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Foreword

Although engineering activities involving rock have been underway for millennia, we
can mark the beginning of the modern era from the year 1962 when the International
Society for Rock Mechanics (ISRM) was formally established in Salzburg, Austria.
Since that time, both rock engineering itself and the associated rockmechanics research
have increased in activity by leaps and bounds, so much so that it is difficult for an
engineer or researcher to be aware of all the emerging developments, especially since
the information is widely spread in reports, magazines, journals, books and the inter-
net. It is appropriate, if not essential, therefore that periodically an easily accessible
structured survey should be made of the currently available knowledge. Thus, we are
most grateful to Professor Xia-Ting Feng and his team, and to the Taylor & Francis
Group, for preparing this extensive 2017 “Rock Mechanics and Engineering” com-
pendium outlining the state of the art—andwhich is a publication fittingwell within the
Taylor & Francis portfolio of ground engineering related titles.

There has previously only been one similar such survey, “Comprehensive Rock
Engineering”, which was also published as a five-volume set but by Pergamon Press
in 1993. Given the exponential increase in rock engineering related activities and
research since that year, we must also congratulate Professor Feng and the publisher
on the production of this current five-volume survey. Volumes 1 and 2 are concerned
with principles plus laboratory and field testing, i.e., understanding the subject and
obtaining the key rock property information. Volume 3 covers analysis, modelling and
design, i.e., the procedures by which one can predict the rock behaviour in engineering
practice. Then, Volume 4 describes engineering procedures and Volume 5 presents a
variety of case examples, both these volumes illustrating ‘how things are done’. Hence,
the volumes with their constituent chapters run through essentially the complete
spectrum of rock mechanics and rock engineering knowledge and associated activities.

In looking through the contents of this compendium, I am particularly pleased that
Professor Feng has placed emphasis on the strength of rock, modelling rock failure,
field testing and Underground Research Laboratories (URLs), numerical modelling
methods—which have revolutionised the approach to rock engineering design—and
the progression of excavation, support and monitoring, together with supporting case
histories. These subjects, enhanced by the other contributions, are the essence of our
subject of rock mechanics and rock engineering. To read through the chapters is not
only to understand the subject but also to comprehend the state of current knowledge.

I have worked with Professor Feng on a variety of rockmechanics and rock engineer-
ing projects and am delighted to say that his efforts in initiating, developing and seeing



through the preparation of this encyclopaedic contribution once again demonstrate his
flair for providing significant assistance to the rock mechanics and engineering subject
and community. Each of the authors of the contributory chapters is also thanked: they
are the virtuosos who have taken time out to write up their expertise within the
structured framework of the “Rock Mechanics and Engineering” volumes. There is
no doubt that this compendium not only will be of great assistance to all those working
in the subject area, whether in research or practice, but it also marks just how far the
subject has developed in the 50+ years since 1962 and especially in the 20+ years since
the last such survey.

John A. Hudson, Emeritus Professor, Imperial College London, UK
President of the International Society for Rock Mechanics (ISRM) 2007–2011

x Foreword



Introduction

The five-volume book “Comprehensive Rock Engineering” (Editor-in-Chief, Professor
John A. Hudson) which was published in 1993 had an important influence on the
development of rock mechanics and rock engineering. Indeed the significant and
extensive achievements in rock mechanics and engineering during the last 20 years
now justify a second compilation. Thus, we are happy to publish ‘ROCK
MECHANICS AND ENGINEERING’, a highly prestigious, multi-volume work,
with the editorial advice of Professor John A. Hudson. This new compilation offers
an extremely wide-ranging and comprehensive overview of the state-of-the-art in rock
mechanics and rock engineering. Intended for an audience of geological, civil, mining
and structural engineers, it is composed of reviewed, dedicated contributions by key
authors worldwide. The aim has been to make this a leading publication in the field,
one which will deserve a place in the library of every engineer involved with rock
mechanics and engineering.

We have sought the best contributions from experts in the field to make these five
volumes a success, and I really appreciate their hard work and contributions to this
project. Also I am extremely grateful to staff at CRC Press / Balkema, Taylor and
Francis Group, in particular Mr. Alistair Bright, for his excellent work and kind help. I
would like to thank Prof. John A. Hudson for his great help in initiating this publica-
tion. I would also thank Dr. Yan Guo for her tireless work on this project.

Editor
Xia-Ting Feng

President of the International Society for Rock Mechanics (ISRM) 2011–2015
July 4, 2016
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Chapter 1

Characterization and modeling
of the shear strength, stiffness
and hydraulic behavior of rock joints
for engineering purposes

Nick R. Barton1 & Stavros C. Bandis2,3†
1Director, Nick Barton & Associates, Oslo, Norway
2Professor, Department of Civil Engineering, Aristotle University of Thessaloniki, Thessaloniki, Greece
3Principal, Geo-Design Consulting Engineers Ltd, UK

Keywords: joint characterization, roughness, wall-strength, peak strength, shear
stiffness, normal stiffness, physical and hydraulic apertures (Quantification of para-
meters: JRC, JCS, ϕr , Ks, Kn, E and e).

1 INTRODUCTION

The term ‘characterization’will be used to describe methods of collection and interpreta-
tion of the physical attributes of the joints and other discontinuities, in other words those
which control their mechanical and hydraulic properties, and the behavior of jointed
rock as an engineering medium. Rock discontinuities vary widely in terms of their origin
(joints, bedding, foliation, faults/shears, etc.) and associated physical characteristics.
They can be very undulating, rough or extremely planar and smooth, tightly interlocked
or open, filled with soft, soil-type inclusions or healed with hard materials. Therefore,
when loaded in compression or shear, they exhibit large differences in the normal and
shear deformability and strength, resulting in surface separation and therefore perme-
ability. Such variability calls for innovative, objective and practical methods of joint
characterization for engineering purposes. The output must be quantitative and mean-
ingful and the cost kept at reasonable levels. The practicalmethods to be describedwill be
biased in the direction of quantifying the non-linear shear, deformation and permeability
behavior of joints, based on the Barton-Bandis (BB) rock engineering modeling concepts.
The term ‘modeling’ will be used to introduce the basic stress-displacement-dilation
behavior of joints in shear, and the basic stress-closure behavior when joints are com-
pressed by increased normal stress. These are the basic elements of the (non-linear)
behavior, which are used when modeling the two- or three-dimensional behavior of a
jointed rock mass. They are the basic BB (Barton-Bandis) components of any UDEC-BB
distinct element numerical model (used commercially and for research since 1985). The
BB approach can also be used to determine improved MC (Mohr-Coulomb) strength
components for a 3DEC-MC three-dimensional distinct element numerical model. In
other words for acquiring input at the appropriate levels of effective stress, prior to BB
introduction into 3DEC, believed to be a project underway. Due to space limitations,
constant stiffness BB behavior of rock joints is given elsewhere.



2 BASIC GEOMETRIC INPUT FOR ROCK MASS REPRESENTATION
IN MODELS

ISRM has recommended the following key attributes for the characterization of rock
discontinuities:

(a) Physical attributes affecting the engineering properties of discontinuities:
1) Roughness
2) Strength of rock at the discontinuity surfaces
3) Angles of basic and residual friction
4) Aperture of discontinuities
5) Infilling material

(b) Geometrical attributes defining the spatial configuration of discontinuities:
1) Joint orientations (dip & dip direction)
2) Spacing
3) Number of sets
4) Block shape and size
5) Joint continuity

In this chapter we will be addressing the characterization and quantification of the
first ‘smaller-scale’ set (a) of Physical attributes in detail, and the effect each of them
can have on the physical behavior of the joints. We can use photographs to introduce
(b) Geometrical Attributes without going into further detail about these larger-scale
structural-geology attributes of rock masses, which determine modeled geometries
with UDEC-MC, UDEC-BB and 3DEC-MC. (MC Mohr-Coulomb, BB Barton-
Bandis).

Figure 1 Characteristics of joint sets as observed in a Finnish open pit and at the portal of an old
unsupported road tunnel in Norway (100 years prior to Q-system tunnel support guidance).
We see variable orientation (dip and dip direction), variable spacing within each set, variable
numbers of joint sets (two to three), variable block shape and size, and variable joint continuity
(e.g. 1–10m and discontinuous).

4 Barton & Bandis



In order to arrive at a credible final output, namely the mechanical properties of
discontinuities, the ‘characterization’ of the physical and geometrical attributes must
adopt integrated approaches by combining observations, measurements and judgment.

Observations will cater for the intrinsic heterogeneity and variability and thus con-
tribute to reducing ‘sampling bias’. Measurement of the physical and geometrical attri-
butes requires credible techniques that can be applied in the field and/ or in the laboratory
in a standardized manner. Several techniques are available including index tests,
laboratory tests and in situ tests. Index tests are simple, empirical methods, amenable
to standardization and easily executable for measuring fundamental ‘indices’, such as
friction, rock strength, roughness, etc. Laboratory tests (e.g. direct shear, uniaxial
compression) are useful for confirmation of engineering properties predicted by index
testing, notably when special types of discontinuities are involved (e.g. infilled or inten-
sely pre-sheared). In situ testsmay also be used for deriving parameters at representative
geometrical scales and to study behavioral trends of particular critical discontinuity
types, such as major weak features (e.g. fault zone materials).

Geometrical and other factors such as continuity, block size, history of displace-
ments, etc. need to be taken into account when interpreting the characterization data in
order to derive engineering properties. It is at that stage of characterization that expert
engineering judgment acquires a special role.

3 CHARACTERIZATION AND QUANTIFICATION OF JOINT
PROPERTIES

A convenient assembly of the recommended index tests needed for applying the Barton-
Bandis BBmodel is shown in Figure 2. These tests, including the direct shear tests, were
used by Barton & Choubey (1977) in their comprehensive research and developments
using 130 joint samples collected from road cuttings near Oslo, Norway. The sketches
were developed in the form of colored ‘over-heads’ for lecture courses, and bought
together in one figure in Barton (1999).

Fortunately for the more rapid development of the BB model, Bandis (1980) used the
samemethods for characterization and description of his numerous joint replicas (used in
his scale-effect studies) and for his natural joint samples (used for his normal stiffness
studies). The suggested parameters from Barton (1973): JRC, JCS and ϕb were
expanded to include the potentially lower ϕr for weathered joints because of the some-
times slightly weathered joints tested by Barton & Choubey (1977). Following Bandis’
1980 Ph.D. studies, the combined techniques for modeling both shear and normal
loading were published in Bandis et al. (1981) (mostly concerning shear behavior and
scale effects) and in Bandis et al. (1983) (most concerning normal stiffness behavior). In
Figure 2 histograms can be seen for (suggested) presentation of variability within each
index test. For example JRC is given with subscripts JRC0 and JRCn. These represent
nominal 100mm long or larger-scale values, which might be obtained by the a/L method
of Barton (1981). This is also shown in Figure 2, and expanded upon later in this chapter.

Since direct shear tests may be performed as part of the site characterization studies,
some short notes are provided, whichmay ormay not perfectly conformwith suggested
methods. However they are the result of collectively performing many hundreds of
direct shear tests on rock joints, rock joint replicas, or rougher tension fractures.

Characterization and modeling of the shear strength 5



1. Direct shear tests: The joint samples may consist of (cored) nearly circular or
elliptical, or (sawn) square or rectangular samples, i.e. prepared from core, or
from sawn blocks recovered from adits or from freshly excavated rock slopes. A
strong recommendation is to recover sufficient numbers of representative samples
of each joint set of interest, so that multiple testing of the same sample is avoided.
The latter tends to ‘rotate’ the shear strength envelope, when tests at low stress are
succeeded by tests at higher stress. An (even more) artificial ‘cohesion’ intercept is
thereby obtained. (See discussion inBarton, 2014). Shear stress-displacement curves
and dilation-displacement curves are plotted, and may look similar to the sketches
in panel 1.2. The third Panel 1.3 shows ‘peak’ and ultimate’ strength envelopes
which will tend to be curved if joints have significant roughness and/or if a sig-
nificant range of normal stress is applied, such as 0.5 to 5MPa, or 1 to 10MPa.
Note that residual strength envelopes are highly unlikely to be reached with just a
fewmillimeters of joint shearing (≈ 1%×Lmay be needed to reach peak, or 1mm in
the case of a 100mm long sample. This 1% reduces when testing longer samples). A
method of estimating an approximate residual strength based on Schmidt-hammer
tests is shown in Figure 2 (combine Panel 3.2 with Panel 2.2). It will be found that ϕr
< ϕb, usually by several degrees if joint weathering (r < R) is significant.

2. Tilt tests: It is believed thatBarton&Choubey (1977)were thefirst toapply tilt tests in
a ‘scientific’ way to determine specific ‘designer-friendly’ joint strength properties,
since they showed how both ϕb and JRC could be obtained from tilt tests. Because a
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Figure 2 Four columns of diagrams showing 1. direct shear tests principles (Note: apply shear force T
‘in-line’ to avoid creating a moment), 2. tilt test principles, 3. Schmidt hammer test principles,
and 4. roughness recording principles. Each of these simple methods are described in the
following paragraphs.
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sound empirical non-linear shear strength criterion is used (Panel 2.2), the tilt test
result from gravity shear-and-normal loading at a failure stress as low as 0,001MPa
canbe extrapolatedby three to fourorders ofmagnitudehighernormal stress.Wewill
of course reproduce the ‘standard set’ of 100mm JRC profiles very soon, but in the
meantime emphasize thatmanywho concentrate (in the last decades) on the exclusive
useof3D-laser profilingof roughness,maybemissing some important details of shear
behavior by never performing (3D) tilt tests and ‘always’ criticizing 2D roughness
profiles. (The latter were always intended just as a rough guide, and some 400 could
havebeen selected to represent the typical (direct shear tested) JRCvaluesofBarton&
Choubey (1977), since 3 × 130 tilt tests were performed and 3 × 130 2D profiles were
recorded. (The representative JRC values were however selected from among the
single DST tests on the same 130 joint samples). Panel 2.1 represents the tilt test
principle for testing the natural joints for back-calculating JRC, shown in Panel 2.2.
Panel 2.1 also shows tilt tests on core sticks (these could be sawn blocks). The way in
which thebasic frictionangleϕb is utilized is shown in the last equation inPanel 2.2. In
the case of using artificially ‘prepared’ surfaces for ϕb it is important to avoid using
‘polished’ samples due to slow drilling or slow diamond sawing. Brief sand-blasting
should be performed to expose the mineralogy, without adding roughness. If ridges
are present across either type of sample then grinding away of the ridges followed by
sand-blasting should be sufficient. Values of ϕb tend mostly to be in the range 25° to
35°, and most frequently 28° to 32°. However if a single rock type like chalk or
limestone is of interest, valuesmay be consistently close to the upper values. Please be
aware that ‘so-called ϕb values’ obtained by subtracting dilation angles from peak
shear strength may be (dangerously) over-estimated (by as much as 10°), due to
neglect of the asperity failure component as (which is of similar magnitude to the
dilation angle). This will be illustrated later.

3. Schmidt-hammer tests (for JCS). Panel 3.1 illustrates, in diagrammatic format, the
use of Schmidt-hammer rebounds (respectively r or R) when measuring on natural
joint surfaces, and whenmeasuring on artificially ‘prepared’ surfaces (core-sticks or
sawn blocks). In each case, a flat concrete laboratory floor and clamping to a steel
‘V-block’ base is advised, so that the impact and rebound are not affected by
unwanted ‘rocking’ or other movements. However, to be on the safe side and in
order not to have even the effect of crushing a loose mineral grain, the mean of the
top 50% of measurements is found to be superior to the normally recommended
mean values. This simple technique is shown in Panel 3.2. Artificially low vales are
thereby removed as unwanted ‘noise’, and the remaining 50% tend to be more
uniform and therefore more representative. So finally, the mean values of r5 and R5

are used to represent, respectively, the JCS (joint wall compressive strength) and an
approximate measure of UCS (unconfined compression strength). Of course more
direct measurement of the latter is usually a part of the site investigation.

4. Roughness measurement (for JRC). Panel 4.1 of Figure 2 illustrates the two principal
methods for recording joint roughness, and estimating JRC. Panel 4.2 shows in
symbolic format, the a/L method and the JRC-profile matching method. A nearly
full-scale set of roughness profiles of characteristic 100mm length, with associated
JRC0 estimates, from nearly smooth-planar JRC = 0 to 2, up to extremely rough,
undulating JRC = 18 to 20, is reproduced on the next page for ready reference.
However tilt testing where possible, or amplitude/length (= a/L) measurements are

Characterization and modeling of the shear strength 7



recommended, in addition to profile ‘matching’, because the latter is inevitably
subjective. This was pointed out not only by the first authors, but probably by each
of the researchers responsible for a reported 49 equations for JRC (seen tabulated in a
2016 paper review). None were interested in performing tilt tests it seems. Figure 3
reproduces the original results of JRC, JCS and ϕr from Barton & Choubey (1977),
and Figure 4 provides typical roughness profiles. Several index tests, and test samples
are illustrated in Figure 5.

A practical and economic design for a tilt-test apparatus is shown in Figure 6. This
was developed while the first author worked in TerraTek, with various joint character-
ization and testing projects. Today the company is owned by Schlumberger, and one
may guess that this petroleum service company is less oriented for fracture character-
ization of reservoir rocks due to scarcer sources of samples, and the unfortunate
tendency (from a rock mechanics point of view) of sectioning core, thereby losing the
possibility of testing circular or elliptical samples. Furthermore, there is the remarkable
tendency of those practicing reservoir geomechanics of only using linear friction
coefficients (from Byerlee, 1978) and linear Mohr-Coulomb strength envelopes for
the matrix rock. Both methods have severe limitations in terms of interpreting reservoir
behavior because effective stresses rise by tens of MPa with increased production.

Figure 7 illustrates the way that the residual friction angle (ϕr) correlates approxi-
mately with the Schmidt hammer rebound (r). It is estimated from the empirical

40
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Figure 3 The results of characterization of JRC and JCS and testing (tilt test and DST) one hundred and
thirty rock joint samples. Note that the ‘i-value’ of Patton (1966) is replaced by a stress-dependent
logarithmic function incorporating variable (and scale-dependent) roughness, and the ratio of
normal stress and joint wall strength, the latter also scale-dependent. The resulting strength
envelope is non-linear.
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Figure 4 The 100mm long roughness profiles were associated in each case with back-calculated JRC
values in the given range, based on direct shear tests of the individual joint samples. In each
case, three roughness profiles were recorded on each sample, and one was chosen as
representative. In each case, three tilt tests were performed on each sample, so as to predict
the DST. Barton & Choubey (1977).



Figure 5 Top-left: a) The ten joint samples profiled in Figure 3. Top-right b) During core-logging (for
Q-parameters) JRC is estimated using the profilometer and the a/L method (note magnets
holding steel rule). c) One of the tilt-tests performed by Barton and Choubey, 1977. d) An
electric-motor driven tilt test of φb using core-sticks (no ridges, no polish). e) Tilt test on large
core showing Schmidt hammer and roughness-profiling comb. f) Roughness recording at
150mm and 1300mm scales, on fractured 1m3 blocks, prior to 1.3 ton tilt-tests, followed by
biaxial flat-jack shear test (Bakhtar and Barton, 1984).
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Figure 6 An economic tilt test apparatus, which consists of a triangular steel base-plate with three
leveling screws, a circular spirit level, a tilt-angle recorder, a heavy 1: 200 reduction gear (with
rotating handle), and a core-shaped or V-notch shaped ‘tilt-table’ which must be screwed to
the gear axle at one end, so that the turning moment remains anti-clockwise (when viewed
from front) throughout the tilt test. (One must avoid vibration occurring due to ‘gear-slack’
just before sliding occurs, as then the correct tilt angle will be missed).



equation shown in Figure 2 (bottom of Panel 2.2) The reduction from (R) to (r) due to
weathering effects was illustrated in Figure 2 (Panel 3.2). As a result of the three
components JRC, JCS and ϕr we see the non-linearity sketched in Figure 8, in contrast
to Mohr-Coulomb linearity, or Patton (1966) bi-linearity.
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Figure 7 The Schmidt L-hammer is a useful way to register the degree of weathering in a rock joint. This
method was used long ago by Richards, 1975 for registering the weathering grades (and low
residual friction angles) of joints in sandstones, where values as low as φr = 12° and r as low as
15 were recorded.
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Figure 8 Diagrams and equations representing the most common shear strength criteria for rock joints:
Mohr-Coulomb, Patton (1966) and Barton & Choubey (1977), equations 1, 2 and 3.
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When block-size is taken into account, and we move beyond nominal laboratory
L0 = 100mm samples (where JRC0 and JCS0 apply), then input data applies to block-
size Ln (the mean cross-joint spacing of each set) and we will refer to JRCn and JCSn. It
is then correct to refer to the Barton-Bandis criterion, as scale effects are accounted for
following the block-size scale effect adjustments suggested by Bandis et al. (1981). Note
the red arrow in Figure 8, next to the actually non-existing cohesion (c) which is an
artifact of theM-C linearity assumed. Only joints with steep steps, such as cross-joints,
have real cohesion. When testing at very low normal stress (see small blue arrow) the
friction angle may become very large, and the ‘limit’ is the tilt test, commonly per-
formed at 1000 to 10,000 times lower stress than in rock engineering designs. Since
envelope curvature is correct, a good estimate of engineering performance is achieved,
as verified in Barton & Choubey (1977) who studied and proved the validity of the
normal stress ‘jump’ from 0.001MPa to 1MPa (approx.) This is also discussed in Barton
(1999), where the important topic of stress transformation errors is introduced: as
applying to 45° loaded-direction shear test apparatuses. (This will be introduced later.)

The direct shear test results for joints recovered from the seven different rock types
are shown in Figure 9. Deliberate choice of highest and lowest JRC, JCS and ϕr values
allow the curved upper-most envelope and the lowest, almost linear envelope to be
drawn. In the latter JRC is only 0.5 (‘smooth, planar’) compared to JRC = 16.9 (‘rough,
undulating’) for the upper envelope. The mean results of the three parameters (JRC =
8.9, JCS = 92 MPa and ϕr = 28°, are shown by the central envelope.

Regrettably in geomechanics for petroleum, there is an almost universal tendency
(oil companies on both sides of the Atlantic and in the Middle East) to use the so-
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Figure 9 The DST measured peak shear strengths of the 130 joint samples, whose JRC, JCS and φr
statistics were summarized in Figure 3. The symbolic tilt-test block is designed to emphasize
that the shear strength of rock joints can be estimated from index tests carried out on
recovered core or blocks of rock, if the latter are freshly exposed in e.g. rock cuttings or
open-pit benches. 3D laser and long equations are not needed.
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called ‘Byerlee law’, in which a (linear) friction coefficient of 0.85 (ϕ = 40.4°) is
assumed to represent ‘critically stressed’ fracture sets or joint sets. Byerlee was
clearly not happy with three joint parameters (JRC, JCS etc.), and generations of
(Stanford) researchers and professors have followed his simple (and sometimes very
inaccurate) linear and limited friction coefficient approach. The need for more
accuracy and acknowledgement of the actual important role of rock type and
roughness are nicely emphasized by the following classic μDEC (pre-UDEC) result
from Peter Cundall and a former Ph.D. student Mike Voegele. Only the most stable
case shown in Figure 10 corresponds to the Byerlee ‘law’. The linear ‘belief’ has
been further spread by Zoback (2007). Cross-Atlantic research (on non-linear
description for rock joints) does not seem to be popular in geomechanics, despite
65% of remaining petroleum in naturally fractured reservoirs (NFR) with guaran-
teed non-linear behavior. See further discussion in Barton (2015, 2016).

4 QUANTIFICATION OF JOINT PROPERTIES AT LARGER SCALE

There have been various stages in the profession’s acknowledgement of the need for scale-
effect adjustment concerning the shear strength of rock joints. In particular, the studies at
different scales by Pratt et al. (1977) (using in situ tests), by Barton&Choubey (1977) (see
Figure 11), by Barton &Hansteen (1979) (using studies with different block sizes in 250,
1,000 and 4,000 tension-fracture block-assemblies) and especially by Bandis (1980) and
Bandis et al. (1981) (fromwork with different size replicas of rock joints), leaves one in no
doubt about the importance of scale effects. We will also see tilt test results and roughness
profiling in relation to typical large-scale JRCn values, from 130 cm long fractures tested

f= 40

f= 30

f= 37

f= 20

Figure 10 The importance of variable frictional angles on rock slope stability (and indeed on slope
deformation characteristics) are nicely illustrated by these early distinct element (μDEC)
models which was amethod developed by Cundall, and culminated in UDEC (UDEC-MC and
UDEC-BB) and 3DEC-MC. These four slopemodels are fromCundall et al. (1977). The given
friction angles applied to all joints in these cases. Today we can model deformable blocks (in
UDEC) and differentiate the (possible) non-linear response of the different joint sets (the
latter with UDEC-BB, commercially available since 1985).
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Figure 11 Scale-effect investigation with tilt-tests of a 45 cm long joint in granite, followed by individual
tilt tests on eighteen component samples from the same joint, sheared in the same direction.
The JRC value increased from 5.2 to 8.8, and eight of the eighteen samples now had to be
push-tested as ‘so rough’. Shear strength is lower for the largest sample, and the displace-
ment to reach peak (δpeak) is also larger.
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reduced JRC and increased δpeak.



by Bakhtar & Barton (1984). JRCn is lower than JRC0, and as we shall see, this has a
significant effect on shear strength-displacement behavior.

The joint replica tests performed by Bandis (1980), and parallel sets of normal-
closure tests on natural rock joints (see later) were each described by the JRC, JCS and
ϕr parameters developed in Norway in the preceding years. An important summary of
the scale-effects observed by Bandis is given in Figure 13. Here we see use of the asperity
failure components SA of Barton (1971), which may be of the same (angular) magni-
tude as the peak dilation angle. It is not correct to assume that this component is zero,
and by subtracting the dilation from peak strength to assume one has reached the
‘basic’ (flat surface) friction angle. The error may be at least 10°.
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Figure 13 The principal scale-dependent components of the shear strength of rock joints as summar-
ized by Bandis (1980) and Bandis et al. (1981). Note that SA has almost the samemagnitude as
the peak dilation angle, at various scales, so subtracting dilation from peak strength leaves
two components remaining, not φb as assumed by Hencher on various occasions.
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Figure 14 The angular components of shear strength for a non-planar rock joint. Barton, 1971. Note
that the presence and influence of dilation dn requires adjustment of the classic stress-
transformation equations for all shearing-and-dilating geotechnical materials. (See Bakhtar &
Barton, 1984; Barton, 2006). This important topic will be discussed later in this chapter.
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The scale effects illustrated in Figure 13 are the ‘product’ of individual scale effects on
JRC and JCS, and as a result of combining the results of Barton & Choubey (1977),
Barton&Hansteen (1979) and Bandis (1980), the following suggestions for reductions
of JRC and JCS with increasing block size were given by Bandis et al. (1981). The
following equations were recommended:

JRCn ≈ JRCo ½Ln=Lo��0:02 JRCo ð4Þ
JCSn ≈ JCSo ½Ln=Lo��0:03 JRCo ð5Þ

The tests shown in Figures 16 and 17were performed by Barton on tension-fractured
brittle model materials, using a double-bladed guillotine for generating intersecting sets
of equally-spaced fractures. The tests (which were pre-UDEC, and therefore pre-
UDEC-BB) were performed prior to large-span cavern modeling (for underground
nuclear power plant purposes), using various fracture configurations and stress levels.
Although the deformationmoduli of the smallest-blockmodels were lowest, the greater
freedom for block rotation in these cases gave them higher shear strength, and induced
kink-band formation.

A further study of scale-effects was conducted by Bakhtar & Barton (1984) using
samples of the type illustrated in Figure 5f and Figure 18. These studies are incorpo-
rated in the next topic as they also gave insight into the need for a re-think about stress-
transformation (from principle stresses σ1 and σ2 onto an inclined plane, in the form of
the geotechnically important shear stress (τ) and normal stress (σn).

5 STRESS TRANSFORMATION, JRC (MOBILIZED) AND SHEAR
STIFFNESS

An important subject that goes beyond the more common distinction that we make
between constant normal stress and ‘constant’ normal stiffness shear testing of rock
joints (the latter actually not constant in reality), is the correct transformation of stress.
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Figure 15 When representing the shear strength of rock masses with the parameters JRC and JCS, it is
necessary to consider the mean spacing of joints crossing the joint set of primary interest, in
order to apply the scaling Equations 4 and 5 of relevance to this block size (say 2m). The
spacing of joints crossing the joint set of secondary interest (say 3m) will define the mean
block size for the secondary set.
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diagrams. Note the strong increases in the ‘lateral expansion coefficient’ (jointed Poisson’s
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the second set crossing the first had potential cohesion, due to the steep steps created
(Barton & Hansteen, 1979).



The subject of concern is the transformation of stress from a principal (2D) stress state
of σ1 and σ2 to an inclined joint, fault or failure plane, to derive the commonly required
shear and normal stress components τ and σn. If the surface onto which stress is to be
transformed does not dilate, whichmight be the case with a fault at residual strength, or
for a thickly clay-filled discontinuity, then the assumption of co-axial or co-planar
stress and strain is no doubt more valid.

If on the other hand dilation is involved (as in Figure 14), then stress and strain are no
longer co-axial. In fact the plane onto which stress is to be transferred should be an
imaginary plane since continuity is assumed. Non-planar rock joints, and failure planes
through dense sand, or through over-consolidated clay, or through compacted rockfill,
are neither imaginary nor are they non-dilatant in nature. This problem nearly caused a
rock mechanics related injury, when Bakhtar & Barton (1984) were attempting to
biaxially shear a series of ten 1m3 samples, applying shear and normal stress to the
130 cm long diagonal fractures (which were without weathering effects).

The experimental setup and a tilt test are shown in Figure 18. The sample preparation
was unusual because of principal stress (σ1) controlled-speed-tension-fracturing. This
allowed fractures to be formed in a controlled manner, with less roughness than typical
for (laboratory-formed) tension fractures. Figures 19 and 20 show the stress application
and related stress transformation assumptions, presented in three stages.

The rock mechanics near-injury occurred when a (σ1-applying) flat-jack burst at
28MPa, damaging pictures on the laboratory walls and nearly injuring the writer who
was approaching to see what the problem was. The sample illustrated in Figure 18
(with the photographer’s shoes, pre-test stage) was transformed into ejected slabs, and
ejected high-pressure oil, as a result of the explosive flat-jack burst.

These 1.3m long tension fractures gave tilt angles varying from 52° to 70°, and large-
scale (Ln = 1.3m) joint roughness coefficients (JRCn) varying from 4.2 to 10.7. A clear
scale effect was exhibited in relation to the 100mm long JRC0 profiles shown in Figure 4.

The conventional stress transformation Equations 6 and 7, and the dilation-cor-
rected Equations 8 and 9 are given below. It will be noted that a mobilized dilation
angle is needed. A dimensionless model for mobilization of roughness (JRCmob) is used,
and is seen to have wider application in the BB modeling.

σn ¼ 1
2
ðσ1 þ σ2Þ � 1

2
ðσ1 � σ2Þcosð2βÞ

τ ¼ 1
2
ðσ1 � σ2Þsinð2βÞ

9>>=>>; ð6Þ and ð7Þ

σn ¼ 1
2
ðσ1 þ σ2Þ � 1

2
ðσ1 � σ2Þcos½2ðβþ dn mobÞ�

τ ¼ 1
2
ðσ1 � σ2Þsin½2ðβþ dn mobÞ�

9>>=>>; ð8Þ and ð9Þ

Angle β is the acute angle between the principal stress σ1 and the joint or failure
plane. The peak dilation angle and mobilized dilation angle can be written as:

d0
nðpeakÞ ¼

1
2
JRCðpeakÞlogðJCS=σ0nÞ ð10Þ

An estimate of the mobilized dilation angle dn (mob) for adding to the joint angle β, is as
follows:
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d0
nðmobÞ ¼ 1

2
JRCðmobÞlogðJCS=σ0nÞ ð11Þ

JRC(mob) is an important component of the Barton-Bandis joint behavior criterion. It is
shown in Figure 21. It was developed by Barton, 1982 while analyzing the results of
TerraTek’s ONWI-funded 8m3 in situ heated HTM (hydro-thermo-mechanical) block
test, which was performed by colleagues Hardin et al. 1982, at the Colorado School of
Mines experimental mine.

The JRC(mob) concept illustrated in Figure 21 has the effect of ‘compressing’ a series of
shear-displacement curves obtained from DST at widely different normal stresses (e.g. see
Panel #1.2 in Figure 2) into a narrow band of behavior. Conversely, from the single

Figure 18 Sample loading test setup and tilt testing of 1m3 samples of rock, hydrostone and concrete by
TerraTek colleague Khosrow Bakhtar in the early 1980s (in a pre-Schlumberger era). Note the
tilt testing (at 1m3 scale), lowering a lightly clamped sample into a test frame, LVDT instrumenta-
tion, and a (rare) sheared sample of an undulating fracture in sandstone (Bakhtar & Barton, 1984).
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JRCmob/JRCpeak versus displacement δ/δpeak curve shown in Figure 21we can generate (by
hand if necessary) shear stress-displacement (and dilation-displacement) curves for widely
different input data (JRC, JCS, ϕr) and widely different boundary (stress) conditions.

Figures 22 and 23 demonstrate how the JRC(mob) concept is used to generate stress-
displacement (and also dilation displacement) diagrams, for joints of any roughness, or
any normal stress level. These were readily generated by hand (Barton, 1982) i.e.
demonstrating the simplicity of the concept, devoid of ‘black-box’ software needs, as
common in today’s commercial software.

Since we now have a simple method of generating shear stress-displacement (and
dilation-displacement) curves, we can take the method one stage further and generate
shear stress-displacement (and dilation-displacement) curves for rock joints (or jointed
blocks of rock) at various scales, using the JRC and JCS scaling Equations 4 and 5 listed
earlier, below Figure 14. In fact in the next section, considering joint apertures and joint
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Figure 21 The dimensionless JRC(mob) concept was designed to match the details of joint or fracture
behavior during direct shear testing. An example of this is shown in Figure 22. Note the
different level of information compared to one ‘peak’ friction coefficient μ (top point of figure
only) as used at present in petroleum geomechanics (Barton, 1982).
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Figure 23 Generation of shear stress-displacement curves for one type of rock joint, as DST tested by
Bandis (1980) at three different levels of normal stress. The ‘numerical model’was generated
by hand.

PHYSICAL MODEL

NUMERICAL MODEL
JRC

9cm M

P2.7m

125

100

75

50

25

0
1 2

M 2000 kPa
JCS

M 90 kPa

σn

φr = 32°

M 2000 kPa

JCS

M 90 kPa

σn

φr = 32°

3 4

SHEAR DISPLACEMENT (mm)

S
H

E
A

R
 S

T
R

E
S

S
 (

kP
a)

5 6 16.6 10.6

JRC

7.5 6.57 1
0

25

50

75

100

125

JRC

16.6

10.6

7.5

6.5

2 3 4

SHEAR DISPLACEMENT (mm)

5 6 7

16.6

10.6

7.5

6.5
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conductivity, we will also be able to see how shearing and dilation affect the conduc-
tivity. We are then close to seeing the coupled nature of the Barton-Bandis model,
which can be used for modeling rock mass deformation (i.e. caused by tunneling) and
the joint-related flows (simplified and idealized in 2D) toward the same tunnel.

We may experience that the set of joints suffering (slight) shearing and dilation may not
be the same set that conducts most flow to the tunnel. It all depends on the magnitudes of
JRC, JCS, ϕr and on themagnitudes of the initial hydraulic apertures prior to deformation.
In the BB model we convert the dilation-induced aperture (E + ΔE) into the less altered
e +Δe hydraulic aperture, using JRC0 or JRC(mob) depending on whether opening/closing
or shear/gouge production is occurring. This is described later in this chapter.

When estimating the values of JRCn ofmost relevance to the given joint sets forming the
rock mass (example block-sizes of 1m and 2m are shown in Figure 24) it is helpful to
utilize the a/Lmethod, whichwas sketched at small scale in Panels 4.1 and 4.2 of Figure 2.
In Figure 25 this simple guide to scale effects is shown at a scale which can be used in
practice. The black circles show imaginary a/L data that might have been collected by
measuring convenient exposures of the joint set in question. In the case illustrated there is
most data at L = 0.2m and at L = 0.5m scales. There is only one data point for the
imaginary mean block size of 2m. Nevertheless we must make the conservative extra-
polation and use an estimate of JRCn = 3 in this case, and check from Equation 4 if this is
consistent with the small scale (L = 15 to 20cm) JRC0 estimates of approx. 5 to 10 seen
down to the left-hand side of Figure 25. The final value will be a question of engineering
judgment, and may also include a look at the 130cm long profiles in Figure 19.

As noted in the figure caption of Figure 24, and in the inset to this same figure, an
estimate of δpeak is required in order to derive appropriate shear stress-displacement
(and dilation-displacement) curves. A collection of some 600 DST results for block
sizes from 10 cm to more than 3m assembled in Barton (1982) indicated a rather wide
spread of data for δpeak. The statistics suggested the following formula as a workable
approximation:

δpeak ≈L=500 ðJRC=LÞ0:33 ð12Þ
where δpeak is in meters and L is the block-size in meters.

Examples:

Lab. sample: L0 = 0.1m, JRC0 = 15. Equation 12 gives δpeak = 0.0011m or 1.1mm.
In situ block: Ln = 1.0m, JRCn = 7.5. Equation 12 gives δpeak = 0.0039m or 3.9mm

As summarized in the figure caption to Figure 24, the double strength and δpeak scale
effect have a quite dramatic effect on the shear stiffness Ks. Many hundreds of DST data
were assembled in Barton (1982) and gave the trends shown in Figure 26 a.Data for clay-
filled discontinuities, natural rock joints and model-material joint replicas are shown.

In Figure 26, right-hand figure, a shear-stiffness prediction exercise is performed, using
two widely different joint samples as a starting point. The top right-hand corner shows
the parameters assumed for a very rough joint in hard unweathered rock (15, 150MPa,
30°). The bottom left-hand shows the parameters assumed for a more planar weathered
joint (5, 50MPa, 25°). Aswe can see it is likely that shear stiffness Kswill often lie within
the range of 0.1 to 1MPa/mm for typical in situ rock block sizes and moderate (civil
engineering) stress levels. In a later section of this chapter such low values will be
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contrasted with the much higher (x 50?) values of normal stiffness Kn, which of course
emphasizes the fundamental anisotropy of real rockmasses, a property lost and forgotten
in most continuum analyses, and even lost by some UDEC modelers.

6 THE CONDUCTIVITY OF ROCK JOINTS AND THE EFFECTS
OF DEFORMATION

The theoretical Hagen-Poiseuille equation for the hydraulic conductivity (K) of a
smooth parallel-plate, during laminar flow is:

K ¼ ðρg=μÞ e2=12 ¼ ge2=12v ð13Þ
where K is in units of velocity (LT−1), g = gravity acceleration 981 cm/s/s (LT−2), e =
equivalent parallel plate (smoothwall) aperture (L), ν = coefficient of kinematic viscosity of
the fluid (L2T−1) (where ν = μ/γ = viscosity / density has units of ML−1T−1/ML−3 = L2T−1).

There are (at least) two types of joint aperture that need be considered whenmodeling
the effect of joint deformation, namely the physical aperture (E) and the (theoretical)
hydraulic aperture (e). A key issue is how to correlate the hydraulic apertures (e) to the
generally larger physical apertures (E). The following empirical conversion formula was
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Figure 25 An illustration of the a/L method for estimating the large-scale JRCn value. Note that at L =
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developed by Barton, 1982 and more widely published by Barton et al. 1985. It is for
correlating E and e in relation to roughness (JRC). This formula applies to normal closure
effects. Olsson and Barton, 2002 extended the modeling of E and e to the case of
(potentially) gouge-producing shearing effects, in this case involving joint aperture con-
version using JRC(mob). This is shown later, in Figure 28.

E ¼ ðe ⋅ JRC2:5Þ1=2 ð14Þ
where e and E are in units of μm.
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The kinematic viscosity ν of water is 0.01 at 20° C and γ = 1 gm/cm3. Checking units
again we see that ν = μ/γ = viscosity / density, with units ML−1 T−1/ML−3 = L2/T). It
follows that:

K ¼ ge2=12v ¼ 8175 e2ðcm=sÞ ð15Þ
Substituting e ≈ E2/JRC0

2.5 yields the following formula for hydraulic conductivity:

K ≈ 8175 ½E2=JRC2:5
0 �2 � 10�10 m=s ð16Þ

Observations published by Makurat et al. (1990) indicated that CSFT (coupled shear
flow tests) could cause gouge-production during shearing if stress levels were high in
relation to JCS wall strengths. This could compromise both the physical (E) and
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hydraulic aperture (e) as interpreted from the ‘cubic law’. Logically speaking there
would be a whole range of stress/strength ratios (high strength, low stress) in which
gouge or damage would be minimal. In those cases, the conversion involving the
empirically derived roughness factor JRC0

2.5 could be used in place of the Olsson
and Barton equation with JRC(mob).

Examples showing the (BB-predicted) effect of shearing and dilation on the conduc-
tivity of joints of variable size, or on single samples tested at varied normal stress, are
shown in Figure 29. Note that for simplicity a ‘starting’ aperture of e = 25μm has been
assumed in each case. As we shall see in the next section concerning normal stiffness,
this assumption of an unchanged 25μm is likely to be erroneous when changes of
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Figure 29 Examples of ‘coupled’ shear-dilation-conductivity modeling with the Barton-Bandis modeling
assumptions. When block-size variations are involved (left) the delayed dilation and there-
fore delayed conductivity change can be noted. These curves were produced in 1983 by
Bakhtar using a programmable HP calculator and the BB equations by now assembled in
Barton (1982). ONWI and AECL funded work were responsible for the ‘finalization’ of the
BB model prior to its programming (by Mark Christiansson of Itasca) into the distinct
element code UDEC-BB (Barton & Bakhtar, 1983, 1987).
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normal stress are being modeled. Of course in the UDEC-BB program, the ‘starting’
apertures are calculated more correctly from the following normal stiffness behavior.

Although unlikely to be noticed by petroleum geomechanics modelers who are
satisfied with linear friction coefficients and linear Mohr-Coulomb, these ‘delay’s
may have influence on what should be the desired effect of massive hydraulic fracturing
concerning the ‘accompanying’ microseismic evidence of shearing of natural fractures
in the gas shales. This occurs at larger distances from the central elliptic regions of sand-
propped fractures (Barton, 2015).

As a result of seismic loading involving potential reversals of shearing direction, or as
a result of some particular rock engineering excavation sequences whichmight result in
a reversed shearing direction, one needs to consider what is likely to happen to shear
strength. In Figure 30, having due consideration of some reversed-shear DST appearing
in the literature some decades ago, Barton, 1982 formulated the ‘degrading of rough-
ness’ JRC related model shown in Figure 30. Progressing through some reversed cycles
of shear would of course have the result of compromising some of the dilation-related
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permeability increases, and the ‘gouge-production’ adjustment shown in Figure 28
would obviously apply with successively renewed strength, due to accumulating
damage and inevitable gouge-debris accumulations.

7 NORMAL CLOSURE OF JOINTS AND HOW TO MODEL IT

The diagrams and equations assembled in Figure 31 showhowBandis (1980) formulated
the normal closure behavior of rock joints, using the JRC and JCS parameters previously
detailed in Barton & Choubey (1977) and now easily acquired by performing the index
tests shown in Figure 2.An important detail to note about normal closure behavior is that
every sample tested has been unloaded and disturbed during the recovery period. This
applies more to core than block samples, if the latter are ‘banded’with steel belts prior to
transport. This of course also applies to sampleswhichwill be tested in shear.However in
this second case one is concerned about behavior of millimeter scale, while the closure of
tight rock joints might be measured in a few tens of microns. So near-removal of the
effects of sample recovery by performing load-unload cycles becomes an important part
of the testing procedure. The arbitrary but practical assumption is made that after about
three to four load-unload cycles there is so little change that behavior can be considered
as representative of undisturbed behavior.
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Characterization and modeling of the shear strength 33



Figure 32 shows how normal stiffness behavior is interpreted as a net deformation of
the joint, by subtracting the intact-rock deformation from the monitored behavior of
load-unload cycles (sets of three are shown in Figure 33) from the ‘rock-plus-joint’
overall deformation. Wide differences in behavior from rock type to rock type and
from joint type to joint type are indicated in Figure 33. A ‘reservoir drawdown-and-
injection’ scenario is also demonstrated in Figure 33 (right-hand diagram).

8 CASCADING PROGRESSIVE FAILURE OF JOINTED ROCK
MASSES

There is an almost ‘universal’ belief (by those not using the non-linear JRC/JCS
model) that the shear strength of rock joints consists of cohesion and friction, and
that one can add c + σn tan ϕ. The assumed cohesive strength is actually a purely
‘arithmetic’ construction due to linearized strength envelopes, and represents some-
thing hypothetical in relation to the reality of increasing curvature (friction angle plus
dilation angle increase) experienced close to zero normal stress. Barton (1971) mea-
sured this lack of actual cohesion, even for the case of extremely rough tension
fractures. The ‘total friction’ angle may reach 80° or more when normal stress is
extremely low. The ‘cohesion intercept’ is an arithmetic convenience, but potentially
exaggerates the shear strength actually available.

When on the other hand we consider the possible shear strength of rock masses, the
same Mohr-Coulomb equation automatically comes to most people’s minds. It is
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Figure 32 It is appropriate to ‘define’ normal loading behavior of rock joints by indicating the
subtraction that has to be made of the elastic portion of the deformation associated
with the intact matrix on either side of the joint. The net joint deformation is highly non-
linear, but is made less so by shear deformation, or by mismatching (absence of inter-
lock) (Bandis et al. 1983).
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assumed that ‘c’ can again be added to ‘σn tan ϕ’. In this case there may be a genuine
cohesive strength component due to the ‘necessary’ failure of ‘intact bridges’, where
joint sets do not ‘line-up’ as potential failure surfaces. However this time there is
another type of problem. While the cohesion is no longer hypothetical but real, the
problem is that it fails at much smaller strain than the mobilization of frictional
strength along the newly formed fresh and rough fracture surfaces. These in turn may
be stiffer than the lower strength (and possibly weathered) natural joints (i.e. those
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Figure 33 Left: Examples of normal stress-closure cycles for a cleavage joint in slate, for a rougher joint
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been written at 10, 20 and 30 MPa. A ‘reservoir drawdown and injection’ effect have been
shaded on the conductivity curves (Barton et al., 1985).
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capable of shearing because of adverse orientations. There may also be clay-filled shear
zones or faults, with their smaller-and-later response.

A crude and non-conservative way to make allowance for the different components,
and assume (when estimating by hand) that contributions can be added as if occurring
at the same strain, but with the smallest-strain cohesion ignored, is illustrated in
Table 1. With the aid of a computer one could mobilize the various components at
their respective strains. How often do we see this done? Since the answer is clear we
must conclude that it is time for change.

9 A BRIEF COMPARISON OF MOHR-COULOMB AND
BARTON-BANDIS MODELING

Rock masses may range from almost intact, through well jointed, to heavily crushed,
due to increased proximity to fault zones. The result is variable geometrical patterns
resulting from several types of joint sets with their variable roughness and continuity.
Notwithstanding an implied need for engineering rationalization, the assessment of
strength for such complexmedia as rockmasses cannot be approached on the basis of a
single generic strength criterion.

The type, frequency and orientation of the jointing and faulting define the likely
modes of deformation, and some indication of the likely ultimate failure mechanism. In
significant volumes of rock there may be two or three classes of discontinuities (natural

Table 1 A crude (and probably non-conservative) way to account for three of the components
illustrated in Figure 33. Cohesion is ignored (this is conservative) but the three remaining
fracture, joint, and filled-discontinuity components are imagined, for ease of hand calculation,
to mobilize at the same strains.

Feature Joint #1 Minor fault Joint #3 Intact bridge (failed at
small displacement (*)

Small-scale strengths Jr = 1.5
JRCo 14 Ja = 4 12 18
JCSo 75 55 150
Phi r 29º τ/σn = 1.5/4 28º 32º

Large-scale Jr = 1.5
strengths(est.) Ja = 4
JRCn 9 6 12
JCSn 45 τ/σn = 1.5/4 30 90
Phi r 29 28 32º
Block-size Ln (m) 2 to 4 m 3 to 5 m 1m
Large-scale undulation (?) (+ i = 4º) (+ i = 0º) (+ i = 2º) (+ i = 4º)

Partial safety factors 1.2 1.3 1.2 1.1

Final strength components 45º/1.2 = 37.5º 21º/1.3 = 16º 37º/1.2 = 31º 56º/1.1 = 37.5º

Length (m) 50 25 30 20

Weighted mean strength 34º 37.5º × 50 + 16º × 25 + 31º × 30 + 51º × 20

50 + 25 + 30 + 20

(*) Clearly it is extremely conservative to ignore an intact rock cohesion of e.g. 25 MPa
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and stress-induced fracturing) which can become involved in the pre-peak and post-
peak deformation and failure. Rock mechanics practitioners to date have generally
adopted one of the following two approaches for the characterization and engineering
study of jointed rock.

– A discontinuum approach, in which the geologic structure is explicitly represented
and in turn controls the modes of deformation and mechanisms of ultimate failure
(prior to modeling of appropriate rock mass reinforcement).

– A continuum approach, which involves a semi-empirical simulation of the rock mass,
transforming the in situ (actual) discontinuous state into a hypothetical continuous
medium, in which the weakening and softening influence of jointing is allowed for
implicitly

Due to the complexity we must resort to numerical UDEC-BB or 3DEC simulations. A
useful starting point, and a demonstration of the fundamental differences between M-C
and B-B can be gained by performing simulations of large scale biaxial and triaxial tests.
These give a useful insight into mechanisms at failure, and comparisons of shear strength
estimates based on the above non-linear strength criteria, with linearM-C criteria are quite
revealing. Of course predictions from “global” continuum strength criteria (an example
would be GSI-based H-B Hoek-Brown) are quite different to both. Contrasting B-B and
M-C behavior for an equally jointed ‘rock mass’ sample are shown in Figure 34.
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Such diverging approaches, coupled with the inherent complexity of jointed rock
behavior, have created unfortunate barriers that, to date, have prevented comprehen-
sive and generally accepted approaches to rock mechanics, as needed for solving rock
engineering problems. Discontinuum and continuummechanics approaches are applic-
able to specific rock mass conditions, and cannot be used interchangeably, as summar-
ized below:

– The continuum (implicit) approach is appropriate where the frequency and orien-
tation of jointing are such that no preferential paths of stress-strain responses are
present. Such conditions are present in an estimated <10% of rock masses.

– The discontinuum (explicit) approach is appropriate when the geological structure
controls anisotropy, deformation modes, and strength. Such conditions are applic-
able to the vast majority (>90%) of rock masses.

10 CONCLUSIONS

1. The authors are aware of some 50 equations for evaluating JRC.While this should be
considered gratifying, the great majority are rather complex descriptions of a topo-
logical nature, or linked to 3D laser profilometric analysis. The simple performance of
tilt tests seems mostly to have escaped those analyzing roughness and ‘improving’
JRC.

2. This chapter addresses the recommended methods of describing and performing
index tests of rock joints by means of the two basic parameters JRC and JCS
suggested by Barton, 1973.

3. Due to the considerable further work of the two authors (including that with
Choubey and Bakhtar) and subsequent correction for block-size scale effects,
mostly fromBandis, the methods of predicting non-linear joint behavior (stiffness,
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linear (or bi-linear ‘ramping’) in the case of MC, significant block rotations are seen with BB
which tend to be absent with MC. A comprehensive set of comparisons with numerous
geometric and boundary conditions are given by Barton & Bandis (2017, in preparation).
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strength, dilation, conductivity, each with deformation) have become known as
the Barton-Bandis or BB model. We must thank Bandis for his unmatched con-
tribution during too short a lifetime (1951–2016 †)

4. At the end of this chapter we have shown the fundamental differences between
linear (Mohr-Coulomb, MC) and non-linear BB. The differences are worthy of
attention, and will be illustrated in detail in our book.
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Statistical fracture toughness study
for rocks
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Abstract: The presence of heterogeneity, bedding planes, porosity, inherent defects etc.
in rocks inevitably generates large scatters in the strength and fracture toughness values
which are obtained from fracture tests on rocks. Hence, statistical analyses may
provide better estimations for investigating the mechanical behavior of rocks. In this
research, using several fracture toughness tests, mode I and mode II fracture toughness
was studied statistically for two different rocks (i.e. limestone and marble) tested with
different geometry and loading configurations. Disk type specimens including straight
through center crack Brazilian disk subjected to diametral compression and straight
edge cracked semi–circular bend and chevron notched Brazilian disk specimens which
are among common rock fracture toughness testing configurations were employed for
experiments. It was observed that the shape and geometry of a specimen and also its
loading mode can affect significantly the scatter in fracture toughness test data. It is
shown that the observed differences between the experimental results can be estimated
well if the effects of higher order stress terms (T and A3) are considered via a modified
maximum tangential stress criterion. The obtained statistical results are then predicted
using two- and three-parametric Weibull distribution models. The failure probability
curves of tested specimens are also evaluated successfully in terms of the failure
probability curve of a reference mode I sample.

1 INTRODUCTION

In rock mechanics, strength and integrity evaluation of rock masses is a very impor-
tant task for investigating performance and durability of rock structures. In compar-
ison with other engineering materials like metals or polymers, rock masses usually
contain numerous cracks, inherent discontinuities, flaws, bedding planes and natural
fractures which make them very susceptible to sudden failures at loads much lower
than those expected for intact rocks. Hence, despite the availability of the conven-
tional strength criteria like Mohr–Coulomb (Coulomb, 1773; Labuz & Zang, 2015)
which are used for evaluating the load bearing capacity of intact rock masses, more
precise analyses of naturally fractured or cracked rock masses require that the
influence of cracks and discontinuities inside rock structures should be taken into



account. Fracture mechanics has been known as a suitable framework for integrity
assessment of cracked rock masses.

Fracture toughness is an important parameter for classification of rocks, design of
rock structures and analysis of rock related problems. This parameter which defines the
resistance of rock material against crack propagation is determined experimentally
using suitable test configurations. A review of rock fracture mechanics literature
indicates that most of the specimens used for rock fracture toughness testing have
disk or cylindrical shapes. This is mainly due to the convenience of specimen prepara-
tion from rock cores.Meanwhile, because of difficulties related to introducing a fatigue
pre-crack in rocks, chevron notch cracking is a suitable and preferred technique instead
of straight cracking for these materials. Accordingly, till now four cylindrical shape
fracture test specimens, namely the cracked chevron notch short rod tension specimen
(Ouchterlony, 1998), the chevron notched cylindrical specimen subjected to three-
point bending (Ouchterlony, 1998), the cracked chevron notched Brazilian disk
(CCNBD) subjected to diametral compression (Fowell, 1995) and the semi-circular
bend (SCB) specimen subjected to symmetric three-point bend loading (Kuruppu et al.,
2015) have been suggested by the International Society for RockMechanics (ISRM) for
determining a versatile and reliable value of mode I fracture toughness (KIc) for rock
materials. It is widely accepted that the tensile type mode I fracturing is the most
important mode of fracture in rock masses. Many researchers have therefore investi-
gated the mode I fracture behavior of rock materials either using ISRM suggested rock
samples (Khan & Al-Shayea, 2000; Aliha et al., 2006; Ingraffea et al., 1984; Nasseri
et al., 2010; Zhou et al., 2010; Siren, 2012; Whittaker, 1992) or other mode I test
configurations (Funatsu et al., 2004; Xeidakis et al., 1997; Krishnan et al., 1998;
Tutluoglu & Keles, 2011). However, in practice the pre-existing cracks in rock masses
and rock structures are usually subjected to complex loading conditions and due to
arbitrary orientation of flaws relative to the overall applied loads, cracks often experi-
ence shear mode deformation (KII component) as well in addition to the opening mode
(mode I or tensile type) deformation. For example, hydraulic fractures initiated from
the wall of inclined and horizontal wells propagate under mixed mode tensile-shear
loads (Haddad & Sepehrnoori, 2015). For another practical application, most of the
observed cracks in gravity dams, wall of tunnels or rock slopes are prone to bothmodes
I and II fracture (Kishen& Singh, 2001; Arslan&Korkmaz, 2007; Aliha et al., 2012a).
The shear type loads and waves during earthquakes also create predominantly mode II
fracture patterns in rock structures. Therefore, for practical situations it is necessary to
know the value of mode II fracture toughness (KIIc) of rocks as well. Some test speci-
mens such as punch through shear specimen (Backers et al., 2002), anti-symmetric
four-point bend loading (Aliha et al., 2009), inclined center cracked Brazilian disk
(Aliha et al., 2012b) and inclined edge cracked semi-circular bend (Aliha et al., 2010)
specimens are among frequently used configurations for mode II fracture toughness
testing of rocks.

For brittle and quasi-brittle materials, the failure loads obtained from fracture tests
on a specific specimen may not be the same even under identical testing conditions.
This is related to the distribution of physical flaws andmicro-cracks inside the body of
brittle materials and initiation of brittle failure process from these weak points. For
example, when a cracked rock material is subjected to mechanical loading, a damage
zone ahead of the crack front called fracture process zone (FPZ) is formed which
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experiences non-linear behavior due to random distribution of flaws in different sizes
and along arbitrary orientations and locations. Indeed, the FPZ is developed gradu-
ally by initiation, coalescence and propagation of micro cracks in front of the crack
tip by increasing the level of applied load. When the density of micro cracks in this
region reaches a critical value and FPZ is saturated by micro cracks, a larger macro
crack is formed in this region from the tip of initial crack which eventually results the
overall brittle fracture of cracked rock body. The shape, size, orientation and type of
micro cracks and consequently the saturation stage of this region which is not
necessarily the same for identical testing conditions may be considered as possible
source of scatter in maximum load bearing capacity of rock materials and thus it is
reasonable to see some variations in their fracture toughness values. The variations in
fracture toughness can be expressed in terms of a failure probability model. Weibull
(1951) proposed a stochastic approach for describing the strength distribution of
brittle materials based on the weakest link concept. This concept assumes that the
ultimate strength or crack growth resistance of a body involves the products of the
survival probabilities for the individual volume elements. A fair comparison can
be made by observing the strength of a chain, in which the strength is determined
by the weakest link. Once this element is broken the next weakest element will
determine the strength of the remaining parts.

On the other hand because of the inherent heterogeneity, porosity, humidity and
water content, bedding planes, texture, crystal boundaries, secondary phases, fis-
sures, pores, inclusions, defects caused by environmental factors, composition and
anisotropy of rock materials, large scatters in experimental fracture toughness data of
rocks is inevitable. Hence, to obtain versatile and reliable data for rocks (especially
for brittle and porous rocks), it is necessary to investigate the fracture toughness of
rocks statistically using a larger number of test samples. Indeed, average fracture
toughness value obtained from three or four tests cannot necessarily provide reliable
fracture toughness values for rocks. A few researchers have investigated crack growth
response of rocks using statistical approaches. For example, Donovan (2003) studied
the fracture toughness values for a number of rocks including metabasalt, siltstone
and granite obtained from Virginia, USA, using edge notch disk (END) specimen and
with at least 10 samples for each type of rock and reported upper and lower bound
values and also mean fracture toughness value for the investigated rocks. In another
work, Chang et al. (2002) tested some Korean rocks such as marble and granite using
BD and SCB specimens under both modes I and II. They showed statistically that the
fracture toughness of rocks is nearly independent of specimen’s thickness. Using edge
notch bend beam specimen, Iqbal and Mohanty (2007) studied the effect of rock
material orientation and bedding planes on mode I fracture toughness using a large
number of samples with similar geometries. Amaral et al. (2008) has also employed
Weibull statistical analysis to study the bending strength of a granite rock. However,
theoretical predictions for statistical data obtained experimentally for fracture tough-
ness of rocks have been rarely presented in the past. Hence, in this research, brittle
fracture behavior of some rock materials with different test configurations is inves-
tigated statistically using Weibull probability analyses. It is shown that the relatively
large scatter in the fracture toughness data for the investigated rocks can be predicted
well by the Weibull analysis. For each rock material the corresponding Weibull
parameters are determined and using a fracture theory, the fracture probability
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curve of different geometries and loading modes are estimated from the mode I
fracture data of a reference specimen.

2 TWO- AND THREE-PARAMETER WEIBULL MODEL

If we conduct fracture toughness testsN times for a certain brittle or quasi brittle rock
using a given test sample, probably N different fracture loads (i.e. fracture toughness
values) would be obtained due to natural scatter in the results. By sorting the obtained
data and using rank and cumulative probability method, the statistical fracture tough-
ness behavior can be evaluated (Wallin, 2011). The failure probability Pf for total
number of N test samples can be written as:

Pf ¼
i� 0:5

N
ð1Þ

where i is the number of tests, sorted in order of increasing fracture load or toughness.
Wallin (1984) proposed the Weibull statistical distribution (Weibull, 1951) as a prob-
ability function for brittle failure. This function (which has a power law type in general)
can be written as following two- and three-parameter models:

Pf KCð Þ ¼ 1� EXP � KC

K0

� �m� �
- Two-Parameter model ðK0; mÞ ð2Þ

Pf KCð Þ ¼ 1� EXP � KC � Kmin

K0 � Kmin

� �m� �
-Three-Parameter model ðK0;m;KminÞ

ð3Þ
where Kc is the applied stress intensity factor at the onset of fracture, Kmin is threshold
fracture toughness below which the probability of fracture is zero,K0 is a normalization
factor which is equal to the value of K and stands for the failure probability of 0.623
and m is a fitting parameter that describes the magnitude of scatter. If the variations of
test results from sample to sample are small, the calculated m value will be high and
conversely for those cases where the scatter of results is large the calculatedm would be
small. As seen from Equation 3 by setting Kmin as zero, three-parameter Weibull dis-
tribution will be identical with the two-parameter one. The application of the Weibull
distribution was introduced by Basu et al. (2009) and Todinov (2009) as one of the
appropriate models for predicting the probability of fracture in the brittle materials.
Other researchers (Smith et al., 2006; Curtis& Juszczyk, 1998;Diaz&Kittl, 2005; Aliha
& Ayatollahi, 2014; Danzer et al., 2007) have also investigated the applicability of this
method for different types of brittle materials such as rocks and ceramics based on the
Weibull statistical model. According to the previously published papers the distribution
of rock fracture toughness is thought to be well approximated by the three-
parameter (K0, m, Kmin) Weibull distribution. Since the crack growth behavior (i.e. the
mode I andmode II fracture toughness of rocks) is critically dependent onmicrostructure
and defects, it is required and preferred to perform a stochastic analysis formodeling and
characterizing brittle fracture in rocks. Therefore, in the forthcoming sections of this
paper the Weibull statistical analyses are used for evaluating the experimental fracture
toughness in some types of rocks tested under different conditions.
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3 STATISTICAL FRACTURE TOUGHNESS DATA FOR ROCKS

In this section, the experimental program employed for investigating the statistical
behavior of rocks is outlined. Asmentioned earlier the disk shape specimens such as BD
and SCB are among the suitable and commonly used configurations for conducting
rock fracture toughness experiments. Hence, using the mentioned specimens the sta-
tistical study of this research was performed in these two subjects:

(1) Statistical mode I fracture toughness study of straight cracked BD and SCB
specimens made of a soft rock (Guiting limestone) to investigate the influence
of specimen’s geometry on mode I fracture data.

(2) Statistical study for mode I and mode II fracture toughness in chevron notched
BD specimen made of a marble rock (Harsin marble) to investigate the influence
of loading mode on the statistical parameters of KIc and KIIc results.

For investigating the influence of specimen type and its geometry in mode I fracture, a
sedimentary soft limestone (Guiting limestone) was used for the experiments. This rock
is a homogenous material composed of calcite. It is a porous limestone that is beige in
color which is widely found in the UK. Also, for conducting mode I and mode II tests
using the chevron notched specimens, a white, coarse grain and relatively homogenous
marble (Harsin marble) excavated from the west of Iran was selected. For mode I
fracture toughness testing on Guiting limestone, a BD specimen and two SCB speci-
mens (labeled by SCB1 and SCB2) were used. For conducting both pure mode I and
pure mode II fracture tests on marble a chevron-notched Brazilian disk was employed.
Figure 1 shows the geometry and loading conditions of the employed test specimens,
where R and t are the disk radius and thickness, respectively. F is the applied load and
2S shows the span length for three-point bend loading.

For the sake of comparison, the overall dimensions of disk and semi-disk specimens
(i.e. BD and SCB specimens) were considered to be the same for both rocks and were as
follows: 2R = 100 mm and t = 30 mm. However, the type and length of crack was
different for two sets of limestone and marble samples. While for limestone samples a
straight crack of length a = 15mm (for BD and SCB1) and 30mm (for SCB2)was created
using a very narrow fret saw of thickness 0.4 mm, two chevron notches were cut in the
center of marble disks from each side using a thin rotary diamond saw having diameter
and thickness of 80 mm and 1 mm, respectively. It is seen from Figure 1 that three
geometrical parameters a, a0 and a1 describe the geometry of chevron notch in the
CCNBD specimen, in which the following dimensionless parameters are often used for
characterizing the geometry of chevron notch in the CCNBD specimen:

α0 ¼ a0=R
α1 ¼ a1=R
αB ¼ t=R
αS ¼ DS=R

ð4Þ

whereDs is the diameter of cutting rotary saw blade. As stated earlier the chevron notch
Brazilian disk was used in this research for conducting both pure mode I and pure
mode II fracture toughness tests. The state of deformationmode in this specimen can be
controlled easily by rotating the crack direction (i.e. α) relative to the applied diametral
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load as shown in Figure 1. When α is zero, the CCNBD specimen is subjected to pure
mode I condition. Pure mode II inclination angle in this specimen depends on the crack
length ratio (a/R). Some researchers have determined this angle for the Brazilian disk
specimen using numerical and theoretical methods. For example, Ayatollahi and Aliha
(2007) analyzed the Brazilian disk specimen by the finite element method and obtained
the corresponding pure mode II crack inclination angle (αII) for different a/R ratios.

For preparing the chevron notches, the cutting depth of disk was 17 mm from each
side of CCNBD specimen. Using the measured values of a0 and a1 the average crack
length a is found to be about 22.5 mm. Thus, the crack length ratio a/R is approxi-
mately about 0.43 for pure mode II tests in this research and the corresponding value of
αII is found from Ayatollahi and Aliha (2007) to be about 24°.

For the straight cracked BD and SCB specimens used for mode I fracture studies, the
critical mode I fracture resistance (KIf) at the onset of fracture is determined from the
following equations:

KIf ¼ YBD
Fc
Rt

ffiffiffiffiffi
a
π

r
for BD specimen ð5Þ

KIf ¼ YSCB
Fc
2Rt

ffiffiffiffiffiffi
π a

p
for SCB specimen ð6Þ

where Fc is the critical fracture load, YBD and YSCB are the geometry factors of the BD
and SCB specimens, respectively. For the BD and SCB specimens these geometry factors
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Figure 1 BD and SCB specimens employed for mode I and mode II fracture toughness experiments.
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are functions of the crack length ratio (a/R) and the span to diameter ratio (S/R). Some
analytical and numerical solutions are available for YBD and YSCB (Ayatollahi & Aliha,
2007; Lim et al., 1994). For example, Ayatollahi and Aliha (2007) computed numeri-
cally these geometry factors using finite element method for a wide range of geometry
and loading conditions. Figure 2 shows the mode I geometry factors for BD and SCB
specimens with different a/R and S/R ratios.

The crack length ratio a/R was 0.3 for the straight crack BD specimen. For the SCB
specimens, the crack length ratio and loading span to diameter ratio were as follows:
(a/R = 0.3 and S/R = 0.43) for SCB1 and (a/R = 0.6 and S/R = 0.8) for SCB2 samples.
From the graphs of Figure 2, corresponding geometry factors for the BD and SCB
specimens of this research was found as: YBD = 1.135 , YSCB1 = 2.013, YSCB2 = 8.8.

For determining pure mode I fracture toughness using the CCNBD specimen, ISRM
(Fowell, 1995) has suggested the following equation:

KIc ¼ FC
B
ffiffiffiffi
D

p Y�
min ð7Þ

where Fc is the fracture load of CCNBD specimen. The critical non-dimensional stress
intensity factor Y*

min is obtained in terms of α0,α1,α2 from the following equation
(Fowell, 1995):

Y�
min ¼ uevα1 ð8Þ

where u and v are the constant parameters given by Fowell (1995) in terms of α0 and αB.
The average value of u and v were 0.277 and 1.784, respectively for the tested mode I
CCNBD specimens in this research. Pure mode II fracture toughnessKIIc value was also
determined from the following equation:

KIIC ¼ FCffiffiffiffiffiffiffi
πR

p
B

ffiffiffiffi
a
R

r ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a1 � a0
a� a0

r
YII ð9Þ

whereYII is pure mode II geometry factor which depends on the crack length ratio (a/R)
in the Brazilian disk specimen. Mode II geometry factor of Brazilian disk specimen has
been calculated earlier by Ayatollahi and Aliha (2007) using finite element method for
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Figure 2 Variations of geometry factors YBD and YSCB for different geometry and loading conditions
under pure mode I (Ayatollahi & Aliha, 2007).
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Table 1 Experimental fracture loads and fracture toughness results obtained for CCNBD, BD, SCB1
and SCB2 specimens.

Specimen
number

Fc
(kN)

KIIc
(MPa.m0.5)

Fc
(kN)

KIc
(MPa.m0.5)

Fc
(kN)

KIc
(MPa.m0.5)

CCNBD (marble-mode II) CCNBD (marble-mode I) BD (limestone-mode I)

1 15.017 2.430 10.658 1.003 3.412 0.1784
2 10.740 1.737 14.548 1.305 3.729 0.1950
3 9.451 1.594 10.559 0.939 4.52 02119
4 16.244 2.500 13.946 1.244 4.192 02192
5 9.939 1.807 12.571 1.120 4.327 0.2263
6 12.688 2.075 11.259 1.012 4.573 0.2372
7 16.864 2.658 12.361 1.120 4.704 0.2460
8 12.703 1.935 12.108 1.150 4.717 0.2467
9 15.611 2.361 14.554 1.278 4.757 0.2488
10 12.940 2.012 14.369 1.275 4.838 0.2530
11 15.294 2.360 14.080 1.216 4.896 0.2560
12 16.962 2.576 12.686 1.069 4.972 0.2600
13 14.209 2.117 14.841 1.367 5.074 0.2653
14 19.703 2.892 12.292 1.091 5.164 0.2700
15 15.988 2.543 14.125 1.221 5.470 0.2860
16 14.297 1.983 10.172 0.893
17 17.546 2.634 11.200 1.036
18 14.841 2.266 13.749 1.197
19 12.368 1.927 10.867 0.949
20 15.195 2.383 11.166 1.030
21 16.782 2.529 11.867 1.075
22 14.179 2.107 14.125 1.210

ave.=
14.526

ave.=
2.2466

ave.=
12.641

ave.=
1.1273

ave.=
4.589

ave.=
0.2400

Specimen number Fc
(kN)

KIc
(MPa.m0.5)

Fc
(kN)

KIc
(MPa.m0.5)

SCB1 (limestone-mode I) SCB2 (limestone-mode I)

1 1.968 0.2920 1.476 0.3407
2 2.056 0.3051 1.542 0.3808
3 2.132 0.3163 1.599 0.3550
4 2.150 0.3190 1.616 0.3745
5 2.163 0.3210 1.622 0.3690
6 2.167 0.3215 1.625 0.3509
7 2.204 0.3270 1.653 0.3952
8 2.244 0.3330 1.683 0.3601
9 2.279 0.3382 1.709 0.3847
10 2.309 0.3425 1.732 0.3874
11 2.325 0.3450
12 2.341 0.3473
13 2.377 0.3526
14 2.463 0.3654
15 2.493 0.3699

ave.= 2.245 ave.= 0.3331 ave.= 1.625 ave.= 0.3698



different a/R ratios. The corresponding value of YII for the tested CCNBD specimen
with a/R = 0.43 was found to be 2.04 from Ayatollahi and Aliha (2007).

The prepared circular and semicircular specimens made of limestone and marble
were then placed inside compression and three-point bend fixtures and loaded mono-
tonically to obtain the critical peak load (Fc) of each specimen. The straight cracked BD
and SCB specimens were tested by constant loading rate of 1 mm/min. For the chevron
notched Brazilian disk samples, ISRM has suggested that the total time for each
fracture test should be less than 20s. Therefore, the loading rate was chosen equal to
200 N/s to satisfy the ISRM requirements. The load–displacement curves of the whole
samples were linear showing the validity of LEFM for the tested rock samples. By
replacing the fracture loads (i.e. peak load obtained from each test) into related
Equations 5, 6, 7 and 9, the corresponding values of KIc or KIIc were determined for
the tested materials. Table 1 and Figure 3 present the obtained fracture loads, corre-
sponding fracture toughness values and the mean values for the whole investigated
specimens.

As shown in Figure 3, there is a natural scatter in fracture toughness of tested rocks.
These results reveal that the scatter of fracture toughness data may be dependent on the
type of rock, configuration of test specimen, loading condition and also the crack type.
For example, the scatter in the test results obtained for mode II fracture toughness is
greater than the mode I fracture toughness of CCNBD specimen, or the scatter of
SCB fracture toughness data is less than the BD specimen under mode I loading. The
average values ofKIc andKIIc for the testedHarsinmarblewere about 1.12MPa.m0.5 and
2.25 MPa.m0.5, respectively which gives the average KIIc/KIc ratio of about 2 for this
marble using theCCNBD tests.Meanwhile, the averageKIc values obtained fromBDand
SCB1 and SCB2 samples made of Guiting limestone were 0.24, 0.33 and 0.37MPa.m0.5,
respectively which shows the influence of geometry and loading conditions on pure
mode I fracture toughness data. However, these findings are not in agreement with the
predictions of conventional fracture criteria. Indeed, the available fracture criteria like
the maximum tangential stress (Erdogan & Sih, 1963), the minimum strain energy
density (Sih, 1974), the maximum energy release rate (Hussain et al., 1974) and the
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Figure 3 Experimental results obtained for pure mode I and pure mode II fracture toughness of tested
limestone and marble rocks.
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cohesive zonemodel (Gómez et al., 2009) suggest that the ratio of mode II over mode I
fracture toughness (KIIc/KIc) is a figure less than one and also the value of KIc for
a given material would not be dependent on the shape and configuration of test
specimen. These discrepancies between the experimental data and theoretical
predictions are mainly because in the conventional fracture criteria, the influence
of singular stress terms is only considered. But, it will be shown in the next section
that the obtained statistical fracture toughness data can be predicted much better if a
more precise description for stress field is used via a more generalized fracture
criterion.

4 THEORETICAL FRACTURE CRITERION FOR MODE I AND II

A generalized stress-based fracture criterion is employed here to investigate the reason
for the differences observed for the statistical results of tested limestone and marble
rocks. The crack tip elastic stress field can be expressed as an infinite series expansion
outlined by Williams (1957):

σij ¼
X∞
n¼1

An r
n�2
2 f ðnÞij ðθÞ þ

X∞
n¼1

Bn r
n�2
2 gðnÞij ðθÞ i; j ¼ r; θ; z ð10Þ

where σij are the stress components and r , θ are the crack tip polar coordinates. Also
An and Bn are the constant coefficients of the nth terms in the series expansion and
f(n)ij(θ) and g(n)ij(θ) are the symmetric and anti-symmetric angular functions. The first
term in this series expansion is singular which is related to the stress intensity factors
(KI and KII). The other terms are non-singular which the first non-singular term is
known asT-stress. Based on themaximum tangential stress (MTS) criterion (Erdogan
& Sih, 1963) under any of modes I and II loading, brittle fracture occurs from the
crack tip along (θ0) i.e. the direction of maximum tangential stress (see Figure 4). For
pure mode I loading, the tangential stress component in the vicinity of crack tip can be
written as:

σθθ ¼
X3
i¼1

i
2
Airð

i
2�1Þ ð2� i

2
þ ð�1ÞiÞcosð i

2
� 1Þθ þ ð i

2
� 1Þcosð i

2
� 3Þθ

� �
þOðrÞ

ð11Þ
whereAi are the constant coefficients of the terms in the series expansion. Accordingly,
A1 is the coefficient of the singular term related to the mode I stress intensity factor by
KI = A1(2π)

0.5, A2 is the coefficient of the first non-singular term (corresponding to
the T-stress which is independent of the distance from the crack tip r) and A3 is the
coefficient for the second non-singular term. For mode I cracks where the fracture path
is self-similar and along the line of initial crack, the direction of fracture initiation (θo) is
zero and crack growth occurs when the tangential stress σθθ at a critical distance rc
from the crack tip reaches a critical value of σc. Accordingly by ignoring the effects of
higher order terms O(r), based on the GMTS criterion the onset of mode I fracture is
obtained from Equation 11 as:
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σc
ffiffiffiffi
rc

p ¼ KIfffiffiffiffiffiffi
2π

p þ 3rcA3c ð12Þ

whereKIf is the critical mode I fracture resistance of any given test sample which can be
dependent on its geometry and loading conditions. By replacing σc

ffiffiffiffiffiffiffiffiffi
2πrc

p
with KIc (i.e.

pure mode I plane strain fracture toughness) in Equation 12 the following equation will
be obtained:

KIf

KIc
¼ 1

1þ 3
A3n

A1n

rc
a

� � ð13Þ

where A1n and A3n are the normalized forms of A1 and A3, respectively. Based on this
equation, the mode I fracture toughness ratioKIf /KIc depends on the specimen type and
its geometry through the geometry factors A3n and A1n and also the type of material
which is related to rc. The ratio ofA3n/A1n has already been determined numerically for
different values of a/R and S/R in the BD and SCB specimens (Aliha et al., 2012c).

Meanwhile, the tangential stress term for pure mode II case can bewritten in terms of
singular and non-singular (KII and T) terms as:

σθθ ¼ �3KII

2
ffiffiffiffiffiffiffiffiffi
2π r

p cos
θ
2

sinθ þ T sin2θ þO r1=2
� �

ð14Þ

Unlike pure mode I, fracture propagation of pure mode II loading is not along the
direction of initial crack. The direction of mode II crack growth (θ0II) and the onset of
pure mode II fracture can be obtained from:

rc
crack

Pure mode II

Pure mode I

σθθc

σθθc

θ0

Figure 4 Schematic representation of brittle fracture based on the maximum tangential stress criterion
for both modes I and II loading.
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∂σθθ
∂θ

				
@puremode II

¼ 0 ) 3 cosθo � 1� 16
3

T̂ II

ffiffiffiffiffiffiffi
2rc
a

r
sin

θo
2

cosθo ¼ 0 ð15Þ

KIIc

KIc
¼ 1

T̂ II

ffiffiffiffiffiffiffi
2rc
a

r
sin2θo � 3

2 sinθo cos
θo
2

ð16Þ

where T̂ II is the non-dimensional form of T-stress under pure mode II loading (TII)
defined as T̂ II ¼ TII

ffiffiffiffiffiffi
π a

p
=KII. In Equations 13 and 16, rc is a critical distance from the

crack tip which is often taken as the size of fracture proses zone (FPZ) for rock
materials. Based on previous research studies the size of rc for different rocks typically
varies in the order of a few millimeters (Schmidt, 1976; Labuz et al., 1987; Aliha et al.,
2008). The value of rc for tested limestone and marble has been reported about 2.6 mm
(Aliha et al., 2012c) and 14.7 mm (Aliha et al., 2006), respectively. By ignoring the
effects of A3 and T terms in Equations 13 and 16, the predictions of conventional MTS
criterion are obtained for pure modes I and II fracture. But it will be shown that
considering the influence of higher order terms (T and A3) via a generalized form of
MTS criterion (i.e. GMTS) can provide very good estimations for the statistical fracture
toughness data of limestone and marble rocks with different geometry and loading
conditions.

5 RESULTS AND DISCUSSION

The probability of fracture (Pf) and the fitted curve for the obtained fracture toughness
data have been shown in Figure 5 for each set of statistical results. The Weibull
parameters can be obtained by fitting a curve to the obtained fracture toughness

KIc (MPa.m0.5)
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Figure 5 Probability curves plotted for mode I and mode II fracture toughness of limestone and marble
rocks tested with the BD and SCB specimens.
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data. For example,m and K0 can be determined for two-parameter Weibull model, by
rewriting Equation 2 in the form of following logarithmic relation:

lnðln 1
1� Pf

� �
¼ m lnK0 �mlnKc ð17Þ

and then fitting a linear equation (straight line) to the statistical fracture toughness
data. Figure 6 shows rock fracture toughness data of this research in a ln(ln(1–Pf)

–1)
versus ln (Kc) and the correspondingm andK0 values obtained for each set of test data.

In general, the Weibull parameters for two- and three-parameter models can also be
determined by fitting a curve to the obtained statistical fracture toughness results (i.e. Pf

versus K data). For example, the following equation can be minimized using the least
square method to obtain three-Weibull distribution parameters (m, K0, Kmin):

f ðm;K0;KminÞ ¼
XN
i¼1

PFðiÞ � 1� EXP � KcðiÞ � Kmin

K0 � Kmin

� �m� �� �
 �2

ð18Þ

Table 2 summarizes the Weibull parameters determined from curve fitting of rock
fracture data using the mentioned method in MATLAB code for two- and three-
parameter statistical models.

From the practical consideration, it is important to predict the statistical behavior of
a given case in terms of other available statistical results. For example, although a large
number of test data are available forKIc of rocks using CCNBD specimen, limitedmode
II fracture toughness KIIc data have been reported for KIIc of rocks using the same
specimen. Therefore, it is useful to examine whether the fracture toughness data
obtained from the ISRM-suggested specimen (i.e. mode I CCNBD) can be used for
predicting the experimental results of CCNBD specimen tested under pure mode II
loading condition. Meanwhile, it is important to examine whether the mode I fracture
toughness test data obtained from one specimen (such as BD specimen) can be used for
predicting the experimental KIc results of another test specimen (e.g. SCB specimen).
This subject is of practical importance since by knowing the effect of specimen geome-
try and loading conditions, one can use the test data obtained from laboratory speci-
mens for estimating the mode I fracture resistance of real cracked bodies made of rocks
with other geometry and loading conditions.

Using the GMTS criterion, the mode I fracture resistance of SCB1 and SCB2 can be
predicted in terms of mode I fracture toughness data of BD specimen. Furthermore, the
mode II fracture toughness of tested Harsin marble can be predicted in terms of its KIc

value obtained from mode I CCNBD specimen. For using this criterion, the value of A3

and T (or their normalized parametersA3n/A1n and T̂II) should be known for mode I and
mode II test samples, respectively. These normalized parameters have been determined
using extensive finite element analyses byAyatollahi and his core searchers (Ayatollahi&
Aliha, 2007; Aliha et al., 2012c) for the BD and SCB specimens. The ratios of A3n/A1n

for the tested BD (with a/R = 0.3), SCB1 (with a/R = 0.3 and S/R = 0.43) and SCB2
(with a/R = 0.6 and S/R = 0.8) were found from (Aliha et al., 2012c) to be about 0.24,
−0.28 and −1, respectively. In addition for the Brazilian disk specimen with a/R = 0.43
subjected to pure mode II loading, the value of T̂II was −0.95 (Ayatollahi&Aliha, 2007).
Accordingly, by replacing the corresponding values of A3n/A1n for the tested mode I
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limestone samples the fracture toughness ratio KIf /KIc can be estimated from Equation
16. As a material constant the value of KIc for this limestone rock was determined
experimentally as 0.26 MPa.m0.5 using an ISRM suggested chevron notched bend
beam method. The average ratio of KIf /KIc obtained experimentally for the BD, SCB1

Experimental Data for SCB-1
Weibull Distribution Curve (m=17.35, K0 = 0.3412)

Experimental Data for SCB-2
Weibull Distribution Curve (m=21.84, K0 = 0.378)

Experimental Data for BD
Weibull Distribution Curve (m = 10.61, K0 = 0.252)

Experimental Data for CCNBD
Weibull Distribution Curve (m = 8.946, K0 = 1.181)

Experimental Data for CCNBD
Weibull Distribution Curve (m = 6.933, K0 = 2.392)
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–1)) versus ln (Kc) graphs for

the tested rock materials.
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and SCB2 specimens and the theoretical predictions ofKIf /KIc from the GMTS criterion
(Equation 16) has been compared in Table 3 that indicates good consistency between the
experimental results and theoretical predictions. Similarly, for the tested marble rock the
mean fracture toughness of mode II CCNBD specimen can be predicted via the GMTS
criterion, in terms of the results obtained from mode I tests on this specimen. As
presented inTable 4, the predictedKIIc/KIc ratio of 1.9 obtained from theGMTS criterion
is in good agreement with KIIc/KIc = 2.01 obtained experimentally from the tested
CCNBD specimens under pure mode I and pure mode II loading conditions.

In addition to the mean fracture toughness values, it is very useful to predict the
statistical results of each material in terms of its mode I Brazilian disk data by using the
GMTS criterion. In other words, the probabilistic fracture curves for the SCB1 and SCB2
test data are predicted in terms of the Weibull parameters of the BD specimen made of
limestone. Also, mode II statistical fracture toughness results of CCNBD specimens can
be predicted in terms of the mode I Weibull parameters of the ISRM suggested CCNBD
specimen. Based on the GMTS criterion, under pure mode I loading the effect of A3 is
considered to be responsible for shifting themode I (KIf) results. Based on the assumption
that at r = rc, σθθcðBDÞ ¼ σθθcðSCB1Þ ¼ σθθcðSCB2Þ, Equation 13 can be used for
making the following relation between the BD and SCB specimens:

KIf ðSCB iÞ � KIf ðBDÞ ¼ 3
ffiffiffiffiffiffi
2π

p
rc ½A3cðSCBiÞ � A3cðBDÞð �Þ i ¼ 1; 2 ð19Þ

The fitted parameters of Kmin and K0 for the BD specimens are modified to determine
the corresponding values for the SCB specimens. Thus,

KIf ðSCBiÞ
KIf ðBDÞ ¼ KI min ðSCBiÞ

KI min ðBDÞ ¼ KI0 ðSCBiÞ
KI0 ðBDÞ i ¼ 1; 2 ð20Þ

Table 2 Weibull distribution parameters for the tested limestone and marble rocks.

m K0 MPa.m0.5 Kmin MPa.m0.5

Material specimen 2 parameter 3 parameter 2 parameter 3 parameter 3 parameter

limestone BD (mode I) 10.61 4 0.252 0.242 0.141
limestone SCB1 (mode I) 17.35 4 0.341 0.345 0.256
limestone SCB2 (mode I) 21.84 4 0.374 0.378 0.282
marble CCNBD (mode I) 8.946 1.81 1.181 1.16 0.843
marble CCNBD (mode II) 6.933 1.81 2.392 2.336 1.696

Table 3 Comparison of experimental fracture toughness ratios (KIf /KIc & KIIc/KIc) with theoretical
predictions of the GMTS criterion for the tested rocks.

KIf/KIc KIIc/KIc

BD SCB1 SCB2 CCNBD

Fracture
Test

GMTS
prediction

Fracture
Test

GMTS
prediction

Fracture
Test

GMTS
prediction

Fracture
Test

GMTS
prediction

0.89 0.86 1.31 1.22 1.43 1.39 2.01 1.906
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KI min ðSCB iÞ � KI min ðBDÞ
KI min ðBDÞ ¼ KI 0 ðSCB iÞ � KI 0 ðBDÞ

KI 0 ðBDÞ

¼ 3
ffiffiffiffiffiffi
2π

p
rc

½A3cðSCBiÞ � A3cðBDÞð �Þ
KIf ðBDÞ i ¼ 1; 2 ð21Þ

Equation 21 shows the relationship betweenA3 and theWeibull parameters for the BD,
SCB1 and SCB2 specimens. Therefore, by knowing A3 and the Weibull parameters for
one specimen type and employing the value of rc for the investigated rock the values of
Kmin and K0 can be predicted for other specimens from their corresponding A3c values.
The predicted curves for the SCB results in terms of mode I BD data are shown in
Figure 7. It is seen from this Figure that the proposed statistical model based on the
mode I BD data provides reasonable predictions for the statistical mode I fracture
behavior of SCB1 and SCB2 test data.

The mode II Weibull parameters can also be predicted in terms of mode I statistical
data, since the micro-mechanism of brittle fracture in rocks for mode I loading is
expected to be similar to that for mode II loading and for both modes, fracture initiates
along the direction where the tangential stress is maximum. Therefore, a model similar
to pure mode I can be used to explore a statistical description of the mode II fracture

BD results
SCB-1 test results
Probability curve fitted to BD results

Predicted curve for tested SCB-1 specimen
SCB-2 test results
Predicted curve for tested SCB-2 specimen
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Figure 7 Prediction of mode I probability curves for statistical results of SCB1 and SCB2 specimens in
terms of BD test data.
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toughness data. The failure probability for mode II loading condition was determined
using an extension of the Wallin model developed by Fowler et al. (1997) and
Hadidimoud et al. (2002). The failure probability for mode II is given by

PF KIIcð Þ ¼ 1� EXP � KIc

K0; II

� �m� �
two-parameter ðm;K0; IIÞmodel ð22Þ

PF KIIcð Þ ¼ 1� EXP � KIc � Kmin; II

K0; II � Kmin; II

� �m� �
three-parameter ðm; K0; II;Kmin;IIÞ model ð23Þ

Using the KIIc/KIc ratio, the mode I fitted parameters Kmin,I and K0,I were modified to
directly estimate the mode II parameters Kmin,II and K0,II from:

KIIc

KIc
¼ Kmin; II

Kmin; I
¼ K0; II

K0; I
ð24Þ

accordingly mode II Weibull parametrs of the tested CCNBD specimen can be found
from the mode I ones as:

K0;II ¼ KIIc

KIc

� �
� K0;I

Kmin;II ¼ KIIc

KIc

� �
� Kmin;I

ð25Þ

where KIIc/KIc in Equation 25 (already determined from Equation 16) depends on the
T-stress. The values of Kmin,II and K0,II calculated using Equations 25 and 21 were
replaced in Equations 22 and 23. The corresponding values ofK0,II = 2.336MPa.m0.5and
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Figure 8 Prediction of probability curves for mode II fracture toughness of CCNBD specimen using the
mode I data; (a) two-parameter Weibull distribution curves and (b) three-parameter Weibull
distribution curves.
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Kmin,II = 1.696 MPa.m0.5 predicted from Equation 25 are in very good agreement with
the obtained Weibull parameters through curve fitting of mode II results (see Table 3).
The curves predicted for the mode II results of CCNBD specimen using mode I statistical
parameters are shown in Figure 8. It is seen from this Figure that the proposed statistical
model based on the mode I data provides good predictions for the mode II fracture
toughness data. Figure 9 compares the statistical curves of two- and three-parameter
Weibull models for mode II data that shows the reasonable accuracy of both models for
predicting theKIIc data in terms ofKIc results in the tested CCNBD specimens. Therefore,
according to the findings of this research the mode II fracture behavior for the CCNBD
specimen (i.e. the mean fracture toughness and the statistical parameters) can be esti-
mated well by knowing only the pure mode I fracture toughness results of CCNBD
specimens and employing theGMTS criterion. Consequently, there is no need to perform
rather complicated pure mode II tests to obtain KIIc from the CCNBD experiments.

6 CONCLUSION

– Mode I andmode II fracture behavior of two rockmaterials (limestone andmarble)
was studied experimentally using a large number of test specimens. The effects of
specimen geometry, loading condition and type of loading were noticeable on the
observed scatters in the test results.

– For each set of obtained fracture toughness results, the two- and three-parameter
Weibull models were determined by fitting suitable curves to failure probability of
each specimen.
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Figure 9 Comparison of two- and three-parameter Weibull probability curves for mode II fracture
toughness of CCNBD specimen.
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– The fracture toughness ratios (i.e. KIf/KIc for straight cracked BD and SCB samples
and KIIc/KIc for chevron notched Brazilian disk specimens) were predicted very
well using the GMTS criterion by taking into account the effects of higher order
stress terms.

– Themode II fracture toughness probability curve of CCNBD specimen and also the
mode I fracture toughness probability curves of SCB1 and SCB2 specimens were
predicted successfully in terms of the mode I statistical Weibull probability dis-
tribution curves of Brazilian disk specimen.
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Chapter 3

Rock damage mechanics

F.L. Pellet1 & A.P.S. Selvadurai2
1MINES ParisTech, Geosciences and Geoengineering Department, Fontainebleau, France
2McGill University, Department of Civil Engineering and Applied Mechanics, Montreal,
Canada

Abstract: Damage mechanics of rocks is a concept that requires a comprehensive
presentation as it involves multiple physical and sometimes chemical phenomena.
Mechanical damage is inextricably linked to cracking and the resulting loss of mechan-
ical properties. A collateral effect of damage is the alteration of the fluid transport
characteristics of rocks that can have geoenvironmental consequences. This chapter
outlines damage characterization at the scale of the microstructure of a rock specimen
and then presents different analytical approaches available to mathematically describe
the evolution of the mechanical properties. These approaches essentially rely on Fracture
Mechanics and Continuum Damage Mechanics. Finally some examples of numerical
modeling are presented to illustrate their application in the field of rock engineering. The
chapter also presents a brief review of the techniques that can be adopted to integrate
results of damage mechanics to fluid transport phenomena.

1 INTRODUCTION

Damage is a consequence of physical degradation that can impair or progressively
weaken a structure. In geological formations, damage can affect the rock matrix, the
rock discontinuities or the assembly of both: the rock mass. In rock engineering, any
damage can be of concern to the serviceability and stability of structures such as rock
slopes, underground openings, deep wellbores, etc.

Environmental issues related to transport and diffusion of harmful substances
(radionuclides, CO2, etc) may arise due to the development of damage zones in rock
formations. Damage to rock or engineered structures unavoidably generates micro to
macro-cracks, which increases the rock permeability. This has been extensively inves-
tigated over the last few decades for deep geological disposal of radioactive waste
(Hudson et al., 2009). Rock formation damage is also an important feature for the
extraction of unconventional resources such as shale gas (Zimmerman, 2010), or
geothermal energy (Li et al., 2012).

Rock damage can occur due to either monotonic or repeated mechanical action
(alteration of the in situ stress field), changes in temperature, transformation resulting
from chemical processes or a variation in the pore pressure.

Today, several different methods have been adopted to address damage from a
mechanical point of view. This chapter aims to clarify the advantages and disadvan-
tages of the approaches currently used to study mechanically-induced damage.



2 EXPERIMENTAL EVIDENCE

2.1 Investigations at the laboratory scale

The problem of damagewill first be addressed from an engineering point of view. Let us
imagine an intact rock specimen, void of any defects, subjected to a uniaxial state of
stress in compression. Initially, the specimen will store the energy provided by the
loading system. When this energy exceeds the specific potential energy associated with
the inter-atomic bonds of the material, these will be progressively broken and micro-
cracks will appear. The final damage stage occurs when the rock specimen can no
longer sustain additional stress and the cracks coalesce to form a large macro-crack.
Between the incipient loading and the final collapse, the specimen undergoes successive
transitional states of damage, from slight to moderate and finally severe damage.

Figure 1a illustrates a typical stress–strain curve for a rock specimen axially loaded in
compression. Measurement of the axial strain ε1 and lateral strain ε3 allows the
computation of the volume variation of the specimen, referred to as the volumetric
strain, εv. After the crack closure (σcc), the onset of damage is evidenced by the loss of
linearity in the variation of the lateral deformation. This corresponds to the nucleation
of cracks, which results in a slower decrease in volume change (σci, for crack initiation).
The specimen is then slightly damaged.With a further increase in the loading, the crack
will grow steadily until the energy provided by the loading system leads to unstable
crack propagation. The transition point between these two propagation modes (σci, for
crack damage) is indicated by the change of the volume variation passing from compac-
tion to dilation. At this time, thematerial is severely damaged. The loading process then
continues until total failure of the specimen is observed (σcf, for crack failure). Figure 1b
shows a thin section extracted from a shale rock specimen after failure. Macro-crack
networks as well as micro-cracks are clearly visible.

σ1

σcc

σci

σcd

σcf

σ1

ε3

ε3 ε1nf

a) b)

ε1

εvol

II

III

IV

V

I

Figure 1 (a) Typical stress–strain curve for a rock specimen axially loadedwith characteristic thresholds
defining different damage intensity; (b) Macro-crack and micro-crack networks in a shale
specimen (80 mm in height) loaded in mono-axial compression (Pellet, 2015).
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The damage process described above has been reported and interpreted by several
authors (e.g. Martin, 1997; Patterson & Wong, 2005) since the pioneering works of
Brace et al. (1966, 1972) and Bieniawski (1967). At the present time, standard
laboratory tests can be supplemented by additional measurements such as the
Acoustic Emission activity (Stanchits et al., 2006) or changes in ultra-sonic wave
velocity induced by the degradation of the specimen (Fortin et al., 2007; Pellet &
Fabre, 2007). Indeed, as shown by Keshavarz et al. (2009), such data can also help to
delineate the different damage thresholds.

2.2 Physical interpretation of cracking of rock at the micro-scale

Rocks are heterogeneous materials with many flaws and micro-defects such as micro-
pores or micro-cracks. The latter play a significant role in the changes that occur in the
mechanical properties of a rock during the loading process. Micro-defect characteristics
have been widely studied; for example, Kranz (1983) distinguished four types of cracks:

– Cracks associated with grain boundaries that separate two alike or different
crystals or crystals and cement.

– Inter-crystalline cracks (or inter-granular) initiated at the contact between the
grains and pass along one or more grains.

– Intra-crystalline cracks (or intra-granular) which propagate in the grain; the length
of these cracks is oftenmuch shorter than the grain size and the opening can be very
small (˂ 10 μ).

– Cleavage cracks are particular intra-crystalline cracks separating the cleavage planes
of a crystal; they occur as parallel networks to the symmetry planes of the mineral.

Further information on the rock fabric and petro-physical characteristics is given by
Davis and Reynolds (1996).

During the loading process, micro-cracks will nucleate or propagate, eventually
coalescing to form macro-cracks (Figure 1b). In order to be considered a macro-
crack, several grains or crystals have to be involved. The images presented in
Figure 2, taken with an optical microscope, show different types of cracks. Figure 2a
illustrates cracks in the clay matrix of a Callovo-Oxfordian marl showing the debond-
ing of calcite crystals (Fabre& Pellet, 2006). Figure 2b shows trans-granular cracks in a
gabbro specimen subjected to very high stresses, up to 1.7 GPa (Pellet et al., 2011).

The theoretical strength of a crystal, Rth, is related to the inter-atomic bonding forces
(Figure 3). It can be computed using the following expression (Dorlot et al., 1986):

Rth ¼ 2

ffiffiffiffiffiffi
E γ
a0

s
ð1Þ

with:

E the Young’s modulus of the crystal,
γ, the energy required to debond surfaces per unit area,
a0, the equilibrium distance between atoms.

The theoretical strength is between one-third and one-tenth of the Young’s modulus E.
However, due to the presence of flaws andmicro-defects, the usual values for the tensile
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strength of rocks are much lower, in the order of 1/100 to 1/1000 of the Young’s
modulus.

In summary, since most rocks are formed by an assemblage of various types of crystals,
fracturing can occur at different scales. At the scale of the micro-structure, damage could
result from inter-granular bonds breaking or sometimes rupturing within the crystal. This
type of rupture is referred to as dislocation mechanics (McClintock & Argon, 1966).

3 CONSTITUTIVE MODELING

3.1 Introduction

Constitutive modeling of damage evolution has motivated numerous studies in recent
decades. Basically, there are two approaches: The first is based on the theories of

E

a0

Figure 3 Schematic of crystal atomic bonding.

a) b)

Figure 2 Crack damage in rocks specimens: (a) Inter-granular cracks in Callovo-Oxfordian marl (Fabre
& Pellet, 2006); b) Trans-granular micro-cracks in plagioclase crystals of a gabbro (Pellet et al.
2011). Note that the development of micro-cracks crosses the original crystal twinning.
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fracture mechanics while the second is derived from continuum damage mechanics. In
the following sections the main aspects of both approaches will be reviewed and the
domain of validity of each method will be identified.

3.2 Linear fracture mechanics

3.2.1 Energy balance consideration

It is important to review the basic concepts involved in fracture mechanics. Griffith
(1924) formulated a rupture criterion for a material based on energy balance. He
acknowledged that defects (pore spaces, cracks or structural defects such as disloca-
tions in the crystal lattice or grain boundaries) can exist in any material and stress
amplification at such defects will govern the failure stress.

Considering an elementary volume subjected to a uniaxial tensile stress (Figure 4),
and based on the principles of thermodynamics, equilibrium is achieved when the
total potential energy of the system is at a minimum. The energy balance of
the system leads to the expression of the total energy, W, as the sum of the energy
of the external forces, the elastic strain energy, and the energy dissipated during the
cracking process:

W ¼ Wext þWel þWs ð2Þ
with:

W: total energy
Wext: energy due to external forces
Wel: elastic strain energy
Ws: dissipated energy

b

2c

l

t

σ

Figure 4 Elementary volume of rock with a plane crack loaded in tension.
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During extension, the crack length increases from 2c to 2(c + dc) and the conserva-
tion of energy gives:

∂W
∂c

¼ ∂Wext

∂c
þ ∂Wel

∂c
þ ∂Ws

∂c
¼ 0 ð3Þ

The energy release rate G is therefore defined as:

G ¼ � 1
2

∂
∂c

Wext þ Welð Þ ð4Þ

The energy dissipated by the crack propagation is assumed to vary linearly with the
increase in crack length, i.e.:

dWs ¼ 4γ dc ð5Þ
where γ is the specific energy of the material.

By substituting the expressions 4 and 5 in Equation 3, the crack static equilibrium is
obtained when:

G ¼ 2 γ ð6Þ
Consider the particular case of an elastic plate of unit thickness with a through crack of
length 2c and subjected to a uniaxial tensile stress (Figure 4). The change in elastic
energy caused by the introduction of the crack in the elastic plate (Jaeger et al., 2008) is
given by:

Wel ¼
πσ2 c2

E
ð7Þ

where E is the Young’s modulus of the plate material and c is the crack half-length.
According to the virtual work principle and for a constant load, it can be shown that:

Wext ¼ � 2Wel ð8Þ
Thus, according to Equations 4 and 7, the rate of energy releaseG (Equation 4) can be
expressed as a function of the stress and the crack length as follows:

G ¼ � 1
2
∂Wel

∂c
¼ π c σ 2

E
ð9Þ

The equilibrium condition (Equation 6) is then used to calculate the critical failure
condition (Equation 10) and the critical stress, σc is given by:

π c σ 2 ¼ 2 γE ð10Þ

σc ¼
ffiffiffiffiffiffiffiffiffiffi
2 γE
π c

r
ð11Þ

Note that the critical failure stress depends not only on the intrinsic material properties
(Young’s modulus E, and the specific surface energy γ) but also on the crack length, 2c.
In particular, the critical value of the stress is lower when the length of the crack is
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larger. The expression of the critical stress in the case of an arbitrarily oriented crack in
a biaxial tensile stress field is presented by Eftis (1987) and extensive discussions are
given in many texts on crack and fracture mechanics and in the volume by Sih (1991).

Griffith’s analysis was extended to the case of an inclined crack in a biaxial stress field
taking into account the friction on the crack faces (Jaeger et al., 2008). Under these
conditions, the critical failure condition becomes:

π c ð j τj � μσn Þ 2 ¼ 2 γE ð12Þ
where σn and j τj are, respectively, the normal stress and shear stress acting in the crack
and μ is the friction coefficient between the two faces of the crack.

In this analysis, Griffith states that the energy dissipated by the propagation of the
crack is solely due to the extension of the crack surface. In fact, this analysis reflects
crack initiation rather than crack propagation. Other forms of energy dissipation must
be taken into account during the crack propagation; for example, plastic energy
dissipation, which is associated with high stress concentrations at the crack tip, and
kinetic energy, related to the acceleration of the crack propagation. In the case of a
purely brittle process, the plastic deformation energy can be neglected. On the other
hand, it seems incorrect to neglect the effects of kinetic energy dissipation even in the
case of quasi-static loading. This will be discussed in the next paragraph.

3.2.2 Steady and unsteady crack propagation

Extending Griffith’s analysis, considering energy dissipation due to inertia, leads to
the calculation of the total energy (Equation 2), by including a term for the kinetic
energy, Wcin:

W ¼ Wext þWel þWs þWcin ð13Þ
Crack propagation will be steady if the kinetic energy remains constant during the
cracking process:

∂Wcin

∂c
¼ 0 ð14Þ

From the equilibrium equation (Equation 13) and the definitions provided by
Equations 4 and 5, we obtain:

G ¼ 2 γ ð15Þ
We thus recover the Griffith equilibrium condition for a static crack (Equation 6).
However, the significance of Equation 15 is that it represents the condition of crack
propagation at a constant rate; but crack propagation will be unsteady if the kinetic
energy increases:

∂Wcin

∂c
> 0 ð16Þ

Therefore, from the balance Equation 13 and the definitions (4) and (5):

G > 2 γ; ð17Þ
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Resuming the system of uniaxial tensile elementary volume (Figure 4), the axial
deformation is then expressed by:

ε ¼ σ
Eeff

ð18Þ

with Eeff, the effective Young’s Modulus:

Eeff ¼
E

1 þ 2π c2=bt
ð19Þ

ε ¼ σ
E

1 þ 2π c2=bt
�  ð20Þ

By introducing the stability condition (15) into Equation 20, we obtain the stability
criterion in the stress–strain plane:

ε ¼ σ
E

þ 8
γ2 E

π b t σ3
ð21Þ

Representation of Equation 21 in the stress–strain plane is shown in Figure 5 (curve
AB). For the undamaged material (a plate without a crack), Hooke’s law is satisfied
with a modulus of elasticity E (line OA). For a plate with a crack half-length c = c1,
thematerial also followsHooke’s law butwith a lowermodulusEeff (Equation 19) than
the virgin material (line OP’, Fig. 5). When the stability curve AB is reached, the crack
steadily grows to a point P00 where unloading is achieved. According to Equation 19,
unloading shows a weaker effective modulus of elasticity (line P00O). The surface area

c = 0

V

P

A

0

s

e

G > 2g

G = 2g

Q
F

PÕ

PÕÕ

B

FÕ

c < c1 < c2

c = cc

c = c1

c = c2
Eeff

E

Figure 5 Griffith’s stability criterion for an elementary volume in the stress–strain plane.
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between segments OP0, P00O and P0P, corresponds to the energy expended for crack
propagation.

It should be noted that if the initial half-length of the crack is less than c = bt/6π
(corresponding to the point where the tangent to the curve is vertical, point V), then the
propagation of the crack will be initially unstable (line PQ). The excess energy repre-
sented by the area PQV, is then transformed into kinetic energy. Part of this energy
enables the crack to propagate beyond the stability limit (point Q) to point F 0. The area
QF0F represents the surface energy needed to propagate the crack, although some of the
energy is dissipated as heat. The remaining kinetic energy is emitted in the material as
elastic waves. In addition, for a stress-imposed loading, the crack propagation can be
unstable since stability is only possible if there is a decrease in the stress. For a strain-
imposed loading, two types of post peak behavior are observed depending on the initial
length of the crack. The first (Type I) occurs when the crack length is such that c < cc,
and requires an increase in the energy transmitted to the specimen to obtain a steady
propagation. In contrast, when the initial crack length is such that c > cc, energy has to
be extracted from the specimen to stabilize the crack propagation (Type II). Point V,
where c = cc, represents the case where the energy of the specimen is in equilibriumwith
the energy necessary for crack propagation. Wawersik and Fairhurst (1970) experi-
mentally observed the presence of these two post-peak behavior patterns by controlling
failure using a servo-controlled testing machine. In the case of a behavior of type II,
known as “snap–back”, only the control of transverse deformation allows the control
of rupture.

The case of overall compressive stress was studied by Cook (1965). The stability
curve has the same characteristics as that shown in Figure 5. Following Cook’s
approach, Martin and Chandler (1994) found, using Lac du Bonnet granite, that the
change of stress marks the initiation of unstable crack propagation during progressive
damage of the Griffith criterion type.

The Griffith global energy approach shows that the essential phenomena governing
the behavior of a cracked body lie near the crack tip. Fracture mechanics investigates
issues of the initiation and development of cracks by analyzing the stress in the vicinity
of the crack. In the case of a brittle elastic solid, the presence of cracks leads to stress
singularities. The study of these singularities allows the definition of stress intensity
factors that correspond to the particular kinematics of the crack propagation. These
stress intensity factors control the behavior of the crack.

When the stored elastic energy is close to the specific surface energy (G= 2γ), cracks
propagate sub-critically (Atkinson, 1984); in other words, the propagation rate is
lower than the sonic velocity. In contrast, when the stored elastic energy is much
higher, cracks propagate super-critically.

In all cases, the cracks develop in the direction of the minor compressive stress or
perpendicular to the major principal stress.

3.2.3 Griffith crack initiation criterion

In the case of complex loadings, stress analysis at the vicinity of the crack tip is required
to determine the crack propagation criterion, the length increase and the orientation
change. For this purpose, the discipline of Fracture Mechanics has been developed and
widely used since Griffith (1924).
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In order to study the stress field around an elliptical cavity in a plate subjected to a
uniaxial tensile stress, as shown in Figure 6a, the solution for the stress distribution
at the periphery of the crack has to be calculated using the theory of elasticity
(Inglis-Kirsch type solution) (Timoshenko & Goodier, 1970; Little, 1973; Barber,
2010; Selvadurai, 2000a).

Referring to Figure 6, the stress σyy is largest at thewall of the cavity, where the ellipse
curvature radius is the smallest (point C). Thus:

σyy ðcÞ ¼ 1þ 2
ffiffiffiffiffiffiffi
c=ρ

p
ð22Þ

Subsequently, the stress σyy gradually decreases to the lowest value corresponding to
the applied field, σ.

The stress σxx increases rapidly to reach a maximum near the end of the ellipse and
then gradually decreases to approach zero. The area of influence of the cavity is of the
order of the length c and the stress gradients are very high in the length zone of the
curvature radius of the cavity ρ. According to Equation 22 for a semi-axis cavity of half-
length c, the greater the radius of curvature the smaller the stress.

3.2.4 Stress field and fracture modes

Consider plane problems (2D) for which all the components of the tensors of stresses
and deformations depend only on two Cartesian or polar coordinates. The crack is
assumed to be in a homogeneous medium, which is isotropic linear elastic.

Recall that two basic modes of fracture exist (in fact, there are three fracture modes
but the third is not relevant to massive bodies) (Figure 7):

The extension mode (Mode I) corresponds to a discontinuity of the normal displace-
ment field to the plane of the crack. The plane shearmode (orMode II) corresponds to a
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Figure 6 (a) Geometry of the plate loaded in uniaxial stress; (b) Elastic stresses distribution in the crack
tip area.
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shift of the edges of the crack parallel to the plane of the crack along a sliding direction
normal to the crack front. For any load, several basic fracture modes may overlap. This
is referred to as a mixed fracture mode.

Solving the equilibrium equations with the compatibility conditions leads to a bi-
harmonic equation for a stress function. The exact solution of this problem was
established by Muskhelishvili (1953) based on the solution by Westergaard (1939)
and expresses the stress fields and displacement in the crack for each of the three modes
in coordinate systems.

The solution introduces the notion of stress intensity factors KIc and KIIc for Mode I
and Mode II fracture, respectively. Knowledge of these stress intensity factors will
allow the determination of the stresses and displacements in the fissured structure.
Conversely, if we know the stresses and displacements, it is possible to determine the
stress intensity factors. For example, in the simple case of a plane infinite medium
containing a crack of length 2c loaded inMode I by a stress σ, the stress intensity factor
can be expressed in the form:

KI ¼ σ
ffiffiffiffiffiffi
π c

p ð23Þ
The stress intensity factor is measured in units N.m–3/2 or MPa.m 1/2.

A similar approach can lead to the establishment of the stress intensity factor KII for
Mode II fractures (Irwin, 1957).

3.2.4.1 Failure criterion in the open mode (Mode I)

In the tensile mode, stress at the tip of the crack is infinite. Therefore, a crack initiation
criterion can be introduced based on the concept of a critical threshold for the factorKI.
This criterion postulates that:

KI ≤KIc No crack propagation

KI ¼ KIc Crack propagation onset

The critical value, KIc, is the toughness, a physical characteristic of the material
(Atkinson and Meredith, 1987). Toughness values obtained from the literature
(Table 1) show a significant scatter, which results from the high parameter sensitivity
to the investigative method used and the environmental conditions (pressure, tempera-
ture, fluid). Note that toughness increases rapidly with the pressure applied.

s

s

t

t

t

t

Mode I Mode II Mode III

Figure 7 The three main fracture modes; in rock mechanics only Mode I and Mode II are relevant.
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In terms of energy, crack growth requires that the released energy is higher than the
specific energy, which leads to the establishment of the following equation:

W ¼ Wel �Ws ð24Þ

Therefore, when
∂W
∂c

≥0, stress at the crack tip is:

σ ≥

ffiffiffiffiffiffiffiffiffiffi
2 γE
π c

r
≥ σt ð25Þ

Remember that the energy release rate G controls the crack behavior:

G > 2γ instability
G = 2γ controlled steady cracking (the kinetic energy does not increase)

3.2.4.2 Failure criterion in the mixed mode

Now we consider the same plate as previously, but loaded in compression on all four
sides (Figure 8a). The development of the crack is no longer along its plane and the
contact of the crack surfaces can therefore withstand stress. The direction of the exten-
sion of the crack must be defined and the work dissipated by friction must be taken into
account.

Table 1 Toughness of different types of rocks, after
Atkinson and Meredith (1987).

Rock Type KIc [MPa.m ½]

Berea Sandstone 0.28
Carrara Marble 0.64 – 1.26
Westerly Granite 0.60 – 2.50

xy
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a)                                                            b)

s3

b
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10

s1
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s1 = s3

Figure 8 Griffith onset crack propagation criterion in the principal stress plane (adapted from Jaeger
et al., 2008).
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In the mixed mode, the definition of a failure criterion is therefore more difficult.
However, linear fracture mechanics makes it possible to find a relationship between the
stress intensity factors and the rate of energy release, G, when the crack grows in
extension. This relationship is known as the Irwin formula:

G ¼ 3 � 4�ð Þ þ 1
8G

K2
I þ K2

II

�  ð24Þ In plane strain

where G is the shear modulus.
The Griffith onset crack propagation criterion (Equations 25 and 26) thus gener-

alizes the original criterion:

ðσ1 � σ3Þ2 � 8 ⋅ σt ⋅ ðσ1 þ σ3Þ ¼ 0 if σ1 > 3 ⋅ σ3 ð25Þ
σ3 ¼ � σt if σ1 < 3 ⋅ σ3 ð26Þ

Note, however, that the growth assumption of fissure in extension is a serious
limitation to the application of the Irwin formula. In fact, this assumption is only
valid in the case of a failure mode in pure opening (Mode I); in the case of a mixed
mode, the crack deviates from its plane. Other onset failure criteria in themixedmode
are available in the literature, namely the criterion of maximum normal stress, the
energy criterion of minimal elastic deformation, the criterion of maximum energy of
restitution, etc.

3.3 Continuum damage mechanics

Continuum damage mechanics was first developed for structural engineering
(Kachanov, 1958), with a special emphasis on structural elements loaded in tension.
This approach has attracted particular interest in the design of concrete structures
(Chaboche, 1988; Bažant, 1991; Lemaitre, 1996; Selvadurai, 2004).

The motivation for this approach was based on the evidence that, under certain
loading conditions, the development of micro-cracks that spread throughout the mate-
rial does not necessarily cause a macroscopic fracture. However, gradual deterioration
of physical properties such as strength and stiffness are observed, sometimes well
before rupture occurs. A comprehensive understanding andmodeling of these phenom-
ena that precede rupture is therefore of great practical interest.

ContinuumDamageMechanics was developed within the framework of Continuum
Mechanics. This method enables the analysis of how the development of micro-defects
influences the overall behavior of the material using a phenomenological approach,
which describes the evolution of the material structure with internal state variables.

Let us suppose that the effects of micro-debonding in a Representative Elementary
Volume (REV) of a solid body can be described using mechanical variables called
damage variables. Since such damage variables are macroscopic variables that
reflect the state of the loss of mechanical integrity, they can be considered as internal
state variables from a thermodynamic point of view. With these assumptions,
damage problems can be analyzed based on the principles of thermodynamics of
irreversible processes. Therefore, the phenomenological damage model can be
defined by:
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– A law of transformation,
– A principle of equivalence,
– The nature of the damage variable,
– The evolution law of the damage variable.

3.3.1 Law of transformation

Phenomenological models appeal to the effective macroscopic quantities whose role is to
define the damage state of thematerial. Thus, a heterogeneously damagedmaterial obeys
the same mechanical constitutive laws as its homogeneous undamaged equivalent; how-
ever, the states of stress and strain undergo changes from the nominal configuration. This

change is made via a law of transformation, defined by the tensors M
¼4¼

σ and M
¼4¼

ε, linking
the effective variables (eσ;eε) to nominal values (σ; ε) as follows:

eσ σ;Dð Þ ¼ M
¼4¼

σ Dð Þ : σ ð27Þ
eε ε;Dð Þ ¼ M

¼4¼
ε Dð Þ : ε ð28Þ

The tensors M
¼4¼

σ and M
¼4¼

ε are linear operators that apply a symmetric tensor of the
second order on itself and which are functions of the damage variable, formally
denoted by D. When there is zero damage, the actual magnitudes coincide with the
nominal values, and the transport tensor coincides with the unity.

Zheng and Betten (1996) demonstrated, by analyzing the general form of the
transformation law, that the transport tensor must be an isotropic function of its
arguments. Assuming a damage variable as a tensor of order two, this mathematical
condition is:

M
¼4¼

QDQT
� �

¼ QM
¼4¼

Dð ÞQT 8Q2� ð29Þ

where Θ is the full group of orthogonal transformations Q.

3.3.2 Principle of equivalence

The principle of equivalence can be expressed in terms of deformation, stress or energy.
The principle of equivalence in deformation implies that the effective deformation is
equal to the nominal deformation, thus:

eε ¼ ε ð30Þ

eσ ¼ M
¼4¼

σ Dð Þ : σ ð31Þ
More explicitly, it means that any representation of the deformational state of a
damaged material can be described by the constitutive laws of an undamaged medium
by simply replacing the nominal stress by the effective stress. This leads to the concept
of the effective stress, which is not to be confused with the Terzaghi effective stress,
which can be defined through reciprocal analysis, as the stress to be applied to the
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undamaged volume element to achieve the same strain as that caused by the nominal
stress applied to the damaged volume element.

The principle of equivalence in stress is defined by assuming that the effective stress,eσ, is equal to the nominal stress, σ, i.e., the effective deformation causes the same stress
as the application of the nominal strain to the damaged volume:

eσ ¼ σ ð32Þ

eε ¼ Mε

¼4¼
Dð Þ : ε ð33Þ

Finally, the equivalence energy principle is established assuming that the effective
elastic energy density, eW , is equal to the nominal density of elastic energy, W. This
assumption is expressed by:

eσ ¼ M
¼4¼

σ Dð Þ : σ ð34Þ

eε ¼ M
¼4¼

ε Dð Þ : ε ð35Þ

eW ¼ 1
2
eσ : eε ð36Þ

W ¼ 1
2
σ : ε ð37Þ

eW ¼ W ð38Þ

3.3.3 Damage variable

Since the work of Kachanov (1958), a new variable is available to describe the internal
state of a damaged material in the context of continuum mechanics. As indicated
before, the notion of damage is closely linked to micro-structural aspects. However,
the damage variable introduced byKachanov described the presence ofmicro-defects in
a comprehensivemanner. The advantage of this homogenized approach is that it allows
the indirect determination of the influence of the state of damage on the overall strength
of the material through simple measurements.

Although the authors have not detailed the physical significance of this variable, it
can be easily understood by using the concept of a Representative Elementary Volume
(REV). Let us consider a REV in a damaged solid (Figure 9). Assuming that Stotal is
the area of a section of a volume element indicated by the normal~n, and Sflaws is the
area of all micro-cracks and micro-pores, the classical damage variable can then be
expressed by:

D~n¼
Sflaws

Stotal
ð39Þ

From a physical point of view the damage variable,D~n, is the ratio between the area of
distributed micro-defects on the total area of the element in the plane normal to the
direction,~n.
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D~n allows the various states of damage to the material to be defined:

– D~n ¼ 0 corresponds to the undamaged material,
– D~n ¼ 1 corresponds to the material volume that has failed into two parts along the

plane normal to,~n
– 0 < D~n < 1 characterizes the intermediate damaged state.

3.3.4 Isotropic and anisotropic damage

In the case where the orientation of the defects is assumed to be randomly distributed in
all directions, the variable is independent of the orientation ~n and the scalar D
completely characterizes the state of damage:

D~n ¼ D 8~n ð40Þ
The hypothesis of the equivalence principle in deformation directly leads to the defini-
tion of effective stress, eσ:

eσ ¼ σ
1�D

ð41Þ

eσ is the stress related to the section that effectively resists forces and the law of
transformation takes the particular form:

M
¼4¼

σ Dð Þ ¼ 1
1�D

I
¼4¼

ð42Þ

The most general form of the transformation law to describe isotropic damage was
given by Ju (1990):

M
¼4¼

σ ¼ α I
¼4¼

þβI⊗ I ð43Þ

x1

x3

x2

n
S flaws

s

e

=
S total

Dij

E0 (D0)

E1 (D1)

a) b)

E2 (D2) E3 (D3)

Figure 9 Damage in rocks: a) Definition of the damage parameter Dn; b) Elastic modulus for different
states of damage. E0 is the initial elastic modulus; the elastic modulus decreases (E0> E1> E2>
E) as damage increases D0 = 0 <D1 <D2 <D3.
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where α and β are two independent or dependent scalar variables, with α ≥1 and
�1=3 ≤ β=α ≤0 to ensure positivity of the stiffness tensor. The interpretation of iso-
tropic damage does not necessarily imply a scalar variable.

The existing isotropic damage models with a scalar variable have the undeniable
advantage of being simple to use. However, many experimental results (Tapponnier &
Brace, 1976; Wong, 1982 for granite; Gatelier et al., 2002 for sandstone; Lajtai et al.,
1994 for rock salt) have demonstrated that the mechanically-induced damage is aniso-
tropic regardless of whether the intact rock is initially isotropic or anisotropic. In other
words, material symmetries change during the loading process (Figure 10). In order to
describe this phenomenon, the introduction of a tensor damage variable is needed. In
the relevant literature we encounter second order variables (Kachanov, 1993;
Murikami, 1988, Pellet et al., 2005), or sometimes fourth order variables (Chaboche,
1979; Lubarda & Krajcinovic, 1993).

3.4 Discussion of Fracture Mechanics (FM) vs. Continuum
Damage Mechanics (CDM)

Fracture Mechanics (FM) is an approach that aims to describe the rupture of solid
bodies based on energy consideration at the crack scale. This method allows the
analysis of how the development of micro-defects influences the overall behavior of
the material. Despite the small number of assumptions, closed form solutions are often
complex and difficult to establish for boundary values problems. Although the origin of
linear fracture mechanics dates back to the early 20th century (Griffith, 1924), the
development of this discipline has accelerated in recent years. We now speak about
nonlinear fracture mechanics when the effects of plasticity or viscosity and dynamic
fracture propagation are taken into account.

Continuum Damage Mechanics (CDM) relies on the concept of effective stress.
It aims to describe the overall behavior of a Representative Elementary Volume

Intermediate states

Anisotropic damage

b = 0 

0 < b < 1 

s1 s1 

b = 1 

Isotropic damage

Ḋ1 = 0
Ḋ1

Ḋ2 Ḋ3
Ḋ2 = Ḋ3 ≠ 0

Ḋ1 = Ḋ2 = Ḋ3 ≠ 0

Figure 10 Isotropic damage β =1 (right hand side) and anisotropic damage β=0 (left hand side), after
Pellet et al., 2005.
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(REV) by decreasing the material stiffness (elastic moduli) with the damage states.
This is a phenomenological approach, which is easier to incorporate in computa-
tional codes.

Returning to phenomenological considerations, it may be said that FM is more
appropriate for describing the propagation of a large single micro-crack. In contrast,
CDM could be more suitable for describing the behavior of materials with multiple
micro-cracks randomly spread in the body. Figure 11 illustrates with respect to scale
the optimum applicability domain of both methods.

4 OTHER TYPES OF LOADING

4.1 Time-dependent damage

Studying time-dependent damage requires rate-dependent constitutive models (visco-
plastic or viscoelastic) to be considered in Continuum Damage Mechanics. The first
such attempts were proposed by Kachanov (1958) and Rabotnov (1969) for metallic
alloys.

Based on Lemaitre’s works, Pellet et al. (2005) developed a constitutive model to
account for anisotropic damage and dilation of rock specimens. The strain rate is
expressed by the following equation:

a

Continuum Damage Mechanics Fracture Mechanics

Grains

Micro-pores

Micro-crack

Macro-crack 
initiated

Idealized macro-crack

Micro-crack Macro-crack

Atomic scale
Microscopic scale

Macroscopic scaleSubatomic 
scale

10Ð15 10Ð13 10Ð11 10Ð9 10Ð7 10Ð5 10Ð3 10Ð1

mmmnm mm

101 103

A

Figure 11 Schematic distinction between the representation of damage by Continuum Damage
Mechanics and Fracture Mechanics (adapted from Chaboche, 1988).
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_εvp ¼ ∂Ω
∂σij

¼ 3
2

1
1�D

σeq
1�Dð ÞKp1=M

� �N S
σeq

ð44Þ

whereΩ is the visco-plastic potential;K,N andM are the viscoplastic parameters of the
model; σeq is the von Mises stress; S is the stress deviator and p is a variable that
represents strain hardening.

It is also necessary to associate a law for the evolution with respect to time of the
damage parameter. For uniaxial loading, the latter is expressed as follows:

_D ¼ σ
A 1�Dð Þ
� �r

ð45Þ

where r is the damage exponent, q is the damage progression parameter and A is the
tenacity coefficient.

From a physical point of view, this constitutive model is realistic as it accounts for
volumetric strain (i.e. contraction and dilation) and damage-induced anisotropy
through a second-rank tensor. Moreover, taking time into account allows numerical
regularization and ensures the uniqueness of the solution.

Using this model, it is possible to predict delayed rupture by determining the time to
failure, as observed in creep tests shown in Figure 12.
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Figure 12 Comparison between the strain–time curves obtained from the model and experimental
results from a creep test performed on marble, Singh (1975), after Pellet et al. (2005).
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4.2 Damage under cyclic loading

The gradual weakening of rock properties can also be highlighted by performing cyclic
loading tests. There are two types of cyclic tests: type 1,where the loading is cycled between
two prescribed limits, and type 2,where the loading is increased fromone cycle to the next.
Most of the published data on type 1 tests are aimed at producing S–N curves, that relate
the maximum stress, S, applied to a specimen to the number of cycles prior to specimen
failure N. It has been shown (Costin & Holcomb, 1981) that cycling decreases rock
strength, possibly by a combination of cyclic fatigue and stress corrosion. Over the last
few decades several experimental programs have been performed to characterize rock
behavior under static and cyclic behavior. The objective is to characterize the progressive
development of damage in rocks under cyclic loading (Erarslan &Williams, 2012).

Gatelier et al. (2002) presented an extensive laboratory investigation of the mechan-
ical properties of sandstone, which exhibits transversely isotropic behavior. Particular
attention was paid to the influence of the structural anisotropy on the progressive
development of pre-peak damage. Uniaxial and triaxial cyclic tests were performed for
several orientations of the isotropy planes with respect to the principal stress directions
in order to quantify the irreversible strains and the changes of oriented moduli with the
cumulative damage. Two main mechanisms are involved throughout the loading
process: compaction and micro-cracking.

Compaction is active at all stress levels. In uniaxial tests, both mechanisms were
shown to be strongly influenced by the inclination of loading with respect to the planes
of isotropy. However, with increased confining pressures, the influence of anisotropy is
significantly reduced.

For an unconfined compression test carried out on sandstone specimens, Gatelier et al.
(2002) showed that during the cycling, progressive damage is accompanied by a change
in the volumetric strain. Figure 13 clearly shows that, at the early stage, the rock specimen
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Figure 13 Axial stress as a function of volumetric strain for an unconfined cyclic compression test (from
Gatelier et al. 2002, with permission from Elsevier).
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tends to contract whereas later in the cycling process, it exhibits dilation. This observa-
tion is useful when developing an appropriate constitutive model.

4.3 Thermo-mechanical damage

Inmany situations, rock formations can be subjected to high temperatures that can lead
to drastic changes in their mechanical properties. For example, in energy and environ-
mental engineering, such as geothermal energy production, deep geologic disposal of
high-level radioactive waste or tunnels that have experienced fire accidents, special
attention has to be paid to thermal damage. In all these examples, the question that
needs to be addressed is the same: how do changes in temperature influence the physical
and mechanical properties of rocks?

Keshavarz et al. (2010) showed that thermal loading of rocks at high temperatures
induces changes in their mechanical properties. In this study, a hard gabbro was tested
in the laboratory. Specimens were slowly heated to a maximum temperature of 1,000°
C. Following this thermal loading, the specimens were subjected to uniaxial compres-
sion. A drastic decrease of both unconfined compressive strength and elastic moduli
was observed (Figure 14). The thermal damage to the rock was also highlighted by
measuring elastic wave velocities and monitoring acoustic emissions during testing.
The micro-mechanisms of rock degradation were investigated by analyzing thin sec-
tions after each stage of thermal loading. It was found that there is a critical tempera-
ture above which drastic changes in mechanical properties occur. Indeed, below a
temperature of 600°C, micro-cracks start to develop due to a difference in the thermal
expansion coefficients of the crystals. At higher temperatures (above 600°C), oxidation
of Fe and Mg atoms, as well as bursting of fluid inclusions, are the principal causes of
damage.

4.4 Rock joint damage

Thus far, we have focused on damage to the rock material (rock matrix). However, it is
well known that discontinuities (joints, faults, etc.) are of the utmost importance in
analyzing rock mass behavior (Vallier et al., 2010). Traditionally, the mechanical
behavior of rock discontinuities is analyzed with shear tests in different loading condi-
tions: Constant Normal Load (CNL), Constant Normal Stiffness (CNS) or Constant
Volume (CV). The two latter tests require advanced testing equipment to allow control
of the displacements in the 3 spatial directions (Boulon, 1995) (see also Selvadurai &
Boulon, 1995; Nguyen & Selvadurai, 1998).

Jafari et al. (2004) studied the variation of the shear strength of rock joints due to
cyclic loadings. Artificial joint surfaces were prepared using a developed molding
method that used special mortar; shear tests were then performed on these samples
under both static and cyclic loading conditions. Different levels of shear displace-
ment were applied to the samples to study joint behavior before and during con-
siderable relative shear displacement. It was found that the shear strength of joints is
related to the rate of displacement (shearing velocity), number of loading cycles and
stress amplitude. Finally, based on the experimental results, mathematical models
were developed for the evaluation of shear strength under cyclic loading conditions.
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Figure 15a presents the evolution of rock joint dilation during cycling. It is shown
that dilation progressively decreases as asperities damage is developed. In Figure 15b
the associated decrease of shear strength is represented with respect of the number of
cycles for both peak strength and residual strength.
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5 PERMEABILITY EVOLUTION WITH DAMAGE

During the development of damage in a rock, the permeability characteristics can be
altered through either the development of discrete fractures or the development of
continuum damage in the form of micro-cracks and micro-voids. The consequences of
such damage development not only cause a reduction in the stiffness characteristics of the
rock but also contribute to enhanced fluid flow through the accessible pore space of the
rock. The development of enhanced fluid flow through rocks is of particular interest
to geoenvironmental endeavors that focus on deep geologic disposal of hazardous
nuclear wastes (Selvadurai & Nguyen, 1995, 1997; Nguyen et al., 2005) and
contaminants (Testa, 1994; Apps&Tsang, 1996; Selvadurai, 2006), geologic seques-
tration of greenhouse gases (Pijaudier-Cabot & Pereira, 2013; Selvadurai, 2013) and
other energy extraction endeavors. In particular, excavation damaged zones in repo-
sitories used for storage of hazardous waste or in resources extraction activities
can experience permeability alterations that will alter the fluid transport character-
istics and consequently the potential for the enhanced migration of hazardous
substances from repositories. The alteration of permeability of rocks during damage
evolution is therefore of considerable importance to geoenvironmental applications.
The influence of micro-crack generation and damage on the evolution of hydraulic
conductivity of saturated geomaterials has been discussed by Zoback and Byerlee
(1975), who present results of tests conducted on granite that indicate increases of up
to a factor of four in the magnitude of the permeability. Results by Shiping et al.
(1994) on sandstone indicate that for all combinations of stress states employed in
their tests, the permeability increased by an order of magnitude. In triaxial tests on
anisotropic granite Kiyama et al. (1996) presented results that also indicate increases
in the permeability characteristics. Coste et al. (2001) present the results of experi-
ments involving rocks and clay stone; their conclusions support the assumption of an
increase in the permeability, of up to two-orders of magnitude, with an increase in
deviator stresses. Focusing on the behavior of cementitious materials, the experimen-
tal results presented by Samaha and Hover (1992) indicate an increase in the perme-
ability of concrete subjected to compression. Results by Gawin et al. (2002) deal
with the thermo-mechanical damage of concrete at high temperatures. In their
studies, empirical relationships have been proposed to describe the alterations in
the fluid transport characteristics as a function of temperature and damage; here the
dominant agency responsible for the alterations is identified as thermally-induced gen-
eration of micro-cracks and fissures (see also, Schneider & Herbst, 1989; Bary, 1996).
Also, Bary et al. (2000) present experimental results concerning the evolution of perme-
ability of concrete subjected to axial stresses, in connectionwith themodeling of concrete
gravity dams that are subjected to fluid pressures. Gas permeability evolution in natural
salt during deformation is given by Stormont and Daemen (1992), Schulze et al. (2001),
and Popp et al. (2001). While the mechanical behavior of natural salt can deviate from a
brittle response that is usually associated with brittle rocks, the studies support the
general trend of permeability increase with damage evolution that leads to increases in
the porosity. The article by Popp et al. (2001) also contains a comprehensive review of
further experimental studies in the area of gas permeability evolution in salt during
hydrostatic compaction and triaxial deformation, in the presence of creep. Time-depen-
dent effects can also occur in brittle materials due to the sub-critical propagation of
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micro-cracks, a phenomenon known as stress corrosion (Shao et al., 1997). In a recent
study, Bossart et al. (2002) observed an alteration in permeability of an argillaceous
material around deep excavations, a phenomenon attributed to the alteration of the
properties of the material in the EDZ.

Souley et al. (2001) describe the excavation damage-induced alterations in the
permeability of granite of the Canadian Shield; they observed an approximately
four-orders of magnitude increase in the permeability in the EDZ. It is noted, how-
ever, that some of this data is applicable to stress states where there can be substantial
deviations from the elastic response of the material as a result of the generation of
localized shear zones and foliation-type extensive brittle fracture, which may be
indicative of discrete fracture generation as opposed to the development of conti-
nuum damage. The data presented by Souley et al. (2001) has recently been re-
examined by Massart and Selvadurai (2012, 2014), who used computational homo-
genization techniques to account for permeability evolution in rock experiencing
dilatancy and damage.

It should also be noted that not all stress states contribute to increases in the
permeability of geomaterials. The work of Brace et al. (1978) and Gangi (1978)
indicates that the permeability of granitic material can indeed decrease with an
increase in confining stresses. These conclusions are also supported by Patsouls and
Gripps (1982) in connection with permeability reduction in chalk with an increase in
the confining stresses. Wang and Park (2002) also discuss the process of fluid perme-
ability reduction in sedimentary rocks and coal in relation to stress levels. A further
set of experimental investigations, notably those by Li et al. (1994, 1997) and Zhu
andWong (1997) point to the increase in permeability with an increase in the deviator
stress levels. These investigations, however, concentrate on the behavior of the
geomaterial at post-peak and, more often in the strain softening range. Again, these
experimental investigations, although of considerable interest in their own right, are
not within the scope of the current chapter that primarily deals with permeability
evolution during damage in the elastic range. The experimental studies by Selvadurai
and Głowacki (2008) conducted on Indiana Limestone, similarly indicate the perme-
ability reduction of a rock during isotropic compression up to 60 MPa. The studies
also indicate the presence of permeability hysteresis during quasi-static load cycling.
The internal fabric of the rock can also affect the enhancement of permeability of
rocks even during isotropic compression. The experimental work conducted by
Selvadurai et al. (2011) on the highly heterogeneous Cobourg Limestone indicates
that the permeability can increase during the application of isotropic stress states. In
this case the external isotropic stress state can result in locally anisotropic stress states
that can lead to permeability enhancement through dilatancy at the boundaries of
heterogeneities.

5.1 Modeling saturated porous media with continuum damage

The modeling of fluid-saturated porous media that experience continuum damage
can be approached at various levels, the simplest of which is the modification of
the equations of classical poroelasticity developed by Biot (1941) (see also Rice &
Cleary, 1976; Detournay & Cheng, 1993; Selvadurai, 1996; Wang, 2000; Cheng,
2016; Selvadurai & Suvorov, 2016) to account for damage evolution in the
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porous fabric and the enhancement of the permeability characteristics of the fluid-
saturated medium by damage evolution. In the case of an intact poroelastic
material, considering Hookean isotropic elastic behavior of the porous skeleton,
the principle of mass conservation and Darcy’s law applicable to an isotropic
porous medium, the coupled constitutive equations governing the displacement
field uðx; tÞ and the pore pressure field pðx; tÞ in a fluid-saturated body void of
body or inertia forces can be expressed in the form

μr2u þ μ

1� 2�ð Þr r:uð Þ þ αrp ¼ 0 ð46Þ

and

κ βr2p � ∂p
∂t

þ αβ
∂
∂t

r:uð Þ ¼ 0 ð47Þ

In (46) and (47)

α ¼ 3 �u � �ð ÞeB 1� 2�ð Þ 1þ �uð Þ
; β ¼ 2μ 1� 2�ð Þ 1þ �uð Þ2

9 �u � �ð Þ 1� 2�uð Þ ð48Þ

ν and μ are the “drained values” of Poisson’s ratio and the linear elastic shear
modulus applicable to the porous fabric, �u is the undrained Poisson’s ratio and eB is
the pore pressure parameter introduced by Skempton (1954), κ ¼ k=γwð Þ is a perme-
ability parameter, which is related to the hydraulic conductivity k and the unit weight
of the pore fluid γw and r, r and r2 are, respectively, the gradient, divergence and
Laplace’s operators. When damage occurs in a general fashion the elasticity and fluid
transport characteristics of the rock can result in the development of properties that
can be anisotropic. If full anisotropy evolution with damage is considered, the
elasticity parameters increase to 21 constants and the fluid transport parameters
increase to six. Therefore the generalized treatment of damage-induced alterations
to coupled poroelasticity effects can result in an unmanageable set of parameters and
damage evolution laws. This has restricted the application of damage mechanics to
the study of coupled poroelasticity problems. The prudent approach is to restrict
attention to isotropic damage evolution that can be specified in terms of the effective
stress defined by (41) and the strain equivalent hypothesis. The alterations in the
elastic stress–strain relationships for the damaged isotropic elastic skeleton can be
represented in the form

σ ¼ 2 1�Dð Þμ εþ 2 1�Dð Þμ�
1� 2�ð Þ r:uð Þ I þ α p I ð49Þ

where D is the isotropic damage parameter and implicit in (49) is the assumption that
Poisson’s ratio remains unaltered during the damage process and alterations to the
isotropic Lamé and other elastic constants and the permeability parameters maintain
the energetic requirements

μðDÞ > 0 ; 0 ≤ eBðDÞ ≤ 1 ; � 1 < �ðDÞ < �uðDÞ ≤0:5 ; κðDÞ > 0 ð50Þ
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This assumption makes the incorporation of influences of damage on the poroelastic
response more manageable. In addition to the specification of the constitutive rela-
tions for the damaged geomaterial skeleton, it is also necessary to prescribe damage
evolution criteria that can be postulated either by appeal to micro-mechanical
considerations or determined by experiment. Examples of the evolution of the
damage parameter with either stress or strain have been presented in the literature
and references to these studies are given by Mahyari and Selvadurai (1998),
Selvadurai (2004) and Selvadurai and Shirazi (2004, 2005); the experimental infor-
mation that describes the variation of the poroelastic parameters with damage is
generally scarce. Also, the extent of damage necessary to create substantial altera-
tions to permeability evolution is generally small. By and large, the porous skeleton
of the fluid-saturated rock can remain elastic with a small change in the elasticity
parameters during which the permeability of the rock can change substantially.
Based on this observation, Selvadurai (2004) introduced the concept of
“Stationary Damage” in poroelastic solids where the skeletal elasticity properties
remain at a constant value after the initiation of elastic damage and alterations in the
hydraulic conductivity characteristics are determined at the damage level corre-
sponding to the stationary damage or elastic estimates. Zoback and Byerlee (1975)
have documented results of experiments conducted on granite and Shiping et al.
(1994) give similar results for tests conducted on sandstone. They observed that the
permeability characteristics of these materials can increase by an order of magnitude
before the attainment of the peak values of stress and they can increase up to two-
orders of magnitude in the strain softening regime where micro-cracks tend to
localize in shear faults. Kiyama et al. (1996) also observed similar results for the
permeability evolution of granites subjected to a tri-axial stress state. This would
suggest that localization phenomena could result in significant changes in the perme-
ability in the localization zones. It must be emphasized that in this study the process
of localization is excluded from the analysis and all changes in permeability are at
stress states well below those necessary to initiate localization or global failure of the
material. Furthermore, in keeping with the approximation concerning scalar iso-
tropic dependency of the elasticity properties on the damage parameter, we shall
assume that the alterations in the permeability characteristics also follow an isotropic
form. This is clearly an approximation with reference to the mechanical response of
brittle geomaterials that tend to developmicro-cracking along the dominant direction
of stressing, leading to higher permeabilities in orthogonal directions. The studies by
Mahyari and Selvadurai (1998) suggest the following postulates for the evolution of
hydraulic conductivity as a function of the parameter ξd:

kd ¼ ð1þ eαξdÞk ; kd ¼ ð1þ eβξ2dÞk ð51Þ

where kd is the hydraulic conductivity applicable to the damaged material, k is
the hydraulic conductivity of the undamaged material, ξd is the equivalent shear
strain, which is related to the second invariant of the strain deviator tensor, and eα and eβ
are material constants. This approach has enabled the application of isotropic
damage mechanics concepts to examine the time-dependent effects that can materialize
in fluid-saturated poroelastic media where the porous fabric undergoes mechanical
damage with an attendant increase in the hydraulic conductivity characteristics.
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5.2 Application of the concept of “Stationary Damage”

As an illustration of the application of the concept of “Stationary Damage” to
problems in poromechanics, we specifically consider the problem of the indentation
of a poroelastic halfspace by a rigid circular indenter with a flat smooth base. This is a
celebrated problem in contact mechanics; the elastic solutions were first presented in
the classic studies by Boussinesq (1885) and Harding and Sneddon (1945).
Computational techniques are applied to examine the influence of elastic damage-
induced fluid transport characteristics on the time dependent indentational response
of the Boussinesq indenter.

Indentation and contact problems occupy an important position in both engineer-
ing and applied mechanics. Solutions derived for classical elastostatic contact pro-
blems have been applied to examine the mechanics of indentors used for materials
testing, mechanics of nano-indentors, tribology, mechanics of foundations used for
structural support, biomechanical applications for prosthetic implants and, more
recently, in the area of contact mechanics of electronic storage devices. We consider
the problem of the frictionless indentation of a poroelastic material by a rigid circular
punch with a flat base (Figure 16), which is subjected to a total load P0, which is in the
form of a Heaviside step function of time. The associated classical elasticity solution
was first given by Boussinesq (1885), who examined the problem by considering the
equivalence between the elastostatic problem and the associated problem in potential
theory.

Harding and Sneddon (1945) subsequently examined the problem in their classic
paper that uses Hankel transform techniques to reduce the problem to the solution of
a system of dual integral equations. The procedure also resulted in the evaluation of
the load-displacement relationship for the indentor in exact closed form. In a sub-
sequent paper, Sneddon (1946) presented complete numerical results for the distri-
bution of stresses within the halfspace region. The classical poroelasticity problem
concerning the static indentation of a poroelastic halfspace and layer regions by a
rigid circular indentor with a flat smooth base and related contact problems were
considered by a number of authors including Agbezuge and Deresiewicz (1974),
Chiarella and Booker (1975), Gaszynski (1976), Gaszynski and Szefer (1978),
Selvadurai and Yue (1994), Yue and Selvadurai (1994, 1995a, b) and Lan and

P(t) = P0H(t)
rigid cylindrical indenter

r

z

Figure 16 Indentation of a damage susceptible poroelastic halfspace.
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Selvadurai (1996), using differing boundary conditions related to the pore pressure
at the surface of the halfspace both within the contact zone and exterior to it. These
authors also use different computational schemes for the numerical solution of the
resulting integral equations and for the inversion of Laplace transforms. Of related
interest are problems associated with the dynamic problem of a rigid foundation
either in smooth contact or bonded to the surface of a halfspace (Halpern &
Christiano, 1986; Kassir & Xu, 1988; Philippacopoulos, 1989; Senjuntichai &
Rajapakse, 1996), where, in certain circumstances, the static transient poroelasticity
solution can be recovered. The former studies will form a basis for a comparison with
the modeling involving stationary damage; here we will consider only changes in the
hydraulic conductivity characteristics, which will be altered corresponding to the
initial elastic strains induced during the loading of the indenter. Also, the load
applied is specified in the form of a Heaviside step function in time. In order to
determine the stationary spatial variation of hydraulic conductivity properties
within the halfspace region, it is first necessary to determine the distribution of the
equivalent shear strain ξd in the halfspace region. Formally, the distribution ξd(r, z),
is determined by considering the stress state in the halfspace region associated with
the elastic contact stress distribution at the indenter-elastic halfspace region, which is
given by

σzzðr; 0Þ ¼ P0

2πa
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 � r2

p ; r2 ð0; aÞ ð52Þ

and the classical solution by Boussinesq (1885) for the problem of the action of a
concentrated normal load at the surface of a halfspace region (see also Selvadurai,
2000a, 2001). The displacement distribution at the surface of the halfspace region is
given by

uzðr; 0Þ ¼
D

2D
π

sin�1 a
r

� � ; r2ð0; aÞ

; r2ða;∞Þ
:

8><>: ð53Þ

The stress state in the halfspace region is given by

σrrðρ; ζ Þ ¼ � P0

2πa2
J01 þ 2e�fJ01 � J10g � ζ J02 �

1
ρ
fð1� 2e�ÞJ10 � ζ J12g

� �

σθθðρ; ζ Þ ¼ � P0

2πa2
2e� J10 þ

1
ρ
fð1� 2e�ÞJ10 � ζ J12g

� �
σzzðρ; ζ Þ ¼ � P0

2πa2
½J01 þ ζ J02�

σrzðρ; ζ Þ ¼ � P0

2πa2
½ζ J12� ð54Þ

where e� is Poisson’s ratio for the elastic solid and the infinite integrals Jmn ðρ; ζ Þ are
defined by
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Jmn ðρ; ζ Þ ¼
ð ∞

0
sn�1 sinðsÞ expð�sζ ÞJmðsρÞds: ð55Þ

As has been shown by Sneddon (1946), these infinite integrals can be evaluated in
explicit closed form as follows:

J01ðρ; ζ Þ ¼
1ffiffiffiffi
R

p sin
�

2

� �
; J10ðρ; ζ Þ ¼

1
ρ

1�
ffiffiffiffi
R

p
sin

�

2

� �� �

J11ðρ; ζ Þ ¼
�

ρ
ffiffiffiffi
R

p sin θ � �

2

� �
; J12ðρ; ζ Þ ¼

ρ
R3=2

sin
3�
2

� �
J02ðρ; ζ Þ ¼

�

R3=2
sin

3
2
ð�� θÞ ð56Þ

where

tan θ ¼ 1
ζ

; tan� ¼ 2ζ

ðρ2 þ ζ 2 � 1Þ ; �2 ¼ ð1þ ζ 2Þ

R2 ¼ ½ ρ2 þ ζ 2 � 1
� 2 þ 4ζ 2� ; ρ ¼ r

a
; ζ ¼ z

a
: ð57Þ

The principal stress components are determined from the relationships

σ1
σ3

)
¼ 1

2
σrr þ σzzð Þ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðσrr � σzzÞ2 þ 4σ2rz

q� �
; σ2 ¼ σθθ ð58Þ

and the equivalent shear strain ξd can be expressed in the form

ξd ¼ 1

2
ffiffiffi
3

p eμ ðσ1 � σ3Þ2 þ ðσ3 � σ2Þ2 þ ðσ2 � σ1Þ2
h i1=2

ð59Þ

where eμ is the linear elastic shearmodulus for the elastic solid. In these general elasticity
solutions, the elastic constants eμ and e� can be assigned values corresponding to their
values at time t ¼ 0, to reflect the undrained behavior of the poroelastic solid.

An examination of both (52) and (54) indicates that the elastic stress state is
singular at the boundary of the rigid indenter. This places a restriction on the
rigorous application of the stress state (54) for the determination of damaged
regions. By definition, damaged regions are assumed to experience only finite levels
of isotropic damage that would maintain the elastic character of the material. The
singular stress state can result in either plastic failure of the rock (Ling, 1973;
Johnson, 1985) or even brittle fracture extension in the halfspace region
(Selvadurai, 2000b). Such developments are assumed to be restricted to a very
limited zone of the halfspace region in the vicinity of the boundary of the indenter
region. Also, in the computational modeling of the contact problem, no provision is
made for the incorporation of special elements at the boundary of the contact zone
to account for the singular stress state that can be identified from mathematical
considerations of the contact problem. In the computational modeling, the mesh
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configuration is suitably refined to account for the sharp stress gradients that will
result from the elastic stress state (Figure 17).

The distribution of equivalent shear strain is accounted for by assigning the values of
the equivalent strains to the integration points within the elements. These in turn are
converted to alterations in the hydraulic conductivity characteristics of the medium
through the use of the expressions (51) that relate the hydraulic conductivity to the
equivalent shear strain. In the study by Selvadurai (2004), the computational modeling
was performed using the general purpose finite element code ABAQUS, although any
computational code that is capable of examining poroelasticity problems for inhomo-
geneous media can be adopted for the purpose.

An 8-noded isoparametric finite element is used in the modeling and the integrations
are performed at the nine Gaussian points. The displacements are specified at all nodes
and the pore pressures are specified only at the corner nodes.

The application of the “Stationary Damage Concept” to the examination of the
poroelastic contact problem where the porous skeleton can experience damage due to
stress states that will not induce plastic collapse or extensive plastic failure in the rock
involves the following steps:

– Apply the loadings to the elastic domain and determine the equivalent shear strain
ξd in the domain.

– Determine the distribution of permeability alteration in the region by appeal to the
prescribed variation of permeability with ξd. This will result in a poroelastic
domain with a permeability heterogeneity.

a

P(t) = P0H(t) rigid cylindrical indenter

60a

n : unit normal to the boundary

n • ∇p = 0

n • ∇p = 0

p = 0
r

z

Figure 17 Finite element discretization of the damage susceptible spherical poroelastic region for the
cylindrical indenter problem.
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– Solve the poroelasticity problem where the loads are applied at a prescribed time
variation, where the elasticity and permeability characteristics are as implied by the
previous steps.

We consider the computational modeling of the indentation problem where the pore
fluid that saturates the porous elastic solid is assumed to be incompressible. The indenter
is subjected to a load with a time variation in the form of a Heaviside step function i.e.:

PðtÞ ¼ P0HðtÞ; t > 0 ð60Þ
where P0 is the magnitude of the total load acting on the indentor. Since the saturating
fluid is assumed to be incompressible, the undrained behavior of the fluid-saturated
poroelastic medium at time t ¼ 0 corresponds to an elastic state with e� ¼ 1=2. The
initial elastic strains that induce the spatial distribution of damage during the indenta-
tion are evaluated by setting e� ¼ 1=2 in the principal stresses computed, using the stress
state (52), relevant to the smooth indentation of the halfspace with the porous rigid
circular cylinder.

The finite element discretization of the halfspace domain used for the analysis of the
indentation of the poroelastic halfspace by the porous rigid circular smooth indenter, of
radius a ¼ 2m, is shown in Figure 17. To exactlymodel a poroelastic halfspace region it
is necessary to incorporate special infinite elements that capture the spatial decay in the
pressure and displacement fields (see e.g. Simoni & Schrefler, 1987; Selvadurai &
Gopal, 1989). These procedures were, however, unavailable in the computational
modeling software. The poroelastic halfspace region is modeled as a hemispherical
domain, where the outer boundary is located at a large distance (60 a) from the origin
(Figure 17). This external spherical boundary is considered to be rigid and all dis-
placements on this boundary are constrained to be zero. The boundary is also
considered to be impervious, thereby imposing Neumann boundary conditions for
the pore pressure field at this spherical surface. (It is noted here that computations
were also performed by prescribing Dirichlet boundary conditions on this surface.
The consolidation responses computed were essentially independent of the far field
pore pressure boundary condition.) The accuracy of the discretization procedures,
particularly with reference to the location of the external spherical boundary at a
distance 60 a, was first verified through comparisons with Boussinesq’s solution for
the indentation an elastic halfspace region by a cylindrical punch. The value of the
elastic displacement of the rigid circular indenter can be determined to an accuracy of
approximately three percent. The computational modeling of the poroelastic inden-
tation problem is performed by specifying the following values for the material
parameters generally applicable to a geomaterial such as sandstone (Selvadurai,
2004): hydraulic conductivity k ¼ 1� 10�6 m=s; unit weight of pore fluid
γw ¼ 1� 104N=m3; Young’s modulus. E ¼ 8:3GPa; Poisson’s ratio � ¼ 0:195; the
corresponding coefficient of consolidation, defined by

c ¼ 2μ k
γw

¼ 0:6946m2=s: ð61Þ

Figure 18 illustrates the comparison between the analytical solution for the time-
dependent variation in the rigid displacement of the circular indentor given by
Chiarella and Booker (1975) and the computational results obtained for the
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indentation of a poroelastic region with an external boundary in the shape of a hemi-
sphere. The comparison is between an estimate for a halfspace region and a region of
finite extent and there is reasonable correlation between the two sets of results. Since
the influence of “Stationary Damage”will be assessed in relation to the computational
results derived for the indentation of the hemispherical region, the accuracy of the
computational scheme in modeling the indentation process is considered to be accep-
table. The normal stress distribution at the contact zone can be determined to within a
similar accuracy except in regions near the boundary of the indenter where, theoreti-
cally, the contact stresses are singular. In the computational treatments, the stationary
damage-induced alteration in the hydraulic conductivity is evaluated according to the
linear dependency in the hydraulic conductivity alteration relationship given by (51)
and the parameter α is varied within the range α2 ð0; 104Þ. Figure 19 illustrates the
results for the time-dependent displacement of the rigid cylindrical smooth indentor
resting on a poroelastic hemispherical domain that displays either stationary damage-
induced alteration in the hydraulic conductivity or is independent of such effects. These
results are for a specific value of the hydraulic conductivity-altering parameter,
α ¼ 103. Computations can also be performed to determine the influence of the para-
meter α and the stationary damage-induced alterations in the hydraulic conductivity on
the settlement rate of the rigid indenter. The results can be best illustrated through the
definition of a “Degree of Consolidation”, defined by

UC ¼ ΔCðtÞ � ΔCð0Þ
ΔCð∞Þ � ΔCð0Þ ð62Þ

The value DCðtÞ corresponds to the time-dependent rigid displacement of the inden-
ter. Both the initial and ultimate values of this displacement, for the purely poroelastic
case, can be evaluated, independent of the considerations of the transient poroelastic
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Figure 18 Comparison of analytical results and computational estimates for the cylindrical rigid
indenter problem.
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responses since the poroelastic model allows for purely elastic behavior at t ¼ 0 and as
t ! ∞, with � ¼ 1=2 and e� ¼ � respectively: i.e.

ΔCð0Þ ¼ P0

8μ a
; ΔCð∞Þ ¼ P0ð1� �Þ

4μ a
: ð63Þ

Figure 20 illustrates the variation of the degree of consolidation of the rigid indenter as
a function of non-dimensional time and the parameter α that defined the alteration of
the hydraulic conductivity with the equivalent shear strain ξd.
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Figure 19 Influence of stationary damage on the displacement of the rigid cylindrical indentor [α= 1000].
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Figure 20 Influence of stationary damage and hydraulic conductivity alteration on the consolidation rate
for the rigid cylindrical indenter.
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6 NUMERICAL MODELING OF DAMAGE

We have seen in Section 3 that, from a theoretical point of view, two main approaches
exist to model rock damage. These are based either on Continuum Mechanics, or on
Fracture Mechanics.

In terms of numerical modeling, the continuum approach is classically handled using
the Finite ElementMethod whereas fracturing is more difficult to deal with numerically.
However, relatively recently, methods have been developed to incorporate the nucleation
and propagation of cracks in an originally continuousmedium. Thesemethods belong to
the family of Extended Finite Element Methods (XFEM). An alternative approach is the
Finite Discrete ElementMethod (FDEM), which is also a recent computational tool that
combines the Finite Element Method with the Discrete Element Method (DEM).

Currently, these methods are difficult to use in an engineering context because of the
complexity of rock structures and the lack of knowledge of the boundary and initial
conditions. For rock engineering problems, the computational time required is still
cumbersome.

6.1 Modeling a loading test with CDM

Identification ofmodel parameters is based on experiments such as creep tests, relaxation
tests and quasi-static tests. Figure 21 shows the numericalmodeling of a compression test
performed with a low strain rate of loading (Fabre& Pellet, 2006). Both axial strain and
lateral strain are well reproduced by the model. Additionally, the calculated change in
volumetric strain (contraction-dilation) is consistent with the observed location.
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Figure 21 Modeling of a uniaxial compressive test performed on shale (Fabre & Pellet, 2006).
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6.2 Excavation Damage Zone (EDZ) around underground
openings

When an underground opening is excavated in a stressed rock mass, short-term
instabilities may occur during or right after operation. Collapses in the gallery may
also take place many years or decades after the completion of the work. Indeed, the
time-dependent behavior of rock has always been an issue for underground construc-
tion. This question has been recently studied, both experimentally and theoretically, by
several authors for different types of rock (Blümling et al., 2007; Hudson et al., 2009).

A 3D numerical simulation of the mechanical behavior of deep underground gal-
leries with a special emphasis on time-dependent development of the Excavation
Damage Zone (EDZ) was presented by Pellet et al. (2009). In this study, the
rock mass behavior is modeled by a damageable viscoplastic constitutive model (see
section 4.1) in which both viscous and damage parameters are taken into account.
Finite-element analysis investigates the evolution of near field stresses, progressive
development of the damage zone as well as delayed displacements during the sequential
construction process of the gallery. The influence of the orientation of in situ stresses
with respect to the gallery axis is also highlighted. The effect of a support system is to
reduce the damage zone and the displacements around the gallery (Figure 22).

7 CONCLUSION

Damage to rock depends largely on its geological nature and the state of stress it is
subjected to. The physico-chemical identification of rocks is therefore a prerequisite
that requires special attention. This involves a precise characterization of the miner-
alogical content and a detailed description of the rock fabric. Using these observations,
the petrophysical properties of the rock (porosity, specific gravity, water content and
degree of saturation ...) will be estimated. There have been considerable advances in the
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Figure 22 Excavation Damage Zone (EDZ) and stress distribution. In the centre diagram the greyish
areas represent the extension of the EDZ, 300 years after the tunnel construction, for a
supported tunnel (left hand side) and for an unsupported tunnel (right hand side). The
tangential stresses in the rock mass at different times are also represented (adapted from
Pellet et al., 2009).
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digital treatment of experimental data over the last two decades, associated with the
development of new testing equipment (Scanning Electron Microscope, Magnetic
Resonance Imaging, Acoustic Tomography, etc.) that has greatly facilitated the identi-
fication of the rock type and its in situ state.

Laboratory testing can then be used to determine the mechanical properties of the
rock under investigation; these include the strength and deformability. Here, too,
modern techniques allow complex mechanical tests involving high pressure-high tem-
perature, to be combined with physical measures such as acoustic activity or the
velocity of elastic waves. 3D visualization by X-ray computed tomography (CT) of
the pore space helps to localize the areas of deformation and cracking.

Constitutivemodels can only be developed based on an understanding and knowledge
of the detailed characterization of the state of the rock both in its intact state and after
mechanical testing. We have seen that there are twomain approaches employed in Rock
Mechanics for damage characterization: Continuum Damage Mechanics and Fracture
Mechanics. The first, formulated in the context of the thermo-dynamics of irreversible
processes, lends itself to numerical modeling although certain hypotheses (shear failure
mode, small deformations, etc.) must be invoked. For example, processing softening
behavior inevitably requires regularizing the solution by introducing a time variable to
establish a rate-dependent model. If the model is rate-independent, such an approach
should be reserved for the damage suffered before the peak stress is achieved.

The second approach, Fracture Mechanics, is older and also more physical in that it
addresses the failure mode by extension (Mode I: crack opening), which is frequently
observed experimentally. However, this fails tomeet the assumption of a continuum and
is therefore inconvenient to implement, particularly if multiple crack generation, crack
branching and discrete fragmentation is involved. However the introduction in the last
ten years of the XFEM technique (eXtended Finite Element Method) allows the two
approaches to be combined. The engineering applications of these advances are limited;
in particular, it is difficult to account for the merging of several networks of cracks.

The use of a constitutive model for full-scale processes requires many adaptations
that go beyond the simple consideration of the scale effect. The need to account for
damage discontinuities is paramount and often the time effects are equally important.
Under certain loading conditions the effects of repeated actions (cyclic and/or dynamic)
can be the most important consideration: loadings of a thermo-hydro-mechanical
origin are often related to damage through permeability changes.

Over the past two decades, great progress has been made on the experimental char-
acterization of damage in rocks and rock masses and numerical methodologies have
improved substantially. Future developments should particularly focus on the develop-
ment of numerical tools for the identification of the parameters to be used in constitutive
models by means of inverse analysis of measurements made on real structures.
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Abstract: Although characterization and numerical modeling of anisotropic rock is a
longstanding difficulty in rock mechanics, development and advances are being
made for anisotropic rock mechanics in spite of the hurdles associated with it.
This chapter provides an overview of anisotropic rock mechanics issues and intro-
duces a series of experimental and numerical anisotropic rock mechanics studies
conducted in the past 15 years. Experimental investigations are made on elastic,
thermal conductivity, seismic and permeability anisotropy of rock based on cores
taken from directional coring system. The first part of numerical anisotropic rock
mechanics introduces the numerical experiments to determine the compliance ten-
sor of fractured rock mass with Discrete Fracture Network (DFN) modeled as
equivalent continuum anisotropic rock. Blocky Discrete element method (DEM) is
employed for this numerical experiment using three boundary conditions in two
dimensions. The second part deals with representation of transversely isotropic rock
using bonded-particle DEM model with smooth joint model as layers. Both defor-
mation and strength behavior modeled by DEM showed a reasonable agreement
with analytical solutions, and laboratory observations. Upscaled model applied to
anisotropic foundation demonstrate that large scale application anisotropic DEM
model is also feasible.

1 INTRODUCTION

Rock anisotropy has been a long-standing issue in rock engineering, beginning in the
early developmental stages of rock mechanics and one of the most distinct features that
must be considered in rock engineering applied for civil, mining, geo-environmental, or
petroleum engineering disciplines. Many rocks have anisotropic characteristics, i.e.,
their mechanical, thermal, seismic, and hydraulic properties vary with direction, and
engineering applications that do not consider the anisotropic behavior of rock produce
errors of differing magnitudes, depending on the extent of rock anisotropy (e.g.,
Amadei, 1996). Anisotropic characteristics generally originate from the mineral folia-
tion in metamorphic rocks, stratification in sedimentary rocks, and discontinuities in



the rock mass. Rock anisotropy is important for in situ stress measurements, especially
for the overcoring method in which the constitutive relation of rock plays an important
role (Amadei, 1996; Min et al., 2003), displacement control in rock, and the develop-
ment of excavation damage occurring during underground construction (e.g., review in
Cho et al., 2012). When the equivalent continuum approach is used for regularly
fractured rock masses, anisotropy must be considered because anisotropy can be
pronounced due to the major deformations along the discontinuities. The extent of
anisotropy is generally defined by the elastic modulus ratio, which decides whether it is
necessary and relevant to consider anisotropy before certain operations begin depend-
ing upon anisotropy ratio (Cho et al., 2012).

Figure 1 shows the radial stress distribution in a transversely isotropic rock subjected
to concentrated line loads. Figure 1(a) is based on the analytical solution (Goodman,
1989), and Figure 1(b) shows results from finite element method (FEM)modeling (Park
&Min, 2015a). By comparing the isotropic and anisotropic analysis in the figures, it is
clear that stress distribution is much affected by the extent of anisotropy and that
analysis not considering anisotropy can produce erroneous results.

The term ‘anisotropy’ is somewhat misleading in that the prefix ‘an-’ gives an
impression that it is a special case of ‘isotropy’. In fact, the opposite is true. The
most general anisotropic elastic behavior of material is defined by 21 independent
elastic constants. If the internal composition of a material possesses symmetry of any
kind, then symmetry can be observed in its elastic properties. While there are many
forms of elastic symmetry, the most relevant model for applications involving rock
mechanics is the transversely isotropic model with five independent parameters.
The stratification, foliation, and discontinuity planes, which are encountered fre-
quently in rock mechanics applications, can be viewed as the transversely isotropic
plane. Isotropy is then defined by only two independent elastic constants after the
assumption of complete symmetry is made (Lekhnitskii, 1963). Therefore, complete

(a)

(b)

P P
α = 90° P

P

P
α = –30°

α = 0°

α = –60°

Isotropic intact rock

Figure 1 Radial stress distribution of transversely isotropic rock under concentrated line load. (a)
cartoon presented in Goodman (1989), (b) results by FEM modeling (Park & Min, 2015a). The
anisotropy ratio of two elastic moduli used in FEM is around 2, and red color denotes higher
stress while cooler blue color denotes smaller stress.
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anisotropy is the most general case and isotropy should be regarded as the most
special one.

Although anisotropic rock mechanics has been considered as distinct characters of
rock mechanics discipline, its application has been somewhat limited for a number of
reasons. First, it is difficult, if not impossible, to determine the elastic properties when
more independent parameters are needed, e.g., five for transversely isotropic materials.
Core samples in different directions are generally required for this purpose, which is not
feasible in many industrial applications. Furthermore, there is no standard method
established in the rock mechanics community yet, and this makes professionals more
hesitant to consider rock anisotropy (ISRM, 2007; ISRM, 2015). Second, anisotropic
rockmechanics gives the impression that it is difficult to master since analytical solutions
are more complex with more associated parameters. Even if there are several analytical
solutions available, their usage is not often straightforward due to its complexity in their
equations (Lekhnitskii, 1963; Ting, 1996). Third, anisotropic rock mechanics research
or industrial tools are still limited. Assumption of isotropy is inmany cases the norm and
there is still a dearth of tools applicable to anisotropy. For example, when rock mass
deformation moduli are determined by empirical method such as Q, RMR or GSI,
consideration of anisotropy is largely missing (Min & Jing, 2003).

We believe that the above-mentioned hurdles can be overcome with concerted
research efforts, and this chapter intends to serve the purpose of introducing the most
recent development in the area of anisotropic rockmechanics, mostly carried out by the
authors. Focus is given to the elastic behavior of anisotropic rock with limited coverage
of strength behavior since strength and damage of anisotropic rock will be covered
elsewhere in this volume.

This chapter starts with a brief introduction of the anisotropic elasticity theory for
completeness. Experimental results are presented to provide the insight into the overall
anisotropic behavior of rocks in terms of elastic, thermal, seismic and permeability
behaviors. Special focus was given to the method of determining anisotropic para-
meters and comparison with analytically predicted anisotropic behavior. Numerical
results with their verification and validation to real cases are presented using discrete
element method (DEM) in both bonded-particle and blocky systems (Jing &
Stephansson, 2007). Blocky DEM is applied to determine the elastic properties of
fractured rock masses by treating them as anisotropic equivalent continua. Bonded-
Particle DEM models are being used to account for both elastic and strength behavior
of anisotropic rock.

2 THEORETICAL BACKGROUND

2.1 Anisotropic constitutive equation

The constitutive relation for general linear elasticity can be expressed as

εij ¼ Sijklσkl ð1Þ
where εij and σkl are stress and strain tensors of a second order rank and Sijkl is the
compliance tensor of a fourth order rank, involving 21 independent. By adopting a
contracted matrix form of Sijkl, Equation 1 can be expressed as
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εx
εy
εz
γyz
γxz
γxy

0BBBBBB@

1CCCCCCA ¼

S11 S12 S13 S14 S15 S16
S21 S22 S23 S24 S25 S26
S31 S32 S33 S34 S35 S36
S41 S42 S43 S44 S45 S46
S51 S52 S53 S54 S55 S56
S61 S62 S63 S64 S65 S66

0BBBBBB@

1CCCCCCA
σx
σy
σz
τyz
τxz
τxy

0BBBBBB@

1CCCCCCA ð2Þ

where matrix Sij is called the compliance matrix. The symbols of εi and γij (i, j = x, y, z)
denote the normal and shear strains, respectively, and symbols of σi and τij (i, j = x, y, z)
denote the normal and shear stresses, respectively. The compliance matrix can be
described explicitly by giving the physical meaning of each element as functions of
elastic moduli, Poisson ratios, shear moduli and other technical constants of the solids
(Lekhnitskii, 1963).

Since Sijkl is a fourth order tensor, its rotational transformation can be also defined by
the following mapping operations

S0ijkl ¼ βimβjnβkpβlqSmnpq ð3Þ
where S´ijkl and Smnpq are the compliance tensors in the transformed and the original
axes, respectively, and βim, βjn, βkp, and βlq are the direction cosines representing
rotational operations. Equation 3 is mathematically elegant but not convenient for
practical calculations because it involves fourth order tensor operations. The following
mapping operation with a 6 by 6matrix for the transformation of compliance matrix is
introduced to simplify the operations (Lekhnitskii, 1963).

S0ij ¼ Smnqmiqnj ð4Þ
where S´ij is the compliance matrix in the transformed axes and Smn is the one in the
original axes, respectively. The component of the qij matrix can be obtained purely
from the direction cosine as available in Lekhnitskii (1963) and Min and Jing (2003).
When only the rotation of axes is concerned, the transformation form becomes dras-
tically simple. If the angle of anti-clockwise rotation of axes about z-axis is φ, thematrix
of the direction cosines is then given by

βij ¼
cosφ sinφ 0
�sinφ cosφ 0

0 0 1

0@ 1A ð5Þ

and the final matrix form for qij has the following form:

qij ¼

cos2φ sin2φ 0 0 0 �2 sinφ cosφ
sin2φ cos2φ 0 0 0 2 sinφ cosφ
0 0 1 0 0 0
0 0 0 cosφ sinφ 0
0 0 0 �sinφ cosφ 0

sinφ cosφ �sinφ cosφ 0 0 0 cos2φ� sin2φ

0BBBBBB@

1CCCCCCA ¼ Q ð6Þ

Therefore, by substituting the matrix of Equation 6 into Equation 4, it is possible to
express the elastic constants, i.e. elastic modulus or Poisson’s ratio, in rotated axes in
terms of direction cosines and components in the original axes.
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The practical implication of this tensorial transformation for rock mechanics is that,
once elastic properties in a given reference axis is determined, elastic properties in any
arbitrary direction can be readily calculated. Comparison of theoretical tensorial trans-
formationwith actual laboratory measurement in core taken in various directions shows
that a certain type of rock can be indeed modeled as transversely isotropic rock with
moderate extent of discrepancy which can be more attributable to rock heterogeneity
(Cho et al., 2012). Numerical study using blocky DEM also supports that fractured rock
also follows this transformation rule especially when the size of the considered domain
reaches the representative elementary volume (REV) (Min & Jing, 2003).

On the other hand, thermal conductivity and permeability obey the rotational
transformation rules as a second-order tensor. The tensor of the anisotropic thermal
conductivity and permeability is formulated follows with respect to the rotation of the
axes (Carslaw & Jaeger, 1959; Bear, 1972).

k0pq ¼ βpiβqjkij ð7Þ

where kij and kpq are the thermal conductivity or permeability tensors in the original
and rotated axes, respectively, and βpi and βqj are the direction cosines. A study also
confirms that measured thermal conductivity and permeability in core samples with
different directions also match with theoretical predictions (Kim et al., 2012; Yang
et al., 2013).

2.2 Constitutive equation of anisotropic rock

When there are three orthogonal planes of elastic symmetry with the axes of the
coordinates perpendicular to these planes, the model is called orthogonal (or ortho-
gonally isotropic) and the constitutive equation can be expressed as following
(Lekhnitskii, 1963).

εx
εy
εz
γyz
γxz
γxy

0BBBBBB@

1CCCCCCA ¼

1
Ex

� �yx
Ey

� �zx
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0 0 0

� �xy
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1
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� �zy
Ez

0 0 0

� �xz
Ex

� �yz
Ey

1
Ez

0 0 0

0 0 0
1
Gyz

0 0

0 0 0 0
1

Gxz
0
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1

Gxy

0BBBBBBBBBBBBBBBBBBBBBBB@

1CCCCCCCCCCCCCCCCCCCCCCCA

σx
σy
σz
τyz
τxz
τxy

0BBBBBB@

1CCCCCCA ð8Þ

where Ex, Ey, and Ez are elastic moduli in x, y, and z direction, respectively, and Gyz,
Gxz, andGxy are shear moduli defined in yz, xz and xy planes. νxy, νyx, νzx, νxz, νyz and
νzy are Poisson’s ratios and the property νij determines the ratio of strain in the
j-direction to the strain in the i-direction due to a stress acting in the i-direction).
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When the symmetry planes are the z=0 plane and any plane that contains the z-axis,
the z-axis is the axis of symmetry and this material is classified as transversely isotropic
with the relationships of E=Ex=Ey, E´=Ez, ν=νxy=νyx, ν´=νzx=νzy and G=E/2/(1+ν).

Thus, the constitutive equation of the transversely isotropic rock can be expressed as
follows in a matrix form;

εx
εy
εz
γyz
γxz
γxy

26666664

37777775 ¼

1
E

� �
0

E0 � �

E
0 0 0

� �
0

E0
1
E0 � �

0

E0 0 0 0

� �

E
� �

0

E0
1
E

0 0 0

0 0 0
1
G0 0 0

0 0 0 0
2ð1þ �Þ

E
0

0 0 0 0 0
1
G0

26666666666666666666666664

37777777777777777777777775

σx
σy
σz
τyz
τxz
τxy

26666664

37777775 ð9Þ

In the above compliance matrix, there are five independent elastic constants.E and É
are the elastic moduli in the plane of transverse isotropy and in a direction normal to it,
respectively. The terms ν and ν´ are the Poisson’s ratios that characterize the ratio of
lateral strain to axial strain in the plane of transverse isotropy subjected to axial stress
acting parallel and normal to it, respectively. The term G´ is the shear modulus in the
plane normal to the plane of transverse isotropy. This is one of themost popularmodels
for rock mechanics applications, because the stratification, foliation, and discontinuity
planes, which are encountered frequently in rock mechanics applications, can be
viewed as the symmetry plane.

3 EXPERIMENTAL ANISOTROPIC ROCK MECHANICS

3.1 Introduction

It is generally accepted that three prismatic or cylindrical specimens that are inclined
parallel with vertical to and at 45 degrees from the isotropic plane are required in order to
determine the five independent elastic constants for a transversely isotropic model (Barla,
1974; Amadei, 1982; Worotnicki, 1993). Many researchers have sought ways to mini-
mize the laborious task of preparing multiple specimens. One conventional approach is
to reduce the five independent elastic constants to four by using Saint-Venant’s empirical
equations for shear modulus in the plane normal to the isotropic plane (Lekhnitskii,
1963). However, these empirical equations are contrary to the fundamental assumption
of constitutive modeling in transverse isotropic rock, and they are not acceptable for use
with rocks of high anisotropy (Worotnicki, 1993). Talesnick and Ringel (1999) used a
single specimen of a thin walled hollow cylinder to determine the five independent elastic
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constants, and this approach avoids the need to preparemore than one specimen and the
complexity of applying the three different boundary conditions associated with axial
compression, radial compression, and torsion. Nunes (2002) used the Council for
Scientific Industrial Research’s (CSIR’s) triaxial cell, which is essentially a hollow cylin-
der under biaxial loading to determine the parameters, but the assumptions used, such as
using isotropic solutions for stress distribution in the thick walled hollow cylinder,
produced excessive approximations, as noted by Gonzaga et al. (2008). Gonzaga et al.
(2008) presented a methodology of using two different laboratory tests composed of one
hydrostatic compression test followed by one uniaxial and one triaxial compression test
with a single cylindrical specimen to determine the five elastic constants, but the metho-
dology still rely on the empirical Saint Venant’s equation when the specimen axis is
parallel with or normal to the isotropy plane in which no shear stresses are present.
Also, the Brazilian test was used to determine the five elastic constants using an analytical,
numerical and combination of two approaches (Chen et al., 1998; Claesson & Bohloli,
2002; Exadaktylos & Kaklis, 2001; Nasseri et al., 2003; Chou & Chen, 2008).

Despite significant efforts over the past 50 years to determine the elastic constants of
anisotropic rocks, no standardmethod has yet been suggested (ISRM, 2007; ISRM, 2015).

The strength of anisotropic rock is significantly affected by the existence of weak
planes, which are often the transversely isotropic planes. It is reported that failure occurs
in the configuration along a weak plane in many cases of uniaxial, triaxial compression
and Brazilian tensile tests (Vervoort, A. et al., 2014). The strength anisotropy can be
much greater than elastic anisotropy and the strength decreases significantly when the
weak planes are inclined with the loading direction (e.g., Cho et al., 2012). Extensive list
of study exists for compressive failure of anisotropic rock (Rodrigues, 1966; Barla, 1974;
Ramamurthy, 1993; Nasseri et al., 1997, 2003; Tien&Tsao, 2000; Hakala et al., 2007)
and tensile failure of anisotropic rock (Pinto, 1979; Claesson & Bohloli, 2002; Chen
et al., 1998; Exadaktylos & Kaklis, 2001; Chou & Chen, 2008).

Experimental study in this chapter presents a method of determining elastic con-
stants of transversely isotropic rock using two rock samples. This study also fills the
literature gap concerning the anisotropic characteristics of the mechanical, seismic and
thermal properties of rocks by investigating the correlations between these properties
and offering a more systematic examination of the applicability of tensorial properties.

3.2 Experimental setup

The laboratory directional coring system was established in order to extract the core
sample in different directions (Cho et al., 2012). Coring a block with angles of 0, 15,
30, 45, 60, 75, and 90 degrees with respect to the transverse isotropic plane by using
our laboratory-scale directional coring system (Figure 2), cylindrical samples are
obtained for anisotropic test for mechanical, thermal, seismic and permeability beha-
vior (Cho et al., 2012; Kim et al., 2012; Yang et al., 2013). Samples with 70 mm in
length and 38 mm in diameter were used for the mechanical, seismic and permeability
experiments and samples with 7 mm in length and 25.4 mm in diameter were used for
thermal conductivity tests. The thicknesses of the Brazilian test specimens were
approximately equal to their radii, in the size of about 18–22 mm.

Biaxial and triaxial strain gages were used for the strain measurements. Two biaxial
strain gages were glued on the two perpendicular sides of each core specimen. Figure 3
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(a–c) shows the schematic features of specimens having 0°, 90°, and an angle between 0°
and 90°with respect to the isotropy plane. In the case of the specimens between 0° and 90°
foliation (Figure 3 (c)), one biaxial strain gage was glued on the surface having the
maximum apparent dip angle of isotropic plane, and the other strain gage was glued on
the surface having the minimum apparent dip angle, i.e., perpendicular to the first surface.

A seismic velocity measurement system was used to measure the seismic velocity of
each sample. The divided-bar method was chosen for measuring thermal conductivity
(Beardsmore & Cull, 2001) because this method directly measures the thermal proper-
ties following the Fourier’s law.

3.3 Determination of anisotropic elastic constants

A method to determine the five elastic constants for transversely isotropic rocks were
presented in the literature (Pinto, 1970; Barla, 1974;Worotnicki, 1993; Amadei, 1996;
Hakala et al., 2007). In this method, three or more specimens (i.e., either cylindrical or
prismatic) are generally used in uniaxial compression tests with θ = 0°, 90°, and an
inclined angle θ between 0o and 90°, in order to determine the five independent
constants. While five independent measurements of strain are sufficient to obtain the
five elastic constants, there are more than five strain measurements. In this case, the
least square method was used to obtain the best-fit elastic constants.

30¡

60¡

75¡

90¡

15¡0¡
45¡

Figure 2 Directional coring system and schematic of anisotropic rock samples (Cho et al., 2012).

(a) (c)(b)

Figure 3 Three specimens for determination of anisotropic parameters (Cho et al., 2012).
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We can extract the independent equations from the uniaxial compression tests on the
three specimens introduced in the literature (Amadei, 1996) as shown in Figure 3. From
specimen (a) in which two strain gages measured identical strains, two equations were
obtained as shown in Equation 10. Three equations were obtained from specimens (b) and
(c), as shown in Equations 11 and 12, respectively, because the two lateral strain measure-
mentswere different in those specimens. In these equations, unknown elastic constants can
be determined from the known values of stress (σ), strain (ε), and anisotropy angle (θ).

εx
σy

¼ εz
σy

¼ � �0

E0

εy
σy

¼ 1
E0

ð10Þ
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The minimum number of specimens required to determine the five elastic constants
can be investigated in a matrix form composed of Equations 10, 11, and 12. When
specimens (a) and (c) in Figure 3 are used, Equations 10 and 12 are obtained from the
tests, and these equations can be summarized in a least square matrix form as follows:

εaðx1Þ=σa
εaðy1Þ=σa
εaðz1Þ=σa
εaðy2Þ=σa
εcðx1θÞ=σc
εcðy1θÞ=σc
εcðz1θÞ=σc
εcðy2θÞ=σc

266666666664

377777777775
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0 1 0 0 0
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0 1 0 0 0

sin22θ=4 sin22θ=4 0 � cos4θ=4� sin4θ=4 sin22θ=4
sin4θ cos4θ 0 �2 sin22θ=4 sin22θ=4
0 0 � sin2θ � cos2θ 0
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The first, second, fifth, sixth and seventh rows in Equation 13 are independent of
each other, and five independent equations were obtained. Thus, the five constants, i.e.,
E, E´, v, v´, and G´ can be determined from Equation 13.

In a similar way, when specimens (b) and (c) in Figure 3 are used, the five independent
equations can be obtained from Equations 11 and 12, which again allow the determi-
nation of the five elastic constants. When two different specimens of (c) in Figure 3 are
used with two different anisotropy angles (i.e., θC1 ≠ θC2) five independent equations
and the five constants also were obtained from the tests. Consequently, the minimum
number of specimens to determine the five elastic constants is two, provided that one of
the specimens was inclined with respect to the isotropic plane (Cho et al., 2012).

3.4 Mechanical, thermal, seismic and hydraulic behavior
of anisotropic rock

The experiments were conducted on three rock types, i.e., Asan gneiss, Boryeong
shale, and Yeoncheon schist for mechanical, seismic and thermal properties Berea
sandstone was tested for permeability measurement. Except sandstone, samples
showed a clear evidence of transverse isotropy due to the arrangements of some
mineral particles as observed (Kim et al., 2012). Asan gneiss is biotite gneiss consist-
ing of plagioclase, hornblende, quartz, and biotite. Flat minerals are arrayed parallel
to the foliation plane. Yeoncheon schist has schistosity, in which the platy minerals,
such as feldspar and mica, are aligned with the schistose plane. The gneiss and the
shale were unweathered, fresh rock with very few visible micro-cracks. However, the
schist had a number of micro-cracks. Two or three sets of cylindrical samples for each
type of rock were prepared tomeasure the mechanical, thermal, seismic and hydraulic
properties.

Figure 4 shows the variations in the elastic moduli, P-wave velocity, and thermal
conductivity with respect to the anisotropy angle in Asan gneiss, Boryeong shale, and
Yeoncheon schist. Solid lines in each graph show the predicted value based on tensorial
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Figure 4 Young’s modulus, P-wave velocity and thermal conductivity in different directions (Kim et al.,
2012).
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transformation for transversely isotropic model (elastic moduli, thermal conductivity)
and approximated equation for transversely isotropic model (P-wave velocity). The
right axis of each graph in Figure 4 indicates the normalized value with respect to the
average minimum value. In general, variations of the mechanical, seismic, and thermal
properties showed similar trends with anisotropy angle. The maximum values of all
three properties occurred in the direction parallel to the isotropic plane, and the
minimum value occurred in the direction perpendicular to the isotropic plane. The
exception was the elastic moduli of Asan gneiss, which had a minimum value at an
inclined angle of 45°. It is noted that minimum elastic modulus is often observed at
around this angle due to the low shear stiffness of foliation planes or fracture planes in
case of equivalent continuum model (Min & Jing, 2003).

Figure 5 shows the anisotropic permeability measured in Berea sandstone, in which
degree of anisotropy can be larger than 1.5 even in sandstone which does not have clear
visual anisotropy (Yang et al., 2013). Characterization of anisotropy through X-ray
CT scanning system turned out to be a useful option as discussed in Yun et al. (2013).

The anisotropy ratios of the elastic moduli parallel with and perpendicular to the
isotropic planes (E/E´) for Asan gneiss, Boryeong shale, and Yeoncheon schist were
determined to be 1.3, 2.1, and 3.4, respectively. The anisotropy ratios of thermal
conductivity parallel to and perpendicular to isotropic planes, (K(90°) /K(0°)), were 1.4
for Asan gneiss, 2.1 for Boryeong shale, and 2.5 for Yeoncheon schist. The P-wave
velocity anisotropy ratio (VP(90°)/VP(0°)) was 1.2 for Asan gneiss, 1.5 for Boryeong
shale, and 2.3 for Yeoncheon schist.

The mean prediction error (MPE) defined as the average relative difference between
measured and predicted elastic moduli were lower than 17%, which indicates that
transversely isotropic model is a reasonable assumption for the rock types chosen in
this study (Cho et al., 2012). The MPEs of seismic velocity for Asan gneiss, Boryeong
shale, and Yeoncheon schist were 3.5%, 4.6%, and 8.9%, respectively. The MPEs of
thermal conductivity for Asan gneiss, Boryeong shale, and Yeoncheon schist were
6.1%, 9.3%, and 8.6%, respectively. These low MPEs imply that seismic properties
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Figure 5 Permeability of Berea sandstone in different directions (Yang et al., 2013).
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can bemodeled effectively by the approximated equations for the transversely isotropic
model and thermal conductivities follows the transformation rule of a second-order
tensor for the rocks included in this study. This MPE can be a useful parameter as a
criterion to determine whether the selected rock follows the transversely isotropic
model (Kim et al., 2012).

The correlations between elastic moduli, P-wave velocities, and thermal conductiv-
ities were evident, even though there were some outliers. The best correlations were
observed between thermal conductivities and P-wave velocities. There were good
correlations between the elastic moduli and thermal conductivities as well as between
the elastic moduli and P-wave velocities for Boryeong shale and Yeoncheon schist.
Asan gneiss showed poorest correlations due to more heterogeneous samples and the
fact that the angle for minimum elastic moduli did not match with those for minimum
P-wave velocities and thermal conductivities (Kim et al., 2012).

The permeability anisotropy ratio (K(90°) /K(0°)) of Berea sandstone was 1.8 and this
anisotropy trend corresponded with the porosity anisotropy due to the bedding plane.

The anisotropy ratios of maximum to minimum uniaxial compressive strength were
2.6, 2.6 and 18.6 for Asan gneiss, Boryeong shale and Yeoncheon schist, respectively.
The anisotropy ratios of maximum to minimum tensile strength determined by
Brazilian Tensile test were 3.2, 2.2 and 7.1 for Asan gneiss, Boryeong shale and
Yeoncheon schist, respectively (Cho et al., 2012).

4 NUMERICAL ANISOTROPIC ROCK MECHANICS – BLOCKY
DISCRETE ELEMENT METHOD APPLICATION

4.1 Introduction

Fractures are common in rock masses. Any rock engineering structures on and in the
fractured rock masses must take into account the existence of fractures. Figure 6 shows
an outcrop rock mass observed in Forsmark, Sweden, in which numerous fractures
were observed. The mechanical behavior of such fractured rock mass will be greatly
affected by the existence of fractures, and the equivalent mechanical behavior in
representative scale is of great importance in rock engineering in such fractured rock
masses. Direct measurement by in-situ experiments with large or very large scale
samples is technically possible, but is costly and often involves uncertainties related
to the effects of hidden fractures, control of boundary conditions and interpretation of
results (Min& Jing, 2003). Research needs for more accurate methods determining the
rock mass properties have been widely recognized (Fairhurst, 1993) and considerable
efforts have been made in the past on the methodology for determining the equivalent
elastic mechanical properties (essentially elastic modulus and Poisson’s ratio) of frac-
tured rock mass employing empirical, analytical and numerical approaches.

The empirical methods ‘infer’ the rock mass properties from the rock mass classifica-
tion or characterization results (Bieniawski, 1978; Hoek & Brown, 1997; Barton,
2002; Palmström, 1996). Although it has gained wide popularity for practical applica-
tions for design, especially in tunneling, it often gives too conservative estimates for
property characterizations, largely because it makes use of categorized parameters
based on case histories. The main shortcoming of this approach is that it lacks a proper
mathematical platform to establish constitutive models suitable for rock anisotropy.
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The efforts to find analytical solutions for estimating the equivalent properties of
fractured rock masses have a rather long history and several analytical solutions were
proposed for cases of simple fracture system geometry (Salamon, 1968; Singh, 1973;
Amadei & Goodman, 1981; Gerrard, 1982; Oda, 1982; Fossum, 1985). The closed-
form solutions have the advantage of being compact, clear and straightforward, but
they work only for regular and often persistent and orthogonal fracture system geo-
metries and simple constitutive behavior of fractures. It is difficult, often even impos-
sible, to derive closed-form solutions with general irregular fracture systems. Analytical
methods fail to consider the interaction between the fractures and the blocks divided by
the fractures, which may have significant impacts on the overall behavior of rock
masses because the intersections of the fractures are often the locations with the largest
stress and deformation gradients, damage and failure.

With the rapid growth of computing capacity, numerical methods are attracting
more attention to determine individual properties such as strength or deformability of
the fractured rock mass. In comparison with the empirical and analytical approaches,
the numerical approach has a certain advantage that the influence of irregular
fracture system geometry and complex constitutive models of intact rock and frac-
tures can be directly included in the derivation of the equivalent mechanical proper-
ties of rock masses. Although numerical experiments on realistic irregular fracture
networks were large research subjects, they are now becoming applicable practicing
tools thanks to the recent advances in the associated area of numerical methods, DFN
treatment and improved computing power (Hart et al., 1985; Pouya & Ghoreychi,
2001; Min & Jing, 2003; Min et al., 2005; Fredriksson &Olofsson, 2007; Mas Ivars
et al., 2011). This section introduces some of the recent research development carried
out by the authors with special focus on determining the rock mass properties
considering full anisotropy.

Figure 6 An example of fractured rock masses in the dimensions about 5 m x 5 m (Min, 2004). The
picture was taken in Forsmark, Sweden, which is the site for geological repository of spent
nuclear fuel in Sweden.
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4.2 Discrete Fracture Network – Discrete Element Method
(DFN-DEM) approach

The DFN-DEM approach (Min & Jing, 2003) uses the fracture system realizations as
the geometric models of the fractured rockmasses and conducts numerical experiments
using a DEM program, UDEC (Itasca, 2000), for the calculation of mechanical and
hydraulic properties.

When six sets of boundary conditions are imposed and counter-part responses (stress
when strain boundary condition is applied and vice versa) are measured, general
constitutive relation shown in Equation 2 becomes as follows (Min, 2005; Mas Ivars
et al., 2011).

ε1xx ε2xx ε3xx ε4xx ε5xx ε6xx
ε1yy ε2yy ε3yy ε4yy ε5yy ε6yy
ε1zz ε2zz ε3zz ε4zz ε5zz ε6zz
γ1yz γ2yz γ3yz γ4yz γ5yz γ6yz
γ1zx γ2zx γ3zx γ4zx γ5zx γ6zx
γ1xy γ2xy γ3xy γ4xy γ5xy γ6xy

0BBBBBBBBB@

1CCCCCCCCCA

¼

S11 S12 S13 S14 S15 S16
S21 S22 S23 S24 S25 S26
S31 S32 S33 S34 S35 S36
S41 S42 S43 S44 S45 S46
S51 S52 S53 S54 S55 S56
S61 S62 S63 S64 S65 S66

0BBBBBB@

1CCCCCCA

σ1xx σ2xx σ3xx σ4xx σ5xx σ6xx
σ1yy σ2yy σ3yy σ4yy σ5yy σ6yy
σ1zz σ2zz σ3zz σ4zz σ5zz σ6zz
σ1yz σ2yz σ3yz σ4yz σ5yz σ6yz
σ1zx σ2zx σ3zx σ4zx σ5zx σ6zx
σ1xy σ2xy σ3xy σ4xy σ5xy σ6xy

0BBBBBBBBB@

1CCCCCCCCCA
ð14Þ

in other words,

½ε� ¼ ½S�½σ� ð15Þ
Hence, compliance matrix can be obtained as follows.

½ε�½σ��1 ¼ ½S� ð16Þ
Obtained compliance matrix must be symmetric and the asymmetric parts are consid-
ered to be the numerical errors.

If we have more than six sets of boundary conditions, we have more equations than
the unknowns, i.e. the problem needs to be solved through the least square method as
follows

½ε� ¼ ½S�½σ�
½ε�½σ�T ¼ ½S�½σ�½σ�T

½ε�½σ�T ½½σ�½σ�T ��1 ¼ ½S�
ð17Þ

For the case of a two-dimensional plane strain condition, the following equation holds
(Min & Stephansson, 2011)
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εxx
εyy
εzz
γxy

0BB@
1CCA ¼

S11 S12 S13 S16
S21 S22 S23 S26
S31 S32 S33 S36
S61 S62 S63 S66

0BB@
1CCA

σxx
σyy
σzz
σxy

0BB@
1CCA ð18Þ

Components S13, S23 and S33 are pre-determined as those of intact rock, and S31 and S32
can be determined from the condition of symmetry. S63 and S36 are zero because
fractures in 2D are always in parallel to the z-axis. When the pre-determined compo-
nents are separated, the constitutive equation becomes as follows:

εxx
εyy
γxy

0@ 1A ¼
S11 S12 S16
S21 S22 S26
S61 S62 S66

0@ 1A σxx
σyy
σxy

0@ 1Aþ
S13
S23
S63

0@ 1AðσzzÞ ð19Þ

With three independent boundary conditions as shown in Figure 7, Equation 19 becomes

εð1Þxx εð2Þxx εð3Þxx

εð1Þyy εð2Þyy εð3Þyy

γð1Þxy γð2Þxy γð3Þxy

0B@
1CA�

S13
S23
S63

0@ 1A σð1Þzz σð2Þzz σð3Þzz

� �

¼
S11 S12 S16
S21 S22 S26
S61 S62 S66

0@ 1A σð1Þxx σð2Þxx σð3Þxx

σð1Þyy σð2Þyy σð3Þyy

σð1Þxy σð2Þxy σð3Þxy

0B@
1CA ð20Þ

where σð1Þij , σð2Þij , and σð3Þij represent three linearly independent stress boundary conditions.
These relationships can be expressed in terms of a matrix notation as follows.

½ε� � ½Sz�½σz� ¼ ½S�½σ� ð21Þ
The compliance matrix is solved as

½ε�½σ��1 � ½Sz�½σz�½σ��1 ¼ ½S� ð22Þ
This numerical experiment can be an effective tool in determining rockmass properties

considering the existence of numerous fractures and overall anisotropy. Constitutive

B.C.(1) B.C.(2) B.C.(3)

σy

σy σy + Δσy

σy + Δσy
σy + Δσy

σy + Δσy

σx σx σx

τxy

τxy

σx σx σx

Figure 7 Three linearly independent boundary conditions for numerical experiments in UDEC (Min &
Jing, 2003).
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behavior of fractures can be readily incorporated by considering e.g., non-linear beha-
vior. Extension to three-dimensional application should be straight-forward. A compar-
ison of two- and three-dimensional study showed that two-dimensional approach can
underestimate the elastic modulus because three-dimensional DFN geometry is approxi-
mated in two dimensions (Min& Thoraval, 2012). Several studies exist that determined
the strength properties of fractured rock mases (e.g., Noorian-Bidgoli & Jing, 2015).
This type of numerical experiment has been also used in understanding hydraulic and
coupled hydromechanical behavior especially for stress-dependent permeability of frac-
tured rock mass (Min et al., 2004a, b)

4.3 Verification

In order to verify the DFN-DEM approach, a model with two orthogonal fracture sets is
used for the comparison between the elastic properties produced by the numerical
experiments and the closed-form solution (Amadei & Goodman, 1981). The computa-
tional models are rotated in intervals of 10 degrees to evaluate the variation of elastic
moduli in rotated directions.Note also that themodel boundary is located in the center of
fracture spacing to avoid the need to adjust the equivalent spacing. Elastic modulus of
intact rock was 84.6 GPa, Poisson’s ratio was 0.24, normal stiffness of fracture was 434
GPa/m, shear stiffness of fracture varied from 43.4 GPa/m to 2170 GPa/m and the
spacing between fracture was set to be 0.5 m (Min & Jing, 2003). Three boundary
conditions described in Figure 7 are applied to obtain the compliance matrix. As shown
in Figure 8, the two sets of results show an almost perfect agreement. Elastic moduli
variation with respect to rotation angle was plotted as a function of the ratio of shear to
normal stiffness of fractures. Importantly, each component of compliance tensor such as
S11, S12, S16, S22, S26 and S66 also match perfectly with analytical solution as shown in
Figure 8(b).

(a) (b)

0
0 10 20 30 40 50 60 70 80 90

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

N
o

rm
al

iz
ed

 E
la

st
ic

 M
o

d
u

lu
s

Rotation Angle (°)
0

0

5E–1

1E–10

10 20 30 40 50 60 70 80 90

Rotation Angle (°)

C
o

m
p

lia
n

ce
 T

en
so

r 
C

o
m

p
o

n
en

t 
(1

/p
a)

Ks/Kn= 5.0

K
s
/K

n
= 2.0

Ks/Kn= 0.5

Ks/Kn= 0.2

Ks/Kn= 0.1

S66

S26

S12

S16

S11&S22

Ks/Kn= 1.0
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Different ratios of shear stiffness and normal stiffness of fracture are indicated, (b) compliance
tensor components variation with respect to rotation angle. In both figures, symbols corre-
spond to numerical results while the lines are from analytical solution.
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4.4 Demonstrating examples from Forsmark, Sweden

Case study was taken from Forsmark in Sweden which is now chosen as a candidate site
for geological repository of spent nuclear fuels. In order to consider the stress depen-
dency, different sets of boundary stresses were applied in accordance with the stress
distribution, from depth 20 m to 1,000 m. In the modeling, stress-dependent normal
behavior was implemented by the step-wise normal stiffness model, and different shear
stiffness values were used as input data corresponding to the stress levels. Figure 9 shows
the fractured rock geometry observed in the site and represented in the numerical
experiment.

Implemented fracture behavior is shown in Figure 10(a), and the results of elastic
moduli obtained by the stress-dependent fracture model are shown in Figure 10(b)
where the calculated elastic moduli versus depth under increasing stress condition are
presented. At low stress levels under 50 m of depth, the elastic moduli are about
50 percent of those of intact rock. However, at high stress levels over 400 m of
depth, the moduli reach nearly the same values as that of intact rock. Stress induced
anisotropy can be observed at shallow depths, mainly because of the low stiffness
response of fractures under low stresses. The maximum anisotropy was about 20
percent at shallow depths. However, this effect was not significant at greater depths.

The Poisson’s ratio of fractured rock mass is often greater than 0.5 because of the
existence of fractures and their low shear stiffness. The discussion on this aspect can be
found in Min and Jing (2004).

Figure 11 shows examples of horizontal displacements in the fractured rockmass after
application of boundary stresses of different magnitudes. The displacement is highly
influenced by the existence of the fractures. As the figures show, the influence of fracture
is more evident at lower and middle stresses, i.e., depth of 20~200 m (Figure 11(a) and
(b)), while nearly uniformdisplacement is observed at high stress level, i.e., depth of 1000
m (Figure 11(c)), where fractures are mainly closed with very high stiffness.

(a) (b)

Figure 9 Fractured rock geometry. (a) fracture trace map (SKB, 2004), (b) generated DFN. The two
squares in the left and DFN in the right have dimension of 10 m × 10 m (Min et al., 2005; Min &
Stephansson, 2011).
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5 NUMERICAL ANISOTROPIC ROCK MECHANICS – BONDED
PARTICLE DISCRETE ELEMENT METHOD APPLICATION

5.1 Introduction

The bonded and particulate discrete element method (DEM) has been enjoying a wide
variety of applications since its first introduction (Cundall& Strack, 1979; Potyondy&
Cundall, 2004; Potyondy, 2015). It is now recognized as both a scientific tool to
investigate the micro-mechanisms that produce complex macroscopic behaviors and
an engineering tool to predict these macroscopic behaviors. Compared to DEM in
block system in which deformable blocks are represented by polygon and polyhedral,
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Figure 11 Horizontal displacement at different stress levels (modified from Min et al., 2005; Min &
Stephansson, 2011).
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Figure 10 Elastic properties measured by DFN-DEM approach. (a) aperture and normal stiffness of a
fracture with respect to normal stress implemented in the numerical experiment, (b) Elastic
moduli of fractured rockmass versus depth. Because of stress dependent stiffness of fractures,
elastic parameters are also stress dependent (Min et al., 2005; Min & Stephansson, 2011).
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DEM in bonded-particle system can be more effective in simulating the progressive
failure of rock. The theory and applications of DEM in bonded-particle system are
introduced in Potyondy and Cundall (2004) and comprehensive review and theoretical
background on explicit and implicit DEM are available in Jing and Stephansson
(2007). Rock mechanics traditionally attempted to use the procedure developed in
other branches of engineering such as FEM. DEM seems to be one of the unique
contribution from rock mechanics which attract the interest from other areas such as
powder technology, granular material, fluid mechanics and mineral processing as evi-
denced by a vast amount of citation being made on rock mechanics literature, e.g.,
Cundall and Strack (1979). Despite significant advances in DEM modeling of rock to
account for mechanical failure, most of these studies and their applications were applied
entirely on the isotropic rock. The DEM modeling on anisotropic rock can be effective
since it does not require pre-defined macroscopic failure criteria which can be very hard,
if not impossible, to be obtained especially in anisotropic case. While some other
approaches for modeling anisotropic rock have been suggested, systematic verification
and direct comparison with anisotropic rock require more substantial research.

We present the DEM modeling of a transversely isotropic rock with systematic
verification in both elastic and strength properties. The key conceptual idea of a trans-
versely isotropic rock modeling is to include weak cohesive planes using a smooth joint
model by assigning relatively larger cohesion compared to joints or fractures (Park &
Min, 2015a, b). The smooth joint model simulates the behavior of a smooth interface by
assigning new bonding models that have pre-defined orientations (Mas Ivars et al.,
2011). The developed model was validated against laboratory observations of three
rock types (Cho et al., 2012) and was extended to upscaled foundation problem under
a surface line load that captured the stress distribution in the transversely isotropic rock
formation.

5.2 Modeling methodology and verification

The results presented in this is obtained using PFC code (Itasca, 2008) which is a
bonded-particle Discrete Element Method (DEM) defined as a dense packing of non-
uniform sized circular or spherical particles joined at their contact points with parallel
bond (Potyondy & Cundall, 2004). The calculation of particle movements is governed
by Newton’s second law of motion and a force-displacement law. The bonded particle
model was adopted to construct isotropic rock without weak planes, which was
calibrated based on elastic modulus and strengths that have the least effect of weak
planes. Then, the smooth joint model (Mas Ivars et al., 2011) was inserted to create the
weak cohesive planes to simulate the behavior of the equivalent anisotropic continuum.
Once the smooth joint, which consists of newly assigned properties, such as dip angle,
normal and shear stiffness, friction coefficient, dilation angle, tensile strength, and
cohesion, is created, pre-existing parallel bonds are deleted and replaced (Park &
Min, 2015a, b). Figure 12 shows the rock samples made for transversely isotropic
DEM modeling.

Figure 13(a) shows that the variations of the normalized elastic moduli of the
transversely isotropic model with respect to various inclined angles from 0o to 90o in
terms of different stiffness ratios of the weak planes (0.2, 0.5, 1.0, 2.0, and 5.0). The
same definition of the stiffness ratio, K, is defined as the ratio of shear stiffness to
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normal stiffness of the weak planes (ks/kn) and same analytical solution was used
(Amadei & Goodman, 1981). The input normal stiffness (kn,sj) was fixed as 3180
GPa/m, while the input shear stiffness (ks,sj) was varied depending on the stiffness ratio
(636, 1590, 3180, 6360, and 15900GPa/m). Theweak cohesive planes such as bedding
planes normally have smooth interfaces without bumpiness of the grains, so that the
dilation angle (ψ) of smooth joints was regarded as 0o. The friction coefficient (μ),
tensile strength (σn,sj), and cohesion (Csj) of smooth joints was determined as 57.29,
100 MPa, and 100 MPa, which were very high and thereby avoiding failure along the
smooth joints when the elastic deformation occurs. There was a good match between
the results of the numerical simulations and the analytical solutions, and a better match
was achieved with higher resolutions with small particles. The particle size of DEM is
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Figure 12 Transversely isotropic rock specimens made by bonded DEM model (Park & Min, 2015b).
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one of the key parameters in reproducing the mechanical behavior of rock. The results
acquired in this study show that reasonable resemblance was provided by about 88
particles across the width of 38 mm. These agreements demonstrate the validity of the
smooth joint model as weak cohesive planes, so that the suggested bonded particle
model with smooth joints model can be used to simulate the elastic modulus of a
transversely isotropic rock (Park & Min, 2015b).

Furthermore, the DEMmodel can capture strength anisotropy to a reasonable extent
as seen in Figure 13(b). The strength trends of the analytical solution indicated that a
smaller friction angle or cohesion makes the curve wider and the minimum strength
smaller (Jaeger et al., 2007). Since the bonded particle model is not a continuum, a
perfect match between the analytical and numerical models was not expected for
strength variation. Some discrepancies are inevitably noticed as a form of transition
between failures due to the creation of a new fracture, and the DEM model may be
more realistic in this regard than the analytical model.

5.3 Validation against laboratory measurement

Three different types of a transversely isotropic rock (Asan gneiss, Boryeong shale and
Yeoncheon schist) were reproduced as numerical models by assigning the micropara-
meters of the bonded particle model and the smooth joint model listed in Table 1. In the
numerical model, there are about 88 balls across 38 mm width of the specimen. As a
result of the calibration process, macroproperties including elastic modulus, uniaxial
compressive strength and Brazilian tensile strength of the numerical experiments were
compared with those of the laboratory tests as presented in Figure 14. The squares
indicate the laboratory test results, and the solid lines indicate the numerical test results.
In the laboratory experiment,UCS (uniaxial compressive strength) of the specimen with
the vertical weak planes was greater than the value of the specimenwith horizontal weak
planes although only identical UCSs are possible in the analytical solutions. It appears
that rock matrix between layers also has a certain directional characteristics with
stronger strength in the direction parallel to the layers. As this second-order anisotropy
present in rock matrix was not considered in numerical model, current DEM model
cannot adequately address this strength difference observed in direction parallel and
perpendicular to the weak planes. Only a shoulder-type form of strength variation
predicting the equal strength parallel and perpendicular to the loading axis was observed
in the numerical experiments. It appears that the DEM model captured the elastic and

Table 1 Microparameters of smooth joint model for Asan gneiss, Boryeong shale, and Yeoncheon
schist (Park & Min, 2015b).

Microparameter Asan gneiss Boryeong shale Yeoncheon schist

Normal stiffness, kn,sj [GPa/m] 11,450 3,360 1,730
Shear stiffness, ks,sj [GPa/m] 2,540 960 1,440
Friction coefficient, μ (φ) 0.577 (30o) 0.364 (20o) 0.268 (15o)
Dilation angle, ψ [degree] 0o 0o 0o

Tensile strength, σn,sj [MPa] 3 3 3
Cohesion, Csj [MPa] 30 15 10
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strength behaviors of laboratory observation to a reasonable extent, given that the
variation of the elastic and strength properties in the laboratorymeasurements fluctuated
and did not necessarily follow the theoretical trends.

Failuremechanisms during uniaxial and tensile tests were analyzed by comparing the
failure patterns observed during numerical and laboratory experiments as shown in
Figure 15. In the DEM model, the bond breakage of parallel bonds and smooth joints
induced by either tensile or shear failure matched well with failure patterns on rock
specimens (Vervoort et al., 2014; Park & Min, 2015b).

5.4 Numerical demonstration of a larger scale problem

The developed DEMmodel was extended to Boussinesq’s problems subjected to concen-
trated line load that is often regarded as a foundation problem as depicted in Figure 16(a).
When the line load (ρ) is applied normal to the surface, radial stress (σr) arising from the
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Figure 14 Comparison of elastic modulus, uniaxial compressive strength and Brazilian tensile strength
from laboratory tests, and those from bonded-particle DEM modeling (AS gneiss: Asan
gneiss, BR shale: Boryoeng shale, YC schist: Yeoncheon schist) (Park & Min, 2015b).
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line load as a function of distance (r) and the angle (θ) rotated from the direction of applied
load (vertical axis). At a certain point can be expressed as (Goodman, 1989):

σr ¼ 2ρ cos θ
πr

ð23Þ

Equation 23 is the simplified two-dimensional solution of Boussinesq’s problem
which is often called Boussinesq-Flamant’s Problem (Davis & Selvadurai, 1996). For
transversely isotropic rock mass embedding a single set of weak planes (see Figure 16
(b)), following analytical solution can be used (Goodman, 1989):

σr ¼ h
πr

X cos γþ Yg sin γ

ðcos2 γ� g sin2 γÞ2 þ h2 sin2γ cos2γ

 !
ð24Þ

0° 15° 30° 45° 60° 75° 90°

Figure 15 Comparison of post failure specimens obtained from compressive test on Boryeong shale
(from Cho et al., 2012) and bonded-particle DEM modeling (Park & Min, 2015b).
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Figure 16 Conceptual figures of foundation problem: (a) isotropic rock mass model, and (b) transver-
sely isotropic rock mass model (Park & Min, 2015b).
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where γ equals θminus α as shown in Figure 16. X and Y are x-directional load and y-
directional load, respectively. Both g and h are dimensionless quantities accounting for
the properties of isotropic rock mass and are given by

g ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ E

ð1� �2Þknδ

s

h ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E

ð1� �2Þ
2ð1þ �Þ

E
þ 1
ksδ

0@ 1Aþ 2 g� �

1� �

0@ 1A
vuuut

ð25Þ

Two material constants are composed of the mechanical properties of not only the
intact rock elastic modulus (E) and Poisson’s ratio (ν) but also the weak planes such as
normal and shear stiffness (kn, ks) and mean spacing between weak planes (δ). By
substituting Equation 25 into Equation 24, the radial stress distribution in transversely
isotropic rock mass can be obtained.

For simulating foundation problems using bonded-particle DEM, a 2 x 2 m square
isotropic rock mass model that consisting of 114,984 particles was used, and all
boundaries were constrained except the upper boundary on which the surface line
load was applied. Three models with 0o, 60o, and 90o inclined angle of smooth joints
were taken into account. The stress distribution along the same distance line of
isotropic rock mass model was compared to that of the numerical calculation, thereby
obtaining the results shown in Figure 17(a). More detailed input microparameters of
bonded particle model can be found in Park andMin (2015b). In this model, the radial
stress was calculated at the distance (r) of 0.4, 0.6, and 0.8m from the applied line load,
which is 10MN/m (Park&Min, 2015b). Contact force induced by the applied surface
loading is shown in the left, and the pressure bulbs of radial stress (σr) are presented in
the right with respect to the distance (r) from the point of applied line load for the angle
(θ) ranging from 0o to 180o. The measured stress in the numerical model was in good
agreement with the value from the analytical solution. As the pressure bulb becomes
larger, the magnitude of measured stress increases, meaning that the measured point is
closer to the applied load (ρ).

In transversely isotropic models, the radial stress was estimated under the same
boundary and loading conditions as those employed in the isotropic rock mass
model. As a result, the stress distribution in the numerical model and that in the
analytical solution were compared, as illustrated in Figure 17(b–d). The observa-
tions in transversely isotropic rock also showed a close match between the results
of the numerical and analytical solutions. In particular, the developed bonded-
particle DEM successfully captured the effect of the bedding planes in horizontal,
inclined, and vertical directions on the stress distribution. The closer the measured
points are to the applied load, the more discrepancy is observed due to the higher
magnitude of stress and gradient in the vicinity. This is because there were
relatively fewer particles in the vicinity of the loading point, which resulted in a
more heterogeneous stress distribution. The large-scale DEM modeling of trans-
versely isotropic rock mass matched well in accordance with the analytical solu-
tions, which demonstrated that the developed model can be used in anisotropic
rock mass.
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6 CONCLUSION

This chapter provides a brief overview of theoretical anisotropic rock mechanics and
introduces a series of experimental and numerical studies applied to anisotropic rock
mechanics mostly conducted in the past 15 years by the authors.

Experimental investigations are made on elastic, thermal conductivity, seismic and
permeability anisotropy of rock, based on cores taken from directional coring system.
Methods are presented to obtain five independent parameters for transversely isotropic
rocks using two rock samples cored in different directions. Experimental investigation
of elastic, seismic, thermal conductivity and permeability anisotropy of some of rock
types found in Korea showed a clear evidence of transverse isotropy. The anisotropy
ratios of elastic modulus parallel to and perpendicular to isotropic planes (E/E0) were
determined to be 1.3, 2.1 and 3.4 for Asan gneiss, Boryeong shale and Yeoncheon
schist, respectively, and this shows that extent of anisotropy can be great and cannot be
ignored in practice. Currently, standardmethod of determining anisotropic parameters
does not exist, and adoption of such standard will greatly help in considering aniso-
tropy in practical rock engineering.

First part of numerical anisotropic rock mechanics in this chapter introduces the
numerical experiments named as DFN-DEM (Discrete Fracture Network-Discrete
Element Method) approach to determine the compliance tensor of fractured rock mass
modeled as equivalent continuum anisotropic rock. Blocky Discrete element method
(DEM) is employed for this numerical experiment using three boundary conditions in
two dimensions. Systematic verification and application to Forsmark, Sweden, show that
this numerical method is readily applicable in practice. The strength of the numerical
approach over other empirical or analytical methods is that the mechanical properties of
fractured rock mass with very irregular fracture system geometry can be directly deter-
mined and that complex constitutive models of fractures can be incorporated. Using this
approach, we can investigate the effect of different factors in the determination of overall
mechanical properties which are often anisotropic.

Second part of numerical anisotropic rock mechanics in this chapter deals with
representation of transversely isotropic rock using bonded-particle DEM model.
Bonded-particle DEMwith embedded smooth joints was applied tomodel the mechan-
ical behaviors of transversely isotropic rock with systematic verifications and exten-
sions to laboratory and upscaled problems. Both deformation and strength behavior
modeled by DEM showed a reasonable agreement with analytical solution, and
laboratory observation. Upscaled model applied to anisotropic foundation demon-
strate that large scale application anisotropic DEM model is also feasible.
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Chapter 5

Characterization of rock masses
based on geostatistical joint mapping
and rock boring operations

M. Stavropoulou1 & G. Exadaktylos2
1Faculty of Geology and Geoenvironment, National and Kapodistrian University
of Athens, Greece
2School of Mineral Resources Engineering, Technical University of Crete, Greece

Abstract: In mechanized rock excavations using Tunnel BoringMachines (TBM’s) the
contact of the disc cutters with the rock precedes every other work like mucking and
support. Penetration into the cohesive/frictional ground by the tip of a disc cutter
subjected to a given thrust force can be achieved only a fraction of a cm at a time
instant. In a backward analysis if cutting processes in rocks are properly registered
and analyzed they give valuable information on the mechanical properties of the
heterogeneous rock masses like strength, deformability, index properties such as
abrasivity and hardness, or physical properties like content in abrasive or clay
minerals. It is evident that a proper backward scheme may lead to a “smart” rock
cutting process. On the other hand, the forward problem is the optimum design of
cutting discs then of the cutting head and finally of the operational parameters of
TBM’s under a given heterogeneous and “opaque” geomechanical environment. In
order to achieve both aims the logical step is to study first the mechanics of a single
disc cutter penetrating and cutting the rock and then compose the whole response
model of the cutting head of a boringmachine. Before the outset of the excavation of a
TBM several geotechnical and geological data are collected along the tunnel “corri-
dor”. This data should be interpolated along the planned tunnel axis. This interpola-
tion should be done on a 3D grid of the geological model around and along tunnel
axis. The Geostatistical approach accompanied with computer aided design tools
provide the mathematical and the geometrical frames needed for the interpolation of
spatially or temporally correlated data from sparse spatial sample data. Then it is
possible to correlate the TBM performance with the geological-geotechnical condi-
tions at regular intervals along the tunnel and extract valuable information regarding
the former issue. Herein, we are going to display the above concepts and tools with an
example case study.

1 INTRODUCTION

Drilling comprises a set of processes for breaking and removing rock to create drill-
holes, boreholes, tunnels, and other types of excavations. It may be percussive-rotary or
rotary with tri-cone bits or drag bits depending on hole diameter and ground condi-
tions. On the other hand full-face boring machines like the Tunnel Boring Machine
(TBM) are basically rotary cutting systems dedicated for the entire excavation of a



circular cross-section of an underground work (i.e. a tunnel, an incline etc) during their
advancement. Such a mechanical excavation system includes the cutter head or cutting
wheel with cutting tools attached on it (discs knives or chisel tools) as is shown in
Figures 1a and b, mucking components, power supply systems for cutting wheel thrust
and rotation, and a steering system. In hard rocks an “open” TBM has hydraulic
grippers that exert to the sidewalls a certain thrust for the necessary resistance required
for the provision of the thrust and torque to the cutting wheel, while in heavily
fractured rock masses it is equipped with one or two shields for protection of a prone
to fall (cave) roof like in longwall mining. Single shields move ahead by exerting thrust
on the previous erected lining in the rear of the shield (i.e. reinforced concrete seg-
ments). Double shield or telescopic shield includes a sidewall gripping thrust system
while the lining thrust system is an auxiliary component of the system. Additional back-
up equipment includes tunnel support with concrete segments, muck transport, per-
sonnel transport, material supply and utilities and ventilation to the tunnel’s face. In
this chapter we are mainly concerned as of how the design and operational parameters
of a TBM and the rock mass characteristics are affecting the performance of such an
integrated mechanical excavation system.

The cutting action of drag bits in rotary drilling, cutting picks in roadheaders and
knifes (or scrapers) in soft rock TBM’s differs slightly from that of the rolling disc
cutters, although all types of tools act principally like indenters. A scraper, drag bit or
chisel tool cuts the rock along a prescribed circular path under the combined action of
the normal force and the drag or cutting force that is parallel with the cutting face and
planning the rock ahead of it. Pick width, as well as, the tool, rake and back-rake
angles among other bit design parameters greatly influence the forces necessary to cut
the rock. On the other hand cutting of rocks with discs is performed by indenting
them into the rock to the required depth with sufficiently high normal force and then
to roll them along circular grooves with the aid of the rolling force. The geometry of
the tip (i.e. V-shaped or constant cross-section) and disc’s radius, among other
parameters, depict the cutting forces transmitted to the rock. Cutter design has
been evolved the past years both in regards to their geometry and materials.
Regarding the bit shape the discs are now designed with a ‘constant section’ with
flat tip rather than a ‘wedge-shaped’ tip, in order to maintain a stable profile after

(a) (b)

Figure 1 Main cutting tools of a TBM; (a) Sliced section of a disc cutter and its bearing with constant
section for cutting medium to hard rocks, and (b) side section cutting knife (or scraper) with
hard metal inserts for cutting soft rocks and soils (courtesy of Herrenknecht).
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wear and a longer period of use. Special hardened steels or hard metal inserts are also
employed exhibiting balanced properties of hardness, toughness and abrasion resis-
tance. Disc cutters are more efficient than drag tools in hard and abrasive grounds and
vice versa, that is in soft or heavily fractured and not abrasive geological formations
the drag type tools perform in more efficient manner; disc cutters cannot freely rotate
due to insufficient interfacial friction between the soft ground and the disc leading to
excessive wear of the latter. Since the cutting tools are used to transfer the energy from
the machine to the rock it may be realized that a central place in predicting the
performance of a boring machine referring to the advance rate, and unit excavation
cost, holds the model for the calculation of the cutting forces.

2 DESIGN CONCEPTS AND PERFORMANCE OF TUNNEL BORING
MACHINES

2.1 Introduction

A central problem of considerable practical interest in rock mass boring operations is
how to predict the spatial distribution of rock strength and possibly abrasivity over the
tunnel length before the commencement of the excavation process. This is because
strength and abrasivity are the principal parameters required for the prediction of the
performance of the TBM like penetration and advance rates, capital and operational
excavation costs, required thrust and torque, but also the stability of the tunnel itself
and the disturbance of the ground surface (i.e. subsidence) in shallow excavations. For
this purpose onemay rely on the use of the conceptual 3D volume geological model (see
Section 4), relevant geological interpretations (soft data) and limited number of sam-
ples obtained in the exploration phase (hard data). It is obvious that the initial “con-
ceptual ground model” is incomplete due to rather limited size of sample compared to
the scale of the excavation. So, the next challenging task is how to continuously
upgrade this initial ground model by exploiting TBM registered data (hard data).
Legitimate ways to characterize the rock mass may be based on RMR, Q, GSI,
Fracture Frequency (FF) rock mass characterization schemes or through other appro-
priate scheme tailored to a certain project. This is because there are enough data from
rock mass excavation projects worldwide in order to link these empirical rock mass
indices with fundamental concepts like damage of rock mass. Herein, our concern on
these aspects of TBM excavation is graphically depicted in Figure 2, and may be listed
as follows:

• Knowing RMR, Q or GSI rock mass quality indices (that could be considered as
a pre-existing damage inherited to the rock by the joints) and intact rock
mechanical properties to appropriately design the TBM machine and predict
its performance along the chainage of the tunnel. That is, predict penetration
rate and torque based on input values of thrust and rotational speed of the
cutting head.

• Alternatively, by collecting thrust, penetration rate and other TBM recorded
operational data, to estimate RMR (or Q or GSI) and then to upgrade the model
of the rock mass in front of the tunnel by combining with RMR (or Q or GSI)
estimated from boreholes or drillholes in front of the tunnel.
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2.2 Fundamentals of rock boring operations

The proper selection and design features of a TBM (i.e. installed power, number, type
and location of cutting tools on the cutting wheel etc.) depends on the anticipated
geological conditions, the tunnel cross-section diameter, the length of the tunnel and
the permissible excavation cost of the project. Geological conditions refer to the strength
and hardness of the rock masses, their content in abrasive and clay minerals, and the
joint network. Ground conditions refer to the in situ stress field and the presence of
water or temperature gradients. Absrasive minerals impose wear to the discs while
clay minerals create sticky conditions for them (i.e. clay trapped in the housing of the
disc cutter or at the interface of the tip of the cutter and the rock creating “sticky”
conditions). Also, the presence of water and in situ stresses influence the stiffness and
strength of the rock mass. Hence, it is quite probable that geological parameters are
varying from face to the neighboring faces and inside the area of the tunnel’s face
itself. These parameters in turn influence the net Penetration Rate (PR [m/h]), the
Advance Rate (AR [m/h]) and the unit excavation cost (i.e. cost per meter of drive).
The latter refers to the cost of replacement of worn disc cutters or tools, capital and
operational costs. The penetration rate, PR, in [m/h] is depicted by the cutting depth
per revolution, denoted by the symbol p, and the rotational speed of the cutting wheel
denoted with ω, in the following manner

PR ¼ p½cm=rev� ⋅ω½rev=min� ⋅ 60½min=h� ⋅10�2½m=cm� ð1Þ
It is noted that units appear in brackets. Also, it should be noticed that the maximum
rotational speed of the cutting wheel ω [1/min] cannot be larger than a limiting value
depending on the prescribed maximum linear velocity of the gauge (peripheral) cutters.
That is the maximum rotational speed is depicted from the following inequality

Area of correlation of TBM logged data with RMR or Q rock
mass classification data

characterized
section of rock
mass with the aid of
TBM

characterized
sections of rock
mass from exploratory
boreholes

logged boreholes

tunnel
alignment

TB-3 TB-7

Figure 2 Sketch of the concept of using TBM as a tool for geotechnical characterization of the rock mass
between logged boreholes.
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vgauge ¼ ω
D
2
¼ Ω

d
2
≤ vmax ð2Þ

wherein D is the diameter of the cutting wheel, and Ω, d denote the rotational speed and
diameter of the cutting disc (the equality holds true since both expressions should give the
rolling speed vgauge of the disc). The reasons for the limitation of the rolling speed is the
frictional heat produced in the cutter bearing - the cutters risk to block due to too high
temperature and may thus hinder the boring process - the avoidance of machine vibra-
tions and the reduction of the centrifugal forces on the rock chips. With the cutter discs
currently available and their material characteristics, the number of revolutions per
minute Ω range from 140 to 160 rpm (Maidl et al., 2012). Standard disc diameters are
d = 394 mm and d = 432 mm, although smaller diameters are available like d = 280 mm
and larger have been developed d = 483 mm. With this increase of diameter, the permis-
sible rolling speed also increased up to about 190 m/min (Maidl et al., 2012), which
considering Equation 2 also lead to the increase of cutting wheel revolution speed. It is
noticed here that the as the disc cutter steel wears out, its diameter decreases. Hence the
monitoring of the rotation speed of disc cutters and the comparison with the cutter head
rotation may allow the estimation of the degree of disc wear.

The advance rate AR of the TBM is found if we know the degree of utilization or
mechanical efficiency nutil of the TBM solely for cutting and PR. For TΒΜ excavation
Barton (2000) proposed the following empirical relation linking AR and PR

AR ¼ PR ⋅ nutil ð3Þ
with

nutil ¼ tm ð4Þ
where t is the time of duration of the tunnel excavation and the exponent m, is a
negative real number with typical values ranging from −0.15 to −0.45. Alternatively,
instead of the time that depends on other factors like shift hours etc., one may use the
distance traveled by the TBM divided by the total planned length of the tunnel. For
example for 50% utilization of the machine for rock cutting, p = 0.5 cm/rev, at a given
time instant, and ω=12 rev/min we get the following value of the AR

AR ¼ nutil ⋅PR ¼ nutil ⋅ p½cm=rev� ⋅ω½rev=min� ⋅ 60½min=h� ⋅ 10�2½m=cm� ¼
¼ 0:5 ⋅ 0:5 ⋅ 12 ⋅ 60 ⋅ 10�2 ¼ 1:8m=h

ð5Þ

According to the position of the disc cutters on the cutter head (e.g. Figure 3a), three
sets of cutters can be distinguished, namely the centrals which perforate the center of
the section, the frontals which attack the zone between the center and the periphery and
the gauge cutters or ‘of galibo’ which are in the periphery of the head, supporting the
diameter of the excavation and the needed form.

The number of discs mounted on the wheel depends on the diameter D of the cutting
wheel and the prescribed spacing S of neighboring cuts, i.e.

Nt ¼ N þNgauge ð6Þ
wherein Nt is total number of cutting discs, N is the number of discs mounted on the
forehead of the cutting wheel, and Ngauge denote the gauge (or peripheral) discs.
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As the cutting wheel rotates each disc contacts the face along a different circular path
as illustrated in Figure 3b. The average spacing between adjacent groves is denoted by
the symbol S, and can be found from the circular traces of the disc cutters as is shown in
Figure 3. The number of discs attached on the wheel may be calculated in the following
approximate manner

Nt ≈
D
2S

ð7Þ

Average spacing between neighboring cutter grooves is generally about 65–100 mm,
whereas typical constant cross section cutter tip widths range from 12 to 19 mm. The
increase of nominal contact force from90 kN to about 312 kN for disc cutters increased in
diameter from 280mm (11”) to 483mm (19”) enables not only a considerable increase of
the average contact force, but also leads to a significant improvement in the lifetime of the
disc cutters.

The cutting process involves initially indentation of the disc into the rock accom-
panied with pulverization (highly damaged powdered material) of the rock around
the contact zone with it, formation during loading of radial cracks and microcracks
beneath the tip of the cutter for pre-conditioning the indentation of the cutter in the
next pass (the radial tensile crack directly below the tip called “median vent”) and
later after the passing of the rolling disc above the area, the unloading of the rock
around the contact region of the cutting edge that is responsible for the closure of
the median vent but on the other hand for imposing sufficiently large tensile stresses
leading to the formation of inclined tensile radial cracks called “lateral vents” or
“radial vents” (Swain & Lawn, 1976; Snowdon et al., 1982). It is worth noticing
here that in another technique of rock excavation, namely that of blasting, apart from

Figure 3 (a) Cutting head, and (b) traces of the disc cutters (right) of the shield convertible TBM used in
the KCRC DB320 project for the construction of twin tunnels in Hong-Kong (courtesy of
BOUYGUES TRAVAUX PUBLICS).
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the much larger strain rates involved compared to disc cutting, the mechanism of rock
fragmentation is principally with radial cracks extending around the blasthole which
have been initiated by the tail of the traveling shock wave that produces tensile
tangential stresses (Kutter & Fairhurst, 1971). This means that in rock destruction
processes with cutting tools or blasting both tensile and compressive strengths of the
rock should be considered. At a subsequent stage of the cutting process one or more
mixed mode (i.e. mode-I and mode II) cracks propagate more or less parallel with the
free surface toward the neighboring newly formed groove or free surface that finally
lead to chip formation that resemble a slab. In this manner one expects that the chips
have a width of the order of kerf spacing S, thickness of the order of disc penetration p,
and length one to three times the chip width (Nelson, 1993). In some cases of large
penetration depths p, the path of the mixed-mode crack is concave upwards leading to
“undercutting” (Snowdon et al., 1982). Neighboring kerfs are not loaded at the same
time, i.e. there is already a kerf at distance S from the neighboring rolling disc in order
to facilitate crack propagation toward this kerf and chip formation.

A graph of forces versus time will have a characteristic form showing for a certain
cycle a rise to peak, with a sudden drop as chipping occurs. In this manner the force-
time diagram for both normal and rolling forces will exhibit a wave-form due to
successive loading-unloading cycles like those illustrated in Figures 4a and b. It may
be observed that the inherent heterogeneity of rocks is manifested with the fluctuation
of the local average force values around the global average corresponding to a certain
length traveled by the cutter.
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Figure 4 Typical waveforms of normal and rolling forces with.
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A rather useful concept in the performance analysis of a TBM (or any other mechan-
ical excavation technique) is the Specific Energy (SE) that has been proposed by Teale
(1965) and initially has been used for the analysis of percussive and rotary drilling of
rocks but later it has been also applied for boring machines. SE has units of stress, such
as [MPa] or [MJ/m3], has a direct effect on the efficiency of the boring operation,
expressed by the PR, and the excavation time and hence on AR and on the cost of
excavation.

SE is estimated by two different but practically equivalent methods. In the first
method the estimation involves a single cutter and SE is expressed by the ratio of
the rolling force Fr over the product of penetration depth per cutter head revolution
p by the average spacing of neighboring cuts S, and is denoted here by the symbol
SE1, i.e.

SE1 ¼ Fr
S ⋅ p

ð8Þ

The sketch of Figure 5 illustrates the basic force and length parameters entering the above
equation. This formula is valid since the contribution of the normal force Fn to the specific
energy is negligible (Teale, 1964) considering the fact that the cutting path of the discs
tangential to the face is significantly larger than the distance perpendicular to the face.

In the secondmethod the estimation of SE is done by dividing the consumed power of
the cutting head multiplied by a coefficient of mechanical efficiency, by the
Instantaneous Cutting Rate (ICR) which is the excavated volume of rock in the unit
of time, and is denoted here by the symbol SE2

SE2 ¼ η ⋅
P

V=t
⇔ ICR ¼ V

t
¼ η ⋅P

SE2
ð9Þ

where η is the coefficient of mechanical efficiency that is influenced by other types of
actions apart from cutting like cutting on an incline, friction at cutter head and shield,
turn it in idle position, lifting of buckets, worn discs, sticky rock etc., P is the consumed
power in the time interval t, andV is the volume of rock that is excavated in the same time
interval.
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y
x

z
o

Fn FL

Fr

Figure 5 Forces exerted on the rolling disc in an isometric view of the cutting process.
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The product of the angular velocityωang = 2Πω [rad/min] with the torqueT [kNm] of
the cutting head gives the instantaneous power consumption,

P ¼ T ⋅ωang ð10Þ
The total thrust exerted on the face by the jacks, FT, can be found by the sum of normal
cutting forces of all disc cuttersFn;i; i ¼ 1::Nt, the sliding resistance of theTBMcutterhead
and shield casing on the tunnel wall, denoted by FS, that is the sum of the weight of the
machine and the normal force exerted on the shield by the tunnel boundary due to stress
relaxation multiplied by a friction coefficient, the gradient resistance denoted by FG, as
well as the force for pulling the back-up FP. The thrust is the force that should be applied
on the face by the thrust cylinders through the cutting wheel in order the cutters to
penetrate the rock mass at a depth equal to p and also surpass frictional forces. The
total torque T exerted by the cutting head on the rock can be found by the summation of
the products of the rolling cutting forcers Fr;i; i ¼ 1::Nt multiplied by the lever-armsRi of
the cutters with respect to the cutter head axis, the torque of the cutter head to overcome
frictionTF, and the torque dedicated to overcome the lifting forces of the material buckets
TB. It is noted here that in EPB (Earth Pressure Balance) machines part of the torque is
consumed for the stirring by the rotating cutting head of the grinded material plus
additives inside the excavation chamber. This is yet an open problem remained to be
analytically solved and is not considered here. Also, for shield tunneling with face support
(e.g. EPB or slurry shields), part of the total thrust is expended for the provision of the
pressure on the face. In summary, these relationships are given below,

FT ¼
XNt

i¼1

Fn;i þ FR þ FG þ FP ≈Nt ⋅ Fn þ FS þ FG þ FP

T ¼
XNt

i¼1

Fr;i ⋅Ri þ TF þ TB ≈
1
4η

⋅Nt ⋅D ⋅ Fr

ð11Þ

It may be noted that we consider the torque is given by a single expression by including
all the types of action other than cutting into the coefficient of mechanical efficiency η.
The approximation in the second of relations of Equation 11 may be deduced by
considering that SE2 can be expressed in the following equivalent form

SE2 ¼ η
P
Vt

¼ η
Tωang

πR2PR
; p ¼ PR

ω
ð12Þ

Further elaboration on the above formula by setting the relation

T ¼ 1
4η

⋅Nt ⋅D ⋅ Fr ð13Þ

gives the following result

SE2 ¼ η
Tωang

πR2PR
¼ Fr

pS
¼ SE1; q:e:d: ð14Þ

For example by setting a mechanical efficiency of η = 0.8 the above Equation 13
gives
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T ≈ 0:3 ⋅Nt ⋅D ⋅ Fr ð15Þ
Provided that we have a model for predicting the cutting forces, then Equations 15
and 10 could be used to predict the required operational parameters of the boring
machine such as torque T and cutting head power P under given thrust force FT and
rotational speed ω of the wheel necessary for achieving a certain penetration depth
per revolution p of the cutting wheel, and hence penetration rate PR by means of
Equation 1.

2.3 Disc cutting models

Most of the proposed models for the prediction of cutting forces are empirical and
database oriented. Therefore the predictions of suchmodels are valid only for the range
of conditions these databases refer to. In this section we first revisit two models, among
many others, that have been proposed for wedge and constant profile cutters, respec-
tively, and finally we create a new model based on the Limit Analysis theory of Perfect
Plasticity Theory (Chen, 1975).

2.3.1 Roxborough’s model

One of the cutting models that is interesting and is outlined here is that proposed by
Roxborough & Phillips (1975) for wedge disc cutters. These investigators proposed
that the normal force Fn that should be exerted on the cutter having a ‘V-profile’ (or
wedge-shaped section) with a wedge angle 2a in order to penetrate into the rock at a
depth p (i.e. Figure 6a), is the product of the UCS with the projected contact area A of
the disc as is shown in Figure 6b.

The contact area may be found to be with reasonable approximation assuming that
its shape is rectangular as follows

A ≈ 2 pl tan α; l ¼ 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Rp� p2

q
ð16Þ

where l denotes the chord length as shown in Figure 6b, and R is the radius of the disc.
Based on the above argument the normal force required for the full penetration of the
cutter at a depth p is given by the following expression

Fn ¼ 4UCSp
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Rp� p2

q
tanα ð17Þ

Further, the same authors assume – based on experimental evidence – that this force
remains constant during rolling of the disc as is shown in Figure 6b. It is worth
noticing that in the frame of this model, the predicted indentation force on the disc is
independent of the spacing of neighboring relieved cuts. In a next step they calculated
the Cutting Coefficient (CC) that is defined as the ratio of the rolling force to the
normal force. This is an important coefficient since it indicates the amount of torque
required for a given amount of thrust according to the TBM model presented pre-
viously. For this purpose, they assumed that the resultant force passes is directed
along the bisector of the angle 2ψ (e.g. Figure 6c) and then they apply the moment
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equilibrium equation for pure rolling conditions neglecting possible relative slide of
the disc on the rock,

Fr ⋅ Ofð Þ ¼ Fn ⋅ Oeð Þ ð18Þ
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(b)

(c)
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Figure 6 Indentation and rolling of wedge shaped disc cutter; (a) Front view of the wedge shaped disc
with normal and lateral forces and geometry, (b) Side view of the cutter, and (c) side view of
the disc with normal and rolling forces.
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The above relationship has been derived by inherently assuming that the load distribu-
tion along the disc-rock contact (ab) is uniform or symmetrical w.r.t. Oc-axis (e.g.
Figure 6c). In this manner the rolling force is related with the normal force through the
following relationship

Fr ¼ Fn ⋅ tanψ ð19Þ
where 2ψ denotes the contact arc angle that may be easily found to be

2ψ ¼ cos �1 R� p
R

� �
ð20Þ

2.3.2 Colorado School of Mines (CSM) model

The CSMmodel refers both to wedge and constant-section disc profiles. Figure 7 shows
the front and side views of relieved cutting of constant profile discs.

In the frame of the Colorado School of Mines (CSM) model (Rostami & Ozdemir,
1993; Rostami et al., 1996) the resultant cutting force exerted on the disc is given by the
following relation (e.g. Figure 7)

F ¼
ð
dF ¼

ð2ψ
0

P ⋅R ⋅w ⋅ dα ¼2P ⋅R ⋅w ⋅ψ ð21Þ

where w is the width of the tip of the disc, P is the uniform pressure applied along the
contact area of the cutting disc, that depends on the Uniaxial Compressive Strength
(UCS), the Uniaxial Tensile Strength (UTS) of the rock1, the geometry of the cutting
disc (radius R, and tip width w), and the geometry of the ledge cutting such as the
distance from the neighboring cut S, and the cutting depth p through Equation 20. This
equation refers to constant cross-section tip of cutters that replaced the discs with
wedge tips, for uniform wear for a long period of time.

S

Fr

Fn

F R

P

2pW

Figure 7 Front view (left) and lateral view (right) of disc cutter with constant section cutting edges.

1 The authors who proposed this parameter do not clarify if the tensile strength is derived from uniaxial
tensile tests or indirect tensile tests like Brazilian or beam bending.
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According to this model the contact pressure is given by the following empiri-
cal relation derived from regression analysis of disc cutting data (Rostami et al.,
1996)

P ¼ C ⋅

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
S ⋅UTS ⋅UCS2

2ψ ⋅
ffiffiffiffiffiffiffiffiffiffi
R ⋅w

p3

s
ð22Þ

whereC is a dimensionless constant approximately equal to 2.12. Then for the uniform
contact pressure that is most probably occurring in rock cutting, the normal and rolling
forces can be determined in the following manner

Fn ¼
ð2ψ
0

P ⋅R ⋅w ⋅ cos α ⋅ dα ¼P ⋅R ⋅w ⋅ sin 2ψ

Fr ¼
ð2ψ
0

P ⋅R ⋅w ⋅ sin α ⋅ dα ¼ P ⋅R ⋅w ⋅ 1� cos 2ψð Þ
ð23Þ

In contrast to the model of Roxborough and Phillips, the CSM model accounts for
the effect of spacing S of neighboring cuts. Also the effect of the penetration depth is
considered through the contact angle 2ψ as may be seen from Equation 20. CC is then
found from Equation 23 as follows

CC ¼ Fr
Fn

¼ tanψ ð24Þ

It could be noted that the cutting coefficient is the same with that predicted by the
Roxborough and Phillipsmodel, e.g. Equation 19, since it was assumed that the contact
pressure is uniformly distributed along the edge of the disc. Gertsch et al. (2007) have
performed disc cutting experiments using a linear cutting rig and demonstrated that the
resultant force exhibits the trend to bisect the contact angle as has been assumed by
Roxborough and Phillips.

2.3.3 Limit analysis model of disc cutting

One way to predict the cutting forces exerted to the rock when a cutter acts solely or
with a neighboring relief cut (due to action of a cutter before the one we study) is by
using the theorems of limit analysis (Chen, 1975). One issue is the failure model of the
rock. The simplest model is the linear Mohr-Coulomb but overestimates tensile
strength of the rockmass. In this case one should use amodifiedMohr-Coulomb failure
model with arbitrarily small tensile strength.

Chen & Drucker (1969) solved analytically by applying the lower and the upper
bound theorems of Limit Analysis the problem of the axial splitting of a block under the
action of a punch. The punch with flat end penetrates the block creating a wedge and a
median or tensile crack at the tip of the wedge that splits the block in two halves.
Subsequently under the action of the wedge-shaped block, the two newly formed
blocks displace in opposite directions along the horizontal frictionless floor. In the
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case of cutting wemay assume that the block’s lower horizontal boundary is formed by
the propagation of two lateral horizontal mode I cracks in the unloading phase as was
explained previously. If it is assumed that the rock is unable to undertake any tension
and the tool-rock interface obeys a straight-line Mohr-Coulomb yield model with
cohesion and internal friction angle c; �, respectively, as is shown in Figure 8a.
Further only rigid body discontinuous velocity conditions along cracks are considered.
In this manner the rate of dissipation per unit area of discontinuity or crack surface is
given by the formula (Drucker & Prager, 1952)

DA ¼ cδu
tan 45þ �

2

� �
tan 45þ θ

2

� � ð25Þ

where δu denotes the jump in the tangential velocity across the discontinuity, with the
relative velocity vector δw forming an angle θ ≥� with the surface of the discontinuity,
as is illustrated in Figure 8b.Considering the wedge penetrating the rock as is shown in
Figure 8c under the action of loadQu and equating the rate of the external and internal
work dissipated along the two sides of the wedge it is found

qu ¼ c
cos �

cos �þ αð Þsin α
ð26Þ

in which qu denotes an upper bound of the average indentation pressure, and no energy
is dissipated along the tensile cracks, i.e. along the median vent (vertical) and the two
lateral horizontal cracks. Since

UCS ¼ 2Ro ¼ 2c tan
π

4
þ �

2

� �
ð27Þ

then Equation 26 may be written in the following form

qu ¼ UCS

2tan
π

4
þ �

2

� � cos �
cos �þ αð Þsin α

ð28Þ

The application of lower bound theorem that satisfies loading and boundary conditions
gives an approximate lower bound indentation pressure for obtuse wedge angles that is
close to the UCS (e.g. Figure 8d)

ql ≈UCS ð29Þ
This means that for the wedge shaped roller disc the indentation pressure is bracketed
as follows

UCS ≤q ≤qu ð30Þ
Figure 9 graphically presents the dependence of the lower and upper bound indentation
pressures on various possible friction angles of the rock andwedge angles considered by
Roxborough & Phillips (1975). It may be seen that most of the predictions of the
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Limit theorems presented in this figure justify the ad hoc assumption made by the
authors, namely that the indentation pressure is equal to the UCS of the rock.

The punchwith flat end originally considered by Chen&Drucker (1969) is shown in
Figure 10.

In this case the angle subtended by the two shear cracks AB and BC formed under the
flat punch is initially unknown. However, minimizing the previous Equation 28 with
respect to the angle α is derived

α ¼ π

4
� �

2
ð31Þ

And finally one derives for the case of zero tensile strength rock

quz ¼ c tan
π

4
þ �

2

� �
¼ UCS ð32Þ
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Figure 9 Dependence of the upper and lower bound disc indentation dimensionless pressures on the
interfacial friction angle for various wedge subtended angles.

A

θ = Π/2

2a

2 B

C
D

F

E

G

H

S

Qu=2aqu

rigid
V2

rigid
V2tensile

crack

V1

ww
P

Figure 10 Flat punch penetrating a finite block with width S at depth p formed by the median crack and
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This value coincides with that predicted by the lower bound theorem, hence in the
case of the flat punch the indentation pressure is the UCS of the rock. Along the way to
compose a more general model we consider the more realistic case of rock possessing
a tensile strength. In this case we follow the suggestion of Chen & Drucker (1969) of
themodification of theMohr-Coulombmodel to account for the finite tensile strength
of rock as is illustrated in Figure 11. It is remarked here that of great interest for
efficient cutting of rock with discs, are the cracks which propagate in a lateral
direction to meet the adjacent pre-existing groove or grooves. In the frame of this
model the mathematical expression for the rock failure is discontinuous and is
described by

τ ¼ cþ σ tan�; σ ≥ σ1

b� σð Þ2 þ τ2 ¼ R2; σ ≤ σ1
ð33Þ

where we have set (tensile stresses are considered negative quantities),

R ¼ 1
2
UCSþUTSsin �

1� sin �
;

b ¼ RþUTS;

σ1 ¼
� c tan�� bð Þ þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c tan�� bð Þ2 � 1þ tan2�ð Þ b2 þ c2 � R2ð Þ

q
1þ tan2�ð Þ ;

c ¼ UCS ⋅ 1� sin �ð Þ
2 ⋅ cos �

ð34Þ

Also it can be shown that the energy dissipated along the cracks is given by the
expression (Chen, 1975)
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Figure 11 Mohr-Coulomb failure model of a rock possessing finite tensile strength UTS.
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DA ¼ δw UCS
1� sin θ

2
þUTS

sin θ � sin �

1� sin �

� �
;

tanθ ¼ δv
δu

≥ tan�

ð35Þ

Figure 12 shows a two dimensional section of a penetrating wedge disc that is
assumed here. The wedge moves downward into the rock mass as a rigid body and
displaces the surrounding rock sideways that slides along gently inclined discontinuities
CD and CG. The plane sliding along these inclined surfaces involves both shearing and
separation so that Equation 35 can be used to calculate the rate of energy dissipation.
For the penetration of the wedge the rock mass shear strength should be reached along
the interfaces AC and BC under conditions of large mean stress. The total dissipation of
energy in the block can then be found by adding the rates of dissipation at the
discontinuity surfaces AB, BC, CD and CG. The free surfaces ED and FG represent
pre-existing grooves (relieved cuts) or they end at the tips of neighboring radial cracks
from adjacent discs. Equating the rate of work performed by the normal force on the it
Fn it is found that an upper bound of this force is given by the expression
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Figure 12 Mohr-Coulomb failure model of a rock possessing finite tensile strength UTS; (a) Penetration
mechanism, and (b) hodographs.
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Fn ¼ Qu ¼ 2 ⋅UCS ⋅ p ⋅ S ⋅ tanα
cos αþ �� γð Þ

1� sin θ
2

þ UTS
UCS

sin θ � sin �

1� sin �

� �
�




� sin αþ �ð Þ
cos β

þ p
S
cos γ ⋅ 1� sin �ð Þ

cos α

�
;

θ ¼ β� γ ð36Þ
For the derivation of the above expressions it was assumed that the relative velocity

vector δw along the disc-rock interfaces AC and BC is inclined at an angle ϕ so the work
dissipated there is given by Equation 36 for θ ¼ �. For the case of the constant section
disc with tip width w the same Equation 36 is still valid provided that the relationship
below is used

α ¼ tan�1 w
2p

� �
ð37Þ

where w denotes the width of the cutting tip (e.g. Figure 7). In this case the above
Equation 36 takes the form

Fn ¼ Qu ¼ UCS ⋅w ⋅ S
cos αþ �� γð Þ

1� sin θ
2

þ UTS
UCS

sin θ � sin �

1� sin �

� �
�



� sin αþ �ð Þ

cos β
þ p

S
cos γ ⋅ 1� sin �ð Þ

cos α

�
ð38Þ

Equation 36 has been checked against experimental linear disc cutting rig data on
Plas Gwilym limestone that have been presented by Snowdon et al. (1982). In these
tests a wedge disc with angle of 2α ¼ 80o and diameter of 200 mm has been employed
for all tests. The reported mechanical properties of the limestone were UCS=155 MPa
and UTS=13.72 MPa, while the internal friction angle has not been given. Here it is
assumed to be � ¼ 35o for the limit analysis model that is reasonable for calcitic rocks.
Then the only remaining parameters to be found are the angles θ and γ. The latter angle
is found by the minimization of the value of the force, while the former is found by
matching theminimum value of the force with that recorded during the experiment.We
have used the disc cutting data with constant penetration depth p = 4 mm and
S/p = 6.25, 12.5, 18.75 and 25, respectively. Calibrating the model to match experi-
mental data for each S/p ratio, we have found that the angle θ reduces from 65°

(indicating mixed tensile and shear crack propagation) to 35° (indicating pure shear
crack propagation) as the ratio S/p increases, as is illustrated in Figure 13. In the same
figure the prediction of the Roxborough and Phillips model (Fn = 40.8 kN) has been
plotted as a continuous line since it does not depend neither on spacing, penetration
depth or the inclination angle γ employed in the limit analysis model.

Hence, following first principles of Limit Analysis a simple model for relieved disc
cutting has been composed, that contains fundamental rock parameters like the UCS,
the ratio UTS./UCS that is a measure of rock brittleness, and the friction angle of rocks
that manifests itself after the fracturing, as well as the basic parameters of the disc
cutting process like the penetration depth, the width or angle of the tip of the cutter and
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the spacing to penetration depth ratio. A more elaborate model could be found based
on a more complicated fracture mechanism, but at this stage we want to retain the
simplicity of a model that contains the basic features of the rock, as well as disc design
and arrangement on the cutting wheel.

3 ESTIMATION OF JOINTED ROCK MASS STRENGTH
PARAMETERS USING THE DAMAGE MECHANICS APPROACH

3.1 Introduction

It may be said that the rock mass characteristics probably affect much more the perfor-
mance of a boring machine than the laboratory parameters of the intact rock (Nelson,
1993). Despite of this fact,much of the efforts are aiming towards characterizing the rock
mass for rock support calculations rather than for the performance of tunnel boring
driving or rotarry-percussive drilling in rocks.

The effects of joints on rock mechanics properties include increased deformability,
decreased strength, increased permeability due to dilatancy and induced anisotropy,
among other. The upscaling problem common to many aspects of rock mechanics is
translating knowledge of microcracks to knowledge of fractured rock mass behavior.
Currently, it is reasonably feasible to study microfracture orientation, frequency, and
permeability characteristics in the laboratory, but this is not yet possible for the field
scale, which is the scale of most interest.

Other possible approaches that one could employ to derive a model at the scale of the
discretization element of the numericalmodel, called herein the “macroscale”, are Linear
Elastic Fracture Mechanics (LEFM) and Continuum Damage Mechanics (CDM).
Although it may be shown that the two theories are equivalent, the most appropriate
to start with for practical purposes, is the latter, since the LEFM approach, each crack
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Figure 13 Comparison of model predictions with test results of linear cutting rig tests on Plas Gwilym
limestone.
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should be considered explicitly, there is nonlinearity induced by the contact of joint lips,
and so on.

In this paragraph we aim at a robust methodology to deteriorate the strength
parameters of the intact rock due to the presence of cracks, assuming that the rock
obeys the linearMohr-Coulombmodel with tension cut-off as has been presented in the
previous paragraph. The strength rock parameters to be reduced are three for this
model, i.e. the UTS, UCS and the internal friction angle ϕ.

3.2 Estimation of rock mass model parameters

A possible upscaling methodology may be founded on two basic hypotheses, namely:
Hypothesis A: In a first approximation upscaling may be based on the scalar damage
parameter D or vector damage parameter D ¼ D ⋅ n for the anisotropic case of joint
induced anisotropy of the rock mass (n is the unit normal vector of the plane of interest).
Hypothesis B: A universal relationship between the damage parameter D and RMR

(or equivalently with Q or GSI rock quality indices) exists for all rock masses.
Regarding Hypothesis A above, it is noted that joints may also alter the constitutive

law of the rock during the transition from the lab scale to the scale of the discretization
element of the numerical model, i.e. they may induce anisotropy or they may induce
nonlinearity and/or creep. Let us assume for the sake of simplicity that there are more
than three joint systems in the rock mass so that it behaves like an isotropic material
(the case of anisotropic geomaterial may be easily considered through appropriate
tensorial analysis). If the area δA with outward unit normal nj of the Representative
Elementary volume (REV) with position vector xi of Figure 14 is loaded by a force δFi
the usual apparent traction vector σi ¼ σijnj is

σi ¼ lim
δA!A

δFi
δA

; i ¼ 1; 2; 3 ð39Þ

where A is the representative area of the REV.

RVE

n

AD

n

x

x A

˜

˜
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Figure 14 Representative Elementary Volume (REV) of damaged rock due to rock mass discontinuties
(joints, fractures, cracks etc).
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The REV could be the finite element of the discretized geological model such as that
shown in Figure 15. Each tetrahedral element in this 3D model in has assigned a
lithological unit that has been previously characterized in the lab from core drilling
logs and from the geological conceptual model based on a map in a 1:1000 or 1:500
scale created in the pre-design or design phase of the project. The interpolation of
lithological units or stratigraphical surfaces between the boreholes could be per-
formed by the Block Kriging method of Geostatistics as will be shown in the next
Section 4.

The value of the dimensionless scalar damage parameterD ni; xið Þ (that is a function
of orientation and position of the surface) may be defined as follows

D ¼ δAD

δA
ð40Þ

where δAD is the total area occupied by the joints. In a similar fashion as it is displayed
in Figure 11, the vector damage parameter may be referred to the directed area δAn

�. At
this point we may introduce an ‘effective traction vector’ eσ i that is related to the surface
that effectively resists the load, namely

eσ i ¼ lim
δA!S

δFi
δA� δAD

; i ¼ 1; 2; 3 ð41Þ

From Equations 39–41 it follows that

eσ i ¼ σi
1�D

; i ¼ 1; 2; 3 ð42Þ

According to the above definitions the elastic deformation of the intact rock can be
described with the following relations:

Legend

Granodiorite

Granite Soils

Decomposed Granite

Figure 15 Discretized geological model on a mesh with tetrahedral elements and lithological data
assigned to grid points.
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• The relation eσ ij ! εðelÞij which is obtained from elasticity, and
• the relation σi ! eσ i which is obtained by employing the concept of damage

(Kachanov, 1986; Krajcinovic, 1989; Lemaitre, 1992), wherein the superscript
(el) denotes elastic strains. It is remarked here that the damage parameter D should
be multiplied with the joint closure factor Dc 0 ≤Dc ≤1ð Þ in order to take into
account partial contact of joint lips in compressive loading normal to the plane of
the joint.

Exadaktylos& Stavropoulou (2008) have shown how this closure factor is related to
the initial normal stiffness of the joint, the relative joint closure w.r.t. the maximum
joint closure and the Young’s modulus of the intact rock. It was also demonstrated that
Dc is close to unity for low compressive stress regimes or for low initial normal stiffness
of the joints; therefore from hereafter we consider Dcffi1.

In thermodynamics, the axiomof the ‘local state’ assumes that the thermomechanical
state at a point is completely defined by the time values of a set of continuous state
variables depending upon the point considered. This postulate applied at the mesoscale
imposes that the constitutive equations for the strain of a microvolume element are not
modified by a neighboring microvolume element containing a microcrack or inclusion.
Extrapolating to the macroscale, this means that the constitutive equations for the
strain written for the surface δA� δAD are not modified by the damage or that the true
stress loading on the rock is the effective stress eσ i and no longer the stress σi. The above
considerations lead to the ‘Strain Equivalence Principle’ (Lemaitre, 1992), namely:
‘Any strain constitutive equation for a damaged geomaterial may be derived in the
same way for an intact geomaterial except that the usual stress is replaced by the
effective stress’.

The above principle may be applied directly on the isotropic rigid perfectly plastic
geomaterial obeying the linear Mohr-Coulomb yield criterion with tension cut-off,

eτ ¼ cþ eσ tan�; eσ ≥ σ1
α� eσð Þ2 þeτ2 ¼ R2; eσ ≤ σ1 ð43Þ

In the presence of damage, assuming that it is constant, the coupling between the
damage and the plastic strain is written in accordance with the above principle, that
is to say the yield function is written in the same way as for the non-damaged material
except that the stress is replaced by the effective stress according to Equation 42, that is
to say

τ
1�D

¼ cþ σ
1�D

tan�;
σ

1�D
≥ σ1

b� σ
1�D

� �2
þ τ2

1�Dð Þ2 ¼ R2;
σ

1�D
≤ σ1

9>>>=>>>; ð44Þ

Hence, the criterion for the rock mass takes the form

τ ¼ 1�Dð Þcþ σ tan�; σ ≥ 1�Dð Þσ1
½ 1�Dð Þb� σ�2 þ τ2 ¼ ½ 1�Dð ÞR�2; σ ≤ 1�Dð Þσ1

)
ð45Þ
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Finally, in a more compact form the criterion takes the form

τ ¼ cm þ σ tan�; σ ≥ σ1m

½bm � σ�2 þ τ2 ¼ R2
m; σ ≤ σ1m

)
ð46Þ

wherein with the subscript ‘m’ are denoted the rock mass parameters, i.e.

Rm ¼ 1
2
UCSm þUTSmsin �

1� sin �
;

bm ¼ Rm þUTSm;

σ1m ¼
� cm tan�� bmð Þ þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cm tan�� bmð Þ2 � 1þ tan2�ð Þ b2m þ c2m � R2

m

� q
1þ tan2�ð Þ ;

cm ¼ UCSm ⋅ 1� sin �ð Þ
2 ⋅ cos �

ð47Þ
and

UCSm ¼ UCS ⋅ 1�Dð Þ;
UTSm ¼ UTS ⋅ 1�Dð Þ

ð48Þ

It turns out that the internal friction angle of the equivalent rock mass is not affected by
the presence of the joints. Provided that the joint walls are not weathered significantly,
then this assumption is valid. Otherwise, the friction angle should be modified properly
to account for weathering of joint lips.

Figure 16 shows how the failure line in the σ − τ plane is affected by the inherited
(previous) damage of the rock mass. It may be observed that the above arguments from
Damage Mechanics lead to a self-similar yield surface for the rock mass.

0

5

10

15

20

25

30

Ð10 Ð5 0 5 10 15 20 25

Sh
ea

r 
st

re
ss

, τ
  

Normal stress, σ

D=0

D=0.5

D=0.8

Figure 16 Schematic representation of the linear Mohr-Coulomb criterion with tension cut-off applied to
damaged geomaterial in the σ � τ plane (compressive stresses are taken as positive quantities
here) where the intact rock parameters are UCS = 28.8 MPa, UTS = −3 MPa, ϕ = 35ο.
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Hypothesis B mentioned at the outset, is based on the fact that RMR, Q or GSI
indices do take into account explicitly the most important features of the rock mass
joints that are responsible for the deterioration of its parameters compared to those the
intact state; hence they may be linked to the damage parameter D with an appropriate
relationship.

Such a function must have a sigmoidal shape resembling a cumulative probability
density function giving D in the range of 0 to 1 for RMRorGSI varying between 100 to 0
or for Q varying from 1000 to 0.001, respectively. On the grounds of the above
considerations, the Lorentzian cumulative density function (obtained directly from the
Cauchy probability density function) has been proposed (Exadaktylos & Stavropoulou,
2008), namely

D ¼ 1� â þ b̂
π

tan�1 RMR� ĉ

d̂

� �
þ π

2

� �( )
ð49Þ

where ĉ denotes the location parameter, specifying the location of the peak of the
distribution, d̂ is the scale parameter which specifies the half-width at half-max-
imum, respectively, b̂ is a proportionality constant and â can be found in terms of
the other three parameters by setting D = 1 for RMR = 100. It is noticed that
Equation 49 is not used here as a statistical function but merely as a deterministic
function. In this formula the RMR does not include the correction term due to
unfavorable tunnel orientation with respect to joints and the ground water (hence
RMR considers only the joints through the mean block size and joint shear
strength, i.e. RMR89). The three unknown parameters of this function b̂; ĉ; d̂
were calibrated on the empirical relationship proposed by Hoek & Brown
(1997) for the dependence of UCSm/UCS = 1 − D on RMR, with UCSm being
the rock mass UCS, namely

UCSm
UCS

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
e
ðRMR�5Þ�100

9

q
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
e
GSI�100

9

q
ð50Þ

Based on this best-fit procedure, performed for RMR<80, the following values for the
unknown parameters were found, namely:

ĉ ¼ 72:9968; d̂ ¼ 12:9828; b̂ ¼ 1:2377; â ¼ �0:06111 ð51Þ
The above empirical relationship of the damage parameter with GSI substituted by
RMR89 is plotted in Figure 17a. Furthermore, D as it given by Equations 49 and 51 can
be expressed as a function of Q index by virtue of the following empirical relationship
linking the latter index with RMR

Q ≈ 10
RMR�50

15 ð52Þ
The graphical representation of the dependence of inherited rock damage on the
value of Q is presented in Figure 17b. It may be noted that the above linking of
damage with rock mass indices RMR and Q permits the use of geophysical measure-
ments (e.g. seismic P- or S-waves) for the direct determination of damage based on
the following damage mechanics formula
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D ¼ Gm

G
¼ Em

E
¼ 1�

eV2
S

V2
S

¼ 1�
eV2

P

V2
P

ð53Þ

where Gm denotes the shear modulus of the rock mass, G the shear modulus of the
intact rock, VS andVP denote the shear and compressional wave velocities, respectively,
measured on intact rock cores in the laboratory, while the respective symbols with curly
overbars indicate the measured velocities in the field.

4 GEOSTATISTICAL CHARACTERIZATION OF ROCK MASSES
FOR MINING AND TUNNELING DESIGN

Herein, in a first stage an attempt is made for the transformation of the conceptual
qualitative geological model into a ‘3D ground model’. This model then serves as the
input for subsequent analyses of TBMperformance and numerical models of rockmass
and support responses to altered ground conditions due to the excavation. This
transformation is achieved by virtue of CAD techniques, cutting models for rocks
and the RMR or Q or other appropriate rock mass classification scheme, as well as
on the concept of damage mentioned previously. However, rock masses are hetero-
geneous continuous or discontinuous media. Heterogeneity is indirectly described by
means of the Geostatistical approach that is employed for the interpolation of field
parameters registered at certain locations to the grid of the discretized model instead of
using average values. These concepts that form essential parts of an integrated design
approach for a tunnel project are best described in Figure 18.

Figure 18 Main components or tools for the integrated design of underground excavations (Meschke
et al., 2008).
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4.1 Fundamental theoretical considerations of the Kriging
approach

The objective of Geostatistics is the analysis of spatial data in contrast to classical
descriptive Statistics that pertains to the extraction of pertinent information from large
data sets regardless their spatial position. That is to say, each data value is associated
with a location in space and there is at least an implied connection between the location
and the data value. The main principle behind Geostatistics is that regions close
together – provided that they belong to the same lithological unit – are more likely to
have similar values than regions further apart. We can use geostatistical tools for the
exploration and statistical characterization of sample point data. Hence the following
two hypotheses that were assumed to be valid:

Hypothesis #1: RMR or Q classification index for rock masses and recorded Specific
Energy (SE) during TBM advancement are spatial attributes that can be modeled as
random functions. It may be also recalled here that a random field or otherwise a
stochastic process denoted as X�

ð S
�
Þ, wherein S

�
denotes the position vector in space, is

the rule to correspond to every outcome ζ of an experiment a function X�
ð S
�
; ζ Þ.

Hypothesis #2: After the removal of the possible trend of data, themean of RMR,Q, or SE
random functions in the neighborhoodof the estimation is constant for the same geological
formation but unspecified, and the two-point mean square difference depends only on the
distance between two locations and possibly on the orientation (anisotropy effect). This is
the so-called ‘intrinsic isotropic or anisotropic concept’ of Geostatistics (Kitanidis, 1997).

Kriging is a linear interpolation method using fundamental geostatistical concepts that
was developed by the South African mining engineer D. G. Krige (from whom the name
Kriging was derived). Krige’s main motivation was to develop optimal methods of inter-
polation for use in the mining industry. Kriging makes good use of geostatistical tools
helping one to solve questions that didn’t have a clear answer with more general inter-
polation methods. With Kriging, it is possible to define the best domain in which to
interpolate (i.e. what is the extent to which we should consider data to get an optimal
interpolation at a given point), it defines the shape and orientation for optimal interpola-
tion, estimates the weight λi of each sampling point in a more thoughtful way than a mere
function of Euclidean distance, and also makes possible to estimate the errors associated
with each interpolated value.

Kriging is called an optimal interpolation method because the interpolation weights
λi are chosen to provide for the value at a given point the Best Linear Unbiased Estimate
(BLUE) based on the following two conditions:

a) Unbiased or null mean values of estimation error, i.e.

E½z� soð Þ � z soð Þ� ¼ 0 ð54Þ
b) Minimization of the mean squared estimation error, that is

minE z� soð Þ � z soð Þ
� �2� �

¼ 0 ð55Þ

where s0 denotes the position vector of the estimation. The above conditions are known
as the ‘universality conditions’ or ‘unbiasedness conditions’.
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Kriging rests on the following simple linear interpolation formula

z� xp
�  ¼Xn

i¼1

λiz xið Þ ;
Xn
i¼1

λi ¼ 1 ð56Þ

where z xið Þ represents the known value of variable z at point xi, and n represents the
total number of measurements (hard data) used in the interpolation. The extra equa-
tion appearing in the right of Equation 56 is obtained from the satisfaction of the
condition (a) or Equation 54.

Regionalized variable theory, in which Kriging has its basis, lies on the ‘intrinsic
hypothesis’ (i.e. Hypothesis # 2), namely that the mean is constant and the two-point
covariance function C depends only on the distance between two points, i.e.

E½z� ¼ constant ^ C½z xð Þ; z xþ rð Þ� ¼ C½z xþ hð Þ; z xþ rþ hð Þ� 8 xa ð57Þ
which means that the spatial variation of any variable can be expressed as the sum of
three major components, a deterministic variation, a spatially autocorrelated variation
and an uncorrelated noise, respectively. So the value at a point is given by

z xe
� �

¼ m xe
� �

þ ε
0
xe
� �

þ ε
00

xe
� �

ð58Þ

where ε
0
xe�  ¼ γ hð Þ, also called the semivariance or semivariogram function. The

variance of differences depends only on the distance between measurements, h, so
that we can calculate

E z xe
� �

� z xeþ he
� �
 �2

" #
¼ E ε

0
xe
� �

� ε
0
xeþ he
� �
 �2

" #
¼ 2γ he

� �
ð59Þ

Also, we can calculate the semivariance – or the experimental semivariogram - from the
point data

γ he
� �

¼ 1
2m

Xm
i¼1

z xið Þ � z xi þ he
� �� �2

ð60Þ

wherem is the number of pairs of sample points of observations of the values of attribute z
separated by distance (or lag) h. When the nugget variance ε

00
is too high and the experi-

mental variogram does not diminish when h→ 0, then the data is too noisy and interpola-
tion is not sensible. Possibly there aren’t enough sample points. Kriging is an exact
interpolator in the sense that the interpolated values, or best local average, will coincide
with the values at the data points. Together with the interpolation at a certain location the
associated Kriging error zðxÞ � z� xð Þ may be also computed. In this manner we obtain a
sense of the amount of uncertainty associated with this prediction that may be useful for
estimation of risks of someoperation relatedwith the variable at hand or for the estimation
of additional effort (i.e. additional measurements) for the improvement of the final model.

The tool that is employed in a Kriging procedure for both the minimization of the
estimation error and the interpolation is the theoretical semivariogram that is
best-fitted to the experimental one that reflects the spatial correlation of a certain
regionalized variable. For the posterior validation of the estimations there are used the
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statistical variables of the normalized errors Q1-Q2 or other procedures such as leave-
one-out or cross-validation schemes (Journel & Huijbregts, 1978). In the case of
Ordinary Kriging (OK), where the mean value of the field variable is unknown but
remains constant in the neighborhood of the search, the weight values λi are found
with the solution of the following linear system of n + 1 equations with n + 1 unknowns
that was derived from condition (b) above (Chiles & Delfiner, 1999)Xn

j¼1

λi ⋅ γxðk si � sj kÞ þ L ¼ γxðk si � so kÞ ð61Þ

whereL denotes the Lagrange multiplier, si, sj, i, j = 1...n are the sampling locations and
so the location where the estimation is being made, and the left-hand-side is the OK
variance that is given by the relation

σ2OK soð Þ ¼ E z� soð Þ � z soð Þ
� �2� �

ð62Þ

Such a geostatistical algorithm (Figure 19) has been developed and verified in several
TBM tunnel applications (Exadaktylos et al., 2008; Exadaktylos & Stavropoulou,
2008; Stavropoulou et al., 2010).

4.2 Case study of TBM driving

The above concepts developed so far are subsequently applied for the analysis of TBMdata
gathered during a twin-tunnel project that was a part of the KCRC West Rail Project
linkingMai Foo Station andTsuenWanWest station inHongKong. Because of themixed
ground conditions that were encountered along the route of the excavation, as it may be
seen inTable 1 and also shownwith the geologicalmodel presented in Figure 15, the tunnel
boring machine worked in EPB (earth pressure balanced) mode when operating in soft
ground (highly fractured rock or soil). The pressure was applied in the sealed excavation
chamber at the head of themachine to support the tunnel face, and spoil was carried away
from the face using a screw conveyor. When operating in mixed face or, the TBMworked
either in EPBmode, or in compressed air mode. TBMdriving in competent rockmass was
done in the open mode whereas in regions of low RMR it worked in the compressed air
mode. Table 2 illustrates the operatingmodes of the TBMalong the chainage of the tube 1.

The tunnel construction schedule was first the excavation of Tube 1 fromApril 2000
to December 2000, and then the excavation of Tube 2 fromMarch 2001 to July 2001.
When excavation of the first tunnel was completed, the machine had to be transported
back to the starting shaft for excavation of the second tunnel. The shield was removed
and broken down into smaller pieces for transportation by road, while the back-up cars
were taken back through the tunnel.

Themain features of the double shield TBMand a photo of the cutter head are shown
in Table 3 and Figure 3, respectively. Pre-cast concrete tunnel lining segments of 1.8 m
length and thickness of 400 mm support the excavated area behind the TBM. Erection
of the segments follows immediately the tail of the TBM. When excavating, the thrust
required for excavation is provided by jacks at the tail of the TBM which push against
the lining segments. The chosen TBM was able to excavate on one hand rock with
average UCS of 80 MPa up to 250 MPa, and on the other hand, soil materials
composed of CDG i.e. clay with sand and marine alluvium.
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The geological information from the Hong Kong tunnel plus collected geotechnical
data from existing boreholes and from tunnel face are combined for creation of the 3D
geotechnical/ground model. For the creation of the Discretized Solid Geological Model
(DSGM) around the tunnel alignment four separate geological formations are consid-
ered as is illustrated in Figure. 15 (a) initially in granodiorite (purple color), (b) then in
granite (pink color), (c) fully decomposed granite (red color) and (d) finally in the soil
formations (yellow color).

RMR data evaluated from the drill cores along the exploratory boreholes bored
at distances 100–150 m apart are illustrated in Figure 20. As it may be seen from
Figures 21a and b the histogram of the RMR values follows a normal probability
density function (pdf). The above histogram indicates the following values of the first
two moments of the RMR frequency distribution, i.e. a mean value and a variance of
m = 59.6, σ2 = 65.2, respectively.

Table 1 Main geological profile (courtesy BOUYGUES TRAVAUX PUBLICS).

Section length Rock types Cover

200 m Hard granodiorite rock Up to 30 m
400 m Fair strength granite Up to 50 m
700 m Highly fractured and faulted granite rock Up to 50 m
200 m Mixed face (rock/soil) 15 to 25 m
300 m Soft soil made up of decomposed granite, alluvium and marine deposit 15 m

Table 2 Operating modes of the TBM along the tunnel (courtesy
of BOUYGUES TRAVAUX PUBLICS).

Chainage start Chainage stop Operating mode

0 600 Open
600 800 Compressed air
800 1260 Open
1260 1300 Compressed air
1300 1341 EPB
1341 1420 Compressed air
1420 1820 EPB

Table 3 TBM main features (courtesy of Michel de Broissia of BOUYGUES TRAVAUX PUBLICS).

General characteristics of the
TBM

Excavation diameter: 8.75 m, Minimum tunnel radius: 400 m, Max
tunnel slope: 4%, Total length: 108 m, Total weight: 1400 t, Spoil
transport: 1 m wide conveyor belt

Shield in 3 parts: Total weight: 860 t

Cutter head (CH) CH drive 9 motorsx240 kW/motor, 0 to 3 rpm, 61
Disc Cutters (18 to 19”), Thrust: 0 to 5200 t, 13 pairs of thrust rams

Excavation speed: 0 to 80 mm/min

Center shield Articulated tail-skin

Backup 6 gantries, length is 90 m, Grouting system: 0 to 40 m3/h
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The omnidirectional (isotropic) experimental semivariogram of RMR from the
boreholes was calculated by using a lag of 5m and it is shown in Figure 21. A theoretical
model was fitted to the data. The general exponential model was used to fit the
experimental data that has the following expression

γ hð Þ ¼ S� Soð Þ ⋅ 1� exp � h=lð Þn
� �� �

þ So ð63Þ

It is shown from the semivariogram that the maximum correlation is approximately
15m that is much lower than the average distance among the boreholes that is 120m. It
could be realized that the experimental points forming the semivariogram have been
obtained solely from the downhole RMR measurements in each borehole, rather
among neighboring boreholes. This means that the estimations of RMR at larger
distances than this will be roughly equal to the average of the RMR values recorded
between neighboring boreholes.

In order to gain a better knowledge of the RMR spatial distribution along the tunnel,
successive faces after few meters of respective TBM advancements, were mapped and
evaluated with respect to the rock mass RMR. In Figure 22 the RMR evaluated from
the drill cores and at the successive faces are shown for comparison purposes. Themuch
lower RMR exhibited by the boreholes at certain sections is attributed to weathered
granite at higher elevations from the tunnel’s crown. In this case the RMR exhibits a
normal pdf as is shown in Figure 23a with a mean value and a variance ofm = 65, σ2 =
90, respectively, and a better experimental semivariogram following the Gaussian
model (e.g. Figure 23b). The range of correlation is in this case 70 m (indicated by
the arrow and found from the length L of themodel with the approximate estimation of
≈ 7L/4), that is the half of the distance separating the exploratory boreholes, which
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Figure 20 Screenshot of KRIGSTAT code showing the RMR values along the boreholes.
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means that the model has no undefined areas. From Figure 22 it may be seen that the
boreholes give valuable information regarding the expected RMR along the tunnel, but
it cannot be used for the prediction of the performance of the TBM or rock mass
response after excavation, along tunnel’s sections between the boreholes.

Since it is impossible in the exploratory phase of a tunnel to drill boreholes at small
distances apart in order to predict the rock mass quality that shall be encountered by
the TBM between neighboring boreholes, then the TBM itself could be employed to
upgrade the rough initial geostatistical model gained from the sparse boreholes
according to the concept presented in Paragraph 2.1. In this frame, the best parameter
that could be obtained from TBM data in a daily basis is the SE (i.e. specific energy)
that may be estimated either from Equation 8, or 12. For the tunnel at hand, it was
found from the boring results from the first few 10’s of m’s that SE correlates with
RMR with the following hyperbolic function with two free parameters a, b
(Exadaktylos et al., 2008)

RMR ¼ 100� a
SEþ b

;

a ¼ 1253:5; b ¼ 10:4
ð64Þ
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where SE is expressed in units of MPa. SE exhibits also a Gaussian semivariogram
model with a slightly larger correlation range of 90m as is indicated in Figure 23c. Also,
from Figure 22 it may be observed that the above indirect estimation of RMR compares
very well with both RMR estimations independently from boreholes and from the
mappings of joint conditions at the successive faces along the tunnel.

The significant upgrade of the RMR model along the tunnel with the aid of the SE
estimated from the daily recordings of the TBM is illustrated in Figures 24 a-c. The
initial geotechnical model created from borehole data is characterized by large
Kriging error as is given by Equation 62 in regions between successive boreholes as
is shown in Figure 24b. However, from inverse analysis of TBM Specific Energy (SE)
data along the tunnel advance at a certain time using the phenomenological model
linking RMRwith SE as is shown in Figure 24a, the spatial distribution of the Kriging
STD (error) in the tunnel (color bars indicate Kriging error) leads to the significant
reduction of Kriging error along the sections between the boreholes that has been
traversed by the TBM. Most importantly, the improvement of the model does not
only happen behind the TBM but also in the front of the tunnel’s face as may be
realized by comparing Figures 24b and c.

It is recalled here that the RMR is linked with the damage of the rock due to joints
through the empirical Equation 49. Then it is a straightforward task for someone to
estimate the rock mass strength parameters using the Damage Mechanics approach
presented in Section 3.

Another approach to the problem is the prediction of penetration depth p [mm/rev]
based on input values of normal force Fn per cutter considering the rock mass strength
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parameters and TBM design and operational parameters (i.e. number of discs, rota-
tional speed etc.). This could be based either in the empirical approach of linking SE
with RMR presented before, or from the cutting model presented in Subparagraph
2.3.3. Indeed in the former method one could rely on the formula

p ¼ CC ⋅ Fn
S ⋅ SE

ð65Þ

where SE is obtained from the empirical Equation 64 after solving in terms of SE. Plots
of the variation of the normal force per cutter and of the penetration depth along the
chainage of tube #1, are shown in Figures 25a and b, respectively. From these figures
the significant variation of both these parameters around the average values may be
seen. It should be noticed that in these graphs the test data in the chainage range 600 m
to 800 m have been omitted since they correspond to the compressed-air mode of TBM
operation.

At this point we may avoid the empirical approach and follow the approach of the
disc cutting model for rock chip formation shown in Figure 26 and elaborated in
subparagraph 2.3.3. The two rockmass strength parametersUCSm,UTSm are obtained
from the damage D that is linked with RMR according to the Damage mechanics
approach, and the unconfined compression tests on intact rock cores sampled from
boreholes and the tunnel, assuming a strength ratioUCS/UTS = 8 (since tensile strength
tests have not be conducted in this project); the internal friction angle of both the
granodioritic and granitic rock formations is assumed to be ϕ = 53o. Further the two
extra angles entering the model have been assumed constant with values θ = 70ο and
γ = 8o. The other constant geometrical parameters are the spacing of neighboring kerfs
S = 75mm and thewidth of the tip of the disc w = 12.5mm. The comparison of the limit
analysis model predictions with the estimation from the TBM in the open mode
recorded data referring to the normal force exerted on a disc cutter, may be seen in
Figure 27. It may be seen from this graph that the predictions are in good agreement
with estimations from TBM registered data considering that the former are based on a
model, and the inherent uncertainty of the test data (intact rock strength, RMR,
calculation of normal force per cutter from registered TBM data). The predictions
made bymeans of the CSMmodel by virtue of Equations 23& 24 are also shown in the
same graph. It may be observed that always the latter predictions are smaller compared
to the limit analysis model.

5 SUMMARY

A rock boring modeling method has been presented that is based on a simple disc
cutting model of the Limit Analysis theory of Perfect Plasticity, as well as on damage
mechanics and geostatistical approaches. These three main components of the pro-
posedmethod are new compared with existing empirical models. This method could be
used either for the prediction of the performance of hard rock gripper or shielded
TBM or the back-analysis of registered TBM excavation data for evaluating the
performance of the given TBM. The proposed method is best suited for mechanized
excavation processes in heterogeneous rock formations, as has been demonstrated
with the case study presented here. Another component of the method is the Digital
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Discretized GroundModel that is continuously upgraded with TBM advance in front
of the tunnel’s face in order to make predictions of TBM performance and excavation
behavior in rock mass regions that haven’t been excavated yet. Such a method could
be greatly supported with wireless sensors embedded in the cutting tools and trans-
mitting real time to the operator, data like rotational speed and loads exerted on
the discs.
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Chapter 6

Hydraulic fracturing stress
measurements in deep holes

Douglas R. Schmitt1 & Bezalel Haimson2
1Department of Physics, University of Alberta, Edmonton, Canada
2Department of Materials Science and Engineering and Geological Engineering Program, University
of Wisconsin, Madison, WI, USA

Abstract: A comprehensive description is provided of the most common technique of
quantitatively estimating the in situ state of stress at depth in the Earth’s crust. Basic
concepts central to crustal stress measurement are first provided as motivation. The
equations of stress concentration around the borehole resulting from far-field in situ
stresses and borehole fluid pressure provide the basis of the theory of hydraulic
fracturing. The advantages and disadvantages of the various borehole testing setups
are discussed with particular emphasis on straddle-packer assemblies that allow for the
most reliable stress measurements. The recommended protocols for a multi-cycle
pressurization stress measurement test are described and justified in light of expected
behavior of fracture initiation and propagation. This is assisted by illustrative idealized
pressurization curves that highlight the critical pressures that are interpreted in terms of
the prevailing in situ principal stresses. The effect of the differing assumptions with
regards to breakdown, fracture closure, and fracture re-opening on the determined
principal in situ stresses is reviewed. This highlights the complexity associated with
computing the magnitude of the greatest horizontal compression. Finally, the various
directions of future research on hydraulic fracturing stress measurements are described.

1 INTRODUCTION

The hydraulic fracturing (HF) method of in situ stress measurement is the best known
method of quantitatively assessing the state of in situ stress at great depths. In the last
50 years since the historic first use of the method to determine the state of stress at
Rangely, Colorado (Haimson, 1973, 1975, 1978; Raleigh et al., 1976), HF has become
an indispensable tool in the design of large underground projects such as hydroelectric
powerhouses, tunnels, mines, waste disposal galleries, energy storage caverns, etc., is
routinely employed in the design of oil and gas fields in conjunction with production
stimulation in both vertical and horizontal boreholes, and has also become a requisite
field measurement in plate tectonics research and earthquake prediction, mechanism
and control studies.

Briefly, the method consists of sealing off a short segment (minimum recommended
length: ten diameters) of a wellbore or borehole at the desired depth, injecting fluid
(usually small quantities of clean water) into it at a rate sufficient to raise quite rapidly
the hydraulic pressure (about 0.1–1 MPa s−1), until a critical level is reached (‘break-
down’ pressure, Pb) at which a tensile crack (“hydraulic fracture”) unstably develops at
the borehole wall. At that point borehole fluid penetrates the fracture, and hence a drop



in pressurization rate occurs. When pumping is stopped, the pressure will immediately
decay, first very fast as the fluid chases the extending fracture tip, and eventually at a
slower rate as the fracture closes and the only fluid loss is due to permeation of the
injected fluid into the rock. The ‘shut-in’ pressure Ps is the transition level between fast
and slow pressure decay and signifies the closure of the fracture. Several minutes after
shut-in the pressure is bled off, completing the first pressurization cycle. Several addi-
tional pressure cycles are normally conducted. From these cycles supplementary shut-in
values are obtained, as well as the pressure required to reopen the induced fracture, PR.
Pressure and flow rate of the injection-fluid are continuously recorded. The far-field
stresses are calculated from the pivotal pressures (Pb, Ps, and PR) recorded during the
test. The directions of the in situ stresses are determined from the attitude of the induced
hydraulic fracture trace on the borehole wall. When conditions permit, several tests are
carried out in one borehole within the depth range of interest. This contribution seeks
to convey the details necessary to interpret pressurization records in order to obtain
values of the in situ stress.

1.1 Historical notes

The term ‘hydraulic fracturing’ comes from an oil-field stimulation method developed
in the 1940s, bywhich a segment of awellbore was injectedwith amixture of water and
various chemicals and propping agents, and the pressure raised until the surrounding
rock fractured. The injected fluid penetrated the induced fracture and extended it, while
the propping agents kept the fracture sufficiently open to provide a sink for the
reservoir oil to flow into. The stimulation method proved very successful and its use
grew tremendously over the years. Today it serves as the basis for the operation
colloquially called ‘fracking’, used for oil and gas production stimulation from reser-
voirs in nearly impermeable shales and similar formations.

Hubbert andWillis (1957) attempted to understand the process of hydraulic fractur-
ing. They used the theory of elasticity to conclude that the fluid pressures required to
initiate and extend the hydraulic fracture, as well as fracture attitude, are directly
related to the pre-existing in situ stress field. They submitted that the initiation of
hydraulic fractures is the result of tensile failure and rupture at the borehole wall, and
developed equations relating the pressure needed to induce hydraulic fracture to the
state of stress at the borehole wall. With appropriate adjustments, their elastic model is
still the basis of our understanding of hydraulic fracturing today.

Fairhurst (1964, 1965) was among the first to advocate the use of hydraulic fractur-
ing for a diametrically opposed purpose: rather than use the presumed state of in situ
stress to predict the induced-fracture direction and the pressure required to initiate that
fracture, to employ the method as a tool for in situ stress determination. Haimson and
Fairhurst (1967) and Haimson (1968) extended Biot’s (1941) theory of poroelasticity
to cover pressurized boreholes, and generalized theHubbert andWillis (1957)model to
include both nonpenetrating and penetrating injection-fluid cases. They also demon-
strated in the laboratory the reliability of the suggested pressure-stress relations
(Haimson, 1968; Haimson & Fairhurst, 1969a, 1970).

The breakthrough for hydraulic fracturing as an important method of in situ stress
measurement came when the Menlo Park, California, branch of the U.S. Geological
Survey engaged in studying the unprecedented series of earthquakes at Rangely,
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Colorado. It was this group’s decision in 1971 to financially support hydraulic fractur-
ing stress measurements at Rangely, and the subsequent success of the experiment in
explaining the conditions which had brought about local earthquakes (Haimson, 1973,
1975a; Raleigh et al., 1972), that paved the way for other important field tests and for
the general acceptance of the method.

During the 1970s there were several important milestones in the development of
hydraulic fracturing, such as: the first measurements in an underground tunnel as part
of the pre-excavation design of underground hydroelectric powerhouses (Haimson,
1975b), the first measurements outside the United States (Rummel & Jung, 1975;
Haimson & Voight, 1977), the deepest stress measurements ever undertaken until then
(Michigan 5km deep wellbore, Haimson, 1978), and the first measurements along the
San Andreas fault (Zoback & Roller, 1979; Zoback et al., 1980). Research groups
dedicated to hydraulic fracturing stress measurements sprung up in Europe, Asia and
Australia, and the proliferation of measurements brought to the forefront some lingering
problems in the proper interpretation of test results in terms of the in situ stress.

Two international workshops held in the U.S. in 1981 and 1988, brought together
the best known practitioners of the method for an exchange of experiences and a
resolution of the different approaches to estimating the state of stress. The
Proceedings of these workshops (Zoback & Haimson, 1983; Haimson, 1989a,b)
constitute a must read for anyone interested in entering this field of endeavor.

Several important developments have evolved over the years in the practice of
hydraulic fracturing for stress measurements. HF is developing along two distinct
courses, one for the use in open holes drilled in hard rock, usually associated with the
design of underground openings andwith the study of the earth structure and tectonics,
and the other for testing mainly cased holes in soft and permeable sedimentary forma-
tions typical of oil fields. Typically, hard rock HF testing is conducted in ‘slim holes’
(76–100 mm in diameter); oil field tests are carried out in large diameter (150 mm or
larger) and usually much deeper wellbores. Testing procedures, data interpretation,
and stress information obtained are quite different in the two approaches. The entire
reason for carrying out hydraulic fracturing tests in hard rocks is to obtain quantitative
information on the in situ stress magnitudes and directions, and techniques have
developed to provide through multiple cycles some redundancy that provides addi-
tional confidence in the results. Conversely, in traditional petroleum production prac-
tice crustal stresses are usually only of secondary interest, with the primary goal of
transient pressure testing being to determine pore pressures and bulk permeability;
repeated pressurization cycles are rare and the complicated analyses of such data
presume knowledge of fracture geometries and dimensions and of factors that retard
fluid transfer to the formation. Here we focus on the original practice in order to
highlight the relationships between in situ states of stress and the borehole pressure
records. Given the public scrutiny with regard to earthquakes induced by long term
fluid injection and massive hydraulic stimulations, we expect that the practice of
repeated pressurization cycles will be increasingly applied to better understand stress
states in petroleum reservoirs in the future.

Hydraulic fracturing equipment has evolved to where at least four different types are
now in use: drillpipe, drillpipe and hose, wireline and hose, and multi-hose. Fracture
tracing techniques presently in use also number four or so: oriented impression packer,
borehole acoustic and optical televiewers, televiewer-impression packer, and electric
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resistivity. Stress calculations still mainly follow the elastic model first described by
Hubbert and Willis (1957), but the poroelastic (Haimson & Fairhurst, 1969), and
fracturemechanics approaches (Abou-Sayed et al., 1978; Rummel&Winter, 1983) are
also employed, albeit less frequently.

2 BASIC DEFINITIONS AND ASSUMPTIONS

A basic understanding of the definitions of stresses and the Hooke’s Law relationships
between stress and strain is presumed. This information is found in many texts today
(e.g., Jaeger et al., 2007). As is normal in the geo-science and geo-engineering commu-
nities, compressive normal stresses, pore and borehole pressures, are by convention
taken to have positive sign.

For purposes of illustration here we further make the assumption that within the
rock mass of interest the three in situ principal stresses are vertical σV and horizontal
σH and σh with magnitudes σH > σh (Figure 1). We will refer to these as the far-field
stresses with the meaning that these existed prior to the drilling of the borehole; these
are the stresses that we seek to determine. Note that in the earth we expect that all
three of these stresses to be compressive. The vertical stress σv is taken to be equal to
the overburden weight per unit area at the depth of interest (Terzaghi & Richart,
1952):

σv ¼
Xn
i¼1

ρigDi ð1Þ

where ρI is the mean mass density of rock layer I; g is the local gravitational accelera-
tion; Di is the thickness of layer i; and n is the number of rock layers overlying the test

PP

sH

sv

sh

Figure 1 The rockmass is subject to the three principal stresses σV, σH, and σh and pressure PP. The rock
has porosity ϕ and permeability κ.
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zone. This assumption is commonly employed in areas where there is little variation in
the topography, but of course cannot hold near the surface in mountainous regions
(Figueiredo et al., 2014; Savage et al., 1985), in the vicinity of underground workings,
or if the structures and mechanical properties within the rock mass distort the stress
field (Amadei et al., 1987; Cornet, 1993). In this contribution, for the sake of clarity, we
will assume however that σv is one of the principal stresses and that the borehole is
nearly vertical. Of course, this will not always be the case particularly in inclined or
horizontal drilling, but here we provide the reader with the essential background to
independently further consider alternate cases.

Further, the fluid residing in the pore space of the rock has an original formation pore
pressure Po. However, if fluid infiltrates into the formation during the HF test the pore
pressure in the vicinity of the borehole will vary both spatially and temporally and in
this case we will employ PP to represent the pore pressure that will be active in assisting
creation of the fracture.

While it may be obvious, it is important to point out that the relative magnitudes of
the three in situ principal stresses generally differ from one another. Structural geolo-
gists have long known (Anderson, 1951) that the relative magnitudes of these principal
stresses control both the style of faulting and the opening and growth of tensile
fractures. The three faulting regimes are:

i. Thrust (or reverse) faulting regime with σH > σh > σv
ii. Strike-slip (or wrench) regime σH > σV > σh,
iii. Normal faulting regime σV > σH > σh

Away from the stress concentrations around the borehole, tensile fractures will most
easily open in the direction of the minimum compressive principal stress σmin in each
case, so that the plane of such fractures lies vertically in normal and strike-slip
faulting regimes but horizontally under thrust fault scenarios as was simply demon-
strated by Hubbert and Willis (1957). While their demonstration illustrates nicely
the growth of fractures in a stress field away from the borehole, great care must be
taken in the interpretation of their tests to the fracture initiation at the borehole wall
in a real situation. At the borehole wall in cases using inflatable packers, however,
the fluid pressure in the wellbore induces a considerable azimuthal tension. Although
the near borehole stress environment may in most, but not all (Bjarnason et al.,
1989) cases first influence the fracture initiation, once the fracture has propagated
away from the borehole the undisturbed stresses will reassert themselves and
control its orientation (e.g., Warren & Smith, 1985). That means that the initial
vertical fracture is aligned in the direction of σH (see Fig. 2c). Haimson and Lee
(1980) observed this phenomenon directly during tests at Darlington, Ontario
where, despite being in a thrust fault stress regime, they initiated vertical fractures
in the boreholes which then later turned and traversed back into the boreholes
horizontally.

The rock mass can also be characterized in a number of ways. It is first assumed
that its physical properties are isotropic and that they are not dependent on the
effective stress. The rock’s elastic ‘frame’ or ‘drained’ properties may be described
by its bulkK, Young’sE, or shear μmoduli and its Poisson’s ratio ν, only two of these
need to be known to fully describe the material’s elastic properties. Normally the
rock will have porosity ϕ and permeability κ. The frame of the rock and its

Hydraulic fracturing stress measurements in deep holes 187



a)

b)

c)

Figure 2 Fractures made by Hubbert and Willis (1957a) by pressurizing boreholes in thick gelatin
subject to different states of stress. The pressurizing borehole fluid was a plaster-of-Paris
slurry that was allowed to set. In a) the gelatin mass was subject to a horizontal compression
and in b) a vertical compression. Vertical a) and horizontal b) fractures result. Images modified
from Figures 23 and 24 of Hubbert and Willis (1957a), permission to use through expired
copyright. c) Vertical hydraulic fracture propagating in the direction of σH made by Haimson
and Fairhurst (1970).



constituent solid minerals will have bulk moduli K < Ks, respectively, and the Biot-
Willis poroelastic parameter that is a measure of the volumetric strain induced by
changes in PP may be defined:

αP ¼ 1� K
Ks

: ð2Þ

The limits 0 ≤ αP ≤ 1 respectively correspond to extremely stiff (K → Ks) or compliant
(K << Ks) porous materials.

A useful shorthand used later is the simply named ‘poroelastic co-efficient’ (Detournay
et al., 1989; Rice & Cleary, 1976)

η ¼ αP 1� 2�ð Þ
2 1� �ð Þ ð3Þ

which for isotropic porous materials could range over 0 ≤ η ≤ 0.5.
The rock, in its natural state in the earth, will also have a thermal conductivity k and

a coefficient of thermal expansion αT. Knowledge of these properties becomes impor-
tant if corrections for pore-elastic or thermal effects are necessary.

Finally, Rankine’s tensile strength criterion of T > 0 is assumed. Under this simple
criterion the rock will fail in tension once

σ � PP < �T ð4Þ
where σ – PP is the classic Terzhagi effective stress that applies generally for failure
(Cornet & Fairhurst, 1974; Rice & Cleary, 1976; Robin, 1973).

One important point is that the analyses described below strictly only apply for
the case in which the wellbore fluid transmitting Pw is in direct contact with the
intact rock. Many of the equations presented, particularly those relating to frac-
ture initiation or breakdown, cannot apply to perforated steel cased and cemented
boreholes. Similarly, thick mudcakes may complicate interpretations (Raaen et al.,
2001). This contribution is focused on the quantitative determination of stress
during relatively small injections of fluids in rock that could be considered iso-
tropic. Several workers have studied the problem of pressure testing in naturally
fractured or jointed rock masses and even usefully exploit such information to
gain knowledge of the stress field (Baumgärtner & Rummel, 1989; Cornet &
Valette, 1984).

3 CONCENTRATION OF STRESS AROUND THE BOREHOLE

In the discussions to follow the borehole is drilled in the vertical direction that is its axis
is parallel to the vertical and subsequently also to σV. This simplifies the analysis and
allows Kirsch’s (1898) plane strain formulation to be applied to the calculation of the
stresses concentrated in the vicinity of the borehole. This is done in a cylindrical
coordinate system and for an arbitrary point A defined by its azimuth θ and radial
distance r from the borehole axis. The concentrated tectonic stresses are for a uniaxial
stress σxx applied along the azimuth θ = 0° (Figure 3).
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σθθ ¼ σxx
2

1þ a2

r2

� �
� σxx

2
1þ 3a4

r4

� �
cos 2θð Þ

σrr ¼ σxx
2

1� a2

r2

� �
þ σxx

2
1þ 3a4

r4
� 4a2

r2

� �
cos 2θð Þ

τθr ¼ � σxx
2

1� 3a4

r4
þ 2a2

r2

� �
sin 2θð Þ

ð5Þ

with σθθ, σrr, and τθr being the azimuthal (or hoop), the radial, and the shear stress at
point (θ,r) within the cylindrical co-ordinate system centered on the borehole axis.

The formula describing the hydraulic fracturing process assume that the stresses in
the vicinity of the borehole are controlled by the concentration of the greatest and least
horizontal far-field compressive stresses σH and σh, respectively, and by the borehole
fluid pressure Pw. The solution for the far-field stress concentrations is obtained from
Kirsch’s (1898) derivation for stress concentrations induced by application of a stress
to a thin plate containing a circular hole. The effects of the wellbore pressure are
obtained from Lamé’s (1852) hollow cylinder expressions (see also Bickley, 1928 for
more complex situations). Superposition of these gives (Haimson & Fairhurst, 1967;
Haimson, 1968; Jaeger et al., 2007):

σθθ ¼ σH þ σh
2

1þ a2

r2

� �
� σH � σh

2
1þ 3a4

r4

� �
cos 2θð Þ � Pw

a2

r2

σrr ¼ σH þ σh
2

1� a2

r2

� �
þ σH � σh

2
1þ 3a4

r4
� 4a2

r2

� �
cos 2θð Þ þ Pw

a2

r2

τθr ¼ � σH � σh
2

1� 3a4

r4
þ 2a2

r2

� �
sin 2θð Þ

ð6Þ

This result can also be obtained from Hiramatsu and Oka’s (1962) 3D solution of a
borehole arbitrarily oriented with respect to the stress field, which allows for the

a

rPw

A

σh

σHθ

Figure 3 View down the vertical axis of the borehole of radius a drilled into a rockmass subject to the far-
field horizontal principal stresses σH and σh. Point A is described by its azimuth θ and distance
from the borehole axis r. The borehole is filled with fluid at borehole fluid pressure Pw.
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consideration of the vertical principal stress σV. Examination of these shows that σV
does not influence the horizontal stress concentrations described in Equation 6.
Conversely, if plain strain applies the horizontal stresses must induce a vertical stress
(Aadnoy, 1987; Bjarnason et al., 1989). No elastic properties appear in Equation 6 but
the reader must keep in mind that this strictly only applies if the rock is isotropic and
linearly elastic; introduction of anisotropy may complicate the situation.

Figure 4 illustrates graphically Equation 6 at the borehole wall where r = a for two
specific magnitudes of the far field stresses. As is well known, application of a uniaxial
stress σH results in large variations in the azimuthal, or hoop, stress σθθ such that in the
azimuths that point in the direction of σH (i.e. at θ = 0° and 180°) a pure tension is
generated with σθθ ¼ �σH (Figure 4a). Indeed, the rock will fail in tension if σH > T. In
contrast, σH’s compression is amplified by a factor of 3 perpendicular to this (i.e. at θ =
90° and 270°). Superposing increasing σh compressions attenuates the extremes and
once σh exceeds a σH/3 then σθθ is compressive everywhere.
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Figure 4 Illustration of the variations in stress concentration of σθθwith θ at the borehole wall r = a due
to a combination of far-field stresses σH and σh and borehole fluid pressure Pw. Tensile stresses
indicated with gray background. a) Case with no fluid pressure Pw = 0 with constant σH = 10
MPa and with varying 0 ≤ σh ≤ σH. b) Case with σH = 10 MPa and σh = 5 MPa with 0 ≤ Pw ≤ σH.
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The addition of any borehole pressure Pw superposes an additional tensile tangential
stress with the same magnitude at the borehole wall (Figure 4b) and can easily push σθθ
into tension at the azimuths surrounding θ = 0° and 180°. Consequently, once σθθ ≤ −T
we will expect the rock to fail in tension and to initiate a hydraulic fracture. This is an
important point, as the pressure at which the fracture initiates, which we provisionally
associate here with a breakdown pressure Pb, is key in attempting to estimate the
magnitude of σH. A further important implication is that we expect the hydraulic
fractures created to lie at the azimuths that point in σH’s direction.

It is also useful to consider the behavior of the stress concentrations that are assumed
responsible for growth of the hydraulic fracture. This has implications for both fracture
initiation and subsequent re-opening during later pressurization cycles (Hickman &
Zoback, 1983; Ito et al., 1999). The evolution of σθθ(r) at the borehole wall (r = 1) is
plotted for cases of σH/σh from 1 to 4 in Figure 5a. As already mentioned, we expect the
growing hydraulic fracture to propagate in a direction parallel to σH (Figure 2c) opening
normal to the direction of σθθ(r); radial variations in these stresses will influence the
growing fracture. Farther from the borehole as expected σθθ(r) asymptotically
approaches σh for all cases. When σH = σh the concentrated σθθ(r) monotonically
decreases but generally remains strongly compressive. Conversely, when σH >>σh zones
near the borehole wall are in pure tension, a state that would assist fracture initiation.
Indeed, one might expect tensile rupture to occur spontaneously for the extreme case of
σH/σh = 4 without any borehole pressure. As this fracture grows into the formation,
however, its propagation will be retarded by increasingly greater σθθ(r) compression.

This illustration is taken one step further (Figure 5b) by applying within the borehole
the pressure Pw necessary to first bring the hoop stress σθθðr ¼ 1Þ to zero for a
representative set of the σH/σh cases from Figure 5a. The purpose of this exercise is to
show how Pw influences the hoop stress concentrations into the formation along the
azimuth of σH. A small further increase in Pw would put the borehole wall into tension
and closer to failure, and in later discussions this will be taken by some workers to be
the re-opening pressure. Pr. Unexpectedly, the closer to tension the case in Figure 5a,
the greater the corresponding compression encountered in Figure 5b once the counter-
acting wellbore pressure is applied. The results of Figure 4b provide insight into both
hydraulic fracture initiation and subsequent propagation. For the case σH=σh ¼
1;5; Pw > σθθðrÞ but this situation evolves to σH=σh ¼ 3; Pw < σθθðrÞ. This means
that the borehole pressure required to initiate a tensile fracture is large for the former
and small for the latter. However, any further tensile fracture propagation into the
formation for this latter case is prevented as σθθ(r) rapidly becomes increasingly
compressive. The opposite situation occurs for σH/σh = 1.5 as σθθ(r) decreases mono-
tonically into the formation. Fracture growth is facilitated by the already high value of
Pw relative to σθθ(r).

3.1 Thermo-elastic effects

The concentrated stresses of Equation 5 may often not be the only ones that need to be
considered. Transient effects produced by the flow of heat or fluids both into and out of
the borehole can also generate substantial stresses that will influence failure of the rock.
Both of these processes are diffusive and in many ways have similar equations describ-
ing them.

192 Schmitt & Haimson



1

1

1.5

1.5

2

2

2.5

2.5

3

3

3.5

3.5

4

4

−0.5

−1.0

0

0.5

1.0

1.5

2.0

Normalized Radius || H

Normalized Radius || H

R
el

at
iv

e
/

H
oo

p 
S

tr
es

s 
M

ag
ni

tu
de

h
R

el
at

iv
e

/
H

oo
p 

S
tr

es
s 

M
ag

ni
tu

de
h

3

2

1

1.5

Pw = 0

Pw = 1.5

Pw = 1

P =w 0

3

2

1.5

a)

b)

0

0.4

0.8

1.2

1.6

4
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Thermo-elastic stress concentrations are generated once a temperature differ-
ence exists between the borehole fluid and the rock mass as first noted by Stephens
and Voight (1982). This almost always exists during drilling itself where the
drilling fluid temperature might often be expected to be less than the in situ
temperature. In this case heat will flow from the hot rock to the cooler fluid filled
borehole and generate additional stresses that superpose those described in
Equation 5. The mathematics of this is rather involved. A rigorous treatment
would require first time-dependent knowledge of the distribution of the tempera-
ture field V(r,t) as it varies radially from the borehole, that in turn is controlled by
the initial and boundary conditions on temperature. Once V(r,t) is determined, the
corresponding hoop stresses can be found using the radially symmetric thermo-
elastic relationships

σTθθ ¼
αTE
1� �

1
r2

ðr
a
V r; tð Þrdr� V r; tð Þr2

� �
ð7Þ

Stephens and Voight (1982) employed an approximation forV(r,t) provided by Ritchie
and Sakadura (1956) based on results that are found in texts such as that by Carslaw
and Jaeger (1959). They assumed a case in with the rock mass initially at uniform
temperatureVo, and at time t = 0 the wall of a borehole drilled through it is subject to a
temperature V1 that thenceforth remains constant. The temperature difference is
simply ΔV = V1 – V0 and, surprisingly, at the borehole wall r = a the induced stresses
simplify to

σTθθ r ¼ að Þ ¼ αTE
1� �

DV ð8Þ

that is independent of time.
As might be intuited, Equation 7 shows that increasing and decreasing temperatures

will respectively superpose compression or tension to the hoop stresses at the borehole
wall. These thermal stresses can be unexpectedly large. Broadly, the term αTE/(1−ν) can
easily range from about 0.1 MPa/°C to 1 MPa/°C; an even modest temperature
difference of only, say, −5 °C could generate hoop stresses of the same magnitude as
the tensile strength.

3.2 Poroelastic effects

All rocks are to some degree porous and in the earth are nearly always saturated with
fluids that will reside at some native formation pore pressure. The rock, too, will be
permeable allowing fluid diffusion. The very geometry of the hydraulic fracturing
experiment means that some such fluid diffusion from the borehole into the rock
mass cannot be avoided in a realistic case. The infiltration of pressurized fluid into
the rock mass increases local pore pressures and consequently induces additional
stresses in a manner directly analogous to the thermoelastic situation. The differences
are that instead the elastic properties of the rock must be used and that the stress
distribution is controlled by the PP(r,t) instead ofV(r,t). Haimson and Fairhurst (1967)
first examined this problem and by adapting Equation 6 using Biot’s theory of poro-
elasticity, obtained
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σPθθ ¼
αP 1� 2�ð Þ

1� �

1
r2

ðr
a
PP r; tð Þrdr� PP r; tð Þr2

� �
ð9Þ

where the superscript P indicate stresses induced by poroelastic processes. If at the
borehole wall Pw = Pp and in an infinite medium the solution that considers in isolation
only the stress generated due to fluid infiltration collapses simplifies to

σPθθ r ¼ að Þ ¼ 2ηDP ð10Þ
where ΔP = Pw – Po. Fluid flow from the borehole into the formation generates a net
compression themagnitude of which depends on η. Similarly to the thermo-elastic case,
in a formation extending infinitely away from the borehole the stress immediately at the
borehole wall is also independent of time (Aadnoy 1987; Detournay et al., 1989; Rice
& Cleary 1976), even though the pore pressures near the borehole must necessarily
vary with time (See Schmitt & Zoback, 1992).

3.3 Additional effects

Sections 3.1 and 3.2 mention two possible corrections due to transport of fluid or
thermal energy into the rock mass. There are also additional effects that could be
important, and while we focus this contribution on simple elasticity, it is important
to at least mention other factors that might need to be considered. These effects may be
increasingly important at greater depths in the earthwhere the rock near the borehole is
likely damaged by high stress concentrations ormay in some cases becomemore ductile
due to higher temperatures. This results in a redistribution of the concentrated stresses
such that the validity of Eqns. 6 is no longer strictly valid, requiring modification of the
break-down equations that are presented later. However, we expect that once past the
borehole stress concentrations, the pressures required to propagate the fracture into the
formation would behave approximately the same as for the perfectly elastic case and
the values of σh determined would still be valid.

Even without damage, the response of most rocks to stress occurs nonlinearly. One
major source of this nonlinearity arises from the existence of crack-like porosity in the
rocks. Such pores are readily compressed and can with relatively modest confining
pressures close (see Schmitt (2015)) with the consequence that that rock is nonlinearly
elastic. This nonlinearity has been long known but is often ignored. Haimson and Tharp
(1974) attempted a partial solution to this dilemma by assigning different values of
Young’s modulus depending upon whether the material was subject to either tension or
compression, they called this a bilinear relationship. Their calculations showed that the
magnitude of σθθ at the borehole wall was somewhat diminished relative to the linearly
elastic case. Santarelli et al. (1986) and Brown et al. (1989) obtained pressure-dependent
empirical curves for the Young’s moduli of a set of sedimentary rocks. The models they
developed, too, gave lower values of σθθ than the simple elastic case. Schmitt and Zoback
(1992, 1993) also noted the effects of nonlinear behavior in failure of a series of internally
pressurized hollow cylinders. This topic requires further study to determine how the
deformation characteristics of such materials should be properly characterized. The
great advantage of the linearly elastic case is that the stress distributions are independent
of the material’s elastic properties; this advantage is lost once nonlinear elasticity is
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invoked. Further, the studies above consider only axisymmetric geometries whereas it is
long known that deviatoric stress states induce a state of azimuthal anisotropy around a
borehole, a condition that is exploited to find stress directions in dipole sonic logging (see
review in Schmitt et al., 2012). Solutions to this problem are only recently appearing (e.g.,
Ortiz et al. (2012)) but given the variety of material behaviors and situations encountered
it is likely that one may need to examine particular cases by numerical modeling.

Time-dependent or plastic behavior of the rock could introduce additional compli-
cations (e.g., Detournay & Fairhurst (1987); Wang & Dusseault (1994)) that are in
need of additional investigation also. Regardless of these additional complications, this
contribution focuses on the classic analyses within the context of linear elastic or
poroelastic models.

4 FIELD CONFIGURATIONS

As noted above, we are considering stress measurements in which the pressurized
wellbore fluid acts directly on and can infiltrate into the borehole wall rock. There
are two basic geometries that could be considered with either only the bottom-most
section of the borehole being pressurized (Figure 6a–c) or a shorter interval along the

a)

cement steel

pressurized not pressurized

packer

b) c) d) e)

Figure 6 Examples of possible configurations of the hydraulic fracturing experiment. Cased and cemented
configuration with pressurized zone consisting the bottom open hole interval and a) the entire
casing string or b) the interval isolated by a packer within the casing string. Open hole config-
urations with c) a single packer within the open hole, d) a straddle packer isolating a smaller
interval along the open borehole, and e) the same as d) but conveyed on a wireline with a
downhole pump for pressurizing the interval.
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borehole being isolated by a ‘straddle-packer’ arrangement (Figure 6d–e and Figure 7).
In the first two, the borehole is entirely cased and cemented save for a small interval of
open hole at the very bottom. Case c) essentially differs from those only in that the
packer is activatedwithin the open hole section. Themost reliable stress determinations
can be obtained, however, in cases d) and e) where a small interval along the borehole is
isolated by packers; these cases too allow for multiple tests at different depths along the
borehole.

There are advantages and disadvantages to the various geometries. Numerous fac-
tors come into consideration in the design of a stress measurement program including
time available, costs, practicality, and safety. In the following, brief discussion of the
different geometries is provided.

Case a) is encountered in petroleum drilling where ‘leak-off’ tests (LOT) are
commonly carried out to ensure the competency of the casing and cementing, and
the control of mud densities (e.g., Addis et al., 1998). This simply consists of a
single cycle of pressurization in which breakdown may or may not be achieved with
the pressures measured at the surface. The results from LOT’s are commonly
interpreted to estimate σh (e.g., Breckels & van Eekelen, 1982) but such values
are generally deemed unreliable and this motivated workers to develop what are
now usually referred to as ‘extended leak-off tests’ (ELOT or XLOT). Kunze and
Steiger (1992) suggested that ideally the XLOT include repeated cycles of pressur-
ization, accurate downhole pressure measurement (or at least appropriate correc-
tions for the pressure head), and sufficient time after shut-in for the pressure to
decrease in order that the fracture closes. Practice usually does not achieve this
regrettably, and Zoback (2007) provides an extensive critical discussion of the
analysis of such data.

Some of the more important disadvantages (Li et al., 2009) of these tests include the
poor pressure sensitivity of the large volume of fluid within the casing and bottom-hole
interval to the small changes due to creation or closure of an fracture (Ito et al., 1999),
the use of compressible (relative to water) and often non-Newtonian fluids, the lack
(usually) or corresponding information on fracture orientations, and the complicated
3-D concentration of stresses in the vicinity of the bottom-hole that have resulted in
horizontal fractures in the laboratory (Haimson & Fairhurst, 1969a). Raaen et al.
(2006) warn that use of open intervals of more than a few meters length should not be
used for stress determination. If the pressure is measured at the surface, viscous losses
through the drill stringmay attenuate the pressure responsesmaking determination of a
breakdown pressure even less reliable. Despite these cautions, this geometry may be all
that is available in some cases.

Cases b) and c) are variations of the XLOT geometry that include a packer deployed
within either the casing or in the open hole. One advantage of these is that the pressure
sensitivity may be increased due to the fact that a smaller mass of fluid need is used and
hence the pressure changes are more substantial. With sufficient foresight, the packer
system could be constructed to incorporate pressure transducers. A problemwith single
packer systems, however, is that substantial lifting forces push upwards during pres-
surization and if this exceeds the packers’ frictional resistance then the assembly will
have no choice but to move upwards. In some examples, this is known to result in
damage to the equipment, blockage of the borehole, and danger for operational
personnel at the surface.
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In deep wellbores subject to significant borehole instability, packers in the open hole
may not be able to provide a proper pressure-tight seal and Case b) may be the only
option. This geometry was successfully used to estimate stresses at a depth of 9 km in
the KTB deep borehole project in Germany (Brudy et al., 1997). In contrast, safety
considerations did not admit a similar test carried out at 6 km to reach sufficient
pressures for an unambiguous determination of the fracture closure pressure. We are
not aware of any publications in which stresses have been measured from the geometry
of Case c) but this configuration has been popular in attempts to locally relieve stress in
deep mines.

Cases d) and e) show straddle packer assemblies that are pressurized either by a
pump at the surface or one built into the system itself, respectfully. Case d) may be
deployed either by a steel casing or bywireline with the surface pump connected to the
interval (and also independently to the packers) by the drill string itself, by drill string
and high-pressure hoses, or, in the case of wireline deployment, by separate hoses.
Straddle packers have a number of advantages. They allow for numerous tests along
the open hole section of the borehole as opposed to only the single test that can be
carried out for the XLOT cases. For example, Evans et al. (1989) obtained 75
measurements to depths as great as nearly 1040 m in three closely spaced boreholes
in New York, Klee et al. (1999) nearly 150 in a 18 different boreholes to depths of
255 m, and Schmitt et al. (2012) were able to obtain 17 successful tests at depths of
nearly 1500 m from the rig floor over a 24 hour period in order to constrain the state
of stress in McMurdo Sound, Antarctica. Further, safety is increased substantially as
the fluid pressure in the interval is both contained to a small volume and pushes
equally against the two packers with no resultant net force that could push the
packers upwards. In HF measurements conducted in slim boreholes drilled from the
surface or from underground openings, in conjunction with civil or mining opera-
tions, case d) is exclusively used.

Case e) includes its own downhole pumping system. This capability has been
available commercially for larger wellbores typical of petroleum drilling (e.g.,
Desroches & Kurkjian, 1999; Thiercelin et al., 1996) but smaller systems that
might be applied in scientific or mining drilling applications have been designed but
not yet constructed (Ito et al., 2006). The great advantages of the downhole pumping
system is that overall it is sufficiently stiffer, i.e., a small abrupt change in the volume
of the system due to breakdown or fracture reopening effect a larger relative change in
the interval pressure. Conversely, pumping rates are much more restricted and this
could be a problem if the formation is so permeable that Pw cannot build rapidly
enough to create a fracture.

Hydraulic fracturing stress measurements go by many different names that are not
necessarily consistently applied. The terms microfrac and minifrac have been asso-
ciated generically with any of the above geometries. According to de Bree and Walters
(1989) these are characterized on the volume and rate of fluid pumping in the test. In a
microfrac a total of only 10 to 500 l are pumped at rates of 5 to 50 l/minute. A minifrac
is significantly larger with 1.5 m3 to 15 m3 pumped at rates of 0.75 to 1.5 m3/minute.
These contrast with massive hydraulic fracture stimulations that in a single stage
would typically pump 100 m3 to 200 m3 at rates of ~10 m3/minute (Anonymous,
2009). Further, within the petroleum industry the acronym DFIT (diagnostic fracture-
injection test) has evolved past the limits of its original definition as a transient pressure
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test primarily aimed at estimating in situ permeabilities in ‘tight’ formations (Craig &
Brown, 1999) to also encompassing nearly any test carried out in which stresses are
estimated regardless of procedure or geometry. Generally, however, determination of
stresses from DFIT’s is often complicated by the fact that they usually only consist of a
single pressurization cycle that allows for only one measure of a fracture closure
pressure PFC and they are often carried out through perforated casing that disallows
use of any of the stress concentration formulas presented here. Workers must take care
to note carefully how ‘DFIT’s are actually carried out in order to minimize the risk that
the results are over interpreted.

5 SYSTEM CONFIGURATION

The discussion here focuses on stress measurements made using the straddle packer
configurations of Figure 6d and e. The interpretation of the pressurization records from
the straddle-packer geometry is simplified by the fact that the experimental geometry is
well constrained. In contrast the interpretation of records from system configurations
6a to 6c can be complicated by numerous factors such as the stress concentrations at the
wellbore bottom (Rumzan& Schmitt, 2001) or irregular geometry and fractures of the
open bottom-hole segment of the borehole (Haimson & Fairhurst, 1970; Zoback,
2007).

The design of the HF tool and the fluid pressure sensor location are key to a
successful measurement. Ideally, in deep holes, like those encountered in oil-field
wellbores, fluid pressure should be measured downhole in order to obtain the highest
quality pressure records. As such, the tool should host pressure transducers that
record in situ both the interval and the packer pressures. This would be done in
real time but unless the tool is conveyed on a wireline doing this becomes difficult. At
a minimum one can employ memory logging sensors many of which are now com-
mercially available although care must be taken in selection to ensure that adequate
sampling rates are achieved. Additional sensors that measure the pressure in the
borehole both above but particularly below the packers can provide useful quality
control information, a change in the pressure outside of the packed interval indicate
improper sealing such that the pressurized interval fluid could leak past. Downhole
sensors have the additional advantages in that any viscous losses through the
pressurization system may be ignored and that no corrections for head pressures
need be made.

In tests conducted in relatively short slim holes (say 0–500 m), and typically in hard
rock of low permeability, surface recording of fluid flow rate and test-interval pressure
is adequate.

Most configurations will include a surface pump. At the very minimum one must be
able to track these surface pressures in real time in order to control the pressurization
rate and to cease pumping once break-down is reached.

The pressure transducers need also be carefully selected to match the expected range
of pressures encountered. Transducers whose range greatly exceeds the maximums
may not be sufficiently accurate. Those whose range is too small may be damaged by
overpressures. Other factors to consider are the transdicers’ response times. In selecting
pressure sensors, traditionally strain-gage-based transducers have been used. However,

200 Schmitt & Haimson



quartz resonator gages that measure pressure from fundamental changes in the reso-
nance frequency of a pure quartz crystal have the advantages of fast response times,
negligible drift, and high accuracy.

A flow meter to track both the amount and rate at which fluid is pumped in and
subsequently allowed to flow back should also be a component of any system. Ito et al.
(1999) assert that the position at which this flow meter is placed can have important
consequences for stress measurement, if the flow meter is placed near the packers
then the effects of the overall system compliance are minimized and better records of
re-opening pressures are obtained.

Workers should also carefully consider the rate at which any data is digitally
sampled. Regrettably, many of the systems employed were designed for other pur-
poses and may not even record pressures at a uniform sampling rate or at a sampling
rate that is insufficient to obtain a clear pressure record. A rough guideline is that one
sample/second should be the absolute minimum, but faster rates of 10 or even 100
samples per second are recommended in order to better ensure that fine details of the
pressurization curves, such as the peak at breakdown, are adequately captured. Such
data sampling is easily achievable today with many off the shelf data loggers readily
available. However, power consumption is also related to digitization rates and the
energy that can be provided by small batteries in adverse downhole conditions
remains problematic.

We focus our discussion on a design that has been particularly popular for quanti-
tative stress measurements Themajor components of a system for stress determinations
would include (Figure 7):

i. A means to convey the packer system into the borehole. This is accomplished in
Figure 7 by a wireline, which can also accommodate conductors, allowing the
down-hole pressures to be monitored in real time. Alternatively, conveyance of
the packer assembly at the bottom of a drill string is also popular. A system
employed successfully in slim holes utilizes two high –pressure hoses, and, when
deemed necessary, a data cable, attached on the outside of the drill string or
wireline. The pressure hoses are for pressurizing the packers and the test interval;
the data cable is for surface monitoring of fluid pressures in the packers and
interval that are recorded at depth. There are also commercial systems for deep
wellbores that allow switching between pressurization of the packers and of the
interval using downhole valves that are controlled by set movements of the drill
string up or down. This last configuration does not easily allow for the downhole
pressures to be displayed at the surface during the test but they may still be
continuously recorded with memory gages and retrieved later. An advantage of
this configuration, however, is that the drill rig’s pulling force is significantly
greater than that pulling the wireline, and as such there is much better chance that
the packer system can be retrieved should it become stuck.

ii. A pair of packers connected via a steel pipe or mandrel. The mandrel must be
sufficiently strong that it can safely hold the opposing pull of the two packers
upon pressurization of the interval. A great deal of care must be taken in the
selection of the packers, and workers will need to consider in situ temperatures,
the peak differential pressure (i.e. the difference between the actual pressure in the
packer and the ambient borehole fluid pressure outside of it), and the packer
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diameter. This is a particular concern in boreholes drilled from underground
workings that may have only small head pressures or even be dry. Special quad-
ruple packer designs have been constructed to the innermost packers sealing the
interval to be supported (Ask et al., 2009), thus greatly increasing the overall peak
pressure that can be attained.

iii. A pumping system that can attain both sufficient pressures and flow rates.
Conversely, higher pumping rates may increase viscous losses to the point that
pressures measured at the surface will not properly track those within the interval
and substantial errors in the interpretation of surface gage recordings may result.
In Figure 7 two separate pumping systems are shown but use of an appropriate
manifold can allow a single pump to be employed.

iv. Valves that will allow the packers and the interval to be ‘shut in’ or opened at the
appropriate times during the test. Ideally these will be as close to the interval as
possible in order to ‘stiffen’ the system (Klee et al., 1999).

v. At least one flowmeter that canmeasure the flow rate q(t) to allow for determina-
tion of amount of fluid entering the interval’s hydraulic circuit prior to shut in and
returning after release. The amount of fluid returned may also be measured by
collecting this volume directly.

vi. A series of pressure transducers to record the interval and packer pressures and,
ideally, both at the surface and downhole. Downhole transducers are much
preferred as they measure the changes in pressure directly at the point of the
measurement. In contrast, the pressures sensed by the surface transducers are
affected by viscous losses and system compliance and must be corrected for
differences in head between the surface and the measurement point in the bore-
hole. A fifth pressure transducer has been added below the lower packer in
Figure 7 the purpose of which is to assess leakage of pressurized interval fluid
past an improperly seated lower packer. A further pressure sensor above the
upper packer would provide further confidence in the measurements.

This data should all be digitally recorded at a sufficiently high sampling rate in order
that rapid changes in the pressures may be detected (Holzhausen et al., 1989). This
should be easily achieved with wireline deployed systems where live signal is readily
accessible at the surface, but may be problematic for memory gauge systems that often
sample at best once per second due to power and memory restrictions.

One example of the full set of pressure and flows recorded by a wireline hydraulic
fracturing system designed for the ANDRILL project is provided in Figure 8. This
configuration included a flow meter that recorded the rates of fluid injected and
returned from the interval, and four pressure transducers recording the packer and
interval pressures both downhole and at the surface. The liquid in the borehole and the
system was seawater. It is particularly instructive to compare the responses between
transducers recording at test interval at depth with that recorded at the surface after the
appropriate correction for the head difference of 1412 m (Figure 8). The surface
recorded pressures during period of rapid pressure increase are substantially greater
than those measured in situ due to the high viscous losses through the 2 km of hose.
Those pressures agree when pressures are only slowly changing. While this is to some
degree an extreme case it does highlight the importance of being able to measure
pressures as close to the zone being studied as possible.
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6 TEST PROTOCOL AND INTERPRETATION OF PW(T)

The ultimate goal of hydraulic fracturing stress measurement is to obtain the in situ
values of σH and σh in the earth. This is accomplished by pressurizing a section of the
borehole in order to create a fracture that will propagate a sufficient distance into the
formation such that it will be subject to the same virgin stresses. Protocols developed on
the basis of experience have been developed (Haimson& Fairhurst, 1970; Haimson&
Cornet, 2003; Hickman & Zoback, 1983) to carry this out, and it is essential that this
first be described in order that the reader can understand the rationale for a given
pressurization record. We take the perhaps unusual approach in this section of provid-
ing the conventional interpretations of fracture initiation and propagation and provide
the basic theory used to explain this.

The protocol described here closely follows Haimson and Cornet (2003)
recommendations:

i. Due diligence must be exercised in finding positions along the borehole suitable
for the hydraulic fracture tests, using all the information available. Zones con-
taining natural fractures or drilling induced borehole failure must be avoided
primarily because these will compromise the packer’s ability to seal the interval
or even lead to packer rupture. Unless they are specifically sought for purposes
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Figure 8 An example of actual set of recordings from a straddle-packer system at a depth of 1412 m
from the surface. Filled light and dark gray areas represent flow into and out of the interval,
respectively. Records include the pressure transducers recording the pressure within the
packers both at the surface and downhole and the interval pressure Pw(t) both at the
surface and downhole. The upper gray-filled area is the surface interval pressure after
correction for the fluid column head pressure to allow for direct comparison to the
interval pressure measured downhole. Note that both downhole transducers were
affected by periodic electronic noise. Figure after Schmitt et al. (2012).

Hydraulic fracturing stress measurements in deep holes 203



of stress determination (e.g., Cornet & Valette (1984)), their existence will compli-
cate analysis of the pressurization records. The experiences of the drilling personnel
can highlight both prospective zones and those to be avoided. Rock cores provide
information on the rock quality and on the existence of pre-existing natural frac-
tures. The core may allow workers to assess whether such natural fractures are
presently open or sealed and impermeable. The core material, too, can be studied in
the laboratory to provide measures of the essential physical properties above.
However, cores do not provide any direct information on the borehole

geometry and geophysical logs should be acquired. The following
requirements pertain especially to deep holes drilled in weak rock. At the very
minimum, a simple caliper log can demonstrate whether or not the borehole is at
the expected diameter for the drill bit used (this may change slightly with depth
due to bit wear). In low permeability formations, single-point-resistance (SPR),
spontaneous potential (SP), and other electrical resistance logs could expose the
open natural fractures. Similarly, anomalies in fluid chemistry or the temperature
gradient can provide supportive information. Tube waves seen in full waveform
sonic logs and even vertical seismic profiles will also indicate open fractures.
The best methods, however, will rely on oriented borehole imaging (Luthi,

2005). Ultrasonic borehole televiewers first appeared in analog forms in the late
1960s (Zemanek et al., 1969) with digitization appearing in the 1980s. They are
popular in smaller diameter, water-filled boreholes because they provide high-
resolutionmappings of azimuth (typically from 0.5° to 2°) versus depth (typically
less than 1 cm) of both the ultrasonic acoustic reflectivity and two-way transit
time. The large number of transit times around the borehole azimuth allow for
ready assessment of the circularity of the borehole. In the petroleum industry,
micro-resistivity imaging techniques that employ multi-electrode pads pushed
against the borehole wall to provide millimeter scale images of the electrical
resistivity of the wall rock are usually preferred (Ekstrom et al., 1987). These
tools do provide oriented caliper measurements but cannot provide the same
azimuthal resolution of borehole radius as the ultrasonic techniques. Such tools
have been employed in boreholes drilled through igneous or metamorphic
formations (Pezard & Luthi, 1988) but the high resistivities of these rocks is
problematic for the processing of an interpretable image (e.g., Chan, 2013).
Taken together, workers should employ as much information as possible to
best site the hydraulic fracturing measurement.

ii. Lower the packer assembly to the selected test zone and inflate the packers to
pressures Pk sufficient to inflate them and to provide a suitable seal. These
pressures typically be 2 to 4 MPa above the ambient borehole pressures. Some
care must be taken to avoid having the packers inadvertently fracture the forma-
tion prior to the test. Workers may also need to make corrections for differences
in depths arising between the core, log, and packer conveyance systems to ensure
that the packers are correctly positioned.

iii. With the packers properly seated, workers may wish to attempt a slug test in
order to estimate the in situ permeability and the system compliance. This test
can be accomplished by rapidly decreasing or increasing the pressure within
the system and then monitoring the time it takes for the borehole pressure to
re-equilibrate (e.g., Doan et al., 2006). If downhole pressures can be monitored
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in real time this test could also reveal if the packers have properly sealed the
interval. The pressure excursions should not be large, however, in order to avoid
disturbing the pore pressure field within the borehole.

iv. Knowledge of the formation pore pressure Pp is also useful. This possibly could be
found in detailed analysis of the slug test or by other means but as mentioned by
Gaaremstroom et al., (1993) the errors can be large. The key components of the test
itself are described in this section and referenced to the highly idealized pressuriza-
tion records Pw(t) of Figure 9 and Figure 10, which would hypothetically be
expected for a ‘stiff’ hydraulic system (i.e. Pw is highly sensitive to changes in the
contained volume) not subject to any viscous losses and containing liquid whose
compressibility for practical purposes remains constant during the test. Further, the
hydraulic system of the interval is assumed to be perfectly sealed with no leakage
due to faulty equipment or inadequately sealed packers. Of course, in reality some
or all of these factors may influence the observed pressures Pw(t). A typical test
would consequently consist of the followingPw(t) sequence of pressurization cycles.

First cycle: Following Figure 9 the interval pressure Pw is first increased from the
ambient equilibrated pressure PEQ within the wellbore at a constant rate sufficient
such that ‘breakdown’ at pressure Pb occurs within a reasonably short period of time
(<~3minutes). As pumping continues, the newly created fracture continues to grow at
a more or less uniform pressure PFP until pumping ceases and the interval is isolated,
or ‘shut-in’ whereupon the pressure drops abruptly to the ‘instantaneous shut-in
pressure’ PSI. Pw(t) continues to decline at first due to permeable infiltration into
the surrounding rock mass via both the borehole and the faces of the fractures until
the ‘fracture closure’ pressure PFC and from only the borehole subsequently. This first
cycle terminates after a suitable period of time by venting the interval and allowing
the interval pressure to re-equilibrate back to PEQ.

Note that at all times the packer pressure must sufficiently exceed the interval
pressure to prevent the interval fluid from escaping past the packers. Choice of the
packers becomes important, sliding-end packers are preferred as their pressure will
increase automatically. In slim holes and shallow depths separate pumps and lines to
the packers are often used to independently control their pressure.

Initially, Pw(t) increases linearly once uniform pumping begins after to until the first
break in slope is observed at the incipient fracture initiation pressure PFI, this is also
often referred to as the leak-off pressure LOP. This change reflects the slight increase of
the system’s compliance upon formation of the incipient fracture.

It is important to investigate the various criteria that have been used to predict when
this occurs particularly as these will in turn be used in later sections to provide
constraints on σH. The simplest criteria assumes the rock to be completely impermeable
to the wellbore fluid, the basis of this comes directly from Hubbert and Willis (1957)
original contribution as modified by Scheidegger (1960) who added the strength T to
arrive at the simple and classic formula

PFI ¼ 3σh � σH þ T � Po ð11Þ
Building on this, Haimson and Fairhurst (1967) further superposed the poroelastic
stress at the borehole wall resulting from infiltration into the formation of Equation 11
and took the pore pressure PP responsible for failure in Equation 4 to be equal PFI
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PFI ¼ 3σh � σH þ T � 2ηPo

2 1� ηð Þ ð12Þ

which they referred to as the critical pressure. Recalling from above that 0 ≤ η ≤ 0.5 the
denominator in Equation 12 is always greater than or equal to unity and as such this
means that iffluid infiltration is includedwewould expectPFI to be smaller than expected
for the classic case Equation 11. The differences between Equations 11 and 12 are
described in more detail in a following section as these are important to the practical
interpretations of the pressurization curves. It is worthwhile to point out that they may
provide the upper and lower bounds for PFI attained by ‘fast’ and ‘slow’ pressurization,
respectively (Detournay & Carbonell, 1997; Garagash & Detournay, 1997).

Pw(t) continues to rise until the peak ‘breakdown’ pressure Pb is reached (Figure 9).
This is usually taken to be the point where a hydraulically induced tensile fracture
extends unstably, increasing the volume of the interval’s hydraulic systemmore rapidly
than can be sustained by flow into it from the pump.

There are a few points worth noting here in regards to the interpretation of real Pw(t)
records. First, Pb will depend on the relative magnitudes of the horizontal stresses,
particularly σh, and this may influence the shape of the pressurization curve (see
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Hickman&Zoback, 1983; Thiercelin et al., 1996). Second, the actual volume change to
the interval hydraulic system due to the incipient fracture at PFI is small and actually
detecting it may be difficult (see Morita et al.’s (1996) laboratory test records). Recent
advancements in downhole sensor technologies that allow displacements of the borehole
wall rock to be recorded within the interval during a test, however, may improve this
situation (Cornet et al., 2003; Guglielmi et al., 2014, Holzhausen et al., 1989, Ito &
Hayashi, 1996). Consequently, Pb often provides an upper bound for PFI and is often for
practical purposes used in its place (see discussion by Detournay & Carbonell, 1997).

The wellbore fluid viscosity may also play a role. Morita et al. (1996) carried out a
significant number of hydraulic fracturing tests from boreholes drilled into large (70 cm×
70 cm × 70 cm) cubes and showed that the initial fracture could extend several centi-
meters into the formation prior to breakdown if highly viscous drilling muds filled the
borehole. It is important to measure this accurately as it provides the only means to
estimate σH aswill be discussed in later sections. It should be noted that inHF tests in slim
holes the fluid used for pressurizing the test interval is typically water, in which case
viscosity is not an important factor.

There has been considerable debate with regards to the use of Equations 11 and 12 as
they can give quite different answers. Detournay and Carbonell (1997) for example
point out that as η→ 0 with K→ Ks in the limit of a nonporous solid we would expect
the PFI predicted by Equations 11 and 12 tomatch but in fact they will differ by a factor
of 2. Paradoxically, the two formulas match when η = 0.5 where we might least expect
them to agree. Schmitt and Zoback (1989) determined η from combinations of labora-
tory measurements on core and sonic log wave speeds from two boreholes drilled in
crystalline rock in which hydraulic fracturing stress testing had been carried out. Using
these data, they applied Equations 11 and 12 to calculate the σH and found, perhaps not
surprisingly, that the values differed significantly and that some of the predicted values
were nonphysical. To overcome this, they modified the Terzaghi effective stress law for
failure of Equation 4 with a term 0 ≤ β ≤ 1 that served to diminish the influence of the
pore pressure on failure. Although at the time they had little theoretical justification for
this, later laboratory experiments on rocks and glass provided some empirical support
(Schmitt & Zoback, 1992, 1993).

While pumping continues the newly created fracture propagates into the formation
at the fracture propagation pressure PFP, sometimes also called the ‘formation parting
pressure’. Various models suggest this fracture growth is promoted if it contains
pressurized fluid (e.g., Shimizu et al., 2011; Zoback & Pollard, 1978) that is of
sufficiently low viscosity to fill the fracture. In order for the fracture to propagate,
PFP must act against the total stress normal its plane, overcome viscous losses due to
fluid flow into andwithin it, and transmit sufficient energy to the crack tip to exceed the
material’s tensile toughness. Once this fracture has propagated outside of the zone
where the borehole stress concentrations dominate (about 3 radii) the fracture will
open parallel to the least principal compression σmin, Consequently PFP provides an
upper bound to σmin, whether it be σh or σV depending upon the faulting regime.

At t1 the interval is shut-in and the pressure rapidly falls to the instantaneous shut in
pressure PSI where the fluid flow and fracture growth has been arrested or nearly so
(Desroches & Thiercelin, 1993). In the literature there is no consensus on how long
pumping should continue after breakdown is established. Some workers shut-in
the system as immediately as possible upon breakdown while others prefer to allow
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the fracture to grow into the formation sufficiently that it is outside of the zone of
stress concentrations (Figure 5). Presumably the pressure within the interval hydraulic
system has equilibrated and PSI just maintains the fracture open. Pw(t)must continue to
decrease, however due to percolation of the interval fluid into the formation until at t2 it
reaches the fracture closure pressure PFC that is nearly equal to but just less than σmin and
the fracture closes. As such, PFC should give the best quantitative measure of σmin

although one should take care in equating these (McLennan & Roegiers, 1982). In the
context of small volume stress testing here, itmay be difficult in actual practice to actually
distinguish PSI from PFC and inmuch of the oil field-related literature they are taken to be
one and the same; confusion in the use of the terms can arise. In deep wellbore HF testing
PSI is usually taken as the pressure that equals σmin. Another pragmatic reason may be
that PSI is more easily determined from Pw(t) than PFC (Breckels & van Eekelen, 1982;
White et al., 2002), This is not normally the case in slim hole testing, where the shut-in
pressure PSI is often equal to σmin.

The first pressurization cycle ends with the venting of the pressurized interval liquid.
The flow rate and amounts of fluid returned should be measured if possible in order to
assess the volume lost to the formation. Sufficient time then needs to be taken for this
‘flow-back’ (Hickman & Zoback, 1983) to allow Pw(t) to return to its pre-test equili-
brium level PEQ prior to commencing the second pressurization cycle. Onemaywant to
take advantage of this time by again shutting in the interval and monitoring a rise in
pressure that would provide additional certainty that the packers were properly sealed
(Haimson & Cornet, 2003).

It is important to note that the idealized pressurization curve of Figure 9 is not the
only one that may be encountered (Fjaer et al., 2008, Hickman & Zoback, 1983).
Returning to Figure 5b the reader will note that if the magnitude of σH is sufficiently
larger that of σh, the borehole pressure Pw(t) necessary to put the borehole wall into
tension will be less than σh. Consequently PFI will be less than PFP and PFC and instead
of reaching a sharp breakdown Pw(t), will more gradually approach peak value (see
Hickman & Zoback (1983)). Appropriate care must be taken in the interpretation of
the breakdown pressure in these situations.

Second (and subsequent) Pressurization Cycles: A proper hydraulic fracturing stress
test will consist of a number of repeated pressurization cycles (Gronseth & Detournay,
1979;Hickman&Zoback, 1983).Haimson andCornet (2003) recommend at least three
of these cycles be carried out. The rationale for this aremanifold and include ensuring that
a stable fracture, PSI and PSC are achieved, providing additional information as to the
relative magnitudes of the stresses in the formation from the character of the re-pressur-
ization curves (e.g., Hickman & Zoback, 1983), and allowing for an estimation of the
tensile strengthTwhen compared to the first cycle (Bredehoeft et al., 1976). The elements
between the first and the subsequent pressurization cycles are essentially the same but with
the key difference that now a fracture already exists and it, presumably, has no tensile
strength. Consequently, Pw(t) increases to the re-opening pressure PR at which point the
concentrated hoop stresses are overcome and the fracture re-opens unstably as at Pb in the
first cycle. Similarly, continued pumping into the interval will extend the fracture further
into the formation. There is little difference between the remainder of this second cycle and
the latter parts of the first cycle and all of the descriptions remain the same.

It is important to comment on the physical meaning of PR as, like PFI there are
diverging views as to how it should be explained. Bredehoeft et al.’s (1976) classic
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interpretation assumes that the stress concentrations around the borehole return to
their pre-fracture state but now the rock’s tensile strength T need not be overcome.
Their key assumption is that despite having no strength, the hydraulic fracture hydrau-
lically seals upon closing and no pressurized fluid is admitted to it prior to re-opening
with PR occurring when:

PR ¼ 3σh � σH � PP ð13Þ
that is simply Equation 11 with T omitted and with the corollary that T = Pb – PR.

Various workers have questioned the validity of the sealed closed fracture assumption
(Bunger et al., 2010, Hardy & Asgian, 1989; Ito et al., 1999; Ito & Hayashi, 1993;
Rutqvist et al., 2000) and two simplified limiting cases may be considered with regards to
fluid pressures within the already created fracture during the test. In the first the fluid
pressurewithin the fracture is the same as in thewellbore and consequently the effect ofPw

(t) on opening is essentially doubled by the combination of the Lamé tension and Pw(t)’s
normal loading of the fracture surfaces, such that the re-opening criteria becomes

PR ¼ 3σh � σH
2

ð14Þ

The reader should note that PP is omitted from Equation 14. Rutqvist et al. (2000)
suggest that this is because Pw(t) replaces PP but alternatively one can arrive at this by
more simply considering the total loading stresses on the borehole wall and fracture
faces in which case the formation pore pressure may be neglected as no failure criterion
(Equation 4) need be invoked.

In the second case the fracture is sufficiently large and it is so permeable that Pw(t)
uniformly applies a uniform total normal stress to the fracture faces that is just
sufficient to overcome σmin; consequently at best

PR ≈ σmin ð15Þ
Lee and Haimson (1989), Sano et al. (2005), White et al. (2002) and Zoback et al.
(2003) provide convincing evidence that this may often be the case and, indeed, Debree
and Walters (1989) assume this in their analyses. Some care must be taken with this,
however, andWhite et al. (2002) are careful to note that the PFI or the PR are similar to
σminwithin experimental errors inherent tomeasurement in deepwells but that they are
not strictly the same.

Finally, If poroelastic effects are included then following Detournay et al. (1989)

PR ¼ 3σh � σH � 2ηPP

2ð1� ηÞ ð16Þ

Step tests. The stress measurement experiment may sometimes conclude with a step-
pressure or hydraulic jacking test (Lee & Haimson, 1989; Rutqvist & Stephansson,
1996) that can provide additional information on σh. Here, while carefully monitoring
the flow rate, Pw(t) is increased in a series of discrete pressure steps. At each level, Pw(t)
is held constant until the flow has stabilized. Once this is accomplished the Pw(t) is
increased to the next step. Ideally, the previously created hydraulic fracture remains
closed until Pw(t) > σhwhereupon the fracture re-opens and the flow rate increases. This
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re-opening pressure is then found by a break in the slope of the plot of Pw(t) versus the
flow rate q(t). In the petroleum industry, step-rate tests in which the flow q(t) is instead
held constant at each step are popular. In more permeable formations such tests can
also provide estimates of the formation permeability (e.g., Weng et al., 2002).

Debree and Walters (1989) introduced their ‘tuned injection rate test’ which also
follows the main suite of cycles. In this test the operator raises Pw(t) to a pressure just
below the expected value of σmin, (assumed by them to be equal to PR) and then ‘tunes’
the injected flow rate such that the pressure alternates from just above to just below σmin

such that the fracture cyclically re-opens and closes. Consequently the maximum and
minimum pressure seen should match PR and PFC respectively. By varying the rate,
however, one should be able to find the level at which Pw(t) remains constant and this
presumably gives σmin.

Once these cycles are satisfactorily completed the packers are deflated and the
assembly moved to the next test site in the borehole.

v. Upon completion of the pressure testing the packer assembly is removed from the
borehole. The pressure records by themselves can only indicate stress magnitudes,
but knowledge of the actual geographic direction of the horizontal stresses is also
key. Given the 2θ azimuthal symmetry of the borehole (Figure 4), hydraulic
fracturing would ideally have created two opposing vertical fractures radiating
laterally into the formation. These fractures will lie at the azimuths parallel to σH;
consequently determination of the azimuth of the fractures gives directly the
direction of σH as can be inferred from Figure 4b.
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Figure 10 Idealized classic pressurization curve Pw(t) for the second and subsequent cycles of a hydraulic
fracturing stress measurement. Upper and lower graphs represent the simultaneously
recorded interval pressure Pw(t) and the flow rate into or out of the interval hydraulic system.
Four distinct time periods are shown as in Figure 9. To allow for comparison, Pw(t) for the first
cycle is also delineated by the darker shaded area within the interval pressure plot.
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This can be accomplished in numerous different ways with the various borehole
imaging tools available today as already mentioned in Step 1. An example of before
and after ultrasonic borehole televiewer image logs (Figure 11) shows a clear hydraulic
fracture generally striking East. The existence of the fracture in the image is also further
evidence that the test in question was successful. It is important to note, however, that
in this case it is not clear whether an opposing fracture was created or not because of
lost signal at the western azimuths.

The original technique that is still popular is to make an impression of the created
fractures by pressurizing a single packer, wrappedwith a thin deformable elastomer, in the
fractured zone.When the packer is pressurized and allowed to set for a sufficient period of
time, the elastomer molds to the small variations in the topography of the borehole wall
associated with the fracture. This packer includes on-board orientation sensors, usually
magnetometers, that allow its orientation with respect to magnetic North to be known.
However, the fracture traces are not always perfect vertical lines and the variations in the
orientations calls for statistical analysis. When the impression packer is returned to the
surface, the impression of the fracture is readily mapped from the elastomer sheet. Lee and
Haimson (1989) describe a technique that employs circular statistics to determine the
azimuths of the induced vertical fractures as well as providing a rigorous measure of the
uncertainty.

In hard rocks, the fracture created can often be subtle and it may not be readily visible
in the image logs. Baumgärtner and Zoback (1989) overcame this difficulty by disrupt-
ing the borehole wall with an ‘impression’ packer to make the fractures more visible
with the ultrasonic borehole televiewer.

This step completes the hydraulic fracturing stress test. Before the stresses may be
determined, however, one must first determine the approximate key pressures of PFI
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Figure 11 An example a 1-m section of the ultrasonic borehole televiewer images acquired before and after
a hydraulic fracturing stress test at depths from 1050.2 to 1051.2 m below the sea floor. A single
East-striking hydraulic fracture is seen in the right-hand panel. Texture of the image is caused by
stick-slip motion of the televiewer through a high clay zone. After Schmitt et al. (2012).
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and PFC necessary for stress interpretation; and common strategies used to do this are
described in the next section.

There is little discussion in the literature with regards to the determination of the
pressures associated with fracture initiation, breakdown, and re-opening. This is in
part due to the fact that often Pb and sometimes PR are clearly recognized as the peak
pressure after which the fracture propagates unstably. This is not necessarily always the
case, however, because as noted earlier σH if significantly larger than σh then the Pw(t)
necessary to cancel out the resulting stress concentrations will be less than σmin (Figure
5). Regardless of how unambiguous the breakdown pressure might be, it is actually the
fracture initiation pressure that is actually desired but it, too, can be difficult to detect
and will depend critically on the overall compliance of the hydraulic system.

One way to overcome this is to actually monitor the compliance of the system during
pressurization. By plotting the pressurePw(t) versus the total volumeV(t) injected to the
interval, Lee andHaimson (1989), and Ito et al. (1999) for example, were able to refine
their determination of PR from Pw(t) records by locating the pressure at which this
curve first deviated from a straight line indicating a change in the system compliance.

Lee and Haimson (1989) provide some statistical rigor in the determination of PR.
They note that PR is often defined to be where the initial ascending portion of Pw(t) in a
re-opening cycle departs from that in the first cycle prior to breakdown. This of course
assumes that the flow rate in both cycles remains the same. However, determination of
this point can be subjective. They overcome this limitation by finding theminimum sum
or squares errors between the Pw(t) observed for the first cycle (Fig 9) and the subse-
quent re-opening cycle (Fig. 10).

More discussion has centered on finding PSI or PFC It is generally accepted that PFC

provides the best measure of σmin provided the fracture is sufficiently large that its plane
is outside of the borehole’s stress concentration and that this fracture will ‘close’ once
the pressure in the fracture falls just beneath σmin. That said, and as discussed already,
there are minor variations in the opinions as to where this might actually occur within a
pressure record, and in most of the petroleum engineering literature the shut-in pres-
sure PSI is used. In actual practice, however, the differing preferences for naming of this
are somewhat moot as nearly all of the procedures described below essentially rely on
finding a point in Pw(t) during the shut in period that reflects a change in the leak-off
behavior. As such, and as re-iterated byGuo et al. (1993) this decline will depend on the
permeability of the formation and this fact will be one factor to consider when
attempting to determine PSI. In civil or mining related slim holes, there are simple
techniques for the determination of the actual PSC, as well as for the correct magnitude
of PR (Lee & Haimson, 1989).

Table 1 gives an overview of a number of the different strategies that have been used
to estimate σmin from Pw(t). These examples come from a wide range of situations,
however, particularly with regards to whether they are employed in nearly imperme-
able crystalline rocks and shales or in more permeable sediments. As such, care should
be taken in applying a given criterion to the case at hand. Permeability, for example,
will be the primary factor controlling the length of the shut-in period and it is ques-
tionable whether those methods that rely on pressure decline due to infiltration into the
formation will apply in low permeability formations. Conversely, in the same low
permeability formations the time required to actually reach PFC may be prohibitively
long and this may need to be considered in the design of the experiment.
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Table 1 Strategies for determining the shut-in pressure.

Method Authors Comments

Pw(t) vs t Gronseth and Kry
(1981)

Draw tangent line to Pw(t) vs t immediately after shut-in (t1 in
Figure 9). σmin is defined as the point at which Pw(t) departs from
this line. See also Baumgärtner and Zoback (1989).

Pw(t) vs log(t+Δt)/Δt McLellan and Roegiers
(1981)

t is the time in the pressurization curve and Δt = t − t1. σmin is
pressure at the point of inflection on this curve.

Asymptotic Method Aamodt and
Kuriyagawa (1981)

Plot log(Pw(t) – pa) vs Δt where pa is a trial value for the pressure
to which the pressure decline will approach asymptotically
during a long shut-in period. Pa is varied until the best fit line is
found, this line when extrapolated back to Dt = 0 will have
intercept Pe. The, calculate σmin = Pe + Pa + ‘hydrostatic
pressure’. See also Cornet and Valette (1984) adaptation.

Variable Flow Rate Aamodt and
Kuriyagawa (1981)

During the test at one depth, carry out a number of
pressurization cycles at different flow rates. Draw a curve
through the peak pressure reached in each of these cycles (PR)
versus the flow rate. σmin is taken to be the pressure at the ‘knee’
in this smooth curve.

Pressure-flow rate
method

Lee and Haimson (1989) This is carried out following the main test. The flowrate is
incrementally increased in small steps allowing Pw(t) to stabilize
in each case. Essentially, at lower flow rates and pressures the
fracture remains closed and the slope of the plot of Pw(t) vs flow
rate q(t) remains high. At a higher pressure the fracture opens
and the flow rate increases such that this slope is diminished.
Under the assumption that Pw(t) is linearly related to q(t) and that
the slope changes between the times that the fracture is closed
or open allows a bilinear regression to find the best pressure at
which the fracture reopens.

Pw(t) vs log(t) Doe et al. (1981) Concept based on analogy to a two-stage pulse test for transient
flow in fractures. σmin is the point of inflection on this curve.

log(Pw(t)) vs log(t) Haimson and Rummel
(1982)

Different leak-off conditions will occur before and after closure
of the fracture; in the log(Pw(t)) vs log(t) space these appear as two
lines of differing slopes. σmin is taken to be the pressure at which
these two lines cross.

dPw(t)/dt vs Pw(t) or t Baumgärtner and
Zoback (1989), Guo
et al. (1993)

Plot dPw(t)/dt vs Pw(t) Again, different leak off conditions will exist
before and after closure of the fracture resulting in different
rates of change of Pw(t) in each segment of the shut-in and that
each segment can be approximated by a line. σmin is taken to be
the pressure at the point where these two lines intersect.

Bilinear Curve Fitting to
dPw(t)/dt vs Pw(t)

Lee and Haimson (1989) The pressure decay curves in the Leak Off 1 and Leak Off 2 time
windows (Fig. 9) differ due to the variations in geometry. It is
assumed that within each time window that the derivative of Pw
(t) will take the form dPw(t)/dt = aexp(at+b) ~ a(Pw(t) – Pasym)
where a and b are unknown constants and Pasym is an unknown
asymptotic pressures, this is a line in dPw(t)/dt vs Pw(t) space. The
A nonlinear regression of this equation is individually applied to
the time windows for the Leak Off 1 and Leak Off 2 (Fig. 9)
periods using arbitrarily chosen values of the as yet unknown
transition time t2. The t2 at which the lowest value of the sum of
squared error for both curves is found is taken as the best
measure of the time for PFC.



Table 1 (Cont.)

Method Authors Comments

Pw(t) vs (Δt)
½ Guo et al. (1993) Plot Pw(t) vs (Δt)

½
. The initial time period of this curve will be

nearly linear; σmin is taken to be the pressure at the point the
curve diverges from linearity.

d2Pw(t)/dt
2 vs Pw(t) Guo et al. (1993) This is also called the maximum curvature method as one would

expect that themost rapid change in the decline behavior of Pw(t)
to be recognized. σmin is taken to be the pressure at the
maximum.

Decline Function Debree and Walters
(1989)

Plot [Pw(t) – Po]
α vs (1 + δ)3/2 – δ3/2 where δ = (t-t1)/t is the

dimensionless time since shut-in and 0 ≤ α ≤ 1 is an exponent
they called the ‘filtration power index’ governing the pressure
dependence of the leak-off. Plotting with this modified time base
ideally forces even complex pressure decline curves to be linear.
One must, however, determine two values of α that dictate
behaviour before and after fracture closure either by special
pressure tests in the well or by trial and error. This has many of
the elements of ‘G-time’ analysis applied widely in the petroleum
industry for the interpretation of pressure transient records.

System Stiffness Raaen et al. (2006) During a pump-in flow-back test, the volume returned is plotted
versus Pw(t).

LOP White et al. (2002) This suggestion comes from observations that leak off pressures
(PFI) and even fracture initiation pressures (PR) are not
meaningfully different in deep wells. σmin is approximated by PFI or
PR. See also discussion in Raaen et al. (2006). This is not
recommended if more accurate understanding of the stress
tensor is required.

Reopening Pressure Ito and Hayashi (1993) Here, as in Equation 15 σmin = PR directly. This differs from the
LOP in which PR only suggests a value for σmin.

Fracture Propagation
Pressure

Zoback and Pollard
(1978)

As discussed above, continued pumping past break-down or re-
opening results in further propagation of the fracture into the
formation. As indicated in Figures 9 and 10, during this time Pw(t)
remains relatively constant at PFP and provides an upper bound
to σmin.

Nonlinear Regression of
Post Closure Pressure-
decay

Lee and Haimson (1989) This iterative method seeks to delineate PFC by assuming that the
pressure decay after fracture closures is dominated by radial
flow from interval only into the formation as defined by an
exponential decay Pw(t) = exp(d1t + d2) for tf ≥ t ≥ t2 (i.e. the Leak
Off 2 period in Fig. 9). The essential idea is that a nonlinear
regression of the pressures within zone t2-t3 is well described by
the exponential decay formula; and that the fit is poorer should
the data points within the Leak Off 1 period from t1 to t2 be
included. Hence, the method iteratively calculates the nonlinear
regression residuals over progressively smaller time windows
starting from t1 to t3 but successively removing the earliest data
point in the series. The Pw(t) at which the normalized residuals
stabilize is declared equal to PFC.



7 DETERMINATION OF THE STRESS TENSOR

Following the ISRM Suggested Method for Rock Stress Estimation using Hydraulic
Fracturing (Haimson & Cornet, 2003), the calculations of the in situ principal stresses
presented here are for HF tests conducted in vertical boreholes, which result in vertical
to sub-vertical hydraulic fractures. This corresponds to the case in which the vertical in
situ stress component acts along a principal direction in a reasonably isotropic rock.

To reiterate from the above:

1. σV can be estimated from the lithological load if knowledge of the densities are
available as given by Equation 1.

2. As already discussed, in general the induced vertical hydraulic fractures will
initially strike perpendicular to the direction of the minimum horizontal principal
stress, σh. Consequently, the azimuth of the hydraulic fracture on the borehole
wall indicates the direction of σH, which because the principal stresses are all
orthogonal, is sufficient to orient all three stresses.

3. The PFC, or in some cases PSI, is taken to be just sufficient to counteract the
principal stress component normal to the hydraulic fracture, Regardless of the
faulting regime, these pressures give σmin. In the normal and reverse faulting
regime σh is unambiguously the least principal compression. However, in thrust
faulting regimes σh is the intermediate principal stress and care need to be taken in
the interpretation of PSI as it may instead represent σV, one should compare the
value so determined with that estimated using densities in Equation 1.

4. Unfortunately, σH cannot be so directly determined and it must be calculated by re-
arranging the terms in Equations 11 through 16 into ‘breakdown’ equations using
the already obtained value of σh. This maximum principal stress is calculated based
on the assumption of linear elasticity and insignificant effect of fracturing fluid
infiltration into the rock. Using Equation 11 the classic breakdown equation is

σH ¼ 3σh � Pb þ T � Po ð17Þ

where PFI has been replaced for historical reasons with Pb.

Solving Equation 17 requires that the rock tensile strength be known. The tensile
strength can only be directly measured in the laboratory on core samples. The most
common tensile test is the Brazilian test, which enables the testing of many disks cut
directly from the extracted core. The Brazilian test configuration, however, does not
simulate conditions under hydraulic fracturing, and the reliability of this test as
representative of the tensile strength for hydraulic fracturing has not been established.
Core is also used to prepare hollow cylinders, which are fractured by applying internal
pressure, with no external confining stress. This test accurately simulates a hydraulic
fracturing test in which there are no far-field stresses, and therefore the peak pressure is
equal to the tensile strength T. The only unknown in such tests is the well-established
scale effect between field and laboratory dimensions.

When extracted core is not available, or laboratory tests are not feasible, or when
tension tests appear to yield an unreasonable value for use in Equation 17 an alternative
relation has been used, invoking the fracture reopening pressure PR. This pressure is
assumed to represent the level at which the previously induced fracture reopens during a
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subsequent pressure cycle. The reopening pressure does not have to overcome the tensile
strength T, since the rock has already been fractured. Thus, Equation 17 becomes:

σH ¼ 3σh � PR � Po ð18Þ
This equation for calculating σH has been widely used in field measurement campaigns.
There is, however, some controversy regarding its reliability in some circumstances as
discussed earlier. These classic breakdown Equations 17 and 18 provide the upper
estimate to σH.

Now, if fluid infiltration is allowed Equation 12 is organized as

σH ¼ 3σh � 2 1� ηð ÞPb þ T � 2ηPo

¼ 3σh þ 2η Pb � Poð Þ � Pb þ T � Pbð Þ ð19Þ

The last expansion is done purposefully in order to explicitly highlight all of the factors
influencing σθθ(r=a) including the amplified compression of σh, the compression
induced by fluid flow into the formation, and Lamé tension of the wellbore pressure,
and the tensile strength as modified by the pore pressure that acts at failure (Schmitt &
Zoback, 1993) For the re-opening case:

σH ¼ 3σh � 2 1� ηð ÞPR � 2ηPo ð20Þ
where again 0 ≤ η ≤ 0.5. In the absence of a formation pore pressure Po, the lower bound
to σH occurs when η = 0.

Even though these are relatively simple equations, it is useful to explore them in more
detail to assess their influence on stress interpretations by varying both T and Po and
calculating the value of σH thatwould be obtained for a givenPb under differing scenarios
(Figure 12). In the first case both T and Po are omitted and the upper and lower limits to
σH are then given by the classic Equation 17 and the infiltration Equation 19 when η = 0,
respectively, and the range of possible values indicated by the dark fill. The second case
indicated by light fill is the same as the first except that a tensile strength T = 0.2σh has
been included. The difference between these two would ideally be the same as consider-
ing the initial cyclewith breakdown and later cycles with re-opening. The largest range of
possible σH values is encountered when Pb = σhwhere ignoring T, σh ≤ σH ≤ 2σh. Further,
the plots suggest that PR ≤ 2σh. The range of possible solutions decreases as σH → σh.

A more interesting situation arises when the same T is used but now a formation pore
pressure Po = 0.4σh is included and σH is calculated using only the infiltration Equation 19
with limiting values of η = 0.5 and η = 0. The range of possible solutions in this case is
markedby the cross-hatched region.At aboutPb/σh~0.4 the lines cross and this represents
the point bounding zones dominated by the additional compression due to fluid infiltra-
tion to the left and those controlled by the borehole fluid pressure Pw(t) promoting failure
to the right. According to this scenario, themaximumbreakdownpressure can be nomore
than about 1.75 σh. A useful observation from this plot is that if Po is included the
allowable σH range is more restricted. One should carefully note, however, that Figure
12 only displays the range of physical solutions and that one can obtain nonsensical values
(i.e. σH < σh) depending on the choice of η (Schmitt & Zoback, 1989).

Owing to the difficulties with both pore pressure effects and tensile strength estima-
tion, the evaluation of the maximum horizontal principal stress magnitude involves a
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greater uncertainty than that of the minimum horizontal principal stress. This is where
the qualification and experience of the test personnel is particularly important in order
to ascertain whether the values determined are reasonable.

8 CONCLUDING REMARKS

A grand challenge in the Geosciences and Geological Engineering is to be able to obtain
quantitatively the full stress tensor at a point in the earth from deep boreholes. The last
quarter century has seen developments in the interpretation of borehole breakouts,
drilling induced tensile fractures both in core and on the wellbore wall, and azimuthal
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Hydraulic fracturing stress measurements in deep holes 217



acoustic anisotropy. These have been successful in determining stress directions.
However, none of these techniques are able to provide quantitative stress magnitudes
withoutmaking assumptions about rock properties. As such, at this point in history, we
generally accept (but may need to still definitively show) that knowledge of the over-
lying density gives us σV. We also generally accept that if properly interpreted the
hydraulic fracturing test gives σmin that represents the magnitude of σh. However, there
is still no way to directly measure σH.

The hydraulic fracturing technique is the only stress measurement method that expli-
citly applies forces to the rock mass transmitted via fluid pressure. This leads to the
simplicity in the general interpretation of PSI, or PFC for σmin. It also leads to the
development of relatively simple equations to predict the pressures at which breakdown
or fracture re-opening occur, and these are rearranged to conversely obtain estimates of
σH. The discussions above give some of the flavor of the problems that can arise when
attempting to do this, however, and there remain some problems to resolve.

One technical issue is the reliability of the determination of the various pressures.We
rely almost exclusively on interpretation of the pressurization record Pw(t), but this can
be complicated by a variety of factors, such as viscous losses, inherent to the system. As
many workers have recognized, being able to monitor the deformation of the borehole
wall during the test can provide important complementary information and more
developments along the lines of electrical imaging (e.g., Cornet et al., 2003) or strain
recording (e.g., Guglielmi et al., 2014) show promise.

A more major issue relates to how these pressures are then used to estimate σH. There
have been numerous theoretical analyses advanced over the last few years that would
warrant an entire review on their own, many of which employ fracture mechanics
concepts (e.g., Bunger et al., 2005; Mathias & van Reeuwijk, 2009; Sarvaramini &
Garagash, 2015) or numerical models (e.g., Jiao et al., 2015; Sheng et al., 2015, Shimizu
et al., 2011). Regardless of this progress, in many ways we still only have a rudimentary
understanding of the physics of fracture initiation and propagation in materials even
simpler than rock (Pook, 2010), and this calls for renewed laboratory and field testing
against which these models can be tested. A corollary to this statement is that we also
need renewed laboratory investigations leading to a better understanding of the non-
linear and time-dependent physical properties of the rocks under investigation.

Finally, while in many ways the hydraulic fracture technique will provide the best
quantitative constraints on stress magnitudes, practitioners should avoid using it in
isolation. Workers should consider all of the information available to them from
geology, geophysics, and rock mechanics (Sano et al., 2005; Schmitt et al., 2012;
Zang & Stephansson, 2010; Zoback et al., 2003) when attempting to estimate the
state of stress in the earth.
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Chapter 7

Hydrofracturing

S.O. Choi
Department of Energy and Resources Engineering, Kangwon National University, Chuncheon,
Kangwon, South Korea

Abstract: This chapter describes understanding of in-situ stresses in rock mass and
various methods for estimating the state of stress, focusing on the hydrofracturing
techniques. With a brief description of theory and procedure of the hydrofracturing
test, various methods for determining the ambiguous shut-in pressure in hydrofractur-
ing pressure history curves are introduced by numerical analysis. The hydrojacking test
is also introduced as an example of application of hydrofracturing techniques.

1 INTRODUCTION

In general, the order of magnitude of in-situ stresses and their directions are used for
design parameters in the layout of complex underground works. An emergency
spillway tunnel in a dam site for example, can be constructed and operated con-
sidering in-situ stresses normal to a fracture around an internal pressure tunnel. It is
also dealt with essentially and directly in constructing an underground powerhouse
or deep transportation tunnel, since the direction of excavation or the shape of a
tunnel section can be altered according to in-situ stress regime at the construction
site. Determination of in-situ stresses in rock mass and their spatial variation is
technically difficult, since the current state of in-situ stresses is the final product of a
series of past geological events. Further, since the physical quantity of in-situ stress is
not tangible and rock masses are rarely homogeneous, no rigorous methods are
available to predict in-situ stresses exactly. This chapter explains the problems of in-
situ stresses in rock mass, the methods for measuring those stresses, and their
importance in rock engineering as well as in conventional or unconventional energy
engineering.

2 UNDERSTANDING OF IN-SITU STRESSES IN ROCK MASS

Rock stresses can be divided into in-situ stresses and induced stresses. In-situ
stresses, which are also called virgin stresses, are the stresses that exist in the
rock, generated naturally by a series of past geological events. On the other hand,
induced stresses are relevant to artificial disturbance by excavation or are induced
by changes in geological conditions. Stresses resulting from the weight of the
overlying strata and from locked in stresses of tectonic origin denote in-situ
stresses, for example, and the locally disrupted stresses in the rock surrounding



the excavation opening denote induced stresses. Knowledge of the magnitudes and
directions of these in-situ and induced stresses is an essential component of under-
ground excavation design since the instability resulting from the stress concentra-
tion exceeding rock strength can have serious consequences for the behavior of the
excavations.

2.1 Vertical stresses

The principal stress directions are horizontal and vertical in horizontal ground, in
general, and are often assumed to be similar at depth. This simplifying assumption has
beenwidely adopted in practice, but it is not adaptedwell at shallow depths beneath hilly
terrain, because of no shear stresses in ground surface. Beneath a valley side, in other
words, one principal stress is normal to the slope and equals zero, and the other two
principal stresses lie in the plane of the slope. Nevertheless, the vertical stress can be
regarded as one of the principal stresses since the effect of terrain decreases with depth. It
is demonstrated from the field measurement experiences that this assumption is con-
siderably reliable (Zoback, 1992).

2.1.1 Estimation of vertical stress

The state of stress at a point within the ground can be defined by the weight of its
overlying rock. Calculate the vertical stress at a depth of Z below the surface, when
the unit weight of the overlying rock mass is γ. Considering a cube from the surface to
a certain depth, the downward force of the weight of overlying rock acting on this
point at a depth of Z equals the product of the unit weight of the overlying rock and
the volume of a cube.

Fv ¼ γZA ð1Þ
where Fv is the downward force at a depth ofZ and A is the unit area of base plane of a
cube. Hence the vertical stress σv is estimated from dividing this force by the unit area.

σv ¼ γZ ð2Þ
Measurements of vertical stress at various sites around the world confirm that this
relationship is valid although there is a significant amount of scatter in the collected
data, as shown in Figure 1. Even though the increasing rate of vertical stress can be
changed with the unit weight of rock mass, the vertical stress is predicted to increase as
much as 0.027 MPa per 1 m depth for normal granitic rock mass.

In rock masses with complex strata of different density, the vertical stress can be
estimated using this principle. When the unit weight of rock mass is assigned as a
function γ(Z), the vertical stress at a certain depth can be obtained by a definite integral
from surface to Z.

σv ¼
ðZ
0
γðZÞdZ ð3Þ

When the rock density with depth is measured by density logging or the rock density
changes with depth are excessive, for example, Equation 3 can be used for obtaining
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more accurate vertical stresses. However it is known that there is not a great discre-
pancy between the measurements by density logging data and the calculations by
average unit weight of rock.

2.2 Horizontal stresses

The horizontal stresses acting on an element of rock at a depth of Z are much more
difficult to estimate than the vertical stresses, because the magnitude and direction of
horizontal stresses are influenced heavily by tectonic characteristics. Generally the ratio
of the average horizontal stress to the vertical stress is denoted by K

K ¼ σh
σv

ð4Þ

For a gravitationally loaded rockmass in which no lateral strain was permitted during
formation of the overlying strata, the theory of elasticity can be invoked to predict
that K will be equal to ν/(1− ν), where ν is the Poisson’s ratio of the rock mass
(Terzaghi & Richart, 1952). This expression derives from the symmetry of one-
dimensional loading of an elastic material over a continuous plane surface, which
infers a condition of no horizontal strain; such a formula has no validity in a rock
mass that has experienced cycles of loading and unloading, and it proved to be
inaccurate and seldom used today (Hoek, 2007). Measurements of horizontal stress
with depth for different regions of the world discern that a hyperbolic relation for the
limits of K(Z), as in Equation 5 (Brown & Hoek, 1978).
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3 EFFECT OF GEOLOGICAL STRUCTURES ON THE STATE OF
STRESS

Variations in rock mass geology and the existence of geological structures may affect
the distribution and magnitude of in-situ stresses. Contrary to the vertical stress,
the horizontal in-situ stress may vary substantially from one layer to the next in a
stratified rock formation due to changes in rock stiffness. For instance, it is revealed
that the major principal stress is diverted parallel to the discontinuity when the
discontinuity is open, the principal stresses are not affected when the discontinuity is
made of a material with similar properties as the surrounding rock, and the major
principal stress is diverted perpendicular to the discontinuity when the material in the
discontinuity is rigid (Hudson&Cooling, 1988).Many cases of fieldmeasurements for
non-homogeneous stress regimes have been reported. Choi (2007) gives an example of
hydrofracturing in-situ stress measurements conducted on both sides of the Yangsan
fault in South Korea showing the effect of the fault on the in-situ stress field (Figure 3&
Table 1). Table 1 shows a completely different trend in the magnitudes and directions
of horizontal principal stresses measured on both sides of the fault.

It is noteworthy that the magnitude of horizontal principal stresses in sedimentary
rock formation is slightly larger than in andesite and granodiorite formation. It was
also reported by Amadei and Pan (1992) regarding the horizontal principal stress at the

0

500

1000

1500

2000

D
ep

th
 b

el
ow

 s
ur

fa
ce

 (
m

)

2500

3000
0 0.5 1.0 1.5

K = σHa/σv

K = + 0.3

2.0 2.5 3.0 3.5

100
z

K = + 0.5
1500

z

Figure 2 Variation of average horizontal to vertical stress ratio with depth Z, below surface (Brown &
Hoek, 1978).

230 Choi



Table 1 Results of in-situ stress measurements by hydrofracturing tests on Yangsan fault in South
Korea (Choi, 2007).

Depth (m) Pc (MPa) Pr (MPa) Ps (MPa) Sv (MPa) Sh (MPa) SH (MPa) K SH Dir. (°)

Kh KH Mea. Ave.

Borehole No.: TB-35-4 (in andesite & granodiorite formation)
26 2.32 1.934 1.431 0.697 1.431 2.239 2.05 3.21 30±5

24±5

28 2.11 2.009 1.643 0.750 1.643 2.760 2.19 3.68 25±5
34 2.23 1.672 1.353 0.911 1.353 2.167 1.49 2.38 25±5
46 0.94 – – 1.233 – – – – –

48 1.30 – – 1.286 – – – – –

64 3.03 2.675 2.398 1.715 2.398 3.999 1.40 2.33 20±5
66 4.25 3.614 2.951 1.769 2.951 4.699 1.67 2.66 20±5

Borehole No.: TB-37-6 (in sedimentary rock formation)
20 4.54 3.455 2.264 0.536 2.264 3.157 4.22 5.89 0±5

6±5

23 5.67 3.872 2.100 0.616 2.100 2.218 3.41 3.60 10±5
30 5.34 3.881 2.389 0.804 2.389 3.006 2.97 3.74 10±5
34 5.28 4.011 2.526 0.911 2.526 3.247 2.77 3.56 5±5
38 5.02 3.860 2.246 1.018 2.246 2.518 2.21 2.47 5±5
41 5.10 4.056 2.639 1.099 2.639 3.471 2.40 3.16 5±5
45 4.63 3.677 2.668 1.206 2.668 3.897 2.21 3.23 –

Pc: initial breakdown pressure, Pr: reopening pressure, Ps: the shut-in pressure, Sv: vertical stress, Sh:
minimum horizontal principal stress, SH: maximum horizontal principal stress, Kh=Sh/Sv, KH=SH/Sv.
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Figure 3 Shaded topographic map of Yangsan fault making an acute angle with the routes for the existing
expressway and the proposed high speed railroad. Andesite and granodiorite are dominant on the
west side of the fault, and the east side is covered mostly by sedimentary rocks (Choi, 2007).



site of sedimentary rocks larger than at igneous rocks. Difference in directions of
maximum horizontal principal stress in different rock formations is also remarkable;
the average direction of maximum horizontal principal stress in andesite and grano-
diorite formation of Yangsan faults is N24E, but it is N6E in sedimentary rock
formation. It can be explained by not only the differences of geology at both sides of
the fault but also the changes of the fault running which is generally NNE in the
northern part and is nearly NS in the southern part. The results of the horizontal stress
direction depending on the existence of fault zone coincide with Moos and Zoback
(1993) and Sugawara and Obara (1993).

Amadei and Stephansson (1997) revealed that the K-value in the fault zone can
be estimated to be less than or equal to the measured one observed in the surrounding
rock mass.

4 METHODS OF IN-SITU STRESS MEASUREMENT

The techniques for measurement of in-situ stresses were developed in diverse methods
with a new attempt to quantify the stability of underground structures. Among them
the most used techniques in field measurements are overcoring, the flat jack method,
and hydraulic fracturing. Rock cores can also be used for the AE (acoustic emission)
method, the DRA (deformation rate analysis) method and the ASR (anelastic strain
recovery) method in laboratory test. Each of these methods is complementary. In the
overcoring test, the rock is unloaded by drilling out a large core sample, while radial
displacements aremonitored in a central, parallel borehole. In the flat jack test, the rock
is unloaded by cutting a slot and reloaded by jacking a flat jack installed in the slot. In
the hydraulic fracturing method, the rock is cracked by high pressure water pumped
into a borehole, and the tensile strength of the rock and the inferred concentration of
stress at the borehole wall are processed to yield the in-situ stress in the plane perpen-
dicular to the borehole. In the AE method, acoustic emission on core samples is
monitored while the rock is loaded cyclically in uniaxial compression in the laboratory,
since it is known that there is a significant increase in the rate of acoustic emissions as
the stress exceeds its previous higher value, known as the Kaiser effect (Holcomb,
1993). Similar to the AE method, the DRA method uses inelastic strains instead of
acoustic emissions in the AE method (Yamamoto et al., 1990). In the ASR method,
strain response is monitored while an oriented core sample is removed from a borehole,
and a viscoelastic model for the rock response to unloading is required for determining
the in-situ stress magnitudes (Teufel, 1982).

4.1 Overcoring method

Overcoring tests use a large-diameter hole drilled to the required depth in the volume of
rock in which in-situ stresses have to be determined. An instrumented device for
measuring strains or displacements is inserted into the pilot hole, and then changes of
strain or displacement within the instrumented device are recorded while a large-
diameter hole is drilled. There is a variety of instrumented devices, such as the South
African CSIR triaxial strain cell (Leeman & Hayes, 1966), the Australian CSIRO
Hollow Inclusion (HI) Cell (Worotnick & Walton, 1976), and the US Bureau of
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Mines (USBM) gage (Merrill, 1967). Depending on the instrument used to monitor the
rock during overcoring, the complete state of stress can be determined in one, two or
three non-parallel boreholes. No assumption needs to be made regarding the in-situ
stress field as with the hydraulic fracturingmethod. However, the overcoringmethod is
limited by the magnitude of the in-situ stresses themselves; namely, it can only be used
at depths forwhich the strength of the rock in thewall and bottomof the borehole is not
exceeded (Herget, 1993). Table 2 compares the basic principle and features of twomost
common methods in the overcoring test.

4.2 Flat jack method

The flat hydraulic jacks, consisting of two plates of steel welded around their edges, are
used for in-situ stress measurement in a rock face, such as the wall of an underground
gallery. The equilibrium of a rock mass is disturbed by cutting slots on rock surfaces,
and this will create deformations that are measured with reference pins placed in the
near vicinity of the slots. Equilibrium is recovered when the inserted flat jacks are
pressurized until all deformations vanish. Therefore, the flat jack method is sometimes
called the stress compensating method. A total of six tests need to be carried out to
obtain the complete three dimensional state of stress since one component of the in-situ
stress field is obtained from each flat jack test. The flat jack method has an advantage in
that it does not require knowledge of the elastic modulus of the rock to determine the
tangential stress at points in the wall of an excavation, and the stresses are measured
directly. However, the flat jack method also has disadvantages that limit its application
ranges. Standards for determining in-situ stresses with flat jacks have been suggested by
the American Society for Testing of Materials (ASTM D 4729-87, 1993) and the
International Society for Rock Mechanics (Kim & Franklin, 1987); according to

Table 2 Comparison of common methods in overcoring test.

Method Principles Advantage Disadvantage Devices

Borehole
deformation
gauge

• In-situ stress is estimated
by elastic modulus of
rock mass and changes of
borehole diameter
measured during
overcoring

• 6 gauges (60 intervals)
are used for detecting
the changes of borehole
diameter in 3 directions

• Process is easy and
incidence of test
failure is low

• 2 dimensional state
of stress in the plane
perpendicular to
borehole is
measured

• 3 tests in different
directions are
needed for the 3
dimensional state of
stress

USBM
gage

Triaxial
strain cell

• Several strain rosettes
are attached on
borehole wall to
measure the strain
during overcoring

• Elastic modulus of rock
mass is needed for
estimating in-situ stress

• The 3 dimensional
state of stress is
determined
completely by single
test borehole

• Process is difficult
• Full adhesion of
rosette gauge is hard
in wet borehole

CSIR cell,
CSIRO HI
cell
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ASTMD4729-87, themeasurement points should be installed within a distance,L/2 of
the flat jack slot, where L is the flat jack width.

5 HYDROFRACTURING IN-SITU STRESS MEASUREMENT

5.1 Theory and background

The hydrofracturing technique used first for the well stimulation in the petroleum
industry is currently applied for determining the in-situ stresses in the Earth’s crust
(Hubbert & Willis, 1957). The basic concept for the determination of the in-situ
stresses starts from several assumptions that the rock mass is an impermeable, homo-
genous, and isotropic elastic material and one of the principal stresses is parallel to the
direction of wellbore. Consequently the other principal stresses are assumed to be on
the plane perpendicular to the wellbore and calculated from the pressure-time history
curves obtained during hydrofracturing (Haimson& Fairhurst, 1970). While calculat-
ing the principal stresses from the pressure-time history curve, however, the accurate
determination of shut-in pressure, which shows a pressure decline gradually after
stopping the fluid injection, is very important because the shut-in pressure is equal to
the normal stress acting on the induced hydraulic fractures and indicates the minimum
horizontal principal stress directly (Aamodt & Kuriyagawa, 1983; Rummel, 1987).
However, in most field cases the pressure-time history after shut-in shows an ambig-
uous curve rather than a sharp break, so a lot of methods for determining the shut-in
pressure have been proposed. Some compare the several shut-in pressures obtained
from several methods for more accurate determination of the minimum horizontal
principal stress. A review of these various methods can be found in Kim and Franklin
(1987) and Lee and Haimson (1989), and in more details in Amadei and Stephansson
(1997). They described the strengths and weaknesses of each method by comparing the
shut-in pressures, but were not able to propose which method is best for determining
the minimum horizontal principal stress. Because the absolute minimum horizontal
principal stress in the Earth’s crust cannot be determined, that is, the error between the
real value and the calculated value cannot be defined.

5.2 Equipment and procedure

In the hydrofracturing test, a certain interval in borehole is completely sealed off by
straddle packer (Figure 4), and then this interval is pressurized until tensile crack starts to
generate. When the rock mass is isotropic, the hydrofracturing tensile cracks will be
generated to the plane perpendicular to the horizontalminimumprincipal stress inwhich
resistance to the tensile failure is lowest. When the pumping into the interval continues
after hydrofractures are generated, the pressure of the interval does not increase and
reaches to a breakdown pressure. An idealized hydrofracturing pressure history is shown
in Figure 5, and the horizontal maximum and minimum principal stresses are obtained
from the equations for the state of stress around a circular opening (Figure 6).

From the hydrofracturing pressure history curves, it is possible to determine the
fracture initiation (breakdown) pressure PC, the shut-in pressure PS and the fracture
reopening pressure Pr. The shut-in pressure is the pressure at which a hydrofracture
stops propagating and closes following pump shut-off, so it is the pressure for
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maintaining the balance with the minimum principal stress acting perpendicularly on
the fracture plane. That is, the shut-in pressure equals the horizontal minimum princi-
pal stress in the test site.

σh ¼ PS ð6Þ
In Figure 6, tangential stress σt at a point in a distance of r from the origin of a circular
opening of radius a is given by Kirsch solution (Jaeger et al., 2007) and described below
in Equation 7.

σt ¼ 1
2

σH þ σhð Þ 1þ a2

r2

� �
� 1
2

σH � σhð Þ 1þ 3
a4

r4

� �
cos ð2θÞ ð7Þ

where

σH; maximum horizontal principal stress,
σh; minimum horizontal principal stress,
σt; tangential compressive stress at a point in a distance of r from borehole axis,
a; radius of borehole.
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Figure 4 Schematic diagram of hydrofracturing test.
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Increasing the pressure of the interval, a crack starts to propagate at point A and the
tangential compressive stress at this point becomes to be a minimum. At point A, r = a
and θ = 0, so Equation 7 can be expressed as Equation 8.

σt ¼ 3 ⋅ σh � σH ð8Þ
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The conditions for a new, vertical tensile crack are that the tensile stress at point A
should become equal to the tensile strength –T0. Applying this to the hydrofracturing
experiment yields as a condition for creation of hydrofractures

3 ⋅ σh � σH � PC ¼ �T0 ð9Þ
T0 ¼ PC � Pr ð10Þ

Equations 9 and 10 allow the maximum horizontal principal stress to be determined as
Equation 11.

σH ¼ 3 ⋅ σh � Pr ð11Þ
Also the pore pressure into the rock mass around the borehole should be considered.
Therefore, Equation 11 can be expressed as Equation 12.

3 ⋅ σh � σH � PC ¼ �T0 þ P0

σH ¼ 3 ⋅ σh � Pr � P0 ð12Þ

5.3 Data analysis and interpretation

The shut-in pressure obtained from the hydrofracturing pressure history curves is
essential for determining the in-situ stresses. However, in many situations the pressure
decay is gradual with no obvious breaks and the shut-in pressure cannot be readily
defined. Several methods for determination of the shut-in pressure in hydrofracturing
have been investigated using the numerical code UDEC (Choi, 2012). The (P vs. t)
method, the (P vs. log(t)) method and the (log(P) vs. log(t)) method have been intro-
duced as some of graphical intersection methods, and the (dP/dt vs. P) method has been
adopted for a statistical method. Through a series of numerical analyses with the
different physical properties and the different remote stress regimes on the randomly
sized polygonal joint model, it is revealed that numerical analysis using the discrete
element method is probably suitable for simulating the hydraulic fracturing. And also
from the pressure-time history curves, the shut-in pressures obtained from various
methods are known to be usually higher than the applied minor horizontal principal
stress. It can be explained by the classical Kirsch solution (Jaeger et al., 2007), which
defines the stress distributions around a cylindrical hole in an infinite isotropic elastic
medium under plane strain conditions. In other words, the stress in the direction of
x-axis at thewellborewall is same to the applied far-field stress but increases with radial
distance from the wellbore. This phenomenon could be exaggerated when the differ-
ential stress is high, so care should be taken in using the various methods for shut-in
pressure. Figure 7 shows procedures for determining the shut-in pressure in various
methods (Choi, 2012).

5.4 Numerical examples of in-situ stress determination

When there is no obvious discontinuity in rock mass and it is covered with the same
base rock, the in-situ stress measurement can be performed in several locations and
then extrapolated to cover the whole area. Figure 8 shows the example of a hydro-
fracturing test in this manner. The testing boreholes are located at the beginning and
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end part of the proposed tunnel route. From the numerical analysis as shown in Figure
9, the K-value for the whole tunnel route is suggested in Figure 10.

Figure 11 shows another example of the hydrofracturing in-situ stress measurement
under and next to the Han River in South Korea. One hydrofracturing test was carried
out on the terrace land on the river, and the other was performed in the middle of the
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river. Comparing the results from two hydrofracturing tests and numerical analysis, the
principal stresses were obtained for the whole tunnel route by extrapolation technique.

6 APPLICATION OF HYDROFRACTURING TECHNIQUE

6.1 Hydrojacking test

When designing an internally pressurized tunnel, the normal stress required to reopen
the natural fractures should be a major parameter for its stability. Also the relationship
between the fracture opening and the fluid pressure should be pre-interpreted for the
stability of structures, such as the spillway tunnel of a dam. Apart from the general
hydrofracturing in-situ stress measurements, the stress normal to the natural fracture
plane should be identified with respect to the dip direction and the dip angle of the pre-
existing fracture. A hydrojacking test can be adopted for this purpose, and is used to
determine the mechanical and hydraulic behaviors of pre-existing fractures around an
internal pressure tunnel site. Figure 12 presents a plan of the project area geology and a
longitudinal section along the spillway tunnel. Precambrian foliated leucocratic grani-
tic gneiss composition occupies the project area. For in-situ stress measurements via
hydrofracturing, the fracture-free intervals in borehole NSP-6 were chosen with the aid
of borehole televiewer images (Figure 13). Figure 14 is an example curve obtained from
the hydrojacking test with the hydrofracturing test equipment. As shown in this figure,
the hydrojacking pressure and the stress normal to the fracture plane (σn) have been
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estimated through the hydrojacking interval and the constant flowrate interval, respec-
tively. As in Rutqvist and Stephansson’s elastic model (1996), the hydrojacking pres-
sure can be defined as the pressure needed to reopen the natural fracture as well as
overcome the stiffness between the two fracture planes, so it could be shown as the peak
pressure.
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Chapter 8
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Abstract: This paper presents a methodology for evaluating the complete stress field
and its variation versus depth. The validity of the protocol is visualized in the case study
at the ÄspöHard Rock Laboratory (HRL), south-eastern Sweden, a site predominantly
sampled using the overcoring method. Overcoring data involve explicit (measurement-
related) as well as implicit uncertainties. The former include for example uncertainties
regarding determination of the location of the test sections in physical space and of the
value of elastic parameters, as well as uncertainties in strain-/displacement measure-
ments, etc. The explicit types of uncertainties are fairly straightforward to analyze and
correct for during the stress calculation procedure. The implicit uncertainties, on the
other hand, such as the assumption of homogeneity and linear-elasticity, are much
more difficult to appreciate and correct for, if possible at all. Yet, as for explicit errors,
they may render an individual test or a series of tests completely meaningless, and it is
therefore crucial that both categories of uncertainties are identified, understood, and
properly considered within the process of stress field determinations.

The proposed methodology follows the directions outlined by ISRM for rock stress
estimation using overcoring methods (Sjöberg et al., 2003; Sjöberg & Klasson, 2003).
In addition, we pay particular attention on avoiding, identifying, and correcting for
various potential sources of error, the sampling strategy, and considerations of the
continuity hypothesis.

1 INTRODUCTION

Knowledge of the prevailing stress field is important for rock mechanical studies
because it provides means to analyze the mechanical behavior of bodies of rock and
serves as boundary conditions in rock engineering applications. One of the most
commonly applied methods for estimating the in situ stress is overcoring. Several
cells of more or less different design exist. However, they are collectively often referred
to as borehole relief methods, and the theory, field application, and analysis of data are
quite similar for the various cells (Amadei & Stephansson, 1997).

Overcoring cells sample a partial or a complete local stress tensor in each individual
measurement attempt. The regional stress tensor for larger rock volumes can be



determined from a number of local stress tensors with proper attention to stress field
continuity and stress gradients. Cornet (1993) defines the regional stress tensor with six
functions of spatial coordinates from a number of local stress tensors. The full
parameterization involves 22 unknowns, but for most cases realistic assumptions can
bemade that significantly reduce the number of unknown parameters. The requirement
of a suitable parameterization may be regarded as a scale issue, and this is common
for all in situ stress measurement methods as they all sample stress at a scale signifi-
cantly smaller than that of the mechanical problem in question. At larger scales,
proper attention must be paid to fractures and faults as they are incompatible with
the continuum concept.

The nature of the overcoring method, which involves fairly sophisticated drilling
operations in conjunction with the measurement, renders the method sensitive to
explicit uncertainties; some of which will be highlighted in this paper. Additionally,
also implicit uncertainties are entailed due to the small scale; a strain gauge length is
generally about 1 cm. Because the vast majority of bodies of different rock types are
neither perfectly linear elastic, nor completely homogeneous, the small scale introduces
the question to what degree the small sample is representative for the larger rock
volume investigated. This leads to the Representative Elementary Volume (REV) con-
cept. The size of the REV is defined as the smallest volume of rock for which there is
equivalence between the idealized continuum material and the real rock. The REV is a
physical description of a volume, and the various functions defined by homogenizing
the body within the REV cannot be used to understand, or model, phenomena that
occur at scales smaller than the REV.

Besides explicit violations of the inherent assumptions in the overcoring method,
examples of implicit data uncertainties will also be addressed in this paper which will
take us through the different phases during a complete stress field determination using
overcoring data. Focus will be on data uncertainties in the overcoring measurement
technique. Finally, the highlights of a complete stress field determination at the Äspö
Hard Rock Laboratory (HRL), south-eastern Sweden is given.

2 OVERCORING DATA ANALYSIS

In the following section, the testing principle, theory, and interpretation of overcoring
data using the Borre Probe (a CSIR-type cell) are described. The case study (Section 3)
also involves the CSIRO HI cell and some specific issues for this cell have also been
described in the section. These two cells include a strain gauge configuration that
enables capturing of the full stress tensor at each measurement attempt. The cells are
not described in detail here and the reader is referred to Sjöberg & Klasson (2003),
Worotnicki (1993), and ES&S (2015).

2.1 The overcoring measurement principle

The overcoring method implies measurement of the relaxation of a pre-stressed,
instrumented rock cylinder. However, before reaching the measurement phase, i.e.
the overcoring, a specialized drilling protocol is followed (Figure 1). These drilling
operations are important for the success rate of any overcoring stress measurement
campaign and a well-experienced drilling crew is essential. Key objectives of the
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overcoring measurement principle are outlined below, based on the current version of
the Borre Probe, version III.

2.1.1 Coring of main borehole

The first drilling operation involves coring using NQ-size or larger down to chosen
borehole testing length. It is important that the borehole is drilled as straight as possible
to avoid problems to descent with the installation tool, but also to prevent drill string
vibrations during the subsequent overcoring, which may damage the overcore sample.
Secondly, and the most important step, the borehole must be flushed thoroughly to
remove all drill cuttings. Failure to achieve this will unquestionably hamper the glue
bonding between the strain rosettes and the pilot hole walls.

If the borehole penetrates a fracture zone, indicated by a water loss during drilling,
drill water and cuttings will be injected into the fractured section, and as soon as the
coring and flushing stops, water and cuttings will re-enter into the borehole. This will
effectively prevent successful testing in the borehole, why significantly fractured sec-
tions must be grouted and borehole re-drilled.

2.1.2 Grinding of borehole bottom

It is important that the entry of the pilot hole is centralized and coaxial with the full
sized borehole. To maximize the chances of achieving this outcome, the bottom of the
full sized borehole is grinded using a full face drill bit.

1 2 3 4 5 6 7 8 9 10 11

Figure 1 Measurement procedure for the Borre Probe: (1) advance of main borehole to measurement
depth; (2) Grinding of the borehole bottom; (3) Drilling of pilot hole; (4) Recovery of core for
appraisal; (5) Flushing of pilot hole to remove drill cuttings (and optionally compressed air
afterwards); (6) Hoisting of flushing tool and entire drill string; (7) Cleaning wall with brush/
cloth; (8) Lowering of cell with installation tool; (9) Cell at position, mechanical release of cell
from installation tool; (10) Hoisting of installation tool; (11) Overcoring; and (11) Core break
and recovery of core sample for data reading and subsequent biaxial testing.
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2.1.3 Pilot hole drilling, flushing, and cleaning

The pilot hole drilling (diameter ca 36 and 38 mm for Borre and CSIRO HI cells,
respectively) uses centralizers to ensure that the hole is drilled coaxially with the full
sized borehole. The retrieved core is examined in detail with respect to fractures,
inhomogeneities, such as large grains and features that may lead to anisotropy (e.g.
schistosity/foliation).

If the location is accepted for testing, a flushing tool is used to clean the entire
borehole from drill cuttings. For CSIROHI cells, requiring dry boreholes, the borehole
is subsequently dried using a cloth or using compressed air.

2.1.4 Installation of cell

The installation of the Borre Probe is undertaken with an installation tool that
centers the probe of the main borehole, thereby ensuring that the cell enters into
the pilot hole. Once the cell is in correct position, it is mechanically released from
the installation tool. The installation can be made using rods or a wireline to
substantial borehole lengths. Prior to the installation, the probe is programmed
and started.

Upon start-up, strain readings are undertaken every 15 minutes and hence allows
post-examination of the installation and the glue hardening process (Figure 2). At a pre-
set time, generally 8–10 h after installation, glue hardening is complete and sampling
rate is increased to a pre-determined frequency, generally one reading per second. The
overcoring phase can then be initiated.

2.1.5 Overcoring

The overcoring sequence involves several steps: (i) hoisting of installation tool;
(ii) lowering of drill string; (iii) initiation of flushing water; (iv) rotation start of
drill string; (v) initiation of drilling; (vi) drilling stop; (vii) flush water stop;
(viii) core break; and (ix) hoisting to surface for data dump. The timing of each of
these operations is noted and provides useful information when judging the reliability
of each strain rosette.

It is important that the drill water circulation commences at least 10–15 min prior to
the overcoring starts and continues for at least equally long time after completed
overcoring, in order to let the strain gauges stabilize and also to minimize temperature
effects.

2.1.6 Biaxial testing

After completed overcoring, the recovered overcore sample is usually placed in a
biaxial test chamber to determine the elastic parameters Young’s modulus, E, and
the Poisson’s ratio, ν. During biaxial testing, the overcore sample is first subjected to
a step-wise increase of applied pressure, followed by a step-wise decrease to zero
pressure while the resulting strains are measured (e.g. Amadei & Stephansson,
1997).
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For the thin-walled overcore sample when using main hole dimension NQ, pressur-
ization is not made higher than 10 MPa to avoid introduction of microfractures in the
core. The elastic parameters are based on secant, unloading values.

2.1.7 Core sample analysis

Before and after the biaxial test, the core sample is evaluated with respect to inhomo-
geneities, potential anisotropy, grain sizes, fractures or other effects that may affect the
results. In addition, the core inner and outer diameter and the rosette positions are
measured, and potential decentralization and/or inclination of the pilot hole is docu-
mented. These values are required for the calculation of the elastic parameters and for
potential data corrections.

Particular focus is placed on the adhesion of the strain rosettes on the rock sample. In
ideal conditions, the rosettes cannot be removed from the core sample without breaking
into pieces upon removal, leaving the adhesive and the strain rosette left inside the
overcore sample. The force required to remove the gauges is noted as well as any traces
of drill cuttings in the pilot hole and on the glue surface for potential requirement of
adjustment of flow rate and length of flushing period during subsequent overcoring tests.
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Figure 2 Example of glue bonding period including from start-up of cell (at surface at time = 0 min),
installation in the borehole (peak strains at t = 30 min), to start of dense sampling (at ends of
file). Sampling rate is one reading per 15 minutes.
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2.2 Theory for CSIR- and CSIRO HI-type cells

The overcoring theory is based on that the rock can be described as continuous,
homogeneous, isotropic (although also anisotropic solutions exist), and linear-elastic.
It is further assumed that the relief during overcoring is assumed to be identical in
magnitude to that produced by the in situ stress field, but of opposite sign, and that the
measuring probe is mounted far enough from the end of the borehole. With these
assumptions, the displacement fields in cylindrical components are given by e.g.
Hirashima & Koga (1977):
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where R is the borehole radius, r the radial distance to the measurement point, E and
ν are Young’s modulus and Poisson’s ratio, respectively, σi is the far field stress
component i, and θ the circumferential angle describing the location of the strain
gauge.

For CSIR- and CSIRO HI-type of measuring devices including axial gauges, tangen-
tial gauges, and gauges inclined ±45o from the axial direction, the following relation-
ships are valid:
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� �
r¼R

¼ R
E

4 1þ �ð Þ τyzcos θ � τzxsin θ
� � � ð10Þ

Combining Equations 12 to 18 and using r = R, gives the final solution:

εθ ¼ σx þ σy
� 

K1 � 2 1� �2
� 

σx � σy
� 

cos 2θ þ 2τxysin 2θ
� �

K2 � �σzK4
� �

=E

ð11Þ
εz ¼ σz � � σx þ σy

� � �
=E ð12Þ

ε�45	 ¼ 0:5 εθ þ εz � 4 1þ �ð Þ τyzcos θ � τzx sin θ
� 

K3=E
�  ð13Þ

where K1-K4 are correction factors for the CSIRO HI cells and represent the effect of
locating the strain gauges at some distance from the rock surface and of the resistance of
the HI cell to deformation (Worotnicki, 1993; Duncan, Fama and Pender, 1980). For
the Borre Probe, K1-K4 are equal to 1.

The elastic properties of the overcore sample are derived using the theory for an
infinitely long, thick-walled circular cylinder subject to uniform external pressure, and
the assumption that plane stress applies (e.g. Worotnicki, 1993; Amadei & Stephansson,
1997):

E ¼ K1
p
εθ

2

1� Di

Do

� �2 ð14Þ

� ¼ �K1
εz
εθ

ð15Þ

where p is the applied load, εθ and εz are the tangential and axial strains, respectively,
and Di and Do are the inner and outer diameters of the cylinder, respectively. Ask
(2006) suggested that also the ±45° inclined gauges are used in cases where few data are
available:

E ¼ K1
p

2ε�45 � εzð Þεθ
2

1� Di

Do

� �2 ð16Þ

� ¼ �K1
2ε�45 � εθð Þ
2ε�45 � εzð Þ ð17Þ

2.3 Explicit data uncertainties

Ideally, the differences between observed strains before and after completed over-
coring yield sufficient information for stress determination. However, in reality, the
testing curves incorporate also a whole series of factors that affect the results, which
in the worst of cases may lead to erroneous interpretation. In this section, the explicit
(measurements-related) uncertainties are highlighted, i.e. errors associated with the
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measurement operation itself. Common for measurement-related uncertainties is that
they most often can be appreciated and compensated for in a straight-forward
fashion.

2.3.1 Drilling operations and installation of cell

The drilling operations and installation procedure of the cell may for different reasons
deviate from planned outcome. This may involve a slightly decentralized or inclined
pilot hole, which are measurable deviations that may be corrected for using numerical
methods. In general, however, the deviations are generally very small when using the
Borre Probe drilling equipment, and the effect on calculated stresses are as a result
negligible (e.g. decentralization is commonly less than 1 mm).

However, due to the construction of the Borre Probe, with three strain rosettes
mounted 120o apart and at the end of thin cantilever arms, dislocations from the
stipulated 120o may take place. Sensitivity studies have shown that the effect on
calculated stresses are quite moderate (less than 5%) for the commonly observed
dislocations (Ask et al., 2002).

2.3.2 Diagnostic strain curve response of Borre Probe data

The strain value for each gauge used for stress calculation involves a stable plateau
before and after overcoring. Generally, the pre-readings are taken before drill circula-
tion water has been turned on, prior to the overcoring, whereas post-readings are taken
after drilling water has been turned off, but before the core break.

The obtained strain versus time plots from an overcoring test include not only
information of the strain/stress field, but also clues that help estimating if the data
collection has been successful, or if it is hampered with difficulties. Firstly, the glue
hardening process should show a gradual strain increase for all strain gauges, which
eventually level out and become linear toward the ends of the period (Figure 2).
Secondly, if the cell is properly installed, it is coaxial with the borehole and neither
removal of the installation tool, nor the descent with and rotation of the drill string
over the cell is visible on the strain curve (Figure 3). If there is a reaction, the bonding
between the strain gauges and the rock may have been damaged. Thirdly, the onset
and turnoff of the drilling water circulation implies some turbulence downhole, and
if a strong reaction can be observed, one or more strain rosettes are not glued
properly.

Finally, looking at the resulting strain values, a few controls can be made regarding
the validity of results. The Borre Probe configuration involves three axial gauges which
should be equal in theory. Furthermore, the configuration entails that the following
relationship is valid:

ε45;1 þ ε45;2 þ ε45;3 ¼ 1
2

εz;1 þ εz;2 þ εz;3 þ εθ;1 þ εθ;2 þ εθ;3
�  ð18Þ

or reformulated to rosettes i

ε45;i ¼ 1
2

εZ;i þ εθ;i
�  ð19Þ

252 Ask



2.3.3 Temperature effects

If there is a temperature difference between the initial and final strain reading, the stress
field may not be fully relieved and may require correction. The temperature correction is
a function of the thermal expansion of the rock and the inherent thermal expansion of the
strain gauges. The former is seldom known or investigated, but for the Äspö HRL main
rock types, the thermal correctionwas determined to 8microstrain/oC (Ask et al., 2004).

It is fairly common that a fairly large strain drop after peak strains have been reached
are observed in overcoring data. This is to some extent expected as the drilling
continues for some time/distance after having passed the strain gauges. However,
after completed drilling, and if the conditions are ideal, only temperature effects are
responsible for strain variations. Hence, if temperature effects cannot explain the strain
variation after completed drilling, implicit errors are evident.

–200

0

0 10 20 30 40

14

16

18

20

22

50

M
ic

ro
st

ra
in

[–
]

400

200

600

Tem
perature [ºC

]

Time [min]

Core break

Rosette no 3
not glued properly

Temperature increase after 
drilling circulation water is

turned off

Drilling circulation water
Overcoring

Data_3_ny

DCW-ON

DCW-OFF

OC Start
OC Stop

CB

Temp

45-345-3

45-145-1

Tan-3Tan-3

Tan-1Tan-1

Ax-3Ax-3

Ax-1Ax-1
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with permission from Elsevier.
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2.3.4 Boundary yielding

Boundary yielding is a phenomenon that relates to CSIRO HI cells when the drill-
induced heat leads to softening of the adhesive grout and the cell is exposed to
expansion. Radially, the expansion is limited to the relaxation associated with the
relief of the overcore sample, whereas it is free to expand in the borehole direction. As a
result, the axial gauges and also the 45o/135o-inclined gauges show abnormally large
strains. In terms of stress, this implies that the major stress component becomes aligned
with the borehole axis. Data can be corrected with respect to boundary yielding,
provided that a realistic axial strain can be estimated (Ask, 2003).

2.3.5 Biaxial testing

The biaxial testing serves, apart from a method for determination of the elastic
characteristics of the overcore sample, as a quality control method for the overcoring
test. Firstly, the three groups of strain orientations should respond identically for each
loading step (Figure 4), which is a test of the hypothesis of isotropy. Again, Equation 19
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may be used for verification of results, although one cannot expect perfect fit with real
data. Deviation should preferably be within some 15%. Secondly, the biaxial tests gives
an indication of the amount ofmicrofractures in the core, expressed as the non-linearity
at low pressures and hysteresis effects. If deviations are pronounced, it implies an
obvious violation of the inherent assumptions of the overcoring method, and data
must be regarded with skepticism, or even be discarded.

In some cases, especially in strong hard and brittle rocks such as quartzite, the core
break can be violent and damage the glue bonding. Hence, overcoring strains may be
satisfactory but biaxial test results meaningless due to damaged bonding. In such cases,
it is recommended that lab tests on full size cores retrieved as close to the testing
location as possible are conducted.

2.3.6 Validation of local stress tensor

For each local stress tensor the validity of the measurement can often be evaluated. For
example, in the absence of topographical effects or secondary stress fields, two compo-
nents should have a very small dip, whereas the third should be nearly vertical. In
addition, under named circumstances, the measured vertical stress should be of the
same order of magnitude as the theoretical weight of the overburden rock mass.

2.4 Implicit data uncertainties

Implicit data uncertainties refer to errors associated with the interpretative model and
can be divided into two categories; those associatedwith violations of inherent assump-
tions in the overcoring methodology and those related to the attempts to describe the
stress field at a large scale based on a set of local stress tensors. It is not as straight-
forward to associate implicit errors with e.g. an expected value, variance and possibly
covariances as for the explicit uncertainties.

2.4.1 Violations of theoretical assumptions

As mentioned, the overcoring method rests upon the assumption that the rock mass is
continuous, homogeneous, isotropic, and linear-elastic. Yet, we know that rocks do
not completely fulfill these assumptions. For example, deviations from linear-elasti-
city are displayed in most biaxial tests. In fact, because the method relies on complete
relaxation of the overcore sample, the most pronounced non-linear phase is incorpo-
rated in the data. The displayed non-linearity in the overcore sample is attributed to
the overcoring phase, i.e. to microfractures introduced as a result of stress relaxation
and as a result of the drilling process. However, in many cases, the deviation from
linear-elasticity has negligible effect on calculated stresses but, regrettably, there is no
generally accepted guideline/rule of thumb stating when to trust data and when to
discard them.

Anisotropic behavior of the rock can be adjusted for (Amadei, 1996) but requires
knowledge of all elastic parameters of the rock as the principal strain direction differs
from the principal stress directions. Studies have shown that the degree of anisotropy
must be fairly large before it seriously affects stress magnitudes and orientations (larger
than 1.3–1.5, based on Young’s modulus; Worotnicki, 1993).
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Sometimes overcoring cells produce seemingly good individual test data, but when
considering a group of tests at a site, a different picture may arise. This is for example
the case for the Olkiluoto site of the Finnish Nuclear Fuel and Waste Management
Co. (Posiva), where both the Borre Probe and the CSIRO HI cells have been
employed. The site is dominated by a migmatitic, foliated gneiss, but the foliation
direction is not persistent, but instead highly variable. Hence, at this site, the over-
coring testing scale (a few dm3) is smaller than the representative elementary volume,
and data therefore indicate just about anything. The same problems is observed in
minifrac tests, which aremade at about the same scale as the overcoring tests, whereas
conventional hydraulic methods have produced consistent results in this heteroge-
neous, or small scale anisotropic, rock (Posiva, 2012).

As described in Section 2.3.3, significant strain drop after peak strains have been
reached are signs of implicit errors, often related to bonding problems or microfractur-
ing of the overcore sample. Bonding problems are often visible during onset/turn-off of
drilling water, but may indicate seemingly realistic overcoring curves in the initial
phase of the overcoring process. If the gauges are more or less de-bonded from the
rock sample, the strain values often drop to near sub-equality of the three strain
gauges in the rosette (rosette 3 in Figure 5). Bonding problems are obvious during the
subsequent biaxial tests and can also be verified during the core sample analysis when
the rosettes are removed from the core sample. Microfracturing of the core sample
can, if the stress is high relative to the strength of the rock sample, be severe and
disqualify the results. Again, the subsequent biaxial test and tests of the adhesion of the
strain rosettes can be used for verification. If the core yields, it is hard to keep the biaxial
pressures steady during the pressurization steps; excessive pumping and drainingmust be
undertaken during the loading and unloading phases, respectively, in order to maintain
stability during the biaxial pressure steps. If this occurs, while the adhesion of the rosettes
are still acceptable, the strain drop can be correlated to yielding of the overcore sample
due to significant microfracturing (rosette 1 in Figure 5). In such cases, coring dimension
must be increased in order to reach reliable results, although some improvements can also
be reached by optimizing the drilling process.

A fairly common observation of yielding of the overcore sample is related to ring or
core disking (e.g. Li & Schmitt, 1998). The failure of the rock specimen is related to the
strength of rock relative to the stress field, but also on a number of drilling parameters.
The phenomenon may in overcoring data be displayed in different ways, ranging from
non-visible fractures for the naked eye but with abnormal axial strains (primarily), to
fully developed disks that effectively prevent recording of data. Core disking involves a
serious violation of the theoretical assumptions associated with the overcoring techni-
que, and data are not useful for stress determination.

If disking appears, it may be advisable to use the core disking phenomenon itself for
stress field determination. The methodology is still somewhat premature, but signifi-
cant improvements have been made in recent years (e.g. Corthésy & Leite, 2008).

2.4.2 The continuity hypothesis and choice of integration procedure

A stress measurement campaign using the Borre Probe typically involves three success-
ful tests within a few meters of borehole (i.e. a very small volume of rock), which are
clustered together to define a single local tensor. However, sometimes, several such
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clusters are made in a borehole with several tenths of meters apart, why stress gradients
need to be considered. For larger campaigns, it is strongly recommended that choice of
test locations is based on consideration of the continuity hypothesis to ascertain that
the data indeed sample the same continuum. This requires detailed analysis of site
geology, drill cores, and geophysical logs.

Stress field distributions world-wide predominantly indicate a sub-linear depth depen-
dency and a first approximation of the distribution can be described as (Cornet, 1993,
2015):

σ Xmð Þ ¼ σ Xð Þ þ xm � xð Þα½x� þ ym � yð Þα½y� þ zm � zð Þα½z� ð20Þ
where σ(Xm) and σ(X) are the stress tensors in pointsXm andX, respectively, and α[x],
α[y], and α[z] are second-order symmetrical tensors characterizing the stress gradient
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in the x-, y- and z-directions. The stress field satisfies the following equilibrium
condition:

div σ Xmð Þ
� �

� ρ Xð Þbi ¼ 0 ð21Þ

where ρ(X) is the density of the rock mass and bi is the gravitational acceleration
(bi = gδi3; δi3 = 0 for i ≠ 3; δi3 = 1 for i = 3). A major drawback with this representation
is that it requires some 30 tests for acceptable determination of the 22 model
parameters. However, a series of assumptions can be made that significantly reduce
the number of unknowns. In practice, a tentative distribution of the stress field is
first assumed and the subsequent calculations will outline if this model will hold, if it
need adjustments, or if the data set requires grouping into subsets as a result of e.g.
discontinuities.

In the following, a linear stress distribution with respect to the vertical direction is
chosen to complete the theory. This is a common description of the stress field dis-
tribution as stress measurements are often made along a single borehole:

σ Xmð Þ ¼ σ Xð Þ þ zm � zð Þα½z� ð22Þ
The assumed parameterization involves the full stress tensor and its variation with
depth (i.e. 12 unknown parameters). Hereafter, we express σ(X) and α[z] with three
Euler angles and three principal values. For σ(X), the eigenvalues are S1 to S3 and the
three Euler angles are E1 to E3, which are expressed in the geographical frame of
reference. Corresponding eigenvalues for α[z] are α1 to α3, and the three Euler angles
E4 to E6 are expressed in the σ(X) frame of reference. Thus, the gradients α1 to α3
correspond to the vertical gradient of S1 to S3, only if E1 to E3 are equal to E4 to E6.

For overcoring data, the general equations for the measured strains related to the
stresses in a local xyz frame of reference are given in Equations 11 to 13. The equation
for σx

n of the nth measurement in matrix form is thus:

σnx ¼
�
SB ⋅ So þ zm � zð Þ ⋅AB ⋅Ao ⋅ABT

� �
⋅ SBT

� �
~nnx

�
~nnx ð23Þ

where nx
n is the direction of the local x-axis with respect to the geographical frame of

reference. The expressions for the remaining stress components (σy
n, σz

n, σxy
n, σxz

n,
σyz

n) are analogous. A vector function f(π) may be introduced in which the mth

component is defined by:

fm πð Þ ¼ σnx �
�
SB ⋅ So þ zm � zð Þ ⋅AB ⋅Ao ⋅ABT

� �
⋅ SBT

� �
~nnx

�
~nnx ð24Þ

Borre Probe data involve three different expressions for fm(π); for axial, tangential and
45o-inclined strain gauge, and the inversion may be solved using the iterative algorithm
based on the fixed point method (Tarantola & Valette, 1982):

πnþ1 ¼ πo þ CoFT
n FnCoFT

n

� �1½Fn πn � πoð Þ � f πnð Þ� ð25Þ
where F is a matrix of partial derivatives of f(π) valued at point π.
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3 INTERPRETATION OF THE STRESS FIELD: CASE STUDY
ÄSPÖ HRL

So far, we have discussed how to avoid, identify, and correct for various potential
sources of error. In the following, the analysis protocol is applied at the Äspö HRL
where several of the previously discussed problems were present. At this site, a majority
of the data involved overcoring but also a number of hydraulic stress measurements
existed that proved useful for verifications. The section is a shorted version of Ask
(2003), Ask (2000a), and Ask (2000b) and the interested reader is referred to these
papers for more details.

3.1 The Äspö Hard rock laboratory

The Äspö HRL of the Swedish Nuclear Fuel and Waste Management Co (SKB) is
located at the Baltic sea shore line, about 300 km south of Stockholm (Figure 6). The
island of Äspö is characterized be a mildly undulating topography and composed of ca
1.8 Ga intrusive rocks associated with the 1.86–1.65 Ga Transscandinavian Igneous
Belt (TIB, Wahlgren, 2010). The TIB rocks in the area show variable composition and
are affected by magma-mixing processes and consequently display close genetic rela-
tionship. The main bedrocks at Äspö are grouped into Småland (Ävrö) granite, Äspö
diorite (a more mafic variety of Småland granite), greenstone and fine-grained granites.
Overall, this may be described as a rock mass subjected to local inclusions and dikes,
i.e. inhomogeneities. The Småland granites exhibit a general foliation trend about
N70oE to E-W and commonly steeply dipping. Intrusions of fine-grained granites and
aplites are common as well as greenstones in larger massifs and as smaller lenses.

The intrusive rocks at Äspö are well preserved and hardly affected by ductile
deformation and metamorphism. As a result, the bedrock is generally considered
more or less isotropic. The majority of the major deformations zones are characterized
by polyphase brittle deformations, although with ductile precursors. Hence, the frac-
ture zone network was formed when the bedrock still responded to deformation in the
ductile regime with discrete brittle-ductile to ductile shear zones forming the most
prominent ductile structures in the area. These are sub-vertical and strike N-S,
NE-SW, and E-W.

The brittle structures have formed as a result of multiple reactivations of fracture
and fault sets related to orogenic episodes affecting the region, starting from approxi-
mately 1.5 Ga. The structures have been grouped according to strike and inclination;
(1) NE-SW, moderate to steep dip; (2) N-S, moderate to steep dip; (3) E-W to NW-SE,
steep to moderate dip toward south; (4) E-W to NW-SE, moderate dip toward north;
and (5) gently dipping.

3.2 Collected data at the Äspö HRL

At the Äspö HRL and its surroundings, about 100 hydraulic measurements and 140
overcoring measurements had been conducted (Bjarnason et al., 1989; Lee& Stillborg,
1993; Lee et al., 1994; Litterbach et al., 1994; Ljunggren & Klasson, 1996, 1997;
Nilsson et al., 1997; Ljunggren & Bergsten, 1998; Klee & Rummel, 2002; Klasson
et al., 2002; Klasson & Andersson, 2002). In this paper, focus is on the stress data
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collected in the immediate surroundings of theHRL and only on data sampling of the in
situ stress field, i.e. tests sampling the secondary stress field are discarded. This reduces
the amount of data to 34 hydraulic and 63 overcoring measurement points.

The overcoring data were collected using four different overcoring cells: (1) the
9-gauge CSIRO HI cell; (2) the thick-walled 12-gauge CSIRO HI cell, (3) the thin-
walled 12-gauge CSIRO HI cell; and (4) the 9-gauge Borre Probe (Worotnicki, 1993;
Sjöberg & Klasson, 2003). The CSIRO HI cells require dry boreholes and the tests
were conducted in short boreholes oriented slightly upwards from the ramp between
140 and 420 m vertical depth (mvd), cf. Figure 6. The Borre Probe measurements
were conducted in both sub-horizontal and sub-vertical boreholes in the vertical
depth range 410–480 mvd. The hydraulic data were collected using standard hydrau-
lic fracturing equipment based on impression packer technique to obtain fracture
orientation data.

Despite the number of stress measurements within a fairly limited volume of rock,
the stress field was poorly understood due to the pronounced scatter in data and
because of large differences in results between methods.

3.3 Results from data re-evaluation

The entire data set at Äspö HRLwas subjected to a thorough, uniform and diagnostic
data analysis based on ISRM directions (Sjöberg et al., 2003; Haimson & Cornet,
2003). Firstly, several strains from both cells were discarded as a result of non-
expected behavior resulting from fracturing of the overcore sample and bonding
problems. Secondly, 25% of the overcoring data were corrected for induced tem-
perature, as cooling was not undertaken long enough after completed overcoring,
leading to a temperature difference between the pre- and post-reading of strains.
Thirdly, it was found that the CSIRO HI data suffered from boundary yielding, and
corrections were made to almost 60% of the CSIRO HI data set. Finally, the biaxial
testing of the CSIRO HI overcore samples were of very poor quality as a result of too
high loading pressure, leading to fracturing of the core sample. Conclusively, a large
number of difficulties were observed in the data, but after applied corrections, the
stress distribution versus depth appeared markedly different with a much improved
agreement between methods (Ask, 2003) compared to the picture prior to the correc-
tions. Yet, it was not yet clear why tests at similar depths seemed to indicate two
different stress fields.

3.4 Integration of stress data

Detailed analysis of site geology with special attention to larger structures and possible
sub-domains was then undertaken. Stress field determinations involving smaller rock
volumesweremade, e.g. at the Prototype Repository (Ask et al., 2001) and at the Cedex
Test Site (Ask et al., 2003), to validate stress field continuity.

The final step of the evaluation process, integration of the entire data set, proved to
be a difficult task, but it became clear that a North-East striking fracture zone,
denominated NE-2, decoupled the stress field at Äspö into a NE and SE domain.
The NE-2 fracture zone is 0.7 to 5 m wide, strikes 21oN and dips about 77o toward
south-east.

Methodology for determination of the complete stress tensor 261



The fracture zone forced division of the data set, which was somewhat unfortunate,
because the available data in the SE domain were limited (125 CSIRO HI strains).
However, the NW domain included 19 hydraulic data, 27 strains from the Borre Probe
and 224 strains from the CSIRO HI cells.

Four different calculations using the data in theNE domainwere conducted: (I) using
only hydraulic data; (II) using only overcoring data; (III) joint inversion based on elastic
parameters from biaxial testing; and (IV) joint inversion with elastic parameters chosen
as unknown (Figure 7). The differences between the solutions are small, less than 10o

for stress directions and about 2 MPa for σ2 and σ3. The main difference concerns the
magnitude of σ1 (σH), but this parameter is poorly resolved in the hydraulic solution
and the results is somewhat expected. In the joint inversion using known elastic
parameters (E=61.6 GPa and v=0.26), the effect of the hydraulic data is hardly noticed
as the overcoring strains are so much more numerous. However, when elastic para-
meters are chosen as unknown (found to be equal to 50.8 GPa and 0.33, respectively),
the hydraulic fracturing data help constrain the overcoring set with respect to magni-
tudes. The difference in stress state between the known and in situ elastic parameters is
overall fairly small, which is to be expected as the two data sets became quite compar-
able after the re-evaluation.
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Figure 7 Three-dimensional state of stress based on hydraulic data in the NW domain (I), overcoring
data in the NW and SE domains (II and V), and combined hydraulic and overcoring data sets in
the NW domain between 230 and 450 m vertical depth (solutions III and IV). The combined
solutions for the NW domain are based on calculations with known average elastic para-
meters (IV; E = 61.6 GPa and ν = 0.26) and with in situ elastic parameters (V, E = 50.8 GPa and
ν = 0.33). Modified after Ask (2006) with permission from Elsevier.
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The joint solutions in the NE domain indicate that σ1 and σ3 are sub-horizontal and
σ2 is sub-vertical. In the SE domain, a pronounced rotation with depth was observed,
where e.g. σ1 rotates from 150oN to 128oN between 230 and 450 mvd. The observed
stress rotation in the SE domain can be correlated to the physical location of the various
measurement points in this domain; shallow data in the SE-domain are located much
further away from the NE-2 zone compared to data in the NWdomain and deeper data
in the SE domain (see Figure 6). Hence, the rotation is suggested to be attributed to the
radius of influence of the NE-2 zone.

At depths, both domains have the same direction of σ1, suggesting that σ1 is nearly
perpendicular to the NE-2 zone, whereas the σ2 and σ3 components nearly coincide
with the plane defined by the NE-2 zone. Hence, data indicate that the NE-2 fracture
zone is a principal plane.

4 CONCLUDING REMARKS

A protocol for complete stress determination using the overcoring stress measurement
method has been outlined. It is shown that the methodology, independent upon over-
coring device, requires experienced personnel, well-established routines during all
operational steps of the overcoring process, careful documentation, and a skilled
drilling crew. Only with these pre-requisites, can uncertainties be kept an acceptable
level.

In the case study, the effectiveness of the protocol is visualized; the stress field can be
resolved even in cases where data are significantly hampered with difficulties. Indeed,
the interpreted stress field at Äspö HRL have been verified recently in Hakala et al.
(2013). Yet, it is unfortunate that errors are introduced as significant time must be
allocated to understand and interpret the turn of events leading to the problem. In
addition, a corrected datum is always regarded as somewhat ambiguous as the correc-
tion itself is associated with uncertainties; the case study was remedied by the existing
hydraulic data that helped constrain and verify the overcoring solutions.

The major deficit with the overcoring methodology is the difficulty to comply with
the many assumptions inherent in the theory. Regrettably, many of the implicit uncer-
tainties in the overcoring methodology cannot be corrected for. As a result, it is
absolutely critical that they are identified and as far as possible corrected for, as they
otherwise may result in erratic stress field interpretation or completely disqualify the
results. If deviations are identified, it is highly recommended that other stress measure-
ment techniques are employed for data comparison, as this will be the only means to
verify or reject the stress field determination.

Rock stress measuring methods always produce a certain degree of data scatter.
Common for all methods is that explicit errors can be taken into consideration and
properly be adjusted for. However, the smaller scale methods, such as overcoring, are
more sensitive to implicit errors; manifested as a more pronounced data scatter com-
pared to larger scale methods. Given this sensitivity, it is important that each individual
test is analyzed carefully, taking into consideration overcoring strain data, biaxial
strain data, overcore sample and glue bonding. This is the only approach that enables
derivation of the source of the problem, weather it is explicit or implicit, and if it can be
corrected for, or if the data are more suitable for the trash bin.
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Chapter 9

Measurement of induced stress
and estimation of rock mass strength
in the near-field around an opening

Y. Obara1 & K. Sakaguchi2
1Graduate School of Science and Technology, Kumamoto University, Kumamoto, Japan
2Graduate School of Environmental Studies, Tohoku University, Sendai, Japan

Abstract: In order to estimate rock mass strength and sliding criterion of discontinuity
from the stress state around an opening, methods of measuring induced stress and
monitoring stress change are described. Those methods are the Compact Conical-
ended Borehole Overcoring (CCBO) technique and the Cross-sectional Borehole
DeformationMethod (CBDM). Firstly the concept of estimation of rock mass strength
from the stress state measured by those methods is explained. Then applying the CCBO
to measure around underground opening, rock mass strength and sliding criterion of
discontinuity from the obtained stress distributions are estimated. Furthermore a case
example of the CBDM such that stress change around an opening is monitored under
construction is demonstrated. It is shown that the CCBO andCBDMare convenient for
estimating not only induced stress and stress change but also rock mass strength and
sliding criterion of discontinuity.

1 INTRODUCTION

The estimation of rock mass strength is important for designing rock structure. For
this purpose, a series of in situ shear test is performed at construction site of rock
structure. The in situ shear test was developed at the dawn of rock mechanics. In
1961, Serafim & Lopes introduced the technique of in situ shear test, using rock
blocks attached base rock and concrete blocks molded against the rock surface
(Jeager, 1979). The suggested methods for determining shear strength were published
by Franklin et al. in 1974. In Japan, testing method for shear strength was published
as suggestedmethods for in-situ test from the Japan Society of Civil Engineers in 1983
and revised it in 2000. Performing a series of in situ shear test, we can estimate the
rock mass strength.

On the other hand, rock stress also is one of important parameters for designing rock
structures. The behavior of rock mass is dependent on initial stress, as well as mechan-
ical properties of rock. Therefore the initial stress is measured for designing rock
structure. Especially, in the use of overcoring method, the initial stress is measured at
points far from the wall of a gallery excavated at construction site of it. Because that the
immediate wall is damaged due to excavation. However, it is considered that the
damaged area is under post failure and the stress states in the area satisfy a failure
criterion. Therefore, if the stress sates at several points in the damaged area are
measured, a failure criterion of rock mass can be estimated from the measured results.



Accordingly, measuring stress distribution, namely induced stress, around an under-
ground opening, we can estimate not only initial stress in far field but also failure
criterion of rock mass in near filed at the same time. Furthermore, monitoring stress
change around an underground opening under construction, we can also estimate
failure criterion of rock mass. It is concluded that the measurement of rock stress
distribution and stress change is one of profitable in situ tests.

In this chapter, firstly the concept of estimating a failure criterion from stress
distribution around an underground opening is described. Then methods of measuring
stress distribution andmonitoring stress change are introduced. The former is Compact
Conical-ended Borehole Overcoring (CCBO) technique and the latter is Cross-sec-
tional Borehole Deformation Method (CBDM). Demonstrating case examples by
CCBO and CBDM, it is shown that the CCBO and CBDM are convenient for estimat-
ing not only induced stress and stress change but also rock mass strength.

2 METHOD FOR MEASURING INDUCED STRESS AND
MONITORING STRESS CHANGE

2.1 The stress around a circular opening under hydrostatic initial
stress field

The stress distribution around a circular opening, which is excavated in a Mohr-
Coulomb material under hydrostatic initial stress field, is investigated. The Mohr-
Coulomb failure criterion is represented as:

τ ¼ cþ σ tan� ð1Þ
Using principal stresses, the criterion is written as:

σ1 ¼ Sc þ qσ3 ð2Þ
where c is the cohesion, ϕ is the internal friction angle. Sc is the uniaxial compressive
strength and q is a constant as follows:

Sc ¼ 2c tan
π

4
þ �

2

� �
ð3Þ

q ¼ tan2
π

4
þ �

2

� �
ð4Þ

Assuming that the circular opening with a radius of R is excavated under hydrostatic
initial stress field of σ0 ≥ Sc/2. In this case, the plastic region which material satisfies the
failure criterion is produced in the region of R ≤r ≤R*. The outside region of R* ≤ r
behaves elastically. The radiusR* of the boundary surface between the two regions has
to be found, and continuity conditions have to be satisfied on it.

In the plastic region, the equation of stress equilibrium holds and is (Jeager & Cook,
1979):

dσr
dr

¼ σr � σθ
r

ð5Þ
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in the polar coordinate as shown in Figure 1. Assuming that σr > σθ, Equation 2
becomes:

σθ ¼ Sc þ qσr ð6Þ
Then using Equations 5 and 6 under the condition of σ r =0 at r =R,

σr ¼ Sc
1� q

1� r
R

� �q�1

 �

ð7Þ

On the other hand, the stress state in the elastic region is represented as:

σθ ¼ 2σ0 � σr ð9Þ

σr ¼ σ0 � ðq� 1Þσ0 þ Sc
qþ 1

R�

r

� �2

ð10Þ

The radius R* gives (Aoki et al., 1988):

R�

R

� �q�1

¼ 2 ðq� 1Þσ0 þ Scf g
ðqþ 1ÞSc ð11Þ

The stress distribution around the circular opening under the condition of hydrostatic
initial stress field of σ0/Sc = 2 and q = 4.6 (ϕ = 40 degrees) is shown in Figure 2 (Obara
et al., 1992).

2.2 Estimation of failure criterion of rock mass from stress
measurement

Consider the stress distribution around an opening under the condition of Sc =
20MPa, R = 3m. In this time, cohesion becomes c = 4.7MPa. In this case, the
Mohr’s stress circles and the failure criterion are drawn in Figure 3. The dotted stress
circles in the elastic region lie below failure criterion of rock mass as the solid line.
That means that the failure will not take place. On the other hand, the solid stress
circles in the plastic region touch the failure criterion. The stress states in the plastic

y

x

r

Ro

σθ

σr = 0

σr

θ

Figure 1 A circular opening and coordinates.
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region satisfy the failure criterion. The depth of the plastic region around the opening
is not so large and the rock condition of the region is not so good. Because of that the
failure occurs and many fracture surfaces are induced in the plastic region and joint
spacing becomes short. However, a rock block surrounded by the fracture surfaces in
the plastic region maintains elasticity. If the stress state of the rock block at several
points in the plastic region can be measured, the stress distribution in the plastic
region and the failure criterion are estimated. For this purpose, it is indispensable that
stress state is measured under the condition of short joint spacing and that stress
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τ = 4.7 + σ tan 40˚ 

Figure 3 Mohr’s stress circles in the plastic region (solid) and elastic region (dotted), and Mohr-
Coulomb’s failure criterion.
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Figure 2 Stress distribution around an opening under the condition of hydrostatic initial stress field of
σ0/Sc = 2 and q = 4.6.
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measurement method which can be performed in short distance between measure-
ment points is adopted. The Compact Conical-ended Borehole Overcoring (CCBO)
technique is suitable.

2.3 Compact Conical-ended Borehole Overcoring (CCBO)
technique for stress measurement

(Sugawara & Obara, 1999; Obara & Sugawara, 2003a, 2003b)

2.3.1 Field measurement system

Thefieldmeasurement procedure is illustrated in Figure 4. Firstly, a pilot borehole having
a diameter of 76mm is drilled to the stress measurement station. Then, the bottom of the
pilot borehole is formed into a conical shape with a bortz crown bit (Figure 5(a)), the
surface of which is ground smooth with an impregnated bit (Figure 5(b)). After bottom

1: drilling a pilot borehole of diameter 76mm
2: creating a conical borehole bottom
3: bottom cleaning
4: gluing the strain cell into the bottom
5: compact overcoring. 

Plotter Computer Digital strain
meter

Boring
    machine

Displacement
     transduser Cable

Pilot  borehole

5

1 2 , 3

4

Figure 4 Field measurement system and procedure.

(b)(a) (c)

Figure 5 Special bits and strain cell, (a) bortz crown bit, (b) impregnated bit, (c) 24 element conical strain
cell.
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cleaning with water and acetone, the existence of cracks on the borehole surface is
confirmed by a borehole camera. Then, the 24 element conical strain cell shown in
Figure 5(c) is directly bonded to the conical borehole bottom surface with glue. Finally,
the stress around the bottom of the pilot borehole is relieved by the compact overcoring,
that is a thin-walled core boring having a diameter of 76mmwhich coincides with that of
the pilot borehole as shownbybroken line in Figure 4.During this operation, the changes
in strain are continuously measured and recorded by a strain meter and a computer. For
this purpose, the cable is linked to the strainmeter through the boring rods and the water
swivel.

2.3.2 Theory

For calculation of the initial stress from the measured strains, the spherical coordinates
(ρ, θ, ϕ) and the cylindrical coordinates (r, θ, z) are defined as well as the Cartesian
coordinates (x, y, z ) with the z-axis coincident with the borehole axis, as illustrated in
Figure 6(a). The initial stress tensor {σ} can be expressed as follows:

σg ¼ σx; σy; σz; τyz; τzx; τxygT
nn

ð12Þ

where σx, σy, σz, τyz, τzx and τyx are the stress components in the Cartesian
coordinates.

The strains are required to be measured at eight specified points on the conical
borehole socket of radius 38mm, as shown in Figure 6(b). The strain measuring
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overcoring 

(a) (b) (c)

Pilot borehole

y

y Strain
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Figure 6 Strains to be measured on the conical borehole socket and compact overcoring, and
arrangement of strains and definition of coordinates, (a) definition of strains and overcoring,
(b) arrangement of strains for 16 element method, (c) strain gauge arrangement at measuring
point for 24 element method from the inside.

272 Obara & Sakaguchi



points are axisymmetrically arranged along a measuring circle of radius 19mm, by
rotating 45 degrees at a step. The specification of strain measuring points has been
optimized through theory and experiment. In the 16 element method, the tangential
strain εθ and the radial strain ερ are measured at each strain measuring point, using a
16 element conical strain cell. The 24 element method requires the additional strain
at each point, that is, the oblique strain εφ, as shown in Figure 6(c). Thus, the strains
measured on a conical borehole socket can be denoted by:

fβg ¼ β1; β2; ::::::::::; βnf gT ð13Þ
where n is the number of strains; i.e. n =16 for the 16 element method; n =24 for the 24
element method.

The strains {εθ, ερ, εφ} at a strain measuring point of a tangential angle θ are given, in
the isotropic case, as follows:

εθ
ερ
ε’

8<:
9=; ¼

A11 þA12 cos 2θ; A11 � A12 cos 2θ; C11;
A21 þA22 cos 2θ; A21 � A22 cos 2θ; C21;

A31 þA32 cos 2θ þA33 sin 2θ; A31 � A32 cos 2θ � A33 sin 2θ; C31;

24
D11 sin θ; D11 cos θ; 2A12 sin 2θ
D21 sin θ; D21 cos θ; 2A22 sin 2θ

D31 sin θ �D32 cos θ; D31 cos θ þD32 sin θ; 2A32 sin 2θ � 2A33 cos 2θ

35 
 σf g
E

ð14Þ

where E is the Young’s modulus of rock andA11,A12, ....,D32 are the strain coefficients.
The values of the strain coefficients are dependent upon Poisson’s ratio of the rock.

They have to be evaluated by numerical analysis, since there is no analytical solution. The
strain coefficients of the isotropic case computed by the BEM analysis are summarized in
Table 1.

Observation equation of the initial stress tensor {σ} is expressed by the following
matrix equation:

Table 1 Strain coefficient for 24 element method.

Poisson’s ratio A11 A12 A21 A22 A31 A32 A33

0.10 1.002 −1.762 0.109 0.343 0.562 −0.724 −0.802
0.20 1.000 −1.752 0.022 0.365 0.519 −0.707 −0.818
0.25 0.999 −1.733 −0.021 0.373 0.496 −0.693 −0.821
0.30 0.997 −1.704 −0.065 0.380 0.474 −0.679 −0.822
0.40 0.989 −1.611 −0.154 0.386 0.426 −0.625 −0.823

Poisson’s ratio C11 C21 C31 D11 D21 D31 D32

0.10 −0.155 0.655 0.246 0.082 1.542 0.802 −1.725
0.20 −0.263 0.641 0.185 0.095 1.627 0.860 −1.860
0.25 −0.317 0.636 0.155 0.101 1.673 0.886 −1.923
0.30 −0.371 0.632 0.126 0.108 1.716 0.911 −1.983
0.40 −0.481 0.630 0.071 0.123 1.787 0.953 −2.091
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½A� σg ¼ E βgff ð15Þ
where [A] is an n by 6 elastic compliance matrix. The elements of [A] are computed by
substituting the tangential angle θ of each strain measuring point in Equation 14.

The most probable values of the initial stress components are determined by the least
square method, providing the normalized expression of Equation 15 as follows:

½B� σg ¼ E β�gff ð16Þ
where ½B� ¼ ½A�T ½A� and fβ�g ¼ ½A�T βgf . The most probable values of the initial stress
{σ*} can be expressed as:

σ�g ¼ E½C� β�gff ð17Þ
where [C] is the inverse matrix [B]. Detail explanation of the CCBO is found in the
suggested method of ISRM.

2.4 Cross-sectional Borehole Deformation Method (CBDM) for
monitoring of stress change

The stress state around an underground opening is changed with progress of excava-
tion. That is, the surrounding rock behaves elastically at the beginning of excavation.
The stress in the immediate wall of the opening increases with progress of excavation.
Then the stress reaches a failure criterion of rock mass, and the plastic region is
produced as shown in Figure 2. In this region, magnitude of the stress decreases. If
the stress change due to excavation is monitored under construction, the failure
criterion may be estimated from the measured results.

There are some methods for stress change around an opening under construction.
For example, the stress change of an underground power house has beenmeasured by a
vibrating wire strain gauge in Japan (Kudo et al., 1998). However, using this gauge
which is buried in the borehole, the stress in only one direction in a plane perpendicular
to a borehole axis is measured. Since this instrument is contact type and has any
rigidity, the measured stress change may be influenced by it. It is desired that the
instrument is non-contact type without rigidity.

The Cross-sectional Borehole Deformation Method (CBDM) , which instrument is
of non-contact type, developed by Taniguchi et al. (2003) and Obara et al. (2004a, b,
2010, 2011a, b, 2012 a, b, 2014) is a by which the two-dimensional state of stress
change within a rock mass in a plane perpendicular to a borehole axis can be
measured. This method is convenient to monitor stress change around the under-
ground opening under construction.

2.4.1 Measurement of displacement on borehole wall and Instrument

The rock mass around a borehole is elastically deformed corresponding to subjected
rock stress. Based on this principle, a method was developed for easily and accurately
measuring two-dimensional stress change in a plane perpendicular to the borehole axis.
This method is the Cross-sectional Borehole Deformation Method (CBDM). The
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displacement of the borehole wall is measured by a non-contact typed sensor, namely a
laser displacement sensor, which is inserted and rotated in the borehole as shown in
Figure 7. Accordingly, the rigidity of the instrument becomes zero for themeasurement,
because the displacement of the borehole wall can be measured without touching the
wall. Then the rockmass around the borehole is undisturbed due tomeasurement, such
as the hydraulic fracturing method.

In order to measure radial displacement of the wall in a cross section of the borehole,
a compact and accurate laser displacement sensor is used. The dimensions are
43mm×40mm×18mm, and the resolution is 0.1 μm. A small stepping motor is adopted
for rotation of the laser displacement sensor. Theminimum angle of rotation step of the
stepping motor is 0.1 degrees.

The prototype instrument for measurement and schematic view are shown in
Figure 8. The tube of the instrument, 70 mm in diameter and 670 mm in length, is
aluminum. The instrument is fixed in a borehole using two air pistons. The laser
displacement sensor is located near small windows which are covered by acrylic
plates for waterproof, and rotated by the stepping motor set in a head of the instru-
ment. The motor is controlled by a computer through a controller and a driver. On
the other hand, the output from the laser displacement sensor is stored in a computer
through an amplifier unit and a data logger. These are assembled into the control box
as shown in Figure 8(b). The sensor and motor are linked by the cables of about 30m
length.

2.4.2 Principle of measurement

The schematic view of a cross section in a plane perpendicular to the borehole axis is
shown in Figure 9. The borehole having a cross section of perfectly circular is drilled
within a rock mass. Its radius is defined by R. The homogeneous and isotropic rock
mass is assumed to be infinite and elastic. The principal stress subjected at infinity is

Y

X

Laser displacement
sensor

Laser beam

Drilled borehole
Deformed
borehole

Figure 7 Principle of measuring displacement of a borehole wall.
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Figure 9 Schematic view of cross section of a bore-hole drilled within rockmass, which is assumed to be
infinite and elastic.
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defined in the x-y coordinate system which is set on the borehole with the origin at its
axis in Figure 10:

σg ¼ σx; σyg
�� ð18Þ

The axes in the coordinate system coincide with the principal directions.
The radial displacements due to each principal stress are described as:

Ux
R ¼ � σxR

E
ð1� ν2Þð1þ 2cos 2θÞ;

Uy
R ¼ � σyR

E
ð1� ν2Þð1� 2cos 2θÞ

ð19Þ

In general, the radial displacement UR is the vector sum of displacement UR
x and UR

y,
which are generated corresponding to each principal stress (Jaegar & Cook, 1979):

UR ¼ Ux
R þUy

R ¼ H ðσx þ σyÞ þ 2ðσx � σyÞcos 2θg
� ð20Þ

whereH = −R(1− ν2)/E,E is Young’s modulus and ν is Poisson’s ratio, then θ is rotation
angle with the positive x axis. The radius RR after deformation is represented:

RR ¼ RþUR ð21Þ
In a measurement, the displacements and measured radii, number of n, are denoted by:

URg ¼ UR1;UR2; …:;URi; …:;URngff
RRg ¼ RR1;RR2; …:::;RRi; …:;RRngff ð22Þ

The coordinates of the measuring point i on the borehole wall are written in the X-Y
coordinate system defined on the instrument with the origin at its axis in Figure 10 as
follows:

Xi ¼ RRi cosΘ Yi ¼ RRi sinΘ ð23Þ
whereΘ is the rotation angle with the positiveX axis in Figure 10. Themeasured results
schematically are shown in this figure. The plots represent measurement values, and the
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Figure 10 Schematic diagram of measured results and approximated ellipse by a non-linear least square
method. X and Y axes are defined on an instrument, then x and y axes defined on a borehole
coincide with principal direction.

Measurement of induced stress and estimation of rock mass strength 277



solid curve is approximately expressed by an ellipse with a center of (0, 0) in x-y and (b,
d) in anX-Y coordinate system. The length of major and minor axes of the ellipse is 2a
and 2c, respectively. In general, the center of the ellipse does not coincide with that of
the borehole as shown in the figure. In the cases that the distance between origins of
each center is very short, the equation of the ellipse in the x-y coordinate systemmay be
written as:

x2

a2
þ y2

c2
¼ 1 ð24Þ

Using the coordinate transformation law from the X-Y to x-y coordinate system
represented by Equation 25, the observation equations are obtained at each measure-
ment point as Equation 26.

x ¼ ðX� bÞcos �þ ðY � dÞsin �;

y ¼ �ðX� bÞsin �þ ðY � dÞcos � ð25Þ

ðXcos �þ Ysin �� bcos �� dsin �Þ2
a2

þ ð�Xsin �þ Ycos �þ bsin �� dcos �Þ2
c2

¼ 1

ð26Þ
The most probable parameters of an ellipse, a, c, b, d, ϕ, are determined by applying a
non-linear least square method to observation equations for measured values. When
the axis of the instrument coincides with that of the borehole, the parameters b and d
are equal to zero.

The displacements on major and minor axes of the determined ellipse are:

a ¼ RþHð3σx � σyÞ; c ¼ RþHð3σy � σxÞ ð27Þ
Accordingly, most probable principal stresses can be obtained in the x-y coordinate
system as follows:

σx ¼ 3aþ c� 4R
8H

; σy ¼ aþ 3c� 4R
8H

ð28Þ

Then the stress components in the X-Y coordinate system are calculated by the stress
transformation law.

The stress estimated from Equation 28 is not correct, because it is impossible to
measure the radius of the borehole precisely just after boring. Therefore, the absolute
stress state cannot be estimated. The stress determined by Equation 28 is considered to
be a temporal stress.

The stress change can be estimated, using the temporal stress at more than two stages
as follows. For example, the state of stress is changed with progress of construction of
the underground opening. At the first stage, a borehole is drilled within a rock mass,
and the cross-sectional shape of the borehole is measured at an early stage of excavation
of an opening. Using the displacement, the temporal stress at the first stage can be
determined. At the second stage, the shape at the same section of the borehole is
measured again and the temporal stress is determined at an arbitrary stage during
excavation. Then, the stress change is determined by the difference of temporal rock
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stress states determined at the first and second stages of excavation, assuming that rock
is elasticity. Thus, the stress change due to elapsed time or excavation can be estimated
by measuring the cross-sectional shape at the same cross section of one borehole
repeatedly. Consequently, the temporal stress state σIg ¼ σXI; σY I; σXY

Ig��
is assumed

at the first stage. The temporal stress σIIg ¼ σXII; σY II; σXY
IIg��

is also assumed at the
second stage. The stress change {Δσ} can be estimated by the following equation, using
the estimated temporal stress state at two stages:

Δσg ¼ ΔσX;ΔσY ;ΔτXYg ¼ σIIg � σIg���� ð29Þ

3 STRESS STATE AROUND LARGE ROCK CAVERN AND
ESTIMATION OF ROCK STRENGTH

3.1 Site description

The measurements of induced stress were performed at Kannagawa hydroelectric
power plant during excavation of power plant cavern (Maejima et al., 2001). A
pumped-storage power plant has the maximum output of 2700MW. The dimension
of the cavern is 33m inwidth, 52m in height and 216m in length, as shown in Figure 11.
The thickness of the overburden of the cavern is about 500m.

The geology of the Kannagawa site consists of mudstone-based rock that is irregu-
larly mixed with olistoliths such as sandstone, chert, basic volcanic rock and limestone.
The stratum at the site of the cavern is classified into 6 regions, considering the kind of
gravel, coarse sandstone as the matrix and rate of mixture.

In order to predict the progression of the loosened zone around cavern during its
excavation, the rock mass strength and initial rock stress were evaluated, then two-
dimensional finite element analyses were performed using their values, and themodel in
which the variation of geology and the constitutive low of surrounding rock, namely
strain softening, were introduced. Furthermore, the filed measurements of stress and
displacement within rock, stress in shotcrete, load of PS anchor and AE were made
during excavation of the cavern.

The initial stress was measured by the borehole deformation method with the eight-
element strain gauge (Kanagawa et al., 1986), which is one of the overcoring methods.
The results are shown in Figure 12. In the vertical cross section, the maximum principal
stress has an inclination of 26 degrees to the penstock side from the vertical. Then the
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Figure 11 Dimension of underground power plant cavern (Obara and Sugawara, 2002).

Measurement of induced stress and estimation of rock mass strength 279



longitudinal axis of the cavern is rotated at 24 degrees from the direction of the
maximum principal stress in horizontal plane. Consequently the ratio of horizontal
stress to vertical stress was 0.57 in vertical cross section.

3.2 Stress distribution

The induced stress was measured by the CCBO device at three stages of the excavation,
namely after excavation of ceiling, seventh bench excavation and completion of final
excavation. Then the results of the measurement were compared with those of the finite
element analyses at the same stages in the vertical cross section as shown in Figure 13.

At the stage of excavation of ceiling, the five measurement stations rang from 2m
to10m from the wall in each borehole at both shoulders of the cavern ceiling in
Figure 13(a). In the tailrace side, the maximum principal stress is large near wall
and decreases toward the deep zone. The directions of maximum principal stress at
each measurement station are unchanged. On the other hand, the maximum principal
stress at each measurement station on the penstock side represents almost the same
value, then its direction inclines to the vertical with increasing depth. It was estimated
that the depth of loosened zone is about 2m on both sides of the cavern ceiling.

In the second stage of seventh bench excavation, the stress distributionwasmeasured
at the tailrace side in Figure 13(b). The four measurement stations range from 3m to
10m from the side wall. The maximum principal stresses within the range of 7m from
thewall were smaller and the state of stress is uniaxial. The stresses perpendicular to the
side wall within the rage were almost zero, because of existence of the discontinuity
with large persistence parallel to the side wall. In the range deeper than 7m, the values
of principal stresses became large. From the results, the depth of loosened zone can be
estimated at about 7m.

The stress distribution at the level of fourth bench was measured after completion of
the excavation in Figure 13(c). The maximum principal stresses within the range of 6m
were small, but those in the range deeper than 9m became large and were concentrated
in the circumferential direction of the cavern. The depth of loosened zone is evaluated
at 7.5m, based on the measured results.
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Figure 12 State of initial stress in vertical and horizontal cross section, and lower stereographic
projection of principal directions (Obara & Sugawara, 2002).
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Finally, the numerical result analyzed by FEM after completion of the excavation is
shown in Figure 13(d). These results are good agreement with measured results in
Figure 13(c). It is concluded that the induce stress measurements were successfully
applied to estimate the loosened zone around the cavern, and that the numerical
analysis by FEM is effective for prediction of the mechanical behavior of the surround-
ing rock of the cavern due to excavation.

3.3 Estimation of rock mass strength

The stress at the depth of loosened zone is considered to be under critical state of
strength. On the measured stress distributions, the radial stress acting from the cavern
is considered to be small and nearly equal to zero. Therefore, the Mohr’s circles can be
drawn by the stress state at a depth of 2m in Figure 13(a), 7m in (b) and 7.5m in (c),
assuming that theminimumprincipal stress is zero. These circles are shown in Figure 14
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with peak strength criterion and residual strength criterion estimated by a series
of in situ rock shear tests. The estimated strength from stress distributions are
good agreement with those of in situ rock shear tests. The dimension of block
in rock shear test is 60 × 60 × 30cm. Therefore, it is concluded that the volume of
rock block of in situ rock shear test was enough to evaluate rock strength in
this case.

4 STRESS STATE OF AROUND TUNNEL UNDER HIGH STRESS
FIELD AND ESTIMATION OF ROCK STRENGTH

4.1 Site description

The approach tunnel to the underground powerhouse is excavated at 36 m below
the floor of the gallery, as shown in Figure 15 (Obara & Ishiguro, 2004).
The dimensions of the cross section of the tunnel are 6.6min width and 6.0min
height. A series of measurements of induced stress in the tunnel near-field was
performed in four boreholes drilled in its roof. The distances between the bore-
holes, termed s−1, s−2, s−3, s−4, and the tunnel face are 14, 15 and 16 m. The
elevation angles of the boreholes are 76 for s−1, s−2, s−4 and 87 for s−3. The
measurement stations, 13 in number, are located within a range of 1.2 m in depth
from the tunnel roof.

4.2 Strain change during overcoring

Figure 16 shows an example of a series of strain changes on the conical bottom
surface during overcoring monitored by the 16-element conical strain cell. The ερ
and ε θ are radial and tangential strains, respectively. This is the result from the fourth
measurement station in borehole s−1, called s−14. The depth of the measurement
station is 1.14m from the tunnel wall. The lateral axis is the distance between over-
coring advance and the section of the strain measuring circle. The numerals in the
figure represent the number of strain gauges pasted on the surface of the conical
borehole bottom.
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Figure 15 Schematic view of the approach tunnel and gallery (Obara & Ishiguro, 2004).
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The changes in strain are rapid in all cases after the overcoring passed through the
section of the strain measuring circle. In the change of εθ, the strain is relieved smoothly
with the advance of overcoring, and then converges to a constant value in each gauge.
On the other hand, in the change of ερ, a large tensile strain is experienced in the section
of the strain measuring circle and it finally converges to a constant value. However, the
change of strains during the overcoring is not smooth and some undergone strains are
large. Furthermore, the data from gauge no.15 diverges. The fractures due to core
disking can be observed on the surface. Therefore, it is considered that the fractures
penetrate to the surface of borehole bottom by the core disking.

4.3 State of induced stress

All of the cross sections including strain gauges were taken by the X-ray CT scanner
nondestructively, and the existence of fractures near the gauges was investigated, and
then the strain data to be used in the estimation of rock stress were selected. As a result,
the tangential strain data were adopted, because that most radial strain gauges were
intersected by fractures. Consequently, the state of stress was estimated as two dimen-
sional stress in the plane perpendicular to the borehole axis for measurement, assuming
plane stress state.

The results of induced stresses in a range of 0.23m to 1.17m from the tunnel wall are
summarized in Table 2. The Young’s modulus and Poisson’s ratio used in the estima-
tion are 30GPa and 0.2 respectively. These values are determined by the conventional
multi-stage uniaxial compression test (Sugawara&Obara, 1999). The normal stress σx
is large at all stations. The direction of horizontal projection of the x-axis is northeast,
and the y-axis is defined in the direction parallel to its axis. The direction of maximum
principal stress of the induced stress is East-West; that of the initial stress is also East-
West. Both directions are similar. However, the magnitude of maximum principal
stress of the induced stress is larger than that of the initial stress. The mean values of
both principal stresses are the 37MPa and 28MPa respectively. This value is shown 1.3
times as much as that of initial stress.

The state of stress at each measurement station is shown in Figure 17 in three
dimensional. All maximum principal stresses act in the direction of x-axis and mini-
mumones are directed parallel to the tunnel axis. The difference between themaximum
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and minimum principal stress is large. This tendency is the same in the state of initial
stress.

The stress distribution is shown in Figure 18. In regard of maximum principal stress,
the magnitude is smaller near roof, and becomes large in a region of 0.5−0.8m from the
tunnel wall and small in the deeper region. Therefore, it is considered that a shallow
depth of roof is damaged by blasting and so on, and that the region of 0.5−0.8m from
the tunnel wall is under critical state of rock mass strength. On the other hand, the
magnitude of minimum principal stress parallel to the tunnel axis is almost constant.

In each region, the mean stress state is shown in Figure 19. These sketches represent
the state of stress in the plane perpendicular to the borehole axis. Although the
direction is slightly varied, the states are similar each other. The magnitude of max-
imum principal stress is largest in a region of 0.5−0.8m.
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Figure 17 State of induced stress in immediate roof of the approach tunnel. The elevation angle of
borehole s-1, s-2, s-4 for measurement is 76°, and that of s-3 is 87°(Obara & Ishiguro, 2004).

Table 2 Induced stress in the plane perpendicular to the borehole axis (Obara & Ishiguro, 2004).

Measurement station s−13 s−14 s−21 s−31 s−32 s−33 s−42 s−43 s−44

Depth from tunnel wall [m] 0.83 1.14 0.54 0.23 0.54 0.90 0.64 0.90 1.17
Elevation angle of borehole [deg] 76 76 76 87 87 87 76 76 76
Stress component [MPa] σx 40.7 37.9 42.1 33.1 47.8 40.6 37.9 33.4 19.8

σy 17.9 17.0 18.8 17.0 26.0 17.8 17.0 15.9 10.3
τxy 2.1 −2.7 7.3 −1.2 3.2 −0.3 −0.9 3.3 0.3

Principal stress [MPa] and
Maximum principal direction [deg]

σ1 40.9 38.2 44.2 33.2 48.3 40.6 37.9 34.0 19.8
σ2 17.7 16.6 16.7 16.9 25.6 17.8 17.0 15.3 10.3

−5.3 7.5 −16.1 4.4 −8.1 1.9 2.6 −10.4 −1.8

Remarks: Anti-clockwise from x-axis is positive in principal direction.
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4.4 Estimation of strength of rock mass

A series of uniaxial compression tests using various specimen scales and in situ
rock shear tests were conducted to determine the strength of rock mass. In the
uniaxial compression tests, the specimen scale is 5.0, 19.8 and 29.3cm in diameter
and 10, 40 and 60cm in length, respectively. The test was performed under
frictionless edge condition. The mean value of uniaxial compressive strength in
each scale was 81.2, 68.5 and 74.1MPa with increasing scale of specimen.
Therefore, it is concluded that the strength of specimens more than 19.8cm in
diameter is not likely to change.

Also, in situ rock shear tests were performed at the gallery in Figure 15. The scale of
block is 50 × 50 × 20cm and the number of blocks is four. These results are shown in
Figure 20 with the stress estimated under critical state in a region of 0.5 − 0.8m on the
induced stress distribution. The results of in situ rock shear test are represented by
plots; and those of uniaxial compression test and stress measurement byMohr’s circles.
In drawing Mohr’s circles, the minimum principal stress is assumed to be zero. These
results are reasonably compatible. Consequently, putting these results together, the
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peak strength criterion of Mohr-Coulomb type can be estimated with parameters of
cohesion 7.0MPa and internal friction angle of 59 degrees.

As a result, it is noted that in situ rock shear test is effective for the estimation of rock
strength used in design of a cavern, as well as a series of rock stress measurements under
and after construction.

5 ESTIMATION OF SLIDING CRITERION OF DISCONTINUITY
FROM MEASURED ROCK STRESS

The multiple times stress measurements were performed by the CCBO within diorite
and granodiorite (Sakaguchi et al., 1995). The borehole for the measurement was
drilled horizontally from the wall of gallery at a depth of 520 m and three faults I, II
and III are investigated in the measurement field, as shown in Figure 21. The eighteen
measurement stations are ranging from 0.6 m to 29.5 m from the wall of gallery. The
borehole passed through the geological boundary between the hard diorite and the
comparatively soft granodiorite at 8.7 m from the wall of gallery. On this geological
boundary, fault II is largest and 0.25 m in width dipping about 80 degrees, an
immediate skarn of 1.5 m in width.

The magnitudes and directions of the principal stresses at each measurement station
in the xz-plane and the xy-plane are shown in Figure 22. The measured results indicate
clearly that the stress varies with the region bounded by the fault III. The stress
distribution changes in two side of the fault III. In Figure 22(a), the maximum stresses
act along the fault in the Region I and parallel to the x-axis in the Region II. Then, the
direction of them in the Region II rotates clockwise with increasing the distance from
gallery. In Figure 22(b), the maximum stresses act from the direction of y-axis due to
the excavation of the gallery in the Region I. On the other hand, the direction of them is
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almost that of the x-axis and rotates clockwise with increasing the distance from gallery
in the Region II. This result indicates clearly that the stress in this field varies with the
region bounded by the fault and the skarn.

It is considered that the discontinuity of the stress distribution exists in between the
Region I and Region II, and that this cause is the fault III. Here, let us further consider
about the stress disturbance caused by the fault III. If the thickness of the fault III is
constant and the direction of the fault III is constant, too, the traction acting on the fault
plane becomes uniformity, and it is thought that the persistence of the traction must be
satisfied. However, it is suggested that the traction is not uniformity according to the
above measurement results. In other words, it is suggested that the stress field around
the fault is considerably disturbed because the thickness of the fault is not constant and
the fault plane is not flat surface.

Let us estimate the mean stress to act on the fault III using the results (measurement
station 10 to 18) of themeasurement of the regionwith some distance from the fault III.
The value at each measuring station is calculated by the measured stress tensor accord-
ing to the stress transformation law. Figure 23 shows the results of the distribution of
the normal stress σn and the shear stresses (τnx’, τny’) acting on the fault III, which were
calculated by the results of from the measurement result 10 to 18. Where, n-axis is the
outward normal vector on the fault III plane, x’-axis is horizontal axis on the fault plane
and y’-axis is the perpendicular to the x’-axis. The shear direction of resultant shear
stress estimated by the mean value of the shear stresses in Figure 23 is about 30 degrees
from the horizontal. Because that the mean values (τnx’, τny’) are equal to (−6.1MPa,
−3.4MPa). Therefore, it is estimated that this fault is strike-slip fault type.

Using the results of the mean value of the shear stresses, the resultant shear stress
(τs) acting on the fault plane is calculated as shown in Figure 24. The filled circle is the
result calculated from the measurement station 10 to 18 and the open circles show
the stresses calculated by the result of the measurement station 5 and 6 and that of the
measurement station 7 and 8. If this fault expands in a planer manner, two results
shown by the open circle should be plotted on the same position in the figure, because
the traction should be uniformly and continuously. However, the actual results are
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Figure 23 The normal stress and the shear stress acting on the fault III, which are evaluated by the
measured stress in the Region III according to the coordinate transformation.
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plotted in difference positions and those lie below the line which is drawn as sliding
criterion assuming that its cohesion is zero. This means that stress state in the vicinity
of the fault is disturbed.

The existence of discontinuities such as fault affects on a stress distribution. The
influence of discontinuity on the stress distribution is dependent on the stress acting on
the discontinuity. That is, it may be large in case that the scale of the discontinuity is
large and that the stress acting on the discontinuity approaches the sliding criterion of
it. Accordingly, the more the absolute value of the ratio of shear stress to normal stress
acting on the discontinuity increases, the more the stress distribution is influenced. Such
discontinuity is termed active discontinuity.

The shear stress and normal stress acting on the active discontinuity, which are
calculated by the measured stress near the discontinuities according to the stress
transformation law, are shown in Figure 25 (Obara et al., 2003b). Assuming the active
discontinuity is under the static sliding condition, the plots can be approximately
expressed by linear equation, namely siding criterion. The cohesion of each disconti-
nuity is almost zero, and then the frictional angle of it ranges from 25 to 60 degrees. It is
considered that these values are dependent on the type of rock mass, the cause of
discontinuity generation, the state of discontinuity surface and so on. It is concluded
that such analysis based on induced stress measurements is effective for not only the
specification of active discontinuity but also the prediction of failure pattern of rock
mass around opening.

6 MONITORING OF STRESS CHANGE UNDER CONSTRUCTION
OF CAVERN

6.1 Site description

The plan view of themeasurement site in KamiokaMine is shown in Figure 26 (Obara
et al., 2014). A cavern was excavated at a depth of 900m within gneiss. The Young’s
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Figure 24 Mean stress acting on the fault III (filled circle) and stresses acting on the fault estimated by
the results of the measurement in the vicinity of the fault (open circle).
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modulus and Poisson’s ratio are 30GPa and 0.2, respectively. The dimension of the
cavern is 15m by 21m and 15m in height. A borehole with a length of 5m for
measurement of stress change was drilled horizontally from the gallery to the cavern
before the start of its excavation. The width of the rock between the gallery and the
cavern is about 7m. The borehole for measurement was drilled in the wall. The
four measuring points are located at depths of 1.0m, 1.8m, 4.0m and 4.5m, as

0 10 ( m)

Borehole for 
measure-
ment

Gallery

Cavern
Tunnel 
B

Tunnel 
A

X

Figure 26 Location of borehole for measurement and cavern in the plan view of measurement site in
Kamioka Mine (Obara et al., 2014).
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Figure 25 State of rock stress acting on active discontinuities, calculated by the measured stress near
the discontinuities (Obara et al., 2003b).
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shown in Figure 27. The measuring points are determined from the condition of the
recovered core.

The excavation process is shown in Figure 28 in three dimensions. Firstly, the lower
part of the cavern was excavated from access tunnel A. Then the upper part was
excavated from access tunnel B. Finally, the middle part was excavated. The excava-
tionmethodwas blasting and its period was about six months for the whole of stages I
to IX. The measurements were performed at nine stages before, during, and after
excavation.

6.2 Measurement results

The results at a depth of 4.0m are shown as an example. The measured and corrected
displacements of the borehole wall at Stages V of the excavation are shown in
Figure 29, assuming that the borehole radius is 37.85mm. The radius is not a real
value but an expedient assumed one for calculating temporal stress. The solid line is
approximation by the equation of the ellipse. The distributions of displacement in the
measured results have a period of 2π. However, applying both the non-linear least
square method and non-linear programming for optimization to the measured results,
the corrected data for eccentric positioning of the instrument changes to have a period
of π. The corrected data vary slightly, but represent a fairly good approximation. In
Figure29(c), the cross-sectional shape in the plane perpendicular to the borehole axis is
shown, adding 50 times displacement to the radius. The shape is represented by an

0cm 100cm182cm

450cm400cm

Figure 27 Core of borehole for measurement and measurement points (Obara et al., 2014).

Stage I: Before excavation
Stage II: Excavation of center of lower part
Stage III: During excavation of lower part
Stage IV: After excavation of lower part
Stage V: Excavation of center of upper part
Stage VI: After excavation of upper part
Stage VII: During excavation of middle part
Stage VIII: Just after excavation of middle part
Stage IX: Three months after completion of excavation

Tunnel A 

Tunnel B 
side

(V) (VI)(VI)

(VII)

(II)(IV) (IV)

(VIII)

Tunnel A side

Figure 28 Measurement stage for the excavation of the cavern: access tunnel A is linked to (II) of lower
part and tunnel B is to (V) of upper part (Obara et al., 2014).
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ellipse. The principal direction of the absolute stress state can be confirmed from this
shape, although its value cannot be estimated from the CBDM.

6.3 Change of stress distribution

The stress change at the depth of 4.0mduring the excavation is shown in Figure 30. Since
the initial stress state is not measured in this location, the stress change is calculated to
subtract each component of the temporal stress at Stage I from that at any stage
respectively. The vertical stress change ΔσY is zero until stage II, but increases at stage
III, then reaches the maximum value at stage V. After that, the stress decreases gradually
with the progress of excavation. The tendency of the horizontal stress change ΔσX is
almost the same as that ofΔσY. It is considered that the rock near themeasuring pointwas
damaged and became the loosened zone.However, as the change of all stress components
is continuous, it is also considered that that damage did not happen suddenly.

The distributions of stress change along the borehole axis at some stages are shown in
Figure 31. The vertical cross section along the borehole axis is in Figure 31 (d). The
width of the pillar between the gallery and the cavern is 7.0m. In shear stress change
ΔτXY of Figure 31 (c), the stress change is relatively small along the borehole axis during
excavation. This means that there is not very much change in principal direction with
elapsed time and geometry of cavern.
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Figure 30 Changes of all components of stress in the X-Y coordinate system: X-axis is defined in the
horizontal direction (Obara et al., 2014).
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The vertical stress change ΔσY in Figure 31 (b) is comparatively large. The stress
change ΔσY at a depth of 1.0m is small. As this point is near the gallery wall, the rock
mass in this area is considered to be damaged. On the other hand, the stress change at
a depth of 1.8m, 4.0m and 4.5m is large in early stages of the excavation. At a depth of
1.8m, the stress represents the maximum value at Stage IV, then it decreases to a half
of the maximum value at Stage V. This value is maintained until Stage IX, which is
completion of excavation. This means that the rock mass near a depth of 1.8m was
not damaged. On the other hand, the stresses at depths of 4.0m and 4.5m also
represent the maximum value at Stage IV, then they decreases gradually with the
advance of the excavation. At Stage IX, the stresses decrease to the stress level lower
than that before excavation. It is considered that the rock mass near depth of
4.0–4.5m was damaged due to excavation. These trends can be seen in horizontal
stress change ΔσX shown in Figure 31(a). However, the state of the damaged zone is
not clear in the field. Therefore, that state should be confirmed by other methods such
as numerical methods.

Finally, the stress change from initial stress state which was not measured in the field
was estimated in this case example. Therefore if absolute stress change would be
known, the initial stress state should be measured before excavation of underground
opening. As a result we can estimate rockmass strength from the absolute stress change
measured during excavation of it.
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7 CONCLUSION

For estimating rock mass strength, the method from rock stress distribution around an
underground opening and stress change under construction of it was explained instead
of in situ shear test. Then Compact Conical-ended Borehole Overcoring (CCBO)
technique and Cross-sectional Borehole DeformationMethod (CBDM) were described
to measure rock stress, and the case examples by them. it was concluded that CCBO
and CBDM are convenient for estimating not only stress distribution and stress change
but also rock mass strength.
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Chapter 10

Compressive strength–seismic
velocity relationship for sedimentary
rocks

T. Takahashi & S. Tanaka
Fukada Geological Institute, Tokyo, Japan

Abstract: Estimating rock strength from seismic velocity is a very effective way for
building a strength model of a large rock mass. This chapter first reviews the literature
on empirical equations for estimating unconfined compressive strength of a rock from
seismic P-wave velocity. It then focuses on the relationships between compressive
strength and seismic velocity for soft rock, because there are few studies on the relation-
ship for soft rock. To enable more accurate and reliable estimates, physical models of the
compressive strength–seismic velocity relationship are proposed and applied to real data
for demonstrating the applicability of the models. These demonstrations proved that
physical models can be effectively used to estimate rock strength from seismic velocity.

1 INTRODUCTION

Knowledge of the mechanical properties, especially the compressive strength of a rock,
is indispensable for designing and constructing tunnels, dams, and underground
caverns in civil engineering; for evaluating the stability of wellbores, and the effective
fracturing of rocks in oil and gas development; and for safe and effective tunnel
excavation and underground caving in mining operations.

The compressive strength of a rock is usually measured in laboratory tests of rock
specimens sampled at outcrops and/or in boreholes drilled in a rock mass. A strength
model of the entire rock mass is then built by extrapolating these measurements based
on a rock mass classification obtained from geological site characterization. However,
model-building using data obtained from a limited number of boreholes and tunnels in
the rock mass, especially in a complex rock mass, may cause problems in the accuracy
and reliability of the model.

Geophysical methods can delineate a wide range of subsurface structures and prop-
erties effectively. If geophysical properties, like seismic velocity, can be used for
estimating rock strength, then geophysical methods can be efficiently employed for
profiling strength throughout the entire rock mass. Therefore, rock strength is often
estimated from seismic velocity using correlations with data measured in the specific
rockmass. However, since such correlations are generally madewith a small number of
measured data, they may occasionally be inaccurate and unreliable.

Rock strength is also estimated from seismic velocity using empirical relationships
between seismic velocity and compressive strength. There are many empirical equations
proposed and utilized for relating P-wave velocity and unconfined compressive strength



for various types of rocks (e.g. Zhang, 2005; Zoback, 2007; Schön, 2011). As empirical
equations are generally derived from many real data, they are more applicable and
reliable than the correlation-based techniques described above. Therefore, this chapter
firstly summarizes the empirical equations relating unconfined compressive strength and
P-wave velocity proposed in the literature. These equations are compared with real data
collected for different rock types in several dam sites in Japan.

The empirical equations for relating unconfined compressive strength and P-wave
velocity described above are mostly derived for rocks with relatively large strength
(hereafter referred to as hard rock). There are fewer empirical equations available for
soft rock with an unconfined compressive strength of less than 25MPa. A soft rock has
many different characteristics from a hard rock. This chapter, therefore, describes the
general characteristics of a soft rock and shows the relationship between compressive
strength and seismic velocity.

Empirical equations are only effective if they are used for the rock type fromwhich the
equation is derived. However, they cannot usually be extrapolated to other rock types.
For more general, accurate, and reliable estimation of rock strength from seismic velo-
city, a physical model is needed that can represent the relationship between these two
properties of the rock. Physicalmodels have been inwidespread use in recent years for the
interpretation of seismic data for oil and gas exploration and exploitation (e.g., Dvorkin
et al., 2014). The effective medium model such as the Hashin-Shtrikman model
(Hashin & Shtrikman, 1963) and the Kuster-Toksoz model (Kuster & Toksoz, 1974)
are used for representing the mechanical properties of rocks. The authors have also been
employing physical models for interpreting shallow geophysical data in geotechnical
applications (Takahashi & Tanaka, 2009; Takahashi & Tanaka, 2013). One of the
important applications of physical models is to estimate the compressive strength of a
rock from seismic velocity. This chapter describes in detail how tomodel the compressive
strength and seismic velocity relationship and then shows several examples of applica-
tions using real data to demonstrate the effectiveness of the physical model.

2 EMPIRICAL RELATIONSHIPS

Many empirical equations relating unconfined compressive strength and P-wave velocity
have been proposed in civil and mining engineering, and in the oil and gas development
fields. Table 1 summarizes empirical equations from the books of Schön (2011), Zhang
(2005) and Zoback (2007), and from the authors’ collection of recently published work
(e.g., Sharma & Singh, 2008; Karakul & Ulusay, 2015). The first two books mainly
cover the empirical relationships proposed in civil and mining engineering, and the last
book covers empirical relationships in the oil and gas development field. New additions
have been made in both fields. The compressive strength is measured by a laboratory
compression test for all empirical equations. However, the P-wave velocity is obtained
from well log data or ultrasonic velocity measurements in the laboratory. Many of the
P-wave velocities in the equations from the oil and gas development field are obtained
from the well log data. Table 1 shows the empirical equations proposed in the literature
and the rock type from which the equation is derived.

Figure 1 shows crossplots of the actual data of unconfined compressive strength and
P-wave velocity measured in the laboratory tests for rock core samples from several
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Table 1 Empirical equations between unconfined compressive strength and P-wave velocity with other
basic properties such as density and porosity of rocks. The table shows the equation, rock type
from which the equation is derived, and reference in which the equation is proposed.

No. Equation Rock type Reference

1 qu=35.0Vp−31.5 Sandstone Freyburg (1972)
2 qu =1277e

(−11.2/Vp) Sandstone McNally (1987)
3 qu =50.0Vp−114.5 Sandstone Schön (2011)
4 qu =3x10

−0.65Vp
3.45 Sandstone Schön (2011)

5 qu =18Vp−16.26 Sandstone and marble Howarth et al. (1989)
6 qu =0.499Vp

3 Weak and unconsolidated
sandstones

Zoback (2007)

7 qu=3.3x10
−20ρ2VP

2{(1+ν)/
(1−ν)}2(1− 2ν)(1+0.78Vclay)

Sandstone with qu >30MPa Fjaer et al. (1992)

8 qu =1.745x10
−9ρVP

2−21 Coarse grained sands and
conglomerates

Moos et al. (1999)

9 qu =42.1exp(1.9x10
−11ρVP

2) Consolidated sandstones with
0.05<ϕ<0.12 and qu >80MPa

Zoback (2007)

10 qu =3.87exp(1.14x10
−10ρVP

2) Sandstone Zoback (2007)
11 qu =−0.98Vp+0.68Vp

2+0.98 Sandy and shaly rocks Gorjainov and Lja−
chovickij (1979)

12 qu =0.77Vp
2.93 Mostly high porosity Tertiary shale Horsrud (2001)

13 qu =0.43Vp
3.2 Pliocene or younger shale Zoback (2007)

14 qu =1.35Vp
2.6 Shale Zoback (2007)

15 qu =0.5Vp
3 Shale Zoback (2007)

16 qu =10(Vp−1) Mostly high porosity Tertiary shale Lal (1999)
17 qu ={(Vp−1.4)/0.2}

1.43 Tertiary tuffaceous mudstone with
qu <10MPa

Aydan et al. (1992)

18 log qu =0.444Vp+0.003 Schist Golubev and Rabinovich
(1976)

19 qu =36.0Vp−31.2 Coal measure rocks Göktan (1988)
20 qu =2.45Vp

1.82 Limestone Militzer and Stoll (1973)
21 log qu =0.358Vp+0.283 Limestone Golubev and Rabinovich

(1976)
22 qu =10

(2.44+0.358Vp)/145 Limestone and dolomite Golubev and Rabinovich
(1976)

23 qu =31.5Vp−63.7 (r2=0.80) Dolomite, marble, limestone Yasar and Erdogan (2004)
24 qu =43Vp

2.23 Mainly volcanic rocks Inoue and Ohmi (1981)
25 qu =10.79{Vp

2.+4(ρ−1)1.447 Mainly volcanic rocks Inoue and Ohmi (1981)
26 qu =22.03Vp

1.247 (r2=0.72) Granites Sousa et al. (2005)
27 qu =40.7Vp−36.31 Granites Vasconcelos et al. (2008)
28 qu =35.54Vp−55 (r2=0.64) Granitic rocks Tugul and Zarif (1999)
29 qu =1.02Vp

3 Granites, andesite, sandstone Ohkubo and Terasaki
(1971)

30 qu =9.95Vp
1.21 (r2=0.69) Dolomite, sandstone, limestone,

marl, diabase, serpentine, hematite
Kahraman (2001)

31 qu =64.2Vp−117.99 Sandstone, weathered basalt,
phyllite, schist, coal, shaly rocks

Sharma and Singh (2008)

32 log qu = 1.368+0.794
log(1+0.001Vp)− 0.201Sr
−5.6ϕVclay

Marl, sandstone, andesite, limestone,
tuff, ignimbrite, claystone

Karakul and Ulusay (2015)

where qu: unconfined compressive strength in MPa, Vp: P-wave velocity in km/s, ρ : density in g/cm3,
Vclay: clay content in fraction, ϕ: porosity in fraction, Sr: degree of saturation in fraction. r2 is the
determination coefficient.



dam sites in Japan (Takahashi& Inazaki, 2010). The data are plotted for three different
rock types: sedimentary, volcanic (mainly andesite and basalt), and granitic rocks. In
these plots empirical equations proposed for each rock type shown in Table 1 are
overlain for comparison. It can be seen from these plots that although data are
scattered, the proposed empirical equations represent average features of the data
except for the data with higher velocity in sedimentary rocks.

3 RELATIONSHIPS FOR SOFT ROCKS

Soft rocks, especially soft sedimentary rocks, are the main bedrocks of many large
cities, such as Bangkok and Tokyo. Estimation of their mechanical properties,
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Figure 1 Empirical equations between unconfined compressive strength (qu) and P-wave velocity with
real data for sedimentary (uppermost), volcanic (middle) and granitic rocks (lowermost). Each
curve is the empirical equation listed in Table 1. The number indicated in the legend is that
shown in Table 1. Black dots are real data obtained in laboratory tests of rock cores sampled in
several dam sites in Japan.
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including strength, is often essential in civil engineering and other applications.
However, most of the empirical relationships described above have been proposed
mainly for hard rocks, with few proposed for soft rocks. Soft rocks, intermediate in
nature between soil and hard rocks (Nickmann et al., 2006) (Figure 2), have different
compressive strength and seismic velocity relationships than hard rocks. This section,
therefore, focuses on the relationship for soft rocks.

3.1 Main features of soft rocks

3.1.1 Geological features

Soft rock is geologically classified into three types of rocks based on their geological
age, generation process, and mineral composition: sedimentary, weathered, and
volcanic soft rocks (The Society of Material Sciences, Japan, 1993). Sedimentary
soft rock is generally a Neogene or younger rock that is considered to be progressing
toward consolidation and cementation in its sedimentary process. It is mainly soft
mudstone, siltstone, and sandstone. A fine-grained soft sedimentary rock often
contains clay minerals which may cause slaking and swelling. The weathered soft
rock is generally a weathered or altered Paleozoic orMesozoic sedimentary rock and
granitic rock. Weathered granite is generated by the development of joints in the
rock mass and groundwater intrusion into them caused by stress release due to uplift
and erosion of the earth’s crust. Weathered soft rock is also generated by hydro-
thermal processes in the rock mass. Volcanic soft rock is weakly welded volcanic
and volcanic clastic rock generated by pyroclastic flow. Welded tuff is a typical
volcanic soft rock which is generated in such a way that volcanic clastic materials are
welded and consolidated. It is generally very heterogeneous in composition and
physical properties.

soft (weak) rocks

– slaking durability by
changing moisture

– loss of strength within
months to years

(cohesive) soils

Reversible strength de‐
pending on consistency

hard rocks

no loss of strength on actual
conditions

Diagenesis

Consolidation/Cementation

Metamorphism

Weathering Weathering

Weathering

Figure 2 Position of soft (weak) rocks between soils and hard rocks (modified from Figure 1 in
Nickmann et al., 2006).
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3.1.2 Mechanical properties

The unconfined compressive strength is a basic mechanical property of a rock. For
many engineering applications, the rock is classified based on the unconfined compres-
sive strength as shown in Table 2 (The Japanese Geotechnical Society, 2007). This table
shows the classifications by references to four major global organizations. The soft
(weak) rock is defined as a rock with an unconfined compressive strength of less than
25 MPa in three of the references; while BS 5930-1999 defines it is as less than
12.5 MPa. There are some soft rocks with a very low unconfined compressive strength
of less than 10MPa. The porosity and water content of soft rocks are generally high.
Some soft rocks have a porosity of more than 50% and a water content of up to 50%.
The failure strength of soft rocks is also large, and in some cases reaches 1%.

The mechanical properties of the soft rock can be significantly changed by the
conditions under which the rock is placed. Figure 3 shows an example that demon-
strates changes of P- and S-wave velocities and the unconfined compressive strength of
the soft rock with its water content (The Society of Material Sciences, Japan, 1993).
Figure 4 shows P- and S-wave velocities obtained with the suspension PS logging, and
confined compressive strength measured on rock cores sampled in the same boreholes
logged in soft sedimentary rocks. These profiles clearly show the dependency of these
properties on depth and thus on confining stress.

3.2 Compressive strength and seismic velocity relationship
for soft rock

3.2.1 Unconfined compressive strength–seismic velocity relationship

Figure 5 shows crossplots for P- and S-wave velocities vs. unconfined compressive
strengths (The Japanese Geotechnical Society, 2004). P- and S-wave velocities were
obtained with ultrasonic velocity measurements in the laboratory using a variety of
rock core samples collected in Japan. The unconfined compressive strength was mea-
sured with the uniaxial compression test in the laboratory using the same rock samples
as those for velocity measurements. In these plots, tuff breccia, lapilli tuff, tuff, sandy
mudstone, and mudstone were the soft rocks defined geologically. These crossplots
show that their compressive strengths are less than 20–30 MPa and P- and S-wave
velocities are less than 3000 m/s and 1500 m/s, respectively.

3.2.2 Confined compressive strength-seismic velocity relationship

Figure 6 shows the relationship between the confined compressive strength and P- and
S-wave velocities for three kinds of soft Pliocene sedimentary rocks from Japan:
mudstone, sandy mudstone, and sandstone. The confined compressive strength was
measured with the tri-axial compression test of the rock cores sampled in 350 m long
boreholes in these rocks. The confinements corresponding to the core sampling depths
were used in the tri-axial compression tests. Seismic velocities were measured with the
suspension PS logging run in the same boreholes in which the rock cores were sampled.
Although there is some scatter in the sandy mudstone data, the relationships for three
types of rock appear to be on a single regression curve. Since these rocks have very large
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Table 2 Rockmass classification and unconfined compressive strength defined in various references (modified from Table-1.2.2 in The Japanese Geotechnical
Society (2007)).

Reference Unconfined Compressive Strength (MPa)

0.25−1 1−5 5−25 25−50 50−100 100−250 250<

ISRM suggested methods for the quantitative description of
discontinuities in rock masses, 1977.

Extremely
weak

Very
weak

weak Medium
strong

strong Very
strong

Extremely
strong

Reference <1.25 1.25−5 5−12.5 12.5−50 50−100 100−200 200<

BS 5930−1999 Code of practice for site investigation, 1999. Very weak weak Moderately
weak

Moderately
strong

strong Very
strong

Extremely
strong

Reference <1 1−5 5−25 25−50 50−100 100−250 250<

ISO 14689−1 2003(E) Geotechnical investigation
and testing – Identification and classification of rock-Part 1:
Identification and description, 2003.

extremely
weak

Very
weak

weak Medium
strong

strong Very
strong

Extremely
strong

Reference <1 1−5 5−10 10−25 25−50 50−100 100<

JGS 3811−2004 Engineering classification of rock mass G F E D C B A
Soft rock Hard rock



porosities ranging from 30%–60%, the compressive strength and both P- and S-wave
velocities are extremely small.

4 INTERPRETATION WITH PHYSICAL MODELS

To more generally, accurately, and reliably estimate rock strength from seismic
velocity, it is effective to utilize physical models which can represent the relationship
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qu(MPa)
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20
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Figure 3 Changes of P- (Vp) and S-wave (Vs) velocities and unconfined compressive strength (qu) of
mudstones with water saturation of the rock (modified from Fig. 12.5 in The Society of
Material Sciences, Japan, 1993).
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between these two properties of a rock. In rock engineering, models have been widely
proposed and utilized to interpret mechanical and hydraulic properties of a discon-
tinuous rock mass. In the interpretation of seismic data for oil and gas exploration
and exploitation, physical models have also been very extensively applied to estimate
mechanical and hydraulic properties of oil and gas reservoirs and their changes in
time for 4D seismic data. Recently, more attention has been given to the estimation of
geomechanical properties such as deformability and strength of rocks from seismic
data. In this section, the physical models which have been proposed by the authors are
described; first regarding the model derivation, and then regarding actual applica-
tions to the relationships of unconfined and confined compressive strengths for
seismic velocities, respectively.

4.1 Modeling of the compressive strength–seismic velocity
relationship

The shaly sand model as an effective-medium model for sedimentary rocks (Avseth
et al., 2005) is employed to represent the relationships between compressive strength
and porosity, and between seismic velocity and porosity. Assuming that a rock is
composed of two constituent rocks with a higher and lower stiffness, this model
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Figure 4 Dependency of P- and S-wave velocities and confined compressive strength of Tertiary soft
sedimentary rocks (sandstone (brown), sandy mudstone (green) and mudstone (blue)) on the
depth and thus confining stress.
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represents a rock with a variety of mechanical properties by changing the ratios of the
two constituent rocks. In this modeling, sandstone and shale are employed as the
constituent rocks with higher and lower stiffness, respectively. This model is sche-
matically drawn in Figure 7.
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4.1.1 Compressive strength–porosity model

The compressive strength of a rock under a confining stress is given in terms of the
cohesion and angle of internal friction as:

σ ¼ qu þ σ0 ⋅ tan2ð45þ φ
2
Þ

qu ¼ 2c ⋅ tanð45þ φ
2
Þ ð1Þ

where σ is the confined compressive strength, qu is the unconfined compressive
strength, σ0 is the confining stress, and c and φ are the cohesion and angle of internal
friction of the rock, respectively (Goodman, 1989).
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Figure 6 Relationship between confined compressive strength and P- (upper) and S-(lower) wave
velocities for three kinds of soft sedimentary rocks (mudstone, sandy mudstone and sand-
stone) in Japan. Seismic wave velocity is measured with the suspension PS logging and confined
compressive strength is measured in the tri-axial compressive test with the confining pressure
corresponding to the core sampling depth.
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Using the shaly sand model, the compressive strength of a rock for an arbitrary
porosity can be calculated by averaging the strengths of sandstone and shale with two
extreme porosities: zero and maximum (critical) porosities, respectively. In this model-
ing, the following Voigt-Reuss-Hill average (Mavko et al., 2009), modified by the
authors, is employed for this calculation:

σ� ¼ ω ð1� f ÞσsÞ þ fσcf g þ ð1� ωÞ 1� f
σs

þ f
σc

� ��1

� ¼ �0 ⋅ f ð2Þ

where σ� is the compressive strength of a rock with a porosity �. The compressive
strengths of the constituent rocks are σs for sandstone with zero porosity and σc for
shale with the critical porosity �0, respectively, which can be calculated by Equation 1.
The volume fraction of shale with the critical porosity is f (0 < f < 1). ω is added in this
modification to represent the proportion of Voigt and Reuss averages of the model,
which is also a fraction as 0 < ω < 1. Given c and φ of the constituent rocks and the
confining stress σ0, the compressive strength of a rock at an arbitrary porosity under a
confining stress can be calculated with Equations 1 and 2.

4.1.2 Seismic velocity–porosity model

The seismic velocity–porosity relationship for a sedimentary rock can also be modeled
with the shaly sand model. In this modeling, the Hashin-Shtrikman Bounds (Mavko
et al., 2009), which has been widely used for modeling sedimentary rocks, is employed
for calculating the bulk and shear moduli necessary for estimating the seismic velocity
of the rock as given below:

Figure 7 Schematic diagram of the shaly sand model.
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� �
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6
9KHM þ 8GHM
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� �
ð3Þ

whereKdry andGdry are the bulk and shear moduli of the dry rock, respectively. � (0 < �
< �0) is its porosity. Ks and Gs are the bulk and shear moduli of sandstone with zero
porosity, respectively. KHM and GHM are the bulk and shear moduli of shale at the
critical porosity �0 and confining stress P, calculated with the Hertz-Mindlin model as
given below (Mindlin, 1949; Mavko et al., 2009):

KHM ¼ n2ð1� �0Þ2G2
c

18π2ð1� �cÞ2
P

( )1
3

GHM ¼ 5� 4�c
5ð2� �cÞ

 �

3n2ð1� �0Þ2G2
c

2π2ð1� �cÞ2
P

( )1
3 ð4Þ

where Gc and �c is the shear modulus and Poisson’s ratio of shale itself, respectively. n
is the coordination number that indicates the number of contact points of two
rock grains contacting each other. α is a parameter representing the proportion of
the upper and lower bounds of the Hashin-Shtrikman Bounds, which is a fraction as
0 < α <1.

Elastic moduli for the saturated rocks are calculated by applying Gassmann’s equa-
tion (Gassmann, 1951; Mavko et al., 2009) as given below:
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Ksat ¼ Kdry þ
ð1� Kdry=KsÞ2

�=Kf þ ð1� �Þ=Ks � Kdry=K2
s

Gsat ¼ Gdry ð5Þ
where Ksat and Gsat are the bulk and shear moduli of the saturated rock and Kf is the
bulk modulus of the pore fluid. The seismic velocities can be calculated by:

VP ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ksat þ ð4=3ÞGsat

ρ

s

VS ¼
ffiffiffiffiffiffiffiffiffi
Gsat

ρ

r ð6Þ

where Vp and Vs are P- and S-wave velocities, respectively, and ρ is the density of the
saturated rock.

4.1.3 Compressive strength–seismic velocity model

By combining the two models for the compressive strength–porosity and seismic
velocity–porosity relationships derived above, a model for the compressive strength–
seismic velocity relationship for a rock is easily obtained.

4.2 Application to unconfined compressive strength

The model was applied to sedimentary rock data sampled from several dam sites in
Japan (Takahashi & Inazaki, 2010). Unconfined compressive strength and ultrasonic
P-wave velocity data measured in rock cores in the laboratory are used in the modeling.
Figure 8 shows the crossplots of the unconfined compressive strength and P-wave
velocity against porosity. In these plots, the calculated model curves are overlain on
the measured data. The parameters used in these calculations are listed in Table 3.
Although there are large scatters in the data, it can be recognized that the calculated
model curves closely matches the average features of the data.

By combining these two models, the unconfined compressive strength–P-wave
velocity relationship can be modeled. The model curve is shown on the data in
Figure 9. This model satisfactorily represents the features of the relationship where
the unconfined compressive strength rapidly increases as P-wave velocity becomes
larger than 4 km/s, which cannot be achieved by the empirical equations described in
section 2.

4.3 Application to confined compressive strength

4.3.1 Example for soft sedimentary rock

The first example is an application to S-wave velocity and confined compressive strength
data obtained in three different Pliocene soft sedimentary rocks in Japan: sandstone,
sandymudstone, andmudstone (Takahashi&Tanaka, 2010). S-wave velocity datawere
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obtained by the Suspension PS logging in 350 m-deep boreholes. The confined compres-
sive strength data were measured by the tri-axial compression test of rock cores sampled
in the same boreholes as those that had been logged. Confining stresses corresponding to
the core sampling depths were used in the tri-axial test.

A crossplot of measured data for confined compressive strength vs. porosity for the
three soft sedimentary rocks is shown in Figure 10. Although the data for sandy
mudstone are scattered, most of the measured confined compressive strengths are
around 2 to 6 MPa. The modeled curves are overlain on the data. The modeled curves
were calculated using Equations 1 and 2 for three different confining stresses (0.5, 1.0,
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Figure 8 Relationship between unconfined compressive strength (qu) vs. porosity (upper) and P-wave
velocity (vp) vs. porosity (lower) for sedimentary rocks in dam sites in Japan. These data were
measured with the laboratory tests.
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and 2.0 MPa), corresponding to log measurement and core sampling depths. In these
calculations, the two constituent rocks with zero and critical porosities are assumed to
be quartzite and shale, respectively. For these rocks, the values for c and φ (Goodman,
1989), and the critical porosity of shale (Takahashi & Tanaka, 2010), used in this
calculation are shown in Table 4. The calculated curves are in good agreement with the
measured data on depth dependency, and thus on confining stress.

Table 3 Physical properties and parameters used in the calculation
for modeling the relationships between unconfined com-
pressive strength and P-wave velocity against porosity.

Physical property/Parameter Value

Cohesion of sandstone 70.6 MPa
Angle of internal friction of sandstone 48 degree
Cohesion of shale 2.1 MPa
Angle of internal friction of shale 7.5 degree
Bulk modulus of sandstone 36.6 GPa
Shear modulus of sandstone 45.0 GPa
Bulk modulus of shale 21.0 GPa
Shear modulus of shale 7.0 GPa
Critical porosity of shale 0.25
Coordination number in Equation (4) 12
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Figure 9 Relationship between unconfined compressive strength (qu) and P-wave velocity (vp) for
sedimentary rocks in dam sites in Japan.
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The S-wave velocity vs. porosity crossplot of the measured data for the same
three rocks is shown in Figure 11. The porosities used in this crossplot are also
laboratory measurements on rock cores sampled at the same depth as the corre-
sponding log measurement. S-wave velocity ranged from 400 to 800 m/s for mud-
stone and sandy mudstone, and 600 to 1000 m/s for sandstone. Three curves,
calculated using Equations 3 to 6 with the model rock composed of quartzite and
shale, are overlain on the measured data. The bulk and shear moduli of these rocks
(Mavko et al., 2009), and the coordination number and critical porosity employed
in this calculation, are shown in Table 5. The model calculations agree well with the
measured data.

These two models were combined to model the confined compressive strength–S-
wave velocity relationship, as shown in Figure 12. Themodel-predicted curves for three
different confining stresses correspond well with the measured data, except for the
higher velocity data. This is because of the poor fit of the model calculations in the S-
wave velocity vs. porosity crossplot for the higher velocity at lower porosities for
sandstone.

Table 4 Physical properties and parameters used in the calculation
for modeling the relationship between confined compressive
strength and porosity.

Physical property/Parameter Value

Cohesion of quartzite 70.6 MPa
Angle of internal friction of quartzite 30 degree
Cohesion of shale 0.3 MPa
Angle of internal friction of shale 7.5 degree
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Model-calculated curves for three different confining stresses (0.5, 1.0 and 2.0MPa) are
overlain on the real data.
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4.3.2 Example for hard sedimentary rock

The second example is an application to ultrasonic S-wave velocity and confined
compressive strength data measured in laboratory tests on rock core samples. These
core samples were collected from sedimentary rocks in different locations in Japan
(Hoshino et al., 2001). The confined compressive strength data were measured with
the tri-axial compression test for four different confining stresses: 25, 50, 100, and
150 MPa. Ultrasonic P- and S-wave velocity data were measured under natural
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conditions, without confinement, using the same rock core samples as those used in
the tri-axial compression test. Only S-wave velocity data are presented in this section
so as to be able to make comparisons with the relationships for the soft rock described
above.

The confined compressive strength vs. porosity crossplots of the measured data
(point symbols) and model calculations (solid curves) are shown in Figure 13 for the
four confining stresses. This calculation also employs quartzite and shale as two
constituent rocks, using the same physical properties as those in the first application,
shown in Table 5. This figure clearly shows that the model-predicted curve for each
different confinement agrees well with the measured data.

Combining this model with the shaly sand model for the seismic velocity vs.
porosity relationship used in the first application, but with a different coordination
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Figure 13 Relationship between confined compressive strength and porosity for sedimentary rocks
collected in Japan. Confined compressive strength is measured for four different confining
stresses (25, 50, 100 and 150MPa). Model-calculated curves for four different confining
stresses are overlain on the real data.

Table 5 Physical properties and parameters used in the calculation
for modeling the relationship between S-wave velocity and
porosity.

Physical property/Parameter Value

Bulk modulus of quartzite (quartz) 36.6 GPa
Shear modulus of quartzite (quartz) 45.0 GPa
Bulk modulus of shale 21.0 GPa
Shear modulus of shale 7.0 GPa
Critical porosity of shale 0.8
Coordination number in Equation (4) 21
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number (6) and critical porosity (0.4), the S-wave velocity–confined compressive
strength relationship is modeled and shown in Figure 14, together with the other
two relationships for four different confining stresses. Although there is a large scatter
in the data for all crossplots, it can be seen that the model predicted curves represent
the average features in the relationship between confined compressive strength and S-
wave velocity.
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Figure 14 Relationships between confined compressive strength – porosity (left), S-wave velocity -
porosity (middle) and confined compressive strength – S-wave velocity (right) for sedimen-
tary rocks collected in Japan. Confined compressive strength is measured for four different
confining stresses (25, 50, 100 and 150MPa from bottom to top rows). A model-calculated
curve for each confining stress is overlain on the real data.
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4.3.3 Comparison with the relationship for soils

Sharma et al. (2011) measured ultrasonic S-wave velocity during the tri-axial compression
test for artificial soils to study the relationship between compressive strength and dynamic
shear modulus determined by S-wave velocity and density measurements. They found a
simple linear relationship between these two properties. Figure 15 shows this relationship
compared with those for soft and hard sedimentary rocks used in the previous sections.
These comparisons reveal that the model proposed here can be applicable to materials
(soils and rocks) with a wide range of elasticity (Takahashi, 2015).

SUMMARY

The compressive strength of rocks or rock masses is an important mechanical property
required inmany applications in civil engineering, oil and gas development, andmining
operations. Seismic profiling can be effectively used for building a strength model of a
large rock mass if seismic data can be converted to rock strength. This chapter, there-
fore, reviews empirical equations to estimate the unconfined compressive strength of a
rock from seismic P-wave velocity. For more accurate and reliable estimation than
empirical equations, physical models of compressive strength–seismic velocity relation-
ship are proposed and applied to real data for soft and hard rocks to verify the models.
These applications of themodels to real data revealed that the compressive strength of a
rock can be estimated from seismic velocity using physical models with adequate
parameters.
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Chapter 11

Elastic waves in fractured isotropic
and anisotropic media
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Abstract: Elastic waves are an essential tool for characterizing rock on the laboratory
and field scale. In this chapter, methods for interpreting the elastic constants for
isotropic and anisotropic fractured rock are given. An overview of the discrete effects
of fractures on elastic wave propagation is presented to illustrate behavior not captured
by effective medium approaches. Maintaining the discreteness of fractures yields
guided modes and energy partitioning that depend on the stiffness of fractures and
the signal frequency. Given the complexity of rock and field sites, understanding both
effective medium and discrete approaches is required to achieve the best interpretation
of the properties of isotropic or anisotropic fractured rock.

1 INTRODUCTION

To quote Barton and Quadros (2015): “Anisotropy is everywhere. Isotropy is rare”. An
anisotropic rock is defined by material and physical properties that vary with direction.
The source of anisotropy is intimately linked to the depositional, diagenetic and tectonic
history of a rock that results in preferred orientation of minerals, micro-cracks, laminae,
layering, fractures and other mechanical discontinuities. A rock may exhibit anisotropic
mechanical properties because of one or more of these fabric and/or structural features.
For example, anisotropy in shale has been attributed to the distribution of platy clay
minerals (Hornby et al., 1994; Johnston&Christensen, 1995; Sondergeld&Rai, 2011),
compliant organic materials (Vernik & Nur, 1992; Vernik & Liu, 1997; Sondergeld
et al., 2000; Vernik&Milovac, 2011), microcracks (Hornby et al., 1994; Vernik&Nur,
1992), as well as depositional features such as laminae and layering (Schoenberg et al.,
1996). These textural and structural features of shale lead to mechanical anisotropy
(Sone & Zoback, 2013) as well as seismic anisotropy in elastic wave velocity that is
sometimes on the order of 20-50% (Sondergeld & Rai, 2011).

Anisotropy in mechanical properties can also be induced in a rock from non-
hydrostatic loading (for example see: Nur & Simmons, 1969). Sayers (1988) showed
theoretically that an isotropic rock, with an isotropic distribution of microcracks, will
exhibit mechanical and seismic anisotropy under non-hydrostatic stress conditions
because of preferentially oriented cracks that remain open under loading. Similarly,
an isotropic rock with a set of parallel fractures can also exhibit anisotropic proper-
ties that are stress dependent. Recently, Shao & Pyrak-Notle (2013) demonstrated



experimentally and theoretically that an anisotropic medium can appear nearly
isotropic under low loads when a fracture is oriented perpendicular to the layering.
Their work demonstrated the effect of competing anisotropies (matrix layering versus
fracture orientation) on the interpretation of the isotropic or anisotropic nature of a
fractured anisotropic medium under stress.

Knowledge of the isotropic or anisotropic properties of rock is important for many
engineering activities in the surface and subsurface, for example the stability of under-
ground excavations, foundations, and boreholes (Amadei, 1996). Stress determined
from strain measurements can be misinterpreted if the anisotropy of a medium is not
taken into account. For example, Amadei & Goodman (1982) showed for overcoring
techniques that the magnitude and direction of stress for a transversely isotropic
medium would be misinterpreted by as much as 50% and 100 degrees, respectively,
if isotropy was assumed.

Measurements of compressional and shear wave velocities are commonly used to
characterize the mechanical isotropy or anisotropy of rock because elastic wave velo-
cities depend on the elastic moduli of a sample. In this chapter, we present the
theoretical formulations for interpreting elastic constants frommeasurements of elastic
wave velocities for anisotropy caused by the matrix and by fractures using effective
medium approaches for transversely isotropic rock.We also provide an overview of the
discrete effects of fractures on elastic waves that yield guided modes and energy
partitioning that depends directly on the stiffness of fractures and does not arise
when effective medium approaches are used.

2 CHARACTERIZATION OF INTACT ROCK

Using elastic waves to characterize rock requires a link between elastic wave velocities
and the mechanical properties of a rock. When a compressional wave propagates
through rock, the medium is alternately compressed and dilated in the direction of
wave propagation, while transverse displacements occur perpendicular to the direction
of propagation for shear waves. These normal and shear displacements are often
described using linear elasticity to link the elastic moduli of rock to measured wave
velocities. In this section, a brief summary of linear elasticity is provided for the
discussion of the relationships between elastic wave velocities and the elastic constants
that define a rock.

2.1 Elastic constants

Linear elasticity theory describes the deformation of an elastic medium in response to
applied external forces. The amount of elastic deformation of a solid relative to its
undeformed original size is referred to as the strain, which has both normal and shear
components. Linear elasticity assumes a linear relationship between stress and strain
that is given by a generalized form of Hooke’s law: sij = Cijkl ekl where Cijkl is a fourth
rank stiffness tensor with 81 components, and sij and ekl are second rank tensors of
stress and strain, respectively. For convenience, the strain (or stress) can be converted
into a vector with six components (three normal components and three shear compo-
nents) because stress and strain tensors are diagonally symmetric (sij = sji and eij = eji).
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Voigt’s notation is often used to simplify the tensor notations fromCijkl toCab using the
conversion 11→1, 22→2, 33→3, 23=32→4, 13=31→5, and 12=21→6 (Thomsen,
1986). For example, C2312 becomes C46, and s23 becomes s4 (see Figure 1a). Hooke’s
law can be rewritten with Voigt’s notation as

σ1
σ2
σ3
σ4
σ5
σ6

0BBBBBB@

1CCCCCCA ¼

C11 C12 C13 C14 C15 C16

C21 C22 C23 C24 C25 C26

C31 C32 C33 C34 C35 C36

C41 C42 C43 C44 C45 C46

C51 C52 C53 C54 C55 C56

C61 C62 C63 C64 C65 C66

0BBBBBB@

1CCCCCCA
ε1
ε2
ε3
ε4
ε5
ε6

0BBBBBB@

1CCCCCCA ð1Þ

For an isotropic medium, an external force causes the same displacements no matter
which direction the force is applied, i.e., the stiffness tensor has no preferred direction.
The elastic constants for an isotropic material only depend on two independent para-
meters. The elastic constants for an isotropicmedium are shown below in terms of the
Young’s modulus, E, and Poisson’s ratio, �, and also in terms of Lame’s constants, λ
and µ. µ is also the shear modulus.

Cαβ ¼

ð1��ÞE
ð1þ�Þð1�2�Þ

�E
ð1þ�Þð1�2�Þ

�E
ð1þ�Þð1�2�Þ 0 0 0

�E
ð1þ�Þð1�2�Þ

ð1��ÞE
ð1þ�Þð1�2�Þ

�E
ð1þ�Þð1�2�Þ 0 0 0

�E
ð1þ�Þð1�2�Þ

�E
ð1þ�Þð1�2�Þ

ð1��ÞE
ð1þ�Þð1�2�Þ 0 0 0

0 0 0 E
2ð1þ�Þ 0 0

0 0 0 0 E
2ð1þ�Þ 0

0 0 0 0 0 E
2ð1þ�Þ

0BBBBBBBBBBBBB@

1CCCCCCCCCCCCCA

¼

λþ 2μ λ λ 0 0 0
λ λþ 2μ λ 0 0 0
λ λ λþ 2μ 0 0 0
0 0 0 μ 0 0
0 0 0 0 μ 0
0 0 0 0 0 μ

0BBBBBB@

1CCCCCCA; (2)

where a and b range from 1 to 6.
The mechanical properties of rock are often anisotropic, exhibiting elastic properties

that differ in orthogonal directions. Rock is typically represented by a medium with
either cubic, transverse isotropy (also known as hexagonal symmetry), or orthorhom-
bic symmetry. Transverse isotropy is common in geologic formations because of
layering and the stresses in the Earth’s crust (Thomsen, 1986; Djikpesse, 2015;
Urosevic & Juhlin, 1999; Li et al., 2014; Kerner et al., 1989; Brittan & Warner,
1996) and is the focus of this presentation. In a vertically transversely isotropicmedium
(VTI), the unique symmetry axis is perpendicular to the layering (x3 in Figure 1a).
Properties parallel to the layering are the same while those along the unique axis are
different. For transversely isotropicmedia, five independent components are needed to
characterize the material, and the stiffness tensor becomes:
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Cαβ ¼

C11 C11 � 2C66 C13 0 0 0
C11 � 2C66 C11 C13 0 0 0

C13 C13 C33 0 0 0
0 0 0 C44 0 0
0 0 0 0 C44 0
0 0 0 0 0 C66

0BBBBBB@

1CCCCCCA

¼

1��231
E1E3ΔTI

�21��231
E1E3ΔTI

�31��21�31
E1E3ΔTI

0 0 0

�21��231
E1E3ΔTI

1��231
E1E3ΔTI

�31��21�31
E1E3ΔTI

0 0 0

�31��21�31
E1E3ΔTI

�31��21�31
E1E3ΔTI

1��221
E2
1ΔTI

0 0 0

0 0 0 μ13 0 0
0 0 0 0 μ13 0

0 0 0 0 0 E1
2ð1þ�21Þ

0BBBBBBBBBBBB@

1CCCCCCCCCCCCA
(3)

where ΔTI ¼ 1� �221 � 2�231 � 2�21�231
� 

=E2
1E3, and for the Poisson’s ratio, �ab, the

first subscript refers to the direction of the normal to a surface and the second
subscript refers to the direction parallel to the surface (see Figure 1b); and for the
Young’s modulus, Ea, the subscript also refers to the direction of the normal to a
surface.

2.2 Wave velocity in isotropic and anisotropic elastic media

Interpretation of rock properties frommeasurements of compressional and shear wave
velocities depends on the relationship between wave velocity and the elastic constants.
For this chapter, the assumed geometry and coordinate axes are shown in Figure 1. The
three unique symmetry directions are assumed to align with the coordinate axes (x1, x2,
x3). Compressional waves measured along the x1, x2, and x3 symmetry axes are labeled
VP1,VP2, andVP3, respectively (Figure 1b). Note that the phase and group velocities are
identical for these velocities because they are measured along symmetry axes (Bucur,
2006; Mavko et al., 1998; Carcione, 1996). The shear wave velocities are labeled VS12,
VS13, VS21, VS31, VS23, and VS32, where the first subscript represents the direction of
propagation and the second subscript is the direction of polarization of the shear wave
(Figure 1b). These definitions will be used throughout this section.

For isotropic rock, the compressional wave, VP, and shear wave, VS, velocities are

ρV2
P ¼ 1� �ð ÞE

1þ �ð Þ 1� 2�ð Þ ¼ C11 and ρV2
S ¼ E

2 1þ �ð Þ ¼ μ ¼ C66 ¼ C11 � C12

2
;

ð4Þ
where r is the rock density. VP1 = VP2 = VP3= VP, and VS = VS12 = VS13 = VS21 = VS31 =
VS23 = VS32 (Figure 1b). The shear wave velocity is the same for all polarizations and
only two unique constants, C11 and C66, are needed to characterize an isotropic rock.
From measurements of VP and VS, the Poisson’s ratio, �, of an isotropic medium can
also be obtained by
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V2
P

V2
S

¼ 2ð1� �Þ
1� 2�

or � ¼ V2
S � V2

P
2

V2
S � V2

P

ð5Þ

For transversely isotropic rock, in addition to the compressional wave, there are two
shear waves that travel with different speeds depending on the polarization of the shear
wave relative to the symmetry planes (i.e., layering). The compressional wave speed
depends on the direction of propagation relative to the layering. VSH refers to the
velocity of a shear wave polarized parallel to the layering andVSH =VS12 =VS21, (Figure
1b). VSV refers to the velocity of a shear wave polarized perpendicular to the layering
and VSV = VS13 = VS23, (Figure 1b). For shear waves propagated along the x3 axis, the
symmetry axis, (perpendicular to the layering) VSH = VSV = VS31 = VS32. For waves
propagated with an angle θ relative to the symmetry axis, VP, VSV and VSH depend on
the angle of incident and are expressed as

ρV2
P θð Þ ¼ 1

2
C33 þ C44 þ ðC11 � C33Þsin 2θ þD θð Þ� � ð6Þ

ρV2
SV θð Þ ¼ 1

2
C33 þ C44 þ ðC11 � C33Þsin 2θ �D θð Þ� � ð7Þ

ρV2
SH θð Þ ¼ C66 sin

2θ þ C44 cos 2θ ð8Þ
where

D θð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
C33 � C44ð Þcos 2θ � C11 � C44ð Þsin 2θ

� �2 þ C13 þ C44ð Þ2sin 2 2θð Þ
q

ð9Þ
and ρ is the rock density. The diagonal components of the stiffness tensor for a transversely
isotropic medium, C11, C33, C44, and C66 can be directly obtained by measuring body
waves along the coordinate axes and knowing the density of the rock using
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Figure 1 (a) Definition of stresses with Voigt notation also shown. (b) Compressional and shear wave
velocities, VP and VS, respectively, measured along symmetry axes aligned with the Cartesian
axes. The dashed arrows in (b) represent the direction of polarization for the shear waves. The
labeled solid arrows next to the velocities represent the propagation direction.
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C22 ¼ C11 ¼ ρV2
P1 ¼ ρV2

P2; C33 ¼ ρV2
P3; C66 ¼ ρV2

S12 ¼ ρV2
S21

C55 ¼ C44 ¼ ρV2
S23 ¼ ρV2

S32 ¼ ρV2
S13 ¼ ρV2

S31;
ð10Þ

where the first numerical subscripts refer to the normal to the surface and the second is
the direction of polarization of the shear wave. C12 is determined from C12 = C11 −
2C66. However, the determination of C13, which shows up explicitly in the expression
forD(q) (Equation 9) requires the wave speed from an off-angle measurement, i.e., off
of the symmetric axis (see section 2.3). For VP45, 45° off-angle measurement, C13 can
be obtained using

C13 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ρV2

P45 �
C11 þ C33ð Þ

2
� C44

� �2
� C11 � C33ð Þ2

4

s
� C44 ð11Þ

Based on Equations 10–11, a minimum of 5 independent elastic wave measurements is
needed to determine the elastic constants of a transversely isotropic rock.

2.3 Laboratory methods for characterizing anisotropy

While there are many methods to measure the elastic constants of rock, this section
focuses on elastic wave transmission methods commonly used in rock engineering
and geophysics. For a review of other techniques, the reader is referred to Every
(1994) andWolfe (1998). In the laboratory, ultrasonic transducers (typical frequency
range 0.25 – 2 MHz) are used to send and receive compressional and shear waves
propagated through rock. A rule of thumb for the size of sample is that it is of
sufficient length to contain a propagation path length > 10–50 wavelengths to obtain
group velocity measurements. Typical wavelengths at 1 MHz for compressional and
shear waves are on the order of several mm. As mentioned earlier, group and phase
velocities are only equal along symmetry axes.

For an isotropic rock, in addition to knowing the dimensions and density of a rock
sample, only two elastic waves measurements are required to fully characterize the
elastic constants: the arrival times of compressional and shear waves that are needed to
calculate VP and VS. Using Equation (4), the Young’s modulus and shear modulus of
the material can be obtained as well as the Poisson’s ratio.

Anisotropic rock requires additional measurements to determine the elastic con-
stants because the velocity is no longer the same in every direction. In addition to
measurements along the symmetry axis, off-axis velocity measurements are needed to
determine the off-diagonal elastic constants such asC12,C13, andC23. One approach is
to prepare samples taken at different angles relative to the symmetry axes (Figure 2a).
For example, Christensen & Ramananantoandro (1971) cut 7 samples of Dunite at
0°, 15°, 30°, 45°, 60°, 75°, and 90° to the symmetry axis to acquire sufficient data to
determine the elastic constants. A drawback of this technique arises when the struc-
ture, composition, symmetry or density of a rock varies among the oriented core
samples, especially when taken from rock obtained from different locations. Two
methods that enable characterization of anisotropy on a single sample are wavefront
imaging (Figure 2b) and surface wave (Figure 2c) techniques, both are described in the
next two sections.
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2.3.1 Wavefront imaging techniques for determining elastic constants

Wavefront imaging methods (Figure 2b) are often used to visualize and quantify the
effect of material/fabric (matrix) and structural (layering, fractures, etc.) properties on
the energy distribution in a propagating wavefront (Hauser et al., 1992; Nagy et al.,
1995; Mullenbach, 1996; Roy & Pyrak-Nolte, 1997; Xian et al., 2001; Oliger et al.,
2003; Shao et al., 2015). For a typical experiment, a source is maintained at a fixed
location while a receiver is translated over a two-dimensional region to record the
spatial distribution of energy with time. Figure 3 shows examples of portions of three-
dimensional data sets acquired over a 60mm by 60mm area in 1mm increments for an
isotropic solid (acrylic), a sample with an isotropic matrix that contains an orthogonal
fracture network (aluminumwith a fracture spacing of 20 mm), and for an anisotropic
sample with a set of parallel fractures (Garolite with a fracture spacing of 10 mm)
(Shao, 2015). The data can be viewed as snapshots in time to examine the spatial
distribution of energy or as a spatial slice to examine the scattering or confinement of
energy by structural features or the individual signals can be analyzed in the time-
frequency domain. At a fixed time, the isotropy or anisotropy of a sample can be
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Figure 2 Techniques for determining the elastic constants of anisotropic rock. (a) Oriented core, (b)
wavefront imaging, and (c) Rayleigh wave method. In (b) the source and receiver are water-
coupled spherically-focused piezoelectric transducers. In (c), the circles represent contact
transducers where P represents compressional wave transducers and the arrows represent
the polarization of shear waves transducers.
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directly visualized. For example, a circular wavefront (Figure 3a) demonstrates that the
energy spreads out with uniform amplitude and propagates with the same speed in all
directions as expected for an isotropic medium. When fractures are present, energy
confinement between fractures is observed (Figure 3b&c).

Recently, Abell et al. (2014) used a wavefront imaging method to extract the off-
diagonal elastic constant, C13, for a transversely isotropic material (Figure 2b). For a
transversely isotropic medium, this approach requires the measurement of compres-
sional and shear waves along symmetry axes to obtain C11, C33, C44 and C66 (or VP1,
VP3, VS12, and VS23 see Equation 10) with contact transducers. Then, wavefront
imaging is performed on the sample with the source and receiver focused on the faces
of the sample that are perpendicular to the symmetry axis (Figure 2b).While the source
is held fixed near the lower corner of a sample, signals are recorded along a line to
obtain data at angles off of the symmetry axis (ϕ in Figure 2b).

Equations 6–9 for determining the velocity from elastic constants or the elastic
constants from velocity in section 2.2 are written in terms of phase velocity. For an
isotropic medium, where the wavefronts are spherical, the group and phase velocities
are equal. However, for an anisotropic medium the group and phase velocities are not
equal (Bucur, 2006; Abell et al., 2014; Mavko et al., 1998). The conversion between
group and phase velocities requires an understanding of the distinction between the
phase angle, θ, and the group angle, ϕ (Figure 4a), as well as additional equations. The
phase angle is measured between the symmetry axis and the normal to the wavefront,
i.e., the wave number vector, k. The group angle is the angle between the symmetry axis
and a ray drawn from the source directly to the receiver (Figure 4a).

Wavefronts in an isotropic medium are spherical and hence θ = ϕ. For an anisotropic
medium, the relationship between phase and group angle (Thomsen, 1986) is

tan� ¼ Vsin θ þ dV
dθ cos θ

Vcos θ � dV
dθ sin θ

; ð12Þ

whereV is the phase velocity. FromThomsen (1986), the group velocity,U is given by

Uð�Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
V θð Þ2 þ dV

dθ

� �2
s

: ð13Þ

The difference between phase and group angles is difficult to delineate in experimental
measurements without takingmeasurements at several angles, because of the derivative
in phase velocity (Equation 13) with respect to the phase angle (Berryman, 1979;
Thomsen, 1986; Tsvankin, 1996, 1997). Though this is often attempted with measure-
ments on angled core (Figure 2a) or with angled transducers (Sharf-Aldin et al., 2013),
uncertainty exists in whether group or phase velocity is measured. The use of the
wavefront imaging technique reduces this uncertainty by acquiring information on
the same sample at multiple group angles, i.e., providing a more continuousU – ϕ curve
for determining the derivative. A drawback of wavefront imaging is that it cannot,
currently, be performed on samples under true-triaxial or triaxial loading conditions.
However, Shao et al. (2015) and Shao & Pyrak-Nolte (2015) have performed wave-
front imaging under uniaxial and biaxial conditions on isotropic and anisotropic
fractured media.

Elastic waves in fractured isotropic and anisotropic media 331



The wavefront imaging method provides measurements of group velocity, U, and
group angle, ϕ. The group angle equals zero when the source and receiver are aligned.
After acquiring signals as a function of position (corresponding to group angles of
ϕ = tan−1(translated distance/central path length), Figure 4b), the value of C13 is
determined by finding the best fit to theoretical predictions (Figure 4c). A step-by-
step procedure for finding C13 can be found in Abell et al. (2014).

The wavefront imaging technique is a robust approach for determining off-diagonal
elastic constants for a transversely isotropic medium. By using the full propagating
wavefront, this method yields small uncertainties in the elastic constants. Additional
theoretical work is required to extend this technique to orthorhombic symmetries.
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Figure 4 (a) Illustration of the difference between group, ϕ, and phase angle, θ, for an elliptical wavefront
in an anisotropic medium; (b) an example of signals collected off of the symmetry axis using a
wave-front imaging technique; (c) illustration of the theoretical fitting-approach, and (d) an
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isotropic medium, for obtaining the off-diagonal constant C13 from the wavefront imaging data
based on the methods in Abell et al. (2014).
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2.3.2 Surface waves methods for determining elastic constant

Surface and interface wave techniques have been used to determine the elastic constants
of different anisotropic material (Bucur & Rocaboy, 1988; Dahmen et al., 2010; Shao
& Pyrak-Nolte, 2013). In many of these approaches, first compressional and shear
waves are measured along the symmetry axes of a sample using compressional and
shear wave piezoelectric transducers. Then surface waves are propagated along the
surface of the sample in the direction of the symmetry axis where the group and phase
velocity are equal. Surface waves measured in this manner only depend on one off-
diagonal elastic constant for transversely isotropicmaterials. The surface wave velocity
and other bulk-wave measurements are then used to invert for the off-diagonal elastic
constant. The reader is referred to Dahmen et al. (2010) for a method based on Lamb
waves, to Deresiewicz & Mindlin (1957) or Bucur & Rocaboy (1988) for surface
acoustic wave techniques and Shao & Pyrak-Nolte (2013) for a method based on
fracture interface waves. In this section, the Rayleigh-wave technique developed by
Abell et al. (2014) is presented as an example of a surface wave technique.

2.3.2.1 RAYLEIGH WAVE TECHNIQUE FOR DETERMINING C13

For a Rayleigh wave propagated along the symmetry axis of a transversely isotropic
medium, the Rayleigh wave velocity is given by (Vinh & Ogden, 2004):

VRayleigh ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
C66bd

ffiffiffi
a

p
ρ

ffiffiffi
a

p
bd þ 2ð Þ
3

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Rþ

ffiffiffiffiffiffi
W

p3
q

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R�

ffiffiffiffiffi
W

p3
q #�1

;

24
vuuut ð14Þ

where

a ¼ C33

C11
; b ¼ C11

C66
; d ¼ 1� C2

13

C11C33
; W ¼ R2 þ � 1

3

ffiffiffiffiffiffiffiffiffiffiffiffiffi
a22 þ 3

q� �2
" #3

; ð15Þ

R ¼ � 1
54

2a32 þ 9a2 þ 27ao
� 

; ao ¼ � ffiffiffi
a

p
1� dð Þ; a2 ¼ ffiffiffi

a
p

1� bdð Þ: ð16Þ

Based on Equations 14–16, the Rayleigh wave velocity in a transversely isotropic
medium depends on C11, C33, C66 and C13. C11 and C33 are determined frommeasure-
ments of VP1 and VP3, i.e., from compressional waves propagated parallel to the layers
and along the symmetry axis using contact transducers (see Equation 10 and Figure 2c).
C66 is obtained from measurements of the shear wave velocity, VS12, also made with a
contact transducer. The shear wave source and receiver are polarized parallel to the
layers with a propagation direction along the layers (Figure 2c). Using shear wave
transducers, a Rayleigh wave is propagated along the surface of the sample in the
direction of the symmetry axis (Figure 2c) by placing half of the transducer face off the
edge, polarized normal to the surface of propagation. By propagating the Rayleigh
wave along a symmetry axis, the group, URayleigh, and phase, VRayleigh, velocity of the
Rayleigh are equal. URayleigh measured with the contact transducers is used directly in
Equation 14 along with C11, C33, and C66 to solve for C13. Thus, only four measure-
ments on the sample are required to determine C13 for a transversely isotropic medium
by using a cube-shaped sample aligned with the symmetry axis.
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The effect of C13 on the Rayleigh velocity in a transversely isotropic medium is
shown in Figure 5. As C13 increases the Rayleigh wave velocity decreases. For an
isotropic material, C13 is given by C13 = C11 − 2C66 (Helbig, 1994; Mavko et al.,
1998; Bucur, 2006). From the Rayleigh wave technique, Abell et al. (2014) determined
for isotropic Lucite that C13,Lucite = 4.06 ± 0.19 GPa and for phenolic G10 thatC13,G10

= 7.7 ± 0.7 GPa which were within 0.03 ± 0.20 GPa and 0.3 ± 0.8 GP, respectively, of
the values of C13 obtained using the wavefront imaging technique (see Section 2.3.1).
An in depth discussion of the uncertainty of the Rayleigh wave technique is given in
Abell et al. (2014).

While the Rayleigh wave technique was tested on synthetic material, Abell et al. (2014)
used values of elastic constants for rock from the literature to determine if this method
would theoretically apply to rock. Figure 5 contains theoretical curves of the Rayleigh
wave velocity for shale, dolomite, and sandstone based on values from the literature
(Thomsen, 1986; Martinez & Schmitt, 2013). For many rock types this approach works
well. However, when themeasured Rayleigh wave velocity is within 1%of the asymptotic
value (low values ofC13 in Figure 5), then an accurate measure of C13 cannot be obtained
by this technique. The rock data from the literature that yielded high uncertainty in C13

tended to be from stress-sensitive rock under high pressures. Additional research is needed
to determine the effect of micro-cracks and fractures on the Rayleigh wave technique
because mechanical discontinuities give rise to frequency dispersion resulting in group and
phase velocities that are not equal even along a symmetry axis.

Surface wave techniques, such as the Rayleigh wave technique, have several advan-
tages over wavefront imaging approaches (see section 2.3.1) that include (1) measure-
ments times typically under 10 minutes, (2) the theory exists for Rayleigh wave
velocities for both transversely isotropic and orthorhombic materials, and (3) only
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dolomite and sandstone, from Thomsen (1986) and Martinez and Schmitt (2013), calculated
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four measurements are required with no need to calculate the shape of wavefronts or
group versus phase angles. Additional research and development is required to adapt
the Rayleigh wave technique to measure C13 for rocks under confining pressure.

3 CHARACTERIZATION OF FRACTURED ROCK

In this section, the effect of single fractures, fracture sets and fracture intersections on
elastic wave propagation are briefly presented to demonstrate the discrete effects of
fractures on energy partitioning that enables characterization of fracture properties.

Conceptually, a fracture is composed of two rough surfaces in contact. Voids of
variable shape are created between points or regions of contacts (Figure 6a). As stress
is applied to a fracture, the contact area between the two surfaces increases and the voids
deform. Theoretical models for wave propagation across a fracture capture this compli-
cated fracture topology with effective parameters. The three simplest ways to represent a
fracture are shown in Figure 6b–d. First, fractures are known to reduce the elasticmoduli
of a medium (e.g., Nur, 1971; Hudson, 1981; Crampin, 1984; Zimmerman, 1991;
Kemeny & Cook, 1986; Moreland, 1974; White, 1983; Schoenberg & Douma, 1988)
and thus the fracture behavior is often incorporated into an effective or reduced Young’s
and shear moduli (Figure 6b, also see section 3.2.1). The second approach is to represent
the fracture with a three layer model (Fehler, 1982; Liu et al., 2000) where a fracture is
represented by a medium of thickness, h, with different seismic impedance (i.e., density
and moduli) than the surrounding rock matrix (Figure 6c). The third approach is to
represent a fracture as a displacement discontinuity, also referred to as a non-welded
contact or linear slip interface, (Mindlin, 1960; Kendall & Tabor, 1972; Schoenberg,
1980, 1983; Kitsunezaki, 1983; Pyrak-Nolte & Cook, 1987; Pyrak-Nolte et al.,
1990a&b) where the complicated fracture topology is represented by normal and
shear fracture specific stiffnesses (Figure 6d). This non-welded contact approach arises
from the three layer model by allowing h → 0 (Schoenberg, 1983).

Here, the focus is on the non-welded contact approach or displacement discontinuity
theory, for examining the effect of a single fracture on wave propagation across a
fracture. The benefits of this approach are (1) that it maintains the discreteness of a
fracture such that waves are not delayed nor attenuated until crossing the fracture,
(2) that it uses an effective parameter, fracture specific stiffness, to capture the compli-
cated void topology that is linked to the mechanical and hydraulic response of a

h KZ KX

(a) (b) (c) (d)

Figure 6 (a) Fracture topology. A fracture can be conceptually represented as (b) an effective medium
with a reduced modulus, (c) a three-layer model where the middle layer has reduced moduli
or (d) a displacement discontinuity. Light gray represents an effective moduli (b) or lowmoduli
(c) compared to dark gray moduli of matrix.
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fracture (Petrovitch et al., 2013, 2014; Pyrak-Nolte & Nolte, 2016), (3) that it is a
purely elastic representation but yields frequency dependent group time delays, trans-
mission and reflection coefficients, and (4) that it produces energy partitioning of waves
into body waves as well as guided modes that depend on fracture specific stiffness. A
disadvantage of this theoretical approach is the assumption that fractures are infinite in
extent and, as such, does not yield scattered modes from the edges or fracture tips.
However, numerical methods that incorporate displacement discontinuity representa-
tions of finite-size fractures (de Basabe et al., 2010) or that model explicitly the physical
geometry of the fracture (Petrovitch, 2013; Shao et al., 2015) overcome this difficulty.

3.1 Single fractures

3.1.1 Single fractures in isotropic and anisotropic media

3.1.1.1 DISPLACEMENT DISCONTINUITY THEORETICAL APPROACH

Fractures have regions of contacts between which are voids of variable geometry that
can contain gas, liquid, solid, or some combination of the three. For example, cleats in
coal beds may be partially open with voids containing methane and water along with
partial infillingwithminerals such as calcite or pyrite. Themathematical representation
of a fracture will vary depending on field or laboratory conditions. Displacement and
velocity discontinuity boundary conditions have been used to represent a fracture with
different rheological responses, such as (i) a spring, (ii) a dashpot, (iii) a Kelvin material
with a spring and dashpot in parallel, or (iv) a Maxwell material with a spring and
dashpot in series (Schoenberg, 1980; Pyrak-Nolte et al., 1990a&b; Pyrak-Nolte, 1996;
Suarez-Rivera, 1992; Choi, 2013). Nakagawa& Schoenberg (2007) andNakagawa&
Myer (2009) extended this approach to a poroelastic linear slip interface that includes
fluid transport between a fracture and the matrix of the host rock.

Here we present the theory for a fracture based on a non-welded contact with the
rheological response of a Kelvin material because with appropriate choice of fracture
parameters, one can obtain the solution for a fracture represented by only a spring, by
only a dashpot, or by a spring and dashpot in parallel. The derivation of the transmission
and reflection coefficients for body waves propagated across a fracture starts by represent-
ing the fracture as an interface between two elastic half-spaces. The coordinate systemused
for this derivation is shown in Figure 7. For an incident compressional wave (P-wave)
impinging on a fracture represented by a Kelvin interface, the boundary conditions are:

κz uz1 � uz2ð Þ þ η _uz1 � _uz2ð Þ ¼ τzz; τzz2 ¼ τzz1;

κx ux1 � ux2ð Þ þ η _ux1 � _ux2ð Þ ¼ τzx; τzx2 ¼ τzx1;
ð17Þ

where a dot denotes a derivative with respect to time, kz and kx are the normal and
shear specific stiffness (units of force per volume), ηz and ηx are the normal and shear
specific viscosity (units of viscosity per length), and u is the displacement. The reader is
referred to Pyrak-Nolte et al. (1990a) or Pyrak-Nolte (1996) for derivations related to
incident shear waves (for both polarizations) for any angle of incidence.

The velocity discontinuity (Equation 17) provides a dissipative mechanism. The
exact meaning of a specific viscosity for a fracture still needs further investigation.
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Suarez-Rivera (1992) investigated the influence of fluid viscosity on the specific viscos-
ity but determined that specific viscosity was related to the adhesion or cohesion of a
fluid to a surface. Pyrak-Nolte et al. (1990a) found that shear-waves propagated across
a dry fracture were better simulated by assuming a Kelvin model for the tangential
components of particle displacement.

For a P-wave incident on a Kelvin non-welded contact in an isotropic medium
(Pyrak-Nolte, 1996):

� κz � iωηz
� 

cos θ1 κz � iωηz
� 

cos�1 � κz � iωηz
� 

cos θ2 þ iωZP2 cos 2�2

� κx � iωηxð Þ sin θ1 � κx � iωηxð Þ cos�1 κx � iωηxð Þ sin θ2 � iω
Z2
S2

ZP2
sin 2θ1
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ZP2
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26664
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sin�2 � iωZS2 sin 2�2

κx � iωηxð Þ cos�2 � iωZS2 cos 2�2

�ZS2 sin 2�2

ZS2 cos 2�2

3775
Rp

Rs

TP

Ts
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ZP1

sin 2θ1
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where ω is the angular frequency, θ and ϕ are the angles for the compressional, P, and
shear, S, waves, respectively. This is the complete solution for all angles of incidences
and for half-spaces with difference seismic impedances, (Z = density * phase velocity)
for a P-wave, incident on and propagated across a Kelvin non-welded contact. The
effect of non-welded contacts on transmitted and reflected waves is examined for
compressional waves propagated at normal incidence (θ1 = 0o) to the fracture plane
to illustrate the dependence on frequency and fracture specific stiffness.

When the material is the same for the media on either side of a fracture (i.e.,Z1 =Z2=
Z) and the fracture is represented by κz and κx, the transmission and reflection coeffi-
cients for compressional waves reduce to

jR ωð Þj ¼
ω
ωcffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ ω
ωc

� �2
s ; and jT ωð Þj ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ ω
ωc

� �2
s ; ð19Þ
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Figure 7 Incident, reflected, and transmitted components of compressional (P) wave incident on a
fracture represented by a non-welded contact. (Based on Pyrak-Nolte et al., 1990a).
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where ωc is the characteristic frequency and is equal to ωc = 2κ/Z. For this purely
elastic model, the amount of energy transmitted or reflected from a fracture depends on
the frequency of the signal, specific stiffness of the interface and the seismic impedance
of the half-spaces (rock matrix). Though the solution is frequency-dependent,
the energy is conserved at a displacement discontinuity interface, as demonstrated
|R(w)|2 + |T(w)|2 = 1.

The fracture behaves as a low pass filter with a cutoff frequency of wc. The low-pass
filter behavior of the transmission coefficient is illustrated in Figure 8 where T(w) is
shown as a function of the frequency normalized by ωc. Conversely, the reflection
coefficient, R(w), is similar to a high pass filter with a characteristic frequency that
differs from that for transmission. As ω/ωc goes to zero (or κ→ 8), a fracture behaves as
a welded contact and all of the energy is transmitted across the fracture (T(w)→1 and
R(w)→ 0). Conversely, as κ→ 0 (or w/wc → ∞), the fracture behaves as a free surface
where all of the energy is reflected from the fracture (T(w)→0 and R(w) → 1). Also
shown in Figure 8 is the normalized group time delay. The group time delay for a
P-wave propagated at normal incidence to a displacement discontinuity is derived from
the change in the phase shift with frequency, tgTP = dθ/dω = ωc/( ωc

2+ω2). When tgTP is
normalized by the group time delay for ω = 0, the dimensionless form of tgTP is

tgTP
tgTP0

¼ 1

1þ ω
ωc

� �2 : ð20Þ

For very high stiffness or very low frequency, tg/tgo → 1 (Figure 8). For mid-range
values, as the frequency increases or the stiffness decreases, tg/tgo decrease monotoni-
cally. Normalized frequency, ω/ωc, is a built-in scaling parameter that enables determi-
nation of the magnitude of facture specific stiffnesses that can be detected for a given
frequency based on the time delay and/or the reflection/transmission coefficients and
the matrix properties (Z). The normalized group time delay is a maximum at zero
frequency and decreases with increasing frequency. Laboratory studies on wave
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Figure 8 Transmission, T(w), and reflection coefficients, R(w), and normalized group time delay, tg/tgo,
as a function of normalized frequency (ω/ωc = ωZ/2κ).
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propagation across single fractures in the ultrasonic frequency range often use wave
attenuation rather than velocities to interpret changes in fracture properties as a
function of stress. At ultrasonic frequencies, changes in time delays are relatively
small compared to changes in transmission/reflection coefficients. This is illustrated
by the data shown in Figure 9 (on the left) for compressional waves transmitted through
100 mm of gypsum containing a single fracture that was subjected to normal loading.
Ultrasonic contact transducers with a central frequency of 1 MHz were used to send
and receive the signal. As the stress increases from 1.1 to 4.7MPa, the transmitted wave
amplitude increases by 160% while the change in arrival time (first break) is on the
order of 1%.

The spectral content of a transmitted wave is also affected by the stiffness of the
fracture. In Figure 9 (right), spectra of the signals, shown in Figure 9 (left), were
obtained by tapering the signals and applying a Fast Fourier transform (FFT). The
transmitted wave’s spectral amplitude is observed to increase and the dominant (or
most probable) frequency shifts from 0.57 to 0.63MHz as the stress increases from 1.1
MPa to 4.7 MPa. An increase in stiffness increases ωc and enables the transmission of
high frequency components.

As mentioned, the ability to detect a fracture is a function of ω/ωc,. In Figure 8, the
transmission/reflection coefficients and the group time delay provide significantly
measureable responses to the existence of a fracture for 0.03 < ω/ωc, < 30. Implicit in
this statement is that the stiffness of fractures detected at laboratory frequencies is
much higher than that for field frequencies. For example, Figure 10 provides a compar-
ison of the transmission /reflection coefficients and the normalized group time delay for
signals at 10 Hz (field) and 1 MHz (laboratory) propagated at normal incidence to a
fracture. The time delay produced by the fracture is normalized by the time delay that
results from propagating a wave over λ, one wavelength, in the intact portion of the
rockwith an intact velocity, c. Themaximum group time delay from the fracture occurs
when ω/ωc = 1 (Figure 10 left). Below ω/ωc = 1, the group time delay caused by the
fracture increases while above ω/ωc = 1, the group time decreases. For a rock
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Figure 9 (Left) Compressional wave signals propagated at normal incidence to a fracture in gypsum
subjected to normal stresses of 1.1, 2.0, and 4.7 MPa. (Right) Fourier spectra of the signals
shown on the left.
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containing a single fracture, the total time delay is tgTotal = tintact + tfracture = tintact + tgTP,
where tintact = path length/c = λ/c is the time for the signal to propagate through the
intact portion of a rock, and tfracture = tgTP is the delay caused by the fracture. The total
group time delay is

tgTotal ¼
ℓ

c
þ ωc

ω2
c þ ω2 ð21Þ

As the path length increases (λ where n is the number of wavelengths), the fraction of
the time delayed contributed by the fracture decreases. In Figure 10, n = 1 and the
maximum time delay caused by the fracture is ~8% of the delay measured over l in
intact rock. Laboratory measurements are often made using signals with a central
frequency of 1 MHz on samples of length 10λ to 50λ. For a granitic rock (cP ~ 5000
m/s), this would yield an intact time delay of λ/c ~ 10.0 to 50.0 microseconds and a
maximum (ω/ωc = 1) delay from the fracture of tfracture ~ 0.15 to 0.03 microseconds or
0.8% to 0.15% of nλ /c. However, the transmission and reflection coefficients are both
equal to ~ 0.7 at ω/ωc = 1. The additional delay from the fracture at laboratory
frequencies is often on the resolution of the measurement, yet the changes in amplitude
are easily measured. Fracture specific stiffness can be estimated based on changes in the
reflected or transmitted amplitude.

An important note is that in the laboratory, measurements are made at a fixed ω
whileωc is altered by increasing the stress on the fractured sample, thereby changing the
fracture specific stiffness. In the field, it is more likely that a fracture will be at a fixed
stiffness, κ. However, if broadband methods are used, the delay as a function of
frequency, or velocity dispersion, can be used to identify fractures and interpret
fracture specific stiffness (e.g., see Nolte et al. (2000)). Improved interpretation of
fracture specific stiffness on the laboratory and field scales requires usingmeasurements
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of both time delays and transmission/reflection coefficients to constrain predictions
(Pyrak-Nolte et al., 1987). Theoretically, the group time delay increases and then
decreases as the fracture specific stiffness increases (Figure 10 right). If only a single
value of velocity is used instead of the velocity dispersion, then two values of κ are
possible. However, if the reflection and transmission coefficients are alsomeasured, the
prediction of stiffness can be constrained.

To summarize, a wave incident on a fracture is partitioned into transmitted and
reflected body waves (both P and S) that depend on the specific stiffness (κz, κx, and κy)
of the fracture, the frequency content of the signal and the seismic impedance of the
rock matrix. For the effect of non-uniform fracture stiffness on elastic wave propaga-
tion, the reader is referred to Oliger et al. (2004) for radial distributions of fracture
stiffness, Pyrak-Nolte & Nolte (1992) for uniform, bi-modal and multifractal prob-
ability distributions of fracture specific stiffness and to Acosta-Colon et al. (2009) for
spatial distributions of stiffness. The reader is also referred to Nakagawa et al. (2000)
for a discussion on shear-induced cross-coupling stiffnesses that give rise to P to S
conversions at normal incidence that are sensitive to the state of shear stress on a
fracture. In this section, fractures in isotropic media were examined. In the next
section, the effect of a single fracture in an anisotropic matrix is presented.

3.1.1.2 SINGLE FRACTURES IN ANISOTROPIC MEDIA

In the previous section, the displacement discontinuity theory was presented for wave
propagation across a single fracture in an isotropicmedium. When a fracture occurs in
an anisotropic medium, the seismic impedance depends on the angle of incidence
relative to the unique symmetry axis of the medium. To illustrate this effect, we present
the solution for a P-wave incidence on a fracture in a transversely isotropic medium
with subwavelength layers, i.e., layer thickness is << λ (where λ is the wavelength).
Here, we only present the result for a fracture oriented parallel to the layering (parallel
to x1-x2 plane in Figure 7) or a horizontal fracture in a vertical transversely isotropic
medium (VTI). The reader is referred to Shao (2015) for a fracture oriented perpendi-
cular to the layering.

For a horizontal fracture in a VTI medium, the displacement for a plane wave
propagating in the x1-x3 plane (x-z plane in Figure 7) is u = Uo exp[iw(t-s1x1-s3x3)]
where s1 and s3 are components of the slowness vectors in the x1 and x3 directions
(slowness is the inverse of the velocity, e.g., s1 =1/V1), Uo is a complex vector represent-
ing the amplitudes,w is the angular frequency of the plane wave, and t is the time. The
elastic stiffness tensor is the same as that for a VTI medium (see Equation 3):

σ11 ¼ C11
∂u1
∂x1

þ C13
∂u3
∂x3

; σ33 ¼ C13
∂u1
∂x1

þ C33
∂u3
∂x3

;

σ13 ¼ C44
∂u3
∂x1

þ ∂u1
∂x3

� �
; ð22Þ

where σ11 and σ33 are normal stresses along the x1 and x3 directions (x1-x3 plane in
Figure 7), s13 is the shear stress (Figure 1), u1 and u3 are the horizontal and vertical
components of the displacement field, and Cij is the elastic stiffness constants. The
slownesses, s1 and s3, in a VTI medium must satisfy the dispersion relation:
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C11s21 þ C44s23 � ρ
� 

C33s23 þ C44s21 � ρ
� � C13 þ C44ð Þ2s21s23 ¼ 0 ð23Þ

where ρ is the density of the medium. Slowness is the reciprocal of velocity. The
solutions for Equation 23 correspond to the quasi P- and quasi S-waves. s3 can be
expressed in terms of s1 and the elastic components as:

s3 ¼ � 1ffiffiffi
2

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
K1 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
K2

1 � 4K2K3

qr
ð24Þ

where

K1 ¼ ρ
1
C44

þ 1
C33

� �
þ 1
C44

C13

C33
C13 þ 2C44ð Þ � C11

� �
s21;

K2 ¼ 1
C33

C11s21 � ρ
� 

;K3 ¼ s21 �
ρ

C44
;

ð25Þ

where the different combinations of + and − in the expression of s3 (Equation 24)
correspond to P- and S-waves with different propagation directions: (+,−) corresponds
to downward propagating P-wave, (+,+) corresponds to downward propagating
S-wave, and (−,−) corresponds to upward propagating P-wave, (−,+) corresponds to
upward propagating S-wave. The components in the complex amplitude vector U are
obtained from the Kelvin-Christoffel equation:

β ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

C44s21 þ C33s23 � ρ

C11s21 þ C33s23 þ C44 s21 þ s23
� � 2ρ

s
;

ζ ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

C11s21 þ C44s23 � ρ

C11s21 þ C33s23 þ C44 s21 þ s23
� � 2ρ

s
; ð26Þ

where the signs are “+” for P-waves and “−” for S-waves. According to the Snell’s law,
the horizontal slowness, s1, is continuous, for all reflected and transmitted waves, while
the vertical slownesses, sP3 and sS3, for the P- and S-waves can be calculated from
Equation 24. Assuming Uo to be unity, and applying the displacement discontinuity
boundary condition (Equation 17 with η = 0), the following matrix equation is
generated for the reflection and transmission coefficients:

βP1 � WP1
κ1

βS1 � WS1
κ1

�βP2 �βS2

ζP1 � ZP1
κ3

ζ S1 � ZS1
κ3

ζP2 ζ S2
ZP1 ZS1 �ZP2 �ZS2

WP1 WS1 WP2 WS2

0BBB@
1CCCA

RPP

RPS

TPP

TPs

0BB@
1CCA ¼

�βP1 � WP1
κ1

ζP1 þ ZP1
κ3

�ZP1

WP1

0BBB@
1CCCA (27)

where κz and κx are the shear and normal fracture specific stiffnesses, respectively, W
and Z represent the shear and normal stress (see Shao, 2015 or Carcione & Picotti,
2012). Note that the absolute values of the displacement coefficients are not equal to
the energy partitions of the reflected/transmitted waves. The method to calculate the
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energy partition for the reflected/transmitted waves, as well as the energy loss for the
transmitted wave, is given in Carcione&Picotti (2012). For off-angle transmission, the
summation of energy is complicated by the dependence of velocity on the angles of
reflection and transmission (refraction).

Figure 11 provides a comparison of the displacement coefficients for the reflected and
transmitted waves as a function of angle of incidence on a single fracture in an isotropic
medium and in an FH medium (i.e., transversely isotropic medium with a single
fracture parallel to the layering). For this analysis, ρ = 1364 m/s kg/m3, and C11, C33,
C13, and C55 are 12, 12, 6.48 and 2.78 GPa, respectively for an isotropic medium; and
12, 7.04, 3.74, and 2.76 GPa for an anisotropic medium; and κz = κx = 1013 Pa/m. If the
anisotropy of a material is not taken into account, interpretation of reflection and
transmission coefficients (as well as velocities) would yield incorrect estimates of the
orientation of the fracture and fracture specific stiffness.

3.1.2 Wave-guiding along single fractures

By retaining the discreteness of a fracture, additional waves are available for character-
izing a single fracture that do not arise from an effective medium approach. Fractures
represented as a non-welded interface (Equation 17) give rise to coupled Rayleigh
waves that are also known as fracture interface waves (Murty, 1975; Pyrak-Nolte &
Cook, 1987; Murty & Kumar, 1991; Pyrak-Nolte et al., 1992; Gu, 1994; Gu et al.,
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Figure 11 Comparison of the displacement coefficients for waves reflected and transmitted across a
single fracture in an isotropic medium (iso) and in an anisotropic medium (aniso) with the
fracture plane oriented parallel to the layering (FH).
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1996; Shao & Pyrak-Nolte, 2013). Conceptually, each fracture surface can support a
Rayleigh wave. As two fracture surfaces are brought into contact, the waves couple
through the points of contact and propagate as coupled Rayleigh waves. As stress on a
fracture increases, κ increases because of the increase in contact area between the two
fracture surfaces from the deformations of the voids. For increasing κ (decreasingw/wc

in Figure 12 left), the interface wave velocity increases from the Rayleigh wave velocity
for weakly coupled fracture surfaces to the bulk shear wave velocity when a fracture
becomes completely welded. Two fracture interface waves exist: (1) a symmetric (fast
wave) mode that depends only on the normal stiffness of the fracture and (2) an anti-
symmetric (slow wave) mode that depends only on the shear stiffness of the fracture.
The particle motion is in phase parallel to the fracture plane for the fast wave and
perpendicular to the fracture plane for the slow wave (see inset of Figure 12 left). The
generation of interface waves requires a component of the shear wave that is perpendi-
cular to the fracture plane (Figure 12 right). The velocities of the symmetric and
antisymmetric fracture interface waves are determined from the following secular
equations for an isotropic medium (Gu et al., 1996)

1� 2ξ2
� 2 � 4ξ2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ξ2 � η2

q ffiffiffiffiffiffiffiffiffiffiffiffiffi
ξ2 � 1

p
� 2K3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ξ2 � η2

q
¼ 0 symmetricð Þ;

1� 2ξ2
� 2 � 4ξ2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ξ2 � η2

q ffiffiffiffiffiffiffiffiffiffiffiffiffi
ξ2 � 1

p
� 2K1

ffiffiffiffiffiffiffiffiffiffiffiffiffi
ξ2 � 1

p
¼ 0 anti-symmetricð Þ:

ð28Þ
where x = VS/V, h = VS/VP, V is the interface wave velocity, K1 = κ1/ωρVS and K3 = κ3/
ωρVS are the normalized normal and shear stiffnesses.

The secular equations for the symmetric and antisymmetric interface waves for a
vertical transversely isotropic medium (VTI) with a fracture oriented parallel to the
layering (FH) are

Fast
Wave

Slow
Wave

0.1 1 10 100 1000

S

S

S IW

IW

0.93

0.94

0.95

0.96

0.97

0.98

0.99

1

V
IW

/V
S

Slow Wave
Fast Wave

ω/ωc

90º

45º

0º

90 95 100 105 110

Time (microseconds)

Figure 12 (Left) Interface wave group velocity as a function of normalized frequency, w/wc. (Right)
Experimental data from Pyrak-Nolte et al. (1992) showing the dependence of the existence
of an interface wave on shear wave polarization (arrow for waves propagated into the page.)
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� �
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 !
� 4ξ2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
ξ2 � 1

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
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�2K3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ξ2 � η21
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2ξ2 � 1
� 

2ξ2 � 2η21η
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η22 � η23

 !
� 4ξ2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
ξ2 � 1

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ξ2 � η21

q" #

�2K1

ffiffiffiffiffiffiffiffiffiffiffiffiffi
ξ2 � 1

q
¼ 0 ðanti-symmetricÞ; ð29Þ

whereV is the interface wave velocity, x =VS/V, η1 =VS/VP, η2 =V*P/VP, η3 = ζ/VP ,V*P
is the compressional wave velocity perpendicular to the layering, and z is the velocity
related to the off-diagonal component (see Shao, 2015 or Shao & Pyrak-Nolte, 2014).

For a VTI medium with a fracture oriented perpendicular to the layering (FV), the
secular equations are very similar to Equation 29 when the interface waves propagate
in an isotropic medium:

1� 2ξ2
� 2 � 4ξ2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ξ2 � η2

q ffiffiffiffiffiffiffiffiffiffiffiffiffi
ξ2 � 1

p
�2K2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ξ2 � η2

q
¼ 0 ðsymmetricÞ;

1� 2ξ2
� 2 � 4ξ2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ξ2 � η2

q ffiffiffiffiffiffiffiffiffiffiffiffiffi
ξ2 � 1

p
� 2K1

ffiffiffiffiffiffiffiffiffiffiffiffiffi
ξ2 � 1

p
¼ 0 ðanti-symmetricÞ:

ð30Þ
Only the definition of the parameters has changed where x = VSH/V, η = VSH/VP, V is
the interface wave velocity, and where K1 = κ1/ωρVSH and K2 = κ2/ωρVSH are the
normalized normal and shear stiffnesses. If the interface wave is propagated along
the fracture but perpendicular to the layering for a FV medium, the secular equations
become

η22 � η23
2η21

� �
2ξ2 � 1
� 

2ξ2 � 2η21η
2
2

η22 � η23

 !
� 4ξ2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
ξ2 � 1

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ξ2 � η21

q" #

�2K2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ξ2 � η21

q
¼ 0 ðsymmetricÞ;

η22 � η23
2η21η

2
2

� �
2ξ2 � 1
� 

2ξ2 � 2η21η
2
2

η22 � η23

 !
� 4ξ2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
ξ2 � 1

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ξ2 � η21

q" #

�2K3

ffiffiffiffiffiffiffiffiffiffiffiffiffi
ξ2 � 1

q
¼ 0 ðanti-symmetricÞ ð31Þ

where x = VSH/V, η1 = VS/V*P, η2 = VP/V*P, η3 = ζ/V*P, and where K2=κ2/ωρVSH and
K3=κ3/ωρVSH are the normalized normal and shear stiffnesses. Equations 28–31 enable
calculation of the interface wave velocity for a fracture in an isotropicmedium and for a
fracture oriented either perpendicular or parallel to the layering in a VTI medium.
Additional research is needed to examine wave speeds for orientations other than those
presented here.

Facture interface waves are a potential method for characterizing both the normal
and shear stiffnesses of a fracture. However, it is also important to keep in mind the
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existence of interface waves when interpreting shear wave anisotropy for a fractured
anisotropic medium. Shao and Pyrak-Nolte (2013) demonstrated theoretically and
experimentally that a medium can appear to exhibit more or less shear wave anisotropy
depending on the orientation of a fracture relative to the layering and the stiffness of the
fracture (Figure 13). For a transversely isotropic medium, a shear wave polarized
parallel to the layering but perpendicular to a fracture propagates as a fracture interface
wave for low values of fracture specific stiffness. Shear waves usually travel faster when
polarized parallel to the layering than for perpendicular polarizations. As shown in
Figure 13 for the FV case, for a low stiffness fracture, the ratio ofVSH/VSV is close to the
isotropic condition value of 1 because VSH is traveling at the Rayleigh speed as a
fracture interface wave. However, as the stiffness of a fracture increases, as the sample
is loaded, the apparent anisotropy of the medium increases until the fracture is closed
and the matrix anisotropy is recovered. The converse occurs when a fracture is oriented
parallel to the layers, i.e., the FH case. For the FH case, the fractured anisotropic
medium exhibits more shear wave anisotropy at low stress than the matrix becauseVSV

is traveling at the Rayleigh speed. Once again, the original matrix or background
anisotropy is recovered by closing the fracture (high stiffness). This demonstrates the
importance of considering the relevant orientation between the symmetry axes of the
fractures and the matrix, as well as the existence of fracture interface waves, when the
interpretation of material properties is based on measurements of the shear wave
velocity.

Another type of guided-mode is the coupled wedge wave that occurs along the
intersection of a fracture with a free surface (inset in Figure 14) like at an outcrop. A
wedge wave travels along the corner of a single block with speeds that are slower than
the Rayleigh wave (Moss et al., 1973; Maradudin et al., 1972; Lagasse et al., 1972).
Abell & Pyrak-Nolte (2013) coupled two of these wedge waves (corner of two blocks)
using the displacement discontinuity boundary conditions (Equation 17 for η=0). The
full derivation of coupled wedge waves in isotropic and anisotropic media is given in
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Abell & Pyrak-Nolte (2013) and Abell (2015). Coupling between the corners is related
to the stiffness of the fracture. At low stiffness, the coupled wedge wave travels at the
wedge wave velocity because the corners of the block are uncoupled and each supports
a wedge wave (w/wc > 1000 Figure 14). Increasing the coupling (fracture stiffness)
results in an increase in the coupled wedge wave velocity. When the fracture is fully
closed, the coupled wedge wave travels at the Rayleigh wave velocity along the free
surface (ω/ωc < 1 Figure 14). Measurements of coupled-wedge waves provide a method
for characterizing the specific stiffness of fractures at the surface of outcrops.

When using surface waves to characterize surface fractures care must be taken to
discriminate between Rayleighwaves and coupledwedgewaves. Coupledwedgewaves
are dispersive, while in general, Rayleigh waves are non-dispersive in isotropic and
anisotropic rock. However, if the material properties (density and wave speeds) vary
with depth in a rock mass then Rayleigh waves can become dispersive. Thus in a field
setting, Rayleigh wave measurements should be made along fractures and adjacent to
fractures to characterize both the fracture and the matrix.

3.2 Parallel fractures

3.2.1 Parallel fractures in anisotropic media

One approach for treating sets of parallel fractures or fracture networks in isotropic
and anisotropic media is to use a compliance tensor (inverse of the stiffness tensor) that
represents the excess compliance from the fractures, Sf, that is added to the rock matrix
or background compliance, Sb (e.g., Schoenberg & Douma, 1988; Hood &
Schoenberg, 1989; Pyrak-Nolte et al., 1990b; Diner, 2013):

C�1 ≡ S ¼ Sb þ Sf ; ð32Þ
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where Sb = Cb
−1 where Cb contains the elastic constants that describe the rock matrix.

The excess compliance from the parallel fractures depends on the normal, bN, and
shear, bV and bH, fracture compliances (i.e., inverse of normal and shear fracture
specific stiffnesses). This approach assumes that the equivalent anisotropic representa-
tion of a fractured medium is equivalent to the static properties of the fractured
medium, i.e. the stress distribution is nearly uniform with very small spatial variations
in stress and the fracture response does not depend on frequency (Nakagawa, 1998).

Here we present an example of this approach for a VTI medium with vertical parallel
fractures based on Schoenberg & Helbig (1997) and Bakulin et al. (2000). The excess
compliance from a set of vertical fractures with the normal to the fractures in the x1
direction is

Sf ¼

ΔN
C11b 1�ΔNð Þ 0 0 0 0 0

0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

0 0 0 0 ΔV
C44b 1�ΔVð Þ 0

0 0 0 0 0 ΔH
C66b 1�ΔHð Þ

0BBBBBBBBB@

1CCCCCCCCCA
(33)

where the weaknesses ΔN, ΔV, and ΔH are

DN ¼ βNC11b

1þ βNC11b
; DV ¼ βVC44b

1þ βVC44b
and DH ¼ βHC66b

1þ βHC6b
ð34Þ

The weaknesses range in value from 0 to 1, that is from an unfractured medium to a
heavily fractured medium, respectively (Bakulin et al., 2000). Using Equations 32 and
33 along with the elastic constants for a VTI medium given by Equation 3, the effective
stiffness matrix for a VTI medium with a set of vertical parallel fractures is

C ¼

C11b 1� ΔNð Þ C12b 1� ΔNð Þ C13b 1� ΔNð Þ 0 0 0

C12b 1� ΔNð Þ C11b � ΔN
C2

12b
C11b

C13b 1� ΔN
C2

12b
C11b

� �
0 0 0

C13b 1� ΔNð Þ C13b 1� ΔN
C2

12b
C11b

� �
C33b � ΔN

C2
13b

C11b
0 0 0

0 0 0 C44b 0 0
0 0 0 0 C44b 1� ΔVð Þ 0
0 0 0 0 0 C66b 1� ΔHð Þ

0BBBBBBBBB@

1CCCCCCCCCA
ð35Þ

with (C12b = C11b – 2C66b). Schoenberg & Douma (1988) showed that Equation 34
describes a special type of orthorhombic media with the stiffnesses also constrained by
C13(C22+C12) =C23(C11+C12) and characterized by only eight independent parameters:
five stiffness coefficients (C11b, C13b, C33b, C44b, C66b) of the VTI medium and three
fracture weaknesses (ΔN, ΔV, ΔH). These effective medium approaches enable calcula-
tion of compressional and shear wave velocities for long wavelength approximations
but the discreteness of the fractures is lost. It is important to note that this approach can
break down in the long wavelength approximation when fractures exhibit frequency
dependent behavior (e.g., see section 3.1.1), which is not captured by effective medium
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static approximations. In the next section, the discreteness of the fractures is main-
tained to demonstrate the existence of guided-modes that do not exist in effective
medium approximations but enable characterization of fracture specific stiffness.

3.2.2 Wave-guiding between parallel fractures in isotropic
and anisotropic media

Traditionally, wave guiding is viewed as a result of impedance contrasts between rock
units such as that observed in laboratory studies onAustinChalk (Li et al., 2009), infield-
scale cross-hole studies in oil bearing sand-shale reservoirs (Leary et al., 2005), in coal
seams (Buchanan et al., 1983), and sandstone – shale formations (Parra et al., 2002).
However, theoretical and laboratory studies have shown that parallel fractures in iso-
tropic media produce wave guiding (Nihei et al., 1999; Xian et al., 2001) because energy
partitioning by the fractures confines energy to a central wave guide. Shao et al. (2015)
also demonstrated this behavior for fractured anisotropic media with matrix layering
<< λ but with a fracture spacing comparable to λ (Figure 15) using a wavefront imaging
method (section 2.3.1). The amount of energy confined by a waveguide is a function of
fracture specific stiffness.When fracture specific stiffness is low (Figure 15 top), very little
energy is transmitted across a fracture. The reflected waves remained confined to the
central layer but lose energy upon every reflection. As stress is increased on the sample,
the transmission across the fractures increases (Figure 15 middle) because fracture
specific stiffness increases (see Figure 8). The variation in stiffness among the fractures
within a set is observed from the differences in the amplitude and arrival times of the
guided-modes (vertical axis y-positions 12-22 and positions 32-42 in Figure 15
middle) on either side of the central wave-guide (vertical axis y-positions 22-32). At
very high stress (Figure 15 bottom), the fractures are sufficiently closed to enable
almost full transmission across the fracture planes which results in a wavefront that is
dominated by the matrix anisotropy. Energy confinement by parallel fractures gen-
erates leaky modes because some energy is lost upon reflection/transmission at the
fracture. However, laboratory studies have measured guided modes over distances of
25 wavelengths for frequencies between 0.5 and 1MHzwhich would be equivalent to
300–3000 m for field frequencies of 50–350 Hz (Shao et al., 2015).

Guided modes can be used to characterize fracture specific stiffness from the time
delay of guided-modes relative to the direct modes through unfractured material. A
short summary of the theory for guided modes is presented here to highlight the
significant factors that affect wave guiding between fractures. Wave guiding between
parallel fractures occurs when the direct wave interferes constructively with a twice-
reflected wave. For example, in Figure 16, a monochromatic plane wave is reflected
between the upper and lower fracture planes. The phase change between the original
and twice reflected wave must equal an integer multiple of 2ϕ (Saleh & Teich, 2007)
such that

2π AC� ABð Þ
λ

þ 2�RPP
¼ 2mπ; ð36Þ

where m is a non-negative integer that corresponds to different guided modes (1st
guidedmodem = 0, 2nd guided modem = 1, etc.) and λ is the wavelength. AC-AB is the
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difference in the travel path between the direct wave (A to B) and the twice reflected
wave (A to C). ϕRpp is the phase shift upon reflection from the fracture, which is a
function of frequency, fracture specific stiffness, and the impedance of the matrix. For
an anisotropic medium, the value of the impedance is directionally dependent. The
relative time delay, ΔT, of a guided mode has two components (1) a geometric
component from traveling a longer distance than the direct wave, and (2) a dynamic
component that occurs because of the phase shift upon reflection from the fractures.
For compressional wave guiding in an anisotropic medium, the total relative delay is

DT ¼ tgeo þ tdyn ¼ L
VP θð Þ

1
sin θ

� 1
� �

þN
d�RPP

dω
; ð37Þ

where N is the number of reflections within a sample of length L, and VP(θ) is the
directionally dependent compressional wave velocity in anisotropic media. For an
isotropic medium, VP is independent of direction (VP(θ) = VP). The number of reflec-
tions for a given sample length determines the magnitude of dynamic contribution to
the ΔT. Both group time delay components, as well as the total time delay, are a
function of frequency, because the existence of guided modes (Equation 36) depends
on the wavelength of the signal λ and the fracture spacing d. However, an additional
frequency dependence arises from the fracture that does not occur for waves guided
only by layering. A fracture that is represented as a non-welded contact produces a
group time delay for both transmitted and reflected waves (Equation 36). For an
unfractured layered medium, the phase shift upon reflection is frequency independent,
when the layer thickness is much smaller than a wavelength (the effective medium
approximation). For low fracture stiffness, a rapid change in the phase shift occurs as a
function of the signal frequency, which increases the magnitude of dynamic delay of a
single reflection. Similar to the isotropic case of wave guiding by Xian et al. (2001),
higher-order guided waves experience larger time delays than lower-order ones,
because the number of reflections from the fractures increases as m increases. The
number of reflection increases because the reflection angle approaches normal incident
(as θ→0) as the frequency decreases.

Estimates of fracture specific stiffness can be obtained from analysis of the arrival
times of the guided modes (Figure 17). An example is presented from Shao (2015) and
Shao et al. (2015) for measured guided modes in Garolite samples (cloth-epoxy
laminate with sub-wavelength layering) that contained a set of parallel fractures. The
FH sample contained fractures parallel to the layering, while the FV sample contained a
fracture perpendicular to the layering (Figures 13). The analysis was performed by
subtracting the central waveform (when the source and receiver were aligned) obtained
from the fractured samples from that obtained from the intact reference sample
(Figure 17 left & center). Before subtraction, the central waveforms from each frac-
tured sample and the intact sample were processed using a wavelet transformation
(Nolte et al., 2000) to achieve a single spectral component (e.g., 0.6 MHz in this
analysis). Figure 17 (left) shows the first guided modes in the FV sample for a single
frequency of 0.6 MHz for several different normal stresses. Shao (2015) observed that
when the stress increased, the first guidedmode arrived earlier. This observation is in an
agreement with the theoretical calculation based on the theory described above,
namely, an increase in fracture stiffness results in a decrease in the guided-mode time
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delay (i.e., an earlier arrival time). A similar trend was observed for the FH sample
(Figure 17 (center)). Fracture specific stiffness was estimated (Figure 17 (right)) by
comparing the measured guided-mode time delays and theoretical predictions based on
the material properties of the matrix. As fracture stiffness increases, the guided-mode
time delay decreases because the dynamic and geometric time delays decrease. The
amplitude of the first guided mode also decreases for both the FV and FH samples
because of weaker energy confinement between the fractures.

Shao et al. (2015) also examined wave guiding in fractured anisotropic media
composed of isotropic layers with thicknesses > λ and fracture spacing greater > λ. In
such a medium, two potential wave-guiding mechanisms exist and compete: (1) wave-
guiding in low velocity layers sandwiched between high velocity layers; and (2) wave-
guiding between fractures. From numerical simulation, Shao et al. (2015) showed that
wave guiding produced by impedance contrast among the layers could be either
suppressed or enhanced by the presence of fractures and depended on the stiffness of
the fractures.

In general, the key ideas for wave-guiding in fractured anisotropic media is that
guided-mode behavior depends on contributions from the mechanical properties of the
fractures and the matrix, the layer and fracture spacing, and the signal frequency or
wavelength. The time delay of guided modes provides a measure of fracture specific
stiffness for the fractures within a set.

3.3 Orthogonal intersecting fractures

Orthogonal fracture networks also occur in rock (for example see Bai et al., 2002 or
Gross, 1993). Effective medium approaches have been developed to obtain effective
stiffness matrices for two orthogonal fracture networks in an isotropic medium
(Bakulin et al., 2000; Fuck & Tsvankin, 2006). Similar to the approach used for a
set of parallel fractures (see section 3.2.1), an effective stiffness matrix can be
determined theoretically that represents the combine contributions from the compli-
ance of the fracture sets and the compliance of an isotropic (or anisotropic) rock
matrix. In this approach, each fracture set can have a different fracture specific
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stiffness but the fractures within the set are assume to have uniform stiffness. In
addition, the stiffness or compliance of fracture intersections are not taken into
account and are often assumed to have negligible effects on propagating waves (e.g.
Grechka & Kachanov, 2006).

Shao (2015) and Pyrak-Nolte & Shao (2016) used a wavefront imaging technique
(Figures 2b and 3 in section 2.3.1) to visualize and quantify the effects of two
orthogonal fracture sets on a propagating wave front (Figure 18). In his experiments,
the fracture spacing, d, was 20 mm for each fracture set or approximately 3.1λ for a
frequency of 1 MHz. Samples were subjected to bi-axial loading with the loads
applied perpendicular to each fracture set. From the data (Figure 18), it is observed
that (1) the stiffness of the fractures within a set and between fracture sets varied as
indicated by the non-symmetric distribution of energy in the arriving wavefront
(Figure 18a); (2) a compressional guided-mode appears along the fracture planes
(Figure 18b); and (3) fracture intersections delay and attenuate the wave front, and
appear to support a guided-mode (Figure 18c). These observations raise some chal-
lenges for remote characterization of orthogonal fracture networks. Current effective
medium approaches require uniform fracture stiffness within a fracture set. Given the
state of stress in the subsurface (Zoback & Zoback, 1980; Zoback, 1992) or in
surface mines and outcrops, it is unlikely that fracture specific stiffness will be uni-
form within a fracture set, let alone between sets. Another challenge is the incorpora-
tion of the effect of fracture intersections on the interpretation of propagating elastic
waves. Though intersections are long essentially 1D structural features in a 3D system
of mechanical discontinuities, they significantly affect a propagating wavefront. No
model or theory for an orthorhombic medium (or for any other form of anisotropy)
currently accounts for fracture intersections. As shown in sections 3.1.2 and 3.2.2,
single fractures and a set of parallel fractures support guidedmodes. Figure 18c shows
the appearance of a guided-mode along each of the intersections that arrives shortly
after the direct compressional wave, but the existence of compressional-mode inter-
section waves has not yet been studied. In the next section, we introduce recently
discovered guided-modes that travel along intersections with speeds that range
between the wedge wave and shear wave speeds.
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3.3.1 Orthogonal fracture networks: Intersection waves

Recently, Abell (2015) derived the theoretical description of elastic “intersection”
waves that propagate along a fracture intersection between two orthogonal fractures.
The displacement field along a fracture intersection is modeled as a coupling of four
wedges in partial contact (Figure 19). Each wedge (corner) supports a propagating
wedge wave (Moss et al., 1973; Lagasse et al., 1972; Maradudin et al., 1972). The
wedge wave is modeled by expanding the displacement in a linear series of Laguerre
polynomial functions to characterize the wedge geometry of each block. Displacement
discontinuity boundary conditions were used to couple the four wedges across each
fracture plane. Abell’s solution is sufficiently general that the stiffness along each
fracture plane can differ as well as the elastic constants for each block. Here we present
the four vibrational modes that exist along an intersection for the case of equal fracture
specific stiffness on the two fracture planes and the same material properties in each
medium. The reader is referred to Abell (2015) for the case of unequal fracture specific
stiffness.

For an intersection composed from two orthogonal fractures with equal fracture
specific stiffness, four singlet vibrational modes exist and propagate with the particle
motions illustrated in Figure 19 (center). The displacements are similar to that of a
wedge wave (Moss et al., 1973). Wedge waves can support two vibrational modes:
breathing and wagging, depending on the material properties and wedge angle
(Zavorokhin & Nazarov, 2011). In the breathing mode, both free surfaces of a corner
expand and contract, similar to a bellows (modes A1&B2 in Figure 19 center). For the
wagging mode, both free surfaces twist/wag in the same direction like a dog’s tail
(modes A2&B1 in Figure 19 center). For a further discussion of the difference between
wagging and breathingmodes, seeMoss et al. (1973). For an intersection, the predicted
motion is highly localized to the corners of each media (i.e., within a few wavelengths)
and oscillates in one of these two wedge modes that propagate along an intersection
when κ1 = κ2. When κ1 ≠ κ2, Abell (2015) showed that all four modes exhibit either
breathing or wagging motion.
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When ω/ωc > 1000, the elastic waves either propagate at the Rayleigh wave or
wedge wave velocity. The velocity of the four modes for media with positive
Poisson’s ratios, is shown in Figure 19 (right), note that modes A2 and B1 start at the
wedge wave velocity. A1 and B2 modes start at the Rayleigh wave velocity (Figure 19).
As the fracture plane closes and the intersection becomes welded (i.e., ω/ωc < 1), the
four media weld and the intersection supports a bulk wave traveling at the bulk shear
wave velocity for all four modes (Figure 19). Between these extremes, the four inter-
section modes increase monotonically to the shear wave velocity. The sensitivity of
intersection waves to the condition of the intersection (i.e., opened, partially opened or
closed) provides a potential characterization tool for assessing the connectivity of
fracture networks.

4 CONCLUSIONS

As noted in the Introduction to this chapter, rock is rarely isotropic, and fractures lend
an additional stress-dependent anisotropy to the rock. Mechanical properties of frac-
tured rock are typically determined from measurements of elastic wave velocities.
Whether the data are interpreted based on effective medium approaches or approaches
that retain the effects of discrete fractures, the measured response is controlled by the
length scales in the fractured rock system relative to the wavelength of the probing
signal and by the specific stiffness of the fractures. Effective medium approaches for
fractured rock are appropriate when (1) the wavelength of the probe signal is much
larger than the scale of the source of anisotropy in thematrix (i.e., greater than the layer
thickness) and much larger than the fracture spacing, (2) stress is uniform or nearly
uniform such that the fractures in a set have the same stiffness, and (3) the seismic
response of the fractures is frequency-independent because fracture specific stiffness is
high. Effective medium approaches breakdownwhen (1) fracture specific stiffness is low
which results in frequency dependent behavior even though the fracture spacing is much
smaller than a wavelength; (2) non-uniform stress distributions that cause gradients in
fracture specific stiffness or variation in fracture specific stiffness among fractures in a set;
and/or (3) the signal wavelength is smaller than, or comparable to, the fracture spacing,
causing awave to bemultiply scattered, which affects time delays and attenuation. These
breakdowns occur because effective medium approaches are essentially static approx-
imations that do not account for the frequency-dependent effects that arise from single
and multiple fractures, the variation in fracture stiffness that arises from the geometry of
the fractures and state of stress, nor the existence of scattered-modes.

Discrete approaches take advantage of mode-conversions and guided-modes that
occur at and along fractures to constrain the interpretation of matrix properties and
stiffness of fractures. As shown in this chapter, all of these fracture-generatedmodes are
frequency dependent where the characteristic frequency depends on fracture specific
stiffness, on the impedance of the matrix, and on the frequency of the probe wave. The
frequency-dependent mode conversions are affected by the matrix anisotropy because
of the directionally dependent seismic impedance.

In the laboratory and field, overlapping behavior can occur from competing length
scales (e.g., layer thickness versus fracture spacing) and a transition from discrete
behavior to effective medium behavior can occur from changes in stress. Stress can
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drive a fractured rock system into or out of different scattering and analysis regimes as
fractures are opened or closed. Transitional and overlapping behaviors are strongly
associated with length scales in the system (e.g., fracture spacing, asperity spacing,
stiffness distributions) and can be identified through spectral analysis. Many elastic
wave measurements in the laboratory and field are made using broadband sources that
produce signals with a range of frequencies. Broadband signals capture the transitions
between different scattering regimes by using the data to measure velocity dispersions
that arise from fracture-generated modes and that help define length scales associated
with a fracture or fractured systems (Nolte et al., 2000).

Elastic waves are an essential tool for characterizing rock on the laboratory and field
scale. Given the complexity of rock and field sites, understanding both effective
medium and discrete approaches is required to achieve the best interpretation of the
properties of isotropic or anisotropic fractured rock.
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Abstract: Mechanical descriptors of inelastic behavior of rock are reviewed and
approaches tomeasurematerial and system response are highlighted. A non-traditional
testing method that involves biaxial deformation developed through a Vardoulakis-
Goldscheider plane strain apparatus is used to assess dilatancy and friction, as well as
dilatancy of the shear band after localization. The Paul-Mohr-Coulomb failure criter-
ion, which includes the intermediate stress, is applied to interpret the experiments at
peak stress. Post-peak response, often referred to as softening, is explained as a size
effect within the context of class I-class II stability.

This chapter is dedicated to I. Vardoulakis (1949–2009), a giant of modern geomechanics

1 INTRODUCTION

“In discussions with sensible professional men, I have not infrequently encountered the
opinion expressed that it would be wasting vain efforts to develop a theory on which the
strength of materials could be based scientifically. Homogeneous bodies of materials – I
was told – do not exist, homogeneous states of stress are not encountered. It seems,
therefore, utterly impossible to deduce a law of nature from experience. Since the
existing irregularities furthermore are of such a nature that they nearly completely
obscure any orderly behavior, it has little interest to track down the half-blurred
traces of such laws. Under these circumstances nothing else remains than to make
special tests in every case and to pay no heed to a physical interpretation of the results.
I had to admit in each case that nothing could be said against this reasoning; and yet
for more than one hundred years, there have been attempts again and again to
establish order within the confusing abundance of the experiences. If one should
succeed in finding a few rules under which many experiences could be subordinated –

of course rules in which some confidence can be placed – no law of nature would have
been derived, but some means found for judging the probability of new results of
experience” (Mohr, 1901; from Nadai, 1950).

Rock is a complexmaterial exhibiting, to various degrees, heterogeneity, anisotropy,
pressure dependence, and irreversible damage. Nevertheless, extraordinary structures
in (or of) rock have been designed and built, and general rules regarding their mechan-
ical response have been identified (Vardoulakis & Sulem, 1995). In fact, when numer-
ous observations from experiments on different rock types are compared, it is soon
discovered that rock behaves in a similar manner from certain points of view. If the



correct variables are used tomeasurematerial properties, thenmany phenomena can be
explained by identical relations, e.g. Mohr-Coulomb failure criterion.

Concepts associated with the measurement of mechanical properties of rock are
reviewed. As in many branches of engineering, specific tests have evolved for evaluation
of response under conditions of interest; examples of tests in geomechanics are conven-
tional triaxial compression or extension and plane strain compression. Furthermore,
general behavior of a dilatant, frictional rock is highlighted and experimental results of
interest are discussed.

2 PLANE STRAIN APPARATUS

An apparatus for determining the constitutive and failure response of rock, named the
University of Minnesota Plane Strain Apparatus (Labuz et al., 1996), was designed and
built based on a passive stiff-frame concept of Vardoulakis & Goldscheider (1981). The
biaxial device, in the sense of plane strain deformation, is unique because it allows the
failure plane to develop and propagate in an unrestricted manner (Drescher et al., 1990).
By placing the upper platen on a low friction linear bearing, the prismatic specimen has
the freedom to translate in the lateral direction if the deformation has localized. A
schematic of the Apparatus is shown in Figure 1. A prismatic specimen 75–100 mm in
height h, 27–40mm inwidthw, 100mm in length b, is placedwithin a stiff biaxial frame;
the thick-walled cylinder limits the deformation of the specimen to very small values,
approximating the plane strain condition (Makhnenko&Labuz, 2014). The specimen is
subjected to lateral (confining) pressure by placing the entire assembly within a pressure
vessel, and to axial load applied through displacing rigid platens by a servo-hydraulic
actuator. In contrast to other plane strain devices with similar loading conditions, the
upper loading platen is attached to a linear bearing. The low friction bearing allows free
displacement of the upper part of the specimen upon formation of a failure mechanism

(a)

Specimen

Load cell

Linear
bearing

Biaxial
frame

σ3

σ2

ε3

ε2 ε1

σ1

h

w

b

θ

δ

(b)

Figure 1 (a) University of Minnesota Plane Strain Apparatus; (b) Specimen geometry with principal
stresses and corresponding strains.
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with no restriction. The apparatus is internally instrumented with five pressure resistant
LVDTs for measuring axial and lateral displacements, two load cells for measuring axial
force, and four strain gages formeasuring strains on the specimen and the deformation of
the biaxial frame. The two surfaces of the specimen exposed to confining pressure are
sealed by a polyurethane coating; metal targets glued to the specimen provide firm
contact points for the lateral LVDTs. The four surfaces in contact with polished-steel
platens are covered with a stearic acid lubricant to reduce frictional constraint (Labuz&
Bridell, 1993).

2.1 Experiments

Plane strain experiments were performed on Red Wildmoor sandstone with a poros-
ity of 25.8% and uniaxial compressive strength Co = 10.0 MPa; the uniaxial test gave
Young’s modulus E = 2.0 GPa and Poisson’s ratio ν = 0.34. The grains of the
sandstone are subrounded with a mean grain diameter of 0.1 mm. Closed-loop,
servo-controlled tests with lateral displacement as the feedback signal were con-
ducted at confining pressures (σ3) of 3.5 and 10.0 MPa. For convenience, force and
displacement are taken positive for compression and shortening (cf. Jaeger et al.,
2007).

Figure 2 shows the axial load and lateral displacement responses as a function of
axial displacement. The brittle nature of the rock is apparent for 3.5MPa test; in post-
peak, the axial force dropped sharply with little change in axial displacement
(Figure 2a). In fact, the response of the axial displacement was to decrease or snap-
back, which was possible to observe because of lateral displacement control. Note
that this class II snapback behavior is not constitutive response but is due to the
“system” containing the displacements along the failure plane and from the elastic
unloading of the specimen, and these involve modulus, fracture parameters, and size
(explained in Section 4). As confinement increased to 10 MPa, the global response
was no longer class II; load reduced with a small increase in axial displacement to a
residual level (Figure 2b). The orientations of the failure plane relative to the lateral
(minimum stress) direction were 63o and 58o, an indication that dilatancy and
friction are pressure dependent.

2.2 Dilatancy and friction

Themajor principal strains are calculated from the global displacements (ε1 = εyy = Δh/h,
ε2 = εzz = 0, ε3 = εxx = Δw/w) such that volume strain ε and shear strain γ are simply

ε ¼ ε1 þ ε3; γ ¼ ε1 � ε3 ð1Þ
which can be decomposed into incremental elastic and plastic (inelastic) components:

Dε ¼ Dεe þ Dεp; Dγ ¼ Dγe þ Dγp ð2Þ
The plastic strains were determined from the measured total strains and the calculated
elastic strains (constant E, ν) at the start of nonlinear volume strain behavior (Riedel &
Labuz, 2007), and the plastic volume response is shown in Figure 3a. The dilatancy
angle ψ (Hansen, 1958) is determined by
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sin ψ ¼ �Dεp

Dγp
ð3Þ

and ψ as a function of plastic shear strain is illustrated in Figure 3b. At low confinement
(σ3 = 0.35Co), the rock compacted very little before dilating and reached a dilation
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Figure 2 Load – displacement response of sandstone at (a) 3.5 MPa confinement and (b) 10.0 MPa
confinement; the shear band traversed the specimen and slip displacement started at B.
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angle at peak stress ψ = 17o. At high confinement (σ3 = Co), the sandstone displayed
compaction followed by peak dilation ψ = 14o.

The Mohr-Coulomb (MC) failure criterion can be written as

sin �m ¼ t
s� Vo

ð4Þ

where (2D) mean stress s = (σ1 + σ3)/2, shear stress t = (σ1 − σ3)/2, the parameter Vo = So/
tanϕp is the intercept at t = 0, So is the shear stress intercept also known as cohesion c, and
ϕp is the peak friction angle. The sandstone is assumed to have a linear yield envelope
with constant Vo and increasing friction (and cohesion). The relationship between
mobilized friction angle ϕm and plastic shear strain showed sensitivity to pressure
(Figure 4): as pressure increased, ϕm decreased. Friction angles were different at the
two confining pressures, suggesting a nonlinear failure envelope.

3 FAILURE CRITERIA

The MC criterion of Equation 4, which is a reasonable approximation in the brittle
regime over a limited range of mean stress, can be written (a, c are material
parameters):

aσ1 þ cσ3 ¼ 1 ð5Þ
which represents a plane in principal stress space σ1, σ2, σ3, but it is natural to
consider
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Aσ1 þ Bσ2 þ Cσ3 ¼ 1 ð6Þ

which is called Paul-Mohr-Coulomb (PMC) byMeyer & Labuz (2013). Note that PMC
includes σ2. PMC can be evaluated by performing conventional triaxial testing on a right
circular cylinder, where axial (vertical) stress σa = σV is applied independent of radial
(horizontal) stress σr = σH = σh so that either compression (σr = σ2 = σ3) or extension failure
(σr = σ1 = σ2) can be achieved. The generalized pyramidal failure surface, Equation 6, was
proposed by Paul (1968), a simple version by Haythornthwaite (1962), and it can be
written as

σ1
Vo

1� sin �c

2 sin �c

� �
þ σ2
Vo

sin �c � sin �e

2 sin �csin �e

� �
� σ3
Vo

1þ sin �e

2 sin �e

� �
¼ 1 ð7Þ

where ϕc is the internal friction angle for compression (σ2 = σ3), ϕe is the internal friction
angle for extension (σ2 = σ1), and Vo is the intersection of the failure surface with the
hydrostatic axis (σ1 = σ2 = σ3); Vo represents all-around equal tension and it is not
measured in experiments.

For isotropic rock, the orientation of the principal stresses does not matter and they
can be relabeled as σV, σH, σh and interchanged as major, intermediate, and minor
principal stresses. Because of the six orderings of the principal stresses, six planes can be
constructed in σV, σH, σh space giving an irregular hexagonal pyramid (Figure 5a). The
plane normal to the hydrostatic axis is called the π-plane and the projections of the
coordinate axes are labeled σ

0
V , σ

0
H, σ

0
h (Figure 5b); stress paths are shown for

conventional triaxial compression and extension, and plane strain compression.
As reported in Table 1, triaxial compression and extension data from Papamichos

et al. (2000), along with the plane strain data, were used to find the best-fit plane
(Figure 6a) and the coefficientsA, B, C (Makhnenko et al., 2015); note that because of
isotropy, the extension data can be “moved” to the plane containing the compression

hydrostatic axis

conventional triaxial compression
conventional triaxial extension
plane strain compression

σ'h

σh

σ'H

σH
σ'H

σ'h

σ'v

σ'vσv

(a) (b)

Figure 5 Linear failure surfaces with stress paths in (a) principal stress space, (b) π-plane view.
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data. The friction angles in compression and extension are ϕc = 30.6° and ϕe = 37.8°,
demonstrating an intermediate stress effect for the rock. From the vertex Vo = 8.7
MPa, the cohesions in compression and extension are cc = 5.3 MPa and ce = 7.0 MPa.
The view in the π-plane showing the plane strain data is given in Figure 6b.

4 SOFTENING

Figure 7 shows a close-up of the mechanical response around peak load, including the
decrease in force with increase in lateral displacement known as softening, although
this is not material response because of the failure process. From observations of

Table 1 Principal stresses at failure for plane strain compression (BXC) and conven-
tional triaxial compression (TXCO) and extension (TXEX) experiments.

Test name σ1 [MPa] σ2 [MPa] σ3 [MPa]

BXC-1 17.0 7.8 0.4
BXC-2 33.4 12.3 3.5
BXC-3 56.0 22.5 10.0
TXCO-1 15.1 0.4 0.4
TXCO-2 21.3 1.4 1.4
TXCO-3 30.0 3.5 3.5
TXCO-4 41.7 6.9 6.9
TXCO-5 49.8 10.3 10.3
TXEX-6 60.0 60.0 8.1
TXEX -7 52.5 52.5 5.9
TXEX -8 48.0 48.0 4.4
TXEX -9 45.0 45.0 3.3
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acoustic emission locations and optical microscopy, it is clear that strain localization –

the shear band – is formed at or slightly before peak load but it does not traverse the
specimen (Carvalho & Labuz, 2002; Labuz et al., 2006); propagation of the shear band
(unstable crack growth) is responsible for initial softening after peak. Once a mechanism
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showing class II behavior and (b) 10.0 MPa confinement showing class I.

On yielding, failure, and softening response of rock 373



is formed,whichmeans that the shear band is fully developed, the upper block slideswith
a normal component associated with either compaction or dilation (Figure 8).

4.1 Shear band characteristics

From the plane strain experiments, the softening response of the specimen (Figure 8)
with the shear band angle θ, measured from σ3, can be determined from the shear stress
τ = t(sin2θ) and slip displacement δ:

δ ¼ ½ðΔuÞ2 þ ðΔvÞ2�1=2 ð8Þ
where Δu is the lateral displacement of the upper block sliding along the shear band and
Δv is the axial component of sliding (Figure 9a). The angle β is the orientation of the
resultant displacement Δr ¼ ½ðΔuÞ2 þ ðΔvÞ2�1=2:

cos β ¼ Δu
Δr

ð9Þ

For both experiments, the shear band compacted (negative dilation) with slip before
reaching the residual value of zero dilation (Figure 9b). For the 10 MPa experiment,
Figure 10 describes how the shear stress degraded from a value τp corresponding to the
onset of slip (not at peak force) to a constant residual level τr, when δ exceeds a critical
amount of slip δc = 0.35mm for this sandstone. The energy per unit area dissipated along
the shear band is (Palmer & Rice, 1973; Rice, 1980; Wong, 1982)

Gc ¼
ðδc
0
ðτ � τrÞdδ ð10Þ

given by Gc = 1.14 kJ/m2. A summary of the material and shear band characteristics
is contained in Table 2, along with data from an additional experiment performed at
σ3 = 15.0 MPa.

4.2 Stability analysis

To explain the softening response for the plane strain compression test, we modify the
plane stress analysis presented by Labuz&Biolzi (1991). Once the shear band develops

Shear
band

σ3

σ1

σ

τ

θ

θ

δ

Δv
Δr

Δu

β

Figure 8 Loading and kinematics of the shear band.

374 Labuz et al.



across the entire specimen, further displacement involves the rock outside the band
unloading elastically, while rock inside the band deforms such as to give a net slip δ
with decreasing stress τ. The relation between δ and τ follows the slip-weakening model
of Palmer &Rice (1973), where the shear stress decreases from a value τp at the start of

(a)

(b)

0

0.1

0.2

0.3

0.4

0

A
xi

al
 d

is
pl

ac
em

en
t [

m
m

]

(–) Lateral displacement [mm]

3.5 MPa (θ = 63°)

10 MPa (θ = 58°)

–20

–15

–10

–5

0

D
ila

tio
n 

an
gl

e 
[d

eg
re

es
]

3.5 MPa

10 MPa

0.10.080.060.040.02

0
(–) Lateral displacement [mm]

0.10.080.060.040.02

Figure 9 Shear band (a) kinematics and (b) dilation angle for the sandstone.
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slip to the residual value τr at a critical amount of slip δc. The behavior shown in
Figure 10 is approximated by a linear function:

δ ¼ δc 1� Dτ
Dτp

� �
ð11Þ

where Δτ ¼ τ � τr and Δτp ¼ τp � τr.
Consider the plane strain specimen of height h and widthw that behaves linearly up to

peak load, at which point a shear band of angle θ forms with the slip-weakening consti-
tutive relation. The total displacement v is due to the rock, testing machine, and shear
band:

v ¼ h
2μ

½Dσð1� �Þ þ σ3ð1� 2�Þ� þw
k0 ðDσ þ σ3Þ þ δc 1� Dτ

Dτp

� �
sin θ ð12Þ

Table 2 Summary of the sandstone parameters from plane strain experiments.

Parameter 3.5 MPa 10 MPa 15 MPa

Dilatancy angle (peak) 17 14 10
Friction angle (peak) 36 31 29
Shear band angle 63 58 52
Residual /peak shear stress 0.43 0.66 0.88
Critical slip displacement [mm] 0.40 0.35 0.27
Dissipated energy [kJ/m2] 0.83 1.14 0.22
Brittleness number 0.96 1.46 1.56
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where Δσ = σ1 − σ3, μ = shear modulus, 2μ = E/(1 + ν), and k0 is the testing machine (load
frame) stiffness per unit thickness b.

Apply the incremental stability condition for critical softening dv/dΔσ = 0 to
Equation 12:

h
ð1� vÞ
2μ

þw
k0 ¼

δcsin
2θ cos θ

τp � τr
ð13Þ

where τ = Δσ sinθ cosθ. Because fracture energy and Young’s modulus are more readily
identified than critical slip displacement and shear modulus, it is convenient to sub-
stituteGf for δc and E for μ, with f(θ) = sin2θ sinθ , λ = h/w, E0 = E/(1 − ν2) and the final
result is

1
f θð Þ λþ E

0

k0

� �
¼ GfE

0

w τp � τr
� 2 ð14Þ

A number of interesting features in Equation 14 are noted:

− Material properties, specimen size and shape, as well as confinement (mean
stress), which influences both Gf and (τp − τr), are important for determining
stability.

− Machine stiffness influences the post-peak response, but it is not the sole factor.
Even for an infinitely stiff machine, a class II behavior can still be observed.

− Abrittleness numberBn ¼ GfE
0
=½wðτp � τrÞ2� appears with a size dependence, such

that for specimens smaller or larger than some width w and the same material
properties E0, Gf, and (τp − τr), the response is stable for small w and unstable for
large.

− The LHS > RHS in Equation 14 predicts class II response, and the smallest Bn is
associated with the 3.5 MPa experiment (Table 2), which exhibited class II
behavior.

5 SUMMARY

The material and softening behavior of rock can be studied using a Vardoulakis-
Goldscheider plane strain apparatus, which combines the positive features of a con-
stitutive (plane strain) compression test, such that the two-dimensional material beha-
vior, including dilatancy and friction, can be evaluated, and a direct shear test, such that
the shear stress-slip displacement and dilatancy characteristics of the shear band can be
measured. Although the nature of the inelasticity (microcracking, intergranular sliding,
etc.) was not identified, the inelastic (plastic) response can be determined by removing
the elastic response, in an incremental approach.

The softening behavior of a rock is not an essential material property but simply a
typical global response, as failure occurs in a manner described by the slip-weakening
model of fracture. Furthermore, the stability is dependent not only on machine stiff-
ness, but also on geometry and size of the specimen.
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Chapter 13

True triaxial testing of rocks and the
effect of the intermediate principal
stress on failure characteristics
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3Currently at Department of Geophysics, Stanford University, Stanford, CA, USA

Abstract: We review the research conducted at the University of Wisconsin in the last
two decades in the area of true triaxial testing of rocks. We designed and fabricated
equipment (the UW true triaxial testing system) capable of applying three different
compressive loads on mutually perpendicular faces of cuboidal rock specimens. The
equipment was used to carry out extensive series of true triaxial experiments in an array
of rocks, from strong crystalline to weak porous clastic. The results revealed the
substantial effect of the intermediate principal stress on failure characteristics, in
terms of the failure stress, failure-plane angle, and failure mode. True triaxial failure
criteria incorporate the intermediate principal stress, and expose the inadequacies of
the commonly employed criteria, such as the Mohr and Mohr-Coulomb theories,
which consider only the two extreme principal stresses.

1 INTRODUCTION

1.1 Background

One of the main objectives of laboratory testing of rock is to determine its deformation
and failure characteristics when subjected to stress conditions comparable to those
encountered in situ. Most rock mechanics experiments to date are conducted on
cylindrical specimens subjected to uniform lateral confining pressure. Such ‘conven-
tional triaxial tests’ replicate unique crustal stress conditions, in which the intermediate
and theminor principal stresses, σ2 and σ3, are equal (triaxial compression), or in which
the intermediate and the major principal stresses σ2 and σ1 are equal (triaxial exten-
sion). Conventional triaxial tests have been widely used for the study of mechanical
characteristics of rocks because of equipment simplicity and convenient specimen
preparation and testing procedures. The justification for the use of conventional
triaxial tests is the assumption that σ2 has a negligible effect on rock failure character-
istics, as expressed in the Coulomb,Mohr, and Griffith failure criteria (Jaeger &Cook,
1979, p. 106).

However, a growing number of in situ stress measurements have shown that the state
of stress at varying depths is typically anisotropic, i.e. σ1 ≠ σ2 ≠ σ3 (McGarr & Gay,
1978; Haimson, 1978; Brace & Kohlstedt, 1980). Moreover, increasingly researchers
have faced situations in which the above-mentioned failure criteria were found lacking.



For example, Vernik & Zoback (1992) found that use of the linearized Mohr failure
criterion (also called ‘Mohr-Coulomb’) in relating borehole breakout dimensions to the
prevailing in situ stress conditions in crystalline rocks did not provide realistic results.
They suggested the use of a more general criterion that accounts for the effect of the
intermediate principal stress on failure. Also, Ewy (1998) reported that the Mohr-
Coulomb criterion is significantly too conservative for the purpose of calculating the
critical mud weight necessary to maintain wellbore stability. He suggested that the
reason was the limitation of the Mohr-Coulomb, which neglects the perceived rock
strengthening effect of the intermediate principal stress.

The potential effect of σ2 on rock failurewas studied as early as the 1960’s byMurrell
(1963) and Handin et al. (1967). Murrell compared the failure stress levels from two
different series of conventional triaxial tests on Carrara marble: triaxial compression
(σ1 > σ2 = σ3) and triaxial extension (σ1 = σ 2> σ3). He noted that the ultimate level of σ1
(σ1,peak) required to bring about failure for any known σ3 was larger in triaxial exten-
sion than in triaxial compression, implying that the intermediate principal stress does
affect the failure process. Handin et al. carried out similar tests in Solnhofen limestone,
Blair dolomite, and Pyrex glass. Their test results were similar to those of Murrell’s,
reinforcing the need to further investigate the effect of σ2 on failure of rock.

Wiebols&Cook (1968) took a different path to study the effect of σ2 on rock failure.
They employed the strain energy stored by the solid rock, and the additional strain
energy around Griffith cracks resulting from the sliding of crack surfaces, in order to
derive a failure criterion. They found that under true triaxial compressive stresses (i.e.
σ1 ≥ σ2 ≥ σ3) the intermediate principal stress has a definite effect on failure, which can
be predicted if the coefficient of sliding friction between crack surfaces is known.
Wiebols & Cook (1968) determined from their model that if σ3 is held constant and
σ2 is increased from σ2 = σ3 to σ2 = σ1 the failure stress first rises, reaches a maximum at
some value of σ2 and then continuously decreases to a level slightly higher than that
obtained in a conventional triaxial test, i.e. when σ2 = σ3.

Mogi (1971) took the investigation of the σ2 effect on rock failure to a new level, with
the fabrication of a novel apparatus that enabled the nearly friction-free application of
three independent, mutually perpendicular, uniform loads to the faces of a cuboidal
specimen. He subjected Dunham dolomite, followed by other rocks, to several levels of
σ3, and for each σ3, to different intermediate principal compressive stresses, σ2. For
each applied stress configuration, he raised σ1 to failure. With these first true triaxial
experiments, Mogi demonstrated that rock failure is a function of σ2 in a manner quite
similar to that predicted by Wiebols & Cook (1968) theoretically.

At the University of Wisconsin (UW), we have designed and fabricated a new true
triaxial testing system suitable for even the strongest rocks, which emulates Mogi’s
(1971) original design, with significant simplifications (Haimson&Chang, 2000). The
tests described in this paper were all conducted in the UW true triaxial system.

1.2 The UW true triaxial testing system

The UW true triaxial testing system enables the application of high, uniform compres-
sive loads in three principal directions to a cuboidal specimen of size 19 × 19 × 38 mm3

(up to: σ1, σ2 = 1600 MPa, σ3 = 400 MPa). The system consists of two main parts, a
biaxial loading apparatus and a true triaxial pressure vessel. The biaxial apparatus
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facilitates the application of two independent perpendicular stresses, σ1 (along the long
axis of the specimen) and σ2 (along one of the lateral directions) (Figure 1). These two
stresses are transmitted to the rock specimen via orthogonal pairs of pistons located in
the true triaxial pressure vessel. Thin copper shims coated with amixture of stearic acid
and Vaseline at a 1:1 weight ratio, are placed between the pistons and the specimen
faces in order to minimize friction. Loading in the third principal direction (σ3) is
applied directly by hydraulic fluid inside the pressure vessel. Thin polyurethane coating
on the specimen open faces prevents fluid from infiltrating into the specimen. The entire
system is compact, portable, and self-contained.

The pair of specimen lateral faces subjected directly to hydraulic pressure is also used
for mounting strain gages, thermocouples, and acoustic emission transducers, as
needed. Strains in the major and intermediate directions (ε1 and ε2) are measured by
strain gages bonded directly to these faces and oriented in the respective principal
directions. For the measurement of ε3, we designed and fabricated a beryllium-copper
strain-gaged beam, the ends of which are fixed, and whose center is forced to make
contact with a pin bonded to the exposed face of the specimen (Figure 2). As the rock
specimen expands in the σ3 direction during compressive loading, the beam flexes,
allowing the strain gagesmounted near its ends tomonitor the calibrated least principal
strain.

The two loads applied mechanically to the specimen are monitored by load cells
mounted on respective pistons inside the true triaxial pressure vessel and, as a backup,
by pressure transducers installed in the corresponding hydraulic fluid lines. The load in
the third direction is monitored directly by a pressure transducer in line with the
hydraulic fluid pressure. The true triaxial pressure vessel has a total of sixteen insulated
electrical feedthroughs, which allow data from strain gages, acoustic emission sensors,

a

(a)

(b)

b c d e

f

f

σ3

σ1

σ2

Figure 1 Schematic diagram of the UW true triaxial testing apparatus: (a) cross section and (b) profile; a.
biaxial loading apparatus; b. true triaxial pressure vessel; c. loading pistons; d. confining fluid; e.
metal spacers; f. rock specimen.
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or thermocouples mounted on the specimen to be recorded using a data acquisition
program.

A standard aluminum sample of same dimensions as those of the rock specimens
(19 × 19 × 38 mm) was used to verify the uniformity of the stresses applied to the
specimen faces by the two pairs of loading pistons, and to calibrate the respective
load cells.

1.3 Calibration

Calibration of the axial load cell was carried out in the true triaxial pressure vessel
by first applying a hydrostatic state of stress to the aluminum specimen, and then
monotonically increasing σ1 while maintaining uniform lateral pressure (σ2 = σ3),
and recording the axial load-cell and strain outputs. The same procedure was
followed for the calibration of the lateral load cell. A consistent ratio of load-cell
voltage to stress was recorded both during the initial hydrostatic loading and
through the axial or lateral stress increase, regardless of the amount of confining
pressure.

The strain-gaged beam designed for measuring ε3, i.e. the strain in the σ3 direction,
was calibrated by subjecting the aluminum specimen to uniaxial loading and recording
simultaneously the voltage output from the beam strain gages and the strain measured
in the same direction by strain gages mounted directly on the specimen.

1.4 True triaxial testing procedure

Testing procedure begins with the insertion of a cuboidal rock specimen (with or
without strain gages bonded to the faces aligned the minimum principal stress,
depending on the purpose of the test) into the true triaxial cell and the application
of monotonically rising hydrostatic loading. As σ3 and then σ2 reach their predeter-
minedmagnitudes, they are kept constant for the remainder of the test. Loading in the
σ1 direction continues either by monotonically increasing the stress at a constant rate

a

b

c

d

e

σ1 σ1

σ3
σ2

Figure 2 Schematic diagram of the specimen assembly with the installed strain-gaged beam: a. strain
gages; b. polyurethane coating; c. beam; d. steel pins; e. base plate.
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of 1 MPa/sec, or by raising the least principal strain (ε3) at a rate of 5×10−6/sec, until
failure occurs (Figure 3). The failure stress, or σ1,peak does not appear to be affected by
the loading mode, but the ε3-controlled tests allow one to observe post failure
behavior.

2 TRUE TRIAXIAL FAILURE IN CRYSTALLINE ROCKS

2.1 Failure stress (σ1,peak)

An extensive series of true triaxial tests was carried out in three crystalline rocks using
the UW true triaxial testing system. We present herein the results obtained in Westerly
granite (Haimson & Chang, 2000), KTB amphibolite (Chang & Haimson, 2000) and
SAFOD granodiorite (Lee & Haimson, 2011).

All three rocks have a very low porosity (under 1%). Westerly granite, quarried in
Rhode Island, USA, is informally considered a standard rock type for rock mechanics
testing, because it is nearly isotropic, approximately linear elastic, and homogeneous
(Brace, 1964; Wawersik & Brace, 1971; Wong, 1982; Lockner et al., 1991). KTB
amphibolite, extracted from a depth of 6.4 km in the super-deep scientific borehole
drilled by the German Continental Deep Drilling Program (KTB) in Bavaria, Germany,
is also nearly isotropic and linear elastic (Vernik & Zoback, 1992; Röckel & Natau,
1995). The SAFOD granodiorite, recovered from a depth of 1.4 km in the San Andreas
Fault Observatory at Depth (SAFOD) main drillhole, California, USA, although line-
arly elastic, exhibits some degree of inhomogeneity with respect to compressive failure
(Lee & Haimson, 2011).

Testing procedure for all three crystalline rocks consisted of first simultaneously
raising the three compressive principal stresses from zero to a preset level, then holding
σ3 constant while raising the other two principal stresses together to a higher preset
level, followed by continuing loading in the σ1 direction while holding both σ2 and σ3 at
their predetermined values, until failure occurred (Figure 3).

Several levels of σ3 were employed for each rock between 0 MPa and 100 MPa (in
Westerly granite), 0−150 MPa (in KTB amphibolite), and 0−160 MPa (in SAFOD
granodiorite), and for every σ3 the magnitude of σ2 was varied from test to test
between σ2 = σ3 and σ2 = kσ3, where k was either 4 or 5. Figure 4 shows the results
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Figure 3 True triaxial loading path under stress-control mode.
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of these tests for each rock in the form of the failure stress (peak σ1 at failure, σ1,peak)
as a function of the applied σ2 for different σ3 levels. For each level of σ3, the lowest σ2
tested (σ2 = σ3) yielded a data point that can be used for establishing the conventional
triaxial failure criterion, and can be fitted by a Mohr-type failure envelope (depicted
by a solid curve in Figure 4). Mohr failure criteria, also called two-dimensional
criteria (because of their definition in terms of only σ1 and σ3 at failure, neglecting
σ2), are commonly utilized in rock engineering industry under the assumption that
failure stress is affected only the least principal stress, σ3.

The true triaxial failure stress, σ1,peak, plotted as a function of σ2 for given constant
σ3, and fitted by second order polynomial functions (dashed lines) first rises signifi-
cantly with increasing σ2, but reaches a plateau as σ2 attains magnitudes several times
larger than σ3. At the highest magnitudes of applied σ2, an initial failure stress degrada-
tion is typically observed (Figure 4). The increase in σ1,peak with σ2 is remarkable. For
example, in Westerly granite at σ3 = 20 MPa, σ1,peak at σ2 = σ3 is 430 MPa, but as σ2 is
elevated to 200 MPa, σ1,peak rises to 640 MPa, an increase of 49%. Even at σ3 = 100
MPa, when the applied σ2 is 260 MPa, failure stress rises by 18% over its base value.
Similarly in KTB amphibolite, failure stress rises by about 50%when σ3 = 30MPa and
the applied σ2 is at least 200 MPa, and by 30% at σ3 = 100 MPa, when σ2 rises to 300
MPa. It should be noted that the general true triaxial failure characteristics of the tested
crystalline rocks is qualitatively similar to the theoretical prediction of Wiebols &
Cook (1968) and to experimental results obtained by Mogi (1971) in Dunham
dolomite.

True triaxial testing clearly demonstrates that failure of crystalline rocks is signifi-
cantly affected by the magnitude of the intermediate principal stress, and that the
traditional two-dimensional failure criteria, such as Mohr-Coulomb, Mohr, and
Griffith criteria, characterize only the special case in which σ2 = σ3, and not the general
stress conditions. In fact the two dimensional failure criteria only predict the lowest
failure stress for a given σ3, and thus yield merely a conservative estimate of rock
failure.
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2.2 Failure plane angle (θ)

Failure of the three crystalline rocks in all tested ranges of σ2 and σ3 occurs unambigu-
ously in brittle mode along a high-angle failure plane (Figure 5). The failure plane (or
‘shear band’; also called ‘fault’) consistently strikes in the σ2 direction and dips steeply
in the σ3 direction. The failure-plane angle (θ), defined as the angle between the normal
to the failure plane and σ1 direction, varies as a function of both σ3 and σ2 (Figure 6).
The angle tends to decrease with increasing σ3. However, for a given σ3, failure-plane
angle increases as the level of σ2 is raised. The increase can be well fitted by a linear
function (dashed line in Figure 6). The angle increase is qualitatively similar in all three
rocks. For each constant σ3, andwithin the σ2 range tested, failure-plane angles increase
by as much as 20° from their base values (σ2 = σ3). This demonstrates a significant σ2
effect on rock failure characteristics.
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Figure 5 Typical examples of failed crystalline rock specimens after true triaxial tests, showing high-
angle fault planes: (a) Westerly granite, (b) KTB amphibolite and (c) SAFOD granodiorite.
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2.3 True triaxial failure criterion for crystalline rocks

The true triaxial test results in crystalline rocks demonstrate that three-dimension
criteria in terms of all the three principal stresses are necessary to fully characterize
failure under general stress conditions. We propose a failure criterion based on Nadai
(1950) that is entirely experiment-based, utilizing the results of a comprehensive
series of true triaxial tests conducted at realistic stress levels of σ2 and σ3. The strategy
is analogous to the case for establishing the empirical two-dimensional Mohr
criterion.

The Nadai criterion is expressed in terms of the two stress invariants, τoct,f (octahe-
dral shear stress at failure) and σoct,f (octahedral normal stress, or mean stress, at
failure) in the general form of

τoct;f ¼ f ðσoct;fÞ ð1Þ
where τoct;f ¼ 1=3½ðσ1;peak � σ2Þ2 þ ðσ2 � σ3Þ2 þ ðσ3 � σ1;peakÞ2�0:5, σoct;f ¼ ðσ1;peak þ

σ2 þσ3Þ=3, and f is a function that varies from rock to rock.
Figure 7 presents for each of the tested crystalline rocks, the variation of τoct,f

with σoct,f, where both variables are calculated from the major principal stress at failure
(σ1,peak) and the respective applied σ2 and σ3. In all three rock types, the average τoct,f
rises monotonically with σoct,f, although data points appear to scatter especially as σoct,f
increases. In Figure 7, we use power law functions to best fit the experimental data, in
the form of

τoct;f¼mðσoct;fÞn ð2Þ
where m and n are empirical constants determined from the experimental results.

Further study of the test results plotted in Figure 7 indicates that the observed scatter
is not random. Rather, the wide range of σoct,f that fit the same magnitude of τoct,f is a
function of the different σ2 in each of the data points. The relative magnitude of σ2
between σ2 = σ3 and σ2 = σ1 can be expressed by a stress ratio parameter, b (Lade &
Duncan, 1973; Zhang et al., 2010), defined as b = (σ2 – σ3)/(σ1 – σ3). The parameter b is
0 when σ2 = σ3, and 1 when σ2 = σ1. In Figure 8 we plotted the true triaxial failure
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stresses in terms of τoct,f and σoct,f using specific shades of gray matching individual b
value. We observe that there is a systematic pattern of σoct,f distribution for each
magnitude of τoct,f, depending on the b value. For each level of τoct,f, the smallest σoct,f
is the one corresponding to b=0, and the magnitude of σoct,f increases with the b value.

Thus, we propose an ‘ExtendedNadai Criterion’ that presents the relationship τoct,f =
f(σoct,f) for each b value employed during testing (Figure 8). Since the number of
b parameters tested for each τoct,f magnitude is finite, interpolation between adjacent
tested b values should yield fairly accurate failure criteria even in cases where the
respective b value has not been tested.

Within the range of σ2 used in the true triaxial tests of the three crystalline rocks,
the two extreme cases of the respective Extended Nadai Criterion are for b = 0 and for
b = 0.4 or b = 0.5, depending on the tested rock. Specifically, for Westerly granite:

τoct;f ¼ 2:71ðσoct;fÞ0:85 for b ¼ 0ð Þ ð3aÞ
τoct;f ¼ 1:57ðσoct;fÞ0:89ðfor b ¼ 0:4Þ ð3bÞ

for KTB amphibolite:

τoct;f ¼ 2:85ðσoct;fÞ0:82ðfor b ¼ 0Þ ð4aÞ
τoct;f ¼ 1:27ðσoct;fÞ0:91ðfor b ¼ 0:5Þ ð4bÞ

for SAFOD granodiorite:

τoct;f ¼ 4:58ðσoct;fÞ0:70ðfor b ¼ 0Þ ð5aÞ
τoct;f ¼ 2:88ðσoct;fÞ0:74ðfor b ¼ 0:5Þ ð5bÞ

Similar best fitting curves, representing Extended Nadai Criteria for specific b values
between the two extreme values, can be obtained experimentally.
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3 TRUE TRIAXIAL FAILURE IN CLASTIC ROCKS

3.1 Failure stress (σ1,peak)

True triaxial tests leading to compressive failure in clastic rocks were conducted on
TCDP (Taiwan Chelungpu-fault Drilling Project) siltstone (Oku et al., 2007),
Coconino sandstone (quarried in northern Arizona; Ma, 2014) and Bentheim sand-
stone (quarried inGermany,Ma, 2014). The porosities of the three rocks vary from 7%
(TCDP siltstone), to 17% (Coconino sandstone), to 24% (Bentheim sandstone).

Tests were carried out for six levels of constant σ3 between 0 and 100MPa in TCDP
siltstone, and eight levels of constant σ3 between 0 and 150 MPa in Coconino and
Bentheim sandstones.Within each series of constant σ3, the magnitude of σ2 was varied
from test to test, covering the range from σ2 = σ3 to σ2 = σ1.

We first ran a series of tests in which the applied intermediate andminimumprincipal
stresses we kept equal (σ2 = σ3). These ‘conventional triaxial’ tests yielded the classic
Mohr failure criterion (Figure 9), i.e. the experiment-based variation of σ1, peak with σ3
(= σ2). A comparison between the three clastic rocks shows that σ1,peak is slightly larger
in Coconino sandstone than in TCDP siltstone while σ1,peak is substantially smaller in
Bentheim sandstone, regardless of σ3 (= σ2) magnitude. In all three rocks, failure stress,
σ1, peak, rises with σ3, albeit at a declining rate. This phenomenon is most apparent as
porosity increases, to the point where in Bentheim sandstone, the rise in σ1,peak appears
to level off when σ3 is about 100 MPa.

The true triaxial stress conditions at failure were plotted in Figure 10 in the form of
σ1,peak as a function of σ2 for each constant σ3. In all three rocks, σ1,peak increases with
σ2 for a given σ3, until a plateau is reached at some σ2 value, beyond which σ1,peak
gradually declines so that when σ2 approaches the magnitude of σ1, σ1,peak is approxi-
mately equal to its base value when σ2 = σ3. This typical ascending-then-descending
trend of σ1,peak can be well-fitted by a polynomial equation of the second order (as
represented by dashed curves for each constant σ3 series in Figure 10). Figure 10
supports observations in crystalline rocks that σ1,peak is a function of not only σ3, but
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Figure 9 Variation of σ1,peak with σ3 when σ2 = σ3 in TCDP siltstone, Coconino sandstone, and
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also of σ2, as shown in Figure 4 (see also Haimson, 2006; Haimson & Chang, 2000;
Chang & Haimson, 2000; Lee & Haimson, 2011; Mogi, 1971).

The σ2 effect on failure was evaluated for each constant σ3 series, by comparing the
maximum σ1,peak with its basemagnitudewhen σ2 = σ3. It was found that themaximum
increase of σ1,peak beyond its value when σ2 = σ3 (conventional triaxial tests) is
considerably lower than in crystalline rocks.

3.2 Failure mode and failure plane angle (θ)

In conventional triaxial compression tests (σ2 = σ3), failure-plane angle (θ) direction in
the three clastic rocks was random. However, under true triaxial stress conditions,
failure-plane angle was aligned with the σ3 direction, in accord with the findings in
crystalline rocks. Failure-plane angle was steep at low σ3, but gradually became
gentler with the rise in σ3 (Figure 11). As σ2 was raised beyond constant σ3, θ generally
increased monotonically (Figure 12). This trend can be approximated by a straight
line. For example, in TCDP siltstone at σ3 = 100MPa, θ increased with σ2 by as much
as 10° (from 60° at σ2 = σ3 = 100 MPa to 70° at σ2 = 400 MPa). In Coconino
sandstone, θ in specimens subjected to σ3 = 20 MPa increased with σ2 by 14° (from
62° at σ2 = 40MPa to 76° at σ2 = 215MPa). The angle increase for higher σ3 (= 100MPa)
was only 11°, from 52° at σ2 = 100MPa to 63° at σ2 = 494MPa (Figure 12). For the σ3 =
100 MPa series, the number of parallel and conjugate failure planes observed at σ2 = σ3
(brittle-ductile transition threshold) diminished as σ2 increased, while θ steepened. This
suggests that by raising σ2 beyond σ2 = σ3 = 100MPa, Coconino sandstone becamemore
dilatant and returned to its brittle condition.

The increase of θ in Bentheim sandstone was less pronounced than that observed in
TCDP siltstone and Coconino sandstone, and was limited to less than 10°. For low σ3
(= 30 MPa), the increase was 9° (from 57° at σ2 = 30 MPa to 66° at σ2 = 180 MPa)
(Figure 13); at σ3 = 80MPa, the increase in θwas slightly less, from 45° at σ2 = 80MPa
to 53° at σ2 = 285 MPa. The extreme case was the test series in which σ3 = 150 MPa,
where all specimens developed compaction bands (θ ≈ 0°), indicating no σ2
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dependence. Compaction bands result from localized compaction along a plane normal
to σ1 (θ ≈ 0°), reflecting compressive failure in highly porous rock subjected to high
confining stresses, σ2 and σ3, and is exhibited by pore collapse and grain shattering and
even crushing (Olsson, 1999).

As depicted in Figure 12, the increase in failure-plane angle in all three clastic rocks as
a function of σ2 was generally consistent with but was not as prominent as that
observed in crystalline rocks (up to about 20°, see Figure 5). The failure-plane angle
variation with σ2 for a constant σ3 revealed by the true triaxial tests contradicts the
Coulomb criterion assumption that failure-plane angle is a unique rock property. The
results are also in disagreement withMohr failure criterion, which neglects the effect of
the intermediate principal stress.
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3.3 True triaxial failure criterion for clastic rocks

FollowingNadai (1950), all failure related experimental results can be represented by a
single relationship (Equation 1). A summary of all stress conditions at failure in the
clastic rocks tested is displayed in Figure 14 in terms of τoct,f = f(σoct,f). In TCDP
siltstone and Coconino sandstone, as σoct,f increases, the average τoct,f continuously
rises, at a decreasing rate, up to the maximum applied σoct,f. In Bentheim sandstone, the
rising τoct,f reaches a peak when σoct,f ≈ 200 MPa, beyond which it continuously drops
with further rise in σoct,f. The best-fitting curve of the τoct,f = f(σoct,f) relationship forms a
‘cap’, the threshold of σoct,f beyond which less three-dimensional shear stress (τoct,f) is
required to bring about true triaxial failure. Such ‘caps’ have been typically found to
exist in high-porosity rocks within high σoct,f range, where rocks primarily fail due to
compaction rather than shearing (expansion, or dilatancy) (Wong et al., 1997; Olsson,
1999).

All three data sets in Figure 14 show considerable dispersion in the τoct,f–σoct,f
domain. To further identify the effect of σ2 on the τoct,f–σoct,f relationship, we intro-
duced the above-mentioned stress ratio b parameter (Lade & Duncan, 1973; Zhang
et al., 2010). In Figure 15, we re-plotted the same data points as shown in Figure 14,
with unique shades of gray corresponding to their b values (shades of gray bar shown in
figure). It is evident that for the same octahedral shear stress (τoct,f), rock subjected to
σ2 = σ3 (b = 0) requires the lowest mean stress (σoct,f) to induce failure, and that the
higher the b value, the larger the mean stress required. The maximum mean stress
needed for failure is when b = 1. For any b between 0 and 1, a τoct,f = f(σoct,f) relationship
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Figure 13 Photographs of specimen faces subjected to σ2 in Coconino (left) and Bentheim (right)
sandstones, showing the failure-plane angle increase with σ2 in true triaxial tests under
constant σ3.
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can be fitted by a b-specific second-order polynomial equation, carrying a very small
standard deviation.

For the two extreme b values the following true triaxial failure criteria were obtained
and plotted in Figure 15.

TCDP siltstone:

τoct;f ¼ 24:98þ 0:63σoct;f � 0:00062σoct;f
2 ðfor b ¼ 0Þ ð6Þ

(b = 1 tests were too few to produce a best-fitting curve in this rock.)
Coconino sandstone:

τoct;f ¼ 8:36þ 1:132σoct;f � 0:002σoct;f
2 ðforb ¼ 0Þ ð7aÞ

τoct;f ¼ 7:87þ 0:61σoct;f � 0:000332σoct;f
2 ðfor b ¼ 1Þ ð7bÞ

Bentheim sandstone:

τoct;f ¼ 2:98þ 1:139σoct;f � 0:0036σoct;f
2 ðfor b ¼ 0Þ ð8aÞ

τoct;f ¼ �5:82þ 0:836σoct;f � 0:0017σoct;f
2ðfor b ¼ 1Þ ð8bÞ
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As in the case of crystalline rocks, we propose that the true triaxial failure of clastic
rocks is best represented by the Extended Nadai Criterion in the form of τoct,f = f(σoct,f)
for each b value employed during testing. Since the number of b parameters that can be
tested for each τoct,f magnitude is limited, interpolation between adjacent tested
b values should yield fairly accurate failure criteria even in cases where the respective
b value has not been tested directly.

4 CONCLUSIONS

• We have designed, fabricated, and successfully calibrated and tested a new true
triaxial apparatus capable of applying three unequal loads to the faces of 19 × 19 ×
38 mm rock cuboids, with minimal friction.

• We completed an extensive series of tests in three crystalline rocks, Westerly
granite, KTB amphibolite, and SAFOD granodiorite, and obtained a true triaxial
failure criterion for each.

• We also completed similar series of tests in three clastic rocks, TCDP siltstone,
Coconino sandstone, and Bentheim sandstone, of porosities 7%, 17%, and 24%,
respectively, leading to a true triaxial failure criterion for each.

• We found that because of the effect of the intermediate principal stress on the
mechanical behavior of all tested rocks, not one single equation can correctly
represent the relationship between all the critical stresses leading to failure. Based
on our laboratory results, we propose an experiment-based Extended Nadai
Criterion, in which failure is defined by a Nadai-type relationship for the specific
relative magnitude of the intermediate principal stress between the minimum and
the maximum principal stresses.

• The true triaxial failure criterion for each of the crystalline and clastic rock-
stested, is superior to the commonly used Mohr, or Mohr-Coulomb criteria in
that it accounts for the significant effect of the intermediate principal stress. For
the same least horizontal stress, the maximum principal stress at failure may
increase by as much as 50% or more over that determined in a conventional
triaxial test, depending on the intermediate principal stress magnitude. An
important consequence is that when the difference between least and intermedi-
ate principal stresses is significant, use of a Mohr-type criterion may lead to
overly conservative predictions of instability. Conversely, back-calculating the
critical principal stresses active during an earthquake inducing fault initiation or
a wellbore breakout, may yield erroneous results unless a true triaxial strength
criterion is used.

• True triaxial tests reveal that for the same least principal stress, failure-plane angle
increases with the magnitude of the intermediate principal stress. This increase is
more prevalent in the crystalline rocks.
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Chapter 14

The MSDPu multiaxial criterion for
the strength of rocks and rock masses

L. Li, M. Aubertin & R. Simon
Department of Civil, Geological & Mining Engineering, École Polytechnique, Montréal,
Québec, Canada

Abstract: The natural and induced stresses near openings in rock media usually have
different magnitudes along different directions. These have to be taken into account for
stability analysis. A general multiaxial criterion was developed to assess the strength of
rocks and rock masses. The MSDPu criterion was formulated in a modular manner, so
it can be adapted to a variety of rock characteristics and structural calculations. The
main equations are presented in this chapter. Specific conditions are described, includ-
ing short term failure, initiation of damage, time effect, and the influence of scale and
defects. In the case of rock mass, the criterion includes a continuity parameter that can
be linked to the RMR geomechanical classification. The MSDPu criterion is compared
with other formulations to highlight some of the similarities and differences. Validation
and application of the criterion are illustrated using laboratory tests results; additional
studies also present the analysis of borehole stability and failure around large scale
excavations.

1 INTRODUCTION

The multiaxial stress state that exists in the rock around openings must be taken into
account to assess their behavior and stability. Many criteria have been proposed to
evaluate the possible occurrence of failure in rock media (e.g., Jaeger & Cook, 1979;
Franklin & Dusseault, 1989; Lade, 1993; Andreev, 1995; Sheorey, 1997) and other
similar materials (Wastiels, 1979; Meredith, 1990; Theocaris, 1995; Yu, 2002;
Papanikolaou & Kappos, 2007; Du et al., 2010; Lu et al., 2016). A variety of factors
may affect rock failure, including scale, time, and characteristics of the defect popula-
tion (from microcracks and pores to joints and faults).

The most popular expressions used in practice, such as the Coulomb (Lama, 1974;
Goodman, 1980) andHoek and Brown (1980a, 1980b, 1988, 1997) formulations, rely
on equations that involve only the major σ1 and minor σ3 principal stresses, hence
neglecting (or simplifying) the effect of the intermediate principal stress σ2. Commonly
used criteria also omit the influence of time and use simplified scaling parameters to go
from laboratory specimen to rock mass size. When combined with idealized constitu-
tive laws (such as linear elasticity), such simplifications may greatly help users faced
with actual stability calculations, while reducing the effort needed to obtain the
required material parameters. However, these simplifications can reduce significantly
the accuracy of the calculations.



Detailed studies required for some of the most challenging rock engineering pro-
jects, such as large scale caverns, transportation tunnels, underground storage reser-
voirs, and toxic waste disposal facilities, typically require the use of more elaborate
models developed over the years (e.g., Desai & Salami, 1987; Aubertin et al., 1994,
1998; Shao et al., 1996; Cristescu & Hunsche, 1997). Such models must rely on
representative expressions to define specific states, such as onset of cracking and
ultimate strength. These are usually expressed in stress space using an appropriately
formulated criterion.

Many relatively brittle materials (rocks, concrete, cast iron, ceramics) used by
engineers share common features. For instance, their uniaxial compression strength
C0 largely exceeds their axial tensile strength T0. Also, the maximum deviatoric stress
that can be supported largely depends on the loading geometry, with all three principal
stresses influencing their strength. The maximum load that can be supported is gen-
erally reached at small strain (ε < 1%), and the stress-strain curve beyond the peak
shows a significant drop (under a low confining pressure).

Failure of rock (and other brittle materials) is associated with the evolution of
micro-cracks and appearance of macro-cracks associated with localized deforma-
tions. Failure thus constitutes a limit condition that engineers want to avoid. The
failure condition is usually defined in stress space with a surface represented by a
mathematical expression known as the failure criterion. This expression and the
related parameters are generally obtained from laboratory tests performed under
well-defined stress path. The maximum load supported by the tested specimen repre-
sents the failure strength. Performing several tests under different loading conditions
gives different points on the failure surface. The selected mathematical expression is
often (partially) empirical, based on a good adjustment of the formulation to experi-
mental results. Many criteria have been developed for rocks and somewhat similar
(brittle) materials (see reviews by Andreev, 1995; Sheorey, 1997; see also Aubertin
et al., 1999, 2000). Each of these criteria has its advantages and limitations, and none
is universal or unanimously accepted.

The MSDPu criterion will be presented below, following a description of the main
features that are deemed required for a rock failure criterion.

General description of rock failure

Like many other brittle materials, rocks often have a low porosity (usually less than a
few percent). Their failure surface in the principal stress space, which represents the
locus of the peak strength, is closed along the axes of negative (tensile) stresses and it
remains open along the positive (compressive) stresses axes.

Before reaching failure, different stages are encountered (Paterson, 1978; Aubertin
& Simon, 1997). For instance, a hard rock specimen submitted to an unconfined
uniaxial compression test first shows a stage of tightening (or elastic contraction) due
to the closure of micro cracks, followed by a stage of linearly elasticity, then a stage of
inelasticity when the applied stress exceeds the threshold of crack propagation. This
crack propagation can eventually drive the sample to failure at peak strength.

Such failure usually results from the propagation and eventual coalescence of micro-
cracks (Li &Nordlund, 1993; Germanovitch et al., 1996). The onset of crack propaga-
tion and their subsequent interaction leading to the failure depend on the path followed
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in the stress space. The application of compressive stresses, which tend to close some of
the micro cracks, results in the mobilization of frictional resistance on the contact faces
(McClintock & Walsh, 1962); this effect is related to the influence of the hydrostatic
component of the stress tensor on the propagation threshold and on the ultimate
strength of rocks.

Description of the failure envelope

The failure surface can be represented in the tridimensional space of principal stresses
σ1, σ2, σ3 (with σ1 ≥ σ2 ≥ σ3). It can also be visualized in the octahedral (π) plane and in
the I1 ‒ J2

1/2 plane (where I1 is the first invariant of the stress tensor σij; J2 is the second
invariant of the deviatoric stress tensor Sij).

Fig. 1 shows this surface, for the MSDPu criterion, in the conventional triaxial
compression (CTC) test stress plane,

ffiffiffi
2

p
σx � σz (where σx = σy, represents the stress

applied along the horizontal (radial) axes, and σz is the vertical stress). The shape of this
criterion is based on physical and phenomenological considerations, which can be
summarized by using specific points and segments identified on the curve of ultimate
strength shown in Fig. 1.

When the specimen is submitted to uniaxial loading, its resistance is C0 in compres-
sion and T0 in tension (T0 < 0); these two conditions are respectively represented by
points A and B on Fig. 1. Point D represents a state of biaxial loading in tension, with σx
= σy < 0 and σz = 0. In this case, the σx value should exceed T0, i.e. ⏐σx⏐ < ⏐T0⏐ (e.g.,
Theocaris, 1995; Aubertin & Simon, 1998). A state of spherical loading in tension
(σx = σy = σz < 0) should also leads to a lower strength in absolute value than axial tensile
loading, i.e. ⏐σx⏐ < ⏐T0⏐ (see point C). It is to be noted that several existing criteria,
often inspired from the two dimensional criterion of Griffith (1921, 1924), consider
that failure in tension can only be produced when one of the three principal stresses
becomes equal to T0. However, this vision is not supported by the physics of the
problem or by a theoretical analysis of the failure conditions under multiaxial loading;
when the stress component perpendicular to the critical failure plane is equal to T0, the

Figure 1 A schematic representation of the failure surface of rocks in the conventional triaxial plane
(taken from Aubertin & Simon, 1996, 1998).
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individual value of the principal stresses will be higher thanT0 (i.e. smaller than ⏐T0⏐ in
absolute value) in the case of biaxial or spherical tensile loading. Therefore, such a
Griffith type approach is not conservative, and it can lead to an overestimation of the
strength of brittle materials submitted to these types of tensile loading. It also creates an
apex (with a singularity) on the negative side of the stresses axes, which is problematic
from a numerical point of view.

When one applies simultaneously some compressive and tensile stresses, as is the case
between points D and A or between points B and F in Fig. 1, some criteria consider that
the strength is only controlled by the highest tensile stress (in absolute value), with
failure if σz =T0 or σx =T0, or by themaximum compressive stress thatmust be lower or
equal to C0. However, some laboratory test results, such as those reported by Andreev
(1995, Figs. 6.175b and 6.176b) and Hunsche (1994, Fig. 3.19) indicate that the
application of a relatively small compressive stress perpendicularly to the axis of
tension can increase the material strength due to a tightening (increased stiffness)
associated with closure of micro-cracks and mobilization of friction along the contact
faces of cracks; this is happening around point G in Fig. 1. When the compressive stress
becomes large enough, it also participates to (wing) crack propagation, leading to
failure (Aubertin& Simon, 1998). Point F on Fig. 1 represents the strength of amaterial
submitted to a biaxial compression, with σx = σy > C0 (also shown by Ottosen, 1977;
Maso & Lereau, 1980; Lade, 1982, 1993). Beyond point A (= C0), all stresses are in
compression, the propagation of closed cracks implies that the frictional resistance
along contact faces must be overcome (McClintock & Walsh, 1962). The value of the
available friction coefficient along the contact faces may change with the normal stress,
due to the shearing of asperities as is the case with geological discontinuities (Patton,
1966; Ladanyi & Archambault, 1970). One thus expects that the slope of the failure
criterion, which reflects the mobilization of friction, progressively decreases with the
increased confining stress. This slope reduction ends when all asperities are sheared and
the frictional sliding takes place over flattened surfaces. The contribution of this
friction to the strength of the material becomes proportional to the residual friction
angle ϕr (which is often close to the base friction angle ϕb). The slope of the failure
criterion in the

ffiffiffi
2

p
σx � σz plane is then constant beyond point E in Fig. 1. The failure

locus then corresponds to a linear (Coulomb type) criterion under higher mean stress,
while for a lower means stress, the apparent friction angle tends to decrease progres-
sively, as observed on rocks (Singh et al., 1989; Charlez, 1991) and concrete (Chen &
Chen, 1975).

The MSDPu failure criterion in the I1–J2
1/2 plane is defined by a curve on which the

conventional triaxial compression (CTC) test strength (where σz = σ1 ≥ σx = σy = σ2 = σ3)
is located above that of reduced triaxial extension (RTE) test (where σz = σ3 ≤ σx = σy =
σ2 = σ1). This difference reflects the effect of the intermediate principal stress σ2 on the
ultimate strength of rock and similar materials, as demonstrated by various experi-
mental observations (e.g., Mills & Zimmerman, 1970; Akai &Mori, 1970). In this I1–
J2

1/2 plane, the criterion is defined by a curve up to the point where it becomes a straight
line of slope α in CTC (as shown in Fig. 2). In the π plane, the criterion forms a rounded
triangle.

Many of the features described above are captured by the multiaxial criterion
presented in the following sections.
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2 THE MSDPU CRITERION FOR INTACT ROCK

The proposed 3D criterion, named MSDPu (which stands for Mises-Schleicher &
Drucker-Prager unified), was developed to define a general unified locus in stress space.
It has been formulated in amodularmanner, so it can be adapted to a variety of rock and
rock masses (and other media) for structural calculations. This criterion was initially
developed to describe the short term strength of intact rock (Aubertin & Simon, 1996)
and other low porosity, brittle materials (Aubertin & Simon, 1998). It has later been
extended to describe the short term (Aubertin et al., 1999) and long term strength of
rocks (Aubertin & Simon, 1997) and rock masses (Aubertin et al., 2000), considering
various influence factors such as porosity and the presence of discontinuities at different
scales. Themain components of the criterion are presented below; other features are also
mentioned in relation with additional applications described elsewhere.

The formulation of the MSDPu criterion for intact rocks is presented in Table 1 (left
column). The basic equation for the failure strength can be written as:ffiffiffiffi

J2
p ¼ F0Fπ ð1Þ

In this equation, F0 is a function of the first stress invariant I1. This function includes
parameters α, a1 and a2 defined from basic material properties, i.e. σc and σt, the
uniaxial compressive and tensile strength (in absolute values) respectively, and ϕ, the
friction angle on plane surfaces (ϕffi ϕr, the residual friction angle). Parameter b reflects
the ratio of the locus size at a Lode angle θ = −30° and 30° in the π plane (see Fig. 3); the
value of b can range from about 0.7 to 1.

The MSDPu criterion adopts the shape of a rounded triangle in the octahedral (π)
plane (Aubertin et al., 1994), to represent the higher strength under triaxial compres-
sion than under reduced extension (Fig. 3b). An alternative expression has also been
proposed for the formulation of Fπ, so it can be reduced to the shape of an isosceles
triangle in the π plane (Aubertin & Li, 2004; Li et al., 2005); this formulation is better
suited for granular materials and is not deemed required for rock media.

I1

J 2
1/

2

Drucker-Prager

Mises-Schlecher

MSDPu

Figure 2 Schematical comparison between the MSDPu criterion and related criteria (taken from Li et al.,
2005).
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Table 1 Formulation of the MSDPu criterion.

For brittle intact rock For porous rock† For damaged rock and rock mass†

ffiffiffiffiffi
J2

p
� F0Fπ ¼ 0

F0 ¼ ½α2 I21 � 2a1I1
� þ a22�1=2

Fπ ¼ b½b2 þ ð1� b2Þsin2ð45	 � 1:5θÞ��1=2

θ ¼ 1
3
sin �1 3

ffiffiffi
3

p
J3

2
ffiffiffiffiffiffi
J3
2

q ;�30°≤ θ ≤ 30°

α ¼ 2sin�ffiffiffi
3

p ð3� sin�Þ

a1 ¼ σc � σt
2

� �
� σ2c � σt=bð Þ2

6α2 σc þ σtð Þ

 !

a2 ¼ σc þ σt=b2
� 

3 σc þ σtð Þ � α2
� �

σcσt


 �1=2

ffiffiffiffiffi
J2

p
� F0Fπ ¼ 0

F0 ¼ α2 I21 � 2a1nI1
� þ a22n � a3n〈I1 � Icn〉

2
n o1=2

a1n ¼ σcn � σtn
2

� �
� σ2cn � σtn=bð Þ2

6α2 σcn þ σtnð Þ

 !

a2n ¼ σcn þ σtn=b2
� 

3 σcn þ σtnð Þ � α2
� �

σcnσtn


 �1=2

a3n ¼ α2 I21n � 2a1nI1n
� þ a22n

I1n � Icnð Þ2

ffiffiffiffiffi
J2

p
� F0Fπ ¼ 0

F0 ¼
h
α2 I21 � 2ea1I1
� þ ea2

2 � a03〈I1 � Ic〉
2
i1=2

ea1 ¼ Γa1 ¼ eσc � eσ t

2

� �
� eσ2

c � eσ t=bð Þ2
6α2 eσc þ eσ tð Þ

 !

ea2 ¼ Γa2 ¼ eσc þ eσ t=b
2

� 
3 eσc þ eσtð Þ � α2

� �eσceσ t


 �1=2

a
0
3 ¼ a3 1� Γð Þ

eσc ¼ Γσc and eσ t ¼ Γσt

†Fπ, θ, and α have the same expressions as those for brittle intact rock



Fig. 3c shows that, in the plane of the intermediate σ2 and major σ1 principal stresses
(normalized by C0 = σc), the shape of the criterion follows the conditions described
above for Fig. 1.

The criterion can also be expressed in terms of the q and p invariants that are
commonly used in soil mechanics (Li et al., 2005).

In the I1 − J2
1/2 plane (Fig 3a), the failure envelope corresponding to the CTC

condition is higher than that corresponding to the RTE condition. In the octahedral
(π) plane (Fig. 3b), the shape of the MSDPu criterion can change from a circle (with b =
1) to a rounded triangle (for 1 > b ≥ 0.70). For most brittle rocks, the value of b is
typically close to 0.75. In Fig. 3c, it can be seen that the biaxial compressive strength is
higher than the uniaxial compressive strength (i.e. σ1 = σ2 > σc).

Fig. 3 indicates that for isotropic rocks submitted to conventional triaxial compres-
sion (CTC) tests, the MSDPu formulation practically reduces to the Mises-Schleicher
criterion (Lubliner, 1990) at low mean stress and approaches the Drucker-Prager
equation (Drucker & Prager, 1952; Desai & Siriwardane, 1984) at higher mean stress,
as shown in Fig. 3a.

J 2
1/

2

I1

CTC RTE

α

1

Fπ= 1

Fπ= b

a1

J2
1/2 = α(I1 - a1)

MSDPua2

σcσt

α 2(Ii
2 - 2a1Ii) + a2

2 = 0

(a)

b = 0.75

b = 1

b = 0.9

σz (θ = 30°) θ = 0°

θ = –30°

for I1 = 0

σx σy

(b)

σ v
/σ

c

σ σh/ c

σh

1

1

(c)

σv

σh

Ii

Figure 3 Schematic representation of the MSDPu criterion: a) in the I1 − J2
1/2 plane, CTC: conventional

triaxial compression (θ = 30°), RTE: reduced triaxial extension (θ = −30°); b) in the octahedral
plane; c) in the biaxial stress plane. Figures adapted from Aubertin et al. (2000).
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Figure 4 shows a schematic representation of the MSDPu criterion (in the same three
planes) plotted with the well-known Mohr-Coulomb and Hoek–Brown criteria. The
MSDPu criterion is fairly close to these two criteria (Li et al., 2005), but there are some
important differences. For instance, the proposed criterion avoids the presence of a
singularity on the tensile (negative stress) side, contrary to the Mohr-Coulomb and
Hoek-Brown criteria; this apex may tend to overestimate the tensile strength of the
materials because of the linear shape in the negative stresses quadrant (Fig. 4c). In the
octahedral (π) plane (Fig. 4b) theMSDPu criterion takes a rounded triangle shape while
the 3DMohr-Coulomb andHoek–Brown envelopes include singularities at θ = 30° and
−30°. In the biaxial stress plane (Fig. 4c), the commonly used Mohr-Coulomb and
Hoek–Brown formulations predict an equal strength under uniaxial compression
and biaxial compression, contrary to the MSDPu criterion.

Also, the latter is based on the basic assumption that the uniaxial compression σc and
tensile σt strengths are two distinct properties that are not directly related to each other,
and which must be determined specifically (e.g. You 2015); the two other criteria
shown in Fig. 4 consider that these two strength parameters are linked (i.e. one can
thus be predicted using the other).

I1

J 21/
2

Hoek-Brown

Mohr_Coulomb

MSDPu

σx

MSDPu

Mohr-Coulomb

Hoek and Brown

1

1

σy σz

σh

σ v
/σ

c

σh /σc

σh

σv

(a) (b)

(c)

Figure 4 Schematic comparisons between the MSDPu criterion and two commonly used criteria for
geomaterials (shown for normalized parameters): a) in the I1 − J2

1/2 plane; b) in the octahedral
plane; c) in the biaxial stress plane.
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The MSDPu criterion has been compared with various other criteria developed for
geomaterials to illustrate the similarities and differences (Li et al., 2005); these specific
features will not be repeated here. It is nonetheless interesting to note that its shape is quite
similar to the one described by Lundborg (1974) for the strength of intact rock submitted
to multiaxial loading. The MSDPu characteristics are also quite close to those of other
criteria recently developed for different materials (e.g., Du et al., 2010; Lu et al., 2016).

The application of the MSDPu criterion to low porosity rock samples submitted to
laboratory tests is straightforward and was illustrated in Aubertin et al. (1999, 2000), Li
et al. (2000) andLi et al. (2005).Only the values of σc, σt,ϕ (=ϕr) andbare required to apply
the criterion. These values are obtained from independent tests that can include uniaxial,
diametric, and triaxial compression tests and shear tests on sheared surfaces. For homo-
geneous rocks, the full failure surface in stress space can be defined using a fairly small
number of representative test results (depending on data scattering). It has previously been
shown by the authors that the multiaxial formulation of MSDPu represents well different
types of test results. For instance, Fig. 5 shows results obtained on Bowral trachyte.

3 TIME EFFECTS

All rocks may show amechanical response that is time (or rate) dependent (Cristescu&
Hunsche, 1997; Aubertin et al., 1998). The proposed MSDPu criterion can be applied
to define various stages of material failure.

Damage initiation and long term strength

Several studies have shown that a damage initiation threshold (DIT) exists in rock. It
can be associated with the onset of micro-cracking, detected through volumetric strain
measurements or acoustic emission activities (Paterson, 1978; Meredith, 1990; Martin
& Chandler, 1994; Aubertin & Simon, 1997; Aubertin et al., 1998). This threshold,
which can also be seen as the long term strength of rocks, can be defined using the
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Figure 5 The MSDPu criterion applied to peak strength of Bowral trachyte: a) in I1− J2
1/2 plane; b) in π

plane. Tests results taken from Hoskins (1969); adapted from Aubertin et al. (1999).
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MSDPu criterion. For this type of application, parameters σc and σt are replaced by the
corresponding values for the DIT (i.e. σcd and σtd), which can be identified on the stress-
strain curves. It has been observed that for many low porosity rocks, σcd = 0.3 to 0.7 σc
and σtd = 0.5 to 0.9 σt. As for parameters ϕ and b, their value does not seem to differ
much when going from the usual short term to the long term (DIT) conditions.

The MSDPu criterion has been used to describe the long term failure surface of
hard and brittle rocks as well as for softer and more ductile materials. For instance,
Fig. 6 shows that the criterion matches fairly well (considering the data scattering) the
results obtained on rocksalt samples tested by Thorel (1994), using a very low value of
ϕ (ϕr ffi 0) because of the viscous and plastic nature of rocksalt response at high mean
stresses. For such semi-brittle behavior, MSDPu reduces to the Mises-Schleicher criter-
ion for CTC tests, an expression frequently used for metals (Skrzypek & Hetnarski,
1993; Hjelm, 1994). When the mean stress is large enough, the surface becomes almost
parallel to the I1 axis, thus resembling the von Mises criterion (for b = 1).

Delayed failure

The strength of rock specimens submitted to a sustained deviatoric loading is expected
to decrease over time. For a given stress state, the time to failure can be expressed with
an simple equation based on an extension of Charles (1958) law for subcritical crack
growth (Aubertin et al., 2000). The equation can be formulated as:

tf ¼ α1
δ1 þ δ2
〈δ1〉

� �β

ð2Þ

where δ1 is the difference between the applied deviatoric stress σapp and the DIT and δ2
is the difference between the short term strength STF (standard test) and σapp; α1, β are
material parameters. Equation 2 can be used to evaluate strength as a function of time.
For instance, Fig. 7a shows the application of this equation to Lac du Bonnet granite
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Figure 6 The MSDPu criterion applied to the damage initiation threshold (DIT) of rocksalt (data taken
from Thorel, 1994). Figure adapted from Aubertin et al. (2000).
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samples submitted to uniaxial compression tests, using data from Schmidtke & Lajtai
(1985) with α1 = 2.7 s, β = 9.73, and a long term uniaxial strength (DIT) taken as half
the short term strength (STF). On this figure, it can be seen that the strength drop is
initially more rapid and then progresses rather slowly toward the long term strength
(DIT), which would be attained after a very long time. It is assumed here that any
deviatoric stress below the DIT could be supported indefinitely (Aubertin & Simon,
1997; Aubertin et al., 1998). Fig. 7b shows the corresponding isochronous curves for
the strength of Lac du Bonnet granite for various time intervals; these curves are
obtained by reducing σc and σt proportionally to the strength given by Equation 2 at
a given time (data taken from Lau & Gorski, 1991).

4 SIZE EFFECT FOR INTACT ROCK

The strength of rock is influenced by scale, with the measured peak stress usually
decreasing with sample size (Hoek & Brown, 1980b; Bieniawski, 1984; Cunha, 1993a,
1993b). This phenomenon has been linked mainly to statistical effects due to random
strength and defect distribution (Jaeger & Cook, 1979) and to energy allocation and
dissipation around cracks (Bazant & Planas, 1998). Size effect analysis is however
complicated because it depends on the deformation processes, which in turn may vary
with the loading state and testing method (Jaeger & Cook, 1979; Hudson & Harrison,
1997). Scale effects are usually more pronounced in very brittle materials, and they
progressively decrease when going from a brittle to a semi-brittle behavior, altogether
disappearing in the ductile (fully plastic) regime of inelastic flow. The influence of scale is
alsomore pronounced in uniaxial tension than in uniaxial compression. It can be reduced
substantially by applying a large confining pressure in triaxial compression tests.

Rock strength is decreased by larger defect size and defect density (Ramamurthy &
Arora, 1994; Wong et al., 1996). As the initial size of rock defects is often related to
grain size, it can be expected that an increase in mean grain dimension also reduces
failure strength (Wong et al., 1996; Hatzor & Palchik, 1997).
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Rock strength diminishes until the specimen size becomes equal to that of the large
scale reference size dL. Beyond this sufficiently large size, the effect of scale practically
disappears. The strength then remains unchanged beyond dL unless new types of
defects are introduced (such as joint sets in a rockmass—see next section). Thematerial
strength σL on the scale of dL can be much lower (< 25%) than the strength σS measured
at the representative small scale dS (typical of laboratory tested specimens), depending
on the defect characteristics and loading state.

Various investigations have shown that the progressive decrease of strength can be
related to the increasing size of the tested specimen using a power law function applied
to the representative dimension (side, surface, volume; e.g. Jaeger & Cook, 1979;
Cunha, 1993a, 1993b; Bazant & Chen, 1997; Hudson & Harrison, 1997). Such a
scale effect function was proposed to define the strength from the smallest scale of the
representative volume element dS with a maximum strength σS, to the scale dL where
increasing the size does not affect strength any more (i.e. σL is the nominal large scale
strength); this expression can be written as (Aubertin et al., 2000, 2002):

σN ¼ σS � x1 σS � σLð Þ
DdN � dS
dL � dS

Em1 ð3Þ

The first term on the right hand side is the strength σS at small scale dS, and the second
term represents the decreasing value as size increases until σL is reached at dL. The rate
at which the decrease takes place depends on twomaterial parameters x1 andm1. In this
equation, dL is the reference size (length L, area L2 or volume L3) which has the
minimum asymptotic strength σL, and dS is the corresponding size when strength is
considered maximum for a homogeneous representative volume element of the mate-
rial. For rocks, the authors have proposed using dSffi 10y dg and dLffi 102y dS, where dg
is the mean grain size; here y ffi 1 for measures of length, y ffi 2 for area, and y ffi 3 for
volume. In many practical cases, one finds that dS ffi 0.5y to 5y (cm, cm2, cm3), and
typically dL ≥ 102 cm, 104 cm2, 106 cm3. 〈 〉 are Macaulay brackets (〈x〉 = (x + |x|)/2),
which limits the decrease of strength for d ≥ dL.

It can be noted here that an alternate equation (not presented here) has also been
proposed by Aubertin et al. (2002) to represent a more progressive (and somewhat
more representative) reduction of the strength with size.

A practical application procedure has been developed for Equation 3, based on
statistical analysis of standard laboratory tests results. This has led to the following
simple predictive equation to estimate the large scale strength of intact rocks (Aubertin
et al., 2001; Li et al., 2001):

σL ¼ z1 σc50 þ z2 � S0ð Þ ð4Þ
where σc50 is the average observed mean value of the uniaxial compressive strength on
standard size specimens (50 mm), S0 is the corresponding standard deviation of the test
results (when at least 10 tests results are available), and z1 and z2 are two statistically
obtained parameters (see details in Aubertin et al., 2001). This equation was applied by
Li et al. (2001) for the analyses of the URL tunnel (in Manitoba, Canada), with z1 ffi
0.08 and z2 ffi 5 to 6.

Li et al. (2007) later proposed a statistical approach to estimate the value of σS from
standard laboratory tests results on relatively hard rocks. The results from this
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investigation indicate that the standard unconfined compressive strength σc is often
close to about two thirds of the small scale unconfined compressive strength σS. This
analysis suggests that the large scale strength of low porosity rocks can be as low as 20
% (or even less) of this standard strength.

Fig. 8 shows Equation 3 applied to test results presented by Bieniawski (1968) on
coal (Fig. 8a) and by Pratt et al. (1972) on quartz diorite (Fig. 8b).

It is important to recall here that size effects are related to the presence and influence
of defects (at various scales) on the behavior of rock. Increasing the confining pressure
tends to reduce the influence of existing flaws, so it can also reduce size effects. This
phenomenon has been illustrated, for instance, by the experimental results from
Gerogiannopoulos & Brown (1978) on intact and granulated marble, and by measure-
mentsmade for elastic properties and failure strength byMichelis (1987) andMedhurst
& Brown (1998). This is also in accordance with the strength envelope of joints and
intact rock which tends to converge at high normal stresses (Ladanyi & Archambault,
1970; Gerard, 1986). This factor however is not easily taken into account, and it has
been largely neglected in previous scale effect investigations.

An approachwas proposed to address this aspect withMSDPu. To do so, parameters
σt and σc are taken as variables whose values are corrected for scale and for stress state.
The ensuing values of σts and σcs are expressed according to Equation 3, with x1 given
by the following phenomenological function:

x1 ¼ exp x0 σ3=T0ð Þ ð5Þ
where T0 is the uniaxial tensile strength σt (with a negative value) of standardized
size specimens; T0 is used here as normalizing parameter because it corresponds to
the stress state where scale effects are near their maximum. Fig. 9a shows a sche-
matic representation of the MSDPu criterion with Equation 3 used for σts and σcs,
with x1 taken as a constant (x1 = 1 or x0 = 0, i.e. no effect of the stress state) or given
by Equation 5 with x0 > 1.
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Figure 8 Influence of size on the uniaxial compressive strength: a) cubic coal specimens; x1 = 1, m1 =
0.075, dL = 121.92 cm, σL = 4.48 MPa, dS = 2.54 cm and σS = 56.54 MPa (data taken from
Bieniawski, 1968); b) Cedar City quartz diorite with prismatic and cylindrical specimens; x1 = 1,
m1 = 0.025, dL = 2.67×105 cm3, σL = 6.83 MPa, dS = 28.4 cm3 and σS = 86.7 MPa (data taken
from Pratt et al., 1972). Taken from Aubertin et al. (2000).
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The effect of size theoretically disappears only when a fully plastic behavior is encoun-
tered (often at very highmean stress). For practical calculations with low porosity rocks,
it can be considered, as a first estimate, that this effect becomes negligible when the shear
strength of a closed defect (microcrack) surface becomes equal to the cohesion of the
surrounding rock material. Based on the Coulomb criterion, this condition can be
approximated by the following expression (Aubertin et al., 2000):

σ3 ¼ σc
2tan� tanð458þ �=2Þ ð6Þ

which gives σ3 ffi 0.5 σc for ϕ ffi 30°. Above this value of the confining pressure, scale
effect becomes much less important, and the failure envelope at small scale dS and large
scale dL tend to converge (see Fig. 9a). Fig. 9b shows how this concept applies to actual
test results on rock samples of different sizes (data from Medhurst & Brown, 1998).
Fig. 10 illustrates the effect of scale and of loading state on material strength according
to Equations 3 and 5.

The complex influenceof scale and stress statemay explainwhy rock strength close to the
walls of large underground openingsmay appear to bemuch lower than the value deduced
for locations deeper in the rock mass, where the confining stresses are more significant.

5 YIELDING AND FAILURE OF POROUS ROCKS

It has long been known that rocks with a relatively high porosity typically show some
inelastic yielding under a high mean stress, even with little or no deviatoric stress
(Nova, 1986; Brown&Yu, 1988; Charlez, 1991; Shao&Henry, 1991; Abdulraheem
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Figure 9 MSDPu criterion for different specimen sizes of intact rock: a) schematic representation of the
MSDPu criterion for different specimen sizes of rock (x0 = 0.5); b) application of MSDPu criterion
to triaxial compression tests on large size cylindrical samples; description with x0 = 0.065, m1 =
0.015, dL = 120 cm, dS = 2.5 cm, σcS = 35.0 MPa, σcL = 3.5 MPa, σtS = 1.5 MPa, σtL = 0.15 MPa (scS
and scL are the uniaxial compression strengths obtained on small and large size specimens,
respectively; stS and stS are the uniaxial tensile strengths of small and large specimens, respec-
tively; data taken from Medhurst & Brown, 1998). Figures taken from Aubertin et al. (2000).
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et al., 1992). The corresponding yield surface (which is more or less equivalent to a
DIT) can then curve downward and eventually close on itself on the compressive side
of the stresses. A “cap” can be used to capture the curvature under a large hydrostatic
stress component (as is commonly done in soil mechanics; e.g. Desai & Siriwardane,
1984).

This approach has been applied to theMSDPu criterion by adding the last term on the
right hand side of the formulation given in the central column in Table 1. The
corresponding shape with (and without) this cap is shown in Fig. 11.

Modifications were later introduced in the MSDPu criterion to describe the yield or
failure conditions in terms of porosity (Aubertin & Li, 2004; Li et al., 2005). In this
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case, material parameters are expressed explicitly as a function of initial porosity using
the following (Li & Aubertin, 2003):

σun ¼ σu0 1� sin x
0
1

π

2
n
nC

� �� �
þ 〈σu0〉cos x

0
2

π

2
n
nC

� �
 �
1� 〈σu0〉

2σu0


 �
ð7Þ

where σunmay be used for compression (σun = σcn) or tension (σun = σtn); nC is the critical
porosity for which σun tends toward zero, in tension (nC = nCt) and in compression (nC =
nCc); parameter σu0 represents the theoretical value of σun for n = 0; x01 and x02 control
the non-linearity of the σun−n relationship.

With the cap, the criterion closes down toward the I1 axis; parameter Icn represents
the I1 value where the locus departs from the “low porosity” condition (see Fig. 11),
while I1n corresponds to the intersection of the criterion with the positive I1 axis (also
shown on Fig. 11).

The values of Icn and I1n, which may be obtained experimentally, become very large
for dense materials; the Cap portion can then be neglected.

Specific functions have been developed to define I1n and Icn as a function of porosity n
(Li et al., 2005).

The effect of porosity on the criterion is illustrated in Fig. 12a for a typical high
strength rock at lowmean stress conditions (i.e. I1 < Icn), while Fig. 12b shows its shape
for a relatively low strength material.

Fig. 13 show the locus with b = 0.75 defined for I1 that extends beyond Icn, in the case
of rocks. The presence of the Cap is required in such cases to describe the elastic limit
and the failure strength.

These results highlight the great flexibility of the proposed set of equations, which
allow a good description of the inelastic loci and failure strength of rocks and various
other geomaterials. Additional illustrations are presented in Aubertin et al. (2003),
Aubertin & Li (2004), and Li et al. (2005).

It is also possible to predict the failure strength of rock for different porosities, when
data is available for a given value of n, as demonstrated by Li et al. (2005) for
sandstone.
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Figure 12 Schematic representation of the MSDPu criterion (a) for low porosity materials with a3n = 0
and (b) for porous materials with Ic ffi 0, a3n ≠ 0, b = 0.75 (taken from Li et al., 2005).
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6 APPLICATION TO DAMAGED ROCK AND FRACTURED ROCK
MASS

The strength of rocks and rockmasses depends on the initial structural state that can be
represented by a continuity parameter Γ (described below). The introduction of para-
meter Γ into the formulation of the MSDPu criterion is shown in the right hand side

(a)

0

200

400

600

–20 580 1180 1780 2380

I1 (MPa) I1 (MPa)

I1 (MPa)I1 (MPa)

J 21/
2  (

M
P

a)
J 21/

2  (
M

P
a)

J 21/
2  (

M
P

a)
J 21/

2  (
M

P
a)

yield

failure

yield

failure
exp. data

MSDPu

MSDPu

MSDPu

(b) 

0

2

4

6

–2 3 8 13 18 23

failure

yield

failure

yield

exp. data

MSDPu

(c)

0

10

20

30

–5 15 35 55 75 95

yield

failure

yield

failure

exp. data

(d)

0

10

20

30

40

50

–5 45 95 145 195

yield

failure

yield

failure

exp. data

Figure 13 Failure strength and elastic limit (in CTC) of (a) Kayenta sandstone (data from Wong et al.,
1992), (b) a tuff (data from Pellegrino, 1970; figure adapted from Aubertin et al. 2000),
(c) Bath stone (data from Elliott & Brown, 1985), and (d) Castlegate sandstone (data from
Coop & Willson, 2003). For Kayenta sandstone, the MSDPu criterion was applied with ϕ =
30° (estimated), σcn = 30MPa (measured), σtn = 2MPa (estimated), and a3n = 0 (or Icn >> ) for
failure and with ϕ = 30° (estimated), σcn = 30 MPa (measured), σtn = 2 MPa (estimated), a3n =
0.115 (estimated), and Icn = 250 MPa (estimated) for yield. For the tuff, the MSDPu criterion
was applied with ϕ = 20° (estimated), σcn = 3.8 MPa (measured), σtn = 0.5 MPa (estimated),
and a3n = 0 (or Icn >>) for failure and with ϕ = 20° (estimated), σcn = 3.8 MPa (measured), σtn =
0.5 MPa (estimated), a3n = 0.115 (estimated), and Icn = 6.5 MPa (estimated) for yield. For Bath
stone, the MSDPu criterion was applied with ϕ = 30° (estimated), σcn = 15 MPa (measured),
σtn = 1 MPa (estimated), and a3n = 0 (or Icn >> ) for failure and with ϕ = 30° (estimated), σcn =
15 MPa (measured), σtn = 1 MPa (estimated), a3n = 0.095 (estimated), and Icn = 0 MPa
(estimated) for yield. For Castlegate sandstone, theMSDPu criterion was applied with ϕ = 26°
(estimated), σcn = 9 MPa (estimated), σtn = 0.1 MPa (estimated), and a3n = 0 (or Icn >> ) for
failure and with ϕ = 26° (estimated), σcn = 9 MPa, σtn = 0.1 MPa (estimated), a3n = 0.064
(estimated), and Icn = 1 MPa (estimated) for yield.
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column of Table 1 (Aubertin et al., 2000). This continuity parameter can be seen as an
equivalent damage parameter D (= 1 − Γ), as defined in the Kachanov-Rabotnov
approach forming the basis for Continuum Damage Mechanics (Lemaitre, 1992). It
is treated here as a scalar, although it could be extended to deal with anisotropy under a
tensorial format (Aubertin et al., 1998).

When the rock has few defects (i.e., a very small population of cracks and pores),
Γffi 1. When defects (flaws of various sizes) become more abundant and their influence
more important, the value of Γ is reduced. For a highly fractured but relatively dense
medium that behaves as a cohesionless soil, the value of Γ becomes nil; this means
that ea1 = ea2 = 0 and a03 = a3 in the F0 equation (Table 1, right column). The proposed
criterion then becomes equivalent to the Coulomb criterion without cohesion (for
I1 ≤ Ic), as shown in Fig. 14. This figure also illustrates how the value of Γ influences
the position of the surface in the I1 − J2

1/2 plane; it shows that the strength is reduced as
Γ decreases. This effect of the continuity parameter can be combined with that of
porosity (Aubertin et al., 2000), as is shown in the following illustration.

Applications of MSDPu to results obtained on porous rocks and rock-like materials
are shown in Fig. 15 (using data fromNguyen, 1972 andWong et al., 1992). As can be
seen, theMSDPu is able to properly represent the behavior of these porous rocks, when
considering also the effect of the continuity parameter.

This approach can also be applied to rock masses, although going from the behavior
of rock to that of the large scale rock mass is quite a challenge.

The continuous scale effect described above for rocks applies when there is no new
type of flaws introduced in the media. However, going from intact rock to in situ rock
mass implies not only the usual statistical and energy release size effects, but also the
addition of other types of larger scale defects such as joint sets. Thus, the relationship
used for scaling up properties may become more or less discontinuous. This phenom-
enon is schematically illustrated in Fig. 16, which shows that the scale effect function
can be considered continuous until new types of defects are introduced; this is the
case with grain boundaries (grains to rock) and joint sets (rock to rock mass). In
the transition zone (shade areas), the strength–size function becomes ill defined
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Figure 14 Schematic representation of the influence of the continuity parameter Γ on the failure surface
of a tight undisturbed rockmedia (with I1 < Ic); Γ = 1 corresponds to undamagedmaterial, and
Γ = 0 refers to a cohesionless media (taken from Aubertin et al. 2000).
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because the material cannot be considered homogeneous and anisotropy needs to be
considered.

Anisotropy is also a key aspect when only one or two defect families or few
individual members are added. In this case, one must either use an anisotropic criterion
or combine an isotropic expression (such asMSDPu) with a shear strength criterion for
the weakness planes (Li & Aubertin, 2000).

Rock masses with more than two distinct joint sets usually behave almost isotropi-
cally on a large scale. It is thus often considered that an isotropic criterion is appro-
priate for such cases (Hoek & Brown, 1980a, 1980b, 1988).
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Figure 15 Applications of MSDPu criterion to porous materials: a) saturated Berea sandstone cylinders
submitted to CTC loading condition (data taken fromWong et al., 1992); description of test
results using: b = 0.75, ϕ = 35°, σc = 110 MPa, σt = 9 MPa, a3 = 0.75; for n = 8%, Γ = 0.65 and Ic
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for n = 16%, Γ = 0.8 and Ic = 250 MPa; b) application to Paris plaster cylinders (with water to
plaster ratio of 70%), representation with b = 0.75, ϕ = 33°, σc = 10 MPa, σt = 0.5 MPa, a3 =
0.75 (data taken fromNguyen, 1972); Γ = 0.825 and Ic = 40 MPa for n = 34.39%; Γ = 0.675 and
Ic = 25 MPa for n = 47.27%; Γ = 0.575 and Ic = 20 MPa for n = 54.2%. Figure adapted from
Aubertin et al. (2000).
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Figure 16 Schematic representation of scale effect on rock properties; the shaded areas represent
scales at which strength is not isotropic. Figure taken from Aubertin et al. (2000).
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One of the challenges associated with defining the strength of a rockmass stems from
the difficulty to perform appropriate tests and obtain adequate in situ rock mass
properties (strength and deformability) at a scale corresponding to engineering struc-
tures. Consequently, the commonly used approach in rock mechanics has been to rely
on laboratory properties “corrected” for scale and discontinuity conditions. For that
purpose, several techniques have been proposed, with each technique suffering from
some limitations and fairly large uncertainties.

The approach applied here is based on the use of the continuity parameter, intro-
duced above. The value of Γ can be related to the reduction of strength parameters
when compared to “undamaged” materials.

For strength and stability calculations, the continuity parameter Γ can be used as a
correction factor acting on “undamaged” material properties (Aubertin et al., 2000).

Parameter Γ of an isotropic rockmass can be defined from either the deformability or
the strength. Its effect is to alter the stress state in the bearing portion areas, which in
turn decreases proportionally all mechanical properties. For this application of the
MSDPu criterion to rock mass strength, the authors have proposed the following
expression:

Γ ¼ Γ100 0:5 1� cos
πRMR
100

� �� �p0
ð8Þ

with

Γ100 ¼ σcL=σc ð9Þ
Here, σcL is taken as the uniaxial compressive strength of the rock at size dL (see

Equations 3 and 4), while σc is the standard size specimen strength of intact rock. This
equation was based on an expression proposed by Mitri et al. (1994) for the deform-
ability of rock masses; exponent p0 was added to better represent strength parameters.
In Equation 9, the value of σcL is usually found to be 0.2 to 0.3 times σc; σcL can be seen
as the rock mass strength when RMR is 100 (n.b. the Bieniawski, 1989 RMR version
is used).

Fig. 17 shows this relationship with Γ100 = 0.3 and p0 = 1, 2 and 3 (a value of 3
is favored for practical calculations). Also shown in this figure is the s1/2 parameter
(= σcmass/σc) expressed from the relationship proposed by Hoek and Brown (1997). The
two functions are fairly close to each other at RMR values below about 80, but differ at
larger RMR.Here, Γ at high RMR values is bounded by Γ100 corresponding to the large
scale strength of the rock σcL.

The value of parameter Γ given by Equation 8 can be introduced into the general
MSDPu criterion, with values of σc and σt given for standard size samples. Alternately,
one could use Γ100 = 1 in Equation 8 and use σc and σt values in the F0 equation (Table 1,
right column) corresponding directly to large scale conditions (from Equations 3 and 5).

Figure 18 shows the failure strength envelope (for I1 < Ic) using Γ obtained from
Equation 8 for different RMR values; note that the influence of loading mode
(Equation 4) is neglected in this representation. As expected, reducing the RMR
decreases the rock mass strength; a highly fractured mass may even behaves as a purely
frictional (cohesionless) material.
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7 DISCUSSION

The application of the MSDPu criterion for the strength analysis of rock and other some-
what similarmaterials has been documented inmany of the publicationsmentioned above.
These include specific conditions not explicitly addressed here, such as the response of
cohesionless or weakly cemented porous materials, and rocks with planar anisotropy.

The criterion has also been used to conduct analysis of engineered openings in rock
media, as illustrated in several publications. These cannot be presented here due to
space limitation; some key examples are nonetheless recalled in the followings.

The stability analysis of boreholes in isotropic rock can be performed directly using
laboratory properties. This was shown using experimental results of Mazanti &
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Figure 18 The MSDPu criterion for rock and rock masses (for I1 < Ic) according to Equation 8 with b =
0.75, ϕ = 35°, σc = 220 MPa, σt = 9 MPa, Γ100 = 0.3, p0 = 3 for various RMR values (taken from
Aubertin et al. 2000).
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Sowers (1965) obtained from hollow cylinder tests on granite (Aubertin et al., 2000).
The MSDPu criterion has also been used to back-calculate in situ stresses around
boreholes using breakout geometry (Li & Aubertin, 1999; Li et al., 1999, 2000;
Kikiessa-Kisaka, 2015).

Simulations of the short term failure and delayed failure around a large scale tunnel
at the AECL underground facilities (Manitoba, Canada) has been described by Li et al.
(2000) and Aubertin et al. (2000).

The MSDPu criterion equations have also been used to develop analytical solutions
for the stresses around circular openings in an elasto-plastic media, with and without
the Cap component (Li et al., 2005, 2010; Li & Aubertin, 2009). These original
solutions have been successfully comparedwith other specific formulations (encompass
by MSDPu) for the Coulomb and von Mises criteria; validation was also conducted
using plane strain numerical simulations.

The implementation of theMSDPu criterion in FLAC (Itasca) as part of a new elasto-
plastic constitutive model has been presented by Li et al. (2010); the latter includes the
application of the ensuing MSDPu–EP model to determine the stresses in backfilled
mine stopes.

These applications have shown that the multiaxial criterion presented in the chapter
is simple to use, and can be applied for a wide variety of rock media characteristics and
loading conditions. Like any other criterion, it also has some limitations, some of which
are briefly recalled in the following.

i) The criterion equations presented above are only applicable to isotropic media,
so it cannot be applied to the shaded areas shown schematically in Fig. 16. This is
also the case for most existing criteria. As mentioned however, it has also been
adapted for planar anisotropy (Li & Aubertin, 2000), but this aspect needs to be
investigated further.

ii) Size effects involve complex physical phenomena, and the strength magnitude at
various scales depends on the controlling inelastic processes leading to failure (or
yielding). With low porosity rocks, scale effects tends to be reduced when the mean
stress is increased because the added confinement diminishes the influence of existing
flaws by closing the opened crack faces (see Equation 4). However, not all flaws
(microcracks to joints) will be perfectly matched upon closure, so it can be expected
that scale effects cannot be fully eliminated simply by increasing the mean stress,
especially when natural porosity increases. More work needs to be done on this
aspect, especially to assess scale effects and other influence factors in the damaged
rock zone around openings where the stress distribution is highly non-uniform.

iii) It is assumed here that rock strength (from DIT to STF) is related to the initial
defect state. However, additional provisions are required to include the evolution
of the damage state. An internal state variable approach can be used to treat
complex load paths and history, including the effect of progressive damage
growth (Aubertin et al., 1994, 1998). For most practical calculations however,
the simplified procedure presented in the referenced papers, commonly in rock
engineering, provides a good estimate of failure occurrence.

This presentation has not taken into account the intrinsic variability of rock properties.
As with any other criteria, this aspect should be treated adequately with MSDPu, by
using proper statistical tools.
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Despite these limitations, the sound physical basis from which it has been formu-
lated, its unified and modular nature, and its adaptability to treat hard and soft
materials with little (Γ ffi 1) or many flaws (0 < Γ < 1) make the proposed criterion a
practical engineering tool.

8 FINAL REMARKS

In this chapter, the authors have presented a summary of themain features for the general
multiaxial criterionMSDPu, initially developed for intact rock samples and extended for
different types of rockmedia. The proposed criterion can be applied to describe the short
term strength and the damage initiation threshold (DIT) of rocks. It can also address the
effect of time to obtain isochronous failure surfaces. The effect of scale is also treated,
taking into account the size of the element and the loading conditions. A simple con-
tinuity parameter, Γ, is used to define the influence of large size defects and extrapolate
laboratory tests results to in situ conditions. The use of theMSDPu criterion is illustrated
with a number of experimental results. Application of this criterion to engineered
structures was summarized, based on earlier publications and ongoing work.
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Chapter 15

Unified Strength Theory (UST)

M.-H. Yu
School of Civil Engineering & Mechanics, Xi’an Jiaotong University, Xi’an, China

1 INTRODUCTION

Strength theory deals with the strength of material under the complex stress state
(bi-axial stress or tri- axial stress). Sometimes, it is referred to as the yield criterion in
metallic mechanics and computational mechanics, or as the failure criterion in rock-
soil mechanics and concrete mechanics. Great effort has been devoted to the formula-
tion of strength theories, failure criteria, yield criteria andmany versions of these have
been presented during the past 100 years (Zyczkowski, 1981; Yu, 2002). From the
1950s to the 1970s, the von Mises criterion was considered the best. The von Mises
criterion, however, is only suitable for those materials that have identical strength
both in tension and compression, and shear yield stresses equal to τy = 0.577σy, where
τy is shear yield strength and σy is uni-axial yield strength of materials.

Another important failure criterion is the Mohr−Coulomb failure criterion. The
Mohr–Coulomb failure criterion, because of its simplicity, is widely used in practice.
The mathematical expression of the Mohr−Coulomb failure criterion is

F ¼ τ13 þ βσ13 ¼ C σ1 � ασ3 ¼ σt ð1Þ
where τ13 = (σ1 − σ3)/2 is maximum principal shear stress, σ13 = (σ1 + σ3)/2 is normal
stress acted on the same section on which the maximum shear stress τ13 exists. β and C
are the material parameter, σt is tensile strength of material, α is ratio of tensile strength
to compressive strength.

The main disadvantage of the Mohr−Coulomb criterion is that the intermediate
principal stress σ2 is not taken into account. Clearly, it is unsuitable for a three-
dimensional problem.Most rock-soil material under a structure such as strip footing,
circular footing, slope or excavation, are under a spatial stress. The three principal
stresses σ1, σ2 and σ3 exist in a stress element. Jaeger & Cook (1979) said that the
effect of the intermediate principal stress should be solved, since it is a problem of
great significance in theory and practical matters. They also pointed out that it could
be surmised that the effect of increasing the intermediate principal stress is to increase
the strength from that obtained in tri-axial stress conditions to a higher value. They
felt that an analytical formulation of this transition was so complex that its meaning
was not obvious.

The intermediate stress is taken into account in the Drucker−Prager criterion. However,
the deviation of the Drucker−Prager criterion from the Mohr−Coulomb criterion is



surprising, as indicated by Davis and Selvadurai (2002). Recently, Yu showed clearly that:
‘The Drucker−Prager yield criterion has been used quite widely in geotechnical analysis.
However, experimental research suggests that its circular shape on a deviatoric plane
does not agree well with experimental data. For this reason care is needed when the
Drucker−Prager plasticity model is used in geotechnical analysis’ (Yu, 2010).

In 1991, ninety years after the establishment of theMohr−Coulomb failure criterion,
a new unified strength theory appeared. The mechanical model, experimental determi-
nation of the parameters, mathematical expression, and other formulation of the
unified strength theory will be described in this chapter. The unified strength theory
is a set of serial failure criteria. All the failure criteria of the unified strength theory
conform to Drucker’s postulation.

2 CONVEXITY OF THE LIMIT SURFACE

A postulate concerning the yield surfaces was proposed by Drucker, academician of the
American Science Academy in 1951, with the convexity of yield surface determined. Since
then the study of yield criterion has been developing on a more reliable theoretical basis.
This postulate is considered as a fundamental theorem in plasticity and solid mechanics.

According to the convexity, all the failure criteria and yield criteria must be convex
and located in the region between the two bounds, as shown in Figure 1.

3 MECHANICAL MODEL OF THE UNIFIED STRENGTH
THEORY (UST)

The principal stress state (σ1, σ2, σ3) can be converted into the solo-shear (or single-
shear) stress state (τ13, τ12 and τ23), as shown in Figure 2.

There are only two independent principal shear stresses among the three principal shear
stresses τ12, τ23, τ13, because the maximum shear stress equals to the sum of the other two,
i.e. τ13 = τ12+τ23. Therefore, the twin-shear stress state is presented. The twin-shear stress
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Figure 1 Two bounds and region of yield loci.
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state can be converted from the solo-shear stress element, as shown in Figure 3. This
element can be referred to as the twin-shear element. The two sets of shear stress and
relevant normal stress (τ13, τ12; σ13, σ12) and (τ13, τ23; σ13, σ23) act on the element.

The twin-shear stress model is different from the regular octahedral model. The
orthogonal octahedral model consists of two groups of four sections that are perpen-
dicular to each other and are acted on by the maximum shear stress τ13 and the
intermediate principal stress τ12 or τ23. Based on the orthogonal octahedral element, a
new strength theory can be developed.

Based on this twin-shear model, and taking into account the effects of all the stress
components on the failure of materials, a new strength theory that has a unified
mathematical expression was proposed by Mao-Hong Yu in 1990. It reflects the
fundamental characteristics of materials in the complex stress state.

4 MATHEMATICAL MODELING AND EXPERIMENTAL
DETERMINATION OF THE PARAMETERS FOR THE UNIFIED
STRENGTH THEORY (UST)

Considering all the stress components acting on the twin-shear element and the differ-
ent effects of various stresses on the failure of materials, the mathematical modeling of
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Figure 2 From principal stress state (σ1, σ2, σ3) to solo-shear stress state (τ13, τ12 and τ23).
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the unified strength theory was established in 1990 as follows (Yu & He, 1991; Yu,
1992)

F ¼ τ13 þ bτ12 þ βðσ13 þ bσ12Þ ¼ C; when τ12 þ βσ12 ≥ τ23 þ βσ23 ð2aÞ
F

0 ¼ τ13 þ bτ23 þ βðσ13 þ bσ23Þ ¼ C; when τ12 þ βσ12 ≤ τ23 þ βσ23 ð2bÞ
where b is a parameter that reflects the influence of the intermediate principal shear
stress τ12 or τ23 on the failure of thematerial; β is the coefficient that represents the effect
of the normal stress on failure;C is a strength parameter of the material; τ13, τ12 and τ23
are principal shear stresses; σ13, σ12 and σ23 are the corresponding normal stresses
acting on the sections where τ13, τ12 and τ23 acted. They are defined as

τ13 ¼ 1
2
ðσ1 � σ3Þ; τ12 ¼ 1

2
ðσ1 � σ2Þ; τ23 ¼ 1

2
ðσ2 � σ3Þ ð3Þ

σ13 ¼ 1
2
ðσ1 þ σ3Þ; σ12 ¼ 1

2
ðσ1 þ σ2Þ; σ23 ¼ 1

2
ðσ2 þ σ3Þ ð4Þ

The magnitude of the parameters in the unified strength theory (UST) β andC can be
determined by experimental results of uni-axial tension strength σt and uni-axial
compression strength σc, the experimental conditions are:

σ1 ¼ σt; σ2 ¼ σ3 ¼ 0 ð5aÞ
σ1 ¼ σ2 ¼ 0; σ3 ¼ �σc ð5bÞ
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Figure 3 Twin-shear element.
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Substituting Equation (5a) into Equation (2a) and Equation (5b) into Equation (2b),
the material constants β and C can be determined as follows

β ¼ σc � σt
σc þ σt

¼ 1� α
1þ α

; C ¼ 1þ bð Þσcσt
σc þ σt

¼ ð1þ bÞ
1þ α

σt ð6Þ

5 MATHEMATICAL EXPRESSION OF THE UNIFIED
STRENGTH THEORY

Substituting Equation (6) into Equation (2a) and (2b), we obtain

F ¼ τ13 þ bτ12 þ 1�α
1þ α

ðσ13 þ bσ12Þ ¼ ð1þ bÞσ
1þ α

;when τ12 þ βσ12 ≥ τ23 þ βσ23

ð7aÞ

F ¼ τ13 þ bτ23 þ 1�α
1þ α

ðσ13 þ bσ23Þ ¼ ð1þ bÞσ
1þ α

;when τ12 þ βσ12 ≤ τ23 þ βσ23

ð7bÞ
It is the mathematical expression of the unified strength theory (UST) in terms of the
principal shear stress.

Substituting Equation. (3) and Equation (4) into Equation (7a) and Equation (7b),
the UST in terms of the principal stress is now obtained. It can be expressed by the three
principal stresses (σ1, σ2, σ3) as follows:

F ¼ σ1 � α
1þ b

ðbσ2 þ σ3Þ ¼ σt; when σ2 ≤
σ1 þ ασ3
1þ α

; ð8aÞ

F
0 ¼ 1

1þ b
ðσ1 þ bσ2Þ � ασ3 ¼ σt; when σ2 ≥

σ1 þ ασ3
1þ α

; ð8bÞ

This theory is a new system of strength theory and contains a series of new criteria. It
takes into account the effect of all stress components on the failure of materials, gives a
series of failure criteria, and establishes a relationship among various failure criteria.
Though the mathematical expression of the UST is very simple and linear, it has rich
and varied contents.

6 OTHER FORMULATIONS OF THE UNIFIED STRENGTH
THEORY (UST)

The UST can be expressed in terms of the principal shear stresses and principal stresses
have been described above. It can also be expressed in other terms, as described in the
following subsections.
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6.1 In terms of principal stress and cohesive parameter
F(σ1, σ2, σ3, C0, φ)

In Equation (8a) and Equation (8b), we adopt thematerial constants σt and the tension-
compression ratio α. In geomechanics and engineering, the cohesion C0 and the
coefficient φ reflect the material properties used. The relationships among the tensile
strength σt, the tension-compression ratio α, the material parameter C0 and φ can be
obtained as follows:

σt ¼ 2C0 ⋅ cos φ
1þ sin φ

; α ¼ 1� sin φ
1þ sin φ

ð9Þ

By substituting Equation (11) into Equation (8a) and Equation (8b), the UST can be
expressed in terms of C0 and φ as

F ¼ σ1 � 1� sin φ
ð1þ bÞð1þ sin φÞ ðbσ2 þ σ3Þ ¼ 2C0cos φ

1þ sin φ
;

when σ2 ≤
1
2
ðσ1 þ σ3Þ � sin φ

2
ðσ1 � σ3Þ ð10aÞ

F
0 ¼ 1

1þ b
ðσ1 þ bσ2Þ � 1� sin φ

1þ sin φ
σ3 ¼ 2C0cos φ

1þ sin φ
;

when σ2 ≥
1
2
ðσ1 þ σ3Þ � sin φ

2
ðσ1 � σ3Þ ð10bÞ

6.2 In terms of stress invariant F(I1, J2, θ, σt, α)

F ¼ ð1� αÞ I1
3
þ αð1� bÞ

1þ b

ffiffiffiffi
J2

p
sin θ þ ð2þ αÞ

ffiffiffiffi
J2
3

r
cos θ ¼ σt; 0	 ≤ θ ≤ θb

ð11aÞ

F
0 ¼ ð1� αÞ I1

3
þ αþ b

1þ b

� � ffiffiffiffi
J2

p
sin θ þ 2� b

1þ b
þ α

� � ffiffiffiffi
J2
3

r
cos θ ¼ σt; θb ≤ θ ≤60

	

ð11bÞ
where I1 is the first stress invariant (hydrostatic pressure), J2 is the second deviatoric
stress invariant and θ is the stress angle on the deviatoric plane. The stress angle at the
corner θb can be determined by the condition F = F0.

θb ¼ arctg

ffiffiffi
3

p ð1þ βÞ
3� β

; β ¼ 1� α
1þ α

ð12Þ

6.3 In terms of stress invariant and cohesive parameter
F(I1, J2, θ, C0, φ)

The UST can also be expressed by the stress invariant, stress angle and material
parameters C0 and φ.
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F ¼ 2I1
3

sin φþ 2
ffiffiffiffi
J2

p
1þ b

sin θ þ π

3

� �
� bsin θ � π

3

� �h i
þ 2

ffiffiffiffi
J2

p
ð1þ bÞ ffiffiffi

3
p 


sin φ cos θ þ π

3

� �
þ b sin φ cos θ � π

3

� �h i
¼ 2C0cos φ; 0	 ≤ θ ≤ θb ð13aÞ

F
0 ¼ 2I1

3
sin φþ 2

ffiffiffiffi
J2

p
1þ b

sin θ þ π

3

� �
� b sin θ

h i
þ 2

ffiffiffiffi
J2

p
ð1þ bÞ ffiffiffi

3
p sin φ cos ðθ þ π

3
Þ þ b sin φ cos θ

h i
¼ 2C0 cos φ; θb ≤ θ ≤60

ð13bÞ

6.4 In terms of principal stresses and compressive strength
parameter F(σ1, σ2, σ3, α, σc)

In soil and rock mechanics and engineering, the compressive strength σc is often
adopted. Rewriting Equation (8a), Equation (8b) in terms of the principal stress and
compressive strength σc, we have

F ¼ 1
α
σ1 � 1

1þ b
ðbσ2 þ σ3Þ ¼ σc ; when σ2 ≤

σ1 þ ασ3
1þ α

ð14aÞ

F
0 ¼ 1

αð1þ bÞ ðσ1 þ bσ2Þ � σ3 ¼ σc; when σ2 ≥
σ1 þ ασ3
1þ α

ð14bÞ

6.5 In terms of stress invariant and compressive strength
parameter F(I1, J2, θ, α, σc)

F ¼ 1� α
3α

I1 þ 1� b
1þ b

ffiffiffiffiffi
J2

p
sin θ þ 2þ α

α
ffiffiffi
3

p ffiffiffiffi
J2

p
cos θ ¼ σc 0	 ≤ θ ≤ θb ð15aÞ

F
0 ¼ 1� α

3α
I1 þ αþ αbþ b

αð1þ bÞ
ffiffiffiffi
J2

p
sin θ þ 2þ αþ αb� b

α
ffiffiffi
3

p ð1þ bÞ
ffiffiffiffi
J2

p
cos θ ¼ σc θb ≤ θ ≤60

	

ð15bÞ
The UST can also be expressed in other terms.

7 SPECIAL CASES OF THE UST FOR DIFFERENT PARAMETER B

The unified strength theory (UST) contains a family of the convex failure criteria. A
series of convex failure criteria can be deduced from theUST by giving a certain value to
parameter b. The series of convex yield criteria (α = 1) is its special cases.

The parameter b reflects the influence of the intermediate principal shear stress τ12 or
τ23 on the failure of a material. It also reflects the influence of the intermediate principal
stress σ2 on the failure of a material. As can be seen below, b is also the parameter that
determines the formulation of a failure criterion. A series of convex failure criteria can
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be obtained when the parameter varies in the range of 0 ≤ b ≤ 1. The five types of failure
criteria with the values of b = 0, b = 1/4, b = 1/2, b = 3/4 and b = 1 are introduced from
the UST.

7.1 b = 0

The Mohr–Coulomb strength theory can be deduced from the UST with b = 0 as
follows:

F ¼ F
0 ¼ σ1 � ασ3 ¼ σt ð16Þ

F ¼ F
0 ¼ 1

α
σ1 � σ3 ¼ σc ð17Þ

7.2 b =1/4

A new failure criterion is deduced from the UST with b = 1/4 or B = 1+4α/5 as follows:

F ¼ σ1 � α
5
ðσ2 þ 4σ3Þ ¼ σt; σ2 ≤

σ1 þ ασ3
1þ α

ð18aÞ

F
0 ¼ 1

5
ð4σ1 þ σ2Þ � ασ3 ¼ σt; σ2 ≥

σ1 þ ασ3
1þ α

ð18bÞ

7.3 b =1/2

A new failure criterion is deduced from the UST with b = 1/2 or B = 1+2α/3 as follows:

F ¼ σ1 � α
3
ðσ2 þ 2σ3Þ ¼ σt; σ2 ≤

σ1 þ ασ3
1þ α

ð19aÞ

F
0 ¼ 1

3
ð2σ1 þ σ2Þ � ασ3 ¼ σt; σ2 ≥

σ1 þ ασ3
1þ α

ð19bÞ

Since the Drucker–Prager criterion cannot match with the practice, this criterion is
more reasonable and may be substituted for the Drucker–Prager criterion.

7.4 b = 3/4

A new failure criterion is deduced from the UST with b = 3/4 or B = 1+4α/7 as follows:

F ¼ σ1 � α
7
ð3σ2 þ 4σ3Þ ¼ σt; σ2 ≤

σ1 þ ασ3
1þ α

ð20aÞ

F ¼ 1
7
ð4σ1 þ 3σ2Þ � ασ3 ¼ σt; σ2 ≥

σ1 þ ασ3
1þ α

ð20bÞ

7.5 b = 1

A new failure criterion is deduced from the UST with b = 1 or B = 1+α/2 as follows:

F ¼ σ1 � α
2
ðσ2 þ σ3Þ ¼ σt; when σ2 ≤

σ1 þ ασ3
1þ α

ð21aÞ
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F
0 ¼ 1

2
ðσ1 þ σ2Þ � ασ3 ¼ σt; when σ2 ≥

σ1 þ ασ3
1þ α

ð21bÞ

This is the generalized twin-shear strength model proposed by Mao-Hong Yu in
1983 (Yu, 1983; Yu et al., 1985).

8 LIMIT LOCI OF THE UST IN DEVIATORIC PLANE

The mathematical expression of the UST in terms of principal stresses is as follows:

F ¼ σ1 � α
1þ b

ðbσ2 þ σ3Þ ¼ σt; when σ2 ≤
σ1 þ ασ3
1þ α

ð22aÞ

F
0 ¼ 1

1þ b
ðσ1 þ bσ2Þ � ασ3 ¼ σt; when σ2 ≤

σ1 þ ασ3
1þ α

ð22bÞ

The relationships between the coordinates of the deviatoric plane and hydrostatic
stress axis z with the principal stresses are:

x ¼ 1ffiffiffi
2

p ðσ3 � σ2Þ; y ¼ 1ffiffiffi
6

p ð2σ1 � σ2 � σ3Þ; z ¼ 1ffiffiffi
3

p ðσ1 þ σ2 þ σ3Þ ð23Þ

σ1 ¼ 1
3
ð
ffiffiffi
6

p
yþ

ffiffiffi
3

p
zÞ;

σ2 ¼ 1
6
ð2

ffiffiffi
3

p
z�

ffiffiffi
6

p
y� 3

ffiffiffi
2

p
xÞ;

σ3 ¼ 1
6
ð3

ffiffiffi
2

p
x�

ffiffiffi
6

p
yþ 2

ffiffiffi
3

p
zÞ

ð24Þ

By substituting Equation (23) and Equation (24) into Equation (8a) and Equation
(8b), the equations of the UST in the deviatoric plane can be obtained:

F ¼ �
ffiffiffi
2

p ð1� bÞ
2ð1þ bÞ axþ

ffiffiffi
6

p ð2þ αÞ
6

yþ
ffiffiffi
3

p ð1� αÞ
3

z ¼ σt ð25aÞ

F
0 ¼ � b

1þ b
þ α

� � ffiffiffi
2

p

2
xþ 2� b

1þ b
þ α

� � ffiffiffi
6

p

6
yþ

ffiffiffi
3

p
1� αð Þ
3

z ¼ σt ð25bÞ

A great number of new failure criteria can be generated from the UST by changing α
and b. The general shape of the limit loci of the UST on the deviatoric plane are shown
in Figure 4.

Material parameters α and σt are the tension-compression strength ratio and the
uni-axial tensile strength, respectively, and b is a material parameter that reflects
the influence of intermediate principal shear stress. A series of limit surfaces can
be obtained by varying b. Five special cases will be discussed with values of b from
b = 0, b = 1/4, b = 1/2, b = 3/4 and b = 1.
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8.1 b = 0

Substituting b = 0 into Equation (25a) and Equation (25b) we have

F ¼ F
0 ¼ �

ffiffiffi
2

p

2
axþ

ffiffiffi
6

p

6
ð2þ αÞyþ

ffiffiffi
3

p

3
ð1� αÞz ¼ σt ð26Þ

This is the Mohr–Coulomb strength theory. The limit locus of the Mohr–
Coulomb strength theory is the lower bound of the convex limit loci, as shown in
Figure 4.

8.2 b = 1/4

Substituting b = 1/4 into Equation (25a) and Equation (25b) we have

F ¼ � 3
ffiffiffi
2

p

10
axþ

ffiffiffi
6

p

6
2þ αð Þyþ

ffiffiffi
3

p

3
1� αð Þz ¼ σt ð27aÞ

F
0 ¼ � 1

5
þ α

� � ffiffiffi
2

p

2
xþ 7

5
þ α

� � ffiffiffi
6

p

6
yþ

ffiffiffi
3

p

3
1� αð Þz ¼ σt ð27bÞ

This is the limit surface of a new failure criterion.

Solo-Shear theory
(Mohr-Coulomb 1900)

Unified Strength Theory
(UST 1991)

Twin-Shear theory
(Yu 1985)

Outer bound
(b = 1)

Inner bound
(b = 0)

O

b =

1.0
0.9
0.8
0.7
0.6
0.5

New b =

0.5
0.4
0.3
0.2
0.1
0.0

New

σ'1

σ'3σ'2

Figure 4 Limit loci of the UST on the deviatoric plane.
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8.3 b = 1/2

Substituting b = 1/2 into Equation (25a) and Equation (25b) we have

F ¼ �
ffiffiffi
2

p

6
axþ

ffiffiffi
6

p

6
2þ αð Þyþ

ffiffiffi
3

p

3
1� αð Þz ¼ σt ð28aÞ

F
0 ¼ � 1

3
þ α

� � ffiffiffi
2

p

2
xþ 1þ αð Þ

ffiffiffi
6

p

6
yþ

ffiffiffi
3

p

3
1� αð Þz ¼ σt ð28bÞ

This is a new failure criterion. It is intermediate between the Mohr–Coulomb strength
theory and the twin-shear strength theory. The limit locus of the new criterion on the
deviatoric plane is also shown in Figure 4.

8.4 b = 3/4

Substituting b = 3/4 into Equation (25a) and Equation (25b) we have

F ¼ �
ffiffiffi
2

p

14
axþ

ffiffiffi
6

p

6
2þ αð Þyþ

ffiffiffi
3

p

3
1� αð Þz ¼ σt ð29aÞ

F
0 ¼ � 3

7
þ α

� � ffiffiffi
2

p

2
xþ 5

7
þ α

� � ffiffiffi
6

p

6
yþ

ffiffiffi
3

p

3
1� αð Þz ¼ σt ð29bÞ

This is the limit surface of a new failure criterion. The limit locus is close to the limit
locus of the twin-shear strength theory.

8.5 b =1

Substituting b =1 into Equation (25a) and Equation (25b) we have

F ¼
ffiffiffi
6

p

6
2þ αð Þyþ

ffiffiffi
3

p

3
1� αð Þz ¼ σt ð30aÞ

F
0 ¼ � 1

2
þ α

� � ffiffiffi
2

p

2
xþ 1

2
þ α

� � ffiffiffi
6

p

6
yþ

ffiffiffi
3

p

3
1� αð Þz ¼ σt ð30bÞ

This is the twin-shear strength theory proposed byMao-Hong Yu in 1985. The limit
locus of the twin-shear strength theory is the upper bound of the convex limit loci, as
shown in Figure 4.

When the tensile strength and the compressive strength are identical, the tension–
compressive strength ratio α = σt/σc equals 1, or the friction angle φ = 0. The unified yield
criterion (UYC) can be obtained as a special case of the UST. Themathematical expression
of the unified yield criterion is expressed as follows. It also contains a series of yield criteria.

F ¼ σ1 � 1
1þ b

ðbσ2 þ σ3Þ ¼ σt; when σ2 ≤
σ1 þ σ3

2
; ð31aÞ

F
0 ¼ 1

1þ b
ðσ1 þ bσ2Þ � σ3 ¼ σt; when σ2 ≥

σ1 þ σ3
2

; ð31bÞ
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The ratio between the tensile radius and the compressive radius on the deviatoric
plane is given by

K ¼ 1þ 2α
2þ α

¼ 3� sin �

3þ sin �
¼ 1 ð32Þ

which means that the irregular dodecahedron is converted to a regular dodecahedron.
The equations of the unified yield criterion on the deviatoric plane can be obtained by

Equation (25a) and Equation (25b)

F ¼ �
ffiffiffi
2

p ð1� bÞ
2ð1þ bÞ xþ

ffiffiffi
6

p

2
y ¼ σt ð33aÞ

F
0 ¼ �

ffiffiffi
2

p ð1þ 2bÞ
2ð1þ bÞ xþ

ffiffiffi
6

p

2ð1þ bÞ y ¼ σt ð33bÞ

It is seen that the yield locus of the unified yield criterion has nothing to do with the
value of z, and its shape is identical with different values of z. Therefore, the yield
surfaces of the unified yield criterion are a series of infinite prisms. The equations of the
yield loci of the unified yield criterion on the deviatoric plane with b = 0, 1/4, 1/2, 3/4
and b = 1 can be introduced. The relevant yield loci are illustrated in Figure 5.
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Figure 5 Yield loci of the unified yield criterion.
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The unified yield criterion contains a series of new convex yield criteria, as shown in
Figure 5. The solo-shear yield criterion and the twin-shear yield criterion can be given
with b=0 and b=1, respectively.

9 CONCAVE STRENGTH THEORY (b < 0 OR b > 1)

The UST provides a completely new series of yield and failure criteria. It can also be
extended to concave caseswhen b < 0 or b > 1, as shown in Figures 6 and 7. The concave
limit loci and yield loci have seldom been studied before. The broken line in Figure 6 is
the limit locus of the solo-shear strength theory (the Mohr–Coulomb strength theory).
It is the lower bound of the convex limit loci. The limit loci of the UST when b < 0 are
smaller than the lower bound of the convex failure criterion (b < 0, inside the lower
bound). The broken line in Figure 7 shows the limit locus of the twin-shear strength
theory (Yu et al., 1985). It is the upper bound of the convex limit loci. The limit loci of
the UST when b>1 are larger than the upper bound of the convex failure criterion.

The meaning and application of the concave failure loci have not yet investigated.
Until now, most experimental results for materials under complex stress states are
chosen to show the convexity. So, the limit locus of a strength theory cannot be chosen
arbitrarily. The property of convexity means that the limit loci of the failure criteria
have to be situated between the two bounds, as shown in Figures 2 and 4. The solo-
shear strength theory is the lower bound, and no admissible limit surface may exceed

σ'1

σ'3σ'2

Figure 7 Concave yield criterion (b = 5/4).

σ'1

σ'3σ'2

Figure 6 Concave yield criterion (b = −1/3).
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that of the solo-shear strength theory (Mohr–Coulomb strength theory) from below.
The twin-shear strength theory is the upper bound, and no admissible limit surface may
exceed that of the twin-shear strength theory from above. The effect of failure criteria
will be studied in the framework of convexity.

10 LIMIT SURFACES AND YIELD LOCI OF THE UST

10.1 Limit surfaces of the UST in principal stress space

The yield function can be interpreted for an isotropic material in terms of a geometrical
representation of the stress state obtained by taking the principal stresses as coordi-
nates. The advantage of such a space lies in its simplicity and visual presentation.

The yield surfaces in the stress space of the UST are usually a semi-infinite hex-
agonal cone with unequal sides and a dodecahedron cone with unequal sides, as
shown in Figure. 8. The shape and size of the yield hexagonal cone depends on
parameter b and on the tension-compression strength ratio α. The 3D computer
images of yield surface for the UST in the stress space are given by Zhang (2005), as
shown in Figure 8 and Figure 9.

 (a) b = 0 (lower bound)  (b) b = 1/2 (median)

σ1

σ3

σ2

σ1

σ3

σ2

σ1

σ3

σ2

(c) b = 1 (upper bound) 

Figure 9 Three typical yield surfaces of the UST.

–σ2–σ2 –σ3–σ3

–σ1–σ1

Figure 8 Yield surfaces of the UST in stress space.
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In engineering practice, the compressive strength of materials σc is often much
greater than the tensile strength σt, since a region in tension becomes smaller, while
it becomes larger in compression. Assuming the compressive strength is positive, the
yield surfaces of the UST with different values of b are shown in Figure 8. The three
typical yield surfaces of the UST with b=0, b=1/2, and b=1 are illustrated respectively
in Figure 9.

10.2 Limit loci of the UST in the plane stress state

The limit loci of the UST in the plane stress state are the intersection line of the limit
surface in the principal stress space and the σ1 � σ2 plane. Its shape and size depend on
the values of b and α. It will be transformed into a hexagonwhen b = 0 or b = 1, and into
a dodecagon when 0< b< 1.

The equations of the 12 limiting loci of the UST in the plane stress state can be given
as follows:

σ1 � αb
1þ b

σ2 ¼ σt
α

1þ b
ðσ1 þ bσ2Þ ¼ σt

σ2 � αb
1þ b

σ1 ¼ σt
α

1þ b
ðσ2 þ bσ1Þ ¼ σt

σ1 � α
1þ b

σ2 ¼ σt
1

1þ b
σ1 � ασ2 ¼ σt

σ2 � α
1þ b

σ1 ¼ σt
1

1þ b
σ2 � ασ1 ¼ σt

α
1þ b

ðbσ1 þ σ2Þ ¼ �σt
b

1þ b
σ1 � ασ2 ¼ σt

α
1þ b

ðbσ2 þ σ1Þ ¼ �σt
b

1þ b
σ2 � ασ1 ¼ σt

ð34Þ

A series of new failure criteria and new limit loci in the plane stress state can be
obtained from the UST.

10.2.1 Variation of the UST with b

The limit loci of the UST in the plane stress state with different values of b for α=1/2
materials are shown in Figure 10.

Various limit loci of the UST in the plane stress state are shown in Figure 11. The
unified yield criterion, the Mohr–Coulomb strength theory, the twin-shear strength
theory and a series of new failure criteria can be obtained from the UST, as shown in
Figure 11.

10.2.2 Limit locus of the UST by varying α

If the tensile strength is identical to the compressive strength, the UST will be
transformed into the unified yield criterion (UYC). The yield loci of the unified
yield criterion (α =1 materials) in the deviatoric plane has been shown in Figure 5.
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The yield loci of the unified yield criterion (α =1 materials) in plane stress state are
shown in Figure 11. The limit loci of the UST in the plane stress state with different
values of α are shown in Figures 10 and 12. Figure 10 shows the limiting line of the
UST in the σ1−σ2 plane with α = 1/2. Figure 12 shows the limiting loci of the UST in the
σ1−σ2 plane with α = 1/4.

10.2.3 Limit loci of UST in meridian plane

Various expressions of the UST are given above. The UST can also be expressed in other
terms, such as by the octahedral normal stress σ8 and octahedral shear stress τ8 in
plasticity, or by the generalized normal stress σg and the generalized shear stress τg (or q)
in geomechanics.

The relationships between the three principal stresses σ1, σ2, σ3 and the cylindrical
polar coordinates ξ, r, θ in the principal stress space are:

σ1
σ2
σ3

8<:
9=; ¼ 1ffiffiffi

3
p ξ þ

ffiffiffi
2
3

r
r

cos θ
cos ðθ � 2π=3Þ
cos ðθ þ 2π=3Þ

8<:
9=; ð35Þ

in which ξ is the major coordinate axis in the stress space, and r is the length of the stress
vector in the π-plane. They are defined as follows:

ξ ¼ 1ffiffiffi
3

p ðσ1 þ σ2 þ σ3Þ

r ¼ 1ffiffiffi
3

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðσ1 � σ2Þ2 þ ðσ2 � σ3Þ2 þ ðσ3 � σ1Þ2

q ð36Þ

Unified
strength theory

(Yu 1991)
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Figure 10 Variation of the limit loci of the UST in plane stress state (α = 1/2).
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The relationship among the various variables is

ξ ¼ 1ffiffiffi
3

p I1 ¼
ffiffiffi
3

p
σ8 ¼

ffiffiffi
3

p
p ¼

ffiffiffi
3

p
σm

r ¼ ffiffiffiffiffiffiffi
2J2

p ¼ ffiffiffi
3

p
τ8 ¼

ffiffiffi
2
3

r
q ¼ 2τm

ð37Þ

The principal stress can be expressed as

σ1
σ2
σ3

8<:
9=; ¼ 1

3
I1 þ 2ffiffiffi

3
p ffiffiffiffi

J2
p cos θ

cos ðθ � 2π=3Þ
cos ðθ þ 2π=3Þ

8<:
9=; ð38Þ

σ1
σ2
σ3

8<:
9=; ¼ pþ 2

3
q

cos θ
cos ðθ � 2π=3Þ
cos ðθ þ 2π=3Þ

8<:
9=; ð39Þ

σ1
σ2
σ3

8<:
9=; ¼ σ8 þ

ffiffiffi
2

p
τ8

cos θ
cos ðθ � 2π=3Þ
cos ðθ þ 2π=3Þ

8<:
9=; ð40Þ

σ1
σ2
σ3

8<:
9=; ¼ σm þ 2

ffiffiffi
2

pffiffiffi
3

p τm
cos θ
cos ðθ � 2π=3Þ
cos ðθ þ 2π=3Þ

8<:
9=; ð41Þ

Substituting the above equations into Equation (8a) and Equation (8b), the UST can
then be expressed in other terms.

In some books on geomechanics, (σ1−σ3) is often used as a coordinate, then the
variable p ~ (σ1−σ3), σ8~(σ1−σ3), or σm~(σ1− σ3) can be drawn. In the case of tri-axial
confined pressure experiments, the stress state is axial-symmetric, i.e., σ2 = σ3. The
generalized shear stress q is

Unified

strength theory

(Yu 1991)

b = 0
b = 1/4

b = 1/2
b = 3/4

O

b = 1.0

σ1

σ2
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Figure 12 Limit loci of the UST in the plane stress state (α = 1/4 material).
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q ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
2
½ðσ1 � σ2Þ2 þ ðσ2 � σ3Þ2 þ ðσ3 � σ1Þ2�

r
¼ σ1 � σ3

The p~q coordinate and the p~(σ1−σ3) coordinate are identical. It is worth noting,
however, that they are not identical in other cases.

The strength behavior ofmaterial in the region of three-dimensional tensile stresses is
more complex. The tri-axial tensile test is difficult. In this case a tension cut-off
condition F=σ1=σt is needed. The mathematical expressions of the UST and tension
cut-off are

F1 ¼ σ1 � α
1þ b

ðbσ2 þ σ3Þ ¼ σt; when σ2 ≤
σ1 þ ασ3
1þ α

; ð42aÞ

F2 ¼ 1
1þ b

ðσ1 þ bσ2Þ � ασ3 ¼ σt; when σ2 ≥
σ1 þ ασ3
1þ α

; ð42bÞ

F3 ¼ σ1 ¼ σt; when σ1 ≥ σ2 ≥ σ3 ≥0 ð42cÞ

11 SIGNIFICANCE OF THE UST

The UST encompasses many well established criteria as its special cases or linear
approximations. It also gives a series of new failure criteria. The relationship between
the UST and the existing main strength theories can be illustrated in Figure 13.

The solo-shear strength theory, the twin-shear strength theory and a series of new
failure criteria can be obtained from the UST in the range of 0 ≤ b ≤ 1, 0 ≤ α ≤ 1. The
smooth-ridgemodels can also be approximated by the USTwhen b = 1/2 or b = 3/4. The
convex failure criteria can be obtained by varying the value of α (α < 1) and b (0 ≤ b ≤1).
They can be used to suit various kinds of engineering materials.

A series of yield criteria and failure criteria can be introduced from the unified
strength theory (UST).

The UST is a completely new theory system. The significance of the UST is summar-
ized as follows:

1. It is suitable for various kinds of materials.
2. It contains various spread strength theories and forms a new system of yield

criteria and failure criteria.
3. It agrees well with experimental results for various materials, such as metals, rock,

soil, concrete and iron.
4. A series of new results can be obtained by using the UST.
5. The UST can be generalized to the unified elasto-plastic constitutive equations. It

can be implemented in finite element code and forms a unified elasto-plastic
program. It is convenient for elastic limit design, elasto-plastic analysis, and the
plastic limit analysis of structures.

The UST is convenient for application to analytic solution of plasticity and engineer-
ing problems. Several unified solutions for plastic behavior of structures were intro-
duced by using the UST. The research results show that the yield criterion has
significant influence on the load-carrying capacities of structures. A series of analytical
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results are clearly illustrated to show the effects of yield criterion to elasto-plastic
behavior, limit speed and dynamic behavior.

The concept of the UST can be generalized in many other branches. The UST can be
generalized conveniently to multi-parameter strength theory, such as the three-para-
meter failure criterion and the five-parameter failure criterion. The recent result can be
seen in a paper (Yu, 2002). A detailed description of the multi-parameter failure
criterion can be found in the two books ‘Twin-Shear Theory and its Applications’ (in
Chinese, Yu, 1998) and ‘Unified Strength Theory and its Applications’ (in English, Yu,
2004).

In general, the analytical results of structural strength and the computational results
of numerical simulations of structural plasticity depend strongly on the choice of failure
criterion.

σ1σ1

σ1σ1σ1σ1

σ1σ1

σ1σ1

σ1σ1

σ1σ1

σ2σ2

σ2σ2

σ3σ3

UYC with b = 1/4UYC with b = 1/4

b = 3/4b = 3/4b = 1/4b = 1/4

σ1σ1 σ1σ1

σ2σ2 σ2σ2
σ3σ3

σ3σ3

σ1σ1

σ1σ1

σ1σ1

σ3σ3

σ2σ2 σ3σ3

σ3σ3

0 ≤ b ≤ 10 ≤ b ≤ 1

UST with 0 ≤ b < 1UST with 0 ≤ b < 1

UST with b = 3/4UST with b = 3/4

σ2σ2 σ3σ3

σ2σ2
σ3σ3

σ3σ3

UYC with b = 1/2UYC with b = 1/2 UYC with b = 3/4UYC with b = 3/4

b = 1/2b = 1/2

b = 0b = 0

b = 0b = 0

b = 1b = 1

b = 1b = 1

b = 1b = 1b = 0b = 0

b = 1/4b = 1/4 b = 1/2b = 1/2

b = 1/2b = 1/2b = 1/4b = 1/4

UST with b = 3/4UST with b = 3/4UST with b = 1/4UST with b = 1/4

b = 3/4b = 3/4

b = 3/4b = 3/4

b = 1b = 1 b = 3/4b = 3/4

Twin-shear
criterion

Twin-shear
criterion

Solo-shear
criterion

Solo-shear
criterion

Unified
Yield Criterion

(UYC)

Unified
Yield Criterion

(UYC)

Twin-shear
theory

Twin-shear
theorySolo-shear

theory
Solo-shear

theory

Unified
Strength Theory

(UST)

Unified
Strength Theory

(UST)

α = 1α = 1

b = 1/4b = 1/4

b = 0b = 0 b = 1b = 1

σ2σ2 σ2σ2

σ2σ2

σ3σ3

σ3σ3σ2σ2 σ3σ3σ2σ2
σ3σ3

α = 0α = 0
EquivalentEquivalent

Curvilineal
criteria

Curvilineal
criteria

Tension
theory

Tension
theory

0 < b < 10 < b < 1

Figure 13 Variation of the UST on the deviatoric plane by varying α and b.
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A series of researches were carried out to show the effects of strength theory on the
results of elasto-plastic analysis, load-carrying capacities of structures, deformation
and discontinuous bifurcation, localization behavior and others.

The effects of failure criteria on the analytical results of slip field of plane strain
problems, characteristics fields of plane stress problems and spatial axial-symmetric
problems are summarized in ‘Generalized Plasticity’ (Yu, 2006). The choosing of
strength theory has significant influence on these results.

12 APPLICATIONS OF THE UST

The unified strength theory has been widely used in several fields. It can be seen in
literature. Three monographs were presented for the application of UST in three
aspects (Yu, 2006; Yu et al., 2009; Yu & Li, 2012). Two examples are described
briefly here.

Example 1: Trapezoid structure

The trapezoid specimenwith a top angle 2ξ is considered. The uniform distributed load is
applied on the top of the specimen, as shown in Figure 14. The physical properties of the
material are: Young’s modules: 368 kN/cm2, specific gravity: 1.35-1.45g/cm3, Poisson’s
ratio: 0.27, tensile strength: 5.89 kN/cm2, compressive strength: 7.58 kN/cm2.
Determine the limit load.

Solution

The friction angle and cohesion of this material can be determined by

φ0 ¼ sin�1 σc � σt
σc þ σt

¼ 7:2080

C0 ¼ σtð1þ sin φ0Þ
2cos φ0

¼ 3:339
ð43Þ
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Figure 14 Slip lines field of a trapezoid structure.
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It is assumed that the surfaces AA’ are smooth and there is no friction. It is also
assumed that there is a constant pressure on the top. The rest of the boundary is stress-
free. The slip line field is shown in Figure 14.

The limit loading of a trapezoid specimen is obtained by using the UST and unified
slip field theory as follows (Yu, 2006):

q ¼ CUST ⋅ cotφUST
1þ sin φUST
1� sin φUST

expð2ξ ⋅ tanφUSTÞ � 1
� �

ð44Þ

With different choices of unified yield criterion parameter b, a series of limit loading
are obtained as shown in Figure 15. The serial results for the top angles 2ξ ¼ 1208 are
shown. Figure 16 is the variation of the slip angles with the variation of unified yield
criterion parameter b.
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Figure 16 Variation of slip angle 2μ with the unified yield criterion parameter b.
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It is worth mentioning that not only the limit loading q but also the slip angle 2μ are
different. They are different for different materials. The variation of slip angle 2μ with
the unified yield criterion parameter b is shown in Figure16. The result of the unified
slip line field theory (2μ = 81.04o for b = 0.8) is much closer to the experimental result
than that of the Mohr−Coulomb (2μ = 82.8o).

It is a strip footing when the top angles of the trapezoid structure equals 2ξ ¼ 1808.
The limit load can be deduced from Equation (44) when 2ξ = π, a serial results can be
given. The slip field is shown in Figure 17.

q ¼ CUST ⋅ cotφUST
1þ sin φUST
1� sin φUST

expðπ ⋅ tan φUSTÞ � 1
� �

ð45Þ

Example 2

The application of the unified strength theory by using the numerical analysis method
can be illustrated by an example as follows. A series of shear strain cloud chart using the
UST with several b for a slope under the same condition are given in Figure 18.

Figure 18 shows different shear strain cloud charts using the UST with several b
for a slope under the same condition. The shear strain cloud chart using the UST with
b = 0 is maximal, this result is the same as the result by using the solo-shear theory
(Mohr−Coulomb theory). The result by using the twin-shear theory (UST with b = 1)
is minimal.

Recently, a comprehensive and useful monograph entitled ‘Solutions Manual to
Design Analysis in Rock Mechanics’ (Pariseau, 2008) was published giving the design
analysis of slope stability, shafts, tunnels, entries in stratified ground, pillars in stratified
ground, three-dimensional excavations, and subsidence. The Mohr−Coulomb condi-
tion is used in most cases. More results can be obtained if we use the unified strength
theory instead of the Mohr−Coulomb condition.

13 SUMMARY

Based on the twin-shearmechanical model and a new type of mathematical modeling, a
new UST was established by Yu in 1991 (Yu&He, 1991; Yu, 1992). This UST is not a
single yield criterion suitable only for one kind of material, it is a completely new
system. It embraces many well established criteria as its special or approximate cases,
such as the Tresca yield criterion, the Huber-von Mises yield criterion, and the Mohr–
Coulomb strength theory, as well as the twin-shear yield criterion, the generalized
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IIIIII
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Figure 17 Slip lines field of a strip footing.
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twin-shear strength theory (for SD materials, Yu et al., 1985), and the unified yield
criterion (for non-SD materials). The UST forms an entire spectrum of convex criteria,
which can be used to describe many kinds of engineering materials. The UST has a
unifiedmechanical model and a simple and unifiedmathematical expression, which can
be adapted to the various experimental data. It is easy to use in both research and
engineering practice.

The SD effect, hydrostatic stress effect, normal stress effect, effect of the inter-
mediate principal stress, and the effect of intermediate principal shear stress are all
taken into account in the UST. The UST establishes a very clear and simple relation
among the various yield criteria. It also provides a method to choose the appropriate
yield criterion.

The mathematical expression of the UST can be expressed in various forms. More
than five kinds of expressions are discussed in this chapter.

The parameters of UST are the same as the parameters used in the Mohr−Coulomb
strength theory (1900), Drucker−Prager criterion (1952), and other two-parameters
criteria. Tensile strength σt, compressive strength σc (or σt, α) or friction angle φ and
cohesion C0 are the most used material parameters in engineering.

The yield surfaces and yield loci of the unified yield criterion, the twin-shear
strength criterion, the twin-shear yield criterion, the solo-shear strength criterion
(Mohr–Coulomb theory), the solo-shear yield criterion (Tresca yield criterion) and
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Figure 18 Shear strain cloud charts with several b for a slope under the same condition.

448 Yu



many empirical failure criteria are special cases or linear approximations of the yield
surface of the UST. A series of new yield surfaces and yield loci can also be drawn
based on the UST.

Postscript: A paper entitled ‘Remarks on Model of Mao-Hong Yu’ has been written
by Altenbach and Kolupaev (2008). Two reviews of ‘UST and its Applications’ were
published by Shen (2004) and Teodorescu (2006).
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Chapter 16

Failure criteria for transversely
isotropic rock

Y.M. Tien, M.C. Kuo & Y.C. Lu
Department of Civil Engineering, National Central University, Taoyuan, Taiwan

Abstract: In this chapter, a new failure criterion for the transversely isotropic rocks is
presented. The new criterion is based on two distinct failure modes; one is the sliding
mode where the failure is caused by sliding along the discontinuity, and the other is the
non-sliding mode where the failure is controlled by the rock material and is not
dependent on discontinuity. This failure criterion is defined with seven material para-
meters. The physical meanings of, and the procedures for determining, these para-
meters are described. Both the original Jaeger criterion and the extended Jaeger
criterion are shown to be special cases of the proposed criterion. The accuracy and
applicability of the proposed failure criterion are examined using the published experi-
mental data. The data used cover various types of transversely isotropic rocks, different
orientation angels and confining pressures. The predicted strength behaviors of the
transversely isotropic rocks agree well with the experimental data from various inves-
tigators. The accuracy and applicability of the proposed empirical failure criterion are
demonstrated in this paper.

1 INTRODUCTION

The constitutive laws and failure criteria of rock materials and rock masses are
required in most rock engineering analyses that are based on solid mechanics. Due
to the preferred fabric orientation or the existence of non-random discontinuity,
anisotropic behaviors of rock masses should be fully accounted for in the analysis.
Several types of rocks such as sedimentary rocks and metamorphic rocks may be
transversely isotropic. Most foliated metamorphic rocks, such as schist, slates,
gneisses, and phyllites contain fabric with preferentially parallel arrangements of
flat or long minerals. Metamorphism changes the initial fabric of rocks with the
directional structure. Foliation induced by the non-random orientation of macro-
scopic mineral, parallel fracture or microscopic mineral plates, such as fracture
cleavage, slaty cleavage, bedding cleavage, lepidoblastic schistosity, nematoblastic
schistosity or lineation leads to rock properties that are highly direction-dependent
(Goodman, 1993). Stratified sedimentary rocks like sandstone, shale or sandstone–
shale alteration often display anisotropic behaviors. The anisotropy may also be
found in the isotropic rocks, such as granite and basalt, if cut by regular disconti-
nuities (Amadei, 1983; Wittke, 1990).

Over the past several decades, many authors have devoted considerable efforts
to the study of rock anisotropy, from both the theoretical and the experimental
points of view. Many scholars have investigated mechanical properties of both
nature and synthetic transversely isotropic rocks under varied confining pressures



(Donath, 1964; Hoek, 1964; Chenevert & Gatlin, 1965; McLamore & Gray,
1967; Horino & Ellickson, 1970; Attewell & Sandford, 1974; Brown et al.,
1977; Niandou et al., 1997; Lai et al., 1997; Lai et al., 1999; Tien & Tsao,
2000) The shape of the curve of compression strength and the orientation angle
(the angle between the discontinuity and the direction of major principal stress)
are the most common representation of the nature of strength anisotropy. Most
transversely isotropic rocks are found to have their maximal compression strength
at an orientation angle β = 0˚ or 90˚, and their minimal compression strength at an
orientation angle in the range of 30–45 ˚. As the confining pressure is increased,
the anisotropic rocks become more ductile, and the effect of the strength aniso-
tropy is usually reduced.

In general, the characteristic of strength anisotropy of rocks can be presented by:
The relations the maximum and minimum uniaxial compressive strength at specific

β. Ramamurthy (1993) defined the anisotropy ratio as,

RC ¼ σc max

σc min
ð1Þ

where σcmax is the maximum minimum uniaxial compressive strength; σcmin is the
minimum uniaxial compressive strength.

The relation between β and uniaxial compressive strength.
Table 1 lists anisotropy ratios for various kinds of rocks; it is obviously observed that

the anisotropy ratios in metamorphic rocks (slate, phyllite, and coal) are larger than
sedimentary rocks (shale and sandstone).

Based upon the analysis of the shape of the anisotropy curve, Ramamurthy (1993)
classified the anisotropy of rocks into three groups, namely, U type, undulatory type,
and shoulder type anisotropy (see Figure 1).

Table 1 Anisotropy ratios for various kinds of rocks (Ramamurthy, 1993).

Rock type Value of β for σc max Anisotropic ratio, Rc* Source

Martinsburg slate 90˚ 13.5 Donath (1964)
Fractured sandstone 90˚ 6.37 Horino & Ellickson (1970)
Barnsley Hard coal 90˚ 5.18 Pomeroy et al. (1971)
Penrhyn slate 90˚ 4.85 Attewell & Sandford (1974)
South African slate 0˚ 3.68 Hoek (1964)
Texas slate 90˚ 3.00 McLamore & Gray (1967)
Permian shale 90˚ 2.33 Chenevert & Gatlin (1965)
Green River shale I 0˚ 1.62 McLamore & Gray (1967)
Green River shale II 0˚ 1.41 McLamore & Gray (1967)
Green River shale 0˚, 90˚ 1.37 Chenevert & Gatlin (1965)
Kota sandstone 0˚ 1.12 Rao (1984)
Arkansas sandstone 0˚ 1.10 Chenevert & Gatlin (1965)
Chamera phyllites
Quartizitic 90˚ 2.19 Singh (1988)
Carbonaceous 90˚ 2.19 Singh (1988)
Micaceous 90˚ 6.00 Singh (1988)
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2 FAILURE MODES

In the development of a failure criterion, it is important to observe the failure modes of
rock specimens with different orientation angles and under different confining pres-
sures. An ideal failure criterion should be able to predict not only the state of stress at
failure but also the failure mode. The failure mode of anisotropic rocks under triaxial
compression is influenced by the orientation of the stresses, as well as the confining
pressure. Hence, it is far more complicated than that of isotropic rocks. Many scholars
(Donath, 1964; McLamore & Gray, 1967; Niandou et al., 1997) have described in
detail the failure modes of the transversely isotropic rocks under various confining
pressures. Jaeger (1960) simplified the failure of transversely isotropic rocks into two
modes: (1) sliding along the discontinuity, and (2) fracture through the rock materials.
Jaeger’s criterion is mainly based on the simplified assumption of failure modes
described above. Recently, some scholars (Tien & Tsao, 2000; Tien et al., 1995a;
Tien et al., 1995b; Tien et al., 1996; Tien et al., 1997) have developed a sample
preparation technique for synthetic layered rocks. The overall mechanical properties
of synthetic layered rocks are found to be very similar to those of transversely isotropic
natural rocks (Tien et al., 2006).

An ideal failure criterion should predict not only the state of stress at failure, but also
the failure mode. The observation of failure processes and failure modes may provide
the feedback necessary to verify a new failure criterion. Therefore, it is an important
task to observe the failure processes and failure modes of rocks at different stress levels.
The failure modes of anisotropic rocks depend on not only the confining pressure, but
also the orientation of the specimen.

In order to examine the failure behavior and failure mechanism of transversely
isotropic rock, it is essential to observe and record the failure process at different
stress–strain levels under compression. The rotary scanner (Tien & Chu, 2004)
designed previously, which cannot scan the unrolled image during loading, is applied.
A ‘‘rotatable CCD sensor’’ has been designed, which circumnavigates the rock speci-
men during the uniaxial compressive test (see Figure 2).

After the specimen had been placed on the platen of the MTS, a reference image was
scanned before any loads were applied. The platen was then raised to the

(a)

sc sc sc

bbb

(b) (c)

0° 90°

U type Undulatory type Shoulder type

0° 90° 0° 90°

Figure 1 Classification of anisotropy for transversely isotropic rocks (after Ramamurthy, 1993).
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predetermined displacement (strain level) and fixed at that level, scanning then fol-
lowed. This procedure was repeated until the failure of the specimen occurred. For
distinction between bedding plane and crack, the digital unrolled images were pro-
cessed with software to enhance the cracks and the edges of layers. The observations
during uniaxial compressive tests (Tien et al., 2006) are shown in Figure 3. Based on
observations of crack initiation and propagation, the failure processes and stress
conditions of the transversely isotropic rock under uniaxial compression are summar-
ized in Table 2.

Not only β can affect failure modes but also confining pressure can affect it. Tien and
Kuo (2001) prepared series of syntactic transversely isotropic rocks to investigate their
failure modes under triaxial compressive tests. Figure 4 shows a series of photos that
depict the failure modes of the samples in triaxial compression tests. For samples with
β = 0˚ or 90˚ and loaded without confining pressure, fracture through both white and
brown layers was observed. When they were loaded under confining pressures, beha-
vior of ductile deformation (i.e., axial strain accumulation) was observed. For samples
prepared at β = 45˚ and loaded without confining pressure, the failure mode was that of
sliding along the discontinuity.When theywere loaded under a confining pressure up to
0.8MPa, the artificial layered rocks behave more like ductile materials, and the sliding
mode was suppressed.

It is obvious from the above observations, the failure of transversely isotropic
rocks may be divided into two failure modes: (1) sliding mode in which the plane
discontinuity predominated, (2) non-sliding mode in which the material strength
dominated. Jaeger treated the former failure mode by the theory of plane of weak-
ness, which yielded fairly accurate and reasonable prediction of the strength.
However, the plateau of constant strength at low values of β, or high values of β
predicted by Jaeger’s criterion is not always present in the experimental strength
data when the sliding mode is prevented. This suggests that the assumption of rock

Loading ram
CCD sensor

Computer

Control unit

Rotating gear

Stepping motor

Specimen

Rotating ring

Belt
Steel base

Figure 2 Schematic diagram of the modified rotary scanner for scanning of a cylindrical specimen during
the loading process (Tien et al., 2006).
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Artificial Transversely Isotropic Rock (α = 0°)
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Figure 3 (a) Stress–strain curve during the uniaxial compressive test of a low dip specimen (β = 90˚).
(b) Unrolled image of a low-dip specimen—corresponding to point a marked. (c-g) Enhanced
image of a low-dip specimen—corresponding to point b-f marked. (h) Reconstructed 3-D
image of a specimen—corresponding to point f marked (Tien et al., 2006).



Table 2 Failure processes of simulated transversely isotropic rock under uniaxial compressive tests (Tien et al., 2006).

Mode type Failure process (stress-strain condition)

No obvious crack
(< 95% σp, < 91% εp)

No obvious crack
(< 100% σp, < 100% εp)

No obvious crack
(< 100% σp, < 100% εp)

No obvious crack
(100% σp, 100% εp)

Pre-peak Peak Post-peak

No obvious crack
(100% σp, 100% εp)

Microcracks initiate
within softer layer
(96% σp, 91% εp)

Microcracks propagate into
stiffer layer and new cracks
initiate within softer layer

(99% σp, 96% εp)

Cracks cross the layers
and new cracks initiate

within stiffer layer
(100% σp, 100% εp)

Post-peak failure occurs with
macrocracks parallel to the

direction of axial force
(96% σp, 105% εp)

Post-peak failure occurs with
macrocracks parallel to the

direction of axial force
(99% σp, 101% εp)

Post-peak failure occurs
suddenly along the discontinuity

(98% σp, 100% εp)

Tensile fracture across discontinuous (TM mode) (a = 0º, 15º, 30º)

Sliding failure along discontinuities (SD mode) (a = 45º, 60º, 75º)

Tensile-split along discontinuities (TD mode) (a = 90º)



as an isotropic material in Jaeger’s criterion results in an oversimplified representa-
tion of strength, when the failure is controlled by the rock materials. According to
experimental observations of syntactic rock mass (Tien et al., 2006), the failure
modes can be categorized into (a) tensile fracture across discontinuities mode (TM
mode); (b) tensile-split along discontinuities mode (TD mode); (c) sliding failure
along discontinuities mode (SD mode); (d) sliding failure across discontinuities
mode (SM mode) (Figure 5).

The failure modes of experiments conducted by previous investigations
(McLamore & Gray, 1967; Donath, 1964; Niandou et al., 1997) are presented in
Table 3. The SD mode is synonymous with that described by Donath (1964) as the
slip-on-the-discontinuity mode, shear along-the-discontinuity mode defined by
McLamore & Gray (1967), and shearing-on-the-discontinuity mode defined by
Niandou (1997). The TD mode is synonymous with Niandou’s (1997) extension
mode. The SM mode is synonymous to the shear-across-the-discontinuity mode
(McLamore & Gray, 1967; Donath, 1964), and the shearing-in-shale-matrix mode
(Niandou et al., 1997).

Discrepancies between results of this study and those of previous researchers
(McLamore & Gray, 1967; Donath, 1964; Niandou et al., 1997) are found in the
TM, PD (Plastic flow along discontinuity mode) and KK (Kinking) modes. The uniaxial
compressive test was not conducted in previous studies (McLamore & Gray, 1967;
Donath, 1964; Niandou et al., 1997), thus, the existence of a TMmodewas not present

(a)

(b)

b= 0˚ b= 0˚

s¢3= 0˚ MPa s¢3= 0.8 MPa

b= 0˚

s¢3= 3.2 MPa

b= 45˚

s¢3= 0 MPa

b= 45˚

s¢3= 0.8 MPa

b= 0˚

s¢3= 6.4 MPa

b= 90˚ b= 90˚

s¢3= 0˚ MPa s¢3= 0.8 MPa

b= 90˚

s¢3= 3.2 MPa

b= 90˚

s¢3= 6.4 MPa

(c)

Figure 4 Deformation characteristic of saturated synthetic layered rocks after triaxial test (a) β = 0˚
(b) 45˚and (c) 90˚ (Tien & Kuo, 2001).
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in those findings. For high-confining pressures, the SD and SM modes may be trans-
formed to either the PD or the KKmode. Failure criterion as developed by Tien & Kuo
(2001) has been used to predict the failure modes of the transversely isotropic rock
mass under various confining pressures.

3 STRESS-STRAIN RELATION OF LINEAR ELASITICITY

To understand transversely isotropic rocks mechanical behaviors, establish stress-
strain relation is a fundamental basic. According to generalized Hooke’s law, the
stress-strain relation of linear elasticity can be presented as,

σij ¼ Cijklεkl ð2Þ
where σij is stress; εkl is strain; Cijkl is elastic constant matrix, includes 81 constants.

For generally anisotropy media, the constitutive law can be expressed as follows
(Lekhnitskii, 1963),

(a) (b)

(c) (d)

Figure 5 Reconstructed 3-D image of specimens, (a) tensile fracture across discontinuities mode,
TM mode ( β = 90˚, σ3 = 0 MPa); (b) tensile-split along discontinuities mode, TD mode (β =
0˚, σ3 = 0 MPa); (c) sliding failure along discontinuities mode, SD mode (β = 30˚, σ3 = 35 MPa);
(d) sliding failure across discontinuities mode, SM mode (β = 75˚, σ3 = 6 MPa).
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Table 3 The relationship between failure mode, orientation of the discontinuity, and confining pressure
(Tien et al., 2006).

Failure mode

Sliding failure along
discontinuities (SD mode)

SD mode: 45º £a£75º/
3.5 MPa £σ3 £100 MPa

SD mode: 60º £a£80º/
34.5 MPa £σ3 £103.4 MPa

Martinsburg slate

Austin slate

Green river shale-1

Green river shale-2

Tournemire shade Niandou et al. (1997)

Donath (1964)

Mclamore and Gray
(1967)

SM mode: 0 £a£30 and a= 90º/
3.5 MPa £σ3 £200 MPa

SM mode: 0º £a£50 and a= 90º/
34.5 MPa £σ3 £103.4 MPa

SM mode: 0º £a£50º and 80º  £α £90º/
6.9 MPa £σ3 £172.4 MPa

SM mode: 0º £a£30º and 80º  £α £90º/
6.9 MPa £σ3 £69 MPa and α = 0º/
69 MPa £σ3 £172.4 MPa  
PD mode: α = 30º/69 MPa £σ3£172.4 MPa
KK mode: 70 £a£90º/
69 MPa £σ3£172.4 MPa  

SD mode: 50º £a£70º/
6.9 MPa £σ3 £69 MPa and 50º £α £ 60º/
69 MPa £σ3 £172.4 MPa 

SD mode: 30º £a£75º/low confining
pressure: 30º £a£75º/high confining
pressure (fracture may across the
discontinuity)
SD mode: 30º £a£90º/low confining
pressure: 0º £a£35º and 75º £a£90º/high
confining pressure

KK mode: a= 75º/ 100 MPa £σ3 £200 MPa

PD mode: 45º £a£60º/
100 MPa £σ3 £200 MPa

PD mode: 0º £a£50º/
103.4 MPa £σ3 £275.8 MPa
KK mode: 60º £a£90º/
103.4 MPa £σ3 £275.8 MPa
SD mode: 60º £a£70º/
6.9 MPa £σ3 £172.4 MPa

TD mode: 75º £a£90º/ low confining
pressure

Discontinuity

Discontinuity

Discontinuity

Discontinuity

Discontinuity

Discontinuity

Discontinuity

Discontinuity

Fracture

Fracture

Fracture

Fracture

Discontinuity

Discontinuity

Fracture

Fracture

Discontinuity

Fracture

Sliding failure along
discontinuities (SD mode)

Sliding failure across
discontinuities (SM mode)

Sliding failure across
discontinuities (SM mode)

Sliding failure across
discontinuities (SM mode)

Sliding failure along
discontinuities (SD mode)

Tensile-split along
discontinuities (TD mode)

Plastic flow along
discontinuities (PD mode)

Kinking (KK mode)

Plastic flow along
discontinuities (PD mode)

Kinking (KK mode)

Conditions of failure modes Rock type References

Modes: specimen orientation a/ confining
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where γ is the engineering strain which is equal to 2ε; Ex, Ey, Ez are the Young’s modulus
on x, y, z directions, respectively; Gyz, Gxz, Gxy are shear modulus on yz, xz, xy planes,
respectively; νij is thePoisson’s ratio determining the ratio of strain in the j direction to the
strain in i direction due to stress acting in the i direction; μij,kl is the shear in the plane
parallel to the one defined by indices ij that induces the tangential stress in the
plane parallel to the one defined by indices kl; ηk,ij characterizes the stretching in
the direction parallel to k induced by the shear stress acting within a plane parallel to
the one defined by indices ij; ηij,k characterizes a shear in the plane defined by indices ij
under the influence of a normal stress acting in the k direction (Amadei, 1983).

Equation 3 also called the compliancematrix. From elasticity, the compliancematrix
and the stiffness matrix exists an inversible relation. In addition, the compliance matrix
and the stiffness matrix are symmetric, where,

�ij
Ei

¼ �ji
Ej

;
ηij;k
Ek

¼ ηk;ij
Gij

;
μij;kl

Gkl
¼ μkl;ij

Gij
ð4Þ

If composition of rock mass is symmetry, the number of independent constants will be
less than 21. Two of anisotropy elastic symmetry are introduced as follows.

1. One plane of elastic symmetry
The illustration of one plane of elastic symmetry is shown in Figure 6. Equation 4
can be reduced to the following one,
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The number of independent constants is reduced to 13.
Amadei (1983) transformed the 13 elastic constants by using coordinate

transformation (Figure 6), the Equation 5 can be rewritten as,
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Figure 6 Coordinate systems used for transformation law for material constants of a transversely
isotropic medium (Tien & Kuo, 2001).
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2. One axis of elastic symmetry of rotation
If rock mass has the same behaviors on direction of y’z’ plane (Figure 6). The x’ axis
can be defined as axis of radial elastic symmetry of axis of elastic symmetry of
rotation (Amadei, 1983). This type of elastic symmetry is called transverse isotropy,

εx
εy
εz
γyz
γxz
γxy

8>>>>>><>>>>>>:

9>>>>>>=>>>>>>;
¼

1
E

��
0

E
��

0

E0 0 0 0

��
0

E
1
E

��
0

E0 0 0 0

��
0

E0
��

0

E0
1
E0 0 0 0

0 0 0
1
G0 0 0

0 0 0 0
1
G0 0

0 0 0 0 0
1
G

2666666666666666664

3777777777777777775

σx
σy
σz
τyz
τxz
τxy

8>>>>>><>>>>>>:

9>>>>>>=>>>>>>;
ð8Þ

where

E ¼ Ex ¼ Ey; E
0 ¼ Ez;

� ¼ �xy; �
0 ¼ �zx ¼ �zy;

G ¼ Gxy ¼ E
2ð1þ �Þ ; G

0 ¼ Gyz ¼ Gxz;

ð9Þ

The number of independent constants is reduced to 5.

In natural, the inherent structure of rocks sometimes present stratified. The macro
mechanical behaviors of these kinds of rocks can be regarded as transversely isotropy.
Salamon (1968) showed that 5 elastic constants can be expressed in terms of the elastic
properties and thickness of layers (Equation 10) by employed equivalent homogeneous
continuum and volumetric average approaches.
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However, Equation 10 is only valid under certain conditions (Amadei, 1983):

– all layers are bounded by parallel planes and no relative displacement takes place
on these planes,

– the thickness and elastic properties of the layers vary randomly with respect to
dimension perpendicular to the bounding planes. The randomness is necessary to
ensure overall homogeneity of the equivalent material,

– a representative sample of the stratified rock mass on the basis of which the equiva-
lent homogeneous properties are calculated must contain a large number of layers.

E ¼ 1� �2
� X λiEi

1� �i2

E
0 ¼ 1X λi

Ei

Ei
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i
� 2�

0
i
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1� �i
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þ 2�

02

E 1� �ð Þ
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X λi�iEi

1� �i2X λiEi

1� �i2

�
0 ¼ 1� �ð Þ

X λi�
0
i

1� �i
G

0 ¼ 1X λi
Gi

ð10Þ

where λi is thickness ratio of ith layer.

4 LITERATURE REVIEW OF FAILURE CRITERIA

The purpose of failure criteria establishment is to obtain quantified rock strength at
limited stress state under known conditions. For isotropic and homogeneousmedia, the
failure criteria usually take the form of major principal stress σ1, confining stress σ3, or
triaxial stress states as mathematical formulas. However, because of some preferred
orientation of fabric (microstructure, interlayer, cleavages, or joints), the mechanical
behavior of rock may belongs anisotropy. Because of computational complexity and
determining elastic modulus difficulty, the simplest anisotropic form, transverse iso-
tropy, is widely used to establish anisotropic failure criteria. Section 2 notes that β plays
an important role in failure mechanism. Hence, the transversely isotropic failure
criteria not only take σ1 and σ3 as a consideration but also take orientation of plane
of isotropy β (foliation or weakness planes) as a parameter. The form of anisotropic
failure criteria is shown in Equation 11.

σ1 ¼ f σ3; βð Þ ð11Þ
Recently, numerous scholars have developed and proposed failure criteria for aniso-
tropic media, which are listed in Table 3. The categories of failure criteria for aniso-
tropic media can be classified according to their theoretical assumptions. Three main
categories herein are: (1) continuous criteria based on mathematical approach; (2) con-
tinuous criteria based on empirical approach; (3) discontinuous criteria based on plane
of weakness theory. In this Chapter, common failure criteria of anisotropic rock are
introduced the following section.
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4.1 Analytical approach

4.1.1 Jaeger (1960) failure criterion

(1) Sliding along weakness plane:

In this failure mode, the sliding failure will occur at weakness plane. Jaeger (1960)
assumed that each weakness plane has a limited shear strength which is dominated by
Coulomb’s criterion. By this definition, the relation of σ1, σ3, and β can be expressed as
follows,

σ1 ¼ σ3 þ 2 cw þ σ3tan�wð Þ
1� tan�wcotβð Þsin 2β

ð12Þ

where, cw is the cohesion of weakness plane; ϕw is the friction angle of weakness plane.
(2) Failure of intact rock:

The strength of intact rock can be obtained fromMohr-Coulomb failure criterion,

σ1 ¼ σ3tan2 45°þ �

2

� �
þ 2c tan 45°þ �

2

� �
ð13Þ

where, c is the cohesion of intact rock; ϕ is the friction angle of intact rock. Under this
assumption, Jaeger’s criterion yields the same compression strength at β = 0˚ and 90˚.

Table 4 Anisotropic failure criteria classification (Duveau & Shao, 1998).

Continuous criteria Discontinuous criteria

Mathematical approach Empirical approach

• Von Mises (1928)
• Hill (1950)
• Olszak & Urbanowicz

(1956)
• Goldenblat (1962)
• Goldenblat & Kopnov

(1966)
• Boehler & Sawczuk

(1970, 1977)
• Tsai & Wu (1971)
• Pariseau (1972)
• Boehler (1975)
• Dafalias (1979, 1987)
• Allirot & Boehler (1979)
• Nova (1980, 1986)
• Nova & Sacchi (1982)
• Boehler & Raclin (1982)
• Raclin (1984)
• Kaar et al. (1989)
• Cazacu et al. (1995)

• Casagrande & Carillo
(1944)

• Jaeger (variable cohesive
strength theory) (1960)

• McLamore&Gray (1967)
• Hoek & Brown (1980)
• Ramamurthy (1993)

• Jaeger (single plane of
weakness theory) (1960)

• Walsh & Brace (1964)
• Murrell (1965)
• Hoek (1964, 1968, 1983)
• Barron (1971)
• Ladanyi & Archambault

(1972)
• Bieniawski (1974)
• Duveau & Shao (1998)
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In this failure criterion, four physical material parameters, cj, ϕj, c, and ϕ can be
easily obtained from compressional tests, and provided a fundamentally theore-
tical research for anisotropic rock. However, the published experimental data
show that in some rocks, the maximum strength occurs at β = 0˚, while in other
rocks, it occurs at β = 90˚ (Borecki & Kwasniewski, 1981; Kwasniewski, 1993;
Sheorey, 1997). In order to account for this discrepancy (possible strength
discrepancy at β = 0˚ and 90˚), other researchers have modified Jaeger’s criterion
by adding two more parameters. Such modification is referred to herein as the
extended Jaeger’s criterion (Figure 7b). Furthermore, Duveau & Shao (1998)
provided yet another modification by replacing the Mohr–Coulomb criterion
with a nonlinear model to express the strength along discontinuity. Their criter-
ion used seven parameters to describe the failure strength for transversely iso-
tropic rocks.

4.2 Empirical approach

4.2.1 McLamore & Gray (1967) failure criterion

McLamore & Gray (1967) proposed a continuous failure criterion (Equations 14–15)
for transversely isotropic rocks based on empirical approach, which modified the
discontinuous phase of Jaeger’s criterion into continuous phase.

c ¼ A� B½cos 2 β� βmin;C

� �m ð14Þ
tan� ¼ C�D½cos 2 β� βmin;�

� �
�n ð15Þ

where, A, B, C, D, m, and n are constants obtained from experiments; βmin,c is the
inclination angle at which c has the minimum value; βmin,ϕ is the inclination angle at
which ϕ has the minimum value.
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Figure 7 Schematic view of strength variation versus b (a) original Jaeger’s criterion (b) extended
Jaeger’s criterion (Tien & Kuo, 2001).
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4.2.2 Hoek & Brown (1980) failure criteria

Hoek & Brown (1980) employed “rock classification” and statistics to process hun-
dreds of data from triaxial tests, and proposed empirical strength formula for isotropic
(fragment) rock mass,

σ1 ¼ σ3 þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mσ3σc þ sσc2

p
ð16Þ

where, σc is uniaxial compressive strength of intact rock; m is a parameter related to
particles composition in rock mass; s is a parameter related to rock fragmentation.

Hoek & Brown (1980) proposed an empirical conjunction between m, s, and β for
which rocks have significant weakness planes. The modified equations of m and s are as
follows,

m ¼ mi 1� Ae�θ4
� �

ð17Þ

s ¼ 1� Pe�ζ4 ð18Þ
where, A and P are constants obtained from experiments;mi ism value of intact rock;

θ ¼ β� ξm
A2 þ A3β

ð19Þ

ζ ¼ β� ξs
P2 þ P3β

ð20Þ

A2, A3, P2, and P3 are constants obtained from experiments; ξm is the inclination angle
at which m has the minimum value; ξs is the inclination angle at which s has the
minimum value.

Although this failure criterion can predict strength anisotropy precisely, there are 10
parameters should be determined, and only one parameter σc has its physical meaning.

Saroglou & Tsiambaos (2008) also proposed modified Hoek & Brown failure
criterion for which rocks exhibit “inherent” anisotropy, shown in Equation 21.
Comparing with the original Hoek& Brown failure criterion, there is a new parameter
kβ which can consider the effect of strength anisotropy.

σ1 ¼ σ3 þ σcβ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kβm

σ3
σcβ

þ 1
r

ð21Þ

where, kβ is the parameter describing the anisotropy effect; σcβ can be obtained by
Donath (1961),

σcβ ¼ A�D½cos 2 βm � βð Þ� ð22Þ
where A andD are constant; βm is the angle at which the uniaxial compressive strength
is minimum.

4.2.3 Ramamurthy (1993) failure criterion

Ramamurthy (1985) proposed an empirical nonlinear strength criterion for intact rock
by modifying the Mohr-Coulomb failure criterion. Ramamurthy (1993) modified his
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failure criterion to predict strength anisotropy for jointed rock or anisotropic rock
mass,

σ1 � σ3
σ3

¼ Bj
σcj
σ3

� �nj

ð23Þ

nj
n90

¼ σcj
σc90

� �1�n90

ð24Þ

Bj

B90
¼ n90

nj

� �0:5

ð25Þ

where σcj is the uniaxial compressive strength of jointed rock; σc90 is the uniaxial
compressive strength at β = 90˚; n90 and B90 is the material parameters at β = 90˚.

4.2.4 Saeidi et al. (2014) failure criterion

Saeidi et al. (2014) modified Rafiai (2011) proposed empirical failure criterion
(Equation 26 which is for isotropic rocks) to predict strength anisotropy for transver-
sely isotropic rocks.

σ1
σci

¼ σ3
σci

þ 1þ A σ3=σcið Þ
1þ B σ3=σcið Þ
� �

� r ð26Þ

where σci is the uniaxial compressive strength of intact rock; A and B are constants
depending on rock properties; r is the strength reduction factor to which rock has been
fractured (zero is for intact rocks, one is for heavily fractured rocks).

Saeidi et al. (2014) employed Equation 26 for transversely isotropic rock fitting work
by numerous experimental data, and considered rocks as intact (r is zero). Themodified
failure criterion is shown below,

σ1 ¼ σ3 þ σcβ
1þ A σ3=σcβ

� 
αþ B σ3=σcβ

� " #
ð27Þ

where σcβ is the uniaxial compressive strength of intact rock at inclination angle β; α is
the strength reduction parameter related to rock anisotropy. Furthermore, in Saeidi
et al. (2014) determined the goodness of fittings by correlation coefficient and root
mean square errors (RMSE), and A and B can be determined by

A ¼
X

XY
X

YZ�
X

Y2
X

XZX
XY

� �2
�
X

X2
X

Y2
ð28Þ

B ¼
X

X2
X

YZ�
X

XY
X

XZX
XY

� �2
�
X

X2
X

Y2
ð29Þ
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where

X ¼ σ3
σcβ

Y ¼ σ3
σcβ

σ1
σcβ

� σ3
σcβ

� �
Z ¼ α

σ1
σcβ

� σ3
σcβ

� �
� 1 ð30Þ

X, Y, Z are satisfied the form Z ¼ AX� BY, which is obtained from rewritten form of
Equation 27.

Although the prediction of strength anisotropy in Saeidi et al. (2014) model is more
accurate than Hoek-Brown (1980) and Ramamurthy (1993) failure criteria, this criter-
ion is limited for intact anisotropic rocks.

The strength criteria for the transversely isotropic rocks developed by McLamore &
Gray (1967), Hoek & Brown (1980), Ramamurthy (1993), and Saeidi et al. (2014)
generally provide fairly accurate simulation of the experimental data. However, these
approaches all require a wide range of tests and/or a considerable amount of curve
fitting work.

5 PROPOSED FAILURE CRITERION

Tien & Kuo (2001) failure criterion is developed for transversely isotropic rocks
based on the Jaeger’s criterion (1960) and the maximum axial strain theory. The
axial strain is calculated from the constitutive law of the transversely isotropic
rocks.

5.1 Methodology

(1) Sliding along weakness plane:
Jaeger (1960) derived the shear strength induced by sliding along the discontinuity.
The major principal stress for sliding along the discontinuity (Equation 12).

(2) Failure of intact rock:
As the values of β approaching 0˚ or in the range of (90˚–ϕw)~90 ˚, the sliding failure
along the discontinuity will not occur. In such case, the strength of rocks is
dominated by the rock materials and is independent of the discontinuity. The
major principal stress at failure under a given confining pressure must be
controlled by the strength of the isotropic material and will not vary with the
orientation angle β. However, the constant strength at low values of β, or high
values of β, predicted by the Jaeger’s criterion is not supported by experimental data.
Borecki & Kwasniewski (1981) have collected dozens of values of σc(0˚) = σc(90˚),
which shows the ratio to be in range of 0.6–1.33. Thus, Jaeger’s criterion is indeed an
oversimplified representation of the strength of rock specimens whose failure is
controlled by rock material.

To correctly reflect the difference between the strength of rocks at β = 0˚ and 90˚, the
proposed criterion treats the rock material as transversely isotropic material. Thus,
rocks at β = 0˚ and 90˚ have different strength, and both are assumed to follow the
failure criterion by Hoek & Brown (1980):
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S1ð0°Þ ¼ σ1ð0°Þ � σ3 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mð0°Þσ3σcð0°Þ þ σ2cð90°Þ

q
ð31Þ

S1ð90°Þ ¼ σ1ð90°Þ � σ3 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mð90°Þσ3σcð90°Þ þ σ2cð90°Þ

q
ð32Þ

where σc(0˚) and σc(90˚) are the uniaxial compression strength of rock samples at β = 0˚
and 90˚, respectively; m(0˚) and m(90˚) are the m values in the Hoek & Brown criterion
for the rock samples at β = 0˚ and 90˚, respectively.

Treating rocks at β = 0˚ and 90˚ as two different materials is in some way similar to
the extended Jaeger’s criterion (Figure. 6b). However, in the latter Mohr–Coulomb
criterion was used, while in the proposed criterion, the Hoek–Brown criterion is
adopted. The rationale for adopting the Hoek–Brown criterion in the present study
lies in the fact that the σ1–σ3 relationship is generally nonlinear, particularly when the
range of σ3 under consideration is large. The Hoek–Brown criterion can fit the
experimental data in both brittle and ductile regions better than the Mohr–
Coulomb criterion does. Since both criteria require two parameters, using the
Hoek–Brown criterion in the present study does not increase the number of para-
meters required in the proposed model.

From section 3, ductile deformation due to axial strain accumulation is another
important failure mode of transversely isotropic rocks, in addition to the failure mode
of sliding along the discontinuity. The axial strain may be calculated using the theory
of elasticity of an anisotropic medium. The constitutive laws of linearly elastic,
transversely isotropic medium in the local coordinate system (x’, y’, z’) is shown in
Equation 8.

The constitutive equations of the transversely isotropic medium in the global coor-
dinate system (x, y, z), defined in Figure 6, can be obtained by tensor transformation in
Equations 6–7.

The state of stresses at failure, when subjected to the triaxial loading, can be decom-
posed into the hydrostatic and deviatoric stress components,
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The strain tensor during the application of the deviatoric stress can be obtained by
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Thus, the axial strain is

εyy ¼ K22S1 ð35Þ

where K22 ¼ 1
Ey

¼ cos4β
E

þ sin4β
E0 þ cos2βsin2β

1
G0 �

2�0

E0

� �
ð36Þ

The failure criteria for anisotropic materials may be categorized into three basic types:
(1) stress dominated; (2) strain dominated (3) interactive (Halpin&Brown, 1984). The
ductile deformation due to the axial strain accumulation is referred to herein as the
strain-dominated criterion. To account for also the non-sliding mode in the proposed
criterion, it is assumed that the failure occurs when the axial strain exceeds its max-
imum limiting value, εyf under a specific confining pressure. This failure criterion is
referred to herein as the maximum axial strain criterion.

With the maximum axial strain criterion,

S1 βð Þ ¼ Ey εyf ð37Þ
S1 90°ð Þ ¼ E 90°ð Þεyf ð38Þ

The value of axial strain at failure εyf is varied with different confining pressures and
independent of orientation angle. This paper adopted Hooke’s law to calculate the
axial strains and the strength ratio of specimens with various orientation angles under a
specified confining pressure. According to the coordinate system of Figure 6,

E ¼ Eð0°Þ ð39Þ
E0 ¼ Eð90°Þ ð40Þ

From Equations 36–38,

S1 βð Þ
S1 90°ð Þ

¼ 1

cos 4β
E 0°ð Þ

þ sin 4β
E 90°ð Þ

þ cos 2βsin 2β 1
G0 �

2�
0

E 90°ð Þ

� �" #
E 90°ð Þ

ð41Þ

By introducing the strength ratio, k (Borecki&Kwasniewski, 1981) and the transversal
anisotropy parameter, n:

k ¼ E 0°ð Þ=E 90°ð Þ ¼ S1 0°ð Þ=S1 90°ð Þ ð42Þ
n ¼ E 90°ð Þ=2G

0
� �

� �
0 ð43Þ

Equation 41 becomes

S1 βð Þ
S1 90°ð Þ

¼ σ1 βð Þ � σ3
σ1 90°ð Þ � σ3

¼ k

cos 4βþ ksin 4βþ 2n sin 2β cos 2β
ð44Þ

Equation 44 represents the failure condition of the transversely isotropic rocks for the
non-sliding mode.
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5.2 Determination of the material parameters

The Tien&Kuo (2001) failure criterion is based on two distinct failure modes, and thus,
the model parameters of the proposed criterion can be categorized into two groups:

• Strength parameters of discontinuity (cw and ϕw), related to the sliding failure
mode,

• Strength parameters of rock material (m(0˚); σc(0˚); m(90˚); σc(90˚); n), related to the
non-sliding failure mode.

The Tien & Kuo (2001) failure criterion is a seven-parameter model. Therefore, seven
experimental data points are required in order to determine these parameters. The
material parameters of proposedmodel can be obtained by conducting triaxial tests for
at least four orientation angles, say β = 0˚, 30˚, 60˚, and 90˚.

The parameters, cw and ϕw, are the cohesion and friction of the discontinuity,
respectively. By setting the derivative of σ1(β) with respect to β equal to 0, the orienta-
tion angle at which the minimum strength occurs is obtained

tan�w ¼ cot2βmin ð45Þ

βmin ¼ π

4
� �w

2
ð46Þ

In principle, ϕw can be obtained from Equation 46 if the orientation angle that
corresponds to a minimum strength is determined. One possible approach to determin-
ing the shear strength parameters of discontinuity (cw and ϕw) is conducting triaxial
tests on specimens with β = 20˚–50˚, in which the sliding mode is expected. By
transforming the stress state into the normal stress (σn) and the shear stress (τ) on the
discontinuity, and then plotting of σn versus τ at failures, the parameters cw (intercept)
and ϕw (slope) can be determined.

The four Hoek–Brown parameters of rockmaterial (m(0˚); σc(0˚);m(90˚); σc(90˚)) should
be determined from triaxial tests on the rock specimens that are prepared with β = 0˚
and 90˚, respectively. Hoek–Brown criterion is a two-parameter model. Thus, each set
of triaxial tests should be conducted under at least two confining pressures. Hoek &
Brown (1997) provided guidance for selecting confining pressures and procedures for
determining these material parameters. The test should be carried out over a range of
confining pressures from zero to 0:25σc(0˚) (or 0:25σc(90˚)), with eight equally spaced
value of confining pressure (Hoek & Brown, 1997).

The strength ratio, k under a specified confining pressure, can be expressed in terms
of Hoek–Brown parameters (m(0˚); σc(0˚); m(90˚); σc(90˚)) according to Equations 31, 32,
and 42. It should be noted that the value of strength ratio, k may vary slightly with
confining pressure, thus k is not a basic material parameter in the proposed criterion.

The transversal anisotropy parameter n is the unique new parameter introduced in
the Tien & Kuo (2001) failure criterion. It plays a critical role to describe the strength
variation when the sliding failure cannot occur (usually in the range of β = 0˚–10˚
and β = 60˚–90˚). The transversal anisotropy parameter n can be determined by
performing triaxial tests at β = 60˚ (or β = 75˚ alternatively) and 90˚. In Equation 44,
The term cos4β becomes negligible if β is in the range of 60˚–90˚ (for example,
cos460˚ =0.0625, cos490˚ = 0.0045). Thus, Equation 44 becomes approximately
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S1 βð Þ
S1 90°ð Þ

¼ k

sin 2β sin 2βþ 2ðn=kÞcos 2β
� � ð47Þ

In Equation 47, the strength ratio S1(β) / S1(90˚) is a function of n / k. It is, however,
independent of k. Rewrite Equation 44 in terms of n / k and let k = 1, the strength ratio
becomes

S1 βð Þ
S1 90°ð Þ

¼ 1

1þ 2½ n=kð Þ � 1�sin 2βcos 2β
ð48Þ

For β = 60˚, Equation 48 becomes

S1 60°ð Þ
S1 90°ð Þ

¼ 1
1þ 0:375½ n=kð Þ � 1� ð49Þ

For β = 75˚, Equation 48 becomes

S1 75°ð Þ
S1 90°ð Þ

¼ 1
1þ 0:125½ n=kð Þ � 1� ð50Þ

Figure 8 shows a plot of S1(60˚) / S1(90˚) and S1(75˚) / S1(90˚) versus the ratio n / k. This plot
is based on Equation 44 with k = 1, which is the same as Equations 49, 50. While not
shown in this figure, the difference in the obtained curves using different k values is
negligible, as implied by Equation 47. Thus, the relationship between the strength ratio
S1(60˚) / S1(90˚) and S1(75˚) / S1(90˚) and the parameter ratio n / k shown in Figure 8 is valid
for different k values.

Given the strength ratio S1(60˚) / S1(90˚) (or S1(75˚) / S1(90˚) alternatively), which may
be obtained from triaxial tests at orientation angle β = 60˚ (or 75˚ alternatively) and
90˚, the transversal anisotropy parameter n can be determined from Figure 8 or
Equations 49, 50.
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5.3 Evaluation of failure criterion

To evaluate the capabilities of the Tien & Kuo criterion, comparisons are made
between experimental data taken from the literatures and the predictions obtained
from the proposed criterion based on Equations 44 and 29. The Tien & Kuo failure
criterion is examined by comparing model predictions with experimental data from the
literature. Figure 9 (a)–(i) show these comparisons. The material parameters for each
transversely isotropic rock, natural or artificial, are listed in Table 5. In each figure, the
solid lines correspond to the predictions obtained from the proposed failure criterion,
while data points represent experimental results. These rocks include slates, shales,
limestone, and artificial layered rocks and exhibited three types of anisotropies, namely
U type, shoulder type and undulatory type as defined by Ramamurthy (1993). The
proposed criterion is shown to be applicable to all types of anisotropies. Duveau &
Shao (1998) adopted a nonlinear model (proposed by Barton for rock joint) to modify
the Mohr–Coulomb criterion for discontinuity. Generally, a nonlinear model provides
flexibility for describing the shear strength along discontinuity. However, it requires
more parameters than does the linear Mohr–Coulomb criterion. In the present study,
the linear Mohr–Coulomb criterion is adopted for its good balance of model simplicity
with the accuracy.

The transversal anisotropy parameter n reflects the strength variation for the region
where non-sliding failure occurs. The value of n varies from 1.0 to 4.0 for most of the
transversely isotropic rocks. When the value of n is in the range of 1.0–2.0 (for
example, Figures 9 (c)–(e), (h) and (i)), the strength is roughly constant in the neighbor-
hood of β = 0˚ or 90˚. Those rocks may be classified into shoulder type anisotropy. As
value of n increases, the region of ‘‘shoulder’’ disappear gradually, the strength varia-
tion around the neighborhood of β = 0˚ or 90˚ is more significant as shown in Figure 9
(a) and (f). The type of anisotropy for such rocks may be referred to as U type or
undulatory type.

The failure criteria for anisotropic rocks can be categorized into two groups: (1) dis-
continuous models (e.g. Jaeger’s criterion and extended Jaeger’s criterion) and (2) con-
tinuous models (e.g. Pariseau’s criterion, Cazacu et al. criterion), depending upon the
continuous and discontinuous characteristics of the corresponding anisotropy
(Amadei, 1983). Compared to the experimental observations, the discontinuous mod-
els predict relatively well the strength behavior of a rock cut by joint. However, the
continuous models are more suitable for the continuous rocks. The discontinuous
models divide failure modes into the sliding and non-sliding modes. The sharp corner
exists in the plot of failure stress as a function of orientation angle implies the transition
point of two distinct failure modes. On the other hand, the continuous models treat the
transversely isotropic rock as a continuous medium, ignoring the existence of the sharp
corner and evading the failure mode problem.

Because the relationship between the failure stresses and the orientation angle of the
transversely isotropic rocks obtained from the experiment is discrete, it is generally
difficult, by the experimental approach alone, to identify whether the sharp corner exists
or not. It is more meaningful to discuss this issue from both experimental and theoretical
approaches, and by considering both strength variation and failure mode simulta-
neously. Whether a sharp corner exists depends on the rock type and the confining
pressure. For an anisotropic rock that can be treated as a continuous medium at the
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Figure 9 Comparison of Tien & Kuo failure criterion and experimental data (a) Martinsburg slate
(Donath, 1964); (b) Austin slate (McLamore &Gray, 1967); (c) Green River shale I (McLamore
& Gray, 1967); (d) Green River shale II (McLamore & Gray, 1967); (e) limestone (Horino &
Ellickson, 1970); (f) Blue Penrhyn slate (Attewell & Sandford, 1974); (g) Tournemire shale
(Niandou et al., 1977); (h) artificial interlayered rock (Tien & Tsao, 2000); (i) artificial stratified
rock (Tien & Tsao, 2000). (Tien & Kuo, 2001).



sample scale, a continuous variation of strength with the orientation angle is expected.
For the continuous rock or the discontinuous rock under high confining pressure, the
effect of discontinuity is fully suppressed; the sharp corner is not significant. The
phenomenon of suppression of discontinuity effect (or anisotropy) as the confining
pressure increases has been identified by the experimental evidence (Ramamurthy,
1993; Kwasniewski, 1993). This criterion is a discontinuous model at lower confining
pressure, and as confining pressure increases, it is gradually transformed into a contin-
uous model. For example, as shown in Figure 9 (g), when σ3 > 20MPa, the Tien & Kuo
criterion (Equation 44) becomes a continuous model.

From the results shown in Figure 9, the Tien & Kuo failure criterion is shown to be
able to accurately predict the compression strength of transversely isotropic rocks of
various types, prepared at different orientation angels and under various confining
pressures. As a final note, the proposed criterion is a hybrid of the two well-known
criteria in the field of rock mechanics, the Hoek–Brown and the Mohr–Coulomb
criteria. Both the Hoek–Brown and the Mohr–Coulomb formulations are expressed
in terms of major and minor principal stresses, neglecting the effect of the intermediate
principal stress. Thus, this criterion inherits this limitation. Further research to improve
the proposed criterion considering three-dimensional stress conditions is worth
undertaking.

6 SUMMARY

The Tien & Kuo (2001) failure criterion is based on two distinct failure modes; one is
the sliding mode where the failure is caused by sliding along the discontinuity, and the

Table 5 Material parameters of the proposed criterion for various rocks.

Rock cw (MPa) ϕw (˚) m(0˚) σc(0˚) (MPa) m(90˚) σc(90˚) (MPa) n Data source

Martinsburg slate 9 21 16.4 97 14.2 155 3.9 Donath (1964)
Austin slate 31 17 6.0 249 4.6 234 2.7 McLamore & Gray

(1967)
Green River shale I 49 28 6.7 208 6.7 208 1.2 McLamore & Gray

(1967)
Green River
shale II

29 18 4.4 106 4.4 106 1.3 McLamore & Gray
(1967)

Limestone 11 30 5.9 58 7.1 63 1.3 Horino & Ellickson
(1970)

Blue Penrhyn slate 22 16 7.9 148 8.9 177 3.7 Attewell &
Sandford (1974)

Tournemire shale 4 36 4.4 45 4.4 45 2.5 Niandou et al.
(1977)

Artificial
interlayered rock

4 29 6.5 31 3.1 27 1.1 Tien & Tsao (2000)

Artificial stratified
rock

5 29 1.8 46 1.8 46 1.4 Tien & Tsao (2000)
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other is the nonsliding mode where the failure is controlled by the rock material and is
not dependent on discontinuity.

The proposed failure criterion consists of seven material parameters. They are the
cohesion and the friction angle of the discontinuity (cw, ϕw), Hoek–Brown’s parameters
(m(0˚); σc(0˚); m(90˚); σc(90˚)) and the transversal anisotropy parameter (n). The physical
meanings of, and the procedures for determining, these parameters are described.

When n = 1, the proposed failure criterion is very similar to the extended Jaeger’s
criterion. With additional condition that k = 1, which implies thatm(0˚) =m(90˚), σc(0˚) =
σc(90˚), the proposed criterion becomes the original Jaeger’s criterion.

The predictions of the strength behaviors of various types of the transversely iso-
tropic rocks with different orientation angels and under various confining pressures
agree well with experimental data from various investigators. The accuracy and the
versatility of the proposed failure criterion are demonstrated.
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Chapter 17

Use of critical state concept
in determination of triaxial
and polyaxial strength of intact,
jointed and anisotropic rocks

Mahendra Singh
Department of Civil Engineering, IIT Roorkee, Roorkee, Uttarakhand, India

Abstract: Engineering structures in rocks are always subjected to triaxial or polyaxial
stress fields. Analysis and design of these structures involves assessment of rock
strength subject to the prevailing stress state. Mohr-Coulomb criterion is the most
widely used strength criterion in rock engineering problems. However, in its conven-
tional form, the criterion treats the strength behavior as linear function of confining
pressure. Also, the effect of intermediate principal stress σ2, which is quite substantial
in rock engineering problems, is ignored. The present article suggests modified forms
of the Mohr-Coulomb criterion to incorporate non-linearity in triaxial strength
behavior of intact isotropic, jointed anisotropic and intact anisotropic (transversely
isotropic) rocks. Barton’s critical state concept for rocks has been employed to
correctly define the shape of the strength criterion. The triaxial strength criterion is
further extended to polyaxial stress conditions for intact isotropic and jointed aniso-
tropic rocks. The applicability of the proposedMMC criteria has also been verified by
applying them to database of experimental test results compiled from worldwide
literature.

1 INTRODUCTION

Design of engineering structures in rocks like underground excavations, foundations
and slopes essentially involves assessment of the strength of the rock or rock mass
subject to prevailing stress state. Strength criteria are used to define the effect of
confinement on the strength of rocks for a given stress state. An ideal strength criterion
should have good predictive capability even with least triaxial test data for obtaining
the criterion parameters. Several criteria have been proposed during past and many
investigators are still working on this topic (Chang & Haimson, 2012; Shen et al.,
2014; Singh et al., 2015; Langford & Diederichs, 2015). Despite the large number of
criteria available in the literature, the Mohr-Coulomb (MC) criterion is the criterion
most favored by geotechnical engineers in the field. The primary reason behind this
popularity is its simplicity; especially in assessing the criterion parameters. The para-
meters, namely cohesion c and friction angle ϕ, do carry a physical feel and an
experienced designer can easily assign values to these parameters once the rock or
rock mass is characterized through simple tests and/or classification techniques. The
MC criterion, however, suffers from two major limitations (Singh et al., 2011):



– It expresses the strength of the rock as a linear function of confining pressure or
normal stress. If the parameters are obtained from triaxial tests at low confining
pressure, the predicted strength at high confining pressure will deviate substantially
from the actual value.

– In its conventional form, the criterion ignores the effect of intermediate principal
stress σ2. There is ample evidence available that, the intermediate principal stress
does have substantial influence on the strength of rocks, barring a few cases of non-
dilatant rocks.

The present article attempts to overcome the limitations of the conventional MC
criterion and suggests a Modified-Mohr-Coulomb (MMC) criterion for defining non-
linear triaxial strength for intact isotropic, jointed anisotropic and intact anisotropic
rocks. The suggested MMC is also extended to polyaxial stress conditions for intact
isotropic and jointed anisotropic rocks. Mohr-Coulomb shear strength parameters, as
used in the conventional form, are retained and the same values are used in MMC
criteria. The MMC criteria have been deduced through Barton’s critical state concept
for rocks.

2 CRITICAL STATE CONCEPT FOR ROCKS

When a rock is tested under low confining pressure, it fails in a dilatant and brittle
manner due to opening up of the pre-existing micro cracks; as a consequence a high
value of instantaneous friction angle ϕ is obtained. If the tests are conducted at higher
confining pressure, the tendency of dilation is suppressed; the failure mechanism shifts
from brittle to ductile and a relatively lower value of ϕ is obtained. With further
increase in confining pressure, the rock becomes completely ductile and at sufficiently
high confining pressure the rock enters the critical state. The failure envelope of rock
plotted in τ-σ space is non-linear and concave upward (Fig. 1a). The tangential gradient
of the envelope is steep where crossing the shear stress axis and tends to become
asymptotic to a horizontal line at critical state. Barton (1976) states “critical state for
an initially intact rock is defined as the stress condition under which Mohr envelope of
peak shear strength of the rock reaches a point of zero gradient. This condition
represents the maximum possible shear strength of the rock. For each rock, there will
be a critical effective confining pressure above which the shear strength cannot be made
to increase”. Figure 1a shows how an intact rock passes through brittle, brittle-ductile
transition, ductile and critical stress states. Figure 1b drawn for Indiana Limestone
(data from Hoek, 1983) also confirms to the concept that at sufficiently high confining
pressure, ϕ approaches almost a zero value. This characteristic of Mohr failure envel-
ope approaching horizontal has been used to define the correct shape of the failure
criterion (Singh & Singh, 2005, 2012; Singh et al., 2011, 2015).

3 MMC STRENGTH CRITERION FOR INTACT ROCKS

3.1 Triaxial conditions

Consider an intact rock which is tested under low confining pressure (σ3→0) and the
corresponding resulting MC parameters are ci0 and ϕi0 respectively. Figure 2 shows a
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plot of MC criterion in (σ1–σ3) vs. (σ3) space. The MC criterion may be expressed in
terms of σ3 and σ1 as follows.

ðσ1 � σ3Þ ¼ 2ci0 cos �i0

1� sin �i0
þ 2sin �i0

1� sin �i0
σ3 ð1Þ

Where, the term (σ1−σ3) is the deviatoric stress at failure; σ3 and σ1 are the minor and
major effective principal stresses at failure.
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Figure 1a Barton’s critical state concept for rocks (Singh et al., 2011).
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Figure 1b Critical state for Indiana limestone (Schwartz, 1964; redrawn from Hoek, 1983).
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Due to non-linear response the actual plot will deviate from the linear behavior.
Considering the deviation to be a second degree term, a correction equal to A

0
σ23 is

applied to the MC criterion, where A
0
is an empirical constant for the rock type under

consideration. The non-linear Mohr-Coulomb criterion is now written as:

ðσ1 � σ3Þ ¼ 2ci0 cosfi0

1� sinfi0
þ 2 sinfi0

1� sinfi0
σ3�A0 σ23 ð2Þ

To obtain the empirical coefficient A0, critical state concept (Barton, 1976, 2013) is
employed. The gradient of the curve (Fig. 2) should approach 0 when σ3 approaches
critical confining pressure. If the critical confining pressure for the rock type is σcrti,
then differentiating Equation 2 and putting the condition ∂ðσ1 � σ3Þ=∂σ3 ! 0 for
σ3→ σcrti, the value of A0 is obtained and theModifiedMohr-Coulomb (MMC) triaxial
strength criterion is written as:

ðσ1 � σ3Þ ¼ σci þ 2 sin�i0

1� sin�i0
σ3� 1

σcrti

sin �i0

ð1� sin�i0Þ
σ23 for 0 ≤ σ3 ≤ σcrti ð3Þ

Where σci ¼ UCS of intact rock ¼ ð2ci0cos �i0Þ=ð1� sin �i0Þ ð4Þ
The above MMC (Equation 3) will be applicable only up to the critical state (σ3≤σcrti).
At σ3=σcrti the shear strength of rock will reach its maximum, the deviatoric stress at
failure (σ1-σ3) will be a constant for σ3≥σcrti.

ðσ1 � σ3Þ ¼ σci þ sin�i0=ð1� sin�i0Þg � σcrti for σ3 ≥ σcrtif ð5Þ
The MMC criterion was initially reported by Singh & Singh (2005) as a simple

parabolic equation in the following form.

σ3

σ 1
–σ

3

Mohr-Coulomb criterion

Modified Mohr-Coulomb
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A'(σ3)2
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σcrti

Figure 2 Modified Mohr-Coulomb criterion (Intact rocks).
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ðσ1 � σ3Þ ¼ A ðσ3Þ2 þ Bðσ3Þ þ σci; 0 ≤ σ3 ≤ σci ð6Þ

Where; A ¼ �sin �i0= σcrti � ð1� sin�i0Þg; B ¼ 2 sin�i0=ð1� sin�i0Þf ð7Þ
To use MMC (Equation 3), two parameters namely σcrti and ϕi0 will be required. This
form of the criterion is termed as “two parameter criterion”. Theoretically aminimum of
two triaxial tests will be required to determine the criterion parameters. Singh et al.
(2011) collected a database of triaxial tests conducted worldwide onmore than 150 rock
types. This database comprises of more than about 1100 triaxial test data. The authors
carried out statistical analysis and back analyzed critical confining pressure. It was
inferred that for the applicability of the proposed strength criterion, a value of the
average critical confining pressure could be taken nearly equal to σci. The actual critical
confining pressure for a given rock type may depend on lithology and may vary.
However, from statistical point of view, using σcrti ≈ σci is not likely to introduce error
of engineering significance in rock strength prediction. Taking critical confining pressure
equal to σci, the MMC criterion (Equation 3) is written as:

ðσ1 � σ3Þ ¼ σci þ 2sin�i0

1� sin�i0
σ3 � 1

σci

sin �i0

ð1� sin�i0Þ
σ23 for 0 ≤ σ3 ≤ σci ð8Þ

For confining pressure range σ3 ≥ σci the deviatoric stress at failure (σ1–σ3) will remain
constant as given below:

ðσ1=σ3Þ ¼ σci=ð1� sin�i0Þ for σ3 ≥ σci ð9Þ
The ratio of major to minor principal stress at the onset of critical state, as per the

present criterion, will be

ðσ1 � σ3Þ ¼ ð2� sin �i0Þ=ð1� sin�i0Þ ð10Þ
The application of MMC (Equation 8) will require assessment of only one criterion
parameter (ϕi0). The criterion is, therefore, termed as “single parameter criterion”.
Theoretically, only one triaxial test should be sufficient to determine the criterion
parameter. If more than one triaxial test data are available, the optimized value of ϕi0
may be obtained through the following expressions:

Ai ¼
X

ðσ1 � σ3 � σciÞX
ðσ23 � 2σciσ3Þ

for 0 < σ3 ≤ σci; Bi ¼ �2Aiσci; sin �i0¼ Bi=ð2þ BiÞ

ð11Þ
Alternatively, if triaxial tests are conducted at very low confining pressure (σ3→0),
optimized ci0 and ϕi0 may be obtained from linearMC criterion and Equation 4 may be
used to obtain σci.

3.2 Performance of MMC criterion for intact rocks

Performance of a failure criterionmay be judged based on its goodness of fit, robustness
and predictive capability (Shen et al., 2014). The performance of the proposed strength
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criterion was compared with two other most widely used strength criteria namely,
conventional Mohr-Coulomb (MC) criterion, and Hoek & Brown (1980) criterion
(Singh et al., 2011). The Hoek-Brown (HB) criterion for intact rocks is expressed as:

σ1 ¼ σ3 þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mi σciσ3 þ σ2ci

q
ð12Þ

where mi and σci are criterion parameters and are determined by statistical analysis of
triaxial test data considering the UCS test also as a triaxial test.

A very popular triaxial test data set in rock engineering literature, comprising of
triaxial strength of Indiana limestone for a wide range of confining pressure
(Schwartz, 1964) was used to compare the performance of the proposed criterion.
The data is presented in Table 1 and there are eleven data points including the UCS
test.

3.2.1 Robustness

Shen et al. (2014) have considered robustness as one of the most important attri-
butes for comparing the performance of different strength criteria. Robustness
indicates that the parameters of a failure criterion, which are derived from available
data, should be insensitive to the range of confining stress used for fitting the
criterion. The best fitting parameters of the three different criteria were obtained
a) by considering only first three data points (including UCS); b) by considering first
four data points, and so on i.e. by considering triaxial test data at increasing
confining pressures. Equations 11 were used to get the parameter ϕi0, and σci was
considered to be known. Criterion parameters of HB and conventional MC criteria
were obtained through least square method. Table 2 presents the criterion para-
meters obtained along with the respective average and standard deviation. Table 2
indicates very wide variation in MC and HB parameters when different numbers of
experimental data points are used to evaluate the criterion parameters. Against a
standard deviation of 3.62 and 6.01 in conventional MC parameters, and 1.41 and
5.85 in HB parameters, the standard deviation of MMC parameter ϕi0 is only 0.98.
This indicates that, MMC is very robust and there is very small influence of range of
confining pressure used in triaxial tests for assessing parameters.

Shen et al. (2014) collected an extensive database comprising 1579 triaxial test data
by extending the triaxial database originally compiled by Singh et al. (2011). They
compared four failure criteria namely Hoek–Brown (1980), parabolic criterion (Singh
& Singh 2005),ModifiedMohr-Coulomb (MMC) criterion (Singh et al., 2011) and the
one criterion which was proposed by themselves (Shen et al., 2014). It was concluded
that the parameterm of theHoek-Brown criterion is themost sensitive parameter to the
range of stress employed for fitting, whereas ϕi0 parameter of the MMC criterion is the
least sensitive to such stress range.

Table 1 Triaxial test data for Indiana limestone (Schwartz, 1964; source: Hoek, 1983).

σ3, MPa 0 6.5 13.7 20.3 27.9 34.4 41.2 48.4 55.4 62.3 68.4
σ1, MPa 44 66 85 99 109 119 128.2 135.1 141.9 149.1 156.5
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Barton (2013) while discussing MMC comments “the curvature of peak shear
strength envelopes is now more correctly described, so that few triaxial tests are
required and need only be performed at low confining stress, in order to delineate the
whole strength envelope. This simplicity does not of course apply to M-C, nor does it
apply to non-linear criteria including H-B, where triaxial tests are required over a
wide range of confining stress, in order to correct the envelope, usually to adjust to
greater local curvature”.

3.2.2 Predictive capability

Shen et al. (2014) state that a criterion should have good predictive capabilities
even with least triaxial data available for obtaining criterion parameters. To
compare predictive capabilities, the criterion parameters obtained from only first
three triaxial test data (Table 2) were used and σ1 values were predicted for rest
of the confining pressure values. The expressions for the three criteria are given
below:

MC criterion: ci ¼ 12:94 MPa;fi ¼ 29:97o; ðσ1 � σ3Þ ¼ 44:79 þ 1:99σ3
ð13Þ

HB criterion: mi ¼ 5:16; σci ¼ 44:44 MPa:; σ1 ¼ σ3 þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
229:31 σ3 þ 44:442

q
ð14Þ

MMC criterion: ci0 = 12.94 MPa, ϕi0 = 29.97°

ðσ1 � σ3Þ ¼ 44:79 þ 1:99σ3– 0:0223σ23 for 0 ≤ σ3 ≤44:79 MPa ð15Þ
σ1 � σ3ð Þ ¼ 89:18 for σ3 ≥ 44:79MPa ð16Þ

Figure 3 presents a comparison of the predicted strength values from different
criteria. The conventional MC criterion is observed to predict values with maximum

Table 2 Best fitting parameters for different criteria for Indiana limestone (Singh et al., 2011).

Number of triaxial test data points used Mohr-Coulomb Hoek-Brown (1980) MMC

c, MPa ϕ° mi σci, MPa ϕ°i0

3 12.94 29.97 5.16 44.44 33.28
4 13.93 27.53 4.63 45.39 32.57
5 15.56 24.10 3.53 48.28 31.52
6 16.84 21.70 2.97 50.24 30.95
7 18.06 19.7 2.54 52.14 30.67
8 19.46 17.62 2.07 54.60 30.48
9 20.87 15.69 1.68 57.03 30.50
10 22.18 14.0 1.40 59.13 30.77
11 23.25 12.7 1.21 60.66 31.32
Average 18.12 20.33 2.80 52.43 31.34
Standard deviation 3.62 6.01 1.41 5.85 0.98
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deviation from experimental results with an over prediction of about 59.3% for
confining pressure of 68.4 MPa. The HB criterion also predicts very high values and
exhibits a deviation of about 28.6% at confining pressure of 68.4 MPa. The MMC
criterion gives the best predictive capability as the predicted values closely match with
the experimental values. Themaximumdeviation is of the order of 4% and deviation at
confining pressure of 68.4 MPa was about 0.9%.

The predictive capabilities of the different strength criteria, when triaxial data from
which their parameters can be fitted, were also compared by Shen et al. (2014). The
authors used two cases of confining pressure range i.e. when tests in ‘low’ stress range
(σ3≤σci), when tests in high stress range (σ3>σci), are employed. It was shown that for the
range 0≤σ3≤σci, the MMC (Singh et al., 2011) gave best results; though for the range
σ3>σci the criterion proposed by Shen et al. (2014) gave better results. It may be noted
that for majority of rock engineering problems in civil, mining and tunnel engineering,
the confining pressure σ3 is likely to be less than σci, for which MMC criterion was
found to be the most suitable criterion for intact rocks.

3.3 Polyaxial stress condition

In real life situations, the rocks are subjected to polyaxial stress conditions and the
intermediate principal stress σ2 substantially affects the strength σ1 (Fig. 4) except for
some non-dilatant rocks (Chang & Haimson, 2005). Effect of intermediate principal
stress on strength of rocks has been discussed by many researchers (Murrell, 1963;
Wiebols & Cook, 1968; Mogi, 1971; Chang and Haimson, 2000, 2005; Haimson &
Chang, 2000; Colmenares & Zoback, 2002; Al-Ajmi & Zimmerman, 2005; Haimson
2009). It is shown by some of the studies that the strength increases with increase in σ2,
reaches a maximum at some intermediate value of σ2 and then decreases when σ2
approaches a value equal to σ1. Some investigators, however, did not observe any clear
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Figure 3 Comparison of strength predicted through different criteria (Rock: Indiana Limestone, data
from Schwartz, 1964).
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cut trend of decreasing strength at higher σ2 and rather observed a plateau which
indicates a phenomenon similar to critical state concept. Figure 5 shows average
increase in deviatoric stress at failure due to σ2 over the conventional triaxial strength
for KTB amphibolite (data from Chang & Haimson, 2000). The plot indicates that
effect of σ2 is large at low σ3 and decreases with increase in σ3. Beyond a value of σ3
nearly equal to the UCS, σ2 has no further influence on the strength. A condition of
critical state is thus reached when the level of confining stress σ3 is nearly equal to the
UCS of the intact rock (Singh et al., 2011). Singh et al. (2011) extended the single
parameter MMC triaxial strength criterion (Equation 8) to polyaxial stress conditions
as follows:

ðσ1 � σ3Þ ¼ σci þ 2 sin �i0

1� sin �i0

σ2 þ σ3
2

� �
� 1

σci

sin�i0

1� sin�i0

σ22 þ σ23
2

� �
0 ≤ σ3 ≤ σ2 ≤ σci ð17Þ

Some of the important features of the criterion are: a) For higher stress range, if σ2 or
σ3 exceed σci, its value in RHS should be replaced with σci. b) The proposed polyaxial
strength criterion assigns higher weightage to σ3 as compared to σ2 as it is an observed
fact that an increase in σ3 has greater influence than that produced by the same increase
in σ2. c) An increase in σ2, while keeping σ3 constant will increase deviatoric stress at
failure. As a result, the ratio σ1/σ3 will increase with increase in σ2. This will make
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Figure 4 Effect of σ2 on deviatoric stress at failure (data from Chang & Haimson, 2000).
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failuremore brittle andwill also result in increase in extent of linear elastic deformation
as observed by Haimson & Chang (2000) and Chang & Haimson (2005). d) Both σ2
and σ3 follow the concept that principal stress difference (σ1–σ3) reaches its maximum
when the corresponding stress becomes equal to σci i.e.

∂ðσ1 � σ3Þ=∂σ3 ¼ 0; for σ3 ¼ σci; ∂ðσ1 � σ3Þ=∂σ2 ¼ 0 ; for σ2 ¼ σci ð18Þ

3.3.1 Application to polyaxial test data

Singh et al. (2011) evaluated the applicability of the suggested criterion by applying it to
the available polyaxial strength database. The database comprised of polyaxial test
data on ten rock types as summarized in Table 3. The complete data is available in
Singh et al. (2011). The data include tests performed under the condition σ2=σ3. First
three such data points were utilized to obtain ci0 and ϕi0 using least squaremethod. UCS
σci was obtained from Equation 4 and the criterion was applied to obtain σ1 values for
given σ2 and σ3 values. To quantify the accuracy in prediction, the percent error in
prediction was obtained as

pe ¼ ðσ1cal � σ1expÞ=σ1expg � 100 percent
� ð19Þ

Where pe is the percent error in prediction, σ1exp and σ1cal are the experimental and the
predicted values of the polyaxial strength of the rock. The average percent error (avpe)
for a given data set for a given rock type was computed as:

avpe ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
npt

Xnpt
i¼1

ðpe2Þ
vuut ð20Þ

where npt is the number of data points in the set.
To compare the proposed criterion with those already existing, five popular poly-

axial strength criteria were selected: a) Modified Lade criterion (Colmenares &
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Zoback, 2002); b) Modified Weibols and Cook criterion (Colmenares & Zoback,
2002); c) Inscribed Druker-Prager criterion (Colmenares & Zoback, 2002);
d) Circumscribed Drucker-Prager criterion (Colmenares & Zoback, 2002); e) Mogi-
Coulomb criterion (Al-Ajmi & Zimmerman, 2005). Only the first three triaxial tests
data points were considered for obtaining the criterion parameters and polyaxial
strength values were predicted. The average percent error for each rock type was
computed. The overall response of various criteria was obtained by an overall average
of the percent error. A comparison of the overall average percent error is shown in
Fig. 6. Out of all the criteria considered for comparison, theMMCpolyaxial criterion is
found to predict results with minimum overall average percent error.

4 MMC CRITERION FOR JOINTED ROCKS

4.1 Triaxial conditions

Engineering behavior of jointed rocks is greatly influenced by the presence of dis-
continuities. Jointed rocks also exhibit non-linear response of strength with confin-
ing pressure σ3 (Singh & Singh, 2012). Brown (1970) conducted a classical study on
strength behavior of jointed rocks under triaxial condition. The variation of shear
strength from this study is shown in Fig 7. An important outcome of the study is that
at sufficiently high confining pressure the Mohr failure envelopes of jointed and
intact rocks merge with each other. Singh & Singh (2012) argued that similar to
intact rocks, the critical state concept is followed by jointed rock also. Figure 8 shows
the proposed strength criterion for jointed rock along with the failure criterion of
intact rock. The UCS of jointed rock σcj (i.e. σ1 for σ3=0) will always be less than the
UCS of intact rock σci. Considering the critical confining pressure for jointed rock

Table 3 Polyaxial test database (Singh et al., 2011).

Sl Details of rock Source σ3 (MPa), number in parentheses indicates the
number of polyaxial tests conducted at this σ3

1 Dunham dolomite, Mogi
(1967)

Yu et al. (2002) 0(1), 25(7), 45(8), 65(6), 85(5), 105(6), 125(6),
145(4)

2 Solenhofen limestone
Mogi (1971)

Colmenares & Zoback
(2002)

20(6), 40(7), 60(7), 80(9)

3 Mizuho trachyte Mogi
(1967)

Yu et al. (2002) 0(1), 15(1), 30(1), 45(8), 60(7), 75(7), 100(6)

4 Dense marble Michelis
(1985)

Yu et al. (2002) 0(4), 3.45(7), 6.89(6), 13.79(7), 20.68(5), 27.58
(5), 55.16(1)

5 Yubari shale Takahashi &
Koide (1989)

Colmenares & Zoback
(2002)

25(15), 50(11)

6 Shirahama sandstone,
Takahashi & Koide (1989)

Colmenares & Zoback
(2002)

5(5), 8(5), 15(5), 20(8), 30(7), 40(8)

7 KTB Amphibolite Chang
& Haimson (2000)

Chang & Haimson
(2000)

0(8), 30(6), 60(10), 100(10), 150(11)

8 Westerly granite
Haimson & Chang (2000)

Haimson & Chang
(2000)

0(5), 2(6), 20(10), 38(8), 60(5), 77(5), 100(6)
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equal to σcrtj, Singh& Singh (2012) obtained the expression forMMC for jointed rock
(Fig. 8) as:

ðσ1 � σ3Þ ¼ σcj þ
2 sin�j0

1� sin�j0
σ3�A

0
j σ

2
3 for 0 ≤ σ3 ≤ σcrtj ð21Þ

where σcj is the anisotropic UCS of the jointed rock in the direction of major
principal stress and can be expressed in terms of cj0 and ϕj0 similar to Equation 4;
cj0 and ϕj0 are the MC shear strength parameters of the anisotropic jointed rock at
low confining pressure range (σ3→ 0);A

0
j is an empirical constant which accounts for

the deviation in strength of jointed rock from conventional linear MC criterion and
can be obtained by differentiating Equation 21 with respect to σ3 and equating
gradient to zero at critical confining pressure, σcrtj. The MMC criterion for jointed
rocks is written as:

ðσ1 � σ3Þ ¼ σcj þ 2 sin�j0

1� sin�j0
σ3� 1

σcrtj

sin �j0

ð1� sin�j0Þ
σ23 for 0 ≤ σ3 ≤ σcrtj ð22Þ

Singh& Singh (2012) compiled a database comprising of more than 730 triaxial test
data for variety of rocks (σci = 9.5 to 123 MPa) from worldwide literature. The
proposed criterion was fitted into the database and the critical confining pressure was
back analyzed. It was concluded (Singh & Singh, 2012) that critical confining pressure
of jointed rocks may be taken nearly equal to σci for the application of the proposed
criterion. Consequently the MMC criterion “single parameter form” for jointed rocks
is expressed as:

ðσ1 � σ3Þ ¼ σcj þ 2 sin�j0

1� sin�j0
σ3� 1

σci

sin �j0

ð1� sin�j0Þ
σ23 for 0 ≤ σ3 ≤ σci ð23Þ

Aj'(σ3)2
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Figure 8 Modified Mohr Coulomb criteria for intact and jointed rocks.
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4.1.1 The parameter ϕj0

The failure envelopes of intact and jointed rocks will merge with each other beyond
critical state. By commuting maximum deviatoric stresses at failure for jointed and
intact rock the following relation may be obtained.

sin�j0 ¼ ð1� SRFÞ þ sin�i0=ð1� sin�i0Þg= ð2� SRFÞ þ sin�i0=ð1� sin�i0Þgff
ð24Þ

Where

SRF ¼ Strength reduction factor ¼ σcj=σci ð25Þ
The friction angle ϕj0 as obtained above will be slightly higher than ϕi0. The effect of

interlocking between the blocks and dilation are indirectly considered by this
expression.

4.1.2 Predictive capability

Singh & Singh (2012) used the triaxial test database compiled by them to assess the
predictive capability of the proposed criterion. For each data set, the values of σci,σcj
and ϕi0 were considered to be known and the triaxial strength values were predicted.
Figure 9 shows cumulative distribution of the error in prediction for the compiled
database. The plot indicates that there is a probability of 87.7% for the error to lie
within ±20%. The proposed criterion may therefore be used with confidence if precise
values of σci, σcj and ϕi0 are known.

4.1.3 How to obtain σcj in field?

Triaxial strength of jointed rock can be predicted using the proposedMMC criterion if
σci,σcj and ϕi0 are known. The values of σci and ϕi0 will be available from laboratory
tests on intact rocks; however determination of the UCS of jointed rock, σcj is a difficult
task. Major factors governing σcj are strength of rock substance, kinematics and
possible failure mode and characteristics of the discontinuities e.g. frequency, orienta-
tion, surface roughness, persistence and infilling. Various approaches are available in
literature for assessing σcj and some of them are summarized are summarized in
Table 4. Among rock mass classification systems, the Q system is most widely used
for tunneling projects in India. Following expressions may be used to assess σcj:

Singh et al: 1997ð Þ: σcj ¼ 7γQ1=3MPa

ðfor Q < 10; 2 < σci < 100 MPa; SRF ¼ 2:5Þ ð26Þ
Barton 2002ð Þ: σcj ¼ 5γ Qσci=100ð Þ1=3MPa ð27Þ

where, γ is the unit weight of the rock mass in gm/cc, σcj and σci are in MPa.
In the opinion of this writer, a reliable estimate of σcj can only be made through field

testing. However, it is not feasible to stress a rock mass in the field to its ultimate
strength. Alternatively Singh & Rao (2005) have suggested that the rock mass in the
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fieldmay be tested up to a pre-determined stress level using test like uniaxial jacking test
and reliable estimate of σcj can be made from the modulus of the mass. A correlation
was suggested by Singh & Rao (2005) between the engineering properties of jointed
and intact rocks as follows:

σcj=σci ¼ Ej=Ei
� 0:63 ð28Þ

Where Ej and Ei are the elastic moduli of the rock mass and the intact rock respectively
in the principal stress direction.

4.2 Polyaxial stress conditions

Singh & Singh (2012) extended theMMC triaxial strength criterion to polyaxial stress
conditions. The criterion for polyaxial strength is expressed as:
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Figure 9 Probability of error in predicting triaxial strength of jointed rocks.

Table 4 Approaches for assessing UCS of jointed rocks (Major source: Zhang, 2010).

Authors Relation

Yudhbir & Prinzl (1983) σcj=σci ¼ exp½ 7:65 � RMR� 100ð Þg=100f �
Ramamurthy et al. (1985) and

Ramamurthy (1986)
σcj=σci ¼ exp RMR� 100ð Þ=18:75gf

Trueman (1988) and Asef et al.
(2000)

σcj ¼ 0:5 exp 0:06 RMRð Þ MPa

Kalamaras & Bieniawski (1993) σcj=σci ¼ exp RMR� 100ð Þ=24gf
Sheorey (1997) σcj=σci ¼ exp RMR� 100ð Þ=20gf
Aydan & Dalgic (1998) σcj=σci ¼ RMR= RMRþ 6ð100� RMRÞgf
Zhang (2010) σcj=σci ¼ 10ð0:013RQD�1:34Þ

Ramamurthy (1993);
Ramamurthy & Arora (1994)

σcj=σci ¼ exp �0:008Jfð Þ

Singh (1997); Singh et al. (2002) σcj=σci ¼ exp �a Jfð Þ; a=0.0123 for splitting, 0.010 for shearing,
0.0250 for rotation and 0.0180 for sliding
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ðσ1 � σ3Þ ¼ σcj þ 2 sin�j0

1� sin�j0

σ2 þ σ3
2

� �
� 1
σci

sin �j0

ð1� sin�j0Þ
σ22 þ σ23

2

� �
for 0 ≤ σ3 ≤ σ2 ≤ σci ð29Þ

There is very limited data available on polyaxial strength of jointed rocks. Tiwari &
Rao (2006, 2007) have reported results of fifty four tests conducted on a rock mass
model under polyaxial stress condition. Singh & Singh (2012) evaluated the applic-
ability of the polyaxial strength criterion to the results from Tiwari & Rao (2006,
2007). It was observed that with only input parameters σci, ϕi0 and σcj, the predictions
are reasonably good for specimens with joint orientations θ = 0, 20, 40, 80 and 90°
respectively, and have average percent error within about 15%. The orientation θ
represents angle between joint plane and the major principal plane. For orientation
θ = 60° the joints are critically inclined and the wedge formed by the intersecting joints
is likely to slide under its ownweight at low confining pressure. Rather than treating the
rock mass as continuum, wedge analysis by incorporating joint shear strength models
such as Barton & Choubey (1977) will be more appropriate for such cases. The
proposed criterion is therefore not applicable where joints are critically oriented and
single discontinuity governs the failure and the mass cannot be treated as continuum.

4.2.1 Rock burst conditions

Polyaxial strength criterion is very helpful in assessing the condition where rock burst
conditions are likely to occur. As a thumb rule for Indian tunnels, squeezing is con-
sidered likely to occur if tunnel is under high overburden and the joint friction angle
obtained fromQ (= tan�1ðjr=jaÞ) is less than 30°; whereas rock burst is considered likely
to occur if the joint friction angle is more than 30° and the overburden is more than
about 900 m. The failure under rock burst condition is brittle with instant release of
high amount of energy. For an unsupported tunnel the minor principal stress σ3 at the
periphery will be nearly zero and the possibility of rock burst may be obtained by
substituting σ3=0 in the polyaxial criterion as follows:

σθ ≥ σcj þ 2 sin�j0

1� sin�j0

σ2
2

� �
� 1
σci

sin �j0

ð1� sin�j0Þ
σ22
2

� �
for 0 ≤ σ2 ≤ σci ð30Þ

Where σθ is the mobilized circumferential stress (after redistribution of stresses due to
excavation) at the periphery of the tunnel. The expression indicates that if out of plane
stress σ2 is high, the strength of the rockmass will be high. If mobilized stress σθ exceeds
this high strength it may lead to rock burst condition.

Singh& Singh (2012) have analyzed a case study of a power project (NJPC tunnel) in
Indian Himalayas. During initial design, as per past practice, heavy rock burst condi-
tions were feared for more than 900 m overburden. However, during excavation only
slabbing and minor bursts were observed and minor supports were sufficient. Fifteen
sections of the tunnel were analyzed using conventional Mohr-Coulomb and MMC
polyaxial criteria and biaxial strength to stress ratio was computed (Singh & Singh,
2012). When conventional MC criterion (without considering the effect of σ2) was
used, the results indicated bursting conditions for all the fifteen section.However, when
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MMC polyaxial strength criterion was employed, the bursting criterion was satisfied
only at few locations. The results of analysis by using MMC polyaxial criterion were
more realistic.

5 TRANSVERSELY ISOTROPIC ROCKS

5.1 MMC criterion for transversely isotropic rocks

Rocks such as shale, slate, gneiss, schist and phyllite are inherently anisotropic and their
strength is greatly influenced by the direction of testing. Modified Mohr Coulomb
criterion for intact and jointed rocks has been derived by modifying the conventional
Mohr-Coulomb criterion (Singh et al., 2011; Singh & Singh, 2012). On similar lines,
Singh et al. (2015) have suggested MMC criterion for intact anisotropic (transversely
isotropic) rocks as given below:

σ1 � σ3ð Þ ¼ σcβ þ 2 sin �β0

1� sin �β0
σ3 � 1

σcrt

sin �β0

ð1� sin�β0Þ
σ23 for 0 ≤ σ3 ≤ σcrt

ð31Þ
Where σcβ is the UCS of anisotropic rock with planes of anisotropy oriented at an

angle of β from major principal stress direction and can be represented in form of cβ0,
ϕβ0 similar to Equation 4; cβ0, ϕβ0 are conventionalMC parameters obtained from low
triaxial tests at confining pressure (σ3 → 0); σcrt is critical confining pressure for the
anisotropic rock. For higher stress level the criterion is expressed as:

σ1 � σ3ð Þ ¼ σcβ þ
sin �β0

1� sin �β0
σcrt for σ3 > σcrt ð32Þ

The UCS σcβ, of the rock at a given orientation β, may be obtained by conducting
UCS tests at orientations β = 0, 30 and 90° (Nasseri et al., 2003). The above form of
the criterion is termed as “two parameter criterion” (Singh et al., 2015) as two
parameters ϕβ0 and σcrt will be required to predict the strength of anisotropic rock.
Singh et al. (2015) carried out statistical analysis and evaluated the proposed criterion
by applying it to a compiled database comprising of 38 rock types with total number
of 255 UCS and 1141 triaxial tests. Best fitting values of the parameters ϕβ0 and σcrt
were obtained and these values were used to predict σ1 values for given σ3 values. It
was shown by Singh et al. (2015) that the “two parameter criterion” exhibits excel-
lent goodness of fit to the database. Probability distribution of percent error in
prediction is shown in Fig. 10. The plot indicates that if triaxial test data are available
for a rock type, the best fitting parameters of the proposed criterion will yield results
such that there will be a probability of 0.9737 for error to be within ±20%. The very
high probability of error to lie within small range of 20% indicates an excellent fitness
of the proposed model to the database.

Back analysis of the database was also performed by Singh et al. (2015) to arrive at
the most probable value of critical confining pressure for anisotropic rocks. It was
shown statistically that an optimum value of the critical confining pressure equal to
1.25σcmax in the proposed criterion gives minimum error in prediction. Where σcmax is
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the maximum value of UCSwhen β is varied from 0 to 90°. Usually, the maximumUCS
occurs for β=90°. It is recommended that if sufficient amount of triaxial test data is
available, σcrt may be obtained through best fitting and minimization of error. Where
sufficient triaxial tests data is not available, an average value of the critical confining
pressure may be taken equal to 1.25σcmax. The MMC “single parameter criterion” for
anisotropic rocks may be written as:

σ1 � σ3ð Þ ¼ σcβ þ
2sin �β0

1� sin �β0
σ3� 1

1:25 σcmax

sin �β0

ð1� sin �β0Þ
σ23

for 0 ≤ σ3 ≤ 1:25 σcmax ð33Þ

σ1 � σ3ð Þmax ¼ σcβ þ 1:25
sin �β0

1� sin �β0
σcmax for σ3 > 1:25 σcmax ð34Þ

It may be noted that for intact isotropic rocks and jointed anisotropic rocks, the
critical confining pressure was statistically evaluated to be nearly equal to the UCS of
the isotropic rock substance. However, in the present case of intact anisotropic rocks,
the critical confining pressure works out to be about 1.25 times the maximum UCS
exhibited by the anisotropic rock. Singh et al. (2015) attribute the possible reason for
this difference to the chemical alteration of rock material during geological foliation
process. To understand this phenomenon a jointed rock specimen may be considered
which is tested for UCS by keeping loading direction normal to joint planes. The UCS of
this specimen will be lower than the UCS of the rock substance, σci. The strength
reduction will depend on joint characteristics e.g. orientation, surface roughness and
frequency. In a similar fashion, if an intact anisotropic rock is tested for UCS by keeping
loading direction normal to the planes of anisotropy, the observedUCS should be lower
than the real UCS of the rock substance. The analysis done by Singh et al. (2015)
indirectly infers that the real UCS of the rock substance would be about 1.25 times the
maximum UCS, σcmax. Critical state will reach when confining pressure approaches a
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Figure 10 Probability distribution of error in prediction of triaxial strength of anisotropic rocks (Two
parameter criterion; all data available for assessing parameters).
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value equal to 1.25σcmax. The criterion parameter ϕβ0 may be obtained by adopting the
following steps.

Aβ ¼
X

σ1 � σ3 � σcβ
� X

σ23 � 2:5 σcmax σ3
�  ; 0 ≤ σ3 ≤ 1:25 σcmax;

Bβ ¼ �2:5Aβσcmax ; sin �β0 ¼ Bβ=ð2þ BβÞ ð35Þ

5.2 Predictive capability of single parameter criterion for
anisotropic rocks

Singh et al. (2015) statistically evaluated the predictive capability of the single para-
meter criterion by applying it to the compiled database. The parameter ϕβ0 was
determined for the following three conditions and the σ1 values were predicted for
given confining pressure values. a) All triaxial test data are used to obtain ϕβ0; b) Only
UCS and two triaxial test data are used to obtain ϕβ0; c) Only UCS vale is used to obtain
ϕβ0. The third case is an extreme case and not desirable, however may be unavoidable
especially during preliminary feasibility studies. Singh et al. (2015) analyzed the triaxial
test data available and found a correlation for termAβ (Equation 35) with a R2 value of
0.893, as follows:

Aβ ¼ �4:75 σcrtð Þ�1:22 ð36Þ
This expressionmay be used in Equation 35 to get a rough estimate of parameter ϕβ0 in
absence of triaxial tests data.

The criterion parameter was obtained for all the data sets for the three conditions
stated above and strength values were predicted for given confining pressure values.
The probability distributions of the percent error for the three conditions are presented
in Fig. 11. The probability of error to be within ±20% has been found to be 94.66,
83.64 and 57.00% for cases a, b and c respectively. Excellent results are, therefore,
obtained for condition (a) when all triaxial tests data are used for assessing the criterion
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Figure 11 Probability distribution of error in prediction of triaxial strength of anisotropic rocks.
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parameter. The results for condition (b) i.e. when only two triaxial test data are
available are also reasonably good. The case (c) shows that even without any triaxial
test data available for fitting, rough estimates of the strength are possible. The analysis
indicates that depending on number of triaxial test data available, excellent accuracy in
prediction can be achieved for field applications. However, during preliminary stages
and feasibility studies, only UCS data may be available and a very rough estimate of the
strength can also be made through the proposed criterion.

6 CONCLUDING REMARKS

6.1 Intact rocks

Modified Mohr Coulomb criterion has been proposed to predict triaxial strength of
intact isotropic rocks as a non-linear function of confining pressure. The shear strength
parameters ci0 and ϕi0, as used in conventional MC criterion, are retained and used in
theMMC criterion. Barton’s critical state concept for rocks was employed to define the
shape of the criterion. The concept envisages that beyond critical confining pressure the
Mohr failure envelope becomes asymptotic to a horizontal line. The “two parameter
MMC criterion” for intact rocks considers critical confining pressure as one of the
parameters. Back analysis of a database comprising of more than 150 triaxial test data
sets from worldwide literature indicates that the critical confining pressure in the
proposed MMC criterion may be taken nearly equal to the UCS of the intact rock σci.
The “single parameter MMC criterion” for intact rock has only single parameter ϕi0
that can be obtained through few triaxial tests on intact rocks in low confining pressure
range (σ3→0). The performance of the proposed MMC criterion has been compared
with other popular criteria in vogue. It is recommended that the proposedMMC can be
used with confidence over a wide range of confining pressure with an input parameter
ϕi0 obtained from low confining pressure range tests.

The proposed non-linear criterion, with parameter ϕi0, has further been extended to
polyaxial stress conditions. The applicability of the MMC polyaxial criterion has been
verified by applying it to polyaxial test data sets for ten rock types and comparing its
performance with other popular polyaxial strength criteria in vogue. The MMC for
triaxial and polyaxial stress conditions has been found to be the most promising
criterion.

6.2 Jointed anisotropic rocks

Field engineers working in civil and mining applications invariably deal with rocks that
are jointed in nature. Jointed rocks exhibit highly non-linear strength response which is
not captured by the conventional form of theMC criterion. The conventional form has
been modified to incorporate non-linearity in strength response by invoking critical
state concept, and retaining the conventional shear strength parameters. The criterion
was applied to triaxial test database comprising of more than 730 triaxial test results
for variety of rocks (σci = 9.5 to 123MPa). It has been shown that Barton’s critical state
concept, which was originally suggested for intact rocks, is applicable to jointed rocks
as well. The statistical analysis indicates that similar to intact rocks, the critical con-
fining pressure for jointed rocks also can be taken nearly equal to the UCS of intact
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rocks. The parameter ϕj0 will be required for assessing the triaxial strength. An
expression has been derived to get ϕj0 from intact rock friction angle ϕi0, and strength
reduction factor σcj/σci. It is recommended that this expression may be used to get the
friction angle ϕj0. The UCS of jointed rock σcj may be obtained by using classification
approaches and laboratory test results for intact rocks. It has, however, been recom-
mended that more reliable estimates of σcj can be made if deformability test is con-
ducted in the field and strength reduction factor is computed as a function of modulus
reduction factor. Statistical analysis of the database indicates that with only input of σcj,
σci and ϕi0 there is a probability of 87.7% that the predicted results would lie within
±20% error.

The MMC triaxial strength criterion for jointed rocks has also been extended to
polyaxial stress conditions. Very limited data is available in literature for polyaxial tests
on jointed rocks. A set of 54 polyaxial test results were analyzed to verify the applic-
ability of the criterion to polyaxial stress conditions in anisotropic jointed rocks. It is
recommended that the criterion can be applied with confidence to those situations
where assumption of equivalent continuum is valid. For situations where rigid wedge is
likely to slide along joint planes, an appropriate criterion for rock joints (say Barton &
Choubey, 1977) should be used. The polyaxial strength criterion has also been used to
define a condition to assess the possibility of rock burst in the field.

6.3 Intact anisotropic rocks

Critical state concept basedModifiedMohr Coulomb criterion has also been extended
to inherently anisotropic (transversely isotropic) rocks. The “two parameter” form of
the criterion uses UCS, σcβ for given orientation β, and two parameters i.e. ϕβ0 and σcrt
to estimate the triaxial strength. A statistical evaluation of the criterion was accom-
plished by applying it to a triaxial test database comprising of test results on 38 rock
types with more than 250 UCS and 1140 triaxial tests. Excellent goodness of fit is
observed.

Back analysis was performed to get an average value of critical confining pressure to
be used in the criterion. The analysis revealed that the critical confining pressure for
inherently anisotropic rocks, as applicable in the proposed MMC criterion, may be
taken nearly equal to 1.25σcmax. This appears to be in contradiction with intact
isotropic and jointed anisotropic rock results where the critical confining pressure
was evaluated to be nearly equal to σci. The probable reason of difference in the critical
confining pressure is attributed to the chemical alteration of rock material during
geological foliation process. It is argued that the real UCS of the rock substance
between foliation planes would be higher and on the order of about 1.25 σcmax.

The “single parameter” form of the MMC criterion uses single parameter ϕβ0 which
can be obtained from few triaxial tests for given orientation β. The predictive capability
of this form has been checked for three conditions for assessing fitting parameter ϕβ0 i.e.
i) all triaxial test data are used, ii) only UCS and two triaxial test data are used, and iii)
only UCS vale is used to obtain ϕβ0. The analysis reveals that excellent results are
obtained when sufficient triaxial test results are available to assess the criterion para-
meter. Reasonably good predictions are possible with only two triaxial tests available.
Also even without any triaxial tests data available for fitting, rough estimates for
strength are possible.
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Chapter 18

Practical estimate of rock mass
strength and deformation parameters
for engineering design

M. Cai
Bharti School of Engineering, Laurentian University, Sudbury, Ontario, Canada

Abstract: Knowledge of the rock mass strength is required for the design of many
engineering structures to be built in or on rocks. For this purpose, it is necessary to
obtain design parameters such as deformation moduli, peak and residual strength
parameters, and dilation angle for numerical modeling and design. The GSI system,
proposed by Hoek et al. (1995), is now widely used for the estimation of the rock
mass peak strength and the rock mass deformation parameters. A quantitative
approach to assist in the use of the GSI system is presented. It employs the in-situ
block volume and a joint condition factor as quantitative characterization factors to
determine the peak GSI value. To use the GSI system to estimate the residual strength
of jointed rock masses, the peak GSI can be adjusted to a residual GSIr value based on
the two major controlling factors in the GSI system, i.e., the residual block volume
and the residual joint surface condition factor.Methods to estimate peak and residual
block volumes and joint surface condition factors are presented. In addition, a
detailed discussion on the determination of other design analysis input parameters,
such as uniaxial compressive strength of intact rocks and Hoek-Brown constant mi

are given and a method to estimate dilation angles of rock masses is presented.The
determined Hoek-Brow rock mass strength parameters, dilation angles, and defor-
mation modulus can be used in numerical analyses for safe and cost-effective engi-
neering design. Because of its quantitative nature, this approach allows the
consideration of variability of rock mass strength and deformation parameters in
design, using the Monte Carlo or point estimate method.

1 INTRODUCTION

Knowledge of the rock mass strength and deformation behaviors is required for the
design of many engineering structures to be built in or on rocks, such as foundations,
slopes, tunnels, underground caverns, drifts, and mining stopes. The strength and
deformation modulus of a jointed rock mass depends on the strength of the intact
rocks and the joint conditions. A better understanding of the mechanical properties of
rock masses will facilitate cost-effective design of such structures.

The determination of the global mechanical properties of a jointed rock mass
remains one of the most difficult tasks in rock mechanics. Anyone who had practiced
in the geomechanics and geotechnical fields will not hesitate to admit that trying to
estimate the deformation modulus and uniaxial compressive strength of a jointed rock



mass is such a daunting difficult task. There are many reasons why it is so. The name of
a rockmass is not CHILE (Continuous, Homogeneous, Isotropic, and Linearly-Elastic)
but DIANE (Discontinuous, Inhomogeneous, Anisotropic, and Non-Elastic)
(Hudson & Harrison, 1997). Complex spatial variation, scale effect, stress path
dependency, and limited access to monitoring and measurement are other factors
that render estimating the mechanical properties of a rock mass difficult.

Many researchers have developed constitutive models to describe the strength and
deformation behaviors of jointed rock masses (e.g., Oda, 1983; Amadei, 1988; Cai &
Horii, 1992). Because there are so many parameters that affect the deformability and
strength, it is generally impossible to develop a universal constitutive model that can be
used to a priori predict the strength of a rock mass. In addition, model parameters need
to be calibrated before the models can be used in design analysis.

Traditional methods to determine the mechanical property parameters include
plate-loading tests for deformation moduli and in-situ block shear tests for strength
parameters. These tests can only be performed when the exploration adits are exca-
vated and the cost of conducting these tests is high. Although back-analyses, which
are based on field measurement, are helpful in determining the strength and deforma-
tion parameters as a project proceeds (Cividini et al., 1981; Sakurai & Takeuchi,
1983; Cai et al., 2007), they do not provide design parameters at the pre-feasibility or
feasibility study stages.

As computers become much more powerful and high performance computing is
now easily accessible, there is a new trend tomodel the rockmass response using some
basic measured mechanical and geometrical properties of the rock and joints as
inputs. Jointing is considered using a stochastic discrete fracture network (DFN)
simulation (Dershowitz & Einstein, 1988). Many equally significant realizations of
the fracture network can be produced. One can pick a particular fracture network
realization and then import it into some numerical packages (e.g., ELFEN (Rockfield
Software Ltd., 2003), PFC3D (Itasca, 2010)) to create a jointed rockmass model. The
approach adopted in PFC3D is called the synthetic rock mass (SRM) approach (Pierce
et al., 2007; Mas Ivars et al., 2011). Failure of the rock mass is simulated by
considering intact rock fracturing, joint sliding, or the combination of the two.
Using this approach, it not only helps us to understand better the failure mechanism
of jointed rock masses, but also assists us to estimate rock mass strengths and
deformabilities. While the approach is promising, it also bears some major deficien-
cies. The approach is not simple enough for site engineers to use, and it requires them
to be able to run some of the most skill demanding software packages (ELFEN,
PFC3D, FRACMAN (Dershowitz et al., 1993)) in the geotechnical community.
Computing time is long and there are many model parameters that cannot be directly
measured and have to be calibrated using field monitoring data. In addition, the
discrete fracture network generated is often a very rough representation of reality
(e.g., smooth joint in a large scale, circular or elliptical joint shape etc.), and the
limitation of the approach created by the DFN model is often overlooked by some
researchers and users.

Some attempts have been made to develop simple methods to characterize jointed
rock masses to estimate the deformability and strength indirectly. The Geological
Strength Index (GSI), developed byHoek et al. (1995), is one of them. It uses properties
of intact rock and conditions of jointing to determine/estimate the rock mass
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deformability and strength. GSI values can be estimated based on the geological
description of the rock mass and this is well suited for rock mass characterization at
the initial stage of a project. The GSI system concentrates on the description of two
factors, rock structure and block surface conditions. Some efforts (Sonmez & Ulusay,
1999; Russo, 2009; Hoek et al., 2013) were made to make the system more user
friendly, but the approach presented in Cai et al. (2004), which employs the block
volume (Vb) and a joint condition factor (Jc) as quantitative characterization factors,
will be presented in this chapter. This approach adds quantitative means to facilitate
use of the system, especially by inexperienced engineers. Because of its quantitative
nature, it facilitates the use of probabilistic design approach to tunnel and cavern design
using the GSI system (Cai &Kaiser, 2006a; Cai, 2011). Furthermore, the approach has
been developed and tested for rockmass’s residual strength estimation, by adjusting the
peak GSI to the residual GSIr value based on the two major controlling factors in the
GSI system – the residual block volume V r

b and the residual joint condition factor Jr
c

(Cai et al., 2007).
Although imperfect, the GSI system provides a simple and yet practical means to

define a complete set of mechanical properties (peak and residual Hoek-Brown strength
parametersmb and s, or the equivalentMohr-Coulomb strength parameters c and ϕ, as
well as deformation modulus E) for design purpose.

Firstly some widely used rock mass classification systems and empirical relations to
estimate rock mass strength and deformation modulus using these classification
systems are reviewed. Next, a complete quantitative approach to determine peak
and residual strength parameters of jointed rock masses using the Generalized Hoek-
Brown failure criterion and the GSI system is presented. Other input parameters
required for engineering design, such as deformation modulus and dilation angle,
are also discussed. An example is given to illustrate the application of the proposed
method.

2 ROCK MASS CHARACTERIZATION FOR ENGINEERING DESIGN

2.1 Brief summary of rock mass classification systems

Rock mass characterization is the process of collecting and analyzing qualitative and
quantitative data that provide indices and descriptive terms of the geometrical and
mechanical properties of a rock mass. It is a significant part in any field geological
investigation involving rock engineering problems. This process requires the collec-
tion and recording as well as analyzing a sizable amount of geological and geotechni-
cal data. Methods for rock mass characterization include core logging, borehole
logging, scanline surveying, cell mapping, geologic structure mapping, and rock
index testing. New technologies, such as digital image processing of fracture informa-
tion and laser-based imaging of joint roughness, can be applied for rock mass
characterization.

When all necessary data are collected, the rock masses are classified according to
the emphasis of influence of certain index on the overall rock mass quality based on a
classification system or scheme. Ideally rock mass classification should provide a
quick means to estimate the support requirement and to estimate the strength and
deformation properties of the rock mass. More specifically, a rock mass classification
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scheme is intended to classify the rock masses, provide a basis for estimating defor-
mation and strength properties, supply quantitative data for support estimation, and
present a platform for communication between exploration, design and construction
groups.

Many rock mass classification systems have been proposed and used in engineering
practice, such as the Terzaghi’s classification (Terzaghi, 1946), RQD (Deere, 1968),
RSR (Wickham et al., 1974), RMR (Bieniawski, 1976), Q (Barton et al., 1974; Barton,
2002), GSI (Hoek et al., 1995, 1998), and RMi system (Palmstrøm, 1996a,b). Some
systems are based on the modification of the existing ones to suit a specific application.
For examples, the RMR systemwas modified by Laubscher (1990) for mine design and
by Kendorski et al. (1983) for drift support design in caving mines. The Q system was
modified by Potvin (1988) for stope design.

2.2 Estimation of rock mass properties using rock mass
classification systems

Rock mass classification systems have been used to estimate mechanical properties
(i.e., deformation modulus and uniaxial compressive strength) of jointed rock masses
at the preliminary design stage of a project. Table 1 summarizes some of the widely
used empirical equations for determining deformation moduli of rock masses from

Table 1 Empirical relations to estimate deformation modulus from a classification index.

No. Deformation modulus Reference Note

1 E = Ei (0.0231RQD-1.32) Coon & Merritt (1970) RQD>57
2 E = Ei (RQD-60)/40 Deer et al. (1967) RQD>60
3 E = Ei10

0.0186RQD-1.91 Zhang & Einstein
(2004)

4 E = 2RMR–100 Bieniawski (1978) Applicable for RMR > 50
5 E = 0.1(RMR/10)3 Read et al. (1999)

6 E ¼ 10
RMR�10

40 Serafim & Pereira
(1983)

Applicable for RMR < 50

7 E ¼ Ei 0:0028RMR2 þ 0:9e
RMR
22:82

� �
Nicholson &
Bieniawski (1990)

Ei is the elastic modulus of the
intact rock

8 E = 25logQ Barton et al. (1980) Applicable for Q > 1

9 E ¼ 10Q1=3
c , where Qc ¼ Q

σc
100

Barton (2002) σc is the strength of intact rock

10 E = 5.6(RMi)0.375 Palmstrøm (1995) For RMi > 0.1

11 E ¼
ffiffiffiffiffiffiffiffiffi
σc
100

r
10

GSI�10
40 Hoek & Brown (1997) Applicable for σc < 100

12 E ¼ E
ðsaÞ0:4
i ; Ei ¼ 50 GPa;

s ¼ e

GSI�100

9

a ¼ 0:5þ 1
6

e�GSI=15 � e�20=3
� � Sonmez et al. (2004) GSI = RMR

506 Cai



index values such as RQD, RMR, Q, and GSI. Table 2 summarizes some widely used
empirical equations for the determination of uniaxial compressive strengths of
jointed rock masses.

It is noted that these empirical equations try to link a rock mass classification index
value to the deformation modulus and uniaxial compressive strength of a jointed rock
mass. They do not provide a complete description of the failure envelopes which are
needed in many design analyses. Although GSI appears a few times in the tables, it is
fundamentally associated with the generalized Hoek-Brown failure criterion. This
failure criterion, since its inception in 1980 (Hoek & Brown, 1980), has undergone a
few revisions (Hoek, 1983; Hoek & Brown, 1988; Hoek et al., 1995, 1998, 2002;
Hoek & Brown, 1997) and is widely accepted in the engineering community. In the
following discussion, we present some extensions and refinements to the GSI system for
the estimation of peak and residual strength parameters of jointed rock mass in the
context of the generalized Hoek-Brown failure criterion.

Table 2 Empirical relations to estimate the uniaxial compressive strength of jointed rock masses from a
classification index.

No. Rock mass to rock strength ratio Reference Note

1 σcm
σc

¼ 100:013RQD�1:34 Zhang (2010) For RQD < 60

2 σcm
σc

¼ e �0:008Jfð Þ

Jf ¼ Jn
nr

Ramamurthy et al.
(1985),
Ramamurthy
(1994)

Jn – number of joints per meter; n –
inclination parameter (0.05 to 0.98)
depending on the angel between the
joint and σ1. r – joint strength factor
related to joint condition (= tanϕ). For
RQD < 60

3
σcm
σc

¼ 0:039þ 0:893e
�Jf

160:99

� �
Jade & Sitharam
(2003)

For RQD < 60. The definition of Jf is
the same as above.

4
σcm
σc

¼ e7:65
RMR�100

100

� 
Yudhbir et al.
(1983)

5
σcm
σc

¼ MRMR�Rating for σc
106 Laubscher (1984)

6
σcm
σc

¼ e
RMR�100

18:75

� 
Ramamurthy et al.
(1985)

7
σcm
σc

¼ e
RMR�100

20

� 
Sheorey et al.
(1989)

RMR ≥ 18, 1976 version of RMR.

8
σcm
σc

¼ e
RMR�100

24

� 
Kalamaras &
Bieniawski (1993)

9
σcm
σc

¼ RMR
RMRþ6ð100�RMRÞ Aydan & Dalgiç

(1998)
10 σcm = 7γ fcQ

1/3 MPa Bhasin & Grimstad
(1996)

fc = σc/100 for Q > 10 and σc > 100
MPa, otherwise fc= 1; and γ is the unit
weight of the rock mass in g/cm3.

11 σcm ¼ 5γ Q σc
100

� 1=3 MPa Barton (2002) γ is the unit weight of the rock mass in
g/cm3.

12
σcm
σc

¼ JP ¼ 0:2
ffiffiffiffiffiffi
jC

p � Vb
0:37jC�0:2

Palmstrøm (1995) Vb is the block volume and jc is the joint
condition factor
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3 ESTIMATION OF PEAK AND RESIDUAL STRENGTH
PARAMETERS OF JOINTED ROCK MASS USING THE GSI SYSTEM

3.1 Peak strength parameters

3.1.1 Generalized Hoek-Brown failure criterion

The generalized Hoek-Brown failure criterion for jointed rock masses is (Hoek et al.,
2002)

σ1 ¼ σ3 þ σc mb
σ3
σc

þ s
� �a

ð1Þ

where mb, s, and a are constants for the rock mass, and σc is the uniaxial compressive
strength of the intact rock.To apply the Hoek-Brown failure criterion for estimating the
strength of a jointed rock mass, three properties of the rock mass need to be obtained.
The first one is the uniaxial compressive strength of the intact rock σc, the second is the
value of the Hoek-Brown constantmi for the intact rock, and the last one is the value of
GSI for the rockmass. σc andmi can be determined by statistical analysis of the results of
a set of triaxial tests on carefully prepared core specimens. TheGSI value can be obtained
from a chart provided in Hoek et al. (1995) or other relevant references. Once the GSI
value is known, other Hoek-Brown parametersmb, s, a are given as (Hoek et al., 2002)

mb ¼ miexp
GSI � 100
28� 14D

� �
ð2Þ

s ¼ exp
GSI� 100
9� 3D

� �
ð3Þ

a ¼ 0:5þ 1
6

e�GSI=15 � e�20=3
� �

ð4Þ

where D is a factor between 0 and 1, which depends on the degree of disturbance to
which the rock mass has been subjected by blast damage and stress relaxation. For a
tunnel excavated by controlled blasting, manual excavation, or Tunnel Boring
Machine (TBM) leading to excellent excavation quality, the disturbance to the con-
fined rock mass surrounding the tunnel is minimal andD = 0 can be used. When very
poor quality blasting in a hard rock tunnel results in severe local damage in the
surrounding rock mass, D = 0.8. For very poor blasting in rock slopes leading to
severe rock mass damage,D = 1.0. TheD factor can affect the rock mass strength and
deformability significantly and sufficient consideration must be given to the selection
of this parameter.

3.1.2 Intact rock strength σc

Getting σc right is the first step toward getting the rock mass properties right. In
addition to σc, intact rock properties such as tensile strength σt, elastic modulus Ei,
and Poisson’s ratio ν are also needed in design. These parameters can be obtained from
laboratory Brazilian test, uniaxial compression test, or triaxial test.
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A typical stress-strain relations obtained from a uniaxial compression test is pre-
sented in Figure 1, where σcc is the crack closure stress, σci is the crack initiation stress,
σcd is the crack damage stress, and σc is the peak stress at failure. The three stress
thresholds, i.e., σci, σcd, and σc, represent important stages in the development of the
macroscopic failure process of intact rocks.

In laboratory tests on intact rocks, the crack initiation stress is defined by the onset of
stable crack growth or dilatancy, which can be identified from the stress – volumetric
strain curve as the point of the departure of the volumetric strain observed at a given
mean stress from that observed in hydrostatic loading to the corresponding pressure.
Whenever possible, the value of σc should be determined by laboratory testing on cores
of approximately 50 mm in diameter and 100 mm in length.

One important aspect in obtaining intact rock properties from laboratory tests is
sample damage. This is particularly true for engineering design at depth because core
samples taken from deep highly stressed ground are very much prone to sample
damage, due to stress relaxation. Intact rock strength properties obtained using
cores obtained from deep or high stress zones can underestimate the intact rock
strength in-situ.

100

0

200

300

N
um

ber of A
E

 E
vents (000)

400

500

600

σc (Peak)

σcd

σci

σ1

σ3

σcc

AE

200V
IV

III

Initiation of macro-
scale shear failure

Crack coalescence

Crack  Initiation

Crack  Closure
C

on
tr

ac
tio

n
D

ila
tio

n
V

/V
 %

–0.2 –0.16 –0.12 –0.08 –0.04
Lateral Strain % Axial Strain %

Axial Strain %

Total
Measured
V/V

Axial
Strain Gauge

Elastic Region II 

Lateral
Strain Gauge

Stable Crack Growth

I

100

0.2
0 0.1

I
II

Crack
Closure

Calculated Crack
Volumetric

Strain
Crack

Growth

IV

V

0.2 0.3

0 0.1 0.2 0.3 0.4

0.1

0

–0.1

Axial
Stress (MPa)

Ei

∼80% σc

∼40% σc

Figure 1 Stress-strain diagram of a rock showing the stages of crack development (Martin, 1993).
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3.1.3 Practical estimate of mi value

As seen in Equation 2,mi is a Hoek-Brown model parameter for the intact rock, which
can be obtained from triaxial test results (σc can also be obtained from triaxial test
results). The triaxial test data can be processed using a program called RocData,
available from Rocscience Inc.

When time or budget constraints do not allow a triaxial testing program to be carried
out,mi values can be estimated from some tables given in Hoek et al. (1995) and Hoek
(2007). In the table given by Hoek (2007), possible mi data ranges are shown by a
variation range value immediately following the suggested mi value. mi values range
from 4 to 33 for some commonly encountered rocks and an impression thatmi depends
only on rock type can be seen from the table but this is not true. Rock type cannot be
used directly to define the mi value. The mi value depends on many factors such as
mineral content, foliation, and grain size (texture). There is a large variation range ofmi

values and it presents a major challenge for engineers to choose a reasonably accurate
mi value for a particular rock.

Recently, a simple but yet practical method to estimate tensile strength andmi values
of brittle rocks was proposed by Cai (2010). According to the method, the tensile
strength σt is equal to σci/8; the mi value is equal to mi = 8 σc/σci in low confinement
zone, where σci is the crack initiation stress which can be obtained from the uniaxial
compression test, using either volumetric strain measurement or acoustic emission
monitoring techniques (see Figure 1). It is found that mi = 12 σc/σci can be applied to
strong, brittle rocks, applicable to high confinement zone. Because rock mass failure
around excavation boundaries is governed by low confinement conditions,mi = 8 σc/σci
is recommended for the estimation of mi values.

mi values inferred from the literature can only be used when there are no test data
available at the initial design stage of a project. Whenever possible, simple laboratory
uniaxial compression tests should be conducted to determine σci,σc, and hence mi

values more accurately.

3.1.4 Quantitative determination of GSI value

Having σc and mi values determined, we need to define the GSI value in order to use
the generalized Hoek-Brown failure criterion for jointed rock masses. As discussed
above, the GSI system has been developed and evolved over many years based on
practical experience and field observations. The GSI value is estimated based on
geological descriptions of the rock mass involving two factors, rock structure or
block size and joint or block surface conditions (Hoek & Brown, 1997). Although
careful consideration has been given to the precise wording for each category and to
the relative weights assigned to each combination of structural and surface condi-
tions, the use of the original GSI table/chart involves some subjectivity and long-
term experiences and sound judgment are required to use the GSI system
successfully.

Ameans to quantify the GSI chart by use of field measurement data, which employs
the block volume Vb and a joint surface condition factor Jc as quantitative character-
ization factors, is presented by Cai et al. (2004). The resulting approach adds
quantitative measures in an attempt to render the system more objective. By adding
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measurable quantitative input for quantitative output, the system becomes less
dependent on experience while maintaining its overall simplicity. The block volume
can be calculated from joint spacings of joint sets. The effect of joint persistence on
the block volume can be considered using a joint persistence factor. The joint surface
condition factor is obtained by rating joint roughness depending on the large-scale
waviness, small-scale smoothness of joints, and joint alteration depending on the
weathering and infillings in joints. The quantitative approach was validated using
field test data and applied to the estimation of the rock mass properties at some
project sites (Alejano et al., 2009; Fischer et al., 2010; Hashemi et al., 2010; Gischig
et al., 2011; Ghafoori et al., 2011; Soleiman Dehkordi et al., 2013). This approach
adds quantitative means to assist in the selection of modeling parameters and is of
particular interest to site engineers.

3.1.4.1 Block volume

Block size, which is determined from the joint spacing, joint orientation, number of
joint sets and joint persistence, is an extremely important indicator of rock mass
quality. The block volume can be calculated from

Vb ¼ s1s2s3
sin γ1sin γ2sin γ3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p1p2p33

p ð5Þ

where si, γi and pi are the joint spacing, the angle between joint sets, and joint
persistence factor, respectively. If the joints are not persistent, i.e., with rock bridges,
the rockmass strength is higher and the global rock stability is enhanced. This effect can
be considered using the concept of equivalent block volume as suggested in Cai et al.
(2004). The consideration of joint persistency has been verified using numerical simu-
lation by UDEC and 3DEC (Kim et al., 2007). For persistent joint sets, pi = 1. Blocks
defined by three joint sets are shown in Figure 2.

Random joints may affect the shape and size of the block. Statistically, joint spacing
follows a negative exponential distribution. For a rhombohedral block, the block
volume is usually larger than that of cubic blocks with the same joint spacings.
However, compared with the variation in joint spacing, the effect of the intersection
angle between joint sets is relatively small. Hence, for practical purpose, for a rockmass
containing persistent joint sets, the block volume can be approximated as

Vb ¼ s1s2s3 ð6Þ
Traditional methods for obtaining discontinuity data (joint sets, orientation, spa-

cing, length, etc.) in the field include core/borehole logging, scanline survey, and cell
mapping. Core/borehole logging alone cannot provide joint length information so
that face mapping is needed to compensate. Scanline surveys, which are time con-
suming, provide detailed information on the individual joint in each set that can be
used in probabilistic design, whereas cell mapping, which are easier and more
efficient, only provides average information about each joint set. Decisions have to
be made to select the most appropriate method to obtain the required information
for block volume and joint surface condition factor (see Section 3.1.4.2)
determination.
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3.1.4.2 Joint condition factor

In the GSI system, the joint surface condition is defined by the roughness, weathering,
and infilling condition (Hoek et al., 1995; Cai et al., 2004). The combination of these
factors defines the strength of a joint or block surface. The joint condition factor, Jc,
used to quantify the joint surface condition, is defined as

JC ¼ JW ⋅ JS
JA

ð7Þ

where JW and JS are the large-scale waviness (in meters from 1 to 10 m) and
small-scale smoothness (in centimeters from 1 to 20 cm) and JA is the joint alteration
factor. The ratings for JW, JS, and JA are listed in Table 3, Table 4, and Table 5,
respectively.

3.1.4.3 Peak GSI value and strength parameters

The quantified GSI chart is presented in Figure 3. The descriptive block size is supple-
mented with the quantitative block volume (Vb) and the descriptive joint condition is
supplemented with the quantitative joint condition factor (Jc). The influence of Vb and
Jc on GSI was calibrated using published data (Cai et al., 2004).

Once Vb and Jc are determined, users can use Figure 3 or the following equation
(Cai & Kaiser, 2006b) to determine the peak GSI value.

S1

S2

S3

Joint set 1 

Joint set 2 

Joint set 3 
γ1

γ2

γ3

Figure 2 Block delimited by three joint sets.
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Table 3 Terms to describe large-scale waviness (Palmstrøm, 1995).

Waviness terms Undulation Rating for waviness JW

Interlocking (large-scale) 3

a  

D

Undulation = a/D
D – length between maximum amplitudes

Stepped 2.5
Large undulation > 3 % 2
Small to moderate undulation 0.3 – 3 % 1.5
Planar < 0.3 % 1



GSI Vb; Jcð Þ ¼ 26:5þ 8:79 ln Jc þ 0:9 lnVb

1þ 0:0151 ln Jc � 0:0253 lnVb
ð8Þ

where Jc is a dimensionless factor, and Vb is in cm3. With GSI directly expressed as a
function of Vb and Jc, the Hoek-Brown strength parameters (mb, s, a) can also be
directly expressed as a function of Vb and Jc. This convenience can facilitate the use of

Table 4 Terms to describe small-scale smoothness (Palmstrøm, 1995).

Smoothness
terms

Description Rating
for JS

Very rough Near vertical steps and ridges occur with interlocking effect on the joint
surface

3

Rough Some ridge and side-angle are evident; asperities are clearly visible;
discontinuity surface feels very abrasive (rougher than sandpaper grade 30) 2

Slightly
rough

Asperities on the discontinuity surfaces are distinguishable and can be felt (like
sandpaper grade 30 – 300) 1.5

Smooth Surface appear smooth and feels so to the touch (smoother than sandpaper
grade 300) 1

Polished Visual evidence of polishing exists. This is often seen in coating of chlorite and
specially talc 0.75

Slickensided Polished and striated surface that results from sliding along a fault surface or
other movement surface

0.6 –
1.5

Table 5 Rating for the joint alteration factor JA (Barton et al., 1974; Palmstrøm, 1995).

Term Description JA

Rock wall contact

Clear joints Healed or
“welded’ joints
(unweathered)

Softening, impermeable filling
(quartz, epidote etc.)

0.75

Fresh rock walls
(unweathered)

No coating or filling on joint surface,
except for staining 1

Alteration of joint wall: slightly
to moderately weathered

The joint surface exhibits one class
higher alteration than the rock

2

Alteration of joint wall: highly
weathered

The joint surface exhibits two
classes higher alteration than the
rock

4

Coating or thin filling-
Sand, silt, calcite etc.

Coating of frictional material
without clay

3

– Clay, chlorite, talc etc. Coating of softening and cohesive
minerals

4

Filled joints with partial
or no contact between
the rock wall surfaces

– Sand, silt, calcite etc. Filling of frictional material without
clay

4

– Compacted clay materials “Hard” filling of softening and
cohesive materials

6

– Soft clay materials Medium to low over-consolidated of
filling

8

– Swelling clay materials Filling material exhibits swelling
properties

8 – 12
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probabilistic design approach to tunnel and cavern design using the GSI system (Cai &
Kaiser, 2006a; Cai, 2011).

3.2 Residual strength parameters

3.2.1 Generalized Hoek-Brown failure criterion for residual strength

It is observed that a rockmass in its residual state represents one particular kind of rock
mass in the spectrum in the GSI chart. The rock mass spectrum is defined by the
combination of the block volume spectrum and the joint surface condition factor
spectrum. The generalized Hoek-Brown failure criterion for the residual strength of
jointed rock masses can be written as

σ1 ¼ σ3 þ σc mr
σ3
σc

þ sr

� �ar

ð9Þ

where mr, sr, ar are the residual Hoek-Brown constants for the rock mass. As for the
intact rock properties, fracturing and shearing do not weaken the intact rocks so that
the mechanical parameters (σc and mi) should be unchanged. Cai et al. (2007) con-
sidered that constantsmr, sr, and ar can be determined from a residualGSIr value using
the same equations for peak strength parameters. Because the rock masses are in a
damaged, residual state, D = 0 is used for the residual strength parameter calculation.
According to the logic of the original GSI system, the strength of a rock mass is
controlled by its block size and joint surface condition. The same concept is valid for
fractured rock masses at their residual strength state. In other words, the residualGSIr
is a function of residual joint surface condition factor Jr

c and residual block volume V r
b

(Cai et al., 2007).

3.2.2 Residual GSI value and strength parameters

Once the residual block volume and joint surface condition factor are obtained, one can
refer to the GSI chart or use the following equation to obtain the residual GSI value

GSIrðVr
b; J

r
cÞ ¼

26:5þ 8:79 ln Jrc þ 0:9 lnVr
b

1þ 0:0151 ln Jrc � 0:0253 lnVr
b

ð10Þ

where Jr
c is a dimensionless factor, and V r

b is in cm3.
If a rock experiences post-peak deformation with sufficient straining, the rock in the

broken zone is fractured and consequently turned into a “poor” and eventually “very
poor” rock. For the residual block volume, it is observed that the post-peak block
volumes are small because the rock mass has experienced tensile and shear fracturing
with sufficient straining. After the peak load and with sufficient straining, the rock mass
becomes less interlocked, and is heavily broken with a mixture of angular and partly-
rounded rock pieces. Detailed examination of the rock mass damage state before and
after the in-situ block shear tests at some underground cavern sites revealed that in areas
that were not covered by concrete, the failed rockmass blocks were 1 to 5 cm in size. The
rock mass was disintegrated along a shear zone in these tests. Hence, the residual block
volumes can be considered independent of the original (peak) block volumes for most
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strain-softening rock masses. The fractured residual rock mass will have more or less the
same residual block volume in the shear band for intact rocks, moderately jointed and
highly jointed rock masses. As an estimate, Cai et al. (2007) recommended that if the
peak block volume Vb is greater than 10 cm3, then, the residual block volume V r

b in the
disintegrated category can be taken to be 10 cm3. If Vb is smaller than 10 cm3, then, no
reduction to the residual block volume is recommended, i.e., V r

b ¼ Vb.
The major factor that alters the joint surface condition in the post-peak region is the

reduction of joint surface roughness. Using the concept of ultimate mobilized joint
roughness suggested by Barton et al. (1985), the large-scale waviness and the small-
scale smoothness of joints can be calculated by reducing its peak value by half to
calculate the residual GSI value. The residual joint surface condition factor Jr

c can be
calculated from (Cai et al., 2007)

Jrc ¼
JrW ⋅ JrS
JrA

ð11Þ

where Jr
W , Jr

S, and Jr
A are residual values for large-scale waviness, small-scale smooth-

ness, and joint alteration factor, respectively. The residual values are obtained based on
the corresponding peak values assessed from field mapping. The reduction of Jr

W and
Jr
S, from their peak values JW and JS, are based on the concept of mobilized

joint roughness, and the equations are given as

If
JW
2

< 1; JrW ¼ 1; Else JrW ¼ JW
2

ð12Þ

If
JS
2
< 0:75; JrS ¼ 0:75; Else JrS ¼

JS
2

ð13Þ

In a short period, joint alteration is unlikely to occur so that the joint alteration factor
JA can be considered as unchanged in most circumstances.

3.3 Discussion on the use of the generalized Hoek-Brown failure
criterion

The generalized Hoek-Brown failure criterion is only applicable to intact rock or to
heavily jointed rock masses that can be roughly considered as homogenous and
isotropic. The criterion should not be applied to highly schistose rocks such as slates
or to rockmasses in which the properties are controlled by a single set of discontinuities
such as bedding planes (Hoek et al., 1995). The criterion works well for rock masses at
low confinement conditions and it should not be used for defining rockmass strength at
very high confinement conditions.

Because of the inherent uncertainty of the intact rock properties and jointing in the
rock mass, any estimate of rock mass strength parameters from using the Hoek-Brown
failure criterion should not be considered as final. The approach is particularly useful in
the preliminary design stage where only limited ranges of site characterization and test
data are available. As the project progresses, field monitoring should be conducted to
verify previously obtained approximate estimates of rock mass strength parameters.
This is a process important for proper use of not only the Hoek-Brown failure criterion
but also other failure criteria.

Practical estimate of rock mass strength and deformation parameters for engineering design 517



Pelli et al. (1991) found that the parameters obtained from Equations 2 and 3 did
not predict the observed failure locations and extent near a tunnel in a cemented sand
or siltstone. They found that lower mb and higher s values were required to match
predictions with observations. Further analyses of underground excavations in brittle
rocks eventually lead to the development of brittle Hoek-Brown parameters (Martin
et al., 1999; Kaiser et al., 2000; Diederichs, 2007) for massive tomoderately fractured
rock masses with tight interlock that fail by spalling or slabbing rather than by shear
failure. Accordingly, Equations 2 and 3 are clearly not applicable for GSI > 75 in
massive to moderately or discontinuously jointed hard rocks. The zone of anticipated
brittle failure conditions is highlighted in Figure 3 by the hatched near the upper left
corner.

The Hoek–Brown failure criterion was initially derived based on triaxial test data of
intact rocks. Many data in the high confinement range were included and hence the
criterion assumed a shear failure mechanism by default. The generalization to jointed
rock mass also inherited this assumption of shear failure mechanism. Hence, care must
be given when using the criterion outside the range of applicability of the assumptions
and data on which it was based, such as the modeling of brittle failure of hard rocks in
low confinement conditions. Brittle failure of hard massive rocks is governed by a
process of gradual cohesion loss and friction mobilization (Martin, 1997; Kaiser et al.,
2000; Hajiabdolmajid et al., 2002). The fundamental mechanism of this is tensile crack
(Griffith crack) initiation, propagation, and coalescence in low to zero confinement
environments. Using conventional strength parameters derived from Hoek–Brown
criterion to model brittle rock failure was found less useful and less successful because
the failure zones around excavations could not be predicted satisfactorily. Specific
brittle failure parameters, including both peak and residual ones, are required to
model brittle failure of massive rocks adequately (Cai & Kaiser, 2014).

The generalizedHoek–Brown criterionmay not be applied toweak rocks with, for σc
< 15 MPa, because it has been found that, at these low strengths, the index, a, can be
greater than the maximum value of about 0.65 given by Equation 4 and can approach
one (Brown, 2008).

4 ESTIMATION DEFORMATION MODULUS

The deformation modulus of the jointed rock mass is required when carrying out
numerical analysis in design. Traditional method to determine the deformation
modulus is through in-situ plate loading tests or using back analysis based on
measured displacements of excavations. As discussed in Section 2.2, there are
many empirical equations to correlate rock mass deformation modulus with
some rock mass classification indexes. One important thing to remember is the
applicable boundary conditions for each individual equation (as show in Table 1
of the “Note” column). When the boundary is crossed, meaningless deformation
modulus can be obtained.

Blasting tends to loosen rock mass and reduce its deformation modulus. Hence,
including the factorD in the empirical equation allows us to consider the effects of blast
damage and stress relaxation. The deformation modulus is related to the GSI value as
(Hoek et al., 2002)
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E ¼ 1�D
2

� � ffiffiffiffiffiffiffiffi
σc
100

r
10

GSI�10
40ð Þ; ðGPaÞ for σc < 100MPa ð14Þ

The inclusion of σc in Equation 14 shows indirectly the influence of the modulus of
the intact rock (Ei) on the deformation modulus of the rock mass, because there is a
good correlation between Ei and σc (Deere, 1968). A more recent update on the
deformation of modulus of jointed rock mass is (Hoek & Diederichs, 2006)

E ¼ Ei
1�D=2

1þ eðð75þ25D�GSIÞ=11Þ

� �
ð15Þ

Equation 15 considers the influence of intact rock modulus directly and avoids
unrealistically high values of rock mass deformation moduli when the GSI value is
high. In general, the rock mass deformation moduli can be highly anisotropic, and are
also confining stress dependent (Barton, 2002; Cai & Kaiser, 2002). Those features
need to be properly addressed in order to correctly predict deformation distribution in
the rock mass around excavations. Unfortunately, there exist no simple equations that
relate the deformation modulus to confining stress.

5 DILATION ANGLE

When a rock or a rock mass fails, its volume increases and this phenomenon is known
as dilation. The excavation-induced rock failure and displacement near an under-
ground opening boundary is closely associated with rock mass dilation. A better
understanding of rock mass dilation around the excavation helps us to predict or
anticipate displacements and failure extent and shape, and subsequently assist the
design of proper ground support systems.

In addition to rock mass strength (both peak and residual) and deformation mod-
ulus, most numerical tools (e.g., Phase2, FLAC) require another important input
parameter – dilation angle. The dilation angle is not only a suitable parameter for the
description of soil dilation, but also appears to be useful for rocks to describe rock
dilation.

However, in rock engineering, when the dilation angle is taken into consideration,
especially for numerical modeling studies, the approach employed by most researchers
is often simplistic; it is generally assumed as either one of the two constants – zero in a
non-associated flow rule and the same as the friction angle in an associated flow rule. In
the most popular failure criteria, such as linear Mohr-Coulomb failure criterion and
non-linear Hoek-Brown failure criterion, the rock dilation is assumed to remain as a
constant when the rock mass is deformed.

Hoek and Brown (1997), based on wide engineering experience, suggest the use of
constant dilation angle values that are dependent on rock mass quality. For very good
rock, they recommended that the dilation angle is about 1/4 of the friction angle; for the
average quality rock, the value suggested is 1/8, and poor rock seems to have a
negligible dilation angle.

In reality, a constant dilation angle is an approximation that is clearly not physically
sound. This constant dilation assumption is made largely because little is known about
how the dilation of a rock changes past peak load. Some researchers (Detournay, 1986;
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Alejano & Alonso, 2005) illustrate that it may be unrealistic and misleading to use a
constant dilation angle. They also point out that dilation angle should be a function of
plastic parameters and confining stress.

A few dilation models have been proposed for rocks, considering the influence of
plastic strain (Detournay, 1986) and confining stress (Alejano & Alonso, 2005). A
more recent empirical mobilized dilation angle model considers the influence of both
confining stress and plastic shear strain (Cai & Zhao, 2010; Zhao & Cai, 2010a,b).
The empirical dilation angle model was derived based on published data acquired
frommodified triaxial compression tests with volumetric strain measurement. Based
on the model response and in combination with the grain size description and the
uniaxial compressive strength of rocks, the model parameters for four rock types
(coarse-grained hard rock, medium-grained hard rock, fine-medium-grained soft
rock, and fine-grained soft rock) are suggested. New test data (Arzua & Alejano,
2013) support the validity of the mobilized dilation angle model.

For jointed rock masses, it is suggested to estimate the peak dilation angle from
the peak friction angle of rock mass determined by the GSI system (Cai & Zhao,
2010; Zhao & Cai, 2010b). It is also assumed that the dilation behavior of jointed
rock masses follow similar trend as observed for in tact rocks so that the empirical
relations established for intact rocks can be applied to jointed rock masses. In this
fashion, plastic strain and confinement dependent dilation angles can be defined for
jointed rock masses. One example is presented in Figure 4. The dilation angle is zero
when there is no plastic deformation; it increases rapidly and reaches a peak value at
a small plastic deformation when the confinement is low. When confining stress
increases, a general trend is that the peak dilation angles decrease and the locations
of peak dilation angle gradually shift toward right with more plastic shear straining.
Confinement drastically reduces rock dilation. For example, a 5 MPa confinement
can reduce the peak dilation angle of the intact rock from 53° at zero confinement to
about 12°. As plastic deformation continues, the dilation angles decrease gradually
until an asymptotic low value is reached. This makes sense as dilation rate will
reduce as the rocks deform. At zero confinement, the peak dilation angle of the intact
rock reduces from 53° to 38° for a jointed sandstone with GSI = 50.
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Figure 4 (a) Dilation angle variation for intact rock (medium-grained soft sandstone); (b) Dilation angle
variation for a jointed sandstone with GSI = 50.
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The mobilized dilation angle model can be easily implemented into some numer-
ical tools such as FLAC and FLAC3D. Displacement distributions obtained from
using the dilation angle model are more reasonable, when compared with the
general trend measured underground. The generation of large deformations near
the excavation boundary is attributed to the existence of low to zero confinements.
The displacement decreases rapidly as confinement increases. Rock dilation beha-
vior near the excavation boundary such as this can only be properly simulated when
a dilation angle model, which considers the influence of both plastic shear strain and
confinement, is used.

6 APPLICATION EXAMPLE

One of the long-standing challenges in analyzing rock mass strength and deformation
data is attributed to the fact that these values are quite variable. The intact rock
strength, joint spacing, and joint surface condition vary even within the same rock
type zone. In rock engineering practice, geological and geotechnical data, because of
the huge cost involved in their acquisition, are often incomplete and hence contain
uncertainties. Uncertainties are inherent and unavoidable in the rock mass classifica-
tion/characterization process. Common sources of uncertainties in rock engineering
include the spatial and temporal variability of the rock mass properties; random and
systematic errors in data mapping, logging, testing, and monitoring; analytical and
numericalmodel simplification; human omissions and errors. In engineering design, the
appropriate approach is to cope with the uncertainties, to assess and manage the risk
associated with them, i.e., to incorporate uncertainties into the design and decision-
making process.

One advantage of the quantitative GSI system approach is that the variability of
inherent parameters can be explicitly considered in the calculation process (Cai &
Kaiser, 2006a). The closed-form solution to obtain GSI values from dependent vari-
ables such as joint spacing, orientation, persistence, surface condition factor, etc.,
makes it suitable for probabilistic analysis using the Monte Carlo method. The varia-
bility of strength and deformation parameters can be implemented in the design tools to
calculate the variability of stress and deformations as well as anticipated loads in
rockbolts and anchors.

To apply the GSI system for rock mass characterization, two groups of parameters
need to be determined. One is the intact rock parameters, which includes σc and mi.
Another is the joint parameters, which is further divided into the joint geometry and
strength subgroups. All these parameters can be considered as random variables. In
general, a normal distributionwith themean and the coefficient of variation (COV) can
be used to describe the probability distribution of σc and mi.

Priest and Hudson (1976) stated that statistically, joint spacing follows a negative
exponential distribution. However, some researchers consider that the joint spacing
distribution is logarithmic. If the interaction of jointing corresponds to the multi-
plicatory process, lognormal distribution may result (Dershowitz & Einstein, 1988).
The type of distribution seems to be affected by the minimum bin size used in the
histogram analysis of joint spacing. In the example shown here, lognormal distribution
is applied for joint spacing.
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Joint orientation affects both the block shape and size, and it is usually defined by
joint dip and dip direction. Joint orientations are stochastic but quite often cluster in
preferred orientations to form joint sets. The joint orientation variability is thus
governed by the degree of clustering within each set. The Fisher distribution is often
used to describe the joint orientation distribution.

Joint sizes and trace lengths vary even a wide range and are difficult to be determined
accurately. Several distributions, such as exponential, lognormal, hyperbolic, Gamma-
1 distributions, have been proposed to describe the joint trace lengths. The variability in
joint size includes the inherent natural randomness of this property and our limited
ability to measure or model this property, rendering it one of the most difficult para-
meters in joint system modeling. Priest and Hudson (1981) used the negative exponen-
tial distribution to describe the joint lengths. Depending on the problem scale and bin
size used, both negative exponential distribution and lognormal distribution are appro-
priate to describe the joint length distribution.

The joint surface condition factor is a measure of the joint strength against shearing.
In practice, when the small-scale joint smoothness is, on average, “rough,” there are
possibilities that some portions of the joint are “very rough” while other portions are
“slightly rough.” This uncertainty can result from both spatial variability of the joint
surface condition and human discrepancy in field mapping. A decision therefore has to
be made about the rating range and the distribution type. For simplicity, the normal
distribution can be used to represent the joint roughness and alteration variability.
When the mean values are near the extreme values in the rating, a truncated normal
distribution can be used.

In the following illustration example, we consider the rock mass classification for a
rock mass at a large-scale hydropower cavern site in Japan and assume that the joint
spacing follows a lognormal distribution. Details about the cavern construction
project can be found in Koyama et al. (1997). Three orthogonal joint sets exist and
the average joint spacing for the three joint sets is 10, 25, and 50 cm and the standard
deviations are 3, 7.5, and 15 cm, respectively. Using the Monte Carlo simulation
technique available in @RISK, the probability distribution function (PDF) of the
block volume for the rock mass is calculated using 5000 iterations and the result is
presented in Figure 5(a). It is seen that the block volume follows a lognormal
distribution.

It was determined from field mapping that the average values for large-scale joint
waviness Jw, small-scale smoothness Js, and joint alteration JA are 2, 2, and 1, respec-
tively, and the coefficients of variation for all three factors were assumed to be 8%.
Truncated normal distributions are assumed for Jw, Js, and JA. The truncation is based
on the minimum andmaximum ratings for each parameter. For example, Jw should not
be less than 1 and not greater than 3. Jw is thus described by a normal distribution with
amean of 2 and standard deviation of 0.16, truncated at 1 and 3. Jc thus calculated also
follows a normal distribution as shown in Figure 5(b).

Equation 9 is used to calculate the GSI distribution based on Vb and Jc, again using
theMonte Carlo method. AlthoughVb follows a lognormal distribution, the calculated
GSI values follow a normal distribution, as shown in Figure 12(c). The averageGSI is
59.9 with a standard deviation of 2.1. The probability density distributions for the
Hoek-Brown strength parameters mb and s are presented in Figure 12(d & e), and it is
found that the mb values follow a normal distribution. Although the s values are best
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described by a lognormal distribution, it can also be approximated by a normal
distribution as shown in the figure. It is seen from the results that the GSI value and
hence the mechanical properties of the jointed rock masses exhibit variability. These
properties are not just the average values, but have a distribution about the means, even
under ideal conditions. The design will make more sense if these property distributions
are properly considered.

Based on the variability information about the rockmass strength and deformability,
stability analysis can be performed using the point estimate method (PEM)
(Rosenblueth, 1981) in combination with a FEM analysis program, which considers
the possible combinations of strength and deformation parameters as well as in-situ
stress. PEM is an alternative to Monte Carlo simulation with models containing a
limited number of uncertain inputs. In this method, the model is evaluated at a discrete
set of points in the uncertain parameter space, with the mean and variance of model
predictions computed using a weighted average of these functional evaluations.

As the output of the analysis, the probability distributions of yielding or loosening
zones and total displacements in the roof and on the sidewalls of the cavern can be
obtained. As an example, the probability density function of the yielding zone
distribution around the cavern is presented in Figure 6, with the consideration of
material variability alone. 15 m long pre-stressed (PS) anchors had been selected for
cavern support. It is seen that the probability that the 15 m anchor may be shorter
than the yielding zone depth on the right sidewall is 0.0077 %, and the probability
that the anchor’s 3 m anchorage length may fall in the yielding zone is 1.3 %. It is
obvious that cost saving in terms of reducing the support quantities is achievable if a
certain level of risk is acceptable. The simulation results allow us to better understand
how uncertainty arises and how the rock support system design decision may be
affected by it.
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7 CONCLUSION

Different from other rock mass classification systems, the GSI system is directly linked
to engineering parameters such as Mohr-Coulomb or Hoek-Brown strength para-
meters or rock mass deformation modulus. The original GSI system, which is applied
mainly for the estimation of the peak strength, is based on a descriptive approach,
rendering the system somewhat subjective and difficult to use for inexperienced per-
sonnel. To assist the use of the GSI system, a supplementary quantified approach for the
GSI system, which incorporates quantitative measures of block volume and joint sur-
face condition factor, can be used. The block volume can be calculated, in most cases,
from joint spacings of three dominant joint sets. The joint condition factor is obtained
by rating joint roughness depending on the large-scale waviness, small-scale smooth-
ness of joints, and joint alteration depending on the weathering and infillings in joints.

The concept of residual block volume V r
b and residual joint surface condition factor Jr

c

was used to extend the GSI system for the estimation of rock mass’s residual strength.
The residual strength parameters can be calculated using the same formof the generalized
Hoek-Brown strength criterion by assuming that the intact rock properties such as σc and
mi remain unchanged as the rock mass changes from its peak state to its residual state.

The quantitative approach for peak and residual strength estimation extends the GSI
system and adds quantitative means to determine the complete set of rock mass
strength properties needed for design. In addition, the approach is built on the linkage
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between descriptive geological terms and measurable field parameters such as joint
spacing and joint roughness, which are random variables. Because of its quantitative
nature, it allows the evaluation of both the means and variances of strength and
deformation parameters, using the Monte Carlo or point estimate method.

When using the generalized Hoek-Brown strength criterion in design, we should pay
not only more attention to the determination of GSI values more objectively, but also
sufficient attentions to the determination of other parameters such as σc, mi, D, and
dilation angle. It is suggested that at least simple uniaxial compression tests should be
conducted to obtain σc andmi values more accurately. Test specimens should be strain-
gauged to define the crack initiation stress level σci and then the mi value can be
estimated using mi = 8 σc/σci.

Although this chapter provides a contemporary method for obtaining rock mass
mechanical parameters needed in engineering design, its successful application relies
heavily on the professional judgment, as is typically the case in rockmechanics and rock
engineering.
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materials, interfaces and joints using
the disturbed state concept

Chandrakant S. Desai
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Abstract: The unified disturbed concept (DSC) for constitutive modeling of geologic
materials and interfaces (joints) is presented with details including the relative intact
(RI) state, fully adjusted (FA) state and disturbance. Attention is given to model
parameters based on triaxial, multiaxial and interface tests, and validations at speci-
men level. The DSC is implemented in 2- and 3-D finite element procedures which are
used to predict behavior of wide range problems including comparisons with field and
laboratory simulated tests. The DSC is considered to be a unique and versatile proce-
dure for modeling behavior of engineering materials and interfaces.

1 INTRODUCTION

Behavior of materials such as soils, rocks, concrete, interfaces between structures and
soils, and joints in rocks, plays a vital role for reliable solutions of geomechanical
problems. Constitutive models based on appropriate bases of mechanics and testing
define the mechanical response of solids, interfaces and joints. A great number of
constitutive models, from simple to the advanced, have been proposed. Most of them
account for specific characteristics of the material behavior. However, a deforming
material may experience simultaneously many characteristics such as elastic, plastic
and creep strains, loading (stress) paths, volume change, microcracking leading to
failure, strain softening or degradation, liquefaction and healing or strengthening.
Hence, there is a need for unified models that account for these characteristics. This
Chapter presents a unique approach called the Disturbed State Concept (DSC) that
includes a number of available constitutive models for solids and interfaces as special
cases, and provides a unified model that allows the above factors simultaneously. The
DSC includes models for the behavior of the continuum part of material; the hierarch-
ical single surface (HISS) plasticitymodel has been often used for the continuum, hence,
the model covered here is called DSC/HISS. Description of various constative models
and the DSC/HISS are presented in various publications, e.g. Desai (2001).

Computer methods (e.g. Desai & Abel, 1972; Desai & Zaman, 2014) with appro-
priate constitutive models for behavior of geologic materials and interfaces have
opened a new era for accurate and economic analysis and design for problems in
geomechanics and geotechnical engineering. Such procedures account for many sig-
nificant factors such as (1) Initial or in situ stress or strain; elastic, irreversible (plastic)
and creep deformations; volume change under shear and its initiation during loading;



isotropic and anisotropic hardening; stress (load) path dependence; inherent and
induced discontinuities; microstructural modifications leading to fracture and instabil-
ities like failure and liquefaction; degradation or softening; static, repetitive and cyclic
(dynamic) loading; forces: loads, temperature, moisture (fluid) and chemical effects;
anisotropy, nonhomogeneities, and strengthening or healing (Desai et al., 1998).

A number of general plasticity models have been proposed, e.g. Mroz, et al., (1978),
Pestana&Whittle (1999), Pastor et al., (2000) and Elagamal et al., (2002). These models
can account for various factors beyond those in previously available (plasticity) models.
They are based on continuum plasticity, and introduce modifications to simulate beha-
vioral features such as degradation (softening). However, a deforming material can
involve discontinuities resulting from microstructural modifications. The continuum
plasticity models may not account for such discontinuous deformations. On the other
hand, theDSCmodel accounts for the changingmicrostructure resulting into degradation
or strengthening. It also allows intrinsically for the definition of instability or liquefaction
based on the internal response (disturbance) of a deforming material. Furthermore,
introduction of disturbance with continuum models (elasticity or plasticity) for RI beha-
vior, may not involve any more effort than the modification of continuum plasticity
models. Models such as MIT-S1 (Pestana & Whittle, 1999; Elgamal, 2002) based on
the bounding surface plasticity may also involve a greater number of parameters com-
pared to those in the DSC model for comparable capabilities (Desai, 2001).

Now, a description of the DSC is followed by typical geomechanical problems solved
by using computer (finite element) method in which the DSC has been implemented.

2 THE DISTURBED STATE CONCEPT

Because of length limitations, comprehensive review of publications on constitutive
models is not feasible. Hence, wherever appropriate, models such as based on elasticity,
plasticity, viscoplasticity, damage, fracture and micromechanics have been referenced.
Reviews of such constitutive models are given in (Desai, 2001, 2015a, 2015b;
Desai et al., 2011); the middle two references present details of DSC/HISS for a number
of disciplines in engineering.

The ideaof theDSC is considered tobe relatively simple, and it canbe easily implemented
in computer procedures. It is believed that the DSC can provide a realistic and unified
approach for constitutivemodeling for awide rangeofmaterials and interfaces/joints. It is a
general approach that can accommodate most of the forgoing factors including disconti-
nuities that influence thematerial behavior, and provide a hierarchical framework that can
include many of the available models as special cases. One of the attributes of the DSC is
that its mathematical framework can be specialized for interfaces and joints, thereby
providing consistency in using the samemodel for both solids and interfaces (Desai, 2001).

In the DSC, a deforming material element is assumed to be composed of two or more
components. Usually, for a dry solid, two components are assumed, Figure 1, a con-
tinuum part called the relative intact (RI) which is defined by using a theory from the
continuum mechanics, and the disturbed part, called the fully adjusted (FA), which is
defined based on the approximation of the ultimate asymptotic state of the material.

The DSC has been published in a number of papers and books, only a few are cited
here (Desai, 2001, 2015a, 2015b); these works include application of the DSC by the
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author and coworkers, and other researchers for materials such as soils, structured soil,
masonry, concrete, asphalt concrete, fully and partially saturated materials, rock and
rockfills, pavement materials, metals, alloys, ceramics, polymers and silicon, and
interfaces and joints. It has been used for applications beyond material behavior, e.g.,
developing expressions for earth pressures (Zhu et al., 2009), computation of pile
capacity (in Desai, 2013), and free surface fluid flow [Desai, 1976; Desai & Li, 1983).

Theorigin of theDSC constitutivemodeling can be traced to the papers byDesai (1974,
1976) on the subject of behavior of overconsolidated soils and free surface flow in porous
materials, respectively. The DSC is based on rather a simple idea that the behavior of a
deforming material can be expressed in terms of the behaviors of its components. Thus,
the behavior of a dry material can be defined in terms of the continuum (called relative
intact-RI, i) andmicrostructurally organized, e.g.microcracked partwhich approaches, in
the limit, to the fully adjusted (FA, c) state; the latter can be essentially considered as

(a) RI and FA states during deformation 

Relative intact zones Fully adjusted zones

“Failure”Intermediate

RI

Transition Cluster (FA)

Initial

RI
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(b) Symbolic representation of DSC
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Figure 1 Schematics of DSC.
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collection of particles in failure or material in an invariant state like constant volume or
density. The behavior of the FA part is unattainable (or unmanifested) in practice because
it cannot be measured; therefore, a state, somewhere near the residual or ultimate, Figure
1, can be chosen as approximate FA state. The space between the RI and FA denoted by
(i) and (c), respectively, can be called the domain of deformation, whose observed or
average behavior ( can be called manifested) occurs between the RI and FA states, Figures
1 and 2. The deviation of the observed state from the RI (or FA) states is called
disturbance, and is denoted byD. It represents the difference between theRI and observed
behavior or difference between the observed and FAbehavior, which can be considered as
a state parameter.

By defining the observed material behavior in terms of RI (continuum) and fully
adjusted parts, the DSC provides for the coupling between two parts of the material
behavior rather than on the behavior of particle(s) at the micro level. Thus, the
emphasis is on the modeling of the collective behavior of interacting mechanism in
clusters ofRI and FA states, rather than on the particle level processes, thereby yielding
a holistic model. These comments are similar to those in the self-organized criticality
concept (Bak & Tang, 1989), which is used to simulate catastrophic events such as
avalanches and earthquakes. In this context, the DSC assumes that as the loading
(deformation) progresses, the material in the continuum state tends continuously into
the FA state through transformations in the microstructure of the material. The defini-
tion of the DSC is not based on the behavior at the microlevel (say, as in micromecha-
nics); rather it is based on the definition of the behavior of thematerial clusters in the RI
and FA states defined from the measured behavior in those states, Figure 2.

Behaviors of the RI and FA can be defined from laboratory or field tests, and the
observed behavior can be expressed in terms of the behaviors of the RI and FA parts.
Assume that the material is continuous in the beginning and remains so during defor-
mation; such a behavior is called that of the RI State, which contains no disturbance. As
stated before, the fully adjusted behavior is related to the strength of the material in the
FA state. Some of the ways to define RI and FA responses are given below. Figure 2(a)
shows the continuum response as linear elastic, which can be considered as the RI state.
However, the observed response can be nonlinear (elastic), due to factors such as
existing cracks and cracking. The FA response can be assumed to have a small finite
strength. The disturbance can be defined as the difference between linear elastic and
nonlinear elastic responses. Figure 2b shows a strain softening response. Here the RI
response can be assumed to be nonlinear elasticplastic and the FA response based on the
critical state concept. Figure 2c shows cyclic response. Here the RI response can be
adopted as the extended response of the first cycle. The FA response can be assumed to
be asymptotic as the response become steady after a number of cycles.

2.1 Relative Intact (RI) state

Figures 3(a) to (d) show schematics of RI, observed and FA behaviors in terms of
various measured quantities: stress vs. strain, volume or void ratio response, nondes-
tructive behavior (velocity), and effective stress (or pore water pressure). Figure 4
shows schematic for disturbance vs. accumulated plastic strain ξD or number of cycles
or time. In some cases, the RI behavior can be assumed to be linear elastic defined by the
initial slope. However, if the material behavior is nonlinear and involves effect of other
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factors such as coupled volume change behavior, e.g. volumetric change under shear
loading, such an assumption will not be realistic. Hence, very often, conventional or
continuous yield or HISS plasticity is adopted as the RI response.

2.2 Fully Adjusted (FA) state

As a simple approach, it can be assumed that the material in the FA state has no
strength, just like in the classical damage model (Kachanov, 1986); this assumption
ignores interaction between RI and FA states, may lead to localmodels, and may cause
computational difficulties. The second assumption is to consider that thematerial in the
FA state can carry hydrostatic stress like a constrained liquid, in which case the bulk
modulus (K) can be used to define the FA state. The FAmaterial can be considered as of
liquid-solid like in the critical state (Roscoe et al., 1958; Desai, 2001), when after
continuous yield, the material approaches a state at which there is no change in volume
or density or void ratio under increasing shear stress. The equations for the strength of
the material in the critical state (FA) are given below:ffiffiffiffiffiffiffi

Jc2D
p ¼ m Jc1 ð1aÞ
ec ¼ eeo � λln Jc1= 3pa

� � � ð1bÞ
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Figure 2 Schematics of RI (i), FA(c) behavior, and disturbance (D).
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where c denotes at the critical state, J2D is the second invariant of the deviatoric stress
tensor, m is the slope of the critical state line, Figure 5, J1 is the first invariant of the
stress tensor, e is the void ratio, eo is the initial void ratio, λ is the slope of the
consolidation line, Figure 5, and pa is the atmospheric pressure constant.

For fluid saturated materials with drainage with time, the RI behavior can be
assumed to be that at time near zero, and the FA response can be assumed like that
of a constrained liquid. A description of the DSC for partially saturated materials is
given in (Desai, 2001).
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2.3 Disturbance

As stated before, disturbance defines the coupling between the RI and FA states, and is
represented by the deviation (disturbance) of the observed behavior from RI or FA
state. It can be determined based on the stress-strain behavior, Figure 3(a). It can be
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Figure 4 Disturbance vs. ξD (or number of cycles ot time).
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determined from other tests like void ratio vs. strain, Figure 3(b), nondestructive
behavior such a for P- and S- waves velocities, Figure 3(c), fluid (pore) water pressure
or effective stress ðσÞ vs. time or number of cycles, Figure 3(d). Figure 4 shows the
schematic of the disturbance (D) as function of ξD or number of cycles (N) or time (t);
here Dc, Df and Du denote initiation of fracture, failure and ultimate disturbance,
respectively.

The disturbance can defined in two ways, (1) frommeasurements, Figure 3, as stated
before, and (2) by mathematical expression in terms of internal variables such as (ξD):

From measurements, for example:

Stress-Strain behavior: Dσ ¼ σi � σa

σi � σc
ð2aÞ

Nondestructive velocity: Dv ¼ Vi � Va

Vi � Vc
ð2bÞ

where σa is the measured stress and Va is the measured nondestructive velocity, and i
and c represent RI and FA responses.

2.3.1 Mathematical expression for D

Disturbance, D, can be expressed using the (Weibull) function in terms of internal
variable such as accumulated (deviatoric) plastic strains ( ξD ) or plastic work:

D ¼ Du ½1� exp �AξZD
� � ð3Þ

where A, Z and Du are the parameters. The value of Du is obtained from the ultimate
FA state, Figure 2. Equations 2 are used to find the disturbance, Figure 3, at various
points on the response curves, which are substituted in Equation 3 to find the para-
meters. Note that the expression in Equation 3 is similar to that used in various areas
such as biology to simulate birth to death, or growth and decay, and in engineering to
define damage in classical damage mechanics, and disturbance in the DSC. However,
the concept of disturbance is much different from damage; the former defines deviation
of observed response from the RI (or FA) state, in the material treated as a mixture of
interacting components, while the latter represents physical damage or cracks.

2.4 DSC equations

Once the RI and FA states and disturbance are defined, the incremental DSC equations
based on equilibrium of a material element can be derived as (Desai, 2001):

dσaij ¼ ð1�DÞdσiij þDdσcij þ dDðσcij � σiijÞ
or

dσaij ¼ ð1�DÞCi
ijkldε

i
kl þDCc

ijkldε
c
kl þ dDðσcij � σiijÞ

ð4Þ

where σij and εij denote stress and strain tensors, respectively, Cijkl is the constitutive
tensor, and dD is the increment or rate of D.
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Equation 4 represents DSC equation fromwhich conventional continuum (elasticity,
plasticity, creep, etc.) models can be derived as special cases by setting D=0, as

dσaij ¼ Ci
ijkl dε

i
kl ð5Þ

in which the observed and RI behavior are the same, and the constitutive tensor can be
based on the appropriate continuum model. If D ≠0, Equation 4 accounts for micro-
structural modifications in the material leading to fracture, and instabilities like failure
and liquefaction (in saturatedmaterials). The latter can be defined corresponding to the
critical disturbance, Dc, Fig. 4, obtained from measured response of the material.
A major advantage of the DSC approach is that it is hierarchical and unified. Hence,

one can extract available models as special cases fromEquation 4.When the RI behavior
is modeled by using the HISS plasticity, various conventional and continuous yield
plasticity models can also be derived as specialization of the HISS model (Desai, 2001).

2.5 Hierarchical Single Surface (HISS) plasticity

The need for a unified and general plasticity model that can account for the factors
mentioned before was the driving force for the development of the hierarchical single
surface (HISS) plasticity model [Desai, 1980, 2001; Desai et al., 1986a); it is based on
the continuum assumption, hence, it cannot account for discontinuities.

The yield surface, F, in HISS associative plasticity is expressed as (Figure 6a):

F ¼ J2D � ð�αJn1 þ γJ21Þð1� βSrÞ�0:5 ¼ 0 ð6Þ
where J2D ¼ J2D=p

2
a is the non-dimensional second invariant of the deviatoric stress

tensor, J1 ¼ ðJ1 þ 3RÞ=paÞ is the non-dimensional first invariant of the total stress
tensor, R is the term related to the cohesive (or tensile) strength, c, Figure 6a,

Sr ¼
ffiffiffiffi
27

p
2

J3D
J2D1:5, n is the parameter related to the transition from compressive to dilative

volume change, Figure 5, γ and β are the parameters associated with the ultimate
surface, Figure 6(a), and α is the hardening or growth function; in a simple form, it is
given by

α ¼ a1
ξη1

ð7Þ

where a1 and η1 are the hardening parameters, and ξ is the accumulated or trajectory of
plastic strains, given by

ξ ¼ ξv þ ξD ð8Þ
Here the accumulated volumetric plastic strain is given by

ξv ¼
1ffiffiffi
3

p jεpiij ð9aÞ

and the accumulated deviatoric plastic strain is given by

ξD ¼
ð

Ep
ijE

p
ij

� �1=2
ð9bÞ
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where εpii is the plastic volumetric strain, and Ep
ij is the plastic shear strain tensor. In the

HISS model, the yield surface grows continuously and approaches the ultimate yield,
Figure 6; it can include, as special cases, other conventional and continuous yield
plasticity models (Desai, 2001).

For compression intensive materials (e.g. geologic, concrete, powders) the model
and the yield surface, Figure 6, are relevant for compressive yield only in the positiveffiffiffiffiffiffiffi

J2D
p � J1 space, in which c will be the compressive strength. Similarly, for tension
intensivematerials (e.g. metals and alloys), the model and yield surfaces are relevant for
tensile yield only in the positive

ffiffiffiffiffiffiffi
J2D

p � J1 space, in which c would denote tensile
strength. In both cases, the extension of yield surfaces in the negative J1 - axis is not
relevant; they are usually shown for convenience of plotting. Sometimes, the extended
yield surfaces in the negative J1 – axis have been used with an ad hoc model for
materials experiencing tensile conditions, which may not be realistic. As discussed
below (HISS-CT model), for example, when a material experiences tensile stress (dur-
ing deformation), it would be realistic to use the model (e.g. HISS) defined on the basis
of tensile tests, and vice versa.

Ultimate Yield Surface (α= 0)

3R

–
C

Phase Change Line

HISS Yield Surface(s)

J1

ÖJ2D

Öγ
Öγt (Critical state line)

ÖJ2D vs. J1 space(a)

s1

s2 s3

s1– s2– s3 space(b)

b= 0.3
b = 0.6
b = 0.77
b = 0.9

b = 0.0

(b) Octahedral plane; (b<0.756 for convexity)

Figure 6 HISS yield surfaces in two stress spaces.
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2.6 HISS for Compression and Tension (HISS-CT)

For some problems the material can be subjected to both compressive and tensile
stress conditions. To develop and use the samemodel for both conditions is difficult,
and perhaps not possible. However, the same model like HISS can be formulated for
both conditions by obtaining parameters from separate compression and tension
(extension) tests. Figure 7 shows the surfaces for compressive and tensile yields
obtained from compression and tensile tests (Desai, 2007, 2009; Akhaveissy &
Desai, 2013).

The HISS plasticity model allows for continuous yielding, volume change (dilation)
before the peak, stress path dependent strength, effect of both volumetric and devia-
toric strains on the yield behavior, and it does not contain any discontinuities in the
yield surface. The HISS surface, Equation 6, represents a unified plastic yield surface,
and most of the previous conventional and continuous yield surfaces can be derived

(a) Yield Surfces in J1 – ÖJ2D Stress Space

Compressive yield surfaces

J1 positive
(Compression)

J1 negative
(Tension)

ÖγtÖγc
ÖJ2D

J1

Tensile yield surfaces

(b) Yield Surfaces in s1 – Ö2 s2 Space

Compressive yield surfaces

Hydrostatic
axis

Tensile yield
surfaces

J1

s1

Ö2s2= Ö2s3

Figure 7 HISS yield surfaces for compressive and tensile yielding.
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from it as special cases (Desai, 2001). Also, the HISS model can be used for nonasso-
ciative and anisotropic hardening responses, etc. The idea of the single yield surface has
been also used by Lade and coworkers (e.g. Lade & Kim, 1988), based on prior open
yield surfaces (Matsuoka & Nakai, 1974).

2.7 Creep behavior

Many materials exhibit creep behavior, increasing deformations under constant stress
or stress relaxation under constant strain (displacement). A number of models have
been proposed for various types of creep behavior, viscoelastic (ve), viscoelasticplastic
(vep) and viscoelasticviscoplastic (vevp); they are also based on the assumption of
continuummaterial. A generalized creep model has been proposed under the disturbed
state concept (DSC) (Desai, 2001). It is called Multicomponent DSC (MDSC) which
includes ve, vep and vevp versions as special cases. Details of the creepmodels are given
in (Desai & Zheng, 1987; Desai, 2001).

Models based on theories of elasticity, plasticity and creep assume that thematerial is
initially continuous and remains continuous during deformation. However, it is rea-
lized that many materials contain discontinuities (microcracks, dislocations, etc.),
initially and during loading. During deformations, they coalesce and grow, and sepa-
rate, resulting in microcracks and fractures, with consequent failure. Since the stress at
a point implies continuity of the material, theories of continuummechanics may not be
valid for such discontinuous materials.

2.8 Discontinuous materials

There a number ofmodels available to consider discontinuities in a deformingmaterial.
Chief among those are them are considered to be fracture mechanics, damage
mechanics, micromechanics, microcrack interaction, gradient and Cosserat theories
(Mühlhaus, 1995).Most of them combine the effect of discontinuities andmicrocracks,
with the continuum behavior. Descriptions of these models are presented in
[Mühlhaus, 1995; Desai, 2001, 2015a, 2015b).

3 PARAMETRES

The parameters in the DSCmodel can be obtained from laboratory test such as triaxial,
multiaxial, uniaxial and interface shear. The basic DSC model contains the following
parameters:

Relative Intact (RI)

Elastic: Young’s modulus, E, and Poisson’s ratio, ν, (or shear modulus, G and bulk
modulus K), and

Plasticity: (a) von Mises: tensile yield /cohesion, c, or (b) Mohr Coulomb: cohesion, c
and angle of internal friction, φ or (c) HISS plasticity: ultimate yield, γ and β; phase
change (transition from compaction to dilation), n; continuous yielding, a1 and η1;
and cohesive strength intercept, c (R).
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Fully Adjusted (FA)
For the critical state, the parameters are shown in Equation 1.

Disturbance
The parameter Du can be obtained from Figure 1; often a value near unity can be
used. Parameters A and Z are obtained by first determining various values of D
from the test data by using Equations 2, and then plotting logarithmic form of
Equation 3.

3.1 Comments

Most of the above parameters in the DSC have physical meanings, i.e. almost all are
related to specific states in the material response, e.g. elastic modulus to the unloading
slope of stress-strain behavior, and β to the ultimate state, and n to the transition from
compactive to dilative volume change, Figure 5. Their number is equal or lower than
that of previously available model of comparable capabilities. They can be determined
from standard laboratory tests such as uniaxial, shear, triaxial and/or multiaxial. The
procedures for the determination of the parameters are provided in various publica-
tions (e.g. Desai, 2001)

3.2 Softening (degradation) and stiffening (healing) response

Details of the softening and stiffening behavior are given various publications (Desai,
1974a, 2001; Desai et al., 1998; Shao & Desai, 2000).

3.3 Mesh dependence and localization

A constitutive model including discontinuities should satisfy properties such as mesh
dependence and localization. The DSC has been analyzed for localization and mesh
dependence and details are presented in (Desai, 2001, 2015a, 2015b; Desai & Zheng,
1998).

4 INTERFACES AND JOINTS

Behavior at interfaces between two (different) materials and joints play a significant
role in the overall response of an engineering system [Desai et al., 1986b; Desai andMa,
1992; Samtani et al., 1996; Fakharian & Evgin, 2000). One of the main advantages of
the DSC is that its mathematical framework for solids can be applied also for interfaces.

4.1 Relative Intact (RI) response

Schematics of two- and three-dimensional interfaces, disturbed states, and deformation
modes are shown in Figure 8. Consider a two-dimensional interface, Figure 8(a). In the
same way as was assumed in the solid material, an element for the interface is considered
to be composed of RI and FA states, Figure 8(c). The RI behavior in the interface can be
simulated by various models such as nonlinear elastic and plastic (conventional or
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continuous yield). Here, the HISS plasticity model is adopted for the RI part, as the
specialized form of Equation 6 for solids. It can be calibrated from laboratory tests in
terms of shear stress, τ vs. relative shear (horizontal) displacement, ur, and relative
normal (vertical) displacement vr vs. ur, Figures 9a and 9b, respectively.

The yield function specialized from Equation 6 for two-dimensional interface is
given by (Figure 10):

F ¼ τ2 þ ασnn � γσqn ¼ 0 ð10Þ
where τ is the shear stress, σn is the normal stress, which can be modified as σn + R, R is
the intercept along σn- axis which is proportional the adhesive strength, c0, γ is the
slope of ultimate response, n is the phase change parameter, which designates transi-
tion from compressive to dilative response, q governs the slope of the ultimate
envelope (if the ultimate envelope is linear, q = 2), and α is the growth or yield
function given by

α ¼ h1
ξh2

ð11Þ

where h1 and h2 are hardening parameters, and ξ is the trajectory of plastic relative
horizontal (ur) and vertical (normal) (vr) displacements, given by

(b) 3-D thin layer element(a) 2-D thin layer element
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x x
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n(sn)
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sn
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s(t)
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s(tx)

(c) Interface zone with RI and FA
parts

(d) Deformation modes in 2-D element

FA
t

t

g

R I

Figure 8 Schematics of 2- and 3-D interface elements and DSC.
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ξ ¼
ð

dupr ⋅ du
p
r þ dvpr dv

p
r

� 1=2 ¼ ξD þ ξV ð12Þ

ξD and ξV denote accumulated plastic shear and normal displacements, respectively,
and superscript p denotes plastic.

The interface can reach the critical state irrespective of the initial roughness and
normal stress (σn), as in the case of solids; when the relative normal displacement vr

RI(i) – Elastic RI(i) – Elastoplastic (do)

Observed (a)
Residual

FA(a)
Rough

t

Smooth

(a) t– ur 

ur

vr

urSmooth
Transition

(b) vr vs ur

vo
r (sn= 0)
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r1 (s n 1> 0 )
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r2 (s n2>sn1)

Rough

tc

Figure 9 Test data for contact (interface or joint): (a) τ vs. ur, and (b) vr vs. ur.
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tends to a steady state, Figure 9b. The equation for the material at the critical state,
proposed by Archard (1959) is given by (Figure 11a)

τc ¼ co þ c1σðcÞc2n ð13aÞ
where c0 is related to the adhesive strength and denotes the critical value of τc when σn =
0, σcn is the normal stress at the critical state, and c1 and c2 are parameters related to the
critical state.

The relation between the normal stress, σn, and the relative normal displacement at
the critical state, vcr, was proposed by Schneider (1976), Figure 11b:

vcr ¼ v0r e
�λσn ð13bÞ

where λ is a parameter and other quantities are shown in Figure 11.
Equations 11a and 11b formodeling interfaces/joints are similar to Equations 1a and

1b for solids.
Disturbance: Like in the case of solids, the disturbance for interfaces can be obtained

from measured quantities as shown in Figure 12.

5 VALIDATIONS AND APPLICATIONS

In various publications, validations of the DSC model are presented in two parts: (a)
Specimen Level 1 (individual) in whichmodel predictions by integration of incremental
constitutive equations, Equations 4, are compared with test data from which the
parameters were determined, Specimen Level 2 with independent tests not used to
find the parameters, and (b) Boundary Value Problem Level 3 in which finite element

τ

c0

Linear

R

Fu(s= 0)

Nonlinear

Phase Change (Critical)

m–

F = 0σn

Ög

Figure 10 HISS yield surfaces for interfaces and joints.

548 Desai



(with the DSC model) predictions are compared with measurements in the field and
from problems simulated in the laboratory.

The DSC and its special versions like HISS plasticity have been used by the author,
coworkers, and other researchers, to model a wide range of materials such as
geologic (sands, clays, rocks and concrete), asphalt concrete, metals, alloys (e.g.
leaded and unleaded solders), polymers and silicon; and interfaces/joints ; they are
covered in various publications, e.g. Desai (2001). It has been implemented in
computer (finite element) methods for nonlinear static and dynamic problems in
structural- and geo-mechanics, coupled flow through porous media and composites
in electronic packaging. Examples of only typical materials, particularly those
containing complexities that are difficult to model by conventional models, are
presented below.

Typical examples of validations at the specimen level are first presented using the
DSC model. Then typical examples of validations are presented for practical problems
using the finite element method in which the DSC has been implemented.

tc
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r1

Vc
r2

Figure 11 FA behavior of interface/joint at critical state.
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5.1 Example 1: Specimen level–cyclic behavior of sand

A series of laboratory three-dimensional (multiaxial) tests was performed on saturated
Ottawa sand (specific gravity = 2.64; coefficient of curvature = 1.6; coefficient of
uniformity = 2.0; maximum void ratio =0.8; minimum void ratio = 0.46). The device
allows variation (application) of three principal stresses, σ1, σ2, and σ3. Two types of
tests were performed. Specimen Level 1 involved sandwith relative density of Dr = 60%
under initial confining pressures, σ

0
o ¼ 69; 138, and 207 kPa (Gyi, 1996; Shao &

Desai, 2000; Park & Desai, 2000). Typical test results for σ
0
0 ¼ 138kPa, in terms of

applied stress difference, σd = σ1 − σ3, measured axial strain, ϵ1, measured axial strain,
ϵ1,vs. time, pore water pressure Ue vs. time, and σd vs. axial strain are shown in
Figure 13. Specimen Level 2 validations included independent tests with Dr = 40%
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Figure 12 Disturbance from various test data for interface.
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for σ
0
o ¼ 69 kPa. The following material parameters were found by using the labora-

tory data for Dr = 60%:

Elasticity: E ¼ 193; 000 kPa; � ¼ 0:38;

Plasticity ðHISSÞ: γ ¼ 0:123; β ¼ 0:000; n ¼ 2:45; a1 ¼ 0:845; η1 ¼ 0:0215;

Critical State: m ¼ 0:15; λ ¼ 0:02; eco ¼ 0:601; Disturbance: A ¼ 4:22;
Z ¼ 0:43; Du ¼ 0:99;

Unloading=reloading: EEUL ¼ 177; 6000 kPa; εp1 ¼ :0013; the latter are used in
simulating loading; unloading and reloading ðShao & Desai; 2000Þ:

Finite element analysis was performed for the specimen (10×10×10 cm) to predict its
laboratory behavior; the finite element mesh for a quarter of the specimen is shown in
Figure 14. The simulated loading involved first application of the confining pressure,
σ3, and then cyclic axial (shear) loading, Figure 13a.

Figure 13 Cyclic multiaxial tests - σ
0
o ¼ 138 kPa: (a) Applied σd vs. time, (b) measured axial strain ε1

vs. time, (c) measured pore water pressure Uw vs. time and (d) measured σd vs. axial strain ϵ1.
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Figure 15 show typical comparisons between predicted and measured pore water
pressures vs. time for σ

0
o ¼ 138kPa, respectively and for Dr = 60%, which involved the

tests used for finding the parameters. Figures 16 shows comparisons between predicted
and measured effective stress, σ vs. time, and pore water pressure vs. time, respectively

21

σd

σc = σ3

σc

σl

25

1 5
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5 cm (2 inch)

5 cm (2 inch)
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Node 1 Roller
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Figure 14 FE mesh, boundary conditions and loading.

0
0

20

40

60

80

100

120

140

160

50 100

Time (sec)

Back Prediction

Observation

U
e 

(k
P

a)

150 200

Figure 15 Comparisons between observed and predicted pore water pressure for σ
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0 ¼ 138 kPa;

Dr = 60 %.
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for Dr = 40%, which represents independent validation. It can be seen from Figures 15
and 16 that the correlations between predictions and measurements are highly satis-
factory for behavior of fluid saturated materials, loaded cyclically.

5.2 Example 2: Specimen level–rockfill materials

Rockfill materials are composed of particles of different sizes, and represent a challen-
ging problem for constitutive modeling. Here we consider the example of rockfill
materials reported by Varadarajan et al., (2003), which are often used for construction
of dams. Rockfill material, obtained from Ranjit Sagar Hydropower in the state of
Punjab, India consisted of alluvial with rounded/sub rounded particles up to 320mm in
size. The material from Purulia Pumped Storage Hydroelectric projects inWest Bengal,
India; it was obtained by blasting rock and consisted of angular to subangular particles
up to 1,200 mm in size.

The rockfill materials were tested by using a triaxial device that can handle large sized
specimens. Two specimen sizes were used, 381 mm diameter, and 813 mm long, and
500 mm diameter and 600 mm long; details are given in Varadarajan et al., (2003). It
was found that the Ranjit Sagar dam rockfill exhibited essentially compactive volume
change, whereas the Purulia rockfill showed first compactive and then dilative volume
change.

The DSC/HISS approach was used for modeling the rockfill. The yield surface, F,
Equation 6, was used. The nonassociative behavior was simulated by expressing plastic
potential surface, Q, as (Desai, 2001)

Q ¼ J2D � �αQJ
n
1 þ γJ

2
1

� �
1� βSrð Þ�0:5 ð14Þ

where the function, αQ, is given by

αQ ¼ αþ κðαo � αÞ ð1� rvÞ ð15Þ
αo is the value of α at the beginning of shear loading, κ is a parameter and rv = ξv/ξ, ξ = ξv +
ξD ; ξv and ξD are given in Equations 9a and b, respectively.

The disturbance function D was expressed as

D ¼ ξD
Aþ BξD

ð16Þ

where A and B are the disturbance parameters and ξD is the accumulated plastic
deviatoric strain. The elastic behavior was found to be dependent on the confining
pressure, hence, the elastic modulus, E, was expressed as

E ¼ kPa
σ3
pa

� �n
0

ð17Þ

where k and nʹ are the parameters and pa is the atmospheric pressure constant.
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Details of constitutive parameters for the two rockfills are given by Varadarajan
et al., (2003).

5.2.1 Validations

The behavior of the rockfills was predicted by integrating Equation 4, and using the
parameters given in Varadarajan et al., (2003). Typical comparisons for only indepen-
dent validations are shown Figure 17 for Dmax = 25 mm and σ3 ¼ 1:1 MPa for Ranjit
Sagar rockfill. In Figure 18 are shown similar comparisons for Dmax = 50 mm and σ3 =
0.60 MPa. It can be seen for the independent tests, Level 2 and also Level 1 (not
presented here), the correlations are very good.
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Figure 17 Comparison (independent Level 2) between test data and DSC for Ranjit Sagar rockfill: Dmax
= 25 mm and σ3 ¼ 1:1 MPa.
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5.3 Example 3: DSC molding of saturated sand–concrete
interfaces

Saturated (Ottawa) sand-concrete interfaces were tested under various normal stres-
ses and cyclic shear loading by using the Cyclic Multi-Multi Degree-of-Freedom
(CYMDOF) device (Desai & Rigby, 1997). A section of the device is shown in
Figure 19a. Simple shear deformations are allowed in the device by confining laterally
the specimen by a (fixed) number of thin and smooth Teflon-coated rings, Figure 19b.
Each ring has inner and outer diameters of 16.50 cm (6.5 in.) and 18.80 cm (7.4 in.),
respectively, and thickness of 1.5 mm (0.059 in.).
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rockfill, σ3 = 0.60 MPa, Dmax = 50mm.
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The specimen is installed in the lower box with relative density of 60%. The concrete
specimen in the upper box has medium roughness, with the roughness R= 0.50 (Kulhawy
&Peterson, 1979).Testwere conductedunderdrainedandundrained conditionswithone-
way (quasi-static) and two-way cyclic loading under constant initial normal stresses, σn =
35, 70, 207 kPa, and two relative densities. For the cyclic loading, the tests were performed
with horizontal displacement amplitude of 5.00mmwith sinusoidal frequency of 0.38Hz.
Details of test results under various normal stresses are given in Desai et al., (2005).

The parameters for the DSC model were found based on the laboratory tests using
the procedure given in (Desai, 2001). The parameters (average) for the Ottawa sand-
concrete interface and the sand are given in Table 1; details of the parameters, symbols,
etc. are given in (Desai et al. 2005).

5.3.1 Validations

The predictions for the laboratory results were obtained by using the finite element
procedure, DSC-DYN2D (Desai, 2000b). The FEM mesh is shown in Figure 20.
Figure 21a shows comparisons between predictions and test data for shear stress vs.
relative displacement for σn = 35 kPa and Dr = 60%. The comparisons between pore
water pressures and time are shown in Figure 21b. Figure 21c shown comparisons
between observed and predicted disturbance vs. accumulated plastic shear relative
displacements, ξD. It can be seen the DSC model provides highly satisfactory correla-
tion between predictions and tests data.

Typical examples of validations of practical boundary value problems using the DSC
are presented below.

5.4 Example 4: BVP level–reinforced earth

Description of Wall: Forty-three geogrid-reinforced walls were constructed at Tanque
Verde Road site for grade-separated interchanges on the Tanque Verde-Wrightstown-
Pantano Road project in Tucson, Arizona, USA. This project represents the first use of
geogrid reinforcement in mechanically stabilized earth (MSE) retaining walls in a major

Table 1(a) Parameters for the Ottawa sand-concrete interface.

Elasticity: E ¼ 3183 kPa; � ¼ 0:42
Plasticity: γ ¼ 0:109; n ¼ 3:12; h1 ¼ 0:289; h2 ¼ 0:470
FA ðcritical stateÞ: m ¼ 0:22; λ ¼ 0:131; eco ¼ 0:598
Disturbance: Du ¼ 0:99; Z ¼ 0:665; A ¼ 0:595:

Table 1(b) Parameters for the Ottawa sand.

Elasticity: E ¼ 193;000 kPa; � ¼ 0:38
Plasticity: γ ¼ 0:123; n ¼ 2:45; h1 ¼ 0:8450; h2 ¼ 0:0215
FA ðcritical stateÞ:¼ m 0:15; λ ¼ 0:02; eco ¼ 0:601
Disturbance: Du ¼ 0:99; Z ¼ 0:43; A ¼ 4:22:
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transportation-related application inNorthAmerica (Tensar, 1989).Here, the behavior of
thewall panel No. 26–32 is simulated using finite elementmethod (FEM); this is one of the
two-instrumented panels. The wall height is 4.88m (16.0 ft). The reinforced soil mass was
faced with 15.24 cm (6.0 in) thick and 3.05 m (10.0 ft.) wide precast reinforced concrete
panels. Soil reinforcedgeogridweremechanically connected to the concrete facingpanels at
elevations shown in Figure 22, and extended to a length of 3.66 m (12.0 ft). On the top of
the wall fill, a pavement structure was constructed that consisted of 10.16 cm (4.0 in) base
course covered by 24.13 cm (9.5 in) of Portland cement concrete. Details of the various
geometries are reportedbyBerg et al., (1986), Fishman et al., (1991, 1993), andFishman&
Desai (1991); the latter presents a (linear) finite element analysis for the wall.

The soil reinforcement used was Tensar’s SR2 structural geogrid; it is a uniaxial
product that is manufactured from high-density polyethylene (HDPE) stabilized with
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Figure 22 Tensar reinforced wall, Panel 26–32, Locations of instruments (Tensar, 1989) (1 ft. = 0. 305 m).
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about 2.5% carbon black to provide resistance to attack by ultraviolet (UV) light
(Tensar, 1989). It is reported to be resistant to chemical substances normally
existing in soils (Fishman et al., 1991). The geogrid have maximum tensile strength
of 79 kN/m (5400 lb/ft) and a secant modulus in tension at 2% elongation of
1094 kN/m (75000 lb/ft). The allowable long-term tensile strength based on creep
considerations is reported to be 29 kN/m (1986 lb/ft) at 10% strain after 120 years.
This value was reduced by an overall factor of safety equal to 1.5 to compute a long-
term tensile strength equal to 19 kN/m (1324 lb/ft).

5.4.1 Numerical modeling

The numerical analysis of the reinforced soil wall was performed using a finite element
code called DSC-SST-2D, Desai (1998); the program allows for plane strain, plane stress
and axisymmetric idealizations including simulation of construction sequences. Various
constitutivemodels, elastic, elastic-plastic (VonMises, Drucker-Prager,Mohr-Coulomb,
Hoek-Brown, Critical State and Cap), hierarchical single surface (HISS), viscoelastic,
plastic and disturbance (softening, DSC)) can be chosen for the analysis. The wall was
modeled as a plane-strain, two-dimensional problem; since the Tensar reinforcement is
continuous and normal to the cross section, Figure 22, the plane strain idealization is
considered to be appropriate. The program was written to allow incremental fill place-
ment to be simulated (i.e., rows of elements added sequentially as the fill placement).

Two finite elements meshes, coarse and fine, were used. The coarse mesh contained
184 nodes and 167 elements including 10 wall facing, 18 interface elements between
soil and reinforcement, and 9 bar (for reinforcement) elements; in the coarse mesh, only
three layers of reinforcement were considered. The fine mesh contained 1188 nodes,
and 1370 elements including 480 interface, 35 wall facing, and 250 bar elements; it
contained eleven layers as in the field. The fine mesh was considered to contain a great
number of nodes and elements; hence, intermediate and finer meshes were not ana-
lyzed. The dimensions for the fine mesh were the same as the coarse mesh; part of the
fine mesh near the reinforcement is shown in Figure 23.

It was assumed that the relative motions between the backfill and reinforcement have
significant effect on the behavior. Hence, interface elements were provided between
backfill and reinforcement. It was also assumed that the relative motions between wall
facing and backfill soil in this problem may not have significant influence; hence,
interface elements were not provided. This is discussed later under Displacements.
However, such relative motions can have influence, and in general, interface elements
need to be provided.

The meshes involved four-node quadrilateral elements for soil, wall and interfaces,
and one-dimensional elements for the reinforcement. Details of boundary constraints
are given in Desai & El Hoseiny (2005). It was found that the fine mesh provided
satisfactory and improved predictions compared to those from the coarse mesh. Hence,
the results are presented here are for the fine mesh.

5.4.2 Construction simulation

The in situ stress was introduced in the foundation soil by adopting coefficient, Ko =
0.4. Then the backfill was constructed into eleven layers, Figure 23, as was done in the
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field. The compacted soil was included in each layer, and the reinforcement was placed
on a layer before the next layer was installed. The compacted soil in a given layer was
assigned the material parameters according to the stress state induced after installing
the layer. The completion of the sequences of construction is referred to as “end of
construction.” Then the surcharge load due to the traffic of 20 kPa was applied
uniformly on the top of the mesh, Fig. 22; this stage is referred to as “after opening
to traffic.” The concrete pavement was not included in the mesh. However, since it can
have an influence on the behavior of the wall, in general, it is desirable to include the
pavement.

5.4.3 Testing and parameters

A comprehensive series of triaxial tests were performed on the backfill soils. The shear
tests on reinforcement-soil interfaces were performed using the CYMDOF device.
Details of the tests, typical results, parameters and validations for the DSC/HISS
models for soils and interfaces are given in Desai & El-Hoseiny (2005).

Geogrid
Interface (Tickness Not To Scale)

(b) Fine Mesh

15.25 m

9.15 m

Wall

4.88 m

3.66 m 9.15 m

Figure 23 Fine mesh (partial).
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5.4.4 Comparisons between predictions and field measurements

It was found that the results using the finemesh provided improved correlation with the
field test data. Hence, typical results presented here are for the fine mesh only.

Lateral Earth Pressure against Facing Panel: The distribution of lateral earth pressure
on the wall facing was measured based on the four pressure cells located at or near the
wall face, about 0.61, 1.22, 2.44 and 3.66 m. distance from the bottom of the wall.
The earth pressure against the facing panel was obtained in the finite element analysis
from the horizontal stresses in the soil elements near the facing. This pressure
distribution is useful for evaluating the magnitude of the stresses exerted on the
facing panels and the tension in the geogrid connection. Figure 24 shows the typical
predicted and measured lateral soil pressure behind the facing panel after opening to
traffic, along with the Rankine distribution. Predicted and measured horizontal soil
stresses agree very well. The design procedure assumes that no significant lateral earth
pressure should be transferred to the reinforcement. Except at the bottom of the wall,
the low value of the horizontal soil stress on the wall panel approximately confirms
this assumption.

Geogrid Strains: Measured and predicted reinforcement tensile strains at elevation of
4.42 m are shown in Figure 25. Agreement between the measured and predicted values
is considered very well. The results demonstrate that tensile strains in the geogrid are
less than 0.4% corresponding to 4.4-kN/m load in the geogrid. Comparison of this load
to the maximum tensile strength of the geogrid, which is 79 kN/m, indicates that the
grids are loaded to about 6.0% of the ultimate strength.
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Figure 24 Lateral pressure on facing panel after opening to traffic.
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Displacements: Figure 26 shows predicted andmeasured wall movements. The correla-
tion is satisfactory near the lower heights of wall; however, it is not satisfactory else-
where. For example, near the top of the wall the predicted value of about 42 mm is not
in good agreement with themeasured value of about 76mm. The finite element analysis
using linear elastic model reported the maximum displacement of about 30 mm
(Fishman & Desai, 1991). With the present nonlinear soil and interface models, the
maximum displacement increased to about 42 mm, Figure 26.

A main reason for the discrepancy is considered to be possible errors in the
measurements. Since displacements of the wall are important in design, it is desir-
able to obtain more accurate measurements. It is believed that since other measure-
ments compare well with the predictions, the displacements from the finite element
prediction can be considered to be reasonable. The magnitude of the maximum wall
displacement, δmax, can be estimated from the following equation (Christopher
et al., 1989):

δmax ¼ δr � H=75 ð18Þ
where δr = relative displacement found from the chart based on L/H ratio, H = wall
height and L = reinforcement length. According to Equation 18, the δmax ≈ 60 mm,
which also does not compare well with the measured value of about 78 mm?

From Fig. 26, it can be seen that the wall rotates about the toe of the wall. Also, the
displacements of the wall and the soil strains were not high. The maximum displace-
ment is about 1.5% with respect to the wall height. It appears from this behavior that
there is no significant relativemotion between thewall and soil for this problem.Hence,
interface elements between the wall and backfill soil were not included.
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Figure 25 Comparison of Measured and predicted geogrid strains at Elev. 4.42 m.
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5.5 Example 5: BVP level–powerhouse cavern in rock

This example contains testing and DSC modeling of rocks and joints in a
Powerhouse cavern, river Sutlej, India under the Nathpa-Jhakri hydropower pro-
ject, and computer (FE) analysis of the behavior of the cavern starting from the
initial conditions to construction simulation, and comparisons of FE predictions
with field measurements.

Figure 27 shows the powerhouse complex which consists of twomajor openings.i.e.,
the machine hall 216 m×20 m×49 m (length×width×height) with an overburden of
262.5 m at crown and the transformer hall 198m×18m×29m which is located down-
stream of themachine hall. The longitudinal axis of the openings is in theN-S direction.
The openings are located in the left bank about 500m away from the Sutlej River
(NJPC, 1992; Bhasin et al., 1995).

The in situ stress for the rockmass in the power house drift was determined using the
hydraulic fracturing technique, by the Central Soil and Materials Research Station
(CSMRS), New Delhi, India (Varadarajan et al., 2001). The lateral pressure coefficient
(Ko) was equal to about 0.8035 for the E-W cross section; it was used in the analysis.

5.5.1 Constitutive model

From the geology of the powerhouse complex, it was found that most of the rock mass
consist of quartz mica schist and biotite schist. The quartz mica schist is weaker than
biotite schist and it forms most of the rock mass around the cavern. Therefore, the
properties of quartz mica schist are used in the analysis. The rock in the power house
area is jointed and has discontinuities. The geologic study of the area shows that the
average Rock Mass Rating, RMR, and Tunneling Quality Index, Q, are 50 and 2.7,
respectively (Varadarajan et al., 2001).
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Figure 26 Comparison between predicted and measured wall face movements after opening to traffic.
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The parameters for the DSC constitutive model for behavior of quartz mica schist
rock samples were obtained from strain-controlled triaxial tests on the intact rock
samples using a servo-controlled loading system. Material parameters have been
obtained for the rock samples have been reported in Varadarajan et al., (2001). The
material parameters for the rock mass have to be determined to conduct the finite
element analysis of the powerhouse cavern. At the moment, there is no known
method which is available to determine the material parameters for the rock mass.
In this study, it was proposed to use a procedure suggested by Ramamurthy (1993) to
determine the strength and the Young’s modulus of the jointed rock mass from the
intact rock properties. The parameters for the intact rock and rock mass are given in
Varadarajan et al., (2001).

The other parameters viz., phase change, hardening and disturbance parameters for
the rockmass have been assumed to be the same as for the intact rock. It is believed that
this assumption may not significantly affect the results of the analysis for (i) the values
of hardening parameters are small and (ii) the differences in the values of the para-
meters for disturbance for intact rock and rock mass may not be significant. It is
observed that, (i) the ultimate parameters γ and β, for the rock mass show 33% and
17% reduction as compared to the intact rock, (ii) the Young’s modulus and uniaxial
compressive strength (UCS) for the rock mass are decreased by 22% and 16% as
compared to the intact rock, and (iii) the value of bonding stress (3R) shows 11%
reduction as compared to the intact rock.

The unit weight of the rock mass is taken to be the same as for the intact rock, i.e.,
27 kN/m3.
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Figure 27 East-west section of surge shaft, pressure shaft and powerhouse caverns, Nathpa-Jhakri
hydropower project (after NJPC).
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5.5.2 Finite element analysis

The finite element analysis of powerhouse cavern was conducted for the loading due to
excavation. The effect of the excavation of the transformer hall on the powerhouse
(machine hall) has been found to be negligible (Varadarajan et al., 2001), and therefore,
only the excavation of the powerhouse cavern has been considered in the present study.

Since the loading and the geometry of the cavern are symmetric, only the half of the
portion has been discretized. The cavern and the rock mass included for the discretiza-
tion are shown in Fig. 28. The rock mass is discretized into 364 eight-noded elements
and 1167 nodes keeping in view various stages of excavation of the cavern. The
boundary conditions are also shown in the Fig. 28. The in situ vertical stresses have
been calculated from the ground at 262.5 m from the crown and K0 value of 0.8035 as
found from the tests has been used.

El. 1224 m

Centerline

El. 775 m

210 m

Figure 28 Finite element mesh.
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The analysis has been carried out using the computer code DSC-SST-2D developed
by Desai (1998). The analysis consists of the simulation of excavation of the power-
house cavern. Twelve stages of excavation have been used in the study as shown in
Figure 29.

In the computer code, at each stage of excavation the elements and nodes to be
removed from the finite element mesh are deactivated, i.e., their stiffness matrices and
load vectors are not included in the global stiffness matrix and load vector. The
complete details of the excavation procedure are presented elsewhere (Varadarajan
et al., 2001). The analysis is conducted using incremental-iterative procedure adopted
by (Shao & Desai, 2000) in which the tangent stiffness matrix [Kt] is updated at each
load increment, and an iterative procedure is used during each load increment. The
method proposed by Potts & Gens (1985) which considers hardening during the drift
correction has been adopted.

The results of the analysis from the computer code DSC-SST-2D have been processed
through a commercial package NISA (1993) and the contours of displacements,
deformed shape and the variation of major and minor principal stresses around the
cavern have been plotted for the full excavation of the cavern at 12th stage.

Instrumentation: The powerhouse cavern has been instrumented by National Institute
of Rock Mechanics, NIRM, to study the movement in the rock mass during various
stages of excavation. The instruments have been installed at various sections along the
length of the cavern. The instrumentation scheme of a section in the middle of the
cavern is available in Varadarajan et al., (2001).

5.5.3 Results and discussions

The horizontal displacement contours are shown in Figure 30. Higher movements of
the wall are noted around the mid-height of the wall. The maximum value of 42.6 mm
movement is observed at the cavern face and this value decreases to 9.22 mm at a
distance of 73 m from the face. The former value compares well with the predicted
value of 45 mm.
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Figure 29 Excavation sequence for the powerhouse cavern.
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The variations of themajor andminor principal stresses for typical section are shown
in Fig. 31.

5.5.3.1 Comparison of observed and predicted displacements

The finite element analysis was conducted simulating the same excavation stages as
shown in Fig. 29, and the displacements have been determined at various locations
where the instruments have been installed. The predicted and observed values of the
displacements are presented in Table 2. The predicted values lie within the range of the
observed values of displacements at five out of six locations. It can be considered that,
in general, the predictions are satisfactory.

5.6 Example 6: BVP level–pavement materials and application

Use of the DSC model for pavements materials and application for layered pavement
system are presented in this example. Detailed analyses for two- and three-dimensional
problems are presented in Desai (2007, 2009). Here typical example for three-dimen-
sional analysis is presented. In addition to displacements, strains, stresses and other
quantities like temperature and pore water pressure, the progressive failure and rutting
are also important. Here, the DSC is used to identify microcracking and rutting. DSC
can also allow for behavior both concrete and asphalt concrete.
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Figure 30 Contours of the horizontal displacement around cavern.
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5.6.1 Material parameters

Table 3 shows the material parameters obtained from the triaxial tests under various
confining pressures and temperatures on asphalt concrete reported by (Monismith &
Secor, 1962). These tests were comprehensive; however, they usually did not exhibit
the softening behavior. Hence, the parameters were found for only the HISS model.

Scarpas et al. (1997) reported uniaxial tests for asphalt concrete in which the pre
peak and post peak (softening) behavior was observed. These tests were used to
evaluate the parameters for disturbance, D, in Table 3.

Table 2 Comparison of Predicted (FEM) and Observed (instrumentation) Deformation at the
Powerhouse Cavern Boundary.

Stage No. Excavation Done Instrumentation at El. (m) Deformation (mm)

From El. (m) To El. (m) Predicted (FEM) Observed
(Instrumentation)

1 Widening of the
Central drift

1024 (A) 10.4 13–18

2 Widening of the
Central drift

1022 (B) 12 6–12

3 1018 1006 1022 (B) 0.6 −1.3 to +2.5
4 1006 1000 1018 (C) 3.5 1–4
5 1000 975 1006 (D) 23.7 10–45
6 983 975 996 (E) 9.4 1–3
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Figure 31 Principal stress variation in rock mass from crown of the powerhouse cavern.
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The validation of the stress-strain curves was obtained in two ways: by integrating the
incremental constitutive Equations 4, and by using the finite element analysis.
Comparisons between the observed and predicted stress-strain curves for strain rate =
1 in/min at three typical temperatures (T) and confining pressures (σ3): (a) T = 40oF, σ3 =
43.8 psi, (b) T = 77oF, σ3 = 0.0 psi, (c) T = 140oF, σ3 = 250 psi (Monismith& Secor,1962)
are given in Desai (2007,2009). Figure 32 shows typical comparison between predicted
and observed typical stress-strain curve for T = 25oC and strain rate = 5mm/sec (Scarpas
et al., 1997). The above comparisons show that the DSC model can provide very good
simulation of the behavior asphalt concrete.

Table 3 Material Parameters for Pavement Materials for HISS Model and Disturbance (1 psi = 6.89 kPa).

Parameter Asphalt concrete Base Subbase Subgrade Concrete

E 500000 psi 56532.85 psi 24798.49 psi 10013.17 psi 3 × 106 psi
ν 0.3 0.33 0.24 0.24 0.25
γ 0.1294 0.0633 0.0383 0.0296 0.0678
β 0.0 0.7 0.7 0.7 0.755
n 2.4 5.24 4.63 5.26 5.24
3R 121 psi 7.40 psi 21.05 psi 29.00 psi 8 × 103 psi
α1 1.23E-6 2.0E-8 3.6E-6 1.2E-6 0.46 × 10−10

η1 1.944 1.231 0.532 0.778 0.826
Du 1 0.875
A 5.176 668.0
Z 0.9397 1.502
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Figure 32 Comparison Between Predicted and Observed Test Data for T ¼ 25°C; ε̇ ¼ 5mm=sec.
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5.6.2 Computer implementation

The DSC model has been implemented in two- and three-dimensional computer (finite
element) procedures (Desai, 1998, 2000c, 2001). The computer codes allow for the
nonlinear material behavior, in situ or initial stresses, static, repetitive and dynamic
loading, thermal and fluid effects. They include computation of displacements, strain
(elastic, plastic, and creep), stresses, pore water pressures and disturbance during the
incremental and transient loading. Specifications of critical values of disturbance, Dc,
permit identification of the initiation of microcracking leading to fracture and soft-
ening, and cycles to fatigue failure. Plots of the growth of disturbance, i.e., microcrack-
ing to fracture, are obtained as a part of the computation. Accumulated plastic strains
lead to the evaluation of the growth of permanent deformations and rutting.

Loading: The codes allow for quasistatic and dynamic loading for dry and saturated
materials. The repetitive loading on pavement can involve a large number of cycles. An
approximate procedure to handle a great number of cycles by performing FEM up to
about ten reference cycles is described below.

5.6.3 Repetitive loading: Accelerated procedure

Computer analysis for 3- and 2-D idealizations can be time consuming and expensive,
especially when significantly greater number of cycles of loading need to be considered.
Therefore, approximate and accelerated analysis procedures have been developed from a
wide range of problems in civil (pavements) (Huang, 1993; Lytton et al., 1993), mechan-
ical engineering and electronic packaging (Desai et al., 1997, Desai&Whitenack, 2001).
Here, the computer analysis is performed for only a selected initial cycles (say, 10, 20),
and then the growth of plastic strains is estimated on the basis of empirical relation
between plastic strains and number of cycles obtained from laboratory test data. A
general procedure with some new factors has been developed (Desai & Whitenack,
2001). This procedure is modified for pavement analysis and is described below.

From cyclic tests on an engineering material, the relation between plastic strain (in
the case of DSC, the deviatoric plastic strain trajectory, ξD, Equation 9b, and the
number of loading cycles can be expressed as

ξD Nð Þ ¼ ξD Nrð Þ N
Nr

� �b

ð19Þ

whereNr = reference cycle, and b is a parameter, depicted in Figure 33. The disturbance
Equation 3 can be written as

D ¼ Du½1� exp �A ξD Nð ÞZg
n i�

ð20Þ

Substitution of ξDðNÞ from Equation 19 into Equation 20 leads to

N ¼ Nr
1

ξD Nrð Þ
1
A
ℓn

Du

Du �D

� �
 �1=Z
" #1=b

ð21Þ

Now, Equation 21 can be used to find the cycles to failure, Nf, for chosen critical value
of disturbance = Dc (say, 0.50, 0.75, 0.80).
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The accelerated approximate procedure for repetitive load is based on the assumption
that during the repeated load applications, there is no inertia due to “dynamic” effects in
loading. The inertia and time dependence can be analyzed by using the 3-D and 2-D
procedures; however, for million cycles, it can be highly time consuming. Application of
repeated load in the approximate procedure involves the following steps:

1. Perform full 2-D or 3-D FE analysis for cycles up to Nr, and evaluate the values of
ξDðNrÞ in all elements (or at Gauss points).

2. Using Equation 19 compute ξDðNÞ at selected cycles in all elements.
3. Compute disturbance in all elements using Equation 20.
4. Compute cycles to failure Nf by using Equation 21, for the chosen value of Dc.

The above value of disturbance allows plot of contours of D in the finite element mesh,
and based on the adopted value of Dc, it is possible to evaluate extent of fracture andNf.

Loading-Unloading-Reloading: Special procedures are integrated in the codes to
allow for loading, unloading and reloading during the repetitive loads; details are
given in Desai (2001).

5.6.4 Validations and applications

Generally, the pavement problem and wheel loading would require three-dimensional
analysis, particularly to predict microcracking and fracture response. However, for an
economic analysis, a two-dimensional procedure can provide satisfactory but approx-
imate solutions for certain applications. A typical example for the three-dimensional
case for four layered flexible pavement is presented here.

Figure 34 shows the 3-D problem and three dimensional mesh is shown in Fig. 35.
The material properties used are shown in Table 3.

Analyses are performed by applying linearly monotonic loading and repetitive load-
ing. The monotonic loading was applied up to 200 psi (1400 kPa) in 50 increments;
details are given in Desai (2007,2009). For the repetitive loading, Figure 36, the load
amplitude (P) was equal to 200 psi (1400 kPa). As discussed before, the cyclic load
(loading, unloading, and reloading) was applied sequentially; however, time depen-
dence was not included at this time.

Experimental Data

In(ξD(N))

b

Best Fit Line

Figure 33 Accumulated Plastic Strain vs. Number of Cycles for Approximate Accelerated Analysis.
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Full finite element analysis was performed for each load amplitude up to Nr = 20
cycles. Then the deviatoric plastic strain trajectory (ξD) at the given cycle (N) was
computed for the subsequent cycles using Equation 19. The disturbance, D, was
computed at the given cycles using Equation 20. This allowed analysis of disturbance
with cycles and computation of the cycles to failure, Nf, depending upon the chosen
criteria for critical disturbance, Dc, Equation 21.

Figures 37 (a) to (c) shows contours plots of disturbance after 10, 1000 and 20,000
cycles, respectively with load amplitude = 70 psi and b = 1.0. After about 20,000 cycles
for Dc = 0.8, a portion of pavement has experienced fracture. Based on the contours of D
and critical Dc, it is possible to trace the history of microcracking, cracking and fracture.

5.7 Example 7: BVP level–centrifuge testing of pile and
liquefaction

This example presents use of the DSC model for cyclic behavior of saturated sand and
FE predictions of pile tested using the centrifuge including computation for liquefaction

150
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6
6
10

10
10

P

XY

Z

Figure 34 Layered System (dimensions in inches).
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by the DSC model (Desai, 2000a).The Nevada, California sand was used in the
centrifuge. To determine the DSC parameters, soil test data for the Nevada sand was
used obtained by The Earth Technology Corporation, Huntington Beach, California
for VELACS (Arulmoli et al., 1992). For determining parameters, three undrained

(a) 3-D Mesh

(b) 2-D Mesh

Figure 35 Finite element mesh for three-dimensional problem.

Lo
ad

Cycle, N

P

Figure 36 Schematic of repetitive loading.
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monotonic triaxial tests, and three undrained cyclic triaxial test with confining pres-
sures, σ3, = 40, 80, and 160 kPa at 60 % relative density were used. Details of
evaluating these parameters from the test data are given in (Pradhan & Desai, 2006).
Table 4 lists parameters for the sand and interface.

Disturbance
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0.011

(a) N = 10 Cycles

Disturbance

0.059
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0.236
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0.413
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(b) N = 1000 Cycles

Disturbance

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

(c ) N = 20,000 cycles

Figure 37 Contours of disturbance at different number of cycles.
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5.7.1 DSC model for interfaces

Interface test data for the aluminum-Nevada sand were not available for the prediction
from the centrifuge tests, described subsequently. Hence, a neural network procedure
was used (Pradhan & Desai, 2002). Here two sets of data were used for the training of
the neural network. Set 1 consisted of the Ottawa sand parameters using the triaxial
testing and the Ottawa sand-steel interface using the cyclic multi-degree of freedom
(CYMDOF) device (Alanazy, 1996; Desai & Rigby, 1997). The second set consisted of
the parameters for marine clay at Sabine, Texas, from triaxial and multiaxial testing
(Katti & Desai, 1995) and marine clay-steel interface using the CYMDOF (Shao and
Desai, 2000). It was assumed that the steel and aluminum behave approximately
similar in interface with the soil. Also, the Nevada sand gradation curve falls between
those of the Ottawa sand and the Sabine clay. The parameters for the Nevada sand
found from the available triaxial data (Arulmoli, et al., 1992) were used in the neural
network, which provided estimates for Nevada sand-aluminum interface parameters.
They are given in Table 4 and were used for the interfaces in the pile test using the
centrifuge device, described later.

Themodel parameters were used to back predict specimen level laboratory tests (Dr =
60%) that were employed to find parameters and also an independent test (Dr = 40%)
whose results were not used to find parameters (Pradhan & Desai, 2006). The predic-
tions were obtained using DSC-DYN2D program developed by Desai (2000b). The
predictions compared very well with the test data.

5.7.2 Centrifuge test

Prediction of the behavior of pile foundations in liquefiable sands under earthquake
loading can be a challenging problem. The best way to understand such a problem and
develop a design and analysis procedure is comparisonwith full-scale field data, which can
be expensive. Hence, centrifuge testing represents a useful development in studying

Table 4 Parameters for Nevada Sand and Sand-Aluminum Interface.

Group Subgroup Parameters Nevada Sand Nevada Sand Aluminum Interface

Group 1 Elastic Parameters E 40848.8 kPa 14.6 MPa
ν 0.316 0.384

Plasticity Parameters γ 0.0675 0.246
β 0.0 0.000
3 R 0.0 0.0
n 4.1 3.350
h1 0.1245 0.620
h2 0.0725 0.570

Group 2 Critical State Parameters m 0.22 0.304
λ 0.02 0.0278
e0c 0.712 0.791

Group 3 Disturbance Parameters Du 0.99 0.990
Z 0.411 1.195
A 5.02 0.595
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fundamental mechanisms of soil-pile structure interaction. The centrifuge test data used
hereinwere performed at theNationalGeotechnical Centrifuge atUniversity ofCalifornia,
Davis (Kutter et al., 1991, 1994; Wilson et al., 1997a, b, c). It has a radius of 9.0 m and is
equipped with large shaking table. It has a maximum model mass of about 2500 kg, and
available bucket area of 4.0m2 and amaximum centrifugal acceleration of 50 g. Details of
the centrifuge can be found in (Kutter et al., 1991, 1994; Wilson et al. 1997a, b, c).
Five containers of soil- structure systemswere tested at a centrifugal acceleration of 30 g.

Full details for each test can be found in (Wilson et al., 1997a, b). In this study, earthquake
event J in the model, referred to as CSP3, was simulated. The soil profile in this container
consisted of two horizontal layers. The upper 9.3 m layer was medium – dense Nevada
sand (Dr = 55%) and lower 11.4m thick layerwas denseNevada sand (Dr = 80%), Figure
38. Details of the structure and pile systems can be found in Wilson et al., (1997a, b, c).
Foundationmodels included single pile foundations, four pile group and a nine pile group,
with superstructure mass typically being 500 kN per each supporting pile.

pore pressure

lightly instrumented single pile

11
.4
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 8
0%

D
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9.
3 
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Highly instrumented single pile

bending moment

accelerationdisplacement

Figure 38. Details of centrifuge test CSP3 (Wilson et al., 1997c).
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In this analysis, a single prototype pile near themiddle, Figure 38, made of aluminum
pipe with 0.67 m diameter, 72 mm wall thickness, and 20.6 m and 16.8 m embedment
depth was used. Linear elastic properties were used for the pile: E = 70.0 GPa and
ν = 0.33. The DSC model was used for the sand and interface; the parameters are given
in Table 4.

It would be appropriate to use a three-dimensional finite element (FE) for the problem;
however, such procedures were not readily available. Hence, as an approximation, the
single pile was modeled by using two-dimensional FE procedure (Desai, 2000b), with
plane strain idealization. The plane strain idealization for such a pile is considered to be
more appropriate than the axisymmetric idealization, partly because the latter allows
mainly the axial behavior. Similar plane strain idealization for piles has been used pre-
viously (Desai, 1974b; Anandarajah, 1992; Ellis, 1997; Fujii, et al., 1998). The finite
element mesh is shown in Fig. 39 and the applied loading in Fig. 40.

Initial in situ stresses and pore pressures at centers of all elements were introduced by
using the following expressions:

σ
0
v ¼ γsh ð22aÞ

σ
0
h ¼ Kjσ

0
v ð22bÞ

Ko ¼ �=ð1� �Þ ð22cÞ
p ¼ γwh ð22dÞ
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3.7 m

(a) Mesh for total domain

Figure 39 Finite element mesh for single pile: Full and partial.
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where σ
0
v and σ

0
h ¼ effective vertical and horizontal stresses at depth, h, γs = sub-

merged unit weight of soil, γw = unit weight of water, p = initial pore water pressure
and Ko = co-efficient of earth pressure at rest.

Comparison of Results: Two finite element analyses were performed,with and without
interfaces. The predictions and observed pore water pressure were compared for a
number of elements: 1, 5, 8, 9, 12 and 139, Figure 39. Typical results for element 139
near the pile, element 9 away from the pile but at the same level as element 139, and
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131118

Interface elements – 133 to 143 and 162 to
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160 173

(b) Details of partial mesh around pile
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Figure 39 (cont.)
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element 5 away from the pile but at a lower level are presented in Figures 41–43,
respectively. It can be seen from these figures that the model with the interface provides
improved correlation with the test results. Pore water pressure, with interface, in
element 139 reaches the initial vertical effective stress, σ

0
v, after about 9 seconds

indicating liquefaction, while that without interface does not indicate liquefaction.
Furthermore, the predictions for both with and without interface, show similar values
and trends for elements away from the pile. This can be mainly because the influence of
the relative motions at interface diminishes away from the pile.

Table 5 compares the time when the disturbance reaches its critical value, Dc = 0.86,
with the conventional procedure in which liquefaction occurs when the excess pore
water pressure, Uw, reaches the initial effective pressure ðσ0

vÞ, for typical elements. The
times to liquefaction correlate well. However, those from the DSC model are lower
than those from the conventional procedure, implying that themicrostructural instabil-
ity can occur earlier than the time to liquefaction obtained from the conventional
procedure. The conventional procedure implies that the soil does not possess any
strength when liquefaction occurs. In fact, it has been reported, e.g., by Desai
(2000a), that the soil retained a (small) strength after the Port Island, Kobe, Japan
earthquake. Thus, in the DSC, the time to liquefaction (Dc ≈ 0.86) is lower than that at
complete loss of strength. Also, it is believed that the microstructural instability or
liquefaction can occur before the complete collapse of the microstructure. Further
investigation regarding this aspect is desirable.

Figure 44 shows typical variation of disturbance with time in the interface element
No. 139 and in the adjacent element No. 126. These figures indicate that the liquefac-
tion for this problem can occur in the interface element earlier than in the surrounding
elements.

The top bucket ring at which the displacements weremeasuredwas not included in the
pile mesh. Hence, comparisons for displacements were not available. However, Fig. 45
shows comparisons between predicted accelerations near the top of the pile from analysis
with interfaces and themeasured values. The peak values differ by about 12.5%; overall,
the correlation is considered to be satisfactory.
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Figure 40 Base motion acceleration (Wilson et al., 1997c).
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Practical Use: For practical application for analysis and design, the following ratios can
be defined:

R1 ¼ Vℓ

Vs ð23aÞ

R2 ¼ Vℓ

Vp ð23bÞ
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where Vℓ = liquefied volume, Vs = total soil volume, and Vp = pile volume. For this
problem, R1 and R2 are defined based on the fixed geometry and dimensions. However,
for a field problem involving semi-infinite extent, it will be difficult to define R1. Hence,
only R2 involving the volume of the pile (or the structure) can be used. Figure 46 shows
the variation with time for R1 and R2. Considering that liquefaction occurs after about
9 secs, the critical values are: R1 = 0.24 and R2 = 8.0. Thus, the finite element
predictions can be used to define critical ratios such as R1 or R2 for analysis and design
for liquefaction.
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5.8 Example 8: DSC for active and passive earth pressures

The DSC is a general and unified approach which can used to model many physical
phenomena. In an interesting approach, Zhu et al. (2009) has used the DSC to derive
general expressions for active and passive earth pressures.

The RI is assumed to be the state at which (rigid) retaining wall moves toward or
away from the backfill with an associated parameter S0 that can assume value of
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Figure 43 Comparisons of pore water pressures for Element 5, away from pile at lower level.

Constitutive modeling of geologic materials 585



positive, negative or zero; in most cases, the at-rest condition is assumed to be the RI
state, hence, S0 is zero. The FA state can be considered the asymptotic state at which the
system reaches a state at which the (soil) properties are different from those in the RI
state.

The disturbance function D as the function of the parameter S, related to the wall
movement, is expressed as

D ¼ DðSÞ ¼
2arctan b ðs�soÞ

ðs�saÞðs�spÞ
h i
π

ð24Þ

where S are defined in Figure 47, subscripts 0, a and p denote at rest condition (for rigid
wall), active Rankine state and passive Rankine state, respectively, and b denotes the
material parameter related to the relative density of the soil back fill.

The expression for lateral pressure, pD, against the vertical rigid wall is derived as
(Zhu et al., 2009):

pD ¼ γ hKD ð25Þ
where γ is the unit weight of the backfill, h is the height of the calculated point, and h
ranges from 0 to H, H being the total height of the retaining wall.

Table 5 Times to Liquefaction from Disturbance and Conventional Methods.

Element Uw¼σ
0
v D = Dc

143 1.74 Seconds 1.23 Seconds
130 1.83 Seconds 1.29 Seconds
104 2.55 Seconds 1.92 Seconds
78 3.36 Seconds 2.67 Seconds
52 3.81 Seconds 2.94 Seconds
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Figure 44 Disturbance versus time in elements 126 and 139.
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KD ¼ tan2ð45°� φD
2
Þ ð26aÞ

where φD, related to the disturbance in the backfill is given by

φD ¼ 90°� 2 arctan
ffiffiffiffi
A

p
ð26bÞ

A ¼ tan2½45°�Dφ
2

� � 1� sin ½ð1�DÞ ð1þDÞ φ�f g ð26cÞ

Zhu et al., (2009) conducted laboratory tests to measure earth pressures, in which
details of the set up and properties of soil backfill have been presented. Comparisons
between prediction by using Equation 25 and the measurements are also included in
Zhu et al., (2009).

6 SUMMARY AND CONCLUSIONS

The disturbed state concept is used to characterize the behavior of geologic materials
and interfaces (joints) between structural materials (piles) and joints. The para-
meters for the DSC model are determined based on the available triaxial and multi-
axial tests. Those for interface are obtained usually based on tests for interfaces by
using devices such as CYMDOF. Finite element procedures with the DSC model
based on dry materials and saturated materials using the generalized Biot’s theory
are used to validate the DSC model, in which FE predictions and measurements are
compared for displacements, stresses and disturbance; the latter can be used to
identify liquefaction.
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Based on the results reported herein, the DSC model can provide satisfactory and
improved predictions for the behavior of a wide range of problems in geotechnical
engineering and Geomechanics. It is believed the DSC can provide a unique and unified
constitutive model for a wide range of engineering materials, interfaces and joints.
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Chapter 20

Modeling brittle failure of rock

Vahid Hajiabdolmajid
BC Hydro, Burnaby, BC, Canada

Abstract:Observations of brittle failure at the laboratory scale indicate that the brittle
failure process involves the initiation, growth, and accumulation of micro-cracks.
Around underground openings, observations have revealed that brittle failure is mainly
a process of progressive slabbing resulting in a revised stable geometry that in many
cases take the form of V-shaped notches. Continuum models with traditional failure
criteria (e.g. Hoek-Brown or Mohr-Coulomb) based on the simultaneous mobilization
of cohesive and frictional strength components have not been successful in predicting
the extent and depth of brittle failure. This chapter presents a continuum modeling
approach that captures an essential component of brittle rock mass failure, that is,
cohesion weakening and frictional strengthening (CWFS) as functions of plastic strain.
A Strain-dependent rock brittleness index is defined which can represent the mobilized
strength during brittle failure of rock.

1 INTRODUCTION

Brittle failure is the product of the creation, growth and accumulation of micro- and
macro-cracks. Many researchers have reported slabbing and spalling initiated on the
boundary of the excavation as a dominant failure mode around underground excava-
tions in massive to moderately jointed rock masses subjected to high in situ stresses
(Ortlepp, 1997; Martin, 1997, 2014). Unlike openings at shallow depth, or at low in
situ stress, in which failure is controlled by discontinuities, at greater depth, the extent
and depth of failure is predominantly a function of the in situ stress magnitudes relative
to the rock mass strength. Laboratory-scale observations have indicated that tensile
cracking is present in inducing damage during the brittle failure of hard rocks (e.g.
Brace & Bombolakis, 1963; Hallbauer et al., 1973; Fredrich & Wong, 1986; Myer
et al., 1992; Martin, 1997). Excavation-scale observations also suggest that shallow
spalling are generally associated with tensile failure which causes the thin slabs to
initiate and peel off the Excavation surfaces. However, many field observations have
indicated that the stress required to initiate spalling occurs at magnitudes that are
considerably less than the peak strength of intact samples obtained in the laboratory
(i.e. Uniaxial Compressive Strength, UCS) (Martin, 1997, 2014).

Traditional approaches of modeling rock mass failure are often based on a linear
Mohr-Coulomb failure criterion or on a non-linear criterion such as the Hoek-Brown
failure criterion. In both criteria, it is implicitly assumed that the cohesive and the



normal stress-dependent frictional strength components are mobilized simultaneously,
i.e., they are assumed to be additive as illustrated by the Terzaghi model in Figure 1a.

Even when strain-softening models with residual strength parameters are chosen, the
two strength components are assumed to be simultaneously mobilized and then lost in
the post-peak range. These approaches with typical strength parameters have not been
successful in predicting the depth and extent of failed rock in deep underground open-
ings in hard rocks (Wagner, 1987; Pelli et al., 1991; Martin, 1997; Hajiabdolmajid
et al., 2000; Martin, 2014).

1.1 Strain-softening soil

As Schofield (1998) pointed out “there is no true cohesion on the dry side of critical
state”. In dense soil pastes, the peak strength is due to interlock and friction among
particles and not due to the chemistry of bonds.While friction is immediatelymobilized
and the frictional strength component is proportional to the normal or confining stress,
at low normal stress, the interlock resistance can be mobilized and then lost, leading to
the typically observed strain-softening behavior of dense soils (the Taylor model;
Figure 1b). In other words, the Coulomb criterion should be written in a form whereby
both strength terms are a function of plastic strain ε (Equation 1):

τ ¼ cðεÞ þ σ0ðεÞ tan� ð1Þ
The pioneering work of Schmertmann & Osterberg (1960) showed that in some soils,
these two strength components (cohesive and frictional) are not necessarily mobilized
simultaneously. They showed that themaximumof the cohesive component of strength

(b) Taylorτ

σ'

τ = c(ε)+σ'(ε) tanϕ

τ = c+σ' tanϕ

(c) sequential mobilization of
cohesion then frictional strength

simultaneous cohesion
and friction mobilization

(a) Terzaghi

Friction

Cohesion

τ

σ'

Figure 1 (a) Terzaghi’s model and (b) Taylor’s model for soil (after Schofield, 1998); and (c) analog for
rock.
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c(ε) was mobilized early in the test, while the frictional component σ
0 ðεÞtan� required

10 to 20 times more straining to reach full mobilization as shown in Figure 2.

1.2 Strain-softening rock

Unlike in ductile materials where shear slip surfaces form in such a manner that
continuity of material is maintained, brittle failure is a process whereby continuity is
disrupted to create kinematically feasible failure. From a mechanistic point of view,
what happens during the brittle failure process of rock is the destruction of the strength
derived from bonds between grains (cohesive strength). The frictional strength compo-
nent gradually mobilizes as the disintegrated blocks readjust and deform by shearing at
newly created surfaces. Therefore in brittle failure of rocks at relatively low confine-
ment, the cohesive strength component is gradually lost when the rock is strained
beyond its peak strength. This is illustrated by the gap model of Figure 1c, representing
an analog for brittle rock. This analog illustrates that the cohesion at the bottom of the
sliding wedge must be overcome before the frictional strength can be mobilized when
the gap between the two wedges is closed. Only after this gap-closure deformation has
taken place, will the normal stress, symbolized by the spring, be activated and a strain-
dependent effective stress builds up to create a frictional resistance. In the low confine-
ment range, the stress path will retract after reaching the cohesive strength surface as
illustrated in Figure 1b. In fact it is the effective normal stress σ

0
nðεÞ causing a gradual

development of the frictional strength component (Figure 3). Martin & Chandler
(1994) demonstrated that the frictional strength component of granite is only mobi-
lized after a significant amount of the rock’s cohesive strength is lost. Consequently, for
brittle failure of rocks at low confinement theMohr-Coulomb andHoek-Brown failure
criteria must be written in the form of Equation 2 and Equation 3, respectively. In
Equation 2 and Equation 3, the strength component (1) is the plastic strain dependent
cohesive strength, and the strength component (2) is the plastic strain dependent
frictional strength.
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Figure 2 Bilinear envelope for stiff clay (developed as a function of axial strain) illustrating transition
from mostly cohesive (I) to an almost exclusively frictional yield mode (II) (modified after
Schmertmann & Osterberg, 1960). Ci and Cr, represent the initial and residual cohesion,
respectively.
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τ ¼ c εð Þ|{z}
1

þσn εð Þ tan�|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}
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ð2Þ

σ1
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¼ σ3ðεÞ
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þ
 

s|{z}
1

þmσ3 εð Þ =σc|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}
2

!0:5

ð3Þ

2 BRITTLE FAILURE OF ROCK

The laboratory testing of rocks is traditionally carried out to determine the laboratory
samples peak strengths i.e. UCS; however, it is well known that in low porosity
crystalline rocks, three distinct loading stages can be identified (Martin & Chandler,
1994): (1) crack initiation, (2) unstable crack growth, i.e., crack coalescence, and
(3) peak strength (Figure 3 and Figure 4).

Laboratory-scale observations have indicated that tensile cracking is dominant
mechanisms during the brittle failure of hard rocks. A most important element of
the tensile induced cracking process is that the (normal) stresses at points of
friction mobilization are not constant. In other words, the effective normal stress,
σn at the contact points changes gradually as the disintegrating rock mass is deformed
(Figure 3).

Hajiabdolmajid (2001) demonstrated that the brittle failure process of rock masses
in a low confinement condition can be modeled using a continuummodeling approach
called cohesion weakening-frictional strengthening (CWFS) model. In this model, the
mobilized strength components (cohesive and frictional) are plastic strain (damage)
dependent (Figure 3, and Figure 4). In Figure 3, εpc and εpf are the plastic strain (damage)
levels necessary for cohesion loss and frictional strengthening, respectively.

Failure of underground openings in hard rocks is a function of the in situ stress
magnitudes, the mining-induced stress, and the degree of natural fracturing (jointing)
of the rock mass. At low in situ stress magnitudes, the continuity and distribution of the
natural fractures in the rock mass control the failure process. However, at elevated stress
levels, the failure process is affected and eventually dominated by new stress-induced
fractures growing preferentially parallel to the excavation boundary. This fracturing is
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Figure 3 Strain-dependent cohesive and frictional strength mobilization during the brittle failure
process of rock.
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generally referred to as brittle rock failure by slabbing or spalling. In-situ, the act of
excavation removes some or all of the confining pressure and gives rise to circumstances
in which not all strength components are always equally mobilized (i.e. they are not at
their maximum effectiveness) in all stages of the failure process (Figure 4).

Figure 4a illustrates the concept of non-simultaneous mobilization of the strength
components as functions of induced damage. Figure 4b compares the mobilization of
the strength components in a compression test with the one around a circular tunnel in
hard rocks at different stages of the loading process. The pre-peak stress-strain curve in
uniaxial loading of the hard rocks in Figure 4a shows three distinct stages (I) crack
initiation, (II) unstable crack growth, i.e., crack coalescence, and (III) peak strength.
The crack initiation stress level corresponds to the start of cohesion loss process by
micro-cracking inside the sample. In Figure 4a, ci and cr represent the initial and
residual cohesion, respectively.

3 COHESION WEAKENING-FRICTIONAL STRENGTHENING
(CWFS) MODEL

Due to the limitation of the continuum modeling, the plastic strain dependency of
effective confinement cannot be directly considered. However, the effect of this
dependency can be represented by plastic strain dependency of the frictional strength
component (σntan�) in the CWFS model by making friction angle (ϕ) a plastic strain-
dependent property (Hajiabdolmajid, 2001). The CWFS model is characterized by its
yield function, strengthening/weakening functions, and flow rule. An effective plastic
strain parameter, εp defined by Equation 4 was used to represent the accumulated
plastic strains and the weakening/strengthening parameters (i.e. εpc and εpf in Figure 3).
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Figure 4 Strain-dependent mobilization of the strength components in laboratory and in situ. Note that
the frictional strength may need higher levels of damage in order to reach its full mobilization,
ci and cr represent the initial and residual cohesion, respectively.
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The parameter εp is calculated from the principal plastic strain increments and is
essentially a measure of the plastic shear strain (Hill, 1950; Vermeer & de Borst,
1984). Equations 5 and 6 express the adapted Mohr-Coulomb failure criterion used
in the CWFS model.

εp ¼
ð ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2
3
ðdεp1dεp1 þ dεp2dε

p
2 þ dεp3dε

p
3Þ

r
dt ð4Þ

where dεp1 dε
p
2 and dεp3 are the increments of principal plastic strains.

τ ¼ c εpc
� 

σn tan� εpf

� �
ð5Þ

f σð Þ ¼ f c; εpð Þ þ f tan �ð Þ; εp
� �

σn ð6Þ

The general shapes, representing cohesion weakening and frictional strengthening as a
function of plastic strain can be expressed by the following equations:

f c; εpð Þ ¼ ðci � crÞ exp � εp

εpc

� �2
" # !

þ cr ð7Þ

f tan �ð Þ; εp
� �

¼ 2

ffiffiffiffiffiffiffiffiffi
εpεpf

q
εp þ εpf

σn

0@ 1Atan� if εp ≤ εpf

tan� if εp ¼ εpf

8>>><>>>:
9>>>=>>>; ð8Þ

4 AECL MINE-BY EXPERIMENT

Between 1990 and 1995Atomic Energy Canada Limited (AECL) carried out aMine-by
Experiment in Manitoba, Canada. This well documented experiment involved the
excavation of a 3.5-m-diameter circular test tunnel in massive granite (Read, 1994).
The primary objective of the experiment was to investigate brittle failure processes. To
achieve this objective the tunnel was excavated by 0.5 to 1 meter rounds using a line-
drilling technique and displacements, strains, stress changes and micro-seismic emis-
sions were monitored with state-of-the art instruments. Martin et al. (1997) reported
observations of the brittle failure process resulting in classic V-shaped notches, in the
region of maximum compressive stress (Figure 5).

Read (1996) showed in an extensive characterization report of the damage zone
around the tunnel that the extent of the compressive stress-induced damage was
confined to the notch regions. Outside the notch little damage could be visually
observed. Based on low P-wave velocities and acoustic emission measurements, Read
(1996) noted that the tensile zones in the side walls of the tunnel were damaged, even
though no cracking or fracturing could be visually observed.

One of the objectives of theMine-by Experiment was to assess the predictive capability
of numericalmodels in capturing the extent and shape of the failed zone. For this purpose,
the in situ stresses near the tunnel were determined accurately: σ1 = 60 ± 3MPa,
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σ2 = 45 ± 4MPa, σ3 = 11 ± 2MPa (Martin&Read, 1996). Extensive laboratory testing
was carried out and the Hoek-Brown failure parameters were defined: (σc = 224MPa,
m = 28.11, s = 1).

This failure criterion is shown in Figure 6 together with the stress required to initiate
damage (acoustic emissions) in the laboratory (σci = 71 ± 1.5 σ3) and in situ (σ1 – σ3 =
70MPa). Given the well-defined stress state, the simple circular geometry of the
excavation, the essentially intact, massive granite, predicting the extent of failure
should be a trivial task. However, as many attempts (Martin et al., 1999) have
shown and will be documented below this is not the case.

5 MODELING BRITTLE FAILURE-AECL MINE-BY TUNNEL

The common approach to simulate brittle rock failure is to adopt an elastic-brittle-
plastic or strain softening model (Figure 7).

Table 1 indicates Lac du Bonnet granite parameters derived for theMine-by Experiment
in Lac du Bonnet granite by Martin (1997). The rock mass strength parameters provided
above are used to explore the post-peak response for modeling the brittle failure observed
in the Mine-by tunnel. This approach is then compared to a strain-dependent strength
mobilization model (CWFS) utilizing the numerical code FLAC 2D.

0
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75
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Figure 5 Shape of the failed zone observed around the circular test tunnel. Also shown are micro-
seismic events locations in the notch area (+), and acoustic emission locations (−) in the tensile
failure zone (after Read, 1996).
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5.1 Elastic models

One simple way of estimating the depth and extent of the failed zone is by an elastic
stress analysis determining the induced stresses and comparing them with the rock
mass strength based on GSI. Figure 8 shows the elastic major principal stress
distribution around the test tunnel, which reaches a maximum value of approxi-
mately 150 MPa at the roof. Considering the rock mass uniaxial compressive

Plastic

Strain
Softening

Brittle

σ

ε

Figure 7 Various post-peak responses used in continuum models.
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Figure 6 Hoek-Brown failure parameters for Lac du Bonnet granite, and the stress required initiating
damage (after Martin, 1997).

600 Hajiabdolmajid



strength σcm = 128MPa , this stress is sufficient to create a very thin failed zone in the
region of the notch, which significantly underestimates the depth, and extent of the
actual breakout or failed zone (Figure 5 and Figure 8). One method that is often used
to overcome the limitation of elastic analyses is to simulate the progressive nature of
slabbing and spalling by successive removals of failed elements (Zheng et al., 1989).
This approach was used by Read (1994) and Martin (1997) with different criteria
for element removal but in both cases the depth of breakout zone was overestimated
by a factor of 2 to 3.

Table 1 Lac du Bonnet granite parameters derived for the Mine-by
Experiment in Lac du Bonnet granite by Martin (1997).

Rock Type Lac du Bonnet granite

Intact compressive strength σci = 224 MPa
Intact tensile strength σti = 10 MPa
Hoek-Brown Constant mi = 28.11
Geological Strength Index GSI = 90
Friction angle ϕ = 48°
Cohesive strength c = 25 MPa
Hoek-Brown Constant mb = 19.67
Hoek-Brown Constant s = 0.329
Compressive strength of rock mass σcm = 128 MPa
Tensile strength of rock mass σtm = −3.7 MPa
Rock mass modulus E = 60 GPa
Poisson’s ratio ν = 0.2

Failed Zone Profile

0

25

50125

100

75 MPa

75MPa

σ1= 150 MPa

Figure 8 Major principal stress distribution around the circular test tunnel.
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5.2 Elastic-perfectly-plastic model

An elastic-perfectly-plastic constitutive law includes the effects of plastic straining and
related stress redistribution on the depth of failure, but is hardly appropriate for a
brittle rock because the obvious material weakening is ignored. It therefore provides an
upper bound (minimum depth of failure with stress redistribution). Figure 9 shows the
predicted failed zone for rock without dilation (ψ = 0°), which indicates that this
approach still does not predict the failed zone.

5.3 Elastic-brittle model

In this model the slabbing process is simulated by decreasing the Hoek-Brown para-
meterm and s to very small values in the post peak range to represent (a) a rapid loss in
cohesion of the rock mass to about 20% of peak, and (b) a reduction in friction to the
rock basic friction angle.

Figure 10 shows results from FLAC 2Dwithmr = 1 and sr = 0.01. As with the elastic-
perfectly-plastic model, this approach underestimates the depth of failure. However, it
overestimates the lateral extent of failure in the roof. Read &Martin (1996) combined
this approach with an element removal scheme, which over predicted the depth and
extent of failure by a factor of 2.

In summary, the conventional approaches commonly adopted for rock failure
modeling all failed to predict both the shape and extent of the failed zone that
developed around a circular tunnel in massive, brittle granite. None of these tradi-
tional approaches could be used to predict the failed zone a priori with any degree of
confidence.

Failed elements in shear

Failed Zone Profile

Figure 9 Extent of damage with an elastic-perfectly-plastic constitutive model; * indicate elements
presently in the yielding state in shear, + indicate elements that previously yielded.
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6 COHESION WEAKENING-FRICTIONAL STRENGTHENING
MODEL (CWFS MODEL)

The plasticity model in FLAC 2D was used to study the effect of non-simultaneous
mobilization of the frictional and cohesive strength components on the mobilized
strength of rock under various loading conditions (Hajiabdolmajid, 2001). In CWFS
model the plastic strain limits at which the cohesive component of strength reaches a
residual value, and the frictional strength component mobilizes are two material proper-
ties that in reality depend primarily on heterogeneity and grain characteristics. However,
they should be calibrated on laboratory and in situ failure cases. For the Mine-by tunnel
model, the laboratory damage-controlled tests on Lac du Bonnet granite reported by
Martin & Chandler (1994) were used to establish the plastic strain limit for cohesion
loss. From back analyses of the failure zone by slabbing around the Mine-by tunnel, it
was found that the plastic strain (or damage, εpc ) necessary for the destruction of the
cohesive strength is in general lower than the plastic strain required (i.e. εpf ) for the full
mobilization of the frictional strength. For Lac du Bonnet granite the strain-dependent
cohesive and frictional strength mobilization were linearized as illustrated in Figure 11
and Figure 12 and introduced into the continuum modeling code FLAC 2D.

Hajiabdolmajid (2001) argued that while the plastic strain limit for cohesion loss can
be considered a true material property, the circumstances (strain limit) under which the
frictional strength reaches its full mobilization depends to some extent on the loading
system characteristics (geometry and loading rate). He attributed the very low strength
observed around theMine-by tunnel to a delayedmobilization of the frictional strength
(when εpf 〉ε

p
c ), compared to the high strength obtained in the laboratory compression

tests in which the frictional strength reaches its full mobilized capacity with less damage
or cohesion loss.

The plastic strain limits and the strength parameters listed in Table 2 were used to
simulate the brittle failure of Lac du Bonnet granite, near the Mine-by tunnel. The

Failed elements in shear

Failed Zone Profile

Figure 10 Extent of damage with an elastic-brittle constitutive model with mr=1 and sr=0.01.
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cohesion was reduced from its initial peak value of 50MPa to its residual value 15MPa
when εp ¼ εpc ¼ 0:002. The initial cohesion was taken as 22% of UCS or the antici-
pated long-term cohesion without friction mobilization. Dilation was held constant at
30°, and the tension cut off was 10 MPa. Figure 13 shows the simulated failed zone,
using the CWFS model with the parameters listed in Table 2.

Figure 13 shows FLAC 2D result using the material properties in Table 2 and the
CWFS modeling approach indicating the spalled areas around the Mine-by tunnel.
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Despite several simplifications, such as ignoring stiffness softening, the predicted
depth and extent of the failed zone is in excellent agreement with the measured failed
zone shown in Figure 5 and Figure 13. The non-symmetry in observed notch shapes in
the roof and floor is attributed to excavation effects (muck in the floor, Martin, 1997).
As expected the induced damage decreases when moving from the tunnel boundary
toward the notch tip (Figure 14).

This is in general agreement with the characterization results reported by Read
(1996) which demonstrated that outside the notch the rock mass was essentially
undamaged.Most importantly, this approach properly predicts the arrest of the failure
process that is difficult if not impossible to simulate with traditional models. Various
observations suggest that once the maximum depth of the spall has been achieved, they
remain stable due to more complicated involvement of both tensile and probably shear
failure at the notch tip (Martin, 2014) leading to the arrest of progressive brittle
fracturing of the rock. Using the CWFS concept, the arrest of the observed spalling

Table 2 Parameters of cohesion weakening-frictional strengthening
model.

Cohesion (MPa) Friction angle Dilation angle

Initial 50 0° 30°
Residual 15 48° 30°
Plastic strain εpc ¼ 0:002 εpf ¼ 0:005 zero

Failed elements in shear
Failed elements in tension

Profile of Failed Zone

Figure 13 Prediction of the failed zone around AECL’s Mine-by test tunnel using FLAC 2D and cohesion
weakening-frictional strengthening model, with parameters listed in Table 2; o indicates
elements failed in tension. Contours of plastic strain (i.e. cohesion loss or damage) inside
the notch are shown in Figure 14.
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process after a new, more stable, geometry is reached, can be explained by an increase
in confinement (progressive frictional strengthening), coupled with a decrease in the
induced damage (plastic strain) and thus a decrease in cohesion loss, i.e. arresting of
progressive spalling. In Figure 14 the mobilized frictional strength σn tanð�Þ is calcu-
lated using principal stresses from the FLAC 2D model and the strain dependent
friction angle. Beyond the damaged zone (beyond the notch in the intact rock) where
there is no plastic straining there is no mobilized frictional strength and the cohesive
strength is not affected.

7 BRITTLENESS OF ROCK

In back analyzing the brittle failure of granite around the Mine-by tunnel and the
breakout zone (Figure 14) the initial cohesion (ci = 50MPa) was reduced to its residual
value (cr = 15MPa) when the accumulated plastic strain εp ¼ εpc ¼ 0:002. The frictional
strength neededmore than two times plastic straining (damage) in order to reach its full
capacity ðεp ¼ εpf ¼ 0:005Þ, i.e. the cohesive strength reduces to 30% of its original
value by the time the frictional strength reaches only 40% of its full capacity. Figure 15
demonstrates a simple application of theCWFSmodel in compression tests. Figure 15a
represents a simple linear cohesion weakening process ðεp ¼ εpc ¼ 0:002Þ with a fully
and instantaneous frictional strength mobilization ðεpf ¼ 0Þ , using the material proper-
ties of the Lac-du Bonnet granite (Table 2).

A peak strength UCS=260 MPa was obtained which is about 15% higher than
the uniaxial compressive strength obtained in the laboratory compression tests

Frictional Strength (MPa)
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Notch Profile
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c> cr

c=c iεp
=0

c = cr

c = cr

c = cr
εp= 0.005

Figure 14 Contours of plastic strain (full cohesion loss at εpc ¼ 0:002 to cr). The progressive frictional
strengthening inside the notch leading to failure arrest at the notch tip is illustrated by the
profile of (ðσn tan�Þ) superimposed on the contour plot.
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(UCS=224 MPa in undamaged samples of rock). Figure 15b demonstrates the same
tests as in Figure 15a using a non-simultaneous mobilization of the cohesive and
frictional strength components. In both scenarios (A and B in Figure 15b), the material
properties are the same (Table 2) except for the plastic strain limit at which the
frictional strength is fully mobilized ðεpf Þ differs. In test series B, the strain limits are
equal ðεpc ¼ εpf ¼ 0:002Þ. In test series A, the plastic strain limits are chosen in accor-
dance with the results of back analysis of the breakout zone around theMine-by tunnel
(εpc ¼ 0:002 and εpf ¼ 0:005).

A much lower strength (see Figure 15b) is obtained in the case of non-simultaneous
frictional strength mobilization which is in the order obtained for the crack initiation
stress level, (i.e. about 0.45 of the UCS; Martin, 1997, 2014). Of particular interest in
Figure 15b (Tests A) is the stress-strain curve when two different strain limits for
cohesion weakening and frictional strengthening are chosen. A more brittle post-
peak behavior is obtained when εpf 〉ε

p
c , i.e. a non-instantaneous/non-simultaneous

mobilization of the frictional strength (CWFS concept) can be used to define the entire
failure process (crack initiation, unstable crack growth, peak and post-peak strengths).
This was accomplished by defining a strain-dependent brittleness index (IBε, Equation 9
and insert in Figure 16) using the plastic strain limits εpc and εpf .

IBε ¼
εpf � εpc

εpc
ð9Þ

The strain-dependent brittleness index i.e. Equation 9 explicitly considers the contribu-
tion of the cohesive and frictional strength components during the failure process. This
definition of brittleness implicitly considers the ease of micro-cracking process during
the failure process by considering the rate at which the strength components are
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frictional strengthening ðεpf ¼ 0Þ, and b) with a delayed frictional strengthening.
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mobilized as functions of damage (plastic strain). From the physical point of view the
brittleness indexes as defined by Equation 9 reflects the presence of both tensile and
shear mechanisms during the brittle failure of rocks. The rock mass properties and
loading system characteristics are expected to influence the brittleness (i.e. cohesion
loss and frictional strengthening rates i.e. εpf � εpc ). For instance, two loading systems,
one in laboratory compression test and another around a large underground opening
may rise to different conditions for cohesion loss and frictional strengthening rates.
Fast mobilization of the frictional strength component (or slow cohesion loss rate) is
represented by smaller brittleness numbers. However, the effects of material properties
such as, lithology, fabric, mineralogy, and foliation should also be considered (see
Section 9). This can be better understood by considering the various micro-mechanism
processes involved in initiation, propagation and coalescence of micro-cracks, hard
rocks. Themicro-cracks in hard rocksmay initiate from: pores, point loading, and local
stiffness mismatch, these mechanisms promote a more brittle crack initiation and
propagation, accompanied with less plastic straining (fast cohesion loss and/or slow
friction mobilization rate, i.e. large εpf � εpc ), leading to a minimum contribution of
(micro) friction (frictional strengthening). The processes, which involve the initiation
and propagation of cracks at the grain boundaries (frictional cracks), cleavage, folia-
tion, and soft inclusion, most likely need more plastic straining, and higher degree of
(micro) frictional strengthening (i.e. small εpf � εpc , less brittle failure and higher mobi-
lized frictional strength).

The strain sensitivity of the mobilized strength and the entire failure process
(pre- to post-peak stages) to the non-simultaneous mobilization of the strength
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components were further investigated using the non-linear functions for cohesion
loss and friction mobilization. Figure 16 illustrates the results of the simulation of
the uniaxial compression tests using various rates for cohesion loss and frictional
strengthening (εpc and εpf in insert in Figure 16). In all these models, the material
properties remain the same, however, both the mobilized strength (peak strength)
and the entire stress-strain curve (pre- to post-peak) have been affected by changing
the strain limits (εpc and εpf ). The most brittle behavior is associated with the lowest
cohesion loss strain limit (small εpc , i.e. high cohesion loss rate) and highest frictional
strength strain limit (large εpf , i.e. low strengthening rate).

8 FAILURE ENVELOPE

The strength envelopes that are commonly used to assess stability of underground
openings are either the linear Mohr-Coulomb envelope or the non-linear Hoek-Brown
envelope with a downward curvature. However, the CWFSmodel results in an upward-
bent bilinear envelope of the form shown in Figure 17 and Figure 18. Figure 17 was
obtained by tracking the history of several grid points located in the V-shaped notch
region of the test tunnel in Figure 13. The peak strength of this region is only a
function of the rock mass cohesion while the post-peak strength degrades toward the
residual frictional strength. Figure 17 shows that some points (open squares) in the
notch region have reached the residual level with others still possess higher cohesion
strength component.

The notion that the yield envelope for cohesive materials is bilinear is not new.
Schofield & Worth (1966) demonstrated that this type of yield envelope was appro-
priate for stiff over-consolidated clays and used this notion to lay the foundations for
critical state soil mechanics. Taylor (1948) also suggested this type of yield envelope for
interlocked sands (Figure 19).

Figure 20 compares the strength envelopes associated with various brittleness indices
(illustrated in insert in Figure 19). The in situ strength envelope is illustrated by the
bilinear failure envelope which corresponds to IBε =1.5 (characterizing the failure
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Figure 17 Bilinear yield envelope developed resulting from the cohesion weakening frictional strength-
ening model. C*=2c.
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process of the Mine-by tunnel). The significant effect of the simultaneous-instanta-
neous frictional strengthening (IBε = −1) can be noticed by realizing how much (about
160MPa) the peak strength has increased at σ3 = 0when compared with the mobilized
strength when the frictional strengthening is delayed (i.e. εpc ¼ 0:002 εpf ¼ 0:005,
IBε=1.5, in situ bilinear) in Figure 20.

9 DEPTH OF SPALLING

It was found that the brittleness has a direct relationwith the depth of spalling or failure
(i.e. df in Figure 21), which is expressed by Equation 10. A similar relationship was
found for the lateral extent (i.e. α in Figure 21 and Figure 22) of breakout zone as
expressed by Equation 11.
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df ¼ 25ð1þ IBεÞ0:5 ð10Þ
α ¼ 25ð1þ IBεÞ0:4 ð11Þ

Figure 22 illustrates the associated brittleness indices with the measured depths of
failure in the roof and floor around the Mine-by tunnel and for the roof when tunnel
pass through granodiorite. It is expected that different rocks possess different strain
limits for cohesion loss and frictional strengthening (different brittleness IBε, i.e. ε

p
f � εpc ).

Thus, creating the same opening in the same far field stress environment inside different
rocks with different brittleness will lead to different failed zones. The Mine-by tunnel
nicely illustrates this where the tunnel passes from granite to granodiorite of the Lac du
Bonnet formation. Figure 23a depicts the distribution of gray granite and granodiorite

df

α: Extent Angle

df: Depth of Failure

ra
α

Figure 21 Geometric characteristics of the failed zone used in Equations 10 and 11.
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on an unfolded perimeter map of the Mine-by Tunnel. Figure 23b illustrates the depth
of the breakout zone in contour form (in the roof and floor) on an unfolded perimeter
map. Spalling (depth of notch) is almost eliminatedwhere the tunnel passes through the
granodiorite. Figure 23c illustrates the brittleness indices associated with the observed
depths of failure. The brittleness indices associated with the observed extent angle (α),
are also shown (by squares).

Using the concept of brittleness index (IBε) one can explain the differences observed,
between the granodiorite and granite of Lac du Bonnet around the Mine-by tunnel,
while the in-situ, stresses and environmental conditions can be considered constant
along the length of tunnel (Figure 23b). The stability in the granodiorite or the slabbing
in the granite can be related to differences in their brittleness (IBε). The two materials
(granite and granodiorite) are reported to have very similar strength and deformational
(laboratory) properties but different grains size distributions (granite is coarser than
granodiorite). In the granodiorite the size of all grains is roughly equal (1 mm) and
somewhat more uniformly distributed. It is likely that the presence of larger grains in
granite contributes to a faster cohesion loss rate (with straining) and/or slower fric-
tional strengthening (i.e. higher brittleness) in-situ. Therefore, themobilized strength of
the granodiorite in situ is higher than the mobilized strength in-situ in the granite
(Figure 20, and Figure 22). This cannot be simulated and considered in the models in
which the failure initiation and arrest are simulated using purely stress-based criteria. It
follows that the brittleness (IBε) is a dominant factor, often more than stress, in
controlling the breakout zone shape. This explains the failure of methods adopted by
many researchers in establishing stress related breakout prediction models.

In mapping the failed zones around the Mine-by tunnel, it was noticed that the
breakout zone in the floor was smaller than the one in the roof (Figure 5 and Figure 13).
Figure 22 illustrates the associated brittleness indices with the measured depths of
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failure in the roof and floor around the Mine-by tunnel. The difference was explained
by the effect of muck pressure and/or the effect of having two different stress paths
followed by the regions in the floor and in the roof (Martin, 1997). In order to clarify
this uncertainty, a three-dimensional implication of the CWFS model was used
(Figure 24) to predict the formation of the failed zones around the Mine-by tunnel in
which the non-alignment of the tunnel axis with the axial stress (which is the cause for
the stress path difference between the roof and floor) is considered. Figure 24 illustrates
the formation of the failed zones in the roof and floor in a FLAC 3D model, which are
similar. Hajiabdolmajid & Kaiser (2003) considered the effect of muck pressure in
limiting the progression of the spalling zone in the invert using the CWFS concept. They
argued that support pressure around the openings in hard brittle rocks aids the rock to
mobilizemore of its strength capacity during the failure process, and consequently limit
the extent of progressive spalling.

In summary the CWFS modeling approach implicitly captures the complex phenom-
ena involved in the brittle failure of rock i.e. transition from continuum to discontinuum
due to the formation of tensile cracks which precedes a kinematically feasible failure in
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low porosity hard rocks, it also captures the arrest of progressive brittle fracturing
process. Diederichs et al. (2010) adopted the concept of CWFS tomodel the rock spalling
using Hoek-Brown strength parameters. Barton (2014) and Barton & Pandey (2011)
compared the implication of the CWFS modeling concept and Q-system based para-
meters with other conventional strain softening approaches based on Mohr-Coulomb
and Hoek-Brown parameters in FLAC 3D to analyze the underground mining stopes.
They demonstrated that the adoption of CWFSmodel together with the Q-system based
parameters provide the most realistic match to in situ observations.

10 GROUND REACTION CURVES

Ground reaction curves (GRC) are often used in stability analyses of tunnels and for
evaluation of the ground-support interaction (Brown et al., 1983). Most of the pre-
viously reported works in this field use closed form solutions or numerical methods
with simple and often unrealistic material behaviors to calculate the ground reaction
curves for tunnels in hard brittle rocks.

The CWFS model can be used to calculate the ground reaction curves. Figure 25
illustrates the GRCwith the listed parameters in Table 3 which demonstrates the effect
of cohesion loss rate on GRC. Figure 26 illustrates the GRC with the listed parameters
in Table 4, which demonstrates the effect of frictional strengthening rate on GRC.

As can be seen using the same material properties but different brittleness results in a
completely different GRC. This demonstrates the significance of rock brittleness on the

Figure 24 Simulation of the failed zones around the Mine-by tunnel in a FLAC 3D model.
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interpretation and prediction of the observed displacements around openings and
determination of the support system necessary for the excavation stability.

In calculating the ground reaction curves in Figures 25 and 26 a constant dilation
angle (30o) was used. It should be mentioned that using a strain-dependent function
for dilation angle (i.e.ψ (ε)) as it was used for the cohesive and frictional strength

Table 3 The CWFS model parameters used in cases pre-
sented in Figure 25.

Test εpc εpf Dilation angle

A 0.002 0.002 0°
B 0.002 0.002 30°
C 0.0006 0.002 0°
D 0.0006 0.002 30°
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Figure 25 Ground reaction curves and the effect of cohesion loss rate in the CWFS model.

Table 4 The CWFS model parameters in Figure 26.

Test εpc εpf Dilation angle

A 0.0001 0.0 0°,30°
B 0.0001 0.002 0°
C 0.0001 0.002 30°
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components, will affect the induced inelastic strains and displacements in the
failing rocks around the tunnel wall and different ground reaction curves will be
produced.

11 MODELING BRITTLE FAILURE IN JOINTED ROCK

From a practical point of view, the failure of jointed rock masses can be categorized
under two distinct categories. The first category deals with the failure mechanisms,
which are mainly structurally controlled. Failures that involve wedges/blocks along the
intersection of at least two major discontinuities, or the failures that consist of plane
shears and tension cracks in rock slopes belong to these structurally controlled failures.
The most commonly used design approaches, which deal with the design of these
failure mechanisms, adopt stability analyses by various limit equilibrium methods.
The second category of failure includes non-structurally controlled failure surfaces in
which some or the entire failure surface do not pass through discontinuities on the scale
of considered structure. However, often the failure of rock masses involves both failure
along the pre-existing discontinuities and failure of the intact rock (i.e. failure of
smaller intact rock bridges/blocks precedes a kinematically feasible failure of larger
jointed rock mass). For instance, the failure of rock slopes involving the failure of both
intact rock and pre-existing discontinuities are shown in Figure 27.
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displacements in the CWFS model.
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Lajtai (1969) carried out direct shear tests on solid plaster blocks containing two
voids to represent cracks or fracture. The rock bridges between the voids make up
50% of the plane through the voids (Figure 28). The plaster material had a tensile
strength of approximately 1.1 MPa, a uniaxial compressive strength of 4.1 MPa and
a basic friction angle 37°. The test results of Lajtai (1969); shown in Figure 28
illustrate the transition from pre-dominantly cohesive to frictional strength con-
trolled failure. Lajtai’s results showed that at low normal stresses, rock subjected
to direct shear loading, fails by tension-induced damage or cohesion loss and at high
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normal load in shear with full frictional strength mobilization. This data clearly
support the notion of a bilinear failure envelope for brittle and jointed rock masses.
The direct shear test as shown in Figure 28 was simulated, using the continuum-
modeling code FLAC 2D using the CWFS model. Instead of a bilinear model for the
frictional strengths and cohesion loss, a non-linear model for full cohesion loss and
relatively rapid frictional strength mobilization characteristics was adopted
(Hajiabdolmajid, 2001).

Following the implication of the CWFS concept in modeling brittle failure of intact
rocks, similarly, it is argued that in jointed rockmasses the intact rocks along the failure
plane would fail at much smaller strain, followed by mobilization of friction along
fracture surfaces, joints and discontinuities at increasingly larger strain (Figure 29).
Therefore, when failure of jointed rock masses involves failure of intact rock bridges in
low confinement environments, the simultaneous and full mobilization of the cohesive
and frictional strength components cannot be supported. The failure of rock bridges
between discontinuities is known to occur primarily by tensile fracturing. In these
circumstances, the tensile fracturing first destroy the cohesive strength before that the
frictional component of strength can contribute to the mobilized strength (Figure 29).
Thus, conventional modeling approaches either underestimate (c = 0 approach) or
overestimate (simultaneous mobilization of cohesion and friction).
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Hajiabdolmajid & Kaiser (2002) used the CWFS modeling approach to analyze the
stability of rock slopes; they demonstrated that the ultimate stable geometry and the
location of the failure plane within a rock slope are functions of the strain sensitivity of
the rock mass.

Barton (2014) and Barton & Pandey (2011) employed the CWFS modeling concept
and Q-system based parameters for modeling the jointed rock masses in two Indian
underground mines. They concluded that the failure of jointed rock masses occur as a
strain-dependent process, starting with the failure of intact rock bridges, followed by
sliding on the newly formed fracture surfaces (i.e. high roughness and dilation) and
then progresses to surrounding joint sets (usually lower roughness components) and
then to nearby clay-filled discontinuities.

The understanding and implication of the strain dependent mobilization of the
strength components should be considered in the design and stability analyses of
surface and underground excavations.

12 CONCLUSIONS

Brittle failure results from the growth and accumulation of tensile cracks. Around
underground openings this progressive failure process manifests itself in the form of
spalling or slabbing. This transition from continuum to discontinuum behavior is
extremely difficult to capture in numerical models despite advances in discontinuum
modeling. Traditional continuum modeling approaches to this class of problems
assume that the mobilization of the cohesive and frictional strength components is
simultaneous and instantaneous. This approach overlooks a fundamental aspect of
brittle failure, that the formation of tensile cracks precedes failure in shear. The
constitutive model (CWFS model) introduced in this chapter with strain-dependent
cohesion weakening and frictional strengthening implicitly captures these phenomena.
The CWFS modeling approach captured both the notch formation and its stabilization
around AECL’s Mine-by tunnel in Lac du Bonnet granite.

Different rocks are expected to have different strain limits for cohesion weakening
and frictional strengthening. These strain limits for the cohesionweakening-frictional
strengthening model can be established by laboratory tests and from back-analyses of
excavations that have experienced brittle failure. A strain-dependent rock brittleness
was introduced which can be used to describe the pre- to post-failure stages of a
failing rock.

Adopting a continuum modeling approach to model a discontinuum process will
certainly not capture all the subtleties of brittle failure process. However, understand-
ing and implication of the strain dependent mobilization of the strength components
should be considered in the design and stability analyses of excavations in hard rocks as
from the practical point of view what is of paramount importance to the designer is the
maximum extent of brittle fracturing as it is directly related to the support require-
ments. The proposed modeling approach is capable of filling this need reliably.

Where the stability of jointed rock masses is not completely controlled by the
continuous discontinuities (i.e. when intact rock and asperities are involved), the
stain-dependent mobilization of cohesive, frictional and roughness components of
strength provides more realistic analysis approach.
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Chapter 21

Pre-peak brittle fracture damage

E. Eberhardt1, M.S. Diederichs2 & M. Rahjoo1
1Geological Engineering/EOAS, University of British Columbia, Vancouver, Canada
2Geological Sciences & Geological Engineering, Queen’s University, Kingston, Canada

Abstract: This chapter reviews several key milestones in the study of pre-peak brittle
fracture damage in rock, including both experimental and in situ observations and the
conceptual advances that have arisen from these.What is recognized is that the strength
of rock relative to brittle damage and failure mechanisms like spalling is considerably
lower than the peak strength values measured through laboratory testing. Instead, pre-
peak brittle fracture damage parameters such as crack initiation and crack damage
serve as better indicators of the lower and upper in situ strength limits for brittle rocks.
This understanding has led to the development of improved predictive tools for asses-
sing the potential depth of brittle failure around deep underground excavations, as
described in this chapter, together with the important role confinement plays in limiting
and managing the brittle damage and failure process.

1 INTRODUCTION

The past 50 years have seen considerable advances in both our fundamental under-
standing of brittle rock fracture and its application in assessing and safely managing
highly stressed rock. This has been essential for enabling underground mines to reach
unprecedented depths in response to global demands for mineral resources as near
surface resources are exhausted. The Mponeng, TauTona and Savuka Gold Mines
southwest of Johannesburg in South Africa are approaching or have surpassed 4000 m
depth. TheKiddCreek andCreightonMines in northernOntario, Canada are approach-
ing 3000m depth –with in situ stresses where the horizontal stresses are more than twice
the vertical overburden stress. Similarly, transportation and hydroelectric tunnels are
reaching unprecedented depths as infrastructure development increasingly expands into
mountainous regions. The Olmos Trans-Andean Tunnel in Peru experienced overbur-
dens of up to 1930 m. The Gotthard Base Tunnel in Switzerland was constructed with
overburdens of up to 2300 m. The tunnels of Jinping II reached maximum overburdens
of 2525 m.

Rising tomeet these challenges has required a transition in the state-of-practice toward
a more detailed accounting of the complexity of pre-peak brittle fracture damage and
failure under higher stresses. During excavation, openings in highly stressed rock masses
experience significant strength degradation and bulking due to stress-induced brittle
fracturing, slip along discontinuities and surface buckling leading to extensive deforma-
tion and loading of the support system. This has significant implications for support
design.



It was the development of the deep level gold mines in South Africa in the 1960’s that
bridged the study of brittle fracture in rock to earlier studies involving metals and glass,
for example those by Griffith (1920, 1924). These led to studies of brittle fracture
propagation under compression and stable and unstable crack propagation as a proxy
for spalling and rockbursting (e.g., Cook, 1965). The second step-change came in the
1990’s and 2000’s with research conducted for nuclear waste repositories examining
excavation damaged zones (EDZ) and spalling failures in test tunnels (e.g., Martin,
1997). This work has continued to gain momentum as the lessons learned from under-
ground research laboratories have come full circle with new understanding and prac-
tical applications for deep mining (Kaiser et al., 2000)and deep tunneling (Diederichs,
2007) with respect to designing support systems to manage brittle failure and safely
construct the next generation of deep underground excavations.

This chapter will review several key milestones in the study of pre-peak brittle
fracture damage in rock, including both experimental and in situ observations and
the conceptual advances that arose from these.

2 MECHANISTIC UNDERSTANDING

A common starting point for discussing pre-peak brittle fracture damage in rock begins
with the work of Griffith (1920, 1924). This built on findings by Inglis (1913) and
Hopkinson (1921) who showed that the presence of an elliptical crack in a stressed plate
results in localized stress concentrations at the tips of the crack. Hopkinson concluded
that these stress concentrations would cause a material to fail at a lower applied stress
than the samematerial without a crack. Griffith (1920, 1924) drew on this work to show
whymaterials fail at stress levels lower than their theoretical strength, setting the basis for
mechanistic theories that explain brittle rock failure through the initiation of damage and
propagation of fractures owing to material heterogeneity.

2.1 Damage initiation

At the atomic scale, damage initiation is considered to occur through the tensile
breakage of bonds resulting in the formation of new crack surfaces; in compression,
an atomic structure can theoretically generate infinitely large resistance as there is no
limit to the magnitude of the repulsive forces between adjacent atoms (Figure 1). The
two newly developed tensile surfaces require a certain amount of energy as surface
energy, which is satisfied from the release of strain energy. On this basis, the theoretical
tensile strength of materials can be calculated as:

T ¼
ffiffiffiffiffiffi
γE
do

s
ð1Þ

where T is the theoretical tensile strength, γ is the surface energy, and do is the atomic
spacing. Assuming typical values for the surface energy and atomic spacing, this
relationship simplifies to:

T ¼ E
10

ð2Þ
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Assuming a Young’s modulus of 50 GPa, for example for granite, this would suggest
a theoretical tensile strength of 5GPa, which is at least three orders of magnitude higher
than experimental values.

Recognizing this discrepancy in the failure of glass, Griffith (1920) postulated that
the weakness of brittle materials relative to their theoretical strengths is due to the
presence of small discontinuities or flaws that act as stress concentrators (these are
commonly referred to as Griffith cracks). He then proposed an energy balance between
the energy input absorbed to create the new crack surfaces and the energy liberated by
the release of elastic strain energy as the regions adjacent to the crack become unloaded.
This can be written in terms of the tensile stress for fracture, To, as:

To ¼
ffiffiffiffiffiffiffiffi
2γE
πa

r
ð3Þ

where γ is the surface energy (the factor of 2 reflects that two new free surfaces have been
formed), E is the Young’s modulus, and a is the crack half length. Reformulating
Equation 3 for a biaxial compressive stressfield, Griffith (1924) surmised that the applied
compressive stress, Co, required for fracture is eight times that required for tension, or:

Co ¼ 8 �
ffiffiffiffiffiffiffiffi
2γE
πa

r
ð4Þ

This relationship was later modified by McClintock & Walsh (1962) to allow for
normal stress and friction acting across the surface of the closing crack, and by Hoek
& Bieniawski (1965) who defined a modified Griffith fracture locus in terms of a
parabolic Mohr envelope.
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Figure 1 Development of interatomic forces due to loading. In extension, failure occurs when the
attractive force F is exhausted at the theoretical tensile strength T. In contrast, compressional
displacement is countered by an inexhaustible repulsive force.
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In deriving Equation 4, Griffith (1924) noted that the presence of inclined cracks can
give rise to localized tensile stress gradients even when the applied stress is compressive.
This was further illustrated by Lajtai (1971) who calculated the stresses around an
inclined elliptical crack in a compressive stress field and showed that: i) tensile stress
concentrations develop locally close to the crack tip, and ii) the crack orientation at
which the highest tensile stress concentrations develop is at 30° to the maximum
principal stress (Figure 2). Although the latter may be the first to initiate, it may be
assumed that the crack population is randomly distributed and orientated so that with
incremental increases in the applied load, other crack angles will become critical.

Griffith (1920) also noted that Equation 3 indicates thatmaterial strength is inversely
proportional to the square root of the crack length, and therefore, the smaller the crack
length the stronger the material should be. Numerous studies have confirmed that the
peak strength of rock decreases inversely with the square root of the grain size (Brace,
1961; Olsson, 1974; Fredrich et al., 1990; Wong et al., 1996; Hatzor & Palchik, 1997;
Eberhardt et al., 1999c; Nicksiar & Martin, 2013). In these cases, the Griffith crack
length can be taken as being roughly proportional to the grain size, whereby the grain
boundary is assumed to act as the stress concentrating crack. Simmons & Richter
(1976) and Kranz (1983) divide the petrographic characteristics of Griffith cracks into
four types: i) grain boundary cracks, ii)intragranular cracks which lie within the
mineral grain, iii) intergranular cracks which extend from a grain boundary crossing
into another grain, and iv) multigranular cracks, which cross several grains and grain
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boundaries. Direct observations of microfractures using either optical microscopes or
scanning electron microscopes (SEM) suggest that damage initiation usually occurs
along grain boundaries with secondary initiation occurring within weaker grains along
cleavage planes and at points where harderminerals induce a point load on neighboring
softer minerals (Brace, 1961;Wawersik&Brace, 1971; Brace et al., 1972; Bombolakis,
1973; Sprunt & Brace, 1974; Mosher et al., 1975; Tapponnier & Brace, 1976; Kranz,
1979).

2.2 Crack propagation

Once damage initiates, the crack will then propagate in either a stable or unstable
fashion depending on how much energy is available to drive the crack extension
onwards. Examination of Griffith’s criterion (Equation 4) reveals that a number of
factors may influence the strength threshold of a Griffith crack, most notably crack size
and crack orientation. This was confirmed by Mosher et al. (1975) who found that
grain size (i.e. crack length) and crack orientation determines which cracks propagate
and which do not. However, Brace & Bombolakis (1963) note that although Griffith
theory specifies the stress at which cracks will initiate, it provides no subsequent
information on the rate or direction of crack propagation. They then go on to explain
that in tension, the most critically stressed cracks are those aligned perpendicular to the
applied stress and that crack propagation will likewise occur perpendicular to the
applied stress. In compression, the most critically stressed cracks are those inclined at
30° to the direction of compression, but propagation occurs parallel to the maximum
applied stress. In their experiments, this took the form of “wing cracks”, where crack
growth would initiate at the tips of the inclined crack and then rotate to propagate in
the direction of the maximum applied stress (Figure 3).

In effect, crack propagation occurs in the direction of the major principal stress (σ1);
i.e., crack face opening occurs in the direction of the minor principal stress (σ1). This has
been observed experimentally in a variety of brittle materials including glass (Brace &
Bombolakis, 1963; Hoek & Bieniawski, 1965), hard acrylics (Nemat-Nasser & Horii,

σ σ
(tensile) (compressive)

crack
propagation

crack
propagation crack

opening

crack
opening

Figure 3 Direction of crack propagation (normal to crack opening) for critically oriented cracks under
tensile and compressive applied stresses.
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1982; Cannon et al., 1990), plaster (Lajtai, 1971), ice (Schulson et al., 1991), and rock
(Wawersik & Fairhurst, 1970; Peng & Johnson, 1972; Huang et al., 1993). Pollard &
Aydin (1988) explain this directionality as cracks propagating to align themselves with
the direction that produces the maximum propagation energy (otherwise known as the
energy release rate, G, which is the energy dissipated per unit of newly created crack
surface area).

Bieniawski (1967a) further discussed the energy release rate,G, in terms of stable
and unstable crack propagation. In formulating the critical condition for fracture,
Griffith made assumptions which effectively ignored the behavior of the moving
crack. Griffith’s energy balance accounted for the stored elastic strain energy and
the crack surface energy only. Bieniawski (1967a), however, noted that several
other forms of energy loss occur through which part of the elastic strain energy is
transformed:

• kinetic energy;
• plastic energy (including visco-plastic losses);
• energy dissipated on the breakdown of atomic bonds at the tips of extending cracks;
• energy changes due to excavation (e.g., heat removal due to ventilation, etc.).

Among these, kinetic energy associated with the movement of the crack faces is
considered the more significant (outside of what can be controlled through the tunnel-
ing or mining operations). Craggs (1960) showed that the stress required to maintain
crack propagation decreases as the crack velocity increases. Bieniawski (1967a) empha-
sized that this wasn’t accounted for in Griffith’s energy balance and turned to crack
velocity as a means to distinguish between stable and unstable crack propagation
(Figure 4). Stable crack propagation is the process by which crack extension occurs
in step with a load increase; i.e., the energy released from the stored elastic strain energy
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occurs at the same rate as the energy used to form additional crack surface area. Hoek
& Bieniawski (1965) showed this through experiments on inclined cracks in glass
plates where the lengths of the stable cracks were found to increase linearly with the
applied uniaxial compressive stress (Figure 5). Crack propagation becomes unstable
when the relationship between crack extension and loading ceases, and other quantities
like crack growth velocity start to play an important role (Bieniawski, 1967a). In such
cases, the crack will propagate uncontrollably even if no further increase in load is
applied (i.e., under constant load), and failure will quickly follow.

2.3 Influence of confinement

McClintock&Walsh (1962) considered the case of a confining stress being applied to
an inclined Griffith crack loaded in compression. For this, they assumed the crack
would partially close resulting in frictional forces that in turn would reduce the stress
concentrations at the ends of the crack (see also Lajtai, 1971). In Griffith theory, the
crack is assumed to be open and no forces are carried across the faces of the crack.
After modifying the Griffith criterion to account for friction and normal and shear
stresses, McClintock &Walsh (1962) demonstrated that the effect of confining stress
on crack initiation and propagation is considerable. Wawersik & Fairhurst (1970)
noted that the addition of moderate confining pressures could eliminate the develop-
ment of slabbing in the compression testing they carried out. As noted by Bieniawski
et al. (1969), this has practical implications as rock under higher confining pressures
should be less prone to spalling and violent rupture than those under uniaxial
compression.

The importance of confinement in limiting crack propagation has been demonstrated
experimentally and numerically by various authors, as summarized by Hoek&Martin

0 100

crack
initiation

rupture
L

2c

1.2

1.0

0.8

0.6

0.4

0.2

0
200 300

Applied Major Principal Stress, σ1 (MPa)
400 500 600

σ1
R

at
io

Le
ng

th
 o

f P
ro

pa
ga

tin
g 

C
ra

ck
, L

In
iti

al
 C

ra
ck

 L
en

gt
h,

 2
c

Figure 5 Relationship between stable crack length and applied uniaxial compressive stress for testing of
inclined crack in glass plate. Modified from Hoek & Bieniawski (1965).

Pre-peak brittle fracture damage 629



(2014). Figure 6a presents a comparison they carried out specific to the initiation and
propagation of wing cracks from a Griffith crack subjected to both confinement and
compressive loading (compiled fromHoek, 1965b; Ashby&Hallam, 1986; Kemeny&
Cook, 1987; Germanovich & Dyskin, 1988; Martin, 1997; Cai et al., 1998). These
results show that a confining stress of just 10-20% of the major principal stress can
reduce the length cracks propagate by more than 80%. Similarly, Eberhardt et al.
(1998a) showed in a numerical study of stress shadows arising in a multiple crack
array, that although interactions between adjacent cracks may help promote crack
initiation, the presence of confining stress subsequently suppresses the extent these
cracks can propagate (Figure 6b). The results from their study suggest that rock under
high confinement will contain a large number of small cracks, contributing to volu-
metric dilation, friction mobilization and plastic shear behavior with failure; whereas
rock under low confinement will exhibit fewer but longer cracks, contributing to
geometric dilation, spalling and slabbing.

3 EXPERIMENTAL UNDERSTANDING

Early studies investigating brittle fracture damage utilized controlled experiments
involving individual inclined cracks embedded in thin plates of glass, acrylic and plaster
to directly observe crack initiation and propagation responses to applied compressive
loads. Focus was primarily placed on linking these to Griffith’s theory. These were soon
followed by studies involving uniaxial compression testing of brittle rock to investigate
the evolution of brittle fracture damage in the form of stress-induced microfracturing
(e.g., Brace, 1964; Bieniawski, 1967b; Wawersik & Fairhurst, 1970; Lajtai & Lajtai,
1974; Martin & Chandler, 1994; Eberhardt et al., 1998b; Diederichs, 2003;
Diederichs, 2007). The general consensus of these studies has been that several stages
of brittle fracture damage behavior can be identified, which lead to macroscopic failure
of rock under low confinement.

3.1 Key thresholds for pre-peak brittle fracture damage

Brace (1964) and Bieniawski (1967a) postulated that the brittle failure of rock involves
several stages, which can be identified in the measured stress-strain response of rock
undergoing compressive loading. These are (Figure 7):

1) crack closure;
2) linear elastic deformation;
3) crack initiation and stable crack propagation;
4) crack damage and unstable crack propagation;
5) failure (peak strength); and
6) post-peak softening and rupture.

Crack closure occurs during the initial stages of loading when pre-existing cracks
orientated roughly normal to the applied load close. During crack closure, the stress-
strain response is non-linear. The extent of this non-linear region is dependent on
the initial crack density and geometrical characteristics of the crack population. Once
the majority of pre-existing cracks have closed, linear elastic deformation takes place.
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The Young’s modulus and Poisson’s ratio are calculated from the linear portion of the
stress-strain curve that follows.

Crack initiation signifies the stress level where grain-scale microfracturing begins.
Crack propagation at this point is stable with cracks propagating parallel to the applied
axial load (Bieniawski, 1967b). Eberhardt et al. (1998b) and Diederichs et al. (2004)
note that crack initiation is influenced by heterogeneity, and therefore the first cracks to
initiate, not associated with sample end effects, will be those most critically aligned or
involving statistical outliers of localized weak links within the sample. Hallbauer et al.
(1973), for example, found that point loading of grains by other grains was a common
source of crack initiation, and it follows that weaker minerals adjacent to stronger
minerals would be the source of the first intergranular cracks. Accordingly, Diederichs
et al. (2004) and Diederichs (2007) suggest that a more representative measure of crack
initiation as a damage parameter is the detection of the onset of continuous, systematic
cracking (i.e., damage).

As loading continues, propagating cracks will accumulate to the point that they will
begin to interact. This interaction then becomes extremely complex as stress shadows
overlap (Eberhardt et al., 1998a; Diederichs, 2003). Eberhardt et al. (1998b) postu-
lated that as the population of propagating cracks increase, both in number and size,
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they will begin to step out and coalesce incorporating an element of shearing (e.g., en
echelon cracks; see Lajtai et al., 1994). They termed this threshold crack coalescence,
which Diederichs (2007) noted correlates with the definition of yield used in other
branches of material science (see ASTM, 2015).

Under low confinement, stable crack propagationwill eventually reach a critical level
and transition to unstable crack propagation. As previously mentioned, Bieniawski
(1967a) defines unstable crack propagation as the condition that occurs when the
relationship between the applied stress and the crack length ceases to exist and other
parameters, such as the crack growth velocity take control of the propagation process.
Thin section analysis of rock samples loaded up to and beyond this point revealed that
this threshold coincides with a sudden increase in volumetric strain due to considerable
damage taking place in the form of grain shattering (Bieniawski, 1967b). Martin
(1993) renamed this threshold the “crack damage stress” as loads above this stress
level result in damage to the rock that cannot be further tolerated. Craggs (1960) and
Bieniawski (1967b) suggest that this involves the propagating cracks reaching a term-
inal velocity (Figure 4), which then leads to the cracks bifurcating and branching in
order to dissipate the additional energy. Failure quickly follows. The peak strength
marks the ultimate capacity of the sample and almost universally is used to establish the
failure strength envelope of rock (Martin & Chandler, 1994).

Numerous studies, including those byHudson et al. (1972), Peng&Johnson (1972) and
Martin (1993) have shown that the peak strength of rock is significantly influenced by the
specimen shape, loading rate, and boundary conditions of the test.However,Hudson et al.
(1972) and later Martin (1993) concluded from this that peak strength is not an inherent
material property but represents an arbitrary stage in the rock fracture and progressive
failure process. Instead Martin (1993) found that crack initiation (CI) and crack damage
(CD) were essentially independent of the loading conditions, and therefore serve as better
material properties for brittle rock strength. Subsequent work by Martin (1997) and
Diederichs (2007) have equated CI with the lower bound and CD with the upper bound
in situ rock strength. Accordingly, considerable effort has gone into establishing means to
measure these brittle fracture damage parameters based on laboratory testing.

3.2 Determination of crack initiation

A number of techniques have been developed to detect brittle fracture processes
through laboratory testing. The most common of these involves the use of strain
measurements (strain gauges, displacement transducers, etc.) to detect slight changes
in sample deformation that can be correlated to the closing, opening and coalescence of
cracks (Brace et al., 1966; Bieniawski, 1967b; Martin & Chandler, 1994; Eberhardt
et al., 1998b, 1999b). The opening of crack faces parallel to the applied load and the
closure of crack faces perpendicular to the load causes certain changes in the relative
lateral and axial deformations, respectively. These changes appear as inflections in the
stress-strain curves which, in turn, can be used to identify the different stages of brittle
fracture damage. For example, because crack closure involves the preferential closure
of crack faces parallel to the direction of applied load, its effect on the measured axial
strain is significantly more pronounced than its effect on the lateral strain. Accordingly,
the crack closure stress threshold, CC, is determined as the point where the axial stress-
axial strain curve transitions from non-linear to a linear response (Figure 7).
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The crack initiation stress threshold, CI, represents the onset of new damage. It was
initially defined as the point where the lateral strain curve departs from linearity in
response to new cracks opening normal to their propagation direction parallel to the
applied axial stress (Brace et al., 1966; Bieniawski, 1967b; Lajtai & Lajtai, 1974).
However, detecting this change through strain measurements can be very subjective as
the change is very subtle and often of the same magnitude as the measurement resolu-
tion. Noting this difficulty, Martin (1993) suggested using the calculated crack volu-
metric strain to identify CI (Figure 7). For a cylindrical sample tested in uniaxial
compression, crack volume is determined by subtracting the elastic component of the
volumetric strain from the total:

εV crack ¼ εV � εV elastic ð5Þ

εV elastic ¼
1� 2υ

E
σaxial ð6Þ

where E and υ are the elastic constants and σaxial is the applied axial stress. Volumetric
strain is typically calculated from the measured axial (εaxial) and lateral (εlateral) strains,
given by:

εV ¼ εaxial þ 2εlateral ð7Þ
Eberhardt et al. (1998b) found, however, that this method introduces considerable
subjectivity and variability into the assessment of CI because of its dependence on the
use of the elastic constants E and υ. Although the Young’s modulus, E, can be
determined with a reasonably high degree of consistency, the nonlinearity of the lateral
strain response complicates themeasure of Poisson’s ratio, υ (Eberhardt, 1998). Testing
of Westerly granite by Walsh (1965) showed that Poisson’s ratio is not constant but
continuously increases throughout loading, varying from 0.2 to 0.3 between 30 and
60% peak strength where elastic behavior is typically assumed. Figure 8a shows that
this uncertainty can result in CI values that differ by up to ±40% for a change of ±0.05
in the Poisson’s ratio assumed.

Instead, Eberhardt et al. (1998b) proposed that CI could be more accurately deter-
mined using an approach that combined the use of acoustic emissions (AE) with a
moving point regression analysis performed on the stress-strain curves (to determine
inflections). AE originate through the sudden release of stored elastic strain energy
accompanying the initiation and propagation of microfractures. These can then be
detected by AE sensors placed at the boundary of the sample (Figure 9), which can
measure the number, amplitude and energy of the AE events. Numerous researchers
have demonstrated that AE response provides a unique and direct method for studying
brittle fracture processes. Scholz (1968) found that characteristic AE patterns in rock
correlate closely with stress-strain and brittle fracture behavior identified by Brace et al.
(1966). However, most of the success in correlating AE activity to microfracturing has
involved the latter stages of crack development close to peak stress (Scholz, 1968;
Sondergeld et al., 1984; Rao, 1988; Lockner et al., 1991; Shah & Labuz, 1995;
Thompson et al., 2006). This is due to the fact that the majority of AE events occur
just prior to failure. Conversely, Eberhardt (1998) showed that if the AE monitoring
frequency and detection sensitivity (e.g., amplifier gain) are calibrated toward crack
initiation, at the expense of recording extra noise and encountering data censoring due
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to overlapping event signals near the peak stress, then CI could be accurately and
reliably determined (Figure 8b). The use of AE combined with strain proved even more
robust and repeatable (±5% over 20 samples of Lac du Bonnet granite) when other AE
parameters such as ringdown count, event duration, and event energy rate were used
(Eberhardt et al., 1998b). As discussed by Diederichs et al. (2004), detection of isolated
AE events may be seen earlier representing noise and low amplitude random cracking
(e.g., note that a number of small events can be seen before the increase in AE labeled as
crack initiation in Figure 8b).

Diederichs & Martin (2010) thus define CI as being the first point at which a
systematic increase in AE is observed (Figure 8c). Given differences in detection limits
between strain and AE based measurements, CI can be viewed as ranging between
upper and lower bound values (see Ghazvinian et al., 2015). The lower bound can be
used for sensitive or long-term projects, whereas the upper boundwould be suitable for
normal projects. Typical values for CI have been reported as ranging between 0.4 and
0.5 of the uniaxial compressive strength (UCS); Figure 10. Diederichs&Martin (2010)
subsequently emphasize the importance of CI as a design parameter as it marks the
stress at which new cracks initiate and begin to propagate. Near the excavation
boundary where confining stresses are low, crack propagation can easily transition
from stable to unstable crack propagation and spalling. CI is therefore seen as repre-
senting the lower bound long-term in situ strength of rock; i.e., only at low confine-
ments, such as at an excavation boundary, would spalling failure be observed (Martin,
1997; Kaiser et al., 2000; Hajiabdolmajid et al., 2002; Diederichs, 2003; Diederichs
et al., 2004; Diederichs, 2007; Carter et al., 2008).

Figure 9 Instrumented sample showing use of LVDT’s to measure axial strain, circumferential roller
LVDT assembly to measure lateral strain, and multiple AE sensors for measuring acoustic
emissions.
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3.3 Determination of crack damage

Bieniawski (1967b) correlated the threshold marking the transition from stable to
unstable crack propagation with the point of reversal in the volumetric strain curve
(Figure 7, 8a). Diederichs (2003) showed both numerically and statistically that this
threshold alsomarked the onset of crack interaction (with orwithout crack propagation)
and the transition between compression parallel crack accumulation before CD and
inclined crack growth after (Figure 11). Hallbauer et al. (1973) noted that thin section
analysis of rocks loaded beyond the volumetric strain reversal, but stopped prior to
peak strength, showed pronounced structural changes that involved stepwise coales-
cence of propagating microcracks. Martin & Chandler (1994) suggest that the
dominant mechanism at this stage is sliding along inclined cracks, which explains
the strong departure from linear behavior observed in the axial strain. This also
explains the sharp increase seen at the same time in the lateral strain rate, which
surpasses the axial strain rate to become the dominant component in the volumetric
strain calculation, thus resulting in the reversal of the volumetric strain curve. Martin
& Chandler (1994) note that this stress level has particular significance in the con-
crete industry as it is used to establish the long-term strength of concrete. Results from
Schmidtke & Lajtai (1985) for Lac du Bonnet granite showed a similar threshold for
long-term strength. Based on this, Martin & Chandler (1994) used the point of
volumetric strain reversal to define the crack damage threshold.

However, Diederichs et al. (2004) and Diederichs (2007) suggest that because volu-
metric strain reversal is delayed until lateral strain begins to increase substantially, it over
predicts the long-term in situ strength and therefore the crack damage threshold. They
further explain that in laboratory testing, sample end effects and circumferential stresses
induce internal confinement that constrains the ability of propagating cracks to dilate,
thus suppressing unstable crack propagation. These effects are not present in situ around
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underground excavations,where under low confinement unstable crack propagation
can more easily develop. Thus, Diederichs (2007) recommends the use of the onset of
yield, defined as the first significant departure from linearity of the axial strain curve,
as being a better indicator of CD. Eberhardt et al. (1998b), referring to this as crack
coalescence, showed it can easily be determined by plotting the moving point regres-
sion of the slope of the axial strain curve (Figure 12). Diederichs (2007) subsequently
notes that although volumetric strain reversal and yield are coincident for uniaxial
loading conditions, they diverge for higher confining stresses (Figure 13).
Accordingly, axial strain non-linearity and volumetric strain reversal serve as limiting
bounds for CD (Diederichs et al., 2004), with CD representing the upper bound long-
term in situ strength of rock.

Values of CD have been reported to vary between 0.7 and 0.9 of the UCS. In contrast
to CI, CD has been shown to be sensitive to differences in grain size (i.e., initial crack
length) and sampling damage (i.e., initial crack intensities). Increasing grain size was
found to reduce CD owing to the longer grain boundaries facilitating the propagation of
longer cracks and a more rapid acceleration to failure once these longer cracks began to
interact and coalesce (Eberhardt et al., 1999c). Diederichs (2003) used a statistical
simulation to likewise show that longer initial cracks lead to premature crack interac-
tions, crack damage and failure (Figure 14a). With respect to crack intensities, Martin&
Chandler (1994), Eberhardt et al. (1999a,b), and Diederichs (2003) showed that the
presence of increased crack intensities (via sampling damage) reduced the crack damage
stress, presumably by providing an increased number of planes of weakness for propa-
gating cracks to coalesce with, resulting in their coalescence, and ultimately yield and
failure at lower stresses. Diederichs (2003) demonstrated this through PFC modeling,
finding that critical interactions between propagating cracks develop at lower stresses
with increasing initial crack intensities, where those intensities were achieved through
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either increased numbers of cracks or by increased extension of cracks (Figure 14b). He
concluded that while CIwas related to a stress-based threshold, CD is related to a critical
probability of crack interaction which in turn is associated with a critical amount of
accumulated lateral extension strain (normal to the maximum compression). Diederichs
(2003) also demonstrated through fracture mechanics analysis that cracks propagated
more readily near a flat free surface, in part due to low confinement but also due to
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geometrical feedback with the surface. He also discusses the mechanisms by which
crack propagation is suppressed within a standard cylindrical laboratory compres-
sion sample facilitating a CD threshold in the lab that does not correspond with that
in the field.
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3.4 Stress heterogeneity and confining stress

Afinalkeypiece in extending laboratory test data targetingbrittle fracturedamage to in situ
observations of stress-inducedbrittle failure (i.e., spalling) involves stress heterogeneity and
its sensitivity to confinement. Diederichs (1999, 2003, 2007) and Diederichs et al. (2004)
propose that CI represents a lower bound for in situ rock strength in massive rock and CD
interaction represents an upper bound. Together these two thresholds delineate the region
of stress-induced spalling that canbe expected inhigh stress environments.This is discussed
inmore detail in Section 4. Stress heterogeneity plays a central role in that it generates grain
interactions which promote early damage initiation, as well as stress shadows that lead to
localized confinement that can arrest crack propagation (Fredrich et al., 1990; Eberhardt
et al., 1998a; Cho et al., 2002). As demonstrated by Hoek (1968), propagating cracks are
hypersensitive to even very low confinement. For true crack propagation to occur the
confining stress (normal to the extending cracks) must be near to or less than zero.

Figure 15 shows PFC modeling results from Diederichs (1999), in which the particle
diameters and bond stiffnesseswere randomly varied to create a heterogeneous assembly.
Different levels of confining stress were then added. The results show that under low
confinement, localized zones within the sample are in tension (Figure 15a). These would
represent zones of enhanced crack propagation. Diederichs (2003) notes that, as would
be expected, the spatial coverage of the tensile zones was seen to increase with increasing
deviatoric stress and decreasewith increasing confinement. Figure 15b plots the results of
the spatial extent of the local tension zones for different confining stresses along with the
known model thresholds for crack initiation, interaction and failure. Diederichs et al.
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(2004) note that the stress ratio ranges indicated for the three coverage limits shown are
comparable to those first proposed by Hoek (1968). They go on to define these limits as
the spalling limit. Based on this plot (Figure 15b), a stress state (σ1, σ3) above the CI
threshold and to the right of this spalling limit has the potential for premature yield due to
strength reduction caused by unstable crack propagation. In practice, the slope of the
critical spalling limit will vary according to the degree of heterogeneity within the rock,
together with a number of other external factors including damage and stress rotation.

Thus as shown in Figure 16, heterogeneity controls the degree to which the rock
strength degrades from its upper bound to its lower bound. Diederichs (2007) proposes
that the in situ strength for stress-induced brittle failure can be estimated by adopting
the CI stress at low confinements (lower bound brittle rock strength), and the CD
threshold at higher confinements (upper bound brittle rock strength). The transition
between these is defined by the spalling limit as previously discussed.

4 CONCEPTUAL ADVANCES AND PRACTICAL APPLICATION

The early work on brittle fracture damage by Cook (1965), Hoek& Bieniawski (1965)
and Fairhurst & Cook (1966), was largely directed at better understanding rockburst
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hazards and observations of spalling and slabbing in deep South African mines. Similar
to observations from laboratory compression testing, stress-induced brittle failure
underground was also observed to involve the initiation and propagation of brittle
fractures parallel to the direction of maximum compression. Hoek (1965a) observed
that initiation began with the formation of a notch in the zone of maximum compres-
sion. Fairhurst & Cook (1966) observed that because confining stresses increase into
the rock mass, these are very effective in inhibiting the propagation of cracks. Similar
observations were subsequently made involving spalling failure around circular open-
ings and deep underground excavations, including Gay (1973), Stacey & de Jongh
(1977), Ortlepp & Gay (1984), Ewy & Cook (1990) and Carter et al. (1991).

These studies were followed by an extensive body of research conducted by the
Atomic Energy of Canada Limited (AECL) at the Underground Research Laboratory
(URL) in Pinawa,Manitoba, that led to a step-change in efforts to relate brittle fracture
damage to the development of stress-induced spalling. This began with observations of
spalling in the massive granite host rock in response to high in situ stress anomalies,
during extension of the access shaft from the 240 m Level to a new 420 m Level
(Martin, 1988). Given that one of the justifications for considering massive crystalline
rock for a nuclear waste repository is its extremely low permeability, the development
of stress-induced damage and its effects on permeability required a high level of
scientific study.

4.1 The AECL-URL mine-by experiment

Especially noteworthy among the numerous in situ experiments at the URL, was the
focused effort of theMine-By Experiment (Figure 17a). This involved the installation of a
dense array of extensometers, convergence arrays, triaxial strain cells, and accelerometers
for microseismic (MS) detection prior to excavation of a test tunnel on the 420m Level so
that the complete excavation response of the rock mass could be monitored (Martin &
Read, 1996). Read&Martin (1992) describe the planning of the experiment in which the
tunnel axis was selected to align with the intermediate principal stress to maximize the
stress ratio in the plane of the tunnel profile to promote the development of the deepest
excavation-damaged zone. Excavation was carried out by first line-drilling the complete
outer perimeter of the test tunnel, and then progressively breaking out the interior with
hydraulic rock splitters. This eliminated any blast-induced damage.

The results of this experiment led to several key observations, the first of which was
the classic V-shaped notches that formed in the tunnel roof and floor, perpendicular to
the direction of the major principal stress (Figure 17b). Considerable MS events were
recorded ahead of the tunnel face, and as the tunnel face was advanced,MS events were
seen to locate in the roof and floor concentrating where the V-shaped notch was
developing (Young & Martin, 1993). The progressive nature of the damage process
continued even after completion of the excavation advance, and only ended once the
notch that was forming stopped in response to the increasing confining stress experi-
enced at the tip of the notch.

In terms of stress path, it was observed that damage initiation (observed as MS
events ahead of the tunnel face), occurred at 33-50% of the UCS. Martin (1997)
noted that this was very similar to the stress magnitudes associated with crack
initiation (CI) in laboratory testing. Analysis of the MS source mechanisms indicated
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that the events were dominated by tensile modes of failure (Feignier & Young, 1992).
Spalling associated with the notch formation was observed by Read et al. (1998) as
developing just behind the tunnel face at stress levels of about 60% of UCS. This
corresponds to the crack damage (CD) stress threshold in laboratory testing. Martin
et al. (1997) further note that the spalling observed was more pronounced when
in granite than when in the finer-grained, and therefore stronger, granodiorite
(Figure 17c). Collins & Young (2000) made similar observations with respect to
the detection ofMS being predominantly in the granite. Comparison of the extent and
depth of spalling in the granite and granodiorite emphasized the influence of grain size
on the CI and CD stress magnitudes. This was also seen in laboratory testing of the
same rock types (Eberhardt et al., 1999c).
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4.2 Cohesion loss and friction mobilization

Brace (1960) postulated that for brittle rock failure, it is unlikely that friction and
cohesion act simultaneously and instead, cohesion likely drops to zero after the onset
of motion, at which point friction comes into play. Martin & Chandler (1994) carried
out a series of damage-controlled tests to investigate cohesion loss and friction mobiliza-
tion. They used a series of load-unload cycles to first incrementally reach 75% of the
expected peak strength, which was in excess of the CI stress and approximated the CD
stress. The load-unload cycles were then performed in small increments of circumferen-
tial deformation (0.063 mm relative to a 63 mm diameter sample) using axial-strain
control. What was observed was that with each load-unload cycle, damage accumulated
but this had no effect on CI. However, it did act to degrade CD. It was proposed that up
to the CD stress, the strength of the granite sample was derived only from cohesion, and
therefore, with each load cycle that exceeded the cohesive strength (i.e., CD stress level),
fracture damage was introduced resulting in cohesion loss and friction mobilization
(Figure 18). Based on this work, Martin & Chandler (1994) suggested that the peak
friction angle of brittle rock is only reached when most of the cohesion is lost.

The concept of cohesion loss with frictional strengthening was subsequently used by
several researchers to better model the depth of brittle failure using continuum-based
numerical methods. Conventional strain-weakening models (SW) assume the simulta-
neous degradation of cohesion and frictional strength, as shown in Figure 19a. This was
suggested by Hoek et al. (1995) as a means to model spalling by assigning pre-peak
Hoek-Brown strength values based on CD (equated to the long-term strength), together
with very low residual strength values (m =1, s = 0.01) to simulate an elastic-brittle-
plastic failure response. This concept was later used by Cai et al. (2007) to provide an
estimation for the residual strength of rockmasses.Martin (1997), however, showed that
a strain-weakening constitutive model was unable to correctly estimate the extent and
depth of brittle failure observed for the URLMine-By Experiment. Instead, he proposed
a Cohesive-Brittle-Frictional (CBF) model in which the extensional brittle failure
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Figure 18 Mobilization of friction with cohesion loss as a function of percent damage. Modified after
Martin et al. (1997).
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mechanism begins with cohesion loss without friction mobilization (Figure 19b). With
continued loading, frictional resistance gradually mobilizes as the extensionally-formed
spalling slabs make contact and shear relative to each other. In implementing the CBF
model, the initial yielding parameters were set based on CI and the residual yielding
parameters were set to simulate cohesion drop and friction mobilization. The transition
between the initial and residual state is simultaneous.

Hajiabdolmajid et al. (2003) introduced the Cohesion-Weakening and Friction-
Strengthening (CWFS) model, as shown in Figure 19c. The major difference between
the CBF and CWFS models is that the latter assumes that frictional strength doesn’t
fully mobilize until significant damage, in excess of that required for cohesion to drop
to its residual value, has accumulated. Numerical implementation of the CWFS model
is done by defining cohesion and friction angel values as functions of plastic strain. Like
the CBF model, the initial and residual yielding states of CWFS model have an inter-
section in σ1– σ3 space (Figure 19c) which implies a softening behavior in low confine-
ment and a hardening behavior in higher confinements. In comparison to the SW and
CBF models, the CWFS model has been shown to be more successful in capturing the
extent and depth of brittle failure around openings (Hajiabdolmajid et al., 2002;
Diederichs, 2007; Xia-Ting et al., 2007; Lee et al., 2012; Walton & Diederichs,
2015). Walton & Diederichs (2015) show how the impact of dilation can be included
in this brittle analysis technique.

Diederichs (2007) introduced a similar model called the Damage Initiation and
Spalling Limit (DISL) model, as shown in Figure 19d. The DISL model, designed for
use with analysis software with fixed parametric input, was defined using the generalized
Hoek-Brown criterion (Hoek et al., 2002), and includes an initial yielding state based on
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646 Eberhardt et al.



the CI and CD thresholds, transitioning to a residual state defined by the spalling limit
(Figure 16). TheDISL andCBFmodels are similarwith respect to assuming cohesion loss
and friction mobilization occur simultaneously (Figure 19b, d). Although this differs
from the CWFSmodel (Figure 19c), the DISL model produces similar results if the input
parameters are assigned correctly (Diederichs, 2007; Cai, 2013; Perras et al., 2014;
Perras & Diederichs, 2016).

4.3 Depth of damage and spalling failure

Determining the depth of stress-induced damage in brittle rock is a key requirement for
the design of nuclear waste repositories in terms of assessing permeability change in the
near-field host rock, as well as for the design of deep tunnels and mine excavations in
terms of assessing the potential for rockmass spalling and bulking and the rock support
necessary to manage these. The terminology related to damage zones around under-
ground excavations has varied based on different experiences and improving knowl-
edge of the responses observed, resulting in several commonly used acronyms. Siren
et al. (2015) and Perras&Diederichs (2016) provide recent updates and descriptions of
the terminology used, with emphasis placed on the use of EDZ to refer to the
Excavation Damage Zone as being specific to stress-induced brittle fracture damage.
This is differentiated from the Construction Damage Zone (CDZ), which relates to the
excavation method, for example the extent of blast-induced damage. Martino &
Chandler (2004) refer to the depth of the EDZ as being defined by the extent of
measurable and permanent changes to the mechanical and hydraulic-transport proper-
ties of the rock surrounding the excavation. Beyond this, the Excavation Influence
Zone (EIZ) involves only elastic changes (Diederichs & Martin, 2010; Perras &
Diederichs, 2016). EIZ has sometimes been referred to as the “disturbed zone”
although this is inconsistent with conventional geotechnical definitions of disturbed
as the changes in this zone are fully recoverable.

Several early studies investigated the relationship between the in situ stress state and
the depth of brittle failure around highly stressed underground excavations (e.g.,
Fairhurst & Cook, 1966; Hoek & Brown, 1980; Detournay & St. John, 1988).
Martin et al. (1999) found that studies using traditional failure criteria based on
frictional strength did not meet with much success in either predicting the initiation
ormaximum depth of brittle failure (e.g., Wagner, 1987; Pelli et al., 1991; Castro et al.,
1996; Martin, 1997). In comparison, criterion that considered cohesive strength
degradation were successful (Martin, 1997). Martin et al. (1999) suggested that the
depth of brittle failure can be found using an elastic stress analysis superimposed with a
cohesion-based Hoek-Brown criterion (m = 0, s = 0.11); Diederichs (2007) warns that
this criterion should not be used for inelastic analysis as it significantly overpredicts the
extent of the yield zone in this application.

Using several case histories involving underground excavations that reported brittle
failure, Martin et al. (1999) proposed a linear empirical relationship for depth of
spalling around a tunnel (Figure 20a):

rf
a
¼ 0:49þ 1:25

σmax

UCS
ð8Þ
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where rf is the depth of failure, which is normalized to the tunnel radius a. σmax is the
maximum tangential compressive stress at the excavation boundary and UCS is the
laboratory measured uniaxial compressive strength. Diederichs et al. (2010) updated
this analysis by adding several more case histories (Figure 20b), and presented an
alternative formulation based on CI from direct test measurements:

rf
a
¼ 0:5

σmax

CI
þ 1

� �
for σmax > CI ð9Þ

Perras & Diederichs (2016) compared these empirical trends to a series of 2-D finite-
element models that used the DISL procedure (Diederichs, 2007) to examine a broad
spectrum of input parameters and stress scenarios. The analysis also used the DISL
model to differentiate between the development of a highly damaged zone (HDZ) at the
excavation boundary, involving interconnected macro-fractures, and the transition to
an inner EDZ (EDZi), where the damage is interconnected, and then to an outer EDZ
(EDZo), where the damage is only partially connected or isolated (see Bossart et al.,
2002); Figure 21. Based on these results, Perras&Diederichs (2016) defined a relation-
ship for depth of failure adaptable for each zone:

rf
a
¼ 1þ B

σmax

CI
� 1

� �D
ð10Þ

where B and D were determined through best fit nonlinear regression analyses for the
model results specific to the different damage zones (B = 0.2, 0.4, 0.6 respectively for
HDZ, EDZi, and EDZo; D = 0.7, 0.5, 0.6, respectively). The findings of Perras &
Diederichs (2016) suggest that the empirical depth of failure limit of Martin et al.
(1999) and Diederichs et al. (2010) should be used with caution at higher maximum
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tangential stress to CI strength ratios, as the numerical results indicate a nonlinear
relationship with the depth of failure (Figure 20c).

5 CONCLUSIONS

Kaiser & Kim (2008) caution that the two most important lessons to be learned
from deep mining and tunneling experiences are that: (1) rock at depth is much less
forgiving, and (2) costly mistakes can be made when the failure mechanism is not
properly understood. Kaiser (2016) continues by emphasizing that it is essential
to anticipate the rock mass behavior correctly, specifically that brittle fracture
damage requires underground excavation designs to consider and account for
stress-induced rock mass degradation and deformation (i.e., bulking) responses.
The significance of stress-induced brittle fracture damage and spalling is often not
recognized on deep mining and tunneling projects, despite the accumulation of
experiences where brittle failure has been encountered imposing difficult and
hazardous conditions.

First, it must be recognized that the brittle failure process begins at stresses that are
approximately half of the UCS. As discussed in this chapter, the work ofMartin (1997),
Eberhardt et al. (1999b), Kaiser et al. (2000), Diederichs (2003, 2007) and Diederichs
et al. (2004) have contributed to the characterization and use of crack initiation (CI)
and crack damage (CD) as design parameters that, respectively, describe the lower-
bound in situ rock strengthwhere spalling damage initiates and the upper-bound in situ
strength where spalling under higher confinements deeper into the rock mass can
develop. By applying the CI and CD strength envelopes, the depth of spalling can be
assessed empirically (Martin et al., 1999; Diederichs et al., 2010) or numerically
(Diederichs, 2003, 2007). These predictive tools represent the evolvement of the
mechanistic understanding of pre-peak brittle fracture damage, from the theoretical
studies of Griffith cracks to more than 50 years’ worth of laboratory and in situ
observations of brittle fracture damage and spalling.

Second, confining stress plays an important and effective role in limiting crack
propagation. Thus, in terms of support design in highly stressed brittle rock,
adding just a small amount of support pressure can have a significant impact on
excavation performance. As discussed in this chapter, the depth of brittle fracture
damage and spalling is sensitive to the confinement feedback generated by dila-
tional yielding and bulking. This feedback is only active if the yielding rock mass
is held in place by an effective support system. Although a detailed discussion of
rock support in stress-induced fractured rock is outside the scope of this chapter,
the work of Kaiser et al. (2000), Diederichs (2007) and Kaiser (2016) explain the
importance of understanding the brittle failure process in order to effectively
control it through support design. The brittle fracture damage process and the
rock mass degradation it causes (via spalling) effectively reduces the stand-up time
to near zero, requiring near face support to properly reinforce the rock mass (to
control bulking) and retaining elements (e.g., mesh) to prevent unraveling and to
hold the rock in place to provide confinement to the rock mass behind (Kaiser
et al., 2000; Kaiser, 2016).
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Chapter 22

Numerical rock fracture mechanics

M. Fatehi Marji & A. Abdollahipour
Mining and Metallurgical Engineering Faculty, Yazd University, Yazd, Yazd, Iran

Abstract: The analysis of fracture of rock or other materials has been developed since
the mid 1940s. Although dealing with and exploiting rock fracturing has been a part of
mining engineering for hundreds of years, rock fracture mechanics has been developed
into an engineering discipline since the mid 1960s. Rock fracture mechanics mainly
deals with a thorough understanding of what will happen to the rock formations in the
subsurface when subjected to in situ stresses. In the fracturing process of rock, a
number of important parameters are to be considered i.e. fracture toughness, in situ
stress, Poisson’s ratio, Young’s modulus, etc. It should be noted that rock formations
cannot often be treated as isotropic and homogeneous bodies. For example, in the case
of hydrocarbon reservoirs, the porous and fluid filled nature of rock requires poroelas-
tic theory for some problems.

Although some of rock fracture mechanics problems can be solved analyti-
cally, due to the complexity of these problems, some well sophisticated numerical
methods have been developed to cope with the difficulties. The mesh-based
numerical methods may include; Finite Element Method (FEM), eXtended Finite
Element Method (XFEM), Boundary Element Method (BEM), Displacement
Discontinuity Method (DDM), Discrete Element Method (DEM), the combined
methods (such as the Combined Finite Discrete Element Method (CFDEM)), etc.
In addition to the mesh-reduction methods such as BEM and combined methods;
mesh-less interpolation methods are developed to overcome the drawbacks of
mesh-based methods. A brief explanation of these numerical methods as applied
to the rock fracture mechanics is given.

Keywords:Rock fracture mechanics; Numerical methods; FEM; BEM; DDM; DEM;
Mesh-less methods

1 INTRODUCTION

Rocks are brittle or quasi-brittle materials. They have a discontinuous combination
of solid matter, pores, cracks and fractures. A crack in rock fracture mechanics may
be defined as a rock separation by opening or sliding. Cracks vary in size from
faults (very large scale cracks) with length of hundreds or thousands of meters to
intra-granular cracks (infinitesimal cracks) as little as thousandth of centimeters
(Jaeger et al., 2009).



Brittle rocks and glasses have a very low tensile strength which is due to
stress concentration at the ends of infinitesimal internal or surface flaws (Griffith,
1921).

Irwin (1948) developed the concept of stress intensity factor for brittle fracture based
on linear elastic fracture mechanics (LEFM). He extended the concept of energy release
during progressive fracture and provided a means to measure material resistance to
fracture using compliance approach (Sanford, 2003).

Figure 1 illustrates the load-deflection diagram for a “system isolated” fracture event
in a linearly elastic body assuming constant displacement. The load deformation for the
internal crack of area A is shown by line OB and that of the propagated crack (with
change in crack area of ΔA) is shown by OC. The energy lost during load-unload
process under the “system isolated” condition is represented by the triangleOBC. The
energy must be related to the crack extension area ΔA. It can be related to the spatial
rate of stored strain energy G as:

G ¼ � ∂U
∂A

				
δ

ð1Þ

where U is the strain energy of the system and the negative sign is introduced to make
the G (material property) a positive quantity. For a linear elastic body

U ¼ 1
2
Dpδ and δ ¼ CDp ð2Þ

here C is compliance which is reciprocal of the load-deflection slope. Therefore,

G ¼ P2

2
∂C
∂A

ð3Þ

A

BP1

P
a

O

C

a+Δa

A+ΔA
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δ1
δ

Figure 1 Load-displacement curve for a crack propagated from length a to a+Δa (assuming constant
displacement condition).
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1.1 Linear elastic fracture mechanics

Materials with relatively low fracture resistance fail below their collapse strength and
can be analyzed on the basis of elastic concepts through the use of linear elastic fracture
mechanics (LEFM). Practically all high strength materials used in aerospace industry,
high strength low-alloy steels, cold worked stainless steels, most rocks, and other
construction materials like ceramics and concrete, etc. can be treated by LEFM.
Many other materials can be analyzed by means of Elastic-Plastic Fracture
Mechanics (EPFM), in which the understanding of its concept needs familiarity with
LEFM concepts. Analysis of crack by LEFM approach is based on the stresses at the
crack tip and the concept of stress intensity factor K.

AssumingHooke’s law to be valid without limitations to stresses and strains, enables
the dissipative region to be shrunk to the crack edge.

LEFM uses stresses rather than loads in engineering analyses. The residual strength
shown in Figure 2 is normally based on σres, the stress (instead of load) that a structure
can sustain before fracture occurs.

The residual strength is like the tensile strength or the yield strength of the material
and not a stress. If the stress equals σres fracture occurs. Figure 2 shows the relation
between σres and crack size a. For a maximum permissible cracks length ap there is a
maximum permissible stress σp that can be applied to the structure which is much
lower than the yield strength σyield. The residual strength of the structure decreases
progressively with increasing crack size (see Figure 2).

Rocks are usually fragmented into two or more parts under the action of stresses
which is called fragmentation. The separation distance is significantly smaller than the
separation extent – the crack length. The existence of a crack in a homogeneous rock
reduces the strength of the structure considerably. Any load acting on the body is
magnified several times at the tip of such a discontinuity andwhen the stress concentration
at the tip of the crack reaches a critical level, it propagates.

The problem of crack initiation in rock structures such as tunnels and boreholes has
been approached in practice with elementarymethods for a long time. Usually the crack

Residual strength (σres)

σp

ap
(a)

Crack size

σyield

Figure 2 Residual strength curve.
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has been expected to propagate instantly based on elastic-brittle behavior if the com-
puted tensile stress is larger than the tensile strength of the rock. In this manner no
information regarding the length of propagated crack could be obtained. It then
became clear that the behavior of rock is dependent on the scale of the problem. The
aforementioned method neglects the considerable additional energy absorption that
can take place after reaching peak tensile strength of the rock. Application of fracture
mechanics concepts in rock materials compensates for this reserve capacity to be
accounted for in rock mechanics analyses.

1.2 Stress intensity factor and fracture toughness

Irwin introduced the concept of stress intensity factor K (SIF), as a measure of the
strength of singularity at the crack tip (Irwin, 1957). He showed thatK∝ σ

ffiffiffiffiffi
πr

p
controls

the local stress quantity, where r is the radius of the circular stress field σ at a very close
distance to the crack tip (Mohammadi, 2008).

Basically three modes of loading are considered for the analysis of cracks as shown in
Figure 3, and are described as follows:

1. Mode I loading or opening mode in which the crack tip is subjected to a normal
stress σ, and the crack faces are perpendicular to the crack plane.

2. Mode II or in-plane shearing mode, where the crack tip is subjected to an in-plane
shear stress τi and the crack surfaces are sliding relative to each other, so that their
displacements occur in the crack plane and normal to the crack front.

3. Mode III, or tearing mode, where, the crack tip is subjected to an out of plane
(anti-plane) shear stress τo and the crack faces are moving relative to each other so
that the displacement of the crack surfaces are in the crack plane but parallel to the
crack front.

KI, KII and KIII are described as follows for θ = 0,

KI ¼ lim
r!0

σyy
ffiffiffiffiffiffiffiffi
2πr

p
ð4Þ

KII ¼ lim
r!0

σxy
ffiffiffiffiffiffiffiffi
2πr

p
ð5Þ

a) Mode I (opening Mode) b) Mode II (sliding Mode) c) Mode III (tearing Mode)

Figure 3 The three basic modes of loading for a crack and corresponding crack surface displacements
(Fatehi Marji, 2015).
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KIII ¼ lim
r!0

σyz
ffiffiffiffiffiffiffiffi
2πr

p
ð6Þ

r, θ are defined in Figure 4.
Consider a body of arbitrary shape with a crack of arbitrary size, subjected to

arbitrary tensile and shear loading, bending and shear loading, or both as long as the
loading is in the mixed form of loading i.e. in mode I (opening mode) and mode II (in-
plane shearing mode) as shown in Figure 4. The details of the derivation of stresses and
displacements near the crack tip are found in extensive text books ( such as Broek,
1985; Whittaker et al., 1992). The stresses in Cartesian coordinates are formulated as:

σxx ¼ KIffiffiffiffiffiffiffiffi
2πr

p cos
θ
2

1� sin
θ
2
sin

3θ
2

� �
� KIIffiffiffiffiffiffiffiffi

2πr
p sin
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2

2þ cos
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2
cos
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2

� �
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2
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3θ
2

� �
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2πr

p cos
θ
2
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2
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2πr

p cos
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2

1� sin
θ
2
sin
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2

� �
ð7Þ

in which, σij (i,j = x,y) are the near crack tip stresses at distance r from the crack tip.
The general quantity K (i.e. KI and KII for the mixed mode I and II) is essentially a

measure of stress intensity at the tip of a crack, or a measure of the crack tip elastic
stress field. Based on LEFM an unstable fracture occurs when one of the Ki (i = I, II, III)
or a mixed mode of them reaches a critical value, Kic known as fracture toughness.
Table 1 shows the fracture toughness of some rocks. It presents the resistance ability of
a material to crack propagation in a given stress field. The propagation angle of an
unstable crack may be computed using one of the fracture criteria (e.g. maximum
tangential stress (Fatehi Marji, 2014)).

Crack

+KII

+KI

r

σ

σ

θ

σxx

σyy

σyx

σyx

σyy

σxx

x

y

y

x

Figure 4 A crack in an infinite plane under mixed mode loading I and II (Fatehi Marji, 2015).
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Generally, numerical methods are used to evaluate and predict stress intensity
factors in engineering structures with complex geometry which is evolving as cracks
propagate in the structure. The finite element method (FEM) and the boundary
element method (BEM) are two well-established numerical methods in fracture
mechanics.

1.3 Fracture criteria

There are mainly three classic fracture criteria as used in rock fracture mechanics
literature i.e. 1) maximum tangential stress criterion (or σ-criterion) (Erdogan & Sih,
1963) 2) strain energy release rate criterion (or G-criterion) (Hussain et al., 1974) and
3) minimum strain energy criterion (or S-criterion) (Sih, 1974). Several modified ver-
sion of these criteria have also been used in the literature e.g. F-criterion which is a
modified version of G-criterion (Stephansson, 2002).

1.3.1 σ-criterion (Maximum tangential stress criterion)

This fracture criterion postulates that crack growth takes place in a direction
perpendicular to the maximum principal stress. Hence, the fracture criterion
requires that the maximum principal stress be a tensile stress for opening the crack
along its plane.

The mixed mode criterion for a crack angle θ can then be defined as

KIc ¼ KI cos3
θ
2
� 3
2
KII cos

θ
2
sin θ ð8Þ

where θ and θ0 are shown in Figure 5.

Table 1 Fracture toughness of different rocks (Whittaker et al., 1992).

Rock (Location/comment) Fracture toughness (MPa√m)

Andesite (Tampomas) 1.26–1.68
Basalt 1.73
Basalt 3.01
Dolerite (Whin sill) 3.26
Gabro (Kallax/series 1) 2.58
Gabro (Kallax/series 2) 3.23
Granite (Bohus) 1.46
Granite (Bohus) 2.4
Limestone (Bedford) 1.1
Limestone (/white) 2.21
Marble (/Fine grain) 0.96
Marble (Ekeberg) 2.62
Sandstone 0.67
Sandstone (Pennant) 2.56
Shale (Anvil Points/oil) 0.63–1.04
Shale (Rulison Field) 0.17–2.61
Siltstone (Rulison Field) 0.17–2.61
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1.3.2 G-criterion (Maximum energy release rate criterion)

The original Griffith fracture criterion was extended to the general angled crack
problems in tension (Palaniswamy, 1972). This extension is known as G-criterion. It
states that when the energy release rate in the direction of the maximum G-value
reaches the critical value GC, the fracture tip will propagate in that direction.

Assume that the basic three mode interact on an elastic component, thus

GI ¼ K2
I

E0 þ
K2

II

E0 þ
1þ �ð ÞK2

III

E
ð9Þ

whereE0=E for plane stress andE0= E/(1−ν2) for plane strain for pure mode I loading at
fracture, the fracture toughness expression is

GIC ¼ GI ¼ K2
IC

E0 ð10Þ

Substituting Equations 10 into 9 gives the fracture criterion equation which is named as
the G-Criterion

K2
IC ¼ K2

I þ K2
II þ

E
0
1þ �ð ÞK2

III

E
ð11Þ

The above Equation suggests that any combination of the stress intensity factors may
give the value for fracture toughness KIC.

Original crack

θ0

Figure 5 The propagation angle θ0.
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1.3.3 S-criterion (Minimum strain energy density criterion)

This criterion is proposed for two-dimensional stress field and states that the
initial crack growth takes place in the direction along which the strain-energy-
density reaches a minimum stationary value. The final form of the criterion can
be defined as:

8μ
κ � 1ð Þ a11

KI

KIc

� �2

þ 2a12
KIKII

K2
Ic

� �
þ a22

KII

KIc

� �2
" #

¼ 1 ð12Þ

where

a11 ¼ 1
16μ

½ 1þ cos θð Þ κ � cos θð Þ�

a12 ¼ 1
16μ

sin θ½2cos θ � κ � 1ð Þ�

a22 ¼ 1
16μ

½ κ þ 1ð Þ 1� cos θð Þ þ 1þ cos θð Þ 3cos θ � 1ð Þ�

ð13Þ

ν is Poisson’s ratio and κ=(1−3ν) for plane strain and κ=(3−ν)/(1+ ν) for plane stress
problems and μ=E/(2(1+ ν)).

1.3.4 F-criterion (The modified energy release rate criterion)

The G-criterion does not distinguish between Mode I and Mode II fracture
toughness of energy (GIC andGIIC). Both tensile (Mode I) and shear (Mode II) failure
mechanisms are common in rock masses. Shen & Stephansson extended and
improved the G-criterion to include both Mode I and Mode II fracture pro-
pagation (Shen & Stephansson, 1993). They suggested a fracture propagation criter-
ion, which states that in an arbitrary direction (θ) at a fracture tip the F-value is
calculated as:

F θð Þ ¼ GI θð Þ
GIC

þGII θð Þ
GIIC

ð14Þ

where GIC andGIIC are the critical strain energy release rates for Mode I and Mode II
fracture propagation, respectively. GI(θ) and GII(θ) are the respective strain energy
release rates due to the potentialMode I andMode II fracture growth of a unit length. If
the maximum F-value reaches 1.0, fracture propagation will occur.

The criterion is known as suggested by its parameter F as F-criterion. The direction of
fracture propagation will correspond to the direction where F reaches its maximum
value. Summation of normalized G-values in the F-criterion is used to determine the
failure load and its direction. GI and GII can be expressed as shown in Figure 6. If a
fracture grows a unit length in an arbitrary direction and the new fracture opens
without any surface shear displacement, the released strain energy in the surrounding
body due to the fracture growth would be GI. Similarly, if the new fracture has only a
surface shear displacement and no opening in the normal direction, the released strain
energy would be GII (Shen & Stephansson, 1993).
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2 COMPUTATIONAL FRACTURE MECHANICS

The main goal of fracture mechanics i.e. SIF computation may be accomplished using
analytical, semi-analytical and numerical methods.

2.1 Analytical methods

The modern view of analytical fracture mechanics uses singular problems to represent
elastic behavior of bodies containing one or more cracks (Sanford, 2003). Williams
developed the general solution to a particular singular problem (Williams, 1957,
1952). The Williams approach represents a complete solution to problems of a single
edge crack with stress-free crack faces subjected to smoothly varying boundary condi-
tions over finite boundaries. The solution to other classes of crack problems such as
multiple cracked bodies and central crack problems may be obtained using complex
variables (Muskhelishvili, 1953).

The complex variable method introduced by Muskhelishvili (1953) offers solutions
to a vast range of singular problems. However, his approach requires a broad knowl-
edge of mathematics. Fortunately Westergaard (1939) proposed another complex
variable approach that offers advantages of a complex formulation and in a meanwhile
avoids Muskhelishvili’s approach disadvantages. The generalized Westergaard
approach using complex variables provides an infinite number of potential Airy stress
functions that may be utilized in fracture mechanics (Sanford, 2003). This method
applies the semi-inverse method to the Airy stress function expressed in the complex
domain. The original method can only be used for infinite problems with uniform
remote boundary conditions (Sanford, 2003). After some modifications and introduc-
tion of a second analytical function (Etfis & Liebowitz, 1972; Sanford, 1979; Sih,
1966) the generalized Westergaard method can now be applied to both finite and
infinite body problems with arbitrary boundary conditions as long as the crack(s) is
(are) constrained to lie along the y=0 plane.

Alternating method, compounding method and superposition are almost similar
methods in SIF computation. These methods compute the SIF of a complex geometry
as the sum of simpler problems with known SIFs. Figure 7 illustrates the superposition
method.

G

GrowthNew state
Of surface

Original
surface

GI GII= +

Figure 6 Definition of GI and GII for fracture growth. (a) G: the growth has both open and shear
displacement; (b) GI: the growth has only normal displacement showing increase in aperture;
(c) GII: the growth has only shear displacement (Shen & Stephansson, 1993).
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2.2 Numerical methods

It has been established that SIF plays an important role in LEFM and study of cracked
bodies.Where a solution cannot be obtained directly fromanalyticalmethods, numerical
methods should be applied to most practical crack problems.

3 FINITE ELEMENT METHOD

In mathematics, the FEM is a numerical technique for finding approximate solutions to
boundary value problems for partial differential equations. It uses subdivision of a
whole problem domain into simpler parts, called finite elements, and variational
methods from the calculus of variations to solve the problem by minimizing an
associated error function.

Considering a plane stress or a plane strain problem the following steps are used in
the finite element modeling of elastostatic problems.

1. Discretization of the continuous domain into sub-regions called finite elements of
arbitrary size, shape and orientation.

2. Elements are connected to the other neighboring elements through a finite number
of discrete points called nodes.

3. The displacements at the nodes are assumed as the basic unknowns of the pro-
blem. The total number of these nodal displacement components is called the
number of degrees of freedom of the finite element model. The larger this number,
the more accurate is the solution, although computationally more expensive
(which means, more equations to store and solve, and hence needing more
computer resources).

4. It is assumed that by somemeans, displacements at all the nodes are obtained. Using
interpolation and element nodal displacement field, the interior displacement field
within each element may be found:

ug ¼ ½Nf � uegf ð15Þ

σ

σ σ

σ

P

P

Figure 7 Superposition for a central crack in an infinite body under uniaxial far-field tension.
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where {u} is the displacement vector within an element, [N] is called interpolation
matrix or the shape function matrix and {ue} element nodal displacement vector.

5. Once the displacement field within the element is known, the strain field can be
obtained by making use of the strain-displacement relations:

εg ¼ ½Lf � ug ¼ ½Lf �½N� ueg ¼ ½Bf � uegf ð16Þ

where {ε} is the strain vector, the matrix [B] is the strain-displacement matrix and
[B]=[L][N] in which the operator matrix [L] is given by:

½L� ¼
∂=∂x
0

∂=∂y

0
∂=∂y
∂=∂x

24 35 ð17Þ

6. Using stress-strain relationships, the stress field {σ} in the element is obtained as

σg ¼ ½Df � εg ¼ ½Df �½B� uegf ð18Þ

where [D] is the constitutive matrix. In case of plane strain problems:

½D� ¼ E
1� �2

1 � 0
� 1 0

0 0
1� �

2

264
375 ð19Þ

7. After determining the stress field {σ}, the principle of virtual workmight be used to
obtain the basic finite element equations (Ameen, 2005). Eventually the following
equation is achieved:

½ke� ueg ¼ regff ð20Þ

where

½ke� ¼
ð
Ve

BTDBdVe ð21Þ

[ke] is the element stiffness matrix,Ve the element volume, and {re} is element load
vector

freg ¼
ð
Ve

NTfbgdVe þ
ð
Se

NT pgdSef ð22Þ

{b} and {p} are the body force and surface force vectors, respectively.
8. The summation of all element stiffness matrices and element load vectors results in

a linear system of algebraic equations as

½K� Ug ¼ Rgff ð23Þ
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where [K] is the global stiffness matrix, {U} is the global displacement vector, and
{R} is the global load vector.

Crack growth modeling using traditional finite element framework is cumbersome due
to the need for the mesh to be updated to match geometry of the discontinuity. This
becomes a major difficulty when treating problems with evolving discontinuities where
the mesh must be regenerated at each step. Moreover, the crack tip singularity needs to
be accurately represented by approximate functions.

3.1 SIF determination

For many practical problems, lack of analytical solution results in numerical determi-
nation of the stress intensity factor. The most popular FEM techniques for SIF deter-
mination includes (Mohammadi, 2008):

1. Classical methods using the finite element method solely as a continuum based
analytical tool.

2. Techniques in which the SIFs are directly evaluated as part of the global stiffness
matrix.

3. Techniques throughwhich the SIF can be computed from a standard finite element
analysis via a special purpose post-processing technique.

4. Methods in which the singularity of the stress field at the crack tip is modeled.

These methods are explained in details in (Mohammadi, 2008).
For the FEM to approximate SIF a very fine mesh at the crack tip is needed. SIFs can

be determined at different radial distances from the crack tip by equating the numeri-
cally obtained displacements with their analytical expression in terms of the SIF. In
most cases, FEM programs do not include SIF in their formulation. Conceptually we
could obtain KI from the σy stress ahead of the crack using the defined relation

KI ¼ lim
xþ!0

σy θ¼0
:
ffiffiffiffiffiffiffiffiffi
2πx

p			 ð24Þ

where x is the crack tip coordinate along the crack plane and the limit is taken from the
material side. Alternatively we could use the crack opening displacement behind the
crack tip u, to compute K from the relation

KI ¼ lim
x�!0

u
θ¼π

:
1ffiffiffiffiffiffiffiffiffi
2πx

p π

2
E

0
				 ð25Þ

where E0=E for plane stress and E0=E/(1−ν2) for plane strain conditions.
For plane stress problems in the xy plane (Mohammadi, 2008).

KI ¼ μ

ffiffiffiffiffiffi
2π
r

r
uby � uay
2 1� �ð Þ ð26Þ

KII ¼ μ

ffiffiffiffiffiffi
2π
r

r
ubx � uax
2 1� �ð Þ ð27Þ
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KIII ¼ μ

ffiffiffiffiffiffi
2π
r

r
ubz � uaz
� �

ð28Þ

A simple extrapolation technique, as depicted in Figure 8, can then be used to approxi-
mately evaluate the value of SIF at the crack tip. The same procedure for stresses can also
be used, although it is likely to yield less accurate predictions (Mohammadi, 2008).

4 EXTENDED FINITE ELEMENT METHOD (XFEM)

The XFEM was originally proposed by Belytscho & Black (1999). They presented a
method for enriching finite element approximations with minimal remeshing require-
ment in problems with evolving geometries. Dolbow and others (Dolbow, 1999;
Dolbow et al., 2000) andMoës et al. (1999) introduced amuchmore elegant technique
by adapting an enrichment that includes the asymptotic near tip field and a Heaviside
function H(x). Since then it has been used to model the propagation of various
discontinuities: such as cracks, material interfaces etc. The idea behind XFEM is to
retain most advantages of mesh-free methods without dealing with disadvantages.

The XFEM, is based on a standard Galerkin procedure, and the partition of unity
method (PUM) (Melenk& Babuska, 1996) to accommodate the internal boundaries in
the discrete model. It extends the classical FEM approach by enriching the solution
space for solutions to differential equations with discontinuous functions.

4.1 Crack-tip enrichment

Theoretically, enrichment can be regarded as the principal of increasing the order of
completeness. Computationally, it seeks higher accuracy of the approximation using
the analytical solution. The choice of the enriched functions depends on the a priori
solution of the problem. For instance, in a crack analysis this is equivalent to an
increase in accuracy of the approximation if analytical near crack tip solutions are
somehow included in the enrichment terms (Mohammadi, 2008).

The essential idea in the extended finite element method, which is closely related to
the GFEM (Duarte et al., 2000; Strouboulis et al., 2000), is to add discontinuous
enrichment functions to the finite element approximation using the partition of unity:

a
a

r

b

y
K

Figure 8 Stress intensity factor calculation in FEM using extrapolation.
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u xð Þ ¼
Xn
i¼1

Ni xð Þ ui þ
Xne ið Þ

j¼1

aijFj r; θð Þ
 !

ð29Þ

where Ni(x) are the standard finite element shape functions and (r,θ) is a polar
coordinate system with origin at the crack tip. The enrichment coefficient aji is asso-
ciated with nodes and ne(i) is the number of coefficients for node i e.g. it is chosen to be
four for all nodes around the crack tip and zero at all other nodes.

The crack-tip enrichment functions in isotropic elasticity Fi(r,θ) are obtained from
the asymptotic displacement fields:

½Fj½r; θ��4j¼1 ¼ ffiffi
r

p
sin

θ
2

� �
;
ffiffi
r

p
cos

θ
2

� �
;
ffiffi
r

p
sin

θ
2

� �
sin θ;

ffiffi
r

p
cos

θ
2

� �
sin θ

� �
ð30Þ

Note that the first function in the above equation is discontinuous across the crack. It
represents the discontinuity near the tip, while the other three functions are added to get
accurate result with relatively coarse meshes.

4.2 Heaviside function

The Heaviside function is a discontinuous function across the crack surface and is
constant on each side of the crack (i.e. +1 on one side and −1 on the other). After
intruding this jump function, the approximation will be changed to the following
formula (Yazid et al., 2009):

U ¼
X
i2I

uiNi þ
X
j2J

ojNjH xð Þ þ
X
k2K1

Nk

X4
l¼1

cl1k F
1
l xð Þ

 !
þ
X
k2K2

Nk

X4
l¼1

cl2k F
2
l xð Þ

 !
ð31Þ

where Ni is the shape function associated to node i, I is the set of all nodes of the
domain, J is the set of nodes whose shape function support is cut by a crack,K is the set
of nodes whose shape function support contains the crack front, ui are the classical
degrees of freedom (i.e. displacement) for node i, oj account for the jump in the
displacement field across the crack at node j. If the crack is aligned with the mesh, oj
represent the opening of the crack,H(x) is the Heaviside function, clk are the additional
degrees of freedom associated with the crack-tip enrichment functions Fl and Fl is an
enrichment which corresponds to the four asymptotic functions in the development
expansion of the crack-tip displacement field in a linear elastic solid.

4.3 Numerical integration

There are two difficulties for the integration of XFEM functions: the discontinuity
along the crack, and the singularity at the crack tip. The numerical integration of cut
elements is generally performed by partitioning them into standard sub-elements. To
get accurate results, in the sub-elements, high order Gauss quadrature rule must be
used. In earlier investigations, each side of a cut element was triangulated to form a set
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of sub-triangles. Some authors adopt a slightly different approach, choosing instead to
partition cut elements into sub-quadrilaterals.

5 BOUNDARY ELEMENT METHOD

The boundary element methodmay be regarded as mesh-reducing method. It is divided
into two main groups of direct and indirect methods. Direct boundary integral method
use direct approach and fictitious stress and displacement discontinuity methods use an
indirect approach in the boundary element methods.

In direct method a fundamental solution is used in the reciprocal theorem
(Sokolnikoff, 1956) which results in Somigliana’s identity (Cruse, 1989). The bound-
ary integral equation is obtained by moving the source point of the fundamental
solution to the boundary of the interested problem.

The key to direct boundary element method in linear elasticity is reciprocal theorem.
This theorem links the solutions to two different boundary value problems for the same
region.ð

C
σsu0s þ σnu0n
� 

ds ¼
ð
C

σ0sus þ σ0nun
� 

ds ð32Þ

whereC is the boundary of the problem. The primed set (σ 0
s, σ 0

n, u0s, u0n) is a known state of
the problemand theunprimed set (σs, σn, un, us) is anunknown setmeant to bedetermined.
Equation 32 is an integral equation that relates unspecified boundary parameters of the
problem to the specified boundary parameters and the solution to another problem for the
same region. For any boundary value problemhalf of the problemparameters are specified
as the boundary conditions. Equation 32 can be used to write down a system of 2N

algebraic equations. For a stress boundary value problem σ
i
s ¼ ðσisÞ0 and σ

i
n ¼ ðσinÞ0 are

known for all boundary elements. The LHS of the equationsXN
j¼1

B
ij

ssðσ
j
sÞ0 þ

XN
j¼1

B
ij

snðσ
j
nÞ0 ¼

XN
j¼1

A
ij

ssu
j
s þ
XN
j¼1

A
ij

snu
j
n

XN
j¼1

B
ij

nsðσ
j
sÞ0 þ

XN
j¼1

B
ij

nnðσ
j
nÞ0 ¼

XN
j¼1

A
ij

nsu
j
s þ
XN
j¼1

A
ij

nnu
j
n ð33Þ

will then be known, the displacements u
i
n and u

i
n, i=1 toN can be found by solving these

equations. A similar set of equations can be formed for the case that the displacements

u
i
n ¼ ðuinÞ0 and u

i
s ¼ ðuisÞ0 are known for all N boundary elements; the stresses σ

i
s and

σ
i
n, i=1 to N, are then the unknowns in the system.
The governing system of algebraic equations for any type of boundary value problem

may be represented as

Y
i

s ¼
XN
j¼1

C
ij

ssX
j

s þ
XN
j¼1

C
ij

snX
j

n

Y
i

n ¼
XN
j¼1

C
ij

nsX
j

s þ
XN
j¼1

C
ij

nnX
j

n

9>>>>=>>>>;; i ¼ 1 to N ð34Þ
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where Y
i
s and Y

i
n , i =1 to N, are certain linear combinations of the known boundary

parameters, and Cij
ss, etc., are the appropriate influence coefficients associated with the

unknown boundary parameters X
j

s and X
j

n .
The close relation between the boundary integral equation (BIE) and full equilibrium

differential equations results in a major limitation for BIE analysis of fracture
mechanics problems. For non-symmetric crack problems, the solution of general
crack problems cannot be achieved with the direct application of the BEM (for sym-
metric crack problems one can model just one side of the crack), because the coin-
cidence of the crack surfaces gives rise to a singular system of algebraic equations
(Cruse, 1989). An identical set of equations will be achieved for each certain point on
both surfaces of the crack with the same co-ordinates. Some special techniques have
been devised to overcome this difficulty including: the crack Green’s function (Snyder
& Cruse, 1975), the sub-regions method (Blandford et al., 1981), the dual boundary
element method (Hong & Chen, 1988) and the displacement discontinuity method
(Crouch, 1976a).

5.1 Crack Green’s function

The crack Green’s function method eliminates the need for discretization of the crack
by considering a traction-free crack. Fundamental solution to such a problem is
known as crack Green’s function and since it contains the correct behavior of stresses
and displacements accurate values of SIF can be expected from numerical solutions.
However, it is limited to problems with a single straight traction-free crack. In order
to evaluate SIF using a crack Green’s function the following boundary element
equation is solved using the crack fundamental solutions and the tractions and
displacements are evaluated along all boundaries except the crack (Aliabadi &
Rooke, 1991)

Cij x0ð Þuj x0ð Þ ¼
ð
�

Uij x0; xð Þtj xð Þd� xð Þ�
ð
�

Tij x0; xð Þuj xð Þd� xð Þ

þ
ð
Ω

Uij x0;Xð Þbj Xð ÞdΩ Xð Þ
ð35Þ

where

Cij x0ð Þ ¼ δij þ lim
ε!0

ð
�0

ε

Tij x0; xð Þd� xð Þ

8><>:
9>=>; ð36Þ

where the fundamental solutions Uij and Tij are the Kelvin’s displacement and traction
fundamental solutions in the j direction at point X due to a unit point force acting in i
direction at X

0
, bj is body force component and Γ

0
ε represents the boundary a circular

inclusion of radius ε (see Figure 9).
Once tj(x) and uj(x) are obtained, the SIF can be computed from the interior stresses

(Blanford et al., 1981) or interior displacements (Mews, 1987), in the limit as the
internal source point approaches the crack tip.
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While theoretically the Green’s function method can be applied to wide range of
problems, the method is limited to two dimensional problems. Essentially the Green’s
function solutions are superior to any numerical approach, because the crack field is
exactly contained in the internal Somigliana identities.

5.2 Sub-region method

To deal with crack modeling problem in the BEM, the sub-region method divides the
domain into subdomains, so that the crack surfaces are not in the same domain. For
multiple-crack problems sub-regions must be introduced to separate each individual
crack and in the case of crack propagation re-meshing will be needed, because the
domain boundaries are defined by the crack surfaces. For a body with multiple cracks
this can be time consuming. The main drawback of this method is that the introduction
of artificial boundaries is not unique, and thus cannot be easily implemented into an
automatic procedure (Portela et al., 1992). In addition, the method generates a larger
system of algebraic equations than is strictly required.

5.3 Dual boundary element method

The basic task in any boundary element analysis of fracture mechanics is to solve the
problem that arises because two nodes on opposite sides of a crack have equal coordi-
nates. The dual BEM incorporates two independent boundary integral equations. It
uses the displacement equation to model one of the crack boundaries and the traction
equation to model the other. Consequently, mixed-mode crack problems can be solved
with a single region formulation (Aliabadi&Rooke, 1991; Chen&Hong, 1999;Hu&
Chen, 2013; Leme & Aliabadi, 2012; Yun & Ang, 2010). A major advantage of the
dual BEM is its computational efficiency inmodeling crack growthwhere new elements
need to be created as the crack propagates. Figure 10 shows dual BEM and DDM
modeling of an edge crack problem. In dual BEM the two sides of the crack can be
separately discretized (i.e. the direct BEM) or they may be discrete together (as a single
crack line) in the indirect BEM. The indirect BEM for solving elastic problems is divided
to fictitious stress method (FSM) and displacement discontinuity method (DDM)

y

x

x'

n

G

Γε

ε

W

Figure 9 Source point located on the boundary surrounded by a circular arc boundary.
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(Crouch & Starfield, 1983). Figure 10 shows the difference in discretization of an edge
crack problem in dual BEM and DDM.

Following integral Equations are the basis of the dual boundary element method.

Cij x0ð Þuj x0ð Þ þ
ð
�

Tij x0; xð Þuj xð Þd� xð Þ ¼
ð
�

Uij x0; xð Þtj xð Þd� xð Þ; ð37Þ

1
2
tj x0ð Þ þ nj x0ð Þ

ð
�

Sijk x0; xð Þuk xð Þd� xð Þ ¼ nj x0ð Þ
ð
�

Dijk x0;xð Þtk xð Þd� xð Þ ð38Þ

The general modeling strategy in the dual BEM can be summarized as follows

• The displacement Equation 37 is applied for collocation on one of the crack
boundaries.

• The traction Equation 38 is applied for collocation on the opposite crack boundary
and remaining boundaries.

• The crack boundaries are discretized.
• The remaining boundaries of the problem domain are discretized except the inter-

section between a crack and an edge where discontinuous or semi-discontinuous
elements are required in order to avoid nodes at the intersection.

A wide range of literature of dual BEM exists which the interested readers may refer to
(e.g. (Aliabadi & Rooke, 1991; Chen & Hong, 1999; Cisilino & Aliabadi, 2004;
Davies & Crann, 2006; Dirgantara & Aliabadi, 2001; Fedelinski et al., 1993; Portela
et al., 1992; Simpson & Trevelyan, 2011).

Recently displacement discontinuity method (DDM) has been used in rock fracture
mechanics approaches. Therefore the DDM is explained in the following section.

5.4 Displacement discontinuity method

In displacement discontinuity method (DDM), the crack is considered as single surface
across which the displacements are discontinuous. The method is based on the

a) b)

Figure 10 (a) Displacement discontinuity method, b) Dual boundary element method.
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analytical solution to the problem of a discontinuity in displacement over a finite line
segment in the x, y plane of an infinite elastic solid.

Consider a displacement discontinuity element of length 2a along the x-axis, which is
characterized by a general displacement discontinuity distribution u(ε). By taking the ux
and uy components of the general displacement discontinuity u(ε) to be constant and
equal to Dx and Dy respectively, in the interval (−a, +a) as shown in Figure 11. Two
displacement discontinuity element surfaces can be distinguished, one on the positive
side of y (y=0+) and another one on the negative side (y= 0−). The displacement under-
goes a constant change in value when passing from one side of the displacement
discontinuity element to the other side are given as follows:

Dx ¼ uxðx; 0�Þ � uxðx; 0þÞ
Dy ¼ uyðx; 0�Þ � uyðx; 0þÞ

ð39Þ

The positive sign convention of Dx and Dy is shown in Figure 11 (b). It demonstrates
that when the two surfaces of the displacement discontinuity overlap, Dy is positive,
which leads to a physically impossible situation. This conceptual difficulty is overcome
by considering that the element has a finite thickness in its un-deformed state, which is
small compared to its length, but bigger than Dy.

The solution to the problem is given by Crouch (Crouch, 1976a,b). The displace-
ments and stresses can be expressed as

ux ¼ Dx½2ð1� �Þf;y � yf;xx� þDy½�ð1� 2�Þg;x � yg;xy�
uy ¼ Dx½ð1� 2�Þf;x � yf;xy� þDy½2ð1� �Þg;y � yg;yy�

ð40Þ

and
σxx ¼ 2μDx½2f;xy þ yf;xyy� þ 2μDy½g;yy þ yg;yyy�
σyy ¼ 2μDx½�yf;xyy� þ 2μDy½g;yy � yg;yyy�
τxy ¼ 2μDx½2f;yy þ yf;yyy� þ 2μDy½�yg;xyy�

ð41Þ

where f,x, g,x, g,y, etc. are the partial derivatives of the single harmonic functions f(x,y)
and g(x,y) with respect to x and y, which are given as:

y y

u(ε)

x

–a

(a) (b)

+a
+Dx

+Dy

x

Figure 11 a) Displacement discontinuity element and the distribution of u(ε). b) Constant element
displacement discontinuity (position sign convention) (Fatehi Marji, 2015).

Numerical rock fracture mechanics 677



f ðx; yÞ ¼ �1
4πð1� �Þ

ða
�a

uxðεÞln x� εð Þ2 þ y2
h i 1

2dε

gðx; yÞ ¼ �1
4πð1� �Þ

ða
�a

uyðεÞln x� εð Þ2 þ y2
h i 1

2dε

ð42Þ

The functions f(x,y) and g(x,y) for a constant element displacement discontinuity can
be written in term of a single integral function, I0(x,y) as follows (Fatehi Marji, 2015).

f ðx; yÞ ¼ I0ðx; yÞDx

gðx; yÞ ¼ I0ðx; yÞDy

ð43Þ

where the integral function I0(x,y) is

I0ðx; yÞ ¼
ð
ln½ðx� εÞ2 þ y2�

1
2dε

¼ yðθ1 � θ2Þ � ðx� aÞlnðr1Þ þ ðxþ aÞlnðr2Þ � 2a

ð44Þ

The terms θ1, θ2, r1, r2 are defined as

θ1 ¼ arctan
y

x� a

� �
; θ2 ¼ arctan

y
xþ a

� �
;

r1 ¼ ½ x� að Þ2 þ y2�
1
2
; and r2 ¼ ½ xþ að Þ2 þ y2�

1
2 ð45Þ

The displacement discontinuity functions ux(ε) and uy(ε) can be used either in a
constant element form or in a higher element form as follows, to solve the displace-
ments and stresses of Equations 40 and 41. A system of algebraic equations is formed
by considering boundary conditions for each element. For a boundary (e.g. the ith
element) with prescribed stress conditions

σ
i
s

� �
0
¼
XN
j¼1

A
ij

ssD
j

s þ
XN
j¼1

A
ij

snD
j

n

σ
i
n

� �
0
¼
XN
j¼1

A
ij

nsD
j

s þ
XN
j¼1

A
ij

nnD
j

n

(46)

where A
ij

ss;A
ij

sn; ::: are boundary influence coefficients for the stresses. For instance A
ij

sn

gives the shear stress (σs) at the midpoint of the ith element due to a constant unit
normal displacement discontinuity over the jth element (Dn=1). Similarly if displace-
ments us and un are prescribed then ith element equations are

u
i
s

� �
0
¼
XN
j¼1

B
ij

ssD
j

s þ
XN
j¼1

B
ij

snD
j

n

u
i
n

� �
0
¼
XN
j¼1

B
ij

nsD
j

s þ
XN
j¼1

B
ij

nnD
j

n

(47)
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Mixed boundary conditions in which either un and σs or us and σn are prescribed are
managed by selecting the appropriate ones of Equations 46 and 47. Following the same
procedure for i=1 to N, a system of algebraic equations in 2N unknown displacement
discontinuity components.

b
i

s

� �
0
¼ PN

j¼1
C
ij

ssD
j

s þ
PN
j¼1

C
ij

snD
j

n

b
i

n

� �
0
¼ PN

j¼1
C
ij

nsD
j

s þ
PN
j¼1

C
ij

nnD
j

n

9>>>=>>>; i ¼ 1 toN (48)

where b
i
s and b

i
n stand for the known boundary values of stress or displacement, and

C
ij

ss, etc., are the corresponding influence coefficients from Equations 46 and 47.
Equations 45 give 2N equations with 2N unknowns (i.e. displacement discontinuities)
which can be solved using common methods.

Constant displacement discontinuity elements are simple to use and are widely utilized
in analyzing engineering problems (Behnia et al., 2012; Fatehi Marji et al., 2011; Hadi
Haeri et al., 2013a,b; Kim & Pereira, 1997; Shou & Napier, 1999). However, these
models, fail to accurately predict the stresses and displacements for field points near
boundaries. Also due to the singularity variations 1/√r, and √r for the stresses and
displacements near the crack ends, the accuracy of the displacement discontinuitymethod
at the vicinity of the crack tip decreases (Courtesen, 1979; Kutter & Fairhurst, 1971).
These shortcomings have been resolved by using higher order displacement discontinuity
(HODD) elements (Crawford & Curran, 1982). Since then HODD have been developed
and used to achieve higher accuracy in LEFM problems (Ash, 1985; Crouch & Starfield,
1983; FatehiMarji&Hosseini-nasab, 2005; FatehiMarji, 2014, 1997;HosseiniNasab&
Fatehi Marji, 2007; Itou, 2013; Shou & Crouch, 1995; Shou et al., 1997). Higher order
elements increase the accuracy of the numerical results, but the problem of crack tip
singularities cannot be solved efficiently. The use of crack tip elements can substantially
improve the accuracy of themethod for crack analyses (Courtesen, 1979;Crouch, 1976a).

Constant, linear and quadratic element formulations of the displacement disconti-
nuity are already defined and used in the literature (Crouch & Starfield, 1983; Fatehi
Marji et al., 2006; Shou et al., 1997). The cubic element formulation of the displace-
ment discontinuity is based on analytical integration of cubic collocation shape func-
tions over collinear, straight-line displacement discontinuity elements (Fatehi Marji
et al., 2007). Figure 10 shows the cubic displacement discontinuity distribution, which
can be written in a general form as:

DiðεÞ ¼ N1ðεÞD1
i þN2ðεÞD2

i þN3ðεÞD3
i þN4ðεÞD4

i ; i ¼ x; y ð49Þ
where, Di

1, Di
2, Di

3 and Di
4 are the cubic nodal displacement discontinuities, and,

N1ðεÞ ¼ �ð3a31 � a21ε� 3a1ε2 þ ε3Þ=ð48a13Þ;
N2ðεÞ ¼ ð9a31 � 9a21ε� a1ε2 þ ε3Þ=ð16a13Þ;
N3ðεÞ ¼ ð9a31 þ 9a21ε� a1ε2 � ε3Þ=ð16a13Þ;
N4ðεÞ ¼ �ð3a31 þ a21ε� 3a1ε2 � ε3Þ=ð48a13Þ

ð50Þ
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are the cubic collocation shape functions using a1 ¼ a2 ¼ a3 ¼ a4. A cubic ele-
ment has 4 nodes, which are at the centers of its four sub-elements as shown in
Figure 12.

The potential functions for the cubic element case can be found from:

f ðx; yÞ ¼ �1
4πð1� �Þ

X4
j¼1

Dj
xFjðI0; I1; I2; I3Þ;

gðx; yÞ ¼ �1
4πð1� �Þ

X4
j¼1

Dj
yFjðI0; I1; I2; I3Þ

ð51Þ

in which, the common function Fj, can be defined as:

FjðI0; I1; I2; I3Þ ¼
ð
NjðεÞln½ðx� εÞ þ y2�

1
2

dε; j ¼ 1 to 4 ð52Þ

The integrals I0, I1 and I2 are the same as those already given in literature for quadratic
element case (Fatehi Marji et al., 2006), but I3 can be expressed as:

I3ðx; yÞ ¼
ða
�a

ε3ln½ðx� εÞ2 þ y2�
1
2dε ¼ �xyðx2 � y2Þðθ1 � θ2Þþ

0:25ð3x4 � 6x2y2 þ 8a2x2 þ a4 � y4Þ½lnðr1Þ � lnðr2Þ��
2axðx2 þ a2Þ½lnðr1Þ þ lnðr2Þ� þ 1:5ax3 � 3axy2 þ 7a3x=6

ð53Þ

5.4.1 SIF computation

Considering a body of arbitrary shape with a crack of arbitrary size, subjected to
arbitrary tensile and shear loadings (i.e. the mixed mode loading I and II), the stresses
and displacements near the crack tip are given in the related text books (Aliabadi &
Rooke, 1991; Broek, 1989; Sanford, 2003; Whittaker et al., 1992). The following
formulations are suitable:

Element

1

2a1 2a2 2a3

2a

2a4

2 3 4

Di
1 Di

2

y

ε
Di

3 Di
4

Figure 12 Cubic collocation for the cubic element displacement discontinuity (Fatehi Marji et al.,
2007).
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ux ¼ KI

4G

ffiffiffiffiffiffi
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ð2κ � 1Þcos θ
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� cos
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� �
þ KII

4G

ffiffiffiffiffiffi
r
2π

r
ð2κ þ 3Þsin θ

2
þ sin
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� �

uy ¼ KI

4G

ffiffiffiffiffiffi
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2π

r
ð2κ � 1Þsin θ

2
� sin
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� �
� KII

4G

ffiffiffiffiffiffi
r
2π

r
ð2κ � 3Þcos θ

2
þ cos

3θ
2

� �
ð54Þ

where, KI and KII are the stress intensity factors in Mode I and Mode II respectively;
and r and θ are defined in Figure 13.

Based on LEFM theory, the Mode I and Mode II stress intensity factors KI and KII

can be written in terms of the normal and shear displacement discontinuities as (Shou
& Crouch, 1995):

KI ¼ μ

4ð1� �Þ
2π
a

� � 1
2DyðaÞ; and KII ¼ μ

4ð1� �Þ
2π
a

� � 1
2
DxðaÞ ð55Þ

Once the SIFs are computed the propagation angle may be obtained using following
relation based on the maximum tangential stress criterion (Erdogan & Sih, 1963).

θ0 ¼ 2tan�1 1
4

KI

KII

� �
� 1
4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
KI

KII

� �2

þ 8

s24 35 ð56Þ

The angle θ0 is shown in Figure 5.

Crack

a

u

r

x

y

v

Dy(ε)
θ

Dx(ε)

ε

Figure 13 Displacement correlation technique for the special crack tip element (Fatehi Marji,
1990).
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5.4.2 Crack tip element formulation

The displacement discontinuity method permits the crack surfaces to be discretized
and computes the crack opening displacement (normal displacement discontinuity),
and crack sliding displacement (shear displacement discontinuity) directly as a part of
the solution for each element (Fatehi Marji, 2014; Fatehi Marji et al., 2006; Guo
et al., 1992, 1990; Scavia, 1995, 1990). Due to the singularity of the stresses and
displacements near the crack ends, the accuracy of the displacement discontinuity
method at the vicinity of the crack tip decreases, and usually a special treatment of the
crack at the tip is necessary to increase the accuracy and make the method more
efficient. The hybrid elements can be implemented in a general higher order displace-
ment discontinuity method using cubic displacement discontinuity elements with
three special crack tip elements at the end of each crack. To use three special crack
tip elements, the displacement discontinuity variation along the element can be
written in the following form (Fatehi Marji et al., 2006) as:

DiðεÞ ¼ C1ε
1
2 þ C2ε

3
2 þ C3ε

5
2 ð57Þ

Equation 57 can be rearranged in the following form:

DiðεÞ ¼ ½NC1ðεÞ�D1
i ðaÞ þ ½NC2ðεÞ�D2

i ðaÞ þ ½NC3ðεÞ�D3
i ðaÞ ð58Þ

The crack tip element has a length a ¼ a3 þ a2 þ a1. Considering a1 ¼ a2 ¼ a3, the
complicated shape functions NC1ðεÞ, NC2ðεÞ and NC3ðεÞ can be written as:

NC1ðεÞ ¼ 15ε
1
2
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2
1
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ð59Þ

The potential functions fCðx; yÞ and gCðx; yÞ for the crack tip can be expressed as:

fCðx; yÞ ¼ �1
4πð1� �Þ

ða
�a

DxðεÞln½ðx� εÞ2 þ y2�
1
2
dε

gCðx; yÞ ¼ �1
4πð1� �Þ

ða
�a

DyðεÞε
5
2ln½ðx� εÞ2 þ y2�

1
2
dε

ð60Þ
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Inserting Equations 59 in Equations 58 and the first part of Equations 60, gives:

fCðx; yÞ ¼ �1
4πð1� �Þ

" ða
�a

N1 εð Þln x� εð Þ2 þ y2
h i12

dε

#
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8<:
þ

ða
�a
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h i12
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24 35D2
x þ

" ða
�a
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)
ð61aÞ

fCðx; yÞ ¼ ð� 1
4πð1� vÞÞðIC1ðx; yÞD

1
x þ IC2ðx; yÞD2

x þ IC3ðx; yÞD3
xÞ ð61bÞ

fCðx; yÞ ¼ � 1
4πð1� vÞ

X2
j¼1

Dj
xFCjðIC1; IC2; IC3Þ ð61cÞ

Similarly,

gCðx; yÞ ¼ � 1
4πð1� vÞ

X2
j¼1

Dj
yFCjðIC1; IC2; IC3Þ ð62Þ

from Equations 61c and Equation 62, the common function FCjðIC1; IC2; IC3Þ can be
obtained as:

FCjðICjÞ ¼
ða
�a

NCjðεÞln½ðx� εÞ2 þ y2�
1
2
dε; j ¼ 1; 2 and 3 ð63Þ

From which the following integrals are deduced:

IC1ðx; yÞ ¼
ða
�a

ε
1
2ln½ðx� εÞ2 þ y2�

1
2
dε;

IC2ðx; yÞ ¼
ða
�a

ε
3
2ln½ðx� εÞ2 þ y2�

1
2
dε

IC3ðx; yÞ ¼
ða
�a

ε
5
2ln½ðx� εÞ2 þ y2�

1
2
dε

ð64Þ

The integrals IC1, IC2 and IC3 with their corresponding derivatives are given in a recent
work by the authors (Fatehi Marji et al., 2007, 2005).

6 DISCRETE ELEMENT METHOD

Geo-materials like rocks, exhibit discontinuous and inhomogeneous nature leads to
complex mechanical behaviors which can be difficult to tackle with classical numerical
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methods. Among these complex features which need to be reproduced as cracks, their
nucleation, propagation and interaction.

Most of the numerical methods used in geo-mechanics have an implicit representa-
tion of the discontinuities, where their deformability or strength, are considered as
equivalent continua through constitutive laws of the discontinuities. Since the intro-
duction of joint elements in the FEM (Goodman, 1976), continuum mechanics based
methods are still in progressing in the fracture mechanics literature in form of the
eXtended Finite Element Method (XFEM), (Belytschko & Black, 1999; Waisman &
Belytschko, 2008).

However, Figure 14 demonstrates the general calculation cycle in DEM where the
explicit force-displacement formulation is being used.

Discrete-based methods can be used as an alternative to continuum based methods
which represent thematerial as an assemblage of independent elements interactingwith
one another. The discrete element methods (DEM) are often applied to investigate the
mechanical behavior of geo-materials, by approximating the geometry of materials as
discrete elements bonded together by different models of cohesive forces or cementa-
tion effects.

In geotechnical field, different DEMs are used, the twomajor discrete based methods
are: the Universal Distinct Element Code (UDEC) and Discontinuous Deformation
Analysis (DDA).

UDEC as pioneered by Cundall & Strack (1979), is basically an algorithm involving
Force-Displacement method and the Molecular Dynamics (MD) formalism, which
are considered as smooth contact method. There are other DEMs which are referred
to as “non-smooth contact methods” such as i) the event-driven integrators or the

Body forces
Contact relative displacement

–
Linear stiffness model 

Force-displacement law Update set of contacts

Displacements at
the particle centroids

and walls motion

Newton’s law of motion
-

Double integration

Displacement
boundary
conditions

Forces at
the particle centroids

Law of motion

Figure 14 General DEM calculation cycle (Monteiro Azevedo & Lemos, 2006).
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Event-DrivenMethod (EDM) (Luding et al., 1996) and ii) the time-stepping integrators
or the Contact Dynamics Method (CD method) (Jean, 1995; Moreau, 1994).

While the DEM, EDM or CD often considered as the discrete elements for non-
deformable bodies in time-explicit numerical schemes, their performances is somewhat
limitedwhen the discrete elements are themselves deformable. Then, the Discontinuous
Deformation Analysis (DDA) (Shi & Goodman, 1988) can be used to overcome these
deficiencies. DDA uses an FEM based solver for stress and deformation filed inside the
Discrete Elements, and simultaneously accounts for the interaction of independent
elements along discontinuities. In this section the discontinuous based methods are
being discussed therefore, DDA which is considered as a continuous approach will not
be considered here. For a detailed and complete description of DDA the interested
reader is referred to Jing & Stephansson‘s book (2008).

7 MESH-LESS METHODS

Mesh-less methods are viewed as the next generation of the computational techniques.
The conventional grid based methods such as FEM, BEM and DEM have some evident
limitation in dealing with problems of fracture mechanics and large deformation
processes (Daxini & Prajapati, 2014).

Grid based methods are widely used for analyzing various engineering problems.
Eulerian and Lagrangian grid are two fundamental approaches in grid based methods.
New combined approaches are developed to strengthen the advantages of each
approach and avoid their limitation (Liu & Liu, 2003).

7.1 General features

Problems with moving material discontinuity, large deformation with excessive mesh
distortion (i.e. the fracturemechanics problems) are not well suited to be treated by grid
based methods.

The mesh-less methods were developed by modifying the internal structure of grid
based methods. The mesh-less methods are more adaptive, versatile and robust.
Therefore they can be used for problems when conventional methods are not
suitable.

The basic concept of the mesh-less methods is to provide accurate and stable
numerical solution for integral equations or partial differential equations (PDEs)
with any possible boundary and initial conditions using a set of arbitrarily distributed
nodes without defining mesh which connect these nodes (Liu & Liu, 2003). Element
free galerkin (EFG) andmesh-less local Petrov-Galerkin (MLPG)methods are twowell-
known mesh-less methods. Mesh-less methods are categorized based on use of global
or local weak form to derive system matrices. EFG method is based on global weak
form, while MLPG method is based local symmetric weak form (LSWF) (Belytschko
et al., 1994b). These methods use the moving least square (MLS) approximants.

Some of the important features of mesh-less methods may be categorized as

1. Nomesh alignment sensitivity (backgroundmesh is only for integration purpose).
2. Node connectivity is not predefined by mesh.
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3. No re-meshing is needed (especially for large deformation and moving disconti-
nuity Problems).

4. Order of continuity in the required shape function can be constructed.
5. The smooth derivatives of unknowns require no post-processing.

Figure 15 shows the general calculation procedure in mesh-less methods.

7.2 Fracture mechanics applications

EFG andMLPGmethods have been used inmany static and dynamic fracture mechanics
problems (Belytschko & Fleming, 1999; Brighenti, 2005; Gato, 2010; Kaiyuan et al.,
2006; Krysl & Belytschko, 1999; Parvanova, 2012; Rao & Rahman, 2000). EFG is
mostly applied to LEFM problems. Several criteria has been proposed for handling
discontinuities, among them are the “Visibility criterion”, diffraction method, transpar-
ency method, and “see through” method or continuous line criterion (Belytschko &
Fleming, 1999; Belytschko et al., 1994a; Sukumar et al., 2000). For dynamic fracture
problems (with constant velocity of crack propagation and constant value of dynamic
fracture toughness) also some EFG approaches were developed (Belytschko & Tabbara,
1996; Krysl&Belytschko, 1999). One of themost efficientMLPG variant,MLPG5,was
used for analysis of elasto-dynamic deformations near crack tip (Kaiyuan et al., 2006).

The enriching EFG approximations are mainly used for LEFM problems. Two of
these methods are extrinsic and intrinsic enrichment approximations (Belytschko &

Node generation / triangulation

Generation of shape
function through nodes

– Integral representation (SPH)

– Series representation (MLS)

– Differential representation (FDM)

Discretized equations based on global/
local weak form and integrated cell based

Global matrix assembly

Essential boundary conditions
(EBCs) or support conditions

Solution for displacement

Solution for strain and stress

– By penalty method (similar to FEM)

– By orthogonal transformation technique
– By direct interpolation (in MLPG)

Figure 15 Procedural steps in mesh-less methods (Daxini & Prajapati, 2014).
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Fleming, 1999; Belytschko et al., 1994a). The moving least square (MLS) shape func-
tion and truncated Gaussian weight functions can be employed (Krysl & Belytschko,
1999). The mixed mode dynamic crack growth in brittle solids using EFG methods in
fracture process zone (FPZ) technique uses dynamic fracture mechanics formulation
instead of those of LEFM. Based on this approach the numerical values of mode I and
mixed mode SIFs in rock like materials can be estimated. (Belytschko et al., 2000). For
example, a MATLAB code is prepared along with intrinsic basis enrichment to pre-
cisely model the singular stress field around the crack tip for two-dimensional elasticity
problems (Parvanova, 2012).

8 MIXED METHODS

The combined methods are some advanced methods using a hybridized form of the
conventional continuum based method such as FEM and BEM (in the case of deform-
ability) with discontinum based methods such as DEM and DDA. However any combi-
nation of the grid based methods with the mesh-less methods can also be regarded as a
combined method. In this section a brief review of some of the most versatile combined
methods cited in the literature are given. The hybridized FE-BEM, the combined finite-
discrete element method (CFDEM) and the FE-mesh-less method are briefly discussed.

8.1 Coupling finite element and boundary element methods

The finite element and the boundary element methods are among the most popular
methods in fracture mechanics. The finite element method is best suited for finite
regions with inhomogeneities and nonlinearities. On the other hand, the boundary
element method is the better alternative for solving problems dealing with infinite or
semi-infinite bodies and problems with steep stress gradients and singularities such as
fracture mechanics problems. The mathematic of FEM-BEM coupling is well reviewed
in (Stephan, 2004).

Fracturemechanics problems especially in rockmechanics often occur in which there
exists certain form of coupling between various parts. Soil-rock and water-rock or oil-
rock interaction problems are typical examples of this category. Fluid related problems
may need to be handled in poro-elastic framework. In such instances it may be
advantageous to couple the finite element and the boundary element methods to use
both methods benefits.

The coupling of finite element and boundary element methods is usually accom-
plished at the level of the discretized equations. Various methods are used and devel-
oped to combine these methods which may be distinguished as

1. Transformation of the boundary element equations to a suitable form to be
embedded in a finite element formulation.

2. Transformation of the finite element equations to a suitable form to be embedded
in a boundary element formulation.

3. Combining the methods at the basic weighted residual statement.

The first method is widely used but it may be erroneous sometimes and energy argu-
ments are put forth to symmetrize the boundary element equations (Ameen, 2005). The
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second method is recommended when the finite element domain is much smaller in
comparison with the boundary element part.

The finite element system leads to a set of algebraic equations (Equation 23). In
Equation 23 the matrix [K] is the global stiffness matrix and {R} is the global load
vector. The stiffness matrix [K] is, in general, symmetric and banded. Rewriting
Equations 23 in the following general form for BEM formulation

½F� ug ¼ ½Gf � pgf ð65Þ
The matrices [F] and [G] are influence coefficients and are, in general, fully populated
and un-symmetric.

Consider a problem domain consisting of two distinct domains as in Figure 16.
Where VF and VB represent the finite element and boundary element domains. The
domain VFwhich its external boundary defined as SF is modeled using FEM. The same
procedure goes on for VB and SF. Along the interfacial boundary between VF and VB

(i.e. SI) the following compatibility and equilibrium conditions must be satisfied
respectively.

uIF ¼ uIB ¼ uI on SI ð66Þ
fIF þ fIB ¼ fgI on SI

� ð67Þ
where uI is displacements and fI is the tractions along the SI.

Multiplying both side of Equation 65 (which represents VB in Figure 16) by [N][G]−1

([N] is the matrix of interpolation polynomials) results in

½N�½G��1½F� ug ¼ ½Nf � pgf ð68Þ
which has transformed Equation 65 into an equivalent finite element system of equa-
tions. Equation 68 can be rewritten as

KBu ¼ f B ð69Þ
where KB is the equivalent stiffness matrix and fB the equivalent nodal force vector.
Equation 69 can now be directly assembled into the global matrices of FEM. It should
be noted that KB is un-symmetric due to its BEM nature. There are several methods to
symmetrize the matrix KB (see for instance (Ameen, 2005)).

Boundary
Elements

SB
VB

SI

VF

Finite
Elements

SF

Figure 16 Domain divided into boundary element and finite element sub-domains (after Ameen, 2005).
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8.2 The combined Finite Element-Discrete Element Method
(FE-DEM)

Fracture mechanics of heterogeneous media may be studied by means of a combination
of the FE-DEM. The classical DEM has some limitation to be used for rock fracture
analysis due to the high number of particles that are necessary in the discretization,
which limits the use of particle systems in larger rock structures. The hybridized
methods such as the combined FE-DEM may be modified to take the advantages of
both FEMandDEM simultaneously. DEMalgorithm discretizes the fracture zones and
FEM discretization scheme is used for the surrounding areas. The incorporation of the
FEM technology in DEM increases the deformation capabilities of the rigid block mesh
(Ghaboussi, 1988; Munjiza et al., 1995; Petrinic, 1996; Potapov & Campbell, 1996).

In this section, a coupling algorithm is introduced applying a DEM circular particle
discretization only on the fracture zone and a FEM based discretization on the other
zones assuming a linear elastic behavior (Monteiro Azevedo & Lemos, 2006).

The coupling of the FEM and the DEM can be accomplished by adopting special
interface elements which enable for example the interaction of the circular particles
with the edge of the contacting quadrilateral finite elements.

The rigid wall element is used to set boundary conditions where the wall is given by a
line segment and a particle/line segment contact. The same concept can be used for the
finite elements edges after the element deformation. The edgemotion is defined in order
to set the relative displacement at the contact interfaces and the distribution of forces
from these interfaces to the adjacent edge nodes.

The centered difference algorithm may be used for explicitly integrating both the
FEM and the DEM equilibrium equations. The smallest time increment of the two
discretization schemes is used and the influence of the interface element is also
accounted in order to determine the time increment for numerical stability (Monteiro
Azevedo, 2003).

In the global problem (FEM+DEM), the equation for the translational and rotational
motion with no damping, is given by

F tð Þ
i ¼ m €xi � gið Þ; ð70Þ

M tð Þ
3 ¼ I _ω3 ¼ βmR2� 

_ω3 ð71Þ
where F tð Þ

i is the total applied force at time t, m is the total mass of the particle or the
node, €xi is the particle translational acceleration, gi is the body force acceleration,M

tð Þ
3

is the total applied moment at time t, I is the moment of inertia, _ω3 is the particle
angular acceleration, and β is a coefficient reflecting the shape of the particle which is
2/5 for a spherical shape and 1/2 for a disk shaped particle.

The internal forces resulting from the finite elements deformation are due to the total
applied force at a given instant t for a given node involves the contact forces of the
particles interacting through common edges and the exterior forces applied at the nodes.

Wall/edge elements are used to represent the boundary edges of the finite elements
that are allowed to interact with the particle assembly. Figure 17 shows the linear
associated edge shape functions which are equivalent to a truss finite element model
with two degree of freedom per node with a given length L (Monteiro Azevedo &
Lemos, 2006).
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The interaction of a particle with a given edge of a plane finite element obeying the
force displacement law is being used. The interaction forces at the contact interface are
developed which are related to the incremental contact displacement at the interface.
Themechanism throughwhich these forces are transferred to the edge nodal points and
to the center of gravity of the rigid circular particles can also be modeled.

The wall/edge length, L and the wall/edge axial direction, a at a given instant are
given in function of the nodal positions by

L ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Xnode;j

i �Xnode;i
i

� �
Xnode;j

i �Xnode;i
i

� �r
; ð72Þ

ai ¼ Xnode;j
i �Xnode;i

i

L
; ð73Þ

The wall/edge transverse/normal direction, nj, is defined based on the wall/edge axial
direction through n = (−a2,a1).

The definition of thewall/edge velocity at the contact point _x½C�i and the relation of the
contact forces to the nodal forces are the main issues.

8.3 The combined finite element-mesh-less method

Although mesh-less methods seem attractive for crack propagation problems, their
computational cost which often exceeds the cost of a regular FEM sets a major
limitation to the applicability of these methods. In addition to that, considering
the comprehensive capabilities of FEM, it is often advantageous to use mesh-less
methods only in the sub-domains. It is more effective to apply mesh-less methods at
the fracture zones and FEM in the remainder of the domain. Therefore, a combina-
tion of the mesh-less and finite element methods may utilize the benefits of both
methods.

The element-free Galerkin method (EFGM) which is a mesh-less method may be
integrated with the traditional finite element method (FEM) for LEFM problems. The
EFGMmay be used to model material behavior close to cracks (fracture zone) and the
FEM for the surrounding areas (the same as coupled FE-DEM). The shape functions
interpolating the interface region are a combination of both EFGM and FEM shape

d3 d1

d2d4

d5

d6

k

E, t, ν

l

d8

d7

j
L

i
j

L

i

x
Ni =

X
L

Nj =
1–X

L

Figure 17 FEM geometry and associated edge shape functions (Monteiro Azevedo & Lemos, 2006).
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functions, ensuring convergence of the method. This coupled FE-Mesh-less method
significantly saves computational effort compared with the existingmesh-less methods.
Due to the partly mesh-less nature of the method, only a distributed set of nodal points
is required in the fracture zone. Crack propagation can be modeled by extending the
free surfaces, which correspond to the crack.

For a detailed formulation of FE-Mesh-less methods readers are encouraged to
consult several proposed combinations of these methods (Hegen, 1996; Huerta &
Fernandez Mendez, 2000; Krongauz & Belytschko, 1996; Liu et al., 1997).

8.3.1 Calculation of stress-intensity factors

The SIFs in a combined FE-Mesh-less method can be evaluated by converting the
interaction integral (Yau et al., 1980) into a domain form (Moran & Shih., 1987).
For example

KI ¼ E
0

2
M 1;2ð Þ ð74Þ

is the effective elastic modulus, and the interaction integral, M(1,2) is

M 1;2ð Þ ¼
ð
A

σ 1ð Þ
ij

∂u 2ð Þ
i

∂x1
þ σ 2ð Þ

ij
∂u 1ð Þ

i

∂x1
�W 1;2ð Þδ1j

" #
∂q
∂xj

dA ð75Þ

which contains the mixed mode state for the given boundary conditions (superscript 1)
and the super-imposed near-tip mode I auxiliary state (superscript 2), σij and ui are the
components of the stress tensor and displacement vector, respectively, W(1,2) is the
mutual strain energy from the two states and q is a weight function (equal to 1 at the
crack tip, 0 along the boundary of the domain and arbitrary elsewhere). A similar
procedure may be applied for the calculation ofKII, the only difference is that the near-
tip mode II state is chosen as the auxiliary state while computing M(1,2).

The crack propagation using FE-Mesh-less method may be accomplished through
the following steps:

1. Numerical prediction of stress and strain fields
2. SIFs calculation using the results of step 1.
3. Calculation of crack initiation angle (θ0).
4. Updating the new crack-tip location (using an arbitrary element length for

crack-tip).
5. Splitting the mesh-less node into two nodes locating on the opposite sides of the

new crack-tip.
6. Adding new mesh-less nodes to improve discretization of the domain (optional).

9 SUMMARY

The topic of numerical rock fracture mechanics can be summarized as the mesh-based
methods such as FEM and DEM, mesh-reducing methods such as BEM and mesh-less
methods.
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The FEM is a numerical technique for finding approximate solutions to rock fracture
mechanics problems. It uses subdivision of a whole problem domain into simpler parts,
called finite elements. The variational methods from the calculus of variations may be
used to solve the problem byminimizing an associated error function. The XFEM, is an
especially modified FEM to solve fracture mechanics problems. It is based on a stan-
dard Galerkin procedure, and the partition of unity method (PUM) to accommodate
the internal boundaries in the discrete model.

Rock fracture mechanics problems, exhibit discontinuous and inhomogeneous nat-
ure which leads to complex mechanical behaviors can be difficult to tackle with the
classical continuum-based numerical methods. DEM is an explicit discrete-based
method is used as an alternative to continuum based methods which can be applied
to investigate the mechanical behavior of geo-materials as discrete elements bonded
together by different models of cohesive forces or cementation effects.

The mesh-reducing boundary element methods are divided into two main groups of
direct and indirect methods. Direct boundary integral method uses direct approach and
fictitious stress and displacement discontinuity methods use an indirect approach in the
boundary element methods.

The dual BEM is a direct BEM which incorporates two independent boundary
integral equations; it uses the displacement equation to model one of the crack bound-
aries and the traction equation to model the other boundary.

The indirect BEM incorporating the displacement discontinuities, along the cracks is
known as displacement discontinuity method. It is based on the analytical solution to
the problem of a discontinuity in displacement over a finite line segment in the x, y
plane of an infinite elastic solid. Higher order elements using linear, quadratic and cubic
displacement discontinuity elements increases the accuracy of SIF calculation near the
crack-tips. The use of crack tip elements can also substantially improve the accuracy of
the DDM for crack analyses.

Mesh-less methods as the next generation of the computational techniques were
developed by modifying the internal structure of grid based methods. The mesh-less
methods are more adaptive, versatile and robust. The mesh-less methods provide
accurate and stable numerical solution for integral equations or partial differential
equations (PDEs) with any possible boundary and initial conditions using a set of
arbitrarily distributed nodes without defining mesh which connect these nodes.
Element free Galerkin (EFG) and mesh-less local Petrov-Galerkin (MLPG) methods
are two well-known mesh-less methods.

A combination of the mentioned numerical methods may be used in order to solve
the more complicated fracture mechanics problems. The combined methods may be
modified to take the advantages of both methods simultaneously. The FE-DEM, FE-
BEM and FE-Mesh-less methods are the combined methods can be used in numerical
rock fracture mechanics.
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Chapter 23

Linear elasticity with microstructure
and size effects

G. Exadaktylos
School of Mineral Resources Engineering, Technical University of Crete, Chania, Greece

Abstract: The revisiting of some fundamental problems of rock mechanics, such as
cracks in stressed rocks, propagation of surface waves, beam bending and axial split-
ting among others, viewed in the light of a strain gradient elasticity theory, reveals the
necessity of enriching elasticity of rockswith length parameters tomodel surface energy
of free surfaces and predict non-classical dispersion phenomena and size effects. After a
brief review of the formalism and applications of a linear elasticity theory with micro-
structure for the study of static and dynamic problems, two problems are further
presented here, namely the bending of beams and the axial splitting of deep geological
layers. It is demonstrated in both studied problems, that the consideration of internal
length scales are responsible for the manifestation of size effects.

1 INTRODUCTION

1.1 Brief notes on the size effects of strength of materials

The size effect exhibited by the strength of solids for otherwise geometrically similar
specimens, is not new in the context of the strength of brittle materials. Long before
Griffith (1921) presented his theory, Karmarsch1 in 1858 has proposed an empirical
size effect law based on a best-fitting procedure of experimental data of tension tests on
cylindrical metal wires with different diameters. This size effect is mentioned in the
celebrated Griffith’s paper and was applied successfully by him to fit experimental data
referring to tension tests of glass fibers presented in Table V of his paper, namely

σt ¼ 154:44þ 17:27
d

ð1Þ

in which the diameter of the rods d is expressed in 0.001 mm and the tensile strength σt
in MPa. The best-fitted size-effect law given by Equation 1 on the experimental data is
shown in Figure 1.

In most technical brittle materials, such as rocks, concretes and ceramics, the domains
in the vicinity of the highly stress point participate in the force transmission more
intensively than according to the local linear theory of elasticity (the term ‘local’ is
explained below); this self-support-effect of a stress raiser is taken into account by the

1 “Mittheilungen des gew. Ver. Für Hannover”, 1858, pp. 138–155.



stress-mean-value theory and the more elegant gradient elasticity theory with surface
energy that is presented later.

First, let us make a remark on the averaging procedure that is inherent in all local
continuummechanics theories. A simple example is to consider an one-dimensional case
of a field, y=f(x), whose mean value is computed over a small but finite averaging length
L – corresponding to the representative elementary volume – around a point x, that is

〈y〉 ¼ 1
L

ðL=2
�L=2

f ðxþ ξÞdξ ð2Þ

If the field f(x) varies linearly in the considered region around x, then it is approximated
locally by a linear function, using an 1-term Taylor series expansion of the function f
around point x, i.e.

f ðxþ ξÞ ≈ f ðxÞ þ ξ f
0 ðxÞ ð3Þ

In the trivial case of a constant field, then the first and all higher derivatives vanish and
indeed the local value coincides with the average value. Also it is true in case when the
field varies locally linearly. Indeed we may then identify the field with its mean value
over the considered averaging length, because by following the ‘trapezoidal’ integration
rule, the value of a linearly varying field in themidpoint of the sampling interval is equal
to its mean value in that interval
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Figure 1 Size effect exhibited by the tensile strength of glass fibers (circles) tested by Griffith (1921) and
best-fitted inverse diameter relationship (continuous line).
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y ¼ 〈y〉 ð4Þ
that is to say, in this case the ‘local’ value y and the ‘non-local’ value 〈y〉 coincide. In the
classical theories of elasticity, plasticity and damage mechanics, the failure criterion is
expressed in terms of stresses and strains, and no characteristic length scale L is present.
Hence, they are all “local theories”. However, for quadratically varying fields, we have
to approximate the stress function at least by a two-term Taylor series expansion
around point x, i.e.

f ðxþ ξÞ ≈ f ðxÞ þ f
0 ðxÞξ þ 1

2
f
00 ðxÞξ2 þ 1

6
f
000 ðxÞξ3 þ o ξ4

�  ð5Þ

We notice that in the midpoint integration rule the effect of the first derivative is null.
Thus for ‘quadratically’ varying fields, computational rule described by Equation 4
must be enhanced, so as to incorporate the effect of the curvature

y ¼ 〈y〉� L2

24
d2y
dx2

					
x

þOðL4Þ ð6Þ

Field theories which are based on averaging rules that include the effect of higher
gradients are called higher gradient or ‘nonlocal’ theories. In particular, the above
rule of Equation 6 represents a 2nd gradient or grade-2 rule, and can be readily
generalized in two and three dimensions. One of the first researchers who proposed a
gradient theory based on the mean value of the nominal stress along the potential
fracture path was Neuber (1936). More specifically Neuber proposed a stress-mean-
value taken over a finite length L normal to the surface within the range of high stress
concentration. This so-called ‘fictive’ length of the elastic material represents an addi-
tional material constant apart say, from the two elasticity constants for a linear elastic
and isotropic material. According to this argument the nominal stress σn can be found
from the formula

σn ¼ 1
L

ðRþL

r¼R

σdr ð7Þ

in which r denotes the radial distance from the notch tip, r=R is the notch boundary,
and σ is the so-called ‘comparison’ stress that enters a suitable strength hypothesis.

In the case of mode-III (anti-plane shear) crack the nominal stress is derived by the
following formulae according to definition of Equation 7 and the valid asymptotic
expression for the comparison stress σyz

σn ¼ 1
L

ðL
r¼0

σyz r; 0ð Þdr; σyz ¼ KIII

2πrð Þ1=2
cos

θ
2

ð8Þ

where KIII denotes the mode-III Stress Intensity Factor (SIF) andOrθ the polar coordi-
nate system with origin at the crack tip. The direct evaluation of the above integral for
θ ¼ 0o gives the result
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σ¼
ffiffiffi
2
π

r
KIIIffiffiffiffi
L

p þ o
ffiffiffiffi
L

p� �
ð9Þ

On the other hand, the exact expression for the comparison stress by employing the
Westergaard stress function reads as follows

σyz ¼ Re ZIIIð Þ; ZIII ¼ τ∞ zþ αð Þ
½ αþ zð Þ2 � α2�1=2

; z ¼ reiθ ð10Þ

and consequently the exact stress along the Ox-axis is given by the expression

σyz
			
θ¼0

¼ τ∞ rþ αð Þ
r2 þ 2αrð Þ1=2

ð11Þ

where τ∞ represents the far-field shear stress. In turn, the nominal stress in this case may
be found to be

σn ¼ 1
L

ðL
r¼0

σyz
			
θ¼0

dr ¼ τ∞

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2

α
L

r
ð12Þ

By requiring that both approaches should lead to the same result, i.e.

Lim
r!0

ffiffiffi
2
π

r
KIIIffiffiffiffi
L

p ¼ τ∞

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2

α
L

r" #
ð13Þ

there results

K̂IIIC ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 1

2 α=Lð Þ

s
; KIIIC ¼ τ∞

ffiffiffiffiffiffi
πα

p ð14Þ

where K̂IIIC represents the normalized fracture toughness that is derived by dividing the
expression for the critical stress intensity factor with the fracture toughness KIIIC

predicted by the classical theory. The variation of the normalized fracture toughness
K̂IIIC with the ratio α/L – i.e. the size effect exhibited by fracture toughness - is
illustrated in Figure 2. This means that for long cracks relative to the scale length L
one gets the result of Linear Elastic FractureMechanics (LEFM); on the other hand, for
relatively short cracks the fracture toughness is larger than that predicted by classical
LEFM.

1.2 Brief historical remarks on non-local elasticity theories

The classical theory of elasticity requires that the forces between the atoms to fulfill a
very strong condition, namely that the range of these forces must be small enough so
that the stress (strain) measured at a point depends in the desired approximation only
on the stress (strain) in the volume element around this point; hence the term ‘local’
theory. Obviously, if interatomic forces did not reach farther than one atomic distance,
a reaction against micro-deformation gradient would not exist and the theory does not
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have an intrinsic length scale; this in turn leads to the undesirable result that a 10 cm
slab behaves the same as a 10 m geological bed, and there is no difference between a
microcrack and a geological fault. However, since interatomic forces do, in principle,
reach farther than one atomic distance, a resistance against micro-deformation gradi-
ent will be present, and therefore it is of no question whether gradient-dependent
elasticity exists or not. The question is rather how large this effect might be.

The fundamental idea of considering not only the first, but also the higher gradients
of the displacement field in the expression for the strain energy function of an elastic
solid, can be traced back to J. Bernoulli (1654–1705) and L. Euler (1707–1783) in
connection with their work on beam theory. In elementary beam theory there are
associated two sets of kinematical quantities (a deformation vector and a rotation
vector) and two sets of surface loads (tractions and bending couples) with a section
of the bar. In plate theory the situation is similar. With the noticeable monograph of
Cosserat brothers, Eugéne and François (1909), this concept was extended to a 3D
continuum, where each point of the continuum is supplied with a set of mutually
perpendicular rigid vectors (triad). Generalization of elasticity theory by incorporating
the effect of higher gradients of the displacement field into the strain energy density
function was systematically studied by them. The novel feature of their theory was the
appearance of couple stresses in the equations ofmotion. An oriented continuumof this
type was noted earlier by Voigt (1887) in connection with polar molecules in crystal-
lography. Higher-order gradient and oriented media theories were rediscovered fifty
years later in various special forms and degree of complexity. Fifty years after the first
publication of the original work of the Cosserat brothers, the basic kinematic and static
concepts of the ‘Cosserat’ continuum were reworked in a milestone paper by Guenther
(1958). Guenther’s paper marks the rebirth of continuum micro-mechanics in the late
50’s and early 60’s. Following this publication, several hundred papers were published
all over the world on that subject. A variety of names have been invented and given to
theories of various degrees of rigor and complexity: Cosserat continua or micro-polar
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Figure 2 Size effect of the normalized fracture toughness K̂IIIC predicted by the stress-mean-value
theory.
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media, oriented media, continuum theories with directors, multi-polar continua,
micro-structured or micro-morphic or non-local continua and others. A systematic
treatment of elasticity with gradients was given in milestone papers by Mindlin &
Tiersten (1962), Mindlin (1964) and Mindlin & Eshel (1968). The common feature of
all these studies is that they relate the higher gradients of the displacement field to
higher order stresses. Mindlin’s work is noteworthy in that his aim was specifically
targeted at understanding phenomenologically the effect of microstructure on the
deformation of solids. Mindlin’s cohesive elasticity theory accounts in a phenomen-
ological manner for molecular forces of cohesion acting upon a body - which are not
considered by the classical linear elasticity theory - by including in the potential energy
density of an elastic solid the ‘modulus of cohesion’, which is essentially an initial,
homogeneous, self-equilibrating triple stress. However, Mindlin’s isotropic grade-3,
linear elasticity theory with surface energy, which was further explored, as far as its
mathematical potential is concerned, in a comprehensive paper byWu (1992), includes
sixteen material constants plus the classical Lamè’s constants. The state-of-the-art at
this time was reflected in the collection of papers presented at the historical IUTAM
Symposium on the “Mechanics ofGeneralized Continua”, in Freudenstadt and Stuttgart
in 1967. At the same time practically of publication of the pioneering papers byMindlin,
Professor Germain has encouraged the communication to the French Academy of
Sciences of the ideas of Casal (1961) which in turn seem to have inspired Germain’s
(1973a,b) fundamental papers on the continuum mechanics structure of the grade-2 or
higher grade theories. In our paper we want to give full credit to Casal’s original idea,
who was first to see the connection between surface tension effects and the anisotropic
gradient elasticity theory. For this reason we provide here the simplest possible general-
ization of Casal’s constitutive theory that accounts for only two additional material
constants having the dimension of length: One, say ℓ, responsible for volumetric energy
strain-gradient terms, and another, ℓ0, responsible for surface energy strain-gradient
terms. Casal considered the effect of the granular, polycrystalline and atomic nature of
materials on their macroscopic response through the concept of internal and superficial
capillarity expressed by the material lengths ℓ, ℓ0, respectively, rather than through
intractable statistical mechanics concepts. The concept that the surfaces of liquids are
in a state of tension is a familiar one, and it is widely utilized. Actually it is known that no
skin or thin foreign surface really is in existence at the surface, and that the interaction of
surface molecules causes a condition analogous to a surface subjected to tension. The
surface tension concept is therefore an analogy, but it explains the surface behavior in
such satisfactory manner that the actual molecular phenomena need not be invoked. Of
course such ideas are amenable to generalizations of various degrees of complexity.
However, one should keep in mind that already the determination of the two material
lengths ℓ and ℓ0 constitutes a formidable experimental challenge.

The Casal-Mindlin grade-2 theory has been applied for the revisit of several static
and dynamic boundary-value problems in Rock Mechanics (Vardoulakis & Sulem,
1995; Vardoulakis et al., 1996; Exadaktylos et al., 1996; Exadaktylos & Vardoulakis,
1998; Exadaktylos, 1998; Exadaktylos & Vardoulakis, 2001a; Aravas, 2011 among
others). The consideration of the surface energy in this theory, leads to a constitutive
character of the boundary conditions. This strengthens Aifantis’ (1992) conjecture of
the constitutive character of boundary constraints in materials with microstructure.
Hence, the problem of constitutive boundary conditions deserves further attention
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from the theoretical, as well as the experimental point of view. Exadaktylos &
Vardoulakis (2001a) have shown that the proposed theory is capable: (a) to capture
scale effects in indentation and uniaxial tension testing of rocks, and (b) to predict
cusping of cracks without recourse to extra assumptions. The present anisotropic
gradient elasticity theory although it is basically a grade-2 theory gives rise to surface
tension phenomena similar to those captured by Mindlin’s (1964; 1965) grade-3
theory. This is demonstrated in Paragraph 1.5.

1.3 Formalism of the Casal-Mindlin microelasticity theory

In this sequel the basic formalism of the grade-2 theory of elasticity are outlined. With
respect to a fixed Cartesian coordinate system Ox1x2x3, the following ansatz for the
elastic strain energy density with respect to three kinematic quantities is assumed in an
ad hoc manner

υ ¼ υðεqr; γqr; κqrsÞ ð15Þ

where εqr ≡ ð1=2Þð∂ruq þ ∂qurÞ is the usual symmetric infinitesimal macro-strain tensor
defined in terms of the displacement vector uq, ∂s ≡ ∂=∂xs, the indices (q,r,s) span the
range (1,2,3), γqr ≡ ∂qur � ψqr is the relative deformation with ψqr denoting the micro-
deformation of a particle in the form of a grain or crystal for a granular or crystalline
rock, respectively, (Figures 3a, b), and κqrs ≡ ∂qψrs is the micro-deformation gradient.
Then, appropriate definitions for the stresses follow from the variation of v, i.e.

τqr ≡
∂υ
∂εqr

; αqr ≡
∂υ
∂γqr

; μqrs ≡
∂υ

∂κqrs
; ð16Þ

in which τqr; αqr; μqrs denote the Cauchy stress (symmetric), relative stress (asymmetric),
and double stress tensors, respectively. The twenty-seven components μkij have the
character of double forces per unit area. The first subscript of a double stress μkij
designates the normal to the surface across which the component acts; the second
and third subscripts have the same significance as the two subscripts of σij. The eight
components of the deviator of the couple-stress or couples per unit area formed by the
combinations ð1=2Þðμpqr � μprqÞ are all equal to zero in the present gradient dependent
elasticity theory, whereas all the remaining ten independent combinations
ð1=2Þðμpqr þ μprqÞ are self-equilibrating (Mindlin, 1964). Double force systemswithout
moments are stress systems equivalent to two oppositely directed forces at the same
point; such systems have direction but not net force and no resulting moment.

In particular, the theory utilized here can be considered as one of the simplest
versions of Casal-Mindlin theory corresponding to the following elastic strain energy
density function (Exadaktylos & Vardoulakis, 1998)

υ ¼ 1
2
λεiiεjj þGεijεji þGℓ

2∂kεij∂kεji þGℓk∂kðεijεjiÞ ð17Þ

where λ ¼ E�=ð1� 2�Þð1þ �Þ and G ¼ E=2ð1þ �Þ are the standard constants of
Lame, E, v denote the Young’s modulus and Poisson’s ratio, and as was mentioned
already, ℓ, ℓ0 are additional characteristic lengths of the material, where
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ℓk ¼ ℓ
0
�k; �k�k ¼ 1 ð18Þ

is a director. The last term in Equation 17 has the meaning of surface energy, since by
using the divergence theorem we getð

V

∂rðℓrεpqεqpÞdV ¼ ℓ
0
ð
∂V

ðεpqεqpÞðvrnrÞdS ð19Þ

wherein nk is the outward unit normal on the boundary ∂V.

1.4 Stress equations of equilibrium

Germain (1973a, b) suggested a general framework for the foundation of consistent
higher grade continuum theories on the basis of the virtual work principle. This
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Figure 3 (a) Typical components of relative stress αij ðαij ≡ σij � τijÞ displacement gradient ∂iuj, and
micro-deformation ψij for the simple case of uniaxial tension of a flat plate, and (b) various
forms of micro-deformation gradients and associated double stresses.
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approach starts from the definition of the variation of the total potential energy in a
volume V of the body with arbitrary variation of the macro-strain εij. A restricted
Mindlin continuum, is a micro-homogeneous material for which the macroscopic
strain coincides with themicro-deformation, γqr = 0which in turn leads to the following
relations

ψqr ≡ ∂qur; κ̂qrs ≡ ∂qεrs ¼ ð1=2Þ ∂q∂rus þ ∂q∂kur
�  ¼ κ̂qsr ð20Þ

and

μqrs ≡ ∂υ=∂κ̂qrs ¼ μqsr ð21Þ

In the particular case the variation of the strain energy potential is modified from that in
Equation 15 as follows (Mindlin, 1964)

δ
ð
V

υdV ¼
ð
V

ðτijδεij þ μijk∂iδεjkÞdV ð22Þ

where

τij ¼ ∂υ
∂εij

; μijk ¼ ∂υ
∂ð∂iεjkÞ

ð23Þ

The second order stress tensor τij, is dual in energy to the macroscopic strain and
is symmetric (i.e. τij ¼ τji ), whereas the third order stress tensor μijk, is dual in energy to
the strain-gradient. To prepare for the formulation of a variational principle, we
apply to Equation 22 the chain rule of differentiation and the divergence theorem;
furthermore, we resolve ∂iuj on the boundary ∂V of V into a in plane – gradient and a
normal-gradient as follows

∂iδuj ≡Diδuj þ niDδuj; Di ≡ ðδik � ninkÞ∂k; D≡nk∂k; ð24Þ
where δij is the Kronecker delta. The final expression for the variation in potential
energy of a smooth boundary ∂V reads

δU ¼
ð
V

δυdV ¼ �
ð
V

∂jðτjk � ∂iμijkÞδukdVþ
ð
∂V

njðτjk � ∂iμijkÞδukdS

þ
ð
∂V

1
R1

þ 1
R2

� �
nj �Dj

� �
niμijkδukdSþ

ð
∂V

ninjμijkDδukdS
ð25Þ

where 1=R1 þ 1=R2ð Þ is the mean curvature of the bounding surface. Looking at the
structure of Equation 25 we now postulate the following form for the variation of work
Ue done by external forces (i.e. body forces, tractions and double-tractions, respectively)

δUe ¼
ð
V

fkδukdV þ
ð
∂V

ðePkδuk þ eRkDδukÞdS ð26Þ
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where fk is the body force per unit volume, ePk; eRk are the specified tractions and double
tractions, respectively, on the smooth surface ∂V. Then, from the variational principle,
the stress-equilibrium equations in the volume V is found in the following manner

∂iðτij � ∂kμijkÞ þ fj ¼ 0 ð27Þ

The workless second order relative stress tensor αij in a restrictedMindlin continuum is
in equilibrium with the double stress (Mindlin, 1964)

αjk þ ∂iμijk ¼ 0 ð28Þ

Next, by defining the ‘total stress tensor’ σij

σij ¼ τij þ αij ¼ τij � ∂kμijk ð29Þ

the stress-equilibrium Equation 27 takes the following final form in the volume V

∂jσij þ fi ¼ 0 ð30Þ
One may notice that according to Equation 30 the total stress tensor is identified with
the common (macroscopic) equilibrium stress tensor. Although the above results are
obtained for static cases, there is no essential difficulty to derive their dynamic
counterpart.

1.5 Boundary conditions

The surface ∂V of the considered volume V is divided into two complementary parts
∂Vu and ∂Vσ such that on ∂Vu kinematic data whereas on ∂Vσ static data are pre-
scribed. In classical continua these are constraints on displacements and tractions,
respectively. For the stresses the following set of boundary conditions on a smooth
surface ∂Vσ is also derived from the virtual work principle (Wu, 1992; Exadaktylos &
Vardoulakis, 2001a)

njτjk � nj∂iμijk þ
1
R1

þ 1
R2

� �
nj �Dj

� �
niμijk ¼ ePk ð31Þ

ninjμijk ¼ eRk ð32Þ

Since second-grade or grade-2 models introduce second strain gradients into the con-
stitutive description, additional kinematic data must be prescribed on ∂Vu. With the
displacement already given in ∂Vu, only its normal derivative with respect to that
boundary is unrestricted. This means that on ∂Vu the normal derivative of the displace-
ment should also be given, i.e.

ui ¼ wi on ∂Vu1 and Dui ¼ ri on ∂Vu2 ð33Þ

1.6 Constitutive relations

From Equations 17 and 23 follow the constitutive relations for the total stress, Cauchy
stress and double stress tensors, respectively
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σij ¼ λδijεkk þ 2Gðεij � ℓ
2r2εijÞ

τij ¼ λδijεkk þ 2Gεij þ 2Gℓk∂kεij

μkij ¼ 2Gℓkεij þ 2Gℓ
2∂kεij

9>>=>>; ð34Þ

From the last of the above relations we may note that the double stress is symmetric in
the last two indices as is also depicted by Equation 21.

In closing this exposition of basic notions and relations, we may prove that positive
definiteness of the strain-energy density is valid provided the following restrictions of
the material constants hold true

3λþ 2Gð Þ > 0; G > 0; ℓ
2 > 0; �1 <

ℓ
0

ℓ
< 1 ð35Þ

The third inequality simply means that ℓ should be a real and not imaginary number.

1.7 Skin effect and surface free energy

Our purpose here is to show that a basic feature of the present strain gradient elasticity
theory with surface energy is the appearance of a skin effect associated with the volume
energy parameter ℓ. Furthermore, it will be shown that the effect of the relative surface
energy parameter ℓ0/ℓ is equivalent to the effect of initial stresses in presence of an
infinite, plane boundary.

The deformation of an isotropic semi-infinite body x1 ≥0 due to a large uniform tensile
stress σ22 ¼ σ; ðσ > 0Þ, parallel with the surface with outward unit normal vector (n1 n2
n3)=(−100) with the Cartesian coordinates be x1, x2, and x3, is considered as was done
in (Exadaktylos & Vardoulakis, 1998). Starting from a stress-free configuration, C0,
the body is stressed uniaxially under plane strain conditions, and C is the resultant
configuration. Then, the pre-stressed body is incrementally deformed and let its current
configuration state to be that of C’. The problem under consideration is formulated in
terms of the first Piola-Kirchhoff stress πij with respect to current configuration C’, with
Δπij being its increment referred to the deformed initially stressed state C. Assuming
infinitesimal strain elasticity, the Jaumann stress increments Δ° σij of the total stress are
related directly to the strain increments through constitutive Equations 34. For the trac-
tion-free surface of the half-space the following inceremetal boundary conditions are valid

Dπ11 ¼ Dπ21 ¼ μ111 ¼ μ112 ¼ 0 on x1 ¼ 0 ð36Þ
It is possible to assume, without loss of generality (it can be shown that, in this problem,
the quantities u1, u3 do not couple with u2; these quantities satisfy homogeneous
equations with homogeneous boundary conditions and therefore vanish identically)
the following one-dimensional displacement field

u2 ¼ u2 x1ð Þ; u1 ¼ u3 ¼ 0 ð37Þ
and the only non-zero initial stress σ22 to act along x2-axis. Upon substituting the
strain-displacement relation into the stress-strain relations and the resulting expres-
sions for the stresses into the stress-equation of equilibrium ∂jΔπij ¼ 0, we find only the
following surviving displacement equation of equilibrium
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1� ℓ
2

ð1þ ξÞ
d2

dx21

 !
d2

dx21
u2 ¼ 0 ð38Þ

where we have set ξ ¼ �σ22=2G. The solution of Equation 38, vanishing at infinity, is

u2ðx1Þ ¼ cexpð�
ffiffiffiffiffiffiffiffiffiffiffi
1þ ξ

p
ℓ

x1Þ ð39Þ

where c denotes an integration constant. The first three boundary conditions described
by Equations 36 are satisfied identically, whereas the only remaining boundary condi-
tion along x1 ¼ 0 takes the form

μ112 ¼ 2G ℓ
0 d
dx1

þ ℓ
2 d2

dx21


 �
u2 ¼ 0 on x1 ¼ 0 ð40Þ

which holds true for �r ≡ � nr and gives the following equation

c � ℓ
0

ℓ
þ

ffiffiffiffiffiffiffiffiffiffiffi
1þ ξ

p" #
¼ 0 ð41Þ

From Equation 41 one may deduce that the only case which gives non-zero and
exponentially decaying displacement with distance from the surface of the solid, that
is c ≠ 0, is the following

ℓ
0

ℓ
¼

ffiffiffiffiffiffiffiffiffiffiffi
1þ ξ

p
⇔ ξ ¼ � 1� ℓ

0

ℓ

 !2
24 35 ð42Þ

The above relation elucidates the importance of the surface strain gradient term ℓ0 in
determining surface effects. Equation 42 depicts that the effect of the surface energy
parameter is equivalent to the effect of an initial stress. The dependence of initial stress ξ
on the relative surface energy parameter ℓ0/ℓ is shown in Figure 4. From this figure it may
be seen that if ℓ0/ℓ = 0 the half-space is under surface tension, with this surface tension to
bemaximum. As ℓ0/ℓ increases from the value of zero the initial tension or in other words
the surface tension of the medium decreases reaching the value of zero for ℓ

0
=ℓ ¼ 1. At

ℓ
0
=ℓ ¼ 1 the initial stress changes sign and for ℓ

0
=ℓ > 1 becomes compressive in nature.

That is, for values of the relative surface energy parameter higher than the value of one,
the medium is under surface compression and it is no longer in a state of elastic
equilibrium, or in other words as it is also shown by the inequality of Equation 35 its
strain energy density function is negative definite.

The elastic strain energy density of the considered 1D configuration is given by

υ ¼ G ε2 þ ℓ
2rεrεþ 2ℓ

0
εrε

n o
; r≡ d=dx1 ð43Þ

Substituting in Equation 43 the values for the strain and the strain-gradient, we find

υ̂ ¼ 1� ℓ
0

ℓ

 !2
8<:

9=; ℓ
0

ℓ

 !2
c
ℓ

� �2
exp �2

ffiffiffiffiffiffiffiffiffiffiffi
1þ ξ

p
ℓ

x1

� �
; υ̂ ¼ υ=G ð44Þ
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By adopting the following definition for the average surface stress (or surface free
energy)

γse ¼
ð
V

υdV=A ð45Þ

where A is the area of the free surface, we may find after some manipulations

γse ¼
G
2

1� ℓ
0

ℓ

 !2
8<:

9=; ℓ
0
c2

ℓ
2 ð46Þ

This is also, for each surface, the energy per unit area required to separate the
body along a plane and γse > 0 if inequality described by the last of Equations 35
holds true.

1.8 Anti-plane shear (SH) surface waves

There are a number of cases in Rock Mechanics where stresses and strains are of
dynamic nature – as in the case of earthquakes, rock blasting and rock bursting - and
the propagation of these stresses and strains through the rock mass should be studied
(Jaeger et al., 2007). In this context the propagation and interaction of elastic waves
with interfaces in the rock mass (like joints, interfaces of geological layers etc) are
important. When an incident wave is a shear wave whose displacement vector is
parallel to the interface then there are produced anti-plane shear or SH waves since
for the case of an interface that is horizontal these waves are polarized in the horizontal
plane (Jaeger et al., 2007).
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–1.0
0.2 0.4 0.6
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ξ < 0

ξ > 0

0.8 1.0 1.2
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Figure 4 Graphical representation of the relation of the dimensionless pre-stress ξ with the relative
surface energy parameter ℓ0/ℓ (Exadaktylos & Vardoulakis, 1998).
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In the nextwe consider SHmotions in a gradient elastic half-spacewith surface energy.
With respect to a fixed Cartesian coordinate system Oxyz, the half-space occupies the
region (�∞ < x < ∞; y ≥0) and is thick enough in the z-direction to allow an anti-
plane shear state when the loading acts in the same direction. In this case and
assuming additionally a time-harmonic steady state, any problem can be described by
the displacement field ux ¼ uy ¼ 0; uz ≡wðx; y; tÞ ¼ wðx; yÞ ⋅ expð�iω tÞ≠0, with
i≡ ð�1Þ1=2 is the unit imaginary number and ω being the frequency. In the case of SH
waves, the only surviving equations of motion are one written for the total stresses
ðσxz; σyzÞ that are given by the constitutive Equations 34a and two written for the
double stresses ðμxxz; μxyz; μyxz; μyyzÞ that are given by constitutive Equations 34c.
Vardoulakis & Georgiadis (1997) have shown that the field equation for such a state
in terms of displacements is

ℓ
2r4w� gr2w� k2w ¼ 0; ð47Þ

where r2 and r4 are the Laplace and biharmonic operators, g ¼ 1� ðω2Î=GÞ;
k ¼ ω=V; V ¼ G=ρð Þ1=2 is the shear wave velocity in the absence of gradient effects,
Î ¼ ð1=3Þρh2 is the micro-inertia coefficient, ρ is the mass density, and h is the half-
length of the crystal (e.g. Figure 3a). Further, operating with the two-sided Laplace
transform on Equation 47 yields an o.d.e. for the transformed displacement w�ðp; yÞ.
The general solution of the latter equation that is bounded at infinity is

w�ðp; yÞ ¼ BðpÞ ⋅ expð�βyÞ þ CðpÞ ⋅ expð�γyÞ;
βðpÞ≡ β ¼ iðp2 þ σ2Þ1=2; γðpÞ≡ γ ¼ ðτ2 � p2Þ1=2;

σ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g2 þ 4ℓ2k2

q
� g

2ℓ2

vuut
; τ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g2 þ 4ℓ2k2

q
þ g

2ℓ2

vuut
; ð48Þ

where p is the Laplace-transform variable and B,C are obtainable through enforcement
of the boundary conditions.

As is well known, the criterion for surface waves is that the displacement decays
exponentially with distance from the free surface (Achenbach, 1973). Thus, if we
consider plane-wave solutions of the form exp½iðqx� ω tÞ� with a dispersion relation
ω ¼ ωðqÞ, a distinct harmonic component of propagation of the SH surface wave
satisfying the equations for a grade-2 continuum in the half-space y ≥0 will be
expressed as

wsðx; y; tÞ ¼ ½BðqÞ ⋅ expð�jβjyÞ þ CðqÞ ⋅ expð�jγjyÞ� ⋅ exp½iqðx� CphtÞ�
Cph ¼ ω

q
; ð49Þ

where Cph is the phase velocity, q≡ ðp=iÞ is the wave number which should be a real
quantity such that �∞〈q〈� σ or σ〈q〈∞ in order for surface waves to exist, jβj ¼
q2 � σ2
� 1=2

and jγj ¼ q2 þ τ2
� 1=2

. Next, the appropriate dispersion (or frequency)
equation can be obtained by enforcing the pertinent boundary conditions at the half-
space surface. These are zero traction conditions which in the transform domain
provide a linear homogeneous system. This has a nontrivial solution if and only if
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�ðσ2dðq2d � σ2dÞ1=2 þ τ2dðq2d þ τ2dÞ1=2Þ þmα2d ¼ 0; σd < jqdj < ∞;

qd ¼ ℓq; σd ¼ ℓσ; τd ¼ ℓτ;m ¼ ℓ
0
=ℓ; α2d ¼ ℓ

2α2 ¼ ðg2 þ 4ℓ2k2Þ1=2: ð50Þ
Equation 50 constitutes the dispersion relation for surface waves. Since this is an
irrational algebraic equation, a single mode of SH waves may exist that is directly
related to the parameterm. Another immediate observation is that SH surface waves do
exist only when ℓ ≠0 and m > 0. This finding means that the inclusion of the surface
energy strain gradient term ℓ

0
, that expresses an anisotropy in the microscale, is

necessary for predicting surface SH waves. In order to obtain numerical results for
the relation between the phase velocityCph and thewavenumber q (or, equivalently, the
wavelength λ ¼ 2π=q), one has generally to numerically solve Equation 50. Here,
however, we chose to work in a different manner and obtain some representative
exact results, which can be obtained for the particular case ℓ ¼ ð1= ffiffiffi

3
p Þ h. The latter

is equivalent to the relation ω2
d ¼ ℓ

2k2.Then, Equation 50 takes the form

�ω2
d

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2d � ω2

d

q
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2d þ 1

q
þmð1þ ω2

dÞ ¼ 0; ð51Þ

whereωd
2 ¼ 1� g: Further, the above irrational equation possesses four roots, three of

which are extraneous and, therefore, possess no physical meaning. Also, the appear-
ance of complex roots marks cut-off frequencies. It can be shown that the following
root is the only one satisfying the original Equation 51,

qd ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω6

d � 2ω4
d þ 2ω2

d � 1þm2ð1þ ω4
dÞ � 2mω2

d

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω2

d þ ðm2 � 1Þ
qr

j1� ω2
dj

; ωd ≠1

1
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4m4

p

m
;ωd ¼ 1

8>>>>><>>>>>:
ð52Þ

For high frequencies the first of the Equation 52 assumes the asymptotic expansion
qd ¼ ωd þ ð1=2Þm2ðω�1

d Þ þOðω�2
d Þ;ωd ! ∞, whereas the following relations are gen-

erally valid for the particular case ℓ ¼ ð1= ffiffiffi
3

p Þh
Cph

V
¼ ωd

qd
;

λ
h
¼ 2πffiffiffi

3
p 1

qd
ð53Þ

and facilitate the creation of the graphs illustrated in Figure 5. From these curves it can
be seen that there is a minimum velocity. We also note that the graphical form of the
dispersion relation reminds the one found by Coulson (1958) for surface waves in
liquids that possess surface tension.

1.9 Rayleigh waves in grade-2 elastic solids

The possibility of a wave traveling along the free surface of an elastic half-space, under
conditions of plane stress or plane strain, such that the disturbance is largely confined to
the neighborhood of the boundary was first considered by Lord Rayleigh (1887). The
classical theory of linear elasticity does not predict any dispersion for these motions;
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only by including viscoelastic (Currie et al., 1977) or thermoelastic (Georgiadis et al.,
1998) effects in the constitutive behavior leads to dispersiveRayleighwaves. In order to
explain the occurrence of dispersion of Rayleigh waves, Vardoulakis (1981) has
considered a graded half-space, that is a material with stiffness increasing with depth.
Here, we take another point of view and consider the propagation of Rayleigh waves in
a gradient-elastic, macrohomogeneous and isotropic half-space x2 ≥0 (Figure 6) having
as an objective examining the possibility of dispersive behavior.

In particular, the theory utilized here can be considered one of the simplest versions
of Mindlin’s theory containing only the volumetric length scale corresponding to the
following strain-energy density function

υ ¼ ð1=2Þλεqqεrr þGεqrεrq þGℓ
2ð∂sεqrÞð∂sεrqÞ ð54Þ
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Figure 5 Dispersion curves for the propagation of SH surface waves showing the variation of the
normalized phase velocity Cph=V with the normalized wavelength λ=h.
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Figure 6 Half-space and coordinates.
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The displacement equation ofmotion in the absence of body forcemay be derived in the
following manner

GD
2r2uþ ðλþGD

2Þrr ⋅ u ¼ ρ€u� 1
3
ρh2r2€u ð55Þ

where we have used the operator D
2
≡ 1� ℓ

2r2 (also known as Schroedinger’s opera-
tor in quantum mechanics). The boundary conditions for the problem at hand, for
h=ℓ ! 0 and for the two cases of boundary conditions (Case I refers to the approximate
and II to the exact boundary conditions, respectively) take the form

σ22 ¼ σ21 ¼ 0 ðCase IÞ

σ22 � ∂μ221
∂x1

¼ 0; σ21 � ∂μ211
∂x1

¼ 0 ðCase IIÞ;

μ222 ¼ μ221 ¼ 0 ðCase I; IIÞ; �∞ < x1 < ∞; x2 ¼ 0 ð56Þ
Then we fix the wave numbers, as well as Poisson’s ratio, and we construct the equation
for the characteristic determinant of the problem at hand as an equation for the dimen-
sionless frequency Ω ¼ ω ℓ=cT (Stavropoulou et al., 2003). It is not difficult to verify
that for ℓ ¼ 0, the determinant equation reduces to the classical Rayleigh functionwhose
roots are given by Eringen & Suhubi (1975) for various Poisson’s ratios ν. It is also clear
that the root of the determinant equation is a function of ℓ, consequently in contrast to
the classical theory the Rayleigh wave velocity predicted by the proposed gradient
elasticity theory is dispersive. Figure 7 illustrates the relation exhibited between the
normalized phase velocity of Rayleigh wave with the normalized frequency in the frame-
work of the present theory for the case of rock with small grain size, i.e. h/ℓ<<1.
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Figure 7 Dispersion curve for the propagation of Rayleigh surface waves showing the variation of the
normalized phase velocity with the normalized frequency for h/ℓ tending to zero and � ¼ 0:3
(Stavropoulou et al., 2003).
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The following conclusions can be drawn from the analysis given above:

– If the volumetric gradient length scale ℓ is small compared to the characteristic
wavelength of the Rayleigh wave then the results obtained from gradient and
classical elasticity theories coincide.

– For increasing relative frequencies the gradient theory predicts larger Rayleigh
wave velocities than the classical theory in a monotonic manner. This property -
which is due to the fact that h=ℓ << 1 – may be used to establish the gradient
parameter ℓ through carefully performed Rayleigh wave propagation experiments.
This has been demonstrated with the analysis of Rayleigh wave experiments in
Pentelikon marble used for the construction of Parthenon monument in Athens
(Stavropoulou et al., 2003).

– A new material parameter may be defined as the product Gℓ with dimensions of
½FL�1�, where F denotes force and L denotes length. This new parameter is called
‘crack stiffness’ and influences the magnitude of mode-I, -II and –III crack defor-
mation under given stress in rocks. It was demonstrated (Stavropoulou et al., 2003)
that this parameter may be experimentally determined through carefully per-
formed in situ Rayleigh wave measurements.

– The results obtained by applying the two types of boundary conditions do not
differ appreciably in the whole range of normalized frequencies of Rayleigh waves.

1.10 Size effect of the fracture toughness of the pressurized crack

The possible size effect exhibited by hydraulic fractures – i.e. the dependence of the
resistance of fracture to propagation with increasing crack length – is a very important
problem in hydraulic fracturing of rocks. Exadaktylos (1998) has postulated the
following criterion for mode-I fracture propagation subjected to constant internal
pressure (assuming zero diffusivity of the rock)

Ψ α� η; σ0; ℓ; ℓ
0� �
≥ β; Ψ α� η; ℓ; ℓ

0� �
¼ πα

8
σ20
G

ψ^ α� ηð Þ ¼ K2
I

8G
ψ^ α� ηð Þ ð57Þ

where the function Ψ depends on the applied pressure on the crack lips σ0, and the two
strain gradient length scales. The quantity β has the dimensions of specific volume
energy or stress [FL−2], that was called ‘modulus of cohesion’ and is assumed to be a
constant material parameter. The symbol η is a small length with respect to the semi-
crack length α, in order to remove the weak logarithmic singularity of the function ψ̂ tð Þ
at t ¼ α; the latter function is given in closed form. This criterion was applied after the
solution of the relevant boundary value problem in the frame of grade-2 Casal-Mindlin
theory. This solution revealed that the crack shape is no longer elliptical as is predicted
by the classical theory but the crack lips take a cusp shape such as shown in Figure 8a.

By setting KI ¼ KIC in the above criterion of Equation 57 we obtain the following
expression for the fracture toughness

KIC ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8βG

ψ̂ α� ηð Þ

s
ð58Þ
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The size-effect of the fracture toughness is demonstrated in Figure 8b for the various
values of the relative surface energy parameter k ¼ ℓ

0
=ℓ. It may be observed that:

(a) as the surface energy length scale increases the fracture toughness increases due
to the surface tension effect mentioned in Paragraph 1.5 above, and (b) the size
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Figure 8 (a) Deformed mode-I crack with tips in the form of cusps of first kind, and (b) size effect of the
normalized mode-I fracture toughness KIC for three values of the material length ratio k ¼
ℓ
0
=ℓ and for Poisson’s ratio of the material � ¼ 1=4 (Exadaktylos, 1998).
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effect resembles that of the simple stress-mean-value theory presented in Paragraph 1.1
(e.g. Figure 2).

2 A GRADE-2 ENGINEERING BEAM THEORY WITH SURFACE
ENERGY

2.1 Introductory remarks

The experimental analysis for mechanical parameters identification like modulus of
elasticity and tensile strength of rocks and other brittle structural materials, as well as
theoretical models of the deformability and strength of beams, beams-columns and
plates, are of great practical interest in many applications in rock and structural
engineering. They depict the serviceability and strength of such types of engineering
structures. Beam elements occupy awide range of technological applications and length
scales. For example, in Civil Engineering applications beams from timber, steel, con-
crete, aluminum etc are used as structural elements in buildings and bridges, at the scale
of several meters to several tenths of meters. In Monumental Constructions and
restoration works one may mention marble or limestone beams in temples resting on
marble columnswith spans of the order of several meters. InMining and Tunneling one
may encounter artificial span support beams (from timber, cast iron, concrete etc) or
beams and plates overhanging above underground openings in mines, tunnels and
caverns. For example a beam may be formed by a rock layer at tunnel’s roof with
one end free (entrance) and the other hinged (tunnel’s face). Beams are also encountered
in biomechanical applications: e.g. micro-cantilever sensors at the scale of 1÷10 μm,
and in nanomechanical applications in thin films technology, biosensors and atomic
force microscopes at the scale of 10÷100 nm. For this purpose, there is a growing
interest of proper theories incorporating additional to the characteristic macroscale
also smaller length scales (these are called micromechanical theories and they include
discrete and distinct element theories among others).

Here, Timoshenko’s engineering beam bending theory of linear elastic materials is
extended by considering surface energy effects that have been discussed in Section 1. A
beam bending micromechanical theory with surface energy is formulated that is based
on a modified strain energy function of a material with microstructure that includes the
classical Bernoulli-Euler term, the shape correction length scale ℓv introduced by
Timoshenko to account for the effect of shear forces, and another extra new length
scale ℓs introduced here, that is associated with surface energy effects.

2.2 Fundamentals of the technical beam theory

The longitudinal section of the beam is referred to a Cartesian coordinate systemΟ(x,y,
z) positioned on the neutral axis –which is the locus of centroids of cross-sections - with
its origin at mid-span and with the Ox-axis directed along the neutral axis of the beam
while Oz-axis extending vertically downwards. Deformation quantities are assumed as
infinitesimal, and the corresponding displacements of points in a cross-section along
Ox and Oz directions are denoted by the symbols u; w respectively. Let the infinitesi-
mal normal strains εxx; εzz and the engineering shear strain γxz in the plane xOz to be
defined as follows
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εxx ¼ ε ¼ u;x; εzz ¼ w;z; γxz ¼ γ ¼ u;z þw;x ð59Þ
where ψ denotes the rotation (considered to be a small quantity) of the cross-section A
of the beam at position x (Figure 9) and the comma denotes differentiation w.r.t. the
variable after the comma. It may be easily shown that the representation of the strain
energy density (potential) of the beam in the context of Timoshenko’s beam bending
theory is given by the following ansatz

υT ¼ 1
2
EI κ2 þ γ2

ℓ
2
v

 !
ð60Þ

where the term EI denotes the flexural rigidity or stiffness of the beam, I denotes the
moment of inertia of the cross-section A of the beam, ℓv stands for a microstructural
length scale of the beam material that considers the effect of the transverse shear stress
contributing to the deflection w ¼ wðxÞ of the beam, the symbol κ we denote the
gradient of the rotation angle (bending curvature) of the cross-section, that is

κ≡ψ;x ð61Þ
In the frame of this technical theory the horizontal strain is simplified as follows

ε ¼ κz ð62Þ
Also, the bending curvature κ ¼ 1=R is found as ∂ε=∂z ¼ ψ;x.

The following constitutive relationships for the bending moment and transverse
shear force may be deduced from Equation 60

M ¼ ∂υT
∂κ

¼ EIκ; Q ¼ ∂υT
∂γ

¼ EI
γ

ℓ
2
v

ð63Þ

where the shear forces and bending moments, are denoted as Q, M, respectively, The
first of Equations 63 forms the Bernoulli-Euler theorem depicting the analogy of the
bending moment with the bending curvature of the beam, while the second is due to
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Figure 9 Deformations of vertical and horizontal beam sections.
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Timoshenko that considers the effect of the transverse shear forces on the beam
deflection. The characteristic length scale ℓv is related to the dimensionless quantity
ℓT in the following manner

ℓ
2
v ¼ ℓTLð Þ2 ð64Þ

For example for a rectangular cross-section with height H, we get that ℓT essentially
compares with the inverse of the aperture ratio of the beam, that is to say for a
rectangular cross-section of the beam, Τimoshenko (1921) found that ℓT compares
with the inverse of the length to height ratio

ℓ
2
T ¼ 1

5
ð1þ �Þ H

L

� �2

<< 1 for H < L ð65Þ

Accordingly for long prismatic beams ðℓT << 1Þ or ðH=L << 1Þ Bernoulli-Euler ele-
mentary beam theory is recovered.

2.3 Formulation of the kappa-gamma beam technical theory

Herein an engineering beam bending theory that has been previously presented by
Vardoulakis et al. (1998) containing twomaterial length scales and aiming at capturing
the size effect exhibited by beams in bending, is reformulated. In fact we change the
strain energy density (or elastic potential energy density) ansatz for an elastic material
with microstructure initially proposed in our previous work, with the following
straightforward expression

υE ¼ 1
2
EI κ2 þ 1

ℓ
2
v

γ2 þ 2
ℓs
κγ

 !
ð66Þ

So, Bernoulli-Euler theory which leads to the proportionality of the bending moment with
curvature kappa ðκÞ, is expressed only by the first term, whereas Timoshenko’s beam
bending theory that explains the effect of shear forces (gamma) on beam deflection and
bending curvature of the beam is expressed by the first two terms. The third term in the
above strain energy density function has not been obtained arbitrarily, but rather on the
simple and straightforward argument, namely that since the curvature and shear strain
are already included by Bernoulli-Euler and Timoshenko, respectively, then their
product should be also included for completeness of the representation. This argument
introduces an additional material length scale ℓs. It may be easily shown that the
positive-definiteness of the strain energy density is guaranteed if the following inequal-
ities are valid

�1 <
ℓv

ℓs
< 1 ð67Þ

wherein from Equations 64 & 65

ℓ
2
v ¼ ℓTLð Þ2 ¼ 1

5
ð1þ �ÞH2 ð68Þ

that is, for positive strain energy density Timoshenko’s shape factor ℓv must not vanish
if surface or scale effects are going to be taken into account. The above ansatz described
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by Equation 66 contains the last term that considers surface energy effects through the
microstructural length scale ℓS, and also contains as a special case Timoshenko’s beam
bending theory through the length scale ℓv as may be observed from Equation 60. In
fact, by applying Gauss’ divergence theorem the total elastic strain energy of the beam
takes the form

UE ¼ 1
2
EI
ðL
0

κ2 þ 1

ℓ
2
v

γ2 þ 2
ℓs
κγ

 !
dx

¼ 1
2
EI
ðL
0

κ2 þ 1

ℓ
2
v

γ2 þ 2
ℓs
κw

0
 !

dxþ 1
2ℓs

EI
ðL
0

rψ2dx

¼ 1
2
EI
ðL
0

κ2 þ 1

ℓ
2
v

γ2 þ 2
ℓs
κw

0
 !

dxþ 1
2ℓs

EI½ψ2�L0

ð69Þ

where we have set ⋅ð Þ0 ≡r ⋅ð Þ≡ d=dx. The constitutive equations for the shear force Q
and bending moment M, are also easily derived from the potential of Equation 66 as
follows

Q≡
∂υE
∂γ

¼ EI
1

ℓ
2
v

γþ 1
ℓs
κ

 !
¼ EI

1

ℓ
2
v

w
0 þ ψ

h i
þ 1
ℓs
ψ

0
 !

ð70Þ

M≡
∂υE
∂κ

¼ EI κ þ 1
ℓs
γ

� �
¼ EI ψ

0 þ 1
ℓs

w
0 þ ψ

h i� �
ð71Þ

Vardoulakis et al. (1998) who studied the size effect exhibited by the flexural strength
of marble beams in laboratory tests employed the following ansatz

υVE ¼ 1
2
EI½κ2 þ ℓ

2
v rκð Þ2 þ ℓsr κ2

� � ð72Þ

This is a gradient almost B-E theory enhanced with two length-scales where the second
term accounts for the shear strain effect

γ ≈ ℓ2vrκ ð73Þ
Papargyri-Beskou et al. (2003) assumed only one surviving surface length scale ℓx ¼
ℓ
0
�x along the axial direction of long beams (very small height to span ratio) according

to Casal’s theory, and a volumetric length scale denoted in their paper by the symbol g,
and made the reasonable assumption of null transverse normal strain εzz ¼ 0 of the
technical beam theory, according to the notation used in the present paper

υPB ¼ 1
2
EI w

00
� �2

þ g2 w
000

� �2
þ 2ℓxw

00
w

000
� �

; ℓx << 1 ð74Þ

Our kappa-gamma model for long beams (i.e. B-E theory) such that the following
approximations to be valid
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κ ¼ dψ
dx

≈ � d2w
dx2

; γ ¼ dw
dx

þ ψ ≈ � ℓ
2
T
d3w
dx3

ð75Þ

gives

υPB ≈
1
2
EI w

00
� �2

þ ℓ
2
T

ℓv

 !2

w
000

� �2
þ 2ℓ2T

ℓs
w

00
w

000

24 35 ¼ υb; ℓ
2
T << 1 ð76Þ

that is exactly the same to the elastic potential proposed by Papargyri-Beskou et al. (2003).
Later on, Vardoulakis & Giannakopoulos (2006) have proposed the following

potential or strain energy density (energy per unit beam length) for the beam

υVG ¼ 1
2
EI κ2 þ 1

ℓ
2
v

γ2 þ 2
ℓs

κ
0

� �2 !
ð77Þ

It may be noted that the first two terms of the kappa-gamma potential have the same
form with those appearing in the ansatz given by Equation 77, although they differ in
the last term.

2.4 Generalization of the gradient beam theory with surface
energy

A general expression of the elastic strain energy density of a gradient elastic solid with
surface energy with two additional length scales has been given by Equation 17.
Applying the following simplifications

εxx ¼ κz; εxz ¼ 1
2
γ ð78Þ

and elaborating on the expressions, the final expression of the strain energy density for
the beam is composed from three distinct parts. Firstly, the classical part of the elastic
potential energy may be found in the following manner,

υclas ¼
ðð
A

1
2
½λþ 2G�z2

� �
κ2 þ 1

2
Gγ2

� �
dA ¼ 1

2
½λþ 2G�Iκ2 þ 1

2
Gγ2A;

I ¼
ðð
A

z2dA
ð79Þ

This expression is composed from two terms appearing also in the elastic potential
energy Equations 66, 72, 76 and 77. Secondly, one may find a volumetric part that is
associated with the volumetric length scale which does not give a scale effect, namely

υvol�grad ¼ Gℓ
2
ðð
A

z2
∂κ
∂x

� �2

þ 1
2

w;xx þ κ
� 2 þ κ2

" #
dA ⇔

υvol�grad ¼ Gℓ
2 I

∂κ
∂x

� �2

þ 1
2
Arγrγþ Aκ2

" # ð80Þ
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One may note that the first term of the last expression is the same with the thrid term
considered by Vardoulakis & Giannakopoulos (2006) in Equation 77, and that is why
their model does not predict a scale effect. Finally, it may be found a surface energy part
associated with the only surviving surface energy length scale ℓx ¼ ℓ

0
�x that gives a size

effect, i.e.

υsurf�grad ¼ 2Gℓ
0
ðð
A

z2κ
∂κ
∂x

þ 1
2

κ þw;xx
� 

γ

� �
dA⇔

υsurf�grad ¼ 2Gℓ
0
Iκ

∂κ
∂x

þ A
2
κγþ A

2
w;xxγ

� � ð81Þ

The first term of the expression above κrκ has been adopted by Vardoulakis et al.
(1998) i.e. the third term in Equation 72, while the second term of the expression above
is the third term of the kappa-gamma beam theory. In Vardoulakis et al. (1998) and in
the present publication it is demonstrated that both technical theories are capable to
predict scale effects of beams.

The transverse shear force and bending moment expressions resulting from the 3D
gradient theory may be formally derived in the following manner and are equivalent
with Equations 70 and 71, respectively,

Q ¼ ∂υ2ndgr

∂γ
¼ G γþ ℓ

0
κ þ ℓ

0
w;xx

� �ðð
A

dA; ð82Þ

M ¼ ∂υ2ndgr

∂κ
¼ 2½λþ 2G�κ

ðð
A

z2dAþGℓ
0
γ
ðð
A

dAþ

þGℓ
2 ∂γ

∂x
þ 2κ

� �ðð
A

dAþþ2Gℓ
0 ∂κ
∂x

ðð
A

z2dA
ð83Þ

By comparing the above two sets of relationships 82 & 70 it may be observed that the
kappa-gamma theory does not contain the kinematical term wxx in the expression for
the transverse shear force, and the terms ∂γ=∂x; ∂κ=∂x in the expression for the bending
moment (e.g. compare Equations 83 & 71).

2.5 Closed-form solution of 3PB simply supported beam

Next we proceed with the solution of the 3PB configuration employing the simpler
engineering beam theory. It may be shown that the equilibrium equations for the beam

dQ
dx

¼ 0; �Qþ dM
dx

¼ 0 ð84Þ

are automatically satisfied, with the following expressions for the bending moment and
transverse shear force along the beam subjected to concentrated loading P at its mid-
span (natural boundary condition

M ¼ PL
4

1� 2x
L

� �
; Q ¼ �P

2
0 ≤ x ≤

L
2

ð85Þ
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Substituting the values of Q,Μ given by the above Equations 85 into Equations 84 the
following system of linear odes is obtained

ℓr w
0 þ ψ

� þ ψ
0 ¼ �λ;

ℓsψ
0 þw

0 þ ψ ¼ λL
4

1� 2
x
L

� �
;

9=; 0 ≤ x ≤
L
2

ð86Þ

wherein we have set the following normalized variables with units [L−1]

λ ¼ Pℓs
EI

; ℓr ¼ ℓs

ℓ
2
v

ð87Þ

The closed form solution of the above system of ode’s has as follows

ψ ¼ 1
4 1� ℓrℓsð Þ ½λ Lþ 4ℓsð Þ þ 4C2 ℓrℓs � 1ð Þ� λ 4þ ℓrLð Þxþ λℓrx2�;

w ¼ 1
24 ℓrℓs � 1ð Þ ½24C1 ℓrℓs � 1ð Þ þ 24C2 ℓrℓs � 1ð Þx� 3λ 2þ ℓrLð Þx2 þ 2λℓrx3�

0 ≤x ≤
L
2

ð88Þ

in which C1; C2 are integration constants to be found from appropriate boundary condi-
tions. The essential boundary conditions refer to the vertical displacement at the supported
end of the beam, as well as the rotation at the mid-span; both of them should vanish, i.e.

w ¼ 0; x ¼ L
2

ψ ¼ 0; x ¼ 0
ð89Þ

Substituting the deflection from Equation 882 and the rotation from Equation 881 into
the two kinematical conditions described by Equations 89 we may easily obtain the
expressions for the two constants in the following manner

C1 ¼ λL2

48

Lℓr þ 12
ℓs

L
þ 6

� �
η2 � 1

; C2 ¼ 0
ð90Þ

where we have set the dimensionless parameter

η2 ¼ ℓrℓs ¼ ℓs

ℓv

� �2

; η2 > 1 ð91Þ

Subsequently, the expression for the deflection may be found from Equation 882 and
the above expressions for the constants, that is to say

w ¼ wc

η2 � 1
6ℓ̂s 1þ 2ℓ̂s
� �

þ η2�12ℓ̂s 1þ 2ℓ̂s
� �

ξ � 6η2ξ2 þ 4η2ξ3
n o

;

0 ≤ ξ ≤
1
2

ð92Þ
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where we have used the following dimensionless quantity

wc ¼ PL3

48EI
ð93Þ

wc represents the maximum (i.e. mid-span) deflection derived from Bernoulli-Euler
beam theory. Also, the rotation of the initially vertical cross-section of the beam could
be found from Equations 851 and 90, i.e.

ψ ¼ λ
η2 � 1

ξ 2ℓ̂s þ η2 � η2ξ
n o

; 0 ≤ ξ ≤
1
2

ð94Þ

wherein

λ ¼ PL2

4EI
; ℓ̂s ¼ ℓs

L
ð95Þ

The engineering shearing strain could be also found in the following manner

γ ¼ w
0 þ ψ ¼ λ

η2 � 1
�ℓ̂s½1þ 2ℓ̂s� þ 2ℓ̂sξ
n o

; 0 ≤ ξ ≤
1
2

ð96Þ

In addition, the bending curvature of the beam may be found by formal differentiation
of Equation 94 as follows

κ ¼ λ
L

1
η2 � 1

2ℓ̂s þ η2 � 2η2ξ
n o

; 0 ≤ ξ ≤
1
2

ð97Þ

As, it may be seen fromEquation 97, in contrast to classical theory, the present gradient
theory with surface energy predicts always for any value of η2 a finite and larger value
of the beam curvature at its supporting ends (i.e. for ξ ¼ 1=2 ). This is due to the
presence of the surface energy term 2ℓ̂s in the expression for the curvature that also is
responsible for the inequality κ ≠� ∂2w=∂x2.

2.6 Numerical results

Various beam deflection curves obtained from the theory are shown in Figures 10 a÷c.
For this purpose use was made of Equation 92 and of the following expression

η2 ¼ ℓs

ℓv

� �2

¼ 5ℓ̂
2
s

ð1þ �Þ H
L

� �2 ; η2 > 1 ð98Þ

As was expected the gradient theory, i.e. for the relative length scale η comparable to
unity, predicts always larger beam deflections compared to the classical B-E theory for
η >> 1. This is clearly illustrated in Figure 10a. According to Equation 98 the latter
case is approached for beams of very large span (L) compared to their height (H) and
vanishing surface energy length scale. The effect of Poisson’s ratio on beam deflection
for vanishing surface energy term and H/L=1/10 is displayed in Figure 10b. Finally,
the effect of the surface energy length on the beam’s deflection for constant H/L=1/10
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and Poisson’s ratio of 0.3 is shown in Figure 10c. It is clear from Figure 10c that as
the relative surface energy length increases, the beam deflection decreases w.r.t.
that predicted by Timoshenko’s beam theory, which is an indication of a “beam
rigidity effect”. This effect is attributed to the surface energy term that as in the case of
the half-space problem treated in Paragraph 1.5 gives rise to a pre-tensioning of the
beam.

2.7 Size effect of beam strength

Assuming that the Poncelet - Saint Venant (PSV) failure hypothesis is valid for granular
brittle materials, then the fracture of the beamwill occur when the horizontal extension
strain at the mid-span of the bottom face of the beam denoted here as εmax

xx , reaches the
limit strain εf

εmax
xx ≥ εf at ξ ¼ 0; z ¼ H

2
ð99Þ

where H is the height of the beam. Considering that εxx ¼ κz, then substituting the
value of the bending curvature at mid-span found by Equation 97 andmultiplying with
the modulus of elasticity E, the failure stress at the lower fiber of the beam is found as
follows

σbu ¼ Eεf ¼ E
H
2
κð0Þ ¼ σB�E

bu
η2

η2 � 1
1þ 2ℓs

η2
1
L


 �
ð100Þ

wherein σB�E
bu denotes the well-known quantity ofModulus of Rupture of the beam that

is given by the formula of the classical Bernoulli-Euler beam bending theory by assum-
ing again the validity of the PSV failure hypothesis

σB�E
bu ¼ Eεmax

xx ¼ PfLH
8I

ð101Þ

In the formula above, Pf denotes the value of the concentrated load at failure. For
constant beam aperture ratio L=H, the following three observations could be made
from Equation 100, i.e.: (i) Timoshenko’s theory does not predict a size effect and
simply modifies the modulus of rupture, (ii) the extended beam bending theory
accounting for surface effects, predicts a (−1)- power of the beam length dependence
of the flexural strength of the beam, and (iii) this size effect law resembles Karmarsch’s
empirical law also used later by Griffith (i.e. Equation 1).

The above size effect law was investigated with a series of 3PB experiments with
prismatic marble beams of a square cross-section (i.e. B=H) of Dionysos marble of the
same aperture L=Hffi4 but with various spans L ranging from 7.4 cm up to 1 m. This
range is considered to be significant for standard rock mechanics tests. Strains at
various locations on the beams including their lower surface at the mid-span, were
recorded by virtue of electrical strain-gages. More data referring to 3PB experiments
on Dionysos marble are provided in Exadaktylos et al. (2001b). As is illustrated in
Figure 11, the rupture strength calculated according to Equation 101, apart from some
dispersion of results for a given aperture ratio that is expected for crystalline brittle
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Figure 10 Distribution of beam deflection in 3PB; (a) effect of (H/L) on beam deflection curve for
constant Poisson’s ratio and surface energy term (i.e. H/L=1/10 for the continuous line and
H/L=1/1000 for the dashed line), (b) effect of Poisson’s ratio on beam deflection curve for
constant (H/L=1/10) and surface energy term, and (c) effect of surface energy term on beam
deflection curve for constant (H/L) and Poisson’s ratio.



materials, was found to be independent of the length of the beamwith an average value
of σB�E

bu ¼ 17:4MPa.
Then using Equation 97 and with an elastic modulus of Dionysos marble

E ¼ 85GPa (Exadaktylos et al., 2001b), the best-fitted curve on the experimental
data assuming the validity of the inverse length of the beam size effect law, was
found to have the following form

σbu ffi 17:4þ 0:84
L=m

;
X11
1

σa � σmð Þ2 ¼ 0:21041 ð102Þ

in which the length of the beam is expressed in m and σbu in MPa, and the sum in the
right indicates the sum of squared differences between the “actual” data (subscript “a”)
and the “model” predictions (subscript “m”).

From Figure 12 it may be seen that the above size effect law fits well the experimental
results apart from some overestimation of the relative strength in particular of one of
the two tests at L=1 m that gives σbu=σB�E

bu ffi0:7. This may be attributed to the lower
value of σB�E

bu ¼ 16MPa found in this test compared to the mean value of σbu ¼
17:4MPa assumed for the whole size range. However, even this correction gives
σbu=σ

B�E
bu ffi0:8, which is much lower than the predicted value of σbu=σB�E

bu ffi1:0.

3 FORMATION OF AXIAL SPLITTING CRACKS IN A DEEP ROCK
LAYER

3.1 Introduction

Axial splitting phenomena in rocks, i.e. tensile fractures, also called joints, which run
parallel to the major compression axis, are important in mining and petroleum
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Figure 11 Variation of the modulus of rupture of Dionysos marble for various beam lengths for
constant beam aspect ratio L=Hffi4.
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engineering practices. For example one may mention that deep underground mining
results occasionally to explosive “rock bursts” at stope faces in the form of longwall or
room and pillar etc. In geological setting, on the other hand, limestone deposits
embedded between thin shale layers are characterized by periodic axial splitting, the
spatial frequency or spacing of which is very important for permeability estimates.
From joint mapping in the field (Βock, 1971, 1980) there are evidences that joints in a
geological layer display some kind of periodicity. These layers are transected usually by
two main (haupt) joint sets that are mutually orthogonal to each other and with
spacings exhibiting periodicity. Depending on the case the ratio of the spacing of joints,
S, to the thickness of the layer, T, is constant, which means that these two geometrical
quantities obey a certain relationship. This ratio S/T varies in most of the cases around
the value of two (Βock, 1971, 1980).

In this chapter we consider this problem using two approaches. One refers to the
LEFM, and the other refers to the application of bifurcation theory to internal buckling
of geological layers under initial stress (Βiot, 1965; Vardoulakis & Sulem, 1995). The
latter approach is based on the assumption that the critical buckling stress of a contin-
uous medium is that which causes a radical change of the deformational field without a
change of the boundary conditions. It is assumed that brittle fracture is affected by strain
gradients. The corresponding bifurcation problem is formulated and solved numerically
for a rock layer with anisotropic macrostructure and microstructure.

3.2 LEFM model of axial splitting joints in an isolated rock layer

It is assumed that a deep rock layer is uniaxially compressed under the action of in situ
vertical stress σV as is illustrated in Figure 13. If the layer behaves in a linear elastic
fashion and is situated far from free surfaces (like mountain slopes, workings, caverns,
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Figure 12 Size effect exhibited by the modulus of rupture of Dionysos marble for constant beam aspect
ratio L=H ¼ 4.
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holes etc) deformations in the horizontal directions cannot be realized; therefore the
deformation is a constrained uniaxial compression with zero lateral strain i.e.

εH ≈ 0; σH ¼ KσV ; K ¼ �

1� �
ð103Þ

where K denotes the lateral stress ratio.
Based on micromechanical experimental evidences it may be said that in polycrystal-

line or granular materials like rocks the nonhydrostatic compressive loads generate
locally tensile stresses. These local tensile stresses arise from material property mis-
matches and grain boundary irregularities (Tapponnier & Brace, 1976). In turn, these
tensile stresses cause the initiation and propagation of mode-I cracks that are aligned
with the major compressive principal stress i.e. along Ox2 axis as is shown in Figure 13
(compressive stresses are considered positive quantities unless stated otherwise). In the
configuration of the rock bed subjected to geostatic stresses the mean stress may be
found as follows

p ¼ 1þ �

1� �

σV
3

ð104Þ

Then it may be shown that the principal deviatoric stresses along the horizontal Ox1
and the vertical Ox2 axes are given by the following formulae, respectively

s1 ¼ � 1
3
1� 2�
1� �

σV ; s2 ¼ 2
3
1� 2�
1� �

σV ð105Þ

It may be observed that the horizontal deviatoric stress is tensile, while the vertical
deviatoric stress is compressive, which could explain the alignment of the axial splitting
cracks along Ox2-axis based on the above consideration of local stress concentrations
at grain scale.

As is shown in Figure 14a, for the periodic parallel crack problem the mode-I SIF KI

is assumed to be the superposition of the tensile deviatoric stress s1 properly amplified
and of the all-around uniform compression p in the following fashion (from now onwe
consider tensile stresses and extensional strains as positive quantities)

X2X2

σHσH σHσH

σvσv

σvσv

SS

TT

X1X1
OO

Figure 13 Sketch of a system of parallel periodic axial joints in a horizontal rock layer and Cartesian
system of coordinates.
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KI ¼ Y
S
T
;
2a
T

� �
½A ⋅ s1 þ p� ffiffiffiffiffiffiπa

p ð106Þ

where Y is a configuration correction factor that is a function of the spacing-to-
thickness and crack length-to-thickness ratios, and A is an amplification factor between
the local tensile stress and the applied deviatoric stress s1 (Costin, 1983) that is assumed
to be a constant in this model. The SIF due to the deviatoric stress s2 that acts in a
direction parallel with the cracks is obviously null. Chen (2004) has solved the stress
boundary value problem of an infinite strip weakened by an array of periodic parallel
cracks and has presented numerical values of the mode-I SIF acting on the crack tips of
the axial cracks for various values of the ratios S/T and 2a/T. The regression analysis of
his results performed herein has been accomplished by using the following interpola-
tion function for the configuration correction factor Y

Y
S
T
;
2a
T

� �
¼ x1

2α
T

� �2

þ x2
2α
T

� �
þ x3

2α
T

� �
S
T

� �
þ x4

S
T

� �
þ x5

S
T

� �2

þ x6

ð107Þ
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Figure 14 Plane strain model of the infinite layer weakened by parallel periodic axial splitting cracks; (a)
Array of periodic and parallel cracks in an elastic layer, and (b) array of parallel joints in a layer
of length L with fixed boundaries.
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The regression analysis showed that the following values of the constant coefficients
result in a mean error of 3% in the range of values of the two ratios also used to find the
numerical values by Chen, i.e. S=T2½0:4; 2� and 2α=T 2 ½0:1; 0:8�,

x1 ¼ 2:4369; x2 ¼ �1:4272; x3 ¼ 0:1497;
x4 ¼ 0:5390; x5 ¼ �0:2058; x6 ¼ 0:8533

ð108Þ

The above solution is not representative for the bed that lies at great depth below the
free surface. Instead the most appropriate boundary conditions for the bed are fixed
displacements as is shown in Figure 14b. The compliance of the cracked layer with
clamped boundaries is depicted partly from the cracks and partly from the intact
rock,

ε ¼ Cσ þ 1
E
σ; σ ¼ As1 þ p ð109Þ

where C is the compliance of the cracked bed. The additional strain energy due to N
cracks is given by the formula below

ΔUa ¼ TL
2

σε ¼ TL
2

Cσ2 ð110Þ

Irwin (1957) has proved the following relationship that is valid under fixed grips, plane
strain conditions and mode-I cracks

∂ΔUa

∂α
¼ 1� �2
� 

E
K2

I ð111Þ

By virtue of Equations 110 and 111 and integrating we get the expression for the
compliance of the elastic layer due to N ¼ L

�
S cracks

C ¼ 2π 1� �2
� 

N
TLE

�A
1
3
1� 2�
1� �

þ 1
3
1þ �

1� �

� �2ðα
0

αY2da ð112Þ

Subsequently from Equation 109 the stress-strain relationship may be derived as
follows

σ ¼ Eε

1þ 2π 1� �2
� 

N
TL

�A
1
3
1� 2�
1� �

þ 1
3
1þ �

1� �

� �2ðα
0

αY2da

ð113Þ

The definite integral appearing in the above expressionmay be easily computed in closed
form from the polynomial Equation 109 of the configuration correction factor. Finally,
the SIF may be derived from Equations 106 and 113 in the following manner

KI ¼ Y
ffiffiffiffiffiffi
πa

p �
� Eε

1þ 2π 1� �2
� 

N
TL

�A
1
3
1� 2�
1� �

þ 1
3
1þ �

1� �

� �2ðα
0

αY2da
ð114Þ
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A dimensionless SIF may be defined by setting σ0 ¼ Eε in the following fashion
KI=σ0

ffiffiffiffiffiffiffi
πT

p
. Using Equation 110 the elastic strain energy of the cracked geological

layer with N joints of length 2α under certain macro-strain ε becomes

Ua ¼ 1
2

ELTε2

1þ 2π 1� �2
� 

N
TL

�A
1
3
1� 2�
1� �

þ 1
3
1þ �

1� �

� �2ðα
0

αY2da

ð115Þ

The determination of the equilibrium crack length in the elastic bed with fixed dis-
placement is then based on the following three criteria proposed by Kemeny & Cook
(1985),

KI ¼ KIC;

∂KI

∂α
< 0;

minUα

ð116Þ

The third ad hoc criterion postulated by Kemeny & Cook (1985) and is shown in
Equation 116 means that for a given strain ε applied to the rock layer, rock parameters
�; A; KIC and bed thickness T, the optimum configuration will be such that minimizes
the stored elastic strain energy Ua. Figure 15 illustrates the variation of the dimension-
less SIF with the crack semi-length to bed thickness ratio for various values of crack
spacing to bed thickness ratios and for a constant Poisson’s ratio � ¼ 1=3 and ampli-
fication factor A ¼ 20. As was expected the SIF under fixed-grips conditions is initially
increasing with crack length, reaches a peak and then decreases monotonically since the
stress is released due to increasing crack length. As it may be seen from Figure 15 below
as the number N of cracks increases – for fixed bed length L this means a decreasing S/T
ratio – the equilibrium crack length decreases. According to the second crack propaga-
tion criterion the equilibrium crack length is found by the intersection of the respective
curve with the fracture toughness line that is parallel to the horizontal axis. Employing
the third criterion of the minimization of the stored strain energy then as may be seen in
Table 1. it turns out that the optimum configuration is established for S=Tffi 2:2 as is
also observed in reality and crack length comparable to bed thickness. It is remarked
here that this model does not predict a size effect, that is to say dependence of the
critical strain or stress on the bed thickness, for fixed S/T ratio.

3.3 Internal buckling of a single layer of rock under initial stress

The same problem is considered here as a non-homogeneous, plane-strain deformation
of a horizontal layer of thickness T and very large horizontal extent, due to constant
vertical compression σv as shown in Figure 13. The theory used in this alternative
analysis is based on incremental plane strain deformations superimposed on the large
strain of a uniform compression. For the considered non-homogeneous deformation
mode, we seek such a displacement field that displays certain periodicity along Ox1 and
Ox2 axes. An appropriate periodical deformation field would be such that: a) along the
vertical axis Ox2 the joints open, b) the deformations attenuate until the middle of the
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distance to the neighboring cracks, c) it corresponds to the locations of the joints, and d) it
is given in terms of two unknown amplitude functions of the dimensionless coordinate x2,

The sine and cosine functions are the most appropriate to describe the deformational
field prescribed above (Biot, 1965), that is essentially the deformational pattern of a
“standing wave”. Hence the following expressions for the displacement components
are employed

V1 ¼ Δu1 ¼ Asin anx1ð Þcos bmx2ð Þ
V2 ¼ Δu1 ¼ Bcos anx1ð Þsin bmx2ð Þ ð117Þ

where we have set

an ¼ π
n
S
; bm ¼ π

m
T

ð118Þ

with n, m being even natural numbers, and the dimensionless coefficients A, B denoting
the displacement amplitudes. Figures 16a illustrate the deformation modes of the
geological layer weakened by periodic parallel axial splitting joints for the cases n=1,

Table 1 Dependence of the dimensionless elastic strain energy for the
various values of crack spacing to bed thickness and crack length to
bed thickness ratios.

S/T 2α=T Ua=Eε2T2

0.4 0.15 0.918
1 0.36 1.326
2 0.82 0.972
2.2 0.92 0.876
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Figure 15 Dependence of the dimensionless SIF on the crack length to bed thickness ratio for various
number of cracks or crack spacing to bed thickness ratio for � ¼ 0:3, A=20 and
KIC=σ0

ffiffiffiffiffiffiffi
πT

p ¼ 0:2.
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m=1 and για n=2, m=2. Figure 16b shows the deformation field around each vertical
axial joint.

It is assumed that the elasticity of the geological layer displays a cubic symmetry that
is described with three elasticity constants instead of the usual two constants of
isotropic elasticity (Landau & Lifshitz, 1975). Cubic materials posses a shear modulus
denoted here with the symbol G that is not related to the Young’s modulus and
Poisson’s ratio with the usual relation of isotropic elasticity. The ratio G=G� is used
here as a measure of anisotropy of the geological material, i.e.

2 1þ vð Þ
E

G ¼ G
G� ¼ ξ2 ð119Þ

This anisotropy of the macrostructure is essential for the modeling of the axial splitting
fracture of the layer, as is the deviatoric stresses with large enough amplification factor
A assumed in the frame of the LEFM approach presented previously. Assuming
infinitesimal strain elasticity, the Jaumann stress increments D	 σij of the total stress
are related directly to the strain increments Δεij through the constitutive relations of
linear elastic materials, perturbated properly in order to account for higher order strain
gradients and anisotropy in the microstructure (Exadaktylos & Vardoulakis, 1998)
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Figure 16 (a) Deformational modes of the geological layer for n=1, m=1(left) and n=2, m=2 (right), and
(b) lines of equal horizontal strain around the joint.
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D
	
σ11 ¼ 2G�

1� 2v
1� vð ÞDε11 þ vDε22f g � 2Gℓ

2r2Dε11

D
	
σ22 ¼ 2G�

1� 2v
vDε11 þ 1� vð ÞDε22f g � 2Gℓ

2r2Dε22

D
	
σ12 ¼ D

	
σ21 ¼ 2G Dε12 � ℓ

2r2Dε12
� �

ð120Þ

In this first attempt we simplify considerably the problem at hand by assuming that the
strain gradients affect only the horizontal stress increment in the following manner,

D
	
σ11 ¼ 2G�

1� 2v
1� vð ÞDε11 þ vDε22f g �Gℓ

2Dε11;11

D
	
σ22 ¼ 2G�

1� 2v
vDε11 þ 1� vð ÞDε22gf

D
	
σ12 ¼ D

	
σ21 ¼ 2GDε12 ð121Þ

where ℓ is an internal length scale that is used for the consideration of the strain gradient
only in the horizontal component of stress, and Dεij designates the incremental infini-
tesimal strain tensor

Dεij ¼ 1
2

Dui;j þ Duj;i
�  ð122Þ

Considering that the layer of infinite lateral extent has fixed upper and lower bound-
aries (internal buckling problem) while the horizontal displacements along the cracks
cancel out, plus the symmetry conditions, then the boundary conditions of the internal
buckling problem are imposed in the following fashion,

V1 ¼ 0; Dε12 ¼ 0 8x2 and x1 ¼ �l=2

V2 ¼ 0; Dε12 ¼ 0 8x1 and x2 ¼ �h=2 ð123Þ
The model given be Equation 117 satisfies the boundary conditions for n=2 and m=2,

V1 �l=2; x2ð Þ ¼ Asin �πð Þcos bmx2ð Þ ¼ 0

Δε12 �l=2; x2ð Þ ¼ � 1
2

Ban þ Abmð Þsin �πð Þsin bmx2ð Þ ¼ 0 ð124Þ

and

u2 x1;�h=2ð Þ ¼ Bcos anx1ð Þsin �πð Þ ¼ 0

ε12 x1;�h=2ð Þ ¼ � 1
2

Ban þ Abmð Þsin anx1ð Þsin �πð Þ ¼ 0 ð125Þ

For continuing linear equilibrium in plane strain conditions (i.e. ∂3 ¼ 0 ) and in the
coordinate system of principal axes of initial stress σij in the plane of the deformation,
the stress equilibrium equations take the following form (Biot, 1963)

D
	
σ11;1 þ D

	
σ12;2 þ σvDω21;2 ¼ 0

D
	
σ21;1 þ D

	
σ22;2 þ σvDω21;1 ¼ 0

ð126Þ
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where D _ω being the incremental rotation (spin) tensor

Dωij ¼ 1
2

Dui;j � Duj;i
�  ð127Þ

Substituting Equations 121 & 117 in the equilibrium Equations 126 the following
equations are obtained

C11Dε11;1 þ C12Dε22;1 �Gℓ
2Dε11;111 þ 2GDε12;2 þ σvDω;2 ¼ 0

2GDε12;1 þ C21Dε11;2 þ C22Dε22;2 þ σvDω;1 ¼ 0
ð128Þ

where we have set

C11 ¼ C22 ¼ 2G� 1� vð Þ
1� 2v

; C12 ¼ C21 ¼ 2G�v
1� 2v

ð129Þ

Finally, by employing the strain-displacement and the rotation-displacement Equations
122 and 127, respectively, we obtain the following system of algebraic equations

� A Gℓ
2a4n þ C11a2n �

σv
2
�G

� �
b2m

� �
þ B C12 þGþ σv

2

� �
anbm

� �
¼ 0

� A C21 þG� σv
2

� �
anbm þ B C22b2m þ Gþ σv

2

� �
a2n

� �� �
¼ 0

8>><>>: ð130Þ

The above system of Equations 130 is further simplified by dividing both equations
with the term a2n and with the shear modulus G�, that is

A ℓ
2
a þ c11 � ξ1 � ξ2ð Þr2

� �
þ B c12 þ ξ1 þ ξ2ð Þ

� �
r

� �
¼ 0

A c12 � ξ1 � ξ2ð Þ
� �

rþ B c11r2 þ ξ1 þ ξ2ð Þ
� �� �

¼ 0

8><>: ð131Þ

where we have set

c11 ¼ C11=G� ¼ C22=G�; c12 ¼ C12=G� ¼ C21=G�;

ξ1 ¼ σv
2G� ; ξ2 ¼ G

G� ð132Þ

ℓ
2
a ¼ ℓ

2ξ2a
2
n; r ¼

bm
an

¼ S
n
m
T

¼ S
T

For non-trivial solution in terms of A and B, the determinant of the system of
Equations 131 must vanish. This leads to the following biquadratic equation for
the aspect ratio of axial joints r, i.e.

r4 þ 2mr2 þ k2 ¼ 0;

2m ¼ p2
p4

¼ c11ℓ
2
a þ c211 � c212 � 2c12ξ2

c11 ξ2 � ξ1ð Þ ;

k2 ¼ p0
p4

¼ ðℓ2a þ c11Þ ξ2 þ ξ1ð Þ
c11 ξ2 � ξ1ð Þ

ð133Þ
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The roots of Equation 133 are

r21 ¼ �mþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 � k2

p
;

r22 ¼ �m�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 � k2

p ð134Þ

A solution is possible if there exists a real root ri; that is, if either r21 or r22 or both are
positive. This occurs in the following cases: (Case 1)m > 0; k2 < 0 in which the root r21
is positive and r1 is real; (Case 2) m < 0; m2 > k2 > 0 in which both r21 and r22 are
positive and so r1 and r2 are real.

The critical internal buckling stress is then found as the minimum load ξ1 for which
Equation 133 has real roots. This is illustrated in Figure 17 that presents the depen-
dence of the buckling load on the aspect ratio of the jointed layer for four cases of
anisotropy, namely ξ2 ¼ G=G� equal to 2.5, 3, 5, and 7, a constant Poisson’s ratio � ¼
0:49 – since rock masses at great depths behave in an almost incompressible manner –
and a dimensionless microstructural length scale ℓa ¼ 0:1. It may be observed that as
the macroscopic anisotropy of the layer becomes more pronounced, then both the
crack spacing to bed thickness ratio and the buckling load decrease. In general, both the
aspect ratio of axial splitting cracks and of the buckling load decrease with the increase
of the macrostructural anisotropy of the bed or equivalently with the amplification
factor A of the tensile stresses acting on the crack tips.

Plots of several spectra of the buckling stress with aspect ratio for various values of the
dimensionless microstructural length scale ℓa are illustrated in Figure 18a. From these
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Figure 17 Dependence of the dimensionless buckling load on the aspect ratio of the crack spacing to
bed thickness for v=0.49 and for four shear moduli ξ2 ¼ G=G� equal to 2.5, 3, 5, and 7,
respectively and constant internal length scale. The global minima represented by the circles
are moving toward the left of the diagram as ξ2 increases.
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plots it may be drawn the interesting result referring to the dependence of the buckling
load on the crack spacing to bed thickness ratio for any specified degree of anisotropy of
the macrostructure, shown in Figure 18b, that is a manifestation of a size effect.

Indeed, a size effect law of the following form was best-fitted on the numerical data
presented in Figure 18b,

ξ1 ¼ C1
r
ℓa

� ��β

þ C0 ð135Þ

whereC1; C0; β are constant factors. In factC0 is the buckling load for ℓa ! 0. Then by
combining Equation 135 and the third of Equation 132, it may be seen that the size
effect of the buckling load on the spacing of cracks for constant aspect ratio, anisotropy
ratio and internal length scale takes the form

ξ1 ¼ C1
S
T

� ��β

2π
ffiffiffiffiffi
ξ2

p
ℓ

� �β" #
S�β þ C0 ð136Þ

The regression analysis of the numerical data by using the power-law given by
Equation 135 gave the following values of the constant coefficients

C1 ¼ 1:4476; β ¼ 2:1748; C0 ¼ 6:048 ð137Þ
It may be seen that the exponent is relative large and explains the fact that in real
situations it is very rare that the ratio of axial splitting joints spacing relatively to the
bed thickness is less than unity.

4 SUMMARY

After a brief overview of some applications of the Casal-Mindlin microelasticity or
grade-2 or second gradient of strain theory with surface energy, for the study of
fundamental static and dynamic problems, two problems are thoroughly presented
here, namely the bending of beams and the axial splitting of deep geological layers. In
all cases that were reviewed and examined, it is demonstrated that the consideration of
internal length scales are responsible for the manifestation of size effects in static
problems and non-classical dispersion phenomena in dynamic problems.

More specifically, it was illustrated that the surface energy term of the technical beam
theory is responsible for a size effect exhibited by the flexural strength of beams in
three-point bending, namely the dependence of the flexural strength on the inverse
length of the beam for the same aspect ratio. Based on the assumption that the failure
extensional strain in bending is equal to the failure extensional strain in direct or
indirect tension, and the assumption of a linear elastic behavior of the brittle material
up to failure, then also a L−1 size effect of the tensile strength of quasi-brittle solids in
direct as well as in indirect tensile tests, has been derived. The size effect predicted by
the proposed theory is validated against experimental results of beam bending of
Dionysos marble.

It has been also found the interesting result referring to the dependence of the
buckling load of a rock bed transected by periodic system of axial splitting cracks on
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the bed thickness, for fixed crack spacing to bed thickness ratio and a specified degree of
anisotropy of the macrostructure.

Hence, there is ample space for further applications of this theory both for the
development of computational codes and new experimental techniques that could
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take into account the effect of rock microstructure on rock behavior. For example in a
series of papers Exadaktylos & Xiroudakis (2009, 2010a,b) have developed a special
grade 2 constant displacement discontinuity method – i.e. with one collocation point
per element − for the accurate solution of plane crack problems. Furthermore, it is
important to further develop this theory in the context of nonlinear elasticity and
plasticity theories and the development of new failure theories of rocks. Other techno-
logically important problems that may be considered in the frame of the present theory,
are the elastic wave propagation in earthquakes and seismic wave characterization of
rock masses, and modeling of the mechanical behavior of rock joints and size effects
among many others.
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Chapter 24

Rock creep mechanics

F.L. Pellet
MINES ParisTech, Geosciences and Geoengineering Department, Fontainebleau, France

Abstract: Creep is a time-dependent process which leads to deformations that are
strongly related to a rock’s petrophysical properties. This chapter explains the causes
of creep at the microscopic scale. Micro-mechanisms of deformation are described
according to the atomic structure of crystals. Relevant laboratory tests, namely creep
tests, relaxation tests and strain rate-controlled loading tests are outlined and their
performance is discussed. Thereafter, the main rate-dependent constitutive models are
listed with comments on their adequacy for different rock types. A summary of the
theory of viscoplasticity is provided, along with a procedure for identifying constitutive
parameters from test results. In the last section, time-dependent numerical modeling of
underground openings is presented with the help of case studies. Particular emphasis is
placed on the analysis of time-dependent ground-support interaction.

1 INTRODUCTION

In mechanics, creep relates to the slow time-dependent deformations of a given body
subjected to a constant state of stress over time. This deformations process can lead to
large delayed strains and, eventually to the rupture of the studied body.

In rock engineering, creep is a major concern as it can cause facilities to be out of
service for a few weeks, or a few years after their construction. A perfect example to
illustrate this observable fact is the extreme strains developed in squeezing rocks, which
can produce a large convergence in underground openings. Creep can also trigger rock
slope instability or detrimental settlement of constructions such as buildings, bridge
foundations and dam abutments. Creep sometimes occurs with, or is superimposed on
other time-dependent phenomena, such as aging and weathering processes. More
specifically, time-dependent deformation can be attributed to different physical or
chemical transformations; in fact, these physical changes develop at different time
scales, which may range from hours to several years, decades or centuries. Therefore,
before analyzing a creep problem it is of the utmost importance to assess the character-
istic time involved in each process in order to determinewhich need to be accounted for.
Multiphysics and Chemo-Thermo-Hydro-Mechanics coupling analyses will most
probably have to be performed.

Creep is also very sensitive to temperature and rock water content. For instance,
soft rock or soils consolidation resulting fromwater drainage, and the associated pore
pressure dissipation, produces significantly delayed deformation of the ground.



Another example is rock swelling, which can occur due to chemical transformation
(e.g. anhydrite versus gypsum) or to water sorption in argillaceous rock (especially
those which contain smectites). All these transformations result in changes to the
thermal, chemical and hydraulic regime. The study of these phenomena requires a
comprehensive understanding and knowledge of the petrophysics of the rock being
considered.

In this chapter we will exclusively focus on the time-dependent deformation resulting
frommechanical action. Therefore, rate-dependent constitutivemodels will be presented,
keeping in mind that experimental investigations are essential, both upstream to develop
constitutive models with physical meaning, and downstream for model validation.

2 EXPERIMENTAL EVIDENCE

Creep is a time-dependent process; it is, in fact, a particular strain path that depends on
the magnitude of the load. Any creep test requires the application of a load at a given
rate, prior to performing the actual creep stage. It is therefore useful to classify strain
rate regimes as proposed by Field & Walley (2013) as shown in Figure 1.

Following this classification, we will focus on strain rates smaller than 10−5 s−1 in the
subsequent sections. It should bementioned that very slow creep tests (down to 10−13 s−1)
performed on rock salt and on argillite have been reported by Bérest et al., (2005).

2.1 Causes of creep at a microscopic scale

Before proceeding further, it might be helpful to examine what happens inside the rock
material in the course of creep deformation. This will permit the identification of the
deformation mechanisms at the micro-scale and, later, it will help in conceptualizing
relevant constitutive models.

1.E–10 1.E–08

Creep and Relaxation Quasi-static Dynamic Impact

Hopkinson barConventional loading devices

Inertia negligible Inertia important

1.E–06 1.E–04 1.E–02 1.E+00 1.E+02 1.E+04 1.E+06 1.E+08

Figure 1 Schematic diagram of strain rate regimes (in reciprocal second) and the techniques that have
been developed to obtain them (adapted from Field & Walley, 2013).
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2.1.1 Rock microstructures and potential energy

Rocks are composed of minerals or crystals formed by atoms arranged in lattices. As
it is well known, in nature everything is “Matter or Energy”. Therefore, the atoms
(Matter) are positioned with respect to each other in order to minimize the inter-
atomic forces which bind them (Energy). In this equilibrium configuration atoms are
separated by a distance that is related to their potential energy. This configuration
remains unchanged under steady conditions of temperature and pressure. If the rock
body is then stretched or compressed, variations in the inter-atomic distances will
develop to generate attraction or repelling forces, respectively (Figure 2). When the
deformation (extension or contraction) is not too great, the deformation will be
reversible. In other words, the rock body will, in time, recover its initial configuration
when the stress responsible of the deformation is removed (this is called visco-elastic
behavior). Of course, there is a limit beyond which the atomic bonds will progres-
sively break.

The nature and the magnitude of the inter-atomic forces - or intermolecular forces -
depends on the type of bond. Basically, there are 4 main types of bonds, some of which
are illustrated in Figure 3:

– Ionic bond: atoms exchange pairs of electrons due to electrostatic charge. This very
strong bond represents high potential energy. It is present in rock salt crystals made
up of calcium chlorine (Halite, NaCl).

– Covalent bond: the atoms share electrons. This is also a strong bond that is present
in diamond (Carbon, C).

– Metallic bond: some electrons are free to move. This moderate bond is not often
encountered in rock materials.

– Hydrogen bonds are of two types - intermolecular and intra-molecular. Hydrogen
bonds are weaker compared to primary bonds (ionic and covalent).

Beside these inter-atomic bonds, intermolecular attachment may develop. The most
frequent in geomaterials are the van der Waals forces, which are due to the presence of
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Figure 2 Bond potential energy as a function inter-nuclear distance.
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water. Water molecules are linked by a hydrogen bond due to negative and positive
electronic charges (dipole molecules). Several models have been proposed to evaluate
these bonds, for example, the double layer theory.

The potential energy associated with each of these bonds is formally expressed in
electron volts. The order of magnitude of covalent and ionic bonds is 10 ev per atom.
The van der Waals bond is about 0.1 ev per mol. Since most rocks are polycrystalline,
the average potential energy will depend on their mineralogical composition.

2.1.2 Micro-mechanisms of deformation

Crystal lattices formed by atoms always contain some defects. In the arrangement of
the atoms, an atom is sometimes missing or, on the contrary, an extra atom might be
present. Occasionally, some foreign substances or impurities (molecules or ions) may
be present within the crystal lattice (Figure 4); any of these defects could be the perfect
location to initiate bond breakage and the ensuing micro-crack nucleation and
propagation.

Defects can also be linear or planar, as in dislocations (Davis & Reynolds, 1996).
Under differential stress, atoms will jump from one site to another until the full array
of atoms is shifted. Depending on the pressure and the temperature conditions,
different creep mechanisms will occur (Figure 5). These range from dissolution
creep, for low temperature and moderate differential stress, to diffusion creep for
higher temperatures. When differential stress is elevated, dislocation creep will be the
predominant mechanism leading to fracture and the production of cataclasite. This
phenomenon could be advantageously described using dislocation mechanics
(McClintock & Argon, 1966). Additionally, movement at the grain boundaries can
also occur.

Deformation recovery will heal the material by rearranging the dislocation to the
original configuration.More detailed information on the specifics of creep mechanisms
at the micro-scale can be found in Davis & Reynolds (1996) and in Püsch (1993).
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Figure 3 Schematic representation of covalent and ionic bonds.
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2.1.3 Evolution of electro-chemical bonds

In addition to stress and temperature conditions, the petro-physical nature of the rock
plays an important role in creep susceptibility. For instance, moisture is an important
parameter; as we have seen water molecules are dipole so the electrical resistivity may
change with time. This is particularly true in argillaceous rocks such as shale, marl and
mudstone. In this regard, the use of Archie’s law permits to rock porosity to be related to
the electrical resistivity.

A covalent bond can be weakened or broken due to oxidation-reduction reactions.
This was observed in rock specimens that were subjected to high temperatures
(Keshavarz et al., 2010). Rock salt (made up of halite crystals) and argillaceous rock
are known to be prone to creep because the bonds evolved quickly. Weathering and
aging are also responsible for changes in the nature of the bond due to changes in
humidity, temperature and pressure conditions (Butenuth, 2001).
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Figure 5 Simplified creep deformation mechanisms chart (adapted from Davies & Reynolds, 1996).
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Figure 4 Representation of defects in a crystalline structure (the dots represent the atoms): a) one
atom is missing, b) one atom migrates, c) presence of an impurity.
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2.1.4 Activation energy and enthalpy

From a micro-mechanical point of view, when a solid body is deformed the strain rate
depends on the activation energy (see section 2.1.1). Based on thermodynamics con-
siderations, the Arrhenius empirical equation can be used to compute the strain rate:

_ε ¼ Ae�
Q
RT: ð1Þ

where: _ε, deformation rate
A, a constant
Q: activation energy
R, universal ideal gas constant
T, absolute temperature

Table 1 summarizes activation energy values published for different single crystals
(Poirier, 1995; Palandri & Kharaka, 2004).

2 Mechanical testing

2.2.2 Strain rate controlled compression test

In general, rock materials prone to creep exhibit a viscous behavior; this means that their
mechanical response is sensitive to the rate of loading. Figure 6a shows stress-strain curves
for a specimen subjected to compression tests performed with different strain rates of
loading, _ε. For a given strain rate loading _ε ¼ _εoð Þ, a typical stress-strain curve is
observed. If the same specimen is then loaded at a higher rate _ε >> _εoð Þ, the response
is stiffer and the strength is increased. On the other hand, when the rate of loading is
lower _ε << _εoð Þ, the response is more compliant and the strength decreases. There is a
limit curve under which no further changes are noticeable. This curve is obtained with
very low rates of loading (typically less than 10−9 s−1), while the deformation is
developed in real time. It should also to be remembered that low-rate loading tests
lead to ductile specimen failure whereas high-rate loading tests result in brittle failure
(Peng, 1973). Indeed, in this case, there is not enough time to accommodate the
deformation and dynamic effects will develop.

2.2.2 Creep test

Let us now imagine that at a given point on the stress-strain curve _ε ¼ _εoð Þ, the loading
process is stopped when the stress σ = σo (Figure 6a). The rock specimen is now
subjected to a constant load and an increase in strain is measured with respect to
time (Figure 6b). This is the strain creep path!

Table 1 Activation energy for different single crystals (after Poirier, 1995; Palandri & Kharaka, 2004).

Quartz Pyroxene Plagioclase Halite Calcite Kaolinite

Q [kJ/mol] 90–117 54–94 18–70 7–10 24–35 13–18
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Looking in more detail at a typical strain-time curve resulting from a creep test,
we observe that the curve can usually be clearly divided in three stages (Figure 7).
During the first stage, called transient creep (or primary creep), the strain rate
decreases with respect to time. This is due to a strain hardening process. During
this stage, if the specimen is unloaded the strain will partially recover with respect to
time. Another important feature is the existence of a creep threshold belowwhich no
delayed deformation is observed. The value of this threshold depends on the parti-
cular rock type. Of course, we also need to consider the instantaneous strain, εo,
produced by the immediate load application. The following stage, known as sta-
tionary creep (or secondary creep), is characterized by a linear variation of strain
versus time. The span of this stage also depends on the type of rock. Rock salt
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Figure 6 Test in compression: a) axial stress vs. axial strain (constant strain-rate test), b) axial strain vs.
time (creep test), c) axial stress vs. time (relaxation test).

Transient
creep

Stationary
creep

Tertiary creep

εf

tf

ε1

Time

σ1 = cste 

Figure 7 Creep test with the three successive stages: Primary (transient), Secondary (stationary) and
tertiary (time-dependent damage and failure).
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exhibits a long secondary creep stage but this is very short for argillaceous rocks
(Pellet, 2015).

Finally, if the applied stress deviator is high enough, a third stage appears with an
increase in strain-rate until creep failure occurs. Throughout this stage, micro-cracks
grow until they coalesce, eventually forming macro-cracks and fractures. This ter-
tiary creep stage induces time-dependent damage as reported by Fabre & Pellet
(2006).

Figure 8 shows an example of a multistage creep test performed on a claystone
specimen over more than 200 days (Fabre & Pellet, 2006). Because this rock was
transversely isotropic, two pairs of 3 strain gauges were mounted on the specimen.
Each pair is composed of an axial strain gauge, εnn and two transverse gauges, one
perpendicular to the isotropic plane, εtt, and one parallel to this plane, εss. The graph
below clearly shows the tertiary stage, which materialized when there was a sudden
increase in both axial strain and transversal strain across the isotropic plane. As a
result, the volumetric strain shows dilation.

2.2.3 Relaxation test

Alternatively, we could, from the point σ = σο (Figure 6a), envisage a different path.
Instead of maintaining a constant load, the strain is kept constant. This can be achieved
only with servo-controlled loading equipment. In this case, a decrease of stress with
respect to time is observed (Figure 6c). This is the stress relaxation path!

Stress relaxation is due to the material accommodating the deformation. A good
illustration of stress relaxation in a rock formation was given by Heim (1878) who
stated that, at great depth, the state of stress is isotropic. In other words, in the long
term rocks cannot bear differential stress (shear stress). Of course, this is not observed
in the areas where tectonic thrusts are acting, for example, near major fault zones.
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Figure 9 shows the results of a relaxation test carried out on a claystone. The specimen
is first loaded at a strain rate of 10−6 s−1 (Figure 9a).Thereafter, the relaxation is performed
over a period of 28 days. The stress decreases from 26 MPa to 9 MPa (Figure 9b). Stress
oscillations, due to daily temperature variations, are clearly visible. At the end of the test,
the specimen was completely unloaded and reloaded until failure occurred.

2.2.4 Technical specification for creep tests

In a rock engineering framework, creep tests are the most commonly performed test for
characterizing time dependency. Besides the necessary care required to prepare and
store specimens, creep tests need a perfectly temperature controlled room. This is to
avoid temperature influences on the rock specimen itself and to eliminate any thermal
effects on the loading device (see Figure 9b), which are generally made up of steel, a
temperature-sensitive material.

In the case of multiple loading stage tests, each loading increment has to be carefully
selected in order to avoid sudden specimen failure (Gasc-Barbier et al., 2004). To
accelerate the creep process some authors (Fabre & Pellet, 2002) have suggested that
oligo-cyclic tests be carried out. This consists of performing small amplitude cycles of
loading-unloading to speed up the creep process. Eventually the rock specimen will fail
due to fatigue.

Another valuable source of information for creep tests is the technical specifications for
the hardware equipment and the rock specimen’s instrumentation. Strain gages appro-
priately mounted on the specimen will provide linear strains (dilation or contraction) in
the principal strain directions. Additionally, strainmeasurement will allow the computa-
tion of the volumetric strain, which is of primary importance for rock behavior char-
acterization. Complementary to this, a record of the ultra-sonic velocity and acoustic
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emissions during the creep stage can give insights into the damage processes that develop
within the specimen (Grgic & Amitrano 2009, Pellet & Fabre, 2007).

More information on test preparation and environmental conditions are described in
a comprehensivemethod suggested and published by the International Society for Rock
Mechanics (Aydan et al., 2014). This text is a useful guide for engineers who have to
perform creep tests.

3 CONSTITUTIVE EQUATIONS

The first mathematical expressions established to calculate creep strain were proposed
by Andrade (1910) for transient creep and byNorton (1929) for stationary creep; these
were from results of tensile tests performed on steel. These mathematical expressions
are creep laws (see section 3.3) rather than proper constitutive models since their
parameters are directly inferred from test results. Later, numerous advanced viscoplas-
tic constitutive models were proposed for different rock types, such as rock salt
(Munson, 1997), sedimentary rocks (Cristescu & Hunsche, 1998) and tuff (Aydan
et al., 2011).

3.1 Rheological analogical models

The first and the more intuitive approach to understanding creep behavior is based on
rheological analogical models. Conventionally, the viscous behavior is schematically
represented by a dashpot whereas plasticity corresponds to a slider and elasticity to a
spring. In its simplest form, viscosity is considered as Newtonian. It means that the shear
stress varies linearly with the shear strain-rate, as presented in Figure 10. Thus, the shear
stress and the axial stress can be expressed as a function of the strain rate as follow:

τ ¼ η ⋅ _γ ð2Þ
σ ¼ 3η ⋅ _ε ð3Þ

where: η is the kinematic viscosity [MPa.s]
_γ is the shear strain-rate [s−1]
_ε is the axial strain-rate [s−1]

Moreover, if it is assumed that no volumetric strain will be developed during the
deformational process, the Poisson ratio, ν, is equal to 0.5. Thus, the creep law (axial
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Figure 10 Newtonian viscosity: a) shear stress vs. shear strain rate, b) axial stress vs. axial strain rate.
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strain vs. time, eq. 4) and the relaxation law (axial stress vs. time, eq. 5) will be
established after time integration by the following equations:

ε ¼ σt
2η 1þ ϑð Þ ¼

σt
3η

ð4Þ

σ ¼ 3η
ε
t

ð5Þ

For most rock types creep strain develops only when the applied stress overcomes a
threshold. Such a material obeys the Bingham model, which incorporates a threshold
below which no creep strain occurs (Figure 11).

Using the elementary rheological components, different assemblies can be made up to
reproduce the different stages of the creep curve. Primary creep (transient creep) can be
modeled with a Kelvin unit that utilizes a dashpot and a spring in parallel (Figure 12b).
Secondary creep (stationary creep) is well reproduced by the Maxwell model which is
made up of a dashpot and a spring connected in series (Figure 12a). In this model the
instant reversible strain can be accounted for by the spring.

It should also to be noted that, unlike the Kelvin model, the Maxwell model allows the
stress relaxation to be modeled with respect to time. However, Kelvin’s model is able to
model time-dependent strain recovery following unloading (Figure 12b). Therefore, the
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Figure 11 Bingham Model: a) rheological analog; b) stress versus strain-rate.
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Kelvin model is a visco-elastic model whereas the Maxwell model belongs to the visco-
plastic family.

To model both primary and secondary creep with one equation, it is convenient to
use the Burger model, which is composed by the association of Kelvin model and
Maxwell model.

Figure 13 shows the analog and the strain versus time curve, which is expressed by
the equation

εðtÞ ¼ Δσ1
EM

þ Δσ1:t
2ηMð1þ �Þ þ

Δσ1
EK

1� exp
�EK:t

2ηKð1þ �Þ
� �� �

ð6Þ

More recently, theCVISCmodel (Itasca, 2006)was proposed; this consists of the Burger
model coupled to a plastic threshold. Therefore, the applied stress is limited by the
introduction of a load surface, which in this case is the Mohr-Coulomb criterion. With
the help of a flow rule, it is possible to compute instantaneous and delayed irreversible
deformation. Figure 14 shows the basic analog of the model, which is a viscous elasto-
plastic one.

3.2 Viscoplasticity

Viscoplastic constitutive models are rate-dependent models developed within the fra-
mework of the theory of thermodynamics of irreversible processes. The classical
assumptions of the mechanics of continuum media, such as the strain compatibility
assumption and the objectivity principle must be fulfilled. Additionally, small strain
transformations are frequently considered. Unlike the rheological analog models,
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Figure 13 Strain vs. time for the Burger model; a) stress versus strain-rate; b) rheological analog.
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Figure 14 CVISC analog model (c, cohesion; ϕ, friction angle; ψ, dilatancy angle; σt, tensile strength).
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viscoplastic constitutive models are based on the existence of one or several load or
yield surfaces in the space of the three principal stresses.

The fundamental assumption is the partition of the total strain, _ε, into two parts.

_ε ¼ _εe þ _εin ð7Þ
The first term, _εe, represents the instantaneous reversible strain, which is computed

using the generalized Hooke’s law (elasticity). The second terms, _εin, corresponds to
inelastic- or irreversible- strain. Irreversible strains encompass instantaneous plastic
strain and delayed plastic strain (viscoplastic strain). We will see that plasticity is
actually a particular case of viscoplasticity theory.Moreover, the occurrence of delayed
reversible strain is treated through visco-elasticity, which will be disregarded in the
following.

3.2.1 Viscoplastic potential and specific energy

Irreversible strains produce energy dissipation related to the micro-mechanisms of
deformation, presented in section 2.2, which is basically, the free energy derived from
entropy. Therefore, the Clausius-Duhem inequality must be satisfied:

σ : _ε � Ψþ sT
:� �~q

grad
��!

T
T

≥0 ð8Þ

where: σ is the Cauchy stress tensor
ε is the strain rate tensor
ρ is the density
Ψ is the specific free energy
s is the specific entropy
T is the absolute temperature
q is the heat flux vector

This energy dissipation is related to a viscoplastic potential that is derived from a family
of equipotential load surfaces represented in the space of the principal stresses in Figure
15. Viscoplastic deformation starts to develop when stresses hit the inner surface which
is actually a viscoplastic threshold, sometimes called the initial yield surface with
reference to plasticity theory. The outer surface corresponds to an infinite strain rate;
in other words, it represents the dynamic material failure. The viscoplastic domain lies
between these two surfaces.

The viscoplastic strain rate, _εvp is expressed with the help of the viscoplastic poten-
tial, Ω, by equation 9. It should be pointed out that this equation implies the normality
rule for the viscoplastic flow.

_εvp ¼ ∂Ω
∂σ

ð9Þ

The change of the surface in course of loading is due to the strain rate and the
subsequent strain hardening effect (see section 2.2). The latter could be isotropic or
kinematic. It has also to be noted that the consistency rule, which is mandatory in
plasticity, is not required anymore.
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3.2.2 Load surface and hardening process

In this framework, Perzyna (1966) established the concept of overstress, relative to the
limit curve (F < 0), which allows one to characterize the hardening state in the
viscoplastic domain. The hardening function is related to the viscoplastic strain and
therefore the strain rate is expressed as follow:

_εvpij ¼ ∂Ω σij; εkl
� 
∂σij

ð10Þ

Based on this concept, several expressions were proposed to define the viscoplastic
dissipating potential Ω and its evolution. Using the von Misès yield surface, Lemaitre
and Chaboche (1978) proposed the following:

Ω ¼ K
Nþ 1

*
f σð Þ
K

+Nþ1

p�N=M ð11Þ

where: f (σ) is the load surface
p is the hardening variable
K, M, N are the model parameters.

In this expression, the hardening variable is the cumulative plastic strain. Therefore
unloading is not possible to model. The strain rate is expressed as

_εvpij ¼ 1

KN :σN εvpð Þ�N=M ð12Þ

The load surface – or yield surface – has to be appropriately chosen in accordance with
the observed behavior of the material under study. Rock materials exhibit changes in
volumetric strain which need to be described by the selected constitutive model; they,
like any geomaterials, are sensitive to both the isotropic stress – first invariant of the
stress tensor – and the differential stress – second invariant of the stress tensor.We have
seen that, depending on their microstructure, the trend to dilation or contraction is
more or less pronounced. Different rocks, for example rock salt, sandstone, and shale,
will behave differently and will require different load surfaces. Moreover, the state of
stress, which is mostly related to depth, also plays an important role in the changes in
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σ3
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Figure 15 Load and yield surfaces in the deviatoric stress plane.
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volumetric strain. One constitutive model proposed by Critescu & Hunsche (1998) is
expressed as follows:

f J2; I1ð Þ ¼ σeq þ ασm ð13Þ
where: J2 is the second invariant of the stress tensor load surface

I1 is the first invariant of the stress tensor
α ισ τηε parameter ruling dilation-contraction trend.

Substituting the vonMisès load surface in the Lemaitre law by the Drucker Prager one,
Pellet et al., (2005) proposed that the strain rate could be expressed as

_εvp ¼ σeq þ ασm
Kp1=M

� �N 3
2

S
σeq

þ αI
3

� �
ð14Þ

In this expression, I and S are respectively the identity tensor and the stress deviator and
p is the cumulative viscoplastic strain that drives the hardening process, defined by:

_p ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2
3
_εvp : _εvp

r
ð15Þ

3.2.3 Choosing a suitable viscoplastic law for a rock type

In rock mechanics, it is essential to select a viscoplastic model in line with the type of
rock being studied. Rock salt creep, which exhibits an extensive secondary creep
phase, can be advantageously described by the specific laws proposed by Munson
(1997). Using the same rock material, Hou & Lux (1999) proposed a viscoplastic
constitutive model that accounted for creep diffusion and dislocation, strain hard-
ening and recovery, and damage healing. Porous rocks, such as sandstone, require
load surfaces with a cap to allow for compaction, as proposed by Cristescu&Hunshe
(1998). Argillaceous rocks (shale, claystone) show an important primary creep
phase and a short secondary stage, which is quickly replaced by tertiary creep and
the associated micro-cracking (Fabre & Pellet, 2006). Moreover, anisotropic creep
models should be considered as these rocks are very often transversely isotropic
(Cristescu & Cazacu, 1995).

Finally creep in crystalline rocks is, under normal conditions of pressure and tem-
perature, inextricably linked to the damage resulting from cracking. This phenomenon
will be outlined below. Table 2 summarizes the characteristics of some viscoplastic
constitutive equations.

3.3 Explicit laws for creep

Creep laws, which are directly derived from experimental observation, express changes
in viscoplastic deformation with respect to time. Formally, creep laws are not consti-
tutive models stricto sensu, as the time variable is explicitly accounted for. As a
consequence, creep laws do not allow for the correct description of the development
of the deformation in real loading paths, such as multi-axial loading or unloading; they
are only valid for a specific strain path.
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The creep power law function is particularly well suited to model the majority of
creep mechanisms (with the exception of the diffusion creep process). This fact was
recognized by Andrade (1910), who proposed that the primary creep of soft metals
could be described by a relationship of the following form:

εvp ¼ At
1=3 ð16Þ

The exponential law, suggested by Norton (1929), was first expressed by equation 17.
For crystalline materials, this has been extended to account for the influence of the
temperature (eq 18).

_εvp ¼ σ
K

� �N
ð17Þ

_εvp ¼ AσN

dqT

� �
e

�Q
RT

� �
ð18Þ

where : σ is the loading stress, d is the crystal diameter, T the absolute temperature in
[K], Q the activation energy of the thermal reaction in [Joule.mol−1] and R is the
constant of the ideal gas (see section 2.1.4). A, N and q are material parameters.
Table 3 indicates the parameters of the Norton law suggested by Dusseault &
Fordham, (1993) for different types of creep.

In rock mechanics, Lomnitz (1957) was one of the first to propose a logarithmic
relationship based on creep measurements in igneous rocks. The creep law is expressed
as follows:

εvp ¼ C2ln 1þ b2tð Þ ð19Þ
where: C2 and b2 are parameters of the material.

The logarithmic law has also been successfully used by Kharchafi & Descoeudres
(1995) for the modeling of tunnel convergences in marl. Bažant & Chern (1984) used
logarithmic laws to describe creep of concrete. Table 4 summarizes different creep laws
and their application domains.

Table 2 Characteristics of some viscoplastic constitutive equations.

Norton
(1929)

Lemaitre
(1978)

Munson
(1997)

Critescu
(1998)

Hou-Lux
(1999)

Pellet et al.,
(2005)

Load function F = f F = f F = f F = f/ κ −1 F = f F = f
Load surface Von Misès Von Misès Tresca Tresca Mohr-

Coulomb
Von Misès Drucker

Prager
Flow rule Associated Associated Associated Non associated Non

Associated
Non
associated

Volumetric
strain

No No No Yes Yes Yes

Strain
hardening

Viscoplastic Isotropic Isotropic or
Kinematic

Isotropic or
kinematic

Kinematic Isotropic

Creep
threshold

Possible Possible Possible No Possible Possible
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3.4 Creep of rock joints

Since the pioneering works of Amadei & Curran (1980), very little research has been
done into the creep behavior of rock joints. Dieterich & Kilgore (1994) established
empirical state-variable formulations to predict frictional processes, including stick-
slip instability, based on direct observation of frictional contacts. Rock joint creep
susceptibility is highly correlated to the nature if the infill material and its water
content. Recently, Pellet et al. (2013), presented shear test results performed on dry
and saturated clay rock discontinuities; they showed that both the friction coefficient
and the cohesion decrease when the discontinuity is saturated. Overall, the shear
strength of the discontinuity is also substantially reduced. Other results have been
presented by Xu et al. (2005) who carried out direct shear tests on unfilled rock joints.
It was observed that the long term strength is smaller than the short term one. The shear
behavior of rock joints is also rate-dependent; this was shown by Jafari et al. (2004)
who performed cyclic tests at different loading rates.

Wang et al. (2015) analyzed the behavior of micro-contacts in rock joints under
direct shear creep loading. Using CT and laser scanning images, they identified two
distinct patterns of contacts in rock joints. As a result, they concluded that the long-
term shear strength of fractured rocks is composed of the shear resistance built up by
the interlocked micro-asperities at the scale of roughness and the frictional resistance
produced between macro-asperities at the scale of waviness on the shear fractured
rocks.

3.5 Time-dependent failure

Time-dependent failure materializes at the end of the tertiary creep phase (Figure 7). It
appears when the rock material has been heavily damaged, resulting in crack coales-
cence. Despite the fact that it is a time-dependent process, the related theory is given in
the chapter devoted to Rock Damage Mechanics.

Table 3 Suggested parameters of the Norton law for different creep
mechanisms (after Dusseault & Fordham, 1993), see also Figure 5.

Creep Mechanisms Exponent N Exponent q

Creep diffusion (Nabarro-Herring) 1 2
Creep diffusion (Coble) 1 3
Dislocation creep 2–5 2–3
Dissolution creep-mechanical twinning 3–9 0

Table 4 Different creep laws and their domains of application.

Andrade (1910) εc ¼ Bt1=β Applicable to primary stage; β = 3;
Lomnitz (1957) εc ¼ Alnð1þ αtÞ Applicable to primary stage
Modified Lomnitz law εc ¼ Aþ BlogðtÞ þ Ct Primary and secondary stages
Norton’s law (1929) εc ¼ Aσnat or _εc ¼ Aσna Applicable to secondary stage and n = 4–5
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In summary, to predict time-to-failure at a meso scale, it is necessary to couple the
viscoplastic constitutive model to the continuum damage theory (Nawrocki &
Mroz, 1998). The latter theory is inspired by Fracture Mechanics since
multiple modes of failure are usually involved (namely Mode I for tensile failure
and mode II for shear failure). Brandut et al. (2013) gathered a lot of data in a
comprehensive review on time-dependent cracking and brittle creep in crustal rocks.
One of the most popular expressions to compute time-to-failure, tf, is given by
Costin (1987):

tf ¼ 1= βð Þ exp ½E=RT þ b S� � σð Þ� ð20Þ
where: E is the activation energy, RT the product of the ideal gas constant and the
temperature, S* the stress corrosion limit, β and b material constants and σ the applied
stress.

More generally, viscoplastic constitutive models should account for damage-induced
anisotropy (Pellet et al., 2005). For practical purposes at a large scale, the classification
proposed by Lauffer (1958) still allows one to assess the stand-up time of unsupported
openings.

3.6 Parameter identification

The identification of constitutive model parameters from test data is an important
step. Sometimes it is useful to restate the law as a logarithm of the strain rate, in order
to proceed using linear regression. Boidy et al. (2002) proposed a procedure for the
Lemaitre constitutive equation. Note that most tests are carried out in compression.
In some cases the reverse creep that occurs consecutive to unloading may be more
realistic, in particular for the analysis of rock excavations. In any case, accurate
instrumentation that provides linear strains and volumetric strain will be very valu-
able to help identify the model parameters.

4 NUMERICAL MODELING OF CREEP IN ROCK ENGINEERING

In terms of numerical solutions, rate-dependent constitutive models offer a major
advantage since the solution is regularized with time. Therefore, there is no loss of
solution uniqueness when it comes to dealing with strain-softening.

Viscoplasticmodels have been used formany rock engineering problems such as rock
slopes (Li and Li, 2013), foundations or underground cavities (Ladanyi, 1993). One of
the major applications during the last two decades was the issue of underground
disposal vaults for radioactive waste (Fairhurst, 2002). Here, the challenge is to predict
the behavior of the host rock over exceptionally long periods of time (several centuries).
This required comprehensive approaches including coupled thermal-hydrological-
mechanical behavior of the rock mass (Selvadurai & Nguyen, 1997). Other issues,
dealing with gas or CO2 storage are also a current concern for the long term behavior of
rock mass (Lux, 2007; Selvadurai, 2013). In the following we concentrate on time-
dependent behavior of underground openings.
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4.1 Specificities of underground openings

Viscoplastic constitutive models have been advantageously used in the design of under-
ground works, especially for tunnels excavated in soft rocks prone to creep (Gioda &
Cividini, 1996). In such a case, time is involved both in terms of the progression of the
tunnel excavation and in the mechanical behavior of the rock. Several studies have
presented in situ measurements of the time-dependent closures of galleries (Boidy et al.,
2002). In one study (Armand et al., 2013) it was found that the stress orientations
induced an anisotropic closure in relation to the direction of the major principal in situ
stress.

Tunneling in difficult geological conditions, such swelling and squeezing rocks, can
lead to large deformations which often require extra support (Einstein, 1996). Several
studies have been published in relation of this problem. Barla et al. (2011), Vu et al.
(2013), Sterpi&Gioda (2009), Pellet (2009), and Pellet et al. (2009) proposed counter-
measures to account for the rock-support interaction, while Cantieni et al. (2011)
focused on the core extrusion.

4.2 Time-dependent behavior of monitored galleries

Back analysis of the time-dependent behavior of a monitored tunnel excavated in
Opalinus clay was performed by Boidy et al. (2002). This study was concerned with
a specific section of the Mont-Terri reconnaissance gallery (Switzerland). From a
theoretical point of view, Lemaitre’s viscoplastic model (see section 3.2.2) was used
with a finite-difference numerical code. The model parameters were well identified
based on creep test results. Subsequently, complete numerical simulations gave
good results when compared to the in situ convergence measurements. Based on
the comparison of strain and stress measured in the lining support, the time-depen-
dent behavior was extrapolated over a period of approximately 10 years. The scale
effects between the laboratory tests results and in situ measurements were also
accounted for.

In Figure 16, the gallery closures (convergences) and the excavation progress (work-
ing face position) are reported with respect to time, for different data sets. Computed
values show good agreement with the measured magnitudes. For design purposes, the
well used analytical Sulem’s solution (Sulem et al., 1987) is also shown.

4.3 Time-dependent rock-support interaction

In time-dependent geological formations, the rock-support interaction depends on
construction sequences. In practice, the New Austrian Tunneling Method (NATM)
aims to limit the size of the opening and thus allows displacements to mobilize the
intrinsic rock mass strength. The counterpart is that the rate of excavation is slow and
the rock mass properties may have time to deteriorate. On the other hand, when using
the New Italian Tunneling Method (NITM) the excavation is performed in a full
section with full face reinforcement. The rate of advancement is faster and therefore
the displacements are limited. The consequence is that a stiff heavy support must be
installed as quickly as possible. To summarize, the stand-up time without support,
which is related to strength degradation of the rock, has to be longer than the time
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required to mobilize the rock strength. Therefore, the appropriate method that should
be used has to be a compromise to overcome these two phenomena.

These two tunneling options are illustrated in Figure 17. NITM allows a small
convergence and provides a stiff support, whereas NATM provides a softer support
reaction after larger convergences.
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The contact and the time-dependent interaction between the tunnel lining support
and the viscoplastic medium has been investigated by Pellet (2009). First, back
analysis of the time-dependent behavior of a drift excavated across a carboniferous
layer, which exhibited large delayed displacements, was undertaken. Drift closure
was simulated using an elasto-viscoplastic constitutive model that included the
strength limitation. This 3D numerical simulation was performed taking into account
both stage construction sequences and the rate of excavation advancement. A com-
parison of the numerical results with the measured data allowed the calibration of the
model parameters (Figure 18).

Subsequently, the installation of a concrete lining was simulated to account for the
contact with the rock mass. This blind numerical simulation aimed to optimize the
tunnel cross-section and to establish the dimensions of a suitable concrete supporting
lining. Threemonths after installation, the stresses measured in the concrete lining were
in agreement with the numerically predicted stresses. Figure 19 shows the radial stress
decrease due to the excavation followed by an increase due to the contact with the
lining support.

Changes in both the radial and tangential stress with time in the rockmass behind the
concrete lining are presented in Figure 20. It should be pointed out that the maximum
tangential stress in the rock mass progressively relaxes.

5 CONCLUSION

Creep deformations are a concern for many rock engineering activities. To address this
problem, a comprehensive multi-scale approach is needed. Firstly, high-quality
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investigations of the petrophysics properties of the rock under study will provide the
insights necessary to assess creep susceptibility. This phase includes mineralogical
identification and quantification at a micro-scale (possibly with the help of a
Scanning Electron Microscope). It also requires the characterization of the in situ
conditions in terms of temperature and moisture. Secondly, the time scale of the
investigation has to be defined in a realistic way.
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Creep is one of the manifestations of viscoplasticity. In practice, it is inextricably
linked to stress relaxation. Therefore, to characterize viscoplastic behavior, it is neces-
sary to perform creep test, relaxation test or monotonic compression tests with differ-
ent rates of loading in appropriate ambient conditions of temperature and humidity. It
must be pointed out that conventional tests are mostly performed in compression.
Under unloading conditions, reverse creep tests (extension) would be more representa-
tive of the actual stress path.

For the purpose of numerical simulation, a suitable rate-dependent constitutive
model has to be carefully selected. Indeed, some rocks exhibit a large transient defor-
mation stage, due to strain hardening, whereas other materials are prone to stationary
creep.Micro-cracks developed during the time-dependent damage stage (tertiary creep)
could lead to the rock failure, depending on the level of the applied stress. Time-to-
failure prediction requires the input of Fracture Mechanics and/or Damage Mechanics
(see the chapter devoted to Rock Damage Mechanics).

The identification of the parameters for the selected constitutive models, based on
tests data, is also a sensitive step. To copewith the inherent lack of representativeness of
the lab specimen volume, the scale effect has to be accounted for. In any case, carefully
instrumented specimens will provide valuable information.

The modeling of the behavior of underground structures over time needs a good
reproduction of the stage construction sequences. This will allow a reliable description
of the interaction between the ground and the support system when creep strain and
stress relaxation are concomitantly developed. To mitigate the uncertainties of the
constitutive parameters used and to account for the scale effects mentioned above,
inverse analysis of the data collected from a monitored tunnel is a reliable tool.
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