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Notice

Medicine is an ever-changing science. As new research and clinical experience broaden
our knowledge, changes in treatment and drug therapy are required. The authors and
the publisher of this work have checked with sources believed to be reliable in their
efforts to provide information that is complete and generally in accord with the stan-
dards accepted at the time of publication. However, in view of the possibility of human
error or changes in medical sciences, neither the editors nor the publisher nor any other
party who has been involved in the preparation or publication of this work warrants that
the information contained herein is in every respect accurate or complete, and they dis-
claim all responsibility for any errors or omissions or for the results obtained from use of
the information contained in this work. Readers are encouraged to confirm the infor-
mation contained herein with other sources. For example and in particular, readers are
advised to check the product information sheet included in the package of each drug
they plan to administer to be certain that the information contained in this work is
accurate and that changes have not been made in the recommended dose or in the con-
traindications for administration. This recommendation is of particular importance in
connection with new or infrequently used drugs.
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PREFACE

The clinical aspects of hematologic malignancies have
changed dramatically over the past decade. The devel-
opment of targeted therapies, based on years of
advanced understanding of basic scientific mecha-
nisms of disease, has led to their widespread use and
ultimately to the first decrease in cancer-related mor-
tality not attributable to screening programs. The
impact of these advances will be fully felt over the next
two decades, when the population of older adults in
the United States is expected to double, and continued
evolution of intensive therapy and supportive mea-
sures will make approaches such as bone marrow
transplantation available to more patients than ever
before.

Resources available to clinical oncologists or hema-
tologists who treat patients with hematologic malig-
nancies are limited. With this in mind, we planned a
textbook devoted solely to this topic. Recognizing,
also, that oncologists and hematologists are busier
than ever and require accessible information about
specific topics, we asked our authors to write focused
chapters that address different aspects of a disease, and
that would be useful to both general and disease-spe-
cific practicing oncologists and hematologists, physi-
cians-in-training, researchers, and nurses. We are
proud of the end-product.

Sections of Clinical Malignant Hematology are
divided by disease, and each disease is further divided

into specialty areas where applicable. These areas
include epidemiology, risk factors, and classification;
molecular biology, pathology, and cytogenetics; clini-
cal features and making the diagnosis; treatment
approach to all disease subtypes; and treatment of
relapsed or refractory disease, including new frontiers
in therapy. In addition, we have included chapters
about specialty topics within hematologic malignan-
cies, both within disease sections and in the last part of
the book. These topics range from disease-specific indi-
cations for bone marrow transplantation and manage-
ment of infections to treatment of the pregnant
patient with a hematologic malignancy and fertility
issues in this patient population.

Chapter authors are world experts in their fields. We
asked them to use evidence-based findings in the pre-
sentation of their material but not at the expense of
offering practical information about managing these
complicated and often very sick patients. We are grate-
tul to our authors for rising to this challenge and help-
ing us to produce the first definitive textbook on
hematologic malignancies. We welcome your feedback
about the content and about any areas you would
want to see expanded for future editions, particularly
as some material may not keep pace with the rapid
change in therapy. We ask you to e-mail comments to
our editor at McGraw-Hill, Robert Pancotti:
robert_pancotti@mcgraw-hill.com.

Mikkael A. Sekeres, MD, MS
Matt E. Kalaycio, MD
Brian J. Bolwell, MD
February, 2007

Copyright © 2007 by The McGraw-Hill Companies, Inc. Click here for terms of use.
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Section 1

ACUTE MYELOID LEUKEMIA

Chapter

EPIDEMIOLOGY, RISK FACTORS,
AND CLASSIFICATION

Leonard T. Heffner Jr

_ACUTE MYELOCYTIC LEUKEMIA

EPIDEMIOLOGY AND RISK FACTORS

Acute myelocytic leukemia (AML) is a clonal expansion
of any one of several nonlymphoid hematopoietic
progenitors that retain the capacity of self-renewal, but
are severely limited in their ability to differentiate into
functional mature cells. These various progenitors
include cells of granulocytic, monocyte/macrophage,
erythroid, and megakaryocytic lineage.

Leukemia is not a common malignancy relative to
many other forms of cancer, comprising 3% of all new
cancers in males and less than 2% in females. Deaths
from leukemia comprised 4.3% of all cancer deaths in
males in 2006 and 3.3% in females. In 2006, it was esti-
mated there were 11,930 new cases of AML, represent-
ing 34% of all forms of leukemia. An estimated 9040
deaths due to AML occurred in 2006—40.6% of deaths
from all leukemias. Both the incidence and the num-
ber of deaths are slightly greater in males versus
females.! Surveillance, epidemiology, and end-results
(SEER) data over a 25-year period from 1973 to 1998
show that the incidence rates by age groups have been
stable, other than a slight increase in the age group
above or equal to 65 years old.? As per the SEER data
(1996-2000), 86% of acute leukemia in adults (>20
years old) is AML.

Although there are several well-recognized risk fac-
tors for the development of AML, little is known about
the etiology of most cases. Like most malignancies,
there is no recognized factor common to most cases of
AML. While there is little reason to assume that adult

and childhood leukemia do not have a common etiol-
ogy, differences in tumor biology and outcomes suggest
that these disorders are significantly different. Proven
or possible risk factors for AML can be categorized as
genetic, environmental, and therapy-related. At this
time, the proven risk factors include only radiation,
benzene exposure, and chemotherapeutic agents.3~

Studies of leukemia in identical twins have shed
considerable light on the pathogenesis of this disease.
While concordance rates for monochorionic, monozy-
gotic twin childhood leukemia is less than 25%, con-
cordance in infants (<1-year old) is nearly 100%.1-15
This implies that events occurring in utero are suffi-
cient for the rapid development of acute leukemia and
that clonal progeny spread from the initially affected
fetus to the other fetus via shared placental circulation.
Yet, in older twin children the discordance rate is 90%,
indicating the prenatal event is insufficient for leuke-
mogenesis and a second postnatal event is required,
probably involving genes regulating a proliferation or
survival function. In adult twins there is no evidence
of concordance.!®

Familial acute leukemia outside of a recognized
medical syndrome is rare, but there are documented
familial clusters of specific subtypes of AML.!718 There
are also a number of medical syndromes in which AML
is a component feature, including Down syndrome,
Bloom syndrome, Fanconi anemia, neurofibromatosis
I, ataxia-telangiectasia, Schwachman syndrome, and
dyskaratosis congenita.!®-25 Many of these disorders
have been associated with both AML and acute lym-
phocytic leukemia (Table 1.1).

Copyright © 2007 by The McGraw-Hill Companies, Inc. Click here for terms of use.
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Table 1.1

Genetic Environmental
Identical twin with leukemia Radiation
Familial leukemia lonizing
Down syndrome Nonionizing
Bloom syndrome Chemicals
Fanconi anemia Benzene
Neurofibromatosis | Pesticides
Schwachman syndrome Smoking

Dyskrytosis congenital

Ataxia-telangiectasia
Acquired hematologic diseases

Chronic myelocytic leukemia

Myelofibrosis

Essential thrombocythemia

Polycythemia rubra vera

Aplastic anemia

Paroxysmal noctural

hemoglobinuria

Therapy related
Alkylating agents
Topoisomerase Il Inhibitors
DNA intercalating agents

The effects of acute high-dose exposure from the
nuclear explosions at Hiroshima and Nagasaki as well
as the nuclear accident at Chernobyl demonstrate the
leukemogenic potential of ionizing radiation.32¢
Follow-up of the atomic bomb survivors through 1990
identified 249 leukemic deaths, with 53.7% attribut-
able to radiation exposure. In this population, there is
an excess relative risk of leukemia (ERR) per sievert of
4.62 compared with an ERR of 0.40 for other cancers.?’
The risk appears to be greatest at 5-10 years after expo-
sure.?® Evaluation of the specific types of leukemia in
the life span study (LSS) of atomic bomb survivors
showed the highest ERR for acute lymphocytic
leukemia (Table 1.2), although those exposed to
gamma irradiation at Nagasaki more commonly had
AML.2829 Leukemogenic risks for lower doses of ioniz-
ing radiation are less clear, and are complicated by the
need to distinguish acute versus protracted low-dose
exposure. Table 1.3 outlines the levels of exposure to

radiation in routine daily activity compared to the
episodes of more acute exposure. Among the cohort in
the LSS study with exposure of 5-100 mSv (mean for
entire study 200 mSv), there is a statistically significant
increased incidence of solid organ cancer compared to
the population exposed to less than 5 mSv.3® Chronic
low-dose exposure studies in workers in nuclear plants
have found an increased risk of leukemia, although
these studies have some limitations and are not all sta-
tistically significant.3! A greater than expected risk of
AML has been reported in the use of low doses of radi-
ation for benign medical conditions, such as menor-
rhagia, ankylosing spondylitis, rheumatoid arthritis,
tinea capitis, and peptic ulcer disease.??-3¢ Exposure to
the chronic low dose a-particles of thorium dioxide in
Thorotrast has been associated with an increased inci-
dence of the acute erythroleukemia subtype of AML.3”
However, there is no evidence that diagnostic X-rays
are causally related to leukemia.?®3° The contribution
of nonionizing radiation to the development of
leukemia is unclear, as there have been conflicting
results and criticism of the methodologies in some
studies. At this time, there is no evidence of a major
contribution of either occupational or residential elec-
tromagnetic field exposure resulting in an increased
incidence of leukemia.**-#2 Cosmic radiation exposure
has been shown to increase slightly the risk of AML in
commercial jet pilots. 344

Among environmental factors associated with an
increased risk of leukemia, benzene has been studied
extensively. Occupational benzene exposure in the
leather, petrochemical, rubber, and printing industries
has been linked to an excess incidence of
leukemia.?4>46 Ethylene oxide, butadiene, and styrene
are industrial chemicals that have been associated with
leukemia, but studies have been somewhat inconsis-
tent or inconclusive in establishing a direct link.#/->!
Pesticide use has been suggested as a possible explana-
tion for the increased risk of dying from leukemia
among farmers and other agricultural workers.5?
However, other case-control and cohort studies have

Table 1.2

Excess absolute risk

Leukemia Number  Excess relative  Attributable  (cases per 10* person
subtype of cases risk per Sv risk (%) years at 1 Sv)

ALL 38 9.1 70 0.62

AML 117 3.3 46 1.1

CML 62 6.2 62 0.9

All leukemias 231 3.9 50 2.7

(includes

unspecified

types, CLL, etc.)

Reprinted from Zeeb H, Blettner M: Adult leukemia: what is the role of currently known risk factors?

Radiat Environ Biophys 36:217-228, 1998, copyright 1998 Springer.
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Table 1.3

Approx.
mean
individual
dose (mSv)
Round trip flight, New York to London 0.1
Single screening mammogram (breast dose) 3
Background dose due to natural radiation 3/year
exposure
Dose (over a 70-year period) to 0.5 million 14
individuals in rural Ukraine in the vicinity of
the Chernobyl accident
Dose range over 20-block radius from 3-30
hypothetical nuclear terrorism incident
(FASEB scenario 1: medical gauge containing
cesium)
Pediatric CT scan (stomach dose from 25
abdominal scan)
Radiation worker exposure limit 20/year
Exposure on international space station 170/year

A-bomb survivors (mean dose in LSS cohort) 200
Medical X-rays (breasts dose in scoliosis study) 100
Nuclear workers (mean dose from major

studies) 20
Individuals diagnostically exposed in utero 10

Modified from Brenner D), et al.: Cancer risks attributable to low
doses of ionizing radiation: assessing what we really know. PNAS
100:13761-13766, 2003, copyright 2003 National Academy of
Sciences, U.S.A.

failed to show an association between pesticide expo-
sure and leukemia.>3* Indeed, there has been no evi-
dence for an increased risk of AML related to pesticide
exposure, although studies have implicated an
increased risk of childhood leukemia.>® Cigarette
smoking has been found in several studies to produce
a mild increased risk of leukemia, especially AML, pos-
sibly related to the presence of benzene in tobacco
smoke. #5658 Indeed, the International Agency for
Research on Cancer (IARC) recently reviewed eight
cohort studies, with six showing a greater than
expected risk of myeloid leukemia.’® Interestingly, it
appears the smoking-associated risk for AML may be
restricted to the t(8;21) subgroup.® Despite these data,
a large prospective cohort study of 334,957 construc-
tion workers failed to show evidence that smoking
bears any major relationship to the occurrence of
leukemia.®! The use of hair dyes known to contain ani-
mal carcinogens has been associated with a slight
increased risk of acute leukemia of both myeloid and
lymphoid type. This risk seems to be greatest for the
use of permanent dyes and for longer and more fre-
quent usage, with no increased risk for nonpermanent
dyes.%? However, two other cohort studies failed to
find any consistent association between hair dye use

and hematopoietic cancers.®*%* Viruses have long been
suspected as a causal agent in leukemia, and the retro-
virus HTLV-1 has been linked to adult T-cell
leukemia/lymphoma.® However, there has as yet been
no convincing evidence of a viral etiology of adult
AML.

The development of acute leukemia in long-term
survivors of Hodgkin's lymphoma raised the awareness
of a relationship of leukemia to prior chemother-
apy.®%” An increased incidence of treatment-related
AML (tAML) has been found in both benign and
malignant diseases for which alkylating agents have
been a major part of the therapy, and it is felt that
10-15% of all leukemias are therapy-related.®®8
Secondary disease following treatment may occur in
0-20% of cases.®® All of the commonly used alkylating
agents have been associated with an increased risk of
AML, including busulfan, chlorambucil, BCNU,
CCNU, cyclophosphamide, mechlorethamine, and
procarbazine.®? Typically, in Hodgkin’s lymphoma
treated with the MOPP (mechlorethamine, vincristine,
procarbazine, prednisone), the incidence of AML peaks
at 7 years, but may occur even in the first 2 years post-
treatment.”®’! A common characteristic of these ther-
apy-related leukemias is the loss of all or part of chro-
mosomes 5 and/or 7, occurring in 50-90% of cases,
often with a complex karyotype.”>73 There is also an
increased risk of AML following treatment with the
topoisomerase II inhibitors, notably etoposide and
tenoposide. In contrast to the other forms of tAML,
this group of leukemias typically show translocations
involving the mixed-lineage leukemia (MLL) gene on
chromosome 11 (band 11g23) or the AMLI gene on
chromosome 21 (band q22). Most commonly, there is
a shorter interval between drug exposure and diagno-
sis of AML, without a preceding myelodysplastic
syndrome (MDS) phase.”#75 Phenotypically, these
cases are usually myelomonocytic or monocytic.
Additionally, the DNA intercalating agents, such as
doxorubicin, are associated with a type of AML similar
to that associated with the topoisomerase II inhibitors.”®
The natural history of some hematologic disorders,
such as polycythemia vera, essential thrombocythemia,
myelofibrosis, and aplastic anemia, is associated with a
slightly increased risk of AML, but that risk increases
with the use of chemotherapeutic agents, radiother-
apy, or immunosuppressive therapy.”’-80 High-dose
chemotherapy followed by autologous stem cell trans-
plantation (ASCT) for lymphoma can be complicated
by the development of tAML/MDS.8! The actuarial risk
in multiple series has varied from 3% to 24%. Median
time from ASCT to development of tAML/MDS is
47-50 months, and has been variably influenced
by pretransplant therapy, the conditioning regimen,
and stem cell mobilization.?? As the mechanisms by
which leukemia develops as a consequence of these
environmental exposures are learned, the burgeon-
ing field of molecular epidemiology will further allow
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the determination of the risk of subsequent leukemia
in these exposed populations.

AML: CLASSIFICATION

Although acute leukemia has long been recognized as a
hematologic malignancy, it has been only in the last 50
years that AML has been looked at as a distinct entity.
Indeed, classification of the acute leukemias was pri-
marily based on age and cell morphology, with the
adult form being predominately granulocytic with
some variants based primarily on the cell type, such as
promyelocytic, monocytic (Schilling), myelomono-
cytic (Naegli), or erythroleukemia of DiGuglielmo.
However, there was considerable difficulty at times dis-
tinguishing between lymphoid and myeloid acute
leukemias other than by age at onset. The development
of reliable histochemical staining by Hayhoe and col-
leagues in the 1960s improved our diagnostic accuracy,
but did not produce a clear system of classification.

In 1976, some order was introduced into the classi-
fication of the morphologically heterogeneous acute
leukemias with the establishment of the French-
American—British (FAB) system.®3 The FAB classifica-
tion was based on morphology, cellularity, blast per-
centage, and cytochemistry, and was modified over the
next several years with the recognition of AML of
megakaryocytic lineage (AML-M7) and of minimally
differentiated leukemia (AML-MO0).8485 A limitation of
the FAB classification has been the clinical diversity of
AML, as well as the emerging genetic diversity of the
disease and the lack of correlation to improvement in
treatment outcomes. In addition, over the past several
decades there has been an increasing recognition of a
group of hematologic disorders variously designated as
preleukemia or myelodysplasia, which preceded the
diagnosis of AML in many, but clearly not all cases. It
is important to know and remember the FAB system
both for historical purposes and because many impor-
tant clinical trials still being followed and reported are
based on that system.

Beginning in 1995, a project was begun by the
World Health Organization (WHO) involving an inter-
national group of pathologists, assisted by a clinical
advisory committee of expert hematologists, to estab-
lish a classification of hematologic malignancies.
AMLs are recognized as one of the three main cate-
gories of myeloid neoplasms, along with MDSs and
myeloproliferative disorders. This classification draws
on the combination of morphology, immunopheno-
type, genetic features, and clinical syndromes. In par-
ticular, this system also more formally incorporates the
relationship of AML to the MDSs.

The major goal of the WHO classification was to
develop a clinically relevant system that could incor-
porate the genetic and clinical features of AML with
the morphology and newer biological information
about the disease. An attempt was made to discrimi-
nate between distinct disease entities as opposed to

prognostic factors, especially with the increasing infor-
mation on genetic abnormalities in AML. This has led
to recognition of four main groups within the category
of AML: (1) AML with recurrent cytogenetic transloca-
tions, (2) AML with multilineage dysplasia, (3) AML
and MDSs, therapy-related, and (4) AML not otherwise
categorized. Within each group are several subcate-
gories, as outlined in Table 1.4.

In addition to placing patients with AML into
unique clinical and biological subgroups, the other
major departure with the FAB system was the lowering
of the threshold for the number of blasts in the blood
or bone marrow to 20% rather than 30%. This is based
on the data showing similar outcomes and biological
features in the patients with 20-29% blasts, who were
previously classified as having MDS compared to those
patients with traditional AML.

Approximately 30% of patients with newly diag-
nosed AML will have one of the four well-defined cyto-
genetic abnormalities listed in Table 1.4. Because
patients with these abnormalities have a somewhat
distinctive phenotype and a relatively favorable
response to treatment, they can be considered distinct
clinicopathological entities. While other balanced
translocations are considered recurring genetic abnor-
malities, it is felt that these abnormalities have more
prognostic import. Undoubtedly, as we learn more

Table 1.4

A. AML with recurrent cytogenetic translocations

= AML with t(8;21)(922;922), AML1(CBFa)/ETO

m AML with t(15;17)(922;911-12) and variants
(PML/RARw)

m AML with abnormal bone marrow eosinophils
Inv(16)(p13q22) or t(16;16)(p13;q11),
(CBFB/MYH11X)

u AML with 11923(MLL) abnormalities

B. AML with multilineage dysplasia
m with prior myelodysplastic syndrome
m without prior myelodysplastic syndrome
C. AML and myelodysplastic syndromes, therapy-related

m alkylating agent-related

m epipodophyllotoxin-related (some may be lymphoid)

m other types

D. AML not otherwise categorized

m AML minimally differentiated

u AML without differentiation

m AML with maturation

m acute myelomonocytic leukemia

m acute monocytic leukemia

m acute erythroid leukemia

m acute megakaryocytic leukemia

m acute basophilic leukemia

m acute panmyelosis with myelofibrosis

E. Acute biphenotypic leukemia

Modified from Jaffe ES, et al.: World Health Organization Classification
of Tumors: Pathology and Genetics of Tumors of Haematopoietic
and Lymphoid Tissues. Lyon, France: IARC Press; 2001:45-107,
Copyright 2001 International Agency for Research on Cancer.
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about the significance of these and other genetic
abnormalities, the WHO classification will need to be
modified.

While many cases of AML present with a well-docu-
mented history of myelodysplasia, often there are dys-
plastic changes in the blood and bone marrow at the
time of diagnosis of AML without an antecedent his-
tory of MDS. The WHO attempts to resolve this
dilemma of the relationship between these two enti-
ties by establishing the classification of AML with mul-
tilineage dysplasia. The recognition of AML in this cat-
egory without prior MDS requires at least 20% blasts in
the blood or bone marrow and dysplastic changes in at
least 50% of cells in 2 or more myeloid lineages. It is
actually felt by some that AML should be divided into
the two large categories of true de novo AML and
myelodysplasia-related AML.

Exposure to certain therapies, such as alkylating
agents and topoisomoerase II inhibitors, has long been
known to increase the risk of the subsequent develop-
ment of AML. The WHO classification places these
cases in a separate category, divided into two groups,
based on the known agents associated with this risk.
While there are common features between these
groups, there is sufficient difference to justify each.
The topoisomerase II inhibitor-related AML generally
has a shorter latency period between exposure to the
mutagen and development of AML. This may be as lit-
tle as 6 months, but can be as long as 6 years, with a
median time of 2-3 years compared to 4-7 years for
alkylating agent-related AML. In addition, topoiso-
merase Il inhibitor-related AML typically presents
without MDS features, often has a monocytic compo-
nent, and includes balanced translocations as the
genetic abnormality.
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Chapter

MOLECULAR BIOLOGY,
PATHOLOGY, AND CYTOGENETICS
OF ACUTE MYELOID LEUKEMIA

Krzysztof Mrézek, Claudia D. Baldus,

and Clara D. Bloomfield

INTRODUCTION

The term acute myeloid leukemia (AML) is used to
describe several neoplastic blood disorders character-
ized by clonal expansion of immature myeloid cells in
the bone marrow (BM), blood, or other tissue,!2 as a
result of increased cell proliferation, prolonged
survival, and/or disruption of differentiation of hema-
topoietic progenitor cells. Although the etiology of
AML is still unknown, the risk of developing AML is
increased by exposure to ionizing radiation and chem-
ical mutagens such as alkylating agents, benzene, and
topoisomerase II inhibitors. The risk of AML is also
considerably greater in patients suffering from Down
syndrome and rare genetic disorders such as Bloom
syndrome, neurofibromatosis, Schwachman syn-
drome, ataxia-telangiectasia, Klinefelter syndrome,
Fanconi anemia, and Kostmann granulocytic
leukemia.? The aforementioned associations suggest a
role of genetic factors in initiating leukemogenesis.
Indeed, advances in basic and clinical research have
revealed that malignant transformation in all patients
with AML, the vast majority of whom do not suffer
from inherited genetic disorders, is associated with
acquisition of somatic mutations and/or epigenetic
events, such as hypermethylation, that affect and
change expression of genes involved in hematopoiesis.

Many AML-associated genetic rearrangements can
be detected cytogenetically as nonrandom chromo-
some abnormalities, while others are submicroscopic
and detectable only by molecular genetic techniques
[e.g., a reverse transcription polymerase chain reaction
(RT-PCR)].#® A single genetic abnormality is usually
not sufficient to cause overt leukemia, but multiple
alterations of different pathways within the same cell
are involved in the process of leukemogenesis. It
appears that at least two different kinds of mutations

must occur in the hematopoietic progenitor cell to
transform it into a malignant cell, initiating develop-
ment of a clonal AML blast population. These are (1)
mutations that activate genes involved in signal trans-
duction of proliferation pathways and thereby confer a
survival advantage and increase the rate of cell prolif-
eration (referred to as “class I mutations”), and (2)
mutations of genes encoding hematopoietic transcrip-
tion factors, in the form of either gene fusions gener-
ated by reciprocal chromosome translocations or
intragenic mutations, which disrupt the process of
normal cell differentiation (“class II mutations”).”

A number of cytogenetic and molecular genetic
rearrangements correlate well with the morphology
and/or immunophenotype of leukemic marrow and
blood, as well as the patients’ clinical characteristics,
and are therefore incorporated into the World Health
Organization (WHO) Classification of Tumors of
Hematopoietic and Lymphoid Tissues.! In other
instances, such correlations are less clear, and subtypes
of AML are identified primarily on the basis of mor-
phological and cytochemical criteria. In this chapter,
we will review major types of AML with an emphasis
on cytogenetic and molecular genetic findings.

_PATHOLOGY

Diagnosis of AML is primarily made by experienced
hematopathologists on the basis of light microscopic
examination of blood and BM smears stained with
Romanowsky stains, such as May—Griinwald-Giemsa
or Wright-Giemsa stains. Myeloid lineage of leukemic
blasts can be confirmed using cytochemical reactions,
such as a reaction using o-tolidine or amino-ethyl car-
bazole as substrates to detect the presence of myeloper-
oxidase (MPO), an enzyme present in primary granules

Copyright © 2007 by The McGraw-Hill Companies, Inc. Click here for terms of use.
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of myeloblasts and some monoblasts; a reaction
employing Sudan black B (SBB) to detect intracellular
lipids that has reactivity similar to MPO but with less
specificity for the myeloid lineage; and reactions
detecting nonspecific esterase (NSE) that employ
alpha-naphthyl butyrate and alpha-naphthyl acetate
(ANA). Moreover, in the case of minimally differenti-
ated leukemia, a distinction between AML and acute
lymphoblastic leukemia (ALL) can be made with the
help of immunophenotypic analysis by flow cytome-
try or immunohistochemical reactions on slides.
Immunophenotyping is also helpful in the identifica-
tion of acute megakaryoblastic leukemia (AMKL), and
in suggesting or excluding particular subtypes of AML
within the WHO classification.! This classification
divides AML into several entities based on morpholog-
ical and cytochemical criteria, which predominated in
the previous French—American—British (FAB) classifica-
tion, but also takes into account cytogenetic, molecu-
lar genetic, immunophenotypic, and clinical features.
The major categories and subcategories of the WHO
classification are presented in Table 2.1.

One of the most important changes introduced by
the WHO classification is that the blast percentage in the
marrow required for the diagnosis of AML has been
reduced from 30% in the FAB classification to 20% in the
WHO classification. Moreover, in patients positive for
t(8;21)(q22;q22) and the AMLI(RUNX1)-ETO(CBFA2T1)
fusion gene, inv(16)(p13q22)/t(16;16)(p13;q22) and
CBFB-MYH11, and t(15;17)(q22;q12-21) and PML-RARA,
AML can be diagnosed even if the percent of blasts in the
marrow is less than 20.12

-CYTOGENETICS

Leukemic blasts of the majority of patients with AML
at diagnosis carry at least one clonal chromosome
abnormality, i.e., an identical structural aberration or
gain of the same, structurally intact chromosome (tri-
somy) found in at least two metaphase cells or the
same chromosome missing (monosomy) from a mini-
mum of three cells. Abnormal karyotypes are more fre-
quent in children with de novo AML, being detected
in 70-85% of patients compared with 55-60% of
adults.®13 Therapy-related (secondary) AML is usually
characterized by a high proportion, 80-90%, of both
adult and pediatric patients who carry chromosome
abnormalities.'> Among AML patients with an abnor-
mal karyotype, slightly more than one-half harbor
only one chromosome aberration, whereas the
remaining patients have two or more aberrations,
including 10-15% of patients whose karyotype is com-
plex, i.e., contains three or more aberrations.!213
From the cytogenetic standpoint, AML is heteroge-
neous, with more than 200 different structural and
numerical aberrations identified as recurring in this
disease.> While many of the recurring aberrations are

rare, being thus far detected in a few patients world-
wide, others are more common (Table 2.2). Notably,
cytogenetic findings at diagnosis constitute one of the
most important independent prognostic factors for
attainment of complete remission (CR), risk of relapse,
and survival.®1* Recent large collaborative studies® 10
have proposed cytogenetic risk systems categorizing
AML patients into one of three risk groups (favorable,
intermediate, or adverse) based upon cytogenetic find-
ings at diagnosis (Table 2.2). Although some differ-
ences among the three prioritization schemata exist,
pretreatment cytogenetic results are being used to
stratify therapy.!>!¢ Moreover, a recent report advo-
cates the use of cytogenetic remission as one of the cri-
teria of CR in AML.Y This is based on a recent study
that demonstrated a significantly worse outcome for
patients whose marrow on the first day of morpholog-
ically documented CR contained cytogenetically
abnormal cells than those whose marrow showed an
entirely normal karyotype.!8

Major cytogenetic studies of AML agree that the
prognosis of patients with inv(16)/t(16;16), t(8;21),
and t(15;17) is relatively favorable (these subtypes of
AML are discussed below), whereas the clinical out-
come of patients with inv(3)(q21926) or t(3;3)
(921;926), —7, and a complex karyotype is adverse
(Table 2.2). Complex karyotype has been defined as
either greater than or equal to five unrelated cytoge-
netic abnormalities or greater than or equal to three
abnormalities. However, Byrd et al.'° have shown that
although patients with three or four abnormalities
[other than t(8;21), inv(16)/t(16;16), or t(9;11)
(p22;923)] had significantly better survival and a lower
probability of relapse than those with greater than or
equal to five abnormalities, their probabilities of
achieving a CR, or obtaining prolonged CR and sur-
vival, were significantly worse than those of patients
with a normal karyotype. These data seem to justify
combining patients with three or four abnormalities
with those with greater than or equal to five abnor-
malities into one complex karyotype category with
greater than or equal to three abnormalities if three
clinical prognostic groups are going to be used. Of
note, patients with inv(16)/t(16;16), t(8;21), t(15;17),
or t(9;11) and greater than or equal to three abnormal-
ities are usually not included in this prognostically
unfavorable complex karyotype category, because in
these patients, the presence of a complex karyotype
does not influence prognosis adversely.®10

Patients with a normal karyotype of marrow cells at
diagnosis constitute the largest cytogenetic subset of
AML and are classified in the intermediate prognostic
category by all major classification schemata.871°
However, despite the absence of microscopically
detectable chromosome aberrations, these patients can
harbor submicroscopic genetic abnormalities dis-
cernible only by molecular genetic techniques, such as
RT-PCR or direct sequencing. Among several such



Table 2.1

WHO category of AML

Postulated
cell origin

Morphology and cytochemistry

Cytogenetics

Immunophenotype

AML with t(8;21)(q22;922),
[AML1(RUNXT)/ETO(CBFA2TT)]

Myeloid stem cell with
predominant neutrophil
differentiation

AML with recurrent genetic abnormalities
BM contains large blasts with abundant
basophilic cytoplasm often with azurophilic gran-
ulation and/or single Auer rods, smaller blasts,
promyelocytes, myelocytes, and mature neu-
trophils with variable dysplasia and homogeneous
pink cytoplasm. There is an increase in eosinophil
precursors, which do not have abnormalities seen
in AML with inv(16)/t(16;16)

t(8;21), variant translocations,
or insertions

CD34+, CD13+, CD33+,
MPO+; frequently, CD19
present on a subset of the
blasts; often CD56+; some
cases are TdT+, with dim
expression

AML with abnormal BM
eosinophils and inv(16)
(p13922) or t(16;16)
(p13;922), (CBFB/MYHTT)

Hematopoietic stem cell
with potential to differ-
entiate to granulocytic

and monocytic lineages

In addition to myelomonocytic features (see
below), marrow contains an increased number of
abnormal eosinophils, with immature, large pur-
ple-violet eosinophil granules and faint positivity
to naphthol ASD chloroacetate esterase reaction.
Myeloblasts can have Auer rods. MPO activity is
seen in 3% or more of blasts; monoblasts and
promonocytes are usually NSE positive

inv(16) or
t(16;16)

CD13+, CD33+, MPO+;
often positive for some or
all of the following: CD14,
CD4, CD11b, CD11c,
CDé64, CD36, and
lysozyme; may be CD2+

AML with t(15;17)(922; q12-
21), (PML/RARA) and variants

Myeloid stem cell with
potential to differentiate
to granulocytic lineage

Hypergranular APL: Abnormal promyelocytes of
variable size and irregular shape, often kidney-
shaped or bilobed, with cytoplasm packed with
pink, red, or purple large granules. Cells contain-
ing multiple Auer rods, which are usually larger
than in other types of AML, are called Faggot
cells. Myeloblasts with single Auer rods may be
present. Strongly positive MPO reaction; NSE
weakly positive in 25% of cases.

Microgranular (hypogranular APL): predominantly
bilobed promyelocytes with the apparent absence
of or a few large granules. Rare Faggot cells
and/or abnormal promyelocytes with visible gran-
ules. Higher than in hypergranular APL leukocyte
count with numerous abnormal microgranular
promyelocytes. Strongly positive MPO reaction

t(15;17), variant translocations,
or insertions

CD33+ homogeneously
and brightly; CD13+ het-
erogeneously; CD34 and
HLA-DR generally absent, if
expressed then only on a
subset of cells;

CD15— or dimly
expressed; frequent coex-
pression of CD2 and CD9

table continues
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Table 2.1

WHO category of AML

Postulated
cell origin

Morphology and cytochemistry

Cytogenetics

Immunophenotype

AML with 11923 (MLL)
abnormalities

Hematopoietic stem cell
with multilineage poten-
tial

Mostly monocytic and myelomonocytic morphol-
ogy, although a minority of cases have
morphological features of AML with or without
maturation

t(9;11)(p22; 923),t(6;11)
(927;923), t(11;19)(q23;
p13.1) and other transloca-
tions, inversions, and insertions
involving band 11923

No specific immunophen-
toypic features; variable
expression of CD13 and
CD33; cases with
monoblastic morphology
are CD34— and CD14+,
CD4+, CD11b+, CD11c+,
CD64+, CD36+, and/or
lysozyme+

May develop de novo or fol-
lowing an MDS/ myeloprolifer-
ative disease

Hematopoietic stem cell

AML with multilineage dysplasia
Dysplasia present in at least 50% of the cells of
two or more myeloid lineages

Aberrations similar to those
occurring in MDS, mostly
unbalanced: —5/del(5q),
—7/del(7q), +8, +11, —18,
+19, +21, del(11q), del(12p),
del(20q). Less often der(1;7)
(910;p10), inv(3)/t(3;3),
£(3;5)(425;934)

Blasts, which often consti-
tute a subpopulation of
cells, are CD34+, CD13+,
and CD33+. Frequent
aberrant expression of
CD56 and/or CD7;
increased expression of
MDR1 on the blasts

Alkylating agent/radiation-
related type

Hematopoietic stem cell

AML and MDS, therapy related
Panmyelosis, dysplastic changes, ringed siderob-
lasts in up to 60% of cases

Often complex karyotypes with
—5/del(5q), —7/del(7q),
and del(17p)

Blasts, which often consti-
tute a subpopulation of
cells, are CD34+, CD13+,
and CD33+.

Aberrant expression of
CD56 and/or CD7 is fre-
quent, and expression of
MDR1 on the blasts
increased

Topoisomerase |l inhibitor-
related type (some may be
lymphoid)

Hematopoietic stem cell

A significant monocytic component, most cases
have acute myelomonocytic or monoblastic
leukemia. APL also reported

Balanced translocations involv-
ing 11923 [t(9;11), t(6;11),
t(11;19), etc.], t(8;21), t(3;21)
(926;922), inv(16), t(8;16)
(p11;p13), t(6;9)(p23;934),
and, in therapy-related APL,
t(15;17)

Zl
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AML, minimally differentiated

Hematopoietic stem cell
at the earliest stage of
myeloid differentia-
tion/maturation

AML not otherwise categorized
Medium-size blasts with round or slightly
indented nuclei with dispersed chromatin and 1
or 2 nucleoli, and agranular cytoplasm with a
varying degree of basophilia. Less often blasts are
small and resemble lymphoblasts, with more con-
densed chromatin, inconspicuous nucleoli, and
scanty cytoplasm. MPO, SBB, and naphthol ASD
chloroacetate esterase reactions are negative

There is no consistent abnor-
mality; recurrent aberrations
include +4, +8, +13, —7, and
complex karyotypes

CD13+, CD33+, and/or
CD117+; cCD3—,
cCD79a—, and cCD22—;
often MPO—; most cases
are CD34+, CD38+, and
HLA-DR+; CD11b—,
CD14—, CD15—, CD65—;
TdT+ in = one-third cases;
CD7, CD2, and CD19 may
be expressed but with
lower intensity than in lym-
phoid leukemias

AML without maturation

Precursor hematopoietic
cell at the earliest stage
of myeloid differentia-
tion

In a proportion of cases, myeloblasts with
azurophilic granulation and/or Auer rods are pre-
sent. Other cases have blasts similar to lym-
phoblasts, without azurophilic granulation.
Variable (but always in =3% of blasts) MPO and
SBB positivity

There is no consistent abnor-
mality

Expression of at least two
of the following: CD13,
CD33, CD117, and/or
MPO. Often CD34+.
CD11b— and CD14—

AML with maturation

Hematopoietic precur-
sor cell at the earliest
stage of myeloid devel-
opment

Myeloblasts with azurophilic granulation and/or
Auer rods are present, and myelocytes, promyelo-
cytes, and mature neutrophils constitute =10%
of BM cells. There is variable degree of dysplasia.
Blasts and maturing neutrophils are lysozyme and
MPO positive

Deletions and translocations
involving 12p, t(6;9)(p23;q34),
t(8;16)(p11;p13)

Expression of one or more
of the following: CD13,
CD33, and CD15.

CD117, CD34, and HLA-DR
also may be expressed

Acute myelomonocytic
leukemia

Hematopoietic precur-
sor cell with potential to
differentiate into neu-
trophil and monocytic
lineages

The BM contains =20% neutrophils and their
precursors and =20% monocytes, monoblasts,
and promonocytes

The majority of cases are cyto-
genetically abnormal, but no
specific aberration has been
identified

Variable expression of CD13
and CD33. CD4, CD14,
CD11b, CD11c¢, CD36,
CD64, and/or lysozyme may
be expressed. Residual pop-
ulation of less differentiated
myeloblasts expresses CD34
and panmyeloid markers

Acute monoblastic and mono-
cytic leukemia

BM stem cell with some
commitment to mono-
cytic differentiation

80% or more of the leukemic cells are monoblasts,
promonocytes, and monocytes; a neutrophil com-
ponent is minor (<20%). In acute monoblastic
leukemia, monoblasts constitute =80% of mono-
cytic cells, whereas in acute monocytic leukemia,
promonocytes predominate. Both monoblasts and
promonocytes usually display NSE activity;
monoblasts are MPO negative and promonocytes
may show scattered MPO positivity

In cases with hemophagocyto-
sis by leukemic cells,
t(8;16)(p11;p13) is often
detected

Variable expression of
CD13, CD33, and CD 117.
CD4, CD14, CD11b,
CD11c, CD36, CD64,
CDé68, and/or lysozyme
may be expressed. CD34
often negative

table continues
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Table 2.1

WHO category of AML

Postulated
cell origin

Morphology and cytochemistry

Cytogenetics

Immunophenotype

Erythroleukemia
(erythroid/myeloid)

Acute erythroid leukemias (erythroid/myeloid and pure erythroleukemia)

Multipotent stem cell
with wide myeloid
potential

Dysplastic erythroid precursors at all maturation
stages may be present. There may be large multi-
nucleated erythroid cells. The myeloblasts are
similar to those in AML with and without matura-
tion

Complex karyotypes with
—5/del(5q) and
—7/del(7q) are frequent

Erythroblasts lack myeloid-
associated antigens, are
MPO—, and react with
antibodies to hemoglobin
A and glycophorin A.
Myeloblasts are usually
CD13+, CD33+, CD117+,
and MPO+. CD34 and
class Il HLA-DR expression
are variable

Pure erythroleukemia

Primitive (BFU-E/CFU-E)
stem cell with some

degree of commitment
to the erythroid lineage

Erythroblasts are medium to large in size and
have basophilic cytoplasm. Infrequently, the
blasts are smaller and resemble lymphoblasts.
Erythroblasts are negative for MPO and SBB, but
show reactivity with ANA esterase, acid phos-
phatase, and periodic acid Schiff

Complex karyotypes with
—5/del(5q) and
—7/del(7q) are frequent

In more differentiated
forms, glycophorin A and
hemoglobin A are
expressed but MPO and
other myeloid antigens are
not. Glycophorin A is usu-
ally not expressed in more
immature forms, which are
positive for carbonic anhy-
drase 1, CD36, and Gero
antibody against the
Gerbuch blood group

Acute megakaryoblastic
leukemia

Hematopoietic precur-
sor cell committed to
the megakaryocytic lin-
eage and possibly ery-
throid lineage and/or
able to differentiate into
these lineages

More than 50% of the blasts are of megakary-
ocyte lineage. Megakaryoblasts are usually
medium to large in size but small blasts resem-
bling lymphoblasts may also be present. Marrow
fibrosis may occur in some patients

Translocation t(1;22)(p13;q13)
is recurrent in children younger

than 2 years. In some adults,
inv(3) or t(3;3) is found, but
they also occur in other AML
types

Megakaryoblasts express
CD36 and one or more of
the following: CD41,
CD61, and/or CD42 (less
often). CD13 and CD33
may be positive, and
CD34, CD45, and HLA-DR
are often negative

Acute basophilic leukemia

Early myeloid cell com-
mitted to the basophil
lineage

Medium-size blasts with moderately basophilic
cytoplasm containing coarse basophilic granules.
Characteristically, blasts are positive for cyto-
chemical reaction with toluidine blue, and usually
stain diffusely with acid phosphatase, but are
negative for SBB, MPO, and NSE by light
microscopy

No consistent abnormality

CD13+, CD33+, CD34+,
class Il HLA-DR+;
usually, CD9+, some cases
TdT+; negative for specific
lymphoid markers

14!
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Acute panmyelosis with
myelofibrosis

Myeloid hematopoietic
stem cell. The fibroblas-
tic proliferation is an
epiphenomenon

Marked pancytopenia in the blood. BM aspira-
tions often unsuccessful. BM biopsy hypercellular
with variable hyperplasia of the granulocytes,
megakaryocytes, and erythroid precursors.
Variable degree of fibrosis, with increase in retic-
ulin fibers

If analysis successful, the kary-
otype is usually complex, with
—5/del(5q) and/or —7/ del(7q)

Phenotypic heterogeneity,
with expression of one or
more of the following:
CD13, CD33, CD117, and
MPO

Myeloid sarcoma

Primitive myeloid
hematopoietic cell

Granulocytic sarcoma, the most common type,
consists of myeloblasts, neutrophils, and neu-
trophil precursors, and is divided into three types
based upon degree of maturation. The blastic
type contains mainly myeloblasts, the immature
type myeloblasts and promyelocytes, and the dif-
ferentiated type promyelocytes and more mature
neutrophils.

Less frequent monoblastic sarcoma is composed
of monoblasts

In some cases of myeloid sar-
coma, t(8;21) or inv(16)/
t(16;16); in monoblastic sar-
coma 11923 translocations

Most myeloid sarcomas
express CD43. Granulocytic
sarcoma myeloblasts are
CD13+, CD33+, CD117+,
and MPO+. The
monoblasts in monoblastic
sarcoma are CD14+,
CD116+, CD11c+, and
react with antibodies to
lysozyme and CD68 by
immunohistochemistry

Undifferentiated acute
leukemia

Multipotent progenitor
stem cell

Acute leukemia of ambiguous lineage
The leukemic cells lack any differentiating fea-
tures

Frequently abnormal cytoge-
netically. Recurrent aberrations
include del(5qg) and +13, often
as a sole abnormality

Often HLA-DR+, CD34+,
CD38+, and may be TdT+
and CD7+.

Negative for markers spe-
cific for a given lineage,
such as cCD79a, cCD22,
CD3, and MPO. Generally,
do not express more than
one lineage-associated
marker.

Bilineal acute leukemia

Multipotent progenitor
stem cell

May present as monoblastic or poorly differenti-
ated myeloid leukemia, or as ALL. In some cases,
blasts are morphologically undifferentiated; in
others, populations of small blasts resembling
lymphoblasts may coexist with larger blasts

Typically abnormal cytogeneti-
cally. Cases with B lymphoid
component often have t(9;22)
(934;911.2), 1(4;11), or other
11923 aberrations; these aber-
rations are not found in cases
with T lymphoid component

Coexistence of two popula-
tions of blasts, each of
which expresses antigens
of a distinct lineage, which
is myeloid and lymphoid or
Band T

Biphenotypic acute leukemia

Multipotent progenitor
stem cell

May present as monoblastic or poorly differenti-
ated myeloid leukemia, or as ALL. In some cases,
blasts are morphologically undifferentiated; in
others, populations of small blasts resembling
lymphoblasts may coexist with larger blasts

Usually abnormal cytogeneti-
cally. Cases with B lymphoid
component often have t(9;22),
t(4;11), or other 11923 aberra-
tions; these aberrations are not
found in cases with T lymphoid
component

Blasts coexpress myeloid
and T- or B-lineage-specific
markers or, concurrently,
T- and B-specific antigens

a Data from Jaffe et al.” and Mitelman et al.3¢
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Table 2.2

Chromosome aberration? Cytogenetic risk category
inv(16)(p13q22)/t(16;16)
(p13;922); t(8;21)(q22;q22);
t(15;17)(q22;q12-21)

Favorable

none (normal karyotype); Intermediate
=Y; del(79)°; del(99)";

del(11q)<; del(20q)%;

isolated +8¢ +11, +13, +21,

t(9;11)(p22;923)¢

complex karyotype with =3 Unfavorable
abnormalities; inv(3)
(921926)/t(3;3)(q21;926);

=7; del(59)"; —5; t(6;9)

(P23;q34)3; t(6;11)(q27;923)";
t(11;19)(g23;p13.1)"

@ Chromosome aberrations whose prognostic impact is agreed on
by major studies®-'° are indicated by bold type.

b Classified in the adverse-risk category by SWOG/ECOG.?

¢ Would be included in “abn 119" group and classified in the
adverse-risk category by SWOG/ECOG.?

dWould be included in “abn 20q” group and classified in the
adverse-risk category by SWOG/ECOG.?

¢ Classified in the adverse-risk category with regard to overall sur-
vival by CALGB.°

f Classified in the intermediate-risk category with regard to proba-
bility of achievement of CR and survival by CALGB if not part of a
complex karyotype.

9 Classified in the intermediate-risk category by virtue of being
“other structural” abnormality by MRC® and by CALGB (but inter-
mediate only with regard to probability of achievement of CR).10
P Would be included in “abnormal 11923" group and classified in
the intermediate-risk category by MRC8 and by CALGB (but only
with regard to probability of achievement of CR).™°

mutations associated with AML, internal tandem
duplication (ITD) of the FLT3 gene (FLT3 ITD), partial
tandem duplication (PTD) of the mixed lineage leukemia
(MLL) gene (MLL PTD), and point mutations of the
CCAAT/enhancer-binding protein o (CEBPA) gene have
been recently found to be of prognostic significance in
patients with AML and a normal karyotype (Table 2.3).
Likewise, adverse prognosis has been associated with
overexpression of the brain and acute leukemia, cyto-
plasmic (BAALC) gene.!9721

Later in the chapter we will discuss in greater detail
the four AML categories delineated primarily because
of cytogenetic and molecular genetic findings, fol-
lowed by data on major molecular genetic rearrange-
ments relevant to AML pathogenesis, some of which
are associated with clinical outcome.

CORE-BINDING FACTOR LEUKEMIA

Two categories in the WHO classification of AML,
namely AML with t(8;21)(q22;q22)/AML1(RUNX1)-
ETO(CBFA2T1) and AML with abnormal BM eosinophils
and inv(16)(p13q22) or t(16;16)(p13;q22)/CBFB-
MYH]11, are characterized by chromosomal aberrations

that rearrange genes encoding different subunits of
core-binding factor (CBF). These AML types are collec-
tively referred to as CBF AML. The CBF complex is a
heterodimeric transcription factor, composed of « and
B subunits, which regulates transcription of several
genes involved in hematopoietic differentiation,
including cytokines such as interleukin-3 (IL-3), gran-
ulocyte-macrophage colony-stimulating factor (GM-
CSF), and the macrophage colony-stimulating factor
receptor (M-CSFR). The CBFa subunit, encoded by the
RUNX1 gene (also known as AML]1 and CBFA2), har-
bors a DNA-binding domain, whereas the CBFB sub-
unit does not directly bind DNA, but physically associ-
ates with CBFa and stimulates its DNA-binding
activity, thereby regulating transcription.?? The intact
CBF complex is critical for normal hematopoiesis; dis-
ruption of either of its subunits directly contributes to
leukemic transformation.

AML with t(8;21)(q22;q22)/AML1
(RUNXT1)-ETO(CBFA2T1)
This type of CBF AML is associated with t(8;21) and its
relatively rare variants, such as insertions ins(8;21)
(922;922922) or ins(21;8)(q22;q22q22), and complex
translocations involving three or four different chro-
mosomes that invariably include chromosomes 8 and
21 with breaks in bands 8922 and 21q22. The t(8;21)
represents one of the most frequent chromosomal
aberrations in AML, occurring in approximately 6% of
adult and 12% of childhood patients.!® Interestingly,
most patients, approximately 70%, carry at least one
additional (secondary) chromosome abnormality, the
most frequent of which are loss of one sex chromo-
some (—Y in male and —X in female patients), del(9q),
and trisomy of chromosome 8 (+8).2324

Both t(8;21) and its variants lead to fusion of the
DNA-binding domain of the RUNX1 gene, located at
21922, with the CBFA2T1 gene at 8q22 and creation of
a chimeric gene RUNX1-CBFA2T1. The chimeric fusion
protein impairs normal hematopoiesis through a domi-
nant-negative inhibition of the wild-type RUNX1. In
addition, it has been shown that RUNX1-CBFA2T1 itself
recruits nuclear corepressor complexes, which includes
the histone deacetylase enzyme HDAC1, and is respon-
sible for transcriptional repression of RUNX1 target
genes, and thus generates novel signals that alter nor-
mal transcription. These observations have prompted
studies attempting to reverse the block of differentia-
tion using histone deacetylase (HDAC) inhibitors.?>

Morphologically, the presence of t(8;21)/RUNX1-
CBFA2T1 is strongly (but not exclusively) associated
with AML with maturation in the neutrophil lineage.
Characteristic pink-colored cytoplasm of neutrophils
and an increased number of eosinophil precursors
[without abnormalities typical for AML with inv(16)]
appear to distinguish patients with t(8;21) from other
patients with AML with maturation but without
t(8;21)/RUNX 1-CBFA2T1.25%7
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Notably, the clinical outcome of patients with
t(8;21) is relatively favorable,3-1012-14 especially when
regimens containing repetitive cycles of high-dose
cytarabine are used as postremission therapy.?8?° The
favorable outcome does not seem to be influenced by
the presence of secondary chromosome aberrations,
although one recent study reported loss of the Y chro-
mosome in male patients to be associated with shorter
overall survival,23 but this has not been corroborated
by another large study.?*

AML with inv(16)(p13p22)/CBFB-MYH11

This type of CBF AML is characterized by the presence of
inversion of chromosome 16, inv(16)(p13922), or, less
commonly, a reciprocal translocation between homolo-
gous chromosomes 16, t(16;16)(p13;922), in leukemic
blasts. These chromosome aberrations can be detected in
about 7% of adult and 6% of pediatric AML patients.!%13
Notably, secondary aberrations [e.g., +22, +8, del(7q), or
+21] are less common in patients with inv(16)/t(16;16)
than in patients with t(8;21), being detected in approxi-
mately one-third of patients with inv(16)/t(16;16).23%4

Both the inv(16) and the t(16;16) fuse the myosin,
heavy chain 11, smooth muscle gene (MYH11) with the
C terminus of the CBFB gene. The chimeric protein
retains the ability to interact with the RUNX1 and has
been suggested to block CBF-dependent transcription.??

The marrow of patients with inv(16)/t(16;16)/CBFB-
MYH11 shows monocytic and granulocytic differentia-
tion and abnormal eosinophils, a hallmark of this dis-
ease. These eosinophils are essentially always present,
albeit sometimes scarce, constituting as little as 0.2%
of marrow cells.

The prognosis of CBF AML patients with
inv(16)/t(16;16) is favorable, 14 and can be improved by
regimens with multicourse high-dose cytarabine.’ Two
large recent studies demonstrated that patients who
carry a secondary +22 in addition to inv(16) or t(16;16)
have a significantly reduced risk of relapse compared
with patients with an isolated inv(16)/ t(16;16).2%2* The
reasons for this difference in outcome and the molecular
consequences of trisomy 22 remain to be elucidated.

ACUTE PROMYELOCYTIC LEUKEMIA—A DISEASE WITH
RETINOIC ACID RECEPTOR oo REARRANGEMENTS

Acute promyelocytic leukemia (APL) is the third cate-
gory in the WHO classification that is characterized by
specific cytogenetic and molecular genetic rearrange-
ments as well as unique marrow morphology, presenting
clinical features, and responsiveness to targeted therapy
with all-trans-retinoic acid (ATRA). APL comprises from
8% (adults) to 10% (children) of AML cases.!3 Essentially,
all patients with APL carry a gene fusion of the retinoic
acid receptor o (RARA) gene, located at 17q12-21, with
one of several partner genes, the most common of
which is the promyelocytic leukemia (PML) gene, mapped
to 15g22. In the vast majority (>90%) of APL patients,
the PML-RARA fusion gene is created by a subtle but

detectable microscopically reciprocal translocation
t(15;17)(q22;q12-21); in an additional 4%, the PML-
RARA gene is generated by an insertion of a small seg-
ment from 17q, with the RARA gene into the locus of
the PML gene.?! Most of these insertions are cryptic,
i.e., not detectable by routine cytogenetic study, and
associated with a normal karyotype; they can be identi-
fied only using RT-PCR or fluorescence in situ
hybridization (FISH). Approximately one-third of APL
patients with t(15;17) carry at least one secondary aber-
ration, the most common of which is trisomy 8 or 8q.
Additionally, in a small proportion of APL cases, other,
rather infrequent, chromosomal aberrations are found,
including t(11;17)(q23;q12-21), t(11;17)(q13;q12-21),
t(5;17) (935;q12-21), and dup(17)(q21.3923). Each of
these rearrangements results in a fusion of the RARA
gene with, respectively, the PLZF gene at 11q23,
NUMAI1 gene at 11q13, NPM gene at 5q35, and STAT5b
gene at 17q21.1-21.2.3233

The RARA gene is a member of the nuclear hormone
receptor gene family and contains transactivation,
DNA-binding, and ligand-binding domains. As a conse-
quence of the t(15;17) or ins(15;17), the DNA- and lig-
and-binding domains of RARA are fused to the PML
gene. The chimeric PML-RARA fusion protein binds to
corepressor/HDAC complexes with higher affinity than
does the wild-type RARA, leading to aberrant chro-
matin acetylation and alterations of chromatin confor-
mation that inhibit the normal transcription of genes
regulated by RARA. This blocks cell differentiation and
leads to the accumulation of leukemic blasts at the
promyelocytic stage. Importantly, therapeutic doses of
ATRA, but not physiological ATRA levels, are capable of
changing conformation of the PML-RARA protein and
releasing corepressor/HDAC complexes that lead to
transcriptional activation of downstream target genes.
Moreover, both ATRA and arsenic trioxide, another
compound used in targeted APL treatment, also induce
proteolysis of the PML-RARA protein. This leads to
granulocytic differentiation of the leukemic blasts.3*

A strong correlation exists between t(15;17)/PML-
RARA and its variants and marrow morphology in
which abnormal promyelocytes dominate. There are
two major morphologic subtypes of APL, hypergranu-
lar (or typical) and microgranular (or hypogranular),
and both are associated with the presence of
t(15;17)/PML-RARA or variants. The microgranular
variant, which sometimes can be misdiagnosed mor-
phologically as acute monocytic leukemia, is associ-
ated with very high leukocyte counts with abundant
abnormal microgranular promyelocytes.!

It is important to determine which of the APL-associ-
ated translocations and gene fusions are present,
because patients with t(11;17)(q23;q12-21)/PLZF-RARA
are resistant to standard ATRA-based therapy. Although
it has been reported that t(11;17)(q23;q12-21)/PLZF-
RARA-positive APL displays distinguishing morphologi-
cal and immunophenotypic characteristics, such as



18

Part | @ LEUKEMIA

prevalence of blasts with regular nuclei, an increased
number of Pelger-like cells, and CD56 positivity,?® the
diagnosis should always be supported by results of cyto-
genetic, FISH, and/or RT-PCR analyses.

AML WITH REARRANGEMENTS OF BAND

11Q23 AND THE MLL GENE

This category represents approximately 4% of cases of
adult AML, but rearrangements involving band 11q23
and the MLL gene (also known as ALL1, HRX, and
HTRX) are three to four times more common in chil-
dren with AML, being especially frequent among
infants aged 12 months or less, 43-58% of whom carry
an 11923/MLL abnormality.’® At both the cytogenetic
and molecular genetic level, AML with the 11q23/MLL
rearrangements is extremely heterogeneous. Well over
30 different balanced chromosome abnormalities,
mostly translocations but also inversions, insertions,
and interstitial deletions, involving band 11923 and
another chromosome locus have been reported.>3¢ The
most common of these is t(9;11)(p22;q23), resulting
in the AF9-MLL gene fusion; other more frequent recur-
rent translocations and fusion genes in AML include
t(6;11)(q27;923)/AF6-MLL, t(11;19)(q23;p13.1)/MLL-
ELL, and t(11;19)(q23;p13.3)/MLL-MLLT1.

In some studies, patients with various 11q23/MLL
rearrangements have been included in the same cyto-
genetic category and classified as having either
adverse® or intermediate® prognosis. However, increas-
ing evidence suggests that prognosis of patients with
11q23/MLL rearrangements depends on the partner
chromosome/gene involved, with t(9;11)-positive
patients having a better prognosis,3’3® which places
them in the intermediate cytogenetic risk group.!® The
survival of adults with t(6;11) and t(11;19)(q23;p13.1)
studied by Cancer and Leukemia Group B (CALGB)
was significantly shorter than that of the cytogeneti-
cally normal group, and consequently they were
assigned to the adverse-risk group for survival.!”

The MLL gene is a homeotic regulator that shares
homology to sequences of the Drosophila trithorax
gene. It encodes a nearly 430-kd protein. The C-termi-
nus of MLL positively regulates HOX gene expression
during development of hematopoietic stem cells. The
N-terminus contains an AT hook region functioning
as a DNA-binding domain and a region similar to the
noncatalytic domain of methyltransferases.

Additionally, amplification of the MLL gene, with-
out rearrangements of the gene, has been recently
recognized as a recurrent aberration in patients with
AML and myelodysplastic syndromes (MDS), a com-
plex karyotype, and results in an adverse progno-
sis.3?*l MLL amplification was shown to result in
overexpression of the gene and MLL gain of function
because it was associated with increased expression of
one of its physiologic downstream targets, HOXA9.4?

In addition to rearrangements generated by chro-
mosome translocations, the MLL gene can also be

Table 2.3

Genetic rearrangement Prognostic significance

CRD, DFS, and survival
significantly shorter for
patients with FLT3 ITD com-
pared with patients without
FLT3 ITD; especially, poor
outcome for FLT3 ITD
patients with no expression
of an FLT3 wild-type allele or
a high FLT3 mutant/wild-
type allele ratio

Internal tandem duplication
of the FLT3 gene

CRD and survival
significantly longer for
patients with the CEBPA
gene mutations compared
with patients without
mutated CEBPA

Loss-of-function mutations
of the CEBPA gene

Partial tandem duplication
of the MLL gene

CRD and EFS significantly
shorter for patients with MLL
PTD compared with patients
without MLL PTD

DFS, EFS, and survival
significantly shorter for
patients with high expres-
sion of BAALC compared
with low BAALC expression
patients

Overexpression of the
BAALC gene

Mutations of the NPM/
gene

CR rates, EFS, RFS, DFS,
and OS significantly better
for patients with NPM/
mutations who do not
harbor FLT3 ITD

CRD, CR duration; DFS, disease-free survival; EFS, event-free
survival; RFS, relapse-free survival; OS, overall survival.

rearranged in AML patients without structural chro-
mosome abnormalities involving band 11q23. These
MLL rearrangements occur in the majority of patients
with isolated trisomy 1143 and in 8-11% of karyotyp-
ically normal adults with de novo AML,*4*5 and
result from a PTD spanning exons 5 through 11 or,
less frequently, exons 5 through 12.4374¢ Among
patients with normal cytogenetics, the MLL PTD con-
fers poor prognosis (Table 2.3), and represents an
independent adverse prognostic factor for remission
duration.®

MOLECULA ENETI

MUTATIONS IN AML-ASSOCIATED

TRANSCRIPTION FACTORS

CEBPA

The CEBPA gene encodes a transcription factor
expressed mainly in myelomonocytic cells that is
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essential for granulopoiesis, showing cell-type-specific
and differentiation-stage-specific expression patterns.
Mutations in CEBPA have been reported in 7-11% of
AML patients.*”*® These include N-terminal nonsense
mutations resulting in a premature termination of the
full-length protein with dominant-negative properties,
and C-terminal in-frame mutations resulting in
a decrease of DNA-binding potential. Interestingly,
CEBPA mutations have been found predominantly
in AML FAB subtypes M1 or M2, suggesting the induc-
tion of a stage-specific block in the differentiation
pathway. Clinical studies have revealed that mutations
in CEBPA confer a favorable prognosis in AML patients
with normal cytogenetics,*® and among those classi-
fied in the intermediate-risk cytogenetic group.4”48

RUNX1

In addition to its involvement in the translocation
t(8;21), RUNX1 is also dysregulated by mutations found
in patients with AML and MDS, as well as by amplifica-
tion in patients with ALL. Germline mutations result-
ing in RUNX1 haploinsufficiency have been reported in
cases of familial platelet disorder, an autosomal-domi-
nant disease with quantitative and qualitative platelet
defects and progressive pancytopenia, with a predispo-
sition to development of AML.>° In de novo AML,
somatic point mutations occur in up to 10% of cases.
Interestingly, RUNX1 mutations are mainly found in
minimally differentiated AML (FAB MO), with a fre-
quency of up to 22%, reflecting the importance of
RUNXI1 in the earliest stages of hematopoiesis.

GATA1

The gata-binding protein 1 (GATAI) gene, located
at Xp11.23, encodes a lineage-specific zinc-finger
transcription factor required for normal development
of erythroid and megakaryocytic lineages. Inherited
missense mutations within the zinc-finger domain
inhibiting the interaction with the essential cofactor,
Friend of GATA1 (FOG1), have been found in familial
dyserythropoietic anemia and thrombocytopenia.
Somatic mutations leading to production of an alter-
native protein that retains its intact zinc-finger inter-
action domain have been identified exclusively in
patients with Down syndrome suffering from AMKL or
transient myeloproliferative disorder.

SIGNAL TRANSDUCTION PATHWAYS

Signal transduction pathways control the transmission
of extracellular signals (e.g., growth factors, including
G-CSF, GM-CSE, and FLT3 ligand) via the receptor-
tyrosine-kinase-RAS cascade into intracellular response
mechanisms (proliferation, differentiation, and apop-
tosis). In AML, mutations, epigenetic changes and
aberrant expression of genes involved in these path-
ways, result in increased proliferation and/or dysregu-
lated differentiation and apoptosis.

RECEPTOR TYROSINE KINASE AND DOWNSTREAM
SIGNALING PATHWAYS

Members of the RTK-RAS signaling pathway, including
receptor tyrosine kinases (RTKs) such as FLT3, FMS,
KIT, and VEGFR, and the NRAS and KRAS genes, are
frequently (in more than 50% of patients) mutated in
AML; as a result, this pathway appears to play a central
role in leukemogenesis. The identification of these
specific molecular alterations has not only helped in
elucidating the mechanisms involved in leukemogen-
esis, but also has resulted in targeted therapies, such as
FLT3 inhibitors for AML patients with FLT3 ITD or
FLT3 overexpression, RTK inhibitors for patients with
KIT mutations or overexpression, as well as RAS
inhibitors including farnesyltransferase inhibitors.5!

FLT3
The FLT3 gene encodes a class III RTK, which plays an
important role in cell proliferation, differentiation, and
survival. The FLT3 receptor is preferably expressed on
hematopoietic stem cells, and activation by its ligand
(FLT3 ligand) induces oligomerization leading to phos-
phorylation and activation of downstream pathways
(mainly via phosphorylation of intracellular substrates).
Mutations of the FLT3 gene are found in up to 40% of
AML patients. These mutations include FLT3 ITD,
affecting exons 14 and 15, in up to 30% of patients, and
activating point mutations of D835 within the activa-
tion loop in the tyrosine kinase domain (TKD; Asp835
mutation), in about 5-10% of AML cases. The FLT3 ITD,
as well as mutations in the TKD, promote autophos-
phorylation of FLT3, and the constitutively active
receptor confers ligand-independent proliferation.5?
Clinical studies have demonstrated that both adults
and children with AML and FLT3 ITD have a signifi-
cantly inferior clinical outcome.33"% In some analyses,
the worst outcome has been bestowed by FLT3 ITD
coupled with lack of an FLT3 wild-type allele or a high
FLT3 mutant/wild-type allele ratio.’*% In one study,
relatively infrequent patients with simultaneous pres-
ence of both the FLT3 ITD and the Asp835 mutation
had the least favorable outcome.®! However, although
FLT3 ITD is also common in APL patients with
t(15;17), it has thus far not been shown to predict
prognosis in these patients.5>57.62 Likewise, FLT3
Asp835 mutations have not hitherto been correlated
with inferior prognosis, but because they are relatively
infrequent, larger clinical studies are necessary to
determine their prognostic importance.

KIT

Asp816 substitution mutations that result in constitu-
tive activation of KIT have been found in about 5% of
AML patients.®® KIT exon 8 mutations have been
found in 24% of patients with inv(16) and 2% of
t(8;21)-positive patients, whereas KIT Asp816 mutations
were present in 8% of patients with inv(16) and in
11% of those with t(8;21) AML.%* In patients with
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inv(16), KIT mutations were associated with a signifi-
cantly higher relapse rate.%*

RAS

The small membrane-associated G protein RAS and its
relatives are signal transduction components connect-
ing various classes of receptors (including RTK) to
cytoplasmic pathways. Mutations of the GTPase onco-
gene NRAS occur in about 15% of AML patients, KRAS
mutations occur in fewer than 5% of cases, and HRAS
mutations are rare. NRAS mutations (primarily point
mutations in codons 12, 13, and 61) occur at specific
positions that are critical for guanine triphosphate
(GTP) hydrolysis, thereby preventing the conversion
of the active RAS-GTP to the inactive RAS-GDP.

OVEREXPRESSION OF THE BAALC GENE

The BAALC gene, mapped to band 8q22.3, encodes a
protein with no homology to any known proteins or
tunctional domains. BAALC is expressed mainly in neu-
roectoderm-derived tissues and hematopoietic precur-
sors, with no expression in mature BM or blood
mononuclear cells.®> High expression of BAALC mRNA
in circulating blasts is an independent adverse prognos-
tic factor in uniformly treated adults younger than 60
years with de novo AML and normal cytogenetics.'%2°
In another, smaller study, high expression of BAALC
predicted shorter disease-free survival (DFS) and overall
survival in patients with a normal karyotype who did
not carry FLT3 ITD or mutations in the CEBPA gene.?!

COOPERATION BETWEEN MUTATIONS

It has been hypothesized that at least two somatic
mutations with differing consequences collaborate to
induce AML, as each alone is incapable of fully trans-
forming a normal into a leukemic cell. These include
mutations in the signal transduction pathways confer-
ring a proliferation stimulus and mutations in genes
encoding hematopoietic transcription factors that
impair cell differentiation. This concept is consistent
with Knudson’s two-hit hypothesis, which proposes
that at least two events are necessary to promote can-
cer.%® This concept is important for the understanding
of the mechanisms involved in leukemogenesis as well
as for the development of novel treatment strategies
that may have to target several dysregulated molecules
in different pathways. Interestingly, simultaneous
mutations of two genes cooperating in the same path-
way (e.g., FLT3 and RAS) are rare.

CBF AML and additional mutations

Neither RUNX1-CBFA2T1 nor CBFB-MYH11 alone are
capable of inducing overt AML. These fusion genes
dictate the phenotype of the disease, but additional
abnormalities are required for the leukemic transfor-
mation. Recent studies have demonstrated that 40% of
AML patients with inv(16) acquire either KIT exon 8,
KIT Asp816, FLT3 ITD, or FLT3 Asp835 mutations.53:64

Mutations of the KIT gene were less common in t(8;21)
AML, with a frequency of about 13% and were absent
in non-CBF AML.% Mutations of the FLT3 and KIT
gene were mutually exclusive.

t(15;17)/PML-RARA and FLT3 ITD

PML-RARA contributes to the development of APL.
However, incomplete penetrance and long latency
observed in PML-RARA transgenic mice suggest that
additional events are required for complete leukemic
transformation. The observation that FLT3 mutations
are found in about one-third of patients with t(15;17)
has led to the hypothesis that the primary translocation
event might impair differentiation and a second hit,
such as the FLT3 ITD, confers the proliferation stimulus
for the leukemic cells.”” Indeed, experimental data
demonstrate that PML-RARA and FLT3 ITD cooperate
and that the two events lead to an ATRA-responsive APL-
like disease with a short latency and 100% penetrance.%®

GENE EXPRESSION PROFILING

Gene expression profiling using DNA microarray tech-
nology is a powerful tool allowing analysis of expres-
sion of thousands of genes in one experiment. Early
studies demonstrated that it is possible to correctly dis-
tinguish AML from ALL based on gene expression pro-
files. This proof of principle underscored the accuracy
and power of analyzing mRNA expression levels of
thousands of genes simultaneously.® Subsequent stud-
ies have shown that several cytogenetically and mole-
cularly defined AML subtypes, such as t(15;17)/PML-
RARA, 1(8;21)/AMLI1(RUNX1)-ETO(CBFA2T1), and
inv(16)/t(16;16)/CBFB-MYH11, display characteristic
gene expression signatures and that these gene expres-
sion signatures, not surprisingly, correlate with clinical
outcome.”® Moreover, novel gene clusters, apparently
not corresponding to cytogenetic aberrations, have
also been identified; some have had prognostic signifi-
cance.”? These studies have identified numerous genes
selectively over- or underexpressed within particular
subtypes of AML, which may provide important
insights into the molecular pathways involved.

EPIGENETIC CHANGES—GENE
SILENCING THROUGH DNA

-HYPERMETHYLATION

Expression of genes involved in hematopoiesis may be
affected both by gene fusions and point mutations and
by epigenetic mechanisms such as DNA methylation.
Hypermethylation of cytosine nucleotide residues
within CpG-rich regions (CpG islands) in the gene
promoters leads to gene inactivation. CpG island
hypermethylation has been detected in almost all
types of solid tumors and leukemia, but patterns of
aberrant DNA methylation appear to differ among par-
ticular types of neoplasia, with AML displaying a rela-
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tively high number of methylation targets, some of
which are not found in solid tumors.”! There seems to
be an overrepresentation of methylated CpG islands
on chromosome 11 relative to its size.”?

Most studies correlating clinical outcome with methy-
lation of other genes have linked CpG island methyla-
tion with poor prognosis. Patients with APL and
CDKNZ2B methylation had a significantly shorter 5-year
DFS than those without CDKN2B methylation.”® In
another study,”* CDKN2B methylation was frequently
detected in therapy-related AML and MDS patients with
deletion or loss of 7q and was shown to confer a poor
prognosis. More recently, EXT1 hypermethylation,
which is more common in APL than in other types of
AML, has been reported to increase the likelihood of
resistance to treatment with ATRA in a relatively small
series of patients.”> Importantly, clinical trials of low-dose
hypomethylating agents, such as 5-azacytidine and 5-
aza-2'-deoxycytidine (decitabine), in AML and MDS have
yielded promising results, especially in elderly patients.

-CONCLUSIONS AND FUTURE DIRECTIONS _

Significant progress in unraveling the genetic basis of
AML has been made during the last 30 years. First,
cytogenetic analyses have identified a great number of
recurrent chromosome abnormalities, many of which
have been dissected molecularly, leading to identifica-
tion of novel genes involved in leukemogenesis. More
recently, submicroscopic mutations and epigenetic
changes affecting other genes have been described,
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Chapter

CLINICAL FEATURES AND
MAKING THE DIAGNOSIS

Anjali S. Advani and Karl S. Theil

HISTORY OF ACUTE MYELOGENOUS
_LEUKEMIA

Acute myelogenous leukemia (AML) is a clonal disor-
der of the bone marrow that is characterized by abnor-
mal proliferation of immature myeloid cells and
arrested stem cell differentiation.! The history of AML
dates back to the middle of the nineteenth century,
when Virchow described the clinical disease as “the
direct cause for the increase in the number of colorless
particles in the blood.”? In 1868, Neumann related
AML to changes in the bone marrow.?

~CLINICAL FEATURES IN AML

Patients usually present with symptoms secondary to
cytopenias, as the leukemia suppresses normal
hematopoiesis. Patients may have pallor, fatigue, and
shortness of breath secondary to anemia; bleeding,
bruising, and ecchymoses secondary to thrombocy-
topenia/coagulation defects; and infections secondary
to neutropenia.® Fifteen to twenty percent of patients
will present with fevers, which can result from infec-
tion or from the leukemia itself.* Fewer than 20% of
patients will have bone pain.*

EXTRAMEDULLARY INVOLVEMENT

More uncommonly, patients present with symptoms
secondary to leukemic infiltration of various tissues,
leading to hepatomegaly, splenomegaly, leukemia
cutis (2-10% of patients), gingival involvement,
tumorous nodules (myeloid sarcoma) (3-5% of
patients), lymphadenopathy, bone, or central nervous
system (CNS) involvement (1% of patients).3>
Occasionally, patients may present with pericardial
effusions.? Pulmonary infiltrates may also represent
leukemia. Leukemic infiltrates in the lungs occur more
commonly in patients presenting with high white
blood counts and a monocytic component to their
leukemia. Computed tomographic scan and bron-

choscopy may be needed to make a definitive diagno-
sis and to rule out other etiologies, such as infection
and pulmonary hemorrhage.

Extramedullary involvement is more common with
the monocytic or myelomonocytic subtypes of AML,
and may be associated with a worse prognosis. The
cytogenetic abnormality most commonly associated
with extramedullary leukemia is t(8;21)(q22;q22).5>¢
The incidence of extramedullary leukemia appears to
be particularly high in patients who relapse, and may
be decreasing with the use of intensive high-dose
cytarabine as consolidation.® The most common site
of extramedullary leukemia in patients with the
t(8;21)(q22;q22) abnormality is paraspinal disease.’
The presence of CD56, an adhesion molecule expressed
in a variety of tissues including neural tissues, may be
an additional risk factor for extramedullary leukemia
in patients with t(8;21) or monocytic AML.>7

MYELOID SARCOMAS

Also known as granulocytic sarcomas, chloromas, and
extra-medullary myeloid tumors, myeloid sarcomas are
tumors of immature myeloid precursors.'” They may
precede or occur concurrently with another hemato-
logic condition, such as chronic myelogenous leukemia
(CML), AML, or other myeloproliferative disorders.'%!!
They also may be a sign of relapsed disease.!?> These
patients should be treated with systemic induction ther-
apy, regardless of whether or not the bone marrow is
involved. On physical examination, myeloid sarcomas
frequently have a purplish hue, and may be associated
with itching.'> When placed in dilute acid, myeloid sar-
comas turn green, because of their increased content of
myeloperoxidase.* The diagnosis should be suspected if
eosinophilic myelocytes are present in a hematoxylin—
eosin-stained biopsy.* If Auer rods are present or a
myeloid origin detected, the diagnosis is con-
firmed.*1314 CD43 positivity in the absence of CD3 is a
nonspecific but sensitive marker for myeloid sarcoma.!”
Three types of myeloid sarcomas are described in the
World Health Organization (WHO) classification:
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(1) blastic granulocytic sarcoma, which is composed
almost exclusively of myeloblasts; (2) immature form
of granulocytic sarcoma, composed of a mixture of
promyelocytes and myeloblasts; and (3) differentiated
granulocytic sarcoma, composed of maturing neu-
trophils and promyelocytes.1011

Granulocytic sarcomas occur commonly in subcuta-
neous tissues, but can affect any organ.!? Patients pre-
senting with an extramedullary chloroma causing
spinal cord compression benefit from adequate local
spine radiation (in addition to chemotherapy), and
have a higher chance of neurologic recovery.>

OTHER SKIN MANIFESTATIONS
Leukemia cutis usually presents as itchy papules or
nodules that may be single or multiple.? Skin biopsy
demonstrates myeloblasts. Numerical abnormalities of
chromosome 8 may be more common in patients with
leukemia cutis.!® There is also a trend toward a shorter
remission duration in patients with leukemia cutis.!®
Unlike myeloid sarcomas and leukemia cutis, Sweet
syndrome involves a benign dermal infiltration by
neutrophils.? Sweet syndrome occurs most commonly
in advanced myelodysplastic syndrome and AML, and
is characterized by fevers and painful red raised
lesions.? This syndrome responds well to steroids.*!°

CNS LEUKEMIA

CNS leukemia associated with AML is not very com-
mon, and CNS prophylaxis is not routine [unlike with
acute lymphoblastic leukemia (ALL)].'” The incidence
of meningeal disease has been reported to be as high as
15% in adults.*!8 It tends to occur more commonly
with the monocytic and myelomonocytic subtypes
and is associated with higher white blood counts,
t(8;21), and the inv (16).%12 Symptoms typically occur
secondary to elevated intracranial pressure and
include headache, blurred vision, and vomiting.!?
Cranial nerve palsies, secondary to infiltration of cra-
nial nerve roots, particularly abducens palsy leading to
a lateral strabismus, may occur.!?> Ophthalmologic
examination may reveal retinal infiltration and/or
papilledema.'? Cerebral masses are rare, but may occur
in patients with M4eo and inv(16).4

HYPERLEUKOCYTOSIS

Patients with high white blood counts and blast
counts can present with symptoms of leukostasis sec-
ondary to hyperleukocytosis.®> Hyperleukocytosis is
defined as a blast count of greater than 100,000/mm?3
and occurs more commonly in patients with acute
monocytic or myelomonocytic leukemia.>* A high
early mortality is observed in patients with hyper-
leukocytosis.? With hyperleukocytosis, inelastic
myeloblasts pack and plug blood vessels, leading to
leukostasis and thrombus formation.!'? Specific
signs and symptoms can include shortness of breath,
hypoxia, diffuse pulmonary infiltrates, headache,

blurred vision, heart failure, myocardial infarction,
and priapism.>*12 Leukostasis more commonly occurs
with a rapidly rising blast count.!? Blasts can also
invade and disrupt arterioles, leading to hemor-
rhage.'>!” Although there are no randomized con-
trolled trials, patients with hyperleukocytosis should
be leukapheresed to help bring the blast count down.
Cytotoxic therapy should be initiated as soon as possi-
ble. If a definitive diagnosis has not been made,
hydroxyurea can be used in conjunction with (or in
place of) a pheresis until a diagnosis is made and defin-
itive chemotherapy is started. A single dose of cranial
radiation may also have some benefit in patients pre-
senting with CNS symptoms and high white blood
counts.'20 Patients with hyperleukocytosis should
not be transfused with packed red cells until they have
received appropriate cytoreductive treatment, since
transfusion can increase blood viscosity and worsen
symptoms.

LABORATORY ABNORMALITIES IN
HYPERLEUKOCYTOSIS

Pseudohyperkalemia can be present in patients with a
high white blood count secondary to breakdown of
white cells in vitro with subsequent release of potas-
sium.? Other spurious laboratory data that can be seen
in association with hyperleukocytosis include a falsely
elevated platelet count (secondary to white cell frag-
ments), pseudohypoxemia (secondary to oxygen
consumption by leukocyte cells), falsely prolonged
coagulation tests, and pseudohypoglycemia.*?1724
Pseudohypoxemia and pseudohypoglycemia can be
avoided by placing samples on ice and performing
tests immediately.*14

TUMOR LYSIS

Tumor lysis syndrome is usually seen 1-5 days after
the initiation of chemotherapy in patients with AML
and high circulating blast counts.?S In response to
chemotherapy, leukemic cells lyse, leading to hyper-
phosphatemia, hyperkalemia (or hypokalemia), hypo-
calcemia, an elevated lactate dehydrogenase (LDH),
and hyperuricemia. Hyperuricemia results from break-
down of nucleotide precursors in leukemic cells to
hypoxanthine and xanthine, and subsequent conver-
sion to uric acid.?® Renal failure can occur secondary to
precipitation of calcium phosphate crystals or uric acid
in the renal tubules.?>28 Patients at risk for tumor lysis
should be aggressively hydrated and started on allop-
urinol. Allopurinol, an inhibitor of xanthine oxidase,
decreases the production of uric acid.?® Rasburicase, a
novel recombinant form of urate oxidase, converts
uric acid to allantoin.?® Allantoin is five to ten times
more soluble than uric acid, thus allowing for more
rapid urinary excretion.?>?° Rasburicase should be
considered for patients with renal dysfunction or high
serum uric acid (i.e., >10).2° The drug should not be
administered to patients with G6PD deficiency, as an
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additional by-product of the drug is hydrogen perox-
ide, which can lead to hemolytic anemia or methemo-
globinemia in these patients.?® Alkalinizing the urine
may also increase the solubility of uric acid.?>3°
Electrolytes, uric acid, and LDH should be monitored
carefully in tumor lysis syndrome.?> Any electrolyte
abnormalities should be corrected appropriately.

CLINICAL FEATURES ASSOCIATED WITH
SPECIFIC AML SUBTYPES AND/OR

-CYTOGENETIC ABNORMALITIES

ACUTE MYELOID LEUKEMIA WITH

INV(16) OR VARIANT

AML with inv(16) is characterized by abnormal bone
marrow eosinophilic precursors. Most will be associ-
ated with a pericentric inversion of chromosome 16.3!
Less commonly, patients will have a translocation
between two homologous of chromosome 16.31 CD2 is
often aberrantly expressed.!” Associated clinical fea-
tures include a good prognosis with high-dose cytara-
bine, hyperleukocytosis, young age at diagnosis, and
an increased risk for CNS involvement.!7:32734
Extramedullary sites of disease, including cervicoton-
sillar involvement and generalized lymphadenopathy,
are particularly common, with a 33% incidence.!” An
increased incidence of acute pulmonary syndrome
(pulmonary infiltrates, hypoxia, fever, and impending
respiratory failure) has also been reported in patients
with AML and inv(16) (54%) versus patients with the
same diagnosis but without inv(16) (9%).3%

ERYTHROLEUKEMIA

Erythroleukemia can occasionally be familial.36738
Signs or symptoms which occur more commonly with
this subtype include synovitis, serositis, effusions,
bone pain, and immunologic abnormalities.*36:3
Rheumatologic symptoms tend to respond to anti-
inflammatory agents.3¢3° Specific immunologic abnor-
malities include hypergammaglobulinemia, a positive
Coombs test, a positive antinuclear antibody test, and
an elevated rheumatoid factor titer.3¢3° Cytogenetics
demonstrate aneuploidy in almost two-thirds of
patients. 44041

ACUTE MEGAKARYOCYTIC LEUKEMIA

Patients with acute megakaryocytic leukemia rarely
present with high blast counts or extramedullary
involvement.3¢ Platelet counts are often normal or ele-
vated at presentation,3® while LDH levels are usually
markedly elevated, with an isomorphic pattern.36:42
Osteosclerotic and osteolytic lesions may be pre-
sent. #4344 Acute megakaryocytic leukemia in infants is
associated with a t(1;22)(p13;q13) abnormality.*4>
This translocation involves fusion of OTT on chromo-
some 1 with MAL on chromosome 22, thus leading to

activation of platelet-derived growth factor.*4¢ This
activation may lead to the megakaryocytic prolifera-
tion and fibrosis seen in acute megakaryocytic
leukemia.**® These infants present with extensive
organomegaly.* Acute megakaryocytic leukemia is also
the most common acute leukemia seen in patients
with Down syndrome*#® and may be transient,
resolving spontaneously.

ACUTE BASOPHILIC LEUKEMIA

This leukemia often arises from a blast crisis of
CML.3%% Patients may present with increased hista-
mine levels and urticaria.?® By flow cytometry, many
cases will express CD9 and some will express CD7 or
CD10.1050

SECONDARY LEUKEMIAS

Secondary leukemias are classified as a distinct type of
AML in the new WHO classification. They may
develop in patients with a preceding hematologic dis-
order [including myelodysplasia (MDS)], inherited
genetic disorder (Bloom or Fanconi anemia), or history
of exposure to radiation or chemotherapy.® Leukemias
secondary to chemotherapy fall into two major cate-
gories: those associated with topoisomerase inhibitors
and those associated with alkylating agents. Chromo-
somal translocation 6, involving the mixed lineage
leukemia (MLL) gene at 11q23 are significantly associ-
ated with secondary leukemias.>! Eighty-five percent
of AML cases with 11q23 abnormalities develop after
exposure to topoisomerase II inhibitors, such as etopo-
side.> The leukemias are most often monocytic or
myelomonocytic in lineage, occur shortly after
chemotherapy (2-3 years), and usually are not pre-
ceded by MDS.3 Three to ten percent of patients who
receive alkylating agents as part of their therapy for
Hodgkin'’s disease, non-Hodgkin'’s lymphoma, ovarian
cancer, breast cancer, or multiple myeloma develop
secondary AML.3>52 The incidence of this leukemia
peaks at 5-10 years after treatment, is often preceded
by MDS, and is characterized by deletions of chromo-
somes 5 and/or 7.353755

NATURAL KILLER CELL ACUTE LEUKEMIA

This form of leukemia typically falls under MO [in the
French—American—British (FAB) classification] or
AML minimally differentiated (WHO classification). It
is characterized by a unique immunophenotype, with
both myeloid and natural killer cell markers, suggest-
ing that it arises from a precursor common to both
natural killer cell and myeloid lineages.>® The typical
immunophenotype is CD33*, CD56%, CD11a*, CD13l°,
CD15', CD34+, HLA-DR™, CD167.5¢ Morphologically,
the cells have deep invaginations in the nuclear mem-
brane, scant cytoplasm, and fine azurophilic gran-
ules.’¢ These granules often stain positive for
myeloperoxidase and Sudan black B.5¢ Because of the
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morphology and absence of HLA-DR on flow cytome-
try, this entity can sometimes be confused with the
microgranular variant of acute promyelocytic leukemia
(APL).%¢ However, it lacks the characteristic translo-
cation [t(15;17)] and patients tend to have a poor
prognosis.>®

DIABETES INSIPIDUS

Diabetes insipidus is a rare complication of AML.>’
Patients present with polyuria, polydipsia, and a
low-serum antidiuretic hormone (ADH) level.>8
Cytogenetic abnormalities associated with cases in the
literature include monosomy 7, deletions of chromo-
some 7, and chromosome 3 abnormalities.>”5° The rea-
son for these specific associations is unknown.%’
However, the proposed mechanism involves leukemic
infiltration of the neurohypophysis. Magnetic reso-
nance imaging (MRI) demonstrates a “bright spot” in
the neurohypophysis prior to treatment.>® Both MRI
findings and ADH release subsequently resolve after
chemotherapy.®’

THROMBOCYTOSIS

Thrombocytosis is rare in AML, and when seen it is usu-
ally associated with chromosome 3q abnormalities.®°
Platelet counts as high as 1 million/mm? have been
reported.®©%2 Typically, patients are asymptomatic,®
and may have a preceding history of MDS.* Expression
of the EVI 1 gene (3q26.2) is thought to be involved. #0364

COAGULOPATHY

Coagulopathy is most commonly associated with APL,
which is characterized by the cytogenetic abnormality
t(15;17) or varient. Although APL is the most curable
subtype of AML in adults, it needs to be recognized
and treated immediately because of the risks of signifi-
cant bleeding.®® Patients with coagulopathy should be
transfused to keep their platelets above 50,000/mm?3
and transfused with cryoprecipitate to keep their fib-
rinogen within the lower limits of normal. Fresh
frozen plasma should be used to correct an abnormal
prothrombin time or partial thromboplastin time.
Heparin and antifibrinolytics, such as amicar, do not
have a standard role in the treatment of APL-induced
coagulopathy, as trials have demonstrated a similar
rate of hemorrhagic death in patients with APL treated
with heparin, antifibrinolytics, or supportive care.%%¢7
Initially, it was thought that the coagulopathy in APL
was secondary to release of granules from the leukemic
promyelocytes.3%0869 However, it is more likely that
the coagulopathy is secondary to release of plasmino-
gen activator from leukemic cells; while there is no
increase in platelet turnover, there is an increase in fib-
rinogen turnover and an increase in fibrin/fibrinogen
degradation products with a decrease in «,-antiplas-
min levels, suggesting activation of plasmin.36.70774
Recent data suggest that annexin II, a receptor for fib-
rinolytic proteins, is increased in patients with APL.”

High levels of annexin increase the production of plas-
min.” All-trans-retinoic acid (ATRA) should be initi-
ated concurrent with chemotherapy in patients with
APL. ATRA induces differentiation of leukemic cells
into mature granulocytes and decreases the incidence
of coagulation and bleeding.”® In addition, ATRA
blocks annexin II messenger RNA production through
a transcriptional mechanism.”> Patients with the
microgranular variant of APL tend to present with
hyperleukocytosis in addition to coagulopathy.””
Coagulopathy can also occur in the other subtypes of
AML, especially the monocytic forms and patients
with high white blood cell counts.3¢

HYPOKALEMIA

Hypokalemia occurs more frequently in patients with
monocytic and monoblastic leukemias.? The mecha-
nism involves excess lysozyme (muramidase) produc-
tion, which may damage the proximal renal tubule,
leading to proximal renal tubular acidosis and
hypokalemia.*

-MAKING THE DIAGNOSIS

On a routine complete blood count (CBC), most
patients with AML are anemic and thrombocy-
topenic.”® The white blood count is variable, with 20%
of patients having white blood counts less than
5000/mm? and 20% of patients with white blood
counts greater than 100,000/mm?3.”8 High white blood
counts and hyperleukocytosis are more common in
the monocytic leukemias.?®7° Although blasts are usu-
ally present in the peripheral blood, a subset of
patients present with “aleukemic leukemia.”

A review of the peripheral blood film and a bone
marrow aspirate/biopsy is part of the initial diagnostic
work-up and is essential for distinguishing AML from
other hematologic disorders such as ALL, MDS, or AML
arising in the setting of MDS (Table 3.1).3 Occasionally,
immature blasts can be confused with metastatic carci-
noma, plasma cell neoplasms, or lymphoma.’” The
peripheral blood film and bone marrow slides should
be air-dried and stained with a polychrome dye such as
Wright-Giesma.!?

Based on the new WHO criteria, the diagnosis of
AML is made when at least 20% of nucleated cells in
the bone marrow or peripheral blood are myeloid
blasts.!! The previous FAB classification system
required 30% blasts to make a diagnosis of AML.
The major reason for lowering the blast threshold
is that patients with 20-30% blasts (previously con-
sidered as RAEB-t, refractory anemia with excess
blasts in transformation) have an identical prognosis
to those with 30% blasts.? The percentage of blasts
should be determined on a 500 cell count on well-
stained bone marrow aspirate slides or a 200 cell
differential on peripheral blood smears.!%!! In certain




Table 3.1

Diagnostic study

Specimen requirements

Tests performed

Diagnostic utility

Comments

CBC and differential

2.5 mL whole blood in 4 mL
(EDTA) lavender top tube. Fill
tube to at least half of fill
volume

Automated CBC with differential;
manual review of smear

Determine absolute leukocyte count and
blast count; assess for anemia and
thrombocytopenia; evaluate blast mor-
phology; rule out quantitative or qualita-
tive abnormalities in other cell types,
including dysplastic features, presence of
nucleated red blood cells, and/or
microangiopathic changes

Blood remaining after CBC may be
used for cytochemistry, flow cytome-
try, and molecular analysis

Bone marrow aspirate

Bone marrow aspirate smears
with extra unstained smears for
cytochemistry, iron stain, or
other studies as necessary

Wright-Giemsa stain for routine
morphology and cell differential
count

Determine blast percentage and evalu-
ate blast morphology; assess quantitative
and qualitative abnormalities in myeloid,
erythroid, and megakaryocytic lineages

High quality smears are essential for
accurate diagnosis; iron stain useful to
assess iron stores and presence of
ringed sideroblasts; make touch preps
of biopsy if dry tap

Bone marrow biopsy

Bone marrow core biopsy ide-
ally >1 cm in length. Place in
appropriate fixative (B5, acid
zinc formalin, or buffered for-
malin)

Hematoxylin—eosin stain for rou-
tine histologic examination with
immunostains (CD34, TdT,
CD79a, Hgb, CD20, CD3, MPO,
CDé61, CD10, and CD31) as
necessary

Determine overall cellularity and per-
centage and lineage of blasts; assess
residual normal hematopoietic elements;
evaluate for associated fibrosis and/or
dysplastic features; rule out associated
disorders that mimic leukemia

Immunostains may aid in diagnosis,
especially in the absence of flow

cytometry (dry tap)

Cytochemical stains

Unfixed, fresh air-dried bone
marrow aspirate smears

May include MPO, nonspecific
esterase, chloroacetate esterase,
PAS, and Sudan black B

Assess lineage and differentiation of
blasts. MPO and Sudan black B are used
as sensitive markers of myeloid differen-
tiation (positive defined as staining =3%
blasts). Nonspecific esterase is a marker
of monocytic differentiation. Abnormal
erythroid precursors show “block-like”
cytoplasmic staining with PAS

Negative MPO and/or SBB stains do
not exclude a diagnosis of AML;
enzyme activity degrades over time, so
fresh unfixed material is necessary

table continues
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Table 3.1

Diagnostic study

Specimen requirements

Tests performed

Diagnostic utility

Comments

Flow cytometry

4 mL bone marrow in 4 mL
(EDTA) lavender top tube; 4 mL
whole blood in 4 mL (EDTA)
lavender top tube, 7 mL (ACD)
yellow top tube or 4 mL
heparinized (sodium or lithium)
green top tube; or 4 mL bone
marrow in a heparinized syringe
or heparinized green top tube.
Store at room temperature.
Samples should be <30 h

old

Usually includes CD45 with
myeloid markers CD13, CD33,
CD117, and CD65; monocytic
marker CD14; T- cell markers
CD2, CD5, and CD7; B- cell
markers CD19, and CD20; non-
lineage- specific markers HLA-DR,
CD10, CD34, and TdT; NK cell
marker CD56; megakaryocytic
marker CD61; may also include
CD79a, cCD22, cCD3, clgM,
slgM, and MPO

Determine lineage of blasts and evaluate
for aberrant antigen expression; rule out
precursor T or precursor B acute lym-
phoblastic leukemias and acute leukemia
of ambiguous lineage. Baseline pheno-
type of blasts may be helpful for exclud-
ing relapse or monitoring minimal resid-
ual disease following treatment

Bone marrow aspirate is preferred.
Helps in recognition of minimally dif-
ferentiated AML; immunophenotypic
patterns can help identify AML with
t(8;21) and t(15;17). Blast percentage
by flow cytometry may not correlate
with aspirate smear if hemodilute sam-
ple submitted

Cytogenetics

2-3 mL bone marrow in 4 mL
heparinized (sodium) green top
tube. Peripheral blood may be
alternate sample if circulating
immature cells present
(>1,000/p.L). Store at room
temperature; do not refrigerate
or freeze

GTG-banded chromosome analy-
sis; minimum 20 metaphases
analyzed (when available)

Gives global information about cell kary-
otype; identifies nonrandom abnormali-
ties with prognostic significance

First pull of aspirate preferred. Do not
collect specimen in lithium heparin or
EDTA. Excess cells from cytogenetics
may be used for FISH analysis

Molecular analysis by
FISH

8 mL whole blood in two 4 mL
(EDTA) lavender top tubes; 4
mL bone marrow from (EDTA)
lavender top tube

May include BCR-ABL, t(15;17),
t(8;21), inv(16), MLL rearrange-
ment, and RARa rearrangement

Gives specific information about pres-
ence or absence of a particular genetic
abnormality

Helpful at diagnosis, especially when
cytogenetic sample not submitted or
no growth

Molecular analysis by
polymerase chain
reaction (PCR)

5 mL whole blood in (EDTA)
lavender top tube; 2-3 mL
bone marrow in (EDTA) laven-
der top tube; refrigerate

May include t(9;22), t(15;17),
inv(16), t(8;21), MLL rearrange-
ment, and FLT3 rearrangement,
as necessary

Gives specific information about pres-
ence or absence of a particular genetic
abnormality. Helpful for minimal residual
disease monitoring

Heparinized tube unacceptable due to
interference with PCR
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circumstances, 20% blasts are not needed for the diag-
nosis. For example, cases with inv(16), t(r,21) or t(15;17)
are diagnosed as acute myeloid leukemia regardless of
blast percentage according to WHO guidelines. In acute
monocytic and myelomonocytic leukemias, promono-
cytes are also counted as monoblasts for the diagno-
sis. 101181 In acute erythroleukemia, blasts are counted as
a percentage of non-erythroid cell if erythroid precursors
marrow comprise >50% of the differential count.

On morphologic review, myeloblasts in patients
with AML typically have delicate nuclear chromatin,
three to five nucleoli, and a variable number of fine
myeloperoxidase granules in the cytoplasm®? (Figure
3.1). Auer rods (azurophilic granules within lysozymes)
are pathognomonic for AML3 (Figure 3.2). “Faggot
cells,” blast with bundles of Auer rods, are also charac-
teristic in certain AML subtypes (AML with maturation
and APL).3° Phi bodies, fusiform or spindle-shaped
rods, which are similar to Auer rods and stain with
myeloperoxidase, may also be present.*83

Other AML subtypes may have distinct morpho-
logic features in the blood and bone marrow. In the
monocytic/monoblastic subtype of AML, the nucleus
of the monoblasts is often indented and contains one
to four large nucleoli.?¢ A moderate amount of cyto-
plasm is present (Figure 3.3). Patients with acute
myelomonocytic leukemia often have a significant
monocytosis in the peripheral blood.' Acute myeloid

e/ == T .

leukemia with inv(16), is characterized by abnormal
eosinophils.3%8485 In acute erythroleukemia, abnormal
erythroblasts with giant multinucleate forms, nuclear
budding, and nuclear fragmentation are found in the
bone marrow.3¢ (Figure 3.4). On review of a peripheral
blood film, nucleated red blood cells are often pre-
sent.308687 Bone marrow fibrosis, which can make
bone marrow aspiration difficult, is typical of acute
megakaryoblastic leukemia and acute panmyelosis
with myelofibrosis.!®4” Megakaryoblasts in acute
megakaryoblastic leukemia typically have a high
nuclear/cytoplasmic ratio, varying size, and pale
agranular cytoplasm.3¢ Malignant proliferation of all
three myeloid cell lines is present in acute panmyelo-
sis with myelofibrosis.!” Finally, acute basophilic
leukemia is characterized by striking basophilic granu-
larity in myelocytes, and cells stain strongly with tolu-
idine blue.3¢

MDS is differentiated from AML on the basis of per-
centage of blasts in the bone marrow. AML arising
from MDS is characterized by dysplastic maturation of
the hematopoietic precursors and certain chromoso-
mal abnormalities (such as loss of part or all of
chromosome 5 or 7).3 In addition, patients may have
a preceding history of low blood counts. AML can
often be differentiated from ALL on morphologic
grounds. Lymphoblasts tend to be smaller in size,
with little cytoplasm and indistinct nucleoli.””

- n o ). @
Figure 3.1 Acute myeloid leukemia with t(8;21)(q22,922): Peripheral blood smear shows a blast with an Auer rod (arrow)
and a neutrophil with characteristic salmon-colored cytoplasmic granules (upper left); bone marrow aspirate shows blasts

admixed with maturing myeloid cells (bottom left); and bone marrow biopsy is hypercellular with blasts admixed with
maturing myeloid cells and eosinophils. (Wright-Giemsa stain, left panels; hematoxylin-eosin stain, right panel)
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Figure 3.2 Acute myeloid leukemia with t(15;17)(q22,921): Features of blasts include multiple Auer rods (upper left),
hypergranular cytoplasm (lower left), and bilobed nuclei (upper and lower right panels). This leukemia is often associated
with a low white blood cell count, and characteristic blasts containing multiple Auer rods may require a careful search to

identify. (Wright-Giemsa stain)

he £
Figure 3.3 Acute monoblastic leukemia: Blasts have moderate amounts of cytoplasm and nuclei with one to two nucleoli
(left panel). Monocytic differentiation is demonstrated in the blasts by positive cytochemical stain for nonspecific esterase as
shown by red-brown cytoplasmic staining (right panel). (Wright-Giemsa stain, left panel; nonspecific esterase stain
[a-naphthyl butyrate], right panel)
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Figure 3.4 Acute erythroleukemia: An increase in erythroid elements with dysplastic features including megaloblastoid
chromatin and nuclear fragmentation is evident in this bone marrow aspirate smear (left panel). PAS stain is useful to iden-
tify abnormal “blocklike” cytoplasmic staining in immature erythroid precursors (right panel). (Wright-Giemsa stain, left
panel; PAS stain, right panel)

However, immunophenotyping and immunohisto-
chemistry are used to make a definitive diagnosis. By
flow cytometry, myeloblasts usually express the cell
surface antigen markers CD13 and CD33. Cells of
myeloid origin usually will be myeloperoxidase posi-
tive by cytochemical or immunostains.!” In mini-
mally differentiated AML (MO0), blasts do not express
myeloperoxidase cytochemically; however, they are
myeloid antigen positive (CD13 and CD33) based on
flow cytometry.8?

When performing a bone marrow aspirate, a small
amount of the first pull of the aspirate should be
placed on a slide, as hemodilution may make it diffi-
cult to interpret the aspirate. At least 5 mL of aspirate
should be sent in heparinized tubes for flow cytometry
and cytogenetics. If an aspirate cannot be obtained
secondary to fibrosis or a “packed” marrow, these stud-
ies can be performed on the peripheral blood if
enough peripheral blasts are present. Flow cytometry
can also be attempted on a biopsy specimen by per-
forming an extra biopsy, placing the sample in saline,
and “teasing” the cells from the marrow. Although
bone marrow aspirates are usually obtained from the
posterior iliac crest, a sternal aspirate can be performed
if a sample cannot be obtained. Immunophenotyping
by flow cytometry is helpful in diagnosing and subclas-
sifying AML.88 The most commonly used monoclonal

e“.__,

antibodies in the diagnosis of AML are CD13, CD14,
CD1S5, CD33, CD34, and HLA-DR*”: CD13 and CD33
both are myeloid markers; CD34 and HLA-DR both are
stem cell markers; CD14, monocytic; and CD1S5,
myeloid-granulocytic.?® Myeloid antigens such as
CD14, CD15, and CD11b expressed on more differen-
tiate myeloid cells may be found in AMLs with
myeloid or monocytic maturation.”® CD14 and CD64
are the best markers for monocytic differentiation.!0°1
The platelet glycoproteins CD41, CD42, and CD61 are
usually present in acute megakaryocytic leukemia.*”%2
Flow cytometry may be particularly helpful in diag-
nosing the microgranular variant of APL. With the
microgranular variant, granules are not readily seen by
light microscopy’’ (Figure 3.5). However, unlike the
other AMLs, APL is both CD34 negative and HLA-DR
negative by flow cytometry.#’ In certain instances, flow
cytometry may also provide prognostic information.
The presence of CD56 in both M2 and M3 AML
appears to correlate with adverse prognosis.?:93-96

Immunostains used in evaluating bone marrow
biopsies include myeloperoxidase (myeloid), hemoglo-
bin A (erythroid), and CD34, CD79a, CD61, TdT (PAS,
non-specific esterase are cytochemical stains, not
immunostains). Biopsies can be stained for these mark-
ers if an aspirate for flow cytometry cannot be obtained
to better subclassify the AML.
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Figure 3.5 Acute myeloid leukemia with t(15,17)(q22;,921): The hypogranular variant is often associated with an ele-
vated white blood count with most blasts having lightly granular to almost agranular cytoplasm, but still retaining the typi-
cal bilobed nucleus (left panel). A cytochemical stain for myeloperoxidase (right panel) demonstrates intense cytoplasmic
positivity as shown by blue-black granules. (Wright—Giemsa stain, left panel; myeloperoxidase stain, right panel)

Cytogenetics are needed to assess prognosis, risk-
adapt therapy, as well as to subclassify the AML.
Cytogenetic abnormalities most commonly involve
translocations and inversions of genes encoding
transcription regulators.’” Particular cytogenetic
abnormalities are associated with specific clinical
features and prognosis. Based on the new WHO
classification, AML with specific cytogenetic abnor-
malities [t(8;21) (q22;922), t(15;17)(q22;q21), 11923
abnormalities, and variants inv(16)(p13q22) and
t(16;16)(p13;q922)] are classified as AML indepen-
dently of the proportion of blasts in the bone mar-
row!? (Figure 3.6). Fluorescence in situ hybridization
(FISH) for t(15;17) inv(16), t(8;21) or 11q23 rearrange-
ment should be performed if there is suspicion for
one of these rearrangements, especially if cytogenet-
ics are normal or unsuccessful since identification of
an abnormality can affect both prognosis and ther-
apy. FISH can be more rapid and sensitive than rou-
tine cytogenetics. In the future, other molecular
markers, such as the presence or absence of fms-like
tyrosine kinase 3 (FLT3) and assessment of multidrug
resistance markers may become a standard part of
the initial evaluation.

THE FAB AND WHO CLASSIFICATION
-OF AML

The FAB classification was composed of eight AML
subtypes: MO-M7. These subtypes were distinguished
based on both the degree of differentiation and the
cell lineage.? Cytochemical stains, including myeloper-
oxidase, nonspecific esterase, and sudan black B, were
used in conjunction with morphology to identify the
subtype.*’ This classification system did not require
immunophenotyping to make a diagnosis, except in
the MO subtype (minimally differentiated AML sub-
type). Cytogenetics were also not incorporated into
this classification system. The WHO classification sys-
tem differs from the FAB classification in several
aspects. The blast percentage for AML is decreased
from 30 to 20%. In addition, biological, clinical, and
prognostic markers (such as cytogenetics) are incor-
porated into the classification. Such factors allow us
to better define the disease and risk-adapt therapy.
The new WHO classification for AML recognizes four
distinct entities: (1) AML with specific cytogenetic
abnormalities, (2) AML with multilineage dysplasia




Chapter 3 M Clinical Features and Making the Diagnosis

35

t(8;21)(g22;922)

8 .3
. *h-

8 der(8) 21 der(21)

inv(16)(p13g22)

-

#

-
-

iy
Yy

16 der(16)

t(15;17)(q22:921)

8- 8o

15 der(15) 17 der(17)

t(9;11)(p22;923)

ig* ¢ ¥

e _
9 der(9

11 der(11)

Figure 3.6 Critical nonrandom chromosome abnormalities that define disease subtypes included in the WHO entity “acute
myeloid leukemia with recurrent genetic abnormalities” include t(8;21), t(15,;17) and variants, inv(16) and variants, and
11923 abnormalities. For each pair of GTG-banded chromosomes shown, the normal homologues are shown on the left,
and abnormal homologues on the right; arrows mark chromosome breakpoints. These abnormalities can also be detected by

molecular methods, including RT-PCR and FISH

(with or without prior MDS), (3) therapy-related AML
and MDS (alkylating-agent-related or epipodophyllo-
toxin-related), and (4) AML not otherwise classifi-
able.lf”/%/”

-OTHER ACUTE LEUKEMIA ENTITIES

In addition to diagnosing and subclassifying AML,
flow cytometry is needed to recognize the entities of
undifferentiated acute leukemia, bilineage leukemia,
and biphenotypic leukemia.'® Lineage-specific anti-
gens include myeloperoxidase (myeloid), cytoplasmic
CD3 (T-lymphoblasts), cytoplasmic CD22 (B-lym-
phoblasts), cytoplasmic IgM (B-lymphoblasts) and
cytoplasmic CD79a (B-cell lymphoblasts).'? In undif-
ferentiated acute leukemias, no lineage-specific antigen
is detected,’® and often only one lineage-associated
antigen (such as CD13 or CD33) is positive by flow.1?
Non-lineage specific primitive stem cell markers, such
as CD34, CD38, and HLA-DR, may be present.”

Bilineage leukemia occurs when blasts derive from
two distinct lineages.'° These leukemias are sometimes
associated with the Philadelphia chromosome, t(9;22),
or the MLL gene, 11q23.%°

In biphenotypic leukemias, blasts are positive for two
or three distinct lineages on the same cell.!° Specific cri-
teria are used to make this diagnosis. One commonly
used scoring system is the Royal Marsden criteria.1%1%0
Blasts with greater than two points for two or more lin-
eages are considered biphenotypic,'? and are considered
distinct from AML with aberrant coexpression of lym-
phoid markers.88 CD7 is the most frequent lymphoid-
associated antigen expressed in such cases.?8

CLINICAL WORK-UP

A full history and physical examination should be per-
formed with special attention to any preceding history
of blood disorder or malignancy, past chemotherapy or
radiation treatments, occupational exposure, family
history, general performance status, age of the patient,
signs/symptoms of infection, and extramedullary signs
of leukemia involvement. Risk factors associated with
adverse outcome in AML include age greater than 60
years, poor performance status, secondary AML, white
blood count greater than 30,000/mm?3 and an elevated
LDH. 3101 Tests performed at diagnosis should include
a CBC with differential, comprehensive metabolic
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panel, uric acid, LDH, prothrombin time, partial
thromboplastin time, fibrinogen, and chest X-ray (with
posterior anterior and lateral views). HLA typing (serol-
ogy) should also be performed in case a patient becomes
alloimmunized to random donor platelet transfusions
and requires HLA-matched platelets during his or her
treatment course. HLA typing at the DNA level should
be performed on any patient who may be a stem cell
transplant candidate in the future. It is best for HLA
typing to be done prior to the initiation of chemother-
apy, when more cells are present. A multiple gated
acquisition scan should be done to assess cardiac func-
tion, as induction chemotherapy regimens for AML
include an anthracycline. In addition, an indwelling
venous catheter (i.e., Hickman catheter) should be
placed for blood draws, blood product transfusions,
fluid management, and antibiotic administration.? A
lumbar puncture is not a routine part of the work-up
unless there is clinical suspicion for CNS leukemia.
Patients who are neutropenic and febrile should
have blood cultures drawn and should be started on
appropriate broad-spectrum antibiotics. Most patients
will also require transfusions of packed red cells and
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Chapter

TREATMENT FOR ACUTE
MYELOID LEUKEMIA IN
PATIENTS UNDER AGE 60

Richard M. Stone

INTRODUCTION

Acute myeloid leukemia (AML) is a disorder character-
ized by a malignancy of the bone marrow stem cell at
either a pluripotent or committed stage of develop-
ment, which leads to an overproliferation of
leukemic cells (blasts), which can be shown to have
either cytochemical and/or immunophenotypic fea-
tures of myeloid (including monocytoid, erythroid, or
megakaryocytic) lineage. A brief list of the pathophys-
iologic abnormalities leading to this malignancy
include unbridled proliferation, failure to undergo
normal maturation, the inability to undergo pro-
grammed cell death, and overreliance on angiogenic
mechanisms. The disordered growth in the myeloid
stem cell compartment leads to the patient’s death
from bone marrow failure, unless a successful thera-
peutic strategy is employed. The fundamental differ-
ences in disease biology and clinical response between
AML arising in younger (generally considered to be
less than 60 years in age) verses older adults have lead
to different therapeutic approaches in these groups.
This chapter deals with the therapeutic strategies avail-
able for those younger adults who are by and large able
to withstand (and benefit from) intensive chemother-
apy and stem cell transplantation.

The major challenge in the management of the
adult, age 18-60 years, with AML is to employ the
available therapies in a fashion that will maximize the
chance of a cure for any individual. The chance of
long-term disease-free survival for an adult in this age
group today is approximately 33%.'2 However, our
recent knowledge of risk at presentation, largely due to
chromosome findings at diagnosis, suggests that some
patients with AML can expect long-term disease-free
survival rates in the range of 70%, while others are
rarely cured.? These vastly different prior probabilities
of success with available therapy suggest that, with
appropriate use of so-called risk-adapted approaches,

one could prevent overtreatment in the good progno-
sis groups and maximize treatment in those destined
to do poorly. Moreover, increasing knowledge about
the specific pathophysiological events at the genetic
level* also gives rise to the hope that therapy could tar-
get the specific genetic lesion or lesions in a given
patient’s leukemic cells, thereby improving the thera-
peutic index and leading to a higher cure rate with less
toxicity.

DIAGNOSIS AND CLASSIFICATION

Once the diagnosis of acute leukemia is suspected on
the basis of abnormal blood counts, immature cells
appearing in the peripheral blood differential, or the
finding of extramedullary leukemia (especially in cen-
tral nervous system, gums, or meninges, particularly in
patients with monocytic subtypes), one should under-
take a full diagnostic work-up that includes delin-
eation of the AML subtype, as well as the definition of
the risk group. In fact, the classification system
for AML is evolving from the cytochemical and
morphologically based French—American—British
scheme® to the cytogenetically centered World Health
Organization (WHO) system.® The WHO classification
system acknowledges the critical impact of cytogenet-
ics on prognosis as well as our improved pathophysio-
logical understanding based on genes at balanced
translocation breakpoints.

Although most subtypes of AML are treated in a sim-
ilar fashion at least initially, it is important to recognize
the 10-15% of AML patients who have acute promye-
locytic leukemia (APL),” characterized by malignant
cells that appear as heavily granule-laden malignant
promyelocytes with frequent Auer rods. These heavily
myeloperoxidase-positive APL cells generally possess
the characteristic t(15;17) cytogenetic abnormality,
with a resultant PML-RARA rearrangement detectable

Copyright © 2007 by The McGraw-Hill Companies, Inc. Click here for terms of use.
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on reverse transcription polymerase chain reaction
analysis. APL is treated in a distinct fashion (see
Chapter 6).

In addition to the definition of the AML subtype
and risk strata, it is imperative to assess the underlying
medical state of the patient, determining if any issues
such as cardiac, renal, or pulmonary dysfunction
might compromise the ultimate therapeutic plan.
Finally, given the possibility that the patient might
become a candidate for allogeneic stem cell transplant
at some point, patient and sibling HLA typing should
be carried out shortly after diagnosis.

TREATMENT STRATEGIES

INTRODUCTION

Historically, the treatment of newly diagnosed AML
is divided into phases. Induction therapy is given to
patients to reduce the tumor burden at diagnosis,
presumed to be 102 cells (1 kg), by approximately
three orders of magnitude down to a level at which
leukemic cells are no longer detectable in the blood
or bone marrow. Although the definition of com-
plete remission® has undergone some degree of evo-
lution, in general, the reduction in leukemic cells
should occur concomitantly with the resumption of
normal hematopoiesis and reasonably normal blood
counts. Induction chemotherapy usually is given over
approximately 1 week. During that time, patients are
monitored carefully for signs of tumor lysis syn-
drome,’ in which a rapid release of intracellular con-
tents including potassium and phosphate may cause
hyperkalemia, hyperphosphatemia, and secondary
hypocalcemia. Secondly, the large load of purine
metabolites can lead to high uric acid levels, with the
development of renal failure on the basis of urate
nephropathy.® Tumor lysis syndrome is much less
common in AML than in the somewhat more
chemotherapy-sensitive lymphoproliferative leukemias,
but it is generally accepted that AML patients should
receive IV fluids and allopurinol to help prevent this
complication. Alkalinization of the urine with the
administration of intravenous sodium bicarbonate to
maintain uric acid in its more soluble urate form is gen-
erally not necessary or advisable. The lysis of leukemic
cells can result in exposure to tissue factor and other
procoagulants, causing disseminated intravascular
coagulopathy (especially in APL),'° with associated
bleeding and/or thrombosis.

Certain patients with AML, particularly those with
monocytic subtypes (whose blasts tend to be
“sticky”), who present with an absolute blast count of
75,000/ul or greater can experience life-threatening
problems with leukostasis. Such complications could
include cerebral or pulmonary dysfunction due to
plugging of small capillaries in these organs.
Treatment for this actual or impending condition is

aggressive use of intravenous hydration and cytore-
ductive measures: usually hydroxyurea!! and occa-
sionally leukopheresis.

Complete remission is usually achieved 4-6 weeks
after beginning induction chemotherapy. At that time,
patients generally have recovered from the nonhema-
tologic toxicities of induction chemotherapy, includ-
ing gastrointestinal and integumentary disruption.
After a 1-3-week rest, postremission chemotherapy
should be administered to reduce the residual unde-
tectable leukemic burden down to a level compatible
with cure. The optimal strategy to achieve such a
reduction in residual leukemic cells is controversial; the
three major options being several cycles of intensive
postremission chemotherapy, high-dose chemother-
apy with autologous stem cell rescue (sometimes
termed “autotransplant”!?), and allogeneic transplant
from a histocompatible sibling or unrelated donor.
While perhaps not completely proven by prospective
clinical trials, the choice amongst these options is gen-
erally based, at least in part, on the cytogenetic find-
ings at diagnosis.> The overall goal of induction and
postremission therapy is to prevent leukemic relapse.
Just as in the case with failure to achieve remission
with standard chemotherapy, a relapse generally signi-
fies a chemotherapy-resistant leukemic cell. Patients
may achieve a second complete remission after reinduc-
tion chemotherapy (more likely if the initial disease-free
interval is greater than 1 year).!*'* Consolidation of
such second remissions should include a high-dose
approach (either an autologous or allogeneic trans-
plant )1516 if there is to be any possibility of long-term
disease-free survival.

INDUCTION CHEMOTHERAPY

A disappointing fact concerning the treatment of
younger adults with AML is that the agents used for
induction therapy now are much the same as three
decades ago. Three days of an anthracycline (generally,
daunorubicin or idarubicin) in conjunction with 7 days
of continuous infusional cytarabine (100-200 mg/m?
per day)!” remains the standard approach. It has been
the practice in the Cancer and Leukemia Group B
(CALGB) and other cooperative groups to perform a
bone marrow examination approximately 2 weeks after
the start of induction chemotherapy.! If a sufficient
degree of myeloblast reduction is not achieved, then 2
days of the same anthracycline and 5 days of cytarabine
are administered as a reinduction cycle. Occasionally,
serial bone marrows are necessary to clarify whether or
not a reinduction cycle should be administered.
Approximately 30% of younger adults with AML will
require a second course (so-called “2 + 5” reinduction).!
Although not certain, the requirement for such a rein-
duction may indicate a worse long-term prognosis.'? In
contrast to a 20-25% death rate in older adults, the
mortality associated with induction therapy in younger
adults is generally under 10%.!
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Many attempts to modify or augment standard
induction chemotherapy have been made without any
clear improvements. Whether one anthracycline is
better than another remains controversial. A trial com-
paring doxorubicin to daunorubicin during induction
indicated that doxorubicin was associated with an
increase in gastrointestinal complications, without an
improvement in response.!” Several trials conducted in
the 1980s!81920 reported a benefit to an idarubicin-
based induction compared to daunorubicin; the
improved results may have been due to a nonequiva-
lence of the myelosuppresive dose of idarubicin.
Although 6-thioguanine is widely used in the United
Kingdom and throughout Europe,??! randomized tri-
als comparing 3 + 7 with or without the addition of
this agent have not shown a clear-cut benefit with the
three-drug versus the two-drug approach.?! Given the
success of high-dose cytarabine (at least 1-1.5 g/m??
per dose) in the relapse?? and postremission settings,!
investigators have tried to either substitute high-dose
cytarabine for standard doses?* or add high-dose
cytarabine onto 3 + 72* during induction. Although a
single institution trial demonstrated a 90% complete
remission rate and a 50-60% long-term survival bene-
tit with high-dose cytarabine added on to standard
3 + 7,%* a cooperative group trial failed to show a ben-
efit for the more aggressive induction.?’ The substitu-
tion of high-dose cytarabine for standard-dose cytara-
bine has also been attempted; although an improved
disease-free survival was noted in certain subgroups,
there was no clear overall survival benefit.?? The addi-
tion of etoposide, tested by the Australian Leukemic
Study Group, was also associated with an improved
disease-free, but not an overall, survival advantage.?® It
is not clear whether induction therapies that are asso-
ciated with a disease-free survival benefit, but not an
overall survival benefit, are advantageous.

POSTREMISSION THERAPY

There is an absolute need to administer postremission
chemotherapy in order to yield any chance for the
patient to experience long-term disease-free survival.
This fact was originally recognized after two trials in
the 1970s showed that some chemotherapy led to at
least a small long-term survival rate compared to no
postremission chemotherapy in which virtually 100%
of the patients succumbed to their disease.?”?8 Given
our understanding that remission is achieved at a rel-
atively high leukemic burden, this is not surprising.
Several studies in the 1980s solidified the concept
that intensive chemotherapy represented the stan-
dard of care in postremission chemotherapy. High-
dose cytarabine was recognized as being biochemi-
cally distinct from standard doses of cytarabine;
patients resistant to standard-dose cytarabine could
enter a remission when doses of 1.5 g/m? or greater
were administered.?? A phase II study documented a
40% likelihood of long-term disease-free survival in

patients achieving remission who received high-dose
cytarabine.?® Two cooperative groups in the United
States performed randomized trials in the 1980s,
comparing standard doses of cytarabine to high-dose
ara-C in the postremission setting.!3° The Eastern
Cooperative Oncology Group compared standard-dose
ara-C to one cycle of high-dose ara-C and showed a
superior disease-free survival in patients receiving the
more intensive arm.3°* CACGB study 8525 probably
represents the most important turning point in the
chemotherapy-based approach to AML in the last 40
years.! In this trial, newly diagnosed patients with
AML (adults of all ages) were enrolled and given stan-
dard 3 + 7 induction chemotherapy, with daunoru-
bicin and cytarabine. Patients achieving remission
were randomized to four cycles of either (a) ara-C at
100 mg/m? by continuous infusion for 5 days or (b)
cytarabine at 400 mg/m? per day by continuous infu-
sion for 5 days, or (c¢) high-dose cytarabine at 3g/m?
over 3 h given q 12 h on days 1, 3, and 5 (total six
doses). All patients then received an additional four
cycles of outpatient daunorubicin for 1 day and low-
dose cytarabine for 5 days at 100 mg/m? daily. In
adults under the age of 60, the best results (superior
disease-free and overall survival) were seen in those
who were randomized to the high-dose cytarabine.
The 45% long-term disease-free survival in such
patients achieving remission was comparable to that
observed with allogeneic stem cell transplant, and
established high-dose cytarabine as the treatment of
choice in the postremission setting.

Subsequent trials and practices have deviated from
the precise schedule of postremission therapy in
CALGB 8525. First, Bloomfield and colleagues showed
that not all types of AML benefited equally from the
intensive arm.3! Specifically, most of the benefits of
high-dose cytarabine were noted in patients with
inversion of chromosome 16 or t(8;21). Both of these
abnormalities were recognized to confer a favorable
prognosis® and also to represent abnormalities of the
core-binding factor heterodimer transcription factor.3?
The precise reason why such patients’ leukemic cells
are so sensitive to intensive chemotherapy remains
unknown, but the relatively good prognosis character-
istic of these cytogenetic abnormalities has been docu-
mented in studies worldwide. Subsequent studies have
shown that inversion 16 patients actually do some-
what better than those with t(8;21).33 Also, clear from
reanalysis of CALGB 8525'3! and data from other
sources? is that a subgroup of patients (about 15% of
the total) with complex abnormalities or deletion of all
or part of chromosomes 5 and/or 7 has a poor prognosis
even when intensive postremission chemotherapy is
applied. In part because of the difficulty of administer-
ing four cycles of postremission intensive chemotherapy
followed by four cycles of maintenance chemotherapy,
subsequent studies conducted by the CALGB have
employed three cycles of high-dose ara-C. It does seem



44

Part | @ LEUKEMIA

clear that at least three cycles of high-dose ara-C are
required to obtain benefit in patients with good progno-
sis chromosomal abnormalities.3*

A subsequent CALGB trial randomized patients in
remission to receive three cycles of high-dose ara-C or
three cycles of a so-called noncross-resistant combina-
tion of chemotherapy regimens that included one
cycle of etoposide/cyclophosphamide and one cycle of
diaziquone (AZQ)/mitoxantrone. No relapse-free or
overall survival differences in the randomized arms
were seen.’® While relatively long-term low-dose
chemotherapy (maintenance chemotherapy) is rou-
tinely employed in the management of patients with
acute lymphoblastic leukemia, its use in AML remains
controversial. Whereas older studies failed to show
benefit for patients receiving maintenance chemother-
apy,3° the good results seen in CALGB 8525 (in which
patients received four cycles of a maintenance-type
chemotherapy regimen) and recent results from the
German Leukemia Cooperative Group3” have sug-
gested that reexploration of the role of maintenance
chemotherapy in AML is appropriate.

Given the adoption of high-dose ara-C or similarly
intense regimens as the standard of care for adults with
AML, studies have attempted to understand the risk
factors for high-dose ara-C-induced cerebellar toxic-
ity?83% and to define the role of stem cell transplanta-
tion compared to such intense therapy. Even though
high-dose ara-C is useful and is associated with a much
lower mortality rate than allogeneic stem cell trans-
plantion, the associated neurotoxicity can be devastat-
ing, especially if irreversible, as is the case about 50%
of the time. The incidence of high-dose ara-C-associ-
ated cerebellar toxicity can be lowered if older patients
(who do not seem to benefit from this approach)!4°
and/or those with elevated serum creatinine or
impaired liver function are given alternative postrem-
ission therapy.

ROLE OF HEMATOPOIETIC STEM CELL
TRANPLANTATION

Improvements in supportive care, as well as the use of
high-dose chemotherapy, have made intensive postre-
mission chemotherapy a more attractive option as pri-
mary postremission management for most adults with
AML in first remission. Similarly, improvements in
management of patients after allogeneic stem cell
transplantation, including improved graft-versus-host
disease prophylaxis, and more recently, the ability to
perform molecular histocompatability typing, have
resulted in steadily improving the outcome for
patients undergoing allogeneic stem cell transplanta-
tion. Furthermore, high-dose chemotherapy with
autologous peripheral stem cell transplantation is yet
another feasible option that can be employed in the
postremission management of the younger adult with
AML. Four important prospective randomized con-
trolled trials have attempted to define the optimum

postremission management of patients with AML,
under the age of 50-60, who are in first remission. The
trials were all conducted in the 1980s and 1990s, both
during the time when intensive high-dose ara-C based
chemotherapy was coming into frequent use and when
the aforementioned improvements in allogeneic trans-
plantation were being seen. The trial design in each
case was similar in that the patients were enrolled at
diagnosis; those in remission deemed to be candidates
for further aggressive therapy were allocated to allo-
geneic stem cell transplantation if a sibling donor was
identified; and other patients were randomly allocated
to chemotherapy or autologous stem cell transplanta-
tion. In the case of the trial performed by the Medical
Research Council (MRC) in the United Kingdom,*!
patients in each randomized group received the same
postremission standard chemotherapy, but those ran-
domized to autologous transplant received this at the
conclusion of all therapy. Unfortunately, even after
over 2000 patients were enrolled in these trials, the
answer remains unclear. In the first published trial,*
those allocated to allogeneic transplant or randomized
to autologous transplant enjoyed a superior relapse-free
survival than those randomized to chemotherapy;
however, there was no statistically significant improve-
ment in overall survival in those groups, possibly due
to salvage of patients in the chemotherapy group, who
later relapsed, with an eventual stem cell transplant.
The MRC trial*' did show a relapse-free survival benefit
for those randomized to autologous transplant, but
again there was no overall survival benefit; this was
really a comparison of autologous transplant to no fur-
ther therapy, in any event. It might have been a “more
fair” trial if those randomized to chemotherapy
received another cycle of chemotherapy in comparison
to the high-dose approach. A French trial showed
absolutely no difference in relapse-free survival or long-
term survival in the three groups.*> The United States
Intergroup trial** actually showed a statistically supe-
rior survival for those randomized to chemotherapy,
presumably due to unforeseen excess toxicity in the
groups that were either allocated to the allogeneic
transplant or randomized to high-dose therapy with
autologous stem cell rescue.

Given our increased understanding of the hetero-
geneity of AML based on the chromosome findings at
diagnosis,? it is not surprising that several of the afore-
mentioned studies comparing chemotherapy to trans-
plantation were reanalyzed based on the impact of each
of the potential treatment strategies on patients with
various karyotypic risk groups. Unfortunately, none of
these studies were prospectively powered to answer
questions regarding the advisability of any given treat-
ment based on a certain cytogenetic risk group. Not sur-
prisingly, those patients who present with a favorable
chromosomal abnormality at diagnosis (abnormalities
of core-binding factor, either inversion of chromosome
16 or t(8;21)) fare well with any of the therapies.*®
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Consequently, most authorities recommend that high-
dose ara-C-based chemotherapy be the primary postre-
mission strategy applied to this favorable group of
patients, thereby reducing their risk of toxicity. Patients
with unfavorable chromosomal abnormalities, such as
monosomy 7 or the loss of chromosome 5, should have
an allogeneic transplant in first remission.

Given the contemporary favorable results with
matched unrelated donor transplants, for the selected
young adult who presents with poor chromosomal
features at diagnosis, an unrelated matched trans-
plant in first remission could be considered. However,
for the 70% of patients who have normal or so-called
intermediate chromosomal abnormalities, the benefit
of a transplant in terms of reducing the leukemia
relapse rate is offset almost exactly by the toxicity of
the transplant. Therefore, it is difficult to recommend
an optimal strategy for this relatively large group of
patients. Patients who have intermediate prognosis
chromosomal abnormalities and a sibling donor
require a frank discussion of the risks and benefits of
each of the approaches. In general, it might be
appropriate to delay allogeneic transplant until
relapse or second remission, although patients must
understand that such delay could compromise their
chances for being able to have the transplant if not
doing well in the long term. Moreover, children seem
to have a more clear-cut benefit from allogeneic
transplant as postremission therapy.*® The younger
the adult patient, the more such a strategy makes
sense.

TREATMENT OF APL

The therapeutic approach to patients with APL differs
from that in the other histologic subtypes of AML.
This topic is discussed briefly here, while more com-
prehensive discussion appears in Chapter 6.

The use of chemotherapy in conjunction with all-
trans-retinoic acid (ATRA) is now the most widely
accepted standard approach for the induction manage-
ment of patients with APL. Many questions remain
about optimal chemotherapy. Nonetheless, once a
diagnosis of APL is established, patients should begin
therapy with ATRA because this strategy rapidly ame-
liorates the disseminated intravascular coagulopathy
which can be life threatening. An anthracycline
should be started within a few days of beginning
ATRA. Studies have conclusively shown that concomi-
tant use of chemotherapy plus ATRA is superior to
chemotherapy alone or ATRA followed by chemother-
apy.*”48 Whether or not cytarabine should be included
routinely in the induction management of APL is
controversial. The Spanish PETHEMA group has had
excellent results without the use of this drug.*® After
the chemotherapy is completed, ATRA should be
maintained until remission is achieved, an event
that may occur at a later time after the initial initia-
tion of induction chemotherapy compared with other

subtypes of AML. Once remission has been docu-
mented, at least two cycles of an anthracycline-based
consolidation regimen are appropriate.*®4° The need
for ara-C in the postremission setting remains contro-
versial. APL is the only type of AML for which mainte-
nance therapy has a clear-cut and widely accepted
role.*859 Maintenance chemotherapy with ATRA is
indicated; the addition of oral antimetabolite therapy,
in a manner analogous to that done in pediatric acute
lymphoblastic leukemia, will further decrease the
relapse rate.*8

For APL in relapse, arsenic trioxide should be
administered. This drug yields a complete remission
rate of 85%, even in highly pretreated relapse patients;
85% of those achieving remission do so at a level
below the detectability rate for the polymerase chain
reaction (PCR)-amplified PML-RARA and fusion tran-
script.®! Patients in second remission can be main-
tained with ATRA or arsenic trioxide; or, if the
leukemia is undetectable by PCR analysis, patients
should undergo stem cell harvest followed by high-
dose chemotherapy with autologous peripheral cell
rescue.®?> Given the highly successful and responsive
nature of this disease, clinical research is under way, in
which patients receive limited amounts of chemother-
apy. Investigators of MD Anderson have treated
patients with ATRA and gemtuzumab ozogamicin with
good initial results.>3

TREATMENT OF RELAPSED DISEASE

Patients with relapsed AML cannot be cured with stan-
dard chemotherapy. On the other hand, relapsed
leukemia is generally treated with reinduction therapy
for two reasons. First, this is an important part of the
effort to get a patient in second remission, which may
have palliative benefit. Most importantly, once the dis-
ease is under control, high-dose chemotherapy with
hematopoietic stem cell transplant is possible. Second,
patients in second remission can be salvaged with
high-dose chemotherapy and autologous peripheral
stem cell rescue (so-called autologous transplant) with
the likelihood of disease-free survival in a second
remission being about 30%.5* In most cases, if an allo-
geneic donor is available, then it is preferable to con-
sider an allogeneic stem cell transplant. With improved
molecular HLA typing, in the absence of a sibling
donor, an unrelated molecularly matched donor is an
acceptable alternative. Allogeneic transplant can be
used in situations where the remission is incomplete;
however, this procedure is more likely to be successful
if the patient is in fact in a second remission. This topic
is covered in greater detail in Chapter 9.

The optimal therapy to use to induce a second
remission is not clear. Although in this era most
patients under the age of 60 with AML have received a
high-dose ara-C-based consolidation regimen during
first remission, the same regimen can be used for
reinduction. If the first remission duration, the most
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important prognostic factor for success with reinduc-
tion,> is greater than 1 year, then standard reinduc-
tion therapy can be given with a good chance of suc-
cess. Otherwise, high-dose ara-C or a combination of
high-dose ara-C plus mitoxantrone and etoposide>®
can be employed. Patients with a relatively short first
complete remission (CR) duration are reasonable can-
didates to be enrolled on clinical trials involving novel
chemotherapeutic agents and/or targeted agents.

NOVEL THERAPIES

The burgeoning understanding of the pathophysiol-
ogy of AML has spurred the development of a host of
investigational therapies. Table 4.1 lists a categoriza-
tion of these therapies and classifies them into thera-
pies that inhibit proliferation, promote apoptosis,
improve chemotherapeutic effect, or work by
immunotherapeutic means. Because AML is a rare dis-
ease that is already associated with fairly effective ther-
apy, the challenge of bringing any of these therapies to
improve the natural history of patients with AML is
daunting indeed. Nonetheless, there have been two
agents relatively recently approved for use in AML.

Table 4.1

Drug-resistance modifiers
Cyclosporine A
Quinine
PSC-833

Proteosome inhibitors (e.g., bortezomib)

Proapoptotic approaches (e.g., oblimersen and 18-mer
anti-bc1-2)

Signal transduction inhibitors
“RAS"—targeted (e.g., farnesyl transferase inhibitors, such as
tipifarnib and lonafarnib)
Tyrosine kinase targeted
FLT3 (e.g., PKC 412, CEP 701, and MLN 518)
c-kit (e.g., imatinib)

Downstream signal inhibitors

Novel cytotoxic chemotherapy
Nucleoside analogs (e.g., troxacitabine and clofarabine)
Alkylating agents (e.g., amonafide)

Immunotherapeutic approaches
Antigens known
anti-CD33 (e.g. gemtuzumab ozogamicin)
anti-GM-CSF receptor
Antigens unknown
stimulate immune system (IL-2 and GM-CSF)
present tumor antigens effectively
dendritic cell fusion
transfer hematopoietic growth factor genes

Just as ATRA was first shown to be effective by
investigators in the People’s Republic of China,> the
first reports of the efficacy of arsenic trioxide®® also
emanated from that country. Studies done at Memorial
Sloan Kettering Cancer Center>® and at other US cen-
ters®! demonstrated that intravenously administered
arsenic trioxide led to remission in 85% of patients
with a relapsed APL. The biological effect of arsenic tri-
oxide occurs via both a promotion of differentiation
and an enhancement of apoptosis, but the precise
biochemical mechanism remains elusive. The optimal
setting for the use of arsenic trioxide in the initial
management of AML is being studied as both an alter-
native to chemotherapy, when used with ATRA,® and
an early postremission consolidation. Toxicities of
arsenic trioxide include prolongation of the QT inter-
val, mandating the close monitoring of electrolytes
and electrocardiograms.®!

Approximately 90% of patients with AML have
blasts that express the CD33 antigen on the cell sur-
faced; consequently, the humanized monoclonal anti-
body toxin conjugate gemtuzumab ozogamicin binds
to AML cells in 90% of cases. After binding to the cell
surface and subsequent internalization, the acidic
microenvironment results in release of the calicheam-
icin toxin, which binds to double-stranded DNA,
thereby promoting cell death. A phase I trial demon-
strated the feasibility of the intravenous administra-
tion of gemtuzumab ozogamicin and was associated
with some remissions in relapsed patients.®> The sub-
sequent phase II trial involving 142 patients yielded a
complete remission rate of 30% (half of whom had
relatively low platelet count at the time of remis-
sion).% The phase II trial resulted in the approval of
this agent for the treatment of older adults with
relapsed AML not deemed to be chemotherapy candi-
dates. As a single agent, significant activity seems to be
limited to those with relapsed disease after an initial
disease-free interval of at least 3-6 months. The role of
gemtuzumab ozogamicin as an adjunct to chemother-
apy or in minimal disease settings is being explored.

One of the most important strategies is harnessing
our understanding of leukemic pathophysiology to
design drugs which will inhibit signaling pathways
promoting neoplastic cell growth and survival.
Mutations in the FLT3 transmembrane tyrosine kinase
occur in 30% of patients with AML. Such mutations
are either a 3-33 amino acid repeat in the juxtamem-
brane region (internal tandem duplication; ITD)
which occurs in about 25%, or a point mutation in the
so-called activation loop which resides in the cytoplas-
mic tail (which has a 5% incidence).®* ITD mutations,
particularly if they occur in a homozygous fashion,%
are associated with an adverse prognosis and may
account for a subgroup of patients with normal kary-
otype, who fare relatively poorly.®® FLT3 mutations
have been preclinically shown to confer growth
tactor independence in leukemic cell lines and to
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produce a fatal myeloproliferative syndrome in
murine models.®* Small molecules that inhibit FLT3
have been shown to kill such activated cell lines and
model leukemias in mice. Early clinical trials with
several FLT3 inhibitors have shown biological activ-
ity.67.68 Farnesyl transferase inhibitors, such as tipi-
farnib (originally thought to target a posttransla-
tional modification of the ras proto-oncogene), also
produce remissions in advanced® and untreated
older patients’® with AML.

There are several new chemotherapeutic agents, most
notably the developmental novel nucleoside analogs
troxacitabine’! and clofarabine,”?> which have produced
remissions in patients with relapsed and/or refractory
AML. Certain agents such as oblimersen,’® an 18-
mer nucleotide that inhibits the translation of the anti-
apoptotic bc1-2 protein, are being developed, not as a
single agent, but to enhance chemotherapeutic efficacy.
One of the reasons for intrinsic disease resistance in cer-
tain AML patients, particularly those who are above 60,
is the relatively high expression of proteins, such as
MDR1, which confer drug resistance.”* Several clini-
cal trials have attempted to determine whether so-
called drug-resistance reversal agents can enhance
chemotherapeutic efficacy. Although one randomized
trial in relapsed AML showed a survival benefit when
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Chapter

TREATMENT APPROACH TO
ACUTE MYELOID LEUKEMIA
IN OLDER ADULTS

Mikkael A. Sekeres

Statistically, it is probably no accident that the first
reported case of leukemia (by Velpeau in 18271!)
occurred in a 63-year old. Acute myeloid leukemia
(AML) is a disease of older adults. In the United States,
the median age is 68 years and the age-adjusted popu-
lation incidence is 17.6 per 100,000 for people 65 years
of age or older.? Compare this to an incidence of 1.8
per 100,000 for people under the age of 65 years.?
Therefore, of the estimated 11,900 new AML diagnoses
in the United States in 2004, over half will affect
patients 60 years of age or older,® a population consid-
ered “elderly” in the leukemia literature.*!!

Older adults with AML, when compared to younger
patients with the same disease, have a poor prognosis
and represent a discrete population in terms of disease
features (including the biology of the disease and the
incidence of secondary leukemia), treatment-related
complications, and overall outcome (Table 5.1). As a
result, older patients require distinctive management
approaches to determine whether standard treatment,
investigational treatment, or low-dose therapy or pal-
liative care is most appropriate.

-DISEASE FEATURES

CYTOGENETICS

Older adults with AML have a lower incidence of favor-
able chromosomal abnormalities and a higher inci-
dence of unfavorable abnormalities compared to
younger adults with AML.12"14 In an analysis of out-
come of 1213 adult patients with de novo AML
assigned varying doses of postremission therapy, only
2% of older patients (=60 years) had the favorable
t(8;21), compared to 9.4% of younger patients (<60
years). Similarly, 3.4% of older patients had inv(16) or
t(16;16) compared to 10.4% of younger patients.!> At
the opposite end of the spectrum, with respect to unfa-
vorable cytogenetics, 9.1% of older adults had the —7
abnormality compared to 3.2% of younger adults; 6.2%

of older adults had the +8 abnormality compared to
4% of younger adults; and 18.3% of older AML patients
had complex cytogenetics (defined as three or more
cytogenetic abnormalities, not including core-binding
factor cytogenetics) compared to only 7.1% of younger
patients. Looking specifically within a population of
older adults with AML, an analysis of 1065 older
patients with de novo and secondary AML enrolled in
the Medical Research Council (MRC) AML 11 trial (in
which patients were randomized to one of three remis-
sion induction regimens and further randomized to
postremission therapy) found that 4% of patients had a
t(15;17), 2% had a t(8;21), and only 1% had inv(16).
Patients fortunate enough to have one of these abnor-
malities had a survival advantage over other patients.
Poor-risk cytogenetics included a complex karyotype
(defined here as five or more abnormalities), which was
found in 14% of patients, a +8 abnormality in 10% of
patients, a —7 abnormality in 8%, a del(5q) in 8%, and
—S5 abnormality in 5% of older AML patients.!3

BONE MARROW BIOLOGY

In older adults, AML is more likely to arise from a prox-
imal bone marrow stem cell disorder,® such as myelodys-
plastic syndrome (MDS),'” and with leukemia-specific
abnormalities in more than one hematopoietic cell
lineage.!® This may explain the different disease be-
havior in this group, as well as prolonged neutropenia
following chemotherapy.® Older adults with AML also
are more likely to have reduced proliferative capacities
in normal hematopoietic stem cells,'® which also may
affect blood count recovery following intensive
chemotherapy.

DRUG-RESISTANCE GENES

The expression of genes that mediate drug resistance
occurs with increased frequency in this age cohort.?°
MDR1, the so-called p-glycoprotein (gp170) chemo-
therapy efflux pump, was found in 71% of leukemic
blasts in subjects in a Southwest Oncology Group study

Copyright © 2007 by The McGraw-Hill Companies, Inc. Click here for terms of use.
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Table 5.1

Older AML Younger AML
Characteristic patients? patients?
Population incidence® 17.2 1.8
Favorable cytogenetics
t(8;21) 2.0% 9.4%
inv 16 or t(16;16) 3.4% 10.4%
t(15;17) 4.0% 6-12%
Unfavorable cytogenetics
-7 9.1% 3.2%
+8 6.2% 4.0%
Complex 18.3% 7.1%
MDR1 expression 71% 35%
Secondary AML 24-56% 8%
Treatment-related 25-30% 5-10%
mortality©
Complete remission® 39-61% 65-73%
Long-term disease-free 5-15% 30%

survival®

a In general, older AML patients are defined as 60 years of age or
older and younger AML patients as below 60 years of age.

b New diagnoses, per 100,000 US citizens per year. Older/younger
division occurs at 65 years.

¢ Rates following remission induction therapy with an anthracycline-
or anthracenedione-based regimen.

Reprinted from Stone RM, O’Donnell MR, Sekeres MA: Acute
myeloid leukemia. Hematology Am Soc Hematol Educ Program
98-117, 2004, copyright American Society of Hematology, U.S.A.

of AML patients over the age of 55 years. Compare this
to an incidence of 35% in younger AML patients.?!??
MDR1/p-glycoprotein expression is associated with
lower complete remission (CR) rates and more chemore-
sistant disease. In addition, defects in the MSH2 protein
involved in DNA mismatch repair and genome protec-
tion are expressed with greater frequency in this popula-
tion.? Abnormalities of DNA mismatch repair due to
defective MSH2 expression could play a key role in
leukemogenesis, in particular in AML arising in older
patients or secondary to previous chemotherapy.

PRIOR STEM CELL INSULT

Older adults with AML are more likely to have a sec-
ondary leukemia arising from an antecedent MDS or
from prior therapy with chemotherapy or radiation
therapy for another cancer.?>?* Patients with this type
of AML are predisposed to having abnormalities in
chromosome 5 and/or 7.12!% Secondary AML (AML
that arose after MDS, myeloproliferative disorders, and
therapies or other malignancies) comprises 24-56% of
AML diagnoses in older patients.®?225 Compare this to
the prevalence of approximately 8% in younger AML
patients in the MRC AML 10 trial.'> AML arising from
prior bone marrow stem cell disorders, particularly
when the process is greater than 10 months in duration

prior to the development of AML, is less responsive to
chemotherapy, resu