|| only if it is false. This conditional evalua-
tion property can be used as a safety feature, as on page 49.

We saw the vector functionifelse on page 30. That does evaluate both its
arguments.

Loops: The for, while and repeat statements

A for loop allows a statement to be iterated as a variable assumes values in a
specified sequence. The statement has the form

for(variable in sequence) statement

where in is a keyword,variable is the loop variable andsequence is the
vector of values it assumes as the loop proceeds. This is often of the form1:10
or seq(along = x) but it may be a list, in which casevariable assumes the
value of each component in turn. Thestatement part will often be a grouped
statement and hence enclosed within braces,{ } .

The while and repeat loops do not make use of a loop variable:

while (condition) statement
repeat statement

In both cases the commands in the body of the loop are repeated. For awhile
loop the normal exit occurs whencondition becomes false; therepeat state-
ment continues indefinitely unless exited by abreak statement.

A next statement within the body of afor, while or repeat loop causes
a jump to the beginning of the next iteration. Thebreak statement causes an
immediate exit from the loop.

13A little care is needed when enteringif ... else statements to ensure that the input is not
syntactically complete before theelse clause, and braces can help with achieving this.

3.8 Control Structures 59

A single-parameter maximum-likelihood example

For a simple example with a statistical context we estimate the parameterλ of
the zero-truncated Poisson distribution by maximumlikelihood. The probability
distribution is specified by

Pr(Y = y) =
e−λ λy

(1− e−λ) y!
y = 1, 2, . . .

and corresponds to observing only non-zero values of a Poisson count. The mean
is E(Y) = λ(/1 − e−λ) . The maximum likelihood estimatêλ is found by
equating the sample mean to its expectationy = λ̂(/1− e−λ̂) . If this equation is
written asλ̂ = y (1 − e−λ̂), Newton’s method leads to the iteration scheme

λ̂m+1 = λ̂m −
λ̂m − y (1− e−λ̂m)

1− y e−λ̂m

First we generate our artificialsample from a distribution withλ = 1.

> yp <- rpois(50, lambda = 1) # full Poisson sample of size 50
> table(yp)

0 1 2 3 5
21 12 14 2 1

> y <- yp[yp > 0] # truncate the zeros; n = 29

We use a termination condition based both on convergence of the process and an
iteration count limit, for safety. An obvious starting value isλ̂0 = y.

> ybar <- mean(y); ybar
[1] 1.7586
> lam <- ybar
> it <- 0 # iteration count
> del <- 1 # iterative adjustment
> while (abs(del) > 0.0001 && (it <- it + 1) < 10) {

del <- (lam - ybar*(1 - exp(-lam)))/(1 - ybar*exp(-lam))
lam <- lam - del
cat(it, lam, "\n") }

1 1.32394312696735
2 1.26142504977282
3 1.25956434178259
4 1.25956261931933

To generate output from a loop in progress, an explicit call to a function such
as print or cat has to be used. For tracing outputcat is usually convenient
since it can combine several items. Numbers are coerced to character in full
precision; usingformat(lam) in place oflam is the simplest way to reduce the
number of significant digits to theoptions default.

60 The S Language

3.9 Array and Matrix Operations

Arrays may be used in ordinary arithmetic expressions and the result is an array
formed by element-by-elementoperations on the data vector. Thedim attributes
of operands generally need to be the same, and this becomes the dimension vector
of the result. So ifA , B and C are all arrays of the same dimensions,

D <- 2*A*B + C + 1

makesD a similar array with its data vector the result of the evident element-by-
element operations. The precise rules concerning mixed array and vector calcula-
tions are complex (Venables and Ripley, 2000, p. 27).

Elementary matrix operations

We have seen that a matrix is merely a data vector with adim attribute spec-
ifying a double index. However,S contains many operators and functions for
matrices; for examplet(X) is the transpose function. The functions14 nrow(A)
and ncol(A) give the number of rows and columns in the matrixA. There are
functions row and col that can be applied to matrices to produce a matrix of
the same size filled with the row or column number. Thus to produce the upper
triangle of a square matrixA we can use

A[col(A) >= row(A)]

This uses a logical vector index and so returns the upper triangle in column-major
order. For the lower triangle we can use<= or the functionlower.tri. A few S
functions want the lower triangle of a symmetric matrix in row-major order; note
that this is the upper triangle in column-major order.

Matrices can be built up from other vectors and matrices by the functions
cbind and rbind; see page 31.

The operator%*% is used for matrix multiplication. Vectors that occur in
matrix multiplications are promoted either to row or to column vectors, whichever
is multiplicatively coherent. Note that ifA andB are square matrices of the same
size, thenA * B is the matrix of element-by-element products whereasA %*% B
is the matrix product. Ifx is a vector, then

x %*% A %*% x

is a quadratic formxTAx, wherex is the column vector andT denotes trans-
pose.

Note thatx %*% x seems to be ambiguous, as it could mean eitherxTx or
xxT . A more precise definition of%*% is that of an inner product rather than a
matrix product, so in this casexTx is the result. (ForxxT use x %o% x ; see
below.)

The functioncrossprod forms ‘crossproducts’, meaning that

XT.y <- crossprod(X, y)

14Note that the names are singular; it is all too easy to writenrows !

3.9 Array and Matrix Operations 61

calculatesXTy. This matrix could be calculated ast(X) %*% y but using
crossprod is more efficient. If the second argument is omitted it is taken to
be the same as the first. Thuscrossprod(X) calculates the matrixXTX .

An important operation on arrays is theouter product. If a and b are two
numeric arrays, their outer product is an array whose dimension vector is obtained
by concatenating their two dimension vectors (order is important), and whose data
vector is obtained by forming all possible products of elements of the data vector
of a with those ofb. The outer product is formed by the operator%o% :

ab <- a %o% b

or by the functionouter:

ab <- outer(a, b, "*")
ab <- outer(a, b) # as "*" is the default.

Multiplication may be replaced by an arbitrary function of two variables (or its
name as a character string). For example, if we wished to evaluate the function

f(x, y) =
cos(y)
1 + x2

over a regular grid of values withx- and y-coordinates defined by theS vectors
x and y, respectively, we could use

z <- outer(x, y, function(x, y) cos(y)/(1 + x^2))

using an anonymous function.
The functiondiag either creates a diagonal matrix from a vector argument

or extracts as a vector the diagonal of a matrix argument. Used on the assignment
side of an expression it allows the diagonal of a matrix to be replaced.15 For
example, to form a covariance matrix in multinomial fitting we could use

> p <- dbinom(0:4, size = 4, prob = 1/3) # an example
> CC <- -(p %o% p)
> diag(CC) <- p + diag(CC)
> structure(3^8 * CC, dimnames = list(0:4, 0:4)) # convenience

0 1 2 3 4
0 1040 -512 -384 -128 -16
1 -512 1568 -768 -256 -32
2 -384 -768 1368 -192 -24
3 -128 -256 -192 584 -8
4 -16 -32 -24 -8 80

In addition diag(n) for a positive integern generates ann × n identity ma-
trix. This is an exception to the behaviour for vector arguments; it is safer to use
diag(x, length(x)) which will give a diagonal matrix with diagonalx for a
vector of any length, even one.

15This is one of the few places where the recycling rule is disabled; the replacement must be a scalar
or of the correct length.

62 The S Language

More functions operating on matrices

The standard operations of linear algebra are either available as functions or can
easily be programmed, makingS a flexible matrix manipulation language (if
rather slower than specialized matrix languages).

The functionsolve inverts matrices and solves systems of linear equations;
solve(A) inverts A and solve(A, b) solvesA %*% x = b. (If the system is
over-determined, the least-squares fit is found, but matrices of less than full rank
give an error.)

The functionchol returns the Choleski decompositionA = UTU of a non-
negative definite symmetric matrix. (Note that there is another convention, in
which the lower-triangular formA = LLT with L = UT is used.) Function
backsolve solves upper triangular systems of matrices, and is often used in con-
junction with chol. (R has forwardsolve, the analogue for lower-triangularR

matrices.)

Eigenvalues and eigenvectors

The functioneigen calculates the eigenvalues and eigenvectors of a square ma-
trix. The result is a list of two components,values and vectors. If we need
only the eigenvalues we can use:

eigen(Sm, only.values = T)$values

Real symmetric matrices have real eigenvalues, and the calculation for this
case can be much simpler and more stable. Argumentsymmetric may be used
to specify whether a matrix is (to be regarded as) symmetric. The default value is
T if the matrix exactly equals its transpose, otherwiseF.

Singular value decomposition and generalized inverses

An n× p matrix X has asingular value decomposition (SVD) of the form

X = UΛV T

whereU andV aren×min(n, p) and p×min(n, p) matrices of orthonormal
columns, andΛ is a diagonal matrix. Conventionally the diagonal elements ofΛ
are ordered in decreasing order; the number of non-zero elements is the rank of
X . A proof of its existence can be found in Golub and Van Loan (1989), and a
discussion of thestatistical value of SVDs in Thisted (1988), Gentle (1998) and
Monahan (2001).

The functionsvd takes a matrix argumentM and calculates the singular value
decomposition. The components of the result areu and v, the orthonormal ma-
trices andd , a vector of singular values. If eitherU or V is not required its
calculation can be avoided by the argumentnu = 0 or nv = 0.

3.9 Array and Matrix Operations 63

The QR decomposition

A faster decomposition to calculate than the SVD is the QR decomposition, de-
fined as

M = QR

where, if M is n × p, Q is an n × n matrix of orthonormal columns (that is,
an orthogonal matrix) andR is an n × p matrix with zero elements apart from
the first p rows that form an upper triangular matrix (see Golub and Van Loan,
1989,§5.2). The functionqr(M) implements the algorithm detailed in Golub &
Van Loan, and hence returns the result in a somewhat inconvenient form to use
directly. The result is a list that can be used by other tools. For example,

M.qr <- qr(M) # QR decomposition
Q <- qr.Q(M.qr) # Extract a Q (n x p) matrix
R <- qr.R(M.qr) # Extract an R (p x p) matrix
y.res <- qr.resid(M.qr, y) # Project onto error space

The last command finds the residual vector after projecting the vectory onto the
column space ofM. Other tools that use the result ofqr include qr.fitted for
fitted values andqr.coef for regression coefficients.

Note that by defaultqr.R only extracts the firstp rows of the matrixR and
qr.Q only the first p columns ofQ, which form an orthonormal basis for the
column space ofM if M is of maximal rank. To find the complete form ofQ
we need to callqr.Q with an extra argumentcomplete = T. The columns of
Q beyond ther th, wherer � p is the rank ofM , form an orthonormal basis for
the null space orkernel of M , which is occasionally useful for computations. A
simple function to extract it is

Null <- function(M) {
tmp <- qr(M)
set <- if(tmp$rank == 0) 1:ncol(M) else -(1:tmp$rank)
qr.Q(tmp, complete = T)[, set, drop = F]

}

Determinant and trace

There are several ways to write determinant functions. Often it is known in ad-
vance that a determinant will be non-negative or that its sign is not needed, in
which case methods to calculate the absolute value of the determinant suffice. In
this case it may be calculated as the product of the singular values, or slightly
faster but possibly less accurately from theQR-decomposition as

absdet <- function(M) abs(prod(diag(qr(M)$qr)))

If the sign is unknown and important, the determinant may be calculated as
the product of the eigenvalues. These will in general be complex and the result
may have complex roundoff error even though the exact result is known to be real,
so a simple function to perform the calculation is

det <- function(M) Re(prod(eigen(M, only.values = T)$values))

64 The S Language

(R has adet function covering both methods.) R

The following trace function is so simple the only reason for having it might
be to make code using it more readable.

tr <- function(M) sum(diag(M))

More linear algebra

An S environment will never be competitive on speed with specialized matrix-
manipulation systems, but for most statistical problems linear algebra is a small
part of the task. Where it is not, more advanced facilities are available in some
environments.

S-PLUS has a library sectionMatrix on some platforms16 and R has a
similar contributed package17 Matrix on CRAN. These use objects of class
"Matrix" to represent rectangular matrices with specializations to triangular,
symmetric/Hermitian, orthogonal, diagonal matrices and soon. Functions are
provided for determinant (det), norm (norm) and condition number (rcond) as
well as methods for%*% , eigen , solve , svd and t .

R has functionsLa.eigen and La.svd based likeMatrix on LAPACKR

routines (Anderson and ten others, 1999). These are stabler and often much faster
than eigen and svd . On many platformsR can be built to take advantage of
enhanced BLAS routines which can speed up linear algebra considerably.

Vectorized calculations

Users coming toS from other languages are often slow to take advantage of the
power of S to do vectorized calculations, that is, calculations that operate on
entire vectors rather than on individual components in sequence. This often leads
to unnecessary loops. For example, consider calculating the Pearson chi-squared
statistic for testing independence in a two-way contingency table. This is defined
as

X2
P =

r∑
i=1

s∑
j=1

(fij − eij)2

eij
, eij =

fi.f.j

f..

Two nestedfor loops may seem to be necessary, but in fact no explicit loops are
needed. If the frequenciesfij are held as a matrix the most efficient calculation
in S uses matrix operations:

fi. <- f %*% rep(1, ncol(f))
f.j <- rep(1, nrow(f)) %*% f
e <- (fi. %*% f.j)/sum(fi.)
X2p <- sum((f - e)^2/e)

Explicit loops inS should be regarded as potentially expensive in time and
memory use and ways of avoiding them should be considered. (Note that this will
be impossible with genuinely iterative calculations such as our Newton scheme
on page 59.)

16But not onWindows.
17By Douglas Bates and Saikat DebRoy; not for classicMacOS.

3.9 Array and Matrix Operations 65

The functions apply and sweep

The functionapply allows functions to operate on an array using sections suc-
cessively. For example, consider the datasetiris 18 which is a50× 4× 3 array
of four observations on 50 specimens of each of three species. Suppose we want
the means for each variable by species; we can useapply.

The arguments ofapply are

1. the name of the array,X;

2. an integer vectorMARGIN giving the indices defining the sections of the
array to which the function is to be separately applied. It is helpful to note
that if the function applied has a scalar result, the result ofapply is an
array with dim(X)[MARGIN] as its dimension vector;

3. the function, or the name of the functionFUN to be applied separately to
each section;

4. any additional arguments neededby the function as it is applied to each
section.

Thus we need to use

> apply(iris, c(2, 3), mean)
Setosa Versicolor Virginica

Sepal L. 5.006 5.936 6.588
Sepal W. 3.428 2.770 2.974
Petal L. 1.462 4.260 5.552
Petal W. 0.246 1.326 2.026
> apply(iris, c(2, 3), mean, trim = 0.1)

Setosa Versicolor Virginica
Sepal L. 5.0025 5.9375 6.5725
Sepal W. 3.4150 2.7800 2.9625
Petal L. 1.4600 4.2925 5.5100
Petal W. 0.2375 1.3250 2.0325

where we also show how arguments can be passed to the function, in this case to
give a trimmed mean. If we want the overall means we can use

> apply(iris, 2, mean)
Sepal L. Sepal W. Petal L. Petal W.
5.8433 3.0573 3.758 1.1993

Note how dimensions have been dropped to give a vector. If the result ofFUN is
itself a vector of lengthd, say, then the result ofapply is an array with dimension
vectorc(d, dim(X)[MARGIN]), with single-element dimensions dropped. Also
note that matrix results are reduced to vectors; if we ask for the covariance matrix
for each species,

ir.var <- apply(iris, 3, var)

we get a16× 3 matrix. We can add back the correct dimensions, but in so doing
we lose thedimnames. We can restore both by

18 iris3 in R, so usedata(iris3) and the appropriate substitutions below.

66 The S Language

ir.var <- array(ir.var, dim = dim(iris)[c(2, 2, 3)],
dimnames = dimnames(iris)[c(2, 2, 3)])

The functionapply is often useful to replace explicit19 loops. Note too that
for linear computations it is rather inefficient. We can form the means by matrix
multiplication:

> matrix(rep(1/50, 50) %*% matrix(iris, nrow = 50), nrow = 4,
dimnames = dimnames(iris)[-1])

a Setosa Versicolor Virginica
Sepal L. 5.006 5.936 6.588
Sepal W. 3.428 2.770 2.974
Petal L. 1.462 4.260 5.552
Petal W. 0.246 1.326 2.026

which will be very much faster on larger examples, but is much less transparent.
We can also make use of functions such ascolMeans and rowMeans (and in
S-PLUS colVars , rowVars and colStdev) if these will do what we want.S+

For example,

colMeans(iris)

averages across the first dimension.
The functionaperm is often useful with array/matrix arithmetic of this sort.

It permutes the indices, so thataperm(iris, c(2, 3, 1)) is a 4 × 3 × 50
array. (Note that the matrix transpose operation is a special case.) We can get the
overall means of each measurement by

colMeans(aperm(iris, c(1, 3, 2)), dims = 2)

Function sweep

The functionsapply and sweep are often used together. For example, having
found the means of theiris data, we may want to remove them by subtraction
or perhaps division. We can use sweep in each case:

ir.means <- colMeans(iris)
sweep(iris, c(2, 3), ir.means)
log(sweep(iris, c(2, 3), ir.means, "/"))

Of course, we could have subtracted the log means in the second case.

3.10 Introduction to Classes and Methods

The primary purpose of theS programming environment is to construct and ma-
nipulate objects. These objects may be fairly simple, such as numeric vectors,
factors, arrays or data frames, or reasonably complex such as an object conveying
the results of a model-fitting process. The manipulations fall naturally into broad
categories such as plotting, printing, summarizing and so forth. They may also

19There is an internal loop inR.

3.10 Introduction to Classes and Methods 67

involve several objects, for example performing an arithmetic operation on two
objects to construct a third.

SinceS is intended to be an extensible environment new kinds of object are
designed by users to fill new needs, but it will usually be convenient to manipulate
them using familiar functions such asplot, print and summary. For the new
kind of object the standard manipulations will usually have an obvious purpose,
even though the precise action required differs at least in detail from any previous
action in this category.

Consider thesummary function. If a user designs a new kind of object called,
say, a “newfit ” object, it will often be useful to make available a method of
summarizing such objects so that the important features are easy to appreciate and
the less important details are suppressed. One way of doing this is to write a new
function, saysummary.newfit, which could be used to perform the particular
kind of printing action needed. Ifmyobj is a particularnewfit object it could
then be summarized using

> summary.newfit(myobj)

We could also write functions with namesplot.newfit, residuals.newfit,
coefficients.newfit for the particular actions appropriate fornewfit ob-
jects for plotting, summarizing, extracting residuals, extracting coefficients and
so on. It would be most convenient if the user could just typesummary(myobj),
and this is one important idea behindobject-oriented programming. To make it
work we need to have a standard method by which the evaluator may recognise
the different classes of object being presented to it. InS this is done by giving the
object aclass. There is aclass replacement function available to set the class,
which would normally be done when the object was created. For example,

> class(myobj) <- "newfit"

Functions likesummary, plot andresiduals are calledgeneric functions.
They have the property of adapting their action to match the class of object pre-
sented to them. The specific implementations such assummary.lm are known
asmethod functions. It may not be completely clear if a functionis generic, but
S-PLUS has the testisGeneric.

At this point we need to emphasize that currentS-PLUS, earlier versions of
S-PLUS andR handle classes and generic functions internally quite differently,
and the details are given in Venables and Ripley (2000). However, there is fairly
extensive backwards compatibility, and most ofS-PLUS uses the compatibility
features. You may notice when listing functions that many classes inS-PLUS are
set byoldClass not class.

Method dispatch

Generic functions use the class of their first few arguments to decide which
method function to use. In the simple cases the generic function will consist
of a call to UseMethod as in

> summary
function(object, ...) UseMethod("summary")

68 The S Language

Then a call tomethods will list all the method functions currently available, for
example

> methods(summary)
splus splus splus

"summary.agnes" "summary.aov" "summary.aovlist"
splus splus

"summary.bootstrap" "summary.censorReg"
splus splus

"summary.censorRegList" "summary.clara"
splus main

"summary.compare.fits" "summary.connection"
....

in S-PLUS 6.0. The method for the closest matching class is used; the details of
‘closest matching’ are complex and given in Venables and Ripley (2000). How-
ever, the underlying idea is simple. Objects from linear models have class"lm",
those from generalized linear models class"glm" and those from analysis of
variance models class"aov". Each of the last two classes is defined toinherit
from class"lm", so if there is no specific method function for the class, that
for "lm" will be tried. This can greatly reduce the number of method func-
tions needed. Furthermore, method functions can build on those from simpler
classes; for example,predict.glm works by manipulating the results of a call
to predict.lm .

Function plot in S-PLUS works in both the current class system and inS+

back-compatibility mode. To see all its methods one needs

> showMethods("plot")
Database x y

[1,] "splus" "ANY" "ANY"
[2,] "splus" "ANY" "missing"
[3,] "splus" "timeSeries" "ANY"
[4,] "splus" "signalSeries" "ANY"
> methods("plot")

nlme3 nlme3 splus splus
"plot.ACF" "plot.Variogram" "plot.acf" "plot.agnes"

splus nlme3 splus
"plot.arima" "plot.augPred" "plot.censorReg"

....

Method dispatch is very general; the meaning of arithmetic and logical oper-
ators such as- and & may depend on the classes of the operands.

Chapter 4

Graphics

Both S-PLUS and R provide comprehensive graphics facilities for static two-
dimensional plots, from simple facilities for producing common diagnostic plots
by plot(object) to fine control over publication-quality graphs. In consequence,
the number of graphics parameters is huge. In this chapter, we build up the com-
plexity gradually. Most readers will not need the material in Section 4.4, and
indeed the material there is not used elsewhere in this book. However, wehave
needed to make use of it, especially in matching existing graphical styles.

Some graphical ideas are best explored intheir statistical context, so that,
for example, histograms are covered in Chapter 5, survival curves in Chapter 13,
biplots in Chapter 11 and time-series graphics in Chapter 14. Table 4.1 gives an
overview of the high-level graphics commands with page references.

There are many books on graphical design. Cleveland (1993) discusses most
of the methods of this chapter and the detailed design choices (such as the aspect
ratios of plots and the presence of grids)that can affect the perception of graphical
displays. As these are to some extent a matter of personal preference and this
is also a guide toS, we have kept to the default choices. Spence (2001) and
Wilkinson (1999) and the classics of Tufte (1983, 1990, 1997) discuss the visual
exploration of data.

Trellis graphics (Beckeret al., 1996) are a later addition toS with a somewhat
different style and philosophy to the basic plotting functions. We describe the
basic functions first, then the Trellis functions in Section 4.5.R has a variant on
Trellis in its lattice package. TheWindows version ofS-PLUS has a very
different (and less powerful) style of object-oriented editable graphics which we
do not cover. One feature we do find useful is the ability to interactively change
the viewpoint in perspective plots (see page 422). Thergl package1 for R under
Windows provides similar facilities.

There are quite a few small differences in theR graphics model, and the de-
scription here tries to be completely accurate only forS-PLUS 6.

1Available athttp://www.stats.uwo.ca/faculty/murdoch/software/.

69

70 Graphics

Table 4.1: High-level plotting functions. Page references are given to the most complete
description in the text. Those marked by† have alternatives in Trellis.

Function Page Description

abline 74 Add lines to the current plot in slope-intercept form.

axis 80 Add an axis to the plot.

barplot † 72 Bar graphs.

biplot 312 Represent rows and columns of a data matrix.

brush spin 75 Dynamic graphics. notR.

contour † 76 Contour plot. The Trellis equivalent iscontourplot .

dotchart † Produce a dot chart.

eqscplot 75 Plot with geometrically equal scales (our library).

faces Chernoff’s faces plot of multivariate data.

frame 78 Advance to next figure region.

hist 112 Histograms. We prefer our functiontruehist .

hist2d 130 Two-dimensional histogram calculations.

identify locator 80 Interact with an existing plot.

image †

image.legend
76 High-density image plot functions. The Trellis version

is levelplot .

interaction.plot Interaction plot for a two-factor experiment.

legend 81 Add a legend to the current plot.

matplot 88 Multiple plots specified by the columns of a matrix.

mtext 81 Add text in the margins.

pairs † 75 All pairwise plots between multiple variables. The Trel-
lis version issplom .

par 83 Set or ask about graphics parameters.

persp † perspp
persp.setup

76 Three-dimensional perspective plot functions. Similar
Trellis functions are calledwireframe and cloud.

pie † Produce a pie chart.

plot Generic plotting function.

polygon Add polygon(s) to the present plot, possibly filled.

points lines 73 Add points or lines to the current plot.

qqplot qqnorm 108 Quantile-quantile and normal Q-Q plots.

rect (R only) Add rectangles, possibly filled.

scatter.smooth 230 Scatterplot with a smooth curve.

segments arrows 88 Draw line segments or arrows on the current plot.

stars Star plots of multivariate data.

symbols Draw variable-sized symbols on a plot.

text 73 Add text symbols to the current plot.

title 79 Add title(s).

4.1 Graphics Devices 71

Table 4.2: Some of the graphical devices available.

S-PLUS :
motif UNIX: X11–windows systems.
graphsheet Windows, screen, printer, bitmaps.
win.printer Windows, a wrapper for agraphsheet .
postscript PostScript printers.
hplj UNIX: Hewlett-Packard LaserJet printers.
hpgl Hewlett-Packard HP-GL plotters.
pdf.graph Adobe’s PDF format.
wmf.graph Windows metafiles.
java.graph Java device.

R :
X11 UNIX: X11–windows systems.
windows Windows, screen, printer, metafiles.
macintosh classic MacOS screen device.
postscript PostScript printers.
pdf PDF files.
xfig files for XFig .
png PNG bitmap graphics.
jpeg JPEG bitmap graphics.
bitmap several bitmap formatsvia GhostScript.

4.1 Graphics Devices

Before any plotting commands can be used, a graphics device must be opened
to receive graphical output. Most commonly this is a window on the screen of a
workstation or a printer. A list of supported devices on the current hardware with
some indication of their capabilities is available from the on-line help system by
?Devices . (Note the capital letter.)

A graphics device is opened by giving the command in Table 4.2, possibly
with parameters giving the size and position of the window; for example, using
S-PLUS onUNIX,

motif("-geometry 600x400-0+0")

opens a small graphics window initially positioned in the top right-hand corner of
the screen. All currentS environments will automatically open a graphics device
if one is needed, but we often choose to open the device ourselves and so take
advantage of the ability to customize it.

To make a device request permission before each new plot to clear the
screen use eitherpar(ask = T) (which affects just the current device) or
dev.ask(ask = T) (notR: applies to every device). R

All open graphics devices may be closed usinggraphics.off() ; quitting
theS session does this automatically.

72 Graphics

1974 1975 1976 1977 1978 1979

0
50

00
15

00
0

25
00

0
UK deaths from lung disease

Males
Females

1974 1975 1976 1977 1978 1979

0
50

00
15

00
0

25
00

0 26140 26101 25718

23229 23951
22938

Figure 4.1: Two different styles of bar chart showing the annual UK deaths from certain
lung diseases. In each case the lower block is for males, the upper block for females.

It is possible to have several graphical devices open at once. By default the
most recently opened one is used, butdev.set can be used to change the current
device (by number). The functiondev.list lists currently active devices, and
dev.off closes the current device, or one specified by number. There are also
commandsdev.cur, dev.next anddev.prev which return the number of the
current, next or previous device on the list. Thedev.copy function copies the
current plot to the specified device (by default the next device on the list).

Note that for some devices little or no output will appear on a file until
dev.off or graphics.off is called.

Many of the graphics devices on windowing systems have menus of choices,
for example, to make hardcopies and to alter the colour scheme in use. The
S-PLUS motif device has aCopy option on its Graph menu that allows a
(smaller) copy of the current plot to be copied to a new window, perhaps for com-
parison with later plots. (The copy window can be dismissed by theDelete item
on itsGraph menu.)

There are some special considerations for users ofgraphsheet devices on
S-PLUS for Windows: see page 451.

4.2 Basic Plotting Functions

The functionplot is a generic function that, when applied to many types ofS
objects, will give one or more plots. Many of the plots appropriate to univariate
data such as boxplots and histograms are considered in Chapter 5.

Bar charts

The function to display barcharts isbarplot. This has many options (described
in the on-line help), but some simple uses are shown in Figure 4.1. (Many of the
details are covered in Section 4.3.)

R: data(mdeaths); data(fdeaths); library(ts)
lung.deaths <- aggregate(ts.union(mdeaths, fdeaths), 1)

4.2 Basic Plotting Functions 73

barplot(t(lung.deaths), names = dimnames(lung.deaths)[[1]],
main = "UK deaths from lung disease")

legend(locator(1), c("Males", "Females"), fill = c(2, 3))
loc <- barplot(t(lung.deaths), names = dimnames(lung.deaths)[[1]],

angle = c(45, 135), density = 10, col = 1)
total <- rowSums(lung.deaths)
text(loc, total + par("cxy")[2], total, cex = 0.7) #R: xpd = T

Line and scatterplots

The default plot function takes argumentsx andy, vectors of the same length, or
a matrix with two columns, or a list (or data frame) with componentsx andy and
produces a simple scatterplot. The axes, scales, titles and plotting symbols are all
chosen automatically, but can be overridden with additional graphical parameters
that can be included as named argumentsin the call. The most commonly used
ones are:

type = "c" Type of plot desired. Values forc are:
p for points only (the default),
l for lines only,
b for both points and lines (the lines miss the points),
s, S for step functions (s specifies the level of the step at the left
end,S at the right end),
o for overlaid points and lines,
h for high-density vertical line plotting, and
n for no plotting (but axes are still found and set).

axes = L If F all axes are suppressed (defaultT, axes are automatically con-
structed).

xlab = "string"
ylab = "string"

Give labels for thex- and/ory-axes (default: the names, including
suffices, of thex- andy-coordinate vectors).

sub = "string"
main = "string"

sub specifies a title toappear under thex-axis label andmain a title
for the top of the plot in larger letters (default: both empty).

xlim = c(lo ,hi)
ylim = c(lo, hi)

Approximate minimum and maximum values forx- and/ory-axis
settings. These values are normally automatically rounded to make
them ‘pretty’ for axis labelling.

The functionspoints, lines, text and abline can be used to add to a
plot, possibly one created withtype = "n". Brief summaries are:

points(x,y,...) Add points to an existing plot (possibly using a different
plotting character). The plotting character is set bypch=
and the size of the character bycex= or mkh=.

lines(x,y,...) Add lines to an existing plot. The line type is set bylty=
and width bylwd=. The type options may be used.

text(x,y,labels,...) Add text to a plot at points given byx,y. labels is an
integer or character vector;labels[i] is plotted at point
(x[i],y[i]). The default isseq(along=x).

74 Graphics

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

19 20 21 22 23 24 25 26 27 19 20 21 22 23 24 25

Figure 4.2: Plotting symbols or marks, specified bypch = n. Those on the left of the
second row are only available ongraphsheet devices, and those on the right of the
second row only inR (where the fill colour for 21 to 25 has been taken as light grey).

abline(a, b, ...)
abline(h = c, ...)
abline(v = c, ...)
abline(lmobject,...)

Draw a line in intercept and slope form, (a,b), across an
existing plot.h = c may be used to specifyy-coordinates
for the heights of horizontal lines to go across a plot, andv
= c similarly for thex-coordinates for vertical lines. The
coefficients of a suitablelmobject are used.

These are the most commonly used graphics functions; we have shown exam-
ples of their use in Chapter 1, and show many more later. (There are also functions
arrows and symbols that we do not use in this book.) The plotting characters
available forplot and points can be characters of the formpch = "o" or
numbered from 0 to 27, which uses the marks shown in Figure 4.2.

Size of text and symbols

Confusingly, the size of plotting characters is selected in one of two very different
ways. For plotting characters (bypch = "o") or text (by text), the parameter
cex (for ‘character expansion’) is used. This defaults to the global setting (which
defaults to 1), and rescales the character by that factor. InS-PLUS for a mark setS+

by pch = n, the size is controlled by themkh parameter which gives the height
of the symbolin inches. (This will be clear for printers; for screen devices the
default device region is about 8 in× 6 in and this is not changed by resizing the
window.) However, ifmkh = 0 (the default, and always inR) the size is then
controlled bycex and the default size of each symbol is approximately that ofO.
Care is needed in changingcex on a call toplot, as this may2 also change the
size of the axis labels. It is better to use, for example,

plot(x, y, type = "n") # axes only
points(x, y, pch = 4, mkh = 0, cex = 0.7) # add the points

If cex is used to change the size of all the text on a plot, it will normally be
desirable to setmex to the same value to change the interline spacing. An alter-
native to specifyingcex is csi, which specifies the absolute size of a character
(in inches). (There is nomsi.)

The default text size can be changed for some graphics devices, for example,
by argumentpointsize for the postscript , win.printer , windows and
macintosh devices.

2In R these are controlled bycex.axis ; there are alsocex.main , cex.sub and cex.lab , the
last for the axis titles.

4.2 Basic Plotting Functions 75

Equally scaled plots

There are many plots, for example, in multivariate analysis, that represent dis-
tances in the plane and for which it is essential to have a scaling of the axes that
is geometrically accurate. This can be done in many ways, but most easily by our
function eqscplot which behaves as the default plot function but shrinks the
scale on one axis until geometrical accuracy is attained.

Warning: when screen devices (except agraphsheet) are resized the
S-PLUS process is not informed, soeqscplot can only work for the original
window shape.

R has an argumentasp that can be given to many high-level plotting func-R
tions and fixes scales so thatx units areasp times as large asy units, even
across window resizing.

Multivariate plots

The plots we have seen so far deal with one or two variables. To view more
we have several possibilities. Ascatterplot matrix or pairs plot shows a matrix
of scatterplots for each pair of variables, as we saw in Figure 1.2, which was
produced bysplom(~ hills). Enhanced versions of such plots are aforte of
Trellis graphics, so we do not discuss how to make them in the base graphics
system.

Dynamic graphics

S-PLUS has limited facilities for dynamic plots;R has none. Both can work with
XGobi andGGobi (see page 302) to add dynamic brushing, selecting and rotating.

The S-PLUS function brush allows interaction with the (lower half) of a
scatterplot matrix. An example is shown in Figure 1.3 on page 9. As it is much
easier to understand these by using them, we suggest you try

brush(hills)

and experiment.
Points can be highlighted (marked with a symbol) by moving the brush (a

rectangular window) over them with button 1 held down. When a point is high-
lighted, it is shown highlighted in all the displays. Highlighting is removed by
brushing with button 2 held down. It is also possible to add or remove points by
clicking with button 1 in the scrolling list of row names.

One of four possible (device-dependent) marking symbols can be selected by
clicking button 1 on the appropriate one in the display box on the right. The
marking is by default persistent, but this can be changed to ‘transient’ in which
only points under the brush are labelled (and button 1 is held down). It is also
possible to select marking by row label as well as symbol.

The brush size can be altered underUNIX by picking up a corner of the brush
in the brush size box with the mouse button 1 and dragging to the required
size. UnderWindows, move the brush to the background of the mainbrush
window, hold down the left mouse button and drag the brush to the required size.

76 Graphics

0 1 2 3 4 5 6

0
1

2
3

4
5

6

700 725 750 775 800

800

825

850

850

875

875

875 875900 900925

925

950

• • • • •

• •
•

• •

•
•

• •

•
• • • •

• •

•

• •
•

• •
•

•
•

• •

• • •

• •

• •

• •

• •

•

•

•
•

•

•
•

•

•

(a) by contour

700 725 750 775 800

800

825

850

850

875

875

875 875900 900925

925

9500

1

2

3

4

5

6

0 1 2 3 4 5 6

(b) by contourplot

Figure 4.3: Contour plots ofloess smoothing of thetopo dataset. Note the differences
in the axes and the way points are depicted.

The plot produced bybrush will also show a three-dimensional plot (unless
spin = F), and this can be produced on its own byspin. UnderUNIX clicking
with mouse button 1 will select three of the variables for thex-, y- and z-axes.
The plot can be spun in several directions and resized by clicking in the appropri-
ate box. Thespeed box contains a vertical line or slider indicating the current
setting.

Plots from brush and spin can only be terminated by clicking with the
mouse button 1 on thequit box or button.

Obviouslybrush andspin are available only on suitable screen devices, in-
cluding motif andgraphsheet. Hardcopy is possible only by directly printing
the window used, not by copying the plot to a printer graphics device.

Plots of surfaces

The functionscontour, persp and image allow the display of a function de-
fined on a two-dimensional regular grid. Their Trellis equivalents give more el-
egant output, so we do not discuss them in detail. The functioncontour al-
lows more control thancontourplot.3 We anticipate an example from Chap-
ter 15 of plotting a smooth topographic surface for Figure 4.3, and contrast it with
contourplot.

R: library(modreg)
topo.loess <- loess(z ~ x * y, topo, degree = 2, span = 0.25)
topo.mar <- list(x = seq(0, 6.5, 0.2), y = seq(0, 6.5, 0.2))
topo.lo <- predict(topo.loess, expand.grid(topo.mar))
par(pty = "s") # square plot
contour(topo.mar$x, topo.mar$y, topo.lo, xlab = "", ylab = "",

levels = seq(700,1000,25), cex = 0.7)

3At the time of writing contourplot was not available in theR packagelattice .

4.3 Enhancing Plots 77

A

MF

••
••
•

•

• •
•••

•••••
• •

•• • •

•

Figure 4.4: A ternary plot of the compositions of 23 rocks from Aitchison (1986).

points(topo$x, topo$y)
par(pty = "m")

contourplot(z ~ x * y, mat2tr(topo.lo), aspect = 1,
at = seq(700, 1000, 25), xlab = "", ylab = "",
panel = function(x, y, subscripts, ...) {

panel.contourplot(x, y, subscripts, ...)
panel.xyplot(topo$x,topo$y, cex = 0.5)

}
)

This generates values of the surface on a regular33 × 33 grid generated by
expand.grid. Our MASS library provides the functionscon2tr and mat2tr
to convert objects designed for input tocontour and matrices as produced by
predict.loess into data frames suitable for the Trellis 3D plotting routines.

TheS-PLUS for Windows GUI andR underWindows have ways to visualize
such surfaces interactively; see pages 69 and 422.

Making new types of plots

The basic components described so far can be used to create new types of plot as
the need arises.

Ternary plots are used for compositional data (Aitchison, 1986) where there
are three components whose proportions add to one. These are represented by a
point in an equilateral triangle, where the distances to the sides add to a constant.
These are implemented in a functionternary which is given on the help page
of the MASS datasetSkye; see Figure 4.4.

4.3 Enhancing Plots

In this section we cover a number of ways that are commonly used to enhance
plots, without reaching the level of detail of Section 4.4.

78 Graphics

Some plots (such as Figure 1.1) are square, whereas others are rectangular.
The shape is selected by the graphics parameterpty. Settingpar(pty = "s")
selects a square plotting region, whereaspar(pty = "m") selects a maximally
sized (and therefore usually non-square) region.

Multiple figures on one plot

We have already seen several examples of plotting two or more figures on a single
device surface, apart from scatterplot matrices. The graphics parametersmfrow
and mfcol subdivide the plotting region into an array of figure regions. They
differ in the order in which the regions are filled. Thus

par(mfrow = c(2, 3))
par(mfcol = c(2, 3))

both select a2 × 3 array of figures, but with the first they are filled along rows,
and with the second down columns. A newfigure region is selected for each new
plot, and figure regions can be skipped by usingframe.

All but two4 of the multi-figure plots inthis book were produced withmfrow.
Most of the side-by-side plots were produced withpar(mfrow = c(2, 2)), but
using only the first two figure regions.

The split.screen function provides an alternative and more flexible way
of generating multiple displays on a graphics device. An initial call such as

split.screen(figs = c(3, 2))

subdivides the current device surface into a3 × 2 array ofscreens. The screens
created in this example are numbered 1 to 6,by rows, and the original device
surface is known as screen 0. The current screen is then screen 1 in the upper left
corner, and plotting output will fill the screen as it would a figure. Unlike multi-
figure displays, the next plot will use the same screen unless another is specified
using thescreen function. For example, the command

screen(3)

causes screen 3 to become the next current screen.
On screen devices the functionprompt.screen may be used to define a

screen layout interactively. The command

split.screen(prompt.screen())

allows the user to define a screen layout by clicking mouse button 1 on diagonally
opposite corners. In our experience this requires a steady hand, although there is a
delta argument toprompt.screen that can be used to help in aligning screen
edges. Alternatively, if thefigs argument tosplit.screen is specified as an
N × 4 matrix, this divides the plot intoN screens (possibly overlapping) whose
corners are specified by giving(xl, xu, yl, yl) as the row of the matrix (where
the whole region is(0, 1, 0, 1)).

4Figures 6.2 and 6.3, where thefig parameter was used.

4.3 Enhancing Plots 79

The split.screen function may be used to subdivide the current screen
recursively, thus leading to irregular arrangements. In this case the screen num-
bering sequence continues from where it had reached.

Split-screen mode is terminated by a call toclose.screen(all = T); in-
dividual screens can be shut byclose.screen(n).

The functionsubplot 5 provides a third way to subdivide the device surface.
This has callsubplot(fun, ...) which adds the graphics output offun to an
existing plot. The size and position can be determined in many ways (see the
on-line help); if all but the first argument is missing a call tolocator is used to
ask the user to click on any two opposite corners of the plot region.6

Use of thefig parameter topar provides an even more flexible way to
subdivide a plot; see Section 4.4 and Figure 6.2 on page 153.

With multiple figures it is normally necessary to reduce the size of the text. If
either the number of rows or columns set bymfrow or mfcol is three or more,
the text size is halved by settingcex = 0.5 (andmex = 0.5 ; see Section 4.4).
This may produce characters that are too small and some resetting may be appro-
priate. (On the other hand, for a2 × 2 layout the characters will usually be too
large.) For all other methods of subdividing the plot surface the user will have to
make an appropriate adjustment tocex and mex or to the default text size (for
example by changingpointsize on thepostscript and other devices).

Adding information

The basic plots produced byplot often need additional information added to
give context, particularly if they are not going to be used with a caption. We have
already seen the use ofxlab, ylab, main and sub with scatterplots. These
arguments can all be used with the functiontitle to add titles to existing plots.
The first argument ismain, so

title("A Useful Plot?")

adds a main title to the current plot.
Further points and lines are added by thepoints and lines functions. We

have seen how plot symbols can be selected withpch=. The line type is selected
by lty=. This is device-specific, but usually includes solid lines (1) and a vari-
ety of dotted, dashed and dash-dot lines. Line width is selected bylwd=, with
standard width being 1, and the effect being device-dependent.

Using colour

The colour model ofS-PLUS graphics is quite complex. Colours are referred to
as numbers, and set by the parametercol. Sometimes only one colour is allowed
(e.g., points) and sometimescol can be a vector giving a colour for each plot
item (e.g.,text). There will always be at least two colours, 0 (the background,
useful for erasing by over-plotting) and 1. However, how many colours there are
and what they appear as is set by the device. Furthermore, there are separate

5Not in R, which has another approach calledlayout .
6Not the figure region; Figure 4.5 onpage 81 shows the distinction.

80 Graphics

colour groups, and what they are is device-specific. For example,motif devices
have separate colour spaces for lines (including symbols), text, polygons (includ-
ing histograms, bar charts and pie charts) and images, andgraphsheet devices
have two spaces, one for lines and text, the other for polygons and images. Thus
the colours can appear completely differently when a graph is copied from device
to device, in particular on screen and on a hardcopy. It is usually a good idea to
design a colour scheme for each device.

It is necessary to read the device help page thoroughly (and forpostscript ,
also that forps.options.send).

R has a different and more coherent colour model involving named colours,
user-settable palettes and even transparency. See the help topicspalette and
colors for more details.

Identifying points interactively

The functionidentify has a similar calling sequence totext. The first two ar-
guments give thex- and y-coordinates of points on a plot and the third argument
gives a vector of labels for each point. (The first two arguments may be replaced
by a single list argument with two of its components namedx and y, or by a
two-column matrix.) The labels may bea character string vector or a numeric
vector (which is coerced to character).Then clicking with mouse button 1 near
a point on the plot causes its label to be plotted; labelling all points or clicking
anywhere in the plot with button 2 terminates the process.7 (The precise position
of the click determines the label position, in particular to left or right of the point.)
We saw an example in Figure 1.4 on page 10. The function returns a vector of
index numbers of the points that were labelled.

In Chapter 1 we used thelocator function to add new points to a plot.
This function is most often used in the formlocator(1) to return the(x, y)
coordinates of a single button click to place a label or legend, but can also be used
to return the coordinates of a series of points, terminated by clicking with mouse
button 2.

Adding further axes and grids

It is sometimes useful to add further axis scales to a plot, as in Figure 8.1 on
page 212 which has scales for both kilograms and pounds. This is done by the
function axis. There we used

attach(wtloss)
oldpar <- par() # R: oldpar <- par(no.readonly = TRUE)
alter margin 4; others are default
par(mar = c(5.1, 4.1, 4.1, 4.1))
plot(Days, Weight, type = "p", ylab = "Weight (kg)")
Wt.lbs <- pretty(range(Weight*2.205))
axis(side = 4, at = Wt.lbs/2.205, lab = Wt.lbs, srt = 90)
mtext("Weight (lb)", side = 4, line = 3)
detach()

7With R on a Macintosh (which only has one mouse button) click outside the plot window to
terminatelocator or identify .

4.3 Enhancing Plots 81

Margin 1

M
ar

gi
n

2

Margin 3

M
ar

gi
n

4

Figure Region

Plot Region

Figure 4.5: Anatomy of a graphics figure.

par(oldpar)

This adds an axis on side 4 (labelled clockwise from the bottom; see Figure 4.5)
with labels rotated by90◦ (srt = 90 , not needed inR where unlikeS-PLUS the R

rotation is controlled by the setting oflas) and then usesmtext to add a label
‘underneath’ that axis. Other parameters are explained in Section 4.4. Please read
the on-line documentation very carefully to determine which graphics parameters
are used in which circumstances.

Grids can be added by usingaxis with long tick marks, setting parameter
tck = 1 (yes, obviously). For example, a dotted grid is created by

axis(1, tck = 1, lty = 2); axis(2, tck = 1, lty = 2)

and the location of the grid lines can be specified usingat=.

Adding legends

Legends are added by the functionlegend. Since it can label many types of vari-
ation such as line type and width, plot symbol, colour, and fill type, its description
is very complex. All calls are of the form

legend(x, y, legend, ...)

wherex and y give either the upper left corner of the legend box or both upper
left and lower right corners. These are often most conveniently specified on-
screen by usinglocator(1) or locator(2). Argumentlegend is a character
vector giving the labels for each variation. Most of the remaining arguments are
vectors of the same length aslegend giving the appropriate coding for each
variation, by lty=, lwd=, col=, fill=, angle= and density=. Argument
pch is a single character string concatenating the symbols; for numericalpch in
S-PLUS use the vector argumentmarks .

By default the legend is contained in a box; the drawing of this box can be
suppressed by argumentbty = "n".

The Trellis functionkey provides a more flexible approach to constructing
legends, and can be used with basic plots. (See page 104 for further details.)

82 Graphics

Non-English labels

Non-native English speakers will often want to include characters from their other
languages in labels. For Western European languages written in ISO-latin1 en-
coding this will normally work; it does for all theR devices and formotif and
graphsheet devices inS-PLUS. To use such characters with thepostscript
device underS-PLUS, set

ps.options(setfont = ps.setfont.latin1)

If you are unable to enter the characters from the keyboard, octal escapes of
the form"\341" (which encodes ´a) can be used.

R’s postscript device allows arbitrary encodings via itsencoding param-
eter, andS-PLUS’s ps.setfont.latin1 could be modified to use a different
encoding such as ISO-latin2.

Mathematics in labels

Users frequently wish to include the odd subscript, superscript and mathematical
symbol in labels. There is no general solution, but for theS-PLUS postscript
driver8 Alan Zaslavsky’s packagepostscriptfonts adds these features. We
can label Figure 7.3 (on page 209) byλ (from font 13, the PostScript symbol
font).

library(postscriptfonts)
x <- 0:100
plik <- function(lambda)

sum(dpois(x, lambda) * 2 * ((lambda - x) +
x * log(pmax(1, x)/lambda)))

lambda <- c(1e-8, 0.05, seq(0.1, 5, 0.1))
plot(lambda, sapply(lambda, plik), type = "l",

ylim = c(0, 1.4), ylab = "", xlab = "")
abline(h = 1, lty = 3)
mixed.mtext(texts = "l", side = 1, line = 3, font = 13) # xlab
mixed.mtext(texts = "E~f13~d~.l~f1~.(deviance)", adj = 0.5,

side = 2, line = 3, font = 13) # ylab

R has rather general facilities to label with mathematics: see?plotmath
and Murrell and Ihaka (2000). Here we could use (on most devices, including
on-screen)

plot(lambda, sapply(lambda, plik), type = "l", ylim = c(0, 1.4),
xlab = expression(lambda),
ylab = expression(paste(E[lambda], "(deviance)")))

4.4 Fine Control of Graphics

The graphics process is controlled bygraphics parameters, which are set for each
graphics device. Each time a new device is opened these parameters for that

8UnderUNIX or Windows.

4.4 Fine Control of Graphics 83

device are reset to their default values. Graphics parameters may be set, or their
current values queried, using thepar function. If the arguments topar are of the
name = value form the graphics parametername is set tovalue, if possible,
and other graphics parameters may be reset to ensure consistency. The value
returned is a list giving the previous parameter settings. Instead of supplying the
arguments asname = value pairs,par may also be given a single list argument
with named components.

If the arguments topar are quoted character strings,"name", the current
value of graphics parametername is returned. If more than one quoted string is
supplied the value is a list of the requested parameter values, with named com-
ponents. The callpar() with no arguments returns a list of all the graphics
parameters.

Some of the many graphics parameters are given in Tables 4.3 and 4.4 (on
pages 84 and 87). Those in Table 4.4 can also be supplied as arguments to high-
level plot functions, when they apply just to the figure produced by that call. (The
layout parameters are ignored by the high-level plot functions.)

The figure region and layout parameters

When a device is opened it makes available a rectangular surface, thedevice re-
gion, on which one or more plots may appear. Each plot occupies a rectangular
section of the device surface called afigure. A figure consists of a rectangularplot
region surrounded by amargin on each side. The margins or sides are numbered
one to four, clockwise starting from the bottom. The plot region and margins
together make up thefigure region, as in Figure 4.5 on page 81. The device sur-
face, figure region and plot region have their vertical sides parallel and hence their
horizontal sides also parallel.

The size and position of figure and plot regions on a device surface are con-
trolled by layout parameters, most of which are listed in Table 4.3. Lengths may
be set in either absolute or relative units. Absolute lengths are ininches, whereas
relative lengths are intext lines (so relative to the current font size).

Margin sizes are set usingmar for text lines ormai for inches. These are
four-component vectors giving the sizes of the lower, left, upper and right margins
in the appropriate units. Changing one causes a consistent change in the other;
changingmex will changemai but not mar.

Positions may be specified in relative units using the unit square as a coordi-
nate system for which some enclosing region, such as the device surface or the
figure region, is the unit square. Thefig parameter is a vector of length four
specifying the current figure as a fraction of the device surface. The first two
components give the lower and upperx-limits and the second two give they-
limits. Thus to put a point plot in the left-hand side of the display and a Q-Q plot
on the right-hand side we could use:

postscript(file = "twoplot.ps") # open a postscript device
par(fig = c(0, 2/3, 0, 1)) # set a figure on the left
plot(x, y) # point plot
par(fig = c(2/3, 1, 0, 1)) # set a figure on the right

84 Graphics

Table 4.3: Some graphics layout parameters with example settings.

din, fin, pin Absolute device size, figure size and plot region size in inches.
fin = c(6, 4)

fig Define the figure region as a fraction of the device region.
fig = c(0, 0.5, 0,1)

font Small positive integer determining a text font for characters and hence
an interline spacing. ForS-PLUS’s postscript device one of the
standard PostScript fonts given byps.options("fonts") . In R
font 1 is plain, font 2 italic, font 3 bold, font 4 bold italic and font 5 is
the symbol font. font = 3

mai, mar The four margin sizes, in inches (mai), or in text line units (mar, that
is, relative to the current font size). Note thatmar need not be an
integer. mar = c(3, 3, 1, 1) + 0.1

mex Number of text lines per interline spacing.mex = 0.7

mfg Define a position within a specified multi-figure display.
mfg = c(2, 2, 3, 2)

mfrow, mfcol Define a multi-figure display. mfrow = c(2, 2)

new Logical value indicating whether the current figure has been used.
new = T

oma, omi, omd Define outer margins in text lines or inches, or by defining the size of
the array of figures as a fraction of the device region.
oma = c(0, 0, 4, 0)

plt Define the plot region as a fraction of the figure region.
plt = c(0.1, 0.9, 0.1, 0.9)

pty Plot type, or shape of plotting region,"s" or "m"
uin (not R) Return inches per user coordinate forx and y.
usr Limits for the plot region in user coordinates.

usr = c(0.5, 1.5, 0.75, 10.25)

qqnorm(resid(obj)) # diagnostic plot
dev.off()

The left-hand figure occupies2/3 of the device surface and the right-hand figure
1/3. For regular arrays of figures it is simpler to usemfrow or split.screen.

Positions in the plot region may also be specified in absoluteuser coor-
dinates. Initially user coordinates and relative coordinates coincide, but any
high-level plotting function changes the user coordinates so that thex- and y-
coordinates range from their minimum to maximum values as given by the plot
axes. The graphics parameterusr is a vector of length four giving the lower
and upperx- and y-limits for the user coordinate system. Initially its setting is
usr = c(0,1,0,1). Consider another simple example:

> motif() # open a device
> par("usr") # usr coordinates
[1] 0 1 0 1

4.4 Fine Control of Graphics 85

mai[1]

omi[3]

omi[1]

mai[3]
m

ai
[2

]

m
ai

[4
]

fin[1]

fin
[2

]

om
i[2

]

pin[1]

pi
n[

2]

din[1]

di
n[

2]

om
i[4

]

mar = c(3,2,2,2)

mfg = c(2,2,3,2)

mfrow = c(3,2)

Figure 4.6: An outline of a3 × 2 multi-figure display with outer margins showing some
graphics parameters. The current figure is at position(2, 2) and the display is being filled
by rows. In this figure “fin[1] ” is used as a shorthand forpar("fin")[1], and so on.

> x <- 1:20
> y <- x + rnorm(x) # generate some data
> plot(x, y) # produce a scatterplot
> par("usr") # user coordinates now match the plot
[1] 0.2400 20.7600 1.2146 21.9235

Any attempt to plot outside the user coordinate limits causes a warning message
unless the general graphics parameterxpd is set toT.

Figure 4.6 shows some of the layout parameters for a multi-figure layout.
Such an array of figures may occupy the entire device surface, or it may have
outer margins, which are useful for annotations that refer to the entire array. Outer
margins are set with the parameteroma (in text lines) oromi (in inches). Alter-
natively omd may be used to set the region containing the array of figures in a

86 Graphics

similar way to whichfig is used to set one figure. This implicitly determines the
outer margins as the complementary region. In contrast to what happens with the
margin parametersmar and mai, a change tomex will leave the outer margin
size,omi, constant but adjust the number of text lines,oma.

Text may be put in the outer margins by usingmtext with parameter
outer = T.

Common axes for figures

There are at least two ways to ensure that several plots share a common axis or
axes.

1. Use the samexlim or ylim (or both) setting on each plot and ensure
that the parameters governing the way axes are formed, such aslab, las,
xaxs and allies, do not change.

2. Set up the desired axis system with the first plot and then usepar to set the
low-level parameterxaxs = "d", yaxs = "d" or both as appropriate.
This ensures that the axis or axes are not changed by further high-level plot
commands on the same device.

An example: A Q-Q normal plot with envelope

In Chapter 5 we recommend assessing distributional form by quantile-quantile
plots. A simple way to do this is to plot the sorted values against quantile approx-
imations to the expected normal order statistics and draw a line through the 25 and
75 percentiles to guide the eye, performed for the variableInfant.Mortality
of the Swiss provinces data (on fertilityand socio-economic factors on Swiss
provinces in about 1888) by

in R just use data(swiss)
swiss <- data.frame(Fertility = swiss.fertility, swiss.x)
attach(swiss)
qqnorm(Infant.Mortality)
qqline(Infant.Mortality)

The reader should check the result and compare it with the style of Figure 4.7.
Another suggestion to assess departures is to compare the sample Q-Q plot

with the envelope obtained from a number of other Q-Q plots from generated
normal samples. This is discussed in (Atkinson, 1985,§4.2) and is based on an
idea of Ripley (see Ripley, 1981, Chapter 8). The idea is simple. We generate
a number of other samples of the same size from a normal distribution and scale
all samples to mean 0 and variance 1 to remove dependence on location and scale
parameters. Each sample is then sorted. For each order statistic the maximum and
minimum values for the generated samples form the upper and lower envelopes.
The envelopes are plotted on the Q-Q plot of the scaled original sample and form
a guide to what constitutes serious deviations from the expected behaviour under
normality. Following Atkinson our calculation uses 19 generated normal samples.

We begin by calculating the envelope and thex-points for the Q-Q plot.

4.4 Fine Control of Graphics 87

Table 4.4: Some of the more commonly used general and high-level graphics parameters
with example settings.

Text:
adj Text justification. 0 = left justify, 1 = right justify, 0.5 = centre.
cex Character expansion. cex = 2

csi Height of font (inches). csi = 0.11

font Font number: device-dependent.
srt String rotation in degrees. srt = 90

cin cxy Character width and height in inches andusr coordinates (for infor-
mation, not settable).

Symbols:
col Colour for symbol, line or region. col = 2

lty Line type: solid, dashed, dotted, etc.lty = 2

lwd Line width, usually as a multiple of default width. lwd = 2

mkh Mark height (inches). Ignored inR. mkh = 0.05

pch Plotting character or mark. pch = "*" or pch = 4 for marks.
(See page 74.)

Axes:
bty Box type, as"o", "l", "7", "c", "n".
exp (not R) Notation for exponential labels. exp = 1

lab Tick marks and labels. lab = c(3, 7, 4)

las Label orientation. 0 = parallel to axis, 1 = horizontal, 2 = vertical.
log Control log axis scales. log = "y"

mgp Axis location. mgp = c(3, 1, 0)

tck Tick mark length as signed fraction of the plot region dimension.
tck = -0.01

xaxp yaxp Tick mark limits and frequency. xaxp = c(2, 10, 4)

xaxs yaxs Style of axis limits. xaxs = "i"

xaxt yaxt Axis type. "n" (null), "s" (standard),"t" (time) or "l" (log).

High Level:
ann (R only) Should titles and axis labels be plotted?
ask Prompt before going on to next plot?ask = F

axes Print axes? axes = F

main Main title. main = "Figure 1"

sub Subtitle. sub = "23-Jun-2002"

type Type of plot. type = "n"

xlab ylab Axis labels. ylab = "Speed in km/sec"

xlim ylim Axis limits. xlim = c(0, 25)

xpd May points or lines go outside the plot region?xpd = T

88 Graphics

-2.0 -1.5 -1.0 -0.5 0.0 0.5 1.0 1.5 2.0

-3

-2

-1

0

1

2

3

Quantiles of Standard Normal

Ri

Figure 4.7: The Swiss fertility data. A Q-Q normal plot with envelope for infant mortality.

samp <- cbind(Infant.Mortality, matrix(rnorm(47*19), 47, 19))
samp <- apply(scale(samp), 2, sort)
rs <- samp[, 1]
xs <- qqnorm(rs, plot = F)$x
env <- t(apply(samp[, -1], 1, range))

As an exercise in building a plot with specific requirements we now present
the envelope and Q-Q plot in a style very similar to Atkinson’s. To ensure that
the Q-Q plot has ay-axis large enough to take the envelope we could calculate
the y-limits as before, or alternatively use a matrix plot withtype = "n" for
the envelope at this stage. The axes and their labels are also suppressed for the
present:

matplot(xs, cbind(rs, env), type = "pnn",
pch = 4, mkh = 0.06, axes = F, xlab = "", ylab = "")

The argument settingtype = "pnn" specifies that the first column (rs) is to
produce a point plot and the remaining two (env) no plot at all, but the axes will
allow for them. Settingpch = 4 specifies a ‘cross’ style plotting symbol (see
Figure 4.2) similar to Atkinson’s, andmkh = 0.06 establishes a suitable size for
the plotting symbol.

Atkinson uses small horizontal bars to represent the envelope. We can now
calculate a half length for these bars so that they do not overlap and do not extend
beyond the plot region. Then we can add the envelope bars usingsegments :

xyul <- par("usr")
smidge <- min(diff(c(xyul[1], xs, xyul[2])))/2
segments(xs - smidge, env[, 1], xs + smidge, env[, 1])
segments(xs - smidge, env[, 2], xs + smidge, env[, 2])

Atkinson’s axis style differs from the defaultS style in several ways. There are
many more tick intervals; the ticks are inside the plot region rather than outside;

4.5 Trellis Graphics 89

there are more labelled ticks; and the labelled ticks are longer than the unlabelled.
From experience ticks along thex-axis at0.1 intervals with labelled ticks at0.5
intervals seems about right, but this is usually too close on they-axis. The axes
require four calls to theaxis function:

xul <- trunc(10*xyul[1:2])/10
axis(1, at=seq(xul[1], xul[2], by = 0.1), labels = F, tck = 0.01)
xi <- trunc(xyul[1:2])
axis(1, at = seq(xi[1], xi[2], by = 0.5), tck = 0.02)
yul <- trunc(5*xyul[3:4])/5
axis(2, at = seq(yul[1], yul[2], by = 0.2), labels = F, tck= 0.01)
yi <- trunc(xyul[3:4])
axis(2, at = yi[1]:yi[2], tck = 0.02)

Finally we add the L-box, put thex-axis title at the centre and they-axis title
at the top:

box(bty = "l") # lower case "L"
S: ps.options()$fonts
mtext("Quantiles of Standard Normal", side=1, line=2.5, font=3)
S: mtext("Ri", side = 2, line = 2, at = yul[2], font = 10)
R: mtext(expression(R[i]), side = 2, line = 2, at = yul[2])

where inS-PLUS fonts 3 and 10 are Times-Roman and Times-Italic on the device
used (postscript underUNIX), found from the list given byps.options().

The final plot is shown in Figure 4.7 on page 88.

4.5 Trellis Graphics

Trellis graphics were developed to provide a consistent graphical ‘style’ and to
extend conditioning plots; the style is a development of that used in Cleveland
(1993).

Trellis is very prescriptive, and changing the display style is not always an
easy matter.

It may be helpful to understand that Trellis is written entirely in theS lan-
guage, as calls to the basic plotting routines. Two consequences are that it can be
slow and memory-intensive, and that it takes over many of the graphics parame-
ters for its own purposes. (Global settings of graphics parameters are usually not
used, the outer margin parametersomi being a notable exception.) Computation
of a Trellis plot is done in two passes: once when a Trellis object is produced, and
once when that object is printed (producing the actual plot).

The trellis library contains a large number of examples: use

?trellis.examples

to obtain an up-to-date list. These are all functions that can be called to plot the
example, and listed to see how the effect was achieved.

R has a similar system in its packagelattice ; however, that is built on a
different underlying graphics model calledgrid and mixes (even) less well with
traditionalS graphics. This runs most of the examples shown here, but the output
will not be identical.

90 Graphics

Trellis graphical devices

The trellis.device graphical device is provided by thetrellis library. It
is perhaps more accurate to call it a meta-device, for it uses one of the underlying
graphical devices,9 but customizes the parameters of the device to use the Trellis
style, and in particular its colour schemes.

Trellis graphics is intended to be used on atrellis.device device, and
may give incorrect results on other devices.

Trellis devices by default use colour for screen windows and greylevels for
printer devices. The settings for a particular device can be seen by running the
commandshow.settings(). These settings are not the same for all colour
screens, nor for all printer devices. Trellis colour schemes have a mid-grey back-
ground on colour screens (but not colour printers). If a Trellis plot is used without
a graphics device already in use, a suitable Trellis device is started.

Trellis model formulae

Trellis graphics functions make use of the language for model formulae described
in Section 3.7. The Trellis code for handling model formulae to produce a data
matrix from a data frame (specified by thedata argument) allows the argument
subset to select a subset of the rows of the data frame, as one of the first three
forms of indexing vector described on page 27. (Character vector indices are not
allowed.)

There are a number of inconsistencies in the use of the formula language.
There is nona.action argument, and missing values are handled inconsistently;
generally rows withNAs are omitted, butsplom fails if there are missing values.
Surprisingly,splom uses a formula, but does not accept adata argument.

Trellis uses an extension to the model formula language, the operator ‘| ’
which can be read as ‘given’. Thus ifa is a factor,lhs ~ rhs | a will produce
a plot for each level ofa of the subset of the data for whicha has that level (so
estimating the conditional distribution givena). Conditioning on two or more
factors gives a plot for each combination of the factors, and is specified by an
interaction, for example,| a*b. For the extension of conditioning to continuous
variates via what are known asshingles, see page 101.

Trellis plot objects can be kept, andupdate can be used to change them, for
example, to add a title or change the axis labels, before re-plotting by printing
(often automatically as the result of the call toupdate).

Basic Trellis plots

As Table 4.5 shows, the basic styles of plot exist in Trellis, but with different
names and different default styles. Their usage is best seen by considering how to
produce some figures in the Trellis style.

Figure 1.2 (page 9) was produced bysplom(~ hills). Trellis plots of scat-
terplot matrices read from bottom to top (as do all multi-panel Trellis displays,

9Currently motif, postscript, graphsheet, win.printer, pdf.graph, wmf.graph and
java.graph where these are available.

4.5 Trellis Graphics 91

Table 4.5: Trellis plotting functions. Page references are given to the most complete de-
scription in the text.

Function Page Description

xyplot 94 Scatterplots.

bwplot 92 Boxplots.

stripplot 98 Display univariate data against a numerical variable.

dotplot ditto in another style,

histogram ‘Histogram’, actually a frequency plot.

densityplot Kernel density estimates.

barchart Horizontal bar charts.

piechart Pie chart.

splom 90 Scatterplot matrices.

contourplot 76 Contour plot of a surface on a regular grid.

levelplot 94 Pseudo-colour plot of a surface on a regular grid.

wireframe 94 Perspective plot of a surface evaluated on a regular grid.

cloud 104 A perspective plot of a cloud of points.

key 104 Add a legend.

color.key 94 Add a color key (as used bylevelplot).

trellis.par.get 93 Save Trellis parameters.

trellis.par.set 93 Reset Trellis parameters.

equal.count 102 Compute a shingle.

like graphs rather than matrices, despite the meaning of the namesplom). By
default the panels in asplom plot are square.

Figure 4.8 is a Trellis version of Figure 1.4. Note that they-axis numbering is
horizontal by default (equivalent to the optionpar(las = 1)), and that points
are plotted by open circles rather than filled circles or stars. It is not possible to
add to a Trellis plot,10 so the Trellis call has to include all the desired elements.
This is done by writing apanel function, in this case

R: library(lqs)
xyplot(time ~ dist, data = hills,

panel = function(x, y, ...) {
panel.xyplot(x, y, ...)
panel.lmline(x, y, type = "l")
panel.abline(lqs(y ~ x), lty = 3)
identify(x, y, row.names(hills))

}

10As the user coordinate system is not retained; but the plot call can be updated byupdate and
re-plotted.

92 Graphics

Knock Hill

Bens of Jura

Two Breweries

Moffat Chase

Lairig Ghru

Seven Hills

50

100

150

200

5 10 15 20 25

dist

tim
e

Figure 4.8: A Trellis version of Figure 1.4 (page 10).

1

2

3

4

5

700 800 900 1000

Speed

E
xp

er
im

en
t N

o.

Speed of Light Data

Figure 4.9: A Trellis version of Figure 1.5 (page 11).

)

Figure 4.9 is a Trellis version of Figure 1.5. Boxplots are known as box-and-
whisker plots, and are displayed horizontally. This figure was produced by

bwplot(Expt ~ Speed, data = michelson, ylab = "Experiment No.")
title("Speed of Light Data")

Note the counter-intuitive way the formula is used. This plot corresponds to a
one-way layout splitting Speed by experiment, so it is tempting to useSpeed as
the response. It may help to remember that the formula is of they ~ x form for
the x- and y-axes of the plot. (The same ordering is used for all the univariate
plot functions.)

4.5 Trellis Graphics 93

40 50 60

70 80 90

70

80

90

40

50

60Fertility

20 40

60 80

60

80

20

40Agriculture

 5 10 15 20

20 25 30 35

20

25

30

35

 5

10

15

20Examination

10 20 30

30 40 50

30

40

50

10

20

30

Education

 20 40 60

 60 80 100

 60

 80

100

 20

 40

 60

Catholic

12 14 16 18

20 22 24 26

20

22

24

26

12

14

16

18Infant.Mortality

Figure 4.10: A Trellis scatterplot matrix display of the Swiss provinces data.

Figure 4.10 is an enhanced scatterplot matrix, again using a panel func-
tion to add to the basic display. Now we see the power of panel functions,
as the basic plot commands can easily be applied to multi-panel displays. The
aspect = "fill" command allows the array of plots to fill the space; by de-
fault the panels are square as in Figure 1.2.

splom(~ swiss, aspect = "fill",
panel = function(x, y, ...) {

panel.xyplot(x, y, ...); panel.loess(x, y, ...)
}

)

Most Trellis graphics functions have agroups parameter, which we can il-
lustrate on thestormer data used in Section 8.4 (see Figure 4.11).

sps <- trellis.par.get("superpose.symbol")
sps$pch <- 1:7
trellis.par.set("superpose.symbol", sps)
xyplot(Time ~ Viscosity, data = stormer, groups = Wt,

panel = panel.superpose, type = "b",
key = list(columns = 3,

text = list(paste(c("Weight: ", "", ""),
unique(stormer$Wt), "gms")),

points = Rows(sps, 1:3)
)

)

94 Graphics

50

100

150

200

250

50 100 150 200 250 300

Viscosity

T
im

e

Weight: 20 gms 50 gms 100 gms

Figure 4.11: A Trellis plot of the stormer data.

Here we have changed the default plotting symbols (which differ by device) to
the first sevenpch characters shown in Figure 4.2 on page 74. (We could just use
the argumentpch = 1:7 to xyplot, but then specifying the key becomes much
more complicated.)

Figure 4.12 shows further Trellis plots of the smooth surface shown in
Figure 4.3. Once again panel functions are needed to add the points. The
aspect = 1 parameter ensures a square plot. Thedrape = T parameter to
wireframe is optional, producing the superimposed greylevel (or pseudo-colour)
plot.

topo.plt <- expand.grid(topo.mar)
topo.plt$pred <- as.vector(predict(topo.loess, topo.plt))
levelplot(pred ~ x * y, topo.plt, aspect = 1,

at = seq(690, 960, 10), xlab = "", ylab = "",
panel = function(x, y, subscripts, ...) {

panel.levelplot(x, y, subscripts, ...)
panel.xyplot(topo$x,topo$y, cex = 0.5, col = 1)

}
)
wireframe(pred ~ x * y, topo.plt, aspect = c(1, 0.5),

drape = T, screen = list(z = -150, x = -60),
colorkey = list(space="right", height=0.6))

(The arguments given bycolorkey refer to thecolor.key function.) There is
no simple way to add the points to the perspective display.

Trellises of plots

In multivariate analysis we necessarily look at several variables at once, and we
explore here several ways to do so. We can produce a scatterplot matrix of the
first three principal components of thecrabs data (see page 302) by

4.5 Trellis Graphics 95

0

1

2

3

4

5

6

0 1 2 3 4 5 6

700

750

800

850

900

950

x

pred

pred

700

750

800

850

900

950

Figure 4.12: Trellis levelplot and wireframe plots of a loess smoothing of the
topo dataset.

lcrabs.pc <- predict(princomp(log(crabs[,4:8])))
crabs.grp <- c("B", "b", "O", "o")[rep(1:4, each = 50)]
splom(~ lcrabs.pc[, 1:3], groups = crabs.grp,

panel = panel.superpose,
key = list(text = list(c("Blue male", "Blue female",

"Orange Male", "Orange female")),
points = Rows(trellis.par.get("superpose.symbol"), 1:4),
columns = 4)

)

A ‘black and white’ version of this plot is shown in Figure 4.13. On a ‘colour’
device the groups are distinguished by colour and are all plotted with the same
symbol (o).

However, it might be clearer to display these results as a trellis ofsplom
plots, by

sex <- crabs$sex; levels(sex) <- c("Female", "Male")
sp <- crabs$sp; levels(sp) <- c("Blue", "Orange")

96 Graphics

-1.5 -1.0 -0.5

-0.5 0.0 0.5

-0.5

 0.0

 0.5

-1.5

-1.0

-0.5
Comp. 1

+
+
+

++
+

+
+

+

++

+
+
++
+
++
+++
+

+

++ ++
+
+

+
+
++
++
+
++
++

++

+
++

+
+
+
+

+

>

>

>>
>

>

>>

>

>

>

>

>>

>

>

>

>>

>

>

>
>

>>

>

>

>>
>

>
>
>

>>

>
>
>

>>

>
>

>

>

>

>

>>
>

>
s

s s

s

s s

s

s

s
s

s

s

ss

s
ss
s
ss

ss

s

s

s
sss

s

s

ss

s

ssss

s

s
s

s

ss
s

s
s

ss
s

s

+

+
+

+

+
+

+
+
++

+
+
+++
+
+

+

++
++
++
+

++

+++

+
+

+

++

++

+
+
++++++

+
+
++
+

>

>

>

>
>

>

>
>

>
>
>

>

>

>
>
>
>

>>
>
>
>
>>
>

>>>
>>
>

>
>

>>
>>>
>>
>>
>>

>

>

>>>>

ss ss
s s

s
s
ss

s
s
s
ss
sss
ss
s
ssss

s

ss
ss

s
s

s
ss
ss

ss

s
s
s
ss s
ssss

s

+

++
+
+ +

++ +++ ++++++++++ ++ ++
++ ++ ++++ +++ ++++ ++
+++++++ +

>

> >>>
>>>> >> >

>>> >> >>> >> > >>> >>> >>
>> >>>
>> >>>> >>> >

>>
>

>

s s
ss s

ss ss s ssss s sss ss sss ss
ssss ssss sssss ss sss s
ss sss

s
-0.15 -0.10 -0.05

 0.00 0.05 0.10

 0.00

 0.05

 0.10

-0.15

-0.10

-0.05

Comp. 2

+

+
+

+

+
+

+
+

++
+

+
+++

+
+

+

++
+ +

+ +
+

++

++
+

+
+

+

++

+ +

+
+

+ +++++
+

+
++

+
>

>

>

>
>

>

>
>

>
>

>

>

>

>
>

>
>

>>
>

>
>

> >
>

> >>
> >

>

>
>

>>
> >>

>>
>>

>>

>

>

>> > >

s s
ss

ss

s
s

s s

s
s

s
s s

sss
ss

s
ss ss

s

ss
s s

s
s

s
ss
ss

s s

s
s

s
s ss

s sss
s

+

++
+

++
++ ++

+ ++++ +++ ++++++ +
++ ++++ ++ ++ +++ +++
++

++ ++ +++

>

> >>>
>> >> >> >

> > >>> >>
> >>>>> >>>
>>>

>>>>>
>>>>>>>>> >

>>
>
>

ss
ss

s
ss sss sss sssss sss ssss

s ssss s ss ssss
ss ss sss

s ssss
s

+
+

+
+ +

+

+
+

+

++

+
+
++

+
++
+++

+

+

+ +++
+
+

+
+

++
++

+
++

++

++

+
++

+
+

+
+

+

>

>

>>
>

>

> >

>

>

>

>

> >

>

>

>

>>

>

>

>
>

>>

>

>

> >
>

>
>

>

>>

>
>

>

>>

>
>

>

>

>

>

>>
>

>
s

ss

s

ss

s

s

s
s

s

s

s s

s
ss
s

ss

s s

s

s

s
s ss

s

s

s s

s

ssss

s

s
s

s

ss
s

s
s

ss
s

s

-0.10 -0.05 0.00

 0.00 0.05 0.10

 0.00

 0.05

 0.10

-0.10

-0.05

 0.00Comp. 3

Blue male Blue female Orange Male Orange female+ > s

Figure 4.13: A scatterplot matrix of the first three principal components of thecrabs
data.

splom(~ lcrabs.pc[, 1:3] | sp*sex, cex = 0.5, pscales = 0)

as shown in Figure 4.14. Notice how this is the easiest method to code. It is at the
core of the paradigm of Trellis, which is to display many plots of subsets of the
data in some meaningful layout.

Now consider data from a multi-factor study, Quine’s data on school absences
discussed in Sections 6.6 and 7.4. It will help to set up more informative factor
labels, as the factor names are not given (by default) in trellises of plots.

Quine <- quine
levels(Quine$Eth) <- c("Aboriginal", "Non-aboriginal")
levels(Quine$Sex) <- c("Female", "Male")
levels(Quine$Age) <- c("primary", "first form",

"second form", "third form")
levels(Quine$Lrn) <- c("Average learner", "Slow learner")
bwplot(Age ~ Days | Sex*Lrn*Eth, data = Quine)

This gives an array of eight boxplots, which by default takes up two pages. On
a screen device there will be no pause between the pages unless the argument
ask = T is set forpar. It is more convenient to see all the panels on one page,
which we can do by asking for a different layout (Figure 4.15). We also suppress
the colouring of the strip labels by usingstyle = 1 ; there are currently six
preset styles.

bwplot(Age ~ Days | Sex*Lrn*Eth, data = Quine, layout = c(4, 2),
strip = function(...) strip.default(..., style = 1))

4.5 Trellis Graphics 97

Comp. 1

Comp. 2

Comp. 3

Blue
Female

Comp. 1

Comp. 2

Comp. 3

Orange
Female

Comp. 1

Comp. 2

Comp. 3

Blue
Male

Comp. 1

Comp. 2

Comp. 3

Orange
Male

Figure 4.14: A multi-panel version of Figure 4.13.

primary

first form

second form

third form

0 20 40 60 80

Female
Average learner

Aboriginal

Male
Average learner

Aboriginal

0 20 40 60 80

Female
Slow learner
Aboriginal

Male
Slow learner
Aboriginal

primary

first form

second form

third form

Female
Average learner
Non-aboriginal

0 20 40 60 80

Male
Average learner
Non-aboriginal

Female
Slow learner

Non-aboriginal

0 20 40 60 80

Male
Slow learner

Non-aboriginal

Days

Figure 4.15: A multi-panel boxplot of Quine’s school attendance data.

98 Graphics

primary

first form

second form

third form

0 20 40 60 80

Eth: Aboriginal
Sex: Female

+

+++ + + ++ + ++

+ ++ + ++ + +

Eth: Non-aboriginal
Sex: Female

+

++++ +++++ + +

+ + ++++ +++

primary

first form

second form

third form

Eth: Aboriginal
Sex: Male

+ + +

++ +

+ + + +

0 20 40 60 80

Eth: Non-aboriginal
Sex: Male

+ + +

++ +++ + +

+ + +

Days of absence

Average learner Slow learner +

Figure 4.16: A stripplot of Quine’s school attendance data.

A stripplot allows us to look at the actual data. We jitter the points slightly
to avoid overplotting.

stripplot(Age ~ Days | Sex*Lrn*Eth, data = Quine,
jitter = T, layout = c(4, 2))

stripplot(Age ~ Days | Eth*Sex, data = Quine,
groups = Lrn, jitter = T,
panel = function(x, y, subscripts, jitter.data = F, ...) {

if(jitter.data) y <- jitter(y)
panel.superpose(x, y, subscripts, ...)

},
xlab = "Days of absence",
between = list(y = 1), par.strip.text = list(cex = 0.7),
key = list(columns = 2, text = list(levels(Quine$Lrn)),

points = Rows(trellis.par.get("superpose.symbol"), 1:2)
),

strip = function(...)
strip.default(..., strip.names = c(T, T), style = 1)

)

The second form of plot, shown in Figure 4.16, uses different symbols to distin-
guish one of the factors. We include the factor name in the strip labels, using a
customstrip function.

The Trellis functiondotplot is very similar tostripplot ; its panel func-
tion includes horizontal lines at each level. Functionstripplot uses the styles
of xyplot whereasdotplot has its own set of defaults; for example, the default
plotting symbol is a filled rather than open circle.

4.5 Trellis Graphics 99

WinF

WinNF

Veh

Con

Tabl

Head

-5 0 5 10 15

RI

12 14 16

Na

0 1 2 3 4

Mg

WinF

WinNF

Veh

Con

Tabl

Head

0.5 1.0 1.5 2.0 2.5 3.0 3.5

Al

70 71 72 73 74 75

Si

0 1 2 3 4 5 6

K

WinF

WinNF

Veh

Con

Tabl

Head

6 8 10 12 14 16

Ca

0.0 0.5 1.0 1.5 2.0 2.5 3.0

Ba

0.0 0.1 0.2 0.3 0.4 0.5

Fe

Figure 4.17: Plot bystripplot of the forensic glass datasetfgl.

As a third example, consider our datasetfgl. This has 10 measurements
on 214 fragments of glass from forensic testing, the measurements being of the
refractive index and composition (percent weight of oxides of Na, Mg, Al, Si, K,
Ca, Ba and Fe). The fragments have been classified by six sources. We can look
at the types for each measurement by

fgl0 <- fgl[, -10] # omit type.
fgl.df <- data.frame(type = rep(fgl$type, 9),

y = as.vector(as.matrix(fgl0)),
meas = factor(rep(1:9, each = 214), labels = names(fgl0)))

stripplot(type ~ y | meas, data = fgl.df,
scales = list(x = "free"), xlab = "", cex = 0.5,
strip = function(...) strip.default(style = 1, ...))

Layout of a trellis

A trellis of plots is generated as a sequence of plots that are then arranged in
rows, columns and pages. The sequence is determined by the order in which the
conditioning factors are given: the first varying fastest. The order of the levels of
the factor is that of itslevels attribute.

100 Graphics

1.0

1.1

1.2

1.3
Neg

0.0 1.0

Neg Neg

0.0 1.0

Neg Neg

0.0 1.0

Neg Neg

0.0 1.0

Neg

Neg Neg Neg Neg Neg Neg Neg

1.0

1.1

1.2

1.3
Neg

1.0

1.1

1.2

1.3
Neg Neg Neg Neg Neg Neg Neg Neg

Neg Neg Neg Neg

•
Neg Neg

•
Neg

1.0

1.1

1.2

1.3
Neg

1.0

1.1

1.2

1.3
Prob Prob

0.0 1.0

Prob Prob

0.0 1.0

Prob Poss Poss

0.0 1.0

scan interval (years)

ve
nt

ric
le

/b
ra

in
 v

ol
um

e

Figure 4.18: The presentation of results from a study of 39 subjects. In a real applica-
tion this could be larger and so less dominated by the labels. Colour could be used to
distringuish groups, too.

How the sequence of plots is displayed on the page(s) is controlled by an
algorithm that tries to optimize the use of the space available, but it can be con-
trolled by thelayout parameters. A specificationlayout = c(c, r, p) asks for
c columns, r rows andp pages. (Note the unusual ordering.) Usingc = 0
allows the algorithm to choose the number of columns;p is used to produce only
the first p pages of a many-page trellis.

If the number of levels of a factor is large and not easily divisible (for example,
seven), we may find a better layout by leaving some of the cells of the trellis empty
using theskip argument. Figure 4.18 shows another use oflayout and skip .

The between parameter can be used to specify gaps in the trellis layout, as
in Figure 4.16. It is a list withx andy components, numeric vectors that specify
the gaps in units of character height. Thepage parameter can be used to invoke
a function (with argumentn, the page number) to label each page. The default
page function does nothing.

Subscripts and groups

The subscripts argument of the panel function is supplied if the Trellis func-
tion is called with argumentsubscripts = T .11 Then its value is a numeric
vector of indices of cases (normally rows ofdata) that have been passed to that
panel.

11And it seems sometimes even if it is not.

4.5 Trellis Graphics 101

Figure 4.18 shows the use of Trellis to present the results of a real study. There
were 39 subjects in three groups (marked on the strips), each being brain-scanned
2–4 times over up to 18 months. The plot shows the data and for each patient a
dashed line showing the mean rate of change for the alloted group. Two patients
whose panels are marked with a dot were later shown to have been incorrectly
allocated to the ‘normals’ group.

Note how we arrange the layout to separate the groups. We make use of the
subscripts argument to the panel function to identify the subject; vectorpr3
holds a set of predictions at the origin and after 1.5 years from a linear mixed-
effects model.

xyplot(ratio ~ scant | subject, data = A5,
xlab = "scan interval (years)",
ylab = "ventricle/brain volume",
subscripts = T, ID = A5$ID,
strip = function(factor, ...)

strip.default(..., factor.levels = labs, style = 1),
layout = c(8, 5, 1),
skip = c(rep(F, 37), rep(T, 1), rep(F, 1)),
panel = function(x, y, subscripts, ID) {

panel.xyplot(x, y, type = "b", cex = 0.5)
which <- unique(ID[subscripts])
panel.xyplot(c(0, 1.5), pr3[names(pr3) == which],

type = "l", lty = 3)
if(which == 303 || which == 341) points(1.4, 1.3)

})

Note how other arguments, hereID , are passed to the panel function as addi-
tional arguments. One special extra argument isgroups which is interpreted by
panel.superpose , as in Figure 4.11.

Conditioning plots and shingles

The idea of a trellis of plots conditioningon combinations of one or more factors
can be extended to conditioning on real-valued variables, in what are known as
conditioning plots orcoplots. Two variables are plotted against each other in
a series of plots with the values of further variable(s) restricted to a series of
possibly overlapping ranges. This needs an extension of the concept of a factor
known as ashingle.12

Suppose we wished to examine the relationship betweenFertility and
Education in the Swiss fertility data as the variableCatholic ranges from
predominantly non-Catholic to mainly Catholic provinces. We add a smooth fit
to each panel (andspan controls the smoothness: see page 423).

Cath <- equal.count(swiss$Catholic, number = 6, overlap = 0.25)
xyplot(Fertility ~ Education | Cath, data = swiss,

span = 1, layout = c(6, 1), aspect = 1,
panel = function(x, y, span) {

12In American usage this is a rectangular wooden tilelaid partially overlapping on roofs or walls.

102 Graphics

40

50

60

70

80

90

0 10 20 30 40 50

Cath

0 10 20 30 40 50

Cath

0 10 20 30 40 50

Cath

0 10 20 30 40 50

Cath

0 10 20 30 40 50

Cath

0 10 20 30 40 50

Cath

Education

F
er

til
ity

Figure 4.19: A conditioning plot for the Swiss provinces data.

40
50
60
70
80
90

0 10 20 30 40 50

Agr
Cath2

Agr
Cath2

0 10 20 30 40 50

Agr
Cath2

Agr
Cath2

0 10 20 30 40 50

Agr
Cath2

40
50
60
70
80
90

Agr
Cath2

Education

F
er

til
ity

Figure 4.20: Another conditioning plot with two conditioning shingles. The upper row
shows the predominantly Catholic provinces.

panel.xyplot(x, y); panel.loess(x, y, span)
}

)

The result is shown in Figure 4.19, with the strips continuing to show the (now
overlapping) coverage for each panel. Fertility generally falls as education rises
and rises as the proportion of Catholics in the population rises. Note that the level
of education is lower in predominantly Catholic provinces.

The functionequal.count is used to construct a shingle with suitable ranges
for the conditioning intervals.

Conditioning plots may also have more than one conditioning variable. Let us
condition on Catholic and agriculture simultaneously. Since the dataset is small it
seems prudent to limit the number of panels to six in all.

Cath2 <- equal.count(swiss$Catholic, number = 2, overlap = 0)
Agr <- equal.count(swiss$Agric, number = 3, overlap = 0.25)
xyplot(Fertility ~ Education | Agr * Cath2, data = swiss,

span = 1, aspect = "xy",
panel = function(x, y, span) {

panel.xyplot(x, y); panel.loess(x, y, span)
}

)

4.5 Trellis Graphics 103

1

2

3

4

5

6

0 20 40 60 80 100

Cath

P
an

el

Figure 4.21: A plot of the shingleCath.

The result is shown in Figure 4.20. In general, the fertility rises with the propor-
tion of Catholics and agriculture and falls with education. There is no convincing
evidence of substantial interaction.

Shingles have levels, and can be printed and plotted:

> Cath
Data:
[1] 10.0 84.8 93.4 33.8 5.2 90.6 92.9 97.2 97.7 91.4

....
Intervals:

min max count
2.2 4.5 10
4.2 7.7 10
....

Overlap between adjacent intervals:
[1] 3 2 3 2 3
> levels(Cath)

min max
2.2 4.5
....

> plot(Cath, aspect = 0.3)

Multiple displays per page

Recall from page 89 that a Trellis object is plotted by printing it. The method
print.trellis has optional argumentsposition, split and more. The ar-
gumentmore should be set toT for all but the last part of a figure. The position
of individual parts on the device surface can be set by eithersplit or position.
A split argument is of the formc(x, y, nx, ny) for four integers. The second
pair gives a division into anx × ny layout, just like themfrow and mfcol ar-
guments topar. The first pair gives the rectangle to be used within that layout,
with origin at the bottom left.

A position argument is of the formc(xmin, ymin, xmax, ymax) giving the
corners of the rectangle within which to plot the object. (This is a different order
from split.screen.) The coordinate system for this rectangle is[0, 1] for both
axes, but the limits can be chosen outside this range.

The print.trellis works by manipulating the graphics parameteromi,
so the outer margin settings are preserved. However, none of the basic meth-
ods (page 78) of subdividing the device surface will work, and if a trellis print

104 Graphics

fails omi is not reset. (Usingpar(omi = rep(0, 4), new = F) will reset
the usual defaults.)

Fine control

Detailed control of Trellis plots may be accomplished by a series of arguments
described in the help page fortrellis.args, with variants for thewireframe
and cloud perspective plots undertrellis.3d.args.

We have seen some of the uses of panel functions. Some care is needed with
computations inside panel functions that use any data (or user-defined objects or
functions) other than their arguments. First, the computations will occur inside a
deeply nested set of function calls, socare is needed to ensure that the data are
visible, often best done by passing the data as extra arguments. Second, those
computations will be done at the time the result is printed (that is, plotted) and so
the data need to be in the desired state at plot time, not just when the trellis object
is created.

If non-default panel functions are used, we may want these to help control
the coordinate system of the plots, for example, to use a fitted curve to decide
the aspect ratio of the panels. This is the purpose of theprepanel argument,
and there are prepanel functions corresponding to thedensityplot, lmline,
loess, qq, qqmath and qqmathline panel functions. These will ensure that
the whole of the fitted curve is visible, and they may affect the choice of aspect
ratio.

The parameteraspect controls the aspect ratio of the panels. A numerical
value (most usefully one) sets the ratio,"fill" adjusts the aspect ratio to fill
the space available and"xy" attempts to bank the fitted curves to±45◦. (See
Figure 4.20.)

The scales argument determines how thex and y axes are drawn. It
is a list of components ofname = value form, and componentsx and y
may themselves be lists. The defaultrelation = "same" ensures that the
axes on each panel are identical. Withrelation = "sliced" the same num-
bers of data units are used, but the origin may vary by panel, whereas with
relation = "free" the axes are drawn to accommodate just the data for that
panel. One can also specify most of the parameters of theaxis function, and
also log = T to obtain alog10 scale or evenlog = 2 for a log2 scale.

The functionsplom has an argumentvarnames which sets the names of the
variables plotted on the diagonal. The argumentpscales determines how the
axes are plotted; setpscales = 0 to omit them.

Keys

The functionkey is a replacement forlegend, and can also be used as an argu-
ment to Trellis functions. If used in this way, the Trellis routines allocate space
for the key, and repeat it on each page if the trellis extends to multiple pages.

The call of key specifies the location of the key by the argumentsx, y and
corner. By default corner = c(0, 1), when the coordinate(x, y) specifies
the upper left corner of the key. Any other coordinate of the key can be specified

4.5 Trellis Graphics 105

by settingcorner, but the size of the key is computed from its contents. (If the
argumentplot = F, the function returns a two-element vector of the computed
width and height, which can be used to allocate space.) Whenkey is used as an
argument to a Trellis function, the position is normally specified not byx and y
but by the argumentspace which defaults to"top".

Most of the remaining arguments tokey will specify the contents of the
key. The (optional) argumentspoints, lines, text and rectangles (for
barchart) will each specify a column of the key in the order in which they ap-
pear. Each argument must be alist giving the graphics parameters to be used (and
for text, the first argument must be the character vector to be plotted). (The func-
tion trellis.par.get is useful to retrieve the actual settings used for graphics
parameters.)

The third group of arguments tokey fine-tunes its appearance—should
it be transparent (transparent = T), the presence of a border (specified by
giving the border colour as argumentborder), the spacing between columns
(between.columns in units of character width), the background colour, the
font(s) used, the existence of a title and so on. Consult the on-line help for the
current details. The argumentcolumns specifies the number of columns in the
key—we used this in Figures 4.11 and 4.13.

Perspective plots

The argumentaspect is a vector of two values for the perspective plots, giving
the ratio of they and z sizes to thex size; its effect can be seen in Figure 4.12.

The argumentsdistance, perspective and screen control the perspec-
tive view used. Ifperspective = T (the default), thedistance argument
(default 0.2) controls the extent of the perspective, although not on a physical
distance scale as 1 corresponds to viewing from infinity. Thescreen argument
(default list(z = 40, x = -60)) is a list giving the rotations (in degrees) to
be applied to the specified axis in turn. The initial coordinate system hasx point-
ing right, z up andy into the page.

The argumentzoom (default 1) may be used to scale the final plot, and the
argumentpar.box controls how the lines forming the enclosing box are plotted.

Chapter 5

Univariate Statistics

In this chapter we cover a number of topics from classical univariate statistics plus
some modern versions.

5.1 Probability Distributions

In this section we confine attention tounivariate distributions, that is, the distri-
butions of random variablesX taking values in the real lineR.

The standard distributions used in statistics are defined by probability density
functions (for continuousdistributions) or probability functionsP (X = n) (for
discrete distributions). We refer to both asdensities since the probability functions
can be viewed mathematically as densities (with respect to counting measure).
The cumulative distribution function or CDF is F (x) = P (X � x) which is
expressed in terms of the density by a sum for discrete distributions and as an
integral for continuous distributions. Thequantile function Q(u) = F−1(u) is
the inverse of the CDF where this exists. Thus the quantile function gives the
percentage points of the distribution. (For discrete distributions the quantile is the
smallest integerm such thatF (m) � u.)

S has built-in functions to compute the density, cumulative distribution func-
tion and quantile function for many standard distributions. In many cases the
functions cannot be written in terms of standard mathematical functions, and the
built-in functions are very accurate approximations. (But this is also true for the
numerical calculation of cosines, for example.)

The first letter of the name of theS function indicates the function so, for ex-
ample,dnorm, pnorm, qnorm are respectively, the density, CDF and quantile
functions for the normal distribution. The rest of the function name is an abbrevi-
ation of the distribution name. The distributions available1 are listed in Table 5.1.

The first argument of the function is always the observation valueq (for quan-
tile) for the densities and CDF functions, and the probabilityp for quantile func-
tions. Additional arguments specify the parameters, with defaults for ‘standard’
versions of the distributions where appropriate. Precise descriptions of the param-
eters are given in the on-line help pages.

1More are available in theR packageSuppDists by Bob Wheeler.

107

108 Univariate Statistics

Table 5.1: S function names and parameters for standard probability distributions.

Distribution S name Parameters

beta beta shape1, shape2
binomial binom size, prob
Cauchy cauchy location, scale
chi-squared chisq df
exponential exp rate
F f df1, df2
gamma gamma shape, rate
geometric geom prob
hypergeometric hyper m, n, k
log-normal lnorm meanlog, sdlog
logistic logis location, scale
negative binomial nbinom size, prob
normal norm mean, sd
Poisson pois lambda
T t df
uniform unif min, max
Weibull weibull shape, scale
Wilcoxon wilcox m, n

These functions can be used to replace statistical tables. For example, the
5% critical value for a (two-sided)t test on 11 degrees of freedom is given
by qt(0.975, 11) , and theP value associated with a Poisson(25)-distributed
count of 32 is given by (by convention)1 - ppois(31, 25). The functions can
be given vector arguments to calculate severalP values or quantiles.

Q-Q Plots

One of the best ways to compare the distribution of a samplex with a distribution
is to use a Q-Q plot. The normal probability plot is the best-known example. For
a samplex the quantile function is the inverse of the empirical CDF; that is,

quantile(p) = min {z | proportionp of the data� z }

The functionquantile calculates the quantiles of a single set of data. The func-
tion qqplot(x, y, ...) plots the quantile functions of two samplesx and y
against each other, and so compares their distributions. The functionqqnorm(x)
replaces one of the samples by the quantiles of a standard normal distribution.
This idea can be applied quite generally. For example, to test a sample against a
t9 distribution we might use

plot(qt(ppoints(x), 9), sort(x))

5.1 Probability Distributions 109

•

•
•

•

•

•
•

•••

•

•

•

•
•

•

•

•

•

•
•

•

•

• •

•

•

•
•

•
•

•
•

••

•
•

•
•

•

•

•

• •

•

•

•
••
•

•
•

•

• ••••

••

•••
•

•

•
•

•

•

•
• • •

•

•
•

•

•
••

•
•

•
•

•

•
••

•

•
•

•

•
•

•

•
•

•

•
•

•

•

•

•
•

•

•

•

•

•

•

•

•

• •

•

•

•

•

•

•
•

•

•
•

•

•

•
•

•

•
•

•

•

•

•

• •

•

•

•
•

•

•

•

•

•

•

• •
•

•
•

•

•

•
••

•

•

•

•
•

•

•
•

••

•

•

•

•
•

•

•
•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

••

•
•

•

•

•

•
•

•

•

•

•

••
•

•

•

•

•

•

•

•

•
•

•
•

•
•

•

•

•

•

•

•

•

•

•

•

•
•

• • • •

•

•

•
•

•

•

•
•• •

•

•
•

••

Quantiles of Standard Normal

x

-3 -2 -1 0 1 2 3

-4
-2

0
2

4

Figure 5.1: Normal probability plot of 250 simulated points from thet9 distribution.

where the functionppoints computes the appropriate set of probabilities for the
plot. These values are(i− 1/2)/n ,2 and are generated in increasing order. R

The functionqqline helps assess how straight aqqnorm plot is by plotting
a straight line through the upper and lower quartiles. To illustrate this we gener-
ate 250 points from at distribution and compare them to a normal distribution
(Figure 5.1).

x <- rt(250, df = 9)
par(pty = "s")
qqnorm(x); qqline(x)

The greater spread of the extreme quantiles for the data is indicative of a long-
tailed distribution.

This method is most often applied to residuals from a fitted model. Some
people prefer the roles of the axes to be reversed, so that the data go on thex-axis
and the theoretical values on they-axis; this is achieved by givingqqnorm by
the argumentdatax = T .

Fitting univariate distributions

Users sometimes find it surprising thatS does not come with facilities3 to fit the
standard univariate distributions to a data vector. We decided to write a general-
purpose maximum-likelihood fitting routine that can be applied to any of the uni-
variate distributions in Table 5.1. Of course, in many cases4 the maximum likeli-
hood estimators are known in closed form. Functionfitdistr in MASS fits one
or more continuous parameters with or without constraints. For example,

2In R and in earlierS-PLUS versions,(i − 3/8)/(n + 1/4) for n � 10.
3We understand that these are available in the extra-costEnvironmental Statistics module for

S-PLUS.
4Including binomial, exponential geometric, log-normal, normal, Poisson and uniform.

110 Univariate Statistics

> x <- rgamma(100, shape = 5, rate = 0.1)
> fitdistr(x, "gamma")

shape rate
4.9614 0.099018
(0.66552) (0.014112)

> x2 <- rt(250, df = 9)
> fitdistr(x2, "t", df = 9)

m s
0.12754 1.0963
(0.075919) (0.058261)

> fitdistr(x2, "t")
m s df

0.12326 1.0502 6.2594
(0.075343) (0.078349) (2.9609)

Note thatfitdistr does not protect you for what may be rather ill-advised at-
tempts, including estimatingν for a t distribution (Langeet al., 1989; Fernandez
and Steel, 1999). The estimated standard errors in parentheses are from the ob-
served information matrix.

Some lateral thinking gives other ways to fit some distributions. Function
survReg 5 discussed in Chapter 13 fits parametric models of the form (13.10),
which reduce in the special case of no covariates and no censoring to

�(T) ∼ µ+ σ ε

The dist argument specifies the distribution ofε as one ofweibull (the de-
fault), exponential, rayleigh, lognormal or loglogistic, all with a log
transformation� , or extreme, logistic, gaussian or t with an identity
transformation.

Multivariate distributions

S-PLUS supplies functionsdmvnorm , pmvnorm and rmvnorm , but pmvnorm
applies only to bivariate distributions (except in the trivial case of independent
components). These specify the distribution via the mean and either of the vari-
ance matrix or the correlation matrix and the standard deviations of the compo-
nents.

Our library sectionMASS has functionmvrnorm that also allows producing
samples with specified empirical mean vector and covariance matrix.

The R packagemvtnorm by Torsten Hothorn has functionspmvnorm and
pmvt for normal, central and non-centralt distributions in two or more dimen-
sions, as well asdmvnorm and rmvnorm.

5.2 Generating Random Data

There areS functions to generate independentrandom samples from all the prob-
ability distributions listed in Table 5.1. These have prefixr and first argumentn ,

5 survreg in packagesurvival in R.

5.3 Data Summaries 111

the size of the sample required. For most of the functions the parameters can be
specified as vectors, allowing the samples to be non-identically distributed. For
example, we can generate 100 samples from the contaminated normal distribu-
tion in which a sample is fromN(0, 1) with probability 0.95 and otherwise from
N(0, 9), by

contam <- rnorm(100, 0, (1 + 2*rbinom(100, 1, 0.05)))

The functionsample resamples from a data vector, with or without replacement.
It has a number of quite different forms. Heren is an integer,x is a data vector
and p is a probability distribution on1, ..., length(x) :

sample(n) select a random permutation from1, . . . , n
sample(x) randomly permutex , for length(x) > 1 .
sample(x, replace = T) a bootstrap sample
sample(x, n) samplen items fromx without replacement
sample(x, n, replace = T) samplen items fromx with replacement
sample(x, n, replace = T, prob=p) probability sample ofn items fromx .

The last of these provides a way to sample from an arbitrary (finite) discrete
distribution; setx to the vector of values andprob to the corresponding proba-
bilities.

The numbers produced by these functions are of coursepseudo-random rather
than genuinely random. The state of the generator is controlled by a set of integers
stored in theS object .Random.seed . Wheneversample or an ‘r’ function
is called, .Random.seed is read in, used to initialize the generator, and then
its current value is written back out at the end of the function call. If there is
no .Random.seed in the current working database, one is created with default
values (a fixed value inS-PLUS, from the current time inR).

To re-run a simulation call the functionset.seed initially. This selects from
one of at least 1024 pre-selected seeds.

Details of the pseudo-random number generators are given in our on-line com-
plements.6

5.3 Data Summaries

Standard univariate summaries such asmean , median and var are available.
The summary function returns the mean, quartiles and the number of missing
values, if non-zero.

The var function will take a data matrix andgive the variance-covariance
matrix, andcor computes the correlations, either from two vectors or a data ma-
trix. The functioncov.wt returns the means and variance7 matrix and optionally
the correlation matrix of a data matrix. As its name implies, the rows of the data
matrix can be weighted in these summaries.

6See page 461 for where to obtain these.
7 cov.wt does not adjust its divisor for the estimation of the mean, using divisorn even when

unweighted.

112 Univariate Statistics

The functionquantile computes quantiles at specified probabilities, by de-
fault (0, 0.25, 0.5, 0.75, 1) giving a “five number summary” of the data vector.
This function linearly interpolates, so ifx(1), . . . , x(n) is the ordered sample,

quantile(x, p) = [1− (p(n− 1)− �p(n− 1)�)]x1+�p(n−1)�
+ [p(n− 1)− �p(n− 1)�]x2+�p(n−1)�

where� � denotes the ‘floor’ or integer part of. (This differs from the definitions
of a quantile given earlier for use with a Q-Q plot. Hyndman and Fan (1996) give
several other definitions as used in other systems, and supplyS code to implement
them.) There are also standard functionsmax , min and range .

The functionsmean and cor (not R) will compute trimmed summaries us-R

ing the argumenttrim . More sophisticated robust summaries are discussed in
Section 5.5.

These functions differ in the way they handle missing values. Functions
mean , median , max , min , range and quantile have an argumentna.rm
that defaults to false, but can be used to remove missing values. The functions
var and cor allow several options for the handling of missing values.

Histograms and stem-and-leaf plots

The standard histogram function ishist(x, ...) which plots a conventional
histogram. More control is available via the extra arguments;probability = T
gives a plot of unit total area rather than of cell counts.

The argumentnclass of hist suggests the number of bins, andbreaks
specifies the breakpoints between bins. One problem is thatnclass is only a
suggestion, and it is often exceeded. Another is that the definition of the bins that
is of the form [x0, x1], (x1, x2], . . ., not the convention most people prefer.8

The default fornclass is �log2 n + 1�. This is known as Sturges’ formula,
corresponding to a bin width of range(x)/(log2 n + 1), based on a histogram of
a normal distribution (Scott, 1992, p. 48). Note that outliers may inflate the range
dramatically and so increase the bin width in the centre of the distribution. Two
rules based on compromises between the bias and variance of the histogram for a
reference normal distribution are to choose bin width as

h = 3.5σ̂n−1/3 (5.1)

h = 2Rn−1/3 (5.2)

due to Scott (1979) and Freedman and Diaconis (1981), respectively. Here
σ̂ is the estimated standard deviation andR the inter-quartile range. The
Freedman–Diaconis formula is immune tooutliers, and chooses rather smaller
bins than the Scott formula. These are available asnclass = "fd" and
nclass = "scott" .

These are not always satisfactory, as Figure 5.2 shows. (The suggested num-
bers of bins are 8, 5, 25, 7, 42 and 35; the numbers actually used differ in different

8The special treatment ofx0 is governed by the switchinclude.lowest which defaults toT .
In R argumentright = FALSE can be used to select left-closed and right-open bins.

5.3 Data Summaries 113

1 2 3 4 5

0
20

40
60

80

duration
0 5 10 15 20 25 30

0
5

10
15

20

chem
-4 -2 0 2 4

0
50

10
0

15
0

20
0

tperm

1 2 3 4 5

0
20

40
60

80

duration
5 10 15 20 25 30

0
2

4
6

8

chem
-4 -2 0 2 4

0
20

40
60

80

tperm

Figure 5.2: Histograms drawn byhist with bin widths chosen by the Scott rule (5.1) (top
row) and the Freedman–Diaconis rule (5.2) (bottom row) for datasetsgeyser$duration ,
chem and tperm . Computed inS-PLUS 6.0.

implementations.) Columnduration of data framegeyser gives the duration
(in minutes) of 299 eruptions of the Old Faithful geyser in the Yellowstone Na-
tional Park (from Azzalini and Bowman, 1990);chem is discussed later in this
section andtperm in Section 5.7.

The beauty ofS is that it is easy to write one’s own function to plot a his-
togram. Our function is calledtruehist (in MASS). The primary control is by
specifying the bin widthh, but suggesting the number of bins by argumentnbins
will give a ‘pretty’ choice ofh. Functiontruehist is used in Figures 5.5 and
later.

A stem-and-leaf plot is an enhanced histogram. The data are divided into
bins, but the ‘height’ is replaced by the next digits in order. We apply this to
swiss.fertility, the standardized fertility measure for each of 47 French-
speaking provinces of Switzerland at about 1888. The output here is from
S-PLUS; R’s is somewhat different.

> # R: data(swiss); swiss.fertility <- swiss[, 1]
> stem(swiss.fertility)

N = 47 Median = 70.4
Quartiles = 64.4, 79.3

114 Univariate Statistics

Decimal point is 1 place to the right of the colon

3 : 5
4 : 35
5 : 46778
6 : 024455555678899
7 : 00222345677899
8 : 0233467
9 : 222

Apart from giving a visual picture of the data, this gives more detail. The actual
data, in sorted order, are35, 43, 45, 54, ... and this can be read from the
plot. Sometimes the pattern of numbers (all odd? many 0s and 5s?) gives clues.
Quantiles can be computed (roughly) from theplot. If there are outliers, they are
marked separately:

> stem(chem)

N = 24 Median = 3.385
Quartiles = 2.75, 3.7

Decimal point is at the colon

2 : 22445789
3 : 00144445677778
4 :
5 : 3

High: 28.95

(This dataset on measurements of copper in flour from the Analytical Methods
Committee (1989a) is discussed further in Section 5.5.) Sometimes the result is
less successful, and manual override is needed:

> stem(abbey)

N = 31 Median = 11
Quartiles = 8, 16

Decimal point is at the colon

5 : 2
6 : 59
7 : 0004
8 : 00005
....
26 :
27 :
28 : 0

5.4 Classical Univariate Statistics 115

High: 34 125

> stem(abbey, scale = -1) ## use scale = 0.4 in R

N = 31 Median = 11
Quartiles = 8, 16

Decimal point is 1 place to the right of the colon

0 : 56777778888899
1 : 011224444
1 : 6778
2 : 4
2 : 8

High: 34 125

Here the scale argument sets the backbone to be 10s rather than units. In
S-PLUS the nl argument controls the number of rows per backbone unit as 2, 5
or 10. The details of the design of stem-and-leaf plots are discussed by Mosteller
and Tukey (1977), Velleman and Hoaglin (1981) and Hoaglin, Mosteller and
Tukey (1983).

Boxplots

A boxplot is a way to look at the overall shape of a set of data. The central
box shows the data between the ‘hinges’ (roughly quartiles), with the median
represented by a line. ‘Whiskers’ go out to the extremes of the data, and very
extreme points are shown by themselves.

par(mfrow = c(1, 2)) # Figure 5.3
boxplot(chem, sub = "chem", range = 0.5)
boxplot(abbey, sub = "abbey")
par(mfrow = c(1, 1))
bwplot(type ~ y | meas, data = fgl.df, scales = list(x="free"),

strip = function(...) strip.default(..., style=1), xlab = "")

Note how these plots are dominated by the outliers.
There is a bewildering variety of optional parameters toboxplot docu-

mented in the on-line help page. It is possible to plot boxplots for groups side
by side (see Figure 14.16 on page 408) but the Trellis functionbwplot (see Fig-
ure 5.4 on page 116 and Figure 4.9 on page 92) will probably be preferred.

5.4 Classical Univariate Statistics

S-PLUS andR each have a section on classical statistics. The same functions are
used to perform tests and to calculate confidence intervals.

116 Univariate Statistics

5
10

15
20

25
30

chem

20
40

60
80

10
0

12
0

abbey

Figure 5.3: Boxplots for thechem and abbey data.

WinF

WinNF

Veh

Con

Tabl

Head
RI

-5 0 5 10 15

Na

12 14 16

Mg

0 1 2 3 4

WinF

WinNF

Veh

Con

Tabl

Head
Al

0.5 1.0 1.5 2.0 2.5 3.0 3.5

Si

70 71 72 73 74 75

K

0 1 2 3 4 5 6

WinF

WinNF

Veh

Con

Tabl

Head
Ca

6 8 10 12 14 16

Ba

0.0 0.5 1.0 1.5 2.0 2.5 3.0

Fe

0.0 0.1 0.2 0.3 0.4 0.5

Figure 5.4: Boxplots by type for thefgl dataset.

Table 5.2 shows the amounts of shoe wear in an experiment reported by Box,
Hunter and Hunter (1978). There were two materials (A andB) that were ran-
domly assigned to the left and right shoes of 10 boys. We use these data to illus-
trate one-sample and paired and unpaired two-sample tests. (The rather volumi-
nous output has been edited.)

First we test for a mean of 10 and give a confidence interval for the mean,
both for materialA.

> attach(shoes)
> t.test(A, mu = 10)

5.4 Classical Univariate Statistics 117

Table 5.2: Data on shoe wear from Box, Hunter and Hunter (1978).

boy A B

1 13.2 (L) 14.0 (R)
2 8.2 (L) 8.8 (R)
3 10.9 (R) 11.2 (L)
4 14.3 (L) 14.2 (R)
5 10.7 (R) 11.8 (L)
6 6.6 (L) 6.4 (R)
7 9.5 (L) 9.8 (R)
8 10.8 (L) 11.3 (R)
9 8.8 (R) 9.3 (L)
10 13.3 (L) 13.6 (R)

One-sample t-Test

data: A
t = 0.8127, df = 9, p-value = 0.4373
alternative hypothesis: true mean is not equal to 10
95 percent confidence interval:

8.8764 12.3836
sample estimates:
mean of x

10.63

> t.test(A)$conf.int
[1] 8.8764 12.3836
attr(, "conf.level"):
[1] 0.95

> wilcox.test(A, mu = 10)

Exact Wilcoxon signed-rank test

data: A
signed-rank statistic V = 34, n = 10, p-value = 0.5566
alternative hypothesis: true mu is not equal to 10

Next we consider two-sample paired and unpaired tests, the latter assuming
equal variances or not. Note that we are using this example for illustrative pur-
poses; only the paired analyses are really appropriate.

> var.test(A, B)

F test for variance equality

data: A and B

118 Univariate Statistics

F = 0.9474, num df = 9, denom df = 9, p-value = 0.9372
95 percent confidence interval:
0.23532 3.81420

sample estimates:
variance of x variance of y

6.009 6.3427

> t.test(A, B, var.equal = T) # default in S-PLUS

Standard Two-Sample t-Test

data: A and B
t = -0.3689, df = 18, p-value = 0.7165
95 percent confidence interval:
-2.7449 1.9249

sample estimates:
mean of x mean of y

10.63 11.04

> t.test(A, B, var.equal = F) # default in R

Welch Modified Two-Sample t-Test

data: A and B
t = -0.3689, df = 17.987, p-value = 0.7165
95 percent confidence interval:
-2.745 1.925

....

> wilcox.test(A, B)

Wilcoxon rank-sum test

data: A and B
rank-sum normal statistic with correction Z = -0.5293,

p-value = 0.5966

> t.test(A, B, paired = T)

Paired t-Test

data: A and B
t = -3.3489, df = 9, p-value = 0.0085
95 percent confidence interval:
-0.68695 -0.13305

sample estimates:
mean of x - y

-0.41

> wilcox.test(A, B, paired = T)

5.5 Robust Summaries 119

Wilcoxon signed-rank test

data: A and B
signed-rank normal statistic with correction Z = -2.4495,

p-value = 0.0143

The sample size is rather small, and one might wonder about the validity of
the t-distribution. An alternative for a randomized experiment such as this is to
base inference on the permutation distribution ofd = B-A . Figure 5.5 shows that
the agreement is very good. The computation of the permutations is discussed in
Section 5.7.

The full list of classical tests inS-PLUS is:

binom.test chisq.test cor.test fisher.test
friedman.test kruskal.test mantelhaen.test mcnemar.test
prop.test t.test var.test wilcox.test
chisq.gof ks.gof

Many of these have alternative methods—forcor.test there are methods
"pearson" , "kendall" and"spearman" . We have already seen one- and two-
sample versions oft.test andwilcox.test , andvar.test which compares
the variances of two samples. The functioncor.test tests for non-zero corre-
lation between two samples, either classically or via ranks.R has all the.test R

functions, and many more univariate tests.9

Functions chisq.gof and ks.gof (not in R) compute chi-square andR

Kolmogorov–Smirnov tests of goodness-of-fit. Functioncdf.compare plots
comparisons of cumulative distributions such as the right-hand panel of Fig-
ure 5.5.

par(mfrow = c(1, 2))
truehist(tperm, xlab = "diff")
x <- seq(-4, 4, 0.1)
lines(x, dt(x, 9))
S: cdf.compare(tperm, distribution = "t", df = 9)
R: alternative in the scripts
legend(-5, 1.05, c("Permutation dsn","t_9 cdf"), lty = c(1, 3))

5.5 Robust Summaries

Outliers are sample values that cause surprise in relation to the majority of the
sample. This is not a pejorative term;outliers may be correct, but they should
always be checked for transcription errors. They can play havoc with standard
statistical methods, and manyrobust andresistant methods have been developed
since 1960 to be less sensitive to outliers.

9Use library(help = ctest) to see the current list. For some exact distributions see package
exactRankTests by Torsten Hothorn.

120 Univariate Statistics

diff

-4 -2 0 2 4

0.
0

0.
1

0.
2

0.
3

0.
4

Empirical and Hypothesized t CDFs

solid line is the empirical d.f.

-4 -2 0 2 4

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0 Permutation dsn

t_9 cdf

Figure 5.5: Histogram and empirical CDF of the permutation distribution of the paired
t–test in the shoes example. The density and CDF oft9 are shown overlaid.

The sample meany can be upset completely by a single outlier; if any data
value yi → ±∞, then y → ±∞. This contrasts with the sample median, which
is little affected by moving any single value to±∞. We say that the median is
resistant to gross errors whereas the mean is not. In fact the median will tolerate
up to 50% gross errors before it can be made arbitrarily large; we say itsbreak-
down point is 50% whereas that for the mean is 0%. Although the mean is the
optimal estimator of the location of the normal distribution, it can be substantially
sub-optimal for distributions close to the normal. Robust methods aim to have
high efficiency in a neighbourhood of the assumed statistical model.

There are several books on robust statistics. Huber (1981) is rather theoret-
ical, Hampelet al. (1986) and Staudte and Sheather (1990) less so. Rousseeuw
and Leroy (1987) is principally concerned with regression, but is very practical.
Robust and resistant methods have long been one of the strengths ofS.

Why will it not suffice to screen data and remove outliers? There are several
aspects to consider.

1. Users, even expert statisticians, do not always screen the data.

2. The sharp decision to keep or reject an observation is wasteful. We can
do better by down-weighting dubious observations than by rejecting them,
although we may wish to reject completely wrong observations.

3. It can be difficult or even impossible to spot outliers in multivariate or
highly structured data.

4. Rejecting outliers affects the distribution theory, which ought to be ad-
justed. In particular, variances will be underestimated from the ‘cleaned’
data.

5.5 Robust Summaries 121

For a fixed underlying distribution, we define therelative efficiency of an es-
timator θ̃ relative to another estimator̂θ by

RE(θ̃; θ̂) =
variance ofθ̂

variance ofθ̃

since θ̂ needs onlyRE times as many observations asθ̃ for the same precision,
approximately. The asymptotic relative efficiency (ARE) is the limit of theRE
as the sample sizen → ∞. (It may be defined more widely via asymptotic
variances.) Ifθ̂ is not mentioned, it is assumed to be the optimal estimator. There
is a difficulty with biased estimators whose variance can be small or zero. One
solution is to use the mean-square error, another to rescale byθ/E(θ̂). Iglewicz
(1983) suggests using var(log θ̂) (which is scale-free) for estimators of scale.

We can apply the concept ofARE to the mean and median. At the nor-
mal distributionARE(median; mean) = 2/π ≈ 64%. For longer-tailed dis-
tributions the median does better; for thet distribution with five degrees of
freedom (which is often a better model of error distributions than the normal)
ARE(median; mean) ≈ 96%.

The following example from Tukey (1960) is more dramatic. Suppose we
haven observationsYi ∼ N(µ, σ2), i = 1, . . . , n and we want to estimateσ2.
Considerσ̂2 = s2 and σ̃2 = d2π/2 where

d =
1
n

∑
i

|Yi − Y |

and the constant is chosen since for the normald→
√

2/π σ. TheARE(σ̃2; s2)
= 0.876. Now suppose that eachYi is from N(µ, σ2) with probability 1− ε and
from N(µ, 9σ2) with probability ε. (Note that both the overall variance and the
variance of the uncontaminated observations are proportional toσ2.) We have

ε (%) ARE(σ̃2; s2)

0 0.876
0.1 0.948
0.2 1.016
1 1.44
5 2.04

Since the mixture distribution withε = 1% is indistinguishable from normality
for all practical purposes, the optimality ofs2 is very fragile. We say it lacks
robustness of efficiency.

There are better estimators ofσ than d
√
π/2 (which has breakdown point

0%). Two alternatives are proportional to

IQR = X(3n/4) −X(n/4)

MAD = median
i
{|Yi −median

j
(Yj)|}

122 Univariate Statistics

(Order statistics are linearly interpolated where necessary.) At the normal,

MAD → median{|Y − µ|} ≈ 0.6745σ
IQR → σ

[
Φ−1(0.75)− Φ−1(0.25)

]
≈ 1.35σ

(We refer toMAD/0.6745 as the MAD estimator, calculated by functionmad .)
Both are not very efficient but are very resistant to outliers in the data. The MAD
estimator hasARE 37% at the normal (Staudte and Sheather, 1990, p. 123).

Considern independent observationsYi from a location family with pdf
f(y − µ) for a function f symmetric about zero, so it is clear thatµ is the
centre (median, mean if it exists) of the distribution ofYi. We also think of the
distribution as being not too far from the normal. There are a number of obvious
estimators ofµ, including the sample mean, the sample median, and the MLE.

The trimmed mean is the mean of the central1− 2α part of the distribution,
so αn observations are removed from each end. This is implemented by the
function mean with the argumenttrim specifying α. Obviously, trim = 0
gives the mean andtrim = 0.5 gives the median (although it is easier to use
the functionmedian). (If αn is not an integer, the integer part is used.)

Most of the location estimators we consider areM-estimators. The name
derives from ‘MLE-like’ estimators. If we have densityf , we can define
ρ = − log f . Then the MLE would solve

min
µ

∑
i

− log f(yi − µ) = min
µ

∑
i

ρ(yi − µ)

and this makes sense for functionsρ not corresponding to pdfs. Letψ = ρ′ if
this exists. Then we will have

∑
i ψ(yi − µ̂) = 0 or

∑
iwi (yi − µ̂) = 0 where

wi = ψ(yi− µ̂)/(yi− µ̂). This suggests an iterative method of solution, updating
the weights at each iteration.

Examples of M-estimators

The mean corresponds toρ(x) = x2, and the median toρ(x) = |x|. (For evenn
any median will solve the problem.) The function

ψ(x) =
{
x |x| < c
0 otherwise

corresponds tometric trimming and large outliers have no influence at all. The
function

ψ(x) =

{−c x < −c
x |x| < c
c x > c

is known asmetric Winsorizing10 and brings in extreme observations toµ ± c.
The corresponding− log f is

ρ(x) =
{
x2 if |x| < c
c(2|x| − c) otherwise

10A term attributed by Dixon (1960) to Charles P. Winsor.

5.5 Robust Summaries 123

Trimmed mean

x

ps
i

-6 -4 -2 0 2 4 6

-2
-1

0
1

2

Huber

x

ps
i

-6 -4 -2 0 2 4 6

-2
-1

0
1

2

Tukey bisquare

x

ps
i

-6 -4 -2 0 2 4 6

-1
.0

0.
0

0.
5

1.
0

Hampel

x

ps
i

-6 -4 -2 0 2 4 6

-2
-1

0
1

2

Figure 5.6: The ψ-functions for four common M-estimators.

and corresponds to a density with a Gaussian centre and double-exponential tails.
This estimator is due to Huber. Note that its limit asc→ 0 is the median, and as
c → ∞ the limit is the mean. The valuec = 1.345 gives 95% efficiency at the
normal.

Tukey’sbiweight has

ψ(t) = t

[
1−

(
t

R

)2]2

+

where []+ denotes the positive part of. This implements ‘soft’ trimming. The
valueR = 4.685 gives 95% efficiency at the normal.

Hampel’sψ has several linear pieces,

ψ(x) = sgn(x)

|x| 0 < |x| < a
a a < |x| < b
a(c− |x|)/(c− b) b < |x| < c
0 c < |x|

for example, witha = 2.2s, b = 3.7s, c = 5.9s. Figure 5.6 illustrates these
functions.

There is a scaling problem with the last four choices, since they depend on a
scale factor (c, R or s). We can apply the estimator to rescaled results, that is,

min
µ

∑
i

ρ

(
yi − µ
s

)

124 Univariate Statistics

−10 −5 0 5 10

−
2

−
1

0
1

2

ps
i

Figure 5.7: Functionψ for maximum-likelihood fitting oft25 (solid) andt5 (dashed).

for a scale factors, for example the MAD estimator. Alternatively, we can esti-
mates in a similar way. The MLE for densitys−1f((x−µ)/s) gives rise to the
equation ∑

i

ψ

(
yi − µ
s

)(
yi − µ
s

)
= n

which is not resistant (and is biased at the normal). We modify this to∑
i

χ

(
yi − µ
s

)
= (n− 1)γ

for boundedχ, whereγ is chosen for consistency at the normal distribution, so
γ = E χ(N). The main example is “Huber’s proposal 2” with

χ(x) = ψ(x)2 = min(|x|, c)2 (5.3)

In very small samples we need to take account of the variability ofµ̂ in perform-
ing the Winsorizing.

If the locationµ is known we can apply these estimators withn−1 replaced
by n to estimate the scales alone.

It is interesting to compare these estimators with maximum-likelihood esti-
mation for a real long-tailed distribution, saytν . Figure 5.7 shows the functions
ψ = (− log f)′ for ν = 25, 5 , both of which show mildly re-descending form.

S-PLUS provides functionslocation.m for location M-estimation and
mad , and scale.tau does scale estimation. Our library sectionMASS supplies
functionshuber and hubers for the Huber M-estimator with MAD and “pro-
posal 2” scale respectively, with defaultc = 1.5.

Examples

We give two datasets taken from analytical chemistry (Abbey, 1988; Analytical
Methods Committee, 1989a,b). The datasetabbey contains 31 determinations of
nickel content (µg g−1) in SY-3, a Canadian syenite rock. Datasetchem contains
24 determinations of copper (µg g−1) in wholemeal flour; these data are part of
a larger study that suggestsµ = 3.68.

5.5 Robust Summaries 125

> sort(chem)
[1] 2.20 2.20 2.40 2.40 2.50 2.70 2.80 2.90 3.03

[10] 3.03 3.10 3.37 3.40 3.40 3.40 3.50 3.60 3.70
[19] 3.70 3.70 3.70 3.77 5.28 28.95
> mean(chem)
[1] 4.2804
> median(chem)
[1] 3.385
> # S: location.m(chem)
[1] 3.1452

....
> # S: location.m(chem, psi.fun = "huber")
[1] 3.2132

....
> mad(chem)
[1] 0.52632
> # S: scale.tau(chem)
[1] 0.639
> # S: scale.tau(chem, center = 3.68)
[1] 0.91578
> unlist(huber(chem))

mu s
3.2067 0.52632

> unlist(hubers(chem))
mu s

3.2055 0.67365
> fitdistr(chem, "t", list(m = 3, s = 0.5), df = 5)

m s
3.1854 0.64217

The sample is clearly highly asymmetric with one value that appears to be out by
a factor of 10. It was checked and reported as correct by the laboratory. With
such a distribution the various estimators are estimating different aspects of the
distribution and so are not comparable. Only for symmetric distributions do all the
location estimators estimate the same quantity, and although the true distribution
is unknown here, it is unlikely to be symmetric.

> sort(abbey)
[1] 5.2 6.5 6.9 7.0 7.0 7.0 7.4 8.0 8.0

[10] 8.0 8.0 8.5 9.0 9.0 10.0 11.0 11.0 12.0
[19] 12.0 13.7 14.0 14.0 14.0 16.0 17.0 17.0 18.0
[28] 24.0 28.0 34.0 125.0
> mean(abbey)
[1] 16.006
> median(abbey)
[1] 11
> # S: location.m(abbey)
[1] 10.804
> # S: location.m(abbey, psi.fun = "huber")
[1] 11.517

126 Univariate Statistics

> unlist(hubers(abbey))
mu s

11.732 5.2585
> unlist(hubers(abbey, k = 2))

mu s
12.351 6.1052

> unlist(hubers(abbey, k = 1))
mu s

11.365 5.5673
> fitdistr(abbey, "t", list(m = 12, s = 5), df = 10)

m s
11.925 7.0383

Note how reducing the constantk (representingc) reduces the estimate of loca-
tion, as this sample (like many in analytical chemistry, where most gross errors
stem from contamination) has a long right tail.

5.6 Density Estimation

The non-parametric estimation of probability density functions is a large topic;
several books have been devoted to it, notably Silverman (1986), Scott (1992),
Wand and Jones (1995) and Simonoff (1996). Bowman and Azzalini (1997) con-
centrate on providing an introduction to kernel-based methods, providing an easy-
to-use packagesm .11

The histogram withprobability = T is of course an estimator of the den-
sity function. The histogram depends on the starting point of the grid of bins.
The effect can be surprisingly large; see Figure 5.8. The figure also shows that by
averaging the histograms we can obtain amuch clearer view of the distribution.

This idea of anaverage shifted histogram or ASH density estimate is a useful
motivation and is discussed in detail in Scott (1992). However, the commonest
from of density estimation is akernel density estimate of the form

f̂(x) =
1
nb

n∑
j=1

K

(
x− xj

b

)
(5.4)

for a samplex1, . . . , xn, a fixed kernelK() and a bandwidthb; the kernel is
normally chosen to be a probability density function.

S-PLUS has a functiondensity . The default kernel is the normal (argumentS+

window="g" for Gaussian), with alternatives"rectangular" , "triangular"
and "cosine" (the latter being(1 + cosπx)/2 over [−1, 1]). The bandwidth
width is the length of the non-zero section for the alternatives, and four times the
standard deviation for the normal. (Note that these definitions are twice and four
times those most commonly used.)

R also has a functiondensity , with bandwidth specified asbw ,12 a multipleR

11Available for S-PLUS from http://www.stats.gla.ac.uk/~adrian/sm and http://
azzalini.stat.unipd.it/Book_sm, and forR from CRAN.

5.6 Density Estimation 127

duration
0 1 2 3 4 5 6

0.
0

0.
2

0.
4

0.
6

duration
0 1 2 3 4 5 6

0.
0

0.
2

0.
4

0.
6

duration
0 1 2 3 4 5 6

0.
0

0.
2

0.
4

0.
6

duration
0 1 2 3 4 5 6

0.
0

0.
2

0.
4

0.
6

duration
0 1 2 3 4 5 6

0.
0

0.
2

0.
4

0.
6

duration

av
er

ag
ed

0 1 2 3 4 5 6

0.
0

0.
2

0.
4

0.
6

Figure 5.8: Five shifted histograms with bin width 0.5 and the frequency polygon of their
average, for the Old Faithful geyserduration data. The code used is in the scripts for
this chapter.

of the standard deviation of the kernel specified bykernel .13 There is a wider
range of kernels but once again the normal kernel is the default.

The choice of bandwidth is a compromise between smoothing enough to re-
move insignificant bumps and not smoothing too much to smear out real peaks.
Mathematically there is a compromise between the bias off̂(x), which in-
creases asb is increased, and the variance which decreases. Theory (see (5.6)
on page 129) suggests that the bandwidth should be proportional ton−1/5, but
the constant of proportionality depends on the unknown density.

The default choice of bandwidth inS-PLUS is not recommendable. There are
better-supported rules of thumb such as

b̂ = 1.06 min(σ̂, R/1.34)n−1/5 (5.5)

for the IQRR and the Gaussian kernel of bandwidth the standard deviation (to
be quadrupled for use withS-PLUS) (Silverman, 1986, pp. 45–47), invoked by
width = "nrd" . The default inR is the variant with1.06 replaced by0.9 R

(Silverman, 1986, (3.31) on p. 48).

12 width can be used for compatibility withS-PLUS.
13 window can also be used.

128 Univariate Statistics

duration

1 2 3 4 5 6

0.
0

0.
4

0.
8

1.
2

duration

1 2 3 4 5 6

0.
0

0.
4

0.
8

1.
2

Figure 5.9: Density plots for the Old Faithful duration data. Superimposed on a histogram
are the kernel density estimates with a Gaussian kernel and normal reference bandwidth
(left) and the Sheather–Jones ‘direct plug-in’ (right, solid) and ‘solve-the-equation’ (right,
dashed) bandwidth estimates with a Gaussian kernel.

For other kernels there are theoretical scaling factors to give ‘equivalent’ ker-
nels (Scott, 1992, pp. 141–2), but these are very close to scaling to the same
standard deviation for the kernel (and so are not needed inR’s parametrization).

We return to the geyser duration data. Here the bandwidth suggested by (5.5)
is too large (Figure 5.9). (Scott, 1992,§6.5.1.2) suggests that the value

bOS = 1.144σ̂n−1/5

provides an upper bound on the (Gaussian) bandwidths one would want to con-
sider, again to be quadrupled for use indensity . The normal reference given by
(5.5) is only slightly below this upperbound, and will be too large for densities
with multiple modes: see Figure 5.9, the left panel of which was generated by

attach(geyser)
truehist(duration, nbins = 15, xlim = c(0.5, 6), ymax = 1.2)
lines(density(duration, width = "nrd"))

Note that the data in this example are (negatively) serially correlated, so the theory
for independent data must be viewed as only a guide.

Bandwidth selection

Ways to find compromise value(s) ofb automatically are discussed by Scott
(1992). These are based on estimating themean integrated square error

MISE = E

∫
|f̂(x; b)− f(x)|2 dx =

∫
E|f̂(x; b)− f(x)|2 dx

and choosing the smallest value as a function ofb. We can expandMISE as

MISE = E

∫
f̂(x; b)2 dx− 2Ef̂(X ; b) +

∫
f(x)2 dx

where the third term is constant and so can be dropped.

5.6 Density Estimation 129

A currently favoured approach is to make an asymptotic expansion ofMISE
of the form

MISE = 1
nb

∫
K2 + 1

4b
4
∫
(f ′′)2

{∫
x2K

}2 +O(1/nb+ b4)

so if we neglect the remainder, the optimal bandwidth would be

bAMISE =

[∫
K2

n
∫
(f ′′)2

{∫
x2K

}2

]1/5

(5.6)

The ‘direct plug-in’ estimators use (5.6), which involves the integral
∫

(f ′′)2.
This in turn is estimated using the second derivative of a kernel estimator with
a different bandwidth, chosen by repeating the process, this time using a refer-
ence bandwidth. The ‘solve-the-equation’ estimators solve (5.6) when the band-
width for estimating

∫
(f ′′)2 is taken as function ofb (in practice proportional to

b5/7). Details are given by Sheather and Jones (1991) and Wand and Jones (1995,
§3.6); this is implemented for the Gaussian kernel in functionsbandwidth.sj
(S-PLUS) and bw.SJ (R). The right panel of Figure 5.9 was generated by

truehist(duration, nbins = 15, xlim = c(0.5, 6), ymax = 1.2)
lines(density(duration, width = "SJ", n = 256), lty = 3)
R: lines(density(duration, width = "SJ-dpi", n = 256), lty = 1)
S: lines(density(duration, n = 256,

width = bandwidth.sj(duration, method = "dpi")),
lty = 1)

There have been a number of comparative studies of bandwidth selection rules
(including Park and Turlach, 1992, and Cao, Cuevas and Gonz´alez-Manteiga,
1994) and a review by Jones, Marron and Sheather (1996). ‘Second generation’
rules such as Sheather–Jones seem to be preferred and indeed to be close to opti-
mal.

As another example, consider our datasetgalaxies from Roeder (1990),
which shows evidence of at least four peaks (Figure 5.10).

gal <- galaxies/1000
plot(x = c(0, 40), y = c(0, 0.3), type = "n", bty = "l",

xlab = "velocity of galaxy (1000km/s)", ylab = "density")
rug(gal)
S: lines(density(gal, width = bandwidth.sj(gal, method = "dpi"),

n = 256), lty = 1)
R: lines(density(gal, width = "SJ-dpi", n = 256), lty = 1)
lines(density(gal, width = "SJ", n = 256), lty = 3)
see later for explanation
library(logspline)
x <- seq(5, 40, length = 500)
lines(x, dlogspline(x, logspline.fit(gal)), lty = 2)

130 Univariate Statistics

velocity of galaxy (1000km/s)

de
ns

ity

0 10 20 30 40

0.
0

0.
05

0.
10

0.
15

0.
20

0.
25

0.
30

Figure 5.10: Density estimates for the 82 points of thegalaxies data. The solid and
dashed lines are Gaussian kernel density estimates with bandwidths chosen by two variants
of the Sheather–Jones method. The dotted line is a logspline estimate.

End effects

Most density estimators will not work well when the density is non-zero at an
end of its support, such as the exponential and half-normal densities. (They are
designed for continuous densities and this isdiscontinuity.) One trick is to reflect
the density and sample about the endpoint, say,a. Thus we compute the density
for the samplec(x, 2a-x) , and take double its density on[a,∞) (or (−∞, a]
for an upper endpoint). This will impose a zero derivative on the estimated den-
sity at a, but the end effect will be much less severe. For details and further tricks
see Silverman (1986,§3.10). The alternative is to modify the kernel near an end-
point (Wand and Jones, 1995,§2.1), but we know of noS implementation of such
boundary kernels.

Two-dimensional data

It is often useful to look at densities in two dimensions. Visualizing in more
dimensions is difficult, although Scott (1992) provides some examples of visual-
ization of three-dimensional densities.

The dataset on the Old Faithful geyser has two components,duration , the
duration which we have studied, andwaiting , the waiting time in minutes until
the next eruption. There is also evidence of non-independence of the durations.
S-PLUS provides a functionhist2d for two-dimensional histograms, but its out-S+

put is too rough to be useful. We apply two-dimensional kernel analysis directly;
this is most straightforward for the normal kernel aligned with axes, that is, with
variance diag(h2

x, h
2
y). Then the kernel estimate is

f(x, y) =
∑

s φ
(
(x− xs)/hx

)
φ
(
(y − ys)/hy

)
nhxhy

5.6 Density Estimation 131

•

•

•
••

•

•

•

•

•

•

•

•

•

•

•

•

•

••

•

•

•

•

•

•

•
••

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•
• •

•

•

•

•

•

•

•

•

•
•

•

•

•

•
•

•

•

•

•
• •

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•
••

•

•

•

•

•

•

•

•

•

•
••

•

•
•

•
••

•

•

•

••

•
• •

•

•
•

•••••

•

•

•

•

•

•

•

•

•

•• •

•• •

•

•

•

•

•

•

•

•

•

•

•
•

•

•

•

•

•

•

•

•

•

•

••

•

•

•

•

•

•

•

•

•

•

• •

•

•

•

•

•

•
•

•

••
•

•

•

•

•

•

•

•

•

•

• •

•

•

•

•••

•
•
•

•

•

•

•

•

•

••

•

•

•

•

•

•

• •

•

•
•

•

•

•

•

•

•

•

•

•

•

•

•

• •

•

•

•

•

•

•

•

•

•

•
•

•

•

•

•
•••••
•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

previous duration

w
ai

tin
g

1 2 3 4 5 6

40
60

80
10

0

previous duration

w
ai

tin
g

1 2 3 4 5 6

40
60

80
10

0

previous duration

w
ai

tin
g

1 2 3 4 5 6

40
60

80
10

0

40 50 60 70 80 90100110

waitin
g1 2 3 4 5 6

previous duration

 00
.0

10.
020

.0
30.
04 0

.0
50.
06 0

.0
7

Figure 5.11: Scatter plot and two-dimensional density plots of the bivariate Old Faithful
geyser data. Note the effects of the observations of duration rounded to two or four minutes.
The code to produce this plot is in the scripts.

which can be evaluated on a grid asXY T whereXis = φ
(
(gxi − xs)/hx

)
and

(gxi) are the grid points, and similarly forY . Our functionkde2d 14 implements
this; the results are shown in Figure 5.11.

geyser2 <- data.frame(as.data.frame(geyser)[-1,],
pduration = geyser$duration[-299])

attach(geyser2)
par(mfrow = c(2, 2))
plot(pduration, waiting, xlim = c(0.5, 6), ylim = c(40, 110),

xlab = "previous duration", ylab = "waiting")
f1 <- kde2d(pduration, waiting, n = 50, lims=c(0.5, 6, 40, 110))
image(f1, zlim = c(0, 0.075),

xlab = "previous duration", ylab = "waiting")
f2 <- kde2d(pduration, waiting, n = 50, lims=c(0.5, 6, 40, 110),

h = c(width.SJ(duration), width.SJ(waiting)))
image(f2, zlim = c(0, 0.075),

xlab = "previous duration", ylab = "waiting")
S: persp(f2, eye = c(50, -1000, 0.5),
R: persp(f2, phi = 30, theta = 20, d = 5,

xlab = "previous duration", ylab = "waiting", zlab = "")

Users ofS-PLUS or R underWindows can explore interactively the fitted density
surface, as illustrated on page 422.

An alternative approach using binning and the 2D fast Fourier transform is
taken by Wand’s functionbkde2D in library sectionKernSmooth .

14This predates a similar function of the same name onstatlib .

132 Univariate Statistics

Density estimation via model fitting

There are several proposals (Simonoff, 1996, pp. 67–70, 90–92) to use a univari-
ate density estimator of the form

f(y) = exp g(y; θ) (5.7)

for a parametric familyg(·; θ) of smooth functions, most often splines. The fit
criterion is maximum likelihood, possibly with a smoothness penalty. The advan-
tages of (5.7) are that it automatically provides a non-negative density estimate,
and that it may be more natural to consider ‘smoothness’ on a relative rather than
absolute scale.

The library sectionlogspline by Charles Kooperberg implements one vari-
ant on this theme by Kooperberg and Stone (1992). This uses a cubic spline (see
page 229) forg in (5.7), with smoothness controlled by the number of knots
selected. There is an AIC-like penalty; the number of the knots is chosen to max-
imize

n∑
i=1

g(yi; θ̂)− n log
∫

exp g(y; θ̂) dy − a× number of parameters (5.8)

The default value ofa is logn (sometimes known as BIC) but this can be spec-
ified by argumentpenalty of logspline.fit . The initial knots are selected
at quantiles of the data and then deleted one at a time using the Wald criterion for
significance. Finally, (5.8) is used to choose one of the knot sequences considered.

Local polynomial fitting

Kernel density estimation can be seen as fitting a locally constant function to the
data; other approaches to density estimation use local polynomials (Fan and Gij-
bels, 1996; Loader, 1999) which have the advantage of being much less sensitive
to end effects. There areS implementations in the library sectionsKernSmooth
by Wand andlocfit by Loader.

We compare kernel density and local polynomial estimators for thegalaxies
data. The difference for the same bandwidth15 is negligible except at the ends.

library(KernSmooth)
plot(x = c(0, 40), y = c(0, 0.3), type = "n", bty = "l",

xlab = "velocity of galaxy (1000km/s)", ylab = "density")
rug(gal)
lines(bkde(gal, bandwidth = dpik(gal)))
lines(locpoly(gal, bandwidth = dpik(gal)), lty = 3)

15 dpik is Wand’s implementation of"SJ-dpi" .

5.7 Bootstrap and Permutation Methods 133

velocity of galaxy (1000km/s)

de
ns

ity

0 10 20 30 40

0.
0

0.
05

0.
10

0.
15

0.
20

0.
25

0.
30

Figure 5.12: Density estimates forgalaxies by kernel (solid line) and local polynomial
(dashed line) methods.

5.7 Bootstrap and Permutation Methods

Several modern methods of what is often calledcomputer-intensive statistics
make use of extensive repeated calculations to explore the sampling distribution
of a parameter estimator̂θ. Suppose we have a random samplex1, . . . , xn drawn
independently from one member of a parametric family{Fθ | θ ∈ Θ} of distri-
butions. Suppose further that̂θ = T (x) is a symmetric function of the sample,
that is, does not depend on the sample order.

Thebootstrap procedure (Efron and Tibshirani, 1993; Davison and Hinkley,
1997) is to takem samples fromx with replacement and to calculatêθ∗ for
these samples, where conventionally the asterisk is used to denote a bootstrap
resample. Note that the new samples consist of an integer number of copies of
each of the original data points, and so will normally have ties. Efron’s idea was
to assess the variability of̂θ about the unknown trueθ by the variability of θ̂∗

about θ̂. In particular, the bias of̂θ may be estimated by the mean ofθ̂∗ − θ̂.
As an example, suppose that we needed to know the medianm of the

galaxies data. The obvious estimator is the sample median, which is 20 833
km/s. How accurate is this estimator? Thelarge-sample theory says that the me-
dian is asymptotically normal with meanm and variance1/4n f(m)2. But this
depends on the unknown density at the median. We can use our best density es-
timators to estimatef(m), but as we have seen we can find considerable bias
and variability if we are unlucky enough to encounter a peak (as in a unimodal
symmetric distribution). Let us try the bootstrap:

density(gal, n = 1, from = 20.833, to = 20.834, width = "SJ")$y
[1] 0.13009
1/(2 * sqrt(length(gal)) * 0.13)
[1] 0.42474
set.seed(101); m <- 1000; res <- numeric(m)
for (i in 1:m) res[i] <- median(sample(gal, replace = T))

134 Univariate Statistics

res
20.0 20.5 21.0 21.5 22.0

0.
0

0.
5

1.
0

1.
5

2.
0

Figure 5.13: Histogram of the bootstrap distribution for the median of thegalaxies data,
with a kernel density estimate (solid) and a logspline density estimate (dashed).

mean(res - median(gal))
[1] 0.032258
sqrt(var(res))
[1] 0.50883

which took less than a second and confirms the adequacy of the large-sample
mean and variance for our example. In this example the bootstrap resampling can
be avoided, for the bootstrap distribution of the median can be found analytically
(Efron, 1982, Chapter 10; Staudte and Sheather, 1990, p. 84), at least for oddn.

The bootstrap distribution of̂θi about θ̂ is far from normal (Figure 5.13).

truehist(res, h = 0.1)
R: lines(density(res, width = "SJ-dpi", n = 256)
S: lines(density(res, width = bandwidth.sj(res, method = "dpi"),

n = 256))
quantile(res, p = c(0.025, 0.975))

2.5% 97.5%
20.175 22.053

x <- seq(19.5, 22.5, length = 500)
lines(x, dlogspline(x, logspline.fit(res)), lty = 3)

In larger problems it is important to do bootstrap calculations efficiently, and
there are two suites ofS functions to do so.S-PLUS hasbootstrap , and library
section16 boot which is very comprehensive.

> library(boot)
> set.seed(101)
> gal.boot <- boot(gal, function(x, i) median(x[i]), R = 1000)
> gal.boot

16Written by Angelo Canty to support Davison and Hinkley (1997). Available forS-PLUS andR.

5.7 Bootstrap and Permutation Methods 135

20.0 20.5 21.0 21.5 22.0 22.5

0.
0

0.
4

0.
8

1.
2

t*

• • •••••••••••
••••••••••••••

•••
••••••••••••••••••••
•••••••••••••••••••••••••

••••••••••••••••••••
•••••••••••••••••••••••••••••

••
•••

••••••••••••••••••••••••••••••••••
••••••••••••••••••
••••••••••••••••••••
••••••••••••
•••••••••••••••••••••••

•••••••••••••••••••
••••••••••••••••••••••••••

•••••••••••••••••••••••••••••••••••••
••••••
••••••••••••••••••••

• •

Quantiles of Standard Normal

t*

-3 -2 -1 0 1 2 3

20
.0

21
.0

22
.0

standardized jackknife value

5,
 1

0,
 1

6,
 5

0,
 8

4,
 9

0,
 9

5
%

-il
es

 o
f (

T
*-

t)

-1 0 1 2

-1
.5

-0
.5

0.
5

• • •• •• •• •••• •• ••••••••••• ••••• •••••• •• •• • • • • • • • ••• ••• • ••• ••• •• •••• • •••••• • •• • •• • •
• • •• •• •• •••• •• ••••••••••• •••• •••••• •• •• • • • • • • • ••• ••• • •••• ••• •• •••• • •••••• • •• • •• • •• • •• •• •• ••

•• •• ••••••••••• •••
•• •••••• •• •• • • • • • • • ••• ••• • ••• ••• •• •••• • •••••• • •• • •• • •

• • •• •• •• •••• •• ••••••••••• •••• •••••• •• •• • • • • • • • ••• ••• • ••• ••• •• •••• • •••••• • •• • •• • •

•
• •• •• •• •••• •• ••••••••••• ••••• •••••• ••

•• • • • •
• •

•
••• ••• • •••• ••• •• •••• •

••
•••• • •• • •

• • •

• • •• •• •• •••• •• ••••••••••• ••••• ••••••
•• ••

• • • • • • •
••• ••• • ••• ••• ••

•
••• • •••••• • •• • •• • •

• • •• •• •• •••• •• •
••
•••••••• ••••• •••••• •• •• • • • • • • • ••• ••• • •••• ••• •• •••• • •••

•
•• • •• • •• • •

27 34 7 1814 38 19 26 40 67 78 62 51 46 54 48 71
10 9 37 5 22 15 13 29 41 45 57 72 60 55 47 82 56

21 35 17 32 23 30 42 28 43 50 81 74 70 79 76 68
2 4 12 3 36 24 31 11 44 75 52 58 80 66 59 53

33 39 208 1 6 16 25 69 77 63 61 65 73 49 64

Figure 5.14: Plot for bootstrapped median from thegalaxies data. The top row shows
a histogram (with dashed line the observed value) and a Q-Q plot of the bootstrapped sam-
ples. The bottom plot is fromjack.after.boot and displays the effects of individual
observations (here negligible).

Bootstrap Statistics :
original bias std. error

t1* 20.834 0.038747 0.52269

boot.ci(gal.boot, conf = c(0.90, 0.95),
type = c("norm", "basic", "perc", "bca"))

Intervals :
Level Normal Basic
90% (19.94, 21.65) (19.78, 21.48)
95% (19.77, 21.82) (19.59, 21.50)

Level Percentile BCa
90% (20.19, 21.89) (20.18, 21.87)
95% (20.17, 22.07) (20.14, 21.96)

> plot(gal.boot) # Figure 5.14

The bootstrap suite of functions has fewer options:

136 Univariate Statistics

> # bootstrap is in S-PLUS only
> gal.bt <- bootstrap(gal, median, seed = 101, B = 1000)
> summary(gal.bt)

....
Summary Statistics:

Observed Bias Mean SE
median 20.83 0.03226 20.87 0.5088

Empirical Percentiles:
2.5% 5% 95% 97.5%

median 20.18 20.19 21.87 22.05

BCa Confidence Limits:
2.5% 5% 95% 97.5%

median 20.18 20.19 21.87 22.07
> plot(gal.bt)
> qqnorm(gal.bt)

The limits can also be obtained by

> limits.emp(gal.bt)
2.5% 5% 95% 97.5%

median 20.175 20.188 21.867 22.053
> limits.bca(gal.bt)

2.5% 5% 95% 97.5%
median 20.179 20.193 21.867 22.072

One approach to a confidence interval for the parameterθ is to use the quan-
tiles of the bootstrap distributions; this is termed thepercentile confidence interval
and was the original approach suggested by Efron. The bootstrap distribution here
is quite asymmetric, and the intervals based on normality are not adequate. The
‘basic’ intervals are based on the idea that the distribution ofθ̂i − θ̂ mimics that
of θ̂ − θ. If this were so, we would get a1− α confidence interval as

1− α = P (L � θ̂ − θ � U) ≈ P (L � θ̂i − θ̂ � U)

so the interval is(θ̂ − U, θ̂ − L) where L + θ̂ and U + θ̂ are theα/2 and
1 − α/2 points of the bootstrap distribution, saykα/2 and k1−α/2. Then the
basic bootstrap interval is

(θ̂−U, θ̂−L) =
(
θ̂− [k1−α/2− θ̂], θ̂− [kα/2− θ̂]

)
= (2θ̂− k1−α/2, 2θ̂− kα/2)

which is the percentile interval reflected about the estimateθ̂. In asymmetric
problems the basic and percentile intervals will differ considerably (as here), and
the basic intervals seem more rational.

TheBCa intervals are an attempt to shift and scale the percentile intervals to
compensate for their biases, apparently unsuccessfully in this example. The idea
is that if for some unknown increasing transformationg we hadg(θ̂)−g(θ) ∼ F0

for a symmetric distributionF0, the percentile intervals would be exact. Suppose
rather that ifφ = g(θ),

g(θ̂)− g(θ) ∼ N
(
wσ(φ), σ2(φ)

)
with σ(φ) = 1 + a φ

5.7 Bootstrap and Permutation Methods 137

Standard calculations (Davison and Hinkley, 1997, p. 204) show that theα con-
fidence limit is given by thêα percentile of the bootstrap distribution, where

α̂ = Φ
(
w +

w + zα

1− a(w + zα)

)
and a andw are estimated from the bootstrap samples.

The median (and other sample quantiles) is appreciably affected by discrete-
ness, and it may well be better to sample from a density estimate rather than from
the empirical distribution. This is known as thesmoothed bootstrap. We can do
that neatly withboot, using a Gaussian bandwidth of 2 and so standard deviation
0.5.

sim.gen <- function(data, mle) {
n <- length(data)
data[sample(n, replace = T)] + mle*rnorm(n)

}
gal.boot2 <- boot(gal, median, R = 1000,

sim = "parametric", ran.gen = sim.gen, mle = 0.5)
boot.ci(gal.boot2, conf = c(0.90, 0.95),

type = c("norm","basic","perc"))
Intervals :
Level Normal Basic Percentile
90% (19.93, 21.48) (19.83, 21.36) (20.31, 21.83)
95% (19.78, 21.63) (19.72, 21.50) (20.17, 21.95)

The constantsa andw in theBCa interval cannot be estimated byboot in this
case. The smoothed bootstrap slightly inflates the sample variance (here by 1.2%)
and we could rescale the sample if this was appropriate.

For a smaller but simpler example, we return to the differences in shoe wear
between materials. There is a fifth type of confidence interval thatboot.ci can
calculate, which needs a variancev∗ estimate of the statistiĉθ∗ from each boot-
strap sample. Then the confidence interval can be based on the basic confidence
intervals for thestudentized statistics(θ̂∗ − θ̂)/

√
v∗. Theory suggests that the

studentized confidence interval may be the most reliable of all the methods we
have discussed.

> attach(shoes)
> t.test(B - A)
95 percent confidence interval:
0.13305 0.68695

> shoes.boot <- boot(B - A, function(x,i) mean(x[i]), R = 1000)
> boot.ci(shoes.boot, type = c("norm", "basic", "perc", "bca"))

Intervals :
Level Normal Basic
95% (0.1767, 0.6296) (0.1800, 0.6297)

Level Percentile BCa
95% (0.1903, 0.6400) (0.1900, 0.6300)

138 Univariate Statistics

mean.fun <- function(d, i) {
n <- length(i)
c(mean(d[i]), (n-1)*var(d[i])/n^2)

}
> shoes.boot2 <- boot(B - A, mean.fun, R = 1000)
> boot.ci(shoes.boot2, type = "stud")

Intervals :
Level Studentized
95% (0.1319, 0.6911)

We have only scratched the surface of bootstrap methods; Davison and Hink-
ley (1997) provide an excellent practically-oriented account,S software and prac-
tical exercises.

Permutation tests

Inference for designed experiments is often based on the distribution over the ran-
dom choices made during the experimentaldesign, on the belief that this random-
ness alone will give distributions that can be approximated well by those derived
from normal-theory methods. There is considerable empirical evidence that this
is so, but with modern computing power we can check it for our own experiment,
by selecting a large number of re-labellings of our data and computing the test
statistics for the re-labelled experiments.

Consider again the shoe-wear data of Section 5.4. The most obvious way to
explore the permutation distribution of thet-test of d = B-A is to select random
permutations, but as the permutation distribution has only210 = 1 024 points we
can use the exact distribution for Figure 5.5. (The code to generate this efficiently
is in the scripts.)

Chapter 6

Linear Statistical Models

Linear models form the core of classical statistics and are still the basis of much
of statistical practice; many modern modelling and analytical techniques build on
the methodology developed for linear models.

In S most modelling exercises are conducted in a fairly standard way. The
dataset is usually held in a singledata frame object. A primary model is fitted us-
ing amodel fitting function, for which aformula specifying the form of the model
and the data frame specifying the variables to be used are the basic arguments.
The resultingfitted model object can be interrogated, analysed and even modi-
fied in various ways using generic functions. The important point to note is that
the fitted model object carries with it the information that the fitting process has
revealed.

Although most modelling exercises conform to this rough paradigm some fea-
tures of linear models are special. Theformula for a linear model specifies the
response variable and the explanatory variables (or factors) used to model the
mean response by a version of the Wilkinson–Rogers notation (Wilkinson and
Rogers, 1973) for specifying models that we discuss in Section 6.2.

We begin with an example to give a feel for the process and to present some
of the details.

6.1 An Analysis of Covariance Example

The data framewhiteside contains a dataset collected in the 1960s by Mr Derek
Whiteside of the UK Building Research Station and reported in the collection of
small datasets edited by Handet al. (1994, No. 88, p. 69). Whiteside recorded
the weekly gas consumption and average external temperature at his own house
in south-east England during two ‘heating seasons’1 one before and one after
cavity-wall insulation was installed. The object of the exercise was to assess the
effect of the insulation on gas consumption.

The variables in data framewhiteside are Insul, a factor with levels
Before and After, Temp, for the weekly average external temperature in de-
grees Celsius andGas, the weekly gas consumption in 1 000 cubic feet units. We
begin by plotting the data in two panels showing separate least-squares lines.

1We are grateful to Dr Kevin McConway for clarification.

139

140 Linear Statistical Models

2

3

4

5

6

7

0 2 4 6 8 10

Before

0 2 4 6 8 10

After

Average external temperature (deg. C)

G
as

 c
on

su
m

pt
io

n
 (

10
00

 c
ub

ic
 fe

et
)

Figure 6.1: Whiteside’s data showing the effect of insulation on household gas consump-
tion.

xyplot(Gas ~ Temp | Insul, whiteside, panel =
function(x, y, ...) {
panel.xyplot(x, y, ...)
panel.lmline(x, y, ...)

}, xlab = "Average external temperature (deg. C)",
ylab = "Gas consumption (1000 cubic feet)", aspect = "xy",
strip = function(...) strip.default(..., style = 1))

The result is shown in Figure 6.1. Within the range of temperatures given a straight
line model appears to be adequate. The plot shows that insulation reduces the
gas consumption for equal external temperatures, but it also appears to affect the
slope, that is, the rate at which gas consumption increases as external temperature
falls.

To explore these issues quantitatively we will need to fit linear models, the
primary function for which islm. The main arguments tolm are

lm(formula, data, weights, subset, na.action)

where

formula is the model formula (the only required argument),

data is an optional data frame,

weights is a vector of positive weights, if non-uniform weights are
needed,

subset is an index vector specifying a subset of the data to be used (by
default all items are used),

na.action is a function specifying how missing values are to be handled
(by default, missing values are not allowed inS-PLUS but cause cases
to be omitted inR.).R

If the argumentdata is specified, it gives a data frame from which variables
are selected ahead of the search path. Working with data frames and using this
argument is strongly recommended.

6.1 An Analysis of Covariance Example 141

It should be noted that settingna.action = na.omit will allow models to
be fitted omitting cases that have missingcomponents on a required variable. If
any cases are omitted the fitted values and residual vector will no longer match
the original observation vector in length; usena.action = na.exclude if the
fitted values (and so on) should includeNAs.

Formulae have been discussed in outline in Section 3.7 on page 56. Forlm the
right-hand side specifies the explanatory variables. Operators on the right-hand
side of linear model formulae have the special meaning of the Wilkinson–Rogers
notation and not their arithmetical meaning.

To fit the separate regressions of gas consumption on temperature as shown in
Figure 6.1 we may use

gasB <- lm(Gas ~ Temp, data = whiteside, subset = Insul=="Before")
gasA <- update(gasB, subset = Insul=="After")

The first line fits a simple linear regression for the ‘before’ temperatures. The
right-hand side of the formula needs only to specify the variableTemp since an
intercept term (corresponding to a column of unities of the model matrix) is al-
ways implicitly included. It may be explicitly included using1 + Temp, where
the + operator impliesinclusion of a term in the model, not addition.

The functionupdate is a convenient way to modify a fitted model. Its first ar-
gument is a fitted model object that results from one of the model-fitting functions
such aslm. The remaining arguments ofupdate specify the desired changes to
arguments of the call that generated the object. In this case we simply wish to
switch subsets fromInsul=="Before" to Insul=="After"; the formula and
data frame remain the same. Notice that variables used in thesubset argument
may also come from the data frame and need not be visible on the (global) search
path.

Fitted model objects have an appropriateclass, in this case"lm". Generic
functions to perform further operations on the object include

print for a simple display,

summary for a conventional regression analysis output,

coef (or coefficients) for extracting the regression coefficients,

resid (or residuals) for residuals,

fitted (or fitted.values) for fitted values,

deviance for the residual sum of squares,

anova for a sequential analysis of variance table, or a comparison of sev-
eral hierarchical models,

predict for predicting means for new data, optionally with standard er-
rors, and

plot for diagnostic plots.

Many of these method functions are very simple, merely extracting a component
of the fitted model object. The only component likely to be accessed for which no
extractor function is supplied2 is df.residual, the residual degrees of freedom.

2In S-PLUS: there is adf.residual function inR.

142 Linear Statistical Models

The output fromsummary is self-explanatory. Edited results for our fitted
models are

> summary(gasB)
....

Coefficients:
Value Std. Error t value Pr(>|t|)

(Intercept) 6.854 0.118 57.876 0.000
Temp -0.393 0.020 -20.078 0.000

Residual standard error: 0.281 on 24 degrees of freedom

> summary(gasA)
....

Coefficients:
Value Std. Error t value Pr(>|t|)

(Intercept) 4.724 0.130 36.410 0.000
Temp -0.278 0.025 -11.036 0.000

Residual standard error: 0.355 on 28 degrees of freedom

The difference in residual variances is relatively small, but the formal textbook
F -test for equality of variances could easily be done. The sample variances could
be extracted in at least two ways, for example

varB <- deviance(gasB)/gasB$df.resid # direct calculation
varB <- summary(gasB)$sigma^2 # alternative

It is known thisF -test is highly non-robust to non-normality (see, for example,
Hampelet al. (1986, pp. 55, 188)) so its usefulness here would be doubtful.

To fit both regression models in the same"lm" model object we may use

> gasBA <- lm(Gas ~ Insul/Temp - 1, data = whiteside)
> summary(gasBA)

....
Coefficients:

Value Std. Error t value Pr(>|t|)
InsulBefore 6.854 0.136 50.409 0.000
InsulAfter 4.724 0.118 40.000 0.000

InsulBeforeTemp -0.393 0.022 -17.487 0.000
InsulAfterTemp -0.278 0.023 -12.124 0.000

Residual standard error: 0.323 on 52 degrees of freedom
....

Notice that the estimates are the same but the standard errors are different because
they are now based on the pooled estimate of variance.

Terms of the forma/x, wherea is a factor, are best thought of as “separate
regression models of type1 + x within the levels ofa .” In this case an intercept
is not needed, since it is replaced by two separate intercepts for the two levels of
insulation, and the formula term- 1 removes it.

We can check for curvature in the mean function by fitting separate quadratic
rather than linear regressions in the two groups. This may be done as

6.1 An Analysis of Covariance Example 143

> gasQ <- lm(Gas ~ Insul/(Temp + I(Temp^2)) - 1, data = whiteside)
> summary(gasQ)$coef

Value Std. Error t value Pr(>|t|)
InsulBefore 6.7592152 0.1507868 44.8263 0.0000e+00
InsulAfter 4.4963739 0.1606679 27.9855 0.0000e+00

InsulBeforeTemp -0.3176587 0.0629652 -5.0450 6.3623e-06
InsulAfterTemp -0.1379016 0.0730580 -1.8876 6.4896e-02

InsulBeforeI(Temp^2) -0.0084726 0.0066247 -1.2789 2.0683e-01
InsulAfterI(Temp^2) -0.0149795 0.0074471 -2.0114 4.9684e-02

The ‘identity’ function I(...) is used in this context and withdata.frame
(see page 18). It evaluates its argument with operators having their arithmetical
meaning and returns the result. Hence it allows arithmetical operators to be used
in linear model formulae, although if any function call is used in a formula their
arguments are evaluated in this way.

The separate regression coefficients show that a second-degree term is possi-
bly needed for theAfter group only, but the evidence is not overwhelming.3 We
retain the separate linear regressions model on the grounds of simplicity.

An even simpler model that might be considered is one with parallel regres-
sions. We can fit this model and test it within the separate regression model using

> # R: options(contrasts = c("contr.helmert", "contr.poly"))
> gasPR <- lm(Gas ~ Insul + Temp, data = whiteside)
> anova(gasPR, gasBA)
Analysis of Variance Table

....
Terms Resid. Df RSS Test Df Sum of Sq F Value

1 Insul + Temp 53 6.7704
2 Insul/Temp - 1 52 5.4252 1 vs. 2 1 1.3451 12.893

Pr(F)
1
2 0.00073069

When anova is used with two or more nested models it gives an analysis of
variance table for those models. In this case it shows that separate slopes are
indeed necessary. Note the unusual layout of the analysis of variance table. Here
we could conduct this test in a simpler and more informative way. We now fit the
model with separate slopes usinga different parametrization:

> options(contrasts = c("contr.treatment", "contr.poly"))
> gasBA1 <- lm(Gas ~ Insul*Temp, data = whiteside)
> summary(gasBA1)$coef

Value Std. Error t value Pr(>|t|)
(Intercept) 6.85383 0.135964 50.4091 0.0000e+00

Insul -2.12998 0.180092 -11.8272 2.2204e-16
Temp -0.39324 0.022487 -17.4874 0.0000e+00

Insul:Temp 0.11530 0.032112 3.5907 7.3069e-04

3Notice that when the quadratic terms are present first-degree coefficients mean ‘the slope of the
curve at temperature zero’, so a non-significant value does not mean that the linear term is not needed.
Removing the non-significant linear term for the ‘after’ group, for example, would be unjustified.

144 Linear Statistical Models

The call tooptions is explained more fully in Section 6.2; for now we note that
it affects the way regression models are parametrized when factors are used. The
formula Insul*Temp expands to1 + Insul + Temp + Insul:Temp and the
corresponding coefficients are, in order, the intercept for the ‘before’ group, the
difference in intercepts, the slope for the ‘before’ group and thedifference in
slopes. Since this last term is significant we conclude that the two separate slopes
are required in the model. Indeed note that theF -statistic in the analysis of vari-
ance table is the square of the finalt-statistic and that the tail areas are identical.

6.2 Model Formulae and Model Matrices

This section contains some rather technical material and might be skimmed at first
reading.

A linear model is specified by the response vectory and by the matrix of
explanatory variables, ormodel matrix, X . The model formula conveys both
pieces of information, the left-hand side providing the response and the right-hand
side instructions on how to generate themodel matrix according to a particular
convention.

A multiple regression with three quantitative determining variables might be
specified asy ~ x1 + x2 + x3. This would correspond to a model with a fa-
miliar algebraic specification

yi = β0 + β1xi1 + β2xi2 + β3xi3 + εi, i = 1, 2, . . . , n

The model matrix has the partitioned form

X =
[
1 x1 x2 x3

]
The intercept term (β0 corresponding to the leading column of ones inX) is
implicitly present; its presence may be confirmed by giving a formula such as
y ~ 1 + x1 + x2 + x3, but wherever the1 occurs in the formula the column
of ones will always be the first column of the model matrix. It may be omitted
and a regression through the origin fitted by giving a- 1 term in the formula, as
in y ~ x1 + x2 + x3 - 1.

Factor terms in a model formula are used to specify classifications leading to
what are often called analysis of variance models. Supposea is a factor. An
analysis of variance model for the one-way layout defined bya might be written
in the algebraic form

yij = µ+ αj + εij i = 1, 2, . . . , nj; j = 1, 2, . . . , k

where there arek classes and thenj is the size of thejth. Let n =
∑

j nj .
This specification is over-parametrized, but we could write the model matrix in
the form

X =
[
1 Xa

]
whereXa is ann×k binary incidence (or ‘dummy variable’) matrix where each
row has a single unity in the column of the class to which it belongs.

6.2 Model Formulae and Model Matrices 145

The redundancy comes from the fact that the columns ofXa add to1, making
X of rank k rather thank + 1. One way to resolve the redundancy is to remove
the column of ones. This amounts to settingµ = 0, leading to an algebraic
specification of the form

yij = αj + εij i = 1, 2, . . . , nj; j = 1, 2, . . . , k

so theαj parameters are the class means. This formulation may be specified by
y ~ a - 1.

If we do not break the redundancy by removing the intercept term it must be
done some other way, since otherwise the parameters are not identifiable. The
way this is done inS is most easily described in terms of the model matrix. The
model matrix generated has the form

X� =
[
1 XaCa

]
whereCa, thecontrast matrix for a, is a k × (k − 1) matrix chosen so thatX�

has rankk, the number of columns. A necessary (and usually sufficient) condition
for this to be the case is that the square matrix[1Ca] be non-singular.

The reduced model matrixX� in turn defines a linear model, but the parame-
ters are often not directly interpretable and an algebraic formulation of the precise
model may be difficult to write down. Nevertheless, the relationship between the
newly defined and original (redundant) parameters is clearly given by

α = Caα
� (6.1)

whereα are the originalα parameters andα� are the new.
If ca is a non-zero vector such thatcT

a Ca = 0 it can be seen immediately
that usingα� as parameters amounts to estimating the original parameters,α
subject to theidentification constraint cT

a α = 0 which is usually sufficient to
make them unique. Such a vector (or matrix)ca is called anannihilator of Ca

or a basis for the orthogonal complement of the range ofCa.
If we fit the one-way layout model using the formula

y ~ a

the coefficients we obtain will be estimates ofµ and α�. The corresponding
constrained estimates of theα may be obtained by multiplying by the contrasts
matrix or by using the functiondummy.coef. Consider an artificial example:

> dat <- data.frame(a = factor(rep(1:3, 3)),
y = rnorm(9, rep(2:4, 3), 0.1))

> obj <- lm(y ~ a, dat)
> (alf.star <- coef(obj))
(Intercept) a1 a2

2.9719 0.51452 0.49808
> Ca <- contrasts(dat$a) # contrast matrix for ‘a’
> drop(Ca %*% alf.star[-1])

1 2 3
-1.0126 0.016443 0.99615

146 Linear Statistical Models

> dummy.coef(obj)
$"(Intercept)":
[1] 2.9719

$a:
1 2 3

-1.0126 0.016443 0.99615

Notice that the estimates ofα sum to zero because the contrast matrix used here
implies the identification constraint1T α = 0.

Contrast matrices

By defaultS-PLUS uses so-calledHelmert contrast matrices for unordered factorsS+

and orthogonal polynomial contrast matrices for ordered factors. The forms of
these can be deduced from the following artificial example:

> N <- factor(Nlevs <- c(0,1,2,4))
> contrasts(N)

[,1] [,2] [,3]
0 -1 -1 -1
1 1 -1 -1
2 0 2 -1
4 0 0 3
> contrasts(ordered(N))

.L .Q .C
0 -0.67082 0.5 -0.22361
1 -0.22361 -0.5 0.67082
2 0.22361 -0.5 -0.67082
4 0.67082 0.5 0.22361

For thepoly contrasts it can be seen that the corresponding parametersα� can
be interpreted as the coefficients in an orthogonal polynomial model of degree
r − 1, provided the ordered levels are equally spaced (which is not the case for
the example)and the class sizes are equal. Theα� parameters corresponding to
the Helmert contrasts also have an easy interpretation, as we see in the following.
Since both the Helmert and polynomial contrast matrices satisfy1TC = 0 , the
implied constraint onα will be 1T α = 0 in both cases.

The default contrast matrices can be changed by resetting thecontrasts
option. This is a character vector of length two giving the names of the functions
that generate the contrast matrices for unordered and ordered factors respectively.
For example,

options(contrasts = c("contr.treatment", "contr.poly"))

sets the default contrast matrix function for factors tocontr.treatment and for
ordered factors tocontr.poly (the original default). (Thisis the default inR.)R

Four supplied contrast functions are as follows:

contr.helmert for the Helmert contrasts.

6.2 Model Formulae and Model Matrices 147

contr.treatment for contrasts such that each coefficient represents a comparison of
that level with level 1 (omitting level 1itself). This corresponds to the constraint
α1 = 0. Note that in this parametrization the coefficients arenot contrasts in the
usual sense.

contr.sum where the coefficients are constrained to add to zero; that is, in this case the
components ofα� are the same as the firstr− 1 components ofα, with the latter
constrained to add to zero.

contr.poly for the equally spaced, equally replicated orthogonal polynomial contrasts.

Others can be written using these as templates (as we do with our function
contr.sdif , used on pages 293 and 294). We recommend the use of the treat-
ment contrasts for unbalanced layouts, including generalized linear models and
survival models, because the unconstrained coefficients obtained directly from
the fit are then easy to interpret.

Notice that thehelmert, sum and poly contrasts ensure the rank condition
on C is met by choosingC so that the columns of[1C] are mutually orthog-
onal, whereas thetreatment contrasts chooseC so that [1C] is in echelon
form.

Contrast matrices for particular factors may also be set as an attribute of the
factor itself. This can be done either by thecontrasts replacement function
or by using the functionC which takes three arguments: the factor, the matrix
from which contrasts are to be taken (or the abbreviated name of a function that
will generate such a matrix) and the number of contrasts. On some occasions a
p-level factor may be given a contrast matrix with fewer thanp − 1 columns, in
which case it contributes fewer thanp−1 degrees of freedom to the model, or the
unreduced parametersα have additional constraints placed on them apart from
the one needed for identification. An alternative method is to use the replacement
form with a specific number of contrasts as the second argument. For example,
suppose we wish to create a factorN2 that would generate orthogonal linear and
quadratic polynomial terms, only. Two equivalent ways of doing this would be

> N2 <- N
> contrasts(N2, 2) <- poly(Nlevs, 2)
> N2 <- C(N, poly(Nlevs, 2), 2) # alternative
> contrasts(N2)

1 2
0 -0.591608 0.56408
1 -0.253546 -0.32233
2 0.084515 -0.64466
4 0.760639 0.40291

In this case the constraints imposed on theα parameters are not merely for iden-
tification but actually change the model subspace.

Parameter interpretation

The poly contrast matrices lead toα� parameters that are sometimes inter-
pretable as coefficients in an orthogonal polynomial regression. Thetreatment

148 Linear Statistical Models

contrasts setα1 = 0 and choose the remainingαs as theα�s. Other cases are
often not so direct, but an interpretation is possible.

To interpret theα� parameters in general, consider the relationship (6.1).
Since the contrast matrixC is of full column rank it has a unique left inverse
C+, so we can reverse this relationship to give

α� = C+α where C+ = (CTC)−1CT (6.2)

The pattern in the matrixC+ then provides an interpretation of each uncon-
strained parameter as a linear function of the (usually) readily appreciated con-
strained parameters. For example, consider the Helmert contrasts forr = 4. To
exhibit the pattern inC+ more clearly we use the functionfractions from
MASS for rational approximation and display.

> fractions(ginv(contr.helmert(n = 4)))
[,1] [,2] [,3] [,4]

[1,] -1/2 1/2 0 0
[2,] -1/6 -1/6 1/3 0
[3,] -1/12 -1/12 -1/12 1/4

Henceα�
1 = 1

2 (α2 − α1), α�
2 = 1

3{α3 − 1
2 (α1 + α2)} and in generalα�

j is
a comparison ofαj+1 with the average of all precedingαs, divided byj + 1.
This is a comparison of the (unweighted) mean of classj + 1 with that of the
preceding classes.

It can sometimes be important to use contrast matrices that give a simple inter-
pretation to the fitted coefficients. This can be done by noting that(C+)+ = C.
For example, suppose we wished to choose contrasts so that theα�

j = αj+1−αj ,
that is, the successive differences of class effects. Forr = 5, say, theC+ matrix
is then given by

> Cp <- diag(-1, 4, 5); Cp[row(Cp) == col(Cp) - 1] <- 1
> Cp

[,1] [,2] [,3] [,4] [,5]
[1,] -1 1 0 0 0
[2,] 0 -1 1 0 0
[3,] 0 0 -1 1 0
[4,] 0 0 0 -1 1

Hence the contrast matrix to obtain these linear functions as the estimated coeffi-
cients is

> fractions(ginv(Cp))
[,1] [,2] [,3] [,4]

[1,] -4/5 -3/5 -2/5 -1/5
[2,] 1/5 -3/5 -2/5 -1/5
[3,] 1/5 2/5 -2/5 -1/5
[4,] 1/5 2/5 3/5 -1/5
[5,] 1/5 2/5 3/5 4/5

Note that again the columns have zero sums, so the implied constraint is that the
effects add to zero. (If it were not obvious we could find the induced constraint

6.2 Model Formulae and Model Matrices 149

using our functionNull (page 63) to find a basis for the null space of the contrast
matrix.)

The pattern is obvious from this example and a contrast matrix function for the
general case can now be written. To be usable as a component of thecontrasts
option such a function has to conform with a fairly strict convention, but the key
computational steps are

....
contr <- col(matrix(nrow = n, ncol = n - 1))
upper.tri <- !lower.tri(contr)
contr[upper.tri] <- contr[upper.tri] - n
contr/n

....

The complete function is supplied ascontr.sdif in MASS. We make use of it
on pages 293 and 294.

Higher-way layouts

Two- and higher-way layouts may be specified by two or more factors and formula
operators. The way the model matrix is generated is then an extension of the
conventions for a one-way layout.

If a and b are r- and s-level factors, respectively, the model formula
y ~ a+b specifies an additive model for the two-way layout. Using the redundant
specification the algebraic formulation would be

yijk = µ+ αi + βj + εijk

and the model matrix would be

X =
[
1 Xa Xb

]
The reduced model matrix then has the form

X� =
[
1 XaCa XbCb

]
However, if the intercept term is explicitly removed using, say,y ~ a + b - 1,
the reduced form is

X� =
[
Xa XbCb

]
Note that this is asymmetric ina and b and order-dependent.

A two-way non-additive model has a redundant specification of the form

yijk = µ+ αi + βj + γij + εijk

The model matrix can be written as

X =
[
1 Xa Xb Xa:Xb

]
where we use the notationA:B to denote the matrix obtained by taking each col-
umn ofA and multiplying it element-wise by each column ofB. In the example
Xa:Xb generates an incidence matrix for the sub-classes defined jointly bya and
b. Such a model may be specified by the formula

150 Linear Statistical Models

y ~ a + b + a:b

or equivalently byy ~ a*b. The reduced form of the model matrix is then

X� =
[
1 XaCa XbCb (XaCa):(XbCb)

]
It may be seen that(XaCa):(XbCb) = (Xa:Xb)(Cb ⊗ Ca), where⊗ denotes
the Kronecker product, so the relationship between theγ parameters and the
correspondingγ�s is

γ = (Cb ⊗ Ca)γ�

The identification constraints can be most easily specified by writingγ as an
r × s matrix. If this is done, the relationship has the formγ = Caγ

�CT
b and the

constraints have the formcT
a γ = 0T and γcb = 0, separately.

If the intercept term is removed, however, such as by usingy ~ a*b - 1 ,
the form is different, namely,

X� =
[
Xa XbCb X

(−r)
a :(XbCb)

]
where (somewhat confusingly)X(−r)

a is a matrix obtained by removing thelast
column of Xa. Furthermore, if a model is specified asy ~ - 1 + a + a:b
the model matrix generated is

[
Xa Xa:(XbCb)

]
. In general addition of a term

a:b extends the previously constructed design matrix to a complete non-additive
model in some non-redundant way (unless the design is deficient, of course).

Even thougha*b expands toa + b + a:b, it should be noted thata + a:b
is not always the same4 as a*b - b or evena + b - b + a:b. When used in
model-fitting functions the last two formulae construct the design matrix fora*b
and only then remove any columns corresponding to theb term. (The result
is not a statistically meaningful model.) Model matrices are constructed within
the fitting functions by arranging the positive terms in order of their complexity,
sequentially adding columns to the model matrix according to the redundancy res-
olution rules and then removing any generated columns corresponding to negative
terms. The exception to this rule is the intercept term which is always removed
initially. (With update, however, the formula is expanded and all negative terms
are removedbefore the model matrix is constructed.)

The modela + a:b generates the same matrix asa/b, which expands in
S-PLUS to a + b %in% a. There is no compelling reason for the additional
operator,5 %in%, but it does serve to emphasize that the slash operator should be
thought of as specifying separate submodels of the form1 + b for each level of
a. The operator behaves like the colon formula operator when the second main
effect term is not given, but is conventionally reserved for nested models.

Star products of more than two terms, such asa*b*c, may be thought of as
expanding(1 + a):(1 + b):(1 + c) according to ordinary algebraic rules
and may be used to define higher-way non-additive layouts. There is also a power
operator,^ , for generating models up to a specified degree of interaction term.

4In S-PLUS: it is always the same inR.
5Which R does not have.

6.3 Regression Diagnostics 151

For example,(a+b+c)^3 generates the same model asa*b*c but (a+b+c)^2
has the highest order interaction absent.

Combinations of factors and non-factors with formula operators are useful in
an obvious way. We have seen already thata/x - 1 generates separate simple
linear regressions onx within the levels ofa. The same model may be specified
as a + a:x - 1, whereasa*x generates an equivalent model using a different
resolution of the redundancy. It should be noted that(x + y + z)^3 doesnot
generate a general third-degree polynomial regression in the three variables, as
might be expected. This is because terms of the formx:x are regarded as the
same asx, not asI(x^2). However, inS-PLUS a single term such asx^2 is S+

silently promoted toI(x^2) and interpreted as a power.

6.3 Regression Diagnostics

The message in the Whiteside example is relatively easy to discover and we did
not have to work hard to find an adequate linear model. There is an extensive
literature (for example Atkinson, 1985) onexamining the fit of linear models to
consider whether one or more points are not fitted as well as they should be or
have undue influence on the fitting of the model. This can be contrasted with the
robust regression methods we discuss in Section 6.5, which automatically take
account of anomalous points.

The basic tool for examining the fit is the residuals, and we have already
looked for patterns in residuals and assessed the normality of their distribution.
The residuals are not independent (they sum to zero if an intercept is present) and
they do not have the same variance. Indeed, their variance-covariance matrix is

var
(
e
)

= σ2[I −H] (6.3)

whereH = X(XTX)−1XT is the orthogonal projector matrix onto the model
space, orhat matrix. If a diagonal entryhii of H is large, changingyi will
move the fitted surface appreciably towards the altered value. For this reasonhii

is said to measure theleverage of the observationyi. The trace ofH is p, the
dimension of the model space, so ‘large’ is taken to be greater than two or three
times the average,p/n.

Having large leverage has two consequences for the corresponding residual.
First, its variance will be lower than average from (6.3). We can compensate for
this by rescaling the residuals to have unit variance. Thestandardized residuals
are

e′i =
ei

s
√

1− hii

where as usual we have estimatedσ2 by s2, the residual mean square. Second,
if one error is very large, the variance estimates2 will be too large, and this
deflates all the standardized residuals. Let us consider fitting the model omitting
observationi. We then get a prediction for the omitted observation,ŷ(i), and an

152 Linear Statistical Models

estimate of the error variance,s2(i), from the reduced sample. Thestudentized
residuals are

e∗i =
yi − ŷ(i)√

var
(
yi − ŷ(i)

)
but with σ replaced bys(i). Fortunately, it is not necessary to re-fit the model
each time an observation is omitted, since it can be shown that

e∗i = e′i
/ [

n− p− e′2i
n− p− 1

]1/2

Notice that this implies that the standardized residuals,ei, must be bounded by
±√n− p.

The terminology used here is not universally adopted; in particular studentized
residuals are sometimes calledjackknifed residuals.

It is usually better to compare studentized residuals rather than residuals; in
particular we recommend that they be used for normal probability plots.

We have provided functionsstudres and stdres to compute studentized
and standardized residuals. There is a functionhat, but this expects the model
matrix as its argument. (There is a useful function,lm.influence, for most of
the fundamental calculations. The diagonal of the hat matrix can be obtained by
lm.influence(lmobject)$hat.)

Scottish hill races

As an example of regression diagnostics, let us return to the data on 35 Scottish
hill races in our data framehills considered in Chapter 1. The data come
from Atkinson (1986) and are discussed further in Atkinson (1988) and Staudte
and Sheather (1990). The columns are the overall race distance, the total height
climbed and the record time. In Chapter 1 we considered a regression oftime
on dist. We can now includeclimb :

> (hills.lm <- lm(time ~ dist + climb, data = hills))
Coefficients:
(Intercept) dist climb

-8.992 6.218 0.011048

Degrees of freedom: 35 total; 32 residual
Residual standard error: 14.676
> frame(); par(fig = c(0, 0.6, 0, 0.55))
> plot(fitted(hills.lm), studres(hills.lm))
> abline(h = 0, lty = 2)
> identify(fitted(hills.lm), studres(hills.lm),

row.names(hills))
> par(fig = c(0.6, 1, 0, 0.55), pty = "s")
> qqnorm(studres(hills.lm))
> qqline(studres(hills.lm))
> hills.hat <- lm.influence(hills.lm)$hat
> cbind(hills, lev = hills.hat)[hills.hat > 3/35,]

6.3 Regression Diagnostics 153

•
•• •

•

•

•

••
• •

•
•

•

•
•

•

•

•

•• • •
••

•
•• •

•
•

•

•
•

•

fitted(hills.lm)

st
ud

re
s(

hi
lls

.lm
)

50 100 150

0
2

4
6

Knock Hill

Bens of Jura

•
• • •

•

•

•

••
• •

•
•

•

•
•

•

•

•

• •••
••

•
•• •

•
•

•

•
•

•

Quantiles of Standard Normal

st
ud

re
s(

hi
lls

.lm
)

-2 -1 0 1 2

0
2

4
6

Figure 6.2: Diagnostic plots for Scottish hills data, unweighted model.

dist climb time lev
Bens of Jura 16 7500 204.617 0.42043
Lairig Ghru 28 2100 192.667 0.68982
Ben Nevis 10 4400 85.583 0.12158

Two Breweries 18 5200 170.250 0.17158
Moffat Chase 20 5000 159.833 0.19099

so two points have very high leverage, two points have large residuals, andBens
of Jura is in both sets. (See Figure 6.2.)

If we look atKnock Hill we see that the prediction is over an hour less than
the reported record:

> cbind(hills, pred = predict(hills.lm))["Knock Hill",]
dist climb time pred

Knock Hill 3 350 78.65 13.529

and Atkinson (1988) suggests that the record is one hour out. We drop this obser-
vation to be safe:

> (hills1.lm <- update(hills.lm, subset = -18))
Coefficients:
(Intercept) dist climb

-13.53 6.3646 0.011855

Degrees of freedom: 34 total; 31 residual
Residual standard error: 8.8035

SinceKnock Hill did not have a high leverage, deleting it did not change the
fitted model greatly. On the other hand,Bens of Jura had both a high leverage
and a large residual and so does affect the fit:

> update(hills.lm, subset = -c(7, 18))
Coefficients:
(Intercept) dist climb

-10.362 6.6921 0.0080468

Degrees of freedom: 33 total; 30 residual
Residual standard error: 6.0538

154 Linear Statistical Models

If we consider this example carefullywe find a number of unsatisfactory fea-
tures. First, the prediction is negative for short races. Extrapolation is often un-
safe, but on physical grounds we would expect the model to be a good fit with a
zero intercept; indeed hill-walkers use a prediction of this sort (3 miles/hour plus
20 minutes per 1 000 feet). We can see from the summary that the intercept is
significantly negative:

> summary(hills1.lm)
....

Coefficients:
Value Std. Error t value Pr(>|t|)

(Intercept) -13.530 2.649 -5.108 0.000
dist 6.365 0.361 17.624 0.000
climb 0.012 0.001 9.600 0.000

....

Furthermore, we would not expect the predictions of times that range from
15 minutes to over 3 hours to be equally accurate, but rather that the accuracy be
roughly proportional to the time. This suggests a log transform, but that would be
hard to interpret. Rather we weight the fit using distance as a surrogate for time.
We want weights inversely proportional to the variance:

> summary(update(hills1.lm, weights = 1/dist^2))
....

Coefficients:
Value Std. Error t value Pr(>|t|)

(Intercept) -5.809 2.034 -2.855 0.008
dist 5.821 0.536 10.858 0.000
climb 0.009 0.002 5.873 0.000

Residual standard error: 1.16 on 31 degrees of freedom

The intercept is still significantly non-zero. If we are prepared to set it to zero
on physical grounds, we can achieve the same effect by dividing the prediction
equation by distance, and regressing inverse speed (time/distance) on gradient
(climb/distance):

> lm(time ~ -1 + dist + climb, hills[-18,], weights = 1/dist^2)
Coefficients:
dist climb
4.9 0.0084718

Degrees of freedom: 34 total; 32 residual
Residual standard error (on weighted scale): 1.2786
> hills <- hills # make a local copy (needed in S-PLUS)
> hills$ispeed <- hills$time/hills$dist
> hills$grad <- hills$climb/hills$dist
> (hills2.lm <- lm(ispeed ~ grad, data = hills[-18,]))
Coefficients:
(Intercept) grad

4.9 0.0084718

6.4 Safe Prediction 155

• ••

•
•

•

•

•
•

•
•

•
•

•

•

•

•

•

•
• •

•
•

•

•

•
•

•

•

••

•

•

•

grad

st
ud

re
s(

hi
lls

2.
lm

)

100 200 300 400 500

-2
-1

0
1

2
3

4 Bens of Jura

Creag DubhBlack Hill

• ••

•
•

•

•

•
•

•
•

•
•

•

•

•

•

•

•
••

•
•

•

•

•
•

•

•

••

•

•

•

Quantiles of Standard Normal

st
ud

re
s(

hi
lls

2.
lm

)

-2 -1 0 1 2

-2
-1

0
1

2
3

4

Figure 6.3: Diagnostic plots for Scottish hills data, weighted model.

Degrees of freedom: 34 total; 32 residual
Residual standard error: 1.2786
> frame(); par(fig = c(0, 0.6, 0, 0.55))
> plot(hills$grad[-18], studres(hills2.lm), xlab = "grad")
> abline(h = 0, lty = 2)
> identify(hills$grad[-18], studres(hills2.lm),

row.names(hills)[-18])
> par(fig = c(0.6, 1, 0, 0.55), pty = "s") # Figure 6.3
> qqnorm(studres(hills2.lm))
> qqline(studres(hills2.lm))
> hills2.hat <- lm.influence(hills2.lm)$hat
> cbind(hills[-18,], lev = hills2.hat)[hills2.hat > 1.8*2/34,]

dist climb time ispeed grad lev
Bens of Jura 16 7500 204.617 12.7886 468.75 0.11354

Creag Dubh 4 2000 26.217 6.5542 500.00 0.13915

The two highest-leverage cases are nowthe steepest two races, and are outliers
pulling in opposite directions. We could consider elaborating the model, but this
would be to fit only one or two exceptional points; for most of the data we have
the formula of 5 minutes/mile plus 8 minutes per 1 000 feet. We return to this
example on page 162 where robust fits do support a zero intercept.

6.4 Safe Prediction

A warning is needed on the use of thepredict method function when polyno-
mials are used (and also splines, see Section 8.8). We illustrate this by the dataset
wtloss, for which a more appropriate analysis is given in Chapter 8. This has a
weight lossWeight againstDays. Consider a quadratic polynomial regression
model of Weight on Days. This may be fitted by either of

quad1 <- lm(Weight ~ Days + I(Days^2), data = wtloss)
quad2 <- lm(Weight ~ poly(Days, 2), data = wtloss)

156 Linear Statistical Models

The second uses orthogonal polynomials and is the preferred form on grounds of
numerical stability.

Suppose we wished to predict future weight loss. The first step is to create a
new data frame with a variablex containing the new values, for example,

new.x <- data.frame(Days = seq(250, 300, 10),
row.names = seq(250, 300, 10))

The predict method may now be used:

> predict(quad1, newdata = new.x)
250 260 270 280 290 300

112.51 111.47 110.58 109.83 109.21 108.74
> predict(quad2, newdata = new.x) # from S-PLUS 6.0

250 260 270 280 290 300
244.56 192.78 149.14 113.64 86.29 67.081

The first form gives correct answers but the second does not inS-PLUS!
The reason for this is as follows. Thepredict method forlm objects works

by attaching the estimated coefficients to a new model matrix that it constructs
using the formula and the new data. In the first case the procedure will work, but
in the second case the columns of the model matrix are for adifferent orthogonal
polynomial basis, and so the old coefficients do not apply. The same will hold
for any function used to define the model that generates mathematically different
bases for old and new data, such as spline bases usingbs or ns. R retains enoughR

information to predict from the old data.
The remedy inS-PLUS is to use the method functionpredict.gam :S+

> predict.gam(quad2, newdata = new.x) # S-PLUS only
250 260 270 280 290 300

112.51 111.47 110.58 109.83 109.21 108.74

This constructs a new model matrix by putting old and new data together, re-
estimates the regression using the old data only and predicts using these estimates
of regression coefficients. This can involve appreciable extra computation, but
the results will be correct for polynomials, but not exactly so for splines since the
knot positions will change. As a check,predict.gam compares the predictions
with the old fitted values for the original data. If these are seriously different, a
warning is issued that the process has probably failed.

In our view this is a serious flaw inpredict.lm. It would have been better to
use the safe method as the default and provide anunsafe argument for the faster
method as an option.

6.5 Robust and Resistant Regression

There are a number of ways to perform robust regression inS-PLUS, but
many have drawbacks and are not mentioned here. First consider an example.
Rousseeuw and Leroy (1987) give data on annual numbers of Belgian telephone
calls, given in our datasetphones.

6.5 Robust and Resistant Regression 157

• • • • • • • • • • • • •
•

•
•

•

•

•

•

•

• • •

year

ca
lls

50 55 60 65 70

0
50

10
0

15
0

20
0

least squares
M-estimate
LTS

Figure 6.4: Millions of phone calls in Belgium,1950–73, from Rousseeuw and Leroy
(1987), with three fitted lines.

R: library(lqs)

phones.lm <- lm(calls ~ year, data = phones)
attach(phones); plot(year, calls); detach()
abline(phones.lm$coef)
abline(rlm(calls ~ year, phones, maxit=50), lty = 2, col = 2)

abline(lqs(calls ~ year, phones), lty = 3, col = 3)
legend(locator(1), lty = 1:3, col = 1:3,

legend = c("least squares", "M-estimate", "LTS"))

Figure 6.4 shows the least squares line, an M-estimated regression and the least
trimmed squares regression (Section 6.5). Thelqs line is −56.16 + 1.16 year .
Rousseeuw & Leroy’s investigations showed that for 1964–9 the total length of
calls (in minutes) had been recorded rather than the number, with each system
being used during parts of 1963 and 1970.

Next some theory. In a regression problem there are two possible sources
of errors, the observationsyi and the corresponding row vector ofp regressors
xi. Most robust methods in regression only consider the first, and in some cases
(designed experiments?) errors in the regressors can be ignored. This is the case
for M-estimators, the only ones we consider in this section.

Consider a regression problem withn cases(yi,xi) from the model

y = xβ + ε

for a p-variate row vectorx.

158 Linear Statistical Models

M-estimators

If we assume a scaled pdff(e/s)/s for ε and setρ = − log f , the maximum
likelihood estimator minimizes

n∑
i=1

ρ

(
yi − xib

s

)
+ n log s (6.4)

Suppose for now thats is known. Letψ = ρ′. Then the MLEb of β solves

n∑
i=1

xiψ

(
yi − xib

s

)
= 0 (6.5)

Let ri = yi − xib denote the residuals.
The solution to equation (6.5) or to minimizing over (6.4) can be used to define

an M-estimator ofβ.
A common way to solve (6.5) is by iterated re-weighted least squares, with

weights

wi = ψ

(
yi − xib

s

)/(
yi − xib

s

)
(6.6)

The iteration is guaranteed to converge only forconvex ρ functions, and for re-
descending functions (such as those of Tukey and Hampel; page 123) equation
(6.5) may have multiple roots. In such cases it is usual to choose a good starting
point and iterate carefully.

Of course, in practice the scales is not known. A simple and very resistant
scale estimator is the MAD about some centre. This is applied to the residuals
about zero, either to the current residuals within the loop or to the residuals from
a very resistant fit (see the next subsection).

Alternatively, we can estimates in an MLE-like way. Finding a stationary
point of (6.4) with respect tos gives

∑
i

ψ

(
yi − xib

s

)(
yi − xib

s

)
= n

which is not resistant (and is biased at the normal). As in the univariate case we
modify this to ∑

i

χ

(
yi − xib

s

)
= (n− p)γ (6.7)

Our function rlm

Our MASS library section introduces a new classrlm and model-fitting function
rlm, building on lm. The syntax in general followslm. By default Huber’s M-
estimator is used with tuning parameterc = 1.345. By default the scales is
estimated by iterated MAD, but Huber’s proposal 2 can also be used.

6.5 Robust and Resistant Regression 159

> summary(lm(calls ~ year, data = phones), cor = F)
Value Std. Error t value Pr(>|t|)

(Intercept) -260.059 102.607 -2.535 0.019
year 5.041 1.658 3.041 0.006

Residual standard error: 56.2 on 22 degrees of freedom
> summary(rlm(calls ~ year, maxit = 50, data = phones), cor = F)

Value Std. Error t value
(Intercept) -102.622 26.608 -3.857

year 2.041 0.430 4.748
Residual standard error: 9.03 on 22 degrees of freedom
> summary(rlm(calls ~ year, scale.est = "proposal 2",

data = phones), cor = F)
Coefficients:

Value Std. Error t value
(Intercept) -227.925 101.874 -2.237

year 4.453 1.646 2.705
Residual standard error: 57.3 on 22 degrees of freedom

As Figure 6.4 shows, in this example there is a batch of outliers from a different
population in the late 1960s, and these should be rejected completely, which the
Huber M-estimators do not. Let us try a re-descending estimator.

> summary(rlm(calls ~ year, data = phones, psi = psi.bisquare),
cor = F)

Coefficients:
Value Std. Error t value

(Intercept) -52.302 2.753 -18.999
year 1.098 0.044 24.685

Residual standard error: 1.65 on 22 degrees of freedom

This happened to work well for the default least-squares start, but we might want
to consider a better starting point, such as that given byinit = "lts".

Resistant regression

M-estimators are not very resistant to outliers unless they have redescendingψ
functions, in which case they need a goodstarting point. A succession of more
resistant regression estimators was defined in the 1980s. The first to become
popular was

min
b

median
i
|yi − xib|2

called theleast median of squares (LMS) estimator. The square is necessary ifn
is even, when the central median is taken.This fit is very resistant, and needs no
scale estimate. It is, however, very inefficient, converging at rate1/ 3

√
n. Further-

more, it displays marked sensitivity to central data values; see Hettmansperger
and Sheather (1992) and Davies (1993,§2.3).

Rousseeuw suggested least trimmed squares (LTS) regression:

min
b

q∑
i=1

|yi − xib|2(i)

160 Linear Statistical Models

as this is more efficient, but shares the same extreme resistance. The recom-
mended sum is over the smallestq = �(n+p+1)/2� squared residuals. (Earlier
accounts differed.)

This was followed byS-estimation, in which the coefficients are chosen to
find the solution to

n∑
i=1

χ
(yi − xib

c0 s

)
= (n− p)β

with smallest scales. Here χ is usually chosen to be the integral of Tukey’s
bisquare function

χ(u) = u6 − 3u4 + 3u2, |u| � 1, 1, |u| � 1

c0 = 1.548 and β = 0.5 is chosen for consistency at the normal distribution of
errors. This gives efficiency 28.7% at the normal, which is low but better than
LMS and LTS.

In only a few special cases (such as LMS for univariate regression with inter-
cept) can these optimization problems be solved exactly, and approximate search
methods are used.

S implementation

Various versions ofS-PLUS have (different) implementations of LMS and LTS
regression in functionslmsreg and ltsreg6, but as these are not fully doc-
umented and give different results in different releases, we prefer our function
lqs.7 The default method is LTS.

> lqs(calls ~ year, data = phones)
Coefficients:
(Intercept) year
-56.2 1.16

Scale estimates 1.25 1.13

> lqs(calls ~ year, data = phones, method = "lms")
Coefficients:
(Intercept) year
-55.9 1.15

Scale estimates 0.938 0.909

> lqs(calls ~ year, data = phones, method = "S")
Coefficients:
(Intercept) year
-52.5 1.1

Scale estimates 2.13

Two scale estimates are given for LMS and LTS: the first comes from the fit
criterion, the second from the variance of the residuals of magnitude no more
than 2.5 times the first scale estimate. All the scale estimates are set up to be

6In S-PLUS this now uses 10% trimming.
7Adopted byR in its packagelqs .

6.5 Robust and Resistant Regression 161

consistent at the normal, but measure different things for highly non-normal data
(as here).

MM-estimation

It is possible to combine the resistance of these methods with the efficiency of M-
estimation. The MM-estimator proposed by Yohai, Stahel and Zamar (1991) (see
also Marazzi, 1993,§9.1.3) is an M-estimator starting at the coefficients given by
the S-estimator and with fixed scale givenby the S-estimator. This retains (for
c > c0) the high-breakdown point of the S-estimator and the high efficiency at
the normal. At considerable computational expense, this gives the best of both
worlds.

Our functionrlm has an option to implement MM-estimation.

> summary(rlm(calls ~ year, data=phones, method="MM"), cor = F)
Coefficients:

Value Std. Error t value
(Intercept) -52.423 2.916 -17.978

year 1.101 0.047 23.367

Residual standard error: 2.13 on 22 degrees of freedom

S-PLUS has a functionlmRob in library sectionrobust that implements a S+

slightly different MM-estimator with similar properties, and comes with a full set
of method functions, so it can be used routinely as a replacement forlm. Let us
try it on the phones data.

> library(robust, first = T) # S-PLUS only
> phones.lmr <- lmRob(calls ~ year, data = phones)
> summary(phones.lmr, cor = F)
Coefficients:

Value Std. Error t value Pr(>|t|)
(Intercept) -52.541 3.625 -14.493 0.000

year 1.104 0.061 18.148 0.000

Residual scale estimate: 2.03 on 22 degrees of freedom
Proportion of variation in response explained by model: 0.494

Test for Bias:
Statistics P-value

M-estimate 1.401 0.496
LS-estimate 0.243 0.886
> plot(phones.lmr)

This works well, rejecting all the spurious observations. The ‘test for bias’ is of
the M-estimator against the initial S-estimator; if the M-estimator appears biased
the initial S-estimator is returned.

Library sectionrobust provides a wide range of robust techniques.

162 Linear Statistical Models

Scottish hill races revisited

We return to the data on Scottish hill races studied in the introduction and Sec-
tion 6.3. There we saw one gross outlier and a number of other extreme observa-
tions.

> hills.lm
Coefficients:
(Intercept) dist climb

-8.992 6.218 0.011048
Residual standard error: 14.676

> hills1.lm # omitting Knock Hill
Coefficients:
(Intercept) dist climb

-13.53 6.3646 0.011855
Residual standard error: 8.8035

> rlm(time ~ dist + climb, data = hills)
Coefficients:
(Intercept) dist climb

-9.6067 6.5507 0.0082959
Scale estimate: 5.21

> summary(rlm(time ~ dist + climb, data = hills,
weights = 1/dist^2, method = "MM"), cor = F)

Coefficients:
Value Std. Error t value

(Intercept) -1.802 1.664 -1.083
dist 5.244 0.233 22.549
climb 0.007 0.001 9.391

Residual standard error: 4.84 on 32 degrees of freedom

> lqs(time ~ dist + climb, data = hills, nsamp = "exact")
Coefficients:
(Intercept) dist climb
-1.26 4.86 0.00851

Scale estimates 2.94 3.01

Notice that the intercept is no longer significant in the robust weighted fits. By
default lqs uses a random search, but here exhaustive enumeration is possible,
so we use it.

If we move to the model for inverse speed:

> summary(hills2.lm) # omitting Knock Hill
Coefficients:

Value Std. Error t value Pr(>|t|)
(Intercept) 4.900 0.474 10.344 0.000

grad 0.008 0.002 5.022 0.000

Residual standard error: 1.28 on 32 degrees of freedom

6.6 Bootstrapping Linear Models 163

> summary(rlm(ispeed ~ grad, data = hills), cor = F)
Coefficients:

Value Std. Error t value
(Intercept) 5.176 0.381 13.585

grad 0.007 0.001 5.428

Residual standard error: 0.869 on 33 degrees of freedom
method="MM" results are very similar.
> # S: summary(lmRob(ispeed ~ grad, data = hills))

Value Std. Error t value Pr(>|t|)
(Intercept) 5.082 0.403 12.612 0.000

grad 0.008 0.002 5.055 0.000

Residual scale estimate: 0.819 on 33 degrees of freedom

> lqs(ispeed ~ grad, data = hills)
Coefficients:
(Intercept) grad
4.75 0.00805

Scale estimates 0.608 0.643

The results are in close agreement with the least-squares results after removing
Knock Hill.

6.6 Bootstrapping Linear Models

In frequentist inference we have to consider what might have happened but did
not. Linear models can arise exactly or approximately in a number of ways. The
most commonly considered form is

Y = Xβ + ε

in which only ε is considered to be random. This supposes that in all (hypothet-
ical) repetitions the samex points would have been chosen, but the responses
would vary. This is a plausible assumption for a designed experiment such as the
N, P, K experiment on page 165 and for an observational study such as Quine’s
with prespecified factors. It is less clearly suitable for the Scottish hill races, and
clearly not correct for Whiteside’s gas consumption data.

Another form of regression is sometimes referred to as therandom regressor
case in which the pairs(xi, yi) are thought of as a random sample from a pop-
ulation and we are interested in the regression functionf(x) = E

(
Y |X = x

)
which is assumed to be linear. This seems appropriate for the gas consumption
data. However, it is common to perform conditional inference in this case and
condition on the observedxs, converting this to a fixed-design problem. For ex-
ample, in the hill races the inferences drawn depend on whether certain races,
notably Bens of Jura, were included in the sample. As they were included, con-
clusions conditional on the set of races seems most pertinent. (There are other

164 Linear Statistical Models

ways that linear models can arise, including calibration problems and where both
x and y are measured with error about a true linear relationship.)

These considerations are particularly relevant when we consider bootstrap re-
sampling. The most obvious form of bootstrapping is to randomly sample pairs
(xi, yi) with replacement,8 which corresponds to randomly weighted regressions.
However, this may not be appropriate in not mimicking the assumed random vari-
ation and in some examples in producing singular fits with high probability. The
main alternative,model-based resampling, is to resample the residuals. After fit-
ting the linear model we have

yi = xiβ̂ + ei

and we create a new dataset byyi = xiβ̂+e∗i where the(e∗i) are resampled with
replacement from the residuals(ei). There are a number of possible objections to
this procedure. First, the residuals need not have mean zero if there is no intercept
in the model, and it is usual to subtract their mean. Second, they do not have the
correct variance or even the same variance. Thus we can adjust their variance by
resampling themodified residuals ri = e1/

√
1− hii, which have varianceσ2

from (6.3).
We see bootstrapping as having little place in least-squares regression. If the

errors are close to normal, the standard theory suffices. If not, there are better
methods of fitting than least-squares, orperhaps the data should be transformed
as in thequine dataset on page 171.

The distribution theory for the estimated coefficients in robust regression is
based on asymptotic theory, so we could use bootstrap estimates of variability as
an alternative. Resampling the residuals seems most appropriate for thephones
data.

library(boot)
fit <- lm(calls ~ year, data = phones)
ph <- data.frame(phones, res = resid(fit), fitted = fitted(fit))
ph.fun <- function(data, i) {

d <- data
d$calls <- d$fitted + d$res[i]
coef(update(fit, data=d))

}

(ph.lm.boot <- boot(ph, ph.fun, R = 999))
....
original bias std. error

t1* -260.0592 0.210500 95.3262
t2* 5.0415 -0.011469 1.5385

fit <- rlm(calls ~ year, method = "MM", data = phones)
ph <- data.frame(phones, res = resid(fit), fitted = fitted(fit))
(ph.rlm.boot <- boot(ph, ph.fun, R = 999))

....

8Davison and Hinkley (1997) call thiscase-based resampling.

6.7 Factorial Designs and Designed Experiments 165

Table 6.1: Layout of a classic N, P, K fractional factorial design. The response is yield (in
lbs/(1/70)acre-plot).

pk np — nk
49.5 62.8 46.8 57.0

n npk k p
59.8 58.5 55.5 56.0

p npk n k
62.8 55.8 69.5 55.0

n npk k p
62.0 48.8 45.5 44.2

np — nk pk
52.0 51.5 49.8 48.8

nk np pk —
57.2 59.0 53.2 56.0

original bias std. error
t1* -52.4230 2.354793 26.98130
t2* 1.1009 -0.014189 0.37449

(The rlm bootstrap runs took about fifteen minutes,9 and readers might like to
start with a smaller number of resamples.) These results suggest that the asymp-
totic theory forrlm is optimistic for this example, but as the residuals are clearly
serially correlated the validity of the bootstrap is equally in doubt. Statistical in-
ference really does depend on what one considers might have happened but did
not.

The bootstrap results can be investigated further by usingplot, andboot.ci
will give confidence intervals for the coefficients. The robust results have very
long tails.

6.7 Factorial Designs and Designed Experiments

Factorial designs are powerful tools in the design of experiments. Experimenters
often cannot afford to perform all the runs needed for a complete factorial ex-
periment, or they may not all be fitted into one experimental block. To see what
can be achieved, consider the following N, P, K (nitrogen, phosphate, potassium)
factorial experiment on the growth of peas which was conducted on six blocks
shown in Table 6.1.

Half of the design (technically a fractional factorial design) is performed in
each of six blocks, so each half occurs threetimes. (If we consider the variables to
take values±1, the halves are defined by even or odd parity, equivalently product
equal to+1 or −1.) Note that the NPK interaction cannot be estimated as it is
confounded with block differences, specifically with(b2 +b3+b4−b1−b5−b6).
An ANOVA table may be computed by

> (npk.aov <- aov(yield ~ block + N*P*K, data = npk))
....

Terms:

9UsingS-PLUS underLinux; R took 90 seconds.

166 Linear Statistical Models

block N P K N:P N:K
Sum of Squares 343.29 189.28 8.40 95.20 21.28 33.14

Deg. of Freedom 5 1 1 1 1 1
P:K Residuals

Sum of Squares 0.48 185.29
Deg. of Freedom 1 12

Residual standard error: 3.9294
1 out of 13 effects not estimable
Estimated effects are balanced
> summary(npk.aov)

Df Sum of Sq Mean Sq F Value Pr(F)
block 5 343.29 68.66 4.447 0.01594

N 1 189.28 189.28 12.259 0.00437
P 1 8.40 8.40 0.544 0.47490
K 1 95.20 95.20 6.166 0.02880

N:P 1 21.28 21.28 1.378 0.26317
N:K 1 33.14 33.14 2.146 0.16865
P:K 1 0.48 0.48 0.031 0.86275

Residuals 12 185.29 15.44

> alias(npk.aov)
....

Complete
(Intercept) block1 block2 block3 block4 block5 N P K

N:P:K 1 0.33 0.17 -0.3 -0.2
N:P N:K P:K

N:P:K
> coef(npk.aov)
(Intercept) block1 block2 block3 block4 block5

54.875 1.7125 1.6792 -1.8229 -1.0137 0.295
N P K N:P N:K P:K

2.8083 -0.59167 -1.9917 -0.94167 -1.175 0.14167

Note how theN:P:K interaction is silently omitted in the summary, although its
absence is mentioned in printingnpk.aov. The alias command shows which
effect is missing (the particular combinations corresponding to the use of Helmert
contrasts for the factorblock).

Only the N andK main effects are significant (we ignore blocks whose terms
are there precisely because we expect them to be important and so we must allow
for them). For two-level factors the Helmert contrast is the same as the sum
contrast (up to sign) giving−1 to the first level and+1 to the second level. Thus
the effects of adding nitrogen and potassium are5.62 and −3.98, respectively.
This interpretation is easier to see with treatment contrasts:

> options(contrasts = c("contr.treatment", "contr.poly"))
> npk.aov1 <- aov(yield ~ block + N + K, data = npk)
> summary.lm(npk.aov1)

....
Coefficients:

6.7 Factorial Designs and Designed Experiments 167

Value Std. Error t value Pr(>|t|)
....

N 5.617 1.609 3.490 0.003
K -3.983 1.609 -2.475 0.025

Residual standard error: 3.94 on 16 degrees of freedom

Note the use ofsummary.lm to give the standard errors. Standard errors of
contrasts can also be found from the functionse.contrast. The full form is
quite complex, but a simple use is:

> se.contrast(npk.aov1, list(N == "0", N == "1"), data = npk)
Refitting model to allow projection
[1] 1.6092

For highly regular designs such as this standard errors may also be found along
with estimates of means, effects and other quantities usingmodel.tables.

> model.tables(npk.aov1, type = "means", se = T)
....

N
0 1

52.067 57.683
....

Standard errors for differences of means
block N K
2.7872 1.6092 1.6092

replic. 4.0000 12.0000 12.0000

Generating designs

The three functions10 expand.grid, fac.design andoa.design can each be
used to construct designs such as our example.

Of these, expand.grid is the simplest. It is used in a similar way to
data.frame; the arguments may be named and the result is a data frame with
those names. The columns contain all combinations of values for each argument.
If the argument values are numeric the column is numeric; if they are anything
else, for example, character, the column is a factor. Consider an example:

> mp <- c("-", "+")
> (NPK <- expand.grid(N = mp, P = mp, K = mp))

N P K
1 - - -
2 + - -
3 - + -
4 + + -
5 - - +
6 + - +
7 - + +
8 + + +

10Only expand.grid is in R.

168 Linear Statistical Models

Note that the first column changes fastest and the last slowest. This is a single
complete replicate.

Our example used three replicates, eachsplit into two blocks so that the block
comparison is confounded with the highest-order interaction. We can construct
such a design in stages. First we find a half-replicate to be repeated three times
and form the contents of three of the blocks. The simplest way to do this is to use
fac.design :

blocks13 <- fac.design(levels = c(2, 2, 2),
factor= list(N=mp, P=mp, K=mp), rep = 3, fraction = 1/2)

The first two arguments give the numbers of levels and the factor names and level
labels. The third argument gives the number of replications (default 1). The
fraction argument may only be used for2p factorials. It may be given either
as a small negative power of 2, as here, or as adefining contrast formula. When
fraction is numerical the function chooses a defining contrast that becomes the
fraction attribute of the result. For half-replicates the highest-order interaction
is chosen to be aliased with the mean. To find the complementary fraction for
the remaining three blocks we need to use the defining contrast formula form for
fraction :

blocks46 <- fac.design(levels = c(2, 2, 2),
factor = list(N=mp, P=mp, K=mp), rep = 3, fraction = ~ -N:P:K)

(This is explained in the following.) To complete our design we put the blocks
together, add in theblock factor and randomize:

NPK <- design(block = factor(rep(1:6, each = 4)),
rbind(blocks13, blocks46))

i <- order(runif(6)[NPK$block], runif(24))
NPK <- NPK[i,] # Randomized

Using design instead ofdata.frame creates an object of classdesign that
inherits fromdata.frame. For most purposes designs and data frames are equiv-
alent, but some generic functions such asplot, formula andalias have useful
design methods.

Defining contrast formulae resemble model formulae in syntax only; the
meaning is quite distinct. There is no left-hand side. The right-hand side con-
sists of colon products of factors only, separated by+ or - signs. A plus (or
leading blank) specifies that the treatments withpositive signs for that contrast
are to be selected and a minus those withnegative signs. A formula such as
~A:B:C-A:D:E specifies a quarter-replicate consisting of the treatments that have
a positive sign in theABC interaction and a negative sign inADE.

Box, Hunter and Hunter (1978,§12.5) consider a27−4 design used for an
experiment in riding up a hill on a bicycle. The seven factors are Seat (up or
down), Dynamo (off or on), Handlebars (up or down), Gears (low or medium),
Raincoat (on or off), Breakfast (yes or no) and Tyre pressure (hard or soft). A
resolution III design was used, so the main effects are not aliased with each other.

6.8 An Unbalanced Four-Way Layout 169

Such a design cannot be constructed using a numerical fraction infac.design,
so the defining contrasts have to be known. Boxet al. use the design relations:

D = AB, E = AC, F = BC, G = ABC

which mean thatABD, ACE, BCF andABCG are all aliased with the mean,
and form the defining contrasts of the fraction. Whether we choose the positive
or negative halves is immaterial here.

> lev <- rep(2, 7)
> factors <- list(S=mp, D=mp, H=mp, G=mp, R=mp, B=mp, P=mp)
> (Bike <- fac.design(lev, factors,

fraction = ~ S:D:G + S:H:R + D:H:B + S:D:H:P))
S D H G R B P

1 - - - - - - -
2 - + + + + - -
3 + - + + - + -
4 + + - - + + -
5 + + + - - - +
6 + - - + + - +
7 - + - + - + +
8 - - + - + + +

Fraction: ~ S:D:G + S:H:R + D:H:B + S:D:H:P

(We choseP for pressure rather thanT for tyres sinceT and F are reserved
identifiers.)

We may check the symmetry of the design usingreplications :

> replications(~.^2, data = Bike)
S D H G R B P S:D S:H S:G S:R S:B S:P D:H D:G D:R D:B D:P H:G
4 4 4 4 4 4 4 2 2 2 2 2 2 2 2 2 2 2 2
H:R H:B H:P G:R G:B G:P R:B R:P B:P
2 2 2 2 2 2 2 2 2

Fractions may be specified either in a call tofac.design or subsequently using
the fractionate function.

The third function,oa.design, provides some resolution III designs (also
known asmain effect plans or orthogonal arrays) for factors at two or three levels.
Only low-order cases are provided, but these are the most useful in practice.

6.8 An Unbalanced Four-Way Layout

Aitkin (1978) discussed an observational study of S. Quine. The response is the
number of days absent from school in a year by children from a large town in
rural New South Wales, Australia. Thechildren were classified by four factors,
namely,

Age 4 levels: primary, first, second or third form
Eth 2 levels: aboriginal or non-aboriginal
Lrn 2 levels: slow or average learner
Sex 2 levels: male or female.

170 Linear Statistical Models

The dataset is included in the paper of Aitkin (1978) and is available as data
framequine in MASS. This has been explored several times already, but we now
consider a more formal statistical analysis.

There were 146 children in the study. The frequencies of the combinations of
factors are

> attach(quine)
> table(Lrn, Age, Sex, Eth)
, , F, A , , F, N

F0 F1 F2 F3 F0 F1 F2 F3
AL 4 5 1 9 AL 4 6 1 10
SL 1 10 8 0 SL 1 11 9 0

, , M, A , , M, N
F0 F1 F2 F3 F0 F1 F2 F3

AL 5 2 7 7 AL 6 2 7 7
SL 3 3 4 0 SL 3 7 3 0

(The output has been slightly rearranged to save space.) The classification is
unavoidably very unbalanced. There are no slow learners in formF3, but all
28 other cells are non-empty. In his paper Aitkin considers a normal analysis
on the untransformed response, but in the reply to the discussion he chooses a
transformed response,log(Days+ 1).

A casual inspection of the data shows that homoscedasticity is likely to be
an unrealistic assumption on the original scale, so our first step is to plot the cell
variances and standard deviations against the cell means.

Means <- tapply(Days, list(Eth, Sex, Age, Lrn), mean)
Vars <- tapply(Days, list(Eth, Sex, Age, Lrn), var)
SD <- sqrt(Vars)
par(mfrow = c(1, 2))
plot(Means, Vars, xlab = "Cell Means", ylab = "Cell Variances")
plot(Means, SD, xlab = "Cell Means", ylab = "Cell Std Devn.")

Missing values are silently omitted from the plot. Interpretation of the result in
Figure 6.5 requires some caution because ofthe small and widely different de-
grees of freedom on which each variance is based. Nevertheless the approximate
linearity of the standard deviations against the cell means suggests a logarithmic
transformation or something similar is appropriate. (See, for example, Rao, 1973,
§6g.)

Some further insight on the transformation needed is provided by considering
a model for the transformed observations

y(λ) =
{

(yλ − 1)/λ λ �= 0
log y λ = 0

where herey = Days+ α. (The positive constantα is added to avoid problems
with zero entries.) Rather than includeα as a second parameter we first consider
Aitkin’s choice of α = 1. Box and Cox (1964) show that the profile likelihood
function for λ is

L̂(λ) = const− n
2 log RSS(z(λ))

6.8 An Unbalanced Four-Way Layout 171

•

•
•• ••••

•

•

•
• •

•

•

•

•

• ••

•

•

•

•

Cell Means

C
el

l V
ar

ia
nc

es

10 20 30

0
20

0
40

0
60

0
80

0

•

•
•

• •
•

•

•

•

•

•

• •

•

•

•

•

• ••

•

•

•

•

Cell Means

C
el

l S
td

 D
ev

n.

10 20 30

0
5

10
15

20
25

30
Figure 6.5: Two diagnostic plots for the Quine data.

where z(λ) = y(λ)/ẏλ−1, ẏ is the geometric mean of the observations and
RSS(z(λ)) is the residual sum of squares for the regression ofz(λ).

Box & Cox suggest using the profile likelihood function for the largest linear
model to be considered as a guide in choosing a value forλ, which will then
remain fixed for any remaining analyses. Ideally other considerations from the
context will provide further guidance in the choice ofλ, and in any case it is
desirable to choose easily interpretable values such as square-root, log or inverse.

Our MASS functionboxcox calculates and (optionally) displays the Box–Cox
profile likelihood function, together with a horizontal line showing what would be
an approximate 95% likelihood ratio confidence interval forλ. The function is
generic and several calling protocols are allowed but a convenient one to use here
is with the same arguments aslm together with an additional (named) argument,
lambda, to provide the sequence at which the marginal likelihood is to be evalu-
ated. (By default the result is extended using a spline interpolation.)

Since the dataset has four empty cells the full modelEth*Sex*Age*Lrn has a
rank-deficient model matrix. Hence inS-PLUS we must usesingular.ok = T S+

to fit the model.

boxcox(Days+1 ~ Eth*Sex*Age*Lrn, data = quine, singular.ok = T,
lambda = seq(-0.05, 0.45, len = 20))

(Alternatively the first argument maybe a fitted model object that supplies all
needed information apart fromlambda.) The result is shown on the left-hand
panel of Figure 6.6 which suggests strongly that a log transformation is not opti-
mal whenα = 1 is chosen. An alternative one-parameter family of transforma-
tions that could be considered in this case is

t(y, α) = log(y + α)

Using the same analysis as presented in Box and Cox (1964) the profile log like-
lihood for α is easily seen to be

L̂(α) = const− n
2 log RSS{log(y + α)} −

∑
log(y + α)

172 Linear Statistical Models

lambda

lo
g-

Li
ke

lih
oo

d

0.0 0.1 0.2 0.3 0.4

-6
86

-6
84

-6
82

-6
80

 95%

alpha

lo
g

Li
ke

lih
oo

d

1 2 3 4 5 6

-6
87

-6
86

-6
85

-6
84

-6
83

-6
82

 95%

Figure 6.6: Profile likelihood for a Box–Cox transformation model with displacement
α = 1, left, and a displaced log transformation model, right.

It is interesting to see how this may be calculated directly using low-level tools,
in particular the functionsqr for the QR-decomposition andqr.resid for or-
thogonal projection onto the residual space. Readers are invited to look at our
functionslogtrans.default and boxcox.default.

logtrans(Days ~ Age*Sex*Eth*Lrn, data = quine,
alpha = seq(0.75, 6.5, len = 20), singular.ok = T)

The result is shown in the right-hand panel of Figure 6.6. If a displaced log
transformation is chosen a valueα = 2.5 is suggested, and we adopt this in our
analysis. Note thatα = 1 is outside the notional 95% confidence interval. It can
also be checked that withα = 2.5 the log transform is well within the range of
reasonable Box–Cox transformations to choose.

Model selection

The complete model,Eth*Sex*Age*Lrn, has a different parameter for each
identified group and hence contains allpossible simpler models for the mean as
special cases, but has little predictive or explanatory power. For a better insight
into the mean structure we need to find more parsimonious models. Before con-
sidering tools to prune or extend regression models it is useful to make a few
general points on the process itself.

Marginality restrictions

In regression models it is usually the case that not all terms are on an equal footing
as far as inclusion or removal is concerned. For example, in a quadratic regression
on a single variablex one would normally consider removing only the highest-
degree term,x2, first. Removing the first-degree term while the second-degree
one is still present amounts to forcing the fitted curve to be flat atx = 0, and
unless there were some good reason from the context to do this it would be an
arbitrary imposition on the model. Another way to view this is to note that if
we write a polynomial regression in terms of a new variablex� = x − α the

6.8 An Unbalanced Four-Way Layout 173

model remains in predictive terms the same, but only the highest-order coefficient
remains invariant. If, as is usually the case, we would like our model selection
procedure not to depend on the arbitrary choice of origin we must work only with
the highest-degree terms at each stage.

The linear term inx is said to bemarginal to the quadratic term, and the
intercept term is marginal to both. In a similar way if a second-degree term in two
variables,x1x2, is present, any linear terms in either variable or an intercept term
are marginal to it.

There are circumstances where a regression through the origin does make
sense, but in cases where the origin is arbitrary one would normally only consider
regression models where for each term present all terms marginal to it are also
present.

In the case of factors the situation is even more clear-cut. A two-factor in-
teractiona:b is marginal to any higher-order interaction that containsa and b.
Fitting a model such asa + a:b leads to a model matrix where the columns
corresponding toa:b are extended to compensate for the absent marginal term,
b, and the fitted values are the same as if it were present. Fitting models with
marginal terms removed such as witha*b - b generates a model with no read-
ily understood statistical meaning11 but updating models specified in this way
using update changes the model matrix so that the absent marginal term again
has no effect on the fitted model. In other words, removing marginal factor terms
from a fitted model is either statistically meaningless or futile in the sense that the
model simply changes its parametrization to something equivalent.

Variable selection for the Quine data

The anova function when given a single fitted-model object argument constructs
a sequential analysis of variance table. That is, a sequence of models is fitted
by expanding the formula, arranging the terms in increasing order of marginality
and including one additional term for eachrow of the table. The process is order-
dependent for non-orthogonal designs and several different orders may be needed
to appreciate the analysis fully if thenon-orthogonality is severe. For an orthog-
onal design the process is not order-dependent provided marginality restrictions
are obeyed.

To explore the effect of adding or dropping terms from a model our two func-
tions addterm and dropterm are usually more convenient. These allow the
effect of, respectively, adding or removing individual terms from a model to be
assessed, where the model is defined by a fitted-model object given as the first
argument. Foraddterm a second argument is required to specify the scope of
the terms considered for inclusion. This may be a formula or an object defining a
formula for a larger model. Terms are included or removed in such a way that the
marginality principle for factor terms is obeyed; for purely quantitative regressors
this has to be managed by the user.

11Marginal terms are sometimes removed in this way in order to calculate what are known as
‘Type III sums of squares’ but we have yet to see a situation where this makes compelling statisti-
cal sense. If they are needed, they can be computed bysummary.aov in S-PLUS.

174 Linear Statistical Models

Both functions are generic and compute the change in AIC (Akaike, 1974)

AIC = −2 maximized log-likelihood+ 2 # parameters

Since the log-likelihood is defined only up to a constant depending on the data,
this is also true of AIC. For a regression model withn observations,p parame-
ters and normally-distributed errors the log-likelihood is

L(β, σ2; y) = const− n
2 log σ2 − 1

2σ2 ‖y −Xβ‖2

and on maximizing overβ we have

L(β̂, σ2; y) = const− n
2 log σ2 − 1

2σ2 RSS

Thus if σ2 is known, we can take

AIC = RSS
σ2 + 2p+ const

but if σ2 is unknown,

L(β̂, σ̂2; y) = const− n
2 log σ̂2 − n

2 , σ̂2 = RSS/n

and so
AIC = n log(RSS/n) + 2p+ const

For known σ2 it is conventional to use Mallows’Cp,

Cp = RSS/σ2 + 2p− n

(Mallows, 1973) and in this caseaddterm and dropterm label their output as
Cp.

For an example consider removing the four-way interaction from the complete
model and assessing which three-way terms might be dropped next.

> quine.hi <- aov(log(Days + 2.5) ~ .^4, quine)
> quine.nxt <- update(quine.hi, . ~ . - Eth:Sex:Age:Lrn)
> dropterm(quine.nxt, test = "F")
Single term deletions
....

Df Sum of Sq RSS AIC F Value Pr(F)
<none> 64.099 -68.184

Eth:Sex:Age 3 0.9739 65.073 -71.982 0.6077 0.61125
Eth:Sex:Lrn 1 1.5788 65.678 -66.631 2.9557 0.08816
Eth:Age:Lrn 2 2.1284 66.227 -67.415 1.9923 0.14087
Sex:Age:Lrn 2 1.4662 65.565 -68.882 1.3725 0.25743

Clearly droppingEth:Sex:Age most reduces AIC but droppingEth:Sex:Lrn
would increase it. Note that only non-marginal terms are included; none are sig-
nificant in a conventionalF -test.

Alternatively we could start from the simplest model and consider adding
terms to reduceCp; in this case the choice of scale parameter is important, since
the simple-minded choice is inflated and may over-penalize complex models.

6.8 An Unbalanced Four-Way Layout 175

> quine.lo <- aov(log(Days+2.5) ~ 1, quine)
> addterm(quine.lo, quine.hi, test = "F")
Single term additions
....

Df Sum of Sq RSS AIC F Value Pr(F)
<none> 106.79 -43.664

Eth 1 10.682 96.11 -57.052 16.006 0.00010
Sex 1 0.597 106.19 -42.483 0.809 0.36981
Age 3 4.747 102.04 -44.303 2.202 0.09048
Lrn 1 0.004 106.78 -41.670 0.006 0.93921

It appears that onlyEth andAge might be useful, although in fact all factors are
needed since some higher-way interactions lead to large decreases in the residual
sum of squares.

Automated model selection

Our functionstepAIC may be used to automate the process of stepwise selection.
It requires a fitted model to define the starting process (one somewhere near the
final model is probably advantageous), a list of two formulae defining the upper
(most complex) and lower (most simple) models for the process to consider and
a scale estimate. If a large model is selected as the starting point, thescope and
scale arguments have generally reasonable defaults, but for a small model where
the process is probably to be one of adding terms, they will usually need both to
be supplied. (A further argument,direction, may be used to specify whether
the process should only add terms, only remove terms, or do either as needed.)

By default the function produces a verbose account of the steps it takes which
we turn off here for reasons of space, but which the user will often care to note.
The anova component of the result shows the sequence of steps taken and the
reduction in AIC orCp achieved.

> quine.stp <- stepAIC(quine.nxt,
scope = list(upper = ~Eth*Sex*Age*Lrn, lower = ~1),
trace = F)

> quine.stp$anova
....

Step Df Deviance Resid. Df Resid. Dev AIC
1 120 64.099 -68.184
2 - Eth:Sex:Age 3 0.9739 123 65.073 -71.982
3 - Sex:Age:Lrn 2 1.5268 125 66.600 -72.597

At this stage we might want to look further at the final model from a significance
point of view. The result ofstepAIC has the same class as its starting point
argument, so in this casedropterm may be used to check each remaining non-
marginal term for significance.

> dropterm(quine.stp, test = "F")
Df Sum of Sq RSS AIC F Value Pr(F)

<none> 66.600 -72.597
Sex:Age 3 10.796 77.396 -56.663 6.7542 0.00029

Eth:Sex:Lrn 1 3.032 69.632 -68.096 5.6916 0.01855
Eth:Age:Lrn 2 2.096 68.696 -72.072 1.9670 0.14418

176 Linear Statistical Models

The term Eth:Age:Lrn is not significant at the conventional 5% significance
level. This suggests, correctly, that selecting terms on the basis of AIC can be
somewhat permissive in its choice of terms, being roughly equivalent to choosing
an F -cutoff of 2. We can proceed manually

> quine.3 <- update(quine.stp, . ~ . - Eth:Age:Lrn)
> dropterm(quine.3, test = "F")

Df Sum of Sq RSS AIC F Value Pr(F)
<none> 68.696 -72.072
Eth:Age 3 3.031 71.727 -71.768 1.8679 0.13833
Sex:Age 3 11.427 80.123 -55.607 7.0419 0.00020
Age:Lrn 2 2.815 71.511 -70.209 2.6020 0.07807

Eth:Sex:Lrn 1 4.696 73.391 -64.419 8.6809 0.00383
> quine.4 <- update(quine.3, . ~ . - Eth:Age)
> dropterm(quine.4, test = "F")

Df Sum of Sq RSS AIC F Value Pr(F)
<none> 71.727 -71.768
Sex:Age 3 11.566 83.292 -55.942 6.987 0.000215
Age:Lrn 2 2.912 74.639 -69.959 2.639 0.075279

Eth:Sex:Lrn 1 6.818 78.545 -60.511 12.357 0.000605
> quine.5 <- update(quine.4, . ~ . - Age:Lrn)
> dropterm(quine.5, test = "F")

Model:
log(Days + 2.5) ~ Eth + Sex + Age + Lrn + Eth:Sex + Eth:Lrn

+ Sex:Age + Sex:Lrn + Eth:Sex:Lrn
Df Sum of Sq RSS AIC F Value Pr(F)

<none> 74.639 -69.959
Sex:Age 3 9.9002 84.539 -57.774 5.836 0.0008944

Eth:Sex:Lrn 1 6.2988 80.937 -60.130 11.140 0.0010982

or by settingk = 4 in stepAIC. We obtain a model equivalent toSex/(Age +
Eth*Lrn)which is the same as that found by Aitkin (1978), apart from his choice
of α = 1 for the displacement constant. (However, when we consider a negative
binomial model for the same data in Section 7.4 a more extensive model seems to
be needed.)

Standard diagnostic checks on the residuals from our final fitted model show
no strong evidence of any failure of the assumptions, as the reader may wish to
verify.

It can also be verified that had we started from a very simple model and
worked forwards we would have stopped much sooner with a much simpler
model, even using the same scale estimate. This is because the major reduc-
tions in the residual sum of squares only occur when the third-order interaction
Eth:Sex:Lrn is included.

There are other tools inS-PLUS for model selection calledstepwise and
leaps,12 but these only apply for quantitative regressors. There is also no possi-
bility of ensuring that marginality restrictions are obeyed.

12There are equivalent functions in theR packageleaps on CRAN.

6.9 Predicting Computer Performance 177

lambda

lo
g-

Li
ke

lih
oo

d

0.0 0.2 0.4 0.6 0.8 1.0

-1
40

0
-1

35
0

-1
30

0
-1

25
0

 95%

lambda

lo
g-

Li
ke

lih
oo

d

-0.2 0.0 0.2 0.4 0.6 0.8

-1
45

0
-1

40
0

-1
35

0
-1

30
0

-1
25

0

 95%

Figure 6.7: Box–Cox plots for thecpus data. Left: original regressors. Right: discretized
regressors.

6.9 Predicting Computer Performance

Ein-Dor and Feldmesser (1987) studied data on the performance on a benchmark
of a mix of minicomputers and mainframes. The measure was normalized relative
to an IBM 370/158–3. There were six machine characteristics: the cycle time
(nanoseconds), the cache size (Kb), the main memory size (Kb) and number of
channels. (For the latter two there are minimum and maximum possible values;
what the actual machine tested had is unspecified.) The original paper gave a
linear regression for the square root of performance, but log scale looks more
intuitive.

We can consider the Box–Cox family of transformations, Figure 6.7.

boxcox(perf ~ syct + mmin + mmax + cach + chmin + chmax,
data = cpus, lambda = seq(0, 1, 0.1))

which tends to suggest a power of around 0.3 (and excludes both 0 and 0.5 from
its 95% confidence interval). However, this does not allow for the regressors to be
transformed, and many of them would be most naturally expressed on log scale.
One way to allow the variables to be transformed is to discretize them; we show
a more sophisticated approach in Section 8.8.

cpus1 <- cpus
attach(cpus)
for(v in names(cpus)[2:7])

cpus1[[v]] <- cut(cpus[[v]], unique(quantile(cpus[[v]])),
include.lowest = T)

detach()
boxcox(perf ~ syct + mmin + mmax + cach + chmin + chmax,

data = cpus1, lambda = seq(-0.25, 1, 0.1))

which does give a confidence interval including zero.
The purpose of this study is to predict computer performance. We randomly

select 100 examples for fitting the models and test the performance on the remain-
ing 109 examples.

178 Linear Statistical Models

> set.seed(123)
> cpus2 <- cpus[, 2:8] # excludes names, authors’ predictions
> cpus.samp <- sample(1:209, 100)
> cpus.lm <- lm(log10(perf) ~ ., data = cpus2[cpus.samp,])
> test.cpus <- function(fit)

sqrt(sum((log10(cpus2[-cpus.samp, "perf"]) -
predict(fit, cpus2[-cpus.samp,]))^2)/109)

> test.cpus(cpus.lm)
[1] 0.21295
> cpus.lm2 <- stepAIC(cpus.lm, trace = F)
> cpus.lm2$anova

Step Df Deviance Resid. Df Resid. Dev AIC
1 93 3.2108 -329.86
2 - syct 1 0.013177 94 3.2240 -331.45
> test.cpus(cpus.lm2)
[1] 0.21711

So selecting a smaller model does not improve the performance on this random
split. We consider a variety of non-linear models for this example in later chapters.

6.10 Multiple Comparisons

As we all know, the theory ofp-values of hypothesis tests and of the coverage
of confidence intervals applies to pre-planned analyses. However, the only cir-
cumstances in which an adjustment is routinely made for testing after looking at
the data is in multiple comparisons of contrasts in designed experiments. This is
sometimes known aspost hoc adjustment.

Consider the experiment on yields of barley in our datasetimmer.13 This has
the yields of five varieties of barley at six experimental farms in both 1931 and
1932; we average the results for the two years. An analysis of variance gives

> immer.aov <- aov((Y1 + Y2)/2 ~ Var + Loc, data = immer)
> summary(immer.aov)

Df Sum of Sq Mean Sq F Value Pr(F)
Var 4 2655 663.7 5.989 0.0024526
Loc 5 10610 2122.1 19.148 0.0000005

Residuals 20 2217 110.8

The interest is in the difference in yield between varieties, and there is a
statistically significant difference.We can see the mean yields by a call to
model.tables.

> model.tables(immer.aov, type = "means", se = T, cterms = "Var")
....

Var
M P S T V

94.39 102.54 91.13 118.20 99.18

13The Trellis datasetbarley discussed in Cleveland (1993) is a more extensive version of the
same dataset.

6.10 Multiple Comparisons 179

(

(

(

(

(

(

(

(

(

(

)

)

)

)

)

)

)

)

)

)

M-P

M-S

M-T

M-V

P-S

P-T

P-V

S-T

S-V

T-V

-50 -40 -30 -20 -10 0 10 20 30 40

simultaneous 95 % confidence limits, Tukey method

response variable: Var

Figure 6.8: Simultaneous 95% confidence intervals for variety comparisons in theimmer
dataset.

Standard errors for differences of means
Var

6.078
replic. 6.000

This suggests that varietyT is different from all the others, as a pairwise signif-
icant difference at 5% would exceed6.078 × t20(0.975) ≈ 12.6; however the
comparisons to be made have been selected after looking at the fit.

Functionmulticomp14 allows us to computesimultaneous confidence inter-
vals in this problem, that is, confidence intervals such that the probability that
they cover the true values for all of the comparisons considered is bounded above
by 5% for 95% confidence intervals. We can also plot the confidence intervals
(Figure 6.8) by

> multicomp(immer.aov, plot = T) # S-PLUS only
95 % simultaneous confidence intervals for specified
linear combinations, by the Tukey method

critical point: 2.9925
response variable: (Y1 + Y2)/2

intervals excluding 0 are flagged by ’****’

Estimate Std.Error Lower Bound Upper Bound
M-P -8.15 6.08 -26.300 10.00
M-S 3.26 6.08 -14.900 21.40
M-T -23.80 6.08 -42.000 -5.62 ****
M-V -4.79 6.08 -23.000 13.40
P-S 11.40 6.08 -6.780 29.60
P-T -15.70 6.08 -33.800 2.53
P-V 3.36 6.08 -14.800 21.50
S-T -27.10 6.08 -45.300 -8.88 ****

14Available inS-PLUS, but not inR.

180 Linear Statistical Models

S-V -8.05 6.08 -26.200 10.10
T-V 19.00 6.08 0.828 37.20 ****

This does not allow us to conclude that varietyT has a significantly different
yield than varietyP.

We can do the Tukey multiple comparison test inR by

> (tk <- TukeyHSD(immer.aov, which = "Var"))
Tukey multiple comparisons of means
95% family-wise confidence level

Fit: aov(formula = (Y1 + Y2)/2 ~ Var + Loc, data = immer)
$Var

diff lwr upr
P-M 8.1500 -10.0376 26.33759
S-M -3.2583 -21.4459 14.92925
T-M 23.8083 5.6207 41.99592
V-M 4.7917 -13.3959 22.97925
S-P -11.4083 -29.5959 6.77925
T-P 15.6583 -2.5293 33.84592
V-P -3.3583 -21.5459 14.82925
T-S 27.0667 8.8791 45.25425
V-S 8.0500 -10.1376 26.23759
V-T -19.0167 -37.2043 -0.82908

> plot(tk)

We may want to restrict the set of comparisons, for example to comparisons
with a control treatment. The datasetoats is discussed on page 282; here we
ignore the split-plot structure.

> oats1 <- aov(Y ~ N + V + B, data = oats)
> summary(oats1)

Df Sum of Sq Mean Sq F Value Pr(F)
N 3 20020 6673.5 28.460 0.000000
V 2 1786 893.2 3.809 0.027617
B 5 15875 3175.1 13.540 0.000000

Residuals 61 14304 234.5

> multicomp(oats1, focus = "V") # S-PLUS only

95 % simultaneous confidence intervals for specified
linear combinations, by the Tukey method

critical point: 2.4022
response variable: Y

intervals excluding 0 are flagged by ’****’

Estimate Std.Error Lower Bound
Golden.rain-Marvellous -5.29 4.42 -15.90

6.10 Multiple Comparisons 181

Golden.rain-Victory 6.88 4.42 -3.74
Marvellous-Victory 12.20 4.42 1.55

Upper Bound
Golden.rain-Marvellous 5.33

Golden.rain-Victory 17.50
Marvellous-Victory 22.80 ****

> # R: (tk <- TukeyHSD(oats1, which = "V"))
Tukey multiple comparisons of means
95% family-wise confidence level

Fit: aov(formula = Y ~ N + V + B, data = oats)
$V

diff lwr upr
Marvellous-Golden.rain 5.2917 -5.3273 15.9107
Victory-Golden.rain -6.8750 -17.4940 3.7440
Victory-Marvellous -12.1667 -22.7857 -1.5477

> plot(tk)

> multicomp(oats1, focus = "N", comparisons = "mcc", control = 1)
....

Estimate Std.Error Lower Bound Upper Bound
0.2cwt-0.0cwt 19.5 5.1 7.24 31.8 ****
0.4cwt-0.0cwt 34.8 5.1 22.60 47.1 ****
0.6cwt-0.0cwt 44.0 5.1 31.70 56.3 ****

Note that we need to specify the control level; perversely by default the last level
is chosen. We might also want to know if all the increases in nitrogen give signif-
icant increases in yield, which we can examine by

> lmat <- matrix(c(0,-1,1,rep(0, 11), 0,0,-1,1, rep(0,10),
0,0,0,-1,1,rep(0,9)), , 3,

dimnames = list(NULL,
c("0.2cwt-0.0cwt", "0.4cwt-0.2cwt", "0.6cwt-0.4cwt")))

> multicomp(oats1, lmat = lmat, bounds = "lower",
comparisons = "none")

....
Estimate Std.Error Lower Bound

0.2cwt-0.0cwt 19.50 5.1 8.43 ****
0.4cwt-0.2cwt 15.30 5.1 4.27 ****
0.6cwt-0.4cwt 9.17 5.1 -1.90

There is a bewildering variety of methods for multiple comparisons reflected
in the options formulticomp. Miller (1981), Hsu (1996) and Yandell (1997,
Chapter 6) give fuller details. Do remember that this tackles only part of the
problem; the analyses here have been done after selecting a model and specific
factors on which to focus. The allowance for multiple comparisons is only over
contrasts of one selected factor in one selected model.

Chapter 7

Generalized Linear Models

Generalized linear models (GLMs) extend linear models to accommodate both
non-normal response distributions and transformations to linearity. (We assume
that Chapter 6 has been read before this chapter.) The essay by Firth (1991) gives
a good introduction to GLMs; the comprehensive reference is McCullagh and
Nelder (1989).

A generalized linear model may be described by the following assumptions.

• There is a responsey observed independently at fixed values of stimulus
variablesx1, . . . , xp.

• The stimulus variables may only influence the distribution ofy through a
single linear function called thelinear predictor η = β1x1 + · · ·+ βpxp.

• The distribution ofy has density of the form

f(yi; θi, ϕ) = exp [Ai {yiθi − γ(θi)} /ϕ+ τ(yi, ϕ/Ai)] (7.1)

where ϕ is a scale parameter (possibly known),Ai is a known prior
weight and parameterθi depends upon the linear predictor.

• The meanµ is a smooth invertible function of the linear predictor:

µ = m(η), η = m−1(µ) = �(µ)

The inverse function�(·) is called thelink function.

Note thatθ is also an invertible function ofµ, in fact θ = (γ′)−1(µ) as we show
in the following. If ϕ were known the distribution ofy would be a one-parameter
canonical exponential family. An unknownϕ is handled as a nuisance parameter
by moment methods.

GLMs allow a unified treatment of statistical methodology for several impor-
tant classes of models. We consider a few examples.

Gaussian For a normal distributionϕ = σ2 and we can write

log f(y) =
1
ϕ

{
yµ− 1

2µ
2 − 1

2y
2
}
− 1

2 log(2πϕ)

so θ = µ and γ(θ) = θ2/2.

183

184 Generalized Linear Models

Table 7.1: Families and link functions. The default link is denoted by D.

Family Name

Link binomial Gamma gaussian
inverse.-
gaussian poisson

logit D
probit •
cloglog •
identity • D •
inverse D
log • D
1/mu^2 D
sqrt •

Poisson For a Poisson distribution with meanµ we have

log f(y) = y log µ− µ− log(y !)

so θ = logµ, ϕ = 1 and γ(θ) = µ = eθ.

Binomial For a binomial distribution with fixed number of trialsa and param-
eter p we take the response to bey = s/a where s is the number of
‘successes’. The density is

log f(y) = a

[
y log

p

1− p + log(1− p)
]

+ log
(
a

ay

)
so we takeAi = ai, ϕ = 1, θ to be the logit transform ofp and γ(θ) =
− log(1− p) = log(1 + eθ).

The functions supplied withS for handling generalized linear modelling dis-
tributions includegaussian, binomial, poisson, inverse.gaussian and
Gamma.

Each response distribution allows a variety of link functions to connect the
mean with the linear predictor. Those automatically available are given in Ta-
ble 7.1. The combination of response distribution and link function is called the
family of the generalized linear model.

For n observations from a GLM the log-likelihood is

l(θ, ϕ;Y) =
∑

i

[Ai {yiθi − γ(θi)} /ϕ+ τ(yi, ϕ/Ai)] (7.2)

and this has score function forθ of

U(θ) = Ai {yi − γ′(θi)} /ϕ (7.3)

From this it is easy to show that

E
(
yi

)
= µi = γ′(θi) var

(
yi

)
=

ϕ

Ai
γ′′(θi)

7 Generalized Linear Models 185

Table 7.2: Canonical (default) links and variance functions.

Family Canonical link Name Variance Name

binomial log(µ/(1 − µ)) logit µ(1 − µ) mu(1-mu)

Gamma −1/µ inverse µ2 mu^2

gaussian µ identity 1 constant

inverse.gaussian −2/µ2 1/mu^2 µ3 mu^3

poisson log µ log µ mu

(See, for example, McCullagh and Nelder, 1989,§2.2.) It follows immediately
that

E
(
∂2l(θ, ϕ; y)
∂θ ∂ϕ

)
= 0

Henceθ andϕ, or more generallyβ andϕ, areorthogonal parameters.
The function defined byV (µ) = γ′′(θ(µ)) is called thevariance function.
For each response distribution the link function� = (γ′)−1 for which θ ≡ η

is called thecanonical link. If X is the model matrix, soη = Xβ, it is easy
to see that withϕ known, A = diagAi and the canonical link thatXTAy is
a minimal sufficient statistic forβ. Also using (7.3) the score equations for the
regression parametersβ reduce to

XTAy = XTAµ̂ (7.4)

This relation is sometimes described by saying that the “observed and fitted values
have the same (weighted) marginal totals.” Equation (7.4) is the basis for certain
simple fitting procedures, for example, Stevens’ algorithm for fitting an additive
model to a non-orthogonal two-way layout by alternate row and column sweeps
(Stevens, 1948), and the Deming and Stephan (1940) oriterative proportional
scaling algorithm for fitting log-linear models to frequency tables (see Darroch
and Ratcliff, 1972).

Table 7.2 shows the canonical links and variance functions. The canonical link
function is the default link for the families catered for by theS software (except
for the inverse Gaussian, where the factor of two is dropped).

Iterative estimation procedures

Since explicit expressions for the maximum likelihood estimators are not usually
available, estimates must be calculated iteratively. It is convenient to give an
outline of the iterative procedure here; for a more complete description the reader
is referred to McCullagh and Nelder (1989,§2.5, pp. 40ff) or Firth (1991,§3.4).
The scheme is sometimes known by the acronym IWLS, foriterative weighted
least squares.

An initial estimate to the linear predictor is found by some guarded version of
η̂0 = �(y). (Guarding is necessary to prevent problems such as taking logarithms

186 Generalized Linear Models

of zero.) Defineworking weights W andworking values z by

W =
A

V

(
dµ
dη

)2

, z = η +
y − µ
dµ/dη

Initial values forW0 and z0 can be calculated from the initial linear predictor.
At iteration k a new approximation to the estimate ofβ is found by a

weighted regression of the working valueszk on X with weightsWk. This
provides a new linear predictor and hence new working weights and values which
allow the iterative process to continue. The difference between this process and
a Newton–Raphson scheme is that the Hessian matrix is replaced by its expecta-
tion. This statistical simplification was apparently first used in Fisher (1925), and
is often calledFisher scoring. The estimate of the large sample variance ofβ̂ is
ϕ̂(XT ŴX)−1, which is available as a by-product of the iterative process. It is
easy to see that the iteration scheme forβ̂ does not depend on the scale parameter
ϕ.

This iterative scheme depends on the response distribution only through its
mean and variance functions. This has led to ideas ofquasi-likelihood, imple-
mented in the familyquasi.

The analysis of deviance

A saturated model is one in which the parametersθi, or almost equivalently the
linear predictorsηi, are free parameters. It is thenclear from (7.3) that the maxi-
mum likelihood estimator ofθi = θ(yi) is obtained byyi = γ′(θ̂i) = µ̂i which
is also a special case of (7.4). Denote the saturated model byS.

Assume temporarily that the scale parameterϕ is known and has value1.
Let M be a model involvingp < n regression parameters, and letθ̂i be the
maximum likelihood estimate ofθi underM . Twice the log-likelihood ratio
statistic for testingM within S is given by

DM = 2
n∑

i=1

Ai

[{
yiθ(yi)− γ (θ(yi))

}
−

{
yiθ̂i − γ(θ̂i)

}]
(7.5)

The quantityDM is called thedeviance of modelM , even when the scale pa-
rameter is unknown or is known to have a value other than one. In the latter
caseDM/ϕ, the difference in twice the log-likelihood, is known as thescaled
deviance. (Confusingly, sometimes either is called theresidual deviance, for ex-
ample, McCullagh and Nelder, 1989, p. 119.)

For a Gaussian family with identity link the scale parameterϕ is the variance
andDM is the residual sum of squares. Hence in this case the scaled deviance
has distribution

DM/ϕ ∼ χ2
n−p (7.6)

leading to the customary unbiased estimator

ϕ̂ =
DM

n− p (7.7)

7.1 Functions for Generalized Linear Modelling 187

An alternative estimator is the sum of squares of the standardized residuals di-
vided by the residual degrees of freedom

ϕ̃ =
1

n− p
∑

i

(yi − µ̂i)2

V (µ̂i)/Ai
(7.8)

whereV (µ) is the variance function. Note that̃ϕ = ϕ̂ for the Gaussian family,
but in general they differ.

In other cases the distribution (7.6) for the deviance underM may be ap-
proximately correct suggestinĝϕ as an approximately unbiased estimator ofϕ.
It should be noted that sufficient (if notalways necessary) conditions under which
(7.6) becomes approximately true are that the individual distributions for the com-
ponentsyi should become closer to normal form and the link effectively closer
to an identity link. The approximation will oftennot improve as the sample size
n increases since the number of parameters underS also increases and the usual
likelihood ratio approximation argumentdoes not apply. Nevertheless, (7.6) may
sometimes be a good approximation, for example, in a binomial GLM with large
values ofai. Firth (1991, p. 69) discusses this approximation, including the ex-
treme case of a binomial GLM with only one trial per case, that is, withai = 1.

Let M0 ⊂M be a submodel withq < p regression parameters and consider
testingM0 within M . If ϕ is known, by the usual likelihood ratio argument
underM0 we have a test given by

DM0 −DM

ϕ
∼.. χ2

p−q (7.9)

where ∼.. denotes “is approximately distributed as.” The distribution is exact
only in the Gaussian family with identity link. Ifϕ is not known, by analogy
with the Gaussian case it is customary to use the approximate result

(DM0 −DM)
ϕ̂ (p− q)

∼.. Fp−q,n−p (7.10)

although this must be used with some caution in non-Gaussian cases.

7.1 Functions for Generalized Linear Modelling

The linear predictor part of a generalized linear model may be specified by a
model formula using the same notation and conventions as linear models. Gener-
alized linear models also require the family to be specified, that is, the response
distribution, the link function and perhaps the variance function forquasi mod-
els.

The fitting function isglm for which the main arguments are

glm(formula, family, data, weights, control)

188 Generalized Linear Models

The family argument is usually given as the name of one of the standard family
functions listed under “Family Name” in Table 7.1. Where there is a choice of
links, the name of the link may also be supplied in parentheses as a parameter,
for examplebinomial(link=probit). (The variance function for thequasi
family may also be specified in this way.) For user-defined families (such as our
negative.binomial discussed in Section 7.4) other arguments to the family
function may be allowed or even required.

Prior weightsAi may be specified using theweights argument.
The iterative process can be controlled by many parameters. The only ones

that are at all likely to need altering aremaxit, which controls the maximum
number of iterations and whose default value of10 is occasionally too small,
trace which will often be set astrace=T to trace the iterative process, and
epsilon which controls the stopping rule for convergence. The convergence
criterion is to stop if

|deviance(i) − deviance(i−1)| < ε(deviance(i−1) + ε)

(This comes from reading theS-PLUS code1and is not as described in Cham-
bers and Hastie, 1992, p. 243.) It is quite often necessary to reduce the tolerance
epsilon whose default value is10−4. Under some circumstances the conver-
gence of the IWLS algorithm can be extremely slow, when the change in deviance
at each step can be small enough for premature stopping to occur with the default
ε.

Generic functions with methods forglm objects includecoef, resid,
print, summary and deviance. It is useful to have aglm method function
to extract the variance-covariance matrix of the estimates. This can be done using
part of the result ofsummary:

vcov.glm <- function(obj) {
so <- summary(obj, corr = F)
so$dispersion * so$cov.unscaled

}

Our library sectionMASS contains the generic function,vcov, and methods for
objects of classeslm and nls as well asglm.

For glm fitted-model objects theanova function allows an additional ar-
gument test to specify which test is to be used. Two possible choices are
test = "Chisq" for chi-squared tests using (7.9) andtest = "F" for F -tests
using (7.10). The default istest = "Chisq" for the binomial and Poisson fam-
ilies, otherwisetest = "F".

The scale parameterφ is used only within thesummary andanova methods
and for standard errors for prediction. It can be supplied via thedispersion
argument, defaulting to 1 for binomial and Poisson fits, and to (7.8) otherwise.
(See Section 7.5 for estimatingφ in the binomial and Poisson families.)

1R adds0.1 rather thanε .

7.1 Functions for Generalized Linear Modelling 189

Prediction and residuals

The predict method function forglm has atype argument to specify what
is to be predicted. The default istype = "link" which produces predictions
of the linear predictorη. Predictions on the scale of the meanµ (for example,
the fitted valueŝµi) are specified bytype = "response". There is ase.fit
argument that if true asks for standard errors to be returned.

For glm models there are four types of residual that may be requested, known
asdeviance, working, Pearson andresponse residuals. The response residuals are
simply yi − µ̂i. The Pearson residuals are a standardized version of the response
residuals,(yi − µ̂i)/

√
V̂i. The working residuals come from the last stage of the

iterative process,(yi − µ̂i)
/

dµi/dηi. The deviance residualsdi are defined
as the signed square roots of the summands of the deviance (7.5) taking the same
sign asyi − µ̂i.

For Gaussian families all four types of residual are identical. For binomial
and Poisson GLMs the sum of the squared Pearson residuals is the Pearson chi-
squared statistic, which often approximates the deviance, and the deviance and
Pearson residuals are usually then very similar.

Method functions for theresid function have an argumenttype that de-
faults to type = "deviance" for objects of classglm. Other values are
"response", "pearson" or "working"; these may be abbreviated to the initial
letter. Deviance residuals are the most useful for diagnostic purposes.

Concepts of leverage and its effect on the fit are as important for GLMs as
they are in linear regression, and are discussed in some detail by Davison and
Snell (1991) and extensively for binomial GLMs by Collett (1991). On the other
hand, they seem less often used, as GLMs are most often used either for simple
regressions or for contingency tables where, as in designed experiments, high
leverage cannot occur.

Model formulae

The model formula language for GLMs is slightly more general than that de-
scribed in Section 6.2 for linear models in that the functionoffset may be used.
Its effect is to evaluate its argument and to add it to the linear predictor, equivalent
to enclosing the argument inI() and forcing the coefficient to be one.

Note that offset can be used with the formulae oflm or aov, but it is
completely ignored inS-PLUS, without any warning. Of course, with ordinary
linear models the same effect can be achieved by subtracting the offset from the
dependent variable, but if the more intuitive formula with offset is desired, it can
be used withglm and thegaussian family. For example, library sectionMASS
contains a datasetanorexia that contains the pre- and post-treatment weights
for a clinical trial of three treatment methods for patients with anorexia. A natural
model to consider would be

ax.1 <- glm(Postwt ~ Prewt + Treat + offset(Prewt),
family = gaussian, data = anorexia)

190 Generalized Linear Models

Sometimes as here a variable is included both as a free regressor and as an offset to
allow a test of the hypothesis that the regression coefficient is one or, by extension,
any specific value.

If we had fitted this model omitting the offset but usingPostwt - Prewt
on the left side of the formula, predictions from the model would have been of
weight gains, not the actual post-treatment weights. Hence another reason to use
an offset rather than an adjusted dependent variable is to allow direct predictions
from the fitted model object.

The default Gaussian family

A call to glm with the defaultgaussian family achieves the same purpose as
a call to lm but less efficiently. Thegaussian family is not provided with a
choice of links, so no argument is allowed. If a problem requires a Gaussian fam-
ily with a non-identity link, this can usually be handled using thequasi fam-
ily. (Indeed yet another, even more inefficient, way to emulatelm with glm is
to use the familyquasi(link = identity, variance = constant).) Al-
though thegaussian family is the default, it is virtually never used in practice
other than when an offset is needed.

7.2 Binomial Data

Consider first a small example. Collett (1991, p. 75) reports an experiment
on the toxicity to the tobacco budwormHeliothis virescens of doses of the
pyrethroidtrans-cypermethrin to which the moths were beginning to show re-
sistance. Batches of 20 moths of each sex were exposed for three days to the
pyrethroid and the number in each batch that were dead or knocked down was
recorded. The results were

Dose

Sex 1 2 4 8 16 32

Male 1 4 9 13 18 20
Female 0 2 6 10 12 16

The doses were inµg. We fit a logistic regression model usinglog2 (dose) since
the doses are powers of two. To do so we must specify the numbers of trials of
ai. This is done usingglm with the binomial family in one of three ways.

1. If the response is a numeric vector it is assumed to hold the data in ratio
form, yi = si/ai, in which case theais must be given as a vector of
weights using theweights argument. (If theai are all one the default
weights suffices.)

2. If the response is a logical vector or a two-level factor it is treated as a 0/1
numeric vector and handled as previously.
If the response is a multi-level factor, the first level is treated as 0 (failure)
and all others as 1 (success).

7.2 Binomial Data 191

3. If the response is a two-column matrix it is assumed that the first column
holds the number of successes,si, and the second holds the number of fail-
ures,ai − si, for each trial. In this case noweights argument is required.

The less-intuitive third form allows the fitting function inS-PLUS to select a
better starting value, so we tend to favour it.

In all cases the response is the relative frequencyyi = si/ai, so the meansµi

are the probabilitiespi. Hencefitted yields probabilities, not binomial means.
Since we have binomial data we use the third possibility:

> options(contrasts = c("contr.treatment", "contr.poly"))
> ldose <- rep(0:5, 2)
> numdead <- c(1, 4, 9, 13, 18, 20, 0, 2, 6, 10, 12, 16)
> sex <- factor(rep(c("M", "F"), c(6, 6)))
> SF <- cbind(numdead, numalive = 20 - numdead)
> budworm.lg <- glm(SF ~ sex*ldose, family = binomial)
> summary(budworm.lg, cor = F)

....
Coefficients:

Value Std. Error t value
(Intercept) -2.99354 0.55253 -5.41789

sex 0.17499 0.77816 0.22487
ldose 0.90604 0.16706 5.42349

sex:ldose 0.35291 0.26994 1.30735
....
Null Deviance: 124.88 on 11 degrees of freedom

Residual Deviance: 4.9937 on 8 degrees of freedom
....

This shows slight evidence of a difference in slope between the sexes. Note that
we use treatment contrasts to make interpretation easier. Since female is the first
level of sex (they are in alphabetical order) the parameter forsex:ldose rep-
resents the increase in slope for males just as the parameter forsex measures the
increase in intercept. We can plot the data and the fitted curves by

plot(c(1,32), c(0,1), type = "n", xlab = "dose",
ylab = "prob", log = "x")

text(2^ldose, numdead/20, labels = as.character(sex))
ld <- seq(0, 5, 0.1)
lines(2^ld, predict(budworm.lg, data.frame(ldose = ld,

sex = factor(rep("M", length(ld)), levels = levels(sex))),
type = "response"), col = 3)

lines(2^ld, predict(budworm.lg, data.frame(ldose = ld,
sex = factor(rep("F", length(ld)), levels = levels(sex))),
type = "response"), lty = 2, col = 2)

see Figure 7.1. Note that when we set up a factor for the new data, we must
specify all the levels or both lines would refer to level one ofsex. (Of course,
here we could have predicted for both sexes and plotted separately, but it helps to
understand the general mechanism needed.)

192 Generalized Linear Models

dose

pr
ob

1 5 10

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

M

M

M

M

M

M

F

F

F

F

F

F

Figure 7.1: Tobacco budworm destruction versus dosage oftrans-cypermethrin by sex.

The apparently non-significant sex effect in this analysis has to be interpreted
carefully; it is marginal to thesex:ldose term. Since we are fitting separate
lines for each sex, it tests the (uninteresting) hypothesis that the lines do not differ
at zero log-dose. If we re-parametrize tolocate the intercepts at dose 8 we find

> budworm.lgA <- update(budworm.lg, . ~ sex * I(ldose - 3))
> summary(budworm.lgA, cor = F)$coefficients

Value Std. Error t value
(Intercept) -0.27543 0.23049 -1.1950

sex 1.23373 0.37694 3.2730
I(ldose - 3) 0.90604 0.16706 5.4235

sex:I(ldose - 3) 0.35291 0.26994 1.3074

which shows a significant difference between the sexes at dose 8. The model
fits very well as judged by the residual deviance (4.9937 is a small value for a
χ2

8 variate, and the estimated probabilities are based on a reasonable number of
trials), so there is no suspicion of curvature. We can confirm this by an analysis
of deviance:

> anova(update(budworm.lg, . ~ . + sex * I(ldose^2)),
test = "Chisq")

....
Terms added sequentially (first to last)

Df Deviance Resid. Df Resid. Dev Pr(Chi)
NULL 11 124.88
sex 1 6.08 10 118.80 0.01370

ldose 1 112.04 9 6.76 0.00000
I(ldose^2) 1 0.91 8 5.85 0.34104
sex:ldose 1 1.24 7 4.61 0.26552

sex:I(ldose^2) 1 1.44 6 3.17 0.23028

This isolates a further two degrees offreedom that if curvature were apprecia-
ble would most likely be significant, but are not. Note howanova when given
a single fitted-model object produces a sequential analysis of deviance, which

7.2 Binomial Data 193

will nearly always be order-dependent forglm objects. The additional argu-
menttest = "Chisq" to theanova method may be used to specify tests using
equation (7.9). The default corresponds totest = "none". The other possible
choices are"F" and "Cp", neither of which is appropriate here.

Our analysis so far suggests a model with parallel lines (on logit scale) for
each sex. We estimate doses corresponding to a given probability of death. The
first step is to re-parametrize the model to give separate intercepts for each sex
and a common slope.

> budworm.lg0 <- glm(SF ~ sex + ldose - 1, family = binomial)
> summary(budworm.lg0, cor = F)$coefficients

Value Std. Error t value
sexF -3.4732 0.46829 -7.4166
sexM -2.3724 0.38539 -6.1559

ldose 1.0642 0.13101 8.1230

Let ξp be the log-dose for which theprobability of response isp. (Historically
2ξ0.5 was called the “50% lethal dose” or LD50.) Clearly

ξp =
�(p)− β0

β1
,

∂ξp
∂β0

= − 1
β1
,

∂ξp
∂β1

= − �(p)− β0

β2
1

= − ξp
β1

whereβ0 and β1 are the slope and intercept. Our library sectionMASS contains
functions to calculate and print̂ξp and its asymptotic standard error, namely,

dose.p <- function(obj, cf = 1:2, p = 0.5) {
eta <- family(obj)$link(p)
b <- coef(obj)[cf]
x.p <- (eta - b[1])/b[2]
names(x.p) <- paste("p = ", format(p), ":", sep = "")
pd <- - cbind(1, x.p)/b[2]
SE <- sqrt(((pd %*% vcov(obj)[cf, cf]) * pd) %*% c(1, 1))
structure(x.p, SE = SE, p = p, class = "glm.dose")

}
print.glm.dose <- function(x, ...) {

M <- cbind(x, attr(x, "SE"))
dimnames(M) <- list(names(x), c("Dose", "SE"))
x <- M
NextMethod("print")

}

Notice how thefamily function can be used to extract the link function, which
can then be used to obtain values of the linear predictor. For females the values
of ξp at the quartiles may be calculated as

> dose.p(budworm.lg0, cf = c(1,3), p = 1:3/4)
Dose SE

p = 0.25: 2.2313 0.24983
p = 0.50: 3.2636 0.22971
p = 0.75: 4.2959 0.27462

194 Generalized Linear Models

For males the corresponding log-doses are lower.
In biological assays theprobit link used to be more conventional and the tech-

nique was calledprobit analysis. Unless the estimated probabilities are concen-
trated in the tails, probit and logit links tend to give similar results with the values
of ξp near the centre almost the same. We can demonstrate this for the budworm
assay by fitting a probit model and comparing the estimates ofξp for females.

> dose.p(update(budworm.lg0, family = binomial(link = probit)),
cf = c(1, 3), p = 1:3/4)

Dose SE
p = 0.25: 2.1912 0.23841
p = 0.50: 3.2577 0.22405
p = 0.75: 4.3242 0.26685

The differences are insignificant. Thisoccurs because the logistic and standard
normal distributions can approximate each other very well, at least between the
10th and 90th percentiles, by a simple scale change in the abscissa. (See, for
example, Cox and Snell, 1989, p. 21.) Themenarche data frame inMASS has
data with a substantial proportion of theresponses at very high probabilities and
provides an example where probit and logit models appear noticeably different.

A binary data example: Low birth weight in infants

Hosmer and Lemeshow (1989) give a dataset on 189 births at a US hospital, with
the main interest being in low birth weight. The following variables are available
in our data framebirthwt:

low birth weight less than 2.5 kg (0/1),
age age of mother in years,
lwt weight of mother (lbs) at last menstrual period,
race white / black / other,
smoke smoking status during pregnancy (0/1),
ptl number of previous premature labours,
ht history of hypertension (0/1),
ui has uterine irritability (0/1),
ftv number of physician visits in the first trimester,
bwt actual birth weight (grams).

Although the actual birth weights are available, we concentrate here on predicting
if the birth weight is low from the remaining variables. The dataset contains a
small number of pairs of rows that are identical apart from the ID; it is possible
that these refer to twins but identical birth weights seem unlikely.

We use a logistic regression with a binomial (in fact 0/1) response. It is worth
considering carefully how to use the variables. It is unreasonable to expect a
linear response withptl. Since the numbers with values greater than one are so
small we reduce it to an indicator of past history. Similarly,ftv can be reduced
to three levels. With non-Gaussian GLMs it is usual to use treatment contrasts.

7.2 Binomial Data 195

> options(contrasts = c("contr.treatment", "contr.poly"))
> attach(birthwt)
> race <- factor(race, labels = c("white", "black", "other"))
> table(ptl)

0 1 2 3
159 24 5 1

> ptd <- factor(ptl > 0)
> table(ftv)

0 1 2 3 4 6
100 47 30 7 4 1

> ftv <- factor(ftv)
> levels(ftv)[-(1:2)] <- "2+"
> table(ftv) # as a check

0 1 2+
100 47 42

> bwt <- data.frame(low = factor(low), age, lwt, race,
smoke = (smoke > 0), ptd, ht = (ht > 0), ui = (ui > 0), ftv)

> detach(); rm(race, ptd, ftv)

We can then fit a full logistic regression, and omit the rather large correlation
matrix from the summary.

> birthwt.glm <- glm(low ~ ., family = binomial, data = bwt)
> summary(birthwt.glm, cor = F)

....
Coefficients:

Value Std. Error t value
(Intercept) 0.823013 1.2440732 0.66155

age -0.037234 0.0386777 -0.96267
lwt -0.015653 0.0070759 -2.21214

raceblack 1.192409 0.5357458 2.22570
raceother 0.740681 0.4614609 1.60508

smoke 0.755525 0.4247645 1.77869
ptd 1.343761 0.4804445 2.79691
ht 1.913162 0.7204344 2.65557
ui 0.680195 0.4642156 1.46526

ftv1 -0.436379 0.4791611 -0.91071
ftv2+ 0.179007 0.4562090 0.39238

Null Deviance: 234.67 on 188 degrees of freedom
Residual Deviance: 195.48 on 178 degrees of freedom

Since the responses are binary, even if the model is correct there is no guarantee
that the deviance will have even an approximately chi-squared distribution, but
since the value is about in line with its degrees of freedom there seems no serious
reason to question the fit. Rather than select a series of sub-models by hand,
we make use of thestepAIC function. By default argumenttrace is true and
produces voluminous output.

> birthwt.step <- stepAIC(birthwt.glm, trace = F)
> birthwt.step$anova

196 Generalized Linear Models

Initial Model:
low ~ age + lwt + race + smoke + ptd + ht + ui + ftv
Final Model:
low ~ lwt + race + smoke + ptd + ht + ui

Step Df Deviance Resid. Df Resid. Dev AIC
1 178 195.48 217.48
2 - ftv 2 1.3582 180 196.83 214.83
3 - age 1 1.0179 181 197.85 213.85
> birthwt.step2 <- stepAIC(birthwt.glm, ~ .^2 + I(scale(age)^2)

+ I(scale(lwt)^2), trace = F)
> birthwt.step2$anova
Initial Model:
low ~ age + lwt + race + smoke + ptd + ht + ui + ftv
Final Model:
low ~ age + lwt + smoke + ptd + ht + ui + ftv + age:ftv

+ smoke:ui

Step Df Deviance Resid. Df Resid. Dev AIC
1 178 195.48 217.48
2 + age:ftv 2 12.475 176 183.00 209.00
3 + smoke:ui 1 3.057 175 179.94 207.94
4 - race 2 3.130 177 183.07 207.07

> summary(birthwt.step2, cor = F)$coef
Value Std. Error t value

(Intercept) -0.582520 1.418729 -0.41059
age 0.075535 0.053880 1.40190
lwt -0.020370 0.007465 -2.72878

smoke 0.780057 0.419249 1.86061
ptd 1.560205 0.495741 3.14722
ht 2.065549 0.747204 2.76437
ui 1.818252 0.664906 2.73460

ftv1 2.920800 2.278843 1.28170
ftv2+ 9.241693 2.631548 3.51188

ageftv1 -0.161809 0.096472 -1.67726
ageftv2+ -0.410873 0.117548 -3.49537
smoke:ui -1.916401 0.970786 -1.97407

> table(bwt$low, predict(birthwt.step2) > 0)
FALSE TRUE

0 116 14
1 28 31

Note that although bothage and ftv were previously dropped, their interaction
is now included, the slopes onage differing considerably within the threeftv
groups. The AIC criterion penalizes terms less severely than a likelihood ratio or
Wald’s test would, and so although adding the termsmoke:ui reduces the AIC,
its t-statistic is only just significant at the 5% level. We also considered three-way
interactions, but none were chosen.

7.2 Binomial Data 197

Residuals are not always very informative with binary responses but at least
none are particularly large here.

An alternative approach is to predict the actual live birth weight and later
threshold at 2.5 kilograms. This is left as an exercise for the reader; surprisingly
it produces somewhat worse predictions with around 52 errors.

We can examine the linearity in age and mother’s weight more flexibly us-
ing generalized additive models. These stand in the same relationship to additive
models (Section 8.8) as generalized linear models do to regression models; re-
place the linear predictor in a GLM by an additive model, the sum of linear and
smooth terms in the explanatory variables. We use functiongam from S-PLUS.
(R has a somewhat different functiongam in packagemgcv by Simon Wood.)

> attach(bwt)
> age1 <- age*(ftv=="1"); age2 <- age*(ftv=="2+")
> birthwt.gam <- gam(low ~ s(age) + s(lwt) + smoke + ptd +

ht + ui + ftv + s(age1) + s(age2) + smoke:ui, binomial,
bwt, bf.maxit=25)

> summary(birthwt.gam)

Residual Deviance: 170.35 on 165.18 degrees of freedom

DF for Terms and Chi-squares for Nonparametric Effects

Df Npar Df Npar Chisq P(Chi)
s(age) 1 3.0 3.1089 0.37230
s(lwt) 1 2.9 2.3392 0.48532
s(age1) 1 3.0 3.2504 0.34655
s(age2) 1 3.0 3.1472 0.36829

> table(low, predict(birthwt.gam) > 0)
FALSE TRUE

0 115 15
1 28 31
> plot(birthwt.gam, ask = T, se = T)

Creating the variablesage1 and age2 allows us to fit smooth terms for thedif-
ference in having one or more visits in the first trimester. Both the summary and
the plots show no evidence of non-linearity. The convergence of the fitting algo-
rithm is slow in this example, so we increased the control parameterbf.maxit
from 10 to 25. The parameterask = T allows us to choose plots from a menu.
Our choice of plots is shown in Figure 7.2.

See Chambers and Hastie (1992) for more details ongam .

Problems with binomial GLMs

There is a little-known phenomenon for binomial GLMs that was pointed out by
Hauck and Donner (1977). The standard errors andt values derive from the Wald
approximation to the log-likelihood, obtained by expanding the log-likelihood in
a second-order Taylor expansion at the maximum likelihood estimates. If there

198 Generalized Linear Models

age

s(
ag

e)

15 20 25 30 35 40 45

-1
5

-1
0

-5
0

5
10

15

age1

s(
ag

e1
)

0 10 20 30 40

-4
0

-3
0

-2
0

-1
0

0
10

age2

s(
ag

e2
)

0 10 20 30

-2
0

-1
5

-1
0

-5
0

lwt

s(
lw

t)

100 150 200 250

-8
-6

-4
-2

0
2

Figure 7.2: Plots of smooth terms in a generalized additive model for the data on low birth
weight. The dashed lines indicate plus and minus two pointwise standard deviations.

are someβ̂i that are large, the curvature of the log-likelihood atβ̂ can be much
less than nearβi = 0, and so the Wald approximation underestimates the change
in log-likelihood on settingβi = 0. This happens in such a way that as|β̂i| →
∞, the t statistic tends to zero. Thus highly significant coefficients according
to the likelihood ratio test may have non-significantt ratios. (Curvature of the
log-likelihood surface may to some extent be exploredpost hoc using theglm
method for theprofile generic function and the associatedplot and pairs
methods supplied with ourMASS library section. Theprofile generic function
is discussed in Chapter 8 on page 220.)

There is one fairly common circumstance in which both convergence prob-
lems and the Hauck–Donner phenomenon can occur. This is when the fitted prob-
abilities are extremely close to zero or one. Consider a medical diagnosis problem
with thousands of cases and around 50 binary explanatory variables (which may
arise from coding fewer categorical factors); one of these indicators is rarely true
but always indicates that the disease is present. Then the fitted probabilities of
cases with that indicator should be one, which can only be achieved by taking
β̂i = ∞. The result fromglm will be warnings and an estimated coefficient of
around±10. (Such cases are not hard to spot, but might occur during a series of
stepwise fits.) There has been fairly extensive discussion of this in the statistical
literature, usually claiming the non-existence of maximum likelihood estimates;
see Santer and Duffy (1989, p. 234). However, the phenomenon was discussed

7.3 Poisson and Multinomial Models 199

much earlier (as a desirable outcome) in the pattern recognition literature (Duda
and Hart, 1973; Ripley, 1996).

It is straightforward to fit binomial GLMs by direct maximization (see
page 445) and this provides a route to study several extensions of logistic re-
gression.

7.3 Poisson and Multinomial Models

The canonical link for the Poisson family islog, and the major use of this family
is to fit surrogate Poisson log-linear models to what are actually multinomial fre-
quency data. Such log-linear models have a large literature. (For example, Plack-
ett, 1974; Bishop, Fienberg and Holland, 1975; Haberman, 1978, 1979; Goodman,
1978; Whittaker, 1990.) Poisson log-linear models are often applied directly to
rates, for example of accidents with the log-exposure time given by anoffset
term.

It is convenient to divide the factors classifying a multi-way frequency table
into response and stimulus factors. Stimulus factors have their marginal totals
fixed in advance (or for the purposes of inference). The main interest lies in the
conditional probabilities of the response factor given the stimulus factors.

It is well known that the conditional distribution of a set of independent Pois-
son random variables given their sumis multinomial with probabilities given by
the ratios of the Poisson means to their total. This result is applied to the counts for
the multi-way response withineach combination of stimulus factor levels. This
allows models for multinomial data with a multiplicative probability specification
to be fitted and tested using Poisson log-linear models.

Identifying the multinomial model corresponding to any surrogate Poisson
model is straightforward. SupposeA, B, . . . are factors classifying a frequency
table. Theminimum model is the interaction of all stimulus factors, and must be
included for the analysis to respect the fixed totals over response factors. This
model is usually of no interest, corresponding to a uniform distribution over re-
sponse factors independent of the stimulus factors. Interactions between response
and stimulus factors indicate interesting structure. For large models it is often
helpful to use a graphical structure to represent the dependency relations (Whit-
taker, 1990; Lauritzen, 1996; Edwards, 2000).

A four-way frequency table example

As an example of a surrogate Poisson model analysis, consider the data in Ta-
ble 7.3. This shows a four-way classification of 1 681 householders in Copen-
hagen who were surveyed on thetype of rental accommodation they occupied,
the degree ofcontact they had with other residents, their feeling ofinfluence on
apartment management and their level ofsatisfaction with their housing condi-
tions. The data were originally given by Madsen (1976) and later analysed by
Cox and Snell (1984). The data framehousing in MASS gives the same dataset
with four factors and a numeric column of frequencies. A visualization of these
data is shown in Figure 11.14 on page 327.

200 Generalized Linear Models

Table 7.3: A four-way frequency table of 1 681 householders from a study of satisfaction
with housing conditions in Copenhagen.

Contact Low High

Satisfaction Low Med. High Low Med. High

Housing Influence
Tower blocks Low 21 21 28 14 19 37

Medium 34 22 36 17 23 40
High 10 11 36 3 5 23

Apartments Low 61 23 17 78 46 43
Medium 43 35 40 48 45 86
High 26 18 54 15 25 62

Atrium houses Low 13 9 10 20 23 20
Medium 8 8 12 10 22 24
High 6 7 9 7 10 21

Terraced houses Low 18 6 7 57 23 13
Medium 15 13 13 31 21 13
High 7 5 11 5 6 13

Cox and Snell (1984, pp. 155ff) present an analysis with type of housing as the
only explanatory factor and contact, influence and satisfaction treated symmetri-
cally as response factors and mention an alternative analysis with satisfaction as
the only response variable, and hence influence and contact as (conditional) ex-
planatory variables. We consider such an alternative analysis.

Our initial model may be described as having the conditional probabilities for
each of the three satisfaction classes the same for all type× contact× influ-
ence groups. In other words, satisfaction is independent of the other explanatory
factors.

> names(housing)
[1] "Sat" "Infl" "Type" "Cont" "Freq"
> house.glm0 <- glm(Freq ~ Infl*Type*Cont + Sat,

family = poisson, data = housing)
> summary(house.glm0, cor = F)

....
Null Deviance: 833.66 on 71 degrees of freedom

Residual Deviance: 217.46 on 46 degrees of freedom

The high residual deviance clearly indicates that this simple model is inadequate,
so the probabilities do appear to vary with the explanatory factors. We now con-
sider adding the simplest terms to the model that allow for some variation of this
kind.

7.3 Poisson and Multinomial Models 201

> addterm(house.glm0, ~. + Sat:(Infl+Type+Cont), test = "Chisq")
....

Df Deviance AIC LRT Pr(Chi)
<none> 217.46 269.46

Sat:Infl 4 111.08 171.08 106.37 0.00000
Sat:Type 6 156.79 220.79 60.67 0.00000
Sat:Cont 2 212.33 268.33 5.13 0.07708

The ‘influence’ factor achieves the largest single term reduction in the AIC2 and
our next step would be to incorporate the termSat:Infl in our model and re-
assess. It turns out that all three terms are necessary, so we now update our initial
model by including all three at once.

> house.glm1 <- update(house.glm0, . ~ . + Sat:(Infl+Type+Cont))
> summary(house.glm1, cor = F)

....
Null Deviance: 833.66 on 71 degrees of freedom

Residual Deviance: 38.662 on 34 degrees of freedom
> 1 - pchisq(deviance(house.glm1), house.glm1$df.resid)
[1] 0.26714

The deviance indicates a satisfactorily fitting model, but we might look to see if
some adjustments to the model might be warranted.

> dropterm(house.glm1, test = "Chisq")
....

Df Deviance AIC LRT Pr(Chi)
<none> 38.66 114.66

Sat:Infl 4 147.78 215.78 109.12 0.00000
Sat:Type 6 100.89 164.89 62.23 0.00000
Sat:Cont 2 54.72 126.72 16.06 0.00033

Infl:Type:Cont 6 43.95 107.95 5.29 0.50725

Note that the final term here is part of the minimum model and hence maynot be
removed. Only terms that contain the response factor,Sat, are of any interest to
us for this analysis. Now consider adding possible interaction terms.

> addterm(house.glm1, ~. + Sat:(Infl+Type+Cont)^2, test = "Chisq")
....

Df Deviance AIC LRT Pr(Chi)
<none> 38.662 114.66

Sat:Infl:Type 12 16.107 116.11 22.555 0.03175
Sat:Infl:Cont 4 37.472 121.47 1.190 0.87973
Sat:Type:Cont 6 28.256 116.26 10.406 0.10855

The first term, a type× influence interaction, appears to be mildly significant,
but as it increases the AIC we choose not include it on the grounds of simplicity,
although in some circumstances we might view this decision differently.

We have now shown (subject to checking assumptions) that the three explana-
tory factors, type, influence and contact do affect the probabilities of each of the

2TheS-PLUS andR versions ofstepAIC use different additive constants for Poisson GLMs.

202 Generalized Linear Models

Table 7.4: Estimated probabilities from a main effects model for the Copenhagen housing
conditions study.

Contact Low High

Satisfaction Low Med. High Low Med. High

Housing Influence
Tower blocks Low 0.40 0.26 0.34 0.30 0.28 0.42

Medium 0.26 0.27 0.47 0.18 0.27 0.54
High 0.15 0.19 0.66 0.10 0.19 0.71

Apartments Low 0.54 0.23 0.23 0.44 0.27 0.30
Medium 0.39 0.26 0.34 0.30 0.28 0.42
High 0.26 0.21 0.53 0.18 0.21 0.61

Atrium houses Low 0.43 0.32 0.25 0.33 0.36 0.31
Medium 0.30 0.35 0.36 0.22 0.36 0.42
High 0.19 0.27 0.54 0.13 0.27 0.60

Terraced houses Low 0.65 0.22 0.14 0.55 0.27 0.19
Medium 0.51 0.27 0.22 0.40 0.31 0.29
High 0.37 0.24 0.39 0.27 0.26 0.47

satisfaction classes in a simple, ‘main effect’–only way. Our next step is to look at
these estimated probabilities under the model and assess what effect these factors
are having. The picture becomes clear if we normalize the means to probabilities.

hnames <- lapply(housing[, -5], levels) # omit Freq
house.pm <- predict(house.glm1, expand.grid(hnames),

type = "response") # poisson means
house.pm <- matrix(house.pm, ncol = 3, byrow = T,

dimnames = list(NULL, hnames[[1]]))
house.pr <- house.pm/drop(house.pm %*% rep(1, 3))
cbind(expand.grid(hnames[-1]), prob = round(house.pr, 2))

The result is shown in conventional typeset form in Table 7.4. The message of
the fitted model is now clear. The factor having most effect on the probabilities
is influence, with an increase in influence reducing the probability of low satis-
faction and increasing that of high. The next most important factor is the type of
housing itself. Finally, as contact with other residents rises, the probability of low
satisfaction tends to fall and that of high to rise, but the effect is relatively small.

The reader should compare the model-based probability estimates with the
relative frequencies from the original data. In a few cases the smoothing effect of
the model is perhaps a little larger than might have been anticipated, but there are
no very surprising differences. A conventional residual analysis also shows up no
serious problem with the assumptions underlying the model, and the details are
left as an informal exercise.

7.3 Poisson and Multinomial Models 203

Fitting by iterative proportional scaling

The functionloglin fits log-linear models by iterative proportional scaling. This
starts with an array of fitted values that has the correct multiplicative structure,
(for example with all values equal to 1) and makes multiplicative adjustments
so that the observed and fitted values come to have the same marginal totals, in
accordance with equation (7.4). (See Darroch and Ratcliff, 1972.) This is usually
very much faster than GLM fitting but is less flexible.

Function loglin, is rather awkward to use as it requires the frequencies to
be supplied as a multi-way array. Our front-end tologlin called loglm (in li-
brary sectionMASS) accepts the frequencies in a variety of forms and can be used
with essentially the same convenience as any model fitting function. Methods for
standard generic functions to deal with fitted-model objects are also provided.

> loglm(Freq ~ Infl*Type*Cont + Sat*(Infl+Type+Cont),
data = housing)

Statistics:
X^2 df P(> X^2)

Likelihood Ratio 38.662 34 0.26714
Pearson 38.908 34 0.25823

The output shows that the deviance is the same as for the Poisson log-linear model
and the (Pearson) chi-squared statistic is very close, as would be expected.

Fitting as a multinomial model

We can fit a multinomial model directly rather than use a surrogate Poisson model
by using our functionmultinom from library sectionnnet. No interactions are
needed:

> library(nnet)
> house.mult <- multinom(Sat ~ Infl + Type + Cont,

weights = Freq, data = housing)
> house.mult
Coefficients:

(Intercept) InflMedium InflHigh TypeApartment TypeAtrium
Medium -0.41923 0.44644 0.66497 -0.43564 0.13134

High -0.13871 0.73488 1.61264 -0.73566 -0.40794
TypeTerrace Cont

Medium -0.66658 0.36085
High -1.41234 0.48188

Residual Deviance: 3470.10
AIC: 3498.10

Here the deviance is comparing with the model that correctly predicts each per-
son, not the multinomial response foreach cell of the minimum model:;we can
compare with the usual saturated model by

204 Generalized Linear Models

> house.mult2 <- multinom(Sat ~ Infl*Type*Cont,
weights = Freq, data = housing)

> anova(house.mult, house.mult2, test = "none")
....

Model Resid. df Resid. Dev Test Df LR stat.
1 Infl + Type + Cont 130 3470.1
2 Infl * Type * Cont 96 3431.4 1 vs 2 34 38.662

A table of fitted probabilities canbe found by

house.pm <- predict(house.mult, expand.grid(hnames[-1]),
type = "probs")

cbind(expand.grid(hnames[-1]), round(house.pm, 2))

A proportional-odds model

Since the response in this example is ordinal, a natural model to consider would
be a proportional-odds model. Under such a model the odds ratio for cumula-
tive probabilities for low and medium satisfaction does not depend on the cell to
which the three probabilities belong. For a definition and good discussion see the
seminal paper of McCullagh (1980) and McCullagh and Nelder (1989,§5.2.2). A
proportional-odds logistic regression for a response factor withK levels has

logitP (Y � k | x) = ζk − η

for ζ0 = −∞ < ζ1 < · · · < ζK =∞ and η the usual linear predictor.
One check to see if the proportional-odds assumption is reasonable is to look

at the differences of logits of the cumulative probabilities either using the simple
relative frequencies or the model-based estimates. Since the multinomial model
appears to fit well, we use the latter here.

> house.cpr <- apply(house.pr, 1, cumsum)
> logit <- function(x) log(x/(1-x))
> house.ld <- logit(house.cpr[2,]) - logit(house.cpr[1,])
> sort(drop(house.ld))
[1] 0.93573 0.98544 1.05732 1.06805 1.07726 1.08036 1.08249
[8] 1.09988 1.12000 1.15542 1.17681 1.18664 1.20915 1.24350

[15] 1.27241 1.27502 1.28499 1.30626 1.31240 1.39047 1.45401
[22] 1.49478 1.49676 1.60688
> mean(.Last.value)
[1] 1.2238

The average log-odds ratio is about 1.2 and variations from it are not great, so
such a model may prove a useful simplification.

Our MASS library section contains a function,polr, for proportional-odds
logistic regression that behaves in a very similar way to the standard fitting func-
tions.

> (house.plr <- polr(Sat ~ Infl + Type + Cont,
data = housing, weights = Freq))

....

7.3 Poisson and Multinomial Models 205

Coefficients:
InflMedium InflHigh TypeApartment TypeAtrium TypeTerrace

0.56639 1.2888 -0.57234 -0.36619 -1.091
Cont

0.36029

Intercepts:
Low|Medium Medium|High
-0.49612 0.69072

Residual Deviance: 3479.10
AIC: 3495.10

The residual deviance is comparable with that of the multinomial model fitted be-
fore, showing that the increase is only9.0 for a reduction from14 to 8 param-
eters. The AIC criterion is consequently much reduced. Note that the difference
in intercepts,1.19, agrees fairly well with the average logit difference of1.22
found previously.

We may calculate a matrix of estimated probabilities comparable with the one
we obtained from the surrogate Poisson model by

house.pr1 <- predict(house.plr, expand.grid(hnames[-1]),
type = "probs")

cbind(expand.grid(hnames[-1]), round(house.pr1, 2))

These fitted probabilities are close to those of the multinomial model given in
Table 7.4.

Finally we can calculate directly the likelihood ratio statistic for testing the
proportional-odds model within the multinomial:

> Fr <- matrix(housing$Freq, ncol = 3, byrow = T)
> 2 * sum(Fr * log(house.pr/house.pr1))
[1] 9.0654

which agrees with the difference in deviance noted previously. For six degrees of
freedom this is clearly not significant.

The advantage of the proportional-odds model is not just that it is so much
more parsimonious than the multinomial, but with the smaller number of parame-
ters the action of the covariates on the probabilities is much easier to interpret and
to describe. However, as it is more parsimonious,stepAIC will select a more
complex model linear predictor:

> house.plr2 <- stepAIC(house.plr, ~.^2)
> house.plr2$anova

....
Step Df Deviance Resid. Df Resid. Dev AIC

1 1673 3479.1 3495.1
2 + Infl:Type 6 22.509 1667 3456.6 3484.6
3 + Type:Cont 3 7.945 1664 3448.7 3482.7

206 Generalized Linear Models

7.4 A Negative Binomial Family

Once the link function and its derivative, the variance function, the deviance func-
tion and some method for obtaining starting values are known, the fitting proce-
dure is the same for all generalized linear models. This particular information is
all taken from thefamily object, which in turn makes it fairly easy to handle a new
GLM family by writing a family object generator function. We illustrate the pro-
cedure with a family for negative binomial models with known shape parameter,
a restriction that is relaxed later.

Using the negative binomial distribution in modelling is important in its own
right and has a long history. An excellent reference is Lawless (1987). The vari-
ance is greater than the mean, suggesting that it might be useful for describing
frequency data where this is a prominent feature. (The next section takes an alter-
native approach.)

The negative binomial can arise from a two-stage model for the distribution
of a discrete variableY . We suppose there is an unobserved random variableE
having a gamma distribution gamma(θ)/θ, that is with mean1 and variance1/θ.
Then the model postulates that conditionally onE, Y is Poisson with meanµE.
Thus:

Y | E ∼ Poisson(µE), θE ∼ gamma(θ)

The marginal distribution ofY is then negative binomial with mean, variance and
probability function given by

E
(
Y
)

= µ, var
(
Y
)

= µ+ µ2/θ, fY (y; θ, µ) =
Γ(θ + y)
Γ(θ) y!

µy θθ

(µ+ θ)θ+y

If θ is known, this distribution has the general form (7.1); we provide a family
negative.binomial to fit it.

A Poisson model for the Quine data has an excessively large deviance:

> glm(Days ~ .^4, family = poisson, data = quine)
....

Degrees of Freedom: 146 Total; 118 Residual
Residual Deviance: 1173.9

Inspection of the mean–variance relationship in Figure 6.5 on page 171 suggests
a negative binomial model withθ ≈ 2 might be appropriate. We assume at first
that θ = 2 is known. A negative binomial model may be fitted by

quine.nb <- glm(Days ~ .^4, family = negative.binomial(2),
data = quine)

The standard generic functions may now beused to fit sub-models, produce anal-
ysis of variance tables, and so on. For example, let us check the final model found
in Chapter 6. (The output has been edited.)

> quine.nb0 <- update(quine.nb, . ~ Sex/(Age + Eth*Lrn))
> anova(quine.nb0, quine.nb, test = "Chisq")

Resid. Df Resid. Dev Test Df Deviance Pr(Chi)
1 132 198.51
2 118 171.98 1 vs. 2 14 26.527 0.022166

7.4 A Negative Binomial Family 207

which suggests that model to be an over-simplification in the fixed–θ negative
binomial setting.

Consider now what happens whenθ is estimated rather than held fixed. We
supply a functionglm.nb, a modification ofglm that incorporates maximum
likelihood estimation ofθ. This hassummary and anova methods; the latter
produces likelihood ratio tests for the sequence of fitted models. (For deviance
tests to be applicable, theθ parameter has to be held constant for all fitted mod-
els.)

The following models summarize the results of a selection bystepAIC .

> quine.nb <- glm.nb(Days ~ .^4, data = quine)
> quine.nb2 <- stepAIC(quine.nb)
> quine.nb2$anova
Initial Model:
Days ~ (Eth + Sex + Age + Lrn)^4

Final Model:
Days ~ Eth + Sex + Age + Lrn + Eth:Sex + Eth:Age + Eth:Lrn +

Sex:Age + Sex:Lrn + Age:Lrn + Eth:Sex:Lrn +
Eth:Age:Lrn + Sex:Age:Lrn

Step Df Deviance Resid. Df Resid. Dev AIC
1 118 167.45 1095.3
2 - Eth:Sex:Age:Lrn 2 0.09786 120 167.55 1092.7
3 - Eth:Sex:Age 3 0.10951 123 167.44 1089.4

This model isLrn/(Age + Eth + Sex)^2, but AIC tends to overfit, so we test
the termsSex:Age:Lrn and Eth:Sex:Lrn.

> dropterm(quine.nb2, test = "Chisq")
Df AIC LRT Pr(Chi)

<none> -10228
Eth:Sex:Lrn 1 -10225 5.0384 0.024791
Eth:Age:Lrn 2 -10226 5.7685 0.055896
Sex:Age:Lrn 2 -10226 5.7021 0.057784

This indicates that we might try removing both terms,

> quine.nb3 <-
update(quine.nb2, . ~ . - Eth:Age:Lrn - Sex:Age:Lrn)

> anova(quine.nb2, quine.nb3)
theta Resid. df 2 x log-lik. Test df LR stat.

1 1.7250 127 -1053.4
2 1.8654 123 -1043.4 1 vs 2 4 10.022

theta Resid. df 2 x log-lik Test df LR stat. Pr(Chi)
1 1.7250 127 1053.4
2 1.8654 123 1043.4 1 vs 2 4 10.022 0.040058

which suggests removing either term but not both! Clearly there is a close-run
choice among models with one, two or three third-order interactions.

The estimate ofθ and its standard error are available from the summary or as
components of the fitted model object:

208 Generalized Linear Models

> c(theta = quine.nb2$theta, SE = quine.nb2$SE)
theta SE
1.8654 0.25801

We can perform some diagnostic checks by examining the deviance residuals:

rs <- resid(quine.nb2, type = "deviance")
plot(predict(quine.nb2), rs, xlab = "Linear predictors",

ylab = "Deviance residuals")
abline(h = 0, lty = 2)
qqnorm(rs, ylab = "Deviance residuals")
qqline(rs)

Such plots show nothing untoward for any of the candidate models.

7.5 Over-Dispersion in Binomial and Poisson GLMs

The role of the dispersion parameterϕ in the theory and practice of GLMs is of-
ten misunderstood. For a Gaussian family with identity link and constant variance
function, the moment estimator used forϕ is the usual unbiased modification of
the maximum likelihood estimator (see equations (7.6) and (7.7)).

For binomial and Poisson families the theory specifies thatϕ = 1 , but in
some cases we estimateϕ as if it were an unknown parameter and use that
value in standard error calculations and as a denominator in approximateF -tests
rather than use chi-squared tests (by specifying argumentdispersion = 0 in
the summary andpredict methods, or inR by using thequasibinomial andR

quasipoisson families). This is anad hoc adjustment for over-dispersion3 but
the corresponding likelihood may not correspond to any family of error distri-
butions. (Of course, for the Poisson family the negative binomial family intro-
duced in Section 7.4 provides a parametric alternative way of modelling over-
dispersion.)

We begin with a warning. A common way to ‘discover’ over- or under-
dispersion is to notice that the residual deviance is appreciably different from
the residual degrees of freedom, since inthe usual theory the expected value of
the residual deviance should equal the degrees of freedom.This can be seriously
misleading. The theory is asymptotic, and only applies for largenipi for a bino-
mial and for largeµi for a Poisson. Figure 7.3 shows the exact expected value.
The estimate ofϕ used bysummary.glm (if allowed to estimate the dispersion)
is the (weighted) sum of the squared Pearson residuals divided by the residual
degrees of freedom (equation (7.8) on page 187). This has much less bias than
the other estimator sometimes proposed, namely the deviance (or sum of squared
deviance residuals) divided by the residual degrees of freedom. (See the example
on page 296.)

Many authors (for example Finney, 1971; Collett, 1991; Cox and Snell, 1989;
McCullagh and Nelder, 1989) discuss over-dispersion in binomial GLMs, and
Aitkin et al. (1989) also discuss over-dispersion in Poisson GLMs. For binomial

3Or ‘heterogeneity’, apparently originally proposed by Finney (1971).

7.5 Over-Dispersion in Binomial and Poisson GLMs 209

0 1 2 3 4 5

0.
0

0.
4

0.
8

1.
2

λ

Ε λ(d
ev

ia
nc

e)

p

E
(d

ev
ia

nc
e)

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
4

0.
8

1.
2

Figure 7.3: Plots of the expected residual deviance against (left) the parameter of a Poisson
and (right) thep for a binomial(n, p) for n = 1, 2, . . . , 10, 25 . The code for the left panel
is given on page 82.

GLMs, the accounts all concentrate on sampling regimes that can give rise to
over-dispersion in a binomial(n, p) observationY for n > 1 . Suppose that
p is in fact a random variableθ with mean p ; this might arise if there were
random effects in a linear logistic model specifyingp . Then if we assume that
var θ = φp(1 − p) we find that

EY = np, varY = np(1− p)[1 + (n− 1)φ]

One example occurs ifθ has a beta(α, β) distribution, in which casep = E θ =
α/(α + β) , and var θ = p(1 − p)/(α + β + 1) . In the special case that theni

in a binomial GLM are all equal, we have

varY = np(1− p)[1 + (n− 1)φ] = ϕnp(1− p)

say, so this appears to provide an explanation for thead hoc adjustment. However,
there are problems with this.

• It is not applicable forn ≡ 1 , a common circumstance in which to observe
over-dispersion.

• There is an upper bound onφ and henceϕ . The most extreme distribution
for θ has θ = 1 with probability p and θ = 0 with probability 1 − p ,
hence variancep(1−p) . Thusφ � 1 andϕ � n . Plausible beta-binomial
models will lead to much lower bounds, sayn/5 .

• If this model is accepted, thead hoc adjustment of the GLM fit is not max-
imum likelihood estimation, even for the regression parameters.

McCullagh and Nelder (1989, pp. 125–6) prefer a variation on this model,
in which then data points are assumed to have been sampled fromk clusters,
and there is independent binomial sampling within the clusters (whose size now
varies with n), but the clusters have probabilities drawn independently from a
distribution of the same form as before. Then it is easy to show that

EY = np, varY = np(1− p)[1 + (k − 1)φ]

210 Generalized Linear Models

This does provide an explanation for thead hoc adjustment model for variable
n , but the assumption of the same number of (equally-sized) clusters for each
observation seems rather artificial to us.

Asymptotic theory for this model suggests (McCullagh and Nelder, 1989)
that changes in deviance and residual deviancesscaled by ϕ have asymptotic
chi-squared distributions with the appropriate degrees of freedom. Sinceϕ must
be estimated, this suggests thatF tests are used in place of chi-squared tests
in, for example, the analysis of deviance andaddterm and dropterm . At the
level of the asymptotics there is no difference between the use of estimators (7.7)
and (7.8), but we have seen that (7.8) hasmuch less bias, and it is this that is used
by anova.glm and addterm and dropterm .

Another explanation that leads to the same conclusion is to assume thatn
trials that make up the binomial observations are exchangeable but not necessarily
independent. Then the results for anypair of trials might have correlationδ , and
this leads to

varY = np(1− p)[1 + (n− 1)δ] = ϕnp(1− p)

say. In this model there is no constraint thatδ � 0 , but only limited negative
correlation is possible. (Indeed,varY � 0 implies δ � −1/(n − 1) , and
assuming that the trials are part of an infinite population does requireδ � 0 .)

All these explanations are effectively quasi-likelihood models, in that just the
mean and variance of the observations are specified. We believe that they are
best handled asquasi models. InR the binomial and Poisson families never
allow ϕ to be estimated, but there are additional familiesquasibinomial and
quasipoisson for which ϕ is always estimated. Since there arequasi models,
there is no likelihood and hence no AIC, and sostepAIC cannot be used for
model selection.

Chapter 8

Non-Linear and Smooth Regression

In linear regression the mean surface is a plane in sample space; in non-linear
regression it may be an arbitrary curved surface but in all other respects the models
are the same. Fortunately the mean surface in most non-linear regression models
met in practice will be approximately planar in the region of highest likelihood,
allowing some good approximations based on linear regression to be used, but
non-linear regression models can still present tricky computational and inferential
problems.

A thorough treatment of non-linear regression is given in Bates and Watts
(1988). Another encyclopaedic reference is Seber and Wild (1989), and the books
of Gallant (1987) and Ross (1990) also offer some practical statistical advice. The
S software is described by Bates and Chambers (1992), who state that its methods
are based on those described in Bates and Watts (1988). An alternative approach
is described by Huetet al. (1996).

Another extension of linear regression issmooth regression, in which linear
terms are extended to smooth functions whose exact form is not pre-specified but
chosen from a flexible family by the fitting procedures. The methods are all fairly
computer-intensive, and so only became feasible in the era of plentiful computing
power. There are few texts covering this material. Although they do not cover all
our topics in equal detail, for what they do cover Hastie and Tibshirani (1990),
Simonoff (1996), Bowman and Azzalini (1997) and Hastieet al. (2001) are good
references, as well as Ripley (1996, Chapters 4 and 5).

8.1 An Introductory Example

Obese patients on a weight reduction programme tend to lose adipose tissue at a
diminishing rate. Our datasetwtloss has been supplied by Dr T. Davies (per-
sonal communication). The two variables areDays, the time (in days) since start
of the programme, andWeight, the patient’s weight in kilograms measured un-
der standard conditions. The dataset pertains to a male patient, aged 48, height
193 cm (6′4′′) with a large body frame. The results are illustrated in Figure 8.1,
produced by

211

212 Non-Linear and Smooth Regression

Days

W
ei

gh
t (

kg
)

0 50 100 150 200 250

12
0

14
0

16
0

18
0

•
•
••
•

•
•

••
•
•

•
• •••••

•
• • •

••
• •

• ••
•
••••

•• ••
••

• ••

• •
•• • •

•• • 25
0

30
0

35
0

40
0

W
ei

gh
t (

lb
)

Figure 8.1: Weight loss for an obese patient.

attach(wtloss)
alter margin 4; others are default
oldpar <- par(mar = c(5.1, 4.1, 4.1, 4.1))
plot(Days, Weight, type = "p", ylab = "Weight (kg)")
Wt.lbs <- pretty(range(Weight*2.205))
axis(side = 4, at = Wt.lbs/2.205, lab = Wt.lbs, srt = 90)
mtext("Weight (lb)", side = 4, line = 3)
par(oldpar) # restore settings

Although polynomial regression models may describe such data very well
within the observed range, they can fail spectacularly outside this range. A more
useful model with some theoretical and empirical support is non-linear in the
parameters, of the form

y = β0 + β12−t/θ + ε (8.1)

Notice that all three parameters have a ready interpretation, namely

β0 is the ultimate lean weight, or asymptote,
β1 is the total amount to be lost and
θ is the time taken to lose half the amount remaining to be lost,

which allows us to find rough initial estimates directly from the plot of the data.
The parametersβ0 and β1 are calledlinear parameters since the second

partial derivative of the model function with respect to them is identically zero.
The parameter,θ, for which this is not the case, is called anon-linear parameter.

8.2 Fitting Non-Linear Regression Models

The general form of a non-linear regression model is

y = η(x,β) + ε (8.2)

8.2 Fitting Non-Linear Regression Models 213

wherex is a vector of covariates,β is a p-component vector of unknown param-
eters andε is a N(0, σ2) error term. In the weight loss example the parameter
vector isβ = (β0, β1, θ)T . (As x plays little part in the discussion that follows,
we often omit it from the notation.)

Supposey is a sample vector of sizen andη(β) is its mean vector. It is easy
to show that the maximum likelihood estimate ofβ is a least-squares estimate,
that is, a minimizer of‖y−η(β)‖2. The variance parameterσ2 is then estimated
by the residual mean square as in linear regression.

For varying β the vectorη(β) traces out ap-dimensional surface inRn

that we refer to as thesolution locus. The parametersβ define a coordinate
system within the solution locus. From this point of view a linear regression
model is one for which the solution locus is a plane through the origin and the
coordinate system within it defined by the parameters is affine; that is, it has no
curvature. The computational problem in both cases is then to find the coordinates
of the point on the solution locus closest to the sample vectory in the sense of
Euclidean distance.

The process of fitting non-linear regression models inS is similar to that for
fitting linear models, with two important differences:

1. there is no explicit formula for the estimates, so iterative procedures are
required, for which initial values must be supplied;

2. linear model formulae that define only the model matrix are not adequate to
specify non-linear regression models. A more flexible protocol is needed.

The mainS function for fitting a non-linear regression model isnls.1 We can
fit the weight loss model by

> # R: library(nls)
> wtloss.st <- c(b0 = 90, b1 = 95, th = 120)
> wtloss.fm <- nls(Weight ~ b0 + b1*2^(-Days/th),

data = wtloss, start = wtloss.st, trace = T)
67.5435 : 90 95 120
40.1808 : 82.7263 101.305 138.714
39.2449 : 81.3987 102.658 141.859
39.2447 : 81.3737 102.684 141.911
> wtloss.fm
Residual sum of squares : 39.245
parameters:

b0 b1 th
81.374 102.68 141.91

formula: Weight ~ b0 + b1 * 2^(- Days/th)
52 observations

The arguments tonls are the following.

formula A non-linear model formula. The form isresponse ~ mean, where
the right-hand side can have either of two forms. The standard form is
an ordinary algebraic expression containing both parameters and determin-
ing variables. Note that the operators now have their usual arithmetical

1In packagenls in R.

214 Non-Linear and Smooth Regression

meaning. (The second form is used with theplinear fitting algorithm,
discussed in Section 8.3 on page 218.)

data An optional data frame for the variables (and sometimes parameters).

start A list or numeric vector specifying thestarting values for the parameters
in the model.
The names of the components ofstart are also used to specify which
of the variables occurring on the right-hand side of the model formula are
parameters. All other variables are then assumed to be determining vari-
ables.2

control An optional argument allowing some features of the default iterative
procedure to be changed.

algorithm An optional character string argument allowing a particular fitting
algorithm to be specified. The default procedure is simply"default".

trace An argument allowing tracing information from the iterative procedure
to be printed. By default none is printed.

In our example the names of the parameters were specified asb0, b1 and th.
The initial values of90, 95 and 120 were found by inspection of Figure 8.1.
From the trace output the procedure is seen to converge in three iterations.

Weighted data

The nls function has noweights argument, but non-linear regressions with
known weights may be handled by writing the formula as~ sqrt(W)*(y - M)
rather thany ~ M. (The algorithm minimizes the sum of squared differences
between left- and right-hand sides and an empty left-hand side counts as zero.) If
W contains unknown parameters to be estimated the log-likelihood function has
an extra term and the problem must be handled by the more general optimization
methods such as those discussed in Chapter 16.

Using function derivative information

Most non-linear regression fitting algorithms operate in outline as follows. The
first-order Taylor-series approximation toηk at an initial valueβ(0) is

ηk(β) ≈ ηk(β(0)) +
p∑

j=1

(βj − β(0)
j)

∂ηk

∂βj

∣∣∣∣
β=β(0)

In vector terms these may be written

η(β) ≈ ω(0) + Z(0)β (8.3)

where

Z
(0)
kj =

∂ηk

∂βj

∣∣∣∣
β=β(0)

and ω
(0)
k = ηk(β(0))−

p∑
j=1

β
(0)
j Z

(0)
kj

2In S-PLUS there is a bug that may be avoided if the order in which the parameters appear in the
start vector is the same as the order in which they first appear in the model. It is as if the order in
the names attribute were ignored.

8.2 Fitting Non-Linear Regression Models 215

Equation (8.3) defines the tangent plane to the surface at the coordinate pointβ =
β(0). The process consists of regressing the observation vectory onto the tangent
plane defined byZ(0) with offset vectorω(0) to give a new approximation,β =
β(1), and iterating to convergence. For a linear regression the offset vector is0
and the matrixZ(0) is the model matrixX , a constant matrix, so the process
converges in one step. In the non-linear case the next approximation is

β(1) =
(
Z(0) TZ(0)

)−1
Z(0) T

(
y − ω(0)

)
With the default algorithm theZ matrix is computed approximately by nu-
merical methods unless formulae for the first derivatives are supplied. Providing
derivatives often (but not always) improves convergence.

Derivatives can be provided as an attribute of the model. The standard way to
do this is to write anS function to calculate the mean vectorη and theZ ma-
trix. The result of the function isη with the Z matrix included as agradient
attribute.

For our simple example the three derivatives are

∂η

∂β0
= 1,

∂η

∂β1
= 2−x/θ,

∂η

∂θ
=

log(2)β1x2−x/θ

θ2

so anS function to specify the model including derivatives is

expn <- function(b0, b1, th, x) {
temp <- 2^(-x/th)
model.func <- b0 + b1 * temp
Z <- cbind(1, temp, (b1 * x * temp * log(2))/th^2)
dimnames(Z) <- list(NULL, c("b0", "b1", "th"))
attr(model.func, "gradient") <- Z
model.func

}

Note that the gradient matrix must have column names matching those of the
corresponding parameters.

We can fit our model again using first derivative information:

> wtloss.gr <- nls(Weight ~ expn(b0, b1, th, Days),
data = wtloss, start = wtloss.st, trace = T)

67.5435 : 90 95 120
40.1808 : 82.7263 101.305 138.714
39.2449 : 81.3987 102.658 141.859
39.2447 : 81.3738 102.684 141.911

This appears to make no difference to the speed of convergence, but tracing the
function expn shows that only 6 evaluations are required when derivatives are
supplied compared with 21 if they are not supplied.

Functions such asexpn can often be generated automatically using the sym-
bolic differentiation functionderiv. It is called with three arguments:

(a) the model formula, with the left-hand side optionally left blank,

216 Non-Linear and Smooth Regression

(b) a character vector giving the names of the parameters and

(c) an empty function with an argument specification as required for the result.

An example makes the process clearer. For the weight loss data with the expo-
nential model, we can use:

expn1 <- deriv(y ~ b0 + b1 * 2^(-x/th), c("b0", "b1", "th"),
function(b0, b1, th, x) {})

The result inS-PLUS is the function (R’s result is marginally different)

expn1 <- function(b0, b1, th, x)
{

.expr3 <- 2^((- x)/th)

.value <- b0 + (b1 * .expr3)

.grad <- array(0, c(length(.value), 3),
list(NULL, c("b0", "b1", "th")))

.grad[, "b0"] <- 1

.grad[, "b1"] <- .expr3

.grad[, "th"] <- b1 *
(.expr3 * (0.693147180559945 * (x/(th^2))))

attr(.value, "gradient") <- .grad
.value

}

Self-starting non-linear regressions

Very often reasonable starting values for a non-linear regression can be calculated
by some fairly simple automatic procedure. Setting up such aself-starting non-
linear model is somewhat technical, but several examples3 are supplied.

Consider once again a negative exponential decay model such as that used in
the weight loss example but this time written in the more usual exponential form:

y = β0 + β1 exp(−x/θ) + ε

One effective initial value procedure follows.

(i) Fit an initial quadratic regression inx.

(ii) Find the fitted values, say,y0, y1 andy2 at three equally spaced pointsx0,
x1 = x0 + δ andx2 = x0 + 2δ.

(iii) Equate the three fitted values to their expectation under the non-linear model
to give an initial value forθ as

θ0 = δ
/

log
(
y0 − y1
y1 − y2

)
(iv) Initial values for β0 andβ1 can then be obtained by linear regression ofy

on exp(−x/θ0).
3Search for objects with names starting withSS, in R in packagenls .

8.3 Non-Linear Fitted Model Objects and Method Functions 217

An S function to implement this procedure (with a few extra checks) called
negexp.SSival is supplied inMASS; interested readers should study it carefully.

We can make a self-starting model with both first derivative information and
this initial value routine by.

negexp <- selfStart(model = ~ b0 + b1*exp(-x/th),
initial = negexp.SSival, parameters = c("b0", "b1", "th"),
template = function(x, b0, b1, th) {})

where the first, third and fourth arguments are the same as forderiv. We may
now fit the model without explicit initial values.

> wtloss.ss <- nls(Weight ~ negexp(Days, B0, B1, theta),
data = wtloss, trace = T)

B0 B1 theta
82.713 101.49 200.16

39.5453 : 82.7131 101.495 200.160
39.2450 : 81.3982 102.659 204.652
39.2447 : 81.3737 102.684 204.734

(The first two lines of output come from the initial value procedure and the last
three from thenls trace.)

8.3 Non-Linear Fitted Model Objects and Method Functions

The result of a call tonls is an object of classnls. The standard method func-
tions are available.

For the preceding example the summary function gives:

> summary(wtloss.gr)
Formula: Weight ~ expn1(b0, b1, th, Days)
Parameters:

Value Std. Error t value
b0 81.374 2.2690 35.863
b1 102.684 2.0828 49.302
th 141.911 5.2945 26.803
Residual standard error: 0.894937 on 49 degrees of freedom
Correlation of Parameter Estimates:

b0 b1
b1 -0.989
th -0.986 0.956

Surprisingly, no working deviance method function exists but such a method
function is easy to write and is included inMASS . It merely requires

> deviance.nls <- function(object) sum(object$residuals^2)
> deviance(wtloss.gr)
[1] 39.245

MASS also has a generic functionvcov that will extract the estimated variance
matrix of the mean parameters:

218 Non-Linear and Smooth Regression

> vcov(wtloss.gr)
b0 b1 th

b0 5.1484 -4.6745 -11.841
b1 -4.6745 4.3379 10.543
th -11.8414 10.5432 28.032

Taking advantage of linear parameters

If all non-linear parameters were known the model would be linear and stan-
dard linear regression methods could be used. This simple idea lies behind the
"plinear" algorithm. It requires a different form of model specification that
combines aspects of linear and non-linear model formula protocols. In this case
the right-hand side expression specifies amatrix whose columns are functions of
the non-linear parameters. The linear parameters are then implied as the regres-
sion coefficients for the columns of the matrix. Initial values are only needed
for the non-linear parameters. Unlike the linear model case there is no implicit
intercept term.

There are several advantages in using the partially linear algorithm. It can be
much more stable than methods that do not take advantage of linear parameters, it
requires fewer initial values and it can often converge from poor starting positions
where other procedures fail.

Asymptotic regressions with different asymptotes

As an example of a case where the partially linear algorithm is very convenient,
we consider a dataset first discussed in Linder, Chakravarti and Vuagnat (1964).
The object of the experiment was to assess the influence of calcium in solution
on the contraction of heart muscle in rats. The left auricle of 21 rat hearts was
isolated and on several occasions electrically stimulated and dipped into various
concentrations of calcium chloride solution, after which the shortening was mea-
sured. The data framemuscle in MASS contains the data as variablesStrip,
Conc and Length.

The particular model posed by the authors is of the form

log yij = αj + βρxij + εij (8.4)

where i refers to the concentration andj to the muscle strip. This model has 1
non-linear and 22 linear parameters. We take the initial estimate forρ to be 0.1.
Our first step is to construct a matrix to select the appropriateα.

> A <- model.matrix(~ Strip - 1, data = muscle)
> rats.nls1 <- nls(log(Length) ~ cbind(A, rho^Conc),

data = muscle, start = c(rho = 0.1), algorithm = "plinear")
> (B <- coef(rats.nls1))

rho .lin1 .lin2 .lin3 .lin4 .lin5 .lin6 .lin7
0.077778 3.0831 3.3014 3.4457 2.8047 2.6084 3.0336 3.523
.lin8 .lin9 .lin10 .lin11 .lin12 .lin13 .lin14 .lin15 .lin16
3.3871 3.4671 3.8144 3.7388 3.5133 3.3974 3.4709 3.729 3.3186
.lin17 .lin18 .lin19 .lin20 .lin21 .lin22
3.3794 2.9645 3.5847 3.3963 3.37 -2.9601

8.3 Non-Linear Fitted Model Objects and Method Functions 219

S01

1 2 3 4

S02 S03

1 2 3 4

S04 S05

1.0

1.5

2.0

2.5

3.0

3.5

1 2 3 4

S06

1.0

1.5

2.0

2.5

3.0

3.5

S07 S08 S09 S10 S11 S12

S13 S14 S15 S16 S17

1.0

1.5

2.0

2.5

3.0

3.5

S18

1.0

1.5

2.0

2.5

3.0

3.5

1 2 3 4

S19 S20

1 2 3 4

S21

Calcium Chloride concentration (mM)

lo
g(

Le
ng

th
 in

 m
m

)

Figure 8.2: The heart contraction data of Linderet al. (1964): points and fitted model.

We can now use this coefficient vector as a starting value for a fit using the con-
ventional algorithm.

> st <- list(alpha = B[2:22], beta = B[23], rho = B[1])
> rats.nls2 <- nls(log(Length) ~ alpha[Strip] + beta*rho^Conc,

data = muscle, start = st)

Notice that if a parameter in the non-linear regression is indexed, such as
alpha[Strip] here, the starting values must be supplied as a list with named
separate components.

A trace will show that this converges in one step with unchanged parameter
estimates, as expected.

Having the fitted model object in standard rather than"plinear" form al-
lows us to predict from it using the standard generic functionpredict. We now
show the data and predicted values in a Trellis display.

attach(muscle)
Muscle <- expand.grid(Conc = sort(unique(Conc)),

Strip = levels(Strip))
Muscle$Yhat <- predict(rats.nls2, Muscle)
Muscle$logLength <- rep(NA, nrow(Muscle))
ind <- match(paste(Strip, Conc),

paste(Muscle$Strip, Muscle$Conc))
Muscle$logLength[ind] <- log(Length)
detach()

220 Non-Linear and Smooth Regression

xyplot(Yhat ~ Conc | Strip, Muscle, as.table = T,
ylim = range(c(Muscle$Yhat, Muscle$logLength), na.rm = T),
subscripts = T, xlab = "Calcium Chloride concentration (mM)",
ylab = "log(Length in mm)", panel =
function(x, y, subscripts, ...) {

lines(spline(x, y))
panel.xyplot(x, Muscle$logLength[subscripts], ...)

})

The result is shown in Figure 8.2. The model appears to describe the situation
fairly well, but for some purposes a non-linear mixed effects model might be
more suitable (which is left as an exercise on Section 10.3).

8.4 Confidence Intervals for Parameters

For some non-linear regression problems the standard error may be an inadequate
summary of the uncertainty of a parameterestimate and an asymmetric confidence
interval may be more appropriate. In non-linear regression it is customary to
invert the “extra sum of squares” to provide such an interval, although the result
is usually almost identical to the likelihood ratio interval.

Suppose the parameter vector isθ = θ̂(θ1, θ2)T and without loss of gen-
erality we wish totest an hypothesis H0 : θ1 = θ10. Let θ̂ be the overall
least-squares estimate,̂θ2|1 be the conditional least-squares estimate ofθ2 with

θ1 = θ10 and putθ̂(θ10) = (θ10, θ̂2|1)T . The extra sum of squares principle then
leads to the test statistic:

F (θ10) =
RSS{θ̂(θ10)} − RSS(θ̂)

s2

which under the null hypothesis has an approximatelyF1, n−p-distribution. (Here
RSS denotes the residual sum of squares.) Similarly thesigned square root

τ(θ10) = sign(θ10 − θ̂1)
√
F (θ10) (8.5)

has an approximatetn−p-distribution under H0. The confidence interval forθ1
is then the set{θ1

∣∣ −t < τ(θ1) < t}, where t is the appropriate percentage
point from thetn−p-distribution.

The profile function is generic. The method fornls objects explores the
residual sum of squares surface by taking each parameterθi in turn and fixing it
at a series of values above and belowθ̂i so that (if possible)τ(θi) varies from
0 by at least some pre-set valuet in both directions. (If the sum of squares
function “flattens out” in either direction, or if the fitting process fails in some
way, this may not be achievable, in which case the profile is incomplete.) The
value returned is a list of data frames, one for each parameter, and named by the
parameter names. Each data frame component consists of

(a) a vector,tau, of values ofτ(θi) and

8.4 Confidence Intervals for Parameters 221

(b) a matrix,par.vals, giving the values of the corresponding parameter esti-
matesθ̂(θi), sometimes called the ‘parameter traces’.

The argumentwhich of profile may be used to specify only a subset of the
parameters to be so profiled. (Note that profiling is not available for fitted model
objects in which theplinear algorithm is used.)

Finding a confidence interval then requires thetau values for that parameter
to be interpolated and the set ofθi values to be found (here always of the form
θi < θi < θi). The functionconfint in MASS is a generic function to perform
this interpolation. It works forglm or nls fitted models, although the latter must
be fitted with the default fitting method. The critical steps in the method function
are

confint.profile.nls <-
function(object, parm = seq(along = pnames),

level = 0.95) {
....

for(pm in parm) {
pro <- object[[pm]]
if(length(pnames) > 1)

sp <- spline(x = pro[, "par.vals"][, pm], y = pro$tau)
else sp <- spline(x = pro[, "par.vals"], y = pro$tau)
ci[pnames[pm],] <- approx(spy, spx, xout = cutoff)$y

}
drop(ci)

}

The three steps inside the loop are, respectively, extract the appropriate compo-
nent of theprofile object, do a spline interpolation in thet-statistic and linearly
interpolate in the digital spline to find the parameter values at the two cutoffs. If
the function is used on the fitted object itself the first step is to make a profile
object from it and this will take most of the time. If a profiled object is already
available it should be used instead.

The weight loss data, continued

For the person on the weight loss programme an important question is how long
it might be before he achieves some goal weight. Ifδ0 is the time to achieve a
predicted weight ofw0, then solving the equationw0 = β0 + β12−δ0/θ gives

δ0 = −θ log2{(w0 − β0)/β1}

We now find a confidence interval forδ0 for various values ofw0 by the outlined
method.

The first step is to re-write the model function usingδ0 as one of the parame-
ters; the most convenient parameter for it to replace isθ and the new expression
of the model becomes

y = β0 + β1

(
w0 − β0

β1

)x/δ0

+ ε (8.6)

222 Non-Linear and Smooth Regression

In order to find a confidence interval forδ0 we need to fit the model with this
parametrization. First we build a model function:

expn2 <- deriv(~b0 + b1*((w0 - b0)/b1)^(x/d0),
c("b0","b1","d0"), function(b0, b1, d0, x, w0) {})

It is also convenient to have a function that builds an initial value vector from the
estimates of the present fitted model:

wtloss.init <- function(obj, w0) {
p <- coef(obj)
d0 <- - log((w0 - p["b0"])/p["b1"])/log(2) * p["th"]
c(p[c("b0", "b1")], d0 = as.vector(d0))

}

(Note the use ofas.vector to remove unwanted names.) The main calculations
are done in a short loop:

> out <- NULL
> w0s <- c(110, 100, 90)
> for(w0 in w0s) {

fm <- nls(Weight ~ expn2(b0, b1, d0, Days, w0),
wtloss, start = wtloss.init(wtloss.gr, w0))

out <- rbind(out, c(coef(fm)["d0"], confint(fm, "d0")))
}

Waiting for profiling to be done...
....

> dimnames(out)[[1]] <- paste(w0s,"kg:")
> out

d0 2.5% 97.5%
110 kg: 261.51 256.23 267.50
100 kg: 349.50 334.74 368.02
90 kg: 507.09 457.56 594.97

As the weight decreases the confidence intervals become much wider and more
asymmetric. For weights closer to the estimated asymptotic weight the profiling
procedure can fail.

A bivariate region: The Stormer viscometer data

The following example comes from Williams (1959). The Stormer viscometer
measures the viscosity of a fluid by measuring the time taken for an inner cylin-
der in the mechanism to perform a fixed number of revolutions in response to an
actuating weight. The viscometer is calibrated by measuring the time taken with
varying weights while the mechanism is suspended in fluids of accurately known
viscosity. The dataset comes from such a calibration, and theoretical considera-
tions suggest a non-linear relationship between timeT , weight w and viscosity
V of the form

T =
β1v

w − β2
+ ε

8.4 Confidence Intervals for Parameters 223

Table 8.1: The Stormer viscometer calibration data. The body of the table shows the times
in seconds.

Weight Viscosity (poise)

(grams) 14.7 27.5 42.0 75.7 89.7 146.6 158.3 161.1 298.3

20 35.6 54.3 75.6 121.2 150.8 229.0 270.0

50 17.6 24.3 31.4 47.2 58.3 85.6 101.1 92.2 187.2

100 24.6 30.0 41.7 50.3 45.1 89.0, 86.5

where β1 and β2 are unknown parameters to be estimated. Note thatβ1 is a
linear parameter andβ2 is non-linear. The dataset is given in Table 8.1.

Williams suggested that a suitable initial value may be obtained by writing the
regression model in the form

wT = β1v + β2T + (w − β2)ε

and regressingwT on v and T using ordinary linear regression. With the data
available in a data framestormer with variablesViscosity, Wt andTime, we
may proceed as follows.

> fm0 <- lm(Wt*Time ~ Viscosity + Time - 1, data = stormer)
> b0 <- coef(fm0); names(b0) <- c("b1", "b2"); b0

b1 b2
28.876 2.8437

> storm.fm <- nls(Time ~ b1*Viscosity/(Wt-b2), data = stormer,
start = b0, trace = T)

885.365 : 28.8755 2.84373
825.110 : 29.3935 2.23328
825.051 : 29.4013 2.21823

Since there are only two parameters we can display a confidence region for
the regression parameters as a contour map. To this end put:

bc <- coef(storm.fm)
se <- sqrt(diag(vcov(storm.fm)))
dv <- deviance(storm.fm)

Define d(β1, β2) as the sum of squares function:

d(β1, β2) =
23∑

i=1

(
Ti −

β1vi

wi − β2

)2

Then dv contains the minimum value,d0 = d(β̂1, β̂2), the residual sum of
squares or model deviance.

If β1 andβ2 are the true parameter values the “extra sum of squares” statistic

F (β1, β2) =
(d(β1, β2)− d0)/2

d0/21

224 Non-Linear and Smooth Regression

b1

b2

27 28 29 30 31 32

1
2

3
4

1

2

5

5

5

5

7

7

10

10

15

15

20

20

20

95% CR

Figure 8.3: The Stormer data. TheF -statistic surface and a confidence region for the
regression parameters.

is approximately distributed asF2,21. An approximate confidence set contains
those values in parameter space for whichF (β1, β2) is less than the 95% point
of the F2,21 distribution. We construct a contour plot of theF (β1, β2) function
and mark off the confidence region. The result is shown in Figure 8.3.

A suitable region for the contour plot is three standard errors either side of the
least-squares estimates in each parameter. Since these ranges are equal in their
respective standard error units it is useful to make the plotting region square.

par(pty = "s")
b1 <- bc[1] + seq(-3*se[1], 3*se[1], length = 51)
b2 <- bc[2] + seq(-3*se[2], 3*se[2], length = 51)
bv <- expand.grid(b1, b2)

The simplest way to calculate the sum of squares function is to use theapply
function:

attach(stormer)
ssq <- function(b)

sum((Time - b[1] * Viscosity/(Wt-b[2]))^2)
dbetas <- apply(bv, 1, ssq)

However, using a function such asouter makes better use of the vectorizing
facilities ofS, and in this case a direct calculation is the most efficient:

cc <- matrix(Time - rep(bv[,1],rep(23, 2601)) *
Viscosity/(Wt - rep(bv[,2], rep(23, 2601))), 23)

dbetas <- matrix(drop(rep(1, 23) %*% cc^2), 51)

The F -statistic array is then:

fstat <- matrix(((dbetas - dv)/2) / (dv/21), 51, 51)

8.4 Confidence Intervals for Parameters 225

We can now produce a contour map of theF -statistic, taking care that the con-
tours occur at relatively interesting levels of the surface. Note that the confidence
region contour is at about 3.5:

> qf(0.95, 2, 21)
[1] 3.4668

Our intention is to produce a slightly non-standard contour plot and for this the
traditional plotting functions are more flexible than Trellis graphics functions.
Rather than usecontour to set up the plot directly, we begin with a call to
plot :

plot(b1, b2, type = "n")
lev <- c(1, 2, 5, 7, 10, 15, 20)
contour(b1, b2, fstat, levels = lev, labex = 0.75, lty = 2, add = T)
contour(b1, b2, fstat, levels = qf(0.95,2,21), add = T, labex = 0)
text(31.6, 0.3, labels = "95% CR", adj = 0, cex = 0.75)
points(bc[1], bc[2], pch = 3, mkh = 0.1)
par(pty = "m")

Since the likelihood function has the same contours as theF -statistic, the near el-
liptical shape of the contours is an indication that the approximate theory based on
normal linear regression is probably accurate, although more than this is needed
to be confident. (See the next section.) Given the way the axis scales have been
chosen, the elongated shape of the contours shows that the estimatesβ̂1 and β̂2

are highly (negatively) correlated.
Note that finding a bivariate confidence region for two regression parameters

where there are several others presentcan be a difficult calculation, at least in
principle, since each point of theF -statistic surface being contoured must be
calculated by optimizing with respect to the other parameters.

Bootstrapping

An alternative way to explore the distribution of the parameter estimates is to
use the bootstrap. This was a designed experiment, so we illustrate model-based
bootstrapping using the functions from library sectionboot. As this is a non-
linear model, the residuals may have a non-zero mean, which we remove.

> library(boot)
> storm.fm <- nls(Time ~ b*Viscosity/(Wt - c), stormer,

start = c(b = 29.401, c = 2.2183))
> summary(storm.fm)$parameters

Value Std. Error t value
b 29.4010 0.91553 32.1135
c 2.2183 0.66553 3.3332
> st <- cbind(stormer, fit = fitted(storm.fm))
> storm.bf <- function(rs, i) {

st <- st # for S-PLUS
st$Time <- st$fit + rs[i]
coef(nls(Time ~ b * Viscosity/(Wt - c), st,

226 Non-Linear and Smooth Regression

start = coef(storm.fm)))
}

> rs <- scale(resid(storm.fm), scale = F) # remove the mean
> (storm.boot <- boot(rs, storm.bf, R = 9999)) ## slow

....
Bootstrap Statistics :

original bias std. error
t1* 28.7156 0.69599 0.83153
t2* 2.4799 -0.26790 0.60794
> boot.ci(storm.boot, index = 1,

type = c("norm", "basic", "perc", "bca"))
Intervals :
Level Normal Basic
95% (26.39, 29.65) (26.46, 29.69)

Level Percentile BCa
95% (27.74, 30.97) (26.18, 29.64)
Calculations and Intervals on Original Scale
Warning : BCa Intervals used Extreme Quantiles
> boot.ci(storm.boot, index = 2,

type = c("norm", "basic", "perc", "bca"))
Intervals :
Level Normal Basic
95% (1.556, 3.939) (1.553, 3.958)

Level Percentile BCa
95% (1.001, 3.406) (1.571, 4.031)
Calculations and Intervals on Original Scale

The ‘original’ here is not the original fit as the residuals were adjusted. Figure 8.3
suggests that a likelihood-based analysis would support the percentile intervals.
Note that despite the large number of bootstrap samples (which took 2 mins), this
is still not really enough forBCa intervals.

8.5 Profiles

One way of assessing departures from the planar assumption (both of the sur-
face itself and of the coordinate system within the surface) is to look at the low-
dimensional profiles of the sum of squares function, as discussed in Section 8.4.
Indeed this is the original intended use for theprofile function.

For coordinate directions along which the approximate linear methods are ac-
curate, a plot of the non-lineart-statistics,τ(βi) againstβi over several standard
deviations on either side of the maximum likelihood estimate should be straight.
(The τ(βi) were defined in equation (8.5) on page 220.) Any deviations from
straightness serve as a warning that the linear approximation may be misleading
in that direction.

Appropriate plot methods for objects produced by theprofile function are
available (andMASS contains an enhanced version using Trellis). For the weight
loss data we can use (Figure 8.4)

8.6 Constrained Non-Linear Regression 227

-4

-2

0

2

4
b0

70 75 80 85

b1

100 105 110

th

130 140 150 160

ta
u

Figure 8.4: Profile plots for the negative exponential weight loss model.

plot(profile(wtloss.gr))

A limitation of these plots is that theyonly examine each coordinate direction
separately. Profiles can also be defined for two or more parameters simultane-
ously. These present much greater difficulties of computation and to some extent
of visual assessment. An example is given in the previous section with the two
parameters of thestormer data model. In Figure 8.3 an assessment of the lin-
ear approximation requires checking both that the contours are approximately
elliptical and that each one-dimensional cross-section through the minimum is
approximately quadratic. In one dimension it is much easier visually to check the
linearity of the signed square root than the quadratic nature of the sum of squares
itself.

The profiling process itself actually accumulates much more information than
that shown in the plot. As well as recording the value of the optimized likelihood
for a fixed value of a parameterβj , it also finds and records the values of all
other parameters for which the conditional optimum is achieved. Thepairs
method function forprofile objects supplied inMASS can display this so-called
profile trace information in graphical form, which can shed considerably more
light on the local features of the log-likelihood function near the optimum. This
is discussed in more detail in the on-line complements.

8.6 Constrained Non-Linear Regression

All the functions for regression we have seen so far assume that the parameters
can take any real value. Constraints on the parameters can be often incorporated
by reparametrization (such asβi = eθ, possibly thereby making a linear model
non-linear), but this can be undesirable if, for example, the constraint isβi � 0
and0 is expected to occur. Two functions for constrained regression are provided
in S-PLUS, nnls.fit (for linear regression with non-negative coefficients) and
nlregb . Neither is available inR. The general optimization methods considered
in Chapter 16 can also be used.

228 Non-Linear and Smooth Regression

8.7 One-Dimensional Curve-Fitting

Let us return to the simplest possible case, of one responsey and one explanatory
variablex . We want to draw a smooth curve through the scatterplot ofy vs x .
(So these methods are often calledscatterplot smoothers.) In contrast to the first
part of this chapter, we may have little idea of the functional form of the curve.

A wide range of methods is available, including splines, kernel regression,
running means and running lines. The classical way to introduce non-linear func-
tions of dependent variables is to add a limited range of transformed variables to
the model, for example, quadratic and cubic terms, or to split the range of the
variable and use a piecewise constant or piecewise functions. (InS this can be
achieved using the functionspoly and cut.) But there are almost always better
alternatives.

As an illustrative example, we consider the data on the concentration of a
chemical GAG in the urine of 314 children aged from 0 to 17 years in data frame
GAGurine (Figure 8.5). Forwards selection suggests a degree 6 polynomial:

attach(GAGurine)
plot(Age, GAG, main = "Degree 6 polynomial")
GAG.lm <- lm(GAG ~ Age + I(Age^2) + I(Age^3) + I(Age^4) +

I(Age^5) + I(Age^6) + I(Age^7) + I(Age^8))
anova(GAG.lm)

....
Terms added sequentially (first to last)

Df Sum of Sq Mean Sq F Value Pr(F)
Age 1 12590 12590 593.58 0.00000

I(Age^2) 1 3751 3751 176.84 0.00000
I(Age^3) 1 1492 1492 70.32 0.00000
I(Age^4) 1 449 449 21.18 0.00001
I(Age^5) 1 174 174 8.22 0.00444
I(Age^6) 1 286 286 13.48 0.00028
I(Age^7) 1 57 57 2.70 0.10151
I(Age^8) 1 45 45 2.12 0.14667

GAG.lm2 <- lm(GAG ~ Age + I(Age^2) + I(Age^3) + I(Age^4) +
I(Age^5) + I(Age^6))

xx <- seq(0, 17, len = 200)
lines(xx, predict(GAG.lm2, data.frame(Age = xx)))

Splines

A modern alternative is to usespline functions. (Green and Silverman, 1994, pro-
vide a fairly gentle introduction to splines.) We only need cubic splines. Divide
the real line by an ordered set of points{zi} known asknots. On the interval
[zi, zi+1] the spline is a cubic polynomial, and it is continuous and has contin-
uous first and second derivatives, imposing 3 conditions at each knot. Withn
knots,n+ 4 parameters are needed to represent the cubic spline (from4(n+ 1)
for the cubic polynomials minus3n continuity conditions). Of the many possi-
ble parametrizations, that of B-splines has desirable properties. (See Mackenzie

8.7 One-Dimensional Curve-Fitting 229

••

•••

•

•

••

•

•
•

•
••

•

•
•

•

•

•

•
•
•
•
•

•

•
•

•
•
•

•

•

•
•
•

•

•

•

•••
•••
•

••

••
•
•
••
•
•

•

•

•

•

•
•
•

••

•

••
•
••
•
•
••
••

•
•••

•
•
•
•
••
•
•
•
•

•
••
•

•

••
••••
•••
•

•

••
••
••••
••••
•
•
••
•
•
••••••

•

•••
•

•
•
•
•
•
•
•
••
• •

•

••
•
•
•

••
•••••

••
•
•
•
•

•

••••
•••••

•
•••••
••••
•
•• •

•
•
•
•
••
•
••
•
•
•••••••••

•••

•

•

••••••••••
••••••••

•
• ••••••

•
••••
•
•••

•

•••

•

•
•
•••

••
•••••

••••
•
••

•

•
•

••••
•
•

•
••
•
•••••

•
•

•••••
• ••

• ••••

•

Degree 6 polynomial

Age

G
A

G

0 5 10 15

0
10

20
30

40
50

Splines

Age

G
A

G

0 5 10 15

0
10

20
30

40
50 df=5

df=10
df=20
Smoothing

loess

Age

G
A

G

0 5 10 15

0
10

20
30

40
50

supsmu

Age

G
A

G
0 5 10 15

0
10

20
30

40
50 default

base = 3
base = 10

ksmooth

Age

G
A

G

0 5 10 15

0
10

20
30

40
50 width = 1

width = 5

locpoly

Age

G
A

G

0 5 10 15

0
10

20
30

40
50 const

linear
quadratic

Figure 8.5: Scatter smoothers applied toGAGurine .

and Abrahamowicz, 1996, and Hastieet al., 2001, pp. 160–3, for gentle intro-
ductions.) TheS function4 bs generates a matrix of B-splines, and so can be
included in a linear-regression fit; doing so is called usingregression splines.

A restricted form of B-splines known asnatural splines (implemented by the
S function ns) is linear on(−∞, z1] and [zn,∞) and thus would haven pa-
rameters. However,ns adds an extra knot at each of the maximum and minimum
of the data points, and so hasn+ 2 parameters, dropping the requirement for the
derivative to be continuous atz1 and zn. The functionsbs and ns may have
the knots specified or be allowed to choose the knots as quantiles of the empirical
distribution of the variable to be transformed, by specifying the numberdf of
parameters.

Prediction from models including splinesneeds care, as the basis for the func-
tions depends on the observed values of the independent variable. Ifpredict.lm
is used, it will form a new set of basis functions and then erroneously apply the
fitted coefficients. TheS-PLUS function predict.gam will work more nearly
correctly. (It uses both the old and new data to choose the knots.)

plot(Age, GAG, type = "n", main = "Splines")
lines(Age, fitted(lm(GAG ~ ns(Age, df = 5))))
lines(Age, fitted(lm(GAG ~ ns(Age, df = 10))), lty = 3)

4In R bs and ns are in packagesplines .

230 Non-Linear and Smooth Regression

lines(Age, fitted(lm(GAG ~ ns(Age, df = 20))), lty = 4)

Smoothing splines

Suppose we haven pairs (xi, yi). A smoothing spline minimizes a compromise
between the fit and the degree of smoothness of the form∑

wi[yi − f(xi)]2 + λ

∫
(f ′′(x))2 dx

over all (measurably twice-differentiable) functionsf . It is a cubic spline with
knots at thexi, but does not interpolate the data points forλ > 0and the de-
gree of fit is controlled byλ. The S function smooth.spline allows λ 5 or
the (equivalent) degrees of freedom to be specified, otherwise it will choose the
degree of smoothness automatically by cross-validation. There are various defini-
tions of equivalent degrees of freedom; see Green and Silverman (1994, pp. 37–8)
and Hastie and Tibshirani (1990, Appendix B). That used insmooth.spline is
the trace of the smoother matrixS; as fitting a smoothing spline is a linear oper-
ation, there is ann× n matrix S such ŷ = Sy. (In a regression fitS is the hat
matrix (page 152); this has trace equal to the number of free parameters.)

lines(smooth.spline(Age, GAG), lwd = 3)
legend(12, 50, c("df=5", "df=10", "df=20", "Smoothing"),

lty = c(1, 3, 4, 1), lwd = c(1,1,1,3), bty = "n")

For λ = 0 the smoothing spline will interpolate the data points if thexi are
distinct. There are simpler methods to fit interpolating cubic splines, implemented
in the functionspline. This can be useful to draw smooth curves through the
result of some expensive smoothing algorithm: we could also use linear interpo-
lation implemented byapprox.

Local regression

There are several smoothers that work by fitting a linear (or polynomial regres-
sion) to the data points in the vicinity ofx and then using as the smoothed value
the predicted value atx .

The algorithm used bylowess is quite complex; it uses robust locally lin-
ear fits. A window is placed aboutx; data points that lie inside the window are
weighted so that nearby points get the most weight and a robust weighted regres-
sion is used to predict the value atx. The parameterf controls the window size
and is the proportion of the data that is included. The default,f = 2/3, is often
too large for scatterplots with appreciable structure. The function6 loess is an
extension of the ideas oflowess which will work in one, two or more dimen-
sions in a similar way. The functionscatter.smooth plots aloess line on a
scatterplot, usingloess.smooth.

plot(Age, GAG, type = "n", main = "loess")
lines(loess.smooth(Age, GAG))

5More preciselyλ with the (xi) scaled to[0, 1] and the weights scaled to average 1.
6In R, loess , supsmu and ksmooth are in packagemodreg .

8.7 One-Dimensional Curve-Fitting 231

Friedman’s smoothersupsmu is the one used by theS-PLUS functionsace,
avas andppreg , and by our functionppr. It is based on a symmetrick-nearest
neighbour linear least squares procedure. (That is,k/2 data points on each side
of x are used in a linear regression to predict the value atx.) This is run for
three values ofk, n/2, n/5 and n/20, and cross-validation is used to choose a
value of k for eachx that is approximated by interpolation between these three.
Larger values of the parameterbass (up to 10) encourage smooth functions.

plot(Age, GAG, type = "n", main = "supsmu")
lines(supsmu(Age, GAG))
lines(supsmu(Age, GAG, bass = 3), lty = 3)
lines(supsmu(Age, GAG, bass = 10), lty = 4)
legend(12, 50, c("default", "base = 3", "base = 10"),

lty = c(1, 3, 4), bty = "n")

A kernel smoother is of the form

ŷi =
n∑

j=1

yiK

(
xi − xj

b

)/ n∑
j=1

K

(
xi − xj

b

)
(8.7)

where b is a bandwidth parameter, andK a kernel function, as in density es-
timation. In our example we use the functionksmooth and takeK to be a
standard normal density. The critical parameter is the bandwidthb. The function
ksmooth seems very slow inS-PLUS, and the faster alternatives in library sec-
tion Matt Wand’sKernSmooth are recommended. These also include ways to
select the bandwidth.

plot(Age, GAG, type = "n", main = "ksmooth")
lines(ksmooth(Age, GAG, "normal", bandwidth = 1))
lines(ksmooth(Age, GAG, "normal", bandwidth = 5), lty = 3)
legend(12, 50, c("width = 1", "width = 5"), lty = c(1, 3), bty = "n")

library(KernSmooth)
plot(Age, GAG, type = "n", main = "locpoly")
(h <- dpill(Age, GAG))
[1] 0.49592
lines(locpoly(Age, GAG, degree = 0, bandwidth = h))

Kernel regression can be seen as local fitting of a constant. Theoretical work
(see Wand and Jones, 1995) has shown advantages in local fitting of polynomials,
especially those of odd order. Library sectionsKernSmooth andlocfit contain
code for local polynomial fitting and bandwidth selection.

lines(locpoly(Age, GAG, degree = 1, bandwidth = h), lty = 3)
lines(locpoly(Age, GAG, degree = 2, bandwidth = h), lty = 4)
legend(12, 50, c("const", "linear", "quadratic"),

lty = c(1, 3, 4), bty = "n")
detach()

232 Non-Linear and Smooth Regression

Finding derivatives of fitted curves

There are problems in which the main interest is in estimating the first or second
derivative of a smoother. One idea is to fit locally a polynomial of high enough
order and report its derivative (implemented inlocpoly). We can differentiate
a spline fit, although it may be desirable to fit splines of higher order than cubic;
library sectionpspline by Jim Ramsey provides a suitable generalization of
smooth.spline.

8.8 Additive Models

For linear regression we have a dependent variableY and a set of predictor vari-
ablesX1, . . . , Xp, and model

Y = α+
p∑

j=1

βjXj + ε

Additive models replace the linear functionβjXj by a non-linear function to get

Y = α+
p∑

j=1

fj(Xj) + ε (8.8)

Since the functionsfj are rather general, they can subsume theα. Of course, it is
not useful to allow an arbitrary functionfj , and it helps to think of it as asmooth
function. We may also allow terms to depends on a small number (in practice
rarely more than two) terms.

As we have seen, smooth terms parametrized by regression splines can be fit-
ted by lm. For smoothing splines it would be possible to set up a penalized least-
squares problem and minimize that, but there would be computational difficul-
ties in choosing the smoothing parameters simultaneously (Wahba, 1990; Wahba
et al., 1995). Instead an iterative approach is often used. Thebackfitting algorithm
fits the smooth functionsfj in (8.8) one at a time by taking the residuals

Y − α−
∑
k �=j

fk(Xk)

and smoothing them againstXj using one of the scatterplot smoothers of the
previous subsection. The process is repeated until it converges. Linear terms in
the model (including any linear terms in the smoother) are fitted by least squares.

This procedure is implemented inS-PLUS by the functiongam. The model
formulae are extended to allow the termss(x) and lo(x) which, respectively,
specify a smoothing spline and a loess smoother. These have similar parameters
to the scatterplot smoothers; fors() the default degrees of freedom is 4, and for
lo() the window width is controlled byspan with default 0.5. There is a plot
method,plot.gam, which shows the smooth function fitted for each term in the
additive model. (R has a somewhat different functiongam in packagemgcv .)

8.8 Additive Models 233

area

s(
ar

ea
)

2000 4000 6000 80001000012000

-4
-2

0
2

peri

s(
pe

ri)

1000 2000 3000 4000 5000

-4
-2

0
2

4

shape

s(
sh

ap
e)

0.1 0.2 0.3 0.4

-2
-1

0
1

area

ar
ea

2000 4000 6000 80001000012000

-4
-2

0
2

peri

pe
ri

1000 2000 3000 4000 5000

-4
-2

0
2

4

shape

s(
sh

ap
e)

0.1 0.2 0.3 0.4
-2

-1
0

1

Figure 8.6: The results of fitting additive models to the datasetrock with smooth func-
tions of all three predictors (top row) and linear functions ofarea and perimeter (bot-
tom row). The dashed lines are approximate 95% pointwise confidence intervals. The tick
marks show the locations of the observations on that variable.

Our datasetrock contains measurements on four cross-sections of each of 12
oil-bearing rocks; the aim is to predict permeabilityy (a property of fluid flow)
from the other three measurements. As permeabilities vary greatly (6.3–1300),
we use a log scale. The measurements are the end product of a complex image-
analysis procedure and represent the total area, total perimeter and a measure of
‘roundness’ of the pores in the rock cross-section.

We first fit a linear model, then a full additive model. In this example conver-
gence of the backfitting algorithm is unusually slow, so thecontrol limits must
be raised. The plots are shown in Figure 8.6.

rock.lm <- lm(log(perm) ~ area + peri + shape, data = rock)
summary(rock.lm)
rock.gam <- gam(log(perm) ~ s(area) + s(peri) + s(shape),

control = gam.control(maxit = 50, bf.maxit = 50), data = rock)
summary(rock.gam)
anova(rock.lm, rock.gam)
par(mfrow = c(2, 3), pty = "s")
plot(rock.gam, se = T)
rock.gam1 <- gam(log(perm) ~ area + peri + s(shape), data = rock)
plot(rock.gam1, se = T)
anova(rock.lm, rock.gam1, rock.gam)

It is worth showing the output fromsummary.gam and the analysis of variance

234 Non-Linear and Smooth Regression

table fromanova(rock.lm, rock.gam) :

Deviance Residuals:
Min 1Q Median 3Q Max

-1.6855 -0.46962 0.12531 0.54248 1.2963

(Dispersion Parameter ... 0.7446)

Null Deviance: 126.93 on 47 degrees of freedom
Residual Deviance: 26.065 on 35.006 degrees of freedom

Number of Local Scoring Iterations: 1

DF for Terms and F-values for Nonparametric Effects

Df Npar Df Npar F Pr(F)
(Intercept) 1

s(area) 1 3 0.3417 0.79523
s(peri) 1 3 0.9313 0.43583
s(shape) 1 3 1.4331 0.24966

Analysis of Variance Table

Terms Resid. Df RSS Test
1 area + peri + shape 44.000 31.949
2 s(area) + s(peri) + s(shape) 35.006 26.065 1 vs. 2

Df Sum of Sq F Value Pr(F)
1
2 8.9943 5.8835 0.8785 0.55311

This shows that each smooth term has one linear and three non-linear degrees
of freedom. The reduction of RSS from 31.95 (for the linear fit) to 26.07 is not
significant with an extra nine degrees of freedom, but Figure 8.6 shows that only
one of the functions appears non-linear, and even that is not totally convincing.
Although suggestive, the non-linear term forperi is not significant. With just a
non-linear term inshape the RSS is 29.00.

One of the biggest difficulties with using theS-PLUS version ofgam is spec-
ifying the degree of smoothing for each term (via the degrees of freedom for an
s() term or the span for anlo() term). (TheR version chooses the amount of
smoothing automatically, by default.) This is overcome by using BRUTO (Fried-
man and Silverman, 1989; Hastie and Tibshirani, 1990) which fits additive models
with smooth functions selected by smoothing splines and will choose between a
smooth function, a linear term or omitting the variable altogether. (This is imple-
mented in library sectionmda by Hastie and Tibshirani.)

For therock databruto fits an essentially linear model.

> library(mda)
> rock.bruto <- bruto(rock[, -4], rock[, 4])
> rock.bruto$type
[1] smooth linear linear

8.8 Additive Models 235

> rock.bruto$df
area peri shape

1.0167 1 1

Let us consider again thecpus data:

Xin <- as.matrix(cpus2[cpus.samp, 1:6])
test2 <- function(fit) {

Xp <- as.matrix(cpus2[-cpus.samp, 1:6])
sqrt(sum((log10(cpus2[-cpus.samp, "perf"]) -

predict(fit, Xp))^2)/109)
}
cpus.bruto <- bruto(Xin, log10(cpus2[cpus.samp, 7]))
test2(cpus.bruto)
[1] 0.21336

cpus.bruto$type
[1] excluded smooth linear smooth smooth linear
cpus.bruto$df
syct mmin mmax cach chmin chmax

0 1.5191 1 1.0578 1.1698 1

examine the fitted functions
par(mfrow = c(3, 2))
Xp <- matrix(sapply(cpus2[cpus.samp, 1:6], mean), 100, 6,

byrow = T)
for(i in 1:6) {

xr <- sapply(cpus2, range)
Xp1 <- Xp; Xp1[, i] <- seq(xr[1, i], xr[2, i], len = 100)
Xf <- predict(cpus.bruto, Xp1)
plot(Xp1[,i], Xf, xlab=names(cpus2)[i], ylab= "", type = "l")

}

The result (not shown) indicates that the non-linear terms have a very slight cur-
vature, as might be expected from the equivalent degrees of freedom that are
reported.

Multiple Adaptive Regression Splines

The function mars in library section mda implements the MARS (Multiple
Adaptive Regression Splines) method of Friedman (1991). By default this is an
additive method, fitting splines of order 1 (piecewise linear functions) to each
variable; again the number of pieces is selected by the program so that variables
can be entered linearly, non-linearly or not at all.

The library sectionpolymars of Kooperberg and O’Connor implements a
restricted form of MARS (for example, allowing only pairwise interactions) sug-
gested by Kooperberget al. (1997).

We can usemars to fit a piecewise linear model with additive terms to the
cpus data.

236 Non-Linear and Smooth Regression

cpus.mars <- mars(Xin, log10(cpus2[cpus.samp,7]))
showcuts <- function(obj)
{

tmp <- obj$cuts[obj$sel,]
dimnames(tmp) <- list(NULL, dimnames(Xin)[[2]])
tmp

}
> showcuts(cpus.mars)

syct mmin mmax cach chmin chmax
[1,] 0 0.0000 0.0000 0 0 0
[2,] 0 0.0000 3.6021 0 0 0
[3,] 0 0.0000 3.6021 0 0 0
[4,] 0 3.1761 0.0000 0 0 0
[5,] 0 0.0000 0.0000 0 8 0
[6,] 0 0.0000 0.0000 0 0 0
> test2(cpus.mars)
[1] 0.21366
examine the fitted functions
Xp <- matrix(sapply(cpus2[cpus.samp, 1:6], mean), 100, 6,

byrow = T)
for(i in 1:6) {

xr <- sapply(cpus2, range)
Xp1 <- Xp; Xp1[, i] <- seq(xr[1, i], xr[2, i], len = 100)
Xf <- predict(cpus.mars, Xp1)
plot(Xp1[,i], Xf, xlab = names(cpus2)[i], ylab = "", type = "l")

}
try degree 2
> cpus.mars2 <- mars(Xin, log10(cpus2[cpus.samp,7]), degree = 2)
> showcuts(cpus.mars2)

syct mmin mmax cach chmin chmax
[1,] 0 0.0000 0.0000 0 0 0
[2,] 0 0.0000 3.6021 0 0 0
[3,] 0 1.9823 3.6021 0 0 0
[4,] 0 0.0000 0.0000 16 8 0
[5,] 0 0.0000 0.0000 0 0 0
> test2(cpus.mars2)
[1] 0.21495
> cpus.mars6 <- mars(Xin, log10(cpus2[cpus.samp,7]), degree = 6)
> showcuts(cpus.mars6)

syct mmin mmax cach chmin chmax
[1,] 0.0000 0.0000 0.0000 0 0 0
[2,] 0.0000 1.9823 3.6021 0 0 0
[3,] 0.0000 0.0000 0.0000 16 8 0
[4,] 0.0000 0.0000 0.0000 16 8 0
[5,] 0.0000 0.0000 3.6990 0 8 0
[6,] 2.3979 0.0000 0.0000 16 8 0
[7,] 2.3979 0.0000 3.6990 16 8 0
[8,] 0.0000 0.0000 0.0000 0 0 0
> test2(cpus.mars6)
[1] 0.20604

8.8 Additive Models 237

Allowing pairwise interaction terms (bydegree = 2) or allowing arbitrary in-
teractions make little difference to the effectiveness of the predictions. The plots
(not shown) indicate an additive model with non-linear terms inmmin andchmin
only.

Response transformation models

If we want to predictY , it may be better to transformY as well, so we have

θ(Y) = α+
p∑

j=1

fj(Xj) + ε (8.9)

for an invertible smooth functionθ(), for example the log function we used for
the rock dataset.

The ACE (alternating conditional expectation) algorithm of Breiman and
Friedman (1985) chooses the functionsθ and f1, . . . , fj to maximize the cor-
relation between the predictorα+

∑p
j=1 fj(Xj) and θ(Y). Tibshirani’s (1988)

procedure AVAS (additivity and variance stabilising transformation) fits the same
model (8.9), but with the aim of achieving constant variance of the residuals for
monotoneθ.

The functions7 ace and avas fit (8.9). Both allow the functionsfj and θ
to be constrained to be monotone or linear, and the functionsfj to be chosen for
circular or categorical data. Thus these functions provide another way to fit addi-
tive models (with linearθ) but they do not provide measures of fit nor standard
errors. They do, however, automatically choose the degree of smoothness. Our
experience has been that AVAS is much more reliable than ACE.

We can consider thecpus data; we have already log-transformed some of the
variables.

attach(cpus2)
cpus.avas <- avas(cpus2[, 1:6], perf)
plot(log10(perf), cpus.avas$ty)
par(mfrow = c(2, 3))
for(i in 1:6) {

o <- order(cpus2[, i])
plot(cpus2[o, i], cpus.avas$tx[o, i], type = "l",

xlab=names(cpus2[i]), ylab = "")
}
detach()

This accepts the log-scale for the response, but has some interesting shapes for the
regressors (Figure 8.7). The strange shape of the transformation forchmin and
chmax is probably due to local collinearity asthere are five machines without any
channels.

For the rock dataset we can use the following code. TheS function rug
produces the ticks to indicate the locations of data points, as used bygam.plot.

7In R these are in packageacepack .

238 Non-Linear and Smooth Regression

syct
1.5 2.0 2.5 3.0

-0
.6

-0
.4

-0
.2

0.
0

mmin
2.0 2.5 3.0 3.5 4.0 4.5

-0
.4

-0
.2

0.
0

0.
2

mmax
2.0 2.5 3.0 3.5 4.0 4.5-1

.0
-0

.5
0.

0
0.

5
1.

0
1.

5
cach

0 50 100 150 200 250

-0
.2

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

chmin
0 10 20 30 40 50

0
1

2
3

4

chmax
0 50 100 150

-3
-2

-1
0

Figure 8.7: AVAS transformations of the regressors in thecpus dataset.

attach(rock)
x <- cbind(area, peri, shape)
o1 <- order(area); o2 <- order(peri); o3 <- order(shape)
a <- avas(x, perm)
par(mfrow = c(2, 2))
plot(area[o1], a$tx[o1, 1], type = "l") see Figure 8.8
rug(area)
plot(peri[o2], a$tx[o2, 2], type = "l")
rug(peri)
plot(shape[o3], a$tx[o3, 3], type = "l")
rug(shape)
plot(perm, a$ty, log = "x") note log scale
a <- avas(x, log(perm)) looks like log(y)
a <- avas(x, log(perm), linear=0) so forceθ(y) = log(y)
repeat plots

Here AVAS indicates a log transformation of permeabilities (expected on
physical grounds) butlittle transformation of area or perimeter as we might by
now expect.

8.9 Projection-Pursuit Regression

Now suppose that the explanatory vectorX = (X1, . . . , Xp) is of high dimen-
sion. The additive model (8.8) may be too flexible as it allows a few degrees of

8.9 Projection-Pursuit Regression 239

transformation of area

area

2000 4000 6000 8000 10000 12000

-2
-1

0
1

2

transformation of peri

peri

1000 2000 3000 4000 5000

-2
-1

0
1

2
3

transformation of shape

shape

0.1 0.2 0.3 0.4

-0
.2

0.
0

0.
1

0.
2

•
•

•

•

•

•

•

•
•

•

•

•

transformation of y

y

10 50 100 500 1000

-1
.5

-0
.5

0.
5

1.
5

Figure 8.8: AVAS on permeabilities

freedom perXj , yet it does not cover the effect of interactions between the in-
dependent variables. Projection pursuitregression (Friedman and Stuetzle, 1981)
applies an additive model to projected variables. That is, it is of the form:

Y = α0 +
M∑

j=1

fj(αT
j X) + ε (8.10)

for vectorsαj , and a dimensionM to be chosen by the user. Thus it uses an
additive model on predictor variables that are formed by projectingX in M
carefully chosen directions. For large enoughM such models can approximate
(uniformly on compact sets and in many other senses) arbitrary continuous func-
tions of X (for example, Diaconis and Shahshahani, 1984). The terms of (8.10)
are called ridge functions, since they are constant in all but one direction.

The functionppr 8 in MASS fits (8.10) by least squares, and constrains the
vectorsαk to be of unit length. It first fitsMmax terms sequentially, then prunes
back toM by at each stage dropping the least effective term and re-fitting. The
function returns the proportion of the variance explained by all the fits from
M, . . . ,Mmax.

For therock example we can use9

> attach(rock)

8Like the S-PLUS function ppreg based on theSMART program described in Friedman (1984),
but using double precision internally.

9The exact results depend on the machine used.

240 Non-Linear and Smooth Regression

> rock1 <- data.frame(area = area/10000, peri = peri/10000,
shape = shape, perm = perm)

> detach()
> (rock.ppr <- ppr(log(perm) ~ area + peri + shape, data = rock1,

nterms = 2, max.terms = 5))
Call:
ppr.formula(formula = log(perm) ~ area + peri + shape,

data = rock1, nterms = 2, max.terms = 5)

Goodness of fit:
2 terms 3 terms 4 terms 5 terms
11.2317 7.3547 5.9445 3.1141

The summary method gives a little more information.

> summary(rock.ppr)
Call:
ppr.formula(formula = log(perm) ~ area + peri + shape,

data = rock1, nterms = 2, max.terms = 5)

Goodness of fit:
2 terms 3 terms 4 terms 5 terms
11.2317 7.3547 5.9445 3.1141

Projection direction vectors:
term 1 term 2

area 0.314287 0.428802
peri -0.945525 -0.860929

shape 0.084893 0.273732

Coefficients of ridge terms:
term 1 term 2
0.93549 0.81952

The added information is the direction vectorsαk and the coefficientsβij in

Yi = αi0 +
M∑

j=1

βijfj(αT
j X) + ε (8.11)

Note that this is the extension of (8.10)to multiple responses, and so we separate
the scalings from the smooth functionsfj (which are scaled to have zero mean
and unit variance over the projections of the dataset).

We can examine the fitted functionsfj by (see Figure 8.9)

par(mfrow = c(3, 2))
plot(rock.ppr)
plot(update(rock.ppr, bass = 5))
plot(rock.ppr2 <- update(rock.ppr, sm.method = "gcv",

gcvpen = 2))

8.9 Projection-Pursuit Regression 241

•• • ••••
••• ••

•••
••• • • •• •

•
•

•
••
•••

••• ••
••• • ••• •

•
•

•

term 1
-0.15 -0.10 -0.05 0.0 0.05 0.10 0.15

-1
.5

-1
.0

-0
.5

0.
0

0.
5

1.
0

• •
•

•
••

•
••

•••••• •••••••• •••
••• • •

•
•••• • • • ••• •

• • •
•

term 2
0.0 0.1 0.2 0.3

-2
-1

0
1

2

• ••• •• •••• ••••
••

•••••
• • •

•• •• • •••••
•••

•• • • ••• • •

term 1
-0.1 0.0 0.1

-1
.0

-0
.5

0.
0

0.
5

1.
0

1.
5

•

•
••
••

•••
••

••
•••

••••••• •••••• •• •••••• •••• • • • ••

•

term 2
0.0 0.1 0.2 0.3

-3
-2

-1
0

••
••

••••
•••

••
•••••

• •
• •••

••••••
• ••• •••

••• •••• • • •

term 1
-0.10 -0.05 0.0 0.05 0.10 0.15 0.20

-2
-1

0
1

•

•
•••

•••
•

••
••••

••• ••••••••• ••• •••••••••• • •
•

•
•

•

term 2
-0.1 0.0 0.1 0.2

-4
-3

-2
-1

0

Figure 8.9: Plots of the ridge functions for three two-term projection pursuit regressions
fitted to the rock dataset. The top two fits usedsupsmu, whereas the bottom fit used
smoothing splines.

We first increase the amount of smoothing in the ‘super smoother’supsmu to fit
a smoother function, and then change to using a smoothing spline with smooth-
ness chosen by GCV (generalized cross-validation) with an increased complexity
penalty. We can then examine the details of this fit by

summary(rock.ppr2)
....

Goodness of fit:
2 terms 3 terms 4 terms 5 terms
22.523 21.564 21.564 0.000

Projection direction vectors:
term 1 term 2

area 0.348531 0.442850
peri -0.936987 -0.856179

shape 0.024124 -0.266162

Coefficients of ridge terms:
term 1 term 2
1.46479 0.20077

Equivalent df for ridge terms:
term 1 term 2
2.68 2

242 Non-Linear and Smooth Regression

area

fit

fit

Figure 8.10: A two-dimensional fitted section of a projection pursuit regression surface
fitted to therock data. Note that the prediction extends the ridge functions as constant
beyond the fitted functions, hence the planar regions shown. For display on paper we set
drape = F.

This fit is substantially slower since the effort put into choosing the amount of
smoothing is much greater. Note that here only two effective terms could be
found, and thatarea andperi dominate. We can arrange to view the surface for
a typical value ofshape (Figure 8.10). Users ofS-PLUS or R underWindows
can use interactive rotation: see page 422.

summary(rock1) # to find the ranges of the variables
Xp <- expand.grid(area = seq(0.1, 1.2, 0.05),

peri = seq(0, 0.5, 0.02), shape = 0.2)
trellis.device()
rock.grid <- cbind(Xp, fit = predict(rock.ppr2, Xp))
S: Trellis 3D plot
wireframe(fit ~ area + peri, rock.grid,

screen = list(z = 160, x = -60),
aspect = c(1, 0.5), drape = T)

R: use persp
persp(seq(0.1, 1.2, 0.05), seq(0, 0.5, 0.02),

matrix(rock.grid$fit, 23),
d = 5, theta = -160, phi = 30, zlim = c(-1, 15))

An example: The cpus data

We can also consider thecpus test problem. Our experience suggests that
smoothing the terms rathermore than the default forsupsmu is a good idea.

> (cpus.ppr <- ppr(log10(perf) ~ ., data = cpus2[cpus.samp,],
nterms = 2, max.terms = 10, bass = 5))

....
Goodness of fit:

8.10 Neural Networks 243

2 terms 3 terms 4 terms 5 terms 6 terms 7 terms 8 terms
2.1371 2.4223 1.9865 1.8331 1.5806 1.5055 1.3962
9 terms 10 terms
1.2723 1.2338

> cpus.ppr <- ppr(log10(perf) ~ ., data = cpus2[cpus.samp,],
nterms = 8, max.terms = 10, bass = 5)

> test.cpus(cpus.ppr)
[1] 0.18225
> ppr(log10(perf) ~ ., data = cpus2[cpus.samp,],

nterms = 2, max.terms = 10, sm.method = "spline")
Goodness of fit:
2 terms 3 terms 4 terms 5 terms 6 terms 7 terms 8 terms
2.6752 2.2854 2.0998 2.0562 1.6744 1.4438 1.3948
9 terms 10 terms
1.3843 1.3395

> cpus.ppr2 <- ppr(log10(perf) ~ ., data = cpus2[cpus.samp,],
nterms = 7, max.terms = 10, sm.method = "spline")

> test.cpus(cpus.ppr2)
[1] 0.18739
> res3 <- log10(cpus2[-cpus.samp, "perf"]) -

predict(cpus.ppr, cpus2[-cpus.samp,])
> wilcox.test(res2^2, res3^2, paired = T, alternative = "greater")
signed-rank normal statistic with correction Z = 0.6712,

p-value = 0.2511

In these experiments projection pursuit regression outperformed all the additive
models, but not by much, and is not significantly better than the best linear model
with discretized variables.

8.10 Neural Networks

Feed-forward neural networks provide a flexible way to generalize linear regres-
sion functions. General references are Bishop (1995); Hertz, Krogh and Palmer
(1991) and Ripley (1993, 1996). They are non-linear regression models in the
sense of Section 8.2, but with so many parameters that they are extremely flexi-
ble, flexible enough to approximate any smooth function.

We start with the simplest but most common form with one hidden layer as
shown in Figure 8.11. The input units just provide a ‘fan out’ and distribute the
inputs to the ‘hidden’ units in the second layer. These units sum their inputs, add
a constant (the ‘bias’) and take a fixed functionφh of the result. The output units
are of the same form, but with output functionφo. Thus

yk = φo

(
αk +

∑
h

whk φh

(
αh +

∑
i

wih xi

))
(8.12)

244 Non-Linear and Smooth Regression

Input Hidden

In
pu

ts

O
ut

pu
ts

w

layer layer(s)

ij

Figure 8.11: A generic feed-forward neural network.

The ‘activation function’φh of the hidden layer units is almost always taken
to be the logistic function

�(z) =
exp(z)

1 + exp(z)
and the output units are linear, logistic or threshold units. (The latter have
φo(x) = I(x > 0).) Note the similarity to projection pursuit regression (cf
(8.10)), which has linear output units but general smooth hidden units. (However,
arbitrary smooth functions can be approximated by sums of rescaled logistics.)

The general definition allows more than one hidden layer, and also allows
‘skip-layer’ connections from input to output when we have

yk = φo

αk +
∑
i→k

wikxi +
∑
j→k

wjkφh

(
αj +

∑
i→j

wijxi

) (8.13)

which allows the non-linear units to perturb a linear functional form.
We can eliminate the biasesαi by introducing an input unit 0 which is per-

manently at+1 and feeds every other unit. The regression functionf is then
parametrized by the set of weightswij , one for every link in the network (or zero
for links that are absent).

The original biological motivation for such networks stems from McCulloch
and Pitts (1943) who published a seminal model of a neuron as a binary thresh-
olding device in discrete time, specifically that

ni(t) = H
(∑

j→i

wjinj(t− 1)− θi

)
the sum being over neuronsj connected to neuroni. HereH denotes the Heav-
iside or threshold functionH(x) = I(x > 0), ni(t) is the output of neuroni at
time t and 0 < wij < 1 are attenuation weights. Thus the effect is to thresh-
old a weighted sum of the inputs at valueθi. Real neurons are now known to
be more complicated; they have a graded response rather than the simple thresh-
olding of the McCulloch–Pitts model,work in continuous time, and can perform

8.10 Neural Networks 245

more general non-linear functions of their inputs, for example, logical functions.
Nevertheless, the McCulloch–Pitts model has been extremely influential in the
development of artificial neural networks.

Feed-forward neural networks can equally be seen as a way to parametrize a
fairly general non-linear function. Such networksare rather general: Cybenko
(1989), Funahashi (1989), Hornik, Stinchcombe and White (1989) and later au-
thors have shown that neural networks with linear output units can approximate
any continuous functionf uniformly on compact sets, by increasing the size of
the hidden layer.

The approximation results are non-constructive, and in practice the weights
have to be chosen to minimize some fitting criterion, for example, least squares

E =
∑

p

‖tp − yp‖2

where tp is the target andyp the output for thepth example pattern. Other
measures have been proposed, including fory ∈ [0, 1] ‘maximum likelihood’ (in
fact minus the logarithm of a conditional likelihood) or equivalently the Kullback–
Leibler distance, which amount to minimizing

E =
∑

p

∑
k

[
tpk log

tpk
yp

k

+ (1− tpk) log
1− tpk
1− yp

k

]
(8.14)

This is half the deviance for a binary logistic model with linear predictor given by
(8.12) or (8.13). For a multinomial log-linear model withK classes we can use
a neural network withK outputs and the negative conditional log-likelihood

E =
∑

p

∑
k

−tpk log pp
k, pp

k =
eyp

k∑K
c=1 e

yp
c

(8.15)

since exactly one of the targetstpk will be one (for the class which occurred) and
the others all zero. This is often known by the pretentious name of ‘softmax’
fitting. Since there is some redundancy in (8.15) we may set one output to zero
(but usually do not).

One way to ensure thatf is smooth is to restrict the class of estimates, for
example, by using a limited number of spline knots. Another way isregularization
in which the fit criterion is altered to

E + λC(f)

with a penaltyC on the ‘roughness’ off . Weight decay, specific to neural net-
works, uses as penalty the sum of squares of the weightswij . (This only makes
sense if the inputs are rescaled to range about[0, 1] to be comparable with the out-
puts of internal units.) The use of weight decay seems both to help the optimiza-
tion process and to avoid over-fitting. Arguments in Ripley (1993, 1994) based on
a Bayesian interpretation suggestλ ≈ 10−4 –10−2 depending on the degree of

246 Non-Linear and Smooth Regression

fit expected, for least-squares fitting to variables of range one andλ ≈ 0.01–0.1
for the entropy fit.

Software to fit feed-forward neural networks with a single hidden layer but
allowing skip-layer connections (as in (8.13)) is provided in our library section
nnet. The format of the call to the fitting functionnnet is

nnet(formula, data, weights, size, Wts, linout = F, entropy = F,
softmax = F, skip = F, rang = 0.7, decay = 0, maxit = 100,
trace = T)

The non-standard arguments are as follows.

size number of units in the hidden layer.
Wts optional initial vector forwij .
linout logical for linear output units.
entropy logical for entropy rather than least-squares fit.
softmax logical for log-probability models.
skip logical for links from inputs to outputs.
rang if Wts is missing, use random weights from

runif(n,-rang, rang).
decay parameterλ.
maxit maximum of iterations for the optimizer.
Hess should the Hessian matrix at the solution be returned?
trace logical for output from the optimizer. Very reassuring!

There arepredict, print and summary methods for neural networks, and
a function nnet.Hess to compute the Hessian with respect to the weight pa-
rameters and so check if a secure local minimum has been found. For ourrock
example we have

> library(nnet)
> attach(rock)
> area1 <- area/10000; peri1 <- peri/10000
> rock1 <- data.frame(perm, area = area1, peri = peri1, shape)
> rock.nn <- nnet(log(perm) ~ area + peri + shape, rock1,

size = 3, decay = 1e-3, linout = T, skip = T,
maxit = 1000, Hess = T)

weights: 19
initial value 1092.816748
iter 10 value 32.272454

....
final value 14.069537
converged

> summary(rock.nn)
a 3-3-1 network with 19 weights
options were - skip-layer connections linear output units

decay=0.001
b->h1 i1->h1 i2->h1 i3->h1
1.21 8.74 -15.00 -3.45

8.10 Neural Networks 247

b->h2 i1->h2 i2->h2 i3->h2
9.50 -4.34 -12.66 2.48
b->h3 i1->h3 i2->h3 i3->h3
6.20 -7.63 -10.97 3.12
b->o h1->o h2->o h3->o i1->o i2->o i3->o
7.74 20.17 -7.68 -7.02 -12.95 -15.19 6.92

> sum((log(perm) - predict(rock.nn))^2)
[1] 12.231
> detach()
> eigen(rock.nn@Hessian, T)$values # rock.nn$Hessian in R
[1] 9.1533e+02 1.6346e+02 1.3521e+02 3.0368e+01 7.3914e+00
[6] 3.4012e+00 2.2879e+00 1.0917e+00 3.9823e-01 2.7867e-01

[11] 1.9953e-01 7.5159e-02 3.2513e-02 2.5950e-02 1.9077e-02
[16] 1.0834e-02 6.8937e-03 3.7671e-03 2.6974e-03

(There are several solutions and a random starting point, so your results may well
differ.) The quoted values include the weight decay term. The eigenvalues of the
Hessian suggest that a secure local minimum has been achieved. In the summary
the b refers to the bias unit (input unit 0), andi, h and o to input, hidden and
bias units.

To view the fitted surface for therock dataset we can use essentially the same
code as we used for the fits byppr.

Xp <- expand.grid(area = seq(0.1, 1.2, 0.05),
peri = seq(0, 0.5, 0.02), shape = 0.2)

trellis.device()
rock.grid <- cbind(Xp, fit = predict(rock.nn, Xp))
S: Trellis 3D plot
wireframe(fit ~ area + peri, rock.grid,

screen = list(z = 160, x = -60),
aspect = c(1, 0.5), drape = T)

R: use persp, see page 242

An example: The cpus data

To use thennet software effectively it is essential to scale the problem. A pre-
liminary run with a linear model demonstrates that we get essentially the same
results as the conventional approach to linear models.

attach(cpus2)
cpus3 <- data.frame(syct = syct-2, mmin = mmin-3, mmax = mmax-4,

cach = cach/256, chmin = chmin/100,
chmax = chmax/100, perf = perf)

detach()

test.cpus <- function(fit)
sqrt(sum((log10(cpus3[-cpus.samp, "perf"]) -

predict(fit, cpus3[-cpus.samp,]))^2)/109)
cpus.nn1 <- nnet(log10(perf) ~ ., cpus3[cpus.samp,],

linout = T, skip = T, size = 0)
test.cpus(cpus.nn1)
[1] 0.21295

248 Non-Linear and Smooth Regression

We now consider adding non-linear terms to the model.

cpus.nn2 <- nnet(log10(perf) ~ ., cpus3[cpus.samp,], linout = T,
skip = T, size = 4, decay = 0.01, maxit = 1000)

final value 2.332258
test.cpus(cpus.nn2)
[1] 0.20968
cpus.nn3 <- nnet(log10(perf) ~ ., cpus3[cpus.samp,], linout = T,

skip = T, size = 10, decay = 0.01, maxit = 1000)
final value 2.338387
test.cpus(cpus.nn3)
[1] 0.20645
cpus.nn4 <- nnet(log10(perf) ~ ., cpus3[cpus.samp,], linout = T,

skip = T, size = 25, decay = 0.01, maxit = 1000)
final value 2.332207
test.cpus(cpus.nn4)
[1] 0.20933

This demonstrates that the degree of fit is almost completely controlled by the
amount of weight decay rather than the number of hidden units (provided there
are sufficient). We have to be able to choose the amount of weight decaywithout
looking at the test set. To do so we borrow the ideas of Chapter 12, by using
cross-validation and by averaging across multiple fits.

CVnn.cpus <- function(formula, data = cpus3[cpus.samp,],
size = c(0, 4, 4, 10, 10),
lambda = c(0, rep(c(0.003, 0.01), 2)),
nreps = 5, nifold = 10, ...)

{
CVnn1 <- function(formula, data, nreps = 1, ri, ...)
{
truth <- log10(data$perf)
res <- numeric(length(truth))
cat(" fold")
for (i in sort(unique(ri))) {

cat(" ", i, sep = "")
for(rep in 1:nreps) {
learn <- nnet(formula, data[ri !=i,], trace = F, ...)
res[ri == i] <- res[ri == i] +

predict(learn, data[ri == i,])
}

}
cat("\n")
sum((truth - res/nreps)^2)

}
choice <- numeric(length(lambda))
ri <- sample(nifold, nrow(data), replace = T)
for(j in seq(along = lambda)) {
cat(" size =", size[j], "decay =", lambda[j], "\n")
choice[j] <- CVnn1(formula, data, nreps = nreps, ri = ri,

size = size[j], decay = lambda[j], ...)

8.11 Conclusions 249

44.5
45

45.5
46

46.5

Latitude
2

3

4

5

Longitude

-4
-3

-2
-1

 0
1

2
3

lo
(P

os
iti

on
)

Log.depth

lo
(L

og
.d

ep
th

)

3 4 5 6 7 8

-2
-1

0
1

Temperature

lo
(T

em
pe

ra
tu

re
)

0 5 10 15 20

-1
.5

-0
.5

0.
5

1.
0

Figure 8.12: Terms of agam fit to presence of mackerel eggs withlo terms for spatial
position, depth and surface temperature. Based on Bowman and Azzalini (1997, Fig. 8.7).

}
cbind(size = size, decay = lambda, fit = sqrt(choice/100))

}
CVnn.cpus(log10(perf) ~ ., data = cpus3[cpus.samp,],

linout = T, skip = T, maxit = 1000)
size decay fit

[1,] 0 0.000 0.20256
[2,] 4 0.003 0.18311
[3,] 4 0.010 0.17837
[4,] 10 0.003 0.19622
[5,] 10 0.010 0.18322

This took about 75 seconds. The cross-validated results seem rather insensitive to
the choice of model. The non-linearity does not seem justified.

More extensive examples of the use of neural networks are given in Chap-
ter 12.

8.11 Conclusions

We have considered a large, perhaps bewildering, variety of extensions to linear
regression. These can be thought of as belonging to two classes, the ‘black-box’
fully automatic and maximally flexible routines represented by projection pursuit

250 Non-Linear and Smooth Regression

regression and neural networks, and the small steps under full user control of
parametric and (to a less extent) additive models. Although the latter may gain in
interpretation, as we saw in therock example they may not be general enough,
and this is a common experience. They may also be sufficiently flexible to be
difficult to interpret; Figure 8.12 shows a biologically implausiblegam fit that is
probably exhibiting the equivalent for additive models of collinearity.

What is best for any particular problem depends on its aim, in particular
whether prediction or interpretation is paramount. The methods of this chapter
are powerful tools with very little distribution theory to support them, so it is very
easy to over-fit and over-explain features of the data. Be warned!

Chapter 9

Tree-Based Methods

The use of tree-based models may be unfamiliar to statisticians, although re-
searchers in other fields have found trees to be an attractive way to express knowl-
edge and aid decision-making. Keys such as Figure 9.1 are common in botany and
in medical decision-making, and providea way to encapsulate and structure the
knowledge of experts to be used by less-experienced users. Notice how this tree
uses both categorical variables and splitson continuous variables. (It is a tree, and
readers are encouraged to draw it.)

The automatic construction of decision trees dates from work in the social
sciences by Morgan and Sonquist (1963) and Morgan and Messenger (1973). In
statistics Breimanet al. (1984) had a seminal influence both in bringing the work
to the attention of statisticians and in proposing new algorithms for constructing
trees. At around the same time decision-tree induction was beginning to be used in
the field ofmachine learning, notably by Quinlan (1979, 1983, 1986, 1993), and
in engineering (Henrichon and Fu, 1969; Sethi and Sarvarayudu, 1982). Whereas
there is now an extensive literature in machine learning (see Murthy, 1998), fur-
ther statistical contributions are sparse. The introduction withinS of tree-based
models described by Clark and Pregibon (1992) made the methods much more
freely available through functiontree and its support functions. The library
sectionrpart (Therneau and Atkinson, 1997) provides a faster and more tightly-
packaged set ofS functions for fitting trees to data, which we describe here.

Ripley (1996, Chapter 7) gives a comprehensive survey of the subject, with
proofs of the theoretical results.

Constructing trees may be seen as a type of variable selection. Questions
of interaction between variables are handled automatically, and so is monotonic
transformation of thex variables. These issues are reduced to which variables to
divide on, and how to achieve the split.

Figure 9.1 is aclassification tree since its endpoint is a factor giving the
species. Although this is the most common use, it is also possible to havere-
gression trees in which each terminal node gives a predicted value, as shown in
Figure 9.2 for our datasetcpus.

Much of the machine learning literature is concerned with logical variables
and correct decisions. The endpoint of a tree is a (labelled) partition of the space
X of possible observations. In logical problems it is assumed that thereis a parti-
tion of the spaceX that will correctly classify all observations, and the task is to

251

252 Tree-Based Methods

1. Leaves subterete to slightly flattened, plant with bulb 2.
Leaves flat, plant with rhizome 4.

2. Perianth-tube > 10 mm I. × hollandica
Perianth-tube < 10 mm 3.

3. Leaves evergreen I. xiphium
Leaves dying in winter I. latifolia

4. Outer tepals bearded I. germanica
Outer tepals not bearded 5.

5. Tepals predominately yellow 6.
Tepals blue, purple, mauve or violet 8.

6. Leaves evergreen I. foetidissima
Leaves dying in winter 7.

7. Inner tepals white I. orientalis
Tepals yellow all over I. pseudocorus

8. Leaves evergreen I. foetidissima
Leaves dying in winter 9.

9. Stems hollow, perianth-tube 4–7mm I. sibirica
Stems solid, perianth-tube 7–20mm 10.

10. Upper part of ovary sterile 11.
Ovary without sterile apical part 12.

11. Capsule beak 5–8mm, 1 rib I. enstata
Capsule beak 8–16mm, 2 ridges I. spuria

12. Outer tepals glabrous, many seeds I. versicolor
Outer tepals pubescent, 0–few seeds I. × robusta

Figure 9.1: Key to British species of the genusIris. Simplified from Stace (1991, p. 1140),
by omitting parts of his descriptions.

|

cach<27

mmax<6100

syct>=360

mmax<2.8e+04

cach>=27

mmax>=6100

syct<360

mmax>=2.8e+04

1.753
n=209

1.525
n=143

1.375
n=78

1.704
n=65

1.28
n=7

1.756
n=58

2.249
n=66

2.062
n=41

2.555
n=25

Figure 9.2: A regression tree for the cpu performance data on log10 scale. The values in
each node are the prediction for the node and the number of cases reaching the node.

9.1 Partitioning Methods 253

Table 9.1: Example decisions for the space shuttle autolander problem.

stability error sign wind magnitude visibility decision

any any any any any no auto
xstab any any any any yes noauto
stab LX any any any yes noauto
stab XL any any any yes noauto
stab MM nn tail any yes noauto
any any any any Out of range yes noauto
stab SS any any Light yes auto
stab SS any any Medium yes auto
stab SS any any Strong yes auto
stab MM pp head Light yes auto
stab MM pp head Medium yes auto
stab MM pp tail Light yes auto
stab MM pp tail Medium yes auto
stab MM pp head Strong yes noauto
stab MM pp tail Strong yes auto

find a tree to describe it succinctly. A famous example of Donald Michie (for ex-
ample, Michie, 1989) is whether the spaceshuttle pilot should use the autolander
or land manually (Table 9.1). Some enumeration will show that the decision has
been specified for 253 out of the 256 possible observations. Some cases have been
specified twice. This body of expert opinion needed to be reduced to a simple de-
cision aid, as shown in Figure 9.3. (There are several comparably simple trees
that summarize this table.)

Note that the botanical problem is treated as if it were a logical problem,
although there will be occasional specimens that do not meet the specification for
their species.

9.1 Partitioning Methods

The ideas for classification and regression trees are quite similar, but the terminol-
ogy differs. Classification trees are more familiar and it is a little easier to justify
the tree-construction procedure, so we consider them first.

Classification trees

We have already noted that the endpoint for a tree is a partition of the spaceX , and
we compare trees by how well that partition corresponds to the correct decision
rule for the problem. In logical problems the easiest way to compare partitions is
to count the number of errors, or, if we have a prior over the spaceX , to compute
the probability of error.

In statistical problems the distributions of the classes overX usually overlap,
so there is no partition that completely describes the classes. Then for each cell of

254 Tree-Based Methods

|

vis=no

error=SS

stability=stab

magn=Light,Medium,Strong

error=MM

stability=stab

sign=pp

magn=Light,Medium

wind=tail

magn=Strong

vis=yes

error=LX,MM,XL

stability=xstab

magn=Out

error=LX,XL

stability=xstab

sign=nn

magn=Out,Strong

wind=head

magn=Out

auto
145/108

auto
128/0

noauto
17/108

noauto
12/20

auto
12/4

auto
12/0

noauto
0/4

noauto
0/16

noauto
5/88

noauto
5/24

noauto
5/8

auto
5/3

auto
4/0

noauto
1/3

auto
1/1

auto
1/0

noauto
0/1

noauto
0/2

noauto
0/5

noauto
0/16

noauto
0/64

Figure 9.3: A decision tree for shuttle autolander problem. The numbersm/n denote the
proportion of training cases reaching that node classified into each class (auto / noauto).
This figure was drawn bypost.rpart .

the partition there will be a probability distribution over the classes, and the Bayes
decision rule will choose the class withhighest probability. This corresponds to
assessing partitions by the overall probability of misclassification. Of course, in
practice we do not have the whole probability structure, but a training set ofn
classified examples that we assume are an independent random sample. Then we
can estimate the misclassification rate by the proportion of the training set that is
misclassified.

Almost all current tree-construction methods use a one-step lookahead. That
is, they choose the next split in an optimal way, without attempting to optimize
the performance of the whole tree. (This avoids a combinatorial explosion over
future choices, and is akin to a very simple strategy for playing a game such as
chess.) However, by choosing the right measure to optimize at each split, we can
ease future splits. It does not seem appropriate to use the misclassification rate to

9.1 Partitioning Methods 255

choose the splits.
What class of splits should we allow? Both Breimanet al.’s CART method-

ology and theS functions only allow binary splits, which avoids one difficulty in
comparing splits, that of normalization by size. For a continuous variablexj the
allowed splits are of the formxj < t versusxj � t. For ordered factors the splits
are of the same type. For general factors the levels are divided into two classes.
(Note that forL levels there are2L possible splits, and if we disallow the empty
split and ignore the order, there are still2L−1 − 1. For ordered factors there are
only L−1 possible splits.) Some algorithms1 allow a linear combination of con-
tinuous variables to be split, and Booleancombinations to be formed of binary
variables.

The justification for the originalS methodology is to view the tree as provid-
ing a probability model (hence the title ‘tree-based models’ of Clark and Pregibon,
1992). At each nodei of a classification tree we have a probability distribution
pik over the classes. The partition is given by theleaves of the tree (also known as
terminal nodes). Each case in the training set is assigned to a leaf, and so at each
leaf we have a random samplenik from the multinomial distribution specified by
pik.

We now condition on the observed variablesxi in the training set, and hence
we know the numbersni of cases assigned to every node of the tree, in particular
to the leaves. The conditional likelihood is then proportional to∏

casesj

p[j]yj
=

∏
leavesi

∏
classesk

pnik

ik

where [j] denotes the leaf assigned to casej. This allows us to define a deviance
for the tree as

D =
∑

i

Di, Di = −2
∑

k

nik log pik

as a sum over leaves.
Now considersplitting nodes into nodest and u. This changes the proba-

bility model within nodes, so the reduction in deviance for the tree is

Ds −Dt −Du = 2
∑

k

[
ntk log

ptk

psk
+ nuk log

puk

psk

]
Since we do not know the probabilities, we estimate them from the proportions in
the split node, obtaining

p̂tk =
ntk

nt
, p̂uk =

nuk

nu
, p̂sk =

ntp̂tk + nup̂uk

ns
=
nsk

ns

so the reduction in deviance is

Ds −Dt −Du = 2
∑

k

[
ntk log

ntkns

nsknt
+ nuk log

nukns

nsknu

]
1Including CART but excluding those considered here.

256 Tree-Based Methods

= 2
[∑

k

ntk logntk + nuk lognuk − nsk lognsk

+ ns logns − nt lognt − nu log nu

]
This gives a measure of the value of a split. Note that it is size-biased; there

is more value in splitting leaves with large numbers of cases.
The tree construction process takes the maximum reduction in deviance over

all allowed splits of all leaves, to choose the next split. (Note that for continuous
variates the value depends only on the split of the ranks of the observed values,
so we may take a finite set of splits.) The tree construction continues until the
number of cases reaching each leaf is small (by defaultni < 20 in rpart ,
ni < 10 in tree) or the leaf is homogeneous enough. Note that as all leaves not
meeting the stopping criterion will eventually be split, an alternative view is to
consider splitting any leaf and choose the best allowed split (if any) for that leaf,
proceeding until no further splits are allowable.

This justification for the value of a split follows Ciampiet al. (1987) and Clark
& Pregibon, but differs from most of the literature on tree construction. The more
common approach is to define a measure of the impurity of the distribution at a
node, and choose the split that most reduces the average impurity. Two common
measures are theentropy or information

∑
pik log pik and theGini index∑

j �=k

pijpik = 1−
∑

k

p2
ik

As the probabilities are unknown, they are estimated from the node proportions.
With the entropy measure, the average impurity differs fromD by a constant
factor, so the tree construction process is the same, except perhaps for the stopping
rule. Breimanet al. preferred the Gini index, which is the default inrpart.

Regression trees

The prediction for a regression tree is constant over each cell of the partition of
X induced by the leaves of the tree. The deviance is defined as

D =
∑

casesj

(yj − µ[j])2

and so clearly we should estimate the constantµi for leaf i by the mean of the
values of the training-set cases assigned to that node. Then the deviance is the
sum over leaves ofDi, the corrected sum of squares for cases within that node,
and the value (impurity reduction) of a split is the reduction in the residual sum
of squares.

The obvious probability model (and that proposed by Clark & Pregibon) is to
take a normalN(µi, σ

2) distribution within each leaf. ThenD is the usual scaled
deviance for a Gaussian GLM. However, the distribution at internal nodes of the
tree is then a mixture of normal distributions, and soDi is only appropriate at the
leaves. The tree-construction process hasto be seen as a hierarchical refinement
of probability models, very similar to forward variable selection in regression.

9.1 Partitioning Methods 257

Missing values

One attraction of tree-based methods is the ease with which missing values can be
handled. Consider the botanical key of Figure 9.1. We need to know about only
a small subset of the 10 observations to classify any case, and part of the art of
constructing such trees is to avoid observations that will be difficult or missing in
some of the species (or as in ‘capsules’, for some of the cases). A general strategy
is to ‘drop’ a case down the tree as far as it will go. If it reaches a leaf we can
predict y for it. Otherwise we use the distribution at the node reached to predict
y, as shown in Figures 9.2 and 9.3, which have predictions at all nodes.

An alternative strategy is used by many botanical keys and can be seen at
nodes 9 and 12 of Figure 9.1. A list of characteristics is given, the most important
first, and a decision made from those observations that are available. This is
codified in the method ofsurrogate splits in which surrogate rules are available
at non-terminal nodes to be used if the splitting variable is unobserved. Another
attractive strategy is to split cases with missing values, and pass part of the case
down each branch of the tree (Ripley, 1996, p. 232).

The default behaviour ofrpart is to find surrogate splits during tree con-
struction, and use them if missing values are found during prediction. This can
be changed by the optionusesurrogate = 0 to stop cases as soon as a miss-
ing attribute is encountered. A further choice is what do to ifall surrogates are
missing: optionusesurrogate = 1 stops whereasusesurrogate = 2 (the
default) sends the case in the majority direction.

Function predict.tree allows a choice of case-splitting or stopping (the
default) governed by the logical argumentsplit .

Cutting trees down to size

With ‘noisy’ data, that is when the distributions for the classes overlap, it is quite
possible to grow a tree that fits the training set well, but that has adapted too well
to features of that subset ofX . Similarly, regression trees can be too elaborate and
over-fit the training data. We need an analogue of variable selection in regression.

The established methodology is cost-complexitypruning, first introduced by
Breimanet al. (1984). They considered rooted subtrees of the treeT grown by
the construction algorithm, that is the possible results of snipping off terminal
subtrees onT . The pruning process chooses one of the rooted subtrees. LetRi

be a measure evaluated at the leaves, such as the deviance or the number of errors,
and letR be the value for the tree, the sum over the leaves ofRi. Let the size
of the tree be the number of leaves. Then Breimanet al. showed that the set of
rooted subtrees ofT that minimize2 the cost-complexity measure

Rα = R+ α size

is itself nested. That is, as we increaseα we can find the optimal trees by a
sequence of snip operations on the current tree (just like pruning a real tree). This

2For given α there may be more than one minimizing tree; ties are resolved by size, there being a
minimizing tree contained in all the others.

258 Tree-Based Methods

produces a sequence of trees from the size ofT down to the treeT∅ with just the
root node, but it may prune more than one node at a time. (Short proofs of these
assertions are given by Ripley, 1996, Chapter 7. The treeT is not necessarily
optimal for α = 0.)

We need a good way to choose the degree of pruning. If a separate validation
set is available, we can predict on that set, and compute the deviance versusα
for the pruned trees. This will often have a minimum within the range of trees
considered, and we can choose the smallest tree whose deviance is close to the
minimum.

If no validation set is available we can make one by splitting the training set.
Suppose we split the training set into 10 (roughly) equally sized parts. We can
then use 9 parts to grow the tree and test it on the tenth. This can be done in 10
ways, and we can average the results. This is known as (10-fold)cross-validation.

9.2 Implementation in rpart

The simplest way to use tree-based methods is via the library sectionrpart 3 by
Terry Therneau and Beth Atkinson (Therneau and Atkinson, 1997). The underly-
ing philosophy is of one function,rpart, that both grows a tree and computes the
optimal pruning for allα; although there is a functionprune.rpart, it merely
further prunes the tree at points already determined by the call torpart, which
has itself done some pruning. It is also possible to print a pruned tree by giving
a pruning parameter toprint.rpart. By default rpart runs a 10-fold cross-
validation and the results are stored in therpart object to allow the user to
choose the degree of pruning at a later stage. Since all the work is done in aC
function the calculations are fast.

The rpart system was designed to be easily extended to new types of re-
sponses. We only consider the following types, selected by the argumentmethod.

"anova" A regression tree, with the impurity criterion the reduction in sum of
squares on creating a binary split of the data at that node. The criterion
R(T) used for pruning is the mean square error of the predictions of the
tree on the current dataset (that is, the residual mean square).

"class" A classification tree, with a categorical (factor) response and de-
fault impurity criterion the Gini index. The deviance-based approach
corresponds to the entropy index, selected by the argumentparms =
list(split="information"). The pruning criterionR(T) is the pre-
dicted loss, normally the error rate.

If the method argument is missing an appropriate type is inferred from the re-
sponse variable in the formula.

We first consider a regression tree for ourcpus data discussed on page 177.
The model is specified by a model formula with terms separated by+ ; interac-
tions make no sense for trees. The argumentcp is α divided by the number

3Available from statlib ; see page 464. Versions (sometimes later) are available fromhttp:
//www.mayo.edu/hsr/Sfunc.html. Packagerpart should be part of allR installations.

9.2 Implementation in rpart 259

R(T∅) for the root tree: in setting it we are specifying the smallest value ofα we
wish to consider.

> library(rpart)
> set.seed(123)
> cpus.rp <- rpart(log10(perf) ~ ., cpus[, 2:8], cp = 1e-3)
> cpus.rp # gives a large tree not shown here.
> print(cpus.rp, cp = 0.01) # default pruning
node), split, n, deviance, yval

* denotes terminal node

1) root 209 43.116000 1.7533
2) cach<27 143 11.791000 1.5246
4) mmax<6100 78 3.893700 1.3748

8) mmax<1750 12 0.784250 1.0887 *
9) mmax>=1750 66 1.948700 1.4268 *

5) mmax>=6100 65 4.045200 1.7044
10) syct>=360 7 0.129080 1.2797 *
11) syct<360 58 2.501200 1.7557
22) chmin<5.5 46 1.226200 1.6986 *
23) chmin>=5.5 12 0.550710 1.9745 *

3) cach>=27 66 7.642600 2.2488
6) mmax<28000 41 2.341400 2.0620
12) cach<96.5 34 1.592000 2.0081
24) mmax<11240 14 0.424620 1.8266 *
25) mmax>=11240 20 0.383400 2.1352 *

13) cach>=96.5 7 0.171730 2.3236 *
7) mmax>=28000 25 1.522900 2.5552
14) cach<56 7 0.069294 2.2684 *
15) cach>=56 18 0.653510 2.6668 *

This shows the predicted value (yval) and deviance within each node. We can
plot the full tree by

plot(cpus.rp, uniform = T); text(cpus.rp, digits = 3)

There are lots of options to produce prettier trees; seehelp(plot.rpart) for
details.

Note that the tree has yet not been pruned to final size. We useprintcp and
plotcp to extract the information stored in therpart object. (All the errors are
proportions ofR(T∅), the error for the root tree.)

> printcp(cpus.rp)
Regression tree:

....
CP nsplit rel error xerror xstd

1 0.54927 0 1.000 1.005 0.0972
2 0.08934 1 0.451 0.480 0.0487
3 0.08763 2 0.361 0.427 0.0433
4 0.03282 3 0.274 0.322 0.0322
5 0.02692 4 0.241 0.306 0.0306
6 0.01856 5 0.214 0.278 0.0294

260 Tree-Based Methods

•

•
•

• •
• • • •

• • • • • • •

cp

X
-v

al
 R

el
at

iv
e

E
rr

or
0.

2
0.

4
0.

6
0.

8
1.

0
1.

2

Inf 0.220.088 0.030.022 0.016 0.0072 0.0048 0.0023 0.0012

1 2 3 4 5 6 7 8 10 11 12 13 14 15 16 17
size of tree

Figure 9.4: Plot by plotcp of the rpart object cpus.rp.

7 0.01680 6 0.195 0.281 0.0292
8 0.01579 7 0.179 0.279 0.0289
9 0.00946 9 0.147 0.281 0.0322

10 0.00548 10 0.138 0.247 0.0289
11 0.00523 11 0.132 0.250 0.0289
12 0.00440 12 0.127 0.245 0.0287
13 0.00229 13 0.123 0.242 0.0284
14 0.00227 14 0.120 0.241 0.0282
15 0.00141 15 0.118 0.240 0.0282
16 0.00100 16 0.117 0.238 0.0279

> plotcp(cpus.rp)

The columnsxerror and xstd are random, dependingon the randompartition
used in the 10-fold cross-validation that has been computed withinrpart .

The complexity parameter may then be chosen to minimizexerror. An
alternative procedure is to use the 1-SE rule, the largest value withxerror
within one standard deviation of the minimum. In this case the 1-SE rule gives
0.238 + 0.0279, so we choose line 10, a tree with 10 splits and hence 11 leaves.4

This is easier to see graphically in Figure 9.4, where we take the leftmost pruning
point with value below the line.

We can examine the pruned tree (Figure 9.5) by

> cpus.rp1 <- prune(cpus.rp, cp = 0.006)
> print(cpus.rp1, digits = 3) # not shown
> plot(cpus.rp1, branch = 0.4, uniform = T)
> text(cpus.rp1, digits = 3)

4The number of leaves is always one more than the number of splits.

9.2 Implementation in rpart 261

|cach<27

mmax<6100

mmax<1750 syct>360

chmin<5.5

cach<0.5

mmax<28000

cach<96.5

mmax<11240

cach<56

1.09 1.43 1.28

1.53 1.75

1.97 1.83 2.14

2.32 2.27 2.67

Figure 9.5: Plot of therpart object cpus.rp1.

Forensic glass

The forensic glass datasetfgl has six classes, and allows us to illustrate clas-
sification trees. We can form a large tree and examine possible pruning points
by

> set.seed(123)
> fgl.rp <- rpart(type ~ ., fgl, cp = 0.001)
> plotcp(fgl.rp)
> printcp(fgl.rp)

Classification tree:
rpart(formula = type ~ ., data = fgl, cp = 0.001)

Variables actually used in tree construction:
[1] Al Ba Ca Fe Mg Na RI

Root node error: 138/214 = 0.645

CP nsplit rel error xerror xstd
1 0.2065 0 1.000 1.000 0.0507
2 0.0725 2 0.587 0.594 0.0515
3 0.0580 3 0.514 0.587 0.0514
4 0.0362 4 0.457 0.551 0.0507
5 0.0326 5 0.420 0.536 0.0504
6 0.0109 7 0.355 0.478 0.0490
7 0.0010 9 0.333 0.500 0.0495

This suggests (Figure 9.6) a tree of size 8, plotted in Figure 9.7 by

fgl.rp2 <- prune(fgl.rp, cp = 0.02)
plot(fgl.rp2, uniform = T); text(fgl.rp2, use.n = T)

262 Tree-Based Methods

•

• •
• •

•
•

cp

X
-v

al
 R

el
at

iv
e

E
rr

or
0.

4
0.

6
0.

8
1.

0

Inf 0.12 0.065 0.046 0.034 0.019 0.0033

1 3 4 5 6 8 10
size of tree

Figure 9.6: Plot by plotcp of the rpart object fgl.rp.

|Ba<0.335

Al<1.42

Ca<10.48

RI>-0.93

Mg<3.865

Mg>2.26

Na<13.495

WinF
(59/11/5/0/1/1)

WinNF
(1/6/1/0/0/0)

Veh
(3/4/7/0/1/1)

WinNF
(0/10/0/1/1/0)

WinNF
(6/41/4/0/1/0)

Con
(0/1/0/11/0/0)

Tabl
(0/2/0/0/5/1)

Head
(1/1/0/1/0/26)

Figure 9.7: Plot of the rpart object fgl.rp2. The numbers below each leaf are the
frequencies of each class, in the order of the factor levels.

and which can be printed out by

> fgl.rp2
node), split, n, loss, yval, (yprob)

* denotes terminal node

1) root 214 138 WinNF (0.33 0.36 0.079 0.061 0.042 0.14)
2) Ba< 0.335 185 110 WinNF (0.37 0.41 0.092 0.065 0.049 0.016)

9.2 Implementation in rpart 263

4) Al< 1.42 113 50 WinF (0.56 0.27 0.12 0.0088 0.027 0.018)
8) Ca< 10.48 101 38 WinF (0.62 0.21 0.13 0 0.02 0.02)
16) RI>=-0.93 85 25 WinF (0.71 0.2 0.071 0 0.012 0.012)

32) Mg< 3.865 77 18 WinF (0.77 0.14 0.065 0 0.013 0.013) *
33) Mg>=3.865 8 2 WinNF (0.12 0.75 0.12 0 0 0) *

17) RI< -0.93 16 9 Veh (0.19 0.25 0.44 0 0.062 0.062) *
9) Ca>=10.48 12 2 WinNF (0 0.83 0 0.083 0.083 0) *

5) Al>=1.42 72 28 WinNF (0.083 0.61 0.056 0.15 0.083 0.014)
10) Mg>=2.26 52 11 WinNF (0.12 0.79 0.077 0 0.019 0) *
11) Mg< 2.26 20 9 Con (0 0.15 0 0.55 0.25 0.05)
22) Na< 13.495 12 1 Con (0 0.083 0 0.92 0 0) *
23) Na>=13.495 8 3 Tabl (0 0.25 0 0 0.62 0.12) *

3) Ba>=0.335 29 3 Head (0.034 0.034 0 0.034 0 0.9) *

The (yprob) give the distribution by class within each node.
The summary method,summary.rpart, produces voluminous output (which

can be diverted to a filevia its file argument).

> summary(fgl.rp2)
Call:
rpart(formula = type ~ ., data = fgl, cp = 0.001)

n= 214

CP nsplit rel error xerror xstd
1 0.206522 0 1.00000 1.00000 0.050729
2 0.072464 2 0.58696 0.59420 0.051536
3 0.057971 3 0.51449 0.58696 0.051414
4 0.036232 4 0.45652 0.55072 0.050729
5 0.032609 5 0.42029 0.53623 0.050419
6 0.020000 7 0.35507 0.47826 0.048957

Node number 1: 214 observations, complexity param=0.20652
predicted class=WinNF expected loss=0.64486
class counts: 70 76 17 13 9 29
probabilities: 0.327 0.355 0.079 0.061 0.042 0.136
left son=2 (185 obs) right son=3 (29 obs)
Primary splits:

Ba < 0.335 to the left, improve=26.045, (0 missing)
Mg < 2.695 to the right, improve=21.529, (0 missing)
Al < 1.775 to the left, improve=20.043, (0 missing)
Na < 14.065 to the left, improve=17.505, (0 missing)
K < 0.055 to the right, improve=14.617, (0 missing)

Surrogate splits:
Al < 1.92 to the left, agree=0.935, adj=0.517, (0 split)
Na < 14.22 to the left, agree=0.902, adj=0.276, (0 split)
Mg < 0.165 to the right, agree=0.883, adj=0.138, (0 split)
Ca < 6.56 to the right, agree=0.883, adj=0.138, (0 split)
K < 0.055 to the right, agree=0.879, adj=0.103, (0 split)

Node number 2: 185 observations, complexity param=0.20652
predicted class=WinNF expected loss=0.59459

264 Tree-Based Methods

class counts: 69 75 17 12 9 3
probabilities: 0.373 0.405 0.092 0.065 0.049 0.016
left son=4 (113 obs) right son=5 (72 obs)
Primary splits:

Al < 1.42 to the left, improve=16.0860, (0 missing)
RI < -0.845 to the right, improve=12.2360, (0 missing)
Mg < 2.56 to the right, improve=11.8230, (0 missing)
Ca < 8.325 to the left, improve=10.5980, (0 missing)
K < 0.01 to the right, improve= 7.3524, (0 missing)

Surrogate splits:
RI < -0.845 to the right, agree=0.757, adj=0.375, (0 split)
Ca < 8.235 to the right, agree=0.746, adj=0.347, (0 split)
K < 0.625 to the left, agree=0.730, adj=0.306, (0 split)
Mg < 2.4 to the right, agree=0.665, adj=0.139, (0 split)
Si < 73.095 to the left, agree=0.627, adj=0.042, (0 split)

Node number 3: 29 observations
predicted class=Head expected loss=0.10345
class counts: 1 1 0 1 0 26
probabilities: 0.034 0.034 0.000 0.034 0.000 0.897
....

The initial table is that given byprintcp. The summary method gives the top
few (up to 1 + maxcompete , default five) splits and their reduction in impurity,
plus up tomaxsurrogate (default five) surrogates.

This is an example in which the choice of impurity index does matter, so let
us also try the entropy index (Gini being the default).

> set.seed(123)
> fgl.rp3 <- rpart(type ~ ., fgl, cp = 0.001,

parms = list(split="information"))
> plotcp(fgl.rp3)
> printcp(fgl.rp3)

....
CP nsplit rel error xerror xstd

1 0.19565 0 1.000 1.000 0.0507
2 0.07971 2 0.609 0.688 0.0527
3 0.05797 3 0.529 0.667 0.0525
4 0.05072 4 0.471 0.645 0.0522
5 0.03382 5 0.420 0.558 0.0509
6 0.00725 8 0.319 0.529 0.0503
7 0.00362 9 0.312 0.493 0.0494
8 0.00100 11 0.304 0.493 0.0494
> fgl.rp4 <- prune(fgl.rp3, cp = 0.03)
> plot(fgl.rp4, uniform = T); text(fgl.rp4, use.n = T)

Note from Figure 9.8 that the root split chosen for the entropy measure was a
leading contender given insummary(fgl.rp2) for the Gini measure.

9.2 Implementation in rpart 265

|Mg>=2.695

Al<1.42

RI>=-0.93

K>=0.29

Mg<3.75

Na<13.78

Al<1.38 Ba<0.2

WinF
41/7/0/0/0/1

WinNF
0/10/0/0/0/0

WinF
20/2/6/0/0/0

Veh
3/4/7/0/0/0

WinNF
6/40/4/0/0/2

WinNF
0/7/0/0/0/1

Con
0/4/0/12/0/0

Tabl
0/2/0/0/9/1

Head
0/0/0/1/0/24

Figure 9.8: Plot of therpart object fgl.rp4.

Plots

There are plot methods for use on a standard graphics devices (plot.rpart
and text.rpart), plus a method forpost for plots in PostScript. Note that
post.rpart is just a wrapper for calls toplot.rpart and text.rpart on a
postscript device.

The functionplot.rpart has a wide range of options to choose the layout
of the plotted tree. Let us consider some examples

plot(cpus.rp, branch = 0.6, compress = T, uniform = T)
text(cpus.rp, digits = 3, all = T, use.n = T)

The argumentbranch controls the slope of the branches. Argumentsuniform
and compress control whether the spacing reflects the importance of the splits
(by default it does) and whether a compact style is used. The call totext.rpart
may have additional argumentsall which gives the value at all nodes (not just
the leaves) anduse.n which if true gives the numbers of cases reaching the node
(and for classification trees the number of each class).

Fine control

The function rpart.control is usually used to collect arguments for the
control parameter ofrpart , but they can also be passed directly torpart.
Help is provided byhelp(rpart.control).

The parameterminsplit gives the smallest node that will be considered for
a split; this defaults to 20. Parameterminbucket is the minimum number of
observations in a daughter node, which defaults to 7 (minsplit /3, rounded up).

266 Tree-Based Methods

If a split does not result in a branchTt with R(Tt) at leastcp×|Tt|×R(T∅)
it is not considered further. This is a form of ‘pre-pruning’; the tree presented has
been pruned to this value and the knowledge that this will happen can be used to
stop tree growth.5 In many of our examples the minimum ofxerror occurs for
values ofcp less than 0.01 (the default), so we choose a smaller value.

The number of cross-validations is controlled by parameterxval, default 10.
This can be set to zero at early stages of exploration, since this will produce a very
significant speedup.

Missing data

If both control parametersmaxsurrogate and usesurrogate are positive,
rpart uses surrogate splits for prediction as described on page 257.

The defaultna.action during training isna.rpart, which excludes cases
only if the response orall the explanatory variables are missing. (This looks
like a sub-optimal choice, as cases with missing response are useful for finding
surrogate variables.)

When missing values are encountered in considering a split they are ignored
and the probabilities and impurity measures arecalculated from the non-missing
values of that variable. Surrogate splits are then used to allocate the missing cases
to the daughter nodes.

Surrogate splits are chosen to match as well as possible the primary split
(viewed as a binary classification), andretained provided they send at least two
cases down each branch, and agree as well as the rule of following the major-
ity. The measure of agreement is the number of cases that are sent the same
way, possibly after swapping ‘left’ and ‘right’ for the surrogate. (By default,
missing values on the surrogate are ignored, so this measure is biased towards
surrogate variables with few missing values. Changing the control parameter
surrogatestyle to one uses instead the percentage of non-missing cases sent
the same way.)

9.3 Implementation in tree

Although we recommend thatrpart be used, thetree function has some ad-
vantages, mainly in showing the process in more detail and in allowing case-
splitting of missing values (page 257). The current pruning and prediction func-
tions for tree were written by BDR, and an alternative tree-growing function
Tree is available in BDR’s library sectionTree 6 that also allows the Gini index
to be used. (Thetree function in theR packagetree is a variant ofTree .)

Again consider a regression tree for ourcpus data. Fortree, growing and
pruning are separate processes, so first we grow it:

5If R(Tt) � 0, splits of nodes withR(t) < cpR(T∅) will always be pruned.
6At http://www.stats.ox.ac.uk/pub/S.

9.3 Implementation in tree 267

|cach<27

mmax<6100

mmax<1750

chmax<3.5 mmax<2500

mmin<518 chmax<4.5

syct<80.5

syct<360

chmin<5.5

cach<0.5

chmin<1.5

mmin<3550

mmax<28000

cach<96.5

mmax<11240

cach<56

chmax<48

0.97 1.20

1.40 1.30 1.40

1.40 1.50

1.50

1.80 1.70

1.90 2.10

1.30

1.80 2.10

2.30 2.30

2.60 2.80

Figure 9.9: Plot of thetree object cpus.ltr.

> cpus.ltr <- tree(log10(perf) ~ ., data = cpus[, 2:8])
> summary(cpus.ltr)

Regression tree:
tree(formula = log10(perf) ~ ., data = cpus[, 2:8])
Number of terminal nodes: 19
Residual mean deviance: 0.0239 = 4.55 / 190

....
> cpus.ltr
a large tree, omitted here

> plot(cpus.ltr, type="u"); text(cpus.ltr)

The tree is shown in Figure 9.9.
We can now consider pruning the tree, using the cross-validation function

cv.tree to find a suitable pruning point; we rather arbitrarily choose a tree of
size 10 (Figure 9.10).

> set.seed(321)
> plot(cv.tree(cpus.ltr, , prune.tree))
> cpus.ltr1 <- prune.tree(cpus.ltr, best = 10)
> plot(cpus.ltr1, type = "u"); text(cpus.ltr1, digits = 3)

Now consider the forensic glass datasetfgl . First we grow a large tree.

> fgl.tr <- tree(type ~ ., fgl)
> summary(fgl.tr)
Classification tree:
tree(formula = type ~ ., data = fgl)
Number of terminal nodes: 24

268 Tree-Based Methods

size

de
vi

an
ce

10
20

30
40

5 10 15

24.000 1.200 0.410 0.220 0.073

|cach<27

mmax<6100

mmax<1750 syct<360

chmin<5.5

mmax<28000

cach<96.5

mmax<11240

cach<56

1.09 1.43

1.70 1.97

1.28

1.83 2.14

2.32 2.27 2.67

Figure 9.10: Plots of the cross-validation sequence and the pruned tree of size 10 for the
cpus dataset.

size

m
is

cl
as

s

80
10

0
12

0
14

0

5 10 15 20

27.0 7.0 2.5 0.5 -Inf

|Mg<2.695

Na<13.785

Al<1.38 Ba<0.2

Al<1.42

RI<-0.93

K<0.29

Mg<3.75

WinNF

Head

Con

WinNF Con

Head

Tabl Head

WinF

WinF

Veh WinF

WinF WinF

WinF WinNF

WinNF

Figure 9.11: The cross-validation sequence and the pruned tree of size 9 for thefgl
dataset.

Residual mean deviance: 0.649 = 123 / 190
Misclassification error rate: 0.145 = 31 / 214
> plot(fgl.tr); text(fgl.tr, all = T, cex = 0.5)

We will then use cross-validation on error rates (not the default). Because
this is pretty unstable over choice of split, we average over five 10-fold cross-
validations.

> set.seed(123)
> fgl.cv <- cv.tree(fgl.tr,, prune.misclass)
> for(i in 2:5) fgl.cv$dev <- fgl.cv$dev +

cv.tree(fgl.tr,, prune.misclass)$dev

9.3 Implementation in tree 269

> fgl.cv$dev <- fgl.cv$dev/5
> fgl.cv
$size:
[1] 24 18 16 12 11 9 6 5 4 3 1

$dev:
[1] 73.6 74.2 74.0 72.6 73.0 73.4 78.8 89.0 90.4 92.6

[11] 146.4
> plot(fgl.cv)

which suggests that a pruned tree of size 9 suffices, as might one of size 6 (see
Figure 9.11).

fgl.tr1 <- prune.misclass(fgl.tr, best = 9)
plot(fgl.tr1, type = "u"); text(fgl.tr1, all = T)

Chapter 10

Random and Mixed Effects

Models withmixed effects contain bothfixed andrandom effects. Fixed effects are
what we have been considering up to now; the only source of randomness in our
models arises from regarding the cases as independent random samples. Thus in
regression we have an additive measurement error that we assume is independent
between cases, and in a GLM we observe independent binomial, Poisson, gamma
. . . random variates whose mean is a deterministic function of the explanatory
variables.

Random effects arise when we have more than one observation on one ex-
perimental unit (or clusters of similar experimental units). Because we expect
the units to vary independently, we will have correlated observations within a
unit/cluster. Rather than model the correlations directly, we consider the variates
that vary with the units to berandom effects. Perhaps the most common example
is having multiple measurements on a single subject. Since these tend to occur
through time, this area is also known asrepeated measures or studies oflongi-
tudinal or panel data. Because we have observations within units, and the units
may themselves be in clusters, social scientists tend to refer to this asmultilevel
analysis (Goldstein, 1995; Snijders and Bosker, 1999).

Another application of mixed effects models is to the classic nested experi-
mental designs such as split-plot designs.

Sometimes the main interest is in the sizes of the random effects as measured
by the variances of the various random variables, so yet another name isvariance
components (Searleet al., 1992).

The approach of mixed models is sometimes known asconditional or subject-
specific modelling: the regression coefficients apply to each individual but not
necessarily to the population. Contrast this with themarginal approach repre-
sented by thegeneralized estimating equations that we consider in Section 10.5
where the regression coefficients apply to the population but not necessarily to
individuals.

The main tool for fitting mixed models inS is the nlme3 software of Pin-
heiro, Bates and collaborators, described in Pinheiro and Bates (2000). This is
part1 of S-PLUS, and a recommended package forR. You might need to use

1It is a separate chapter that is normally installed and attached. The latest version can be found at
http://nlme.stat.wisc.edu.

271

272 Random and Mixed Effects

library(nlme3) or library(nlme) to use it.
Davidian and Giltinan (1995) and Voneshand Chinchilli (1997) are other ref-

erences for these models.

10.1 Linear Models

The simplest case where a mixed effects model might be considered is when there
are two stages of sampling. At the first stage units are selected at random from
a population and at the second stage several measurements are made on each
unit sampled in the first stage. For example, we were given data on 141 patients
measured in 1997 and 1999. A na¨ıve regression would have 282 observations,
assumed independent. This is likely to give reasonable estimates of the regres-
sion coefficients, but to overstate their significance. An alternative would be to
average the two measurements, but the clearly the two-stage approach is the most
satisfying one.

Prater’sgasoline data (Prater, 1956) were originally used to build an estima-
tion equation for yield of the refining process. The possible predictor variables
were the specific gravity, vapour pressure and ASTM 10% point measured on the
crude oil itself and the volatility of the desired product measured as the ASTM
endpoint. The dataset is included inMASS as petrol. Several authors2 have
noted that the three measurements made onthe crude oil occur in only 10 discrete
sets and have inferred that only 10 crude oil samples were involved and several
yields with varying ASTM endpoints were measured on each crude oil sample.
We adopt this view here.

A natural way to inspect the data is to plot the yield against the ASTM end-
point for each sample, for example, using Trellis graphics by

xyplot(Y ~ EP | No, data = petrol,
xlab = "ASTM end point (deg. F)",
ylab = "Yield as a percent of crude",
panel = function(x, y) {

panel.grid()
m <- sort.list(x)
panel.xyplot(x[m], y[m], type = "b", cex = 0.5)

})

Figure 10.1 shows a fairly consistent and linear rise in yield with the ASTM end-
point but with some variation in intercept that may correspond to differences in
the covariates measured on the crude oilitself. In fact the intercepts appear to
be steadily decreasing and since the samples are arranged so that the value of
V10 is increasing this suggests a significant regression onV10 with a negative
coefficient.

If we regard the 10 crude oil samples as fixed, the most general model we
might consider would have separate simple linear regressions ofY on EP for
each crude oil sample. First we centre the determining variables so that the origin
is in the centre of the design space, thus making the intercepts simpler to interpret.

2Including Daniel and Wood (1980) and Handet al. (1994).

10.1 Linear Models 273

10

20

30

40

A

200 250 300 350 400 450

B C

200 250 300 350 400 450

D

E F G

10

20

30

40

H

200 250 300 350 400 450

10

20

30

40

I J

200 250 300 350 400 450

ASTM end point (deg. F)

Y
ie

ld
 a

s
a

pe
rc

en
t o

f c
ru

de

Figure 10.1: Prater’s gasoline data: yield versus ASTM endpoint within samples.

> Petrol <- petrol
> names(Petrol)
[1] "No" "SG" "VP" "V10" "EP" "Y"
> Petrol[, 2:5] <- scale(Petrol[, 2:5], scale = F)
> pet1.lm <- lm(Y ~ No/EP - 1, Petrol)
> matrix(round(coef(pet1.lm), 2), 2, 10, byrow = T,

dimnames = list(c("b0", "b1"), levels(Petrol$No)))

A B C D E F G H I J
b0 32.75 23.62 28.99 21.13 19.82 20.42 14.78 12.68 11.62 6.18
b1 0.17 0.15 0.18 0.15 0.23 0.16 0.14 0.17 0.13 0.13

There is a large variation in intercepts, and some variation in slopes. We test if the
slopes can be considered constant; as they can we adopt the simpler parallel-line
regression model.

> pet2.lm <- lm(Y ~ No - 1 + EP, Petrol)
> anova(pet2.lm, pet1.lm)

Terms RDf RSS Df Sum of Sq F Value Pr(F)
No - 1 + EP 21 74.132

No/EP - 1 12 30.329 9 43.803 1.9257 0.1439

We still need to explain the variation in intercepts; we try a regression onSG,
VP and V10.

> pet3.lm <- lm(Y ~ SG + VP + V10 + EP, Petrol)
> anova(pet3.lm, pet2.lm)

274 Random and Mixed Effects

Terms RDf RSS Df Sum of Sq F Value Pr(F)
SG + VP + V10 + EP 27 134.80

No - 1 + EP 21 74.13 6 60.672 2.8645 0.033681

(Notice thatSG, VP and V10 are constant within the levels ofNo so these two
models are genuinely nested.) The result suggests that differences between inter-
cepts arenot adequately explained by such a regression.

A promising way of generalizing the model is to assume that the 10 crude
oil samples form a random sample from a population where the intercepts after
regression on the determining variables depend on the sample. The model we
investigate has the form

yij = µ+ ζi + β1 SG i + β2 VP i + β3 V10 i + β4 EP ij + εij

where i denotes the sample andj the observation on that sample, andζi ∼
N(0, σ2

1) and εij ∼ N(0, σ2), independently. This allows for the possibility that
predictions from the fitted equation will need to cope with two sources of error,
one associated with the sampling process for the crude oil sample and the other
with the measurement process within the sample itself.

The fitting function for linear mixed effects models islme. It has many argu-
ments; the main ones are the first three that specify the fixed effects model, the
random effects including the factor(s) defining the groups over which the random
effects vary, both as formulae, and theusual data frame. For our example we can
specify random intercepts for groupNo by

> pet3.lme <- lme(Y ~ SG + VP + V10 + EP,
random = ~ 1 | No, data = Petrol)

> summary(pet3.lme)
Linear mixed-effects model fit by REML

AIC BIC logLik
166.38 175.45 -76.191

Random effects:
(Intercept) Residual

StdDev: 1.4447 1.8722

Fixed effects: Y ~ SG + VP + V10 + EP
Value Std.Error DF t-value p-value

(Intercept) 19.707 0.56827 21 34.679 <.0001
SG 0.219 0.14694 6 1.493 0.1860
VP 0.546 0.52052 6 1.049 0.3347
V10 -0.154 0.03996 6 -3.860 0.0084
EP 0.157 0.00559 21 28.128 <.0001

....

The estimate of the residual variance within groups isσ̂2 = 1.87222 = 3.51 and
the variance of the random effects between groups isσ̂2

1 = 1.4442 = 2.09.
The default estimation method is REML,3 in which the parameters in the vari-

ance structure (such as the variance components) are estimated by maximizing the

3REsidual (or REduced or REstricted) Maximum Likelihood

10.1 Linear Models 275

marginal likelihood of the residuals4 from a least-squares fit of the linear model,
and then the fixed effects are estimated by maximum likelihood assuming that the
variance structure is known, which amounts to fitting by generalized least squares.
With such a small sample and so few groups the difference between REML and
maximum likelihood estimation is appreciable, especially in the variance esti-
mates and hence the standard error estimates.

> pet3.lme <- update(pet3.lme, method = "ML")
> summary(pet3.lme)
Linear mixed-effects model fit by maximum likelihood

AIC BIC logLik
149.38 159.64 -67.692

Random effects:
(Intercept) Residual

StdDev: 0.92889 1.8273

Fixed effects: Y ~ SG + VP + V10 + EP
Value Std.Error DF t-value p-value

(Intercept) 19.694 0.47815 21 41.188 <.0001
SG 0.221 0.12282 6 1.802 0.1216
VP 0.549 0.44076 6 1.246 0.2590
V10 -0.153 0.03417 6 -4.469 0.0042
EP 0.156 0.00587 21 26.620 <.0001

At this point we can test if the random effects lead to a better fit. Function
lme will not fit without random effects, but we can compare with a model fitted
by lm ,

> anova(pet3.lme, pet3.lm)
Model df AIC BIC logLik Test L.Ratio p-value

pet3.lme 1 7 149.38 159.64 -67.692
pet3.lm 2 6 148.83 157.63 -68.415 1 vs 2 1.4475 0.2289

which suggests that the random effects are negligibly small. Nevertheless, we
carry on.

Both tables of fixed effects estimates suggest that onlyV10 and EP may be
useful predictors (although thet-value columns assume that the asymptotic
theory is appropriate, in particular that the estimates of variance components are
accurate). We can check this by fitting it as a submodel and performing a likeli-
hood ratio test. For testing hypotheses on the fixed effects the estimation method
must be set toML to ensure the test compares likelihoods based on the same data.

> pet4.lme <- update(pet3.lme, fixed = Y ~ V10 + EP)
> anova(pet4.lme, pet3.lme)

Model df AIC BIC logLik Test L.Ratio p-value
pet4.lme 1 5 149.61 156.94 -69.806
pet3.lme 2 7 149.38 159.64 -67.692 1 vs 2 4.2285 0.1207

4This is a reasonable procedure since taking the residuals fromany generalized least-squares fit
will lead to the same marginal likelihood; McCullagh and Nelder (1989, pp. 247, 282–3).

276 Random and Mixed Effects

> fixed.effects(pet4.lme)
(Intercept) V10 EP

19.652 -0.21081 0.15759
> coef(pet4.lme)

(Intercept) V10 EP
A 21.054 -0.21081 0.15759
B 18.338 -0.21081 0.15759
C 21.486 -0.21081 0.15759

....

Note how thecoef method combines the slopes (the fixed effects) and the (ran-
dom effect) intercept for each sample, whereas the coefficients of the fixed effects
may be extracted by the functionfixed.effects (short form fixef). The
‘estimates’ being given for the random effects are in fact BLUPs,best linear un-
biased predictors (see the review paper by Robinson, 1991).

The AIC column gives (as in Section 6.8) minus twice the log-likelihood plus
twice the number of parameters, andBIC refers to the criterion of Schwarz (1978)
with penalty logn times the number of parameters.

Finally we check if we need both random regression intercepts and slopes on
EP, by fitting the model

yij = µ+ ζi + β3 V10 i + (β4 + ηi)EP ij + εij

where(ζi, ηi) and εij are independent, butζi and ηi can be correlated.

> pet5.lme <- update(pet4.lme, random = ~ 1 + EP | No)
> anova(pet4.lme, pet5.lme)

Model df AIC BIC logLik Test L.Ratio
pet4.lme 1 5 149.61 156.94 -69.806
pet5.lme 2 7 153.61 163.87 -69.805 1 vs 2 0.0025194

p-value
pet4.lme
pet5.lme 0.9987

The test is non-significant, leading us to retain the simpler model. Notice that the
degrees of freedom for testing this hypothesis are7 − 5 = 2. The additional two
parameters are the variance of the random slopes and the covariance between the
random slopes and random intercepts.

Prediction and fitted values

A little thought must be given to fitted and predicted values for a mixed effects
model. Do we want the prediction for a new data point in an existing group, or
from a new group; in other words, which of the random effects are the same as
when we fitted? This is handled by the argumentlevel. For our final model
pet4.lme the fitted values might be

µ̂+ β̂3 V10 i + β̂4 EP ij and µ̂+ ζ̂i + β̂3 V10 i + β̂4 EP ij

given by level = 0 and level = 1 (the default in this example). Random
effects are set either to zero or to their BLUP values.

10.1 Linear Models 277

A multi-level study

Snijders and Bosker (1999, Example 4.1) use as a running example a study of
2287 eighth-grade pupils (aged about 11) in 133 classes in 131 schools in the
Netherlands. The response used is the score on a language test. We can prepare a
data frame by centring the variables, for IQ centring within classes and including
the class averages.

nl1 <- nlschools; attach(nl1)
classMeans <- tapply(IQ, class, mean)
nl1$IQave <- classMeans[as.character(class)]
detach()
cen <- c("IQ", "IQave", "SES")
nl1[cen] <- scale(nl1[cen], center = T, scale = F)

Snijders and Bosker work up to a model (their Table 5.4) with fixed effects for
social-economic status, the average IQ of the class5 and the interaction between
pupils’ IQ and whether they are taught in a multi-grade class. There is a random
intercept, and a random slope for IQ within class. We can obtain similar results
by

> options(contrasts = c("contr.treatment", "contr.poly"))
> nl.lme <- lme(lang ~ IQ*COMB + IQave + SES,

random = ~ IQ | class, data = nl1)
> summary(nl.lme)

....
Random effects:

StdDev Corr
(Intercept) 2.79627 (Inter

IQ 0.42276 -0.576
Residual 6.25764

Fixed effects: lang ~ IQ * COMB + IQave + SES
Value Std.Error DF t-value p-value

(Intercept) 41.415 0.35620 2151 116.27 <.0001
IQ 2.111 0.09627 2151 21.93 <.0001

COMB -1.667 0.58903 130 -2.83 0.0054
IQave 0.854 0.32396 130 2.64 0.0094
SES 0.157 0.01465 2151 10.71 <.0001

IQ:COMB 0.467 0.17541 2151 2.66 0.0079
....

Note that we can learn similar things from two fixed-effects models, within
and between classes, the latter weighted by class size.

> summary(lm(lang ~ IQ*COMB + SES + class, data = nl1,
singular.ok = T), cor = F)

Coefficients:
Value Std. Error t value Pr(>|t|)

IQ 2.094 0.083 25.284 0.000

5Although this is what the text says they used, their code used theschool average.

278 Random and Mixed Effects

SES 0.168 0.015 10.891 0.000
IQ:COMB 0.402 0.162 2.478 0.013
....

> nl2 <- cbind(aggregate(nl1[c(1,7)], list(class = nl1$class), mean),
unique(nl1[c("class", "COMB", "GS")]))

> summary(lm(lang ~ IQave + COMB, data = nl2, weights = GS))
Coefficients:

Value Std. Error t value Pr(>|t|)
(Intercept) 41.278 0.370 111.508 0.000

IQave 3.906 0.294 13.265 0.000
COMB -1.624 0.586 -2.770 0.006

When worrying about the random effects, perhaps we should not overlook that
IQ is a measurement with perhaps as much measurement error as the response
lang , so perhaps a measurement-error model (Fuller, 1987) should be used.

A longitudinal study

Diggle, Liang and Zeger (1994) give an example of repeated measurements on
the log-size6 of 79 Sitka spruce trees, 54 of which were grown in ozone-enriched
chambers and 25 of which were controls. The size was measured five times in
1988, at roughly monthly intervals.7

We consider a general curve on the five times for each group, then an
overall general curve plus a linear difference between the two groups. Taking
ordered(Time) parametrizes the curve by polynomial components.

> sitka.lme <- lme(size ~ treat*ordered(Time),
random = ~1 | tree, data = Sitka, method = "ML")

> Sitka <- Sitka # make a local copy for S-PLUS
> attach(Sitka)
> Sitka$treatslope <- Time * (treat == "ozone")
> detach()
> sitka.lme2 <- update(sitka.lme,

fixed = size ~ ordered(Time) + treat + treatslope)
> anova(sitka.lme, sitka.lme2)

Model df AIC BIC logLik Test L.Ratio p-value
sitka.lme 1 12 30.946 78.693 -3.4732

sitka.lme2 2 9 25.434 61.244 -3.7172 1 vs 2 0.48813 0.9215

fitted curves
> matrix(fitted(sitka.lme2, level = 0)[c(301:305, 1:5)],

2, 5, byrow = T,
dimnames = list(c("control", "ozone"), unique(Sitka$Time)))

152 174 201 227 258
control 4.1640 4.6213 5.0509 5.4427 5.6467

ozone 4.0606 4.4709 4.8427 5.1789 5.3167

The first model just fits the means within each group at each time, but the simpler
model needs to take the error structure into account.

6By convention this is log height plus twice log diameter.
7The time is given in days since 1 January 1988.

10.2 Classic Nested Designs 279

Covariance structures for random effects and residuals

It is time to specify precisely what modelslme considers. For a single level of
random effects, leti index the groups andj the measurements on each group.
Then the linear mixed-effects model is

yij = µij + zijζi + εij , µij = xij β (10.1)

Here x and z are row vectors of explanatory variables associated with each
measurement. Theεij are independent for each group but possibly correlated
within groups, so

var(εij) = σ2g(µij , zij , θ), corr(εij) = Γ(α) (10.2)

Thus the variances are allowed to depend on the means and other covariates. The
random effectsζi are independent of theεij with a variance matrix

var(ζi) = D(αζ) (10.3)

Almost all examples will be much simpler than this, and by defaultg ≡ 1, Γ = I
andD is unrestricted.

Full details of how to specify the components of a linear mixed-effects model
can be obtained byhelp(lme). It is possible for users to supply their own func-
tions to compute many of these components. The free parameters(σ2, θ, α, αζ)
in the specification of the error distribution are estimated, by REML by default.

We could try to allow for the possible effect of serial correlation in theSitka
data by specifying a continuous-timeAR(1) model for the within-tree measure-
ments, but that fails to optimize over the correlation. This is illustrated later for a
non-linear model.

10.2 Classic Nested Designs

Classic applications of random effects in experimental designs have a high degree
of balance. The functionraov in S-PLUS may be used for balanced designs with
only random effects, and gives a conventional analysis including the estimation
of variance components. TheS-PLUS function varcomp is more general, and
may be used to estimate variance components for balanced or unbalanced mixed
models.

To illustrate these functions we take a portion of the data from our data frame
coop . This is a cooperative trial in analytical chemistry taken from Analytical
Methods Committee (1987). Seven specimens were sent to six laboratories, each
three times a month apart for duplicate analysis. The response is the concentration
of (unspecified) analyte in g/kg. We use the data from Specimen 1 shown in
Table 10.1.

The purpose of the study was to assess components of variation in cooperative
trials. For this purpose, the laboratories and batches are regarded as random. A
model for the response for laboratoryi, batchj and duplicatek is

yijk = µ+ ξi + βij + εijk

280 Random and Mixed Effects

Table 10.1: Analyte concentrations (g/kg) from six laboratories and three batches.

Laboratory

Batch 1 2 3 4 5 6

1 0.29 0.40 0.40 0.9 0.44 0.38
0.33 0.40 0.35 1.3 0.44 0.39

2 0.33 0.43 0.38 0.9 0.45 0.40
0.32 0.36 0.32 1.1 0.45 0.46

3 0.34 0.42 0.38 0.9 0.42 0.72
0.31 0.40 0.33 0.9 0.46 0.79

where ξ, β and ε are independent random variables with zero means and vari-
ancesσ2

L , σ2
B and σ2

e respectively. Forl laboratories,b batches andr = 2
duplicates a nested analysis of variance gives:

Degrees of Sum of Mean
Source of variation freedom squares square E(MS)

Between laboratories l − 1 br
∑
i

(ȳi − ȳ)2 MSL brσ2
L + rσ2

B + σ2
e

Batches within laboratoriesl(b− 1) r
∑
ij

(ȳij − ȳi)2 MSB rσ2
B + σ2

e

Replicates within batches lb(r − 1)
∑
ijk

(yij − ȳij)2 MSe σ2
e

So the unbiased estimators of the variance components are

σ̂2
L = (br)−1(MSL −MSB), σ̂2

B = r−1(MSB −MSe), σ̂2
e = MSe

The model is fitted in the same way as an analysis of variance model withraov
replacingaov :

> summary(raov(Conc ~ Lab/Bat, data = coop, subset = Spc=="S1"))
Df Sum of Sq Mean Sq Est. Var.

Lab 5 1.8902 0.37804 0.060168
Bat %in% Lab 12 0.2044 0.01703 0.005368

Residuals 18 0.1134 0.00630 0.006297

The same variance component estimates can be found usingvarcomp, but
as this allows mixed models we need first to declare which factors are random
effects using theis.random function. All factors in a data frame are declared to
be random effects by

> coop <- coop # make a local copy
> is.random(coop) <- T

10.2 Classic Nested Designs 281

If we use Spc as a factor it may need to be treated as fixed. Individual factors
can also have their status declared in the same way. When used as an unassigned
expressionis.random reports the status of (all the factors in) its argument:

> is.random(coop$Spc) <- F
> is.random(coop)
Lab Spc Bat
T F T

We can now estimate the variance components:

> varcomp(Conc ~ Lab/Bat, data = coop, subset = Spc=="S1")
Variances:

Lab Bat %in% Lab Residuals
0.060168 0.0053681 0.0062972

The fitted values for such a model are technically the grand mean, but the
fitted method function calculates them as if it were a fixed effects model, so
giving the BLUPs. Residuals are calculated as differences of observations from
the BLUPs. An examination of the residuals and fitted values points up labora-
tory 4 batches 1 and 2 as possibly suspect, and these will inflate the estimate of
σ2

e . Variance component estimates are known to be very sensitive to aberrant ob-
servations; we can get some check on this by repeating the analysis with a ‘robust’
estimating method. The result is very different:

> varcomp(Conc ~ Lab/Bat, data = coop, subset = Spc=="S1",
method = c("winsor", "minque0"))

Variances:
Lab Bat %in% Lab Residuals

0.0040043 -0.00065681 0.0062979

(A related robust analysis is givenin Analytical Methods Committee, 1989b.)
The possible estimation methods8 for varcomp are "minque0" for min-

imum norm quadratic estimators (the default),"ml" for maximum likelihood
and "reml" for residual (or reduced or restricted) maximum likelihood. Method
"winsor" specifies that the data are ‘cleaned’ before further analysis. As in our
example, a second method may be specified as the one to use for estimation of
the variance components on the cleaned data. The method used, Winsorizing, is
discussed in Section 5.5; unfortunately, the tuning constant is not adjustable, and
is set for rather mild data cleaning.

Multistratum models

Multistratum models occur where there is more than one source of random vari-
ation in an experiment, as in a split-plot experiment, and have been most used in
agricultural field trials. The sample information and the model for the means of
the observations may be partitioned into so-calledstrata. In orthogonal experi-
ments such as split-plot designs each parameter may be estimated in one and only
one stratum, but in non-orthogonal experiments such as a balanced incomplete

8See, for example, Rao (1971a,b) and Rao and Kleffe (1988).

282 Random and Mixed Effects

block design with ‘random blocks’, treatment contrasts are estimable both from
the between-block and the within-block strata. Combining the estimates from
two strata is known as ‘the recovery of interblock information’, for which the in-
terested reader should consult a comprehensive reference such as Scheff´e (1959,
pp. 170ff). Non-orthogonal experiments are best analysed bylme.

The details of the computational scheme employed for multistratum experi-
ments are given by Heiberger (1989).

A split-plot experiment

Our example was first used9 by Yates (1935) and is discussed further in Yates
(1937). The experiment involved varieties of oats and manure (nitrogen), con-
ducted in six blocks of three whole plots. Each whole plot was divided into four
subplots. Three varieties of oats were used in the experiment with one variety be-
ing sown in each whole plot (this being alimitation of the seed drill used), while
four levels of manure (0, 0.2, 0.4 and 0.6 cwt per acre) were used, one level in
each of the four subplots of each whole plot.

The data are shown in Table 10.2, where the blocks are labelled I–VI,Vi

denotes theith variety andNj denotes thejth level of nitrogen. The dataset is
available inMASS as the data frameoats, with variablesB, V, N and Y. Since
the levels ofN are ordered, it is appropriate to create an ordered factor:

oats <- oats # make a local copy: needed in S-PLUS
oats$Nf <- ordered(oats$N, levels = sort(levels(oats$N)))

Table 10.2: A split-plot field trial of oat varieties.

N1 N2 N3 N4 N1 N2 N3 N4

V1 111 130 157 174 V1 74 89 81 122

I V2 117 114 161 141 IV V2 64 103 132 133

V3 105 140 118 156 V3 70 89 104 117

V1 61 91 97 100 V1 62 90 100 116

II V2 70 108 126 149 V V2 80 82 94 126

V3 96 124 121 144 V3 63 70 109 99

V1 68 64 112 86 V1 53 74 118 113

III V2 60 102 89 96 VI V2 89 82 86 104

V3 89 129 132 124 V3 97 99 119 121

The strata for the model we use here are:

1. a 1-dimensional stratum corresponding to the total of all observations,

2. a 5-dimensional stratum corresponding to contrasts between block totals,

9It has also been used by many authors since; see, for example, John (1971,§5.7).

10.2 Classic Nested Designs 283

3. a 12-dimensional stratum corresponding to contrasts between variety (or
equivalently whole plot) totals within the same block, and

4. a 54-dimensional stratum corresponding to contrasts within whole plots.

(We use the term ‘contrast’ here to mean a linear function with coefficients adding
to zero, and thus representing a comparison.)

Only the overall mean is estimable within stratum 1 and since no degrees of
freedom are left for error, this stratum is suppressed in the printed summaries
(although a component corresponding to it is present in the fitted-model object).
Stratum 2 has no information on any treatment effect. Information on theV
main effect is only available from stratum 3, and theN main effect andN × V
interaction are only estimable within stratum 4.

Multistratum models may be fitted usingaov , and are specified by a model
formula of the form

response ~ mean.formula + Error(strata.formula)

In our example thestrata.formula is B/V, specifying strata 2 and 3; the fourth
stratum is included automatically as the “within” stratum, the residual stratum
from the strata formula.

The fitted-model object is of class"aovlist", which is a list of fitted-model
objects corresponding to the individual strata. Each component is an object of
classaov (although in some respects incomplete). The appropriate display func-
tion is summary, which displays separately the ANOVA tables for each stratum
(except the first).

> oats.aov <- aov(Y ~ Nf*V + Error(B/V), data = oats, qr = T)
> summary(oats.aov)

Error: B
Df Sum of Sq Mean Sq F Value Pr(F)

Residuals 5 15875 3175.1

Error: V %in% B
Df Sum of Sq Mean Sq F Value Pr(F)

V 2 1786.4 893.18 1.4853 0.27239
Residuals 10 6013.3 601.33

Error: Within
Df Sum of Sq Mean Sq F Value Pr(F)

Nf 3 20020 6673.5 37.686 0.0000
Nf:V 6 322 53.6 0.303 0.9322

Residuals 45 7969 177.1

There is a clear nitrogen effect, but no evidence of variety differences nor
interactions. Since the levels ofNf are quantitative, it is natural to consider parti-
tioning the sums of squares for nitrogen and its interactions into polynomial com-
ponents. Here the details of factor coding become important. Since the levels of
nitrogen are equally spaced, and we chose an ordered factor, the default contrast

284 Random and Mixed Effects

matrix is appropriate. We can obtain an analysis of variance table with the de-
grees of freedom for nitrogen partitioned into components by giving an additional
argument to thesummary function:

> summary(oats.aov, split = list(Nf = list(L = 1, Dev = 2:3)))
....

Error: Within
Df Sum of Sq Mean Sq F Value Pr(F)

Nf 3 20020 6673 37.69 0.00000
Nf: L 1 19536 19536 110.32 0.00000

Nf: Dev 2 484 242 1.37 0.26528
Nf:V 6 322 54 0.30 0.93220

Nf:V: L 2 168 84 0.48 0.62476
Nf:V: Dev 4 153 38 0.22 0.92786
Residuals 45 7969 177

The split argument is a named list with the name of each component that of
some factor appearing in the model. Each component is itself a list with compo-
nents of the formname = int.seq wherename is the name for the table entry
andint.seq is an integer sequence giving thecontrasts to be grouped under that
name in the ANOVA table.

Residuals in multistratum analyses: Projections

Residuals and fitted values from the individual strata are available in the
usual way by accessing each component as a fitted-model object. Thus
fitted(oats.aov[[4]]) and resid(oats.aov[[4]]) are vectors of length
54 representing fitted values and residuals from the last stratum, based on 54
orthonormal linear functions of the original data vector. It is not possible to asso-
ciate them uniquely with the plots of the original experiment.

The functionproj takes a fitted model object and finds the projections of
the original data vector onto the subspaces defined by each line in the analysis of
variance tables (including, for multistratum objects, the suppressed table with the
grand mean only). The result is a list of matrices, one for each stratum, where the
column names for each are the component names from the analysis of variance
tables. As the argumentqr = T has been set when the model was initially fitted,
this calculation is considerably faster. Diagnostic plots computed by

plot(fitted(oats.aov[[4]]), studres(oats.aov[[4]]))
abline(h = 0, lty = 2)
oats.pr <- proj(oats.aov)
qqnorm(oats.pr[[4]][,"Residuals"], ylab = "Stratum 4 residuals")
qqline(oats.pr[[4]][,"Residuals"])

show nothing amiss.

Tables of means and components of variance

A better appreciation of the results of the experiment comes from looking at the
estimated marginal means. The functionmodel.tables calculates tables of the
effects, means or residuals and optionally their standard errors; tables of means

10.2 Classic Nested Designs 285

are really only well defined and useful for balanced designs, and the standard er-
rors calculated are for differences of means. We now refit the model omitting the
V:N interaction, but retaining theV main effect (since that might be considered a
blocking factor). Since themodel.tables calculation also requires the projec-
tions, we should fit the model with eitherqr = T or proj = T set to avoid later
refitting.

> oats.aov <- aov(Y ~ N + V + Error(B/V), data = oats, qr = T)
> model.tables(oats.aov, type = "means", se = T)
Tables of means
N
0.0cwt 0.2cwt 0.4cwt 0.6cwt
79.39 98.89 114.2 123.4
V
Golden.rain Marvellous Victory

104.5 109.8 97.63

Standard errors for differences of means
N V

4.25 7.0789
replic. 18.00 24.0000

When interactions are present the table is a little more complicated.
Finally we usevarcomp to estimate the variance components associated with

the lowest three strata. To do this we need to declareB to be a random factor:

> is.random(oats$B) <- T
> varcomp(Y ~ N + V + B/V, data = oats)
Variances:

B V %in% B Residuals
214.48 109.69 162.56

....

In this simple balanced design the estimates are the same as those obtained by
equating the residual mean squares to theirexpectations. The result suggests that
the main blocking scheme hasbeen reasonably effective.

Relationship to lme models

The raov and multistratum models are also linear mixed effects models, and
showing how they might be fitted withlme allows us to demonstrate some further
features of that function. In both cases we need more than one level of random
effects, which we specify by a nested model in therandom formula.

For the cooperative trialcoop we can use

> lme(Conc ~ 1, random = ~1 | Lab/Bat, data = coop,
subset = Spc=="S1")

Random effects:
Formula: ~ 1 | Lab

(Intercept)
StdDev: 0.24529

286 Random and Mixed Effects

Formula: ~ 1 | Bat %in% Lab
(Intercept) Residual

StdDev: 0.073267 0.079355

As the design is balanced, these REML estimates of standard deviations agree
with the default minque variance estimates fromvarcomp on page 281.

The final model we used for theoats dataset corresponds to the linear model

ybnv = µ+ αn + βv + ηb + ζbv + εbnv

with three random terms corresponding to plots, subplots and observations. We
can code this inlme by

> options(contrasts = c("contr.treatment", "contr.poly"))
> summary(lme(Y ~ N + V, random = ~1 | B/V, data = oats))
Random effects:
Formula: ~ 1 | B

(Intercept)
StdDev: 14.645

Formula: ~ 1 | V %in% B
(Intercept) Residual

StdDev: 10.473 12.75

Fixed effects: Y ~ N + V
Value Std.Error DF t-value p-value

(Intercept) 79.917 8.2203 51 9.722 <.0001
N0.2cwt 19.500 4.2500 51 4.588 <.0001
N0.4cwt 34.833 4.2500 51 8.196 <.0001
N0.6cwt 44.000 4.2500 51 10.353 <.0001

VMarvellous 5.292 7.0788 10 0.748 0.4720
VVictory -6.875 7.0788 10 -0.971 0.3544
....

The variance components are estimated as14.6452 = 214.48, 10.47352 =
109.69 and 12.752 = 162.56. The standard errors for treatment differences also
agree with those found byaov .

10.3 Non-Linear Mixed Effects Models

Non-linear mixed effects models are fitted by the functionnlme. Most of its many
arguments are specified in the same way as forlme, and the class of models that
can be fitted is based on those described by equations (10.1) to (10.3) on page 279.
The difference is that

yij = µij + εij , µij = f(xij ,β, ζi) (10.4)

so the conditional mean is a non-linear function specified by giving both fixed
and random parameters. Which parameters are fixed and which are random is

10.3 Non-Linear Mixed Effects Models 287

specified by the argumentsfixed and random, each of which is a set of formu-
lae with left-hand side the parameter name. Parameters can be in both sets, and
random effects will have mean zero unless they are. For example, we can specify
a simple exponential growth curve for each tree in theSitka data with random
intercept and asymptote by

options(contrasts = c("contr.treatment", "contr.poly"))
sitka.nlme <- nlme(size ~ A + B * (1 - exp(-(Time-100)/C)),

fixed = list(A ~ treat, B ~ treat, C ~ 1),
random = A + B ~ 1 | tree, data = Sitka,
start = list(fixed = c(2, 0, 4, 0, 100)), verbose = T)

Here the shape of the curve is taken as common to all trees. It is necessary to
specify starting values for all the fixed parameters (in the order they occur) and
starting values can be specified for other parameters. Notethe way the formula
for random is expressed; this is one of a variety of forms described on the help
page fornlme.

It is not usually possible to find the exact likelihood of such a model, as the
non-linearity prevents integration over the random effects. Various linearization
schemes have been proposed;nlme uses the strategy of Lindstrom and Bates
(1990). This replaces the integration by joint maximization over the parameters
and random effectsζi, then uses linearization about the conditional modes of
the random effects to estimate the variance parameters. Since the integration is
replaced by evaluation at the mode, thelog-likelihood (and hence AIC and BIC
values) is often a poor approximation.REML fitting is not well defined, and
nlme defaults to (approximate) maximum likelihood.

As nlme calls lme iteratively andlme fits can be slow,nlme fits can be very
slow (and also memory-intensive). Adding the argumentverbose = T helps to
monitor progress. Finding good starting values can help a great deal. Our starting
values were chosen by inspection of the growth curves.

> summary(sitka.nlme)
AIC BIC logLik

-96.283 -60.473 57.142

Random effects:
StdDev Corr

A.(Intercept) 0.83558 A.(Int
B.(Intercept) 0.81953 -0.69

Residual 0.10298

Fixed effects: list(A ~ treat, B ~ treat, C ~ 1)
Value Std.Error DF t-value p-value

A.(Intercept) 2.303 0.1995 312 11.542 <.0001
A.treat 0.175 0.2117 312 0.826 0.4093

B.(Intercept) 3.921 0.1808 312 21.687 <.0001
B.treat -0.565 0.2156 312 -2.618 0.0093

C 81.734 4.7231 312 17.305 <.0001
....

288 Random and Mixed Effects

The ‘t value’ for a difference in slope by treatment is convincing. We could use
anova against a model withfixed = list(A ~ 1, B ~ 1, C ~ 1), but that
would be undermined by the approximate nature of the likelihood.

For this model we can get a convincing fit with a continuous-timeAR(1)
model for the within-tree measurements

> summary(update(sitka.nlme,
corr = corCAR1(0.95, ~Time | tree)))

AIC BIC logLik
-104.51 -64.72 62.254

Random effects:
StdDev Corr

A.(Intercept) 0.81609 A.(Int
B.(Intercept) 0.76066 -0.674

Residual 0.13066

Correlation Structure: Continuous AR(1)
Phi

0.9675

Fixed effects: list(A ~ treat, B ~ treat, C ~ 1)
Value Std.Error DF t-value p-value

A.(Intercept) 2.312 0.2052 312 11.267 <.0001
A.treat 0.171 0.2144 312 0.796 0.4265

B.(Intercept) 3.892 0.1813 312 21.466 <.0001
B.treat -0.564 0.2162 312 -2.607 0.0096

C 80.875 5.2888 312 15.292 <.0001

The correlation is in units of days; at the average spacing between observations of
26.5 days the estimated correlation is0.967526.5 ≈ 0.42. A good starting value
for the correlation is needed to persuadenlme to fit this parameter.

Blood pressure in rabbits

We also consider the data in Table 10.3 described in Ludbrook (1994).10 To quote
from the paper:

Five rabbits were studied on two occasions, after treatment with saline
(control) and after treatment with the 5-HT3 antagonist MDL 72222. After
each treatment ascending doses of phenylbiguanide (PBG) were injected in-
travenously at 10 minute intervals and the responses of mean blood pressure
measured. The goal was to test whether the cardiogenic chemoreflex elicited
by PBG depends on the activation of 5-HT3 receptors.

The response is thechange in blood pressure relative to the start of the experiment.
The dataset is a data frameRabbit in MASS.

There are three strata of variation:

1. between animals,

10We are grateful to Professor Ludbrook for supplying us with the numerical data.

10.3 Non-Linear Mixed Effects Models 289

Table 10.3: Data from a blood pressure experiment with five rabbits.

Dose of Phenylbiguanide (µg)

Treatment Rabbit 6.25 12.5 25 50 100 200

Placebo 1 0.50 4.50 10.00 26.00 37.00 32.00
2 1.00 1.25 4.00 12.00 27.00 29.00
3 0.75 3.00 3.00 14.00 22.00 24.00
4 1.25 1.50 6.00 19.00 33.00 33.00
5 1.50 1.50 5.00 16.00 20.00 18.00

MDL 72222 1 1.25 0.75 4.00 9.00 25.00 37.00
2 1.40 1.70 1.00 2.00 15.00 28.00
3 0.75 2.30 3.00 5.00 26.00 25.00
4 2.60 1.20 2.00 3.00 11.00 22.00
5 2.40 2.50 1.50 2.00 9.00 19.00

0

10

20

30

R1
Control

2 3 4 5

R2
Control

R3
Control

2 3 4 5

R4
Control

R5
Control

2 3 4 5

R1
MDL

R2
MDL

2 3 4 5

R3
MDL

R4
MDL

2 3 4 5

0

10

20

30

R5
MDL

log(Dose) of Phenylbiguanide

C
ha

ng
e

in
 b

lo
od

 p
re

ss
ur

e
(m

m
 H

g)

Figure 10.2: Data from a cardiovascular experiment using five rabbits on two occasions:
on control and with treatment. On each occasion the animals are given increasing doses of
phenylbiguanide at about 10 minutes apart. The response is the change in blood pressure.
The fitted curve is derived from a model on page 292.

2. within animals between occasions and

3. within animals within occasions.

We can specify this by having the random effects depend onAnimal/Run. We
take Treatment to be a factor on which the fixed effects in the model might
depend.

A plot of the data in Figure 10.2 shows the blood pressure rising with the dose
of PBG on each occasion generally according to a sigmoid curve. Evidently the
main effect of the treatment is to suppress the change in blood pressure at lower

290 Random and Mixed Effects

doses of PBG, hence translating the response curve a distance to the right. There
is a great deal of variation, though, so there may well be other effects as well.

Ludbrook suggests a four-parameter logistic response function inlog(dose)
(as is commonly used in this context) and we adopt his suggestion. This function
has the form

f(α, β, λ, θ, x) = α+
β − α

1 + exp[(x − λ)/θ]

Notice thatf(α, β, λ, θ, x) and f(β, α, λ,−θ, x) are identically equal inx; to
resolve this lack of identification we require thatθ be positive. For our example
this makesα the right asymptote,β the left asymptote (or ‘baseline’),λ the
log(dose) (LD50) leading to a response exactly halfway between asymptotes and
θ an abscissa scale parameter determining the rapidity of ascent.

We start by considering the two treatment groups separately (when there are
only two strata of variation). We guess some initial values then use annls fit to
refine them.

Fpl <- deriv(~ A + (B-A)/(1 + exp((log(d) - ld50)/th)),
c("A","B","ld50","th"), function(d, A, B, ld50, th) {})

st <- coef(nls(BPchange ~ Fpl(Dose, A, B, ld50, th),
start = c(A = 25, B = 0, ld50 = 4, th = 0.25),
data = Rabbit))

Rc.nlme <- nlme(BPchange ~ Fpl(Dose, A, B, ld50, th),
fixed = list(A ~ 1, B ~ 1, ld50 ~ 1, th ~ 1),
random = A + ld50 ~ 1 | Animal, data = Rabbit,
subset = Treatment == "Control",
start = list(fixed = st))

Rm.nlme <- update(Rc.nlme, subset = Treatment=="MDL")

We may now look at the results of the separate analyses.

> Rc.nlme
Log-likelihood: -66.502
Fixed: list(A ~ 1, B ~ 1, ld50 ~ 1, th ~ 1)

A B ld50 th
28.333 1.513 3.7743 0.28962

Random effects:
StdDev Corr

A 5.76874 A
ld50 0.17952 0.112

Residual 1.36737

> Rm.nlme
Log-likelihood: -65.422
Fixed: list(A ~ 1, B ~ 1, ld50 ~ 1, th ~ 1)

A B ld50 th
27.521 1.7839 4.5257 0.24236

Random effects:

10.3 Non-Linear Mixed Effects Models 291

StdDev Corr
A 5.36554 A

ld50 0.19004 -0.594
Residual 1.44162

This suggests that the random variation ofld50 between animals in each group
is small. The separate results suggest a combined model in which the distribution
of the random effects does not depend on the treatment. Initially we allow all the
parameter means to differ by group.

> c1 <- c(28, 1.6, 4.1, 0.27, 0)
> R.nlme1 <- nlme(BPchange ~ Fpl(Dose, A, B, ld50, th),

fixed = list(A ~ Treatment, B ~ Treatment,
ld50 ~ Treatment, th ~ Treatment),

random = A + ld50 ~ 1 | Animal/Run, data = Rabbit,
start = list(fixed = c1[c(1, 5, 2, 5, 3, 5, 4, 5)]))

> summary(R.nlme1)
AIC BIC logLik

292.62 324.04 -131.31

Random effects:
Level: Animal

StdDev Corr
A.(Intercept) 4.606326 A.(Int

ld50.(Intercept) 0.062593 -0.165

Level: Run %in% Animal
StdDev Corr

A.(Intercept) 3.24882 A.(Int
ld50.(Intercept) 0.17072 -0.348

Residual 1.41128

Fixed effects:
Value Std.Error DF t-value p-value

A.(Intercept) 28.326 2.7802 43 10.188 <.0001
A.Treatment -0.727 2.5184 43 -0.288 0.7744

B.(Intercept) 1.525 0.5155 43 2.958 0.0050
B.Treatment 0.261 0.6460 43 0.405 0.6877

ld50.(Intercept) 3.778 0.0955 43 39.577 <.0001
ld50.Treatment 0.747 0.1286 43 5.809 <.0001
th.(Intercept) 0.290 0.0323 43 8.957 <.0001
th.Treatment -0.047 0.0459 43 -1.019 0.3137

Note that most of the random variation inld50 is between occasions rather than
between animals whereas, forA both strata of variation are important but the
larger effect is that between animals. The table suggests that onlyld50 depends
on the treatment, confirmed by

> R.nlme2 <- update(R.nlme1,
fixed = list(A ~ 1, B ~ 1, ld50 ~ Treatment, th ~ 1),
start = list(fixed = c1[c(1:3, 5, 4)]))

292 Random and Mixed Effects

> anova(R.nlme2, R.nlme1)
Model df AIC BIC logLik Test L.Ratio p-value

R.nlme2 1 12 287.29 312.43 -131.65
R.nlme1 2 15 292.62 324.04 -131.31 1 vs 2 0.66971 0.8803
> summary(R.nlme2)

....
Value Std.Error DF t-value p-value

A 28.170 2.4908 46 11.309 <.0001
B 1.667 0.3069 46 5.433 <.0001

ld50.(Intercept) 3.779 0.0921 46 41.040 <.0001
ld50.Treatment 0.759 0.1217 46 6.234 <.0001

th 0.271 0.0227 46 11.964 <.0001
....

Finally we display the results and a spline approximation to the (BLUP) fitted
curve.

xyplot(BPchange ~ log(Dose) | Animal * Treatment, Rabbit,
xlab = "log(Dose) of Phenylbiguanide",
ylab = "Change in blood pressure (mm Hg)",
subscripts = T, aspect = "xy", panel =

function(x, y, subscripts) {
panel.grid()
panel.xyplot(x, y)
sp <- spline(x, fitted(R.nlme2)[subscripts])
panel.xyplot(spx, spy, type = "l")

})

The result, shown on Figure 10.2 on page 289, seems to fit the data very well.

10.4 Generalized Linear Mixed Models

Generalized linear mixed models (GLMMs) are simply stated: they are gener-
alized linear models in which the linear predictor contains random effects. In
symbols, if we have observations indexed byj on m units i ,

E
[
Yij | ζi

]
= g−1(ηij), ηij = xij β + zijζi (10.5)

(for link function g) so conditionally on the random effectsζ the standard GLM
applies. We complete the specification by givingYij | ζi a conditional distribu-
tion11 from an exponential family. Thus the likelihood is

L(β;Y) =
∏

i

∫
e

∑
j

(θ;Yij) p(ζi) dζi

where�(θi;Yij) is the summand in (7.2), andθi = (γ′)−1(µi) = (γ′)−1(g−1(ηi))
depends onβ and ζi .

11Or, for a quasi-likelihood model specifying the variance as a function of the mean.

10.4 Generalized Linear Mixed Models 293

It is almost universal to assume that the random effects are normally dis-
tributed, with zero mean and variance matrixD , so the likelihood becomes

L(β;Y) ∝ |D|−m/2
∏

i

∫
expκi(ζi) dζi, κi(ζi) =

∑
j

�(θ;Yij) + ζT
i D

−1ζi

The integrals complicate likelihood-based model fitting, and efficient ways to
fit GLMMs are a research topic. All of the methods are approximate, either based
on theoretical approximations (ad hoc methods) or numerical approximations to
integrals.

Both Diggleet al. (1994) and Laird (1996) provide good overviews of the
inference issues underlying this section and the next.

Running examples

We consider two examples, one of binary observations and one of counts.
The bacteria dataset records observations on weeks 0, 2, 4, 6 and 11 on 50

subjects (but 30 observations are missing). The response is presence/absence of a
particular bacteria. There are basicallythree treatments, a placebo and an active
drug with and without extra effort to ensure that it was taken. It is expected that
the response declines with time, perhaps in a way that depends on the treatment.
A basic GLM analysis is

> bacteria <- bacteria # needed in S-PLUS
> contrasts(bacteria$trt) <- structure(contr.sdif(3),

dimnames = list(NULL, c("drug", "encourage")))
> summary(glm(y ~ trt * week, binomial, data = bacteria),

cor = F)
Coefficients:

Value Std. Error t value
(Intercept) 1.975474 0.300296 6.57841

trtdrug -0.998471 0.694168 -1.43837
trtencourage 0.838648 0.734645 1.14157

week -0.118137 0.044581 -2.64994
trtdrugweek -0.017218 0.105647 -0.16298

trtencourageweek -0.070434 0.109625 -0.64250

> summary(glm(y ~ trt + week, binomial, data = bacteria),
cor = F)

Coefficients:
Value Std. Error t value

(Intercept) 1.96017 0.296867 6.6029
trtdrug -1.10667 0.424942 -2.6043

trtencourage 0.45502 0.427608 1.0641
week -0.11577 0.044127 -2.6237

which suggests that the week effect does not depend on the treatment.

294 Random and Mixed Effects

Epileptic seizures

Thall and Vail (1990) give a dataset on two-week seizure counts for 59 epileptics.
The number of seizures was recorded for a baseline period of 8 weeks, and then
patients were randomly assigned to a treatment group or a control group. Counts
were then recorded for four successive two-week periods. The subject’s age is
the only covariate. Thall and Vail (1990, p. 665) state that the patients were
subsequently crossed-over to the other treatment; had the full data been made
available a more penetrating analysis would be possible.

These data have been analysed again by Breslow and Clayton (1993), Diggle
et al. (1994) and others. There are two ways to look at this problem. Breslow and
Clayton treat the baseline counts as a fixed predictor, and use a Poisson log-linear
model with predictorslbase , the log of the baseline divided by four,12 log of age
and the interaction oflbase and treatment. (The logged regressors were centred
here.) A GLM analysis would give

> summary(glm(y ~ lbase*trt + lage + V4, family = poisson,
data = epil), cor = F)

Coefficients:
Value Std. Error t value

(Intercept) 1.89792 0.042583 44.5695
lbase 0.94862 0.043585 21.7649
trt -0.34587 0.060962 -5.6736
lage 0.88759 0.116453 7.6219
V4 -0.15977 0.054574 -2.9276

lbase:trt 0.56153 0.063497 8.8435

Residual Deviance: 869.07 on 230 degrees of freedom

so there is evidence of considerable over-dispersion.
A second approach is that there are five periods of observation in two 8-week

intervals, before and during the study. We can summarize the data for a GLM
analysis by

epil <- epil # needed in S-PLUS
epil2 <- epil[epil$period == 1,]
epil2["period"] <- rep(0, 59); epil2["y"] <- epil2["base"]
epil["time"] <- 1; epil2["time"] <- 4
epil2 <- rbind(epil, epil2)
epil2$pred <- unclass(epil2$trt) * (epil2$period > 0)
epil2$subject <- factor(epil2$subject)
epil3 <- aggregate(epil2, list(epil2$subject, epil2$period > 0),

function(x) if(is.numeric(x)) sum(x) else x[1])
epil3$pred <- factor(epil3$pred,

labels = c("base", "placebo", "drug"))
contrasts(epil3$pred) <- structure(contr.sdif(3),

dimnames = list(NULL, c("placebo-base", "drug-placebo")))
summary(glm(y ~ pred + factor(subject) + offset(log(time)),

family = poisson, data = epil3), cor = F)

12For comparibility with the two-week periods

10.4 Generalized Linear Mixed Models 295

Coefficients:
Value Std. Error t value

(Intercept) 1.743838 0.022683 76.87852
placebo-base 0.108719 0.046911 2.31755
drug-placebo -0.101602 0.065070 -1.56143

Residual Deviance: 303.16 on 57 degrees of freedom

This suggests only a small drug effect. Ramsey and Schafer (1997, Chapter 22)
discuss this example in more detail, but the wide range in variationwithin patients
for the four treatment periods shows that a Poisson model is inappropriate.

> glm(y ~ factor(subject), family = poisson, data = epil)
....

Degrees of Freedom: 236 Total; 177 Residual
Residual Deviance: 399.29

Conditional inference

For special case of a single random effect, a per-unit intercept, we can perform
conditional inference treating the interceptsζi as ancillary parameters rather than
as random variables. (This corresponds to the traditional analysis of block effects
in experimental designs as fixed effects.) For a Poisson GLMM the conditional
inference is a multinomial log-linear model taking as fixed the total count for each
subject, equivalent to our Poisson GLM analysis forepil3 viewed as a surrogate
Poisson model.

For binary GLMMs conditional inference results (Diggleet al., 1994,§.9.2.1)
in a conditional likelihood which may be fitted bycoxph . For example, for the
bacteria data (where the treatment effects are confounded with subjects)

> # R: library(survival)
> bacteria$Time <- rep(1, nrow(bacteria))
> coxph(Surv(Time, unclass(y)) ~ week + strata(ID),

data = bacteria, method = "exact")

coef exp(coef) se(coef) z p
week -0.163 0.85 0.0547 -2.97 0.003

We use a model ‘observed’ on time interval[0, 1] with ‘success’ corresponding
to a death at time1 . We can use this model to explore the non-linearity of the
change through time

> coxph(Surv(Time, unclass(y)) ~ factor(week) + strata(ID),
data = bacteria, method = "exact")

coef exp(coef) se(coef) z p
factor(week)2 0.198 1.219 0.724 0.274 0.780
factor(week)4 -1.421 0.242 0.667 -2.131 0.033
factor(week)6 -1.661 0.190 0.682 -2.434 0.015
factor(week)11 -1.675 0.187 0.678 -2.471 0.013

296 Random and Mixed Effects

Likelihood ratio test=15.4 on 4 df, p=0.00385 n= 220

> coxph(Surv(Time, unclass(y)) ~ I(week > 2) + strata(ID),
data = bacteria, method = "exact")

coef exp(coef) se(coef) z p
I(week > 2) -1.67 0.188 0.482 -3.47 0.00053

and conclude that the main effect is after 2 weeks. Re-fitting this as a GLM gives

> fit <- glm(y ~ trt + I(week > 2), binomial, data = bacteria)
> summary(fit, cor = F)

Value Std. Error t value
(Intercept) 2.24791 0.35471 6.3374

trtdrug -1.11867 0.42824 -2.6123
trtencourage 0.48146 0.43265 1.1128
I(week > 2) -1.29482 0.40924 -3.1640

Residual Deviance: 199.18 on 216 degrees of freedom

Note that this appears to be under-dispersed even though we have not yet al-
lowed for between-subject variation. However, that is illusory, as the residual de-
viance has mean below the number of degrees of freedom in most binary GLMs
(page 209). It is better to look at the Pearson chi-squared statistic

> sum(residuals(fit, type = "pearson")^2)
[1] 223.46

Numerical integration

To perform maximum-likelihood estimation, we need to be able to compute the
likelihood. We have to integrate over the random effects. This can be a formidable
task; Evans and Swartz (2000) is a book-length review of the available techniques.

The approaches fall into two camps. For the simple interpretation of a GLMM
as having a subject-specific intercept, we only have to do a one-dimensional in-
tegration for each subject, and numericalquadrature can be used. For normally-
distributed random effects it is usual to use a Gauss–Hermite scheme (Evans and
Swartz, 2000,§5.3.4; Monahan, 2001,§10.3). This is implemented in our func-
tion glmmNQ .

Conversely, for an elaborate specification of random effects the only effective
integration schemes seem to be those based on Markov Chain Monte Carlo ideas
(Gamerman, 1997a; Robert and Casella, 1999). Clayton (1996) and Gamerman
(1997b) present MCMC schemes specifically for GLMMs;GLMMGibbs is anR
package by Jonathan Myles and David Clayton implementing MCMC for canon-
ical links and a single subject-specific random effect. We can applyglmm from
GLMMGibbs to the epilepsy problem.13 Each run takes a few minutes; we run

13It does not currently handle many Bernoulli GLMMs. We had mixed success with the bacteria
example.

10.4 Generalized Linear Mixed Models 297

Table 10.4: Summary results for GLMM and marginal models. The parameters in the
marginal (the outer two) and the conditional models are not strictly comparable. The dif-
ferences in the standard errors are mainly attributable to the extent to which under- and
over-dispersion is considered.

Bacteria data Numerical
GLM integration PQL GEE

(Intercept) 2.24 (0.35) 2.85 (0.53) 2.75 (0.38) 2.26 (0.35)

drug −1.12 (0.42) −1.37 (0.69) −1.24 (0.64) −1.11 (0.59)
encourage 0.48 (0.43) 0.58 (0.71) 0.49 (0.67) 0.48 (0.51)
I(week > 2) −1.29 (0.41) −1.62 (0.48) −1.61 (0.36) −1.32 (0.36)

σ 1.30 (0.41) 1.41

Epilepsy data Numerical
GLM integration PQL GEE

(Intercept) 1.90 (0.04) 1.88 (0.28) 1.87 (0.11) 1.89 (0.11)

lbase 0.95 (0.04) 0.89 (0.14) 0.88 (0.13) 0.95 (0.10)
trt −0.34 (0.06) −0.34 (0.17) −0.31 (0.15) −0.34 (0.18)
lage 0.89 (0.12) 0.47 (0.37) 0.53 (0.35) 0.90 (0.28)
V4 −0.16 (0.15) −0.16 (0.05) −0.16 (0.08) −0.16 (0.07)
lbase:trt 0.56 (0.06) 0.34 (0.22) 0.34 (0.20) 0.56 (0.17)

σ 0.55 (0.07) 0.44

(Intercept) 3.48 (0.02) 3.20 (0.19) 3.21 (0.10) 3.13 (0.03)
placebo - base 0.09 (0.04) 0.11 (0.05) 0.11 (0.10) 0.11 (0.11)
drug - placebo −0.07 (0.05) −0.11 (0.06) −0.11 (0.13) −0.10 (0.15)

σ 0.80 (0.08) 0.73

100 000 iterations and record 1 in 100. There is a plot method to examine the
results.

> library(GLMMGibbs)
declare a random intercept for each subject
> epil$subject <- Ra(data = factor(epil$subject))
> glmm(y ~ lbase*trt + lage + V4 + subject, family = poisson,

data = epil, keep = 100000, thin = 100)

> epil3$subject <- Ra(data = factor(epil3$subject))
> glmm(y ~ pred + subject, family = poisson,

data = epil3, keep = 100000, thin = 100)

PQL methods

There are several closely related approximations that are most often known as
PQL (Breslow and Clayton, 1993) forpenalized quasi-likelihood.

298 Random and Mixed Effects

Schall (1991) proposed a conceptually simple algorithm that reduces to
maximum-likelihood estimation for Gaussian GLMMs. Recall that the IWLS al-
gorithm for GLMs works by linearizing the solution at the current estimate of the
meanµ, and regressing the working valuesz with working weightsW . Schall
proposed using mixed-effects linear fitting instead of least-square-fitting to update
the fixed effects and hence the estimate of the mean. Now the mixed-effects fit
depends on the current estimates of the variance components. Then for a linear
problem the MLEs and REML estimates of the variances can be found by scaling
the sums of squares of the BLUPs and the residuals, and Schall proposed to use
the estimates from the linearization inside a loop.

An alternative derivation (Breslow and Clayton, 1993) is to apply Laplace’s
method (Evans and Swartz, 2000, p. 62) to the integrals overζi expandingκ as a
quadratic Taylor expansion about its maximum. Wolfinger and O”Connell (1993)
give related methods.

This approach is closely related to that used bynlme . A GLM can also
be considered as a non-linear model with non-linearity determined by the link
function, and with the variance specified as a function of the mean. (Indeed, for
a quasi-likelihood fit, that is all that is specified.) So we can consider fitting a
GLMM by specifying anlme model with single non-linear function of a linear
predictor, and a variance function as a function of the mean. That is equivalent to
PQL up to details in the approximations. We supply a wrapperglmmPQL function
in MASS that implements linearization about the BLUPs. We used

> summary(glmmPQL(y ~ trt + I(week> 2), random = ~ 1 | ID,
family = binomial, data = bacteria))

> summary(glmmPQL(y ~ lbase*trt + lage + V4,
random = ~ 1 | subject,
family = poisson, data = epil))

> summary(glmmPQL(y ~ pred, random = ~1 | subject,
family = poisson, data = epil3))

The functionglme of Pinheiro’s GLME library section14 for S-PLUS is a more
closely integrated version of the same approach.

Over-dispersion

We have to consider more carefully residual over- or under-dispersion. In many
GLMM analyses one would expect the random effects to account for most of the
marginal over-dispersion, but as the epilepsy example shows, this can be unreal-
istic. By defaultglmmPQL allows the dispersion to be estimated whereasglme
fixes the dispersion. The results shown in Table 10.4 are for estimated dispersion,
and seem much closer to the results by numerical integration (even though the
latter assumes the binomial or Poisson model).

14Fromhttp://nlme.stat.wisc.edu.

10.5 GEE Models 299

10.5 GEE Models

Consider once again the simplest scenario of multiple observationsyij on a set
of units. If we take a mixed-effects model, say

yij = µij + zijζi + εij , µij = xij β

then yij are a correlated collection of random variates, marginally with a mul-
tivariate normal distribution with meanµij and a computable covariance ma-
trix. Maximum-likelihood fitting of alme model is just maximizing the marginal
multivariate-normal likelihood.

We can consider a marginal model which is a GLM forYij , that is

Yij ∼ family(g−1(ηij)), ηij = xij β (10.6)

but with the assumption of a correlation structure forYij . Laird (1996,§4.4) and
McCullagh and Nelder (1989, Chapter 9) consider more formal models which
can give rise to correlated observations from GLMs, but these models are often
known as GEE models since they are most often fitted bygeneralized estimating
equations (Liang and Zeger, 1986; Diggleet al., 1994). This is another theoretical
approximation that is asymptotically unbiased under mild conditions.

Now consider the analogous GLMM:Yij are once again correlated, but un-
less the linkg is linear their means are no longerµij = g−1(ηij) . Note that the
mean for a GLMM with random intercepts and a log link differs from a marginal
model only by a shift in intercept (Diggleet al., 1994,§7.4) for

E Yij = E exp(xij β + ζi) = g−1(xij β)× E eζ1

but of course the marginal distribution of the GLMM fit is not Poisson.
We can fit GEE models by thegee and yags library sections of Vincent

Carey.15

> library(yags)
> attach(bacteria)
> summary(yags(unclass(y) - 1 ~ trt + I(week > 2),

family = binomial,
id = ID, corstr = "exchangeable"))

....
Estimated Scale Parameter: 1.04

....Working Correlation Parameter(s)
[1] 0.136

> attach(epil)
> summary(yags(y ~ lbase*trt + lage + V4, family = poisson,

id = subject, corstr = "exchangeable"))
....

15http://www.biostat.harvard.edu/~carey/.

300 Random and Mixed Effects

Estimated Scale Parameter: 4.42
Working Correlation Parameter(s)
[1,] 0.354

> library(gee)
> options(contrasts = c("contr.sum", "contr.poly"))
> summary(gee(y ~ pred + factor(subject), family = poisson,

id = subject,data = epil3, corstr = "exchangeable"))

It is important to realize that the parametersβ in (10.5) and (10.6) may have
different interpretations. In a GLMMβ measures the effect of the covariates for
an individual; in a GEE model it measures the effect in the population, usually
smaller. If a GLMM is a good model, then often so is a GEE model but for
substantially different parameter estimates (Zegeret al., 1988). For a log-linear
model only the intercept will differ, but for logistic models the slopes will be
attenuated. Since at least in these two cases the effect is known, Zegeret al.
point out that GLMM models can also be fitted by GEE methods, provided the
latter are extended to estimate the variance components of the random effects.
Since we have an estimate of the variance components we can estimate that the
population slopes will be attenuated by a factor of about

√
1 + 0.346σ2 ≈ 1.3

in the bacteria example. (The number0.346 comes from Zegeret al., 1988.)
This agrees fairly well with the numerical integration results in Table 10.4.

Chapter 11

Exploratory Multivariate Analysis

Multivariate analysis is concerned with datasets that have more than one response
variable for each observational or experimental unit. The datasets can be summa-
rized by data matricesX with n rows andp columns, the rows representing the
observations or cases, and the columns the variables. The matrix can be viewed
either way, depending on whether the main interest is in the relationships be-
tween the cases or between the variables. Note that for consistency we represent
the variables of a case by therow vector x.

The main division in multivariate methods is between those methods that as-
sume a given structure, for example, dividing the cases into groups, and those that
seek to discover structure from the evidence of the data matrix alone (nowadays
often calleddata mining, see for example Handet al., 2001). Methods for known
structure are considered in Chapter 12.

In pattern-recognition terminology the distinction is betweensupervised and
unsupervised methods. One of our examples is the (in)famous iris data collected
by Anderson (1935) and given and analysed by Fisher (1936). This has 150 cases,
which are stated to be 50 of each of the three speciesIris setosa, I. virginica and
I. versicolor. Each case has four measurements on the length and width of its
petals and sepals.A priori this seems a supervised problem, and the obvious
questions are to use measurements on a future case to classify it, and perhaps to
ask how the variables vary among the species. (In fact, Fisher used these data
to test a genetic hypothesis which placedI. versicolor as a hybrid two-thirds of
the way fromI. setosa to I. virginica.) However, the classification of species is
uncertain, and similar data have been used to identify species by grouping the
cases. (Indeed, Wilson (1982) and McLachlan (1992,§6.9) consider whether the
iris data can be split into subspecies.)

Krzanowski (1988) and Mardia, Kent and Bibby (1979) are two general refer-
ences on multivariate analysis. For pattern recognition we follow Ripley (1996),
which also has a computationally-informed account of multivariate analysis.

Most of the emphasis in the literatureand in this chapter is on continuous
measurements, but we do look briefly at multi-way discrete data in Section 11.4.

Colour can be used very effectively to differentiate groups in the plots of this
chapter, on screen if not on paper. The code given here uses both colours and
symbols, but you may prefer to use only one of these to differentiate groups. (The
colours used are chosen for use on a trellis device.)

301

302 Exploratory Multivariate Analysis

In R library(mva) is needed for most of the material in this chapter.R

Running example: Leptograpsus variegatus crabs

Mahon (see Campbell and Mahon, 1974) recorded data on 200 specimens ofLep-
tograpsus variegatus crabs on the shore in Western Australia. This occurs in two
colour forms, blue and orange, and hecollected 50 of each form of each sex and
made five physical measurements. These were the carapace (shell) lengthCL and
width CW, the size of the frontal lobeFL and rear widthRW, and the body depth
BD. Part of the authors’ thesis was to establish that the two colour forms were
clearly differentiated morphologically, to support classification as two separate
species.

The data are physical measurements, so a sound initial strategy is to work on
log scale. This has been done throughout.

11.1 Visualization Methods

The simplest way to examine multivariate data is via apairs or scatterplot matrix
plot, enhanced to show the groups as discussed in Section 4.5. Pairs plots are a
set of two-dimensional projections of a high-dimension point cloud.

However, pairs plots can easily miss interesting structure in the data that de-
pends on three or more of the variables, and genuinely multivariate methods ex-
plore the data in a less coordinate-dependent way. Many of the most effective
routes to explore multivariate data use dynamic graphics such as exploratory pro-
jection pursuit (for example, Huber, 1985; Friedman, 1987; Jones and Sibson,
1987 and Ripley, 1996) which chooses ‘interesting’ rotations of the point cloud.
These are available through interfaces to the packageXGobi1 for machines run-
ning X11.2 A successor toXGobi, GGobi,3 is under development.

Many of the other visualization methods can be viewed as projection methods
for particular definitions of ‘interestingness’.

Principal component analysis

Principal component analysis (PCA) has a number of different interpretations.
The simplest is a projection method finding projections of maximal variability.
That is, it seeks linear combinations of the columns ofX with maximal (or min-
imal) variance. Because the variance canbe scaled by rescaling the combination,
we constrain the combinations to have unit length (which is true of projections).

Let S denote the covariance matrix of the dataX , which is defined4 by

nS = (X − n−111TX)T (X − n−111TX) = (XTX − nxxT)

1http://www.research.att.com/areas/stat/xgobi/
2On UNIX and on Windows: a Windows port of XGobi is available at

http://www.stats.ox.ac.uk/pub/SWin.
3http://www.ggobi.org.
4A divisor of n − 1 is more conventional, butprincomp calls cov.wt, which usesn.

11.1 Visualization Methods 303

first principal component

se
co

nd
 p

rin
ci

pa
l c

om
po

ne
nt

-4 -2 0 2

-3
-2

-1
0

1
2

s

s
s

s

s

s

s
s

s

s

s

s

s

s

s

s

s

s

s

s

s

s

s
ss

s

s
s
s

ss

s

s

s

s
s

s
s

s

ss

s

s

s

s

s

s

s

s

s

c
c c

c

c

c

c

c

c

c

c

c

c

c
c

c

c

c

c

c

c

c

c

c

c
c

c

c

c

c

cc

c
c

c

c
c

c

c

c
c

c

c

c

c

c
c

c

c

c

v

v

v

v
v

v

v

v

v

v

v

v

v

v

v

v

v

v

v

v

v

v

v

v

v v

v

v
v

v

v

v

vv

v

vv

v

v

vvv

v

v
v

v

v

v

v

v

Figure 11.1: First two principal components for the log-transformediris data.

wherex = 1TX/n is the row vector of means of the variables. Then the sample
variance of a linear combinationxa of a row vectorx is aT Σa and this is
to be maximized (or minimized) subject to‖a‖2 = aT a = 1. Since Σ is a
non-negative definite matrix, it has an eigendecomposition

Σ = CT ΛC

whereΛ is a diagonal matrix of (non-negative) eigenvalues in decreasing order.
Let b = Ca, which has the same length asa (since C is orthogonal). The
problem is then equivalent to maximizingbT Λb =

∑
λib

2
i subject to

∑
b2i =

1. Clearly the variance is maximized by takingb to be the first unit vector, or
equivalently takinga to be the column eigenvector corresponding to the largest
eigenvalue ofΣ. Taking subsequent eigenvectors gives combinations with as
large as possible variance that are uncorrelated with those that have been taken
earlier. Theith principal component is then theith linear combination picked
by this procedure. (It is only determined up to a change of sign; you may get
different signs in different implementations ofS.)

The first k principal components span a subspace containing the ‘best’k-
dimensional view of the data. It has a maximal covariance matrix (both in trace
and determinant). It also best approximates the original points in the sense of
minimizing the sum of squared distances from the points to their projections. The
first few principal components are often useful to reveal structure in the data.
The principal components corresponding to the smallest eigenvalues are the most
nearly constant combinations of the variables, and can also be of interest.

Note that the principal components depend on the scaling of the original vari-
ables, and this will be undesirable except perhaps if (as in theiris data) they
are in comparable units. (Even in this case, correlations would often be used.)
Otherwise it is conventional to take the principal components of thecorrelation
matrix, implicitly rescaling all the variables to have unit sample variance.

The functionprincomp computes principal components. The argumentcor
controls whether the covariance or correlation matrix is used (via rescaling the

304 Exploratory Multivariate Analysis

variables).

> # S: ir <- rbind(iris[,,1], iris[,,2], iris[,,3])
> # R: data(iris3); ir <- rbind(iris3[,,1], iris3[,,2], iris3[,,3])
> ir.species <- factor(c(rep("s", 50), rep("c", 50), rep("v", 50)))
> (ir.pca <- princomp(log(ir), cor = T))
Standard deviations:
Comp.1 Comp.2 Comp.3 Comp.4
1.7125 0.95238 0.3647 0.16568

....
> summary(ir.pca)
Importance of components:

Comp.1 Comp.2 Comp.3 Comp.4
Standard deviation 1.71246 0.95238 0.364703 0.1656840

Proportion of Variance 0.73313 0.22676 0.033252 0.0068628
Cumulative Proportion 0.73313 0.95989 0.993137 1.0000000

> plot(ir.pca)
> loadings(ir.pca)

Comp.1 Comp.2 Comp.3 Comp.4
Sepal L. 0.504 0.455 0.709 0.191
Sepal W. -0.302 0.889 -0.331
Petal L. 0.577 -0.219 -0.786
Petal W. 0.567 -0.583 0.580
> ir.pc <- predict(ir.pca)
> eqscplot(ir.pc[, 1:2], type = "n",

xlab = "first principal component",
ylab = "second principal component")

> text(ir.pc[, 1:2], labels = as.character(ir.species),
col = 3 + codes(ir.species))

In the terminology of this function, theloadings are columns giving the linear
combinationsa for each principal component, and thescores are the data on the
principal components. The plot (not shown) is thescreeplot, a barplot of the
variances of the principal components labelled by

∑j
i=1 λi/trace(Σ). The result

of loadings is rather deceptive, as small entries are suppressed in printing but
will be insignificant only if the correlation matrix is used, and that isnot the
default. Thepredict method rotates to the principal components.

As well as a data matrixx, the functionprincomp can accept data via a
model formula with an empty left-hand side or as a variance or correlation matrix
specified by argumentcovlist, of the form output bycov.wt and cov.rob
(see page 336). Using the latter is one way to robustify principal component anal-
ysis. (S-PLUS has princompRob in library sectionrobust, using covRob .)S+

Figure 11.1 shows the first two principal components for theiris data based
on the covariance matrix, revealing the group structure if it had not already been
known. A warning: principal component analysis will reveal the gross features
of the data, which may already be known, and is often best applied to residuals
after the known structure has been removed. As we discovered in Figure 4.13 on
page 96, animals come in varying sizes and two sexes!

11.1 Visualization Methods 305

> lcrabs <- log(crabs[, 4:8])
> crabs.grp <- factor(c("B", "b", "O", "o")[rep(1:4, each = 50)])
> (lcrabs.pca <- princomp(lcrabs))
Standard deviations:

Comp.1 Comp.2 Comp.3 Comp.4 Comp.5
0.51664 0.074654 0.047914 0.024804 0.0090522

> loadings(lcrabs.pca)
Comp.1 Comp.2 Comp.3 Comp.4 Comp.5

FL 0.452 0.157 0.438 -0.752 0.114
RW 0.387 -0.911
CL 0.453 0.204 -0.371 -0.784
CW 0.440 -0.672 0.591
BD 0.497 0.315 0.458 0.652 0.136
> lcrabs.pc <- predict(lcrabs.pca)
> dimnames(lcrabs.pc) <- list(NULL, paste("PC", 1:5, sep = ""))

(As the data on log scaleare very comparable, we did not rescale the variables
to unit variance.) The first principal component had by far the largest standard
deviation, with coefficients that show it to be a ‘size’ effect. A plot of the sec-
ond and third principal components shows an almost total separation into forms
(Figure 4.13 and 4.14 on pages 96 and 97) on the third PC, the second PC distin-
guishing sex. The coefficients of the third PC show that it is contrasting overall
size with FL and BD.

One ancillary use of principal component analysis is tosphere the data. Af-
ter transformation to principal components, the coordinates are uncorrelated, but
with different variances. Sphering the data amounts to rescaling each principal
component to have unit variance, so the variance matrix becomes the identity. If
the data were a sample from a multivariate normal distribution the point cloud
would look spherical, and many measures of ‘interestingness’ in exploratory pro-
jection pursuit look for features in sphered data. Borrowing a term from time
series, sphering is sometimes known aspre-whitening.

There are two books devoted solely to principal components, Jackson (1991)
and Jolliffe (1986), which we think overstates its value as a technique.

Exploratory projection pursuit

Using projection pursuit inXGobi or GGobi allows us to examine the data much
more thoroughly. Try one of

library(xgobi)
xgobi(lcrabs, colors = c("SkyBlue", "SlateBlue", "Orange",

"Red")[rep(1:4, each = 50)])
xgobi(lcrabs, glyphs = 12 + 5*rep(0:3, each = 50))

A result of optimizing by the ‘holes’ index is shown in Figure 11.2.

Distance methods

This is a class of methods based on representing the cases in a low-dimensional
Euclidean space so that their proximity reflects the similarity of their variables.

306 Exploratory Multivariate Analysis

FL

RW
CLCW

BD

Figure 11.2: Projection pursuit view of thecrabs data. Males are coded as filled symbols,
females as open symbols, the blue colour form as squares and the orange form as circles.

We can think of ‘squeezing’ a high-dimensional point cloud into a small number
of dimensions (2, perhaps 3) whilst preserving as well as possible the inter-point
distances.

To do so we have to produce a measure of (dis)similarity. The functiondist
uses one of four distance measures between the points in thep-dimensional space
of variables; the default is Euclideandistance. Distances are often calleddissimi-
larities. Jardine and Sibson (1971) discuss several families of similarity and dis-
similarity measures. For categorical variables most dissimilarities are measures
of agreement. Thesimple matching coefficient is the proportion of categorical
variables on which the cases differ. TheJaccard coefficient applies to categorical
variables with a preferred level. It is the proportion of such variables with one
of the cases at the preferred level in which the cases differ. Thebinary method
of dist is of this family, being the Jaccard coefficient if all non-zero levels are
preferred. Applied to logical variables on two cases it gives the proportion of
variables in which only one is true among those that are true on at least one case.
The functiondaisy (in packagecluster in R) provides a more general wayR

to compute dissimilarity matrices. The main extension is to variables that are
not on interval scale, for example, ordinal, log-ratio and asymmetric binary vari-
ables. There are many variants of these coefficients; Kaufman and Rousseeuw
(1990, §2.5) provide a readable summary and recommendations, and Cox and
Cox (2001, Chapter 2) provide a more comprehensive catalogue.

The most obvious of the distance methods ismultidimensional scaling (MDS),
which seeks a configuration inRd such that distances between the points best
match (in a sense to be defined) those of the distance matrix. We start with the
classical form of multidimensional scaling, which is also known asprincipal co-
ordinate analysis. For theiris data we can use:

ir.scal <- cmdscale(dist(ir), k = 2, eig = T)
ir.scal$points[, 2] <- -ir.scal$points[, 2]

11.1 Visualization Methods 307

Metric scaling

x

y

-2 0 2

-2
-1

0
1

2

s

ss
s

s

s

s
s

s

s

s

s
s

s

s s

s

s

s
s ss

s sss
s

ss

ss

s
s
s

s
s

s
s

s

ss

s

s

s
s

s

s

s

s

s

c
c

c

c

c

c

c

c

c

c

c

c

c

cc

c

cc
cc

cc
cc

c
c c c

c
c

cc
c cc

c
c

cc
c c

c
c

c

c
cc

c

c
c

v

v

v

v v

v

v

v

v

v

v

v

v

v
v

vv

v

v

v

v

v

v

v

v
v

vv v

v v

v

vv
v

v

vv
v

v
v

v

v

vvv

v

vv
v

Sammon mapping

x

y

-2 0 2 4

-2
-1

0
1

2

s

ss
s

s
s

s
s

s

s

s

s
s

s

s s

s

s

s
s

ss
s s

ss
s

ss

ss

s

s
s

s
s

s
s

s

ss

s

s

s
s

s

s

s

s

s

c

c
c

c

c

c

c

c

c

c
c

c

c

cc

c

c
c

c
c

c
c

cc

c
c c c

c
c

cc
c c

c

c
c

c
c

c c

c
c

c

c
cc

c

c
c v

v

v

v
v

v

v

v

v

v

v
v

v

v v

vv

v

v

v

v

v

v

v
v

v

vv v

v
v

v

v
v

v

v

v
v

v

v
v

v
vv

v

v

v

vv

Kruskal’s MDS

x

y

-2 0 2

-2
-1

0
1

2

s

sss

s
s

s
s

s
s

s

s
s

s

s s

s

s

s
s ss

s sss
s

ss

ss

s

s
s

ss

s
s

s

ss

s

s

s
s

s

s

s

s
s

c

c
c

c

c

c

c

c

c

c

c

c

c

cc

c

cc
cc

cc
cc

c
c c c
c

c
cc

c c
c

c
c

c
c

c c

c
c

c

c
cc

c

c
c v

v

v

v v

v

v

v

v

v

v
v

v

v v

vv

v

v

v

v

v

v

v
v

v

vv v

v v

v

vv

v

v

vv
v

v
v

v
vvv

v
v

v
v

Figure 11.3: Distance-based representations of theiris data. The top left plot is by
multidimensional scaling, the top right by Sammon’s non-linear mapping, the bottom left
by Kruskal’s isotonic multidimensional scaling. Note that each is defined up to shifts,
rotations and reflections.

eqscplot(ir.scal$points, type = "n")
text(ir.scal$points, labels = as.character(ir.species),

col = 3 + codes(ir.species), cex = 0.8)

where care is taken to ensure correct scaling of the axes (see the top left plot
of Figure 11.3). Note that a configuration can be determined only up to transla-
tion, rotation and reflection, since Euclidean distance is invariant under the group
of rigid motions and reflections. (We chose to reflect this plot to match later
ones.) An idea of how good the fit is can be obtained by calculating a measure5

of ‘stress’:

> distp <- dist(ir)
> dist2 <- dist(ir.scal$points)
> sum((distp - dist2)^2)/sum(distp^2)
[1] 0.001747

which shows the fit is good. Using classical multidimensional scaling with a Eu-
clidean distance as here is equivalent to plotting the firstk principal components
(without rescaling to correlations).

Another form of multidimensional scaling is Sammon’s (1969) non-linear
mapping, which given a dissimilarityd on n points constructs ak-dimensional

5There are many such measures.

308 Exploratory Multivariate Analysis

configuration with distances̃d to minimize a weighted ‘stress’

ESammon(d, d̃) =
1∑

i�=j dij

∑
i�=j

(dij − d̃ij)2

dij

by an iterative algorithm implemented in our functionsammon. We have to drop
duplicate observations to make sense ofE(d, d̃); running sammon will report
which observations are duplicates.6 Figure 11.4 was produced by

ir.sam <- sammon(dist(ir[-143,]))
eqscplot(ir.sam$points, type = "n")
text(ir.sam$points, labels = as.character(ir.species[-143]),

col = 3 + codes(ir.species), cex = 0.8)

Contrast this with the objective for classical MDS applied to a Euclidean config-
uration of points (but not in general), which minimizes

Eclassical(d, d̃) =
∑
i�=j

[
d2

ij − d̃2
ij

] / ∑
i�=j

d2
ij

The Sammon function puts much more stress on reproducing small distances ac-
curately, which is normally what is needed.

A more thoroughly non-metric version of multidimensional scaling goes back
to Kruskal and Shepard in the 1960s (see Cox and Cox, 2001 and Ripley, 1996).
The idea is to choose a configuration to minimize

STRESS2 =
∑
i�=j

[
θ(dij)− d̃ij

]2 / ∑
i�=j

d̃2
ij

over both the configuration of points and an increasing functionθ. Now the loca-
tion, rotation, reflection and scale of the configuration are all indeterminate. This
is implemented in functionisoMDS which we can use by

ir.iso <- isoMDS(dist(ir[-143,]))
eqscplot(ir.iso$points, type = "n")
text(ir.iso$points, labels = as.character(ir.species[-143]),

col = 3 + codes(ir.species), cex = 0.8)

The optimization task is difficult and this can be quite slow.
MDS plots of thecrabs data tend to show just large and small crabs, so we

have to remove the dominant effect of size. We used the carapace area as a good
measure of size, and divided all measurements by the square root of the area. It is
also necessary to account for the sex differences, which we can do by analysing
each sex separately, or by subtracting the mean for each sex, which we did:

cr.scale <- 0.5 * log(crabs$CL * crabs$CW)
slcrabs <- lcrabs - cr.scale
cr.means <- matrix(0, 2, 5)

6In S we would use(1:150)[duplicated(ir)] .

11.1 Visualization Methods 309

-0.1 0.0 0.1 0.2

-0
.1

0
-0

.0
5

0.
0

0.
05

0.
10

0.
15

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B
B B

BB

BB

B B
B

B

B

B

B

B

B

B
B

b
bb

b
b

b

b
b

b

b

b

b b
b

b

b

b
bb

b

b

b

b

b b

b

b

b

b

b

b

b
b

bb

b

b

b

b
b

b
b

bb

b

b

bb

b

b

O

O

O

O
O

O

O
O

O

O

O

O

O

O O

O
O

O
O

O
O

O

O

O
O

O
O

O

O

O

O

O

O

O

O

O

O

O

O O

O
O

O

O OO O

O
O

O

o

o

o

o

o
o

o

o

o

o

o

o

o

o

o

o
o

o

o
o

o
o

o

o

o

o

o
o

o

o

o

o

o

o
o

o o

o

o

o

o

o

o

o

o

o

o
o

o

o

Figure 11.4: Sammon mapping ofcrabs data adjusted for size and sex. Males are coded
as capitals, females as lower case, colours as the initial letter of blue or orange.

F

F

F
F F FFF

F
F FF FFFFF

F

F
FF

F

FFFFF FFFFFFFF
F

F
F

F

F FF

F

F
F F

F

F

F

F

F
FF F

F

F
F

FFF
F

F
F

F
FFFF

F NN

NNNNNN
N
NN
NN N

N
N NNNN

N
NNNN

NN

N NN
NNN

N

N

N

N
N

N

N

NN

N

N NNN N
NN

N
NNN

N

N
N

NN

NN
N

N
N
NNN

N NNNN
NN

N

N V
VV

V
V

V

V VV VV

V

VVV
V

V

C

CC

C

C C
C

C

CCC

C

C

TT
TT

T

T

T
T

T

H

H

H

H

H

H

HHH H HHH HH H

H

HH HH H

H

HHHH HH

Figure 11.5: Isotonic multidimensional scaling representation of thefgl data. The groups
are plotted by the initial letter, exceptF for window float glass, andN for window non-
float glass. Small dissimilarities correspond tosmall distances on the plot and conversely.

cr.means[1,] <- colMeans(slcrabs[crabs$sex == "F",])
cr.means[2,] <- colMeans(slcrabs[crabs$sex == "M",])
dslcrabs <- slcrabs - cr.means[as.numeric(crabs$sex),]
lcrabs.sam <- sammon(dist(dslcrabs))
eqscplot(lcrabs.sam$points, type = "n", xlab = "", ylab = "")
text(lcrabs.sam$points, labels = as.character(crabs.grp))

The MDS representations can be quite different in examples such as our
datasetfgl that do not project well into a small number of dimensions; Fig-
ure 11.5 shows a non-metric MDS plot. (We omit one of an identical pair of
fragments.)

fgl.iso <- isoMDS(dist(as.matrix(fgl[-40, -10])))
eqscplot(fgl.iso$points, type = "n", xlab = "", ylab = "", axes = F)
either
for(i in seq(along = levels(fgl$type))) {

set <- fgl$type[-40] == levels(fgl$type)[i]
points(fgl.iso$points[set,], pch = 18, cex = 0.6, col = 2 + i)}

S: key(text = list(levels(fgl$type), col = 3:8))
or
text(fgl.iso$points,

310 Exploratory Multivariate Analysis

labels = c("F", "N", "V", "C", "T", "H")[fgl$type[-40]],
cex = 0.6)

fgl.iso3 <- isoMDS(dist(as.matrix(fgl[-40, -10])), k = 3)
S: brush(fgl.iso3$points)
fgl.col <- c("SkyBlue", "SlateBlue", "Orange", "Orchid",

"Green", "HotPink")[fgl$type]
xgobi(fgl.iso3$points, colors = fgl.col)

This dataset fits much better into three dimensions, but that poses a challenge of
viewing the results in someS environments. The optimization can be displayed
dynamically inXGvis, part ofXGobi.

Self-organizing maps

All multidimensional scaling algorithms are slow, not least because they work
with all the distances between pairs of points and so scale at least asO(n2) and
often worse. Engineers have looked for methods to find maps from many more
than hundreds of points, of which the best known is ‘Self-Organizing Maps’ (Ko-
honen, 1995). Kohonen describes his own motivation as:

‘I just wanted an algorithm that would effectively map similar pat-
terns (pattern vectors close to each other in the input signal space)
onto contiguous locations in the output space.’ (p. VI)

which is the same aim as most variants of MDS. However, he interpreted ‘con-
tiguous’via a rectangular or hexagonal 2-Dlattice of representatives7 mj , with
representatives at nearby points on the grid that are more similar than those that
are widely separated. Data points are thenassigned to the nearest representative
(in Euclidean distance). Since Euclidean distance is used, pre-scaling of the data
is important.

Kohonen’s SOM is a family of algorithms with no well-defined objective to be
optimized, and the results can be critically dependent on the initialization and the
values of the tuning constants used. Despite this high degree of arbitrariness, the
method scales well (it is at worst linear inn) and often produces useful insights
in datasets whose size is way beyond MDS methods (for example, Roberts and
Tarassenko, 1995).

If all the data are available at once (as will be the case inS applications), the
preferred method isbatch SOM (Kohonen, 1995,§3.14). For a single iteration,
assign all the data points to representatives, and then update all the representatives
by replacing each by the mean of all data points assigned to that representative or
one of its neighbours (possibly using a distance-weighted mean). The algorithm
proceeds iteratively, shrinking the neighbourhood radius to zero over a small num-
ber of iterations. Figure 11.6 shows the result of one run of the following code.

library(class)
gr <- somgrid(topo = "hexagonal")
crabs.som <- batchSOM(lcrabs, gr, c(4, 4, 2, 2, 1, 1, 1, 0, 0))
plot(crabs.som)

7Called ‘codes’ or a ‘codebook’ in some of the literature.

11.1 Visualization Methods 311

B
B

BBB

B

B

BB

B

BB

BB

BB

B BB B

B

B

B

BBBB BBB

BBBB

B

B

B

B

B

B
BBB

B

BB

B
B

B B

b
bb bbb b

b
b
bb

b

bb
bb

b

b

b

b

b

bb

bb

bb

b

bbb

b bb bb bbb bb bb bbb

bbb

bO
O

O

O

O
O

O

O

O

O O

OOOOO

OOO

O
OO OOO O

OO

O

OO OOOOOO

OOO O OO
OOOOO

OO

oo

o

o o

ooo

oo

o

o
oo
o

ooo

o

o

oo

o

o

o

o

ooo

o

o ooo

o
oo ooooooo

oo o
ooo

Figure 11.6: Batch SOM applied to thecrabs dataset. The left plot is astars plot of
the representatives, and the right plot shows the assignments of the original points, coded
as in 11.4 and placed randomly within the circle. (Plots fromR.)

bins <- as.numeric(knn1(crabs.som$code, lcrabs, 0:47))
plot(crabs.som$grid, type = "n")
symbols(crabs.som$grid$pts[, 1], crabs.som$grid$pts[, 2],

circles = rep(0.4, 48), inches = F, add = T)
text(crabs.som$grid$pts[bins,] + rnorm(400, 0, 0.1),

as.character(crabs.grp))

batchSOM The initialization used is to selecta random subset of the data points.
Different runs give different patterns but do generally show the gradation for small
to large animals shown in the left panel8 of Figure 11.6.

Traditional SOM uses an on-line algorithm, in which examples are presented
in turn until convergence, usually by sampling from the dataset. Whenever an
examplex is presented, the closest representativemj is found. Then

mi ←mi + α[x−mi] for all neighboursi .

Both the constantα and the definition of ‘neighbour’ change with time. This can
be exploredvia function SOM , for example,

crabs.som2 <- SOM(lcrabs, gr); plot(crabs.som2)

See Murtagh and Hern´andez-Pajares (1995) for another statistical assessment.

Biplots

The biplot (Gabriel, 1971) is a method to represent both the cases and variables.
We suppose thatX has been centred to remove column means. The biplot rep-
resentsX by two sets of vectors of dimensionsn and p producing a rank-2
approximation toX . The best (in the sense of least squares) such approxima-
tion is given by replacingΛ in the singular value decomposition ofX by D, a
diagonal matrix settingλ3, . . . to zero, so

X ≈ X̃ = [u1 u2]
[
λ1 0
0 λ2

] [
vT

1

vT
2

]
= GHT

8In S-PLUS the stars plot will be drawn on a rectangular grid.

312 Exploratory Multivariate Analysis

Comp. 1

C
om

p.
 2

-3 -2 -1 0 1 2

-3
-2

-1
0

1
2

AL

AK

AZ

AR

CA

COCTDE

FL

GA

HI

ID

IL

IN

IA

KS

KY

LA

ME

MD

MA

MI

MN
MS

MO

MT NE

NV

NH

NJ

NM

NY

NC
ND

OH

OK

OR

PA

RI

SC

SD

TN

TX

UT

VT

VA

WA

WV

WI

WY

-1.5 -1.0 -0.5 0.0 0.5 1.0

-1
.5

-1
.0

-0
.5

0.
0

0.
5

1.
0

Income

Illiteracy

Life Exp

Murder HS Grad

Frost

Figure 11.7: Principal component biplot of the part of thestate.x77 data. Distances
between states represent Mahalanobis distance, and inner products between variables rep-
resent correlations. (The arrows extend 80% of the way along the variable’s vector.)

where the diagonal scaling factors can be absorbed intoG andH in a number
of ways. For example, we could take

G = na/2 [u1 u2]
[
λ1 0
0 λ2

]1−λ

, H = n−a/2 [v1 v2]
[
λ1 0
0 λ2

]λ

The biplot then consists of plotting then+ p two-dimensional vectors that form
the rows ofG and H . The interpretation is based on inner products between
vectors from the two sets, which give the elements ofX̃ . For λ = a = 0 this is
just a plot of the first two principal components and the projections of the variable
axes.

The most popular choice isλ = a = 1 (which Gabriel, 1971, calls theprin-
cipal component biplot). Then G contains the first two principal components
scaled to unit variance, so the Euclidean distances between the rows ofG repre-
sent the Mahalanobis distances (page 334) between the observations and the inner
products between the rows ofH represent the covariances between the (possibly
scaled) variables (Jolliffe, 1986, pp. 77–8); thus the lengths of the vectors repre-
sent the standard deviations.

Figure 11.7 shows a biplot withλ = 1, obtained by9

library(MASS, first = T) # enhanced biplot.princomp
R: data(state)
state <- state.x77[, 2:7]; row.names(state) <- state.abb

9An enhanced version ofbiplot.princomp from MASS is used.

11.1 Visualization Methods 313

biplot(princomp(state, cor = T), pc.biplot = T, cex = 0.7,
expand = 0.8)

We specified a rescaling of the original variables to unit variance. (There are
additional argumentsscale , which specifiesλ , andexpand , which specifies a
scaling of the rows ofH relative to the rows ofG, both of which default to 1.)

Gower and Hand (1996) in a book-length discussion of biplots criticize con-
ventional plots such as Figure 11.7. In particular they point out that the axis scales
are not at all helpful. Notice the two sets of scales. That on the lower and left axes
refers to the values of the rows ofG. The upper/right scale is for the values of the
rows of H which are shown as arrows.

Independent component analysis

Independent component analysis (ICA) was named by Comon (1994), and has
since become a ‘hot’ topic in data visualization; see the books Lee (1998);
Hyvärinenet al. (2001) and the expositions by Hyv¨arinen and Oja (2000) and
Hastieet al. (2001,§14.6).

ICA looks for rotations of sphered data that have approximately independent
coordinates. This will be true (in theory) for all rotations of samples from mul-
tivariate normal distributions, so ICA is of most interest for distributions that are
far from normal.

The original context for ICA was ‘unmixing’ of signals. Suppose there are
k � p independent sources in a data matrixS , and we observe thep linear
combinationsX = SA with mixing matrix A . The ‘unmixing’ problem is
to recoverS . Clearly there are identifiability problems: we cannot recover the
amplitudes or the labels of the signals, so we may as well suppose that the signals
have unit variances. Unmixing is often illustrated by the problem of listening to
just one speaker at a party. Note that this is a ‘no noise’ model: all the randomness
is assumed to come from the signals.

Suppose the dataX have been sphered; by assumptionS is sphered and
so X has varianceATA and we look for an orthogonal matrixA . Thus ICA
algorithms can be seen as exploratory projection pursuit in which the measure of
interestingness emphasises independence (not just uncorrelatedness), say as the
sum of the entropies of the projected coordinates. Like most projection pursuit
indices, approximations are used for speed, and that proposed by Hyv¨arinen and
Oja (2000) is implemented is theR packagefastICA .10 We can illustrate this
for the crabs data, where the first and fourth signals shown in Figure 11.8 seem
to pick out the two colour forms and two sexes respectively.

library(fastICA)
nICA <- 4
crabs.ica <- fastICA(crabs[, 4:8], nICA)
Z <- crabs.ica$S
par(mfrow = c(2, nICA))
for(i in 1:nICA) boxplot(split(Z[, i], crabs.grp))

10By Jonathan Marchini. Also ported toS-PLUS.

314 Exploratory Multivariate Analysis

B O b o

−
2

−
1

0
1

B O b o
−

2
−

1
0

1
2

B O b o

−
3

−
2

−
1

0
1

2
3

B O b o

−
2

−
1

0
1

2

Figure 11.8: Boxplots of four ‘signals’ recovered by ICA from thecrabs data.

There is a lot of arbitrariness in the use of ICA, in particular in choosing the
number of signals. We might have expected to need two here, when the results
are much less impressive.

Glyph representations

There is a wide range of ways to trigger multiple perceptions of a figure, and we
can use these to represent each of a moderately large number of rows of a data
matrix by an individual figure. Perhaps the best known of these are Chernoff’s
faces (Chernoff, 1973, implemented in theS-PLUS function faces ; there are
other versions by Bruckner, 1978 and Flury and Riedwyl, 1981) and the star plots
as implemented in the functionstars (see Figure 11.6), but Wilkinson (1999,
Chapter 3) gives many more.

These glyph plots do depend on the ordering of variables and perhaps also
their scaling, and they do rely on properties of human visual perception. So they
have rightly been criticised as subject tomanipulation, andone should be aware
of the possibility that the effect may differ by viewer.11 Nevertheless they can be
very effective as tools for private exploration.

As an example, a stars plot for thestate.x77 dataset with variables in the
order showing up in the biplot of Figure 11.7 can be drawn by

S: stars(state.x77[, c(7, 4, 6, 2, 5, 3)], byrow = T)
R: stars(state.x77[, c(7, 4, 6, 2, 5, 3)], full = FALSE,

key.loc = c(10, 2))

Parallel coordinate plots

Parallel coordinates plots (Inselberg, 1984; Wegman, 1990) join the same points
across a set of parallel axes. We can show thestate.x77 dataset in the order
showing up in the biplot of Figure 11.7 by

parcoord(state.x77[, c(7, 4, 6, 2, 5, 3)])

11Especially if colour is involved; it is amazingly common to overlook the prevalence of red–green
colour blindness.

11.2 Cluster Analysis 315

Alabama
Alaska

Arizona
Arkansas

California
Colorado

Connecticut

Delaware
Florida

Georgia
Hawaii

Idaho
Illinois

Indiana

Iowa
Kansas

Kentucky
Louisiana

Maine
Maryland

Massachusetts

Michigan
Minnesota

Mississippi
Missouri

Montana
Nebraska

Nevada

New Hampshire
New Jersey

New Mexico
New York

North Carolina
North Dakota

Ohio

Oklahoma
Oregon

Pennsylvania
Rhode Island

South Carolina
South Dakota

Tennessee

Texas
Utah

Vermont
Virginia

Washington
West Virginia

Wisconsin

Wyoming Frost

Life Exp
HS GradIncome

Murder

Illiteracy

Figure 11.9: R version ofstars plot of the state.x77 dataset.

Such plots are often too ‘busy’ without a means of interaction to identify obser-
vations, sign-change and reorder variables, brush groups and so on (as is possible
in XGobi andGGobi). As an example of a revealing parallel coordinate plot try

parcoord(log(ir)[, c(3, 4, 2, 1)], col = 1 + (0:149)%/%50)

on a device which can plot colour.

11.2 Cluster Analysis

Cluster analysis is concerned with discovering groupings among the cases of our
n by p matrix. A comprehensive general reference is Gordon (1999); Kaufman
and Rousseeuw (1990) give a good introduction and their methods are available
in S-PLUS and in packagecluster for R. Clustering methods can be clustered
in many different ways; here is one.

• Agglomerative hierarchical methods (hclust , agnes , mclust).

– Produces a set of clusterings, usually one withk clusters for eachk =
n, . . . , 2 , successively amalgamating groups.

– Main differences are in calculating group–group dissimilarities from point–
point dissimilarities.

316 Exploratory Multivariate Analysis

– Computationally easy.

• Optimal partitioning methods (kmeans , pam , clara , fanny).

– Produces a clustering for fixedK .

– Need an initial clustering.

– Lots of different criteria to optimize, some based on probability models.

– Can have distinct ‘outlier’ group(s).

• Divisive hierarchical methods (diana , mona).

– Produces a set of clusterings, usually one for eachk = 2, . . . ,K � n .

– Computationally nigh-impossible to find optimal divisions (Gordon, 1999,
p. 90).

– Most available methods aremonothetic (split on one variable at each stage).

Do not assume that ‘clustering’ methods are the best way to discover interesting
groupings in the data; in our experience the visualization methods are often far
more effective. There are many different clustering methods, often giving differ-
ent answers, and so the danger of over-interpretation is high.

Many methods are based on a measure of the similarity or dissimilarity be-
tween cases, but some need the data matrix itself. Adissimilarity coefficient d is
symmetric (d(A,B) = d(B,A)), non-negative andd(A,A) is zero. A similarity
coefficient has the scale reversed. Dissimilarities may bemetric

d(A,C) � d(A,B) + d(B,C)

or ultrametric
d(A,B) � max

(
d(A,C), d(B,C)

)
but need not be either. We have already seen several dissimilarities calculated by
dist and daisy.

Ultrametric dissimilarities have the appealing property that they can be rep-
resented by adendrogram such as those shown in Figure 11.10, in which the
dissimilarity between two cases can be read from the height at which they join
a single group. Hierarchical clustering methods can be thought of as approxi-
mating a dissimilarity by an ultrametric dissimilarity. Jardine and Sibson (1971)
argue that one method, single-link clustering, uniquely has all the desirable prop-
erties of a clustering method. This measures distances between clusters by the
dissimilarity of the closest pair, and agglomerates by adding the shortest possi-
ble link (that is, joining the two closest clusters). Other authors disagree, and
Kaufman and Rousseeuw (1990,§5.2) give a different set of desirable properties
leading uniquely to their preferred method, which views the dissimilarity between
clusters as the average of the dissimilarities between members of those clusters.
Another popular method is complete-linkage, which views the dissimilarity be-
tween clusters as the maximum of the dissimilarities between members.

The functionhclust implements these three choices, selected by itsmethod
argument which takes values"compact" (the default, for complete-linkage,

11.2 Cluster Analysis 317

1

2 3

4

5 6

7 8

9 10
1112

13 1415

16

17

18

19

20 2122

23

2425 26

27

28

29

30

31

32 3334

35

36

37
3839 40

41

42

43

44

45

46 47

0
10

20
30

40

1 2 3

4
5 6 7 8

9 10

1112 1314 15

16

1718
19

2021 2223 24 2526

27

28

29 30

31 3233 34

35

3637

383940

41 42 4344

45
46 47

0
20

40
60

80
12

0

H
ei

gh
t

Figure 11.10: Dendrograms for the socio-economic data on Swiss provinces computed by
single-link clustering (top) and divisive clustering (bottom).

called "complete" in R), "average" and "connected" (for single-linkage,R

called "single" in R). Functionagnes also has these (with theR names) and
others.

The S dataset12 swiss.x gives five measures of socio-economic data on
Swiss provinces about 1888, given by Mosteller and Tukey (1977, pp. 549–551).
The data are percentages, so Euclidean distance is a reasonable choice. We use
single-link clustering:

S: h <- hclust(dist(swiss.x), method = "connected")
R: data(swiss); swiss.x <- as.matrix(swiss[, -1])
R: h <- hclust(dist(swiss.x), method = "single")
plclust(h)
cutree(h, 3)
S: plclust(clorder(h, cutree(h, 3)))

The hierarchy of clusters in a dendrogram is obtained by cutting it at different
heights. The first plot suggests three main clusters, and the remaining code re-
orders the dendrogram to display (see Figure 11.10) those clusters more clearly.
Note that there appear to be two main groups, with the point 45 well separated
from them.

Functiondiana performsdivisive clustering, in which the clusters are repeat-
edly subdivided rather than joined, using the algorithm of Macnaughton-Smith
et al. (1964). Divisive clustering is an attractive option when a grouping into a
few large clusters is of interest. The lower panel of Figure 11.10 was produced by
pltree(diana(swiss.x)).

12In R the numbers are slightly different, and the provinces has been given names.

318 Exploratory Multivariate Analysis

first principal component

se
co

nd
 p

rin
ci

pa
l c

om
po

ne
nt

-40 -20 0 20 40 60

-2
0

0
20

40
60

3
2

2

3

1

2

2
2

2

2

2

1

1

1

1 1

1

33

1

11

1

1

1

1

1

1

3

1

2
2

2

2

2

2

2

2
1

3

3

3

1

3

3

3

3

45

47

46

4

16

Figure 11.11: The Swiss provinces data plotted on its first two principal components. The
labels are the groups assigned by K-means; the crosses denote the group means. Five
points are labelled with smaller symbols.

Partitioning methods

The K-means clustering algorithm (MacQueen, 1967; Hartigan, 1975; Hartigan
and Wong, 1979) chooses a pre-specified number of cluster centres to minimize
the within-class sum of squares from those centres. As such it is most appro-
priate to continuous variables, suitably scaled. The algorithm needs a starting
point, so we choose the means of the clusters identified by group-average cluster-
ing. The clustersare altered (cluster 3 contained just point 45), and are shown in
principal-component space in Figure 11.11. (Its standard deviations show that a
two-dimensional representation is reasonable.)

h <- hclust(dist(swiss.x), method = "average")
initial <- tapply(swiss.x, list(rep(cutree(h, 3),

ncol(swiss.x)), col(swiss.x)), mean)
dimnames(initial) <- list(NULL, dimnames(swiss.x)[[2]])
km <- kmeans(swiss.x, initial)
(swiss.pca <- princomp(swiss.x))
Standard deviations:

Comp.1 Comp.2 Comp.3 Comp.4 Comp.5
42.903 21.202 7.588 3.6879 2.7211
....

swiss.px <- predict(swiss.pca)
dimnames(km$centers)[[2]] <- dimnames(swiss.x)[[2]]
swiss.centers <- predict(swiss.pca, km$centers)
eqscplot(swiss.px[, 1:2], type = "n",

xlab = "first principal component",
ylab = "second principal component")

text(swiss.px[, 1:2], labels = km$cluster)
points(swiss.centers[,1:2], pch = 3, cex = 3)
identify(swiss.px[, 1:2], cex = 0.5)

11.2 Cluster Analysis 319

By definition, K-means clustering needs access to the data matrix and uses
Euclidean distance. We can apply a similar method using only dissimilarities if
we confine the cluster centres to the set of given examples. This is known as the
k-medoids criterion (of Vinod, 1969) implemented inpam and clara . Using
pam picks provinces 29, 8 and 28 as cluster centres.

> library(cluster) # needed in R only
> swiss.pam <- pam(swiss.px, 3)
> summary(swiss.pam)
Medoids:

Comp. 1 Comp. 2 Comp. 3 Comp. 4 Comp. 5
[1,] -29.716 18.22162 1.4265 -1.3206 0.95201
[2,] 58.609 0.56211 2.2320 -4.1778 4.22828
[3,] -28.844 -19.54901 3.1506 2.3870 -2.46842
Clustering vector:
[1] 1 2 2 1 3 2 2 2 2 2 2 3 3 3 3 3 1 1 1 3 3 3 3 3 3 3 3 3

[29] 1 3 2 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1 1
....

> eqscplot(swiss.px[, 1:2], type = "n",
xlab = "first principal component",
ylab = "second principal component")

> text(swiss.px[,1:2], labels = swiss.pam$clustering)
> points(swiss.pam$medoid[,1:2], pch = 3, cex = 5)

The functionfanny implements a ‘fuzzy’ version of thek-medoids criterion.
Rather than pointi having a membership of just one clusterv, its membership is
partitioned among clusters as positive weightsuiv summing to one. The criterion
then is

min
(uiv)

∑
v

∑
i,j u

2
ivu

2
jv dij

2
∑

i u
2
iv

.

For our running example we find

> fanny(swiss.px, 3)
iterations objective

16 354.01
Membership coefficients:

[,1] [,2] [,3]
[1,] 0.725016 0.075485 0.199499
[2,] 0.189978 0.643928 0.166094
[3,] 0.191282 0.643596 0.165123

....
Closest hard clustering:
[1] 1 2 2 1 3 2 2 2 2 2 2 3 3 3 3 3 1 1 1 3 3 3 3 3 3 3 3 3

[29] 1 3 2 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1 1

The ‘hard’ clustering is formed by assigning each point to the cluster for which
its membership coefficient is highest.

Other partitioning methods are based onthe idea that the data are independent
samples from a series of group populations, but the group labels have been lost, so
the data can be regarded as from a mixture distribution. The idea is then to find the

320 Exploratory Multivariate Analysis

first principal component

se
co

nd
 p

rin
ci

pa
l c

om
po

ne
nt

-50 0 50

-2
0

0
20

40
60

1
2

2

1

3

2

22

2
2

2

3
3
3

3 3

1

11

3

33

3
3

3

3
3
3

1

3
222

2

2
2

2

21

1
1
1

1

1

1

1

1

pam

first principal component

se
co

nd
 p

rin
ci

pa
l c

om
po

ne
nt

-50 0 50

-2
0

0
20

40
60

1
2

2

3

1

2

22

2
2

2

1
1
1

1 1

1

31

1

11

1
1

1

1
1
1

3

1
222

2

2
2

2

2
1

1
1
3

1

1

3

3

3

me

first principal component

se
co

nd
 p

rin
ci

pa
l c

om
po

ne
nt

-50 0 50

-2
0

0
20

40
60

1
2

2

3

4

2

55

2
2

5

6
7
6

7 8

4

81

7

66

8
8

7

6
7
6

8

4
999

9

5
9

9

54

1
1
8

4

1

3

3

3

emclust

Figure 11.12: Clusterings of the Swiss provinces data bypam with three clusters (with the
medoids marked by crosses),me with three clusters andemclust with up to nine clusters
(it chose nine).

mixture distribution, usually as a mixture of multivariate normals, and to assign
points to the component for which their posterior probability of membership is
highest.

S-PLUS has functionsmclust, mclass and mreloc based on ‘maximum-S+

likelihood’ clustering in which the mixture parameters and the classification are
optimized simultaneously. Later work in themclust library section13 uses
sounder methods in which the mixtures are fitted first. Nevertheless, fitting nor-
mal mixtures is a difficult problem, and the results obtained are often heavily
dependent on the initial configuration supplied.

K-means clustering can be seen as ‘maximum-likelihood’ clustering where
the clusters are assumed all to be spherically symmetric multivariate normals
with the same spread. Themodelid argument to themclust functions allows
a wider choice of normal mixture components, including"EI" (equal spherical)
"VI" (spherical, differing by component),"EEE" (same elliptical),"VEV" (same
shape elliptical, variable size and orientation) and"VVV" (arbitrary components).

Library sectionmclust provides hierarchical clustering via functionsmhtree
and mhclass . Then for a given numberk of clusters the fitted mixture can be
optimized by callingme (which here does not change the classification).

13Available athttp://www.stat.washington.edu/fraley/mclust/and forR from CRAN.

11.3 Factor Analysis 321

library(mclust)
h <- mhtree(swiss.x, modelid = "VVV")
(mh <- as.vector(mhclass(h, 3)))
[1] 1 2 2 3 1 2 2 2 2 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

[29] 1 1 2 2 2 2 2 2 2 2 1 1 1 1 1 1 3 3 3
z <- me(swiss.x, modelid = "VVV", z = (ctoz(mh)+1/3)/2)
eqscplot(swiss.px[, 1:2], type = "n",

xlab = "first principal component",
ylab = "second principal component")

text(swiss.px[, 1:2], labels = max.col(z))

Function mstep can be used to extract the fitted components, andmixproj to
plot them, but unfortunately only on a pair of the original variables.

Functionemclust automates the whole cluster process, including choosing
the number of clusters and between differentmodelid’s. One additional possi-
bility controlled by argumentnoise is to include a background ‘noise’ term, that
is a component that is a uniform Poisson process. It chooses lots of clusters (see
Figure 11.12).

> vals <- emclust(swiss.x) # all possible models, 0:9 clusters.
> sm <- summary(vals, swiss.x)
> eqscplot(swiss.px[, 1:2], type = "n",

xlab = "first principal component",
ylab = "second principal component")

> text(swiss.px[, 1:2], labels = sm$classification)

11.3 Factor Analysis

Principal component analysis looks for linear combinations of the data matrix
X that are uncorrelated and of high variance. Independent component analysis
seeks linear combinations that are independent.Factor analysis seeks linear com-
binations of the variables, calledfactors, that represent underlying fundamental
quantities of which the observed variables are expressions. The examples tend to
be controversial ones such as ‘intelligence’ and ‘social deprivation’, the idea be-
ing that a small number of factors might explain a large number of measurements
in an observational study. Such factors are to be inferred from the data.

We can think of both the factors of factor analysis and the signals of indepen-
dent component analysis aslatent variables, unobserved variables on each exper-
imental unit that determine the patterns in the observations. The difference is that
it is not the factors that are assumed to be independent, but rather the observations
conditional on the factors.

The factor analysis model for a single common factorf is

x = µ + λf + u (11.1)

whereλ is a vector known as theloadings and u is a vector ofunique (or spe-
cific) factors for that observational unit. To help make the model identifiable, we

322 Exploratory Multivariate Analysis

assume that the factorf has mean zero and variance one, and thatu has mean
zero and unknowndiagonal covariance matrixΨ . For k < p common factors
we have a vectorf of common factors and a loadings matrixΛ , and

x = µ + Λf + u (11.2)

where the components off have unit variance and are uncorrelated andf andu
are taken to be uncorrelated. Note thatall the correlations amongst the variables
in x must be explained by the common factors; if we assume joint normality the
observed variablesx will be conditionally independent givenf .

Principal component analysis also seeks a linear subspace likeΛf to explain
the data, but measures the lack of fit by the sum of squares of theui . Since
factor analysis allows an arbitrary diagonal covariance matrixΨ , its measure of
fit of the ui depends on the problem and should be independent of the units of
measurement of the observed variables. (Changing the units of measurement of
the observations does not change the common factors if the loadings and unique
factors are re-expressed in the new units.)

Equation (11.2) and the conditions onf express the covariance matrixΣ of
the data as

Σ = ΛΛT + Ψ (11.3)

Conversely, if (11.3) holds, there is ak -factor model of the form (11.2). Note that
the common factorsGT f and loadings matrixΛG give rise to the same model
for Σ , for any k×k orthogonal matrixG . Choosing an appropriateG is known
as choosing arotation. All we can achieve statistically is to fit the space spanned
by the factors, so choosing a rotation is a way to choose an interpretable basis for
that space. Note that if

s = 1
2p(p+ 1)− [p(k + 1)− 1

2k(k − 1)] = 1
2 (p− k)2 − 1

2 (p+ k) < 0

we would expect an infinity of solutions to (11.3). This value is known as the
degrees of freedom, and comes from the number of elements inΣ minus the
number of parameters inΨ and Λ (taking account of the rotational freedom in
Λ since onlyΛΛT is determined). Thus it is usual to assumes � 0 ; for s = 0
there may be a unique solution, no solution or an infinity of solutions (Lawley and
Maxwell, 1971, pp. 10–11).

The variances of the original variables are decomposed into two parts, the
communality h2

i =
∑

j λ
2
ij anduniqueness ψii which is thought of as the ‘noise’

variance.
Fitting the factor analysis model (11.2) is performed by theS function

factanal . The default method inS-PLUS (‘principal factor analysis’) datesS+

from the days of limited computational power, and is not intrinsically scale
invariant—it should not be used. The preferred method is to maximize the likeli-
hood overΛ andΨ assuming multivariate normality of the factors(f ,u) , which
depends only on the factor space and is scale-invariant. This likelihood can have
multiple local maxima; this possibility is often ignored butfactanal compares
the fit found from several separate starting points. It is possible that the maxi-
mum likelihood solution will have somêψii = 0 , so thei th variable lies in the

11.3 Factor Analysis 323

estimated factor space. Opinions differas to what to do in this case (sometimes
known as aHeywood case), but often it indicates a lack of data or inadequacy of
the factor analysis model. (Bartholomew and Knott, 1999, Section 3.18, discuss
possible reasons and actions.)

It is hard to find examples in the literature for which a factor analysis model
fits well; many do not give a measure of fit, or have failed to optimize the likeli-
hood well enough and so failed to detect Heywood cases. We consider an exam-
ple from Smith and Stanley (1983) as quoted by Bartholomew and Knott (1999,
pp. 68–72).14 Six tests were give to 112 individuals, with covariance matrix

general picture blocks maze reading vocab
general 24.641 5.991 33.520 6.023 20.755 29.701
picture 5.991 6.700 18.137 1.782 4.936 7.204
blocks 33.520 18.137 149.831 19.424 31.430 50.753
maze 6.023 1.782 19.424 12.711 4.757 9.075

reading 20.755 4.936 31.430 4.757 52.604 66.762
vocab 29.701 7.204 50.753 9.075 66.762 135.292

The tests were of general intelligence, picture completion, block design, mazes,
reading comprehension and vocabulary. TheS-PLUS default in factanal is a
single factor, but the fit is not good until we try two. The low uniqueness for
reading ability suggests that this is close to a Heywood case, but it definitely is
not one.

> S: ability.FA <- factanal(covlist = ability.cov, method = "mle")
> R: ability.FA <- factanal(covmat = ability.cov, factors = 1)
> ability.FA

....
The chi square statistic is 75.18 on 9 degrees of freedom.

....
> (ability.FA <- update(ability.FA, factors = 2))

....
The chi square statistic is 6.11 on 4 degrees of freedom.
The p-value is 0.191

....
> summary(ability.FA)
Uniquenesses:
general picture blocks maze reading vocab
0.45523 0.58933 0.21817 0.76942 0.052463 0.33358

Loadings:
Factor1 Factor2

general 0.501 0.542
picture 0.158 0.621
blocks 0.208 0.859
maze 0.110 0.467

reading 0.957 0.179
vocab 0.785 0.222

14Bartholomew & Knott give both covariance and correlation matrices, but these are inconsistent.
Neither is in the original paper.

324 Exploratory Multivariate Analysis

> round(loadings(ability.FA) %*% t(loadings(ability.FA)) +
diag(ability.FA$uniq), 3)

general picture blocks maze reading vocab
general 1.000 0.416 0.570 0.308 0.577 0.514
picture 0.416 1.000 0.567 0.308 0.262 0.262
blocks 0.570 0.567 1.000 0.425 0.353 0.355
maze 0.308 0.308 0.425 1.000 0.189 0.190
reading 0.577 0.262 0.353 0.189 1.000 0.791
vocab 0.514 0.262 0.355 0.190 0.791 1.000

Remember that the first variable is a composite measure; it seems that the first
factor reflects verbal ability, the second spatial reasoning. The main lack of fit is
that the correlation0.193 betweenpicture and maze is fitted as0.308 .

Factor rotations

The usual aim of a rotation is to achieve ‘simple structure’, that is a pattern of
loadings that is easy to interpret with a few large and many small coefficients.

There are many criteria for selecting rotations of the factors and loadings ma-
trix; S-PLUS implements 12. There is an auxiliary functionrotate that will ro-S+

tate the fittedΛ according to one of these criteria, which is called via therotate
argument offactanal . The defaultvarimax criterion is to maximize∑

i,j

(dij − d·j)2 where dij = λ2
ij/

∑
j λ

2
ij (11.4)

and d·j is the mean of thedij . Thus the varimax criterion maximizes the sum
over factors of the variances of the (normalized) squared loadings. The normaliz-
ing factors are the communalities that areinvariant under orthogonal rotations.

Following Bartholomew & Knott, we illustrate theoblimin criterion15

which minimizes the sum over all pairs of factors of the covariance between the
squared loadings for those factors.

> loadings(rotate(ability.FA, rotation = "oblimin"))
Factor1 Factor2

general 0.379 0.513
picture 0.640
blocks 0.887
maze 0.483

reading 0.946
vocab 0.757 0.137

Component/Factor Correlations:
Factor1 Factor2

Factor1 1.000 0.356
Factor2 0.356 1.000

15Not implemented inR at the time of writing.

11.4 Discrete Multivariate Analysis 325

•

•

•

•

•
•

x

y

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

maze

picture

blocks

general

vocab
reading

Figure 11.13: The loadings for the intelligence test data after varimax rotation, with the
axes for the oblimin rotation shown as arrows.

> par(pty = "s")
> L <- loadings(ability.FA)
> eqscplot(L, xlim = c(0,1), ylim = c(0,1))
> identify(L, dimnames(L)[[1]])
> oblirot <- rotate(loadings(ability.FA), rotation = "oblimin")
> naxes <- solve(oblirot$tmat)
> arrows(rep(0, 2), rep(0, 2), naxes[,1], naxes[,2])

11.4 Discrete Multivariate Analysis

Most work on visualization and most texts on multivariate analysis implicitly as-
sume continuous measurements. However, large-scale categorical datasets are
becoming much more prevalent, often collected through surveys or ‘CRM’ (cus-
tomer relationship management: that branch of data mining that collects informa-
tion on buying habits, for example on shopping baskets) or insurance question-
naires.

There are some useful tools available for exploring categorical data, but it is
often essential to use models to understand the data, most often log-linear models.
Indeed, ‘discrete multivariate analysis’ is the title of an early influential book on
log-linear models, Bishopet al. (1975).

Mosaic plots

There are a few ways to visualize low-dimensional contingency tables.Mo-
saic plots (Hartigan and Kleiner, 1981, 1984; Friendly, 1994; Emerson, 1998;
Friendly, 2000) divide the plotting surface recursively according to the propor-
tions of each factor in turn (so the order of the factors matters).

For an example, consider Fisher’s (1940) data on colours of eyes and hair of
people in Caithness, Scotland:

326 Exploratory Multivariate Analysis

fair red medium dark black
blue 326 38 241 110 3
light 688 116 584 188 4

medium 343 84 909 412 26
dark 98 48 403 681 85

in our datasetcaith. Figure 11.14 shows mosaic plots for these data and for the
housing data we used in Section 7.3, computed by

caith1 <- as.matrix(caith)
names(dimnames(caith1)) <- c("eyes", "hair")
mosaicplot(caith1, color = T)
use xtabs in R
House <- crosstabs(Freq ~ Type + Infl + Cont + Sat, housing)
mosaicplot(House, color = T)

Correspondence analysis

Correspondence analysis is applied to two-way tables of counts.
Suppose we have anr × c table N of counts. Correspondence analysis

seeks ‘scores’f and g for the rows and columns which are maximally corre-
lated. Clearly the maximum correlation is one, attained by constant scores, so
we seek the largest non-trivial solution. LetR andC be matrices of the group
indicators of the rows and columns, soRTC = N . Consider the singular value
decomposition of their correlation matrix

Xij =
nij/n− (ni·/n)(n·j/n)√

(ni·/n)(n·j/n)
=
nij − n ri cj
n
√
ri cj

whereri = ni·/n and cj = n·j/n are the proportions in each row and column.
Let Dr andDc be the diagonal matrices ofr and c. Correspondence analysis
corresponds to selecting the first singular value and left and right singular vectors
of Xij and rescaling byD−1/2

r and D−1/2
c , respectively. This is done by our

function corresp :

> corresp(caith)
First canonical correlation(s): 0.44637

eyes scores:
blue light medium dark

-0.89679 -0.98732 0.075306 1.5743

hair scores:
fair red medium dark black

-1.2187 -0.52258 -0.094147 1.3189 2.4518

Can we make use of the subsequent singular values? In what Gower and Hand
(1996) call ‘classical CA’ we considerA = D

−1/2
r UΛ and B = D

−1/2
c V Λ.

Then the first columns ofA andB are what we have termed the row and column
scoresscaled by ρ , the first canonical correlation. More generally, we can see

11.4 Discrete Multivariate Analysis 327

eyes

ha
ir

blue light medium dark

fa
ir

re
d

m
ed

iu
m

da
rk

ac
k

Type

In
fl

Tower Apartment Atrium Terrace

Lo
w

M
ed

iu
m

H
ig

h

Low High

Lo
w

M
ed

iu
m

H
ig

h
Lo

w
M

ed
iu

m
H

ig
h

Lo
w

M
ed

iu
m

H
ig

h

Low High Low High Low High

Figure 11.14: Mosaic plots for (top) Fisher’s data on people from Caithness and (bottom)
Copenhagen housing satisfaction data.

328 Exploratory Multivariate Analysis

-0.4 -0.2 0.0 0.2 0.4 0.6

-0
.4

-0
.2

0.
0

0.
2

0.
4

0.
6

blue

light

medium

dark

-0.5 0.0 0.5 1.0

-0
.5

0.
0

0.
5

1.
0

F

R

M

D

B

symmetric

-1 0 1 2

-1
0

1
2

bluelight

medium

dark

-1 0 1 2

-1
0

1
2

F

R

M

D

B

rows

-1.5 -1.0 -0.5 0.0 0.5 1.0 1.5

-1
.5

-1
.0

-0
.5

0.
0

0.
5

1.
0

1.
5

blue

light

medium

dark

-1.5 -1.0 -0.5 0.0 0.5 1.0 1.5

-1
.5

-1
.0

-0
.5

0.
0

0.
5

1.
0

1.
5

F
R

M

D

B

columns

Figure 11.15: Three variants of correspondence analysis plots from Fisher’s data on people
in Caithness: (left) ‘symmetric”, (middle) ‘row asymmetric’ and (right) ‘column asymmet-
ric’.

distances between the rows ofA as approximating the distances between the row
profiles (rows rescaled to unit sum) of the tableN , and analogously for the rows
of B and the column profiles.

Classical CA plots the first two columns ofA and B on the same figure.
This is a form of a biplot and is obtained with our software by plotting a cor-
respondence analysis object withnf � 2 or as the default for the method
biplot.correspondence. This is sometimes known as a ‘symmetric’ plot.
Other authors (for example, Greenacre, 1992) advocate ‘asymmetric’ plots. The
asymmetric plot for the rows is a plot of the first two columns ofA with the col-
umn labels plotted at the first two columns ofΓ = D

−1/2
c V ; the corresponding

plot for the columns has columns plotted atB and row labels atΦ = D
−1/2
r U .

The most direct interpretation for the row plot is that

A = D−1
r NΓ

so A is a plot of therow profiles (the rows normalized to sum to one) as convex
combinations of the column vertices given byΓ.

By default corresp only retains one-dimensional row and column scores;
thenplot.corresp plots these scores and indicates the size of the entries in the
table by the area of circles. The two-dimensional forms of the plot are shown in
Figure 11.15 for Fisher’s data on people from Caithness. These were produced by

R: library(mva)
caith2 <- caith
dimnames(caith2)[[2]] <- c("F", "R", "M", "D", "B")
par(mfcol = c(1, 3))
plot(corresp(caith2, nf = 2)); title("symmetric")
plot(corresp(caith2, nf = 2), type = "rows"); title("rows")
plot(corresp(caith2, nf = 2), type = "col"); title("columns")

Note that the symmetric plot (left) has the row points from the asymmetric row
plot (middle) and the column points from the asymmetric column plot (right)
superimposed on the same plot (but with different scales).

11.4 Discrete Multivariate Analysis 329

1

2

34

5

6
7

8

9

10

11

12

13

14

15

16

17

18

1920

M1

M2

M4

M5

BF
HF

NM

SF

U1

U2

U3

C0

C1

C2

C3

C4

Figure 11.16: Multiple correspondence analysis plot of datasetfarms on 20 farms on the
Dutch island of Terschelling. Numbers represent the farms and labels levels of moisture
(M1, M2, M4 and M5), grassland usage (U1, U2 and U3), manure usage (C0 to C4) and type
of grassland management (SF: standard,BF: biological, HF: hobby farming,NM: nature
conservation). LevelsC0 and NM are coincident (on the extreme left), as are the pairs of
farms 3 & 4 and 19 & 20.

Multiple correspondence analysis

Multiple correspondence analysis (MCA)is (confusingly!) a method for visu-
alizing the joint properties ofp � 2 categorical variables that doesnot reduce
to correspondence analysis (CA) forp = 2 , although the methods are closely
related (see, for example, Gower and Hand, 1996,§10.2).

Suppose we haven observations on thep factors with � total levels. Con-
siderG , the n× � indicator matrix whose rows give the levels of each factor for
each observation. Then all the row sums arep . MCA is often (Greenacre, 1992)
defined as CA applied to the tableG , that is the singular-value decomposition of
D

−1/2
r (G/

∑
ij gij)D

−1/2
c = UΛV T . Note thatDr = pI since all the row sums

are p , and
∑

ij gij = np , so this amounts to the SVD ofp−1/2GD
−1/2
c /pn .16

An alternative point of view is that MCA is a principal components analysis
of the data matrixX = G(pDc)−1/2 ; with PCA it is usual to centre the data, but
it transpires that the largest singular value is one and the corresponding singular
vectors account for the means of the variables. A simple plot for MCA is to plot
the first two principal components ofX (which correspond to the second and
third singular vectors ofX). This is a form of biplot, but it will not be appropriate
to add axes for the columns ofX as the possible values are only{0, 1} , but it is
usual to add the positions of1 on each of these axes, and label these by the factor

16Gower and Hand (1996) omit the divisorpn .

330 Exploratory Multivariate Analysis

level. (The ‘axis’ points are plotted at the appropriate row of(pDc)−1/2V .) The
point plotted for each observation is the vector sum of the ‘axis’ points for the
levels taken of each of the factors. Gower and Hand seem to prefer (e.g., their
Figure 4.2) to rescale the plotted points byp , so they are plotted at the centroid
of their levels. This is exactly the asymmetric row plot of the CA ofG , apart
from an overall scale factor ofp

√
n .

We can apply this to the example of Gower and Hand (1996, p. 75) by

farms.mca <- mca(farms, abbrev = T) # Use levels as names
plot(farms.mca, cex = rep(0.7, 2), axes = F)

shown in Figure 11.16
Sometimes it is desired to add rows or factors to an MCA plot. Adding rows is

easy; the observations are placed at the centroid of the ‘axis’ points for levels that
are observed. Adding factors (so-calledsupplementary variables) is less obvious.
The ‘axis’ points are plotted at the rows of(pDc)−1/2V . SinceUΛV T = X =
G(pDc)−1/2 , V = (pDc)−1/2GTUΛ−1 and

(pDc)−1/2V = (pDc)−1GTUΛ−1

This tells us that the ‘axis’ points can be found by taking the appropriate column
of G , scaling to total1/p and then taking inner products with the second and
third columns ofUΛ−1 . This procedure can be applied to supplementary vari-
ables and so provides a way to add them to the plot. Thepredict method for
class"mca" allows rows or supplementary variables to be added to an MCA plot.

Chapter 12

Classification

Classification is an increasingly important application of modern methods in
statistics. In the statistical literature the word is used in two distinct senses. The
entry (Hartigan, 1982) in the originalEncyclopedia of Statistical Sciences uses the
sense ofcluster analysis discussed in Section 11.2. Modern usage is leaning to the
other meaning (Ripley, 1997) of allocating future cases to one ofg prespecified
classes. Medical diagnosis is an archetypal classification problem in the modern
sense. (The older statistical literature sometimes refers to this asallocation.)

In pattern-recognition terminology this chapter is aboutsupervised methods.
The classical methods of multivariate analysis (Krzanowski, 1988; Mardia, Kent
and Bibby, 1979; McLachlan, 1992) have largely been superseded by methods
from pattern recognition (Ripley, 1996; Webb, 1999; Dudaet al., 2001), but some
still have a place.

It is sometimes helpful to distinguishdiscriminant analysis in the sense of
describing the differences between theg groups from classification, allocating
new observations to the groups. The first provides some measure of explana-
tion; the second can be a ‘black box’ that makes a decision without any explana-
tion. In many applications no explanation is required (no one cares how machines
read postal (zip) codes, only that the envelope is correctly sorted) but in others,
especially in medicine, some explanation may be necessary to get the methods
adopted.

Classification is related todata mining, although some of data mining is ex-
ploratory in the sense of Chapter 11. Handet al. (2001) and (especially) Hastie
et al. (2001) are pertinent introductions.

Some of the methods considered in earlier chapters are widely used for clas-
sification, notably classification trees, logistic regression forg = 2 groups and
multinomial log-linear models (Section 7.3) forg > 2 groups.

12.1 Discriminant Analysis

Suppose that we have a set ofg classes, and for each case we know the class
(assumed correctly). We can then use the class information to help reveal the
structure of the data. LetW denote the within-class covariance matrix, that is the
covariance matrix of the variables centred on the class mean, andB denote the

331

332 Classification

between-classes covariance matrix, that is, of the predictions by the class means.
Let M be theg × p matrix of class means, andG be then× g matrix of class
indicator variables (sogij = 1 if and only if casei is assigned to classj). Then
the predictions areGM . Let x be the means of the variables over the whole
sample. Then the sample covariance matrices are

W =
(X −GM)T (X −GM)

n− g , B =
(GM − 1x)T (GM − 1x)

g − 1
(12.1)

Note thatB has rank at mostmin(p, g − 1).
Fisher (1936) introduced a linear discriminant analysis seeking a linear com-

binationxa of the variables that has a maximal ratio of the separation of the class
means to the within-class variance, that is, maximizing the ratioaTBa/aTWa.
To compute this, choose asphering (see page 305)xS of the variables so that
they have the identity as their within-group correlation matrix. On the rescaled
variables the problem is to maximizeaTBa subject to‖a‖ = 1, and as we saw
for PCA, this is solved by takinga to be the eigenvector ofB corresponding to
the largest eigenvalue. The linear combinationa is unique up to a change of sign
(unless there are multiple eigenvalues). The exact multiple ofa returned by a
program will depend on its definition of the within-class variance matrix. We use
the conventional divisor ofn− g, but divisors ofn andn− 1 have been used.

As for principal components, we can take further linear components corre-
sponding to the next largest eigenvalues. There will be at mostr = min(p, g−1)
positive eigenvalues. Note that the eigenvalues are the proportions of the between-
classes variance explained by the linearcombinations, which may help us to
choose how many to use. The corresponding transformed variables are called the
linear discriminants or canonical variates. It is often useful to plot the data on the
first few linear discriminants (Figure 12.1). Since the within-group covariances
should be the identity, we chose an equal-scaled plot. (Usingplot(ir.lda)
will give this plot without the colours.) The linear discriminants are convention-
ally centred to have mean zero on dataset.

> (ir.lda <- lda(log(ir), ir.species))
Prior probabilities of groups:

c s v
0.33333 0.33333 0.33333

Group means:
Sepal L. Sepal W. Petal L. Petal W.

c 1.7773 1.0123 1.44293 0.27093
s 1.6082 1.2259 0.37276 -1.48465
v 1.8807 1.0842 1.70943 0.69675

Coefficients of linear discriminants:
LD1 LD2

Sepal L. 3.7798 4.27690
Sepal W. 3.9405 6.59422
Petal L. -9.0240 0.30952
Petal W. -1.5328 -0.13605

12.1 Discriminant Analysis 333

first linear discriminant

se
co

nd
 li

ne
ar

 d
is

cr
im

in
an

t

-5 0 5 10

-5
0

5
s

s ss

s
s

s
s

s

s

s

s
s

s

s
s

s
s

s
s

ss
sss

s
s

s s
ss

s

ss

s s

ss

s

s s

s

s

s
s

s

s

s

s

s

c
cc

c

c
c

c

c

c

c

c

c

c

c
c

c

c
c

c
c

c
c

c
c

ccc
c

c

c
cc

cc c

cc

c

c

cc

c

c

c

c
cc
c

c

c

v

v

v
vv

v

v

v

v

v

v

v

v

v
v

vv

v

v

v

v

v

v

v

vv

v
vv

vv

v

v v
v

v v
v

v
vv v

v

vv
v

v

v
v

v

Figure 12.1: The log iris data on the first two discriminant axes.

Proportion of trace:
LD1 LD2

0.9965 0.0035
> ir.ld <- predict(ir.lda, dimen = 2)$x
> eqscplot(ir.ld, type = "n", xlab = "first linear discriminant",

ylab = "second linear discriminant")
> text(ir.ld, labels = as.character(ir.species[-143]),

col = 3 + codes(ir.species), cex = 0.8)

This shows that 99.65% of the between-group variance is on the first discriminant
axis. Using

plot(ir.lda, dimen = 1)
plot(ir.lda, type = "density", dimen = 1)

will examine the distributions of the groups on the first linear discriminant.
The approach we have illustrated is the conventional one, following Bryan

(1951), but it is not the only one. The definition ofB at (12.1) weights the
groups by their size in the dataset. Rao (1948) used the unweighted covariance
matrix of the group means, and our software uses a covariance matrix weighted
by the prior probabilities of the classes if these are specified.

Discrimination for normal populations

An alternative approach to discrimination isvia probability models. Letπc de-
note the prior probabilities of the classes, andp(x | c) the densities of distribu-
tions of the observations for each class.Then the posterior distribution of the
classes after observingx is

p(c |x) =
πcp(x | c)
p(x)

∝ πcp(x | c) (12.2)

and it is fairly simple to show that the allocation rule which makes the smallest
expected number of errors chooses the class with maximalp(c |x); this is known
as theBayes rule. (We consider a more general version in Section 12.2.)

334 Classification

Now suppose the distribution for classc is multivariate normal with meanµc

and covarianceΣc. Then the Bayes rule minimizes

Qc = −2 log p(x | c)− 2 log πc

= (x− µc)Σ−1
c (x− µc)T + log |Σc| − 2 log πc (12.3)

The first term of (12.3) is the squaredMahalanobis distance to the class centre,
and can be calculated by the functionmahalanobis. The difference between
the Qc for two classes is a quadratic function ofx, so the method is known as
quadratic discriminant analysis and the boundaries of the decision regions are
quadratic surfaces inx space. This is implemented by our functionqda.

Further suppose that the classes have a common covariance matrixΣ. Dif-
ferences in theQc are thenlinear functions ofx, and we can maximize−Qc/2
or

Lc = xΣ−1µT
c − µcΣ−1µT

c /2 + log πc (12.4)

To use (12.3) or (12.4) we have to estimateµc and Σc or Σ. The obvious
estimates are used, the sample mean and covariance matrix within each class, and
W for Σ.

How does this relate to Fisher’s linear discrimination? The latter gives new
variables, the linear discriminants, with unit within-class sample variance, and the
differences between the groupmeans lie entirely in the firstr variables. Thus on
these variables the Mahalanobis distance (with respect toΣ̂ = W) is just

‖x− µc‖2

and only the firstr components of the vector depend onc. Similarly, on these
variables

Lc = xµT
c − ‖µc‖2/2 + log πc

and we can work inr dimensions. If there are just two classes, there is a single
linear discriminant, and

L2 − L1 = x(µ2 − µ1)T + const

This is an affine function of the linear discriminant, which has coefficient(µ2 −
µ1)T rescaled to unit length.

Note that linear discriminant analysis uses ap(c |x) that is a logistic regres-
sion for g = 2 and a multinomial log-linear model forg > 2 . However, it
differs from the methods of Chapter 7 in the methods of parameter estimation
used. Linear discriminant analysis will be better if the populations really are mul-
tivariate normal with equal within-group covariance matrices, but that superiority
is fragile, so the methods of Chapter 7 are usually preferredfor classification.

crabs dataset

Can we construct a rule to predict the sex of a futureLeptograpsus crab of un-
known colour form (species)? We noted thatBD is measured differently for males

12.1 Discriminant Analysis 335

and females, so it seemed prudent to omit itfrom the analysis. To start with, we ig-
nore the differences between the forms. Linear discriminant analysis, for what are
highly non-normal populations, finds a variable that is essentiallyCL3RW−2CW−1,
a dimensionally neutral quantity. Six errors are made, all for the blue form:

> (dcrabs.lda <- lda(crabs$sex ~ FL + RW + CL + CW, lcrabs))
Coefficients of linear discriminants:

LD1
FL -2.8896
RW -25.5176
CL 36.3169
CW -11.8280
> table(crabs$sex, predict(dcrabs.lda)$class)

F M
F 97 3
M 3 97

It does make sense to take the colour forms into account, especially as the
within-group distributions look close to joint normality (look at the Figures 4.13
(page 96) and 11.2 (page 306)). The first two linear discriminants dominate the
between-group variation; Figure 12.2 shows the data on those variables.

> (dcrabs.lda4 <- lda(crabs.grp ~ FL + RW + CL + CW, lcrabs))
Proportion of trace:

LD1 LD2 LD3
0.6422 0.3491 0.0087

> dcrabs.pr4 <- predict(dcrabs.lda4, dimen = 2)
> dcrabs.pr2 <- dcrabs.pr4$post[, c("B", "O")] %*% c(1, 1)
> table(crabs$sex, dcrabs.pr2 > 0.5)

FALSE TRUE
F 96 4
M 3 97

We cannot represent all the decision surfaces exactly on a plot. However,
using the first two linear discriminants as the data will provide a very good ap-
proximation; see Figure 12.2.

cr.t <- dcrabs.pr4$x[, 1:2]
eqscplot(cr.t, type = "n", xlab = "First LD", ylab = "Second LD")
text(cr.t, labels = as.character(crabs.grp))
perp <- function(x, y) {

m <- (x+y)/2
s <- - (x[1] - y[1])/(x[2] - y[2])
abline(c(m[2] - s*m[1], s))
invisible()

}
cr.m <- lda(cr.t, crabs$sex)@means # in R use $means
points(cr.m, pch = 3, mkh = 0.3)
perp(cr.m[1,], cr.m[2,])

cr.lda <- lda(cr.t, crabs.grp)

336 Classification

First LD

S
ec

on
d

LD

-6 -4 -2 0 2 4 6

-4
-2

0
2

4
B B

B

B
B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B
B

B
B

B

B B

BB

B

B

BB

B

B

B BB

B
B

B

B
B

B

B

B

B

B

B

B
B

b

b

b

b

b

b
b b

b

b b

b

b

b

b

b

b b
b

b

b

b

b

b

b
b

b

b
b

b

b
b

b

b

b
b

b

b

b
b

b

b

b

b b

b

b

b

b

b

OO
O

O

O

O

O

O

O

OO

O
O

O

O

O
OO

O
O

O
O

O

O
O

O

O

O

O

O
O

O

O
O O OOO

O

O

OO

O

O
O

O

O OO

O

o

o
o

o

o

o
o

o

o

o

o

o
o

o

oo

o
o

o

o
o

o

o

o

o

o

o

o
o

o

o
o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o
o

o

Figure 12.2: Linear discriminants for thecrabs data. Males are coded as capitals, fe-
males as lower case, colours as the initial letter of blue or orange. The crosses are the
group means for a linear discriminant for sex (solid line) and the dashed line is the deci-
sion boundary for sex based on four groups.

x <- seq(-6, 6, 0.25)
y <- seq(-2, 2, 0.25)
Xcon <- matrix(c(rep(x,length(y)), rep(y, each = length(x))),,2)
cr.pr <- predict(cr.lda, Xcon)$post[, c("B", "O")] %*% c(1,1)
contour(x, y, matrix(cr.pr, length(x), length(y)),

levels = 0.5, labex = 0, add = T, lty= 3)

The reader is invited to try quadratic discrimination on this problem. It per-
forms very marginally better than linear discrimination, not surprisingly since the
covariances of the groups appear so similar, as can be seen from the result of

for(i in c("O", "o", "B", "b"))
print(var(lcrabs[crabs.grp == i,]))

Robust estimation of multivariate location and scale

We may wish to consider more robust estimates ofW (but notB). Somewhat
counter-intuitively, it does not suffice to apply a robust location estimator to each
component of a multivariate mean (Rousseeuw and Leroy, 1987, p. 250), and it is
easier to consider the estimation of mean and variance simultaneously.

Multivariate variances are very sensitive to outliers. Two methods for robust
covariance estimation are available via our functioncov.rob1 and theS-PLUS
functions cov.mve and cov.mcd (Rousseeuw, 1984; Rousseeuw and Leroy,
1987) andcovRob in library sectionrobust. Suppose there aren observations
of p variables. Theminimum volume ellipsoid method seeks an ellipsoid contain-
ing h = �(n + p + 1)/2� points that is of minimum volume, and theminimum
covariance determinant method seeksh points whose covariance has minimum
determinant (so the conventional confidence ellipsoid for the mean of those points

1Adopted byR in packagelqs .

12.1 Discriminant Analysis 337

LD2

LD
1

-4 -2 0 2 4 6

-8
-6

-4
-2

0
2

F F

F

F

F

F

FF F
F

F

F
F
FFF

F
F F

F

F

F

F

FFF

FFF
FF

F
F

F
F

F
F

F

FF

F
F

F

F

F
F

F

F
F

F

F

F
F

F
F

F
F F

F

F
F

F

F
F F

F
F

F
F

N
N

N
NNNN

N
N

N

N N

NN

N N

N
N

N

N NN N

N
N

N
N

N

N
N

NN

N

NN N

N

N

N

N

N

N
N

N

N

N
N

N NNN
N

N
N N

N

NN
N N

N
N

N

N

N

N

N

N

N NNN

N

N
N

N
V

V

V
V

V

V

VV

VV
V
V

V

V
V
V

V

C

C
C

C
C

C

C

C
C

C

C

C

C

T

T
T T

T

T

T

T

T

H

H
H

H

H

H

H

H

H

HH

HH

H

H

H
H

H

H

H

H

HH H

H H

H
H

H
F

LD2

LD
1

-10 -5 0 5 10 15

-5
0

5
10

15

F
FF

F FF
FF FFF

FFF
FFF
F

F
FF

F

FF
F

F FFFFFFF
FF

F F
F

FF
FF FFF FFFFFF

F FFFF

F

F
FF F

F

F F
F F

FFFN

N

N
NNNNNN

N

NNNNN N
NN

NN N
N

N

N
N

NNN N N
NN

N
N

N
N

N

N

N

N
N

NN
N

NN NN NNN
N NNN
N
NN

N
N

N

N

N

N
N
NN

N NNNNNNNNV

V
VV

V
V

VV
VV VVV VVV

V
C

C

C

C
C

CC C
C

CC

C

C

T

TT
TT

T

T

T
T

H

H

H

H
H

H

H

H

H

HH

HHHHH
H

H

H

H

H

HH

H

H

H

H
H

HF

Figure 12.3: The fgl data on the first two discriminant axes. The right-hand plot used
robust estimation of the common covariance matrix.

has minimum volume). MCD is to be preferred for its higher statistical efficiency.
Our functioncov.rob implements both.

The search for an MVE or MCD providesh points whose mean and variance
matrix (adjusted for selection) give an initial estimate. This is refined by selecting
those points whose Mahalanobis distance from the initial mean using the initial
covariance is not too large (specifically within the 97.5% point under normality),
and returning their mean and variance matrix).

An alternative approach is to extend the idea of M-estimation to this setting,
fitting a multivariatetν distribution for a small numberν of degrees of free-
dom. This is implemented in our functioncov.trob; the theory behind the algo-
rithm used is given in Kent, Tyler and Vardi (1994) and Ripley (1996). Normally
cov.trob is faster thancov.rob, but it lacks the latter’s extreme resistance. We
can use linear discriminant analysis on more than two classes, and illustrate this
with the forensic glass datasetfgl.

Our function lda has an argumentmethod = "mve" to use the minimum
volume ellipsoid estimate (but without robust estimation of the group centres) or
the multivariatetν distribution by settingmethod = "t". This makes a consid-
erable difference for thefgl forensic glass data, as Figure 12.3 shows. We use
the defaultν = 5.

fgl.ld <- predict(lda(type ~ ., fgl), dimen = 2)$x
eqscplot(fgl.ld, type = "n", xlab = "LD1", ylab = "LD2")
either
for(i in seq(along = levels(fgl$type))) {

set <- fgl$type[-40] == levels(fgl$type)[i]
points(fgl.ld[set,], pch = 18, cex = 0.6, col = 2 + i)}

key(text = list(levels(fgl$type), col = 3:8))
or
text(fgl.ld, cex = 0.6,

labels = c("F", "N", "V", "C", "T", "H")[fgl$type[-40]])

338 Classification

fgl.rld <- predict(lda(type ~ ., fgl, method = "t"), dimen = 2)$x
eqscplot(fgl.rld, type = "n", xlab = "LD1", ylab = "LD2")
either
for(i in seq(along = levels(fgl$type))) {

set <- fgl$type[-40] == levels(fgl$type)[i]
points(fgl.rld[set,], pch = 18, cex = 0.6, col = 2 + i)}

key(text = list(levels(fgl$type), col = 3:8))
or
text(fgl.rld, cex = 0.6,

labels = c("F", "N", "V", "C", "T", "H")[fgl$type[-40]])

Try method = "mve", which gives an almost linear plot.

12.2 Classification Theory

In the terminology of pattern recognition the given examples together with their
classifications are known as thetraining set, and future cases form thetest set. Our
primary measure of success is the error (ormisclassification) rate. Note that we
would obtain (possibly seriously) biased estimates by re-classifying the training
set, but that the error rate on a test set randomly chosen from the whole population
will be an unbiased estimator.

It may be helpful to know the type of errors made. Aconfusion matrix gives
the number of cases with true classi classified as of classj. In some problems
some errors are considered to be worse than others, so we assign costsLij to
allocating a case of classi to classj. Then we will be interested in the average
error cost rather than the error rate.

It is fairly easy to show (Ripley, 1996, p. 19) that the average error cost is
minimized by theBayes rule, which is to allocate to the classc minimizing∑

i Licp(i |x) wherep(i |x) is the posterior distribution of the classes after ob-
serving x. If the costs of all errors are the same, this rule amounts to choosing
the classc with the largest posterior probabilityp(c |x). The minimum average
cost is known as theBayes risk. We can often estimate a lower bound for it by the
method of Ripley (1996, pp. 196–7) (see the example on page 347).

We saw in Section 12.1 howp(c |x) can be computed for normal popula-
tions, and how estimating the Bayes rule with equal error costs leads to lin-
ear and quadratic discriminant analysis. As our functionspredict.lda and
predict.qda return posterior probabilities, they can also be used for classifica-
tion with error costs.

The posterior probabilitiesp(c |x) may also be estimated directly. For just
two classes we can modelp(1 |x) using a logistic regression, fitted byglm. For
more than two classes we need a multiple logistic model; it may be possible to fit
this using a surrogate log-linear Poisson GLM model (Section 7.3), but using the
multinom function in library sectionnnet will usually be faster and easier.

Classification trees model thep(c |x) directly by a special multiple logistic
model, one in which the right-hand side is a single factor specifying which leaf
the case will be assigned to by the tree. Again, since the posterior probabilities

12.2 Classification Theory 339

are given by thepredict method it is easy to estimate the Bayes rule for unequal
error costs.

Predictive and ‘plug-in’ rules

In the last few paragraphs we skated over an important point. To find the Bayes
rule we need to know the posterior probabilitiesp(c |x). Since these are unknown
we use an explicit or implicit parametric familyp(c |x; θ). In the methods con-
sidered so far we act as ifp(c |x; θ̂) were the actual posterior probabilities, where
θ̂ is an estimate computed from the training setT , often by maximizing some ap-
propriate likelihood. This is known as the ‘plug-in’ rule. However, the ‘correct’
estimate ofp(c |x) is (Ripley, 1996,§2.4) to use thepredictive estimates

p̃(c |x) = P (c = c |X = x, T) =
∫
p(c |x; θ)p(θ | T) dθ (12.5)

If we are very sure of our estimatêθ there will be little difference between
p(c |x; θ̂) and p̃(c |x); otherwise the predictive estimate will normally be less
extreme (not as near 0 or 1). The ‘plug-in’ estimate ignores the uncertainty in the
parameter estimatêθ which the predictive estimate takes into account.

It is not often possible to perform the integration in (12.5) analytically, but it
is possible for linear and quadratic discrimination with appropriate ‘vague’ pri-
ors on θ (Aitchison and Dunsmore, 1975; Geisser, 1993; Ripley, 1996). This
estimate is implemented bymethod = "predictive" of the predict meth-
ods for our functionslda and qda. Often the differences are small, especially
for linear discrimination,provided there are enough data for a good estimate of
the variance matrices. When there are not, Moran and Murphy (1979) argue
that considerable improvement can be obtained by using an unbiased estimator
of log p(x | c), implemented by the argumentmethod = "debiased".

A simple example: Cushing’s syndrome

We illustrate these methods by a small example taken from Aitchison and Dun-
smore (1975, Tables 11.1–3) and used for the same purpose by Ripley (1996).
The data are on diagnostic tests on patients with Cushing’s syndrome, a hy-
persensitive disorder associated withover-secretion of cortisol by the adrenal
gland. This dataset has three recognized types of the syndrome represented as
a, b, c. (These encode ‘adenoma’, ‘bilateral hyperplasia’ and ‘carcinoma’, and
represent the underlying cause of over-secretion. This can only be determined
histopathologically.) The observations are urinary excretion rates (mg/24 h) of
the steroid metabolites tetrahydrocortisoneand pregnanetriol, and are considered
on log scale.

There are six patients of unknown type (markedu), one of whom was later
found to be of a fourth type, and another was measured faultily.

Figure 12.4 shows the classifications produced bylda and the various options
of quadratic discriminant analysis. This was produced by

340 Classification

LDA

Tetrahydrocortisone

P
re

gn
an

et
rio

l

5 10 50

0.
05

0.
50

5.
00

a

a

a

a

a

a

b

b

b
b

b

b

b

bb

b

cc

c c

c

u

u

u

u u

u

QDA

Tetrahydrocortisone

P
re

gn
an

et
rio

l

5 10 50

0.
05

0.
50

5.
00

a

a

a

a

a

a

b

b

b
b

b

b

b

bb

b

cc

c c

c

u

u

u

u u

u

QDA (predictive)

Tetrahydrocortisone

P
re

gn
an

et
rio

l

5 10 50

0.
05

0.
50

5.
00

a

a

a

a

a

a

b

b

b
b

b

b

b

bb

b

cc

c c

c

u

u

u

u u

u

QDA (debiased)

Tetrahydrocortisone

P
re

gn
an

et
rio

l

5 10 50

0.
05

0.
50

5.
00

a

a

a

a

a

a

b

b

b
b

b

b

b

bb

b

cc

c c

c

u

u

u

u u

u

Figure 12.4: Linear and quadratic discriminant analysis applied to the Cushing’s syndrome
data.

cush <- log(as.matrix(Cushings[, -3]))
tp <- Cushings$Type[1:21, drop = T]
cush.lda <- lda(cush[1:21,], tp); predplot(cush.lda, "LDA")
cush.qda <- qda(cush[1:21,], tp); predplot(cush.qda, "QDA")
predplot(cush.qda, "QDA (predictive)", method = "predictive")
predplot(cush.qda, "QDA (debiased)", method = "debiased")

(Functionpredplot is given in the scripts.)
We can contrast these with logistic discrimination performed by

library(nnet)
Cf <- data.frame(tp = tp,

Tetrahydrocortisone = log(Cushings[1:21, 1]),
Pregnanetriol = log(Cushings[1:21, 2]))

cush.multinom <- multinom(tp ~ Tetrahydrocortisone
+ Pregnanetriol, Cf, maxit = 250)

xp <- seq(0.6, 4.0, length = 100); np <- length(xp)
yp <- seq(-3.25, 2.45, length = 100)
cushT <- expand.grid(Tetrahydrocortisone = xp,

Pregnanetriol = yp)
Z <- predict(cush.multinom, cushT, type = "probs")
cushplot(xp, yp, Z)

(Function cushplot is given in the scripts.) When, as here, the classes have
quite different variance matrices, linearand logistic discrimination can give quite
different answers (compare Figures 12.4 and 12.5).

12.3 Non-Parametric Rules 341

Tetrahydrocortisone

P
re

gn
an

et
rio

l

5 10 50

0.
05

0.
50

5.
00

a

a

a

a

a

a

b

b

b
b

b

b

b

bb

b

cc

c c

c

u

u

u

u u

u

Tetrahydrocortisone

P
re

gn
an

et
rio

l

1 2 3 4

-3
-2

-1
0

1
2

a

a

a

a

a

a

b

b

b
b

b

b

b

bb

b

cc

c c

c

u

u

u

u u

ua
b

c

Figure 12.5: Logistic regression and classification trees applied to the Cushing’s syndrome
data.

For classification trees we can use

R: library(tree)
cush.tr <- tree(tp ~ Tetrahydrocortisone + Pregnanetriol, Cf)
plot(cush[, 1], cush[, 2], type = "n",

xlab = "Tetrahydrocortisone", ylab = "Pregnanetriol")
for(il in 1:4) {

set <- Cushings$Type==levels(Cushings$Type)[il]
text(cush[set, 1], cush[set, 2],

labels = as.character(Cushings$Type[set]), col = 2 + il) }
par(cex = 1.5); partition.tree(cush.tr, add = T); par(cex = 1)

With such a small dataset we make no attempt to refine the size of the tree, shown
in Figure 12.5.

Mixture discriminant analysis

Another application of the (plug-in) theory ismixture discriminant analysis
(Hastie and Tibshirani, 1996) which has an implementation in the library sec-
tion mda . This fits multivariate normal mixture distributions to each class and
then applies (12.2).

12.3 Non-Parametric Rules

There are a number of non-parametric classifiers based on non-parametric esti-
mates of the class densities or of the log posterior. Library sectionclass imple-
ments thek-nearest neighbour classifier and related methods (Devijver and Kit-
tler, 1982; Ripley, 1996) and learning vector quantization (Kohonen, 1990, 1995;
Ripley, 1996). These are all based on finding thek nearest examples in some
reference set, and taking a majority vote among the classes of thesek examples,
or, equivalently, estimating the posterior probabilitiesp(c |x) by the proportions
of the classes among thek examples.

The methods differ in their choice of reference set. Thek-nearest neighbour
methods use the whole training set or an edited subset. Learning vector quantiza-
tion is similar to K-means in selecting points in the space other than the training

342 Classification

1-NN

Tetrahydrocortisone

P
re

gn
an

et
rio

l

5 10 50

0.
05

0.
50

5.
00

a

a

a

a

a

a

b

b

b

b

b

b

b

bb

b

c
c

c
c

c

u

u

u

u u

u

3-NN

Tetrahydrocortisone

P
re

gn
an

et
rio

l

5 10 50

0.
05

0.
50

5.
00

a

a

a

a

a

a

b

b

b

b

b

b

b

bb

b

c
c

c
c

c

u

u

u

u u

u

Figure 12.6: k-nearest neighbours applied to the Cushing’s syndrome data.

set examples to summarize the training set, but unlike K-means it takes the classes
of the examples into account.

These methods almost always measure ‘nearest’ by Euclidean distance. For
the Cushing’s syndrome data we use Euclidean distance on the logged covariates,
rather arbitrarily scaling them equally.

library(class)
Z <- knn(scale(cush[1:21,], F, c(3.4, 5.7)),

scale(cushT, F, c(3.4, 5.7)), tp)
cushplot(xp, yp, class.ind(Z))
Z <- knn(scale(cush, F, c(3.4, 5.7)),

scale(cushT, F, c(3.4, 5.7)), tp, k = 3)
cushplot(xp, yp, class.ind(Z))

This dataset is too small to try the editing and LVQ methods in library section
class.

12.4 Neural Networks

Neural networks provide a flexible non-linear extension of multiple logistic re-
gression, as we saw in Section 8.10. We can consider them for the Cushing’s
syndrome example by the following code.2

library(nnet)
cush <- cush[1:21,]; tpi <- class.ind(tp)
functions pltnn and plt.bndry given in the scripts
par(mfrow = c(2, 2))
pltnn("Size = 2")
set.seed(1); plt.bndry(size = 2, col = 2)

2The colours are set for a Trellis device, and the random seeds were chosen for a specificS envi-
ronment.

12.4 Neural Networks 343

Size = 2

Tetrahydrocortisone

P
re

gn
an

et
rio

l

5 10 50

0.
05

0.
50

5.
00

a

a

a

a

a

a

b

b

b

b

b

b

b

bb

b

cc

c c

c

u

u

u

u u

u

Size = 2, lambda = 0.001

Tetrahydrocortisone

P
re

gn
an

et
rio

l

5 10 50

0.
05

0.
50

5.
00

a

a

a

a

a

a

b

b

b

b

b

b

b

bb

b

cc

c c

c

u

u

u

u u

u

Size = 2, lambda = 0.01

Tetrahydrocortisone

P
re

gn
an

et
rio

l

5 10 50

0.
05

0.
50

5.
00

a

a

a

a

a

a

b

b

b

b

b

b

b

bb

b

cc

c c

c

u

u

u

u u

u

Size = 5, 20 lambda = 0.01

Tetrahydrocortisone

P
re

gn
an

et
rio

l

5 10 50

0.
05

0.
50

5.
00

a

a

a

a

a

a

b

b

b

b

b

b

b

bb

b

cc

c c

c

u

u

u

u u

u

Figure 12.7: Neural networks applied to the Cushing’s syndrome data. Each panel shows
the fits from two or three local maxima of the (penalized) log-likelihood.

set.seed(3); plt.bndry(size = 2, col = 3)
plt.bndry(size = 2, col = 4)

pltnn("Size = 2, lambda = 0.001")
set.seed(1); plt.bndry(size = 2, decay = 0.001, col = 2)
set.seed(2); plt.bndry(size = 2, decay = 0.001, col = 4)

pltnn("Size = 2, lambda = 0.01")
set.seed(1); plt.bndry(size = 2, decay = 0.01, col = 2)
set.seed(2); plt.bndry(size = 2, decay = 0.01, col = 4)

pltnn("Size = 5, 20 lambda = 0.01")
set.seed(2); plt.bndry(size = 5, decay = 0.01, col = 1)
set.seed(2); plt.bndry(size = 20, decay = 0.01, col = 2)

The results are shown in Figure 12.7. We see that in all cases there are multiple
local maxima of the likelihood, since different runs gave different classifiers.

Once we have a penalty, the choice of the number of hidden units is often not
critical (see Figure 12.7). The spirit of the predictive approach is to average the
predictedp(c |x) over the local maxima. A simple average will often suffice:

functions pltnn and b1 are in the scripts
pltnn("Many local maxima")

344 Classification

Many local maxima

Tetrahydrocortisone

P
re

gn
an

et
rio

l

5 10 50

0.
05

0.
50

5.
00

a

a

a

a

a

a

b

b

b
b

b

b

b

bb

b

cc

c c

c

u

u

u

u u

u

Averaged

Tetrahydrocortisone

P
re

gn
an

et
rio

l

5 10 50

0.
05

0.
50

5.
00

a

a

a

a

a

a

b

b

b
b

b

b

b

bb

b

cc

c c

c

u

u

u

u u

u

Figure 12.8: Neural networks with three hidden units andλ = 0.01 applied to the Cush-
ing’s syndrome data.

Z <- matrix(0, nrow(cushT), ncol(tpi))
for(iter in 1:20) {

set.seed(iter)
cush.nn <- nnet(cush, tpi, skip = T, softmax = T, size = 3,

decay = 0.01, maxit = 1000, trace = F)
Z <- Z + predict(cush.nn, cushT)

In R replace @ by $ in next line.
cat("final value", format(round(cush.nn@value,3)), "\n")
b1(predict(cush.nn, cushT), col = 2, lwd = 0.5)

}
pltnn("Averaged")
b1(Z, lwd = 3)

Note that there are two quite different types of local maxima occurring here, and
some local maxima occur several times (up to convergence tolerances). An aver-
age does better than either type of classifier.

12.5 Support Vector Machines

Support vector machines (SVMs) are the latest set of methods within this field.
They have been promoted enthusiastically, but with little respect to the selection
effects of choosing the test problem and the member of the large class of classi-
fiers to present. The original ideas are in Boseret al. (1992); Cortes and Vapnik
(1995); Vapnik (1995, 1998); the books by Cristianini and Shawe-Taylor (2000)
and Hastieet al. (2001,§4.5, 12.2, 12.3) present the underlying theory.

The method forg = 2 classes is fairly simple to describe. Logistic regression
will fit exactly in separable cases where there is a hyperplane that has all class-one
points on one side and all class-two points on the other. It would be a coincidence
for there to be only one such hyperplane, and fitting a logistic regression will
tend to fit a decision surfacep(2 |x) = 0.5 in the middle of the ‘gap’ between
the groups. Support vector methods attempt directly to find a hyperplane in the
middle of the gap, that is with maximal margin (the distance from the hyperplane

12.5 Support Vector Machines 345

to the nearest point). This is quadratic programming problem that can be solved
by standard methods.3 Such a hyperplane hassupport vectors, data points that are
exactly the margin distance away from the hyperplane. It will typically be a very
good classifier.

The problem is that usually no separating hyperplane will exist. This difficulty
is tackled in two ways. First, we can allow some points to be on the wrong side
of their margin (and for some on the wrong side of the hyperplane) subject to
a constraint on the total of the ‘mis-fit’ distances being less than some constant,
with Lagrange multiplierC > 0 . This is still a quadratic programming problem,
because of the rather arbitrary use of sum of distances.

Second, the set of variables is expanded greatly by taking non-linear functions
of the original set of variables. Thus rather than seeking a classifying hyperplane
f(x) = xT β + β0 = 0 , we seekf(x) = h(x)T β + β0 = 0 for a vector of
M � p functionshi . Then finding a optimal separating hyperplane is equivalent
to solving

min
β0,β

n∑
i=1

[1− yif(xi)]+ +
1

2C
‖β‖2

whereyi = ±1 for the two classes. This is yet another penalized fitting problem,
not dissimilar (Hastieet al., 2001, p. 380) to a logistic regression with weight
decay (which can be fitted bymultinom). The claimed advantage of SVMs is
that because we only have to find the support vectors, the family of functionsh
can be large, even infinite-dimensional.

There is an implementation of SVMs forR in function svm in package
e1071 .4 The default values do not do well, but after some tuning for thecrabs
data we can get a good discriminant with 21 support vectors. Herecost is C
and gamma is a coefficient of the kernel used to formh .

> # R: library(e1071)
> # S: library(libsvm)
> crabs.svm <- svm(crabs$sp ~ ., data = lcrabs, cost = 100,

gamma = 1)
> table(true = crabs$sp, predicted = predict(crabs.svm))

predicted
true B O
B 100 0
O 0 100

We can try a 10-fold cross-validation by

> svm(crabs$sp ~ ., data = lcrabs, cost = 100, gamma = 1,
cross = 10)

....
Total Accuracy: 100
Single Accuracies:
100 100 100 100 100 100 100 100 100 100

3See Section 16.2 forS software for this problem; however, special-purpose software is often used.
4Code by David Meyer based on C++ code by Chih-Chung Chang and Chih-Jen Lin. A port to

S-PLUS is available for machines with a C++ compiler.

346 Classification

The extension tog > 2 classes is much less elegant, and several ideas have
been used. Thesvm function uses one attributed to Knerret al. (1990) in which
classifiers are built comparing each pairof classes, and the majority vote amongst
the resultingg(g − 1)/2 classifiers determines the predicted class.

12.6 Forensic Glass Example

The forensic glass datasetfgl has 214 points from six classes with nine mea-
surements, and provides a fairly stiff test of classification methods. As we have
seen (Figures 4.17 on page 99, 5.4 on page 116, 11.5 on page 309 and 12.3 on
page 337) the types of glass do not form compact well-separated groupings, and
the marginal distributions are far from normal. There are some small classes (with
9, 13 and 17 examples), so we cannot use quadratic discriminant analysis.

We assess their performance by 10-fold cross-validation, using the same ran-
dom partition for all the methods. Logistic regression provides a suitable bench-
mark (as is often the case), and in this example linear discriminant analysis does
equally well.

set.seed(123); rand <- sample (10, 214, replace = T)
con <- function(...)
{

print(tab <- table(...)); diag(tab) <- 0
cat("error rate = ",

round(100*sum(tab)/length(list(...)[[1]]), 2), "%\n")
invisible()

}
CVtest <- function(fitfn, predfn, ...)
{

res <- fgl$type
for (i in sort(unique(rand))) {
cat("fold ", i, "\n", sep = "")
learn <- fitfn(rand != i, ...)
res[rand == i] <- predfn(learn, rand == i)

}
res

}
res.multinom <- CVtest(

function(x, ...) multinom(type ~ ., fgl[x,], ...),
function(obj, x) predict(obj, fgl[x,], type = "class"),
maxit = 1000, trace = F)

> con(true = fgl$type, predicted = res.multinom)
....

error rate = 37.38 %

> res.lda <- CVtest(
function(x, ...) lda(type ~ ., fgl[x,], ...),
function(obj, x) predict(obj, fgl[x,])$class)

12.6 Forensic Glass Example 347

> con(true = fgl$type, predicted = res.lda)
....

error rate = 37.38 %

> fgl0 <- fgl[, -10] # drop type
{ res <- fgl$type

for (i in sort(unique(rand))) {
cat("fold ", i ,"\n", sep = "")
sub <- rand == i
res[sub] <- knn(fgl0[!sub,], fgl0[sub,], fgl$type[!sub],

k = 1)
}
res } -> res.knn1

> con(true = fgl$type, predicted = res.knn1)
WinF WinNF Veh Con Tabl Head

....
error rate = 23.83 %

We can use nearest-neighbour methods to estimate the lower bound on the Bayes
risk as about 10% (Ripley, 1996, pp. 196–7).

> res.lb <- knn(fgl0, fgl0, fgl$type, k = 3, prob = T, use.all = F)
> table(attr(res.lb, "prob"))
0.333333 0.666667 1

10 64 140
1/3 * (64/214) = 0.099688

We saw in Chapter 9 that we could fit a classification tree of size about six to
this dataset. We need to cross-validate over the choice of tree size, which does
vary by group from four to seven.

library(rpart)
res.rpart <- CVtest(

function(x, ...) {
tr <- rpart(type ~ ., fgl[x,], ...)
cp <- tr$cptable
r <- cp[, 4] + cp[, 5]
rmin <- min(seq(along = r)[cp[, 4] < min(r)])
cp0 <- cp[rmin, 1]
cat("size chosen was", cp[rmin, 2] + 1, "\n")
prune(tr, cp = 1.01*cp0)

},
function(obj, x)
predict(obj, fgl[x,], type = "class"),

cp = 0.001
)
con(true = fgl$type, predicted = res.rpart)

....
error rate = 34.58 %

348 Classification

Neural networks

We wrote some general functions for testing neural network models byV -fold
cross-validation. First we rescale the dataset so the inputs have range[0, 1].

fgl1 <- fgl
fgl1[1:9] <- lapply(fgl[, 1:9], function(x)

{r <- range(x); (x - r[1])/diff(r)})

It is straightforward to fit a fully specified neural network. However, we want
to average across several fits and to choose the number of hidden units and the
amount of weight decay by an inner cross-validation. To do so we wrote a fairly
general function that can easily be used or modified to suit other problems. (See
the scripts for the code.)

> res.nn2 <- CVnn2(type ~ ., fgl1, skip = T, maxit = 500,
nreps = 10)

> con(true = fgl$type, predicted = res.nn2)
....

error rate = 28.5 %

This fits a neural network 1 000 times, and so is fairly slow (about half an hour on
the PC).

This code chooses between neural nets on the basis of their cross-validated
error rate. An alternative is to use logarithmic scoring, which is equivalent to
finding the deviance on the validation set. Rather than count 0 if the predicted
class is correct and 1 otherwise, we count− log p(c |x) for the true classc. We
can easily code this variant by replacing the line

sum(as.numeric(truth) != max.col(res/nreps))

by

sum(-log(res[cbind(seq(along = truth), as.numeric(truth))]/nreps))

in CVnn2.

Support vector machines

res.svm <- CVtest(
function(x, ...) svm(type ~ ., fgl[x,], ...),
function(obj, x) predict(obj, fgl[x,]),
cost = 100, gamma = 1)

con(true = fgl$type, predicted = res.svm)
....

error rate = 28.04 %

The following is faster, but not strictly comparable with the results above, as a
different random partition will be used.

> svm(type ~ ., data = fgl, cost = 100, gamma = 1, cross = 10)
....

Total Accuracy: 71.03
Single Accuracies:
66.67 61.90 68.18 76.19 77.27 85.71 76.19 72.73 57.14 68.18

12.7 Calibration Plots 349

Learning vector quantization

For LVQ as fork-nearest neighbour methods we have to select a suitable metric.
The following experiments used Euclidean distance on the original variables, but
the rescaled variables or Mahalanobis distance could also be tried.

cd0 <- lvqinit(fgl0, fgl$type, prior = rep(1, 6)/6, k = 3)
cd1 <- olvq1(fgl0, fgl$type, cd0)
con(true = fgl$type, predicted = lvqtest(cd1, fgl0))

We set an even prior over the classes as otherwise there are too few representatives
of the smaller classes. Our initialization code inlvqinit follows Kohonen’s in
selecting the number of representatives; in this problem 24 points are selected,
four from each class.

CV.lvq <- function()
{

res <- fgl$type
for(i in sort(unique(rand))) {
cat("doing fold", i, "\n")
cd0 <- lvqinit(fgl0[rand != i,], fgl$type[rand != i],

prior = rep(1, 6)/6, k = 3)
cd1 <- olvq1(fgl0[rand != i,], fgl$type[rand != i], cd0)
cd1 <- lvq3(fgl0[rand != i,], fgl$type[rand != i],

cd1, niter = 10000)
res[rand == i] <- lvqtest(cd1, fgl0[rand == i,])

}
res

}
con(true = fgl$type, predicted = CV.lvq())

....
error rate = 28.5 %

The initialization is random, so your results are likely to differ.

12.7 Calibration Plots

One measure that a suitable model forp(c |x) has been found is that the predicted
probabilities arewell calibrated; that is, that a fraction of aboutp of the events
we predict with probabilityp actually occur. Methods for testing calibration of
probability forecasts have been developed in connection with weather forecasts
(Dawid, 1982, 1986).

For the forensic glass example we are making six probability forecasts for
each case, one for each class. To ensure that they are genuine forecasts, we should
use the cross-validation procedure. A minor change to the code gives the proba-
bility predictions:

CVprobs <- function(fitfn, predfn, ...)
{

res <- matrix(, 214, 6)

350 Classification

predicted probability
0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

Figure 12.9: Calibration plot for multiple logistic fit to thefgl data.

for (i in sort(unique(rand))) {
cat("fold ", i, "\n", sep = "")
learn <- fitfn(rand != i, ...)
res[rand == i,] <- predfn(learn, rand == i)

}
res

}
probs.multinom <- CVprobs(

function(x, ...) multinom(type ~ ., fgl[x,], ...),
function(obj, x) predict(obj, fgl[x,], type = "probs"),
maxit = 1000, trace = F)

We can plot these and smooth them by

probs.yes <- as.vector(class.ind(fgl$type))
probs <- as.vector(probs.multinom)
par(pty = "s")
plot(c(0, 1), c(0, 1), type = "n", xlab = "predicted probability",

ylab = "", xaxs = "i", yaxs = "i", las = 1)
rug(probs[probs.yes= = 0], 0.02, side = 1, lwd = 0.5)
rug(probs[probs.yes == 1], 0.02, side = 3, lwd = 0.5)
abline(0, 1)
newp <- seq(0, 1, length = 100)
R: library(modreg)
lines(newp, predict(loess(probs.yes ~ probs, span = 1), newp))

A smoothing method with an adaptive bandwidth such asloess is needed here,
as the distribution of points along thex-axis can be very much more uneven
than in this example. The result is shown in Figure 12.9. This plot does show
substantial over-confidence in the predictions, especially at probabilities close to
one. Indeed, only 22/64 of the events predicted with probability greater than
0.9 occurred. (The underlying cause is the multimodal nature of some of the
underlying class distributions.)

12.7 Calibration Plots 351

Where calibration plots are not straight, the best solution is to find a better
model. Sometimes the over-confidence is minor, and mainly attributable to the
use of plug-in rather than predictive estimates. Then the plot can be used to adjust
the probabilities (which may need further adjustment to sum to one for more than
two classes).

Chapter 13

Survival Analysis

Extensive survival analysis facilities written by Terry Therneau (Mayo Founda-
tion) are available inS-PLUS and in theR packagesurvival .

Survival analysis is concerned with the distribution of lifetimes, often of hu-
mans but also of components and machines. There are two distinct levels of
mathematical treatment in the literature. Collett (1994), Cox and Oakes (1984),
Hosmer and Lemeshow (1999), Kalbfleisch and Prentice (1980) and Klein and
Moeschberger (1997) take a traditional and mathematically non-rigorous ap-
proach. The modern mathematical approach based on continuous-parameter mar-
tingales is given by Fleming and Harrington (1991) and Andersenet al. (1993).
(The latter is needed here only to justify some of the distribution theory and for
the concept of martingale residuals.) Other aspects closely related to Therneau’s
software are described in Therneau and Grambsch (2000).

Let T denote a lifetime random variable. It will take values in(0,∞), and
its continuous distribution may be specified by a cumulative distribution function
F with a densityf . (Mixed distributions can be considered, but many of the
formulae used by the software need modification.) For lifetimes it is more usual
to work with thesurvivor function S(t) = 1 − F (t) = P (T > t), thehazard
function h(t) = lim∆t→0 P (t � T < t + ∆t | T � t)/∆t and thecumulative
hazard function H(t) =

∫ t

0
h(s) ds. These are all related; we have

h(t) =
f(t)
S(t)

, H(t) = − logS(t)

Common parametric distributions for lifetimes are (Kalbfleisch and Prentice,
1980) the exponential, withS(t) = exp−λt and hazardλ, the Weibull with

S(t) = exp−(λt)α, h(t) = λα(λt)α−1

the log-normal, the gamma and the log-logistic which has

S(t) =
1

1 + (λt)τ
, h(t) =

λτ(λt)τ−1

1 + (λt)τ

The major distinguishing feature of survival analysis iscensoring. An indi-
vidual case may not be observed on the whole of its lifetime, so that, for example,

353

354 Survival Analysis

we may only know that it survived to the end of the trial. More general patterns
of censoring are possible, but all lead to data for each case of the form either of a
precise lifetime or the information that the lifetime fell in some interval (possibly
extending to infinity).

Clearly we must place some restrictionson the censoring mechanism, for if
cases were removed from the trial just before death we would be misled. Consider
right censoring, in which the case leaves the trial at timeCi, and we know either
Ti if Ti � Ci or that Ti > Ci. Random censoring assumes thatTi and Ci

are independent random variables, and therefore in a strong sense that censoring
is uninformative. This includes the special case oftype I censoring, in which
the censoring time is fixed in advance, as well as trials in which the patients
enter at random times but the trial is reviewed at a fixed time. It excludestype
II censoring in which the trial is concluded after a fixed number of failures. Most
analyses (including all those based solely on likelihoods) are valid under a weaker
assumption that Kalbfleisch and Prentice (1980,§5.2) callindependent censoring
in which the hazard at timet conditional on the whole history of the process
only depends on the survival of that individual to timet. (Independent censoring
does cover type II censoring.) Conventionally the time recorded ismin(Ti, Ci)
together with the indicator variable for observed deathδi = I(Ti � Ci). Then
under independent right censoring the likelihood for parameters in the lifetime
distribution is

L =
∏
δi=1

f(ti)
∏
δi=0

S(ti) =
∏
δi=1

h(ti)S(ti)
∏
δi=0

S(ti) =
n∏

i=1

h(ti)δiS(ti)

(13.1)
Usually we are not primarily interested in the lifetime distributionper se, but

how it varies between groups (usually calledstrata in the survival context) or on
measurements on the cases, calledcovariates. In the more complicated problems
the hazard will depend on covariates that vary with time, such as blood pressure
or changes of treatments.

The functionSurv(times, status) is used to describe the censored sur-
vival data to theS functions, and always appears on the left side of a model for-
mula. In the simplest case of right censoring the variables aremin(Ti, Ci) and
δi (logical or 0/1 or 1/2). Further forms allow left and interval censoring. The
results of printing the object returned bySurv are the vector of the information
available, either the lifetime or an interval.

We consider three small running examples. Uncensored data on survival times
for leukaemia (Feigl and Zelen, 1965; Cox and Oakes, 1984, p. 9) are in data
frame leuk. This has two covariates, the white blood countwbc, and ag a test
result that returns ‘present’ or ‘absent’. Two-sample data (Gehan, 1965; Cox
and Oakes, 1984, p. 7) on remission times for leukaemia are given in data frame
gehan. This trial has 42 individuals in matched pairs, and no covariates (other
than the treatment group).1 Data framemotors contains the results of an accel-
erated life test experiment with 10 replicates at each of four temperatures reported

1Andersenet al. (1993, p. 22) indicate that this trial had a sequential stopping rule that invalidates
most of the methods used here; it should be seen as illustrative only.

13.1 Estimators of Survivor Curves 355

by Nelson and Hahn (1972) and Kalbfleisch and Prentice (1980, pp. 4–5). The
times are given in hours, but all but one is a multiple of 12, and only 14 values
occur

17 21 22 56 60 70 73.5 115.5 143.5 147.5833 157.5 202.5 216.5 227
in days, which suggests that observation was not continuous. Thus this is a good
example to test the handling of ties.

13.1 Estimators of Survivor Curves

The estimate of the survivor curve for uncensored data is easy; just take one minus
the empirical distribution function. For the leukaemia data we have

plot(survfit(Surv(time) ~ ag, data=leuk), lty = 2:3, col = 2:3)
legend(80, 0.8, c("ag absent", "ag present"), lty = 2:3, col = 2:3)

and confidence intervals are obtained easily from the binomial distribution of
Ŝ(t). For example, the estimated variance is

Ŝ(t)[1− Ŝ(t)]/n = r(t)[n− r(t)]/n3 (13.2)

when r(t) is the number of cases still alive (and hence ‘at risk’) at timet.
This computation introduces the functionsurvfit and its associatedplot,

print and summary methods. It takes a model formula, and if there are factors
on the right-hand side, splits the data on those factors, and plots a survivor curve
for each factor combination, here just presence or absence ofag. (Although the
factors can be specified additively, the computation effectively uses their interac-
tion.)

For censored data we have to allow for the decline in the number of cases at
risk over time. Letr(t) be the number of cases at risk just before timet, that
is, those that are in the trial and not yet dead. If we consider a set of intervals
Ii = [ti, ti+1) covering [0,∞), we can estimate the probabilitypi of surviving
interval Ii as [r(ti)− di]/r(ti) wheredi is the number of deaths in intervalIi.
Then the probability of surviving untilti is

P (T > ti) = S(ti) ≈
i−1∏
0

pj ≈
i−1∏
0

r(ti)− di

r(ti)

Now let us refine the grid of intervals. Non-unity terms in the product will
only appear for intervals in which deaths occur, so the limit becomes

Ŝ(t) =
∏ r(ti)− di

r(ti)

the product being over times at which deaths occur beforet (but they could occur
simultaneously). This is the Kaplan–Meier estimator. Note that this becomes
constant after the largest observedti, and for this reason the estimate is only
plotted up to the largestti. However, the points at the right-hand end of the plot

356 Survival Analysis

will be very variable, and it may be better to stop plotting when there are still a
few individuals at risk.

We can apply similar reasoning to the cumulative hazard

H(ti) ≈
∑
j�i

h(tj)(tj+1 − tj) ≈
∑
j�i

dj

r(tj)

with limit

Ĥ(t) =
∑ dj

r(tj)
(13.3)

again over times at which deaths occur beforet. This is the Nelson estimator of
the cumulative hazard, and leads to the Altshuler or Fleming–Harrington estima-
tor of the survivor curve

S̃(t) = exp−Ĥ(t) (13.4)

The two estimators are related by the approximationexp−x ≈ 1 − x for small
x, so they will be nearly equal for large risk sets. TheS functions follow Fleming
and Harrington in breaking ties in (13.3), so if there were 3 deaths when the risk
set contained 12 people,3/12 is replaced by1/12 + 1/11 + 1/10.

Similar arguments to those used to derive the two estimators lead to the stan-
dard error formula for the Kaplan–Meier estimator

var
(
Ŝ(t)

)
= Ŝ(t)2

∑ dj

r(tj)[r(tj)− dj]
(13.5)

often called Greenwood’s formula after its version for life tables, and

var
(
Ĥ(t)

)
=

∑ dj

r(tj)[r(tj)− dj]
(13.6)

We leave it to the reader to check that Greenwood’s formula reduces to (13.2)
in the absence of ties and censoring. Note that if censoring can occur, both the
Kaplan–Meier and Nelson estimators are biased; the bias results from the inability
to give a sensible estimate when the risk set is empty.

Tsiatis (1981) suggested the denominatorr(tj)2 rather thanr(tj)[r(tj) −
dj] on asymptotic grounds. Both Fleming and Harrington (1991) and Andersen
et al. (1993) give a rigorous derivation of these formulae (and corrected versions
for mixed distributions), as well as calculations of bias and limit theorems that
justify asymptotic normality. Klein (1991)discussed the bias and small-sample
behaviour of the variance estimators; his conclusions forĤ(t) are that the bias
is negligible and the Tsiatis form of the standard error is accurate (for practical
use) provided the expected size of the risk set att is at least five. For the Kaplan–
Meier estimator Greenwood’s formula is preferred, and is accurate enough (but
biased downwards) again provided the expected size of the risk set is at least five.

We can use these formulae to indicate confidence intervals based on asymp-
totic normality, but we must decide on what scale to compute them. By default the

13.1 Estimators of Survivor Curves 357

function survfit computes confidence intervals on the log survivor (or cumula-
tive hazard) scale, but linear and complementary log-log scales are also available
(via the conf.type argument). These choices give

Ŝ(t) exp
[
±kα s.e.(Ĥ(t))

]
Ŝ(t)

[
1± kα s.e.(Ĥ(t))

]
exp

{
−Ĥ(t) exp

[
±kα

s.e.(Ĥ(t))

Ĥ(t)

]}
the last having the advantage of taking values in(0, 1). Bie, Borgan and Liestøl
(1987) and Borgan and Liestøl (1990) considered these and an arc-sine trans-
formation; their results indicate that the complementary log-log interval is quite
satisfactory for sample sizes as small as 25.

We do not distinguish clearly between log-survivor curves and cumulative
hazards, which differ only by sign, yet the natural estimator of the first is the
Kaplan–Meier estimator on log scale, and for the second it is the Nelson estima-
tor. This is particularly true for confidence intervals, which we would expect to
transform just by a change of sign. Fortunately, practical differences only emerge
for very small risk sets, and are then swamped by the very large variability of the
estimators.

The function survfit also handles censored data, and uses the Kaplan–
Meier estimator by default. We try it on thegehan data:

> attach(gehan)
> Surv(time, cens)
[1] 1 10 22 7 3 32+ 12 23 8 22 17 6 2 16

[15] 11 34+ 8 32+ 12 25+ 2 11+ 5 20+ 4 19+ 15 6
[29] 8 17+ 23 35+ 5 6 11 13 4 9+ 1 6+ 8 10+
> plot(log(time) ~ pair)
> gehan.surv <- survfit(Surv(time, cens) ~ treat, data = gehan,

conf.type = "log-log")
> summary(gehan.surv)

....
> plot(gehan.surv, conf.int = T, lty = 3:2, log = T,

xlab = "time of remission (weeks)", ylab = "survival")
> lines(gehan.surv, lty = 3:2, lwd = 2, cex = 2)
> legend(25, 0.1 , c("control", "6-MP"), lty = 2:3, lwd = 2)

which calculates and plots (as shown in Figure 13.1) the product-limit es-
timators for the two groups, giving standard errors calculated using Green-
wood’s formula. (Confidence intervals are plotted automatically if there is only
one group.) Other options are available, includingerror = "tsiatis" and
type = "fleming-harrington" (which can be abbreviated to the first char-
acter). Note that theplot method has alog argument that plotŝS(t) on log
scale, effectively showing the negative cumulative hazard.

358 Survival Analysis

time of remission (weeks)

su
rv

iv
al

0 10 20 30

0.
05

0.
10

0.
50

1.
00

control
6-MP

Figure 13.1: Survivor curves (on log scale) for the two groups of thegehan data. The
crosses (on the 6-MP curve) represent censoring times. The thicker lines are the estimates,
the thinner lines pointwise 95% confidence intervals.

Testing survivor curves

We can test for differences between the groups in thegehan example by

> survdiff(Surv(time, cens) ~ treat, data = gehan)
N Observed Expected (O-E)^2/E (O-E)^2/V

treat=6-MP 21 9 19.3 5.46 16.8
treat=control 21 21 10.7 9.77 16.8

Chisq= 16.8 on 1 degrees of freedom, p= 4.17e-05

This is one of a family of tests with parameterρ defined by Fleming and Harring-
ton (1981) and Harrington and Fleming (1982). The defaultρ = 0 corresponds
to thelog-rank test. Supposetj are the observed death times. If we condition on
the risk set and the number of deathsDj at time tj , the mean of the number of
deathsDjk in groupk is clearlyEjk = Dkrk(tj)/r(tj) under the null hypothe-
sis (whererk(tj) is the number from groupk at risk at timej). The statistic used
is (Ok −Ek) =

∑
j Ŝ(tj−)ρ

[
Djk −Ejk

]
,2 and from this we compute a statistic

(O − E)TV −1(O − E) with an approximately chi-squared distribution. There
are a number of different approximations to the variance matrixV , the one used
being the weighted sum over deathtimes of the variance matrices ofDjk − Ejk

computed from the hypergeometric distribution. The sum of(Ok − Ek)2/Ek

provides a conservative approximation to the chi-squared statistic. The final col-
umn is (O − E)2 divided by the diagonal ofV ; the final line gives the overall
statistic computed from the full quadratic form.

2 Ŝ(t−) is the Kaplan–Meier estimate of survival just prior tot, ignoring the grouping.

13.2 Parametric Models 359

The valuerho = 1 corresponds approximately to the Peto–Peto modifica-
tion (Peto and Peto, 1972) of the Wilcoxon test, and is more sensitive to early
differences in the survivor curves.

A warning: tests of differences between groups are often used inappropriately.
The gehan dataset has no other covariates, but where there are covariates the
differences between the groups may reflect or be masked by differences in the
covariates. Thus for theleuk dataset

> survdiff(Surv(time) ~ ag, data = leuk)
N Observed Expected (O-E)^2/E (O-E)^2/V

ag=absent 16 16 9.3 4.83 8.45
ag=present 17 17 23.7 1.90 8.45

Chisq= 8.4 on 1 degrees of freedom, p= 0.00365

is inappropriate as there are differences in distribution ofwbc between the two
groups. A model is needed to adjust for the covariates (see page 368).

13.2 Parametric Models

Parametric models for survival data have fallen out of fashion with the advent
of less parametric approaches such as the Cox proportional hazard models con-
sidered in the next section, but they remain a very useful tool, particularly in
exploratory work (as usually they can be fitted very much faster than the Cox
models).

The simplest parametric model is theexponential distribution with hazard
λi > 0. The natural way to relate this to a covariate vectorx for the case (in-
cluding a constant if required) and to satisfy the positivity constraint is to take

logλi = βTxi, λi = eβTxi

For the Weibull distribution the hazard function is

h(t) = λααtα−1 = αtα−1 exp(αβTx) (13.7)

if we again makeλ an exponential function of the covariates, and so we have the
first appearance of theproportional hazards model

h(t) = h0(t) exp βTx (13.8)

which we consider again later. This identification suggests re-parametrizing the
Weibull by replacingλα by λ, but as this just rescales the coefficients we can
move easily from one parametrization to the other.

The Weibull is also a member of the class ofaccelerated life models, which
have survival timeT such thatT exp βTx has a fixed distribution; that is, time
is speeded up by the factorexp βTx for an individual with covariatex. This
corresponds to replacingt in the survivor function and hazard byt exp βTx,
and for models such as the exponential, Weibull and log-logistic with parametric

360 Survival Analysis

time of remission (weeks)

lo
g

H
(t

)

5 10

-2
-1

0
1

control
6-MP

Figure 13.2: A log-log plot of cumulative hazard for thegehan dataset.

dependence onλt, this corresponds to takingλ = exp βT x. For all accelerated-
life models we will have

logT = logT0 − βTx (13.9)

for a random variableT0 whose distribution does not depend onx, so these are
naturally considered as regression models.

For the Weibull the cumulative hazard is linear on a log-log plot, which pro-
vides a useful diagnostic aid. For example, for thegehan data

> plot(gehan.surv, lty = 3:4, col = 2:3, fun = "cloglog",
xlab = "time of remission (weeks)", ylab = "log H(t)")

> legend(2, 0.5, c("control","6-MP"), lty = 4:3, col = 3:2)

we see excellent agreement with the proportional hazards hypothesis and with a
Weibull baseline (Figure 13.2).

The functionsurvReg3 fits parametric survival models of the form

�(T) ∼ βTx + σ ε (13.10)

where �() is usually a log transformation. Thedist argument specifies
the distribution of ε and �(), and σ is known as thescale. The distribu-
tion can be weibull (the default) exponential, rayleigh, lognormal
or loglogistic, all with a log transformation, orextreme, logistic,
gaussian or t with an identity transformation.

The default fordistribution corresponds to the model

logT ∼ βTx + σ logE

for a standard exponentialE whereas our Weibull parametrization corresponds
to

logT ∼ − logλ+
1
α

logE

3 survreg in R.

13.2 Parametric Models 361

Thus survReg uses a log-linear Weibull model for− logλ and the scale factor
σ estimates1/α. Theexponential distribution comes from fixingσ = α = 1.

We consider exponential analyses, followed by Weibull and log-logistic re-
gression analyses.

> options(contrasts = c("contr.treatment", "contr.poly"))
> survReg(Surv(time) ~ ag*log(wbc), data = leuk,

dist = "exponential")
....

Coefficients:
(Intercept) ag log(wbc) ag:log(wbc)

4.3433 4.135 -0.15402 -0.32781

Scale fixed at 1

Loglik(model)= -145.7 Loglik(intercept only)= -155.5
Chisq= 19.58 on 3 degrees of freedom, p= 0.00021

> summary(survReg(Surv(time) ~ ag + log(wbc), data = leuk,
dist = "exponential"))

Value Std. Error z p
(Intercept) 5.815 1.263 4.60 4.15e-06

ag 1.018 0.364 2.80 5.14e-03
log(wbc) -0.304 0.124 -2.45 1.44e-02

> summary(survReg(Surv(time) ~ ag + log(wbc), data = leuk))
Weibull is the default

....
Value Std. Error z p

(Intercept) 5.8524 1.323 4.425 9.66e-06
ag 1.0206 0.378 2.699 6.95e-03

log(wbc) -0.3103 0.131 -2.363 1.81e-02
Log(scale) 0.0399 0.139 0.287 7.74e-01

Scale= 1.04

Weibull distribution
Loglik(model)= -146.5 Loglik(intercept only)= -153.6

Chisq= 14.18 on 2 degrees of freedom, p= 0.00084
....

> summary(survReg(Surv(time) ~ ag + log(wbc), data = leuk,
dist = "loglogistic"))

Value Std. Error z p
(Intercept) 8.027 1.701 4.72 2.37e-06

ag 1.155 0.431 2.68 7.30e-03
log(wbc) -0.609 0.176 -3.47 5.21e-04

Log(scale) -0.374 0.145 -2.58 9.74e-03

Scale= 0.688

Log logistic distribution

362 Survival Analysis

Loglik(model)= -146.6 Loglik(intercept only)= -155.4
Chisq= 17.58 on 2 degrees of freedom, p= 0.00015

The Weibull analysis shows no support for non-exponential shape. For later refer-
ence, in the proportional hazards parametrization (13.8) the estimate of the coef-
ficients is β̂ = −(5.85, 1.02,−0.310)T/1.04 = (−5.63,−0.981, 0.298)T. The
log-logistic distribution, which is anaccelerated life model but not a proportional
hazards model (in our parametrization), gives a considerably more significant co-
efficient for log(wbc). Its usual scale parameterτ (as defined on page 353) is
estimated as1/0.688 ≈ 1.45.

We can test for a difference in groups within the Weibull model by the Wald
test (the ‘z’ value forag) or we can perform a likelihood ratio test by theanova
method.

> anova(survReg(Surv(time) ~ log(wbc), data = leuk),
survReg(Surv(time) ~ ag + log(wbc), data = leuk))

....
Terms Resid. Df -2*LL Test Df Deviance Pr(Chi)

1 log(wbc) 30 299.35
2 ag + log(wbc) 29 293.00 +ag 1 6.3572 0.01169

The likelihood ratio test statistic is somewhat less significant than the result given
by survdiff.

An extension is to allow different scale parametersσ for each group, by
adding astrata argument to the formula. For example,

> summary(survReg(Surv(time) ~ strata(ag) + log(wbc), data=leuk))
....

Value Std. Error z p
(Intercept) 7.499 1.475 5.085 3.68e-07

log(wbc) -0.422 0.149 -2.834 4.59e-03
ag=absent 0.152 0.221 0.688 4.92e-01
ag=present 0.142 0.216 0.658 5.11e-01

Scale:
ag=absent ag=present

1.16 1.15

Weibull distribution
Loglik(model)= -149.7 Loglik(intercept only)= -153.2

....

If the accelerated-life model holds,T exp(−βTx) has the same distribution
for all subjects, being standard Weibull, log-logistic and so on. Thus we can
get some insight into what the common distribution should be by studying the
distribution of (Ti exp(−β̂Txi)). Another way to look at this is that the residuals
from the regression arelogTi − β̂Txi which we have transformed back to the
scale of time. For theleuk data we could use, for example,

leuk.wei <- survReg(Surv(time) ~ ag + log(wbc), data = leuk)
ntimes <- leuk$time * exp(-leuk.wei$linear.predictors)
plot(survfit(Surv(ntimes)), log = T)

13.2 Parametric Models 363

0 1 2 3 4

0.
05

0.
10

0.
50

1.
00

Figure 13.3: A log plot of S(t) (equivalently, a linear plot of−H(t)) for the leuk
dataset with pointwise confidence intervals.

The result (Figure 13.3) is plausiblylinear, confirming the suitability of an expo-
nential model. If we wished to test for a general Weibull distribution, we should
plot log(− log Ŝ(t)) against log t. (This is provided by thefun="cloglog"
argument toplot.survfit)

Moving on to thegehan dataset, which includes right censoring, we find

> survReg(Surv(time, cens) ~ factor(pair) + treat, data = gehan,
dist = "exponential")

....
Loglik(model)= -101.6 Loglik(intercept only)= -116.8

Chisq= 30.27 on 21 degrees of freedom, p= 0.087
> summary(survReg(Surv(time, cens) ~ treat, data = gehan,

dist = "exponential"))
Value Std. Error z p

(Intercept) 3.69 0.333 11.06 2.00e-28
treat -1.53 0.398 -3.83 1.27e-04

Scale fixed at 1

Exponential distribution
Loglik(model)= -108.5 Loglik(intercept only)= -116.8

Chisq= 16.49 on 1 degrees of freedom, p= 4.9e-05
> summary(survReg(Surv(time, cens) ~ treat, data = gehan))

Value Std. Error z p
(Intercept) 3.516 0.252 13.96 2.61e-44

treat -1.267 0.311 -4.08 4.51e-05
Log(scale) -0.312 0.147 -2.12 3.43e-02

Scale= 0.732

Weibull distribution
Loglik(model)= -106.6 Loglik(intercept only)= -116.4

Chisq= 19.65 on 1 degrees of freedom, p= 9.3e-06

364 Survival Analysis

There is no evidence of close matchingof pairs. The difference in log hazard
between treatments is−(−1.267)/0.732 = 1.73 with a standard error of0.42 =
0.311/0.732.

Finally, we consider themotors data, which are analysed by Kalbfleisch and
Prentice (1980,§3.8.1). According to Nelson and Hahn (1972), the data were
collected to assess survival at130◦C, for which they found a median of 34 400
hours and a 10 percentile of 17 300 hours.

> plot(survfit(Surv(time, cens) ~ factor(temp), data = motors),
conf.int = F)

> motor.wei <- survReg(Surv(time, cens) ~ temp, data = motors)
> summary(motor.wei)

Value Std. Error z p
(Intercept) 16.3185 0.62296 26.2 3.03e-151

temp -0.0453 0.00319 -14.2 6.74e-46
Log(scale) -1.0956 0.21480 -5.1 3.38e-07

Scale= 0.334

Weibull distribution
Loglik(model)= -147.4 Loglik(intercept only)= -169.5

Chisq= 44.32 on 1 degrees of freedom, p= 2.8e-11
....

> unlist(predict(motor.wei, data.frame(temp=130), se.fit = T))
fit se.fit

33813 7506.3

The predict method by default predicts the centre of the distribution. We can
obtain predictions for quantiles by

> predict(motor.wei, data.frame(temp=130), type = "quantile",
p = c(0.5, 0.1))

[1] 29914 15935

We can also usepredict to find standard errors, but we prefer to compute con-
fidence intervals on log-time scale by

> t1 <- predict(motor.wei, data.frame(temp=130),
type = "uquantile", p = 0.5, se = T)

> exp(c(LL=t1$fit - 2*t1$se, UL=t1$fit + 2*t1$se))
LL UL

19517 45849
> t1 <- predict(motor.wei, data.frame(temp=130),

type = "uquantile", p = 0.1, se = T)
> exp(c(LL=t1$fit - 2*t1$se, UL=t1$fit + 2*t1$se))

LL UL
10258 24752

Nelson & Hahn worked withz = 1000/(temp+ 273.2). We leave the reader
to try this; it gives slightly larger quantiles.

13.3 Cox Proportional Hazards Model 365

Function censorReg

S-PLUS has a functioncensorReg for parametric survival analysis by BillS+

Meeker; this has a very substantial overlap withsurvReg but is more general
in that it allowstruncation as well ascensoring. Either or both of censoring and
truncation occur when subjects are only observed for part of the time axis. An
observationTi is right-censored if it is known only thatTi > Ui for a censor-
ing time Ui, and left-censored if it is known only thatTi � Li. (Both left- and
right-censoring can occur in a study, but not for the same individual.) Interval
censoring is usually taken to refer to subjects known to have an event in(Li, Ui],
but with the time of the event otherwise unknown. Truncation is similar but subtly
different. For left and right truncation, subjects with events beforeLi or afterUi

are not included in the study, and interval truncation refers to both left and right
truncation. (Notice the inconsistency with interval censoring.)

Confusingly, censorReg uses"logexponential" and "lograyleigh"
for what are known tosurvReg as the"exponential" and "rayleigh" dis-
tributions and are accelerated-life models for those distributions.

Let us consider a simple example usinggehan. We can fit a Weibull model
by

> options(contrasts = c("contr.treatment", "contr.poly"))
> summary(censorReg(censor(time, cens) ~ treat, data = gehan))

....
Coefficients:

Est. Std.Err. 95% LCL 95% UCL z-value p-value
3.52 0.252 3.02 4.009 13.96 2.61e-44
-1.27 0.311 -1.88 -0.658 -4.08 4.51e-05

Extreme value distribution: Dispersion (scale) = 0.73219
Observations: 42 Total; 12 Censored
-2*Log-Likelihood: 213

which agrees with our results on page 363.
The potential advantages ofcensorReg come from its wider range of op-

tions. As noted previously, it allows truncation, by specifying a call tocensor
with a truncation argument. Distributions can be fitted with athreshold, that
is, a parameterγ > 0 such that the failure-time model is fitted toT − γ (and
hence no failures can occur before timeγ).

There is aplot method forcensorReg that produces up to seven figures.
A strata argument in acensorReg model has a completely different

meaning: it fits separate models at each level of the stratifying factor, unlike
survReg which has common regression coefficients across strata.

13.3 Cox Proportional Hazards Model

Cox (1972) introduced a less parametric approach to proportional hazards. There
is a baseline hazard functionh0(t) that is modified multiplicatively by covariates

366 Survival Analysis

(including group indicators), so the hazard function for any individual case is

h(t) = h0(t) exp βTx

and the interest is mainly in the proportional factors rather than the baseline haz-
ard. Note that the cumulative hazards will also be proportional, so we can examine
the hypothesis by plotting survivor curves for sub-groups on log scale. Later we
allow the covariates to depend on time.

The parameter vectorβ is estimated by maximizing apartial likelihood. Sup-
pose one death occurred at timetj . Then conditional on this event the probability
that casei died is

h0(t) exp βTxi∑
l I(Tl � t)h0(t) exp βTxl

=
exp βTxi∑

l I(Tl � t) exp βTxl
(13.11)

which does not depend on the baseline hazard. The partial likelihood forβ is
the product of such terms over all observed deaths, and usually contains most of
the information aboutβ (the remainder being in the observed times of death).
However, we need a further condition on the censoring (Fleming and Harrington,
1991, pp. 138–9) that it is independent anduninformative for this to be so; the
latter means that the likelihood for censored observations in[t, t+ ∆t) does not
depend onβ.

The correct treatment of ties causes conceptual difficulties as they are an event
of probability zero for continuous distributions. Formally (13.11) may be cor-
rected to include all possible combinations of deaths. As this increases the com-
putational load, it is common to employ the Breslow approximation4 in which
each death is always considered to precede all other events at that time. Let
τi = I(Ti � t) exp βTxi, and suppose there ared deaths out ofm possible
events at timet. Breslow’s approximation uses the term

d∏
i=1

τi∑m
1 τj

in the partial likelihood at timet. Other options are Efron’s approximation

d∏
i=1

τi∑m
1 τj − i

d

∑d
1 τj

and the ‘exact’ partial likelihood

d∏
i=1

τi

/ ∑ d∏
k=1

τjk

where the sum is over subsets of1, . . . ,m of size d. One of these terms is
selected by themethod argument of the functioncoxph, with defaultefron.

4First proposed by Peto (1972).

13.3 Cox Proportional Hazards Model 367

The baseline cumulative hazardH0(t) is estimated by rescaling the con-
tributions to the number at risk byexp β̂Tx in (13.3). Thus in that formula
r(t) =

∑
I(Ti � t) exp β̂Txi.

The Cox model is easily extended to allow different baseline hazard functions
for different groups, and this is automatically done if they are declared asstrata.
For our leukaemia example we have:

> leuk.cox <- coxph(Surv(time) ~ ag + log(wbc), data = leuk)
> summary(leuk.cox)

....
coef exp(coef) se(coef) z p

ag -1.069 0.343 0.429 -2.49 0.0130
log(wbc) 0.368 1.444 0.136 2.70 0.0069

exp(coef) exp(-coef) lower .95 upper .95
ag 0.343 2.913 0.148 0.796

log(wbc) 1.444 0.692 1.106 1.886

Rsquare= 0.377 (max possible= 0.994)
Likelihood ratio test= 15.6 on 2 df, p=0.000401
Wald test = 15.1 on 2 df, p=0.000537
Score (logrank) test = 16.5 on 2 df, p=0.000263

> update(leuk.cox, ~ . -ag)
....

Likelihood ratio test=9.19 on 1 df, p=0.00243 n= 33

> (leuk.coxs <- coxph(Surv(time) ~ strata(ag) + log(wbc),
data = leuk))

....
coef exp(coef) se(coef) z p

log(wbc) 0.391 1.48 0.143 2.74 0.0062
....

Likelihood ratio test=7.78 on 1 df, p=0.00529 n= 33

> (leuk.coxs1 <- update(leuk.coxs, . ~ . + ag:log(wbc)))
....

coef exp(coef) se(coef) z p
log(wbc) 0.183 1.20 0.188 0.978 0.33

ag:log(wbc) 0.456 1.58 0.285 1.598 0.11
....

> plot(survfit(Surv(time) ~ ag), lty = 2:3, log = T)
> lines(survfit(leuk.coxs), lty = 2:3, lwd = 3)
> legend(80, 0.8, c("ag absent", "ag present"), lty = 2:3)

The ‘likelihood ratio test’ is actually based on (log) partial likelihoods, not the full
likelihood, but has similar asymptotic properties. The tests show that there is a
significant effect ofwbc on survival, but also that there is a significant difference
between the twoag groups (although as Figure 13.4 shows, this is less than
before adjustment for the effect ofwbc).

368 Survival Analysis

0 50 100 150

0.
1

0.
5

1.
0

ag absent
ag present

Figure 13.4: Log-survivor curves for theleuk dataset. The thick lines are from a Cox
model with two strata, the thin lines Kaplan–Meier estimates that ignore the blood counts.

Note howsurvfit can take the result of a fit of a proportional hazard model.
In the first fit the hazards in the two groups differ only by a factor whereas later
they are allowed to have separate baseline hazards (which look very close to pro-
portional). There is marginal evidence for a difference in slope within the two
strata. Note how straight the log-survivor functions are in Figure 13.4, confirming
the good fit of the exponential model for these data. The Kaplan–Meier survivor
curves refer to the populations; those from thecoxph fit refer to a patient in the
stratum with an averagelog(wbc) for the whole dataset. This example shows
why it is inappropriate just to test (usingsurvdiff) the difference between the
two groups; part of the difference is attributable to the lowerwbc in the ag absent
group.

The test statistics refer to the whole set of covariates. The likelihood ratio test
statistic is the change in deviance on fitting the covariates over just the baseline
hazard (by strata); the score test is the expansion at the baseline, and so does
not need the parameters to be estimated (although this has been done). TheR2

measure quoted bysummary.coxph is taken from Nagelkerke (1991).
The general proportional hazards model gives estimated (non-intercept) co-

efficients β̂ = (−1.07, 0.37)T , compared to the Weibull fit of(−0.98, 0.30)T

(on page 362). The log-logistic had coefficients(−1.16, 0.61)T which un-
der the approximations of Solomon (1984) would be scaled byτ/2 to give
(−0.79, 0.42)T for a Cox proportional-hazards fit if the log-logistic regression
model (an accelerated-life model) were the true model.

We next consider the Gehan data. We saw before that the pairing has a neg-
ligible effect for the exponential model. Here the effect is a little larger, with
P ≈ 8%. The Gehan data have a large number of (mainly pairwise) ties, so we
use the ‘exact’ partial likelihood.

> coxph(Surv(time, cens) ~ treat, data = gehan, method = "exact")
coef exp(coef) se(coef) z p

treat 1.63 5.09 0.433 3.76 0.00017

13.3 Cox Proportional Hazards Model 369

Likelihood ratio test=16.2 on 1 df, p=5.54e-05 n= 42

The next fit is slow
> coxph(Surv(time, cens) ~ treat + factor(pair), data = gehan,

method = "exact")
....

Likelihood ratio test=45.5 on 21 df, p=0.00148 n= 42
....

> 1 - pchisq(45.5 - 16.2, 20)
[1] 0.082018

Finally we consider themotors data. The exact fit is much the slowest, as it
has large groups of ties.

> (motor.cox <- coxph(Surv(time, cens) ~ temp, motors))
....

coef exp(coef) se(coef) z p
temp 0.0918 1.1 0.0274 3.36 0.00079

....
> coxph(Surv(time, cens) ~ temp, motors, method = "breslow")

....
coef exp(coef) se(coef) z p

temp 0.0905 1.09 0.0274 3.3 0.00098
....

> coxph(Surv(time, cens) ~ temp, motors, method = "exact")
....

coef exp(coef) se(coef) z p
temp 0.0947 1.1 0.0274 3.45 0.00056

....
> plot(survfit(motor.cox, newdata = data.frame(temp=200),

conf.type = "log-log"))
> summary(survfit(motor.cox, newdata = data.frame(temp=130)))
time n.risk n.event survival std.err lower 95% CI upper 95% CI
408 40 4 1.000 0.000254 0.999 1
504 36 3 1.000 0.000499 0.999 1

1344 28 2 0.999 0.001910 0.995 1
1440 26 1 0.998 0.002698 0.993 1
1764 20 1 0.996 0.005327 0.986 1
2772 19 1 0.994 0.007922 0.978 1
3444 18 1 0.991 0.010676 0.971 1
3542 17 1 0.988 0.013670 0.962 1
3780 16 1 0.985 0.016980 0.952 1
4860 15 1 0.981 0.020697 0.941 1
5196 14 1 0.977 0.024947 0.929 1

The functionsurvfit has a special method forcoxph objects that plots the
mean and confidence interval of the survivor curve for an average individual (with
average values of the covariates). As we see, this can be overridden by giving new
data, as shown in Figure 13.5. The non-parametric method is unable to extrapolate
to 130◦C as none of the test examples survived long enough to estimate the
baseline hazard beyond the last failure at 5 196 hours.

370 Survival Analysis

0 1000 2000 3000 4000 5000

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Figure 13.5: The survivor curve for a motor at200◦C estimated from a Cox proportional
hazards model (solid line) with pointwise 95%confidence intervals (dotted lines).

Residuals

The concept of a residual is a difficult one for binary data, especially as here the
event may not be observed because of censoring. A straightforward possibility is
to take

ri = δi − Ĥ(ti)

which is known as themartingale residual after a derivation from the mathemat-
ical theory given by Fleming and Harrington (1991,§4.5). They show that it is
appropriate for checking the functional form of the proportional hazards model,
for if

h(t) = h0(t)φ(x∗) expβTx

for an (unknown) function of a covariatex∗ then

E[R | X∗] ≈ [φ(X∗)− φ]
∑

δi/n

and this can be estimated by smoothing a plot of the martingale residuals ver-
susx∗, for example, usinglowess or the functionscatter.smooth based on
loess. (The termφ is a complexly weighted mean.) The covariatex∗ can be
one not included in the model, or one of the terms to check for non-linear effects.

The martingale residuals are the default output ofresiduals on a coxph
fit.

The martingale residuals can have a very skewed distribution, as their maxi-
mum value is 1, but they can be arbitrarily negative. Thedeviance residuals are a
transformation

sign(ri)
√

2[−ri − δi log(δi − ri)]

which reduces the skewness, and for a parametric survival model when squared
and summed give (approximately) the deviance. Deviance residuals are best used
in plots that will indicate cases not fitted well by the model.

13.4 Further Examples 371

The Schoenfeld residuals (Schoenfeld, 1982) are defined at death times as
xi−x(ti) wherex(s) is the mean weighted byexp β̂Tx of the x over only the
cases still in the risk set at times. These residuals form a matrix with one row
for each case that died and a column foreach covariate. The scaled Schoenfeld
residuals (type = "scaledsch") are theI−1 matrix multiplying the Schoen-
feld residuals, whereI is the (partial) information matrix at the fitted parameters
in the Cox model.

Thescore residuals are the terms of efficient score for the partial likelihood,
this being a sum over cases of

Li =
[
xi − x(ti)

]
δi −

∫ ti

0

[
xi(s)− x(s)

]
ĥ(s) ds

Thus the score residuals form ann × p matrix. They can be used to ex-
amine leverage of individual cases by computing (approximately) the change
in β̂ if the observation were dropped;type = "dfbeta" gives this, whereas
type = "dfbetas" scales by the standard errors for the components ofβ̂.

Tests of proportionality of hazards

Once a type of departure from the base model is discovered or suspected, the
proportional hazards formulation is usually flexible enough to allow an extended
model to be formulated and the significance of the departure tested within the
extended model. Nevertheless, some approximations can be useful, and are pro-
vided by the functioncox.zph for departures of the type

β(t) = β + θg(t)

for some postulated smooth functiong. Grambsch and Therneau (1994) show
that the scaled Schoenfeld residuals for casei have, approximately, meang(ti)θ
and a computable variance matrix.

The function cox.zph has bothprint and plot methods. The printed
output gives an estimate of the correlation betweeng(ti) and the scaled Schoen-
feld residuals and a chi-squared test ofθ = 0 for each covariate, and an overall
chi-squared test. The plot method gives a plot for each covariate, of the scaled
Schoenfeld residuals againstg(t) with a spline smooth and pointwise confidence
bands for the smooth. (Figure 13.8 on page 375 is an example.)

The functiong has to be specified. The default incox.zph is 1 − Ŝ(t) for
the Kaplan–Meier estimator, with options for the ranks of the death times,g ≡ 1
and g = log as well as a user-specified function. (Thex-axis of the plots is
labelled by the death times, not

{
g(ti)

}
.)

13.4 Further Examples

VA lung cancer data

S-PLUS supplies5 the datasetcancer.vet on a Veterans Administration lung
cancer trial used by Kalbfleisch and Prentice (1980), but as it has no on-line help,

5For R it is supplied in packageMASS .

372 Survival Analysis

it is not obvious what it is! It is a matrix of 137 cases with right-censored survival
time and the covariates

treatment standard or test
celltype one of four cell types
Karnofsky score of performance on scale 0–100, with high values for relatively

well patients
diagnosis time since diagnosis in months at entry to trial
age in years
therapy logical for prior therapy

As there are several covariates, we use the Cox model to establish baseline haz-
ards.

> # R: data(VA) # is all that is required.
> # S: VA.temp <- as.data.frame(cancer.vet)
> # S: dimnames(VA.temp)[[2]] <- c("treat", "cell", "stime",

"status", "Karn", "diag.time","age","therapy")
> # S: attach(VA.temp)
> # S: VA <- data.frame(stime, status, treat = factor(treat), age,

Karn, diag.time, cell = factor(cell), prior = factor(therapy))
> # S: detach(VA.temp)
> (VA.cox <- coxph(Surv(stime, status) ~ treat + age + Karn +

diag.time + cell + prior, data = VA))
coef exp(coef) se(coef) z p

treat 2.95e-01 1.343 0.20755 1.41945 1.6e-01
age -8.71e-03 0.991 0.00930 -0.93612 3.5e-01

Karn -3.28e-02 0.968 0.00551 -5.95801 2.6e-09
diag.time 8.18e-05 1.000 0.00914 0.00895 9.9e-01

cell2 8.62e-01 2.367 0.27528 3.12970 1.7e-03
cell3 1.20e+00 3.307 0.30092 3.97474 7.0e-05
cell4 4.01e-01 1.494 0.28269 1.41955 1.6e-01
prior 7.16e-02 1.074 0.23231 0.30817 7.6e-01

Likelihood ratio test=62.1 on 8 df, p=1.8e-10 n= 137

> (VA.coxs <- coxph(Surv(stime, status) ~ treat + age + Karn +
diag.time + strata(cell) + prior, data = VA))

coef exp(coef) se(coef) z p
treat 0.28590 1.331 0.21001 1.361 1.7e-01

age -0.01182 0.988 0.00985 -1.201 2.3e-01
Karn -0.03826 0.962 0.00593 -6.450 1.1e-10

diag.time -0.00344 0.997 0.00907 -0.379 7.0e-01
prior 0.16907 1.184 0.23567 0.717 4.7e-01

Likelihood ratio test=44.3 on 5 df, p=2.04e-08 n= 137

> plot(survfit(VA.coxs), log = T, lty = 1:4, col = 2:5)
> legend(locator(1), c("squamous", "small", "adeno", "large"),

lty = 1:4, col = 2:5)
> plot(survfit(VA.coxs), fun = "cloglog", lty = 1:4, col = 2:5)

13.4 Further Examples 373

0 200 400 600 800 1000

0.
00

1
0.

01
0

0.
10

0
1.

00
0

squamous
small
adeno
large

5 10 50 100 500

0.
05

0.
50

5.
00

Figure 13.6: Cumulative hazard functions for the cell types in the VA lung cancer trial.
The left-hand plot is labelled by survival probability on log scale. The right-hand plot is
on log-log scale.

5 10 50 100 500

0.
05

0.
50

5.
00 •

•

••
•

•

•
•

•

•

•

•
•

•

•
•

•

•
••

•

•
•

• ••

•

• •

•

•

•

• •
•

•

•
• •
•

•
•

•

•

•

• •
•

•
•

•

•

•

•

•

•

•

•

•

•

•

••

•

•••

•
•

•

•

•

•

•

•

•
•

•

•
•

•
•

•

•

• ••
•

•

•
•

•

•

•

•

•

• •

•

•

••

•

••
• •••

•

•

•

•

•
•

•
•

•

•

•
•

••

•

•

•
••

•
• •

••• •

•

•

Karn

re
si

du
al

s(
V

A
.c

ox
2)

20 40 60 80 100

-4
-2

0

Figure 13.7: Diagnostic plots for the Karnofsky score in the VA lung cancer trial. Left:
log-log cumulative hazard plot for five groups. Right: martingale residuals versus Karnof-
sky score, with a smoothed fit.

> cKarn <- factor(cut(VA$Karn, 5))
> VA.cox1 <- coxph(Surv(stime, status) ~ strata(cKarn) + cell,

data = VA)
> plot(survfit(VA.cox1), fun="cloglog")
> VA.cox2 <- coxph(Surv(stime, status) ~ Karn + strata(cell),

data = VA)
> # R: library(modreg)
> scatter.smooth(VA$Karn, residuals(VA.cox2))

Figures 13.6 and 13.7 show some support for proportional hazards among the
cell types (except perhaps squamous), and suggest a Weibull or even exponential
distribution.

> VA.wei <- survReg(Surv(stime, status) ~ treat + age + Karn +
diag.time + cell + prior, data = VA)

374 Survival Analysis

> summary(VA.wei, cor = F)
....

Value Std. Error z p
(Intercept) 3.262014 0.66253 4.9236 8.50e-07

treat -0.228523 0.18684 -1.2231 2.21e-01
age 0.006099 0.00855 0.7131 4.76e-01
Karn 0.030068 0.00483 6.2281 4.72e-10

diag.time -0.000469 0.00836 -0.0561 9.55e-01
cell2 -0.826185 0.24631 -3.3542 7.96e-04
cell3 -1.132725 0.25760 -4.3973 1.10e-05
cell4 -0.397681 0.25475 -1.5611 1.19e-01
prior -0.043898 0.21228 -0.2068 8.36e-01

Log(scale) -0.074599 0.06631 -1.1250 2.61e-01

Scale= 0.928

Weibull distribution
Loglik(model)= -715.6 Loglik(intercept only)= -748.1

Chisq= 65.08 on 8 degrees of freedom, p= 4.7e-11

> VA.exp <- survReg(Surv(stime, status) ~ Karn + cell,
data = VA, dist = "exponential")

> summary(VA.exp, cor = F)
Value Std. Error z p

(Intercept) 3.4222 0.35463 9.65 4.92e-22
Karn 0.0297 0.00486 6.11 9.97e-10
cell2 -0.7102 0.24061 -2.95 3.16e-03
cell3 -1.0933 0.26863 -4.07 4.70e-05
cell4 -0.3113 0.26635 -1.17 2.43e-01

Scale fixed at 1

Exponential distribution
Loglik(model)= -717 Loglik(intercept only)= -751.2

Chisq= 68.5 on 4 degrees of freedom, p= 4.7e-14

Note thatscale does not differ significantly from one, so an exponential distri-
bution is an appropriate summary.

> cox.zph(VA.coxs)
rho chisq p

treat -0.0607 0.545 0.46024
age 0.1734 4.634 0.03134

Karn 0.2568 9.146 0.00249
diag.time 0.1542 2.891 0.08909

prior -0.1574 3.476 0.06226
GLOBAL NA 13.488 0.01921

> par(mfrow = c(3, 2)); plot(cox.zph(VA.coxs))

Closer investigation does show some suggestion of time-varying coefficients in
the Cox model. The plot is Figure 13.8. Note that some coefficients that are not

13.4 Further Examples 375

Time

B
et

a(
t)

 fo
r

tr
ea

t

8.2 19 32 54 99 130 220 390

-4
-2

0
2

4

•

•

•

•

•

•
• •

•

•

•

• •
•

••

••
•

•

•

•
•

•

• •

•

•
•••

•

•

•

•
•

•
•

•

•
•
• •

•

•

•

•

••
•

•

•

•
• •

•

•
••
••

•

•

•
• •••

•
• • ••

•

•
•

•

•

•

•

•

•

•
•

•

•

• ••
•

•

•
• •

•

•
• •

•

•

•

•

•

•

•
•

• •
•

••

•

• •

• ••

•

•
••

•

••
•

•
•

•

Time

B
et

a(
t)

 fo
r

ag
e

8.2 19 32 54 99 130 220 390

-0
.3

-0
.2

-0
.1

0.
0

0.
1

0.
2

0.
3

•

•

•

•

•

•

•
•

•

•

•
• •

•

••

•
•

•
•

•

•

•

•

•
•
••

•
••

•

•

•

•

• •

•
•

•

•

•
•

•
•

•

•

•

•

•
•
••

• •

• •

••

•

•

•

•

•

• •

•

•

•

•
• ••

•

•

•

•

•

••
• •

•

•

•

•• •

•
•

•

•

•
•

•

•

• •

•
•

•
•

•

•

•

•

•
•

•

••

•

•
•

• ••••

•
•

•

•

•

• •
•

•

Time

B
et

a(
t)

 fo
r

K
ar

n

8.2 19 32 54 99 130 220 390

-0
.2

-0
.1

0.
0

0.
1

•

•

•

•

•

•
•

•

•

•

•
•

•

•

•

•
•

•

•

•

•
•

•

•

•

•

•

•

••
•

•
•

•

•

•

•

•

•
•
•

• •

•
•
•

•

•

•

•
•

•

•

•

•

•

•
•••

•

•

•
• •

•
•

•
•

•
•

••
•

•
•

•

•

•

•
•

•
•

•

•

•

•

•

•

•
•

•

•

•

•

•• •
•

•
• ••

•

•

•

•

•

•

•

•

•

•

•

•

•
•

•

•

•

•

•
•

•
•

•
•

•

Time
B

et
a(

t)
 fo

r
di

ag
.ti

m
e

8.2 19 32 54 99 130 220 390

-0
.2

0.
0

0.
2

0.
4

0.
6

••

•

•• •

•

•
•

•
•

•

•

•

•• •• •

•

•
• •

• •
•
•
• •

••

•

•

•• •
•

•
•

•

•
• •

•
•
•
••

•
•

•
••• •

•

•
•
••••

•
•

• ••
• •

•

•
•
•

•
• •••

••
• •

•
• • ••

••• • ••
•

•
•
• • • •

• •• •

•
• • •

•

•
•
•

• •

•
•••••

•
•
•
•
•

•
• •

Time

B
et

a(
t)

 fo
r

pr
io

r

8.2 19 32 54 99 130 220 390

-4
-2

0
2

4
6

•

•

• •

• •

•
•

• •

•

•

•

•

•
•

••

•

•

•
•

• •
• •

•

• •

••

•

•
••

•

•

•
•

•

•
• •

•
•

••
•
•
• •••• •

•

•

•

•

•

•
••

•
• •••

•

•

• •

• •

•
•

•
•

•

•

• •

•
•

•
•
•

•
•
• • ••

•
•

•• • • • • •

•

•

• •

•
•

•

•

••
• •

•
•
•

•
••

•

•

•

••

•

• •

Figure 13.8: Diagnostics plots fromcox.zph of the constancy of the coefficients in the
proportional hazards modelVA.coxs. Each plot is of a component of the Schoenfeld
residual against a non-linear scale of time. A spline smoother is shown, together with±2
standard deviations.

significant in the basic model show evidence of varying with time. This suggests
that the model with justKarn and cell may be too simple, and that we need
to consider interactions. We automate the search of interactions usingstepAIC,
which has methods for bothcoxph andsurvReg fits. With hindsight, we centre
the data.

> VA$Karnc <- VA$Karn - 50
> VA.coxc <- update(VA.cox, ~ . - Karn + Karnc)
> VA.cox2 <- stepAIC(VA.coxc, ~ .^2)
> VA.cox2$anova
Initial Model:
Surv(stime, status) ~ treat + age + diag.time + cell + prior +

Karnc

Final Model:
Surv(stime, status) ~ treat + diag.time + cell + prior + Karnc +

prior:Karnc + diag.time:cell + treat:prior + treat:Karnc

Step Df Deviance Resid. Df Resid. Dev AIC
1 129 948.79 964.79
2 + prior:Karnc 1 9.013 128 939.78 957.78

376 Survival Analysis

3 + diag.time:cell 3 11.272 125 928.51 952.51
4 - age 1 0.415 126 928.92 950.92
5 + treat:prior 1 2.303 125 926.62 950.62
6 + treat:Karnc 1 2.904 124 923.72 949.72

(The ‘deviances’ here are minus twice log partial likelihoods.) Applying
stepAIC to VA.wei leads to the same sequence of steps. As the variables
diag.time and Karn are not factors, this will be easier to interpret using nest-
ing:

> (VA.cox3 <- update(VA.cox2, ~ treat/Karnc + prior*Karnc
+ treat:prior + cell/diag.time))

coef exp(coef) se(coef) z p
treat 0.8065 2.240 0.27081 2.978 2.9e-03
prior 0.9191 2.507 0.31568 2.912 3.6e-03
Karnc -0.0107 0.989 0.00949 -1.129 2.6e-01
cell2 1.7068 5.511 0.37233 4.584 4.6e-06
cell3 1.5633 4.775 0.44205 3.536 4.1e-04
cell4 0.7476 2.112 0.48136 1.553 1.2e-01

Karnc %in% treat -0.0187 0.981 0.01101 -1.695 9.0e-02
prior:Karnc -0.0481 0.953 0.01281 -3.752 1.8e-04
treat:prior -0.7264 0.484 0.41833 -1.736 8.3e-02

cell1diag.time 0.0532 1.055 0.01595 3.333 8.6e-04
cell2diag.time -0.0245 0.976 0.01293 -1.896 5.8e-02
cell3diag.time 0.0161 1.016 0.04137 0.388 7.0e-01
cell4diag.time 0.0150 1.015 0.04033 0.373 7.1e-01

Thus the hazard increases with time since diagnosis in squamous cells, only, and
the effect of the Karnofsky score is only pronounced in the group with prior ther-
apy. We tried replacingdiag.time with a polynomial, with negligible benefit.
Using cox.zph shows a very significant change with time in the coefficients of
the treat*Karn interaction.

> cox.zph(VA.cox3)
rho chisq p

treat 0.18012 6.10371 0.013490
prior 0.07197 0.76091 0.383044
Karnc 0.27220 14.46103 0.000143
cell2 0.09053 1.31766 0.251013
cell3 0.06247 0.54793 0.459164
cell4 0.00528 0.00343 0.953318

Karnc %in% treat -0.20606 7.80427 0.005212
prior:Karnc -0.04017 0.26806 0.604637
treat:prior -0.13061 2.33270 0.126682

cell1diag.time 0.11067 1.62464 0.202446
cell2diag.time -0.01680 0.04414 0.833596
cell3diag.time 0.09713 1.10082 0.294086
cell4diag.time 0.16912 3.16738 0.075123

GLOBAL NA 25.52734 0.019661

> par(mfrow = c(2, 2))
> plot(cox.zph(VA.cox3), var = c(1, 3, 7)) ## not shown

13.4 Further Examples 377

Stanford heart transplants

This set of data is analysed by Kalbfleisch and Prentice (1980,§5.5.3). (The data
given in Kalbfleisch & Prentice are rounded, but the full data are supplied as data
frameheart.) It is on survival from early heart transplant operations at Stanford.
The new feature is that patients may change treatment during the study, moving
from the control group to the treatment group at transplantation, so some of the
covariates such as waiting time for a transplant are time-dependent (in the simplest
possible way). Patients who received a transplant are treated as two cases, before
and after the operation, so cases in the transplant group are in general both right-
censored and left-truncated. This is handled bySurv by supplying entry and exit
times. For example, patient 4 has the rows

start stop event age year surgery transplant
0.0 36.0 0 -7.73716632 0.49007529 0 0
36.0 39.0 1 -7.73716632 0.49007529 0 1

which show that he waited 36 days for a transplant and then died after 3 days. The
proportional hazards model is fitted from this set of cases, but some summaries
need to take account of the splitting of patients.

The covariates are age (in years minus 48), year (after 1 October 1967) and
an indicator for previous surgery. Rather than use the six models considered by
Kalbfleisch & Prentice, we do our own model selection.

> coxph(Surv(start, stop, event) ~ transplant*
(age + surgery + year), data = heart)
....

Likelihood ratio test=18.9 on 7 df, p=0.00852 n= 172
> coxph(Surv(start, stop, event) ~ transplant*(age + year) +

surgery, data = heart)
....

Likelihood ratio test=18.4 on 6 df, p=0.0053 n= 172
> (stan <- coxph(Surv(start, stop, event) ~ transplant*year +

age + surgery, data = heart))
....

coef exp(coef) se(coef) z p
transplant -0.6213 0.537 0.5311 -1.17 0.240

year -0.2526 0.777 0.1049 -2.41 0.016
age 0.0299 1.030 0.0137 2.18 0.029

surgery -0.6641 0.515 0.3681 -1.80 0.071
transplant:year 0.1974 1.218 0.1395 1.42 0.160

Likelihood ratio test=17.1 on 5 df, p=0.00424 n= 172

> stan1 <- coxph(Surv(start, stop, event) ~ strata(transplant) +
year + year:transplant + age + surgery, heart)

> plot(survfit(stan1), conf.int = T, log = T, lty = c(1, 3),
col = 2:3)

> legend(locator(1), c("before", "after"), lty = c(1, 3),
col = 2:3)

378 Survival Analysis

0 200 400 600 800 1000 1200 1400

0.
1

0.
5

1.
0

before
after

•

••
•

••

•

•

•

•

•

•

•

•

•

•

•

•
•

•

•

•

•

•

•
•

•

•

•

•

•

•

•

•

•

•
•

•

•

•

•

• •
••

•

•

•

•

•

•

•

•

•

•

•

••

•

•

•

•

•

••

•
•
•

•

•

•

•

•

••

•

•

•

•

•

•

•

•
•

•

•

•

•

•

•

•

• •

•
•

•
••

•

•••

•

year

m
ar

tin
ga

le
 r

es
id

ua
l

0 1 2 3 4 5 6

-2
-1

0
1

Figure 13.9: Plots for the Stanford heart transplant study. Left: log survivor curves and
confidence limits for the two groups. Right: martingale residuals against calendar time.

> attach(heart)
> plot(year[transplant==0], residuals(stan1, collapse = id),

xlab = "year", ylab = "martingale residual")
> lines(lowess(year[transplant == 0],

residuals(stan1, collapse = id)))
> sresid <- resid(stan1, type = "dfbeta", collapse = id)
> detach()
> -100 * sresid %*% diag(1/stan1$coef)

This analysis suggests that survival rates over the study improvedprior to trans-
plantation, which Kalbfleisch & Prentice suggest could be due to changes in
recruitment. The diagnostic plots of Figure 13.9 show nothing amiss. The
collapse argument is needed as those patients who received transplants are
treated as two cases, and we need the residual per patient.

Now consider predicting the survival of future patient aged 50 on 1 October
1971 with prior surgery, transplanted after six months.

Survivor curve for the "average" subject
> summary(survfit(stan))
follow-up for two years
> stan2 <- data.frame(start = c(0, 183), stop= c(183, 2*365),

event = c(0, 0), year = c(4, 4), age = c(50, 50) - 48,
surgery = c(1, 1), transplant = c(0, 1))

> summary(survfit(stan, stan2, individual = T,
conf.type = "log-log"))

time n.risk n.event survival std.err lower 95% CI upper 95% CI
....

165 43 1 0.654 0.11509 0.384 0.828
186 41 1 0.643 0.11602 0.374 0.820
188 40 1 0.632 0.11697 0.364 0.812
207 39 1 0.621 0.11790 0.353 0.804
219 38 1 0.610 0.11885 0.343 0.796
263 37 1 0.599 0.11978 0.332 0.788

13.4 Further Examples 379

285 35 2 0.575 0.11524 0.325 0.762
308 33 1 0.564 0.11618 0.314 0.753
334 32 1 0.552 0.11712 0.302 0.744
340 31 1 0.540 0.11799 0.291 0.735
343 29 1 0.527 0.11883 0.279 0.725
584 21 1 0.511 0.12018 0.263 0.713
675 17 1 0.492 0.12171 0.245 0.699

The argumentindividual = T is needed to avoid averaging the two cases
(which are the same individual).

Australian AIDS survival

The data on the survival of AIDS patients within Australia are of unusually high
quality within that field, and jointly with Dr Patty Solomon we have studied sur-
vival up to 1992.6 There are a large number of difficulties in defining survival
from AIDS (acquired immunodeficiency syndrome), in part because as a syn-
drome its diagnosis is not clear-cut and has almost certainly changed with time.
(To avoid any possible confusion, we are studying survival from AIDS and not
the HIV infection which is generally accepted as the cause of AIDS.)

The major covariates available were the reported transmission category, and
the state or territory within Australia. The AIDS epidemic had started in New
South Wales and then spread, so the stateshave different profiles of cases in calen-
dar time. A factor that was expected to be important in survival is the widespread
availability of zidovudine (AZT) to AIDS patients from mid-1987 which has en-
hanced survival, and the use of zidovudine for HIV-infected patients from mid-
1990, which it was thought might delay theonset of AIDS without necessarily
postponing death further.

The transmission categories were:

hs male homosexual or bisexual contact
hsid ashs and also intravenous drug user
id female or heterosexual male intravenous drug user
het heterosexual contact
haem haemophilia or coagulation disorder
blood receipt of blood, blood components or tissue
mother mother with or at risk of HIV infection
other other or unknown

The data file gave data on all patients whose AIDS status was diagnosed prior
to January 1992, with their status then. Since there is a delay in notification of
death, some deaths in late 1991 would not have been reported and we adjusted
the endpoint of the study to 1 July 1991. A total of 2 843 patients were included,
of whom about 1 770 had died by the end date. The file contained an ID number,
the dates of first diagnosis, birth and death (if applicable), as well as the state
and the coded transmission category. We combined the statesACT and NSW (as

6We are grateful to the Australian National Centre in HIV Epidemiology and Clinical Research for
making these data available to us.

380 Survival Analysis

Australian Capital Territory is a small enclave within New South Wales), and
to maintain confidentiality the dates have been jittered and the smallest states
combined. Only the transformed fileAids2 is included in our library.

As there are a number of patients who are diagnosed at (strictly, after) death,
there are a number of zero survivals. The software used to have problems with
these, so all deaths were shifted by 0.9 days to occur after other events the same
day. To transformAids2 to a form suitable for time-dependent-covariateanalysis
we used

time.depend.covar <- function(data) {
id <- row.names(data); n <- length(id)
events <- c(0, 10043, 11139, 12053) # julian days
crit1 <- matrix(events[1:3], n, 3 ,byrow = T)
crit2 <- matrix(events[2:4], n, 3, byrow = T)
diag <- matrix(data$diag,n,3); death <- matrix(data$death,n,3)
incid <- (diag < crit2) & (death >= crit1); incid <- t(incid)
indr <- col(incid)[incid]; indc <- row(incid)[incid]
ind <- cbind(indr, indc); idno <- id[indr]
state <- data$state[indr]; T.categ <- data$T.categ[indr]
age <- data$age[indr]; sex <- data$sex[indr]
late <- indc - 1
start <- t(pmax(crit1 - diag, 0))[incid]
stop <- t(pmin(crit2, death + 0.9) - diag)[incid]
status <- matrix(as.numeric(data$status),n,3)-1 # 0/1
status[death > crit2] <- 0; status <- status[ind]
levels(state) <- c("NSW", "Other", "QLD", "VIC")
levels(T.categ) <- c("hs", "hsid", "id", "het", "haem",

"blood", "mother", "other")
levels(sex) <- c("F", "M")
data.frame(idno, zid=factor(late), start, stop, status,

state, T.categ, age, sex)
}
Aids3 <- time.depend.covar(Aids2)

The factorzid indicates whether the patient islikely to have received zidovudine
at all, and if so whether it might have been administered during HIV infection.

Our analysis was based on a proportional hazards model that allowed a pro-
portional change in hazard from 1 July 1987 to 30 June 1990 and another from 1
July 1990; the results show a halving of hazard from 1 July 1987 but a nonsignif-
icant change in 1990.

> attach(Aids3)
> aids.cox <- coxph(Surv(start, stop, status)

~ zid + state + T.categ + sex + age, data = Aids3)
> summary(aids.cox)

coef exp(coef) se(coef) z p
zid1 -0.69087 0.501 0.06578 -10.5034 0.0e+00
zid2 -0.78274 0.457 0.07550 -10.3675 0.0e+00

stateOther -0.07246 0.930 0.08964 -0.8083 4.2e-01

13.4 Further Examples 381

months since diagnosis

0 20 40 60

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

NSW
Other
QLD
VIC

Figure 13.10: Survival of AIDS patients in Australia by state.

stateQLD 0.18315 1.201 0.08752 2.0927 3.6e-02
stateVIC 0.00464 1.005 0.06134 0.0756 9.4e-01

T.categhsid -0.09937 0.905 0.15208 -0.6534 5.1e-01
T.categid -0.37979 0.684 0.24613 -1.5431 1.2e-01
T.categhet -0.66592 0.514 0.26457 -2.5170 1.2e-02
T.categhaem 0.38113 1.464 0.18827 2.0243 4.3e-02
T.categblood 0.16856 1.184 0.13763 1.2248 2.2e-01

T.categmother 0.44448 1.560 0.58901 0.7546 4.5e-01
T.categother 0.13156 1.141 0.16380 0.8032 4.2e-01

sex 0.02421 1.025 0.17557 0.1379 8.9e-01
age 0.01374 1.014 0.00249 5.5060 3.7e-08

....
Likelihood ratio test= 185 on 14 df, p=0

The effect ofsex is nonsignificant, and so dropped in further analyses. There is
no detected difference in survival during 1990.

Note that Queensland has a significantly elevated hazard relative to New South
Wales (which has over 60% of the cases), and that the intravenous drug users
have a longer survival, whereas those infected via blood or blood products have a
shorter survival, relative to the first category who form 87% of the cases. We can
use stratified Cox models to examine these effects (Figures 13.10 and 13.11).

> aids1.cox <- coxph(Surv(start, stop, status)
~ zid + strata(state) + T.categ + age, data = Aids3)

> (aids1.surv <- survfit(aids1.cox))
n events mean se(mean) median 0.95LCL 0.95UCL

state=NSW 1780 1116 639 17.6 481 450 509
state=Other 249 142 658 42.2 525 453 618

state=QLD 226 149 519 33.5 439 360 568
state=VIC 588 355 610 26.3 508 476 574

> plot(aids1.surv, mark.time = F, lty = 1:4, col = 2:5,
xscale = 365.25/12, xlab = "months since diagnosis")

382 Survival Analysis

months since diagnosis

0 20 40 60

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

hs
hsid
id
het

months since diagnosis

0 20 40 60

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

hs
haem
blood
other

Figure 13.11: Survival of AIDS patients in Australia by transmission category.

> legend(locator(1), levels(state), lty = 1:4, col = 2:5)

> aids2.cox <- coxph(Surv(start, stop, status)
~ zid + state + strata(T.categ) + age, data = Aids3)

> (aids2.surv <- survfit(aids2.cox))
n events mean se(mean) median 0.95LCL 0.95UCL

T.categ=hs 2465 1533 633 15.6 492 473.9 515
T.categ=hsid 72 45 723 86.7 493 396.9 716
T.categ=id 48 19 653 54.3 568 447.9 NA
T.categ=het 40 17 775 57.3 897 842.9 NA
T.categ=haem 46 29 431 53.9 337 252.9 657
T.categ=blood 94 76 583 86.1 358 267.9 507

T.categ=mother 7 3 395 92.6 655 15.9 NA
T.categ=other 70 40 421 40.7 369 300.9 712

> par(mfrow = c(1, 2))
> plot(aids2.surv[1:4], mark.time = F, lty = 1:4, col = 2:5,

xscale = 365.25/12, xlab = "months since diagnosis")
> legend(locator(1), levels(T.categ)[1:4], lty = 1:4, col = 2:5)

> plot(aids2.surv[c(1, 5, 6, 8)], mark.time = F, lty = 1:4,
col = 2:5, xscale = 365.25/12, xlab = "months since diagnosis")

> legend(locator(1), levels(T.categ)[c(1, 5, 6, 8)],
lty = 1:4, col = 2:5)

We now consider the possible non-linear dependence of log-hazard onage.
First we consider the martingale residual plot.

cases <- diff(c(0,idno)) != 0
aids.res <- residuals(aids.cox, collapse = idno)
scatter.smooth(age[cases], aids.res, xlab = "age",

ylab = "martingale residual")

This shows a slight rise in residual with age over 60, but no obvious effect. The
next step is to augment a linear term in age by a step function, with breaks chosen

13.4 Further Examples 383

from prior experience. We set the base level to be the 31–40 age group by using
relevel , which re-orders the factor levels.

age2 <- cut(age, c(-1, 15, 30, 40, 50, 60, 100))
c.age <- factor(as.numeric(age2), labels = c("0-15", "16-30",

"31-40", "41-50", "51-60", "61+"))
table(c.age)
0-15 16-30 31-40 41-50 51-60 61+
39 1022 1583 987 269 85

c.age <- relevel(c.age, "31-40")

summary(coxph(Surv(start, stop, status) ~ zid + state
+ T.categ + age + c.age, data = Aids3))
....

coef exp(coef) se(coef) z p
....

age 0.009218 1.009 0.00818 1.1266 0.2600
c.age0-15 0.499093 1.647 0.36411 1.3707 0.1700

c.age16-30 -0.019631 0.981 0.09592 -0.2047 0.8400
c.age41-50 -0.004818 0.995 0.09714 -0.0496 0.9600
c.age51-60 0.198136 1.219 0.18199 1.0887 0.2800

c.age61+ 0.413690 1.512 0.30821 1.3422 0.1800
....

Likelihood ratio test= 193 on 18 df, p=0
....

detach()

which is not a significant improvement in fit. Beyond this we could fit a smooth
function of age via splines, but to save computational time we deferred this to
the parametric analysis, which we now consider. From the survivor curves the
obvious model is the Weibull. Since this is both a proportional hazards model and
an accelerated-life model, we can include the effect of the introduction of zidovu-
dine by assuming a doubling of survival after July 1987. With ‘time’ computed
on this basis we find

make.aidsp <- function(){
cutoff <- 10043
btime <- pmin(cutoff, Aids2$death) - pmin(cutoff, Aids2$diag)
atime <- pmax(cutoff, Aids2$death) - pmax(cutoff, Aids2$diag)
survtime <- btime + 0.5*atime
status <- as.numeric(Aids2$status)
data.frame(survtime, status = status - 1, state = Aids2$state,
T.categ = Aids2$T.categ, age = Aids2$age, sex = Aids2$sex)

}

Aidsp <- make.aidsp()
aids.wei <- survReg(Surv(survtime + 0.9, status) ~ state

+ T.categ + sex + age, data = Aidsp)
summary(aids.wei, cor = F)

....
Coefficients:

384 Survival Analysis

age

ex
pe

ct
ed

 li
fe

tim
e

(y
ea

rs
)

0 20 40 60 80

0.
0

0.
5

1.
0

1.
5

2.
0

Figure 13.12: Predicted survival versus age of aNSW hs patient (solid line), with point-
wise 95% confidence intervals (dashed lines) and a rug of all observed ages.

Value Std. Error z p
(Intercept) 6.41825 0.2098 30.5970 1.34e-205
stateOther 0.09387 0.0931 1.0079 3.13e-01
stateQLD -0.18213 0.0913 -1.9956 4.60e-02
stateVIC -0.00750 0.0637 -0.1177 9.06e-01

T.categhsid 0.09363 0.1582 0.5918 5.54e-01
T.categid 0.40132 0.2552 1.5727 1.16e-01
T.categhet 0.67689 0.2744 2.4667 1.36e-02
T.categhaem -0.34090 0.1956 -1.7429 8.14e-02
T.categblood -0.17336 0.1429 -1.2131 2.25e-01

T.categmother -0.40186 0.6123 -0.6563 5.12e-01
T.categother -0.11279 0.1696 -0.6649 5.06e-01

sex -0.00426 0.1827 -0.0233 9.81e-01
age -0.01374 0.0026 -5.2862 1.25e-07

Log(scale) 0.03969 0.0193 2.0572 3.97e-02

Scale= 1.04

Note that we continue to avoid zero survival. This shows good agreement with
the parameters for the Cox model. The parameterα (the reciprocal of the scale)
is close to one. For practical purposes the exponential is a good fit, and the pa-
rameters are little changed.

We also considered parametric non-linear functions ofage by using a spline
function. We use the P-splines of Eilers and Marx (1996) as this is implemented
in both survReg and coxph; it can be seen as a convenient approximation to
smoothing splines. For useful confidence intervals we include the constant term
in the predictions, which are for aNSW hs patient. Note that for valid prediction
with pspline the range of the new data must exactly match that of the old data.

> survReg(Surv(survtime + 0.9, status) ~ state + T.categ
+ age, data = Aidsp)
....

Scale= 1.0405

13.4 Further Examples 385

Loglik(model)= -12111 Loglik(intercept only)= -12140

> (aids.ps <- survReg(Surv(survtime + 0.9, status) ~ state
+ T.categ + pspline(age, df=6), data = Aidsp))
....

coef se(coef) se2 Chisq DF
(Intercept) 4.83189 0.82449 0.60594 34.34 1.00

....
pspline(age, df = 6), lin -0.01362 0.00251 0.00251 29.45 1.00
pspline(age, df = 6), non 9.82 5.04

p
....

pspline(age, df = 6), lin 5.8e-08
pspline(age, df = 6), non 8.3e-02

....
> zz <- predict(aids.ps, data.frame(

state = factor(rep("NSW", 83), levels = levels(Aidsp$state)),
T.categ = factor(rep("hs", 83), levels = levels(Aidsp$T.categ)),
age = 0:82), se = T, type = "linear")

> plot(0:82, exp(zz$fit)/365.25, type = "l", ylim = c(0, 2),
xlab = "age", ylab = "expected lifetime (years)")

> lines(0:82, exp(zz$fit+1.96*zz$se.fit)/365.25, lty = 3, col = 2)
> lines(0:82, exp(zz$fit-1.96*zz$se.fit)/365.25, lty = 3, col = 2)
> rug(Aidsp$age + runif(length(Aidsp$age), -0.5, 0.5),

ticksize = 0.015)

The results (Figure 13.12) suggest that a non-linear in age term is not worthwhile,
although there are too few young people to be sure. We predict log-time to get
confidence intervals on that scale.

Chapter 14

Time Series Analysis

There are now many books on time series. Our philosophy and notation are close
to those of the applied book by Diggle (1990) (from which some of our exam-
ples are taken). Brockwell and Davis (1991) and Priestley (1981) provide more
theoretical treatments, and Bloomfield (2000) and Priestley are particularly thor-
ough on spectral analysis. Brockwell and Davis (1996) and Shumway and Stoffer
(2000) provide readable introductions to time series theory and practice.

Functions for time series have been included inS for some years, and further
time-series support was one of the earliest enhancements ofS-PLUS. In S-PLUS
regularly spaced time series are of class"rts", and are created by the function
rts. (R uses class"ts" , and most of its time-series functions are in package
ts.) S-PLUS has a further set of time series classes1 aimed at event- and calendar-
based series. These supersede the older classescts for series of dates andits
for irregularly spaced series, but like them are only useful for manipulating and
plotting such time series; no new analysis functions are provided.

Our first running example islh, a series of 48 observations at 10-minute
intervals on luteinizing hormone levels for a human female taken from Diggle
(1990). Printing it inS-PLUS gives

> lh
1: 2.4 2.4 2.4 2.2 2.1 1.5 2.3 2.3 2.5 2.0 1.9 1.7 2.2 1.8

15: 3.2 3.2 2.7 2.2 2.2 1.9 1.9 1.8 2.7 3.0 2.3 2.0 2.0 2.9
29: 2.9 2.7 2.7 2.3 2.6 2.4 1.8 1.7 1.5 1.4 2.1 3.3 3.5 3.5
43: 3.1 2.6 2.1 3.4 3.0
start deltat frequency

1 1 1

which shows the attribute vectortspar of the class"rts", which is used for
plotting and other computations. The components are thestart, the label for
the first observation,deltat (∆t), the increment between observations and
frequency, the reciprocal ofdeltat. Note that the final index can be deduced
from the attributes and length. Any ofstart, deltat, frequency and end
can be specified in the call torts, provided they are specified consistently.

Our second example is a seasonal series. Our datasetdeaths gives monthly
deaths in the UK from a set of common lung diseases for the years 1974 to 1979,

1See the help ontimeSeries and signalSeries .

387

388 Time Series Analysis

from Diggle (1990). This prints as

> deaths
Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

1974: 3035 2552 2704 2554 2014 1655 1721 1524 1596 2074 2199 2512
1975: 2933 2889 2938 2497 1870 1726 1607 1545 1396 1787 2076 2837

....
start deltat frequency
1974 0.083333 12

Notice how it is laid out by years. Quarterly data are also treated specially.
There is a series of functions to extract aspects of the time base:

> tspar(deaths) # tsp(deaths) in R
start deltat frequency
1974 0.083333 12

> start(deaths)
[1] 1974
> end(deaths)
[1] 1979.9
> frequency(deaths)
frequency

12
> cycle(deaths)

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
1974: 1 2 3 4 5 6 7 8 9 10 11 12
1975: 1 2 3 4 5 6 7 8 9 10 11 12

....
start deltat frequency
1974 0.083333 12

Time series can be plotted byplot, but the functionsts.plot, ts.lines
and ts.points are provided for time-series objects. All can plot several re-
lated series together. For example, thedeaths series is the sum of two series
mdeaths and fdeaths for males and females. Figure 14.1 was created by

> par(mfrow = c(2, 2))
> ts.plot(lh)
> ts.plot(deaths, mdeaths, fdeaths,

lty = c(1, 3, 4), xlab = "year", ylab = "deaths")

The functionsts.union and ts.intersect bind together multiple time
series. The time axes are aligned and only observations at times that appear in all
the series are retained withts.intersect; with ts.union the combined series
covers the whole range of the components, possibly asNA values.

The functionwindow extracts a sub-series of a single or multiple time series,
by specifyingstart and / orend.

The functionlag shifts the time axis of a series back byk positions, default
one. Thuslag(deaths, k = 3) is the series of deaths shifted one quarter into
the past. This can cause confusion, as most people think of lags as shifting time
and not the series; that is, the current value of a series lagged by one year is last
year’s, not next year’s.

14.1 Second-Order Summaries 389

Time

0 10 20 30 40

1.
5

2.
0

2.
5

3.
0

3.
5

year

de
at

hs

1974 1975 1976 1977 1978 1979 1980

10
00

20
00

30
00

40
00

Figure 14.1: Plots by ts.plot of lh and the three series on deaths by lung diseases. In
the right-hand plot the dashed series is for males, the long dashed series for females and
the solid line for the total.

The functiondiff takes the difference between a series and its lagged values,
and so returns a series of lengthn − k with values lost from the beginning (if
k > 0) or end. (The argumentlag specifiesk and defaults to one. Note that
the lag is used in the usual sense here, sodiff(deaths, lag = 3) is equal
to deaths - lag(deaths, k = -3) !) The function diff has an argument
differences which causes the operation to be iterated. For later use, we denote
the dth difference of seriesXt by ∇dXt, and thedth difference at lags by
∇d

sXt.
The (generic) functionaggregate can be used to change the frequency of

the time base. For example, to obtain quarterly sums or annual means ofdeaths:

> aggregate(deaths, 4, sum)
1 2 3 4

1974: 8291 6223 4841 6785
....

> aggregate(deaths, 1, mean)
1974: 2178.3 2175.1 2143.2 1935.8 1995.9 1911.5

Each of the functionslag, diff and aggregate can also be applied to
multiple time series objects formed byts.union or ts.intersect.

14.1 Second-Order Summaries

The theory for time series is based on the assumption of second-order station-
arity after removing any trends (which will include seasonal trends). Thus sec-
ond moments are particularly important in the practical analysis of time series.
We assume that the seriesXt runs throughout time, but is observed only for
t = 1, . . . , n. We use the notationsXt andX(t) interchangeably. The series has
a meanµ, often taken to be zero, and the covariance and correlation

γt = cov(Xt+τ , Xτ), ρt = corr(Xt+τ , Xτ)

390 Time Series Analysis

do not depend onτ . The covariance is estimated fort > 0 from the n − t
observed pairs(X1+t, X1), . . . , (Xn, Xn−t). If we just take the standard cor-
relation or covariance of these pairs we use different estimates of the mean and
variance for each of the subseriesX1+t, . . . , Xn and X1, . . . , Xn−t, whereas
under our assumption of second-order stationarity these have the same mean and
variance. This suggests the estimators

ct =
1
n

min(n−t,n)∑
s=max(1,−t)

[Xs+t −X][Xs −X], rt =
ct
c0

Note that we use divisorn even though there aren− |t| terms. This is to ensure
that the sequence(ct) is the covariance sequence of some second-order stationary
time series.2 Note that all ofγ, ρ, c, r are symmetric functions (γ−t = γt and so
on).

The functionacf computes and by default plots the sequences(ct) and (rt),
known as theautocovariance and autocorrelation functions. The argumenttype
controls which is used, and defaults to the correlation.

Our definitions are easily extended to several time series observed over the
same interval. Let

γij(t) = cov(Xi(t+ τ), Xj(τ))

cij(t) =
1
n

min(n−t,n)∑
s=max(1,−t)

[Xi(s+ t)−Xi][Xj(s)−Xj]

which are not symmetric int for i �= j. These forms are used byacf for
multiple time series:

acf(lh)
acf(lh, type = "covariance")
acf(deaths)
acf(ts.union(mdeaths, fdeaths))

The type may be abbreviated in any unique way, for examplecov. The output is
shown in Figures 14.2 and 14.3. Note that approximate 95% confidence limits are
shown for the autocorrelation plots; these are for an independent series for which
ρt = I(t = 0). As with a time seriesa priori one is expecting autocorrelation,
these limits must be viewed with caution. In particular, if anyρt is non-zero, all
the limits are invalid.

Note that for a series with a non-unit frequency such asdeaths the lags
are expressed in the basic time unit, here years. The functionacf chooses the
number of lags to plot unless this is specified by the argumentlag.max. Plotting
can be suppressed by setting argumentplot = F. The function returns a list that
can be plotted subsequently byacf.plot (S-PLUS) or plot.acf (R).

The plots of thedeaths series show the pattern typical of seasonal series, and
the autocorrelations do not damp down for large lags. Note how one of the cross-
series is only plotted for negative lags. We havecji(t) = cij(−t), so the cross

2That is, the covariance sequence is positive-definite.

14.1 Second-Order Summaries 391

Lag

A
C

F

0 5 10 15

-0
.2

0.
2

0.
6

1.
0

 Series : lh

Lag

A
C

F

0 5 10 15

0.
0

0.
1

0.
2

0.
3

 Series : lh

Lag

A
C

F

0.0 0.5 1.0 1.5

-0
.5

0.
0

0.
5

1.
0

 Series : deaths

Figure 14.2: acf plots for the serieslh and deaths. The top row shows the autocorre-
lation (left) and autocovariance (right).

 mdeaths

A
C

F

0.0 0.2 0.4 0.6 0.8 1.0 1.2

-0
.5

0.
0

0.
5

1.
0

 mdeaths and fdeaths

0.0 0.2 0.4 0.6 0.8 1.0 1.2

-0
.5

0.
0

0.
5

1.
0

 fdeaths and mdeaths

Lag

A
C

F

-1.2 -1.0 -0.8 -0.6 -0.4 -0.2 0.0

-0
.5

0.
0

0.
5

1.
0

 fdeaths

Lag0.0 0.2 0.4 0.6 0.8 1.0 1.2

-0
.5

0.
0

0.
5

1.
0

Multivariate Series : ts.union(mdeaths, fdeaths)

Figure 14.3: Autocorrelation plots for the multiple time series of male and female deaths.

392 Time Series Analysis

terms are needed for all lags, whereas the terms for a single series are symmetric
about 0. The labels are confusing; the plot in row 2 column 1 showsc12 for
negative lags, a reflection of the plot ofc21 for positive lags.

Spectral analysis

The spectral approach to second-order properties is better able to separate short-
term and seasonal effects, and also has a sampling theory that is easier to use for
non-independent series.

We only give a brief treatment; extensive accounts are given by Bloomfield
(2000) and Priestley (1981). Be warned that accounts differ in their choices of
where to put the constants in spectral analysis; we have tried to followS-PLUS
as far as possible.

The covariance sequence of a second-order stationary time series can always
be expressed as

γt =
1
2π

∫ π

−π

eiωt dF (ω)

for thespectrum F , a finite measure on(−π, π]. Under mild conditions that ex-
clude purely periodic components of the series, the measure has a density known
as thespectral density f , so

γt =
1
2π

∫ π

−π

eiωtf(ω) dω =
∫ 1/2

−1/2

e2πiωf tf(2πωf) dωf (14.1)

where in the first form the frequencyω is in units of radians/time and in the
second formωf is in units of cycles/time, and in both cases time is measured in
units of ∆t. If the time series object has afrequency greater than one and time
is measured in the base units, the spectral density will be divided byfrequency.

The Fourier integral can be inverted to give

f(ω) =
∞∑
−∞

γte
−iωt = γ0

[
1 + 2

∞∑
1

ρt cos(ωt)

]
(14.2)

By the symmetry ofγt, f(−ω) = f(ω), and we need only considerf on
(0, π). Equations (14.1) and (14.2) are the first place the differing constants ap-
pear. Bloomfield and Brockwell & Davis omit the factor1/2π in (14.1) which
therefore appears in (14.2).

The basic tool in estimating the spectral density is theperiodogram. For a
frequencyω we effectively compute the squared correlation between the series
and the sine/cosine waves of frequencyω by

I(ω) =

∣∣∣∣∣
n∑

t=1

e−iωtXt

∣∣∣∣∣
2/
n =

1
n

[{ n∑
t=1

Xt sin(ωt)
}2

+
{ n∑

t=1

Xt cos(ωt)
}2

]
(14.3)

14.1 Second-Order Summaries 393

Frequency 0 corresponds to the mean, which is normally removed. The frequency
π corresponds to a cosine series of alternating±1 with no sine series.S-PLUS
appears to divide by thefrequency to match its view of the spectral density.

The periodogram is related to the autocovariance function by

I(ω) =
∞∑
−∞

cte
−iωt = c0

[
1 + 2

∞∑
1

rt cos(ωt)

]

ct =
1
2π

∫ π

−π

eiωtI(ω) dω

and so conveys the same information. However, each form makes some of that
information easier to interpret.

Asymptotic theory shows thatI(ω) ∼ f(ω)E whereE has a standard expo-
nential distribution, except forω = 0 andω = π. Thus if I(ω) is plotted on log
scale, the variation about the spectral density is the same for allω ∈ (0, π) and is
given by a Gumbel distribution (as that is the distribution oflogE). Furthermore,
I(ω1) and I(ω2) will be asymptotically independent at distinct frequencies. In-
deed ifωk is aFourier frequency of the formωk = 2πk/n, then the periodogram
at two Fourier frequencies will be approximately independent for largen. Thus
although the periodogram itself does not provide a consistent estimator of the
spectral density, if we assume that the latter is smooth, we can average over ad-
jacent independently distributed periodogram ordinates and obtain a much less
variable estimate off(ω). A kernel smoother is used of the form

f̂(ω) =
1
h

∫
K

(
λ− ω
h

)
I(λ) dλ

≈ 2π
nh

∑
k

K

(
ωk − ω
h

)
I(ωk) =

∑
k

gkI(ωk)

for a probability densityK. The parameterh controls the degree of smoothing.
To see its effect we approximate the mean and variance off̂(ω):

var
(
f̂(ω)

)
≈

∑
k

g2
kf(ωk)2 ≈ f(ω)2

∑
k

g2
k ≈

2π
nh
f(ω)2

∫
K(x)2 dx

E
(
f̂(ω)

)
≈

∑
k

gkf(ωk) ≈ f(ω) +
f ′′(ω)

2

∑
k

gk(ωk − ω)2

bias
(
f̂(ω)

)
≈ f ′′(ω)

2
h2

∫
x2K(x) dx

so ash increases the variance decreases but the bias increases. We see that the
ratio of the variance to the squared mean is approximatelyg2 =

∑
k g

2
k. If f̂(ω)

had a distribution proportional toχ2
ν , this ratio would be2/ν, so 2/g2 is re-

ferred to as the equivalent degrees of freedom. Bloomfield andS-PLUS refer to√
2 bias

(
f̂(ω)

)
/f ′′(ω) as thebandwidth, which is proportional toh.

394 Time Series Analysis

frequency

sp
ec

tr
um

0.0 0.1 0.2 0.3 0.4 0.5

-2
0

-1
5

-1
0

-5
0

Series: lh
 Raw Periodogram

 bandwidth= 0.00601405 , 95% C.I. is (-5.87588 , 17.5667)dB
frequency

sp
ec

tr
um

0 1 2 3 4 5 6

30
40

50
60

Series: deaths
 Raw Periodogram

 bandwidth= 0.0481124 , 95% C.I. is (-5.87588 , 17.5667)dB

Figure 14.4: Periodogram plots forlh and deaths.

To understand these quantities, consider a simple moving average over2m+
1 Fourier frequencies centred on a Fourier frequencyω. Then the variance is
f(ω)2/(2m + 1) and the equivalent degrees of freedom are2(2m + 1), as we
would expect on averaging2m+ 1 exponential (orχ2

2) variates. The bandwidth
is approximately

(2m+ 1)2π
n

1√
12

and the first factor is the width of the window in frequency space. (Since
S-PLUS works in cycles rather than radians, the bandwidth is about(2m +
1)/n
√

12 frequency on its scale.) The bandwidth is thus a measure of the size
of the smoothing window, but rather smaller than the effective width.

The workhorse function for spectral analysis isspectrum, which with its
default options computes and plots the periodogram on log scale. The function
spectrum calls spec.pgram to do most of the work. (Note:spectrum by de-
fault removes a linear trend from the seriesbefore estimating the spectral density.)
For our examples we can use:

par(mfrow = c(2, 2))
spectrum(lh)
spectrum(deaths)

with the result shown in Figure 14.4.
Note how elaborately labelled3 the figures are. The plots are on log

scale, in units ofdecibels; that is, the plot is of10 log10 I(ω). The function
spec.pgram returns the bandwidth and (equivalent) degrees of freedom as com-
ponentsbandwidth and df.

The function spectrum also produces smoothed plots, using repeated
smoothing with modified Daniell smoothers (Bloomfield, 2000, p. 157), which
are moving averages giving half weight to the end values of the span. Trial-and-
error is needed to choose the spans (Figures 14.5 and 14.6):

3In S-PLUS; less so inR, even ifoptions(ts.S.compat = TRUE) has been set.

14.1 Second-Order Summaries 395

frequency

sp
ec

tr
um

0.0 0.1 0.2 0.3 0.4 0.5

-2
0

-1
5

-1
0

-5
0

Series: lh
 Raw Periodogram

 bandwidth= 0.00601405 , 95% C.I. is (-5.87588 , 17.5667)dB
frequency

sp
ec

tr
um

0.0 0.1 0.2 0.3 0.4 0.5

-1
5

-1
0

-5

Series: lh
 Smoothed Periodogram

 bandwidth= 0.0159117 , 95% C.I. is (-4.16447 , 8.0508)dB

frequency

sp
ec

tr
um

0.0 0.1 0.2 0.3 0.4 0.5

-1
4

-1
0

-6
-4

-2

Series: lh
 Smoothed Periodogram

 bandwidth= 0.021684 , 95% C.I. is (-3.68829 , 6.45504)dB
frequency

sp
ec

tr
um

0.0 0.1 0.2 0.3 0.4 0.5

-1
4

-1
0

-8
-6

-4
-2

Series: lh
 Smoothed Periodogram

 bandwidth= 0.0300703 , 95% C.I. is (-3.19902 , 5.09714)dB

Figure 14.5: Spectral density estimates forlh.

par(mfrow = c(2, 2))
spectrum(lh)
spectrum(lh, spans = 3)
spectrum(lh, spans = c(3, 3))
spectrum(lh, spans = c(3, 5))

spectrum(deaths)
spectrum(deaths, spans = c(3, 3))
spectrum(deaths, spans = c(3, 5))
spectrum(deaths, spans = c(5, 7))

The spans should be odd integers, and it helps to produce a smooth plot if they
are different and at least two are used. The width of the centre mark on the 95%
confidence interval indicator indicates the bandwidth.

The periodogram has other uses. If there are periodic components in the series
the distribution theory given previously does not apply, but there will be peaks in
the plotted periodogram. Smoothing will reduce those peaks, but they can be seen
quite clearly by plotting thecumulative periodogram

U(ω) =
∑

0<ωk�ω

I(ωk)
/ �n/2�∑

1

I(ωk)

396 Time Series Analysis

frequency

sp
ec

tr
um

0 1 2 3 4 5 6

30
40

50
60

Series: deaths
 Raw Periodogram

 bandwidth= 0.0481124 , 95% C.I. is (-5.87588 , 17.5667)dB
frequency

sp
ec

tr
um

0 1 2 3 4 5 6

30
35

40
45

50
55

Series: deaths
 Smoothed Periodogram

 bandwidth= 0.173472 , 95% C.I. is (-3.68829 , 6.45504)dB

frequency

sp
ec

tr
um

0 1 2 3 4 5 6

35
40

45
50

Series: deaths
 Smoothed Periodogram

 bandwidth= 0.240563 , 95% C.I. is (-3.19902 , 5.09714)dB
frequency

sp
ec

tr
um

0 1 2 3 4 5 6

35
40

45
50

Series: deaths
 Smoothed Periodogram

 bandwidth= 0.363242 , 95% C.I. is (-2.68553 , 3.90889)dB

Figure 14.6: Spectral density estimates fordeaths.

againstω. The cumulative periodogram is also very useful as a test of whether a
particular spectral density is appropriate, as if we replaceI(ω) by I(ω)/f(ω),
U(ω) should be a straight line. Furthermore, asymptotically, the maximum devi-
ation from that straight line has a distribution given by that of the Kolmogorov–
Smirnov statistic, with a 95% limit approximately1.358/[

√
m+0.11+0.12/

√
m]

wherem = �n/2� is the number of Fourier frequencies included. This is par-
ticularly useful for a residual series withf constant in testing if the series is
uncorrelated.

We wrote a functioncpgram to plot the cumulative periodogram: the results
for our examples are shown in Figure 14.7, with 95% confidence bands.

cpgram(lh)
cpgram(deaths)

The distribution theory can be made more accurate, and the peaks made
sharper, bytapering the de-meaned series (Bloomfield, 2000). The magnitude
of the first α and lastα of the series is tapered down towards zero by a cosine
bell; that is,Xt is replaced by

X ′
t =

 (1− cos π(t−0.5)
αn)Xt t � αn

Xt αn < t < (1 − α)n
(1− cos π(n−t+0.5)

αn)Xt t � (1 − α)n

14.2 ARIMA Models 397

frequency
0.0 0.1 0.2 0.3 0.4 0.5

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Series: lh

frequency
0 1 2 3 4 5 6

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Series: deaths

Figure 14.7: Cumulative periodogram plots forlh and deaths.

The proportionα is controlled by the parametertaper of spec.pgram, and
defaults to 10%. It should rarely need to be altered. (The taper function
spec.taper can be called directly if needed.) Tapering does increase the vari-
ance of the periodogram and hence the spectral density estimate, by about 12%
for the default taper, but it will decrease the bias near peaks very markedly, if
those peaks are not at Fourier frequencies.

14.2 ARIMA Models

In the late 1960s Box and Jenkins advocated a methodology for time series based
on finite-parameter models for the second-order properties, so this approach is
often named after them. Letεt denote a series of uncorrelated random variables
with mean zero and varianceσ2. A moving average process of orderq (MA(q))
is defined by

Xt =
q∑
0

βjεt−j (14.4)

an autoregressive process of orderp (AR(p)) is defined by

Xt =
p∑
1

αiXt−i + εt (14.5)

and an ARMA(p, q) process is defined by

Xt =
p∑
1

αiXt−i +
q∑
0

βjεt−j (14.6)

Note that we do not need bothσ2 andβ0 for a MA(q) process, and we take
β0 = 1. Some authors put the regression terms of (14.5) and (14.6) on the left-
hand side and reverse the sign ofαi. Any of these processes can be given mean
µ by addingµ to each observation.

398 Time Series Analysis

An ARIMA(p, d, q) process (where the I stands for integrated) is a process
whosedth difference∇dX is an ARMA(p, q) process.

Equation (14.4) will always define a second-order stationary time series, but
(14.5) and (14.6) need not. They need the condition that all the (complex) roots
of the polynomial

φα(z) = 1− α1z − · · · − αpz
p

lie outside the unit disc. (The functionpolyroot can be used to check this.)
However, there are in general2q sets of coefficients in (14.4) that give the same
second-order properties, and it is conventional to take the set with roots of

φβ(z) = 1 + β1z + · · ·+ βqz
q

on or outside the unit disc. LetB be the backshift or lag operator defined by
BXt = Xt−1. Then we conventionally write an ARMA process as

φα(B)X = φβ(B)ε (14.7)

The functionarima.sim simulates an ARIMA process. Simple usage is of
the form

ts.sim <- arima.sim(list(order = c(1,1,0), ar = 0.7), n = 200)

which generates a series whose first differences follow an AR(1) process.

Model identification

A lot of attention has been paid toidentifying ARMA models, that is choosing
plausible values ofp and q by looking at the second-order properties. Much of
the literature is reviewed by de Gooijeret al. (1985). Nowadays it is computation-
ally feasible to fit all plausible models and choose on the basis of their goodness
of fit, but some simple diagnostics are still useful. For an MA(q) process we have

γk = σ2

q−|k|∑
i=0

βiβi+|k|

which is zero for|k| > q, and this may be discernible from plots of the ACF. For
an AR(p) process the population autocovariances are generally all non-zero, but
they satisfy the Yule–Walker equations

ρk =
p∑
1

αiρk−i, k > 0 (14.8)

This motivates thepartial autocorrelation function. The partial correlation be-
tweenXs and Xs+t is the correlation after regression onXs+1, . . . , Xs+t−1,
and is zero fort > p for an AR(p) process. The PACF can be estimated by
solving the Yule–Walker equations (14.8) withp = t and ρ replaced byr, and
is given by thetype = "partial" option of acf:

14.2 ARIMA Models 399

Lag

P
ar

tia
l A

C
F

5 10 15

-0
.2

0.
0

0.
2

0.
4

0.
6

 Series : lh

Lag

P
ar

tia
l A

C
F

0.2 0.4 0.6 0.8 1.0 1.2 1.4

-0
.4

0.
0

0.
2

0.
4

0.
6

0.
8

 Series : deaths

Figure 14.8: Partial autocorrelation plots for the serieslh and deaths.

acf(lh, type = "partial")
acf(deaths, type = "partial")

as shown in Figure 14.8. These are short series, so no definitive pattern emerges,
but lh might be fitted well by an AR(1) or perhaps an AR(3) process.

FunctionARMAacf will compute the theoretical ACF or PACF for any ARMA
process.

Model fitting

Selection among ARMA processes can be done by Akaike’s information crite-
rion (AIC) which penalizes the deviance by twice the number of parameters; the
model with the smallest AIC is chosen. (All likelihoods considered assume a
Gaussian distribution for the time series.) Fitting can be done by the functions
ar or arima . The output here is fromR.

> (lh.ar1 <- ar(lh, aic = F, order.max = 1))
Coefficients:

1
0.576

Order selected 1 sigma^2 estimated as 0.208
> cpgram(lh.ar1$resid, main = "AR(1) fit to lh")
> (lh.ar <- ar(lh, order.max = 9))
Coefficients:

1 2 3
0.653 -0.064 -0.227

Order selected 3 sigma^2 estimated as 0.196
> lh.ar$aic
[1] 18.30668 0.99567 0.53802 0.00000 1.49036 3.21280
[7] 4.99323 6.46950 8.46258 8.74120

> cpgram(lh.ar$resid, main = "AR(3) fit to lh")

This first fits an AR(1) process and obtains, after removing the mean,

Xt = 0.576Xt−1 + εt

400 Time Series Analysis

frequency

0.0 0.1 0.2 0.3 0.4 0.5

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

AR(1) fit to lh

frequency

0.0 0.1 0.2 0.3 0.4 0.5

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

AR(3) fit to lh

Figure 14.9: Cumulative periodogram plots for residuals of AR models fitted tolh.

with σ̂2 = 0.208. It then uses AIC to choose the order among AR processes,
selectsp = 3 and fits

Xt = 0.653Xt−1 − 0.064Xt−2 − 0.227Xt−3 + εt

with σ̂2 = 0.196 and AIC is reduced by 0.996. (Forar the componentaic is
the excess over the best fitting model, and it starts fromp = 0.) The function
ar by default fits the model by solving the Yule–Walker equations (14.8) withρ
replaced byr. An alternative is to usemethod = "burg"; R also has methods
"ols" and "mle" .

The diagnostic plots are shown in Figure 14.9. The cumulative periodograms
of the residuals show that the AR(1) process has not removed all the correlation.

We can also use the functionarima, in library sectionMASS for S-PLUS and
in packagets for R. This includes a mean in the model (ford = 0) and max-
imizes the full likelihood, whereasS-PLUS has a functionarima.mle which
maximizes a likelihood conditional onp + d starting values for a non-seasonal
series (orn.cond if this is larger) but does not include a mean.

> (lh.arima1 <- arima(lh, order = c(1,0,0)))
Coefficients:

ar1 intercept
0.574 2.413

s.e. 0.116 0.147

sigma^2 = 0.197: log likelihood = -29.38, aic = 64.76
> tsdiag(lh.arima1)
> (lh.arima3 <- arima(lh, order = c(3,0,0)))
Coefficients:

ar1 ar2 ar3 intercept
0.645 -0.063 -0.220 2.393

s.e. 0.139 0.167 0.142 0.096

sigma^2 = 0.179: log likelihood = -27.09, aic = 64.18
> tsdiag(lh.arima3)
> (lh.arima11 <- arima(lh, order = c(1,0,1)))

14.2 ARIMA Models 401

Standardized Residuals

0 10 20 30 40

-1
0

1
2

Lag
0 5 10 15

-0
.2

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

ACF of Residuals

•

•

•
• •

•

• • • •

p values for Ljung-Box statistic

lag

p
va

lu
e

2 4 6 8 10

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Figure 14.10: Diagnostic plots for AR(1) model fitted tolh.

Coefficients:
ar1 ma1 intercept

0.452 0.198 2.410
s.e. 0.136 0.178 0.136

sigma^2 = 0.192: log likelihood = -28.76, aic = 65.52
> tsdiag(lh.arima11)

The diagnostic plots are shown in Figure 14.10. The bottom panel shows the
P values for the Ljung and Box (1978)portmanteau test

QK = n(n+ 2)
K∑
1

(n− k)−1c2k (14.9)

applied to the residuals, for a range of values ofK . Here the maximumK is
set by the parametergof.lag (which defaults to 10). Note that although an
AR(3) model fits better according to AIC, aformal likelihood ratio test of twice
the difference, 4.58, using aχ2

2 distribution is not significant.
Function arima can also include differencing and so fit an ARIMA model

(the middle integer inorder is d).

Forecasting

Forecasting is straightforward using thepredict method:

402 Time Series Analysis

0 10 20 30 40 50 60

1.
0

1.
5

2.
0

2.
5

3.
0

3.
5

Figure 14.11: Forecasts for 12 periods (of 10mins) ahead for the serieslh. The dashed
curves are approximate pointwise 95% confidence intervals.

lh.fore <- predict(lh.arima3, 12)
ts.plot(lh, lh.fore$pred, lh.fore$pred + 2*lh.fore$se,

lh.fore$pred - 2*lh.fore$se)

(see Figure 14.11) but the standard errors do not include the effect of estimating
the mean and the parameters of the ARIMA model.

Spectral densities via AR processes

The spectral density of an ARMA process has a simple form; it is given by

f(ω) = σ2

∣∣∣∣1 +
∑

s βse
−isω

1 −
∑

t αte−itω

∣∣∣∣2 (14.10)

and so we can estimate the spectral density by substituting parameter estimates in
(14.10). It is most usual to fit high-order AR models, both because they can be
fitted rapidly, and since they can produce peaks in the spectral density estimate
by small values of|1 −

∑
αte

−itω| (which correspond to nearly non-stationary
fitted models since there must be roots ofφα(z) neare−iω).

This procedure is implemented by functionspectrum with method = "ar",
which callsspec.ar. Although popular because it often produces visually pleas-
ing spectral density estimates, it is not recommended (for example, Thomson,
1990).

Regression terms

The arima function can also handle regressions with ARIMA residual processes,
that is, models of the form

Xt =
∑

γiZ
(i)
t + ηt, φα(B)∆dηt = φβ(B)ε (14.11)

14.3 Seasonality 403

Time in months

1974 1975 1976 1977 1978 1979 1980

0
10

00
20

00
30

00
40

00

Figure 14.12: stl decomposition for thedeaths series (solid line). The dotted series is
the seasonal component, the dashed series the remainder.

for one or more external time seriesZ(i). Again, the variability of the parameter
estimateŝγ is not taken into account in the computed prediction standard errors.

Some examples are given in Section 14.5.

14.3 Seasonality

For a seasonal series there are two possible approaches. One is to decompose the
series, usually into a trend, a seasonal component and a residual, and to apply
non-seasonal methods to the residual component. The other is to model all the
aspects simultaneously.

Decompositions

The functionstl is based on Clevelandet al. (1990). It is complex, and the
details differ betweenS environments, so the on-line documentation and the ref-
erence should be consulted.

We can extract a strictly periodic component plus a remainder (Figure 14.12).

deaths.stl <- stl(deaths, "periodic")
dsd <- deaths.stl$rem
ts.plot(deaths, deaths.stl$sea, dsd) # R version in scripts

We now complete the analysis of thedeaths series by analysing the non-
seasonal component. The results are shown in Figure 14.13.

> ts.plot(dsd); acf(dsd); acf(dsd, type = "partial")
> spectrum(dsd, span = c(3, 3)); cpgram(dsd)
> dsd.ar <- ar(dsd)

404 Time Series Analysis

Time in months
1974 1975 1976 1977 1978 1979 1980

15
00

20
00

25
00

30
00

Lag

A
C

F

0.0 0.5 1.0 1.5

-0
.2

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

 Series : dsd

Lag

P
ar

tia
l A

C
F

0.2 0.4 0.6 0.8 1.0 1.2 1.4

-0
.2

-0
.1

0.
0

0.
1

0.
2

0.
3

 Series : dsd

frequency

sp
ec

tr
um

0 1 2 3 4 5 6

28
30

32
34

36
38

Series: dsd
 Smoothed Periodogram

 bandwidth= 0.173472 , 95% C.I. is (-3.68829 , 6.45504)dB

frequency
0 1 2 3 4 5 6

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Series: dsd

frequency
0 1 2 3 4 5 6

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

AR(1) residuals

Figure 14.13: Diagnostics for an AR(1) fit to the remainder of anstl decomposition of
the deaths series.

> dsd.ar$order

[1] 1

> dsd.ar$aic

[1] 3.64856 0.00000 1.22644 0.40857 1.75586 3.46936

....

> dsd.ar$ar

....

[1,] 0.27469

> cpgram(dsd.ar$resid, main = "AR(1) residuals")

The large jump in the cumulative periodogram at the lowest (non-zero) Fourier
frequency is caused by the downward trend in the series. The spectrum has
dips at the integers since we have removed the seasonal component and hence
all of the components at that frequency and its multiples. (The dip at frequency
1 is obscured by the peak at the Fourier frequency to its left; see the cumula-
tive periodogram.) The plot of the remainder series shows exceptional values for
February–March 1976 and 1977. As there are only six cycles, the seasonal pattern
is difficult to establish at all precisely.

14.3 Seasonality 405

Lag

A
C

F

0.0 0.5 1.0 1.5 2.0 2.5

-0
.5

0.
0

0.
5

1.
0

 Series : deaths.diff

Lag

P
ar

tia
l A

C
F

0.0 0.5 1.0 1.5 2.0 2.5

-0
.4

-0
.2

0.
0

0.
2

0.
4

 Series : deaths.diff

Figure 14.14: Autocorrelation and partial autocorrelation plots for the seasonally differ-
enceddeaths series. The negative values at lag 12 suggest over-differencing.

Seasonal ARIMA models

The functiondiff allows us to compute differences at lags greater than one, so
for a monthly series the difference at lag 12 is the difference from his time last
year. Lets denote the period, often 12. We can then consider ARIMA models for
the sub-series sampleds apart, for example, for all Januaries. This corresponds to
replacingB by Bs in the definition (14.7). Thus an ARIMA(P,D,Q)s process
is a seasonal version of an ARIMA process. However, we may include both
seasonal and non-seasonal terms, obtaining a process of the form

ΦAR(B)ΦSAR(Bs)Y = ΦMA(B)ΦSMA(Bs)ε, Y = (I−B)d(I−Bs)DX

If we expand this, we see that it is an ARMA(p+ sP, q + sQ) model forYt,
but parametrized in a special way with large numbers of zero coefficients. It can
still be fitted as an ARMA process, andarima can handle models specified in
this form, by specifying the argumentseasonal with the period set. (Examples
follow.)

Perhaps the most commonly used seasonal ARIMA model is the ‘airline
model’, ARIMA((0, 1, 1)× (0, 1, 1)12).

To identify a suitable model for thenottem series we first look at the season-
ally differenced series. Figure 14.14 suggests that this may be over-differencing,
but that the non-seasonal term should be an AR(2).

> deaths.diff <- diff(deaths, 12)
> acf(deaths.diff, 30); acf(deaths.diff, 30, type = "partial")
> ar(deaths.diff)
$order:
[1] 12

....
$aic:
[1] 7.8143 9.5471 5.4082 7.3929 8.5839 10.1979 12.1388
[8] 14.0201 15.7926 17.2504 8.9905 10.9557 0.0000 1.6472

[15] 2.6845 4.4097 6.4047 8.3152

406 Time Series Analysis

this suggests the seasonal effect is still present.
> (deaths.arima1 <- arima(deaths, order = c(2,0,0),

seasonal = list(order = c(0,1,0), period = 12)))
Coefficients:

ar1 ar2
0.118 -0.300

s.e. 0.126 0.125

sigma^2 = 118960: log likelihood = -435.83, aic = 877.66
> tsdiag(deaths.arima1, gof.lag = 30)
suggests need a seasonal AR term
> (deaths.arima2 <- arima(deaths, order = c(2,0,0),

list(order = c(1,0,0), period = 12)))
Coefficients:

ar1 ar2 sar1 intercept
0.801 -0.231 0.361 2062.45

s.e. 0.446 0.252 0.426 133.90

sigma^2 = 116053: log likelihood = -523.16, aic = 1056.3
> tsdiag(deaths.arima2, gof.lag = 30)
> cpgram(resid(deaths.arima2))
> (deaths.arima3 <- arima(deaths, order = c(2,0,0),

list(order = c(1,1,0), period = 12)))
Coefficients:

ar1 ar2 sar1
0.293 -0.271 -0.571

s.e. 0.137 0.141 0.103

sigma^2 = 77145: log likelihood = -425.22, aic = 858.43
> tsdiag(deaths.arima3, gof.lag = 30)

The AR-fitting suggests a model of order 12 (of up to 16) which indicates that
seasonal effects are still present. The diagnostics from the ARIMA((2, 0, 0) ×
(0, 1, 0)12) model suggest problems at lag 12. We tried replacing the differencing
by a seasonal AR term. (The AICs are not comparable, as a differenced model
is not an explanation of all the observations.) The diagnostics suggested that
there was still seasonal structure in the residuals, so we next tried including both
differencing and a seasonal AR term, for which the diagnostics plots look good.

14.4 Nottingham Temperature Data

We now consider a substantial example. The data are mean monthly air temper-
atures (◦F) at Nottingham Castle for the months January 1920–December 1939,
from ‘Meteorology of Nottingham’, inCity Engineer and Surveyor. They also oc-
cur in Anderson (1976). We use the years 1920–1936 to forecast the years 1937–
1939 and compare with the recorded temperatures. The data are seriesnottem
in MASS.

14.4 Nottingham Temperature Data 407

Time in months
1920 1925 1930 1935

30
40

50
60

Time in months
1920 1925 1930 1935

-1
5

-1
0

-5
0

5
10

15

Time in months
1920 1925 1930 1935

-1
5

-1
0

-5
0

5
10

15

Figure 14.15: Plots of the first 17 years of thenottem dataset. Top is the data, middle the
stl decomposition with a seasonal periodic component and bottom thestl decomposi-
tion with a ‘local’ seasonal component.

R versions in the scripts
nott <- window(nottem, end = c(1936, 12))
ts.plot(nott)
nott.stl <- stl(nott, "period")
ts.plot(nott.stl$rem-49, nott.stl$sea,

ylim = c(-15, 15), lty = c(1, 3))
nott.stl <- stl(nott, 5)
ts.plot(nott.stl$rem-49, nott.stl$sea,

ylim = c(-15, 15), lty = c(1, 3))
boxplot(split(nott, cycle(nott)), names = month.abb)

Figures 14.15 and 14.16 show clearly that February 1929 is an outlier. Itis
correct—it was an exceptionally cold month in England. Thestl plots show
that the seasonal pattern is fairly stable over time. Since the value for February
1929 will distort the fitting process, we altered it to a low value for February of
35◦. We first model the remainder series:

> nott[110] <- 35
> nott.stl <- stl(nott, "period")
> nott1 <- nott.stl$rem - mean(nott.stl$rem)
> acf(nott1)
> acf(nott1, type = "partial")
> cpgram(nott1)
> ar(nott1)$aic
[1] 13.67432 0.00000 0.11133 2.07849 3.40381 5.40125

408 Time Series Analysis

30
40

50
60

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

Figure 14.16: Monthly boxplots of the first 17 years of thenottem dataset.

....
> plot(0:23, ar(nott1)$aic, xlab = "order", ylab = "AIC",

main = "AIC for AR(p)")
> (nott1.ar1 <- arima(nott1, order = c(1,0,0)))
Coefficients:

ar1 intercept
0.272 0.005

s.e. 0.067 0.207

sigma^2 = 4.65: log likelihood = -446.31, aic = 898.61
> nott1.fore <- predict(nott1.ar1, 36)
> nott1.fore$pred <- nott1.fore$pred + mean(nott.stl$rem) +

as.vector(nott.stl$sea[1:36])
> ts.plot(window(nottem, 1937), nott1.fore$pred,

nott1.fore$pred+2*nott1.fore$se,
nott1.fore$pred-2*nott1.fore$se, lty = c(3, 1, 2, 2))

> title("via Seasonal Decomposition")

(see Figures 14.17 and 14.18), all of which suggest an AR(1) model. (Remember
that a seasonal term has been removed, so we expect negative correlation at lag
12.) The confidence intervals in Figure14.18 for this methodignore the variability
of the seasonal terms. We can easily make a rough adjustment. Each seasonal
term is approximately the mean of 17 approximately independent observations
(since 0.27212 is negligible). Those observations have variance about4.65/(1−
0.2722) = 5.02 about the seasonal term, so the seasonal term has standard error
about

√
5.02/17 = 0.54, compared to the 2.25 for the forecast. The effect of

estimating the seasonal terms is in thiscase negligible. (Note that the forecast
errors are correlated with errors in the seasonal terms.)

We now move to the Box–Jenkins methodology of using differencing:

> acf(diff(nott,12), 30)
> acf(diff(nott,12), 30, type = "partial")
> cpgram(diff(nott, 12))
> (nott.arima1 <- arima(nott, order = c(1,0,0),

list(order = c(2,1,0), period = 12)))

14.4 Nottingham Temperature Data 409

Lag

A
C

F

0.0 0.5 1.0 1.5

-0
.2

0.
2

0.
6

1.
0

 Series : nott1

Lag

P
ar

tia
l A

C
F

0.5 1.0 1.5

-0
.1

0.
0

0.
1

0.
2

 Series : nott1

frequency

0 1 2 3 4 5 6

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Series: nott1

•

• •
•

•
•

• •
•

• •
•

•

•
•

•
•

•
•

•
•

•
•

•

AIC for AR(p)

order

A
IC

0 5 10 15 20

0
5

10
15

Figure 14.17: Summaries for the remainder series of thenottem dataset.

Time

1937.0 1937.5 1938.0 1938.5 1939.0 1939.5 1940.0

35
40

45
50

55
60

65

via Seasonal Decomposition

Time

1937.0 1937.5 1938.0 1938.5 1939.0 1939.5 1940.0

40
50

60
70

via Seasonal ARIMA model

Figure 14.18: Forecasts (solid), true values (dashed) and approximate 95% confidence
intervals for thenottem series. The upper plot is via a seasonal decomposition, the lower
plot via a seasonal ARIMA model.

410 Time Series Analysis

 Series : diff(nott, 12) Series : diff(nott, 12)

0 1 2 3 4 5 6

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0 Series: diff(nott, 12)

Figure 14.19: Seasonal ARIMA modelling of thenottem series. The ACF, partial ACF
and cumulative periodogram of the yearly differences.

Coefficients:
ar1 sar1 sar2

0.324 -0.907 -0.323
s.e. 0.069 0.071 0.075

sigma^2 = 5.45: log likelihood = -440.34, aic = 888.68

> tsdiag(nott.arima1, gof.lag = 30)
> (nott.arima2 <- arima(nott, order = c(0,0,2),

list(order = c(0,1,2), period = 12)))

Coefficients:
ma1 ma2 sma1 sma2

0.261 0.160 -1.011 0.245
s.e. 0.071 0.072 0.070 0.068

sigma^2 = 5.06: log likelihood = -435.26, aic = 880.52

> tsdiag(nott.arima2, gof.lag = 30)
> (nott.arima3 <- arima(nott, order = c(1,0,0),

list(order = c(0,1,2), period = 12)))

Coefficients:
ar1 sma1 sma2

0.293 -1.012 0.245
s.e. 0.069 0.070 0.067

sigma^2 = 5.09: log likelihood = -435.93, aic = 879.86

> tsdiag(nott.arima3, gof.lag = 30)
> nott.fore <- predict(nott.arima3, 36)
> ts.plot(window(nottem, 1937), nott.fore$pred,

nott.fore$pred+2*nott.fore$se,
nott.fore$pred-2*nott.fore$se, lty = c(3, 1, 2, 2))

> title("via Seasonal ARIMA model")

The autocorrelation plots (Figure 14.19) suggest a model with seasonal terms, and
either AR or MA models. There is not much to choose between the three models
we tried. The predictions are shown in Figure 14.18.

14.5 Regression with Autocorrelated Errors 411

Beaver 1

time

te
m

pe
ra

tu
re

10 15 20 25

36
.4

36
.8

37
.2

Beaver 2

time

te
m

pe
ra

tu
re

10 15 20 25

37
.0

37
.5

38
.0

Figure 14.20: Plots of temperature (solid) and activity (dashed) for two beavers. The time
is shown in hours since midnight of the first day of observation.

14.5 Regression with Autocorrelated Errors

We touched briefly on the use of regression terms with the functionsarima on
page 402. In this section we consider other ways to useS to study regression with
autocorrelated errors. They are most pertinent when the regression rather than
time-series prediction is of primary interest.

Our main example is taken from Reynolds (1994). She describes a small part
of a study of the long-term temperature dynamics of beaver (Castor canadensis)
in north-central Wisconsin. Body temperature was measured by telemetry every
10 minutes for four females, but data from one period of less than a day for each
of two animals is used there (and here). Columns indicate the day (December
12–13, 1990 and November 3–4, 1990 for the two examples), time (hhmm on
a 24-hour clock), temperature (◦C) and a binary index of activity (0 = animal
inside retreat; 1 = animal outside retreat).

Figure 14.20 shows the two series. The first series has a missing observation
(at 22:20), and this and the pattern of activity suggest that it is easier to start with
beaver 2.

beav1 <- beav1; beav2 <- beav2
attach(beav1)
beav1$hours <- 24*(day-346) + trunc(time/100) + (time%%100)/60
detach(); attach(beav2)
beav2$hours <- 24*(day-307) + trunc(time/100) + (time%%100)/60
detach()
par(mfrow = c(2, 2))
plot(beav1$hours, beav1$temp, type = "l", xlab = "time",

ylab = "temperature", main = "Beaver 1")
usr <- par("usr"); usr[3:4] <- c(-0.2, 8); par(usr = usr)
lines(beav1$hours, beav1$activ, type = "s", lty = 2)
plot(beav2$hours, beav2$temp, type = "l", xlab = "time",

ylab = "temperature", main = "Beaver 2")
usr <- par("usr"); usr[3:4] <- c(-0.2, 8); par(usr = usr)
lines(beav2$hours, beav2$activ, type = "s", lty = 2)

412 Time Series Analysis

Lag

A
C

F

0.0 0.5 1.0 1.5 2.0 2.5

-0
.2

0.
2

0.
6

1.
0

 Series : temp[activ == 0]

Lag

A
C

F

0.0 0.5 1.0 1.5 2.0 2.5

-0
.2

0.
2

0.
6

1.
0

 Series : temp[activ == 1]

Figure 14.21: ACF of the beaver 2 temperature series before and after activity begins.

Beaver 2

Looking at the series before and after activity begins suggests a moderate amount
of autocorrelation, confirmed by the plots in Figure 14.21.

attach(beav2)
temp2 <- rts(temp, start = 8+2/3, frequency = 6, units = "hours")
activ2 <- rts(activ, start = 8+2/3, frequency = 6, units = "hours")
acf(temp2[activ2 == 0]); acf(temp2[activ2 == 1]) # also look at PACFs
ar(temp2[activ2 == 0]); ar(temp2[activ2 == 1])
detach(); rm(temp2, activ2)

Fitting an AR(p) model to each part of the series selectsAR(1) models with
coefficients0.74 and 0.79, so a commonAR(1) model for the residual series
looks plausible.

We can use the functiongls to fit a regression withAR(1) errors.4

> # R: library(nlme)
> beav2.gls <- gls(temp ~ activ, data = beav2,

corr = corAR1(0.8), method = "ML")
> summary(beav2.gls)

....
Correlation Structure: AR(1)
Parameter estimate(s):

Phi
0.87318

Coefficients:
Value Std.Error t-value p-value

(Intercept) 37.192 0.11313 328.75 <.0001
activ 0.614 0.10873 5.65 <.0001

There are some end effects due to the sharp initial rise in temperature:

> summary(update(beav2.gls, subset = 6:100))
....

Correlation Structure: AR(1)

4 gls can use general ARMA error models specified via thecorARMA function.

14.5 Regression with Autocorrelated Errors 413

Parameter estimate(s):
Phi

0.83803
Fixed effects: temp ~ activ

Value Std.Error t-value p-value
(Intercept) 37.250 0.096340 386.65 <.0001

activ 0.603 0.099319 6.07 <.0001

and the REML estimates of the standard errors are somewhat larger.
We can also usearima :

> arima(beav2$temp, c(1, 0, 0), xreg = beav2$activ)
Coefficients:

ar1 intercept beav2$activ
0.873 37.192 0.614

s.e. 0.068 0.119 0.138

sigma^2 = 0.0152: log likelihood = 66.78, aic = -125.55

This computes standard errors from the observed information matrix and not from
the asymptotic formula; the difference is usually small.

Beaver 1

Applying the same ideas to beaver 2, we can select an initial covariance model
based on the observations before the first activity at 17:30. The autocorrelations
again suggest anAR(1) model, whose coefficient is fitted as0.82. We included
as regressors the activity now and 10, 20 and 30 minutes ago.

attach(beav1)
temp1 <- rts(c(temp[1:82], NA, temp[83:114]), start = 9.5,

frequency = 6, units = "hours")
activ1 <- rts(c(activ[1:82], NA, activ[83:114]), start = 9.5,

frequency = 6, units = "hours")
acf(temp1[1:53]) # and also type = "partial"
ar(temp1[1:53])

act <- c(rep(0, 10), activ1)
beav1b <- data.frame(Time = time(temp1), temp = as.vector(temp1),

act = act[11:125], act1 = act[10:124],
act2 = act[9:123], act3 = act[8:122])

detach(); rm(temp1, activ1)
summary(gls(temp ~ act + act1 + act2 + act3,

data = beav1b, na.action = na.omit,
corr = corCAR1(0.82^6, ~Time), method = "ML"))

Correlation Structure: Continuous AR(1)
Formula: ~ Time
Parameter estimate(s):

Phi
0.45557

414 Time Series Analysis

Coefficients:
Value Std.Error t-value p-value

(Intercept) 36.808 0.060973 603.67 <.0001
act 0.246 0.038868 6.33 <.0001
act1 0.159 0.051961 3.06 0.0028
act2 0.150 0.053095 2.83 0.0055
act3 0.097 0.042581 2.27 0.0252

Because there is a missing value, thisis a continuous-time AR process with cor-
relation in units per hour, corresponding to0.877 for a 10-minute lag. We can
also usearima :

> arima(beav1b$temp, c(1, 0, 0), xreg = beav1b[, 3:6])
Coefficients:

ar1 intercept act act1 act2 act3
0.877 36.808 0.246 0.159 0.150 0.097

s.e. 0.052 0.060 0.038 0.052 0.053 0.042

sigma^2 = 0.0068: log likelihood = 118.21, aic = -222.41

Our analysis shows that there is a difference in temperature between activity
and inactivity, and that temperature may build up gradually with activity (which
seems physiologically reasonable). Acaveat is that the apparent outlier at 21:50,
at the start of a period of activity, contributes considerably to this conclusion.

14.6 Models for Financial Series

Most financial time series have characteristics which make ARIMA models
unsuitable. Figure 14.22 shows the closing prices of the S&P 500 index
on trading days throughout the 1990s. Also shown are the ‘daily’ returns,
100 log(Xt/Xt−1) . Note that the returns after non-trading days refer to two or
more days. A characteristic of such series is the occasional large excursions seen
in the returns, and general long-tailed behaviour.

Models for such series fall into two classes,conditional heteroscedasticity
models andstochastic volatility models; both are concisely surveyed by Shephard
(1996). Campbellet al. (1997,§12.2) give an econometric perspective.

Conditional heteroscedasticity models start with Figure 14.23. Whereas the
returns are uncorrelated, their squares have long-range correlations. So one way
to think of the process is as white noise with variance depending on the past
variances (and perhaps past values). We can have

yt = σtεt, σ2
t = α0 + α1y

2
t−1 + · · ·+ αpy

2
t−p

the ARCH model of Engle (1982). This was extended to GARCH(p, q) models,

yt = σtεt, σ2
t = α0 +

p∑
i=1

αiy
2
t−i +

q∑
j=1

βjσ
2
t−j

14.6 Models for Financial Series 415

300

400

500
600
700
800

1000

1990 1992 1994 1996 1998 2000

re
tu

rn
s

(%
)

-6

-4

-2

0

2

4

1990 1992 1994 1996 1998 2000

-8 -6 -4 -2 0 2 4

0.
0

0.
2

0.
4

0.
6

•••
•

• •
•

•

•

•

•
••

•

•
•

•
•••

•

•
••

•

•
• •

•
•• •

•
•

•••

•
••• •

•

•
•

•

•
•

•
••

•
•

••
•

••
•

••••

•

•
•• •••

•••
• •••

•
••

•

•••• •••••

•

•
•• ••

•
•••

•

•

•• •
•

•••
•

• •

•• •

•

•••

• •
•

••• ••
•

••
•

••
••

••
•

•
•

• •
••

•••
•

•
•

•
••

•

•
••

•
•

•

••
•

•

•

•
•

•

•
• •

•

•
• •

•

•
•

••
•

•

•

•

•

••

•
•

•
•

•
•

•

•
••

••

•
•

••
•

•
•

•
•

•

•
•

• •
•

•
•

•
••

•
•

•
•

•

•
••
••••

•
•• •

••
•

•

•
•• •

•
•• •

•
•

•
• •

••
•

•

•
•

•
•

•
• •

•

•

••
•

•
•••

••
•

•
•

•

•
•

•

•

•

•

•
•

•
• • •

•

•
•

•
•

•

•••••

•
• ••

•

•
• • •

•

• •
•

•

• •
•

•

•
•

•••
•

•
•••

••
•

•
•

•
•

••••
•

•

•

•

• •

•
••

•••
• •

•
••

• •• •
•

•
•

•
•

•

•••
• •

•

• • •

•

•

•
•

•
•

• • • ••
••

•
•••
•

•• • ••• ••

•
•••

••••
•

•

•

•

• •
••

•
••• • • ••

•
• •

•
•

• ••••
•

•••
•••

•• •
•

•

•
•

••
•

• •
••

•
• •

•
••••••

•
•

• •
•

••

•

•

•
•

•
•

•
•

••

•

•••
•

•••
••

••
••

•
•

•
•

•

•

•• •
• • ••• •

•
•

•
•

••

•

•
•••

•
•

•
•

•
••

•
•

•
•

• •
•

•
•

•
•

•

•
•• ••

•••
• •

•
• ••

•
• • •

••• •
•

• ••
•

•
•

•
•

•
••

••
•

•
•• •

• • • •
•

•
••• • •

• •
••

••
••

•
•

•
•

•
•

•
•• ••

••
••••

•
•

•
• ••• •

•
•

•
•

•

•
•

•
•• •

• •• •
•

•••
••

•••••••
••• • •••

•
•

••
• •• ••

•••••
• •

•
•

•
••

•
•

•
••

•
••••

•
• ••

•

•

•
••• ••

•••
•

• ••
•

•

•
•• ••

•
••••

•
• •

•
•••••• • •••

•••••
• •

••• ••• •
•

•• •
• •

•• ••••••
••

•
•• ••

•
•

••
•••

••
•

•

••
•••

•
•••

•
•

••

•

• •
••

••
•

•
•• ••

•
•

••••

•

•• ••

•
•••••••• ••

•
• ••••••• • ••

•
•••

•
•

•
••

•
••

•
•••••
•• ••• ••

•

•
••

••
•

• ••••
•

•
• ••

•
••

• •••
••

••
•

•
•

••• • •
• •• • •• ••••

•
••• •••• •

••
•

•
••

•
• •

• •
•••
•

•••
••••• ••••

••
•• •••

•••
•

• ••
••

•••
•

•
•

•
•

••••
•••• •• •••••• • •

• • • •
• ••

••••• • •••
• •

• ••
•

• ••••• •
• •• •

•
•

•

•

•• •
•

•• ••••
•

•
•

••
•

••
••• •

•
••• •••• ••

••
•

••

•

•

•

•
•

•
•

•• ••
•

••

•

•
•

••
•••• •

••

•

•
•••

•••
••

••••• •• •
••• ••• •
•

•
•••

•
•

•

•
•

•
•

••• ••• ••
•

••••
••••• • ••

• •
• • •• •

•
•

•
•

•• ••
• •

•
•

•••••
••

•
•

•
••

•

•
•

•
• •• •• •
•

••
•

••
•• •

• ••••
•

• ••
•• •

•

•• •
•

•
• ••••

•
• ••••

•

• ••••
•

•
•••

•

•••
•

•
•

••
••• •

• •• • •••••••
••••••

•• •• •
•

•• •
•

•••• ••• ••
•

• •••
•

•
• •••

•
••

•
• •

•
•

••• ••
•••••• • •••••• ••

• •••
••

• •••• •
•

••
•

• •• ••••
•

•
••

••
•

•

•

••
••• •

•
• •

•• • •
••

•
•

•
•

•• • ••
•

•••
•

••
•

••

•• ••
• •

• •• ••••••••
•

• •• •• •
• • •
• ••••

•
•• •• •• •

•• ••
• • •••

•
•• •• ••

• • • •••
•• •

••
•

••
••

•
• •

••
•

••••
•••

•
•

• •• •
••
•

•••
•

••• •
•

•
•

•

•

••••• • •
•

• • •

••

•
••

•

•
• •••

•

•
•• •••

•
••• •

•
•

•••••

• •

•
•

•••
• ••

•
•

•

•
•

•••

•

••• •• •
• ••

•
•••

•
•

•
•

•••
•

•••••
•••••

•
•••

•
•

• •
•

••
••

•
•

•
•

• •
•

••
••

•
•••••• •• ••

••••
•• •

••

•
•

••

•

•

•

•
• •

•••
•

••
•

••
••

•
••••
•

•
•• ••••

•
••

••
••

••
•

••
• ••

•
•

•• • •
•••••••

•
•

•
•

•• •
••• ••••• •

• ••
•

•
•

•
•

• •
•••• • •••
•••
• •

•• ••
•

• ••

•

•
•

•
•

•

••
•

•
•

••••
•

•

•
•

•
•

•••
•

• • •
•

••
•••

•
• •

•• •

•

•
•

•
•

••
•

•
•

•
•

•
•

••
•

•
•

•

•
• •

••
•

••
• ••

•
•

• •

••

•

•
•

•••
• •

•

•
••

•
•

•

•

•••

•

•

•
•

••

•
•

••
•

•
• •

•

• •
••

•
•••
•

•••
•

•
•••

••
••

•

•
•

•

•

••
•

•
•

••

•
•

•

••• • •

•
•

•

•

••••
• •

•
•

••
•

•
•

•
•

•
•

•

•••

•
•••

•
•

•

•

• •• ••

•
•

•

•

•

•
•••

•••
••

•
••• • •

• •• •••••

• •

•
•

•

•

•

•
•

•
•

••
•

• •
•

•

••
•

•
•

•
•

•

•• •

•

•
•

•
•

•••
•

•
••

•
••

•

•
•

•
••

• ••
•

••

•

••
•

•

•
•

••
•

•••
•

•

•••
•

•
•

• •
•

•
•

•
••

•

•
••• •

•
•

•

•
•

•••
•

• •• •
•

•
• •• •

•• •
••

• •
•

•
••

•

•
•••

••
•

•
•

•
•

•
•••

•
•

•••
• • • •

••
•

•
•

•
••

•

• •

••
•

•

•

•

•
•

••
•

••
•

••
•

•
•

•
•

•

•
••

•
•

•••
•

•

•

• •

•
•

•

•
•

•

••
••

•

•

••

••

•••

••
•

•

•

•

•

•••

•

•
•

•
•

••

•

• ••

•

•

•••

••

•

•
•

••

•
•

•
•

•

••• ••
•

•
•

•
••

•
•

•
•

•
•• •

•••• ••
•

•
••

•

•
•

•

•
•

•
•

•

•

•

•

•

•
• •

•

•

••
•

• ••
•

•

•
•

•
•

•
•

•

••

•
•

•
•

•

•
•

••

•

•
•

•

•

•

•

•

•

•

•
•

•

•
•

•• •
•

•
•

•

•
•

• •
•

•
••

•

•
•

•

•
•

•

•

••

•
•

•
• •

• •
•

•
••

•

•
••

• ••
• ••

•

•

•

•

•
•

•••

•

••
•

••
••

•

•

•

•
• •

•

•

•
•

• •
• •

•
•• •

•
•

•
•

•••••
•

•
•

•
••

• ••
•

•

•
•

••

•
•

•
•

••
•

•

•
•

•

•

•

•

•
•

••

•
•

•
•

• •
•

•
•

•

•

••
••

••
•

•
•

•

•

•

•

•
••

•

•
•

•

•

•

•

•
•

••

•

•

••

•

•

•

••

•

•

•

••
••••

•
•• •

•

•

•

•
••

•

•
••

•

••
•

•• •
• •

•
•

••••
•

•
•

•• •• •
•

•

••

•
•

•
•

••

•
•

• •

•

•
••

•

•
•

•
•

••
•

•

•

•

•
•

•
•

•

••
•

•

•••
•

•

•
•

•

•

••
•

•

•

•
•

•

•
•

••
•

•
•

••
••

••

• •

• •

•

••

•
•

•

•

•
•

•

•

•
•

•

•

••
•

•
•

•
•

• •
•

•
•

•

•
•

•

•

••

••

•

• ••

•
• •

•

•

•
•

•
•

•
•

•
•

••

•

•
•

• • ••
•

•
• •

•

••

•

•
•

•

•••
•• •

•
••

• •

••
•

•
•• •••
•

••
•

•
••

•
•••

••
••

•

• ••••
•

•

•
•

•
••

•
•••

•

•

•

•
•

•

•
• •

•

•
••

•

•
•• ••

•
•

•
•

•

•

•
•

•

•

•

•
•

•
•

•

•
•

•

•
•

•
•

•••
•

•

•

•

•

•

• •
•

•

•

Quantiles of Standard Normal

S
P

50
0

-2 0 2

-6
-4

-2
0

2
4

Figure 14.22: Closing prices (upper left) and daily returns (upper right) of the S&P 500
stock index, with density and normal probability plots.

Lag

A
C

F

0 10 20 30

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

 Series : SP500

Lag

A
C

F

0 10 20 30

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

 Series : SP500^2

Figure 14.23: ACFs of the daily returns and their squares.

416 Time Series Analysis

by Bollerslev (1986) and Taylor (1986). Stationarity is assured ifα0 > 0 and∑
αi +

∑
βj � 1 .

Stochastic volatility models are similar to the casep = 0 with added noise;
the simplest version of Taylor (1986) is

yt = exp(ht/2)εt, ht = γ0 + γ1ht−1 + ηt

Taking logs of the squares shows

zt = log y2
t = ht + log ε2t

so thezt process is a GaussianAR(1) process observed with added noise, and
yt = ± exp zt/2 where the sign is chosen randomly at each time point.

There are many extensions of GARCH models surveyed by Shephard (1996).
One of the most useful is the EGARCH class of Nelson (1991) which has

yt = σtεt, ht = log σ2
t = α0 +

p∑
i=1

αig(yt−i) +
q∑

j=1

βjht−j

where
g(x) = |x|+ wx

and so the EGARCH model responds asymmetrically to disturbances (as stock
markets are observed to do).

TheS+GARCH module forS-PLUS fits a wide range of GARCH models and
extensions. We have not yet mentioned the distribution ofεt which is usually
taken to be normal but thegarch function allows to be taken ast or generalized
Gaussian (replace the square in the density by theν th power of the absolute
value).

We can usegarch on our S&P 500 example.

> module(garch)
> summary(garch(SP500 ~ 1, ~garch(1, 1)))

....

Estimated Coefficients:
Value Std.Error t value Pr(>|t|)

C 0.05978 0.01465 4.08 2.30e-05
A 0.00526 0.00121 4.37 6.57e-06

ARCH(1) 0.05671 0.00494 11.49 0.00e+00
GARCH(1) 0.93936 0.00530 177.32 0.00e+00
....

Normality Test:
Jarque-Bera P-value

763 0
....

The Jarque–Bera test (Cromwellet al., 1994, 20–22) is of normality of the resid-
uals. This suggests we use a model with non-normalεt .

14.6 Models for Financial Series 417

0 500 1000 1500 2000 2500

-6
-4

-2
0

2
4

Series and Conditional SD

0 500 1000 1500 2000 2500

0.
5

1.
0

1.
5

-6 -4 -2 0 2 4 6

-8
-6

-4
-2

0
2

4

3

2

1

Figure 14.24: The S&P500 returns, the estimates of theσ2
t and a QQ-plot of the residuals

from a GARCH fit.

> fit <- garch(SP500 ~ 1, ~garch(1, 1), cond.dist = "t")
> summary(fit)

....
Conditional Distribution: t
with estimated parameter 6.1266 and standard error 0.67594

Estimated Coefficients:
Value Std.Error t value Pr(>|t|)

C 0.06068 0.01339 4.53 3.04e-06
A 0.00201 0.00101 2.00 2.29e-02

ARCH(1) 0.03144 0.00491 6.40 8.92e-11
GARCH(1) 0.95182 0.00716 132.91 0.00e+00

....
> plot(fit)

Finally, we consider an EGARCH model. Argumentleverage allows w �=
0 in g(x) .

> summary(garch(SP500 ~ 1, ~egarch(1, 1), cond.dist = "t",
leverage = T))

....
Conditional Distribution: t
with estimated parameter 6.7977 and standard error 0.79991

Estimated Coefficients:
Value Std.Error t value Pr(>|t|)

C 0.0454 0.01324 3.43 3.12e-04
A -0.0914 0.01279 -7.15 5.65e-13

ARCH(1) 0.0934 0.01337 6.98 1.78e-12
GARCH(1) 0.9900 0.00288 343.20 0.00e+00

LEV(1) -0.6334 0.13439 -4.71 1.28e-06
....

There is significant support for asymmetry.

418 Time Series Analysis

R has agarch function in packagetseries by Adrian Trapletti. That ex-
pects a zero-mean series, so we subtract the median (as a very robust estimate).

> library(tseries)
> summary(garch(x = SP500 - median(SP500), order = c(1, 1)))

Estimate Std. Error t value Pr(>|t|)
a0 0.00457 0.00109 4.19 2.8e-05
a1 0.05193 0.00453 11.46 < 2e-16
b1 0.94467 0.00486 194.51 < 2e-16

Diagnostic Tests:
Jarque Bera Test

data: Residuals
X-squared = 777.06, df = 2, p-value = < 2.2e-16

....

Chapter 15

Spatial Statistics

Spatial statistics is a recent and graphicalsubject that is ideally suited to imple-
mentation inS; S-PLUS itself includes one spatial interpolation method,akima,
and loess which can be used for two-dimensional smoothing, but the specialist
methods of spatial statistics have been added and are given in our library section
spatial. The main references for spatial statistics are Ripley (1981, 1988), Dig-
gle (1983), Upton and Fingleton (1985) and Cressie (1991). Not surprisingly, our
notation is closest to that of Ripley (1981).

TheS-PLUS module1 S+SPATIAL STATS (Kaluzny and Vega, 1997) provides
more comprehensive (and more polished) facilities for spatial statistics than those
provided in our library sectionspatial. Details of how to work through our
examples in that module may be found in the on-line complements2 to this book.

More recently other contributed software has become available. There are
geostatistical packages calledgeoR /geoS 3 and sgeostat,4 and point-process
packagessplancs5 and spatstat .6

15.1 Spatial Interpolation and Smoothing

We provide three examples of datasets for spatial interpolation. The datasettopo
contains 52 measurements of topographic height (in feet) within a square of side
310 feet (labelled in 50 feet units). The datasetnpr1 contains permeability mea-
surements (a measure of the ease of oil flow in the rock) and porosity (the vol-
umetric proportion of the rock which is pore space) measurements from an oil
reserve in the USA.

Suppose we are givenn observationsZ(xi) and we wish to map the process
Z(x) within a regionD. (The sample pointsxi are usually, but not always,
within D.) Although our treatment is quite general, ourS code assumesD to
be a two-dimensional region, which covers the majority of examples. There are

1S-PLUS modules are additional-cost products; contact yourS-PLUS distributor for details.
2See page 461 for where to obtain these.
3http://www.maths.lancs.ac.uk/~ribeiro/geoR.htmland on CRAN.
4http://www.gis.iastate.edu/SGeoStat/homepage.html; R port on CRAN
5http://www.maths.lancs.ac.uk/~rowlings/Splancs/; R port on CRAN.
6http://www.maths.uwa.edu.au/~adrian/spatstat.htmland on CRAN.

419

420 Spatial Statistics

however applications to the terrestrial sphere and in three dimensions in mineral
and oil applications.

Trend surfaces

One of the earliest methods was fittingtrend surfaces, polynomial regression sur-
faces of the form

f((x, y)) =
∑

r+s�p

arsx
rys (15.1)

where the parameterp is the order of the surface. There areP = (p+1)(p+2)/2
coefficients. Originally (15.1) was fitted by least squares, and could for example
be fitted usinglm with poly which will give polynomials in one or more vari-
ables. However, there will be difficulties in prediction, and this is rather inefficient
in applications such as ours in which the number of points at which prediction is
needed may far exceedn. Our functionsurf.ls implicitly rescalesx and y to
[−1, 1], which ensures that the first few polynomials are far from collinear. We
show some low-order trend surfaces for thetopo dataset in Figure 15.1, gener-
ated by:

library(spatial)
par(mfrow = c(2, 2), pty = "s")
topo.ls <- surf.ls(2, topo)
trsurf <- trmat(topo.ls, 0, 6.5, 0, 6.5, 30)
eqscplot(trsurf, , xlab = "", ylab = "", type = "n")
contour(trsurf, levels = seq(600, 1000, 25), add = T)
points(topo)
title("Degree = 2")
topo.ls <- surf.ls(3, topo)

....
topo.ls <- surf.ls(4, topo)

....
topo.ls <- surf.ls(6, topo)

....

Notice howeqscplot is used to generate geometrically accurate plots.
Figure 15.1 shows trend surfaces for thetopo dataset. The highest degree,

6, has 28 coefficients fitted from 52 points. The higher-order surfaces begin to
show the difficulties of fitting by polynomials in two or more dimensions, when
inevitably extrapolation is needed at the edges.

There are several other ways to show trend surfaces. Figure 15.2 uses Trellis to
show a greyscale plot fromlevelplot and a perspective plot fromwireframe.
They were generated by

topo.ls <- surf.ls(4, topo)
trs <- trsurf <- trmat(topo.ls, 0, 6.5, 0, 6.5, 30)
trs[c("x", "y")] <- expand.grid(x = trs$x, y = tr$y)
plt1 <- levelplot(z ~ x * y, trs, aspect = 1,

at = seq(650, 1000, 10), xlab = "", ylab = "")

15.1 Spatial Interpolation and Smoothing 421

0 1 2 3 4 5 6

0
1

2
3

4
5

6

750 775 800

825

850

875

900 900925 925950975

• • • • •

• •
•
• •

•
•

• •

•
• • • •

• •

•

• •
•

• •
•

•
•

• •

• • •

• •

• •

• •

• •

•

•
•

•

•
•

•

•

•

Degree=2

0 1 2 3 4 5 6

0
1

2
3

4
5

6 725
750 775800825

850

850

875

875900

900

900

• • • • •

• •
•
• •

•
•

• •

•
• • • •

• •

•

• •
•

• •
•

•
•

• •

• • •

• •

• •

• •

• •

•

•
•

•

•
•

•

•

•

Degree=3

0 1 2 3 4 5 6

0
1

2
3

4
5

6

700725750775800825

850

850

850875

875

875

875

900

900

900

900

925

925

950975

• • • • •

• •
•
• •

•
•

• •

•
• • • •

• •

•

• •
•

• •
•

•
•

• •

• • •

• •

• •

• •

• •

•

•
•

•

•
•

•

•

•

Degree=4

0 1 2 3 4 5 6

0
1

2
3

4
5

6
600625650 650675 675700 700725750775800

825

825850

850

850

850

850 850

850

875

875

875

875 875900 900 900
925

925

925

950

950975100

• • • • •

• •
•
• •

•
•

• •

•
• • • •

• •

•

• •
•

• •
•

•
•

• •

• • •

• •

• •

• •

• •

•

•
•

•

•
•

•

•

•

Degree=6

Figure 15.1: Trend surfaces for thetopo dataset, of degrees 2, 3, 4 and 6.

0

1

2

3

4

5

6

0 1 2 3 4 5 6

700

750

800

850

900

950

x

z

z

Figure 15.2: The quartic trend surfaces for thetopo dataset.

plt2 <- wireframe(z ~ x * y, trs, aspect = c(1, 0.5),
screen = list(z = -30, x = -60))

print(plt1, position = c(0, 0, 0.5, 1), more = T)
print(plt2, position = c(0.45, 0, 1, 1))

422 Spatial Statistics

Users ofS-PLUS underWindows can use the rotatable 3D-plots in the GUIS+Win

graphics, for example by

tr <- data.frame(x = trs$x, y = trs$y, z = as.vector(trs$z))
guiPlot(PlotType = "32 Color Surface", Dataset = "tr")
guiModify("Graph3D", Name = guiGetGraphName(),

xSizeRatio = 2.2, ySizeRatio = 2.2)

where the final commands sets a square box. ForR underWindows we can get a
rotatable 3D-plot by (see page 69 for packagergl)

library(rgl)
persp3d(trsurf)

One difficulty with fitting trend surfaces is that in most applications the ob-
servations are not regularly spaced, and sometimes they are most dense where the
surface is high (for example, in mineral prospecting). This makes it important to
take the spatial correlation of the errors into consideration. We thus suppose that

Z(x) = f(x)T β + ε(x)

for a parametrized trend term such as (15.1) and a zero-mean spatial stochastic
processε(x) of errors. We assume thatε(x) possesses second moments, and
has covariance matrix

C(x,y) = cov(ε(x), ε(y))

(this assumption is relaxed slightly later). Then the natural way to estimateβ is
by generalized least squares, that is, to minimize

[Z(xi)− f(xi)T β]T [C(xi,xj)]−1[Z(xi)− f(xi)T β]

We need some simplified notation. LetZ = Fβ + ε where

F =

 f(x1)T

...
f(xn)T

 , Z =

 Z(x1)
...

Z(xn)

 , ε =

 ε(x1)
...

ε(xn)

and letK = [C(xi,xj)]. We assume thatK is of full rank. Then the problem is
to minimize

[Z − Fβ]TK−1[Z − Fβ] (15.2)

The Choleski decomposition (Golub and Van Loan, 1989; Nash, 1990) finds a
lower-triangular matrixL such thatK = LLT . (TheS function chol is unusual
in working with U = LT .) Then minimizing (15.2) is equivalent to

min
β
‖L−1[Z − Fβ]‖2

which reduces the problem to one of ordinary least squares. To solve this we use
the QR decomposition (Golub and Van Loan, 1989) ofL−1F as

QL−1F =
[
R
0

]

15.1 Spatial Interpolation and Smoothing 423

for an orthogonal matrixQ and upper-triangularP × P matrix R. Write

QL−1Z =
[

Y1

Y2

]
as the upperP and lowern− P rows. Thenβ̂ solves

R β̂ = Y1

which is easy to compute asR is triangular.
Trend surfaces for thetopo data fitted by generalized least squares are shown

later (Figure 15.5), where we discuss the choice of the covariance functionC.

Local trend surfaces

We have commented on the difficulties of using polynomials as global surfaces.
There are two ways to make their effect local. The first is to fit a polynomial
surface for each predicted point, usingonly the nearby data points. The function
loess is of this class, and provides a wide range of options. By default it fits
a quadratic surface by weighted least squares, the weights ensuring that ‘local’
data points are most influential. We only give details for thespan parameterα
less than one. Letq = �αn�, and letδ denote the Euclidean distance to theqth
nearest point tox. Then the weights are

wi =

[
1−

(
d(x,xi)

δ

)3
]3

+

for the observation atxi. ([]+ denotes the positive part.) Full details of
loess are given by Cleveland, Grosse and Shyu (1992). For our example we
have (Figure 15.3):

R: library(modreg)
par(mfcol = c(2,2), pty = "s")
topo.loess <- loess(z ~ x * y, topo, degree = 2, span = 0.25,

normalize = F)
topo.mar <- list(x = seq(0, 6.5, 0.1), y = seq(0, 6.5, 0.1))
topo.lo <- predict(topo.loess, expand.grid(topo.mar), se = T)
eqscplot(topo.mar, xlab = "fit", ylab = "", type = "n")
contour(topo.mar$x, topo.mar$y, topo.lo$fit,

levels = seq(700, 1000, 25), add = T)
points(topo)
eqscplot(trsurf, , xlab = "standard error", ylab = "", type = "n")
contour(topo.mar$x,topo.mar$y,topo.lo$se.fit,

levels = seq(5, 25, 5), add = T)
points(topo)
title("Loess degree = 2")
topo.loess <- loess(z ~ x * y, topo, degree = 1, span = 0.25,

normalize = F, xlab = "", ylab = "")
....

424 Spatial Statistics

fit

0 1 2 3 4 5 6

0
1

2
3

4
5

6 700725750775800825

850

850

875

875

875 875900 900925

925

950

• • • • •

• •
•
• •

•
•

• •

•
• • • •

• •

•

• •
•

• •
•

•
•

• •

• • •

• •

• •

• •

• •

•

•
•

•

•
•

•

•

•

standard error

0 1 2 3 4 5 6

0
1

2
3

4
5

6

10

10

10

10

10

10

10
10

10

10

15

15

15

15 15

15

15

15

15

15

20

20

2025

25

Loess degree = 2

• • • • •

• •
•
• •

•
•

• •

•
• • • •

• •

•

• •
•

• •
•

•
•

• •

• • •

• •

• •

• •

• •

•

•
•

•

•
•

•

•

•

fit

0 1 2 3 4 5 6

0
1

2
3

4
5

6 725750775800825

850

850

850

875

900

900

925950

• • • • •

• •
•
• •

•
•

• •

•
• • • •

• •

•

• •
•

• •
•

•
•

• •

• • •

• •

• •

• •

• •

•

•
•

•

•
•

•

•

•

standard error

0 1 2 3 4 5 6

0
1

2
3

4
5

6

10

15

15
15

15

Loess degree = 1

• • • • •

• •
•
• •

•
•

• •

•
• • • •

• •

•

• •
•

• •
•

•
•

• •

• • •

• •

• •

• •

• •

•

•
•

•

•
•

•

•

•

Figure 15.3: loess surfaces and prediction standard errors for thetopo dataset.

We turn normalization off to use Euclideandistance on unscaled variables. Note
that the predictions fromloess are confined to the range of the data in each of
the x and y directions even though we requested them to cover the square; this
is a side effect of the algorithms used. The standard-error calculations are slow;
loess is much faster without them.

Although loess allows a wide range of smoothing via its parameterspan, it
is designed for exploratory work and has no way to choose the smoothness except
to ‘look good’.

The Dirichlet tessellation7 of a set of points is the set oftiles, each of which
is associated with a data point, and is the set of points nearer to that data point
than any other. There is an associated triangulation, the Delaunay triangulation, in
which data points are connected by an edge of the triangulation if and only if their
Dirichlet tiles share an edge. (Algorithms and examples are given in Ripley, 1981,
§4.3.) There isS code in library sectiondelaunay available fromstatlib (see
page 464), and in theR packagesdeldir and tripack on CRAN.) Akima’s
(1978) fitting method fits a fifth-order trend surface within each triangle of the

7Also known as Voronoi or Thiessen polygons.

15.2 Kriging 425

interp default

1 2 3 4 5 6

0
1

2
3

4
5

6 700 725750775800

825

825

850

850

850

875

875
875

900

900

900 900
925

925950

• • • • •

• •
•

• •

•
•

• •

•
• • • •

• •

•

• •
•

• •
•

•
•

• •

• • •

• •

• •

• •

• •

•

•

•
•

•

•
•

•

•

interp

0 1 2 3 4 5 6

0
1

2
3

4
5

6

675700725750775800

800

825

825

850

850

850

875

875

875 875

875

900 900

900

925

925 925

950

950

• • • • •

• •
•
• •

•
•

• •

•
• • • •

• •

•

• •
•

• •
•

•
•

• •

• • •

• •

• •

• •

• •

•

•
•

•

•
•

•

•

•

Figure 15.4: interp surfaces for thetopo dataset.

Delaunay triangulation; details are given in Ripley (1981,§4.3). TheS imple-
mentation is the functioninterp ; Akima’s example is in datasetsakima.x,
akima.y and akima.z. The method is forced to interpolate the data, and has
no flexibility at all to choose the smoothness of the surface. The argumentsncp
and extrap control details of the method: see the on-line help for details. For
Figure 15.4 we used

R: library(akima) # replace interp by interp.old
par(mfrow = c(1, 2), pty= "s")
topo.int <- interp(topo$x, topo$y, topo$z)
eqscplot(topo.int, xlab = "interp default", ylab = "", type = "n")
contour(topo.int, levels = seq(600, 1000, 25), add = T)
points(topo)
topo.mar <- list(x = seq(0, 6.5, 0.1), y = seq(0, 6.5, 0.1))
topo.int2 <- interp(topo$x, topo$y, topo$z, topo.mar$x, topo.mar$y,

ncp = 4, extrap = T)
eqscplot(topo.int2, xlab = "interp", ylab = "", type = "n")
contour(topo.int2, levels = seq(600, 1000, 25), add = T)
points(topo)

15.2 Kriging

Kriging is the name of a technique developed by Matheron in the early 1960s
for mining applications, which has been independently discovered many times.
Journel and Huijbregts (1978) give a comprehensive guide to its application in the
mining industry. See also Chil`es and Delfiner (1999). In its full form,universal
kriging, it amounts to fitting a process of the form

Z(x) = f(x)T β + ε(x)

by generalized least squares, predicting the value atx of both terms and taking
their sum. Thus it differs from trend-surface prediction which predictsε(x) by

426 Spatial Statistics

zero. In what is most commonly termedkriging, the trend surface is of degree
zero, that is, a constant.

Our derivation of the predictions is given by Ripley (1981, pp. 48–50). Let
k(x) = [C(x,xi)]. The computational steps are as follows.

1. FormK = [C(xi,yi)], with Choleski decompositionL.

2. FormF and Z.

3. Minimize ‖L−1Z − L−1Fβ‖2, reducingL−1F to R.

4. FormW = Z − F β̂, andy such thatL(LT y) = W .

5. PredictZ(x) by Ẑ(x) = yTk(x) + f(x)T β̂, with error variance given
by C(x,x)− ‖e‖2 + ‖g‖2 where

Le = k(x), RT g = f(x) − (L−1F)T e.

This recipe involves only linear algebra and so can be implemented inS, but our
C version is about 10 times faster. For thetopo data we have (Figure 15.5):

topo.ls <- surf.ls(2, topo)
trsurf <- trmat(topo.ls, 0, 6.5, 0, 6.5, 30)
eqscplot(trsurf, , xlab = "", ylab = "", type = "n")
contour(trsurf, levels = seq(600, 1000, 25), add = T)
points(topo); title("LS trend surface")

topo.gls <- surf.gls(2, expcov, topo, d = 0.7)
trsurf <- trmat(topo.gls, 0, 6.5, 0, 6.5, 30)
eqscplot(trsurf, , xlab = "", ylab = "", type = "n")
contour(trsurf, levels = seq(600, 1000, 25), add = T)
points(topo); title("GLS trend surface")

prsurf <- prmat(topo.gls, 0, 6.5, 0, 6.5, 50)
eqscplot(trsurf, , xlab = "", ylab = "", type = "n")
contour(trsurf, levels = seq(600, 1000, 25), add = T)
points(topo); title("Kriging prediction")
sesurf <- semat(topo.gls, 0, 6.5, 0, 6.5, 30)
eqscplot(trsurf, , xlab = "", ylab = "", type = "n")
contour(sesurf, levels = c(20, 25), add = T)
points(topo); title("Kriging s.e.")

Covariance estimation

To use either generalized least squares or kriging we have to know the covariance
functionC. We assume that

C(x,y) = c(d(x,y)) (15.3)

whered() is Euclidean distance. (An extension known asgeometric anisotropy
can be incorporated by rescaling the variables, as we did for the Mahalanobis

15.2 Kriging 427

0 1 2 3 4 5 6

0
1

2
3

4
5

6

750 775800

825

850

875

900 900925 925950975

• • • • •

• •
•
• •

•
•

• •

•
• • • •

• •

•

• •
•

• •
•

•
•

• •

• • •

• •

• •

• •

• •

•

•
•

•

•
•

•

•

•

LS trend surface

0 1 2 3 4 5 6

0
1

2
3

4
5

6

750 775 800

825

850

875

900 900925 925950

• • • • •

• •
•
• •

•
•

• •

•
• • • •

• •

•

• •
•

• •
•

•
•

• •

• • •

• •

• •

• •

• •

•

•
•

•

•
•

•

•

•

GLS trend surface

0 1 2 3 4 5 6

0
1

2
3

4
5

6

700725750 775 800
825

850

850

850

875

875
875900 900 900925

925

950

950

• • • • •

• •
•
• •

•
•

• •

•
• • • •

• •

•

• •
•

• •
•

•
•

• •

• • •

• •

• •

• •

• •

•

•
•

•

•
•

•

•

•

Kriging prediction

0 1 2 3 4 5 6

0
1

2
3

4
5

6

20

20

20

20

20

20

20

20

20

20

20

20

20

20

20

20

20

20

20

20

20

20

20

20

25

25

25

25

25

25

25

25

25

25

• • • • •

• •
•
• •

•
•

• •

•
• • • •

• •

•

• •
•

• •
•

•
•

• •

• • •

• •

• •

• •

• •

•

•
•

•

•
•

•

•

•

Kriging s.e.

Figure 15.5: Trend surfaces by least squares and generalized least squares, and a kriged
surface and standard error of prediction, for thetopo dataset.

distance in Chapter 11.) We can compute acorrelogram by dividing the distance
into a number of bins and finding the covariance between pairs whose distance
falls into that bin, then dividing by the overall variance.

Choosing the covariance is very much an iterative process, as we need the
covariance of the residuals, and the fitting of the trend surface by generalized least
squares depends on the assumed form of the covariance function. Furthermore, as
we have residuals their covariance function is a biased estimator ofc. In practice
it is important to get the form right for small distances, for which the bias is least.

Although c(0) must be one, there is no reason whyc(0+) should not be
less than one. This is known in the kriging literature as anugget effect since it
could arise from a very short-range component of the processZ(x). Another
explanation is measurement error. In any case, if there is a nugget effect, the
predicted surface will have spikes at the data points, and so effectively will not
interpolate but smooth.

The kriging literature tends to work with thevariogram rather than the covari-

428 Spatial Statistics

ance function. More properly termed the semi-variogram, this is defined by

V (x,y) =
1
2
E[Z(x)− Z(y)]2

and is related toC by

V (x,y) =
1
2
[C(x,x) + C(y,y)]− C(x,y) = c(0)− c(d(x,y))

under our assumption (15.3). However, since different variance estimates will be
used in different bins, the empirical versions will not be so exactly related. Much
heat and little light emerges from discussions of their comparison.

There are a number of standard forms of covariance functions that are com-
monly used. A nugget effect can be added to each. The exponential covariance
has

c(r) = σ2 exp−r/d

the so-called Gaussian covariance is

c(r) = σ2 exp−(r/d)2

and the spherical covariance is in two dimensions

c(r) = σ2

[
1− 2

π

(
r

d

√
1− r2

d2
+ sin−1 r

d

)]

and in three dimensions (but also valid as a covariance function in two)

c(r) = σ2

[
1− 3r

2d
+

r3

2d3

]
for r � d and zero forr > d. Note that this is genuinely local, since points at a
greater distance thand from x are given zero weight at step 5 (although they do
affect the trend surface).

We promised to relax the assumption of second-order stationarity slightly. As
we only need to predict residuals, we only need a covariance to exist in the space
of linear combinations

∑
aiZ(xi) that are orthogonal to the trend surface. For

degree 0, this corresponds to combinations with sum zero. It is possible that the
variogram is finite, without the covariance existing, and there are extensions to
more general trend surfaces given by Matheron (1973) and reproduced by Cressie
(1991,§5.4). In particular, we can always add a constant toc without affecting the
predictions (except perhaps numerically). Thus if the variogramv is specified,
we work with covariance functionc = const− v for a suitably large constant.
The main advantage is in allowing us to use certain functional forms that do not
correspond to covariances, such as

v(d) = dα, 0 � α < 2 or d3 − αd

15.2 Kriging 429

•

•
• • •

• •
•

•
•

•
•

• •
•

•

• •
•

•
•

xp

yp

0 2 4 6

-1
.0

-0
.5

0.
0

0.
5

1.
0

•

•
•

•
•

• •
•

• •

•

•

• •

•
• • •

•

• •

xp

yp

0 2 4 6

0
20

0
60

0
10

00

Figure 15.6: Correlogram (left) and variogram (right) for the residuals oftopo dataset
from a least-squares quadratic trend surface.

•

•

• • •

• •
•

•
•

•
•

• •
•

•

• •
•

•
•

xp

yp

0 2 4 6

-1
.0

-0
.5

0.
0

0.
5

1.
0 •

•
•

• •
•

•
•

• • •
•

• •
•

• •
•

• •

xp

yp

0 2 4 6

-1
.0

-0
.5

0.
0

0.
5

1.
0

Figure 15.7: Correlograms for thetopo dataset: (left) residuals from quadratic trend
surface showing exponential covariance (solid) and Gaussian covariance (dashed); (right)
raw data with fitted Gaussian covariance function.

The variogramd2 log d corresponds to a thin-plate spline inR2 (see Wahba,
1990, and the review in Cressie, 1991,§3.4.5).

Our functionscorrelogram and variogram allow the empirical correlo-
gram and variogram to be plotted and functionsexpcov, gaucov andsphercov
compute the exponential, Gaussian and spherical covariance functions (the latter
in two and three dimensions) and can be used as arguments tosurf.gls. For
our running example we have

topo.kr <- surf.ls(2, topo)
correlogram(topo.kr, 25)
d <- seq(0, 7, 0.1)
lines(d, expcov(d, 0.7))
variogram(topo.kr, 25)

See Figure 15.6. We then consider fits by generalized least squares.

left panel of Figure 15.7
topo.kr <- surf.gls(2, expcov, topo, d=0.7)
correlogram(topo.kr, 25)
lines(d, expcov(d, 0.7))
lines(d, gaucov(d, 1.0, 0.3), lty = 3) # try nugget effect

430 Spatial Statistics

right panel
topo.kr <- surf.ls(0, topo)
correlogram(topo.kr, 25)
lines(d, gaucov(d, 2, 0.05))

top row of Figure 15.8
topo.kr <- surf.gls(2, gaucov, topo, d = 1, alph = 0.3)
prsurf <- prmat(topo.kr, 0, 6.5, 0, 6.5, 50)
eqscplot(prsurf, , xlab = "fit", ylab = "", type = "n")
contour(prsurf, levels = seq(600, 1000, 25), add = T)
points(topo)
sesurf <- semat(topo.kr, 0, 6.5, 0, 6.5, 25)
eqscplot(sesurf, , xlab = "standard error", ylab = "", type = "n")
contour(sesurf, levels = c(15, 20, 25), add = T)
points(topo)

bottom row of Figure 15.8
topo.kr <- surf.gls(0, gaucov, topo, d = 2, alph = 0.05,

nx = 10000)
prsurf <- prmat(topo.kr, 0, 6.5, 0, 6.5, 50)
eqscplot(prsurf, , xlab = "fit", ylab = "", type = "n")
contour(prsurf, levels = seq(600, 1000, 25), add = T)
points(topo)
sesurf <- semat(topo.kr, 0, 6.5, 0, 6.5, 25)
eqscplot(sesurf, , xlab = "standard error", ylab = "", type = "n")
contour(sesurf, levels = c(15, 20, 25), add = T)
points(topo)

We first fit a quadratic surface by least squares, then try one plausible covariance
function (Figure 15.7). Re-fitting by generalized least squares suggests this func-
tion and another with a nugget effect, and we predict the surface from both. The
first was shown in Figure 15.5, the second in Figure 15.8. We also consider not
using a trend surface but a longer-range covariance function, also shown in Fig-
ure 15.8. (The small nugget effect is to ensure numerical stability as without it
the matrixK is very ill-conditioned; the correlations at short distances are very
near one. We increasednx for a more accurate lookup table of covariances.)

15.3 Point Process Analysis

A spatial point pattern is a collection ofn points within a regionD ⊂ R
2. The

number of points is thought of as random, and the points are considered to be
generated by a stationary isotropic point process inR

2. (This means that there
is no preferred origin or orientation of the pattern.) For such patterns probably
the most useful summaries of the process are the first and second moments of the
countsN(A) of the numbers of points within a setA ⊂ D. The first moment
can be specified by a single number, theintensity λ giving the expected number
of points per unit area, obviously estimated byn/a wherea denotes the area of
D.

15.3 Point Process Analysis 431

fit

0 1 2 3 4 5 6

0
1

2
3

4
5

6

725 750 775 800

825

850

850

875

900 900 900925

925

950

• • • • •

• •
•

• •

•
•

• •

•
• • • •

• •

•

• •
•

• •
•

•
•

• •

• • •

• •

• •

• •

• •

•

•

•
•

•

•
•

•

•

standard error

0 1 2 3 4 5 6

0
1

2
3

4
5

6

20

20

20

20

20

20

20

20

20

25

25

25

25

25

25

25

25

25

• • • • •

• •
•

• •

•
•

• •

•
• • • •

• •

•

• •
•

• •
•

•
•

• •

• • •

• •

• •

• •

• •

•

•

•
•

•

•
•

•

•

fit

0 1 2 3 4 5 6

0
1

2
3

4
5

6

725750775800 825

850

850

850

875

875

875 875900 900

900

925

925

• • • • •

• •
•

• •

•
•

• •

•
• • • •

• •

•

• •
•

• •
•

•
•

• •

• • •

• •

• •

• •

• •

•

•

•
•

•

•
•

•

•

standard error

0 1 2 3 4 5 6

0
1

2
3

4
5

6

15

15

20

20 20

20

20

2025

25• • • • •

• •
•

• •

•
•

• •

•
• • • •

• •

•

• •
•

• •
•

•
•

• •

• • •

• •

• •

• •

• •

•

•

•
•

•

•
•

•

•

Figure 15.8: Two more kriged surfaces and standard errors of prediction for thetopo
dataset. The top row uses a quadratic trend surface and a nugget effect. The bottom row is
without a trend surface.

The second moment can be specified by Ripley’sK function. For example,
λK(t) is the expected number of points within distancet of a point of the pat-
tern. The benchmark of complete randomness is the Poisson process, for which
K(t) = πt2, the area of the search region for the points. Values larger than this
indicate clustering on that distance scale, and smaller values indicate regularity.
This suggests working withL(t) =

√
K(t)/π, which will be linear for a Poisson

process.
We only have a single pattern from which to estimateK or L. The definition

in the previous paragraph suggests an estimator ofλK(t); average over all points
of the pattern the number seen within distancet of that point. This would be
valid but for the fact that some of the points will be outsideD and so invisible.
There are a number of edge-corrections available, but that of Ripley (1976) is
both simple to compute and rather efficient. This considers a circle centred on the
point x and passing through another pointy. If the circle lies entirely withinD,
the point is counted once. If a proportionp(x,y) of the circle lies withinD, the
point is counted as1/p points. (We may want to put a limit on smallp, to reduce

432 Spatial Statistics

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•
•

•

•

•

•
•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

••

•
•

•

•

0 2 4 6 8 10

0
2

4
6

8
10

distance

L(
t)

0 1 2 3 4 5

0
1

2
3

4
5

distance

L(
t)

0.0 0.5 1.0 1.5

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1.
2

1.
4

Figure 15.9: The Swedish pines dataset from Ripley (1981), with two plots ofL(t). That
at the upper right shows the envelope of 100 binomial simulations, that at the lower left the
average and the envelope (dotted) of 100 simulations of a Strauss process withc = 0.2
andR = 0.7. Also shown (dashed) is the average forc = 0.15. All units are in metres.

the variance at the expense of some bias.) This gives an estimatorλK̂(t) which
is unbiased fort up to the circumradius ofD (so that it is possible to observe two
points 2t apart). Since we do not knowλ, we estimate it bŷλ = n/a. Finally

K̂(t) =
a

n2

∑
x∈D,d(y,x)�t

1
p(x,y)

and obviously we estimateL(t) by
√
K̂(t)/π. We find that on square-root scale

the variance of the estimator varies little witht.
Our example is the Swedish pines data from Ripley (1981,§8.6). This records

72 trees within a 10-metre square. Figure 15.9 shows thatL̂ is not straight, and
comparison with simulations from a binomial process (a Poisson process condi-

15.3 Point Process Analysis 433

tioned onN(D) = n, so n independently uniformly distributed points within
D) shows that the lack of straightness is significant. The upper two panels of
Figure 15.9 were produced by the following code:

library(spatial)
pines <- ppinit("pines.dat")
par(mfrow = c(2, 2), pty = "s")
plot(pines, xlim = c(0, 10), ylim = c(0, 10),

xlab = "", ylab = "", xaxs = "i", yaxs = "i")
plot(Kfn(pines,5), type = "s", xlab = "distance", ylab = "L(t)")
lims <- Kenvl(5, 100, Psim(72))
lines(lims$x, lims$l, lty = 2)
lines(lims$x, lims$u, lty = 2)

The functionppinit reads the data from the file and also the coordinates of
a rectangular domainD. The latter can be reset, or set up for simulations, by the
function ppregion. (It must be set for each session.) The functionKfn returns
an estimate ofL(t) and other useful information for plotting, for distances up to
its second argumentfs (for full-scale).

The functionsKaver and Kenvl return the average and, forKenvl, also
the extremes ofK-functions (onL scale) for a series of simulations. The func-
tion Psim(n) simulates the binomial process onn points within the domainD ,
which has already been set.

Alternative processes

We need to consider alternative point processes to the Poisson. One of the most
useful for regular point patterns is the so-called Strauss process, which is simu-
lated byStrauss(n, c, r) . This has a density ofn points proportional to

cnumber ofR-close pairs

and so hasK(t) < πt2 for t � R (and up to about2R). For c = 0 we
have a ‘hard-core’ process that never generates pairs closer thanR and so can
be envisaged as laying down the centres of non-overlapping discs of diameter
r = R.

Figure 15.9 also shows the average and envelope of theL-plots for a Strauss
process fitted to the pines data by Ripley (1981). There the parameters were
chosen by trial-and-error based on a knowledge of how theL-plot changed with
(c, R). Ripley (1988) considers the estimation ofc for knownR by the pseudo-
likelihood. This is done by our functionpplik and returns an estimate of about
c = 0.15 (‘about’ since it uses numerical integration). As Figure 15.9 shows, the
difference betweenc = 0.2 and c = 0.15 is small. We used the following code:

ppregion(pines)
plot(Kfn(pines, 1.5), type = "s",

xlab = "distance", ylab = "L(t)")
lims <- Kenvl(1.5, 100, Strauss(72, 0.2, 0.7))
lines(lims$x, lims$a, lty = 2)

434 Spatial Statistics

lines(lims$x, lims$l, lty = 2)
lines(lims$x, lims$u, lty = 2)
pplik(pines, 0.7)
lines(Kaver(1.5, 100, Strauss(72, 0.15, 0.7)), lty = 3)

The theory is given by Ripley (1988, p. 67). For a pointξ ∈ D let t(ξ)
denote the number of points of the pattern within distancet of ξ. Then the
pseudo-likelihood estimator solves∫

D t(ξ)ct(ξ) dξ∫
D ct(ξ) dξ

=
#(R–close pairs)

n
=
nK̂(R)
a

and the left-hand side is an increasing function ofc. The functionpplik uses
theS-PLUS function uniroot to find a solution in the range(0, 1].

Other processes for which simulation functions are provided are the bi-
nomial process (Psim(n)) and Matérn’s sequential spatial inhibition process
(SSI(n, r)), which sequentially lays down centres of discs of radiusr that
do not overlap existing discs.

Chapter 16

Optimization

Statisticians1 often under-estimate the usefulness of general optimization methods
in maximizing likelihoods and in other model-fitting problems. Not only are the
general-purpose methods available in theS environments quick to use, they also
often outperform the specialized methods that are available. A lot of the software
we have illustrated in earlier chapters is based on the functions described in this.
Code that seemed slow when the first edition was being prepared in 1993 now
seems almost instant.

Many of the functions we describe in this chapter can be used as black boxes,
but it is helpful to know some of the theory behind the methods. Although opti-
mization theory and practice had an explosion in the 1960s and 1970s, there has
been progress since and classic accounts such as Gillet al. (1981) and Fletcher
(1987) are now somewhat outdated. The account we find authoritative is Nocedal
and Wright (1999), and for a gentler introduction we recommend Nash (1990) or
Monahan (2001).

Specialist methods for non-linear least-squares problems were discussed in
Chapter 8.

16.1 Univariate Functions

The functionsoptimize anduniroot work with continuous functions of a sin-
gle variable; optimize can find a (local) minimum (the default) or a (local)
maximum, whereasuniroot finds a zero. Both search within an interval speci-
fied either by the argumentinteger or argumentslower and upper. Both are
based on safeguarded polynomial interpolation (Brent, 1973; Nash, 1990).

Function optimize is used for cross-validatory bandwidth estimators, and
uniroot is used to find the Sheather-Jones bandwidth estimator, the pseudo-
likelihood estimator for a Strauss process inpplik and in several of the classical
test functions.

1And not just statisticians; for example, it took the neural network community some years to
appreciate this.

435

436 Optimization

16.2 Special-Purpose Optimization Functions

Apart from the non-linear least-squares functions, there are no special-purpose
optimization functions in the baseS environments, but a few in contributed pack-
ages. Optimization texts usually start with linear, linearly-constrained problems,
and these can often be solved efficiently by the simplex algorithm. There is an im-
plementation of this in thesimplex function in library sectionboot (by Angelo
Canty).

Quadratic programming keeps the linear inequality constraints but optimizes
a quadratic function. Quadratic programming is covered by library section
quadprog (by Berwin Turlach).

There is a moduleS+NUOPT for S-PLUS interfacing to a fairly general sim-
plex and interior-pointoptimization package.

16.3 General Optimization

Each of theS environments has a few functions for general optimization. This
seems to be something of a historicalaccident, and in each case one function is
normally preferred.

S-PLUS offers ms , nlmin and nlminb; of these,nlminb is preferred for
new work.

R offers nlm and optim ; the latter has several methods, including Nelder–
Mead, the BFGS quasi-Newton method, conjugate gradients, box-constrained
limited-memory BFGS and simulated annealing. There is a version ofoptim
for S-PLUS in our MASS library section.

Practical issues with general optimization often have less to do with the opti-
mizer used than with how carefully the problem is set up. In general it is worth
supplying a function to calculate derivatives if you can, although it may be quicker
in a once-off problem to let the software calculate numerical derivatives. It is
worth ensuring that the problem is reasonably well scaled, so a unit step in any
parameter have a comparable change in size to the objective, preferably about a
unit change at the optimum. Functionsnlminb and optim have parameters to
allow the user to supply scaling hints.

It is normally not worth the effort to supply a function to calculate the Hes-
sian matrix of second derivatives. However, sometimes it can be calculated au-
tomatically. We saw on page 215 the use ofderiv to calculate first derivatives
symbolically. This has a counterpart2 deriv3 to calculate Hessians. Functions
deriv and deriv3 are in principle extensible, and this has been done by us to
handle our example.

An example: fitting a mixture model

The waiting times between eruptions in the datageyser are strongly bimodal.
Figure 16.1 shows a histogram with a density estimate superimposed (with band-
width chosen by the Sheather–Jones method described in Chapter 5).

2For S-PLUS written by David Smith and supplied inMASS .

16.3 General Optimization 437

waiting

40 60 80 100

0.
0

0.
01

0.
02

0.
03

0.
04

Normal mixture
Nonparametric

Figure 16.1: Histogram for the waiting times between successive eruptions for the “Old
Faithful” geyser, with non-parametric and parametric estimated densities superimposed.

attach(geyser)
truehist(waiting, xlim = c(35, 115), ymax = 0.04, h = 5)
wait.dns <- density(waiting, n = 512, width = "SJ")
lines(wait.dns, lty = 2)

From inspection of this figure a mixture of two normal distributions would seem
to be a reasonable descriptive model for the marginal distribution of waiting times.
We now consider how to fit this by maximum likelihood. The observations are
not independent since successive waiting times are strongly negatively correlated.
In this section we propose to ignore this,both for simplicity and because ignoring
this aspect is not likely to misrepresent seriously the information in the sample on
the marginal distribution in question.

Useful references for mixture models include Everitt and Hand (1981); Tit-
terington, Smith and Makov (1985) and McLachlan and Peel (2000). Everitt and
Hand describe the EM algorithm for fitting a mixture model, which is simple,3 but
we consider here a more direct function minimization method that can be faster
and more reliable (Redner and Walker, 1984; Ingrassia, 1992).

If yi, i = 1, 2, . . . , n is a sample waiting time, the log-likelihood function for
a mixture of two normal components is

L(π, µ1, σ1, µ2, σ2) =
n∑

i=1

log
[
π

σ1
φ

(
yi − µ1

σ1

)
+

1− π
σ2

φ

(
yi − µ2

σ2

)]
We estimate the parameters by minimizing−L.

It is helpful in this example to use both first- and second-derivative informa-
tion and we usederiv3 to produce an objective function. Bothderiv and
deriv3 allow calls to pnorm and dnorm with only one argument. Thus calls

3It is implemented inme , page 320, andmda , page 341.

438 Optimization

such aspnorm(x,u,s) must be written aspnorm((x-u)/s). We can gener-
ate a function that calculates the summands of−L and also returns first- and
second-derivative information for each summand by:

lmix2 <- deriv3(
~ -log(p*dnorm((x-u1)/s1)/s1 + (1-p)*dnorm((x-u2)/s2)/s2),
c("p", "u1", "s1", "u2", "s2"),
function(x, p, u1, s1, u2, s2) NULL)

which underS-PLUS took 14 seconds on the PC, much longer than any of the fits
below. (It was instant underR.)

Initial values for the parameters could be obtained by the method of moments
described in Everitt and Hand (1981, pp. 31ff), but for well-separated components
as we have here, we can choose initial values by reference to the plot. For the
initial value of π we take the proportion of the sample below the density low
point at 70.

> (p0 <- c(p = mean(waiting < 70), u1 = 50, s1 = 5, u2 = 80,
s2 = 5))

p u1 s1 u2 s2
0.36120 50 5 80 5

Using nlminb in S-PLUS

The most general minimization routine inS-PLUS is nlminb, which can find a
local minimum of a twice-differentiable function within a hypercube in parameter
space. Either the gradient or gradient plus Hessian can be supplied; if no gradient
is supplied it is approximated by finite differences. The underlying algorithm is
a quasi-Newton optimizer, or a Newton optimizer if the Hessian is supplied. We
can fit our mixture density (using zero, one and two derivatives) and enforcing the
constraints.

mix.obj <- function(p, x) {
e <- p[1] * dnorm((x - p[2])/p[3])/p[3] +

(1 - p[1]) * dnorm((x - p[4])/p[5])/p[5]
-sum(log(e)) }

mix.nl0 <- nlminb(p0, mix.obj,
scale = c(10, rep(1, 4)), lower = c(0, -Inf, 0, -Inf, 0),
upper = c(1, rep(Inf, 4)), x = waiting)

lmix2a <- deriv(
~ -log(p*dnorm((x-u1)/s1)/s1 + (1-p)*dnorm((x-u2)/s2)/s2),
c("p", "u1", "s1", "u2", "s2"),
function(x, p, u1, s1, u2, s2) NULL)

mix.gr <- function(p, x) {
u1 <- p[2]; s1 <- p[3]; u2 <- p[4]; s2 <- p[5]; p <- p[1]
colSums(attr(lmix2a(x, p, u1, s1, u2, s2), "gradient")) }

mix.nl1 <- nlminb(p0, mix.obj, mix.gr,
scale = c(10, rep(1, 4)), lower = c(0, -Inf, 0, -Inf, 0),
upper = c(1, rep(Inf, 4)), x = waiting)

16.3 General Optimization 439

mix.grh <- function(p, x) {
e <- lmix2(x, p[1], p[2], p[3], p[4], p[5])
g <- colSums(attr(e, "gradient"))
H <- colSums(attr(e, "hessian"), 2)
list(gradient = g, hessian = H[row(H) <= col(H)]) }

mix.nl2 <- nlminb(p0, mix.obj, mix.grh, hessian = T,
scale = c(10, rep(1, 4)), lower = c(0, -Inf, 0, -Inf, 0),
upper = c(1, rep(Inf, 4)), x = waiting)

mix.nl2[c("parameter", "objective")]
$parameters:

p u1 s1 u2 s2
0.30759 54.203 4.952 80.36 7.5076

$objective:
[1] 1157.5

We use ascale parameter to set the step length on the first parameter much
smaller than the others, which can speed convergence. Generally it is helpful to
have the scale set so that the range of uncertainty in (scale× parameter) is about
one.

It is also possible to supply a separate function to calculate the Hessian; how-
ever it is supplied, it is a vector giving the lower triangle of the Hessian in row-first
order (unlikeS matrices).

Function nlminb only computes the Hessian at the solution if a means to
compute Hessians is supplied (and even then it returns a scaled version of the
Hessian). Thus it provides little help in using the observed information to provide
approximate standard errors for the parameter estimates in a maximum likelihood
estimation problem. Our functionvcov.nlminb in MASS smooths over these
niggles, and uses a finite-difference approximation to the Hessian if it is not avail-
able.

> sqrt(diag(vcov.nlminb(mix.nl0)))
[1] 0.030746 0.676833 0.539178 0.619138 0.509087
> sqrt(diag(vcov.nlminb(mix.nl1)))
[1] 0.030438 0.683067 0.518231 0.633388 0.507096
> sqrt(diag(vcov.nlminb(mix.nl2)))
[1] 0.030438 0.683066 0.518231 0.633387 0.507095

The (small) differences reflect a difference in philosophy: when no derivatives are
available we seek a quadratic approximation to the negative log-likelihood over
the scale of random variation in the parameter estimate rather than at the MLE,
since the likelihood might not be twice-differentiable there.

Note that the theory used here is unreliable if the parameter estimate is close
to or on the boundary;vcov.nlminb issues a warning.

We can now add the parametric densityestimate to our original histogram
plot.

dmix2 <- function(x, p, u1, s1, u2, s2)
p * dnorm(x, u1, s1) + (1-p) * dnorm(x, u2, s2)

attach(as.list(mix.nl2$parameter))

440 Optimization

•
•
•••••••

•••••••••••••••••••
••••••••••
••••••••••••••••

•••••
••••••••••••••

•••••••••
••••••••

••
•••••••••

•••••••
••••••
••••••••••••

•••••••••••••••••
••••••••••••••••••

••••••••••••••••••••••••••••
•••••••••••••••••••••••••

••••••••••••••
••••••••••••••••••

•••••••••••••••••••
••••••••••••••

••••
•••••••••••

•
••

•

•

Model quantiles

W
ai

tin
g

tim
e

40 60 80 100

40
60

80
10

0

Figure 16.2: Sorted waiting times against normal mixture model quantiles for the ‘Old
Faithful’ eruptions data.

wait.fdns <- list(x = wait.dns$x,
y = dmix2(wait.dns$x, p, u1, s1, u2, s2))

lines(wait.fdns)
par(usr = c(0, 1, 0, 1))
legend(0.1, 0.9, c("Normal mixture", "Nonparametric"),

lty = c(1, 2), bty = "n")

The computations for Figure 16.1 are now complete.
The parametric and nonparametric density estimates are in fair agreement on

the right component, but there is a suggestion of disparity on the left. We can
informally check the adequacy of the parametric model by a Q-Q plot. First we
solve for the quantiles using a reduced-step Newton method:

pmix2 <- deriv(~ p*pnorm((x-u1)/s1) + (1-p)*pnorm((x-u2)/s2),
"x", function(x, p, u1, s1, u2, s2) {})

pr0 <- (seq(along = waiting) - 0.5)/length(waiting)
x0 <- x1 <- as.vector(sort(waiting)) ; del <- 1; i <- 0
while((i <- 1 + 1) < 10 && abs(del) > 0.0005) {

pr <- pmix2(x0, p, u1, s1, u2, s2)
del <- (pr - pr0)/attr(pr, "gradient")
x0 <- x0 - 0.5*del
cat(format(del <- max(abs(del))), "\n")

}
detach()
par(pty = "s")
plot(x0, x1, xlim = range(x0, x1), ylim = range(x0, x1),

xlab = "Model quantiles", ylab = "Waiting time")
abline(0, 1)
par(pty = "m")

16.3 General Optimization 441

•

•

•

•
•

•

•

•

•

•

•

•

•

•

•

•

•

•

•
•

•

•

•

•

•

•

•

•
•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•
•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•
•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•
•

•

•

•

•

•

•

•

•

•

•
••

•

•

•

•

••

•

•

•

••

•

•
•

•

•

•

••
•
•
•

•

•

•

•

•

•

•

•

•
•

•

•
•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

••

•

•

•

•

•

•

•

•

•

•

•
•

•

•

•

•

•

•

•

•

•
•

•

•

•

•

•

•

•

•

•

•

•
•

•

•

•

•
•
•

•

•

•

•

•

•

•

•

•

•
•

•

•

•

•

•

•

• •

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•
•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•
•
•
•
•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

40

60

80

100

2 3 4 5

previous duration

w
ai

t

Figure 16.3: Waiting times for the next eruption against the previous duration, with the
density of the conditional distribution predicted by a mixture model.

The plot is shown in Figure 16.2 and confirms the adequacy of the mixture
model except perhaps for one outlier in the right tail. We saw in Figure 5.11
(on page 131) that the distribution of waiting time depends on the previous dura-
tion, and we can easily enhance our model to allow for this with the proportions
depending logistically on the previous duration. We start at the fitted values of the
simpler model.

lmix2r <- deriv(
~ -log((exp(a + b*y)*dnorm((x - u1)/s1)/s1 +

dnorm((x - u2)/s2)/s2) / (1 + exp(a + b*y))),
c("a", "b", "u1", "s1", "u2", "s2"),
function(x, y, a, b, u1, s1, u2, s2) NULL)

p1 <- mix.nl2$parameters; tmp <- as.vector(p1[1])
p2 <- c(a = log(tmp/(1-tmp)), b = 0, p1[-1])

mix1.obj <- function(p, x, y) {
q <- exp(p[1] + p[2]*y)
q <- q/(1 + q)
e <- q * dnorm((x - p[3])/p[4])/p[4] +

(1 - q) * dnorm((x - p[5])/p[6])/p[6]
-sum(log(e)) }

mix1.gr <- function(p, x, y) {
a <- p[1]; b <- p[2]; u1 <- p[3]; s1 <- p[4];
u2 <- p[5]; s2 <- p[6]
colSums(attr(lmix2r(x, y, a, b, u1, s1, u2, s2), "gradient")) }

mix1.nl1 <- nlminb(p2, mix1.obj, mix1.gr,
lower = c(-Inf, -Inf, -Inf, 0, -Inf, 0),
upper = rep(Inf, 6), x = waiting[-1], y = duration[-299])

mix1.nl1[c("parameter", "objective")]
$parameters:

442 Optimization

a b u1 s1 u2 s2
16.14 -5.7363 55.138 5.6631 81.091 6.8376

$objective:
[1] 985.32

There is clearly a very significant improvement in the fit, a change in log-
likelihood of 172 for one extra parameter. We can examine the fit by plotting
the predictive densities for the next waiting time by (see Figure 16.3)

grid <- expand.grid(x = seq(1.5, 5.5, 0.1), y = seq(40, 110, 0.5))
grid$z <- exp(-lmix2r(grid$y, grid$x, 16.14, -5.74, 55.14,

5.663, 81.09, 6.838))
levelplot(z ~ x*y, grid, colorkey = F, at = seq(0, 0.075, 0.001),

panel= function(...) {
panel.levelplot(...)
points(duration[-299], waiting[-1])

}, xlab = "previous duration", ylab = "wait",
col.regions = rev(trellis.par.get("regions")$col))

Using ms in S-PLUS

The ms function is a general function for minimizing quantities that can be writ-
ten as sums of one or more terms. The call toms is very similar to that fornls
(see page 213), but the interpretation of the formula is slightly different. It has
no response, and the quantity on the right-hand side specifies the entire sum to be
minimized. The resulting object is of classms, for which few method functions
are available; the four main ones arepoint, coef, summary andprofile . The
fitted object has additional components,two of independent interest being

obj.ms$value the minimum value of the sum, and

obj.ms$pieces the vector of summands at the minimum.

The most common statistical use ofms is to minimize negative log-likelihood
functions, thus finding maximum likelihood estimates. The fitting algorithm
can make use of first- and second-derivative information, the first- and second-
derivative arrays of the summands rather than of a model function. In the case
of a negative log-likelihood function, these are arrays whose “row sums” are the
negative score vector and observed information matrix, respectively. The first-
derivative information is supplied as agradient attribute of the formula, as
described fornls in Section 8.2. Second-derivative information may be supplied
via a hessian attribute. (The functionderiv3 generates a model function with
both gradient and hessian attributes to its return value.)

The convergence criterion forms is thatone of the relative changes in the
parameter estimates is small, the relative change in the achieved value is smallor
that the optimized function value is close to zero. The latter is appropriate only
for deviance-like quantities, and can be eliminated by setting the argument

control = ms.control(f.tolerance = -1)

We can trace the iterative process, using a trace function that produces just
one line of output per iteration:

16.3 General Optimization 443

tr.ms <- function(info, theta, grad, scale, flags, fit.pars) {
cat(round(info[3], 3), ":", signif(theta), "\n")
invisible() }

Note that the trace function must have the same arguments as the standard trace
function, trace.ms.

We can now fit the mixture model:

> wait.mix2 <- ms(~ lmix2(waiting, p, u1, s1, u2, s2),
start = p0, data = geyser, trace = tr.ms)

1233.991 : 0.361204 50 5 80 5
....

1157.542 : 0.307594 54.2027 4.952 80.3603 7.50763

The fitted model object has a component,hessian, giving the sum of the second
derivative array over the observations and since the function we minimized is the
negative of the log-likelihood, this component is the observed information matrix.
Its inverse is calculated (but incorrectly labelled4) by summary.ms .

vmat <- summary(wait.mix2)$Information
rbind(est = coef(wait.mix2), se = sqrt(diag(vmat)))

p u1 s1 u2 s2
est 0.307594 54.20265 4.95200 80.36031 7.50764
se 0.030438 0.68307 0.51823 0.63339 0.50709

Using nlmin in S-PLUS

The functionnlmin finds an unconstrained local minimum of a function. For the
mixture problem we can use

mix.f <- function(p) {
e <- p[1] * dnorm((waiting - p[2])/p[3])/p[3] +

(1 - p[1]) * dnorm((waiting - p[4])/p[5])/p[5]
-sum(log(e)) }

nlmin(mix.f, p0, print.level = 1, max.iter = 25)

The argumentprint.level = 1 provides some tracing of the iterations (here
16, one more than the default limit). There is no way to supply derivatives.

Using optim in R or S-PLUS

The robust Nelder–Mead method does well enough without derivatives and ig-
noring the constraints. To use the BFGS quasi-Newton method we need to supply
some scaling information (parscale being a divisor). Functionoptim will al-
ways compute or estimate the Hessian at the optimum if argumenthessian is
true.

4And differently from the help page, which hasinformation.

444 Optimization

mix.obj <- function(p, x)
{

e <- p[1] * dnorm((x - p[2])/p[3])/p[3] +
(1 - p[1]) * dnorm((x - p[4])/p[5])/p[5]

if(any(e <= 0)) Inf else -sum(log(e))
}
optim(p0, mix.obj, x = waiting)$par # Nelder-Mead

p u1 s1 u2 s2
0.30735 54.19643 4.94834 80.36018 7.51105

optim(p0, mix.obj, x = waiting, method = "BFGS",
control = list(parscale=c(0.1, rep(1, 4))))$par
p u1 s1 u2 s2

0.30768 54.20466 4.95454 80.36302 7.50566

#same result with analytical derivatives.
optim(p0, mix.obj, mix.gr, x = waiting, method = "BFGS",

control = list(parscale=c(0.1, rep(1, 4))))$par

mix.nl0 <- optim(p0, mix.obj, mix.gr, method = "L-BFGS-B",
hessian = T,
lower = c(0, -Inf, 0, -Inf, 0),
upper = c(1, rep(Inf, 4)), x = waiting)

rbind(est = mix.nl0$par, se = sqrt(diag(solve(mix.nl0$hessian))))
p u1 s1 u2 s2

est 0.307593 54.20268 4.95182 80.36035 7.5077
se 0.030438 0.68305 0.51819 0.63338 0.5071

The code to produce Figure 16.2 works unchanged inR.
A similar approach solves the extended problem.

mix1.obj <- function(p, x, y)
{

q <- exp(p[1] + p[2]*y); q <- q/(1 + q)
e <- q * dnorm((x - p[3])/p[4])/p[4] +

(1 - q) * dnorm((x - p[5])/p[6])/p[6]
if(any(e <= 0)) Inf else -sum(log(e))

}
p1 <- mix.nl0$par; tmp <- as.vector(p1[1])
p2 <- c(a = log(tmp/(1-tmp)), b = 0, p1[-1])
mix.nl1 <- optim(p2, mix1.obj, method = "L-BFGS-B",

lower = c(-Inf, -Inf, -Inf, 0, -Inf, 0),
upper = rep(Inf, 6), hessian = T,
x = waiting[-1], y = duration[-299])

rbind(est = mix.nl1$par, se = sqrt(diag(solve(mix.nl1$hessian))))
a b u1 s1 u2 s2

est 16.1410 -5.7367 55.13756 5.66327 81.09077 6.83758
se 3.5738 1.2958 0.61221 0.48478 0.49925 0.35334

This converged in 26 evaluations of the log-likelihood.

16.3 General Optimization 445

Fitting GLM models

The Fisher scoring algorithm is not the only possible way to fit GLMs. The pur-
pose of this section is to point out how easy it is to fit specific GLMs by direct
maximization of the likelihood, and the code can easily be modified for other fit
criteria.

Logistic regression

We consider maximum likelihood fitting of a binomial logistic regression. For
other link functions just replaceplogis and dlogis, for example bypnorm
and dnorm for a probit regression.

logitreg <- function(x, y, wt = rep(1, length(y)),
intercept = T, start = rep(0, p), ...)

{
fmin <- function(beta, X, y, w) {

p <- plogis(X %*% beta)
-sum(2 * w * ifelse(y, log(p), log(1-p)))

}
gmin <- function(beta, X, y, w) {

eta <- X %*% beta; p <- plogis(eta)
-2 * (w *dlogis(eta) * ifelse(y, 1/p, -1/(1-p))) %*% X

}
if(is.null(dim(x))) dim(x) <- c(length(x), 1)
dn <- dimnames(x)[[2]]
if(!length(dn)) dn <- paste("Var", 1:ncol(x), sep="")
p <- ncol(x) + intercept
if(intercept) {x <- cbind(1, x); dn <- c("(Intercept)", dn)}
if(is.factor(y)) y <- (unclass(y) != 1)
fit <- nlminb(start, fmin, gmin, X = x, y = y, w = wt, ...)
R: fit <- optim(start, fmin, gmin, X = x, y = y, w = wt,

method = "BFGS", ...)
names(fit$par) <- dn
cat("\nCoefficients:\n"); print(fit$par)
R: use fit$value and fit$convergence
cat("\nResidual Deviance:", format(fit$objective), "\n")
cat("\nConvergence message:", fit$message, "\n")
invisible(fit)

}

options(contrasts = c("contr.treatment", "contr.poly"))
X <- model.matrix(low ~ ., data = bwt)[, -1]
logitreg(X, bwt$low)

This can easily be modified to allow constraints on the parameters (just use ar-
gumentslower and/or upper in the call to logitreg) the handling of miss-
ing values by multiple imputation (Ripley, 1996), the possibility of errors in the
recordedx or y values (Copas, 1988) and shrinkage and approximate Bayesian
estimators, none of which can readily be handled by theglm algorithm.

446 Optimization

It is always a good idea to check the convergence message, something
nlminb makes particularly hard to do by not specifying all possible messages.
In optim one can just checkfit$convergence == 0 .

Constrained Poisson regressions

Workers on the backcalculation of AIDS have used a Poisson regression model
with identity link and non-negative parameters (for example, Rosenberg and Gail,
1991). The history of AIDS is divided intoJ time intervals[Tj−1, Tj), and the
data are countsYj of cases in each time interval. Then for a Poisson incidence
process of rateν, the counts are independent Poisson random variables with mean

EYj = µj =
∫ Tj

0

[
F (Tj − s)− F (Tj−1 − s)

]
ν(s) ds

whereF is the cumulative distribution of the incubation time. If we modelν by
a step function

ν(s) =
∑

i

I(ti−1 � s < ti)βi

thenEYj =
∑
xjiβi for constantsxji , which are considered known.

This is a Poisson regression with identity link, no intercept and constraint
βi � 0. The deviance is2

∑
j µj − yj − yj log(µj/yj).

AIDSfit <- function(y, z, start = rep(mean(y), ncol(z)), ...)
{

deviance <- function(beta, y, z) {
mu <- z %*% beta; 2 * sum(mu - y - y*log(mu/y)) }

grad <- function(beta, y, z) {
mu <- z %*% beta; 2 * t(1 - y/mu) %*% z }

nlminb(start, deviance, grad, lower = 0, y = y, z = z, ...)
}

As an example, we consider the history of AIDS in Belgium using the num-
bers of cases for 1981 to 1993 (as reported by WHO in March 1994). We use
two-year intervals for the step function and do the integration crudely using a
Weibull model for the incubation times.

Y <- scan(n = 13)
12 14 33 50 67 74 123 141 165 204 253 246 240

library(nnet) # for class.ind
s <- seq(0, 13.999, 0.01); tint <- 1:14
X <- expand.grid(s, tint)
Z <- matrix(pweibull(pmax(X[,2] - X[,1],0), 2.5, 10), length(s))
Z <- Z[,2:14] - Z[,1:13]
Z <- t(Z) %*% class.ind(factor(floor(s/2))) * 0.01
round(AIDSfit(Y, Z)$par)
515 0 140 882 0 0 0

This has infections only in 1981–2 and 1985–8. We do not pursue the medical
implications!

Appendix A

Implementation-Specific Details

This appendix contains details on how to set up anS environment, and other
details that differ between the availableS implementations.

A.1 Using S-PLUS under Unix / Linux

We use$ to denote theUNIX shell prompt, and assume that the commands to
invokeS-PLUS is the default,Splus. Some installations may preferSplus6.

To configure the command-line editor to use the cursor keys, set the environ-
ment variableS CLEDITOR by

$ S_CLEDITOR=emacs; export S_CLEDITOR ## sh or ksh or bash
$ setenv S_CLEDITOR emacs ## csh and tcsh

Getting started

S-PLUS makes use of the file system and for each project we strongly recommend
that you have a separate working directory to hold the files for that project.

The suggested procedure for the first occasion on which you useS-PLUS is:

1. Create a separate directory, say,SwS, for this project, which we suppose is
‘Statistics withS’, and make it your working directory.

$ mkdir SwS
$ cd SwS

Copy any data files you need to use withS-PLUS to this directory.

2. Within the project directory run

$ Splus CHAPTER

which will create the subdirectories thatS-PLUS uses under a directory
.Data. (The.Data subdirectory is for use only byS-PLUS and hence has
a ‘dot name’ which hides it from casual inspection.)

3. Start theS-PLUS system by

$ Splus -e

447

448 Implementation-Specific Details

An alternative mentioned on page 3 is to start the system withSplus -g
which brings up the Java-based GUI interface.

4. At this pointS commands may be issued (see later). The prompt is> unless
the command is incomplete, when it is+. To use our software library issue

> library(MASS, first = T)

5. To quit theS program the command is

> q()

If you do not initialize the directory, the directory~/MySwork is used, after initial-
ization as anS-PLUS chapter if necessary. To keep projects separate, we strongly
recommend that youdo create a working directory.

For subsequent sessions the procedure is simpler: makeSwS the working
directory and start the program as before:

$ cd SwS
$ Splus

issueS commands, terminating with the command

> q()

On the other hand, to start a new project start at step 1.

Getting help

There are two ways to access the help system. One is from the command line
as described on page 5. Functionhelp will put up a program (slynx) in the
terminal window runningS-PLUS to view the HTML help file. If you prefer, a
separate help window (which can be left up) can be obtained by

> help(var, window = T)

Using help.start() will bring up1 a multi-panelled window listing the help
topics available. This help system is shut down withhelp.off() andnot by
quitting the help window. Ifhelp or ? is used when this help system is running,
the requests are sent to its window. This system is also used by the GUI console
started bySplus -g .

Graphics hardcopy

There are several ways to produce a hardcopy of a plot on a suitable printer.
The functiondev.print will copy the current plot to a printer device (default

postscript) and allow its size, orientation, pointsize of text and so on to be set.
The motif device has aPrint item on its Graph menu that will send a

full-page copy of the current plot to the default printer. A little more control (the

1This uses Java and needs a machine with at least 128 Mb of memory to work comfortably. It may
only work on a local X server.

A.1 Using S-PLUS under Unix / Linux 449

orientation and the print command) is available from thePrinting item on the
Options or Properties menu.

The function printgraph will copy the current plot to aPostScript or
LASERJET printer, and allows the size and orientation to be selected, as well
as paper size and printer resolution where appropriate.

It is normally possible to open an appropriate printer device and repeat the
plot commands, although this does preclude interacting with the plot on-screen.
This is sometimes necessary, as copying plots does not necessarily scale text fonts
and lines in exactly the same way.

Hardcopy to a file

It is very useful to be able to copy a plot to a file for inclusion in a paper or book
(as here). Since each of the hardcopy methods allows the printer output to be
re-directed to a file, there are many possibilities.

The simplest way is to edit the print command in thePrinting item of a
motif device to be

cat > plot_file_name <

or to make a Bourne-shell command filermv by

$ cat > rmv
mv $2 $1
^D
$ chmod +x rmv

place this in your path and usermv plot file name. (This avoids leaving
around temporary files with names likeps.out.0001.ps.) Then click onPrint
to produce the plot.

PostScript users will probably want Encapsulated PostScript (EPSF) format
files. These are produced automatically by the procedure in the last paragraph,
and also by setting bothonefile = F and print.it = F as arguments to the
postscript device. Note that these arenot EPSI files and do not include a pre-
view image. It would be unusual to want an EPSF file in landscape format; select
‘Portrait’ on thePrinting menu item, or usehorizontal = F as argument to
the postscript device. The default pointsize (14) is set for a full-page land-
scape plot, and 10 or 11 are often more appropriate for a portrait plot. Set this in
the call topostscript or useps.options (before the motif device is opened,
or useps.options.send to alter the print settings of the current device).

Hardcopy from Trellis plots

The basic paradigm of a Trellis plot is to produce an object that the device ‘prints’,
that is, plots. Thus the simplest way toproduce a hardcopy of a Trellis plot is to
switch to a printer device, ‘print’ the object again, and switch back. For example,

trellis.device()
p1 <- histogram(geyser$waiting)
p1 # plots it on screen

450 Implementation-Specific Details

trellis.device("postscript", file = "hist.eps",
onefile = F, print.it = F)

p1 # print the plot
dev.off()

However, it can be difficult to obtain precisely the same layout in this way
(since this depends on the aspect ratio and size parameters), and it is impossible
to interact with such a graph (for example, by usingidentify). Fortunately, the
methods for hardcopy described on page 448 can still be used. It is important to
set the options for thepostscript device to match the colour schemes in use.
For example, onUNIX with hardcopy via thepostscript device we can use

ps.options(colors = colorps.trellis[, -1])

before the Trellis device is started. Then thermv method anddev.print will
use the Trellis (printer) colour scheme and produce colourPostScript output.
Conversely, if greylevel PostScript output is required (for example, for figures in
a book or article) we can use (for amotif device)

ps.options(colors = bwps.trellis, pointsize = 11)
trellis.settings.motif.bw <- trellis.settings.bwps
xcm.trellis.motif.bw <- xcm.trellis.motif.grey
trellis.device(color = F)

using xcm.* objects in our libraryMASS. This sets up a color screen device to
mimic the ‘black and white’ (actually greylevel) PostScript device.

A.2 Using S-PLUS under Windows

There are versions ofS-PLUS called‘Standard Edition’ that lack the command-
line interface and do not have thecapabilities needed for use with this book.

Getting started

1. Create a new folder, say,SWS, for this project.

2. Copy any data files you need to use withS-PLUS to the folderSWS.

3. Select the folder representing theStart menu; precisely how is version-
specific. Open theS-PLUS folder underPrograms.

4. Create a duplicate copy of theS-PLUS for Windows icon, for example,
usingCopy from theEdit menu. Change the name of this icon to reflect the
project for which it will be used.

5. Right-click on the new icon, and selectProperties from the pop-up menu.

6. On the page labelledShortcut, add at the end of theTarget field S_PROJ=
followed by the complete path to your directory. If that path contains
spaces, enclose it in double quotes, as in

S_PROJ="c:\my work\S-Plus project"

A.2 Using S-PLUS under Windows 451

Figure A.1: The dialog box to load theMASS library. Note that the check box is ticked.

If you have other files for the project, set theStart in field to their folder. If
this is the same place as.Data, you can setS_PROJ=. on the target rather
than repeating the path there.

7. Select the project’sS-PLUS icon from theStart menu tree. You will be
asked if.Data and.Prefs should be created. Click onOK. When the
program has initialized, click on theCommands Window button with icon

on the upper toolbar. If you always want aCommands Window at
startup, select this from the menus viaOptions | General Settings... |
Startup. (This setting is saved for the project on exiting the program.)

At this pointS commands may be issued. The prompt is> unless the com-
mand is incomplete, when it is+. The usualWindows command-line recall and
editing are available. To use our software library issue

library(MASS, first = T)

You can also do this from theLoad Library... item on theFile menu, which brings
up a dialog box like Figure A.1.

You can exit the program from theFile menu, and entering the commandq()
in theCommands window will also exit the program.

For subsequent sessions the procedure is much simpler; just launchS-PLUS
by double-clicking on the project’s icon. On the other hand, to start a new project
start at step 1.

You can arrange forS-PLUS to allow the user to choose the project to work
in when it is launched, by checking the optionPrompt for project folder on the
Startup tab in the dialog box from theGeneral Settings... item on theOptions
menu. If this is checked, a dialog box will allow the user to choose the chapter
(containing the.Data and .Prefs files).

graphsheet devices

Graphs can be redrawn by pressing function key F9. Hitting function key F2 with
a graphsheet in focus zooms it to full screen. Click a mouse button or hit a key
to revert.

Graphsheets can have multiple pages. The default is to use these pages for all
the plots drawn within anS expression without any input, including code submit-
ted from a script window. This is often helpful, but can be changed from thePage

452 Implementation-Specific Details

Creation drop-down box on theOptions... tab of the graphsheet properties dialog
box (brought up by right-clicking on the background of agraphsheet device).

A graphsheet is a multi-purpose device, controlled by itsformat ar-
gument. For the defaultformat = "" it provides a screen device. With
format = "printer", output is set to the current printer. Withformat =
"clipboard", a metafile is sent to the clipboard, and formats2 "BMP", "GIF",
"JPG" and"TIF" produce bitmaps. Formats"WMF" and"EPS" produce output
on file as aWindows metafile and inPostScript, respectively. Copies to all of
these formats (and many more) can also be obtained by using theExport Graph...
item on theFile menu which appears when agraphsheet has focus.

Graphical output is not drawn immediately on agraphsheet but delayed
until the currentS expression has finished or some input is required, for example
from the keyboard or bylocator or identify (see page 80). One way to
overcome this is to add a call that asks for input at suitable points in your code,
and a call toguiLocator with an argument of zero is usually the easiest, as this
does nothing except flush the graphics queue.

Graphics hardcopy

There are several ways to produce a hardcopy of a (command-line) plot on a
suitable printer or plotter. The simplest is to use thePrint item on theirFile menu
or the printer icon on the toolbar. This prints the window with focus, so bring the
desired graphics window to the top first.

The functiondev.print will copy the current plot to a printer device (default
win.printer) and allow its size, orientation, pointsize of text and so on to be set.

It is normally possible to open an appropriate printer device (postscript
or win.printer) and repeat the plot commands, although this does preclude
interacting with the plot on-screen. This is sometimes necessary, as copying plots
does not necessarily scale text fonts and lines in exactly the same way.

Hardcopy to a file

It is very useful to be able to copy a plot to a file for inclusion in a paper or book
(as here). Since each of the hardcopy methods allows the printer output to be
re-directed to a file, there are many possibilities.

ThePrint option on theFile menu can select printing to a file. The graphics
window can then be printed in the usual way. However, it is preferable to use
theExport Graph... item on theFile menu, which can save in a wide variety of
graphics formats includingWindows metafile and Encapsulated PostScript (with
a preview image if desired).

On Windows the metafile format may be the most useful for plot files, as it
is easily incorporated into otherWindows applications while retaining full reso-
lution. This is automatically used if the graphics device window is copied to the
clipboard, and may also be generated bygraphsheet or Export Graph....

PostScript users will probably want Encapsulated PostScript (EPSF) format
files. These are produced by setting bothonefile = F and print.it = F as

2There are others for less common formats.

A.3 Using R under Unix / Linux 453

arguments to thepostscript device (which produces better output than using
Export Graph...). Note that these do not include a preview image. It would be un-
usual to want an EPSF file in landscape format; select ‘Portrait’ on thePrinting
menu item, or usehorizontal = F as argument to thepostscript device.
The default pointsize (14) is set for a full-page landscape plot, and 10 or 11 are
often more appropriate for a portrait plot. Set this in the call topostscript or
useps.options .

A.3 Using R under Unix / Linux

Getting started

There is no need to prepare a directory for use withR, but it is desirable to store
R sessions in separate directories.

1. Create a separate directory, saySwR, for this project, which we suppose is
‘Statistics withR’, and make it your working directory.

$ mkdir SwR
$ cd SwR

Copy any data files you need to use withR to this directory.

2. Start the system with

$ R

3. At this pointS commands may be issued.3 The default prompt is> unless
the command is incomplete, when it is+ . To use our software package
issue

library(MASS)

(For users ofS-PLUS who are used to addingfirst = T : packages are
by default placed first.)

4. To quit the program the command is

> q()
$

You will be asked if you wish to save the workspace image. If you accept
(type y) and command-line editing is operational, the command history will
be saved in the file.Rhistory and (silently) reloaded at the beginning of
the next session.

3Command-line editing should be available. You will probably findman readline describes it.

454 Implementation-Specific Details

Getting help

There is both a text-based help facility as described on page 5, and an HTML-
based help system started by

> help.start()

This put up a home page in Netscape (which is started if not already running). If
this help system is running, help requests are sent to the browser rather than to a
pager in the terminal window. There is a Java-based search engine accessed from
the home page.

Another way to search for information is the functionhelp.search .

Graphics hardcopy

There are several ways to produce a hardcopy of a (command-line) plot on a
suitable printer or plotter.

The functiondev.print will copy the current plot to a printer device (default
postscript) and allow its size, orientation, pointsize of text and so on to be set.
In R, function dev.print copies to a printer whereas,dev.copy2eps make an
encapulatedPostScript file.

Bitmap graphics files can be produced by copying to apng or jpeg device,4

or usingdev2bitmap which makes aPostScript copy and post-processes itvia
ghostscript .

It is normally possible to open an appropriate printer device and repeat the
plot commands, although this does preclude interacting with the plot on-screen.
This is sometimes necessary, as copying plots does not necessarily scale text fonts
and lines in exactly the same way.

A.4 Using R under Windows

A port of R to all modern versions ofWindows is available. To use it, launch
bin\Rgui.exe in one of the usualWindows ways. Perhaps the easiest is to
create a shortcut to the executable, and set theStart in field to be the working
directory you require, then double-click the shortcut. This will bring up its own
console within which commands can be issued.

The appearance of the GUI is highly customizable; see the help forRconsole
for details. We prefer to use the--sdi option, for example.

In addition to text-based help, HTML-based help (invoked byhelp.start)
and standardWindows compiled HTML help may be available if they were in-
stalled; see?help or the README for details.

4If R was built with support for these and anX11 server is available.

A.5 For Emacs Users 455

Graphics hardcopy

There are several ways to produce a hardcopy of a plot on a suitable printer or
plotter. The simplest is to use the menu on the graphics window, which allows
copying to a wide range of formats, includingPostScript, Windows Metafile,
PDF and several bitmap formats.

The functiondev.print will copy the current plot to a printer device (de-
fault postscript, but printing directly only if the commands needed have
been set; see?postscript) and allow its size, orientation, pointsize of text
and so on to be set. For users with a non-PostScript printer the command
dev.print(win.print) is the simplest way to print a copy of the current plot
from the command-line.

Function dev.copy2eps copies to an encapulatedPostScript file; there is
also savePlot which will copy the plot to one of a range of formats.

It is normally possible to open an appropriate printer device and repeat the
plot commands, although this does preclude interacting with the plot on-screen.
This is sometimes necessary, as copying plots does not necessarily scale text fonts
and lines in exactly the same way.

A.5 For Emacs Users

For users ofGNU Emacs andXemacs there is the independently developedESS
package available from

http://software.biostat.washington.edu/statsoft/ess/

which provides a comprehensive working environment forS programming. In
particular it provides an editing environment tailored toS files with syntax high-
lighting. One can also interact with anS-PLUS or R process, submitting functions
and extracting from the transcript.

ESS works almost equally well onWindows and onUNIX/Linux.

Appendix B

The S-PLUS GUI

The GUI underS-PLUS for Windows is highly configurable, but its default state
is shown in Figure B.1. The top toolbar is constant, but the second toolbar and
the menu items depend on the type of subwindow that has focus.

The object explorer and the commandswindow were selected by the two but-
tons on the top toolbar that are depressed. (What is opened whenS-PLUS is
launched is set during installation and can be set for each project from theOp-
tions menu.) To find out what the buttons mean, hover the mouse pointer over
them and read the description in the bottom bar of the mainS-PLUS window, or
hold for longer and see thetooltip (if enabled).

Explanations of how to use a GUI are lengthy and appear in theS-PLUS
guides and in the help system. We highlight a few points that we find make
working with the GUI easier.

Subwindows

Instances of these types of subwindow can be launched from a button on the main
toolbar or from theNew or Open button. Some of the less obvious buttons are
shown in Figure B.3.

The commands window

Commands typed in the commands window are executed immediately. Previous
commands can be recalled by using the up and down arrow keys, and edited before
submission (by pressing the return key). The commands history button (immedi-
ately to the right of the command window button) brings up a dialog with a list
of the last few commands, which can be selected and re-submitted. When the
commands window has focus, the second toolbar has just one button (with icon
representing a pair of axes and a linear plot) that selects editable graphics. This
is not recommended for routine use, as it may make the graphics very slow, and
plots can be made editable later (see under ‘object explorers’). It is also possible
to launch a graphsheet with or without editable graphics from the command line
by

graphsheet(object.mode = "object-oriented")
graphsheet(object.mode = "fast")

457

458 The S-PLUS GUI

Figure B.1: A snapshot of the GUI interface showing three subwindows, from front to
back an object explorer, a multi-tabbed graphsheet and a commands window. What is
displayed as the lower toolbar depends on which subwindow is on top.

Figure B.2: A script subwindow. The definition ofrlm.default was inserted by high-
lighting the name (as shown), right-clicking and selectingExpand Inplace.

The S-PLUS GUI 459

Figure B.3: Some buttons from the main toolbar. From left to right these give a data
window, object explorer, history window, commands window, commands history window,
2D and 3D palettes and conditioning plots.

Script windows

You can use a script window rather than a commands window to enterS com-
mands, and this may be most convenient forS programming. A new script win-
dow can be opened from theNew file button or menu item, and presents a two-part
subwindow as shown in Figure B.2.S commands can be typed into the top win-
dow and edited there. Pressing return submits the current line. Groups of com-
mands can be selected (in the usual ways inWindows), and submitted by pressing
the function key F10 or by the leftmost button on the second line (marked to rep-
resent a ‘play’ key). If text output is produced, this will (normally) appear in the
bottom part of the subwindow. This output pane is cleared at each submission.

The input part of a script window is associated with a file, conventionally with
extension.ssc and double-clicking on.ssc files in Windows Explorer ought
to open them in a script window inS-PLUS, launching a newS-PLUS if none is
running.

A script window can be launched from the command line to edit a function by
the functionEdit (note the difference fromedit: the behaviour is closer to that
of fix).

It is the help features that mark a scripts window as different from a commands
window. Select a function name by double-clicking on it. Then help on that
function is available by pressing the function key F1, and the right-click menu
has itemsShow Dialog... andExpand Inplace to pop up a dialog box for the
arguments of the function and to paste in the function body. There is a variety of
convenient shortcuts for programmers: auto-indent, auto-insertion of right brace
(}) and highlighting of matching left parentheses, brackets, braces and quotes (to
)] } " and ’).

Scripts can be saved as text files with extension.ssc; use theSave file menu
item or button when the script window has focus. They can then be loaded into
S-PLUS by opening them inExplorer.

More than one script window can be open at once. To avoid cluttering the
screen, script windows can be hidden (and unhidden) from theWindows file
menu. TheHide item hides the window that has focus, whereas theUnhide...
provides a list of windows from which to select.

TheESS package mentioned on page 455 can also be used withNTemacs on
Windows, and provides a programming editor that some may prefer (including
both of us).

Report windows

A useful alternative to the output pane of a script window is areport window
which records all the output directed toit and can be saved to a file. The contents

460 The S-PLUS GUI

of the report window can be edited, so mistakes can be removed and the contents
annotated before saving.

Where output is sent is selected by the dialog box brought up by theText
Output Routing... item on theOptions menu. This allows separate selections
for normal output and warnings/errors; the most useful options areDefault and
Report.

Object explorers

There can be one or more object explorers on screen. They provide a two-panel
view (see Figure B.1) that will be familiar from manyWindows programs. Object
views can be expanded down to component level. The right-click menu is context-
sensitive; for example, for a linear model fit (of classlm) it hasSummary, Plot,
Predict andCoefficients items. Double-clicking on a data frame or vector will
open it for editing or viewing in a spreadsheet-likedata window.

If a graphsheet is selected and expanded it will first show its pages (if there
are more than one) and then the plotted objects. If the object is labelledCom-
positeObject then the right-click menu will include the itemConvert to Objects
which will convert that plot to editable form.

Object explorers are highly customizable, both in the amount of detail in the
right pane and in the databases and classes of objects to be shown. Right-clicking
on the background of the left and right panes or on folders or using theFormat
menu will lead to dialog boxes to customize the format.

The ordering of items in the right pane can be puzzling; click on the heading
of a column to sort on that column (as inWindows Explorer).

Data windows

A data window provides a spreadsheet-like view (see Figure 2.1 on page 22) of a
data frame (or vector or matrix). The scrollbars scroll the table, but the headings
remain visible. A region can be selected by dragging (and extended by shift-
clicking); including the headings in the selection includes the whole row or col-
umn as appropriate.

Entries can be edited and rows and columns inserted or deleted in the usual
spreadsheet styles. Toolbar buttons are provided for most of these operations, and
for sorting by the selected column. Double-clicking in the top row of a column
brings up a format dialog for that column; double-clicking in the top left cell
brings up a format dialog for the window that allows the type font and size to be
altered.

Appendix C

Datasets, Software and Libraries

The software and datasets used in this book are supplied withS-PLUS for Win-
dows and also available on the World Wide Web. Point your browser at

http://www.stats.ox.ac.uk/pub/MASS4/sites.html

to obtain a current list of sites; please use a site near you. We expect this list to
include

http://www.stats.ox.ac.uk/pub/MASS4
http://www.cmis.csiro.au/S-PLUS/MASS
http://lib.stat.cmu.edu/S/MASS4
http://franz.stat.wisc.edu/pub/MASS4

The on-line instructions tell you how to install the software. In case of difficulty
in accessing the software, please emailMASS@stats.ox.ac.uk.

The on-line complements are available at these sites as well as exercises (with
selected answers) and printable versions of the on-line help for our software.

Note that this book assumes that you have access to anS environment.
S-PLUS is a commercial product; please seehttp://www.insightful.com
for details of its distribution channels.R is freely available fromhttp://www.
r-project.org and mirrors.

C.1 Our Software

Our software is packaged as four library sections (inS-PLUS’s notation) or as a
bundleVR of four packages forR. These are

MASS This contains all the datasets and a number ofS functions, as well as a
number of other datasets that we have used in learning or teaching.

nnet Software for feed-forward neural networks with a single hidden layer and
for multinomial log-linear models.

spatial Software for spatial smoothing and the analysis of spatial point pat-
terns. This directory contains a number of datasets of point patterns, de-
scribed in the text filePP.files .

461

462 Datasets, Software and Libraries

class Functions for nonparametric classification, byk-nearest neighbours and
learning vector quantization, as well as Kohonen’s SOM.

These are supplied withS-PLUS for Windows, and should be part of anR
installation. Sources for use withS-PLUS for UNIX / Linux and updates for other
systems can be found at the Web sites listed above.

Caveat

These datasets and software are provided in good faith, but none of the authors,
publishers or distributors warrant their accuracy nor can be held responsible for
the consequences of their use.

We have tested the software as widely as we are able but it is inevitable that
system dependencies will arise. We are unlikely to be in a position to assist with
such problems.

The licences for the distribution and use of the software and datasets are given
in the on-line distributions.

C.2 Using Libraries

A library section inS-PLUS is a convenient way to packageS objects for a com-
mon purpose, and to allow these to extend the system.

The structure of a library section is the same as that of a working directory,
but thelibrary function makes sections much more convenient to use. Conven-
tionally library sections are stored in a standard place, the subdirectorylibrary
of the mainS-PLUS directory. Which library sections are available can be found
by the library command with no argument; further information (the contents
of the README file) on any section is given by

library(help = section_name)

and the library section itself is made available by

library(section_name)

This has two actions. It attaches the.Data subdirectory of the section at the
end of the search path (having checked that it has not already been attached), and
executes the function.First.lib if one exists within that.Data subdirectory.

Sometimes it is necessary to have functions in a library section that will re-
place standard system functions (for example, to correct bugs or to extend their
functionality). This can be done by attaching the library section as the second
dictionary on the search path with

library(section_name, first = T)

Of course, attaching other dictionaries withattach or other libraries with
first = T will push previously attached libraries down the search path.

R calls library sectionspackages and by default attachesthem first; otherwise
they are functionally equivalent toS-PLUS library sections.

C.2 Using Libraries 463

Private libraries in S-PLUS

So far we have only considered system-wide library sections installed under the
main S-PLUS directory, which usually requires privileged access to the operat-
ing system. It is also possible to use a private library, by givinglibrary the
argumentlib.loc or by assigning the objectlib.loc in the current session
dictionary (frame 0). This should be a vector of directory names that are searched
in order for library sections before the system-wide library. For example, on one
of our systems we get

> assign(where = 0, "lib.loc", "/users/ripley/S/library")
> library()
Library "/users/ripley/S/library"
The following sections are available in the library:

SECTION BRIEF DESCRIPTION

MASS main library
nnet neural nets
spatial spatial statistics
class classification

Library "/packages/splus/library"
The following sections are available in the library:

SECTION BRIEF DESCRIPTION

chron Functions to handle dates and times.
....

Becauselib.loc is local to the session, it must be assigned for each session.
The .First function is often a convenient place to do so;Windows users can
put the assign line in a fileS.init in the local folder of the mainS-PLUS
directory.

Private libraries in R

In R terminology packages are installed in libraries. The easiest way to make use
of private libraries is to list their locations in the environment variableR_LIBS in
the same format as used byPATH (so separated by colons onUNIX, by semicolons
onWindows). We find it convention to set this in the file.Renviron in the user’s
home directory.

Sources of libraries

Many S users have generously collected their functions and datasets into library
sections and made them publicly available. An archive of sources for library sec-
tions is maintained at Carnegie-Mellon University. The World Wide Web address
is

464 Datasets, Software and Libraries

http://lib.stat.cmu.edu/S/

colloquially known asstatlib . There are several mirrors around the world.
Several of these sections have been mentioned in the text; whereS-PLUS

library sections are not available fromstatlib their source is given at first men-
tion.

The convention is to distribute library sections as ‘shar’ archives; these are
text files that when used as scripts for the Bourne shellsh unpack to give all the
files needed for a library section. Check files such asInstall for installation in-
structions; these usually involve editing theMakefile and typingmake. Beware
that many of the instructions predate current versions ofS-PLUS. (We provide a
set of links to patched versions or updated instructions at our Web sites.)

We have made available several of these library sections prepackaged forWin-
dows users in.zip archives; check the WWW address

http://www.stats.ox.ac.uk/pub/MASS4/Winlibs

Be aware that sections packaged forS-PLUS 4.x/2000 are incompatible with
S-PLUS 6.x.

The equivalentR packages are available from CRAN

http://cran.r-project.org
http://cran.us.r-project.org
http://lib.stat.cmu.edu/R/CRAN/

and other mirrors, normally as source code and pre-compiled forWindows and
Macintosh.

References

Numbers in brackets [] are page references to citations.

Abbey, S. (1988) Robust measures and the estimator limit.Geostandards Newsletter 12,
241–248. [124]

Aitchison, J. (1986)The Statistical Analysis of Compositional Data. London: Chapman &
Hall. [77]

Aitchison, J. and Dunsmore, I. R. (1975)Statistical Prediction Analysis. Cambridge: Cam-
bridge University Press. [339]

Aitkin, M. (1978) The analysis of unbalanced cross classifications (with discussion).Jour-
nal of the Royal Statistical Society A 141, 195–223. [169, 170, 176]

Aitkin, M., Anderson, D., Francis, B. and Hinde, J. (1989)Statistical Modelling in GLIM.
Oxford: Oxford University Press. [208]

Akaike, H. (1974) A new look at statistical model identification.IEEE Transactions on
Automatic Control AU–19, 716–722. [174]

Akima, H. (1978) A method of bivariate interpolation and smooth surface fitting for irregu-
larly distributed data points.ACM Transactions on Mathematical Software 4, 148–159.
[424]

Analytical Methods Committee (1987) Recommendations for the conduct and interpreta-
tion of co-operative trials.The Analyst 112, 679–686. [279]

Analytical Methods Committee (1989a) Robust statistics — how not to reject outliers. Part
1. Basic concepts.The Analyst 114, 1693–1697. [114, 124]

Analytical Methods Committee (1989b) Robust statistics — how not to reject outliers. Part
2. Inter-laboratory trials.The Analyst 114, 1699–1702. [124, 281]

Andersen, P. K., Borgan, Ø., Gill, R. D. and Keiding, N. (1993)Statistical Models Based
on Counting Processes. New York: Springer-Verlag. [353, 356]

Anderson, E. (1935) The irises of the Gaspe peninsula.Bulletin of the American Iris
Society 59, 2–5. [301]

Anderson, E. and ten others (1999)LAPACK User’s Guide. Third Edition. Philadelphia:
SIAM. [64]

Anderson, O. D. (1976)Time Series Analysis and Forecasting. The Box-Jenkins Approach.
London: Butterworths. [406]

Atkinson, A. C. (1985)Plots, Transformations and Regression. Oxford: Oxford University
Press. [86, 151]

Atkinson, A. C. (1986) Comment: Aspects of diagnostic regression analysis.Statistical
Science 1, 397–402. [152]

465

466 References

Atkinson, A. C. (1988) Transformations unmasked.Technometrics 30, 311–318. [152,
153]

Azzalini, A. and Bowman, A. W. (1990) A look at some data on the Old Faithful geyser.
Applied Statistics 39, 357–365. [113]

Bartholomew, D. J. and Knott, M. (1999)Latent Variable Analysis and Factor Analysis.
Second Edition. London: Arnold. [323]

Bates, D. M. and Chambers, J. M. (1992) Nonlinear models. Chapter 10 of Chambers and
Hastie (1992). [211]

Bates, D. M. and Watts, D. G. (1988)Nonlinear Regression Analysis and Its Applications.
New York: John Wiley and Sons. [211]

Becker, R. A. (1994) A brief history of S. InComputational Statistics: Papers Collected on
the Occasion of the 25th Conference on Statistical Computing at Schloss Reisenburg,
eds P. Dirschedl and R. Osterman, pp. 81–110. Heidelberg: Physica-Verlag. [1]

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988)The NEW S Language. New York:
Chapman & Hall. (Formerly Monterey: Wadsworth and Brooks/Cole.). [2]

Becker, R. A., Cleveland, W. S. and Shyu, M.-J. (1996) The visual design and control of
Trellis display.Journal of Computational and Graphical Statistics 5, 123–155. [69]

Bie, O., Borgan, Ø. and Liestøl, K. (1987) Confidence intervals and confidence bands for
the cumulative hazard rate function and their small sample properties.Scandinavian
Journal of Statistics 14, 221–233. [357]

Bishop, C. M. (1995)Neural Networks for Pattern Recognition. Oxford: Clarendon Press.
[243]

Bishop, Y. M. M., Fienberg, S. E. and Holland, P. W. (1975)Discrete Multivariate Analysis.
Cambridge, MA: MIT Press. [199, 325]

Bloomfield, P. (2000)Fourier Analysis of Time Series: An Introduction. Second Edition.
New York: John Wiley and Sons. [387, 392, 394, 396]

Bollerslev, T. (1986) Generalized autoregressive conditional heteroscedasticity.Journal of
Econometrics 51, 307–327. [416]

Borgan, Ø. and Liestøl, K. (1990) A note on confidence intervals and bands for the survival
function based on transformations.Scandinavian Journal of Statistics 17, 35–41. [357]

Boser, B. E., Guyon, I. M. and Vapnik, V. N. (1992) A training algorithm for optimal mar-
gin classifiers. InProceeedings of the 5th Annual ACM Workshop on Computational
Learning Theory., ed. D. Haussler, pp. 144–152. ACM Press. [344]

Bowman, A. and Azzalini, A. (1997)Applied Smoothing Techniques for Data Analysis:
The Kernel Approach with S-Plus Illustrations. Oxford: Oxford University Press.
[126, 211, 249]

Box, G. E. P. and Cox, D. R. (1964) An analysis of transformations (with discussion).
Journal of the Royal Statistical Society B 26, 211–252. [170, 171]

Box, G. E. P., Hunter, W. G. and Hunter, J. S. (1978)Statistics for Experimenters. New
York: John Wiley and Sons. [116, 117, 168, 169]

Breiman, L. and Friedman, J. H. (1985) Estimating optimal transformations for multiple
regression and correlations (with discussion).Journal of the American Statistical As-
sociation 80, 580–619. [237]

References 467

Breiman, L., Friedman, J. H., Olshen, R. A. and Stone, C. J. (1984)Classification and
Regression Trees. New York: Chapman & Hall / CRC Press. (Formerly Monterey:
Wadsworth and Brooks/Cole.). [251, 257]

Brent, R. (1973)Algorithms for Minimization Without Derivatives. Englewood Cliffs, NJ:
Prentice-Hall. [435]

Breslow, N. E. and Clayton, D. G. (1993) Approximate inference in generalized linear
mixed models.Journal of the American Statistical Association 88, 9–25. [294, 297,
298]

Brockwell, P. J. and Davis, R. A. (1991)Time Series: Theory and Methods. Second Edition.
New York: Springer-Verlag. [387]

Brockwell, P. J. and Davis, R. A. (1996)Introduction to Time Series and Forecasting. New
York: Springer-Verlag. [387]

Bruckner, L. A. (1978) On Chernoff faces. InGraphical Representation of Multivariate
Data, ed. P. C. C. Wang, pp. 93–121. New York: Academic Press. [314]

Bryan, J. G. (1951) The generalized discriminant function: mathematical foundation and
computational routine.Harvard Educational Review 21, 90–95. [333]

Campbell, J. Y., Lo, A. W. and MacKinlay, A. C. (1997)The Econometrics of Financial
Markets. Princeton, New Jersey: Princeton University Press. [414]

Campbell, N. A. and Mahon, R. J. (1974) A multivariate study of variation in two species
of rock crab of genusLeptograpsus. Australian Journal of Zoology 22, 417–425. [302]

Cao, R., Cuevas, A. and Gonz´alez-Manteiga, W. (1994) A comparative study of several
smoothing methods in density estimation.Computational Statistics and Data Analysis
17, 153–176. [129]

Chambers, J. M. (1998)Programming with Data. A Guide to the S Language. New York:
Springer-Verlag. [2, 53]

Chambers, J. M. and Hastie, T. J. eds (1992)Statistical Models in S. New York: Chapman
& Hall. (Formerly Monterey: Wadsworth and Brooks/Cole.). [2, 188, 197, 466, 467]

Chernoff, H. (1973) The use of faces to represent points ink -dimensional space graphi-
cally. Journal of the American Statistical Association 68, 361–368. [314]

Chilès, J.-P. and Delfiner, P. (1999)Geostatistics. Modeling Under Spatial Uncertainty.
New York: Wiley. [425]

Ciampi, A., Chang, C.-H., Hogg, S. and McKinney, S. (1987) Recursive partitioning: A
versatile method for exploratory data analysis in biostatistics. InBiostatistics, eds I. B.
McNeil and G. J. Umphrey, pp. 23–50. New York: Reidel. [256]

Clark, L. A. and Pregibon, D. (1992) Tree-based models. Chapter 9 of Chambers and
Hastie (1992). [251, 255]

Clayton, D. G. (1996) Generalized linear mixed models. InMarkov Chain Monte Carlo in
Practice, Chapter 16, pp. 275–301. London: Chapman & Hall. [296]

Cleveland, R. B., Cleveland, W. S., McRae, J. E. and Terpenning, I. (1990) STL: A
seasonal-trend decomposition procedure based on loess (with discussion).Journal
of Official Statistics 6, 3–73. [403]

Cleveland, W. S. (1993)Visualizing Data. Summit, NJ: Hobart Press. [69, 89, 178]

Cleveland, W. S., Grosse, E. and Shyu, W. M. (1992) Local regression models. Chapter 8
of Chambers and Hastie (1992). [423]

468 References

Collett, D. (1991)Modelling Binary Data. London: Chapman & Hall. [189, 190, 208]

Collett, D. (1994)Modelling Survival Data in Medical Research. London: Chapman &
Hall. [353]

Comon, P. (1994) Independent component analysis — a new concept?Signal Processing
36, 287–314. [313]

Copas, J. B. (1988) Binary regression models for contaminated data (with discussion).
Journal of the Royal Statistical Society series B 50, 225–266. [445]

Cortes, C. and Vapnik, V. (1995) Support-vector networks.Machine Learning 20, 273–
297. [344]

Cox, D. R. (1972) Regression models and life-tables (with discussion).Journal of the
Royal Statistical Society B 34, 187–220. [365]

Cox, D. R., Hinkley, D. V. and Barndorff-Nielsen, O. E. eds (1996)Time Series Models. In
econometric, finance and other fields. London: Chapman & Hall. [474, 478]

Cox, D. R. and Oakes, D. (1984)Analysis of Survival Data. London: Chapman & Hall.
[353, 354]

Cox, D. R. and Snell, E. J. (1984)Applied Statistics. Principles and Examples. London:
Chapman & Hall. [199]

Cox, D. R. and Snell, E. J. (1989)The Analysis of Binary Data. Second Edition. London:
Chapman & Hall. [194, 208]

Cox, T. F. and Cox, M. A. A. (2001)Multidimensional Scaling. Second Edition. Chapman
& Hall / CRC. [306, 308]

Cressie, N. A. C. (1991)Statistics for Spatial Data. New York: John Wiley and Sons.
[419, 428, 429]

Cristianini, N. and Shawe-Taylor, J. (2000)An Introduction to Support Vector Machines
and other kernel-based learning methods. Cambridge: Cambridge University Press.
[344]

Cromwell, J. B., Labys, W. C. and Terraza, M. (1994)Univariate Tests for Time Series
Models. Thousand Oaks, CA: Sage. [416]

Cybenko, G. (1989) Approximation by superpositions of a sigmoidal function.Mathemat-
ics of Controls, Signals, and Systems 2, 303–314. [245]

Daniel, C. and Wood, F. S. (1980)Fitting Equations to Data. Second Edition. New York:
John Wiley and Sons. [272]

Darroch, J. N. and Ratcliff, D. (1972) Generalized iterative scaling for log-linear models.
Annals of Mathematical Statistics 43, 1470–1480. [185, 203]

Davidian, M. andGiltinan, D. M. (1995) Nonlinear Models for Repeated Measurement
Data. London: Chapman & Hall. [272]

Davies, P. L. (1993) Aspects of robust linear regression.Annals of Statistics 21, 1843–
1899. [159]

Davison, A. C. and Hinkley, D. V. (1997)Bootstrap Methods and Their Application. Cam-
bridge: Cambridge University Press. [133, 134, 137, 138, 164]

Davison, A. C. and Snell, E. J. (1991) Residuals and diagnostics. Chapter 4 of Hinkley
et al. (1991). [189]

References 469

Dawid, A. P. (1982) The well-calibrated Bayesian (with discussion).Journal of the Amer-
ican Statistical Association 77, 605–613. [349]

Dawid, A. P. (1986) Probability forecasting. InEncyclopedia of Statistical Sciences, eds
S. Kotz, N. L. Johnson and C. B. Read, volume 7, pp. 210–218. New York: John Wiley
and Sons. [349]

Deming, W. E. and Stephan, F. F. (1940) On a least-squares adjustment of a sampled fre-
quency table when the expected marginal totals are known.Annals of Mathematical
Statistics 11, 427–444. [185]

Devijver, P. A. and Kittler, J. V. (1982)Pattern Recognition: A Statistical Approach. En-
glewood Cliffs, NJ: Prentice-Hall. [341]

Diaconis, P. and Shahshahani, M. (1984) On non-linear functions of linear combinations.
SIAM Journal of Scientific and Statistical Computing 5, 175–191. [239]

Diggle, P. J. (1983)Statistical Analysis of Spatial Point Patterns. London: Academic Press.
[419]

Diggle, P. J. (1990)Time Series: A Biostatistical Introduction. Oxford: Oxford University
Press. [387, 388]

Diggle, P. J., Liang, K.-Y. and Zeger, S. L. (1994)Analysis of Longitudinal Data. Oxford:
Clarendon Press. [278, 293, 294, 295, 299]

Dixon, W. J. (1960) Simplified estimation for censored normal samples.Annals of Mathe-
matical Statistics 31, 385–391. [122]

Duda, R. O. and Hart, P. E. (1973)Pattern Classification and Scene Analysis. New York:
John Wiley and Sons. [199]

Duda, R. O., Hart, P. E. and Stork, D. G. (2001)Pattern Classification. Second Edition.
New York: John Wiley and Sons. [331]

Edwards, D. (2000)Introduction to Graphical Modelling. Second Edition. New York:
Springer. [199]

Efron, B. (1982)The Jackknife, the Bootstrap, and Other Resampling Plans. Philadelphia:
Society for Industrial and Applied Mathematics. [134]

Efron, B. and Tibshirani, R. (1993)An Introduction to the Bootstrap. New York: Chapman
& Hall. [133]

Eilers, P. H. and Marx, B. D. (1996) Flexiblesmoothing with B-splines and penalties.
Statistical Science 11, 89–121. [384]

Ein-Dor, P. and Feldmesser, J. (1987) Attributes of the performance of central processing
units: A relative performance prediction model.Communications of the ACM 30,
308–317. [177]

Emerson, J. W. (1998) Mosaic displays in S-PLUS: a general implementation and a case
study.Statistical Computing and Graphics Newsletter 9(1), 17–23. [325]

Engle, R. F. (1982) Autoregressive conditional heteroscedasticity with estimates of the
variance of the United Kingdom inflation.Econometrica 50, 987–1007. [414]

Evans, M. and Swartz, T. (2000)Approximating Integrals via Monte Carlo and Determin-
istic Methods. Oxford: Oxford University Press. [296, 298]

Everitt, B. S. and Hand, D. J. (1981)Finite Mixture Distributions. London: Chapman &
Hall. [437, 438]

470 References

Fan, J. and Gijbels, I. (1996)Local Polynomial Modelling and its Applications. London:
Chapman & Hall. [132]

Feigl, P. and Zelen, M. (1965) Estimation of exponential survival probabilities with con-
comitant information.Biometrics 21, 826–838. [354]

Fernandez, C. and Steel, M. F. J. (1999) Multivariate Student t-regression models: Pitfalls
and inference.Biometrika 86, 153–167. [110]

Finney, D. J. (1971)Probit Analysis. Third Edition. Cambridge: Cambridge University
Press. [208]

Firth, D. (1991) Generalized linear models. Chapter 3 of Hinkleyet al. (1991). [183, 185,
187]

Fisher, R. A. (1925) Theory of statistical estimation.Proceedings of the Cambridge Philo-
sophical Society 22, 700–725. [186]

Fisher, R. A. (1936) The use of multiple measurements in taxonomic problems.Annals of
Eugenics (London) 7, 179–188. [301, 332]

Fisher, R. A. (1940) The precision of discriminant functions.Annals of Eugenics (London)
10, 422–429. [325]

Fleming, T. R. and Harrington, D. P. (1981) A class of hypothesis tests for one and two
sample censored survival data.Communications in Statistics A10, 763–794. [358]

Fleming, T. R. and Harrington, D. P. (1991)Counting Processes and Survival Analysis.
New York: John Wiley and Sons. [353, 356, 366, 370]

Fletcher, R. (1987)Practical Methods of Optimization. Second Edition. Chichester: John
Wiley and Sons. [435]

Flury, B. and Riedwyl, H. (1981) Graphical representation of multivariate data by means
of asymmetrical faces.Journal of the American Statistical Association 76, 757–765.
[314]

Freedman, D. and Diaconis, P. (1981) On the histogram as a density estimator:L2 theory.
Zeitschrift für Wahrscheinlichkeitstheorie und verwandte Gebiete 57, 453–476. [112]

Friedman, J. H. (1984) SMART user’s guide. Technical Report 1, Laboratory for Compu-
tational Statistics, Department of Statistics, Stanford University. [239]

Friedman, J. H. (1987) Exploratory projection pursuit.Journal of the American Statistical
Association 82, 249–266. [302]

Friedman, J. H. (1991) Multivariate adaptive regression splines (with discussion).Annals
of Statistics 19, 1–141. [235]

Friedman, J. H. and Silverman, B. W. (1989) Flexible parsimonious smoothing and additive
modeling (with discussion).Technometrics 31, 3–39. [234]

Friedman, J. H. and Stuetzle, W. (1981) Projection pursuit regression.Journal of the
American Statistical Association 76, 817–823. [239]

Friendly, M. (1994) Mosaic displaysfor multi-way contingency tables.Journal of the
American Statistical Association 89, 190–200. [325]

Friendly, M. (2000)Visualizing Categorical Data. Cary, NC: SAS Institute. [325]

Fuller, W. A. (1987)Measurement Error Models. New York: John Wiley and Sons. [278]

Funahashi, K. (1989) On the approximate realization of continuous mappings by neural
networks.Neural Networks 2, 183–192. [245]

References 471

Gabriel, K. R. (1971) The biplot graphical display of matrices with application to principal
component analysis.Biometrika 58, 453–467. [311, 312]

Gallant, A. R. (1987)Nonlinear Statistical Models. New York: John Wiley and Sons.
[211]

Gamerman, D. (1997a)Markov Chain Monte Carlo: stochastic simulation for Bayesian
inference. London: Chapman & Hall. [296]

Gamerman, D. (1997b) Sampling from the posterior distribution in generalized linear
mixed models.Statistics and Computing 7, 57–68. [296]

Gehan, E. A. (1965) A generalized Wilcoxon test for comparing arbitrarily singly-censored
samples.Biometrika 52, 203–223. [354]

Geisser, S. (1993)Predictive Inference: An Introduction. New York: Chapman & Hall.
[339]

Gentle, J. E. (1998)Numerical Linear Algebra for Applications in Statistics. New York:
Springer-Verlag. [62]

Gill, P. E., Murray, W. and Wright, M. H. (1981)Practical Optimization. London: Aca-
demic Press. [435]

Goldstein, H. (1995)Multilevel Statistical Models. Second Edition. London: Edward
Arnold. [271]

Golub, G. H. and Van Loan, C. F. (1989)Matrix Computations. Second Edition. Baltimore:
Johns Hopkins University Press. [62, 63, 422]

Goodman, L. A. (1978)Analyzing Qualitative/Categorical Data: Log-Linear Models and
Latent-Structure Analysis. Cambridge, MA: Abt Books. [199]

de Gooijer, J. G., Abraham, B., Gould, A. and Robinson, L. (1985) Methods for determin-
ing the order of an autoregressive-moving average process: A survey.International
Statistical Review 53, 301–329. [398]

Gordon, A. D. (1999)Classification. Second Edition. London: Chapman & Hall / CRC.
[315, 316]

Gower, J. C. and Hand, D. J. (1996)Biplots. London: Chapman & Hall. [313, 326, 329,
330]

Grambsch, P. and Therneau, T. M. (1994) Proportional hazards tests and diagnostics based
on weighted residuals.Biometrika 81, 515–526. [371]

Green, P. J. and Silverman, B. W. (1994)Nonparametric Regression and Generalized Lin-
ear Models. A Roughness Penalty Approach. London: Chapman & Hall. [228, 230]

Greenacre, M. (1992) Correspondence analysis in medical research.Statistical Methods in
Medical Research 1, 97–117. [328, 329]

Haberman, S. J. (1978)Analysis of Qualitative Data. Volume 1: Introductory Topics. New
York: Academic Press. [199]

Haberman, S. J. (1979)Analysis of Qualitative Data. Volume 2: New Developments. New
York: Academic Press. [199]

Hampel, F. R., Ronchetti, E. M., Rousseeuw, P. J. and Stahel, W. A. (1986)Robust Statis-
tics. The Approach Based on Influence Functions. New York: John Wiley and Sons.
[120, 142]

Hand, D., Mannila, H. and Smyth, P. (2001)Principles of Data Mining. Cambridge, MA:
The MIT Press. [301, 331]

472 References

Hand, D. J., Daly, F., McConway, K., Lunn, D. and Ostrowski, E. eds (1994)A Handbook
of Small Data Sets. London: Chapman & Hall. [139, 272]

Harrington, D. P. and Fleming, T. R. (1982) A class of rank test procedures for censored
survival data.Biometrika 69, 553–566. [358]

Hartigan, J. A. (1975)Clustering Algorithms. New York: John Wiley and Sons. [318]

Hartigan, J. A. (1982) Classification. InEncyclopedia of Statistical Sciences, eds S. Kotz,
N. L. Johnson and C. B. Read, volume 2, pp. 1–10. New York: John Wiley and Sons.
[331]

Hartigan, J. A. and Kleiner, B. (1981) Mosaics for contingency tables. InComputer Science
and Statistics: Proceedings of the 13th Symposium on the Interface, ed. W. F. Eddy,
pp. 268–273. New York: Springer-Verlag. [325]

Hartigan, J. A. and Kleiner, B. (1984) A mosaic of television ratings.American Statistician
38, 32–35. [325]

Hartigan, J. A. and Wong, M. A. (1979) A K-means clustering algorithm.Applied Statistics
28, 100–108. [318]

Hastie, T. J. and Tibshirani, R. J. (1990)Generalized Additive Models. London: Chapman
& Hall. [211, 230, 234]

Hastie, T. J. and Tibshirani, R. J. (1996) Discriminant analysis by Gaussian mixtures.Jour-
nal of the Royal Statistical Society Series B 58, 158–176. [341]

Hastie, T. J., Tibshirani, R. J. and Friedman, J. (2001)The Elements of Statistical Learning.
Data Mining Inference and Prediction. New York: Springer-Verlag. [211, 229, 313,
331, 344, 345]

Hauck, Jr., W. W. and Donner, A. (1977) Wald’s test as applied to hypotheses in logit
analysis.Journal of the American Statistical Association 72, 851–853. [197]

Heiberger, R. M. (1989)Computation for the Analysis of Designed Experiments. New
York: John Wiley and Sons. [282]

Henrichon, Jr., E. G. and Fu, K.-S. (1969) Anonparametric partitioning procedure for
pattern classification.IEEE Transactions on Computers 18, 614–624. [251]

Hertz, J., Krogh, A. and Palmer, R. G. (1991)Introduction to the Theory of Neural Com-
putation. Redwood City, CA: Addison-Wesley. [243]

Hettmansperger, T. P. and Sheather, S. J. (1992) A cautionary note on the method of least
median squares.American Statistician 46, 79–83. [159]

Hinkley, D. V., Reid, N. and Snell, E. J. eds (1991)Statistical Theory and Modelling. In
Honour of Sir David Cox, FRS. London: Chapman & Hall. [468, 470]

Hoaglin, D. C., Mosteller, F. and Tukey, J. W. eds (1983)Understanding Robust and Ex-
ploratory Data Analysis. New York: John Wiley and Sons. [115, 473]

Hornik, K., Stinchcombe, M. and White, H. (1989) Multilayer feedforward networks are
universal approximators.Neural Networks 2, 359–366. [245]

Hosmer, D. W. and Lemeshow, S. (1999)Applied Survival Analysis. Regression Modeling
of Time to Event Data. New York: John Wiley and Sons. [353]

Hosmer, Jr., D. W. and Lemeshow, S. (1989)Applied Logistic Regression. New York: John
Wiley and Sons. [194]

Hsu, J. C. (1996)Multiple Comparison: Theory and Methods. London: Chapman & Hall.
[181]

References 473

Huber, P. J. (1981)Robust Statistics. New York: John Wiley and Sons. [120]

Huber, P. J. (1985) Projection pursuit (with discussion).Annals of Statistics 13, 435–525.
[302]

Huet, S., Bouvier, A., Gruet, M.-A. and Jolivet, E. (1996)Statistical Tools for Nonlinear
Regression. A Practical Guide with S-PLUS Examples. New York: Springer-Verlag.
[211]

Hyndman, R. J. and Fan, Y. (1996) Samplequantiles in statistical packages.Ameri-
can Statistician 50, 361–365. [S function fromhttp://www-personal.buseco.
monash.edu.au/~hyndman/s-plus/misc/quantile.htm]. [112]

Hyvärinen, A., Karhunen, J. and Oja, E. (2001)Independent Component Analysis. New
York: John Wiley and Sons. [313]

Hyvärinen, A. and Oja, E. (2000) Independent component analysis. algorithms and appli-
cations.Neural Networks 13, 411–430. [313]

Iglewicz, B. (1983) Robust scale estimators and confidence intervals for location. In
Hoaglinet al. (1983), pp. 405–431. [121]

Ingrassia, S. (1992) A comparison between the simulated annealing and the EM algorithms
in normal mixture decompositions.Statistics and Computing 2, 203–211. [437]

Inselberg, A. (1984) The plane with parallel coordinates.The Visual Computer 1, 69–91.
[314]

Jackson, J. E. (1991)A User’s Guide to Principal Components. New York: John Wiley
and Sons. [305]

Jardine, N. and Sibson, R. (1971)Mathematical Taxonomy. London: John Wiley and Sons.
[306, 316]

John, P. W. M. (1971)Statistical Design and Analysis of Experiments. New York: Macmil-
lan. [282]

Jolliffe, I. T. (1986)Principal Component Analysis. New York: Springer-Verlag. [305,
312]

Jones, M. C., Marron, J. S. and Sheather, S. J. (1996) A brief survey of bandwidth selection
for density estimation.Journal of the American Statistical Association 91, 401–407.
[129]

Jones, M. C. and Sibson, R. (1987) What is projection pursuit? (with discussion).Journal
of the Royal Statistical Society A 150, 1–36. [302]

Journel, A. G. and Huijbregts, C. J. (1978)Mining Geostatistics. London: Academic Press.
[425]

Kalbfleisch, J. D. and Prentice, R. L. (1980)The Statistical Analysis of Failure Time Data.
New York: John Wiley and Sons. [353, 354, 355, 364, 371, 377]

Kaluzny, S. and Vega, S. C. (1997)S+SPATIALSTATS. New York: Springer-Verlag.
[419]

Kaufman, L. and Rousseeuw, P. J. (1990)Finding Groups in Data. An Introduction to
Cluster Analysis. New York: John Wiley and Sons. [306, 315, 316]

Kent, J. T., Tyler, D. E. and Vardi, Y. (1994)A curious likelihood identity for the mul-
tivariate t -distribution. Communications in Statistics—Simulation and Computation
23, 441–453. [337]

474 References

Klein, J. P. (1991) Small sample moments of some estimators of the variance of the Kaplan-
Meier and Nelson-Aalen estimators.Scandinavian Journal of Statistics 18, 333–340.
[356]

Klein, J. P. and Moeschberger, M. L. (1997)Survival Analysis. Techniques for Censored
and Truncated Data. New York: Springer-Verlag. [353]

Knerr, S., Personnaz, L. and Dreyfus, G. (1990) Single-layer learning revisited: a stepwise
procedure for building and training a neural network. InNeuro-computing: Algo-
rithms, Architectures and Applications, eds F. Fogelman Souli´e and J. H´erault. Berlin:
Springer-Verlag. [346]

Knuth, D. E. (1968)The Art of Computer Programming, Volume 1: Fundamental Algo-
rithms. Reading, MA: Addison-Wesley. [48]

Kohonen, T. (1990) The self-organizing map.Proceedings IEEE 78, 1464–1480. [341]

Kohonen, T. (1995)Self-Organizing Maps. Berlin: Springer-Verlag. [310, 341]

Kooperberg, C., Bose, S. and Stone, C. J. (1997) Polychotomous regression.Journal of
the American Statistical Association 92, 117–127. [235]

Kooperberg, C. and Stone, C. J. (1992) Logspline density estimation for censored data.
Journal of Computational and Graphical Statistics 1, 301–328. [132]

Krause, A. and Olson, M. (2000)The Basics of S and S-PLUS. Second Edition. New York:
Springer-Verlag. [3]

Krzanowski, W. J. (1988)Principles of Multivariate Analysis. A User’s Perspective. Ox-
ford: Oxford University Press. [301, 331]

Laird, N. M. (1996) Longitudinal panel data: an overview of current methodology. Chap-
ter 4, pp. 143–175 of Coxet al. (1996). [293, 299]

Lam, L. (2001)An Introduction to S-PLUS for Windows. Amsterdam: CANdienstein. [3]

Lange, K. L., Little, R. J. A. and Taylor, J. M. G. (1989) Robust statistical modeling using
the t distribution.Journal of the American Statistical Association 84, 881–896. [110]

Lauritzen, S. L. (1996)Graphical Models. Oxford: Clarendon Press. [199]

Lawless, J. F. (1987) Negative binomial and mixed Poisson regression.Canadian Journal
of Statistics 15, 209–225. [206]

Lawley, D. N. and Maxwell, A. E. (1971)Factor Analysis as a Statistical Method. Second
Edition. London: Butterworths. [322]

Lee, T. W. (1998)Independent Component Analysis: Theory and Applications. Dordrecht:
Kluwer Academic Publishers. [313]

Liang, K.-Y. and Zeger, S. L. (1986) Longitudinal data analysis using generalized linear
models.Biometrika 73, 13–22. [299]

Linder, A., Chakravarti, I. M. and Vuagnat, P.(1964) Fitting asymptotic regression curves
with different asymptotes. InContributions to Statistics. Presented to Professor P.
C. Mahalanobis on the Occasion of his 70th Birthday, ed. C. R. Rao, pp. 221–228.
Oxford: Pergamon Press. [218, 219]

Lindstrom, M. J. and Bates, D. M. (1990) Nonlinear mixed effects models for repeated
measures data.Biometrics 46, 673–687. [287]

Ljung, G. M. and Box, G. E. P. (1978) On a measure of lack of fit in time series models.
Biometrika 65, 553–564. [401]

References 475

Loader, C. (1999)Local Regression and Likelihood. New York: Springer-Verlag. [132]

Ludbrook, J. (1994) Repeated measurements and multiple comparisonsin cardiovascular
research.Cardiovascular Research 28, 303–311. [288]

Mackenzie, T. and Abrahamowicz, M. (1996) B-splines without divided differences.Stu-
dent 1, 223–230. [228]

Macnaughton-Smith, P., Williams, W. T., Dale, M. B. and Mockett, L. G. (1964) Dissimi-
larity analysis: A new technique of hierarchical sub-division.Nature 202, 1034–1035.
[317]

MacQueen, J. (1967) Some methods for classification and analysis of multivariate obser-
vations. InProceedings of the Fifth Berkeley Symposium on Mathematical Statistics
and Probability, eds L. M. Le Cam and J. Neyman, volume 1, pp. 281–297. Berkeley,
CA: University of California Press. [318]

Madsen, M. (1976) Statistical analysis of multiple contingency tables. Two examples.
Scandinavian Journal of Statistics 3, 97–106. [199]

Mallows, C. L. (1973) Some comments onCp . Technometrics 15, 661–675. [174]

Marazzi, A. (1993)Algorithms, Routines and S Functions for Robust Statistics. Pacific
Grove, CA: Wadsworth and Brooks/Cole. [161]

Mardia, K. V., Kent, J. T. and Bibby, J. M. (1979)Multivariate Analysis. London: Aca-
demic Press. [301, 331]

Matheron, G. (1973) The intrinsic random functions and their applications.Advances in
Applied Probability 5, 439–468. [428]

McCullagh, P. (1980) Regression models for ordinal data (with discussion).Journal of the
Royal Statistical Society Series B 42, 109–142. [204]

McCullagh, P. and Nelder, J. A. (1989)Generalized Linear Models. Second Edition. Lon-
don: Chapman & Hall. [183, 185, 186, 204, 208, 209, 210, 275, 299]

McCulloch, W. S. and Pitts, W. (1943) A logical calculus of ideas immanent in neural
activity. Bulletin of Mathematical Biophysics 5, 115–133. [244]

McLachlan, G. J. (1992)Discriminant Analysis and Statistical Pattern Recognition. New
York: John Wiley and Sons. [301, 331]

McLachlan, G. J. and Peel, D. (2000)Finite Mixture Models. New York: John Wiley and
Sons. [437]

Michie, D. (1989) Problems of computer-aided concept formation. InApplications of
Expert Systems 2, ed. J. R. Quinlan, pp. 310–333. Glasgow: Turing Institute Press /
Addison-Wesley. [253]

Miller, R. G. (1981)Simultaneous Statistical Inference. New York: Springer-Verlag. [181]

Monahan, J. F. (2001)Numerical Methods of Statistics. Cambridge: Cambridge University
Press. [62, 296, 435]

Moran, M. A. and Murphy, B. J. (1979) A closer look at two alternative methods of statis-
tical discrimination.Applied Statistics 28, 223–232. [339]

Morgan, J. N. and Messenger, R. C. (1973) THAID: a Sequential Search Program for the
Analysis of Nominal Scale Dependent Variables. Survey Research Center, Institute for
Social Research, University of Michigan. [251]

Morgan, J. N. and Sonquist, J. A. (1963) Problems in the analysis of survey data, and a
proposal.Journal of the American Statistical Association 58, 415–434. [251]

476 References

Mosteller, F. and Tukey, J. W. (1977)Data Analysis and Regression. Reading, MA:
Addison-Wesley. [115, 317]

Murrell, P. and Ihaka, R. (2000) An approach to providing mathematical annotation in
plots. Journal of Computational and Graphical Statistics 9, 582–599. [82]

Murtagh, F. and Hern´andez-Pajares, M. (1995) The Kohonen self-organizing map method:
An assessment.Journal of Classification 12, 165–190. [311]

Murthy, S. K. (1998) Automatic construction of decision trees from data: a multi-
disciplinary survey.Data Mining and Knowledge Discovery 2, 345–389. [251]

Nagelkerke, N. J. D. (1991) A note on a general definition of thecoefficient of determina-
tion. Biometrika 78, 691–692. [368]

Nash, J. C. (1990)Compact Numerical Methods for Computers. Linear Algebra and Func-
tion Minimization. Second Edition. Bristol: Adam Hilger. [422, 435]

Nelson, D. B. (1991) Conditional heteroscedasticity in asset pricing: a new approach.
Econometrica 59, 347–370. [416]

Nelson, W. D. and Hahn, G. J. (1972) Linear estimation of a regression relationship from
censored data. Part 1 — simple methods and their application (with discussion).Tech-
nometrics 14, 247–276. [355, 364]

Nocedal, J. and Wright, S. J. (1999)Numerical Optimization. New York: Springer-Verlag.
[435]

Nolan, D. and Speed, T. (2000)Stat Labs. Mathematical Statistics Through Applications.
New York: Springer-Verlag. [vi]

Park, B.-U. and Turlach, B. A. (1992) Practical performance of several data-driven band-
width selectors (with discussion).Computational Statistics 7, 251–285. [129]

Peto, R. (1972) Contribution to the discussion of the paper by D. R. Cox.Journal of the
Royal Statistical Society B 34, 205–207. [366]

Peto, R. and Peto, J. (1972) Asymptotically efficient rank invariant test procedures (with
discussion).Journal of the Royal Statistical Society A 135, 185–206. [359]

Pinheiro, J. C. and Bates, D. M. (2000)Mixed-Effects Models in S and S-PLUS. New York:
Springer-Verlag. [271]

Plackett, R. L. (1974)The Analysis of Categorical Data. London: Griffin. [199]

Prater, N. H. (1956) Estimate gasoline yields from crudes.Petroleum Refiner 35, 236–238.
[272]

Priestley, M. B. (1981)Spectral Analysis and Time Series. London: Academic Press. [387,
392]

Quinlan, J. R. (1979) Discovering rules by induction from large collections of examples.
In Expert Systems in the Microelectronic Age, ed. D. Michie. Edinburgh: Edinburgh
University Press. [251]

Quinlan, J. R. (1983) Learning efficient classification procedures and their application to
chess end-games. InMachine Learning, eds R. S. Michalski, J. G. Carbonell and T. M.
Mitchell, pp. 463–482. Palo Alto: Tioga. [251]

Quinlan, J. R. (1986) Induction of decision trees.Machine Learning 1, 81–106. [251]

Quinlan, J. R. (1993)C4.5: Programs for Machine Learning. San Mateo, CA: Morgan
Kaufmann. [251]

References 477

Ramsey, F. L. and Schafer, D. W. (1997)The Statistical Sleuth. A Course in Methods of
Data Analysis. Belmont, CA: Duxbury Press. [vi, 295]

Ramsey, F. L. and Schafer, D. W. (2002)The Statistical Sleuth. A Course in Methods of
Data Analysis. Second Edition. Belmont, CA: Duxbury Press. [vi]

Rao, C. R. (1948) The utilization of multiple measurements in problems of biological
classification.Journal of the Royal Statistical Society series B 10, 159–203. [333]

Rao, C. R. (1971a) Estimation of variance and covariance components—MINQUE theory.
Journal of Multivariate Analysis 1, 257–275. [281]

Rao, C. R. (1971b) Minimum variance quadratic unbiased estimation of variance compo-
nents.Journal of Multivariate Analysis 1, 445–456. [281]

Rao, C. R. (1973)Linear Statistical Inference and Its Applications. Second Edition. New
York: John Wiley and Sons. [170]

Rao, C. R. and Kleffe, J. (1988)Estimation of Variance Components and Applications.
Amsterdam: North-Holland. [281]

Redner, R. A. and Walker, H. F. (1984) Mixture densities, maximum likelihood and the
EM algorithm.SIAM Review 26, 195–239. [437]

Reynolds, P. S. (1994) Time-series analyses of beaver body temperatures. InCase Stud-
ies in Biometry, eds N. Lange, L. Ryan, L. Billard, D. Brillinger, L. Conquest and
J. Greenhouse, Chapter 11. New York: John Wiley and Sons. [411]

Ripley, B. D. (1976) The second-order analysis of stationary point processes.Journal of
Applied Probability 13, 255–266. [431]

Ripley, B. D. (1981)Spatial Statistics. New York: John Wiley and Sons. [86, 419, 424,
425, 426, 432, 433]

Ripley, B. D. (1988)Statistical Inference for Spatial Processes. Cambridge: Cambridge
University Press. [419, 433, 434]

Ripley, B. D. (1993) Statistical aspects of neural networks. InNetworks and Chaos —
Statistical and Probabilistic Aspects, eds O. E. Barndorff-Nielsen, J. L. Jensen and
W. S. Kendall, pp. 40–123. London: Chapman & Hall. [243, 245]

Ripley, B. D. (1994) Neural networks and flexible regression and discrimination. InStatis-
tics and Images 2, ed. K. V. Mardia, volume 2 ofAdvances in Applied Statistics, pp.
39–57. Abingdon: Carfax. [245]

Ripley, B. D. (1996)Pattern Recognition and Neural Networks. Cambridge: Cambridge
University Press. [199, 211, 243, 251, 257, 258, 301, 302, 308, 331, 337, 338, 339,
341, 347, 445]

Ripley, B. D. (1997) Classification (update). InEncyclopedia of Statistical Sciences, eds
S. Kotz, C. B. Read and D. L. Banks, volume Update 1. New York: John Wiley and
Sons. [331]

Robert, C. P. and Casella, G. (1999)Monte Carlo Statistical Methods. New York: Springer-
Verlag. [296]

Roberts, S. and Tarassenko, L. (1995) Automated sleep EEG analysis using an RBF net-
work. In Neural Network Applications, ed. A. F. Murray, pp. 305–322. Dordrecht:
Kluwer Academic Publishers. [310]

Robinson, G. K. (1991) That BLUP is a good thing: The estimation of random effects
(with discussion).Statistical Science 6, 15–51. [276]

478 References

Roeder, K. (1990) Density estimation with confidence sets exemplified by superclusters
and voids in galaxies.Journal of the American Statistical Association 85, 617–624.
[129]

Rosenberg, P. S. and Gail, M. H. (1991) Backcalculation of flexible linear models of the
human immunodeficiency virus infection curve.Applied Statistics 40, 269–282. [446]

Ross, G. J. S. (1990)Nonlinear Estimation. New York: Springer-Verlag. [211]

Rousseeuw, P. J. (1984) Least median of squares regression.Journal of the American
Statistical Association 79, 871–881. [336]

Rousseeuw, P. J. and Leroy, A. M. (1987)Robust Regression and Outlier Detection. New
York: John Wiley and Sons. [120, 156, 157, 336]

Sammon, J. W. (1969) A non-linear mapping for data structure analysis.IEEE Transactions
on Computers C-18, 401–409. [307]

Santer, T. J. and Duffy, D. E. (1989)The Statistical Analysis of Discrete Data. New York:
Springer-Verlag. [198]

Schall, R. (1991) Estimation in generalized linear models with random effects.Biometrika
78, 719–727. [297]

Scheffé, H. (1959)The Analysis of Variance. New York: John Wiley and Sons. [282]

Schoenfeld, D. (1982) Partial residuals for the proportional hazards model.Biometrika 69,
239–241. [371]

Schwarz, G. (1978) Estimating the dimension of a model.Annals of Statistics 6, 461–464.
[276]

Scott, D. W. (1979) On optimal and data-based histograms.Biometrika 66, 605–610. [112]

Scott, D. W. (1992)Multivariate Density Estimation. Theory, Practice, and Visualization.
New York: John Wiley and Sons. [112, 126, 128, 130]

Searle, S. R., Casella, R. and McCulloch, C. E. (1992)Variance Components. New York:
John Wiley and Sons. [271]

Seber, G. A. F. and Wild, C. J. (1989)Nonlinear Regression. New York: John Wiley and
Sons. [211]

Sethi, I. K. and Sarvarayudu, G. P. R. (1982) Hierarchical classifier design using mutual
information.IEEE Transactions on Pattern Analysis and Machine Intelligence 4, 441–
445. [251]

Sheather, S. J. and Jones, M. C. (1991) A reliable data-based bandwidth selection method
for kernel density estimation.Journal of the Royal Statistical Society B 53, 683–690.
[129]

Shephard, N. (1996) Statistical aspects of ARCH and stochastic volatility. Chapter 1, pp.
1–67 of Coxet al. (1996). [414, 416]

Shumway, R. H. and Stoffer, D. S. (2000)Time Series Analysis and its Applications. New
York: Springer-Verlag. [387]

Silverman, B. W. (1986)Density Estimation for Statistics and Data Analysis. London:
Chapman & Hall. [126, 127, 130]

Simonoff, J. S. (1996)Smoothing Methods in Statistics. New York: Springer-Verlag. [126,
132, 211]

References 479

Smith, G. A. and Stanley, G. (1983) Clockingg : relating intelligence and measures of
timed performance.Intelligence 7, 353–368. [323]

Snijders, T. A. B. and Bosker, R. J. (1999)Multilevel Analysis. An Introduction to Basic
and Advanced Multilevel Modelling. London: Sage. [271, 277]

Solomon, P. J. (1984) Effect of misspecification of regression models in the analysis of
survival data.Biometrika 71, 291–298. [368]

Spence, R. (2001)Information Visualization. Harlow: Addison-Wesley. [69]

Stace, C. (1991)New Flora of the British Isles. Cambridge: Cambridge University Press.
[252]

Staudte, R. G. and Sheather, S. J. (1990)Robust Estimation and Testing. New York: John
Wiley and Sons. [120, 122, 134, 152]

Stevens, W. L. (1948) Statistical analysis of a non-orthogonal tri-factorial experiment.
Biometrika 35, 346–367. [185]

Taylor, S. J. (1986)Modelling Financial Time Series. Chichester: John Wiley and Sons.
[416]

Thall, P. F. and Vail, S. C. (1990) Some covariance models for longitudinal count data with
overdispersion.Biometrics 46, 657–671. [294]

Therneau, T. M. and Atkinson,E. J. (1997) An introduction to recursive partitioning using
the RPART routines. Technical report, Mayo Foundation. [251, 258]

Therneau, T. M. and Grambsch, P. M. (2000)Modeling Survival Data. Extending the Cox
Model. New York: Springer-Verlag. [353]

Thisted, R. A. (1988)Elements of Statistical Computing. Numerical Computation. New
York: Chapman & Hall. [62]

Thomson, D. J. (1990) Time series analysis of Holocene climate data.Philosophical Trans-
actions of the Royal Society A 330, 601–616. [402]

Tibshirani, R. (1988) Estimating transformations for regression via additivity and variance
stabilization.Journal of the American Statistical Association 83, 394–405. [237]

Titterington, D. M., Smith, A. F. M. and Makov, U. E. (1985)Statistical Analysis of Finite
Mixture Distributions. Chichester: John Wiley and Sons. [437]

Tsiatis, A. A. (1981) A large sample study of Cox’s regression model.Annals of Statistics
9, 93–108. [356]

Tufte, E. R. (1983)The Visual Display of Quantitative Information. Cheshire, CT: Graphics
Press. [69]

Tufte, E. R. (1990)Envisioning Information. Cheshire, CT: Graphics Press. [69]

Tufte, E. R. (1997)Visual Explanations. Cheshire, CT: Graphics Press. [69]

Tukey, J. W. (1960) A survey of sampling from contaminated distributions. InContribu-
tions to Probability and Statistics, eds I. Olkin, S. Ghurye, W. Hoeffding, W. Madow
and H. Mann, pp. 448–485. Stanford: Stanford University Press. [121]

Upton, G. J. G. and Fingleton, B. J. (1985)Spatial Data Analysis by Example. Volume 1.
Chichester: John Wiley and Sons. [419]

Vapnik, V. N. (1995)The Nature of Statistical Learning Theory. New York: Springer-
Verlag. [344]

480 References

Vapnik, V. N. (1998)Statistical Learning Theory. New York: John Wiley and Sons. [344]

Velleman, P. F. and Hoaglin, D. C. (1981)Applications, Basics, and Computing of Ex-
ploratory Data Analysis. Boston: Duxbury. [115]

Venables, W. N. and Ripley, B. D. (2000)S Programming. New York: Springer-Verlag.
[v, 2, 12, 20, 30, 41, 56, 60, 67, 68]

Vinod, H. (1969) Integer programming and the theory of grouping.Journal of the American
Statistical Association 64, 506–517. [319]

Vonesh, E. F. and Chinchilli, V. M. (1997)Linear and Nonlinear Models for the Analysis
of Repeated Measurements. New York: Marcel Dekker. [272]

Wahba, G. (1990)Spline Models for Observational Data. Philadelphia: SIAM. [232, 429]

Wahba, G., Wang, Y., Gu, C., Klein, R. and Klein, B. (1995) Smoothing spline ANOVA
for exponential families,with application to the Wisconsin epidemiological study of
diabetic retinopathy.Annals of Statistics 23, 1865–1895. [232]

Wand, M. P. and Jones, M. C. (1995)Kernel Smoothing. London: Chapman & Hall. [126,
129, 130, 231]

Webb, A. (1999)Statistical Pattern Recognition. London: Arnold. [331]

Wegman, E. J. (1990) Hyperdimensional data analysis using parallel coordinates.Journal
of the American Statistical Association 85, 664–675. [314]

Whittaker, J. (1990)Graphical Models in Applied Multivariate Statistics. Chichester: John
Wiley and Sons. [199]

Wilkinson, G. N. and Rogers, C. E. (1973) Symbolic description of factorial models for
analysis of variance.Applied Statistics 22, 392–399. [4, 139]

Wilkinson, L. (1999)The Grammar of Graphics. New York: Springer-Verlag. [69, 314]

Williams, E. J. (1959)Regression Analysis. New York: John Wiley and Sons. [222]

Wilson, S. R. (1982) Sound and exploratory data analysis. InCOMPSTAT 1982, Proceed-
ings in Computational Statistics, eds H. Caussinus, P. Ettinger and R. Tamassone, pp.
447–450. Vienna: Physica-Verlag. [301]

Wolfinger, R. and O”Connell, M. (1993) Generalized linear mixed models: a pseudo-
likelihood approach.Journal of Statistical Computation and Simulation 48, 233–243.
[298]

Yandell, B. S. (1997)Practical Data Analysis for Designed Experiments. London: Chap-
man & Hall. [181]

Yates, F. (1935) Complex experiments.Journal of the Royal Statistical Society (Supple-
ment) 2, 181–247. [282]

Yates, F. (1937)The Design and Analysis of Factorial Experiments. Technical communi-
cation No. 35. Harpenden, England: Imperial Bureau of Soil Science. [282]

Yohai, V., Stahel, W. A. and Zamar, R. H. (1991) A procedure for robust estimation and
inference in linear regression. InDirections in Robust Statistics and Diagnostics, Part
II, eds W. A. Stahel and S. W. Weisberg. New York: Springer-Verlag. [161]

Zeger, S. L., Liang, K.-Y. and Albert, P. S. (1988) Models for longitudinal data. a general-
ized estimating equations approach.Biometrics 44, 1049–1060. [300]

Index

Entries inthis font are names ofS objects. Page numbers inbold are to the
most comprehensive treatment of the topic.

!, 49
!=, 49
+, 41, 446, 451
->, 42
..., 55
.First, 461
.First.lib, 460
.Random.seed, 111
:, 13
<, 49
<-, 41
<=, 49
==, 49
>, viii, 4, 41, 49, 446, 451
>=, 49
[[, 5, 44
#, 41
$, viii
%*%, 60
%/%, 48
%%, 48
%o%, 61
&, 49, 58
&&, 58
^, 47
|, 49, 58
||, 58

abbreviate, 52
abbreviation, 44, 52, 55
abline, 7, 8, 70,74
abs, 48
accelerated life model, 352, 357
ace, 231, 237
acf, 388, 396
acf.plot, 388
acos, 48
additive models, 232

generalized, 196
addterm, 173, 174, 209
aggregate, 34
aggregate.ts, 387

agnes, 313, 314
AIC, 173, 196, 274, 397
AIDS, see also DatasetAids, 444
Akaike’s information criterion, see AIC
akima, 417
alias, 166, 168
all, 49
all.equal, 49
allocation, 329
alternating conditional expectation, 237
Altshuler’s estimator, 354
analysis of deviance, 186
analysis of variance, 141, 143, 282

mixed models, 278
multistratum, 282
random effects, 277

annihilator, 145
anova, 11, 141, 143, 173, 188, 192, 206,

359
anova.glm, 209
any, 49
aov, 10, 281
aperm, 66
apply, 34,64, 66, 224
approx, 230
ar, 397, 398
ARCH model, 413
args, 56
arguments, 55

default values, 56
arima, 397–399, 403, 408, 410, 412
ARIMA models, 395–400

fitting, 397
forecasting, 399
identification, 396
regression terms, 400
seasonal, 402–404

arima.mle, 398
arima.sim, 396
ARMAacf, 396
array, 18
arrays

481

482 Index

arithmetic on, 60
ragged, 37

arrows, 70, 74
as, 46
as.character, 46
as.matrix, 46
as.vector, 46, 53
as.xxx, 46
asin, 48
assign, 461
assignment, 3, 41
asymptotic relative efficiency, 121
atan, 48
attach, 7, 18,43, 460
attributes, 45
Australian AIDS survival, see DatasetAids
autocorrelation function, 388

partial, 396
autocovariance function, 388
autoregressive process, 395
avas, 231, 237
axis, 70,80, 88

backfitting, 232
backsolve, 62
bandwidth, 126, 391
bandwidth.sj, 129
bar charts, 72
barchart, 91
barplot, 70,72
batchSOM, 309
Bayes risk, 336
Bayes rule, 331, 336
BIC, 132, 274
binomial, 184, 190
binomial process, 431
biplot, 310
biplot.correspondence, 325
biplots, 309–311, 325
bitmap, 71
bkde2D, 131
boot, 136, 137, 164, 225
boot.ci, 137, 165, 226
bootstrap, 133

confidence intervals, 136
basic, 136
BCa, 136
percentile, 136
studentized, 137

methods for linear models, 163
methods for nonlinear models, 225
methods for robust regression, 164
smoothed, 136

bootstrap, 134
boundary kernels, 129
Box–Cox transformations, 170
Box–Jenkins’ methodology, 395

box-and-whisker plots, 92
boxcox, 171
boxplot, 115
boxplots, 92, 96, 115
break, 58
breakdown point, 120
brush, 8, 9, 70, 75, 76
bruto, 234
bs, 156,229
bw.SJ, 129
bwplot, 91,92, 96, 115
by, 34

C, 1, 51, 52, 258, 424
C, 147
c, 46
calibration plot, 347–349
cancer, lung, see Datasetcancer.vet
canonical link, 185
canonical variates, 330
CART, 255
case-based resampling, 164
cat, 52,54, 59
cbind, 31, 60
cdf.compare, 119
ceiling, 48, 51
censor, 363
censoring, 351

right, 352, 360
uninformative, 364

censorReg, 362, 363
cex, 74, 79
cex.axis, 74
cex.lab, 74
cex.main, 74
cex.sub, 74
character size (on plots), 74
Chernoff’s faces, 312
chi-squared statistic, 64, 189
chi-squared test, 119
chisq.gof, 119
chol, 62, 420
Choleski decomposition, 62, 420
clara, 313
class, 13
class, 67
classification, 329–349

non-parametric, 339
classification trees, 251, 253–256, 336,

338, 345
clipboard, 450
close.screen, 79
cloud, 91,104
cluster analysis, 313–319, 329
cmdscale, 304
coef, 141, 188, 274
coefficients, 141
coercion, 46

Index 483

col, 60
colMeans, 66
color.key, 91, 94
colStdev, 66
colVars, 66
command history, 451
command-line editor, 3, 449, 451
comments, 41
communality, 320, 322
complex numbers, 47
con2tr, 77
concat, 46
conditional execution, 58
conditional heteroscedasticity models, 413
conditional inference, 293
conditioning plots, 101
confidence interval

t-based, 117
basic bootstrap, 136
BCa, 136
for non-linear regressions, 220
percentile, 136
studentized, 137

confint, 221
conflicts, 43
confounding, 165
confusion matrix, 336
connections, 20, 21, 25–27
contour, 6, 70,76, 225
contourplot, 76, 91
contr.helmert, 146
contr.poly, 146, 147
contr.sdif, 147, 149, 291, 292
contr.sum, 147
contr.treatment, 146, 147
contrast matrix, 145, 147, 148

Helmert, 146
orthogonal polynomial, 146
treatment, 143, 146

contrasts, 147, 380
control structures, 58
cor, 111
cor.test, 119
corARMA, 410
correlation, 112
correlogram, 424, 427
correlogram, 427
corresp, 325, 326
correspondence analysis, 325

multiple, 326
plots, 325

cos, 48
cosh, 48
cov.mcd, 334
cov.mve, 334
cov.rob, 302,334, 335
cov.trob, 335

cov.wt, 111, 300, 302
covariances

exponential, 426
Gaussian, 426
spatial, 424–428
spherical, 426

covariates
time-dependent, 374, 377

covRob, 302,334
Cox proportional hazards model, 363–367
cox.zph, 369
coxph, 293,364, 366–368, 382
cpgram, 394
CRAN, 462
cross-validation, 230, 257, 258, 344–347
crossprod, 60
crosstabs, 37
cts, 385
cummax, 48
cummin, 48
cumprod, 48
cumsum, 48
cumulative periodogram, 393
Cushing’s syndrome, 337–339
cut, 16,228, 380
cutree, 314
cv.tree, 267

daisy, 304, 314
data

two-dimensional, 130
univariate summaries, 111

data frames, 17–18
as databases, 43
joining, 31

data mining, 299, 329
data window, 21
data.dump, 26
data.frame, 6, 17, 31, 143
data.restore, 26
Datasets

abbey, 114, 124
Aids2, 377
anorexia, 189
bacteria, 291, 293, 296–298
beav1, 409
beav2, 409
birthwt, 194
budworm, 190
caith, 323
cancer.vet, 369
chem, 113, 114, 124
coop, 277, 283
cpus, 177, 235, 237, 238, 242, 251, 258,

266, 267
crabs, 33, 34, 94–96, 300, 304, 306–

308, 311, 312, 332–334, 343
Cushings, 337–341

484 Index

deaths, 72, 385–388, 401
epil, 292–294, 296, 297
farms, 327
fdeaths, 386
fgl, 31, 99, 260, 268, 307, 335, 344,

348
GAGurine, 228, 229
galaxies, 129, 130, 132–135
gehan, 352, 355–358, 360, 363
geyser, 112, 127, 130, 434, 440
heart, 375
hills, 8–10, 22, 24, 75, 152, 162
housing, 199, 323
immer, 178, 179
iris, 64, 66, 301, 302, 304, 330, 331
leuk, 352, 358, 361, 364
lh, 385
mdeaths, 386
menarche, 194
michelson, 10
motors, 352, 361, 366
mr, 35, 36
muscle, 218
nlschools, 275
nottem, 403, 404
npk, 165, 166
npr1, 417
oats, 180, 280, 284
painters, 17, 32
petrol, 270
phones, 156, 161, 164
pines, 430
quine, 37, 164, 170, 206, 207
Rabbit, 286
rock, 233, 234, 237, 239, 241, 242, 246,

247, 249
shoes, 115–117, 119, 138
shuttle, 253
Sitka, 276, 277, 285
Skye, 77
SP500, 414
state.x77, 310, 312, 313
stormer, 93, 223, 227
swiss, 86, 101
swiss.fertility, 113
swiss.x, 314
topo, 76, 95, 417, 418, 421, 424
tperm, 113
whiteside, 139
wtloss, 155, 211, 216, 221

decibels, 392
decision trees, 251
decomposition

Choleski, 62, 420
eigen-, 62
QR, 62, 420
singular value, 62

degrees of freedom, equivalent, 230, 391
Delaunay triangulation, 422
dendrogram, 314
density, 126, 128
density estimation, 126–132

bandwidth selection, 128
end effects, 129
kernel, 126–131
local polynomial, 132
logspline, 131
MISE in, 128
parametric, 437

densityplot, 91
deriv, 215, 288, 435
deriv3, 434, 435, 440
design, 168
designed experiments, 165

generating, 167–169
det, 63, 64
detach, 8, 18,43
determinant, 63
dev.ask, 71
dev.copy, 72
dev.copy2eps, 452, 453
dev.cur, 72
dev.list, 72
dev.next, 72
dev.off, 72
dev.prev, 72
dev.print, 446, 448, 450, 452, 453
dev.set, 72
deviance, 186, 217, 223, 255, 256

scaled, 186
deviance, 141, 188
device

graphics,see graphics device
Devices, 71
diag, 61
diagonal (of) matrix, 61
diana, 314, 315
diff, 387, 402
digamma, 48
dim, 60
Dirichlet tessellation, 422
discriminant analysis, 329–336

linear, 330, 336
quadratic, 332, 336

dispersion parameter, 207
dissimilarities, 304, 314

ultrametric, 314
dist, 304, 314
distance methods, 303
distributions

fitting, 109
Gumbel, 391
log-logistic, 351, 357
multivariate, 110

Index 485

negative binomial, 205
Poisson

zero-truncated, 59
table of, 108
univariate, 107
Weibull, 351, 357

dmvnorm, 110
dnorm, 435
do.call, 38
dotchart, 70
dotplot, 91,98
dpik, 132
dropterm, 173–175, 209
dummy.coef, 145
duplicated, 48
duration, see Datasetgeyser

Edit, 457
Edit.data, 21
editing

command-line, 3, 449
EGARCH model, 413
eigen, 62, 64
eigenvalues, 62
emclust, 317
entropy, 256
environment, 1
EPSF, 447, 450
eqscplot, 75, 418
equal.count, 91,102
Error, 281
ESS, 453, 457
estimation

generalized least squares, 420
least squares, 213
maximum likelihood, 59, 213, 245, 433
pseudo-likelihood, 431

exchangeable trials, 209
execution, conditional, 58
exists, 43
exp, 48
expand.grid, 39,77, 167, 224, 422
expand.grid(, 440
expcov, 427
experiments

designed, 165
generating designs for, 167–169
split-plot, 280

expn, 215
exportData, 26
expression, 3, 41

arithmetical, 47
logical, 49
regular, 53

fac.design, 168, 169
faces, 70, 312

factanal, 320, 321, 322
factor, 15
factor analysis, 319–322

rotation, 320, 322
factorial designs, 165

fractional, 168
factors, 15–17

ordered, 16
response, 198
splitting by,see split
stimulus, 198

family, 187, 193
fanny, 313, 317
fig, 84, 85
figures

multiple, 78
in Trellis, 103

find, 43
finishing, 446, 449
Fisher scoring, 186
fitdistr, 109, 110
fitted, 7, 141, 190, 279
fitted values, 141

from random effect models, 279
fixed effects, 269, 284
fixed.effects, 274
fixef, 274
Fleming–Harrington estimator, 354
floor, 48
for, 58, 64
forecasting, 399
forensic glass, 99, 344–349
format, 54
formatting, 54
formula, 168
forwardsolve, 62
Fourier frequency, 391
fractionate, 169
fractions, 148
frame, 70,78
functions

anonymous, 33, 38, 61
calling, 55
generic, 67
method, 67
of a matrix, 62
writing, 4

gam, 196, 198,232, 234, 249
gam.plot, 237
Gamma, 184
gamma, 48
gamma function, 48

log, see lgamma
garch, 414, 415
GARCH model, 413–415
gaucov, 427
gaussian, 184, 189, 190

486 Index

GEE models, 296
gehan, 366
generalized additive models, 196
generalized estimating equations, 296
generalized inverse, 62
generalized least squares, 420, 423, 424,

428
generalized linear mixed models, 290–296
generalized linear models, 183–209

algorithms, 185
analysis of deviance, 186
family, 184
linear predictor, 183
scale parameter, 183
score function, 184
variance function, 185

generic functions, 67
geometric anisotropy, 424
get, 43
GGobi, 300, 303, 312
Gini index, 256
gl, 51
glm, 187, 188–190, 206, 336
glm.nb, 206
glme, 296
glmm, 294
glmmNQ, 294
glmmPQL, 296
GLMMs, 290–296

conditional inference, 293
numerical integration, 294

gls, 410
glyph representations, 312
graphical design, 69
graphics, 69–105
graphics device, 71

multiple, 71
graphics.off, 71, 72
graphsheet, 71, 72, 76, 80, 449, 450
Greenwood’s formula, 354
grep, 53
grids, 81
growth curve

exponential, 285
logistic, 288

guiLocator, 450
GUIs, 3

hardcopy, 446, 450, 452, 453
hat matrix, 151
Hauck–Donner phenomenon, 198
hazard function, 351

cumulative, 351, 364
hclust, 313, 314
heart transplants, see Datasetheart
Helmert contrast matrices, 146
help

on-line, 2, 5, 452
help, 5, 446
help.off, 446
help.search, 452
help.start, 446, 452
Hessian, 246, 441
Heywood case, 320
hist, 56, 70,112
hist2d, 70,131
histogram, 91
histograms, 112–113

average shifted(ASH), 126
two-dimensional, 130

hpgl, 71
hplj, 71
huber, 124
Huber’s proposal 2, 124
hubers, 124

I(), 18
ICA, see independent component analysis
identical, 49
identify, 8, 70,80, 448
if, 58
ifelse, 30, 58
Im, 47
image, 6, 70,76
importData, 23
independent component analysis, 311
information

observed, 437
inner product, 60
input

from a file, 42
installation of software, 459
interaction.plot, 70
interp, 423
interpolation, 417–424
interrupt, 5
inverse.gaussian, 184
Iris, key to British species, 252
is, 46
is.element, 30, 31
is.random, 278
is.xxx, 46
isGeneric, 67
isoMDS, 306
iterative proportional scaling, 185, 202
its, 385

Jaccard coefficient, 304
jack.after.boot, 135
Jarque–Bera test, 414
java.graph, 71
jpeg, 71, 452

K function, 428
K-means clustering, 315

Index 487

k-medoids, 316
Kaplan–Meier estimator, 353
Kaver, 431
kde2d, 6, 131
Kenvl, 431
kernel density estimation, 126–131

bandwidth, 127
bandwidth selection, 128
boundary kernels, 129

kernel smoother, 231
key, 91,104
Kfn, 431
kmeans, 313, 315
knots, 228
kriging, 423–424

universal, 423
ks.gof, 119
ksmooth, 230, 231

La.eigen, 64
La.svd, 64
lag, 386
lapply, 33
latent variables, 319
layout

crossed and nested, 149
one-way, 144, 145
two-way, 149
unbalanced, 169

layout, 79
lda, 330, 335, 337
leaps, 176
learning vector quantization, 339, 347
legend, 81, 104
legend, 70, 81, 104
length, 44
letters, 28
levelplot, 91, 94, 95, 418
levels of a factor, 15
leverage, 151, 189
lgamma, 48
libraries, 460

private, 461
sources of, 461

library, 12, 460, 461
library section / package

acepack, 237
boot, 134, 225, 434
class, 339, 340, 460
cluster, 304, 313
delaunay, 422
deldir, 422
e1071, 343
exactRankTests, 119
fastICA, 311
gee, 297
geoR, 417

geoS, 417
GLME, 296
GLMMGibbs, 294
grid, 89
KernSmooth, 131, 132, 231
lattice, 69, 76, 89
leaps, 176
libsvm, 343
locfit, 132, 231
logspline, 131
lqs, 160, 334
MASS, 6, 23, 26, 77, 109, 110, 113, 124,

148, 149, 158, 170, 171, 188, 189,
193, 194, 198, 199, 202, 204, 217,
218, 221, 226, 227, 239, 270, 280,
286, 296, 310, 369, 398, 404, 434,
437, 448, 459

Matrix, 64
mclust, 318
mda, 234, 235, 339
methods, 46
mgcv, 196, 232
modreg, 230
mvtnorm, 110
nlme3, 269
nls, 213, 216
nnet, 203, 245, 336, 459
polymars, 235
postscriptfonts, 82
pspline, 232
quadprog, 434
rgl, 69, 77, 420
robust, 161, 302, 334
rpart, 251, 257, 258, 266
sgeostat, 417
sm, 126
spatial, 417, 459
spatstat, 417
splancs, 417
splines, 229
SuppDists, 107
survival, 110, 351
Tree, 266
tree, 266
trellis, 90
tripack, 422
ts, 385, 398
tseries, 415
xgobi, 303
yags, 297

likelihood
partial, 363
profile, 171
pseudo-, 431
quasi-, 186

linear models
leverage, 151

488 Index

selection, 176
linear discriminant analysis, 330, 336

debiased, 337
predictive, 337

linear discriminants, 330
linear equations

solution of, 62
linear mixed effects models, 270–277
linear models, 4, 139–283

bootstrapping, 163
diagnostics, 151–155
formulae, 144–151
prediction, 155
rank-deficient, 171
selection, 172
transformations, 170
weighted, 140, 154

linear predictor, 183
lines

coloured, 79
lines, 7, 70,73, 79
link function, 183
list, 44
lists, 44–46
lm, 6, 8, 10,140, 158, 188, 232, 418
lm.influence, 152
lme, 272, 280, 283–285
lmRob, 161
lmsreg, 160
lo, 232
load, 26
loadings, 319, 320, 322

rotation of, 322
loadings, 301
location.m, 124
locator, 8, 70, 79,80
locpoly, 232
loess, 7, 230, 348, 368, 417,421, 422
loess.smooth, 230
log, 33, 48
log-logistic distribution, 351
log10, 48
log2, 48
logarithmic scoring, 346
logb, 48
logistic regression, 336, 338, 344, 443

multiple, 336
proportional-odds, 203

logistic response function, 288
loglin, 202
loglm, 202
logspline.fit, 132
logtrans, 172
longitudinal data, 269
loops, 58–64
lower.tri, 60
lowess, 230, 368

lqs, 8, 10, 157,160, 162
ltsreg, 160
lung cancer data, see Datasetcancer.vet
LVQ, 347
lvqinit, 347

M-estimation, 122
regression, 158, 159

machine learning, 251
macintosh, 71
mad, 122, 124
mahalanobis, 332
Mahalanobis distance, 332
mai, 84, 85
Mallows’ Cp, 174
mar, 84, 85
marginal models, 269, 296
marginality, 172
mars, 235
masked, 43
mat2tr, 77
match, 53
matplot, 70,88
matrix, 3

arithmetic on, 60
determinant, 63
diagonal, 61
eigenvalues of, 62
elementary operations, 60
functions of, 62
generalized inverse of, 62
inversion, 62
joining, 31
multiplication, 60
number of cols, 60
number of rows, 60
operators, 60
outer product, 61
QR decomposition, 62
singular value decomposition, 62
trace, 63
transpose, 60

matrix, 18
max, 48
maximum likelihood estimation, 59, 213,

433
residual (REML), 272

mca, 327
McCulloch–Pitts model, 244
mclass, 318
mclust, 313, 318
me, 317, 318
mean, 112, 121

trimmed, 122
mean, 48, 65, 122, 124
median, 111, 115, 121, 133

distribution of, 133
median, 122, 124

Index 489

menuStackColumn, 36
menuUnStackColumn, 36
merge, 35
method functions, 67
methods, 68
mex, 74, 79, 84, 85
mfcol, 78
mfrow, 78, 84
mhclass, 318
mhtree, 318
Michelson experiment, 10
min, 48
minimization, 433–444
MINQUE, 279
missing values, 19, 112, 140, 256

in model formulae, 57
re-coding to, 31

mixed effects models
linear, 270–277
non-linear, 284–290

mixed models
generalized linear, 290

mixproj, 318
mixture discriminant analysis, 339
mixture models, 318, 434
mkh, 74
model formulae, 56–57, 189

for linear models, 144–151
for lme, 272
for multistratum models, 281
for nlme, 285
for non-linear regressions, 214
for princomp, 302
for trees, 258
for Trellis, 90
in survival analysis, 352, 353, 364

model matrix, 144, 145, 149, 150
model-based resampling, 164
model.tables, 167, 178, 282, 283
mona, 314
mosaic plots, 323
motif, 71, 72, 76, 80, 82, 446–448
moving average process, 395
mreloc, 318
ms, 434,440, 444
mstep, 318
mtext, 70,81
multicomp, 179, 181
multidimensional scaling, 304–306
multilevel models, 269
multinom, 203, 336, 343
multistratum models, 279–283
multivariate analysis, 299–328
mvrnorm, 110

NA, 15, 32
na.action, 57

na.exclude, 140
na.fail, 57
na.omit, 57, 140
na.rpart, 266
names, 17
nchar, 52
ncol, 60
nearest neighbour classifier, 308, 339
negative binomial distribution, 205
negative.binomial, 187, 206
neural networks, 243–249, 340–342, 345
next, 58
nlm, 434
nlme, 284, 285, 286, 296
nlmin, 434
nlminb, 434,436, 444
nlregb, 227
nls, 188,213, 217, 288, 440
nnet, 245, 247
nnet.Hess, 246
nnls.fit, 227
non-linear models, 211–227

fitting, 212
with first derivatives, 215

linear parameters, 218
method functions, 217
objects, 217
self-starting, 216–217
weighted fits, 214
with mixed effects, 284–290

norm, 64
nrow, 60
ns, 156,229
nugget effect, 425, 428
NULL, 15
Null, 63, 149
numeric, 47

oa.design, 169
object-oriented programming, 67
objects

managing, 42–44
names, 13

objects, 43
oblimin rotation, 322
offset, 189, 198
oldClass, 67
oma, 85, 86
omd, 85
omi, 85
one-way layout, 144, 145, 149
openData, 24, 26
operator

arithmetic, 47
assignment, 3, 41
colon, 50
exponentiation, 47
integer divide, 48

490 Index

logical, 49
matrix, 60
matrix multiplication, 60
modulo, 48
outer product, 61
precedence, 49
remainder, 48

optim, 434, 441, 444
optimize, 433
options, viii, 55
order, 32
ordered, 16
outer, 61, 224
outliers, 405

down-weighting, 120
output

to a file, 42
over-dispersion, 207

pairs, 8, 70, 198, 227
pam, 313, 317
panel function, 91
panel.superpose, 101
par, 70,82, 86
parallel coordinate plots, 312
parameters

figure, 84
graphics, 82
high-level, 87
layout, 83, 84
linear, 212

partial likelihood, 363
partitioning methods, 253
paste, 52, 54, 56
pattern recognition, 329–349
PCA, see principal components analysis
pdf, 71
pdf.graph, 71
periodogram, 390

cumulative, 393–395
permeability, 233, 417
permutation tests, 137
persp, 70,76
persp.setup, 70
perspp, 70
pi, 41
pie, 70
piechart, 91
pipe, 27
plclust, 314
plot

glyph, 312
parallel coordinate, 312
profile, 312
star, 312

plot, 68, 70,72, 79, 141, 165, 168, 353,
386

plot.acf, 388
plot.corresp, 326
plot.gam, 232
plot.rpart, 259, 264
plot.survfit, 360
plotcp, 259, 260, 262
plots

adding axes, 211
anatomy of, 81
axes, 80
basic, 72
biplot, 309–311
boxplot, 115
common axes, 86
contour, 76, 224
dynamic, 75
enhancing, 77
equal scales, 75
greyscale, 76
histogram, 112–113
interacting with, 80
legends, 81
line, 73
multiple, 78
multivariate, 75
perspective, 76
Q-Q, 86,108

with envelope, 86
stem-and-leaf, 113–115
surface, 76
symbols, 74
title, 79
user coordinates for, 84

plug-in rule, 337
pmax, 48
pmin, 48
pmvnorm, 110
pmvt, 110
png, 71, 452
pnorm, 435
point processes

binomial, 431
Poisson, 431
spatial, 428–432
SSI, 432
Strauss, 431

points
colour, 79
highlighting, 75
identifying, 80

points, 70,73, 74, 79
poisson, 184
Poisson process, 431
Poisson regression model, 444
polr, 204
poly, 228,418
polygon, 70

Index 491

polynomials, 155, 418
orthogonal, 146, 418

polyroot, 396
porosity, 417
portmanteau test, 399
post, 264
post hocadjustment, 178
post.rpart, 254, 264
postscript, 71, 80, 82, 89, 90, 446, 447,

447, 448, 450–453
ppinit, 431
pplik, 431, 433
ppoints, 109
ppr, 231, 239
ppreg, 231, 239
ppregion, 431
pre-whitening, 303
predict, 141, 155, 156, 188, 246
predict.gam, 156, 229
predict.glm, 68
predict.lm, 229
predict.tree, 257
predictive rule, 337
principal component analysis, 300–303

loadings, 302
scores, 302

principal coordinate analysis, 304
princomp, 301, 302
princompRob, 302
print, 14, 41, 52, 59, 141, 188, 246, 353
print.summary.lm, 54
print.trellis, 103, 447
printcp, 259, 264
printgraph, 447
printing, 54

digits, 55
precision, 55

prmat, 424
probability distributions, 107
probability forecasts, 347
probit analysis, 193
prod, 48
profile, 198,220, 221, 226
profile plots, 312
programming, object-oriented, 67
proj, 282
projection pursuit, 300, 303

regression, 238–243
prompt.screen, 78
proportional hazards, 357, 363–369

tests of, 369
proportional-odds model, 203
prune.rpart, 258
ps.options, 89, 447, 451
ps.options.send, 80, 447
pseudo-likelihood, 431
Psim, 431

pspline, 382
pty, 78
pyrethroid, 190

q, 5, 449, 451
Q-Q plots, 109
qda, 332, 337
qqline, 7, 109
qqnorm, 7, 70,108, 109
qqplot, 70,108
qr, 63, 172
qr.coef, 63
qr.fitted, 63
qr.resid, 172
quadratic discriminant analysis, 332, 336

debiased, 337
predictive, 337

quadratic programming, 342, 434
quantile, 108, 112
quantiles, 107–109, 111
quasi, 186, 187, 190
quasi-likelihood, 186
quasibinomial, 208
quasipoisson, 208
quitting, 446, 449

random effects, 269, 284
random numbers, 110
random variables, generating, 110
range, 48
raov, 277, 278
rbind, 31, 60
rcond, 64
Re, 47
read.table, 21, 23–27
readBin, 27
readLines, 25
readNextDataRows, 24
readRaw, 27
rect, 70
recycling, 47
reference manuals, 2
regMatch, 54
regMatchPos, 54
regression

diagnostics, 151–155
logistic, 443
M-estimation, 158, 159
non-linear, 211–227
polynomial, 155, 212
projection-pursuit, 238–243
resistant, 159
trees, 251, 256
use of bootstrap in, 163
weighted, 140, 154

non-linear, 214
with autocorrelated errors, 408–412

regular expressions, 30, 53

492 Index

regular sequences, 50
regularization, 245
relative efficiency, 120
relevel, 16, 380
REML, 272
remove, 44
rep, 50
repeat, 58
repeated measures, 269
repeating sequences, 50
replications, 169
resampling methods,see bootstrap
reshape, 36
resid, 7, 141, 188, 189
residuals, 151

deviance, 188, 368
from random effect models, 279
jackknifed, 152
martingale, 368
modified, 164
Pearson, 188
Schoenfeld, 368
score, 368
standardized, 151
studentized, 152
working, 188

residuals, 141, 368
resistant methods

for regression, 159–163
for univariate data, 120–126

response transformation models, 237–238
rev, 32
Ripley’s K function, 428
rlm, 10,158, 161, 165
rm, 44
rmv, 447
rmvnorm, 110
robust methods

for multivariate data, 302, 334
for regression, 156–163

bootstrapping, 164
for univariate data, 120–126

rotate, 322
rotation of loadings, 320, 322

oblimin, 322
varimax, 322

round, 47, 55
rounding, 48, 55
row, 60
row.names, 17
rowMeans, 66
Rows, 93
rowVars, 66
rpart, 256, 258, 260, 266
rpart.control, 265
rts, 385
rug, 237, 382

rule
Bayes, 254, 331, 336
recycling, 47

s, 232
S+GARCH module, 414
S+SPATIAL STATS module, 417
sammon, 306
Sammon mapping, 305
sample, 111
sapply, 33
save, 26
scale, 33
scale.tau, 124
scaling, multidimensional, 304
scan, 21, 24, 26, 27
scatter.smooth, 70,230, 368
scatterplot, 73

matrix, 75
smoothers, 228–232

screen, 78
screens, 78
screeplot, 302
sd, 4
se.contrast, 167
search, 10, 42
search path, 42
seasonality, 401–404

decompositions, 401
segments, 70,88
self-organizing maps, 308
selfStart, 217
semat, 424
seq, 6, 31,50
sequential spatial inhibition(SSI), 432
set.seed, 111
sex:ldose, 191
shingle, 90, 101
show.settings, 90
sign, 48
signalSeries, 385
signif, 55
similarities, 304
similarity coefficient, 313
simple matching coefficient, 304
simplex, 434
simulation, 110
sin, 48
singular value decomposition, 62
sinh, 48
sink, 42
skip-layer connections, 244
slynx, 446
smooth.spline, 230
smoothers, 228–232

kernel, 231
loess, 230
penalized splines, 382

Index 493

spline, 230
super-smoothersupsmu, 231

softmax, 245
software installation, 459
solution locus, 213
solve, 62, 64
SOM, 308
SOM, 309
sort, 31,32
sort.list, 32
source, 42
spatial, 417
spatial correlation, 420
spec.ar, 400
spec.pgram, 392, 395
spec.taper, 395
spectral analysis, 390–395

via AR processes, 400
spectral density, 390
spectrum, 390
spectrum, 392, 400
sphercov, 427
sphering, 303, 330
spin, 70,76
spline, 7, 230, 290
splines, 131, 228, 234, 290

interpolating, 230
penalized, 382
regression, 229
smoothing, 230

split, 34, 405
split-plot experiments, 269, 280
split.screen, 78, 84
splom, 8, 90, 91, 93–95, 104
sqrt, 48
SSI, 432
stack, 36
standard deviation, 4
standardized residuals, 151
Stanford heart transplants,see Dataset

heart
star plots, 312
stars, 70, 308, 312, 313
starting

under Unix / Linux, 445, 451
under Windows, 448, 452

state.name, 52
statistical tables, 108
statistics

classical, 115–120
statlib, 462
stdev, 4
stdres, 152
stem, 113
stem-and-leaf plots, 113–115
stepAIC, 175, 176, 195, 205, 206, 209,

372, 373

stepwise, 176
stl, 401, 405
stochastic volatility models, 413
strata, 286, 352
strata, 360, 363, 364
Strauss, 431
Strauss process, 431
stripplot, 91,98, 99
structure, 45
studentized confidence interval, 137
studentized residuals, 152
studres, 152
Sturges’ formula, 112
sub-sampling, 31
subject-specific models, 269
subplot, 79
subset, 57
substring, 52
sum, 48
summaries

univariate, 111–112
robust, 120–126

summary, 14, 17, 41, 67, 111, 141, 142,
188, 206, 246, 281, 282, 353, 441

summary.aov, 173
summary.coxph, 366
summary.gam, 233
summary.lm, 167
support vector machines, 342
support vectors, 342
supsmu, 231, 240
surf.gls, 427
surf.ls, 418
Surv, 352, 374
survdiff, 356
survfit, 353, 354, 355, 365, 367
survival

parametric models, 357–363
proportional hazards model, 363–367
residuals, 368

survivor function, 351
Altshuler estimator, 354
confidence intervals, 354
estimators, 353–354
Fleming–Harrington estimator, 354
Kaplan–Meier estimator, 353
tests for equality, 356

survReg, 110,357, 358, 362, 382
svd, 62, 64
SVM, see support vector machines
svm, 343
sweep, 66
symbol size, 74
symbolic differentiation, 215, 434
symbols

plotting, 74
symbols, 70, 74

494 Index

system dependencies, 2, 460

t, 60, 61
t-test, 4, 138
t.test, 56, 119
table, 37, 38
tan, 48
tanh, 48
tapering, 395
tapply, 37
ternary, 77
ternary diagrams, 77
tessellation, Dirichlet, 422
tests

chi-squared, 119
classical, 119
goodness-of-fit, 119
Kolmogorov-Smirnov, 119
permutation, 137
Peto–Peto, 356
portmanteau, 399

text, 70,73, 74
text.rpart, 264
Thiessen polygons, 422
tiles, 422
time series

seasonality, 404
time series

differencing, 387
financial, 412
identification, 396
multiple, 386, 388
seasonality, 401
second-order summaries, 387–395
spectral analysis, 390–395
windows on, 386

timeSeries, 385
title, 70,79
titles, 73, 79, 105
trace of a matrix, 63
transpose of a matrix, 60
Tree, 266
tree, 251, 256,266
trees

classification, 253–256
pruning, 257, 258

cost-complexity, 257
error-rate, 257

regression, 256
Trellis graphics, 89–105

3D plots, 105
aspect ratio, 93, 94, 104
basic plots, 90–103
colour key, 94
fine control, 104
keys, 94, 95, 98, 104
layout, 99

multiple displays per page, 103
panel functions, 91
prepanel functions, 104
scatterplot matrices, 90
strip labels, 96, 98
trellises of plots, 94

trellis.3d.args, 104
trellis.args, 104
trellis.device, 90
trellis.par.get, 91,93, 105
trellis.par.set, 91,93
trend surfaces, 418–421

local, 421
triangulation, Delaunay, 422
trigamma, 48
trmat, 418
truehist, 6, 113
trunc, 48
ts.intersect, 386, 387
ts.lines, 386
ts.plot, 386
ts.points, 386
ts.union, 386, 387
tspar, 385
two-way layout, 149

ultrametric dissimilarity, 314
unique, 48
uniqueness, 320
uniroot, 432,433
unlist, 45
unstack, 36
update, 11, 57, 90,141, 150, 173
UseMethod, 67
usr, 84

VA lung cancer data, see Dataset
cancer.vet

var, 5, 48, 111
var.test, 119
varcomp, 277, 278, 279, 283, 284
variance components, 277, 282
variance matrix, 111, 188

between-class, 329
estimated,see vcov
robust estimation, 334
within-class, 329

varimax rotation, 322
variogram, 425, 426
variogram, 427
vcov, 188, 217, 218
vcov.nlminb, 437
vector quantization

learning, 347
vectorized calculations, 64
vectors

character, 51
string lengths, 52

Index 495

substrings, 52
Voronoi polygons, 422

waiting, see Datasetgeyser
Weibull distribution, 351
weights

in a glm, 183, 187, 190
in linear regression, 140
with non-linear regressions, 214

while, 58
wilcox.test, 119
win.printer, 71, 450
window, 386
window size, 74
windows, 71
Winsorizing, 122

wireframe, 91,94, 95, 104, 418
wmf.graph, 71
working directory, 445, 446
write.matrix, 26
write.table, 25
writeNextDataRows, 26

X11, 71
xfig, 71
XGobi, 300, 303, 308, 312
XGvis, 308
xor, 49
xtabs, 37
xyplot, 91,94, 270

Yule–Walker equations, 396, 398

	Leptograpsus variegatus crabs
	Figure 4.14: A multi-panel version of Figure 4.13.
	Figure 4.13: A scatterplot matrix of the first three principal components of the crabs
	A warning
	Cauchy cauchy

