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PREFACE 

This really is the golden age of Mathematics. It has been said that half 
the Mathematics ever created has been in the last 100 years and that half 
the mathematicians who have ever lived are alive today. We have seen such 
achievements as the resolution of the four-colour problem and Fermat's 
last theorem, with the latter being a special manifestation of a much more 
general result! 

This book consists of chapters that deal with important topics in 
Biomathematics. A glance through any modern textbook or journal in the 
fields of ecology, genetics, physiology or biochemistry reveals that there 
has been an increasing use of mathematics, which ranges from the solu
tion of complicated differential equation in population studies to the use of 
transfer functions in the analysis of eye-tracking mechanisms. This volume 
deals with Applied Mathematics in Biology and Medicine and is concerned 
with applied mathematical models and computer simulation in the areas of 
Molecular and Cellular Biology, Biological Soft Tissues and Structures as 
well as Bioengineering. 

In this volume an attempt has been made to cover biological background 
and mathematical techniques whenever required. The aim has been to for
mulate various mathematical models on a fairly general platform, making 
the biological assumptions quite explicit and to perform the analysis in rel
atively rigorous terms. I hope, the choice and treatment of the problems will 
enable the readers to understand and evaluate detailed analyses of specific 
models and applications in the literature. 

The purpose of bringing out this volume on Biomathematics dealing 
with interdisciplinary topics has been twofold. The objectives are to pro
mote research in applied mathematical problems of the Me sciences and 
to enhance cooperation and exchanges between mathematical scientists, 
biologists and medical researchers. This volume has both a synthetic and 
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analytic effect. The different chapters of the volume have been mostly con
cerned with model building and verification in different areas of biology and 
the medical sciences. 

I believe people in the entire spectrum of those with interest in ecology, 
from field biologists seeking a conceptual framework for their observations 
to mathematicians seeking fruitful areas of application, will find stimulation 
here. It may so happen that some readers may find some parts of this volume 
trivial and some of the parts incomprehensible. Keeping this in view the 
extensive bibliographies given at the end of each chapter do attempt to 
provide an entry to the corresponding areas of study. 

For over 35 years I have been engaged in teaching and research at several 
well-known institutions of India, Germany and North America. Publication 
of the series of books has been the fruit of a long period of collaboration 
together with relentless perseverance. My labour will be deemed amply 
rewarded if at least some of those for whom the book is meant derive 
benefit from it. 

I feel highly indebted to the contributors of this volume who have so 
kindly accepted my invitation to contribute chapters. The enormous plea
sure and enthusiasm with which they have accepted my invitation have 
touched me deeply, boosting my interest in the publication of the book. 

I constantly remember the extent of care my parents have taken to 
impart proper education to me. I am highly indebted to Srimat Swami 
Shankaranandaji Maharaj, seventh President of the Ramakrishna Math and 
the Ramakrishna Mission, Belur Math, Swami Tejasanandaji and Swami 
Gokulanandaji, the then Principal and Vice-Principal of the Ramakrishna 
Mission Vidyamandira, Belur Math and to the monastic members of the 
Ramakrishna Mission Calcutta Students' Home, Belgharia for their kind 
guidance and suggestions and for instilling in me, while I was still a col
lege and university student, a deep sense of total involvement in pursuing 
academic goals and a strong commitment to human values. 

It is a pleasure to acknowledge the moral support, help and encourage
ment that I have been receiving constantly in all my academic activities 
from my wife Shorasi and my children Subhas, Sumita and Sudip. 

I.I.T. Kharagpur J. C. Misra 

January, 2005 
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CHAPTER 1 

DETECTING MOSAIC STRUCTURES IN D N A 
SEQUENCE ALIGNMENTS 

DIRK HUSMEIER 

This article first provides a concise introduction to the statistical approach to 
phylogenetics. It then describes a new method for detecting mosaic structures 
in DNA sequence alignments, which is based on combining two probabilis
tic graphical models: (1) a taxon graph (phylogenetic tree) representing the 
relationships among the taxa, and (2) a site graph (hidden Markov model) 
representing spatial correlations between nucleotides. 

1. Introduction 

The recent advent of multiple-resistant pathogens has led to an increased 
interest in interspecies recombination as an important, and previously 
underestimated, source of genetic diversification in bacteria and viruses. 
The discovery of a surprisingly high frequency of mosaic RNA sequences 
in HIV-1 suggests that a substantial proportion of AIDS patients have 
been coinfected with HIV-1 strains belonging to different subtypes, and 
that recombination between these genomes can occur in vivo to generate 
new biologically active viruses [25]. A phylogenetic analysis of the bacterial 
genera Neisseria and Streptococcus has revealed that the introduction of 
blocks of DNA from penicillin-resistant non-pathogenic strains into sensi
tive pathogenic strains has led to new strains that are both pathogenic and 
resistant [16]. Thus interspecies recombination, illustrated in Figs. 8 and 9, 
raises the possibility that bacteria and viruses can acquire biologically 
important traits through the exchange and transfer of genetic material. 

In the last few years, a plethora of methods for detecting interspecies 
recombination have been developed — following up on the seminal paper 
by John Maynard Smith [16] — and it is beyond the scope of this article 
to provide a comprehensive overview. Instead, the focus will be on a novel 
approach, in which two probabilistic graphical models are combined: (1) a 
taxon graph (phylogenetic tree) representing the relationships among the 
species or strains, and (2) a site graph (hidden Markov model) representing 

l 
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interactions between different sites in the DNA sequence alignments. While 
at present this approach is still limited to deal with only small numbers 
of species or strains simultaneously, it has two advantages over existing 
(mostly heuristic) methods: first, it can predict the locations and break
points of recombinant regions more accurately than what can be achieved 
with most existing techniques. Second, it provides a proper probabilistic 
generative model. This implies that well-known methods from statistics, 
like maximum likelihood, can be applied to estimate the parameters. It also 
renders the model amenable to established statistical methods of hypothesis 
testing and model selection. 

The article is organized as follows. Section 2 provides a brief intro
duction to the statistical approach to phylogenetics. Section 3 explains 
the biological process of interspecific recombination. Section 4 provides a 
short recapitulation of hidden Markov models. Section 5 discusses a hybrid 
model — combining phylogenetic trees with hidden Markov models — for 
detecting recombination in DNA sequence alignments. Also, different ways 
of estimating the model parameters are discussed. Section 6 describes sev
eral DNA sequence alignments, on which the proposed model and training 
algorithms are tested. The results of these tests are discussed in Sec. 7. 
Finally, Sec. 8 contains a short summary and an outlook on future work. 

2. A Brief Introduction to Phylogenetics 

2.1. Topology and parameters of a phylogenetic tree 

The objective of phylogenetics is to infer the evolutionary relationships 
among different species or strains and to display them in a tree-structured 
graphical model called a phylogenetic tree. An example is given in Fig. 1. 
The leaves of the (unrooted) phylogenetic tree represent contemporary 
species, like chicken, frog, mouse, etc. The inner or hidden nodes repre
sent hypothetical ancestors, where a splitting of lineages occurs. These 
so-called speciation events lead to a diversification in the course of evo
lution, separating, for example, warm-blooded from cold-blooded animals, 
birds from mammals, primates from rodents, and so on. A phylogenetic tree 
conveys two types of information. The topology defines the branching order 
of the tree and the way the contemporary species are distributed among 
the leaves. For example, from Fig. 1 we learn that the mammals — human, 
chicken, mouse, and opossum — are grouped together, and are separated 
from the group of animals that lay eggs — chicken and frog. Within the 
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Frog G C T T G A C T T C T G A G G T T 
Chicken G C G T A A C T T C A C A T G A T 
Human G C G T C A C T T G A G A C G C T 
Rabbit G C G T C A C T T G A G A C G C T 
Mouse G C G T C A C T T G A C A G G C T 
Opossum G C G T C A C T T G A G A C G C T 

Human M o u s e 

Opossum 

Rabbit 

Chicken 

'Frog 

Fig. 1. Phy logeny and D N A sequence al ignment . The figure shows a phylogenetic 
tree for six species and a subregion of the DNA sequence alignment from which it is 
inferred. The topology of the tree is the branching order, that is, the way the species 
are distributed across the leaf nodes. The parameters of the tree are the branch lengths, 
which represent phylogenetic time. 

former group, opossum is grouped out, since it is a marsupial and there
fore less closely related to the other "proper" mammals. Exchanging, for 
instance, the leaf positions of opossum and rabbit changes the branching 
order and thus leads to a different tree topology. For n species there are, 
in total, (2n — 5)!! different (unrooted) tree topologies, as can easily be 
proved by induction (see, for instance [4, Chap. 7]). In what follows, we 
will use the integer variable S € {1 ,2 , . . . , (2n — 5)!!} to label the different 
tree topologies. 

The second type of information we obtain from a phylogenetic tree 
are the branch lengths, which represent phylogenetic time, measured by 
the average amount of mutational change. For example, Fig. 1 shows a 
comparatively long branch leading to the leaf with frog. This suggests that 
the splitting of the lineages separating frog from the other animals hap
pened comparatively long ago, that is, earlier than the other speciation 
events. This is a reasonable conjecture as frog is the only cold-blooded ani
mal, whereas all the other animals are warm-blooded. A (unrooted) tree 
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for n species has n — 2 inner nodes, and thus m = n + (n — 2) — l = 2n — 3 
branches. In what follows, individual branch lengths will be denoted by 
Wi, and the total vector of branch lengths will be denoted by w = 

(wi,...,w2n-3)-

2.2. DNA sequences and sequence alignments 

We now need a method to infer the correct topology of a tree and its 
branch lengths for a given set of species. As the driving force for evolution 
are mutations, that is, errors in the replication of DNA, it is reasonable to 
base our inference process on this information. This approach has recently 
become viable by major breakthroughs in DNA sequencing techniques. In 
July 1995, the entire 1.8 million base pairs of the genome of Haemophilus 
influenzae, a small Gram-negative bacterium, was published. Since then, 
the amount of DNA sequence data in publicly accessible data bases has been 
growing exponentially and is now about to claim its biggest triumph: the 
complete 3.3 billion base-pair DNA sequence of the entire human genome 
(for which a first draft was already released in June 2000). 

DNA is composed of an alphabet of four nucleotides, which come in two 
families: the purines adenine (A) and guanine (G), and the pyrimidines 
cytosine (C) and thymine (T). DNA sequencing is the process of determin
ing the order of these nucleotides. After obtaining the DNA sequences of 
the taxa of interest, we want to compare homologous subsequences, that 
is, regions of the genome that have been acquired from the same common 
ancestor. Also, one has to allow for nucleotide insertions and deletions. For 
example, a direct comparison of the sequences 

A C G T T A T A 
A G T C A T A 

gives the erroneously small count of only a single site with identical 
nucleotides. This is due to the insertion of a C in the second position of 
the first strand, or, equivalently, the deletion of a nucleotide at the second 
position of the second strand (the insertion of a so-called gap). A correct 
comparison leads to 

A C G T T A T A 
A - G T C A T A 

which suggests that the sequences differ in only two positions. The pro
cess of (1) finding homologous DNA subsequences and (2) correcting for 
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insertions and deletions is called DNA sequence alignment. A standard 
algorithm is Clustal-W, discussed in [28]. The details are beyond the scope 
of this article. 

Figure 1, top, shows a small section of the DNA sequence alignment 
used for inferring the tree at the bottom of Fig. 1. Rows represent different 
species or strains (generic name: taxa), columns represent different sites or 
positions on the DNA. At the majority of sites, all nucleotides are identi
cal, which reflects the fact that the compared sequences are homologous. 
At certain positions, however, differences occur, resulting from mutational 
changes during evolution. In the fifth column, for instance, human, rabbit, 
mouse, and opossum have a C, chicken has an A, and frog has a G. This 
reflects the fact that the first four species are mammals and therefore more 
closely related to each other than to the two remaining species. Note, how
ever, that the process of nucleotide substitution is intrinsically stochastic. 
We will therefore discuss, in the following two subsections, a mathematical 
model for statistical phylogenetic inference. 

2.3. A mathematical model of nucleotide substitution 

The driving force for evolution are nucleotide substitutions, which can be 
modelled as transitions in a 4-state state space, shown in Fig. 2. P(Y\X, w), 
where X, Y S {A, C, G, T} , denotes the probability of a transition from 
nucleotide X into nucleotide Y, conditional on the elapsed phylogenetic 
time w. The latter is given by the product of an unknown mutation rate A 
with physical time t: w = At. To rephrase this: P(Y\X, w) is the probability 
that nucleotide Y is found at a given site in the DNA sequence given that w 
phylogenetic time units before, the same site was occupied by nucleotide X. 

An intuitively plausible functional form for these probabilities is shown 
on the right of Fig. 2. For w = 0, there is no time for nucleotide sub
stitutions to occur. Consequently, P(A\A,w = 0) = 1, and P(C\A,w = 
0) = P(G\A,w = 0) = P{T\A,w = 0) = 0. As w increases, nucleotide 
substitutions from A into the other states lead to an exponential decay of 
P(A\A,w), and, concurrently, an increase of P(C\A,w), P(G\A,w), and 
P(T\A, w). This increase is faster for a mutation within a nucleotide class 
(purine —> purine, pyrimidine —+ pyrimidine), than between nucleotide 
classes (purine <-> pyrimidine). For w —> oo, the system "forgets" its 
initial configuration as the result of the mixing caused by an increasing 
number of nucleotide substitutions. Consequently, P(Y\X, w) —> II(Y), 
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P(AIA w) Transition-Transversion Ratio = 2 
1r 

P(GIA,W) 

. P(AIA,W) 

Fig. 2. Mathemat ica l model of nucleot ide subst i tut ions . Left: Nucleotide substi
tutions are modelled as transitions in a 4-state state space. The transition probabilities 
depend on the phylogenetic time w = act, where t is physical t ime and a is a mutation 
rate. Right: Dependence of the transition probabilities (vertical axis) on w (horizontal 
axis). The graphs were obtained from the Kimura model with a transition-transversion 
ratio of 2. 

where X,Y € {A,C,G,T}, and H(Y) is the equilibrium distribution (here 
n(Y) = l / 4 V y ) . 

Let yi(i) € {A, C, G, T} denote the nucleotide at site i and at physical 
time t. This notation will be used throughout this chapter: the subscript 
refers to the position in the alignment, while the expression in brackets 
denotes physical or (later) phylogenetic time. The total length of the align
ment is N, that is, i € { 1 , . . -, N}. The derivation of the aforementioned 
results is based on the theory of homogeneous Markov chains and the fol
lowing assumptions: 

• The process is Markov: 

P(yi{t + At)\yi(t), Vi{t - At), ...)= PfaQ + At)\yi(t)). 

• The Markov process is homogeneous: 

P(yi(s + t)\yi(s))=P(yi(t)\yi{0)). 

• The Markov process is the same for all positions: 

P(lte(t)||ft(0)) = P{vk{t)\yk(0)) Vi,ke{l,...,N}. 

• Substitutions at different positions are independent of each other: 
N 

P(yi(t),.. .,yN(f)\yi(0), • • .,yN(0)) = Y[P(yi(t)\yi(0)). 
»=i 
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This implies that the nucleotide substitution process at a given site is com
pletely specified by the following 4-by-4 transition matrix: 

P(«) 

P(.y(t) 
P(y(t) 

P(y(t) 
lP(y(t) 

A\y(0) 
G\y(0) 
C\y(0) 
T\y(0) 

A) 
A) 
A) 
A) 

P(y(t) 
P(y(t) 
P(y{t) 
P(y(t) 

A\y(0) 
G\y(Q) 
C\y(0) 
T\y(0) 

T) 
T) 

-T) 
T) 

(1) 

Because of the site independence, the site label (that is, the subscript) has 
been dropped to simplify the notation. Equation (1) obviously implies that 

P(0) = I, 

where I is the unit matrix. We now make the ansatz 

P(dt) = P ( 0 ) + Rdt, 

(2) 

(3) 

where R is the so-called rate matrix. From the theory of homogeneous 
Markov chains it is known that 

P( t + dt) = P(df)P(t), (4) 

which follows from the Chapman-Kolmogorov equation; see [10] or [22]. 
Inserting Eqs. (2) and (3) into (4) gives: 

P(* + dt) = (I + Rdt)P(t) 

and 

dP 
dt 

= R P . 

This is a system of linear differential equations with the solution 

P(t) = e R t . 

(5) 

(6) 

(7) 

To make sure that P(t) is a proper transition matrix, that is, has columns 
that sum to 1, the columns of the rate matrix R have to sum to 0. A 
possible design for R, the so-called Kimura model [15], is of the form 

R = 

2/3-a 

(3 
a 

P 

P 
- 2 / 3 - a 

P 
a 

a 

P 
-2/3-a 

P 

P 
a 

P 
-2 /3- a 

(8) 

Here, the rows (from top to bottom) and columns (from left to right) corre
spond to the nucleotides A, C, G, T (in the indicated order). The positive 
parameters a and /3 denote the rates of transitions (mutations within a 
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-2P-<x 

o 
A 

a 

G 

P 
* 

^ \ P 

0 

T 

Fig. 3. Kimura model of nucleotide subst i tut ions . The figure presents a par
tial graphical display of the rate matrix of Eq. (8), showing mutations out of 
nucleotide A. The positive parameter a. denotes the rate of a transition (purine —• 
purine, pyrimidine —» pyrimidine), while /3 denotes the rate of a transversion (purine «-» 
pyrimidine). 

nucleotide class: purine —> purine, pyrimidine —> pyrimidine) and transver
sions (mutations between nucleotide classes: purine «-» pyrimidine), respec
tively.'1 An illustration is given in Fig. 3. 

It can now be shown [15] that inserting (8) into (7) leads to 

•d(t) f(t) g(t) f(t) 

„Hi_ fit) d(t) f{t) g(t) 
g(t) f{t) d{t) fit) 

Jit) git) fit) d(t) 

Pit) (9) 

where 

/(*) J " -40t 
). 

Defining A 

d(t) = l-2f(t)-g(t). 

4/8, which implies that the phylogenetic time is given by 

w = Apt, (10) 

this results in 

f(w) = hl-e-") (11) 

aUnfortunately this terminology, which is used in molecular biology, leads to a certain 
ambiguity in the meaning of the word transition. When we talk about transitions between 
states, a transition can be any nucleotide substitution event. When we talk about tran
sitions as opposed to transversions, a transition refers to a certain type of nucleotide 
substitution. 
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d(w) 

(l + e-w-2e 

-2f(w)-g(w) 

^ (12) 

(13) 

(14) 

in which r denotes the transition-transversion ratio: 
a 

r = / r 
Denoting by P(Y\X, w) the probability that at a given site in the align
ment nucleotide Y is observed given that nucleotide X was at this site w 
phylogenetic time units before, we can re-write P , the transition matrix 
of (1), as follows: 

P(A\A,w) P(A\C,w) P(A\G,w) P(A\T,w) 
P(G\A,w) P{G\C,w) P(G\G,w) P(G\T,w) 
P{C\A,w) P(C\C,w) P{C\G,w) P{C\T,w) 

lP(T\A,w) P{T\C,w) P{T\G,W) P(T\T,w)j 

d(w) f(w) g(w) f(w)' 
/(to) d(w) /(to) g(w) 
g(w) f(w) d(w) /(to) 

P(u>) = 

(15) 

./(to) g(w) /(to) d{w)_ 

where d(w), /(to), and g(w) are given by (11)—(13). 
Setting r = 2 leads to the graphs on the right of Fig. 2 and the results 

discussed at the beginning of this section. 

2.4. Likelihood of a phylogenetic tree 

A phylogenetic tree is a directed acyclic graph (DAG), which allows the 
expansion of the joint probability of the nodes in terms of the transition 
probabilities of (15). This expansion is based on the factorization rule for 
directed graphical models (see, for instance [12]), according to which the 
joint probability of a set of random variables xi be factorized as 

TV 

P(xi,.. .,xN) = J J P(a;i|parents[xi]), (16) 

where parentsfxj] is the set of random variables corresponding to the subset 
of nodes with an arrow that feeds into a:,. 

Consider Fig. 4, left. The black nodes, labelled by y\, y^, 1/3, and 
1/4, represent contemporary species. The white nodes, labelled by z\ and 
Z2i represent hypothetical ancestors. We are interested in the probability 
P(yi,2/2, J/352/4,zi,Z21w, 5), where 2/1, 2/2, etc. represent nucleotides at the 
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kyi 

w1 

V) 
w2 / Z1 

Py2 

w5 -or" 
y " 

> 
W2 / Z 1 

• y 2 

=rVw3 
w5 V_y\w4 

z2\g 
y? 

Fig. 4. Phylogenet ic trees . Black nodes represent contemporary or extant species. 
White nodes represent hypothetical ancestors, where lineages bifurcate (speciation). Left: 
Undirected graph. Right: Directed graph. Node z\ is the root of the tree, and arrows are 
directed. 

respective nodes, w is the vector of all branch lengths, and S is a label 
defining the tree topology. Choosing, arbitrarily, z\ to be the root of the 
tree, see Fig. 4, right, the application of (16) gives: 

•P(yi.2/2,2/3,2/4,zi,Z2|w,S) 

= P{yi\zi,w1)P(y2\z1,W2)P(z2\z1,w5)P(y3\z2,w3)P(yi\z2,W4)'n(zi). 

(17) 

The equilibrium distribution over the four nucleotides, II(zi), is a parameter 
vector of the model. For example, in the Kimura model we have II(zi = 
A) = U(Zl = C) = n(zi = G) = n(zi = T) = 0.25. The other factors 
represent transition probabilities, which are defined in (15). 

Now, we assume that the transition matrix (15) is reversible: 

P(Y\X, w)U(X) = P(X\Y, w)n(Y), (18) 

where X,Y & {A, C, G, T}. Obviously, this holds true for the Kimura model 
discussed above. It can then be shown that the expansion of the joint prob
ability P(yi,y2,y3,2/4,21, 22|w, S) is independent of the root position. 

Compare, for instance, the three directed graphs in Fig. 5. We have 
just derived the expansion for the tree on the left; see (17). Applying the 
expansion rule (16) to the tree in the middle, we obtain: 

P(yi,y2,y3,y4,zi,z2\vf,S) 

= P(yi\zi,wi)P(y2\zi,w2)P{zi\z2,w5)P{yz\z2,wz)P{yi\z2,wi)'U.{z2). 

(19) 

Now, reversibility implies that P(zi\z2,W5)Tl(z2) — P(z2\zi,W5)U(z\), 
hence the expansions in (17) and (19) are identical. By the same token, 
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yi yi yi 

y2 y2 y2 

Fig. 5. Different root posi t ions . The figure shows three directed graphs with differ
ent root positions (shown in black). 

expanding the joint probability P(y\, 2/2,2/3,2/4, zi, 22 |w, S) according to the 
tree on the right of Fig. 5 gives 

P(yi,V2,2/3,2/4, zi, 22|w, 5) 

= F(2/l|^l,^l)P(2/2kl,W2)-P(^l|^2,U'5)-P(y4|22,W4)i:'(^2|?/3,ty3)n(2/3). 

(20) 

Applying reversibility, P(^|2/3,^3)11(2/3) = P(y3\z2,W3)Il(z2), this expan
sion is seen to be identical to (19) and hence (17). In the terminology of 
graphical models, the three directed graphs in Fig. 5 are distribution equiv
alent [12], that is, they represent the same joint probability distribution. 
In fact, a more rigorous proof [6] generalizes this finding to any phyloge-
netic tree: if the transition matrix is reversible, trees that only differ with 
respect to the position of the root and the directions of the arcs are equiv
alent. Consequently, we can choose the position of the root arbitrarily.13 

The factorization (17) allows us to compute the probability of a complete 
configuration of nucleotides. However, while we obtain the nucleotides of 
the extant species, yi, from the DNA sequence alignment, the nucleotides 
at the inner nodes, z$, are never observed. This requires us to marginalize 
over them, as illustrated in Fig. 6: 

P(yi, 2/2,2/3,2/4 |w, S) = Y^ X I p (y i - 2/2,2/3,2/4,21, Z2|w, 5). (21) 

There are efficient message-passing algorithms to carry out this marginaliza-
tion and decrease the computational complexity of the summation; see [6]. 

The upshot of this procedure is that for a given column y t in the align
ment, a probability P(y t |w , S) can be computed, which depends on the 

b In more recent phylogenetic models, this reversibility constraint has been relaxed. See, 
for instance [8]. 
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1 v ^ 4 1 ̂  v 4 1 4 1 4 

X, X, 2X3 2X3 
1 \ / 4 1 \ / 4 1 ̂  ^ 4 1 v - 4 

2 X 3 2 X 3 2 X 3 ,X3 
Ixl Ixl Ixl [xl 
:x :x :x :x 
Fig. 6. Marginal izat ion over hidden nodes. Leaf nodes represent extant taxa, 
which are observed (nucleotides in the DNA sequence alignment). Hidden nodes rep
resent hypothetical ancestors, which are not observed (nuisance parameters). To obtain 
the probability of an observation, that is, the probability of observing a given column of 
nucleotides at a certain position in the DNA sequence alignment, one has to sum over 
all possible configurations of hidden nodes. 

tree topology, S, and the vector of branch lengths, w. This can be done for 
every site, 1 < t < N, which allows, under the assumption that mutation 
events at different sites are independent of each other, the computation of 
the likelihood P(V\w, S) of the whole DNA sequence alignment V: 

N 

P(V\w,S) = Y[P(yt\w,S). (22) 
t= i 

This, in principle, opens the way to a maximum likelihood optimization of 
the tree: given a DNA sequence alignment V, the tree (S, w) most sup
ported by the data is the one that maximizes the likelihood: 

(5, w) = argmax{P(X>|w, S)}. (23) 
S,w 

More precisely, one should also state the dependence of the likelihood on 
the nucleotide substitution model and its parameters, which also need to 
be optimized so as to maximize the likelihood. For the Kimura model, dis
cussed above, we have one parameter: the transition-transversion ratio r . 
Two more complex model, the HKY85 model [11] and the Felsenstein 84 
model [5], have three further parameters: the equilibrium probabilities for 
the nucleotides, 11(A), 11(C), 11(G), II(T) (due to the constraint 11(A) + 
n(C) 4- 11(G) + II(T) = 1, there are three rather than four free param
eters). Recently, more complex nucleotide substitution models have been 
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developed, as reviewed in [23]. These details are beyond the scope of this 
article. To keep the notation simple, the dependence of the likelihood on 
the nucleotide substitution model will not be stated explicitly. 

A principled difficulty in applying the maximum likelihood method out
line here is that the optimization problem is NP hard. As mentioned in 
Sec. 2.1, n taxa give rise to (2n — 5)!! different (unrooted) tree topologies, 
that is, the number of different tree topologies increases super-exponentially 
with the number of taxa. In practice this means that for large numbers of 
taxa one has to resort to iterative, greedy search algorithms, which usually 
find only a local rather than the global maximum of the likelihood. Effective 
algorithms have been proposed in [6] and [5], and are implemented in the 
program DNAML of the PHYLIP software package [7]. For an introductory 
text, see also [4]. The details of these optimization algorithms will not be 
summarized here. Instead, this article will focus on a fundamental problem 
inherent in the phylogenetic analysis of certain bacteria and viruses. 

3. Recombination 

Conventional phylogenetic analysis, as described in the previous section, 
assumes that all sites in a DNA multiple alignment have the same evolution
ary history. This is a reasonable approach when applied to DNA sequences 
obtained from most species. However, this assumption is violated in certain 
bacteria and viruses due to interspecific recombination, which is a pro
cess that leads to the transfer or exchange of DNA subsequences between 
different strains. The resulting mixing of the genetic material by the for
mation of so-called mosaic sequences is likely to be an important source 
of genetic variation and is a process through which, for example, disease-
causing bacteria may acquire resistance to antibiotics. Figure 8 shows an 
example in which the incorporation of the genetic material from another 
strain leads to a change of the branching order (topology) in the affected 
region, which results in conflicting phylogenetic information from different 
regions of the alignment. If undetected, the presence of mosaic sequences 
can lead to errors in phylogenetic tree estimation. Their detection, there
fore, is a crucial prerequisite for inferring the evolutionary history of a set 
of DNA sequences. 

Figure 9 shows an example of recombination in HIV-1 [25]. The left 
subfigure shows a phylogenetic tree for eight established strains of HIV-1. 
The subfigure on the right shows a so-called circulating recombinant strain, 
denoted by ZR-VI 191. If the phylogenetic analysis is done on the basis of 
the env gene, this strain is found to be most closely related to the A strain. 
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Fig. 7. Stat ist ical approach t o phylogenet ics . For a given column yt in the align
ment, a probability P ( y t | w , 5) can be computed, which depends on the tree topology, 
5 , and the vector of branch lengths, w. This can be done for every site, 1 < t < N, 
which allows the computation of the likelihood P(I>|w, 5) of the whole DNA sequence 
alignment V = { y i , . . . , yN}. 

For a phylogenetic analysis based on the gag gene, ZR-VI191 is most closely 
related to the G strain. Ignoring recombination and treating the sequence 
of ZR-VI 191 as a monolithic entity will adversely affect the estimation 
of the branch lengths in the phylogenetic tree. For medical applications, 
determining a strain as a mosaic sequence of well-established strains can 
be important for vaccine development [25]. 

In the last few years, a plethora of methods for detecting interspecies 
recombination have been developed — following up on the seminal paper 
by John Maynard Smith [16] — and it is beyond the scope of this article to 
present a comprehensive overview. Many detection methods for identifying 
the nature and the breakpoints of the resulting mosaic structure are based 
on moving a window along the alignment and computing a phylogenetic 
divergence score for each window position. Examples are the bootstrap 
support for the locally optimal topology [26], the likelihood ratio between 
the locally and globally optimal trees [9], and the difference in the fitting 
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1 3 1 2 1 3 

.x«.x..>-<. 
Fig. 8. Influence of recombinat ion on phylogenet ic inference. The figure shows 
a hypothetical phylogenetic tree of four strains. Recombination is the exchange of DNA 
subsequences between different strains (top diagram, middle), which results in two 
so-called mosaic sequences (top diagram, margins). The affected region in the multi
ple DNA sequence alignment (shown by the shaded area in the middle diagram) seems 
to originate from a different phylogenetic topology, in which two branches of the phy
logenetic tree have been exchanged (bottom diagram, where the numbers at the leaves 
represent the four strains). Reprinted from [14], with permission from Mary Ann Liebert. 

Recombinant strain 

Fig. 9. Recombinat ion in HIV-1 . The left subfigure shows a phylogenetic tree for 
eight established strains of HIV-1. The subfigure on the right shows a so-called circulating 
recombinant strain, denoted by ZR-VI 191. If the phylogenetic analysis is done on the 
basis of the env gene, this strain is found to be most closely related to the A strain. For 
a phylogenetic analysis based on the gag gene, ZR-VI 191 is most closely related to the 
G strain. 
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scores between two adjacent locally optimized trees [17]. The determination 
of the breakpoints of the mosaic structure is then based on an analysis of 
the signals thus obtained, using bootstrapping to estimate their significance. 
While these methods are useful for a preliminary scan of a DNA sequence 
alignment, the spatial resolution for the identification of the breakpoints is 
typically of the order of the window size and, consequently, rather poor. 

This chapter discusses a different approach, which was first suggested 
in [13]. The idea is to introduce a hidden state, which represents the tree 
topology at a given site. A state transition from one topology into another 
corresponds to a recombination event. To introduce correlations between 
adjacent sites, a site graph is introduced, representing which nucleotides 
interact in determining the tree topology. To keep the mathematical model 
tractable and the computational costs limited, interactions are reduced to 
nearest-neighbour interactions. The natural framework for modelling such 
a system is a hidden Markov model, whose application to the detection of 
recombination was first suggested in [18]. The next section provides a brief 
introduction to hidden Markov models. 

4. A One-Minute Introduction to Hidden Markov Models 

Assume you are in a casino and take part in some (hopefully legal) gambling 
game involving a die. You are playing against two players: a fair player, who 
uses a fair die, and a corrupt player, who uses a loaded die. The situation 
is illustrated in Fig. 10. Unfortunately, the other players are hidden behind 
a brick wall, and all you observe is a sequence of die faces; see Fig. 11. The 

H 0 0 0 0 0 0 0 0 0 0 HI 
Fig. 10. Corrupt casino 1. Two players are in a casino: a fair player (right) using a 
fair die, and a corrupt player (left) using a loaded die. 
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• • • • * * * * * * * * * 

Fig. 11. Corrupt casino 2. The player is hidden behind a brick wall, and only the die 
faces are observed. The problem is to predict which player is rolling the die at a given 
time t. 

S_1 S_2 

o—o-
s_t s_(t+1) 

O—O 
1 1 ' I I 
• • • • • 

s_N 

6 

y_i y_2 y_t yJt+1) y_N 

Fig. 12. Hidden Markov model . Black nodes represent observed random variables 
(the die faces), white nodes represent hidden states (the players), and arcs represent 
conditional dependencies. The joint probability factorizes into a product of emission 
probabilities (vertical arrows) and transition probabilities (horizontal arrows). The pre
diction task is to find the most likely sequence of hidden states given the observations. 

task is to predict which player is rolling the die at a given time, and to 
predict the breakpoint where the corrupt player is taking over (in order to 
nab him). 

If the decision of a player to pass the die on to the other player is made 
instantaneously on the basis of the current situation without considering 
the earlier past, the process corresponds to a hidden Markov model (HMM), 
shown in Fig. 12. Here, black nodes represent observed random variables yt 
(the die faces) at different moments in time t, white nodes represent hidden 
states St (the players) at different times, and arcs represent conditional 
dependencies. The task is to find the most likely sequence of hidden states 
given the observations, that is, the mode of 

P(S\y)=P(S1,...,SN\y1,...,yN). (24) 

At first, this task seems to be intractable: for K different states (here: 
K = 2 for "fair" and "corrupt") and a sequence of length N, there are 
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KN different state sequences. Hence, an exhaustive search seems to be 
impossible for all but very short sequence lengths N. Fortunately, there 
is a dynamic programming method, the so-called Viterbi algorithm, which 
reduces the computational complexity to O(N) (that is, linear in N) by 
exploiting the sparseness of the connectivity of the graph in Fig. 12. 

Recall that in a directed graphical model the joint probability of the 
random variables X\,..., XN can be factorized according to (16). The appli
cation of this formula to the graph in Fig. 12 gives: 

N N 

P(yu ...,VN,SI,...,SN) = H P(yt\St) J J P(St\St-i)P(Si). (25) 
t = l t=2 

We refer to P(yt\St) as the emission probabilities (corresponding to the 
vertical edges), P(St\St-i) as the transition probabilities (which correspond 
to the horizontal edges), and P(Si) as the initial probability. From (25) we 
obtain the recursion: 

7n(Sn) = 0 max lnP(j/i, ...,yn,Si,..., Sn) 

max 
5i , . . . ,5 n^i 

J2^P(yt\St) + ] T > P(St\St-!)+ In P(5i ) 
_ t= l t=2 

n - 1 

= \nP(yn\Sn) + max 
Sn-l 

n - 1 

lnP(S ,
n |5„- i ) + o max 

Sl,...,S„-2 
E lnp(^i5*) 
1=1 

+ 5 3 l n P ( 5 t | 5 t - i ) + I n P ( 5 i ) 
t = 2 

= lnP(y„ |5 n) +max[lnP(5 r l |5„- i ) + 7 n - i ( 5 „ - i ) ] . (26) 
Sn-i 

Obviously: 

max P(Si , . . . ,5 jv |y i , - . . ,y ;v) = max lnP{yi,.. .,yN,Si,... ,SN) 
SI,...,SN SI , . . . ,SJV 

- max7jV(5'^) (27) 
SN 

and the mode, P ( S i , . . . ,SW|t/i, • • • ,2/AT), is obtained by recursive back
tracking: 

Initialization: 

SN = argmax7Ar(Sjv)- (28) 
Sjv 
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Recursion: 

5„_i = argmax [ lnP(5„ |5„_i) + 7 n - i ( 5 „ - i ) ] . (29) 
Sn-l 

The computational complexity of a single step of the recursions (26) 
and (29) is 0(K2), that is, it only depends on the number of different states 
K but is independent of the sequence length N. The total computational 
complexity of the algorithm is thus linear in N, which is a considerable 
improvement over the naive method, which was KN. For a more detailed 
exposition of this topic, see [24]. 

5. Detecting Recombination with Hidden Markov Models 

5.1. The model 

Let us now study how HMMs can be applied to model mosaic structures 
in DNA sequence alignments. Here, the hidden state represents the phy-
logenetic tree topology at a given site. For four taxa, for instance, there 
are three possible tree topologies, shown in Fig. 13. The subscript t now 
represents sites in the DNA sequence alignment rather than time, hence 
St is the hidden state corresponding to the tth site in the alignment. The 
observations yt are the columns of the DNA sequence alignment, that is, 
y t is the vector with the nucleotides of all the taxa at the tth site in the 
alignment. For a given tree, we can compute the probability of y t , as dis
cussed in Sec. 2.4 and illustrated in Fig. 7. Hence for a given DNA sequence 
alignment V = ( y i , . . . ,yjv), we can apply the Viterbi algorithm to find 
the most likely sequence of hidden states, Si,..., SN, that is, the mode of 
P(S\,..., SW|yi, • • • > YN)- Recombination events then correspond to state 
transitions in the Viterbi path. 

Recall that in an HMM, the joint probability factorizes into the prod
uct of the emission probabilities, P(y t |S t ) , and the transition probabilities, 
P(St\St-i), where the latter correspond to recombination events. With K 

1 3 1 2 1 3 . x . 3x4 ,x2 
State 1 State 2 State 3 

Fig. 13. Different tree topologies for four taxa . Shown are the three possible 
phylogenetic tree topologies for four taxa. Species 1 can be clustered with species 2, 3, 
or 4. Reprinted from [14], with permission from Mary Ann Liebert. 
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different tree topologies, there are, in principle, K(K — 1) transition prob
abilities to be specified. However, given that recombination is likely to be a 
rare event, it would hardly be possible to reasonably infer these parameters 
from the DNA sequence alignment (over-fitting), nor is it likely that detailed 
prior knowledge is available to decide on these parameters in advance. For 
this reason, only one free parameter was used in [18]: the overall probability 
that no recombination occurs. This is similar to an approach taken in [5] for 
modelling rate variation among sites. Let v be the probability that the tree 
topology remains unchanged as we move from a given site in the alignment, 
t, to an adjacent site, t +1 or t — 1. We then obtain for the state transition 
probabilities: 

P(St\St-i) = v6(Su St-i) + j ^ [ l - 6(SU St^)} 

IT=T) ' (30) 

where 5(St,St-i) denotes the Kronecker delta function, which is 1 when 
St = St-i, and 0 otherwise. It is easily checked that this satisfies the nor
malization constraint J^5 P(St\St-i) = 1. For the emission probabilities, 
recall from Sec. 2.4 and Fig. 7 that for a given nucleotide substitution 
model, the probability of a column vector yt depends both on the tree 
topology, St, and the vector of branch lengths corresponding to this topol
ogy, ws, . To simplify the notation, let us introduce the accumulated vector 
of all branch lengths in all possible topologies, w = ( w i , . . . , WK)I a n d 
define: P(yt\St,vfst) = P(yt\St,w)- This means that St indicates which 
subvector of w applies. We can depict the dependence of the probability 
distribution on the parameters w and v in an extended graphical model, 
shown in Fig. 14. Applying the Viterbi algorithm gives us the most likely 
hidden state sequence conditional on the observations (that is, the DNA 
sequence alignment) and the parameters w and v. 

a rgmaxF(5 i , . . . , 5 jv |y i , . . . , yjv, w, v). (31) 
SI,...,SN 

We thus need a way to estimate these parameters. 

5.2. Naive parameter estimation 

A straightforward way to estimate the branch lengths w seems to be a 
separate maximum likelihood optimization for each possible tree topology. 
This can be accomplished with the methods described at the end of Sec. 2.4, 
and was applied in [18]. However, Fig. 8 points to a serious shortcoming 

file:///St-i
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O-O— - —' 

Fig. 14. Model l ing recombinat ion wi th a hidden Markov model . Positions in 
the model, labelled by the subscript t, correspond to positions in the DNA sequence 
alignment. Black nodes represent observed random variables; these are the columns in 
the DNA sequence alignment. White nodes represent hidden states; these are the different 
tree topologies, as shown in Fig. 13. Squares represent parameters of the model: the vector 
of branch lengths w, and the recombination parameter v. Arcs represent conditional 
dependencies. The probability of observing a column vector yt at position t in the DNA 
sequence alignment depends on the tree topology St and the vector of branch lengths w. 
The tree topology at position t depends on the topologies at the adjacent sites, St-i 
and S(+i , and the recombination parameter v. 

of this approach. For a proper estimation of the branch lengths of the 
recombinant tree, that is, the tree that corresponds to the shaded centre 
region of the alignment, one would have to base the parameter estimation on 
this very region of the alignment. Unfortunately, its location is not known 
in advance. Estimating the branch lengths from the whole DNA sequence 
alignment leads to seriously distorted values — see Fig. 15 — since the 
estimation includes data for which the tree topology is incorrect. A heuristic 
way to address this problem, suggested in [18], is to estimate the branch 
lengths from a subregion of the alignment. The length of this region should 
be matched to the length of the recombinant region, which, however, is not 
known in advance. Also, this approach does not offer a way to estimate the 
recombination parameter v. 

5.3. Maximum likelihood 

A solution to this problem, proposed in [14], is a proper maximum likelihood 
estimation of the parameters so as to maximize 

L(w, v) = In P(V\w, i/) = In ^ P(V> S K ") (32) 
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1 4 

3 2 

Fig. 15. Effect of na ive p a r a m e t e r e s t i m a t i o n . The left figure shows the correct 
recombinant tree, corresponding to the recombinant region in the alignment of Fig. 8. 
The right figure shows the tree that results from a maximum likelihood estimation of 
the branch lengths from the whole DNA sequence alignment. This includes the flanking 
regions — shown in white in Fig. 8 — where the recombinant tree topology is incorrect. 
Obviously, the branch lengths have been significantly distorted, with a contraction of 
the internal branch and an extension of the external branches. Reprinted from [14], with 
permission from Mary Ann Liebert. 

with respect to the vector of branch lengths w and the recombination 
parameter v. This requires a summation over all state sequences S = 
(Si,... ,SN), that is, over KN terms. For all but very short sequence 
lengths N this is intractable. A viable alternative, however, is the expecta
tion maximization (EM) algorithm [3]. Let Q(S) denote an arbitrary prob
ability distribution over the hidden state sequences, and define 

U(w, v) = Yl Q(S)ln P(V' S K ") - E 2(S) l n3(S)- (33) 
s s 

We are interested in the posterior distribution of the hidden state sequences, 
P(S\V, w, v), given the DNA sequence alignment, X>, and the parameters, 
w and v. The difference between <5(S) and P(S\T>, w, v) is measured by 
the Kullback-Leibler divergence 

*i{Q,P)-Ee(S>l»(p^Ly). (34) 

which is always non-negative, and zero if and only if Q = P. The proof, 
which is based on the concavity of the logarithm, is straightforward. Now, 
combining (33) and (34), we can rewrite the likelihood of (32) as 

L(w,v) = U(-w,v) + KL(Q,P). (35) 

This decomposition was first suggested in [20], and can easily be proved by 
recalling that P(V,3\w,v) = P(S|Z>,w,i/)P(P|w,i/) and £ s < ? ( S ) = 1. 
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L 

U=L U 
L -

U 
KL 

E-step M-step 

Fig. 16. I l lustration of the E M algorithm. U is a lower bound on the log likeli
hood L, with a difference given by the Kullback-Leibler divergence KL. The E-step sets 
KL to zero. Since the model parameters are kept constant, the log likelihood L is not 
changed. The M-step adapts the model parameters so as to maximize U. Since U is a 
lower bound on L, this also increases L. 

Since KL(Q,P) is non-negative, U is a lower bound on L: £/(w,i/) < 
L(w, i>). The EM algorithm alternates between optimizing the distribution 
over the hidden states Q(S) (the E-step) and optimizing the parameters 
given Q(S) (the M-step). The E-step holds the parameters fixed and sets 
Q to the posterior distribution over the hidden states given the param
eters, Q(S) = P(S\V, w, u). This sets KL(Q,P) = 0 and, consequently, 
L(w, u) = f/(w, v). The M-step holds the distribution Q(S) fixed and com
putes the parameters w, v that maximize U. Since L(w, v) = U(w, v) at 
the beginning of the M-step, and since the E-step does not affect the model 
parameters, each EM cycle is guaranteed to increase the likelihood unless 
the system has already converged to a (local) maximum (or, less likely, a 
saddle point). An illustration of the algorithm is given in Fig. 16. 

Now, similar to the discussion in Sec. 4, we can exploit the sparseness of 
the connectivity of the underlying graphical model and simplify the maxi
mization of U considerably. From the factorization (25) we have: 

P ( P , S | w , i / ) = P ( y i , . . . ) y A r , S i l . . . , 5 J V | w , i / ) 
N N 

= np(y'l5*>w)IIp(5*l5t- i' , /) i>(51)- (36) 
t = l t=2 

Inserting (36) into (33) gives 

U(w,u) = £ Q ( S ) £ > P ( y t | S t , w ) 
s t=i 

N 

+ £Q(S)X>P(S t |S t_1 , i /) + C, (37) 
t=2 
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where C is independent of the parameters w and v. Equation (37) simplifies 
considerably. The first term allows immediate marginalization over all but 
one state St in the state sequence S: 

N N K 

£ Q ( S ) £ l n P ( y t | S t , w ) = £ £ Q(St)\nP(yt\Suw). (38) 
s t=i t=i st=i 

For the second term, recall the definition of the transition probabilities 
P(St\St-i,v) in (30), define 

N N K 

* = E E Q(s)s(Su st-i) = J2 E Q(s*> 5*-i = 5*) (39) 
S t=2 t=2 S t = l 

and note that 
N 

52Y,Q(8)[l-5(St,St-1)}=N-l-V. (40) 
S t=2 

This gives 

N / 1 _ \ 
^ Q ( S ) 53lnP(5t|5t_i,i/) = *lnI/ + ( J V - l - * ) l n ( - ^ - ^ ) . (41) 

S t=2 ^ ' 

Inserting (38) and (41) into (37), we obtain: 

N K 
U = E E Q(St)lnP(yt\Suw) + tflni/ 

t=i s,=i 

+ ( A r - l - ^ ) l n ( l ^ - ) + C . (42) 

Note that U only depends on the marginal univariate probability Q{St), 
and the marginal two-variate probability Q(St,St-i) (via (39)), but no 
longer on the multivariate joint probability Q(S). 

5.3.1. E-step 

The probabilities Q(St) and Q(St,St+i) are updated in the E-step, where 
we set: 

Q(St) ^ P(St\V,w,u) (43) 

Q(St-i,St) -> P ( 5 t _ i , 5 t p , w , i / ) . (44) 

These computations are carried out with the forward-backward algorithm 
for HMMs [24], which is a dynamic programming method that reduces the 
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computational complexity from 0(KN) to O(N). The underlying principle 
is similar to that of the Viterbi algorithm, discussed in Sec. 4, and is based 
on the sparseness of the connectivity in the HMM structure. Details are 
beyond the scope of this chapter, and the interested reader is referred to the 
tutorial [24], or textbooks like [1] and [4], which also discuss implementation 
issues. 

Now, all that remains to be done is to derive update equations for the 
parameters w and v so as to maximize the function U (M-step). 

5.3.2. M-step: Optimization of the recombination parameter 

Setting the derivative of U with respect to v to zero, ^ = 0, we obtain 

This optimization is straightforward since, as seen from (39), $ only 
depends on Q(St-i,St), which is obtained by application of the forward-
backward algorithm (see above). 

5.3.3. M-step: Optimization of the branch lengths 

Only the first term on the left-hand side of (42) depends on the branch 
lengths w. This requires a maximization of 

N K 

£ £ Q ( S t ) l n P ( y t | S t ) w ) , (46) 
t=i st=i 

which can be achieved with standard phylogenetic programs, like PHYLIP 
(mentioned in Sec. 2.4). The only modification required is the introduction 
of a weighting factor Q(St) for each site, as illustrated in Fig. 17. 

5.3.4. Reason for not optimizing the prior probabilities 

In principle, U has a further set of parameters that need to be optimized: the 
K—\ prior probabilities P{S\) (see (36)). Due to the rarity of recombination 
events, however, a maximum likelihood approach would most probably lead 
to over-fitting. Also, since DNA sequence alignments are usually sufficiently 
long, N » K, the influence of P(Si) on the mode of P(S\,..., SN\T>) is 
negligible. It therefore seems to be reasonable to keep the prior probabilities 
constant: P(Si) = £ VSi G { 1 , . . . , K}. 
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Q(sj) Q(s_t) Q(aj) 

1 1 

Standard Window E M 

Fig. 17. Nuc leot ide weighting s chemes . The figure shows three nucleotide weighting 
schemes for estimating the branch lengths of the phylogenetic trees. The bottom of each 
figure represents a multiple DNA sequence alignment with a recombinant zone, printed 
in grey, in the middle. Left: Naive approach, suggested in [18], where the tree param
eters are estimated from the whole alignment. This corresponds to constant weights, 
Q(St) = 1 Vt. Middle: Heuristic window method, also suggested in [18], where the tree 
parameters are estimated from a subregion of the alignment. The length of this region 
should be matched to the length of the recombinant region, which, however, is not known 
in advance. Right: Maximum likelihood with the EM algorithm. The dashed line shows 
the site-dependent weights Q(St = TR) for the recombinant topology TR, the solid line 
represents the weights for the non-recombinant topology To : Q(St = To). Note that 
in this scheme the weights Q(St) are updated automatically in every iteration of the 
algorithm as a natural consequence of the optimization procedure (E-step). Reprinted 
from [14], with permission from Mary Ann Liebert. 

5.3.5. Algorithm 

The implementation of the parameter update scheme is straightforward and 
can be accomplished with the following algorithm: 

(1) Initialize the parameters w and v. This can be done as in [18], that 
is, by choosing a plausible recombination rate and by estimating w, 
for each of the topologies, with a phylogenetic program like DNAML 
from the whole alignment. 

(2) Compute Q(St) and Q(St~i,St) with the forward-backward algo
rithm for HMMs. 

(3) Compute $ from (39) and adapt v according to (45). 
(4) For t — 1 to N: weight the ith column in the multiple sequence 

alignment, yt, by Q(St), and optimize the branch lengths w so as 
to maximize U(w) in (46). This can, in principle, be achieved with 
a standard phylogeny program, like DNAML of the PHYLIP pack
age [7]. The only change required is the introduction of a weighting 
scheme for the sites in the alignment. 

(5) Test for convergence. If the algorithm has not yet converged, go back 
to step 2. 

Note that this algorithm can be interpreted as a modified version of the 
Baum-Welch algorithm; see [24]. 
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6. Test Data 

The viability of the proposed HMM scheme was tested on the following 
three DNA sequence alignments. 

6.1. Synthetic data 

DNA sequences, 1000 nucleotides long, were evolved along a 4-species tree, 
using the Kimura model of nucleotide substitution, which was described in 
Sec. 2.3. The transition-transversion ratio was set to r = 2. Two recombina
tion events were simulated by exchanging the indicated lineages, as shown 
in Fig. 18. 

6.2. Gene conversion in maize 

When looking at the distribution of genes within genomes, one finds that 
many genes, rather than existing as individual copies, are part of a larger 
family of related genes called a multigene family. A special form of recom
bination, which takes place in multigene families and contributes greatly 
to their evolution, is gene conversion. This process occurs when the DNA 
sequence of one gene is replaced (or "converted") by the DNA sequence 
from another; for further details, see, for instance [21], Chapter 3. Evi
dence for gene conversion between a pair of maize actin genes (involv
ing Maz56 and Maz63; see below) has been reported in [19]. In the 
present study, the following four maize sequences were analyzed: Maz56 
(GenBank/EMBL accession number U60514), Maz63 (U60513), Maz89 
(U60508), and Maz95 (U60507). As discussed in Sec. 2.2, prior to any 
phylogenetic analysis the DNA sequences need to be aligned. This was 
done with the program Clustal-W [28], using the default parameter set
tings and discarding columns with gaps. The three hidden states of the 
HMM are defined as follows. State 1: ((Maz56,Maz63),(Maz89,Maz95)); 

Fig. 18. Synthet ic D N A sequence al ignment. Two recombination events are sim
ulated by swapping the indicated lineages. Defining the predominant tree topology as 
state 1, the first recombination event corresponds to a transition into state 2, while the 
second event corresponds to a transition into state 3. 
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state 2: ((Maz56,Maz89),(Maz63,Maz95)); state 3: ((Maz56,Maz95), 
(Maz63,Maz89)). 

6.3. Recombination in Neisseria 

One of the first indications for interspecific recombination was found in 
the bacterial genus Neisseria [16]. The analysis in this study was done on a 
subset of the 787 nucleotide Neisseria argFDNA multiple alignment studied 
in [29], selecting the following four strains: (1) N. gonorrhoeae (X64860), 
(2) N. meningitidis (X64866), (3) N cinera (X64869), and (4) N. mucosa 
(X64873) (GenBank/EMBL accession numbers are in brackets). Zhou and 
Spratt [29] found two anomalous, or more diverged regions in the DNA 
alignment, which occur at positions t = 1 — 202 and t = 507 — 538.c In the 
rest of the alignment, N. meningitidis clusters with N. gonorrhoeae (defined 
as state 1 in our HMM), while between t = 1 and t = 202, they found that 
it is grouped with N. cinera (defined as state 3 in our HMM). Zhou and 
Spratt [29] suggested that the region t = 507 — 538 was more diverged as a 
result of rate variation. An illustration is given in Fig. 19. 

State 1 

Fig. 19. Recombinat ion in Neisseria. According to [29], a recombination event cor
responding to a transition from state 1 into state 3 has affected the first 202 nucleotides 
of the DNA sequence alignment. A second more diverged region seems to be the result 
of rate variation. 

cNote that Zhou and Spratt [29] used a different labeling scheme, with the first nucleotide 
at t = 296, and the last one at t = 1082. 
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7. Simulation 

Both training schemes, the heuristic method described in Sec. 5.2, and the 
maximum likelihood approach described in Sec. 5.3, were tested on the 
three DNA sequence alignments. The application of the heuristic method 
was similar to [18]. For each of the three possible tree topologies, the branch 
lengths were estimated separately with maximum likelihood on the whole 
alignment, using the Kimura model of nucleotide substitution, which was 
described in Sec. 2.3. The practical computation was carried out with the 
program DNAML of the PHYLIP package [7]. The transition-transversion 
ratio r was optimized with maximum likelihood, using the program pack
age PUZZLE [27]. The recombination parameter was set to v = 0.8. As 
opposed to [18], the optimization was not restricted to subsets of the 
alignments, since the subset size is a parameter that cannot be properly 
optimized. 

The maximum likelihood approach followed the procedure described in 
Sec. 5.3, optimizing all the parameters simultaneously with the EM algo
rithm. The initial recombination parameter was set to v = 0.8, as for the 
heuristic approach, and the initial probabilities for the three tree topologies 
were set to equal values: P(Si = 1) = P{Si = 2) = P(Si = 3) = 1/3. The 
EM algorithm typically took about 10-30 EM steps to converge, depending 
on the data set. Further details can be found in [14]. 

After parameter estimation, the classification of a site can be based 
on the mode of the posterior probability P(St\T>), that is, set St = k if 
P(St = k\V) > P(St = i\V)Vi ^ k. A problem of this approach is that 
even if 5 t = kt maximizes P(St\T>) for all t € { 1 , . . . , N}, it is not guar
anteed that (fci, A)2) • • •, fcjv) maximizes P(Si,S2, • • •, <SW|P) [24].d There
fore, a better approach is to base the classification of the sites St directly 
on the mode of the joint posterior probability P(Si, S2, • • •, 5W|I>), which 
can be computed with the Viterbi algorithm, described in Sec. 4. How
ever, the deviation between the predictions based on the mode of the 
marginal posterior probabilities P(St\T>) and the joint posterior probabil
ity P(Si, 5 2 , . . . , £TV|P) was found to be negligible in the simulation stud
ies described here, and the marginal posterior probability P(St\T>) has the 
advantage that it can be graphically displayed. 

dAssume, for instance, that St = fct maximizes P{St[D) and St+i = fct+i maximizes 
P{St+i\V), but that P(St+i = kt+i\St = fct) = 0. Then P{St = ku St+i = fet+i|X>) = 0, 
so (fct, fct+i) is not the mode of P(StSt+i\T>)-
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This visualization has been done in Figs. 20-22, which show the results 
obtained with the two training methods on the three DNA sequence align
ments. Each figure contains two subfigures: the left subfigure shows the 
results obtained with the heuristic training scheme, and the right subfigure 
shows the results obtained with the maximum likelihood scheme. Each sub-
figure is composed of three graphs. These graphs show the posterior proba
bilities for the three topologies, P(St = 1\V) (top), P(St = 2\T>) (middle), 
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Fig. 20. De tec t ion of recombinat ion in the synthet ic D N A sequence align
ment . The figure contains two subfigures, where each subfigure is composed of three 
graphs. These graphs show the posterior probabilities for the three topologies, P(St = 
1|X>) (top), P(St = 2|£>) (middle), P(St = 3|£>) (bottom), plotted along the DNA 
sequence alignment (the subscript t denotes the position in the alignment). Left: Heuris
tic training scheme. Right: Parameter estimation with maximum likelihood. 
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Fig. 21. De tec t ion of gene conversion between two maize act in genes . The 
figure contains two subfigures, where each subfigure is composed of three graphs, as 
explained in the caption of Figure 20. Left: Heuristic training scheme. Right: Parameter 
estimation with maximum likelihood. 
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Fig. 22. Detec t ion of recombinat ion in the Neisseria D N A sequence align
ment . The figure contains two subfigures, where each subfigure is composed of three 
graphs, as explained in the caption of Fig. 20. Left: Heuristic training scheme. Right: 
Parameter estimation with maximum likelihood. 

and P(St = 3|P) (bottom), plotted along the DNA sequence alignment 
(recall that the subscript t denotes the position in the alignment). The 
probabilities are computed with the forward-backward algorithm, which 
was mentioned in Sec. 5.3, and is discussed at length in [24]. 

7 .1 . Synthetic DNA sequence alignment 

Figure 20 shows the results obtained on the synthetic DNA sequence align
ment. For the heuristic training scheme (left subfigure) the overall pat
tern of the posterior probabilities is correct, showing an increase for state 
St = 2 in the region 200 < t < 400, and an increase for state St = 3 in 
the region 600 < t < 800. However, the signals are very noisy, and an auto
matic classification based on the mode of the posterior probability would 
incur a high proportion of erroneously predicted topology changes. This 
shortcoming is significantly improved as a result of using the maximum 
likelihood scheme. The predicted state transitions coincide with the true 
breakpoints, and the tree topologies are predicted correctly. The posterior 
probabilities for the states, P(St\T>), are mostly close to zero or one. This 
indicates a high confidence in the prediction, which is reasonable: since the 
DNA sequence alignment results from the simulation of a recombination 
process, the transitions between topologies are, in fact, well defined. The 
estimated recombination parameter is v = 0.992. With four breakpoints in 
an alignment of length 1000 nucleotides, the correct value for the recom
bination parameter is v = 0.996, which deviates from the prediction by 
only 0.4%. 

a 
f l ; 
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7.2. Gene conversion in maize 

The prediction on the maize DNA sequence alignment is shown in Fig. 21. 
When using the heuristic parameter estimation method (left), the overall 
pattern of the graphs P(St\V) captures the gene conversion event in that 
the final section shows a clear increase of the posterior probability for state 
St = 3. However, the signals are very noisy and unsuitable for an automatic 
detection of gene conversion without human intervention. The application 
of the maximum likelihood scheme leads to a clear improvement: a sharp 
transition from state St = 1 to state St = 3 is predicted in accordance with 
the gene conversion event found in [19]. 

7.3. Recombination in Neisseria 

Figure 22 shows the prediction obtained on the Neisseria DNA sequence 
alignment. The heuristic training method (left) leads to a signal that is very 
noisy and only gives a vague indication of a topology change at the begin
ning of the alignment. Estimating the parameters with maximum likelihood 
leads to a considerable reduction in the noise. A topology change from state 
St = 3 to St = 1 with a breakpoint at site t = 202 is predicted, which is 
in accordance with the findings in [29]. Also, the second anomalous region 
between sites t = 507 and t = 538 is clearly detected in that the poste
rior probability for state 1, P(St = 1|X>), is significantly decreased, with 
sharp transitions at the sites predicted in [29]. However, while the HMM 
predicts a recombination event corresponding to a transition from state 1 
into state 2, the findings in [29] suggest that this mosaic segment is more 
likely the result of rate variation than recombination. This will be discussed 
in more detail below. 

8. Discussion 

We have combined two probabilistic models for detecting interspecific 
recombination in DNA sequence alignments: (1) a taxon graph (phyloge-
netic tree) representing the relationships among the taxa, and (2) a site 
graph (HMM) representing which nucleotides interact in determining the 
tree topology. The parameters of the combined model can be estimated in a 
maximum likelihood sense with the EM algorithm, and this leads to a sig
nificant improvement on an older heuristic parameter estimation scheme. 
In fact, the simulation study carried out here suggests that recombinant 
regions can be accurately located, in agreement with the true location 
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(simulation study) or the location predicted in previous, independent work 
(maize actin genes, Neisseria). 

Two limitations of the approach presented here, however, have to be 
discussed. 

Each possible topology constitutes a separate hidden state of the HMM. 
Now recall, from Sec. 2.1, that for n taxa there are (2n — 5)!! different 
unrooted tree topologies. This implies that the number of states K increases 
super-exponentially with the number of taxa, which limits our algorithm to 
alignments of small numbers of taxa. In practical applications, the HMM 
method is therefore at best combined with a fast low-resolution preprocess
ing step that can analyze more taxa simultaneously. A useful approach is to 
conduct the initial search for recombination with split decomposition [2], 
a method that represents evolutionary relationships among sequences by 
a network if there are conflicting phylogenetic signals in the data. Split 
decomposition itself does not allow individual recombination events to be 
identified nor the statistical support for them to be assessed. It is, however, 
a useful preprocessing step in that a network that strongly deviates from a 
bifurcating tree is suggestive of recombination and gives hinds as to which 
sequences might belong to candidate recombinant strains. This can then 
be further investigated with the high-resolution method discussed in the 
present paper. 

The second limitation is that the hidden states represent different tree 
topologies, but do not allow for different rates of evolution. However, if a 
region has evolved at a drastically different rate, employing a new state for 
modelling this region might increase the likelihood even though the new 
state itself — representing a different (wrong) topology — is ill-matched to 
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Fig. 23. Factorial Hidden Markov Model . In generalization of the standard HMM 
of Fig. 12, a factorial HMM has two separate families of hidden states: one represents 
different topologies (St), the other represents different evolutionary rates (rt) . 
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the data . Consequently, a differently diverged region might be erroneously 

classified as recombinant, which seems to have happened on the Neisseria 

sequence alignment, as discussed in the previous section. A way to redeem 

this deficiency is to employ a factorial hidden Markov model, shown in 

Fig. 23, and to introduce two separate hidden states: one representing dif

ferent topologies, the other representing different evolutionary rates. This 

effectively combines the method of the present paper with the approach 

in [5]. A detailed investigation of this idea is the subject of future research. 
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CHAPTER 2 

APPLICATION OF STATISTICAL METHODOLOGY 
A N D MODEL DESIGN TO SOCIO-BEHAVIOUR 

OF HIV TRANSMISSION 

JACOB OLUWOYE 

The common scientific approaches to the reasoning of problems are math
ematical reasoning or statistical reasoning. Mathematical or formal reason
ing is mostly deductive, in that, one reasons from general assumptions to 
specifics using mathematical logic and axioms for multi-criteria decision
making. The purpose of this chapter is to relate statistical methodology and 
model design to planning and policy making for a viable solution to the rav
aging Human Immune Deficiency Virus (HIV)/Acquired Immune Deficiency 
Syndrome (AIDS). Demonstrating the benefits that can be derived from adapt
ing the concept and model building approach in planning and decision-making 
of public health and urban development. Discussion in this chapter is presented 
the following sequence: (a) introduction, (b) deductive/inductive approach, 
(c) statistical methodology and model design, (d) adaptation of "Seldom Do" 
models to human behaviour, (e) the discrete choice modelling and its applica
tion to the socio-behaviour of HIV transmission. The chapter concludes that 
the "Seldom Do" model approach offers potential for addressing the develop
ment of planning and multi-criteria decision processes associated with health 
and urban development problems in our society. 

Keywords: Deductive/inductive approach; HIV/AIDS behaviour; modelling; 
sociomedicine; urban development policy. 

1. Introduction 

The common scientific approaches to the reasoning of problems are mathe
matical reasoning or statistical reasoning. Mathematical or formal reason
ing is mostly deductive, in that one reasons from general assumptions to 
specifics using mathematical logic and axioms for multi criteria decision
making [1]. Mathematical probability, which is the basis of all statistical 
theory, had its beginning in ancient times. Certain mathematical patterns 
were developed as pastimes by the Greeks, and others were first found to 
coincide with chance happenings, such as occur in card games and later 
found to coincide with actual happenings. According to [2] and in quote 
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"mathematical methods are gaining wide acceptance in the study of infec
tious diseases and putting this powerful tool in the hands of public health 
community is an extremely important development". It was not until the 
Seventeenth Century that one of the first practical uses was made of prob
ability when life expectancy tables were published for use in computing life 
insurance premiums and benefits. 

Thus, this chapter will be based on the principles of applied research 
which attempt to use existing knowledge as an aid to the solution of a given 
problem or set of problems. When considering the problem of predicting 
the rate of HIV infection, it is important to factor in geographic dimensions 
that have been totally ignored due to ignorance and an undue concern for 
confidentiality. 

[3] reported that at a global level, there are considerable differences 
between regions, states, localities, cities, towns and villages in the levels 
of prevalence, and rate of transmission, of the Human Immune Deficiency 
Virus (HIV)/Acquired Immune Deficiency Syndrome (AIDS). Furthermore, 
there are differences between Regions, States and Localities in the social 
and demographic characteristics of HIV carriers/AIDS suffers (e.g., the 
relative proportions of heterosexuals/homosexuals, injecting drugs users, 
male/female infant HIV carriers) [3]. However, measures to improve health 
and quality of life in developing countries now need greater attention, 
together with the need to protect and improve the environment. 

It should be noted that diverse and complex environmental health prob
lems cross national boundaries and often need to be dealt with internation
ally. It is therefore not surprising that large organizations try to pool their 
efforts in the context of environmental and health policies and research [4]. 

As AIDS is projected to remain of critical importance in this century, 
attempts to forecast and predict its developments are urgently needed. A 
vast amount of literature describing many different aspects of the disease 
has already been investigated. But as [5] points out: "Rarely can one find 
an attempt to model the spread of AIDS incorporating the basic spatial 
dimensions of human existence. Most modelling seems to be focused com
pletely within the temporal domain". One of Kabel's main lines of argu
ment is that modelling the geographical distribution of AIDS can contribute 
to both educational intervention and the planning of heath care delivery 
systems. 

Medical cartography can play an important role in both areas, as it 
is an excellent means of communication. In order to be useful to resource 
planners, predictions of AIDS should include a spatial component. 
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2. Deductive and Inductive Approach 

The detailed methodology, which a researcher should adopt, is a function 
of the problem, which she/he has set for themselves; different intellectual 
problems have to be tackled in different ways [6]. Traditionally, however, 
approaches to problem solving are classified into one of two categories, 
deductive or inductive. The qualities of each general methodology interact 
with the intellectual problem, so that sometimes the inductive approach 
and other times the deductive approach is preferable. 

The deductive approach to investigation implies the deduction of a series 
of events or states from a set of pre-established axioms, and often a compar
ison of observed phenomena with the deduced events or states (Fig. 1(a)). 
The inductive approach, in contrast, starts with the observation of a set of 
phenomena and concludes with attempts to recognise patterns and logical 
structures in these phenomena, often with some suggestions or conclusions 
as to their cause (Fig. 1(b)). The former thus starts with a hypothetical 
cause and then attempts to identify an effect, while the latter observes an 
effect and then searches for a cause. 

If the deductive approach is to be implemented, then a set of axioms 
must be created or must already be in existence. The deductive approach 
thus implies some prior knowledge of the problem or of the reasons for the 
causes in the cause-effect equation. The inductive approach, on the other 
hand, suggests that investigation proceeds from a state of ignorance. If 

Spatial Theory 

Testing of Theory 

Selection of relevant information 

Analytical Techniques 

Interpretation of results 

Assessment of the theory 

Fig. 1(a). Deductive research methods. 
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Fig. 1(b). Inductive research methods. 

a body of knowledge about a problem already exists then the deductive 
approach is often adopted. When there is no body of knowledge, which can 
be built upon or criticised, as the starting point for an investigation, then 
the inductive approach is to be preferred [5]. 

3. Statistical Methodology and Model Design 

Some scholars claim that the purpose of science is prediction. This is the 
practical person's viewpoint even when it is endorsed by such scholars 
as Knight [7]. Neo-Machians (after Ernst Mach) go even further. Just as 
Mach [8] focused attention on economy of thought without regard for the 
special role of logical order, they claim that practical success is all that 
counts; understanding is irrelevant. No doubt if science had no utility for 
the practical person, who acts on the basis of predictions, scientists (both 
physical and social) would now be playing their little game only in pri
vate clubs. However, even though prediction is the touchstone of scientific 
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knowledge, "in practice man proves the truth", [9, p. 76] the purpose of 
science in general is not prediction, but to gather knowledge which can be 
used as a means of enhancing prediction. 

There are two distinct levels of individual analysis: "descriptive" analy
sis and "predictive" analysis. Both are behavioural in the sense of involving 
individuals at the aggregate level, but are distinctly different in objective. 

The primary distinction between description and prediction can be illus
trated diagrammatically by the [10] Schema of Scientific Explanation (see 
Fig. 2). 

The difference between the two is of a pragmatic character. If E has 
been observed, i.e., an individual behaviour, and a suitable set of state
ments Cl , C2, . . . , Ck, LI, L2, . . . , Lr is provided afterwards then we have 
"explanation" .a If the later statements are given and E is derived from the 
C's and L's before E is observed, then we have "prediction". For a model to 
have explanatory power it must, together with other requirements, contain 
empirical propositions in the explanatory variables which must be con
firmed by all available relevant evidence. Such a model would reflect the 
understanding theoretical constructs of the habit and decision periods. 

Mathematical or formal reasoning is mostly deductive in that one rea
sons from general assumption to specifics using mathematics precision. 
Models built with this approach are usually larger and more complex than 

Logical 
deductiuon 

Cl, C2,..„ Ck Statement of antecedent 
conditions 

' LI, L2,... Lr General Laws 

Explanans 

_E Description of the empirical 
phenomenon to be explained Explanandum 

Fig. 2. Schema of scientific explanation. 

aGiven the confirmation of E, certain philosophers give a certain confirmation to state
ments of antecedent conditions plus general laws. This does not deductively follow 
from E, but the existence of E gives inductive support to a statement that the initial 
conditions plus general laws do, in fact, hold. 
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those developed using statistical reasoning. A mathematical model is devel
oped on the basis of axiomatic assumptions, which are useful, precise, rea
sonable and concerned with simplicity. Based on these general assumptions, 
the mathematician reasons a precise mathematical structure, thus estab
lishing a system of relationships referred to as a theory or a model. The 
properties of the model should be examined and the theory should also 
evaluate and tested in terms of what it tells the researcher in the light of 
the consequences of the axiomatic assumptions. 

The statistical or factual approach deals directly with empirically 
derived factual data using inductive reasoning. Data should be collected 
and attempts should be made to find whether patterns of regularities 
exist within the data. Besides usually simplifying the data, the three com
mon uses of statistical reasoning are description, induction and hypothesis 
testing [11]. 

Description could involve finding and explaining the distribution of some 
phenomena. Induction aims to establish empirically an association between 
variables such as a simple correlation, linear or non-linear relationship, and 
so on. Hypothesis testing involves making a decision to reject or accept a 
given generalisation within a probabilistic framework. In simple terms, the 
common uses of such reasoning are either to describe or infer something 
from an assumption [12]. 

3.1. Five steps in model building 

Whichever of the above approaches or combination of approaches is used, 
model building is likely to involve five steps (Fig. 3). 

Step 1. Step 1 is to make assumptions regarding the data. Such assump
tions will help reduce or remove possible uses of the shotgun method of 
problem solving. 
Step 2. The second step is to reason based on the prior assumptions. At 
this step the initial properties and results of the model are examined. Up 
to this point the model is usually non-operational. 
Step 3. Step 3 is making the model operational. This involves assuming 
functional forms for the relationships. Are they linear, quadratic? Theoret
ical variables must be defined and a means established to estimate model 
parameters (i.e., fitting the model). 
Step 4. In Step 4 the procedure involves estimating and testing the 
model by actually plugging data into it. Predictive accuracy is reviewed 
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Fig. 3. Five steps in model building. 

by analysing trial prediction accuracy. Goodness-of-fit of the whole model 
is examined and residuals are analysed. 
Step 5. Step 5 is the use of the model if it passes all the tests. 

3.2. Model building approach 

What are "Seldom do" models? "Seldom do" models involve all five steps 
discussed above, in that seldom are they deduced axiomatically and made 
operational. 

However, mathematical models, which are derived from sound reason
ing, can be widely used for such purposes (for example the study of poly-
partnerism) as in Fig. 4. Furthermore, the six dimensions of mathematical 
models are discussed below. 

Understanding or explaining the often complex relationships that exist 
in the real world are fundamental objectives of mathematical models. Com
plexities usually arise from the fact that many variables act to produce some 
reaction (i.e., no single cause) and that there are interdependencies among 
variables. Variables in mathematical models are usually designated as either 
endogenous or exogenous variables. In a given problem, exogenous variables 
are the predetermined variable or independent variables while endogenous 
variables are determined by exogenous and other endogenous variables. 
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Explaining 

Understanding Description 

Planning and 
decision making 

V Prediction 

Conditional 
Prediction 

Fig. 4. Six dimensions of mathematical models. 

4. Adaptation of "Seldom Do" Models to 
Human Behaviour 

As a simple example, for a particular point in time land-use will affect socio-
human behaviour and both in turn will influence trip generation rates. 

However, in a temporal sense, trip generation rates will influence land-
use which will affect occupation. 

It is evident that in developing mathematical models an extremely 
important assumption is made when determining which variables are 
endogenous and which are exogenous. This, of course, implies causal rela
tionships and if the assumptions regarding the variables are incorrect, the 
model will not work, or, at the very least, will be misleading. 

In addition to understanding or explaining, models of this type have 
the additional property of description and can be used to generate data for 
which the researcher has no measurements. Simply stated: 

Land-use 
activity 

influences 
travel time 

effect Number of people 
carrying the HIV 

Making trips 

Land-use 
activity _ affect 

Commercial 
sex workers influence 

Trip generation 
rates 

Fig. 5. Land use/commercial sex workers/trip generation interactions. 
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For example, models employing land use variables (as easily measured 
exogenous variables) could inferentially describe travel time. This, in turn, 
could be used to imply something about the relative levels of congestion or 
conflict existing in a particular area. 

The third property is that of prediction. The predictive power of a model 
builds upon description in that it can predict values of variables for which 
there are not yet measurements. These predictions can then be used for 
some future point in time assuming a single future form. 

Graphically a predictive model might look like: 

Exogenous 
Variables 

PREDICTIVE 
MODELS 

Endogenous 
Variables 

Fig. 6. Predictive models. 

(Within the model [box] endogenous variables are linked and influence 
other endogenous variables.) 
Set in the simplest terms, for example: 

Land-use and 
Social environment. 
Characteristics 

Predictive 
Models 

People living 
_^. with HIV 

Characteristics 

Fig. 7. Predictive models. 

Variables must be confirmed by all available relevant evidence. Such a 
model would reflect the underlying theoretical constructs for the habit and 
decision periods. 

Descriptive analysis looks at "individual drug users", investigating cur
rent behaviours in terms of various factors influencing individual drug users' 
behaviour. 

When prediction is considered, some adjustments are required. A chang
ing situation (decision period analysis) can be evaluated in a descriptive 
framework, just like evaluation of a situation in the behaviour period. Also, 
prediction can occur under conditions where change is occurring, or where 
behaviour period conditions exist. 

Condition prediction, the fourth property or type of model, deals with 
alternative future predictions based on conditional assumptions. 

The usefulness in planning and public policy-making are quite clear, 
however the properties of the model become increasingly more complex 
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in modelling alternative forms of the future. Because of this, some input 
variables have to be made control or policy/actions variables. This can be 
illustrated diagrammatically: 

Control 
variables 

Exogenous , 
variables 

Conditional 
predictive 
model 

Endogenous 
"variables 

Fig. 8. Policy/Actions model. 

The characteristics of the variables are important to the decision-making 
process. Outcome variables can be any type of variable, control, non-control, 
exogenous or endogenous. Also alternative plans specify the control and 
exogenous variables. As an example, set within the context of the epidemi
ology research, alternative plans might aim to reduce vulnerability of road 
users (Driver on long distance route) along commercial roads. Control vari
ables might include reducing the number of stops, including educational 
intervention and policy on long distance road stops. Exogenous variables 
might include social activities at that location, land use characteristics, and 
traffic generation. The endogenous variable predicted by the model might 
be potential risk, in terms of, say, travel time, or it might be the number, 
and purpose of stops. 

If there is only one outcome when testing alternative plans the theory 
is simple. However, when you have several outcome variables the theory 
becomes complex, as does decision-making. With more than one alternative 
and outcome, a criterion or pay-off function probably is necessary. What 
is needed is a method to evaluate trade-offs, for example, in spread of HIV 
problem, trade-offs such as number of infected people versus changes in time 
or other cost/benefit type ratios. Such pay off functions should usually be 
dictated by the immediate situation as viewed by the local governing body 
in terms of their variables of interest. 

Another form of trade-off is predictive trade-off. 
Observations are expected to cluster around the point of indifference. 

There is a cluster of observations of non-definite behaviour generated. Dis
criminant analysis can handle this relationship because it is specifically 
designed to either minimise misclassification with respect to some presumed 
threshold, or to obtain the greatest separation of the two populations rela
tive to the within-population variance. 
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Fig. 9. Predictive trade-off. 

The fifth type of model is the decision-making, planning model. This is 
often referred to as the maximising, minimising or optimising model. It is 
used to generate alternative plans and optimise the input variables. Lin
ear or non-linear (dynamic) programming methods are usually employed. 
Graphically, this model might be portrayed: 

Generation of ^ . Control variables 

Alternative Exogenous 
plans • variables 

(optimized) 

^^. Endogenous ^ . outcome ^ . pay-off function 

| 

Fig. 10. Decision making and planning model. 

This type of model generates alternative plans and optimises the exoge
nous variables using linear or non-linear programming techniques. Since 
such techniques are very time-consuming the development of this type of 
model is usually quite costly. 

5. The Discrete Choice Modelling 

Discrete choice is a type of regression technique that uses a choice set of 
mutually exclusive and collectively exhaustive alternatives to describe an 
outcome. 

Conditional 
predictive 
model 
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Looking at different theories of people's behaviour, there seems to be 
recognition of a conceptual framework with a number of characteristics. In 
recent years, the interaction-oriented approach has been articulated in the 
form of systems framework. In its application to people living with HIV, 
one should point to the definition of a system and the notion of interaction 
as being most useful in providing a relevant framework. It should be noted 
here that a system is defined as a set of elements having definite attributes, 
together with the relationships between the elements and between their 
attributes. Since the systems usually exist in some kind of environment. 
one can define the environment as a set of those elements, which do not 
belong to the system and whose attributes influence the system, or are 
influenced by it. Finally, each system has a specific function, which imposes 
a defined standard of performance. 

Discrete choice modelling is a well-established regression technique that 
has been used extensively in several disciplines related to psychology, eco
nomics, mathematics, and transportation engineering. Several books and 
papers have been written on this subject [13-18]. However due to reasons 
outlined below, the author has decided to use the Multinomial Logit (MNL). 

The Multinomial Logit (MNL) model can be used to calculate the prob
abilities of choosing different alternatives in sampling people living with 
HIV. In the MNL model, individuals are assumed to choose the alterna
tive that yields the highest utility. Some authors [19-21] have emphasised 
that data derived from binomial counts should be analysed to take into 
account the binomial denominator, so that the proportion (percentage) of 
the population already infected can be analysed in order to accommodate 
the variance while at the same time retaining the binomial probability dis
tribution inherent in the data. 

In order to understand the logit approach as a representation of an 
alternative behavioural hypothesis, the author considers the case of a num
ber of alternative outcomes. It is likely that sex trade individuals act to 
maximise utility (V), and that they constantly evaluate alternative ways 
of achieving outcomes (s) consistent with this behavioural postulate. An 
alternative outcome is closer if and only if it provides the highest (indirect) 
utility. 

The discrete/continuous model, the utility of the ith alternative for the 
gth individual, Uiq, should be calculated on the basis of variables affecting 
the choice of the decision makers (e.g., homosexuals) 

k 

U\q=/J RikXjkq • (1) 
fc=l 
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The characteristics are likely to be socioeconomic variables (attributes of 
the decision-maker). In addition, alternative specific dummy variables can 
also be used as part of the decision process. 

Thus the author decided to use population with only two choice alterna
tives: one infected population and the other population at risk (e.g., Homo
sexuals, Bisexuals, IV Drug users, Heterosexuals, Hemophiliacs, Blood 
transfuses). It should be noted here that the value of an explanatory vari
able could not be the same for all alternatives. Because of this, one has to 
set each variable to zero for one alternative. The choice of which variable 
should be set to zero for each alternative has no effect on the final results 
of the model, but it naturally alters the form of the utility functions. 

Let p be the probability that HIV infected population will continue to 
grow or spread and hence (1 — p) the probability that population at risk 
will react to educational intervention; then one may want to apply a linear 
specification of the form: 

a + b-±+c7±+d1Qi + d2Q2 + d3Q3. (2) 
1 - p T2 C2 

Where T\ and T2 are the times (minutes per day for social activities) needed 
for the two populations, Ci and C2 their costs of living (dollars per day), 
and Qi, Q2, and Qz, population characteristics which are considered to be 
relevant to the choice (income, family size, age, etc.). 

A difficulty with respect to Eq. (2) is that the left-hand side (the prob
ability p is constrained to the interval from zero to one, whereas the right-
hand side can in principle take arbitrary real values. This defect can be 
remedied by replacing the left-hand p by a more suitable variable, e.g., 

3 

= e (!M§hn<* (« \-P 

or in logarithmic form: 

i o g r ^ = a + / 3 1 o g(§)+^ 1 °g(§)+E^ l o g^- (4) 

The left-hand variable in Eq. (4) is known as the logit corresponding to 
the probability that people living with HIV/AIDS are dying. The logit is 
monotonically increasing function of the probability p varying between — oo 
and oo. Note that it is numerically equal to the logit of the complementary 
event but of opposite sign: 

l o g ^ - l o g - ^ . 
1 - p 1 - / 9 
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This implies that the linear logit specification has the convenient property 
that it is perfectly symmetric in the two alternatives (population infected 
versus population at risk). If one interchanges the roles of the two alterna
tives, each term in the equation remains as it is except that it takes the 
opposite sign. Suppose, however, that we do not have two alternatives but 
three or more. Then Eq. (4) is not sufficient. 

Formalising the problem of choice, one expects the utility provided by 
the population (infected and at risk) to be a function of individual social-
behaviour characteristics, socio-economic characteristics, attraction (land-
use) and a disturbance term (i.e., on-street prostitutes, drugs). If one uses a 
reduced form structure, the utility will also be dependent on the continuous 
variable, utilisation. Therefore, the unobservable could be characteristics 
population (infected and at risk) and/or attributes of social activities. This 
concept, therefore, combines two ideas — the idea of a variation in taste 
among individuals in a population and the idea of unobserved variables in 
land-use/urban social behaviour models. These components of the utility 
function will be denoted by the M-dimensional vector e, and the utility 
function will be written U(x,b,z,s,e). For the individual infected and at 
risk, e is a set of fixed constants (or functions) but for the investigator e is 
a random variable with some joint density function, denoted 

/ e ( e i , . . . , em), which includes a density on U. 

Assuming, that the individual infected and at risk has decided to travel for 
social activity j . Conditional on this decision, his/her utility as a function 
of Xj and z, the remaining choice variables, is 

Uj = U(0,... ,0,xjt0,... ,0,h,... ,bN,z,s,e). 

By virtue of assumption, this conditional direct utility can be written as 

Uj = Uj(xj,bj, z, s, e). 

The population infected and at risk maximises Uj subject to the conditional 
time constraints. 

PjXj + z = y, and the non-negatively conditions Xj > 0, z > 0. 

For the purpose of explaining the logit method and its relationships to 
the choice of HIV infections, one needs to note that the objective is to 
construct a model to find the probability, p, which one can calculate in 
preference to another aspect of unprotected sex. This probability of choice 
can be explained in terms of combination of explanatory variables. 
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It should be noted that the resultant probability function, almost iden
tical to the cumulative normal curve, is a symmetrical sigmoid curve 
diverging from the normal curve at the extremes only. In developing the 
model when the regress and (or dependent) variables are dichotomous, and 
they are on the values 1 (for infected population) and 0 (for non-infected 
population). 

A qualitative dependent variable, such as the binary choice of social 
behaviour, imposes an automatic restriction on the range of variation of 
its conditional distribution, constraining the probability of choice to take 
values between 1 and 0. Discrete choice models are similar in appearance 
to least square linear regression models (refer to Eq. (5)), but are different 
in that the value of the discriminant function (P*) is substitute in Eq. (6). 
Equation (6) is called the logit function and takes on the values between 
zero and one. Other functions with similar properties can also be used such 
as the probit, urban and Geompertz. 

P* =a0 + aiXi + 0,2X2 -I h amXm (5) 

where, Xi, X2, • • •, Xm = independent variables. 

PP/ = eP7(l + ep*) (6) 

where, PPI = Probability of proportion of the population already infected 
e = exponential function. 

Figure 11 shows a graphical representation of the logistic function. 
Notice that it has as "S" shaped appearance and asymptotically approaches 
zero and one as the value of P* approaches negative infinity and positive 
infinity, respectively. 

P* 
l 

0.5 

0 

—00 + 0 0 

Fig. 11. The logit as a function of the probability. 
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6. Application of the Use of Logit Specification to 
Socio-Behaviour of HIV Transmission 

To illustrate the use of logit specification, consider the two major factors of 
transmission of HIV that reported by [3] and [22]. The two major factors 
are: 

(1) The Pool — The Pool comprises the total availability, during a certain 
period of a transmissible and infectious agent within a particular pop
ulation — in short the proportion of the population already infected; 
and 

(2) Polypartnerism — Polypartnerism is the number of different contacts 
with whom an individual engages in unprotected coitus (in the case of 
HIV, needle/syringe sharing as well as sexual contacts). 

Examples of Sees. 6.1-6.3 below were modified based upon G.V. 
Crockett, Introduction to Statistical Technique in the Social Sciences, 
pp. 124-129. 

6 .1 . Binary choice models 

As discussed above one can see that, all models contained a dependent or 
endogenous variable, which was continuous. However, an increasing area of 
interest is in models in which the dependent variable can take only a limited 
range of values. For example, one might want to model "Polypartnerist" 
behaviour where there are only three unprotected coitus; or one might 
want to study variables influencing the "Pool" — the proportion of the 
population already infected. In this section the author will concentrate on 
models where are only two categories — for example, "Sexual Contacts", 
or "Needle/Syringe Sharing", and so on. 

Binary choice models are couched in probabilistic terms; as an example, 
given a sample of population with HIV in a particular city or country 
and data on their attributes (age, sex, income etc.), the choice models to 
be described can predict the likelihood (or the probability) of an individual 
engages in unprotected coitus on the basis of their individual incomes. That 
is, other things equal, low-income individuals with HIV more or less likely to 
engage in needle/syringe sharing than high-income individuals with HIV? 

This section looks only at two of a range of possible models, the first 
being the linear probability model, and the second, the logistic regression 
model. 
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6.2. The linear probability model 

This model is a simple extension of the linear multiple regression models, 
and takes the form: 

Yi = b0 + Xi + et (8) 

where Yi = 1 if the choice is made in target group for both sexual partners 
using condoms and Yi = 0 if the choice is made in target group for only 
sexual partners using condoms; 

Xi = the set of attributes (age, sex, social location, distance to location, 
etc.) d = error term. 

When Yi is a dichotomous variable, the regression can be interpreted as 
describing the probability that an of HIV risk behaviours among an indi
vidual engages unprotected coitus, given information about the individual's 
age, sex, income, etc. 

Since Yi can only take the value one or zero, it is not difficult to show 
that the variance of the error term is not constant [23, pp. 226-227], and 
that observations where the probability of choosing to use condom (for 
example), are close to zero or close to one, will have relatively low vari
ances, while observations where the probability is close to 0.5 will have 
high variances. As discussed in Sec. 5 above, this characteristic of the error 
term not displaying a constant variance (called heteroscedasticity) results in 
a loss of efficiency, nevertheless, the parameter estimates are still unbiased 
and consistent. 

Consider the following problem: 
A sample of hypothetical data on age versus whether an individual 

engages unprotected coitus HIV risk behaviours. The model then is: 

Y = b0 + &! Age + e (9) 

1 If both sexual partners used condoms 

0 If one sexual partner used condoms 

and AGE = the age in years of HIV risk behaviours among an individ
ual engages unprotected coitus by fitting an OLS regression to the data, 
resulting in the following fit: 

Y = -0.23 + 0.025 Age. (10) 

Since Y is interpreted as the probability of both sexual partners used 
condoms, Eq. (10) shows that as the age of the individual with HIV 
increases, the probability of both sexual partners used condoms increases, 

where, Y 
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while conversely the probability of one sexual partner used condoms 
decreases. 
Hence, if Age = 20, 

Y = Probability of both sexual partners used condoms 

= -0.23 +(0.025* 20) 

= 0.27 

If, however, Age = 40 

Y = Probability of both sexual partners used condoms 

= -0.23 + (0.025 * 40) 

= 0.77 

The fitted Eq. (11) is depicted in Fig. 12 below. 

6.3. The logit model 

An obvious problem arises with Eq. (10), Fig. 12 shows that Y can exceed 
1, or be less than zero, both impossibilities. 

One way of avoiding this would be to set all Y greater than 1, equal to 1, 
and all Y less than 0, equal to 0 forming the flattened Z shape ABCD. 
This specification, however, is still not satisfactory in that, being linear; it 
suggests that equal changes in age result in the same change in probability, 
regardless of the age. Thus a unit increase in age of usage of condoms is 

Usage of Condoms 
(Both partners using 
condoms) 

A 

y=o 

Usage of Condoms 
(Only one partner using 
Condoms) 

x = Hypothetical data 

A B 
xxxxx 

10 20 30 40 

AGE (years) 

Fig. 12. Usage of condoms versus age. 
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predicted to cause a 0.025 increase in the probability of both partners using 
condoms, regardless of whether the sexual behaviours of individual is in his 
or her early 20's, or in his or her late 50's. It is much more likely that a 
constant change in age will produce a relative change in Y; i.e., the upper 
and lower tails would more likely be much flatter than the linear function. 
At the lower end of the Y values, this flattening can be obtained by fitting 
the log of Y versus Age: 

logY = b0 + bi Age. 

Similarly, at the high end of Y values (i.e., as Y approaches 1), the flattening 
can be achieved by taking the log of (1 — Y). Combining both ends of the 
scale, results in the model: 

log Y - log(l - Y) = b0 + h Age (11) 

or, 

more generally, log(P/(l 

Solving Eq. (11) for P gives: 

1 

P)) = b0 + hX. 

1 4. e-(b0+biX) 

which is called a logistic curve, as graphed in Fig. 13 
Using application of the previous authors it would appear that Eq. (11) 

could be easily estimated by OLS with a suitable log transformation of 
the dependent variable. This is not possible, however, because if P = 1, the 
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Fig. 13. Graph of the logistic curve. 

file:///Logistic


56 Biomathematics: Modelling and Simulation 

expression P/(l—P) is infinitely large, while if P = 0, the expression equals 
zero; hence the logarithm in each case would be undefined. Fortunately, a 
method called maximum likelihood estimation (MLE) is available which can 
cope with this problem; briefly, in this method, different values of So and 
61 are tried until those values of 60 and 61 are discovered which maximize 
the likelihood of their having come from the sample of (X, Y) values given. 
The parameter values that make this likelihood largest are therefore called 
the maximum likelihood estimator's 60 and 61. The computer using an 
iterative procedure finds them; i.e., the computer keeps trying different 
values until it converges on the maximum likelihood values. Hence the user 
should be aware that this procedure is likely to be quite costly in terms of 
computer time, and accordingly limit the number of independent variables, 
or use random samples of the original data in order to limit the number of 
independent variables when the full data set is used. 

7. Conclusion 

This paper has discussed the major five steps of a "Seldom do" model 
for the purpose of improving multi-criteria decision making for health and 
urban problems, in which the role of models and other statistical tools of 
analysis in the information system are important. In particular, we have 
noted the relationship between variables which have considerable value to 
the planner in the understanding and development of planning and decision 
processes. 

The planners must also know how such variables change over time and 
the way they respond to intervention. Models of health, urban develop
ment and other statistical techniques structure these relationships between 
the major variables; helping planners to analyse urban and environmen
tal health problems. They are therefore very useful tools in understanding 
the complexity of the health (HIV/AIDS preventive) activities and urban 
development policies. Data banks and models are therefore very much inter
connected within the urban information system. 

8. General Comments 

The discussion of model types and model building was based in part 
on courses (i.e., quantitative methods, statistical methods, methods of 
sociological inquiry, etc.) taken by the author at the University of 
Wisconsin-Madison, USA; Howard University, Washington, D.C.; and Inde
pendent Research (Ph.D.) at the UNSW Kensington, Australia. 
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CHAPTER 3 

A STOCHASTIC MODEL INCORPORATING HIV 
TREATMENTS FOR A HETEROSEXUAL POPULATION: 

IMPACT ON THRESHOLD CONDITIONS 

ROBERT J. GALLOP, CHARLES J. MODE and CANDACE K. SLEEMAN 

During recent years the medical community has been aggressively searching 
for a cure of the HIV disease, but so far a cure has not been found. Conse
quently, the goal of HIV/AIDS treatments has been to impact the health of 
infected individual and to extend their life-expectancy with the hope that in 
time the medical community may find a cure. Much success has been reported 
in improving the life-span of infected individuals. How this increased life-span 
for infected individuals effects the overall impact of the spread of the disease 
remains unknown. Thus, while success of HIV treatments, such as the HAART 
therapy, is beneficial in the infected population, consequences must be consid
ered for the susceptible audience. The investigation described in this article 
will focus on the heterosexual population; therefore, a thorough investigation 
must consider the multiple facets present in the heterosexual population. A 
stochastic model for the heterosexual population with sufficient parameters to 
model the multiple facets impacting the spread of the disease in this audience 
is considered. Proximity to threshold conditions specify when the disease will 
spread if a small number of infected people are introduced into a susceptible 
population. Determination of distance to the threshold condition for a popula
tion participating in HIV treatments and a population without HIV treatments 
is investigated. Simulations suggest that from the perspective of only successful 
implementation of HIV treatments to this audience, a more rapid spread of the 
disease throughout the susceptible sector occurs. The merits of HIV treatments 
is not in question but, in this era of more advances in HIV treatments, HIV 
treatments must be coupled with attention to general awareness and further 
education and prevention efforts, for proper control of the epidemics spread. 

1. Introduction 

Since public recognition of the acquired immunodeficiency syndrome 
(AIDS) epidemic during the mid 1980's and the causal agent of AIDS, 
human immunodeficiency virus (HIV), a great amount of effort has been 
devoted to constructing and analyzing statistical models of the epidemic. 
When focus is placed solely on heterosexual transmission, certain facets 
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of the disease transmission and audience characteristics must be consid
ered. As discussed by Dietz and Hadeler [5], if two susceptible individuals 
form a marital couple, then they can be considered temporarily immune 
as long as they do not separate and have no sexual contacts outside the 
couple. While understanding the idiosyncrasies of the heterosexual com
munity and that there is a need to model the heterosexual spread of 
HIV/AIDS, questions arise as how to model the epidemic. Recently, Mode 
and Sleeman [13] formulated a modeling structure which incorporates key 
facets of the heterosexual population such as couple formation, couple dis
solution, selectivity of partners in couple formations, and selectivity of part
ners for extra-marital contacts. It is formulated in a stochastic framework 
where semi-Markovian life cycle models for single females, single males, 
and couples are outlined based on the theory of competing risks, where 
the disease may progress among stages of severity. Much attention has 
been given to the effect of HIV/AIDS treatments such as the highly active 
antiretroviral therapy (HAART) treatment of protease inhibitors [2,4,7,8], 
which illustrate subjects may move among the stages of the disease with 
both improvement and deterioration possible. The Mode-Sleeman model 
accounts for both possible transitions among stages of disease. 

By operating on conditional expectations of the present, given the past, 
deterministic models, expressed as non-linear difference equations, may be 
embedded in the stochastic process. By letting the time increment approach 
zero, the embedded non-linear difference equations give rise to a system of 
differential equations. As will be illustrated in examples, by exploiting the 
stability properties of this embedded system of differential equations, it 
is possible to provide insights on threshold conditions as to whether an 
epidemic spreads in the population according to the stochastic model. 

The concept of threshold conditions is one of the most important con
cepts in mathematical epidemiology [10], and is used to specify conditions 
in terms of the parameters such that the disease will spread if a small 
number of infected people are introduced into a large susceptible popu
lation. As discussed by Hyman et al. [11], an analysis of the stability of 
the infection-free equilibrium gives rise to an epidemic threshold condition. 
Briefly, a stability analysis consists of linearizing the embedded differential 
equations around the infection-free equilibrium and determining when the 
largest real part of the eigenvalues crosses zero gives rise to a threshold 
condition. When the value is positive, it indicates the introduction of a few 
infectives into a susceptible population will result in a spread of the dis
ease throughout the susceptible population with positive probability. When 



Impact on Threshold Conditions 61 

negative, it indicates the susceptible population is resilient to the introduc
tion of a few infectives; therefore, a minor epidemic may develop but will 
eventually become extinct with positive probability. When zero, it indicates 
a threshold condition based on the multi-dimensional parameter space has 
been met. The magnitude of the largest real part of the eigenvalues indicates 
the rate of spread, if positive, or the rate of restoration to an infection-free 
system, if negative. For two systems with the same sign for the largest real 
part of the eigenvalues, the system with the larger magnitude will have the 
quicker rate of infection, if positive, or quicker rate of restoration to an 
infection-free system, if negative. 

The main focus of this article will be to illustrate the effect of HIV/AIDS 
treatments on the spread of the disease in a susceptible population with the 
introduction of a few infectives. To illustrate this point, threshold investi
gations for a system with HIV/AIDS treatments and a system without 
HIV/AIDS treatments will be compared. To enhance the understanding of 
the epidemic process, fifty Monte Carlo realizations of the stochastic pro
cesses will be computed on monthly time intervals of 720 months. Monte 
Carlo samples will be summarized statistically on a monthly basis, by 
derivation of the minimum, maximum, 25th quantile, 50th quantile, and 
75th quantile. To provide a basis of comparison of the systems, computer 
generated graphs of the two systems will be simultaneously compared. 
The coupling of advances in education and prevention efforts and HIV 
treatments will also be investigated and comparisons to the other systems 
will be made. 

2. Parameters for a Heterosexual Population 

The heterosexual population is partitioned into three groups: X, single 
females, Y, single males, and Z, coupled individuals. Each group is parti
tioned in time and severity of the disease. Stages of the disease are expressed 
in terms of CD4+ counts, with stages represented by intervals of CD4+ 
counts, with higher stages representing more severe immune deficiency. By 
definition, stage 0 indicates an individual is susceptible. Thus, at time t, 
X(t; i) represents the number of single females in stage i at time t, Y(t;j) 
represents the number single males in stage j at time t; and Z(t; i,j) repre
sents the number of couples with a female in stage i and a male in stage j at 
time t. In order to formulate a model which realistically captures the multi
ple facets of the heterosexual population, parameters representing the char
acteristics of the disease infection and progression and population transition 
must be defined. For disease infection, parameters are needed to describe 
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extra-marital infection and intra-marital infection. For disease progression, 
parameters are needed to describe the declination of CD4+ counts and the 
potential reconstitution of CD4+ counts through effective HIV treatments. 
For population transitions, parameters are needed to describe recruitment, 
couple formation, couple dissolution, and deaths. 

Focusing first on the infection of a susceptible individual, one recognizes 
that infection can occur through sexual contact with an infected individual. 
Potentially unsafe sexual contact may involve all individuals regardless of 
marital status. We will classify all sexual contacts outside wedlock as extra
marital sexual contacts. 

The probability a susceptible is infected within a couple during a given 
time period, depends on the expected number of marital sexual contacts per 
unit time, 7 m c , and the probability the susceptible is infected per marital 
contact. Let qfm(k) denote the probability a susceptible female is infected 
per marital contact when her partner is in stage k of the disease. The 
parameter qmm(k) is defined similarly for males. As discussed by Hyman 
et al. [11], the probability of infection per sexual contact may be differ 
across gender and severity of the disease; therefore, as illustrated above, a 
model must accommodate this characteristic of disease transmission. 

The probability a susceptible is infected through extra-marital contacts 
during a given period with a given partner depends on the expected number 
of sexual contacts per unit time, r\f for females and i)m for males, and the 
probability the susceptible is infected per extra-marital contact, qfem(k) 
for females and qmem(k) for males. Unlike the marital case, where there is 
only one person with whom a susceptible engages in sexual activity, in the 
extra-marital case, there may be multiple partners with whom a susceptible 
can engage in extra-marital sexual contacts. Let the parameters A/ and Am 

denote the expected number of extra-marital sexual partners per unit time 
for females and males respectively. 

While there are many social-demographic variables which may influ
ence choice of partners for sexual activity, our attention will be on the 
impact of HIV/AIDS awareness on choice of partner. During the later 
part of the twentieth century more people became aware of HIV/AIDS 
as a heterosexually transmitted disease with no discrimination as to age, 
race, health, or sexual preference [15]. Through increased public awareness 
and education, it seems reasonable to suppose that individuals may pos
sess more skills in screening of potential partners prior to the initiation of 
sexual intimacy. Screening skills may consist of individuals asking about 
potential partner's past sexual history, drug use, and previous HIV test 
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results. Non-negative parameters quantifying an individual's inclination to 
accept a potential partner for extra-marital sexual contacts will be denoted 
by Pfem for females and f3mem f° r males. Given that a female is in stage i of 
disease, the generic form of the acceptance probabilities used in this article 
a r e a ^ j ) = exp(—P\i— j\) denote the conditional probability that she finds 
a male in stage j acceptable as a sexual partner. Observe that the larger 
the value of /3/ e m , the smaller is the probability that a female in stage i of 
disease will find a male acceptable as a sexual partner. Beta values of zero 
indicate individuals randomly select partners with no caution or screen
ing for HIV. A more comprehensive discussion of acceptance probabilities 
may be found in the Mode-Sleeman [14], including a discussion of other 
functional forms and extensions to higher dimensions. In the next section, 
formulas showing how these probabilities enter into the formulation will be 
given. Turning to population transitions, the mortality rate parameters per 
unit time will be denoted by p,/o for females and /xmo for males. Incremental 
change in death rates due to stages of disease will be defined as follows: let 
fj,fk denote the incremental change in risk of death for females in stage k of 
the disease and define the parameter \im^ similarly for males in stage k of 
disease. Parameters accounting for transition to the next more severe stage 
of disease and the next less severe stage of the disease must be present in 
the formulation. When an infective is in stage 1, there is no transition to 
susceptible and when an infective is in the final stage of the disease, there 
is no transition to the next more severe stage of the disease. The parameter 
7/(fc, k + 1) is the risk of the transition k —> k + 1 for an infected female 
per unit time in stage k = 1,2,... ,n — 1 of disease, and the parameter 
7m(fc, k +1) has the same interpretation for a male in stage k. The param
eter jf(k, k — 1) is the risk per unit time of the transition k —> k — 1 for an 
infected female in stage k = 2 , . . . , n, and the parameter jm(k, k — 1) has a 
similar interpretation for males. 

Similar to the extra-marital contacts, singles may enter into a marital 
status, where choice of partner is from a collection of non-married individ
uals. Acceptance parameters for choice of marital partner are denned as 
Pfm for females and / 3 m m for males. Rate of couple formation is given as p. 
Rate of couple dissolution is given as 6. 

Recruits may enter the population over time. Recruits are often thought 
of as adolescents reaching the age of sexual activity. The parameter iif 
denotes the expected number of single females into the population per unit 
time and p/(j) is the probability a recruit is of type j = 0 ,1 ,2 , . . . , n . 
Similar definitions are made for single males entering the population. 
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3. Latent Risks for Transitions in Population 

Having denned the parameters of the model, the next step is to set 
down those functions that appear in the stochastic population process. Let 
Qf(f) = (Of(t;j, fc)) denote a matrix of latent risks for life cycle model of 
single females. Later in this section, this matrix, as well as other matrices 
of latent risks, will be denned explicitly in terms of the parameters of the 
model. A function of basic importance in studying discrete time approxima
tions to the life cycle models in continuous time is the following conditional 
probability, which arises in computing Monte Carlo realizations of the pro
cess, using chains of multinomial distributions. Given that a female is in 
stage j at time t, let iTf(t;j,k;h) be the conditional probability there is 
a jump to stage k ^ j during the time interval (t,t + h}. Then, it can be 
shown by using the classical theory of competing risks that 

*f(t;j,k;h) = (l-eM-0f(t;j)h])e-^^ (1) 

where 

0/(t;i) = $>/(* ;** ) 

is the total latent risk for a transition from stage j at time t, and Of(t;j, k) 
is the latent risk for a transition from j to k at time t. It follows that 

*f(t;j,j\h) = 1 - 5 ^ 7 r / ( t ; j,fc;A) = exp[-9f(t;j)h] (2) 

is the conditional probability that there is no transition from stage j during 
(t, t + h], given the process was in stage j at time t. 

Most latent risks are constant over time with the exception of the those 
for couple formation and extra-marital sexual contacts, which depend on 
the stage of the population at some time "ffm(t;j, k) denote the conditional 
probability a single female in stage j finds a single male in stage fc acceptable 
for matrimony at time t. Then, in the stochastic component of the model, 
it can be shown by applying the total law of probability and Bayes' formula 
that 

^^^-Yrk=QY{t;k)afm{j,kY (3) 

A similar formula for the conditional probability ^mm{t\ k,j) that a sin
gle male in stage fc finds a single female in stage j acceptable for matrimony 
can be derived by substituting X's for F 's and amm for afm. Mode and 
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Sleeman [14] may be consulted for further details on the derivation of this 
formula. 

Let 
T/em (t\ ji k) denote the conditional probability a female in stage j 

finds a male in stage k acceptable for extra-marital sexual contact at time t. 
Then, by using a similar argument, it can be shown that 

„ . tt. j k) _ YT{t;k)aSem{j,k) 
}2k=oYT(t;k)afem(j,k) 

where 
n 

YT(t;k)=Y(t;k) + ^Z(t;j,k) (5) 
3=0 

is the total number of males in stage k in the population at time t. Similarly, 
let jmem(t; j , k) denote the conditional probability that male in stage k finds 
a female in stage j acceptable for extra-marital sexual contact at time t. 
An analogous procedure was used to derive a formula for this probability. 

In the deterministic model embedded in a stochastic process introduced 
by Mode and Sleeman [13], the random function NcF(t',j, k) represents the 
potential couples of type (j, k) that may be formed in the time interval 
(t, t + h] and was calculated as: 

NCF(t;j,k) = min[X(t;j)7^n(t;j,fc),y(t;A;)7mm(t;fc,j)]. (6) 

The random function NEMp(t',j,k) represents the potential number of 
extra-marital social contacts of type (j, k) occurring during the time interval 
(t, t + h] was and was estimated in the embedded deterministic model as: 

NEMp(t;j, k) = min[XT(t;j)ffem{t;j, k), YT(t; k)^mem(t; k,j)]. (7) 

Observe that in [6] and [7], the arguments in the min-function are condi
tional multinomial expectations, given the state of the population at time t. 

For a female in stage j at time t, let the random function Pfem(t',j, k) 
denote the conditional probability that she has an extra-marital sexual 
contact with a male in stage k. The random function for males pmem(t', k, j) 
is defined similarly. For females this function has the form 

,. . ,x NEMP(t;j,k) 

A similar formula is used for pmem{t',k,j). 
Finally, let the random function Qfemc(t) represent the conditional 

probability that a susceptible female at time t becomes infected dur
ing (t, t + h] through infectious extra-marital sexual contacts. Similarly, 
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Qmemc(t) denotes the conditional probability a susceptible male at time t 
becomes infected during (t, t + h] through infectious extra-marital sexual 
contacts. These random functions are calculated by 

n 

QfemS) = Y2 Pfem(t; 0, k)qfem(k) (9) 
k=0 

and 

Qmemcit) = } ^ Pmem{t\ j , O)gmem(j)- (10) 

3=0 

Having denned the latent risk that are elements of the matrix ©/( / ) 
and other matrices of latent risk for the life cycle models of single males 
and couples, the next step is to set down an explicit form of ©/ ( / ) . Let T / 
denote the state space for the life cycle model for single females. Death will 
terminate the hfe cycle for individual; therefore, the state space will consist 
of a subset, T / i of two absorbing states: .En (death from causes other 
than the disease) and £12 (death from causes attributable to the disease). 
The set of transient states, denoted by Y/2, will consist of (n + 1) states, 
where £20 corresponds to the female is susceptible to the disease and 2?2r 
corresponds to the female is in stage r of the disease for r = 1,2,. . . , n. 
Thus, the state space for females, T / = T/ i U T/2, consists of (n + 3) 
states. The state space for males is defined similarly. 

The matrix of latent risks for females can be laid out in partitioned form 
as follows: 

ef(t) = On O12 

e/l2i(t) e/>22(t). 
(11) 

where On and O12 are 2 x 2 and 2 x (n + 1) zero matrices indicating there 
are no transitions out of absorbing states, 0/,2i(£) is an (n +1 ) x 2 matrix 
governing transitions from transient states to absorbing states, and 0/,22(O 
is an (n + 1) x (n + 1) matrix governing transitions among the transient 
states. The jth row of 0/,2i(*), denoted by Qf,2i(t)j has the following form: 

0/,2i(t)j = (^/o,M/j)- (12) 

0/,2i(Oj corresponds to a single female in stage j governing transitions to 
one of the two absorbing states: death not due to the disease and death 
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due to the disease. The j th row of 0/,22(£) denoted by 0/,22(Oj n a s the 
following form: 

QfMtfj = (0,*fQfemc(t)6j0 + 6j2jf (2,1),... ,jf(j,j - 1), . . 
0,7/C?,J + l ) , 0 , . . . , 0 ) , ^ ; 

where j/(j,j — 1) corresponds to transitions from stage j to j — 1. The 
entry of 7 / 0 , j — 1) corresponds to the j — 1 column of O/,22(0j- Note, 
by assumption, there is no transition from a state of infection back to 
a susceptible state. Similarly, 7/( j , j + 1) corresponds to transitions from 
stage j to j + 1. The entry of 7/( j , j + 1) corresponds to the j + 1 column of 
Qf,22(t)j- Note there is no transition from stage n to stage n + 1, because 
the disease is not assumed to have n stages of disease. In the above equation, 
Kronecker's delta, Sy, is utilized to illustrate susceptibles becoming infected 
via extra-marital contacts and also, the transition from stage 2 to stage 1 
of infection. Kronecker's delta have the following properties: 

(14) 

For singles males, 

Sy = 1 if i = j , and 
Stj = 0 iii^j. 

Qm(t) = 
On 0i2 

.em ,2i(t) em ,2 2(*). 
(15) 

where On and O12 are 2 x 2 and 2 x (n + 1) zero matrices indicating there 
are no transitions out of absorbing states, 0m,2i(£) is an (n +1) x 2 matrix 
governing transitions from transient states to absorbing states, and Om,22(0 
is an (n+1) x (n+1) matrix governing transitions among the transient states. 
The fcth row of Qm,2i(t), denoted by 0m,2i(i)fc has the following form: 

©m,2l(t)fc = (A»mO,A*mfc)- (16) 

@m,2i(£)fc corresponds to a single male in stage k governing transitions to 
one of the two absorbing states: death not due to the disease and death 
due to the disease. The fcth row of Qm^2(t) denoted by Qm,22(t)k has the 
following form: 

©m,22(t)fe = (0,AmQ memc (t)SkO + 427m(2, 1), • • • , 7m(fc, k - 1), . . 
0,7m(fc,fc + l ) , 0 , . . . , 0 ) l l) 

where 7m(fc, k — 1) corresponds to transitions from stage k to k — 1. The 
entry of 7m(fc, k — 1) corresponds to the k — 1 column of @m,22(t)k- Note, 
there is no transition from a state of infection back to a susceptible state. 
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Similarly, jm(k, k +1) corresponds to transitions from stage k to k +1. The 
entry of ym(k, k + 1) corresponds to the k + 1 column of ©m,22(£)fc- Note 
there is no transition from stage n to stage n + 1, because the disease is 
not assumed to have n stages of disease. In the above equation, Kronecker's 
delta, Sy, is as described in Eq. (14). 

Following the formation of a couple, if either a male or female is suscep
tible, he or she may become infected through sexual contacts with infected 
persons, or, if any member is infected, he or she may experience a tran
sition with respect to stages of the disease. Furthermore, there may be 
dissolution of the couple if either the female or male die, or there is a sep
aration. Similar to the description for females and males, state spaces for 
a semi-Markovian process describing the evolution of life cycles of couples 
following their formation may be derived as follows. 

Denote the set of absorbing states as T c i , which has five elements that 
signal the conclusion of the partnership. Esep denoted the partnership ends 
in separation or divorce. Efn and Ej\2 denote that the female member of 
the partnership dies due to causes other than the disease or dies due to 
causes of the disease, respectively. Emn and Emi2 are defined similarly for 
the male member of the partnership. Thus the set of absorbing states of 
the life cycle model for couples is: 

T c i = {ESep,Efi,Ef2,Emi,Em2} • (18) 

A couple of type r = (j, k) is defined, such that the female is of type j £ T / 2 

and the male is of type k G Tm2, where T/2 and T m 2 are the sets defines in 
the life cycle model for single females and single males. The set of all couple 
types will constitute the set of transient states of the life cycle model for 
couples, symbolically represented as: 

T c 2 = {T = (j, k)\(j, *) G T / 2 x T m 2 } (19) 

so that the state space for the evolution of partnership is: 

Tc = T c l U Tc2. (20) 

To simplify notation, denote elements of the set T c by the Greek letter r . 
To make a comparable matrix representation of 9 c( t ) , as was performed 

for Qf(t) and 0 m ( t ) , when the disease has n stages, the set TC2 of transient 
states contains (n + l ) 2 elements so that the space T c for the evolution of 
couples contains 5 + (n + l ) 2 elements. Because no exits from absorbing 
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6c(t) = (21) 

states are possible, the (5 + (n + l)2) x (5 + (n +1) 2 ) matrix Qc(t) of latent 
risks for evolution of couples may be represented in the partitioned form: 

On O12 

.©c,2l(*) ©0,22(0. 

where On and O12 are 5 x 5 and 5 x (n + l ) 2 zero matrices, Qc,2i(i) is an 
(n +1) 2 x 5 matrix governing transitions from transient states to absorbing 
states, and Qc,22(t) is an (n + l ) 2 x (n + l ) 2 matrix of latent risks governing 
transitions among the transient states. The row corresponding to couple of 
type (j, k) of &c,2i(t), denoted by Qc,2i(t)(j,k) n a s t n e following form: 

©c,2l(*)(j>*0 = (<^M/0,/f/j,MmO,Mmfc)- (22) 

For the representation of the couple combinations, male stages of disease 
iterate within female stages of the disease; therefore, to understand the 
structure of Qc,22(t) consider the (n + 1) x (n + 1) submatrix where the 
female is of j and the male stage of disease range from 0 to n, denoted by 

©c,22(*)> : 

©c,22(£)> = super-diag[AmQ memc (*) + 
C?') ,7m(l ,2) , . . . ,7m(n- l ,n)] 

(23) 

is along the upper quasi-diagonal and 
©c,22(i)> = super-diag [0,7m(2,1) , . . . , 7m(n, n - 1)] (24) 

is along the lower quasi-diagonal. 
The above considers the latent risk for male member of a couple expe

riencing a transition. To consider the latent risk for a female member of 
the couple experiencing a transition consider the following. Let 6c(t;0,k) 
represent the latent risk for the female member of a couple governing a 
transition to stage 1 of the disease when the female is a susceptible. Then, 

0c(t; 0, k) = \fQfemc(t) + 7mc9/(fc)- (25) 

Let Oc(t;j, fc)^ denote the latent risk of the female in the couple governing 
transitions from stage j to stage j — 1. Thus, 

Oc(t;j,k)L = lf(j,j-l). (26) 

Let 9c(t;j, k)u denote the latent risk of the female in the couple governing 
transitions from stage j to stage j + 1. Thus, 

0c(t;j,k)u = lf(j,j + l). (27) 

Based on Eqs. (25) through (27), the remaining non-zero entries for ©Ct22(t) 
can be defined. 
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Given the latent risks and all parameters of the model, formulas for the 
total risk functions may be derived by summation across the rows of the 
latent risk matrix. Formulas similar to those in [1] and [2] may also be set 
down for the matrices of latent risks Om(£) for single males as well as that 
for couples 0c(t)-

4. Stochastic Evolutionary Equations 

Now with the latent risks per stage completely defined, a discrete time 
stochastic process can be defined. At time t + h, the number of single 
females in stage j is a sum of three components: recruitments to stage j , 
undergo a transition to stage j , and couple dissolution by divorce or sepa
ration or death of the male partner when the female is in state j . This is 
represented by 

X(t + h;j) = XR(t + h;j) + Y,XT(t + h,v,j) + XDIS(t + h,j) (28) 

for every j = 0,1,2, . . . , n , where the subscript R indicates recruitment 
into the population, T represents transition to stage j , and DIS represents 
dissolution of a couple formation involving a female partner in stage j . 
A similar equation can be written for single males. 

The random function Z(t + h;Ti;r2), denoting the number of couples 
of type T2 = (j, k) at time t + h, is the sum of two components. One 
component consists of those couples who were of type T\ at t and made 
a transition to type T-I during (t,t + h] and the number ZcF(t + / I ;TI ;T2) 

formed during (t,t + h\ from a single female of type j and a single male of 
type k, respectively, at time t; therefore, 

Z{t + h,T2)= ] T ZT(t + h;n;T2) + ZcF(t + h;T2). (29) 
Tl#T 2 

When considering the discrete time approximations to processes in con
tinuous time, it is of interest to investigate what happens when the incre
ment becomes small, h —> 0. Under this assumption and using the following 
the equation, 1 — exp(xh) = —xh+o(h), which can be illustrated via Taylor 
series expansions, Eqs. (1) and (2) can be rewritten as: 

7r/(*;i, k; h) = 6f(t; j , k)h + o{h), (30) 

TTf(t;j,j;h) = l-6f(t;j)h + o{h). (31) 
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This result is very useful when embedding a set of differential equations 
in the stochastic partnership model, where latent risk appear as constant 
or coefficient functions. Similar equations may be written down for the 
7r-probabilities for single males and couples. In the stochastic model these 
conditional probabilities are random functions, but in the embedded dif
ferential equations these random functions are estimated by a procedure 
described in Mode and Sleeman [13] and elsewhere. In what follows all esti
mates of random functions will be denoted by a hat over the functions. For 
example, an estimate of X(t; j) will be denoted by X(t; j). 

As h —» 0, the embedded non-linear difference equations represented in 
Eq. (28) may be expressed in a modified form. The difference equations for 
single females become: 

X{t + h;j) = tifpf(j)h+ Yi X(t;v)Jrf(t;v,j;h) 
v£Tf2 

- 5 Z NcF(t;j,k)qcF(j,k;h) 
keTm-2 

+ 12 12 Z(t;j,k)nc(t;j.k;T2;h) (32) 
fceTm2 T2£DISf 

for every j € T/2. For single males we have: 

Y(t + h; k) = nmpm{k)h + ^ Y(t;v)wm(t;v,k;h) 
v 6 T m 2 

- Yl NCF{t;v,k)qcF{v,k;h) 
«eT / 2 

+ Yl 12 Z(t;J,k)7tc(t;j.k;T2;h) (33) 
m 

for every k £ Tm2. For couples we have: 

Z{t + h,T2)= Y Z(t + h>Ti>T2)nc{t;Ti,T2h) + NcF(t;T2)qcF(T2;h). 

(34) 

Given the above relationships described in Eqs. (30)-(34), for every 
j € T/2 the non-linear difference equations for single females may be 
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written in the form 

X(t + h;j) = fifPfU)h + X(t;j)(l - 6f(t;j)h) 

+ J2 X(t;v)6f(t;v,j)h- £ NCF(t;j,k)p(j,k)h 
j^veTf2 fceTm2 

+ E E Z{t;j,k)§c{t;j,k;T2)h + o{h). (35) 
kerm2 T2€Disf 

By forming the ratio —^— ?h~ ' f ' j ) and letting h —> 0, it can be seen 
that for all j € T/2 the following system of differential equations for single 
females arise 

^ll=f*fPfU)-X(t\J)df{t;j)+ Yl X(t;v)6f(t;v,j) 
j^veTf2 

- Yl NCF{t;j,k)p{j,k) 
feeTm2 

+ Yl E Z(t;j,k)ec(t;j,k;T2). (36) 
kerm2 T2eDisf 

Similarly, for every k € Tm2 the differential equation for single males take 
on the following form: 

^^-=l^mPm(k)-Y(t;k)em(t;k)+ £ Y(t;v)§m(t;v,k) 
J9iv€Tm2 

- J2 ftcF(t;j,k)p(j,k) 
jerf2 

+ E E Z(t;j,k)ec(t;j,k;r2). (37) 
jeTf2T2EDISm 

For couples, an analogous system of differential equations may be 
derived. For every r £ Tc2, these equations have the form 

^ ^ L = -Z{t-T%{t;r) + Y, Zfrn&frT, r)+NCF(t;r)p(r). (38) 

5. Form of the Embedded ODE for Given Parameters 

Under the assumption of n stages of disease, the embedded differential 
equation for a single female in stage j based on the parameters of the 
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model is as follows: 

^ T 1 = HfPftl) - (M/o +J(j > 0)nfj)X(t;j) + 6J2z(t;3,k) 
az fe=o 

+ (j2fimo + I(k > 0)Mmfe J Z(t; j , k) + {nmo)Z(t; j , 0) 

- I(j = 0)XfQfemc(t)X(t; 0) + l{j = l)XfQfemc(t)X(t; 0) 

+ I(j > 1)7/0' - hJ)X(t;j - 1) - I(j > 0)7/0,3 + W ; j) 

+ i(j > o)7/0 + iJ)x(t;j +1) - i(j > ihf(j,j - i)x(t;j) 
n 

-Y,NCF(t;j,k)p. (39) 
fc=0 

The hat superscript indicates parameters are estimates of the recur
sive equations of the stochastic formulation. The indicator function I(») 
is defined as one when the expression in the parentheses is true and zero 
otherwise. Recall there is no transition to a susceptible stage from and 
infective stage and there is no transition beyond stage n. There is no incre
mental change in mortality rate due to the disease when a person is in the 
susceptible stage. A similar equation can be derived for a single male in 
stage k: 

dY^ k' = HmPm{k) - (Mmo + I(k > 0)nmk)Y(t; j) + 5 J^ zfr 3,k) 
j=0 

+ ( I t l*f° + JC? > °Wi ) ^(*! 3\ k) + (jifo) Z(t; 0, k) 

-I{k = 0)\mQ memc 

(t)Y{t;0)+I(k = l)\mQ 
memc 

(t)Y(t 

+ I{k > l)lm(k-l,k)Y{t;k-l) - I(k>0)fm(k,k+l)Y(t 

+ I(k>0)lm{k+l,k)Y(t;k+l) - l{k>l)jm{k,k - l)Y{t 

0) 

k) 

3) 

-^NCF(t\j,k)p. (40) 

A similar equation can be given for couples: 

dZ(t;i,j) 

dt 
= -5Z(t; i,j)- (/i/0 + I(i > 0)nfi) Z(t; i, j) 

- (MmO + I(j > 0)Vmji) Z(t\ i,j) 

+ I(i>l)V(i-l,i)Z(t;i-l,j) 
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- / ( i > 0 ) 7 / ( » , t + l)Z(t;t,j) 

+ / ( i > l ) 7 / ( t + l,i)Z(*;i + l , j ) 

- 7 ( i > l ) 7 / ( t , t - l ) Z ( t ; » > j ) 

+ / ( j > l ) 7 m ( j - l , j ) Z ( t ; t , j - l ) 

- / ( j > 0 ) 7 m ( j , j + l)Z(i;i,j) 

+ I{j > 0)7m(j + hJ)Z{t;i,j + 1) 

- A J > ihmCj'.j-i)^(t;*»i) + 7mc*r.(»)-fO'=i)^(*;«.j'-i) 
+ 7mCgm(i)-f(* = l )Z(t ; i - l , j ) -imCqm(i)I(j = 0)Z(t; i , j) 

+ 7mcg/C7')-fO' = 0)Z(t; t , j) + Z ( t ; » - l , j ) / ( i = l )A/Q / e m c ( t ) 

+ Z(t;»,j - \)I{j = l)AmQm e m c(f) 

- Z ( t ; i , j ) / ( * = 0)A/Q / e m c(t) 

+ Z(t;i,j)I(j = 0)\mQmemc(t) + NCF(t;i,j)p. (41) 

6. Determination of the Spread of the Disease 

For n stages of disease, let V(t) be the (2(ra + 1) + (n + l)2) x 1 vector with 
components: 

' X(t;i) ' 
V(t)= Y(t;j) . (42) 

_Z(t;»,j)_ 

The vector-matrix form of the embedded differential equation is 

<^p- = R + AV{t) + B{V)V{t) + F{V) (43) 
at 

with i? the constant vector of susceptible recruits; A the matrix of constant 
latent risks; B( V) the matrix of latent risk due to extra-marital contacts; 
F(V) the vector arising in couple formations. Note that the constant latent 
risks include death rates, the effect of HIV/AIDS treatment, the progression 
of the disease, couple dissolution rates, and intra-marital infection. 

According to Spiegel [19], solutions of the embedded differential equa
tion in the vicinity of the infection-free equilibrium behave like the solutions 
of the linearization of the system. Linearization of the system necessitates 
deriving the Jacobian of the system at the infection-free equilibrium. Sta
bility is determined by the maximum real part of the eigenvalues. The more 
positive the maximum real part, the faster infection will spread throughout 
the population. Methods were established to determine the Jacobian eval
uated at the infection-free equilibrium for the system in Eq. (43). These 
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methods, while not achieving a closed form solution based on the parame
ters of the model, welcome software implementation. Algorithms were writ
ten in APL2000 [6] on the IBM-PC platform. Immediate identification of 
system stability is available by reviewing the list of eigenvalues. Again fur
ther details on the derivation of Jacobian matrices can be found in Mode 
and Sleeman [14]. 

7. Results of Monte Carlo Simulation Experiments 

One of the costs of the quest for realism in formulating the stochastic model 
of a heterosexual population under consideration is that the number of 
parameters can be quite large. However, when the formulation is restricted 
to the case of four stages of disease both the stochastic model and the 
embedded differential equations become computationally tractable. In this 
connection, it may be of interest to consult some of the more recent investi
gations of staged models of infectious diseases with four stages [11,12,18]. 
To answer questions regarding the main focus of this article, to investi
gate of threshold conditions for a sample incorporating HIV treatments 
versus a sample not incorporating HIV treatments, the chosen parameter 
assignments should reflect current behavior for both the population and 
the disease. Current reported behavior will be based on a review of the 
recent literature describing relevant characteristics such as mortality, infec
tion rates, sexual contact rates, marriage rates, and divorce rates. Because 
full conditions for agreement between deterministic and expected stochas
tic solution are at present unknown, comparison between the deterministic 
and stochastic facets of the model will be based on statistical summaries 
of Monte Carlo simulation samples [14]. Fifty Monte Carlo realizations of 
the stochastic processes will be computed on monthly time intervals of 
360 months. Monte Carlo samples will then be summarized statistically on 
a monthly basis, by derivation of the minimum, maximum, 25th quantile, 
50th quantile, and 75th quantile at each month. The deterministic solu
tion, which serves as a measure of central tendency for the process, will be 
computed on a monthly time scale. Both systems, the deterministic and 
stochastic, will give us a comprehensive understanding of the impact of the 
introduction of a few infectives into a susceptible population over time. To 
provide a basis of comparison of the systems, computer generated graphs of 
the two systems will be simultaneously compared. Parameter assignments 
are as indicated in Sleeman and Mode [18]. The parameter assignments are 
displayed in Tables 1-5. 
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Table 1. Initial parameter assignments for four-stage model. 

Initial numbers, single females per stage (902, 1, 0, 0, 0) 
Initial numbers, single males per stage (690, 1, 0, 0, 0) 
Initial numbers, couples with both susceptible 4828 

Table 2. Expectations for sexual contacts. 

Expected number of extra-marital male partners per female \j = 0.25 
Expected number of extra-marital female partners per male Am = 0.25 
Expected number of marital sexual contacts 7 m c = 8 

Table 3. Probability of infections per sexual contact. 

Prob. infection per extra-marital contact, stage 1 <7/em(l) 
Prob. infection per extra-marital contact, stage 2 qyem(2) 
Prob. infection per extra-marital contact, stage 3 <Z/em(3) 
Prob. infection per extra-marital contact, stage 4 <7/em(4) 
Prob. infection per marital contact, stage 1 <7/m(l) 
Prob. infection per marital contact, stage 2 9/m(2) 
Prob. infection per marital contact, stage 3 9/m(3) 
Prob. infection per marital contact, stage 4 Qfm(^) 

Table 4. Mortality rates. 

Mortality rates for females, stage 0 
Mortality rates for females, stage 1, stage 2, stage 3 
Mortality rates for females, stage 4 
Mortality rates for males, stage 0 
Mortality rates for males, stage 1, stage 2, stage 3 
Mortality rates for males, stage 4 

M/o 
Vfl 
V/4, 

MmO 

C m l 

Mm4 

= 1/720 
= /*/2 = M/3 = 1/240 
= 1/23.8 
= 1/660 
= /im2 = I*m3 = 1/180 
= 1/23.8 

Table 5. Acceptance parameters and coupling parameters. 

Couple formation-dissolution p = 1/12; <5 = 1/120 
Acceptance parameters for extra-marital parameters /3fem = 0mem = 0 
Acceptance parameters for marital partners j3fm = j3mm = 0 

As discussed by Sleeman and Mode [18], duration of marital part
nerships were long in the sense that the latent expectation of a marital 
partnership was 1/6 = 120 months or 10 years but the expected latent 
waiting time among marital partner was 1/p = 12 months or one year. 
Thus, the samples consist of a heterosexual population with long duration 
of partnerships. Initial conditions, as seen in the first three rows of Table 1, 

= 9mem(l) = 0.10 
= 9mem(2) = 0.05 
= 9mem(3) = 0 . 0 5 
= qWm(4)=0 .10 
= 9mm(l) = 0 . 1 0 
= g m m ( 2 ) = 0 . 0 5 
= qmm (3) = 0 . 0 5 
= 9mm (4) = 0 . 1 0 
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were determined by Sleeman and Mode [18]. The /^-parameters are all set 
to 0, /3/em = Pmem = Pfm — Pmm = 0, which indicate that marital partners 
and extra-marital sexual partners are chosen at random, with no regards 
to medical status or disease severity of the potential partner. Extra-marital 
sexual contacts occurred at a rate of 3 per year or A/ = Am = 0.25. It was 
assumed the probability of infection per stage were the same for marital 
and extra-marital contacts. Not illustrated in Table 1 are the 7-parameters 
for duration of stay in stages 1,2, and 3 before transition to the next more 
severe stage. Parameter assignments were determined by results of Sleeman 
and Mode [18] and Longini et al. [12]. The parameters are as follows: 

7/(1,2) = 7 m ( l , 2) = 1/12, 7/(2,3) = 7 m(2,3) 

7/(3,4) =7m(3,4) = 1/62.89. 

1/52.62, and 

Applying the Jacobian methodology, the Jacobian is unstable with maxi
mum real part of the eigenvalues is 0.0313; therefore, the introduction of a 
few infectives at the parameter settings in Table 1, an epidemic will develop 
with positive probability. Presented in Fig. 1 are the trajectories based on 
the summary statistics of the 50 Monte Carlo simulation runs for the cumu
lative number of infected females in couples along with the trajectory for 
the embedded deterministic model for projections of 720 months. 

One of the most striking features of Fig. 1 is the level of stochasticity 
exhibited in the projections. For example in every epoch, the minimum 

3000 
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MODEL 122.DET 
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MIN 
75th 

25th 
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Fig. 1. HIV/AIDS treatments not implemented. 
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of the 50 realizations is on the horizontal axis, indicating that in some 
realizations of the process no new infection occurred but according to the 
maximum of the 50 realizations, nearly 2500 coupled females have been 
infected by 720 months. Nonetheless, the model indicates the potential for 
a severe epidemic to develop, although it may take a substantial amount of 
time for the epidemic to develop. 

Based on the findings of Renaud et al. [17], Detels et al. [4], and 
Autran [2], which suggest that potent antiretroviral therapy use by HIV 
infected persons will have a substantial beneficial effect on arresting CD4+ 

count decline, parameter assignments are as illustrated in Table 6, indicat
ing, on average, complete arrest in CD4+ count declination. 

Based on the parameter assignments of Tables 1 through 6, the maxi
mum real part of the eigenvalues is 0.0366, which is larger than when the 
transition rates to less severe stages are set to 0. Thus, the larger eigenvalue 
indicates a quicker rate of spread as compared to the previous example. 
Trajectories based on the parameter assignments of Tables 1 through 6 are 
illustrated in Fig. 2. 

Table 6. Transitions rates among stages. 

7 / ( 1 , 2) = 7 m ( l , 2) = 7/(2 ,1) = 7m(2, 1) = 1/12, 
7/ (2 , 3) = 7 m ( 2 , 3 ) = 7 / (3 , 2) = 7 r o ( 3 , 2) = 1/52.62, 
7 / ( 3 , 4 ) = 7 m ( 3 , 4 ) = 7 / ( 4 , 3 ) = 7 m ( 4 , 3 ) = 1/62.89 
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Fig. 2. HIV/AIDS treatments implemented. 
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Simultaneous comparison of Fig. 2 with Fig. 1 illustrates when 
HIV/AIDS treatments are taken into consideration, the epidemic will have a 
quicker rate of spread; therefore, resulting in an increase in infections of sus-
ceptibles. All corresponding trajectories of Fig. 2 compared to Fig. 1, with 
the exception of the minimum trajectory, indicate a substantial increase in 
the cumulative number of new infectives. Direct comparison of the deter
ministic solution at 720 months indicates approximately 1500 cumulative 
infected coupled females for Fig. 1 and 3800 cumulative infected coupled 
females for Fig. 2. 

To estimate the probability of infection, the fraction of those realizations 
of the process that contained no secondary infectives was calculated as a 
function of time. Figure 3 contains the plot of the probability of extinc
tion as a function of time for both systems. Similar to our simultaneous 
comparison of Fig. 1 and Fig. 2, simultaneous comparison of the extinction 
probabilities as a function of time provide empirical evidence that the sys
tem incorporating HIV treatments has a lower level of extinction; therefore, 
increase infections are evident in the system with HIV treatment. 

While the need for HIV/AIDS treatments is not in question, the 
Jacobian methodology demonstrates that there is a potential detrimental 
impact for the susceptible population. By prolonging the life-span of infec
tives, the infectives have more opportunities to infect susceptibles, which, 
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Fig. 3. Comparison of extinction probability over duration of simulations. 
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on average, will result in a quicker rate of spread for the epidemic. With 
recent published success of HIV/AIDS treatment protocols [9], it is urgent 
to inform and educate the public to the HIV/AIDS heterosexual epidemic. 
Infectives experiencing positive results, might question their medical status 
and the need to adopt stringent safe-sex practices and honest communi
cation of health status. Thus, improvement in partnership selectivity is 
needed. Improvement in communication skills is targeted to help one to 
learn about a partner's prior sexual behavior and level of risk, such infor
mation will presumably lead to safer sexual behaviors such as abstaining 
from sex with high risk partners and screening of partners prior to engaging 
in sexual activity or a committed relationship [20], corresponding to both 
sets of /3-parameters in the Mode-Sleeman model. Threshold investigations, 
based on these increased acceptance parameters, may serve as benchmarks 
for where a random-mixing population must achieve to limit the severity 
of the epidemic. 

In the discussed experiments, selective skills for choice of marital part
ners would need to be greatly increased in order to return the system to the 
rate of progression seen prior to the introduction of HIV/AIDS treatments. 
The /3-parameters for couple formations would need to be 1.25. This repre
sents that a susceptible would choose a susceptible marital partner 78% of 
the time over an infected potential partner in stage 1 of the disease, 92% of 
time over an infected in stage 2 of the disease, 98% of time over an infected 
in stage 3 of the disease, and 99% of the time over an infected in stage 4 of 
the disease. In order to achieve a stable system resilient to infection spread, 
further inflation of the /3-parameters is required. 

8. Discussion and S u m m a r y 

This stochastic model considers a semi-Markov process based on competing 
risks for males and females. The multiple facets of the heterosexual pop
ulation incorporated by our stochastic model are couple formation, couple 
dissolution, recruitments, death, selectivity of partners for couple forma
tion and extra-marital contact, progression through disease severity, the 
effects of HIV/AIDS treatments, and infection through sexual contacts. By 
allowing the time increment to become small, the stochastic model gives 
rise to a system of embedded differential equations. A stability analysis 
performed by linearizing the embedded differential equation around the 
infection-free equilibrium and determining when the maximum real part of 
the eigenvalues crosses zero gives a threshold condition dependent on the 
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multidimensional parameter setting. The solution of the system of differen
tial equations is a linear combination of the exponential of each eigenvalue; 
therefore, the magnitude of the maximum real part of the eigenvalues indi
cate the rate of disease progression, with more positive values indicating a 
faster rate of spread. For statistical simplicity, our attention was focused 
on a heterosexual population with quick rate of couple formation and long 
duration of partnership. However, the model referenced in this paper are 
capable of handling many other scenarios, such as the inclusion of covari-
ates such as age and race. Refer to Mode and Sleeman [14] for an extensive 
discussion on these issues. 

As our experiments illustrated, when the effect of HIV/AIDS treatments 
is ignored the disease impact and progression is less then when the effect of 
HIV/AIDS treatments is incorporated. In order to achieve a system com
parable to the disease impact prior to the implementation of HIV/AIDS 
treatment, selection skills must be greatly increased. 

One fear is that infected individuals may question their health status 
when experiencing beneficial HIV therapy; therefore, it is urgent susceptible 
individuals screen their partners. It is not realistic to assume screening 
would constitute medical testing, but screening could consists of questions 
concerning sexual promiscuity and risky drug use behavior. Susceptible 
individuals need to posses the skills to recognize potentially risky partners. 
While the life-span of infected individuals, as well as their health status, 
continues to improve, the spread of the epidemic may continue to rise, if 
HIV education and prevention efforts are not advanced. 

Recent investigations [1, 3] have also considered the issue of the effect 
of HIV treatments on infection spread and have had similar findings as 
discussed in this article. The models discussed in these papers are simpler 
and do not account for the various facets of the population as discussed here. 
Blower et al. [3] and Quinn et al. [16] have discussed the positive effect of 
HAART therapy has on reducing viral load, which in turn also reduces 
infectivity. This does provide evidence of an interaction of the effect of 
HAART therapy and the probability of infection. The model described here 
can accommodate this feature of the disease behavior, but accurate archival 
parameter estimates of infection rates incorporating this feature are needed. 
Presently, more research is being performed in this area; therefore, accuracy 
of these initial findings still remain uncertain. Thus, for now, the findings 
described by the experiments discussed in this article can be considered 
as the worst-case scenario. If HAART therapy, does reduce infection rates, 
then the estimates described here maybe slightly inflated. Regardless of 
the effect HAART therapy has on infection rates, the coupling of increased 
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educational efforts and HIV treatments will have an overall positive effect 
on the disease severity, with a higher probability for disease extinction. 

In closing it should also be mentioned that stability of the disease-free 
equilibrium could also be attained if it were possible to lower the probabili
ties that a susceptible becomes infected per sexual contact with an infected 
person. On the practical side, one on the widely used methods for achieving 
this reduction would be the use of condoms and other protective devices. 
The Jacobian methodology described in this paper could be used to find 
regions of the parameter space such that the disease free system were stable, 
but, due to space limitations, the results of computer experiments designed 
to find such regions will not be reported here. 
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CHAPTER 4 

MODELING A N D IDENTIFICATION OF THE DYNAMICS 
OF THE MF-INFLUENCED FREE-RADICAL 
TRANSFORMATIONS IN LIPID-MODELING 

SUBSTANCES A N D LIPIDS 

J. BENTSMAN, I. V. DARDYNSKAIA, O. SHADYRO, G. PELLEGRINETTI, 
R. BLAUWKAMP and G. GLOUSHONOK 

This work presents two mathematical models explicitly reflecting the magnetic-
field-induced transitions in biologically significant processes: oxidation of 
n-hexane and linolenic acid, and describes the methodology used in obtain
ing the models. For the n-hexane oxidation, the range of the magnetic field 
strength is found (0.05-0.3 T) with the trend indicating a significant magnetic-
field-induced change in the reaction rates (up to 50% at 0.2 T). For the linolenic 
acid oxidation, a pronounced magnetic-field-induced change in the rate of mal-
onaldehyde (MDA) production is found (at 0.1 T) . The equations describing 
the effects of the magnetic field on the photoinduced free radical reaction of oxi
dation involving a lipid-modeling substance, hexane, and a fatty acid, linolenic 
acid, are obtained on the basis of chemical kinetics and data from batch exper
iments. The magnetic-field-induced changes in n-hexane and linolenic acid 
oxidation are validated (the latter only for diene conjugates) using the iden
tification technique based on the real time input-output data in separately 
conducted flow-through experiments. 

Keywords: Mathematical modeling; stochastic Hoo identification; magnetic-
field-induced transitions; lipid-modeling substance; oxidation; hexane; 
fatty acid. 

0. Introduction 

In recent years there appeared studies, based on the experiments at the 
cellular level as well as on animals, which report that magnetic fields can 
interact with, and produce changes in, biological structures. One of the 
major candidate biophysical mechanisms for MF effects arises through the 
influence of MF on free radical reactions, which always play an important 
role in the processes of damaging of the living organism, therefore, any 
changes in the rates of these reactions are likely to alter their damaging 
effects. 

85 
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The proposed biophysical mechanisms for MF effects on biological struc
tures can be briefly described as follows [23, 26]. When a spin-correlated rad
ical pair is formed, the radical electron spins can be either parallel (T-triplet 
state) or antiparallel (S-singlet state). Pauli Exclusion Principle, however, 
postulates that electrons cannot bond if their spins are parallel, and there
fore chemical bond formation between two reacting radicals requires that 
they be in the singlet, rather than the triplet, state. Confining the discussion 
to the triplet state formed free radical pair, either spin-orbit or hyperfine 
interactions can induce the electron transition from triplet to singlet state. 
This transition is referred to as intersystem crossing or T-S interconversion 
(S-T conversion is also possible) [13, 28]. If after T-S conversion a single 
state spin-correlated radical pair remains in the cage (a space sufficiently 
small to ensure that the probability of recombination of the original spin-
correlated pair is much higher than that of the reaction of each of the 
radicals of this pair with the other molecules) [23], the pairwise eUmination 
of the singlet state radicals by recombination is likely to take place. This 
recombination (geminate or cage recombination) competes with the escape 
of the radicals from the cage into the "volume" (a space outside of the cage 
were free radical reactions could take place) and subsequent formation of 
products different from those of cage recombination. The magnetic field 
effect (MFE) consists in engaging the electrons through their magnetic 
moments and altering the intersystem crossing rate. This magnetic field 
action, therefore, may either speed up or slow down the rate of free-radical 
recombination, depending on the precise field value, thereby influencing the 
ratio of cage to escape reaction yields and rendering the overall chemical 
reaction field sensitive [1]. 

Recently a number of experimental studies on the influence of the mag
netic field on the chemical reactions of free radicals and on processes involv
ing triplet excited molecules in solutions has been carried out [14, 17], and 
physically justified models of these phenomena have been proposed [25]. 
However, the relation between the magnetic field strength and the reaction 
rate (including qualitative change in terms of rate increase or decrease) 
has not been established for many such reactions in the ranges of field 
strength frequently encountered by humans, and the review of reported 
results reveals a significant knowledge gap in this area. There are also only 
a few well-documented examples involving biological systems. McLaucham 
and Steiner [13], Harkins and Grissom [11], and Grissom [8] show that an 
applied external magnetic field can alter the rate of T-S interconversion in 
radicals, and potentially affect enzyme activity. Chignel and Sik, [3] showed 
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that application of a static external magnetic field (3350G) during UV-
irradiation reduced the time of 50% ketoprofen-sensitized photohemolysis 
of human erytrocytes. 

The effect of the magnetic field on biologically relevant chemical reac
tions can be looked at as taking place at four time scales, corresponding to 
the process stages in the descending order of the process speed. The fastest 
time scale corresponds to the physical stage, where the energy absorption 
and redistribution process, which leads to excitation and/or ionization of 
molecules, takes place. The second, physico-chemical, stage corresponds to 
the formation of charges or neutral radicals and/or ions. The third stage 
corresponds to the formation of stable chemical products. The fourth stage 
is the formation of biological effects as the result of the previous three 
stages. Mathematical models which describe the time evolution of the prod
ucts of the reactions and their biological effects provide a framework that 
clearly sorts out the entire behavior of the magnetic-field-induced transi
tions in biological systems. These models are usually constructed on the 
basis of physico-chemical laws governing the behavior of process variables 
such as concentrations of the reactions, and identification methods using 
direct input-output measurements collected during real time experiments 
where the process transients or response to random or sinusoidal excitation 
can be observed with the sufficient time-resolution. Such detailed model ver
ification, for example, has been carried out for the bistable laser-induced 
dimerization of sulfonyl chloride with composition affecting optical density 
in [7] via high time resolution optical density measurements. 

The time-resolved techniques for studying MF effects on chemical reac
tions have been utilized in [24] in a flow-through experiment where pho
tochemical quantum yield dependence on magnetic field has been studied 
using optical density changes and in [10] where the evolution of the inter
mediates in the MF-influenced reaction has been monitored in real time via 
optical detection. 

Due to the fact that mathematical model can never entirely capture the 
reality, and therefore always "undermodels" the true process, it is important 
to supply a model with a "quality tag", i.e. the quantified degree of under-
modeling, often referred to as modeling uncertainty, or unmodelled dynam
ics [9, 12]. The recently developed robust Hoo identification methods [9, 12, 
19, 20, 27] are suitable for this task, since they generate models along with 
the HQO norm bounds on unmodelled dynamics. The H ^ identification can 
also yield a solution (the best possible under the circumstances) for a sig
nificant plant/model mismatch. This is especially important for biologically 
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relevant chemical reactions which are known to have high level of dynamic 
uncertainty and yield noisy experimental data. Under such conditions tra
ditional identification methods are known to break down if the model is not 
chosen sufficiently close to the a priori unknown plant dynamics. Therefore, 
it looks attractive to enhance the modeling methodology with HQO identi
fication methods in an attempt to obtain the models for EMF-influenced 
biologically significant reactions known to have high dynamic uncertainty 
level and assess the model quality in terms of the explicit bound on the 
modeling uncertainty. 

The mathematical modeling of MF-sensitive free-radical reactions is 
still in infancy. The physico-chemical stage has been studied in the work 
of R. Z. Sagdeev (1977) [23] where the influence of a constant magnetic 
field on the reactions involving free radicals and triplet molecules in solu
tions has been examined and the theoretical principles of the influence of 
the magnetic field on the recombination processes of free radicals (tak
ing into account the spin effect) and the quenching of triplets have been 
described. Two models, diffusion and exponential ones, were considered 
for phenomenological description of the recombination of the radicals. In 
Bachelor et al. (1993) [1], using a time resolved experiment it was shown 
that dynamics of evolution of the free radical cloud lies between the dynam
ics of the diffusion model and that of the exponential one. Some features 
of the MF-infiuenced chemical reaction dynamics are presented in [10] on 
the basis of the time-resolved experiments. The first fully developed explicit 
mathematical description of the dynamics of an MF-sensitive chemical reac
tion is given by the present authors in [2]. 

The stage of the formation of the biologically significant products of 
magnetic-field-induced transitions is investigated to a much lesser extent. 
Therefore, it is of great interest to investigate the influence of the external 
magnetic field on the free radical reactions of oxidation that could take 
place in biological lipid structures and to build the models of the dynam
ics of these reactions with the refinement and validation of these models 
on the basis of the experimental data. The description of the MF-sensitive 
reaction in [2] represents also the first experimentally validated and refined 
mathematical model of the MF-induced transitions of a biologically signifi
cant process, oxidation of a lipid-modeling substance, hexane. The journal 
publication [2], however, is focused only on the mathematical model and 
does not contain detailed experimental data and description of the chemical 
reaction kinetics. 

Building on the material in [2] and including experimental data and 
chemical kinetics equations, the present chapter describes the development 
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and validation of mathematical models of the MF-induced transitions in oxi
dation of hexane (Sec. 3) and another biologically significant substance — 
linolenic acid (Sec. 4), the latter belonging to the class of fatty acids. 

1. Objectives and Motivation 

The objectives of this work were: 

(1) To select and experimentally verify the conditions under which the free 
radical processes that take place in biological structures are most likely 
to be sensitive to the influence of the external magnetic fields. 

(2) Under these conditions, to experimentally examine the magnetic-field-
induced changes in these processes in the range of MF strength from 
zero through the values where pronounced effects of MF exposure are 
most likely to be found. 

(3) To develop predictive mathematical models with the explicit depen
dence on the magnetic field strength describing the temporal evolution 
(dynamics) of these processes. Refine and validate these models via 
processing the experimental data by robust (Hoc) and standard iden
tification algorithms as well as through the computation of the model 
trajectories and their comparison to the experimental process temporal 
evolution data. 

In order to approach the stated objectives a model describing the effect of 
magnetic field on the free radical reactions of oxidation in lipids and lipid-
modeling substances (substances which can undergo free radical transfor
mations similar to lipids) was chosen. 

Lipids are the essential cell compounds which are generally regarded to 
be the most sensitive to the influence of free radicals. Among them phospho
lipids, containing a significant amount of unsaturated fatty acid residues, 
are the most vulnerable to a free radical attack. Free radical processes that 
take place in the hydrophobic part of lipids lead to their peroxidation, 
which is considered a prevalent feature of the free radical inflicted cellular 
injury [21]. 

The peroxidation of polyunsaturated fatty acids usually involves three 
operationally defined processes: initiation, propagation and termination. 
These processes can be described by the following reactions: 

r - r - > 2 * r (1.1) 

*r + R H - » * R + rH (1.2) 

•R + 0 2 - > R O O ' (1.3) 
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ROO* + RH — ROOH + R (1.4) 

*R + *R — R - R (1.5) 

•R + R O O ' ^ R O O R (1.6) 

2ROO* -+ ROOR + 0 2 . (1.7) 

As seen from this scheme, the process of lipid oxidation occurs in a form of a 
chain reaction, with reaction (1.2) being the reaction of the chain initiation. 

Lipid peroxidation may be initiated by any primary freeradical that has 
sufficient reactivity to extract hydrogen atom from a reactive methylene 
group of an unsaturated fatty acid. In our experiment the photosensitized 
reactions were selected to provide the initiation of free radical reaction 
of oxidation in lipids. This type of initiation requires molecular oxygen, 
a sensitizing dye, or pigment, and exciting light. In the case when the 
formation of free radicals in lipids takes place in the presence of exciting 
light and sensitizing agent in the form of carbonyl compound, the formation 
of a geminate radical pair in the triplet state initiation phase could take 
place. Thus, the formation of geminate radical pairs in the photosensitized 
reactions in lipids could induce the sensitivity of the free radical processes 
that take place in them to the external magnetic field. 

2. Framework for Fitting Mathematical Models 
to the Experimental Data 

Two types of experiments, batch and flow-through, were conducted to 
obtain the experimental data and to reveal the MF effects on lipids 
(linolenic acid) and lipid modeling substances (hexane). A separate exper
iment, the reaction of the photoinduced transformation of iso-propanol in 
the presence of acetone, was conducted to localize the influence of mag
netic field in system model. This reaction indicated that the dependence of 
the reactions of oxidation on magnetic field could be adequately reflected 
through the functional dependence of the intersystem crossing rate coeffi
cient in the differential equations of the reaction dynamics on the magnetic 
field strength. 

The mathematical modeling framework for the batch experiment has 
been confined to nonlinear continuous time ordinary differential equations 
(ODE's), describing the second, physico-chemical, stage of the formation of 
free radicals under UV irradiation and the third stage, that of the forma
tion of stable chemical products. The approach taken was that of a "gray 
box" modeling, namely, the ODE's were obtained from the fundamental 
physico-chemical relations and parametrized by a set of constants which 
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Fig. 1. Conceptual diagram of mathematical modeling using batch experiment data. 

were adjusted to match the experimental data and to reflect the effects of 
magnetic field on the formation of stable chemical products. 

A conceptual diagram of mathematical modeling using the batch exper
iment data is presented in Fig. 1. 

As seen from this figure, the batch experiment data were used as fol
lows. For a given experimental acetone concentration and UV intensity, 
the excited acetone concentration was computed using a nonlinear relation 
which was also included in the model, the rates of the production of stable 
chemical reaction products were measured as functions of magnetic field 
strength, and the corresponding model-generated rates, computed through 
model decomposition and ODE solvers, were matched to the experimental 
ones via the adjustment of the intersystem crossing rate coefficient in the 
model and very minor changes in the other coefficients, wherever necessary. 

While it is of interest to carry out batch experiments to exhaustively 
cover the whole range of possible acetone concentrations, this is pro
hibitively time consuming, therefore the flow-through experiments have 
been pursued were the input switches between the maximal and the minimal 
acetone concentrations, and the mixing inside the reaction vessel makes ace
tone concentrations sweep through the whole range of interest. 

The quality of mixing could be assessed by how well the identified mix
ing dynamics between input and output acetone concentrations matches 
perfect mixing dynamics which is known to be of the first order. The math
ematical modeling framework for the flow-through experiment has been 
confined to the affine discrete time ODE's, i.e. linear discrete time ODE's 
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with a constant offset, with the approach being that of a "black box" mod
eling. The values of an offset and model parameters would depend upon the 
particular identification procedure. A conceptual diagram of mathematical 
modeling using the flow-through experiment data is presented in Fig. 2. 

As seen from this figure the flow-through experiment data were used as 
follows. Keeping the input flow rate into and out of the reaction vessel con
stant, the input acetone concentration was modulated as a pseudo-random 
binary sequence (PRBS). The fluid was stirred in the reaction vessel under 
UV and MF irradiation, the exit flow concentrations of acetone and reac
tion products were measured, and the excited acetone concentration was 
computed using a known nonlinear relation. Then, in the absence of the 
magnetic field and under fixed nonzero value of magnetic field strength, 
the input-output models were identified which related (i) PRBS input to 
the concentration of acetone in the exit flow ("black box 1"), (ii) PRBS 
input to the concentration of the reaction products in the exit flow ("black 
box 3"), and (iii) the computed excited acetone concentration to that of 
the reaction products ("black box 2"). 

3. Modeling and Identification of the MF-Influenced 
Oxidation of Hexane 

3.1. Experimental part 

The investigation was performed using a stirred-tank reaction vessel which 
had a volume of 900 |xl. This apparatus is shown in Fig. 3. 

A valve at the outlet of the vessel maintains a constant flow rate of the 
exit stream at 30 n,l/min. Three regulating valves are placed at the input 
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Fig. 3. Apparatus for the flow through experiment. 

to the reaction chamber to permit the selection of ft-hexane with various 
concentrations of acetone in the inlet stream. This stream is formed by 
liquid flows resulting from switching among vessels that contain prepared 
solutions with acetone concentrations of 6.0 x 10~3 mol/1, 8.0 x 10~2 mol/1, 
and 1.0 mol/1. The reaction vessel is held continuously under ultraviolet 
light with 260-280 nm wavelength to provide a constant energy source for 
the oxidation reaction. The reaction vessel is placed within the coils of an 
electromagnet, which can provide varying magnetic fields. The exit stream 
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is sampled and analyzed using gas-chromatographic equipment to evaluate 
the concentration of acetone and reaction products, ketones and alcohols. 

In order to investigate the dynamics of the reaction, experiments were 
performed which varied the input concentration while sampling and ana
lyzing the exit stream every three minutes. In these experiments, the 
input concentration of the acetone was modulated as a pseudo-random 
binary sequence (PRBS), alternating at random sample times between 
6.0 x 10~3mol/l and 1.0mol/l. Specifically, the reaction was first brought 
to steady-state conditions with an input concentration of 8.0 x 10 - 2 mol/1. 
Then, according to randomly preselected time samples, the input concen
tration was switched between the minimum and the maximum concentra
tions, while the exit stream was analyzed at every sampling instant. These 
concentrations were chosen because steady state data indicated that the 
steady state concentration of the reaction products was a nearly linear func
tion of the logarithm of acetone concentration for acetone concentrations 
between 3.0 x 1 0 - 2 mol/1 and 2.0 x 10 _ 1 mol/1. On a logarithmic scale, the 
8.0 x 1 0 - 2 mol/1 concentration lies almost exactly between the minimum 
and maximum concentrations. This value has been chosen as the logarith
mic average for the magnitude of the PRBS sequence. The preselection of 
pseudo-random sample times for the alternation of concentrations was done 
in such a way that the concentration of acetone in the reaction vessel would 
stay in the "near-linear" range, and so that it would be suitably "rich" in 
frequency content; i.e. the spacing between concentration alternations var
ied sufficiently. The curves describing accumulation (concentration growth) 
of the reaction products as a function of the UV-exposure duration were 
observed to be linear for each of the products for almost the entire duration 
of the process. The nonhomogenuity of the UV irradiation was evaluated 
and found not to noticeably affect the outcome of the experiment, therefore 
in the model it is neglected. 

To investigate the influence of the magnetic field on the photo-induced 
free-radical transformations of n-hexane the commercial chemical reagents 
were utilized. The purity of these chemicals was verified by chromatographic 
method. 7V-hexane that contains diluted oxygen in tube was placed in a 
plastic rack between the poles of ERS-220 electromagnet and exposed to 
UV-irradiation at room temperature in the presence of acetone with stable 
concentration 10 - 2 mol/1 as the sensitizer. 

The experiment was conducted as follows. Samples with the identi
cal initial composition were irradiated at the time intervals, sequentially 
increasing by the increment of 5 minutes; i.e. the first sample was irra
diated during 5min. and then analyzed, the second identical sample was 
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irradiated during the time interval of 10 minutes and then analyzed and 
so on. The irradiation was performed either in the presence or absence of 
applied static magnetic field. The initial magnetic field strength was set at 
0.4 T and for each of the subsequent experiments with magnetic field the 
field strength was sequentially reduced by 0.05 T until the whole range was 
exhausted. The analysis of molecular products of the reaction of photoin-
duced oxidation of hexane was performed by the method of the gas-liquid 
chromatography (GLC) with the flame ionizing detection. 

3.2. Reaction scheme and differential equations, describing 
the process of photo-induced oxidation of hexane 

The main products of the photolysis of n-hexane in the presence of ace
tone were alcohols (hexanol-2 and hexanol-3) and ketones (hexanon-2 
and hexanon-3). The formation of these products occurs according to the 
following scheme: 

Ac 

3[Ac]* + C6H14 

T T 
[•AcH---'C6H13] 

T 1 
[•AcH-.-'CeHia] 

T T 
[•AcH-.-'CeHxs] 

•C6Hi3 + 0 2 

C 6 H 1 3 00* + C6H14 

2C 6 H 1 3 00-
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hv 
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isc 

-
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—> 
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•AcH +*C6Hi3 

C 6 H 1 3 00* 

C6H13OOH + 'CeHia 

C6H1 20 + C6Hi3OH + 0 2 
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Ac + (CH3)2CHOH 
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(3.3) 
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(3.11) 
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C6Hi3 = CH3CH2CH2 'CHCH2CH3, or CH3CH2CH2CH2*CHCH3 

Ac = CH3COCH3 'AcH = (CH3)2 'COH 

The curves describing accumulation (concentration growth) of hexanol-2, 
hexanol-3, hexanon-2, and hexanon-3 as a function of the UV-exposure 
duration were observed to be linear for each of the products for almost the 
entire duration of the experiment, as shown in Fig. 4. 

This fact indicates that these substances are the initial products of the 
photolysis. The numerical values of the slopes of the linear regions of the 
curves in Fig. 4 give the corresponding concentration growth rates for each 
of the products. 

0 5 10 15 20 25 30 35 
time 

Q-e Alcohols 

0 5 10 15 20 25 30 35 
time 

Fig. 4. Dependence of concentration growth on the UV exposure duration. The slopes 
of these lines are corresponding concentration growth rates in B = 0.0 T (solid lines) 
and B = 0.2T (dashed lines). 
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Fig. 5. Slope data for output production of C3, C2, C3OH, C2OH in hexane reactions 
versus magnetic field strength (in Tesla). Concentrations are plotted on a log scale, to 
show relative changes in magnitude. 

The results of the experimental studies of the concentration growth rates 
dependence of the n-hexane oxidation products on magnetic field strength 
are summarized in Fig. 5. 

As illustrated in this figure, the application of the magnetic field in 
the range of 0-0.1 T causes a slight increase in the growth rates, followed 
by a pronounced growth rates decrease in the range of 0.1-0.2 T. The most 
significant decrease of the rate of product formation is seen to occur at 0.2 T. 
Thereafter, the growth rates increase in the interval 0.2-0.3 T, reaching a 
plateau between 0.3-0.4T. No experiments were conducted for the field 
strengths higher than 0.4 T. Thus, the batch experiments show that the 
process of photo-induced oxidation of hexane is sensitive to the magnetic 
field. The observed variation of the product growth rates could be explained 
by the dependence of the free-radical recombination in the "cage" on the 
magnetic field strength. 

The system of differential equations of the photo-induced hexane oxida
tion obtained on the basis of methods of competitive kinetics is given below 
and is further referred to as System 3.1. 
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3.1. 

The last three equations do not include the terms in the right hand side 
that describe the saturation, or equilibrium, of the last three products, 
a long term behavior observed experimentally after about thirty minutes. 
Analysis of the above equations reveals that after the ultraviolet light exci
tation is turned on, the concentrations xi , X2, and X3 evolve very fast and 
quickly settle into steady states, which appear in the other slower equations 
as constant values. The next three equations, governing the production of 
X4, X5, and XQ involve a more complicated combination of fast and slow 
dynamics, but these variables also eventually settle into stable steady state 
values, with a constant concentration of products in the solution versus 
time. Finally, the last three equations depend only on the previous quan
tities. The derivatives of the concentrations, therefore, approach positive 
constants within a short time period. This is consistent with the almost 
linear concentration growth behavior observed in the batch experiments. 

These equations also provide the basis for the understanding of dynam
ics of the flow-through test with stirring. In this test the solution undergoes 
the ultraviolet light irradiation during specific fixed time interval. The con
centrations of products X7, xs, and xg increase in the presence of the excited 
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acetone, and when the solution passes through the test setup, and out of the 
influence of the light, the reactions stop, and the concentrations remain at 
their final values. These final values depend on the rates of the production 
(the slopes in the batch test) which themselves might depend on magnetic 
field, the acetone concentration, and the time the solution remains in the 
influence of the light. In the tests with MF and without it, the input and 
output flow rates are identical and constant resulting in the same time 
of light irradiation, the irradiation parameters are identical, and the time 
patterns of the change in the input acetone concentration are identical as 
well, therefore the only variation from the test with MF to the test with
out it will be in the rates of production. Consequently, any differences in 
the final concentrations of products will be directly related to the changes 
in the slopes of their production. This implies that the detection of the 
MF effects can be carried out via comparison of the input-output relation 
identified from the data of the test with MF and that obtained from zero 
MF test data. If this comparison yields relations that match the ratios of 
slopes of the concentration growth in the corresponding batch tests, then 
the presence or absence of the MF effects is validated by two experiments 
with completely different data generation and processing methodologies. 

3.3. Localization of the influence of magnetic field 
in the system description 

The results of the batch experiments are presented in Fig. 6. 
This figure shows the dependence of the concentration growth rate on 

the value of magnetic field that turns out to be rather pronounced. The 
differential equations presented above must be modified to include this 
effect. Since the dynamics of the influence of magnetic field on the free 
radical cloud is extremely fast in comparison to that of the formation of 
stable chemical products, it was decided to introduce the MF effects into 
the model in the form of the direct dependence of certain reaction parame
ters (coefficients) on the value of the magnetic field strength. Mathematical 
models of MF-influenced chemical reactions, however, contain a large num
ber of coefficients, and at the outset it is not clear which of them should 
reflect the MF effects. Therefore, as the first step in model development 
it was decided to determine parameters which should reflect the MF influ
ence on the overall reaction by experimentally finding the reaction stage 
most sensitive to the MF irradiation and subsequently introducing the func
tional dependence on the magnetic field into the coefficients in this stage. 
Although the available theory suggests that the stage of the competition 
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Fig. 6. Slope data for output production of ketones (upper curve) and alcohols in hexane 
reactions versus magnetic field. 

between the "cage" recombination of free radicals with the formation of 
the "cage" products and the escape of the radicals from the "cage" to the 
"volume" with subsequent formation of "non-cage" products is the most 
sensitive to magnetic field, the sensitivity in this stage strongly depends 
on the method of free radical initiation and should be ascertained for each 
particular initiation type. Such verification could be most easily done by 
selecting a test reaction with the initiation type of interest where the "cage" 
products could be easily detected and analyzed. In the present work all free 
radical reactions have been initiated by ultraviolet light irradiation with 
acetone as the sensitizing agent. For this reaction initiation type, the reac
tion of the photoinduced transformation of iso-propanol in the presence 
of acetone was chosen as the test reaction with pinacol being the "cage" 
product. The reasoning behind such choice is as follows. Irradiation of the 
iso-propanol by UV in the presence of acetone causes the formation of a 
radical pair which consists of two (CH3)2COH radicals. These two radi
cals could interact with each other in the reactions of two different types, 
the reaction of recombination and the reaction of disproportionation. The 
process of recombination of these two radicals leads to the formation of 
pinacol. Although, besides "cage", the formation of pinacol could also take 
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place in the "volume", the experiments on radiolyses of the aqueous solu
tions of iso-propanol, where two similar radicals of (CH3)2COH are formed, 
clearly show that in the case when these two radicals escape to the "vol
ume" they usually (10:1) undergo disproportionation with the resulting 
formation of acetone and iso-propanol [18]. Therefore, pinacol which is the 
product of photoinduced transformation of iso-propanol in the presence of 
acetone could be formed mainly as the result of the reaction of recombina
tion of two radicals in the "cage". This product could be easily analyzed 
during the reaction of photoinduced transformation under the influence of 
the magnetic field of various strengths. Thus, the data on the rate of the 
formation of pinacol under the influence of the magnetic field, obtained 
from this experiment, could point exactly at the field-dependent stage in 
the photochemically-induced free radical transformations of organic com
pounds in the presence of acetone as the sensitizing agent and thereby 
single out the parameter (coefficient) in the mathematical description of 
the reactions of this type which needs to reflect MF-induced changes in the 
reaction rate. The process of the photolysis of iso-propanol in the presence 
of acetone could be described by the following scheme: 

[Ac] H 3 [ A c ] * (3.13) 

T T 
3[Ac]* + (CH3)2CHOH -> fAcH • • • (CH3)2 'COH] (3.14) 

T T I T 
[• AcH • • • (CH3)2

,COH] - ^ [• AcH • • • (CH3)2*COH] (3.15) 
I T 

[•AcH- • - ( C I ^ y C O H ] -> (CH3)2C(OH)C(OH)(CH3)2 (3.16) 
(pinacol) 

T T 
[•AcH • • • (CH3)2*COH] -» *AcH + (CH3)2 'COH (3.17) 

•AcH + (CH3)2*COH -> Ac + (CH3)2CHOH (3.18) 

(acetone) (iso-propanol) 

Ac = CH3COCH3, *AcH = (CH3)2*COH 

The results of our experimental studies of the dependence of the con
centration growth rate of pinacol on magnetic field strength showed that 
the application of the magnetic field in the range of 0-0.15 T causes an 
increase in the pinacol growth rate, followed by a pronounced growth rate 
decrease in the range of 0.3 T. Thereafter, the growth rate increases in 
the interval 0.3-0.4 T. Thus, the batch experiment shows that magnetic 



102 Biomathematics: Modelling and Simulation 

field with the strength between 0.0-0.4 T could influence the rate of the 
formation of the products of the recombination of two radicals in the 
"cage", and that the rate of intersystem crossing between triplet and singlet 
spin-correlated states in the reactions of photosensitized transformations of 
organic compounds in the presence of acetone could be field-dependent. 
This observation, therefore, indicates that the dependence of these reac
tions on magnetic field could be adequately reflected through the functional 
dependence of the intersystem crossing rate coefficient in the differential 
equations of the reaction dynamics on the magnetic field strength. 

Although, as indicated in [15], excited singlet acetone can also be 
involved in hydrogen abstraction reactions, the conclusion of [15] (items 3 
and 4) indicates that the efficiency of intramolecular triplet reactions is 
noticeably higher than that of the singlet hydrogen abstraction and, cor
respondingly, the efficiency of product formation in the singlet reaction is 
generally low (< 25%) and may become negligibly small in some cases. For 
these reasons we consider that the inclusion of reactivity of excited singlet 
state acetone into the kinetic scheme corresponding to the model presented 
is not critical for capturing the EMF-induced effects by the model, and, 
therefore, this reactivity is omitted. 

3.4. Development of the model with dependence on 
magnetic field 

From the experiment with iso-propanol, it follows that the equation which 
reflects the change in the concentration of singlet radical pairs £3, and the 
"inter-system crossing" constant £3 which multiplies xi in this equation, 
are the most likely to be affected by a change in magnetic field. By changing 
&3 and repeatedly solving numerically differential equations given above it 
might be possible to find the values of kj, which yield very close match
ing between the empirical slopes obtained from the experimental data in 
the whole range of MF values and those obtained from the numerical solu
tion. This procedure then would generate a function £3 versus B, thereby 
explicitly introducing the effect of the magnetic field into the differential 
equations, and tailoring the behavior of the equations to the results of the 
experiments. 

The complexity and nonlinearity of the differential equations, especially 
the large difference in the time constants for coupled equations makes this 
procedure difficult. The following steps were followed to obtain the steady 
state slopes of the outputs. The first six equations were solved for the 
equilibrium point with nominal parameter values, i.e. values obtained from 
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the literature and numerous prior experiments conducted by the authors. 
These values are: 

ki • u = 5.95 • 10~7; fc2 = 2 • 106; k4 = 2 • 109; fc5 = 4 • 105; 

fc6 = 109; k7 = 0.53; fc8 = 1.5 • 107; k9 = 8 • 106; fc10 = 1.1 • 109; 

fcn = 2 • 109; Aw = 2 • 109. 

The values of K2, K3 are taken from [29]; K4, K6, K l l , K12 — from 
[16, p. 572]; K5 — from [6]; K7 — from [5, p. 25]; K8, K9 — from [22, 
p. 25]; K10 — from [16, 30, p. 380]. 

This equilibrium point gave constant rates (slopes of the solution curves) 
of the generation of the output products in the remaining three equations. 
Then, by varying £3, and thereby changing the value of the equilibrium 
point, a range of possible slopes for the last three equations was obtained. 
This range turned out to be very narrow for an order of magnitude variation 
in &3 (104 < &3 < 106). To maximize this range, the other model parameters 
were varied over a range of 10-20%. The constants then were increased or 
decreased in such a way as to provide a larger range of the output slopes 
for the same variations in fa. The new values for the constants are: 

k7 = 0.39, fc8 = 2.2 • 107, fc9 = 1.4 • 107, 

fcn — 109, fci2 = 109, the rest unchanged. 

By changing £3 in the range 104-107 in System 3.1 these new values of 
constants permit a numerical matching of the entire range of experimentally 
obtained slopes. This permits the model to cover the ratios 1 through 1.5418 
for ketones and 1 through 1.8105 for alcohols, encompassing the production 
rates under no magnetic field as well as all the MF affected rates. This 
matching of the slopes yields the set of (£3, B) pairs (see Table 1). 

Table 1. Relation between the 
values of intersystem crossing 
rate coefficient and MF strength 
obtained by matching numerical 
solutions to experimental data. 

B= k3= 

0 9.5026 • 104 

5 • 10- 2 2.9583 • 104 

1 • 10-J 4.1707 • 104 

1.5 • lO"1 3.2894 • 105 

2 • 10- 1 1.6766 • 106 

3 • lO"1 1.2045 • 105 

4 • lO"1 1.0494 • 105 



104 Biomathematics: Modelling and Simulation 

Hexane: Parameter K3 versus magnetic field B 
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Fig. 7. Nonlinear hexane model development. Relationships (dotted curves) between 
parameter k$ and magnetic field, obtained by matching the slopes for ketones and alco
hols versus magnetic field data to the same slope values obtained from simulation via 
adjusting parameter fc3. The solid curve shows the average. 

The function £3 versus B shown in Fig. 7 is obtained by interpolating 
between the values of this set. 

Thus, the complete mathematical model of the hexane oxidation irradi
ated by the magnetic field in the range 0-0.4 T is given by System 3.1 along 
with the graphical dependence of £3 on magnetic field strength shown in 
Fig. 7. The accuracy of this model in terms of representing the changes in 
the final product concentration growth rates as a function of magnetic field 
is demonstrated in Fig. 8. 

3.5. Procedures for identification of the reaction dynamics 
under MF influence using the flow-through 
experimental data 

Reference [7] indicates that flow-through experiments provide a good set
ting for studying sensitivity of chemical reactions to magnetic field. The 
purpose of the flow-through experiment with hexane carried out in this 
work is to use robust system identification methods [9, 10, 12, 19, 20] to 
independently assess and quantify the influence of the magnetic field on the 
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Hexane Reaction simulation 

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 
Variations in Magnetic Field B 

Fig. 8. Simulation of slopes for output production of ketones (upper curve) and alcohols 
in hexane reactions versus magnetic field. Actual slope data from experiments is indicated 
by the dotted lines. 

flow-through process with mixing for a broad range of the oxidizer concen
trations at the value of magnetic field strength B — 0.2 T where the batch 
process displayed the highest sensitivity and thereby partially validate the 
mathematical model developed on the basis of the batch experiments at 
the point with the highest MF effect. 

In the flow-through test, the input acetone concentration is modulated, 
resulting in the experimental output acetone concentration given in Fig. 9, 
the computed output excited acetone concentration given in Fig. 10, and the 
output product concentration with magnetic field on (B = 0.2 T) and off, 
given in Figs. 11 and 12. The excited acetone concentration is computed 
from the measured output acetone by interpolating the data in Table 2. 
This interpolation is shown in Fig. 13. 

The measured acetone concentration data do not lend themselves easily 
to a convenient identification of a linear model due to a nonlinear relation to 
the excited acetone concentration. For a plot of the log of acetone concen
tration versus excited acetone concentration (Fig. 13), a region close to lin
ear is demonstrated for acetone concentrations between 10~2 and 5 • 10 - 2 , 
but the actual acetone concentration range lies between 2 • 10 - 2 mol/1 and 
2 • 10 _ 1 mol/1, producing the excited acetone levels which are nonlinearly 
scaled. For this reason, black box 2 in Fig. 2 to be identified will have 
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Output Acetone 
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Fig. 9. Output acetone concentration in the flow through experiments. 

., 1 n - * Excited Acetone Concentration 

100 120 
Time (min) 

Fig. 10. Estimated excited acetone concentration, computed from the output acetone 
concentration. 
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Fig. 11. Time domain data of C2OH flow-through hexane experiment comparing the 
cases of magnetic field off, B = 0.0 T (solid line) and magnetic field on, B = 0.2 T (dotted 
line). The second plot shows the ratio of the two concentrations as a function of time, 
and the overall average. 

the estimated excited acetone concentration as the input and experimen
tal product (C2OH and C3OH) concentration as the output. The linear 
models of black boxes in Fig. 2, given below by the identified discrete time 
transfer functions, can be viewed as dynamic relations between input and 
output obtained via averaging input/output data by statistical and/or fre
quency domain methods over a broad range of the input acetone concentra
tion values. Black box 1 represents the mixing dynamics of acetone, black 



108 Biomathematics: Modelling and Simulation 

-•* Comparison of Magnetic field off and on (dotted) 
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Fig. 12. Time domain data of C30H flow through hexane experiment comparing the 
cases of magnetic field off, B — 0.0 T (solid line) and magnetic field on, B = 0.2 T (dotted 
line). The second plot shows the ratio of the two concentrations as a function of time, 
and the overall average. 

box 2 — the relation between computed excited acetone concentration and 
final reaction products, and black box 3 — the transfer function of the 
whole system including both mixing and reaction dynamics. 

Decomposition of box 3 into boxes 1 and 2 does not introduce a signif
icant approximation error due to the fact that the reaction reaches steady 
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Table 2. Relation between the values of experimental ace
tone concentration data and computed (estimated) excited 
acetone concentration. 

Acetone: 

1 0 - 4 

l O - 3 

2 • l O " 3 

3-i t r3 

4-icr3 

5 • l O - 3 

6•10~ 3 

7 1 0 - 3 

8 - 1 0 - 3 

9 1 0 - 3 

1•10- 2 

2 - 1 0 - 2 

Excited Acetone 

4 .1384-UP 7 

4.0349 • l O - 6 

7.9516 - 1 0 - 6 

1.1765-lO - 5 

1.5460 • lO" 5 

1.9066 • l O - 5 

2.2584 • 10~5 

2.5998 • lO" 5 

2.9309 • 10" 5 

3.2546 • l O - 5 

3.5679 • l O - 5 

6.2756 • 10~5 

Acetone: 

3 • l O " 2 

4 - 1 0 - 2 

5 - 1 0 - 2 

6 1 0 - 2 

7 - 1 0 - 2 

8-10-2 
9-10-2 

1 0 - 1 

2 1 0 - 1 

3 - K T 1 

4 - 1 0 - 1 

2 

Excited Acetone 

8.3285 • 1 0 - 5 

9.8863 • l O - 5 

1.1067-lO - 4 

1.1964-lO"4 

1.2643 • 1 0 - 4 

1.3160e-10-4 

1.3550 - l O " 4 

1.3847 • l O " 4 

1.4721 • 1 0 - 4 

1.477-10-4 

1.477 • 1 0 - 4 

1.4780-10"* 

concentration growth rates in the time scale the order of magnitude faster 
than that of mixing. Thus, by using the exit stream concentration of the 
acetone as an input, instead of the concentration of the selected input vial 
for a particular sample time, the mixing dynamics of the acetone can be 
effectively eliminated. This permits the identification to focus on the reac
tion dynamics, which is the primary interest. 

Due to the fixed residence time of the flow-through experiment, the 
ratios to be compared to the constant slope (concentration growth rate) 
ratios of the batch experiment are those of the output steady state con
centrations. The flow-through steady state product concentrations can be 
obtained from the input/output data as the final values of the unit step 
responses of the identified linear models with an offset. These final values 
are, in fact, the steady state gains (i.e. the frequency responses for zero 
frequency: u = 0) of these models plus an offset, computed by summing 
the coefficients of the transfer functions and adding the offset value. For 
example, for a transfer function of the form: 

H{z) = [BQ]/[A0z + A1] 

a steady state gain is BQ/(AQ + A\). Here z is understood as either one 
step advance in time domain: x(t)z = x(t + 1), or the complex argument 
z = re?u of z-transform. 

Two different forms of models were obtained as a result of the identifi
cation procedure. The first one corresponds to a linear model (zero offset). 
The form of the data fit is 

A(z)y(t) = B{z)u(t - 1). 
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Fig. 13. Plot of function relating excited acetone concentration to acetone 
concentration. 

The second one considers an offset in the data, so that the form of the data 
fit is 

A(z)(y(t) - yQ) = B(z){u(t - 1) - u0). 

The physical significance of this offset becomes clear after examining the 
original non-linear input/output relation. Identification reveals that the 
mixing dynamics between input and output acetone concentrations is nearly 
linear and first order, yielding A(z) = AQZ + A\ and B{z) = Bo- This is 
demonstrated by the accuracy of the data fit of the simulated acetone con
centration at the output of the model to the experimental data. On the 
other hand, the relationship between output acetone concentration and 
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C2OH concentration and C3OH concentration is complex. Since this rela
tion is modeled by a linear system, the best fit to the data would include an 
offset 2/0 from the origin. This is demonstrated by a decrease in the residual 
noise variance for the models with offset. It is interesting to note, though, 
that both model forms yield reasonably close parameter values, with similar 
time constants and gains. 

Three identification methods have been applied to the experimental 
data: least squares (LS), empirical transfer function estimate (ETFE), both 
using MATLAB system identification toolbox, and stochastic Hoc identifi
cation method of [19, 20]. It is interesting to point out that the initial set of 
data contained a one time step mismatch between the input and the output 
data, which could be viewed as the plant/model mismatch introduced by 
the measurements. This mismatch resulted in the failure of the standard 
LS method to produce any results, while the latter two methods yielded 
acceptable models. In the subsequent data sets this mismatch was removed, 
and the LS algorithm started converging to a set of parameter values. Only 
the results of the third method, however, will be presented below since it 
yields the process model with the smallest error bound on the unmodelled 
dynamics. 

The latter identification algorithm attempts to estimate the model clos
est in the Hs norm to the plant by minimizing the maximal plant/model 
mismatch as estimated by the standard empirical transfer function estimate 
(ETFE) of the transfer function from the input sequence (u(kT)) to the 
output error (e(fcT)). As indicated in [19, 20], by establishing a connection 
between this minimax problem and a sequence of weighted least squares 
(WLS) problems, the estimate itself is computed via an iterative sequence 
of weighted least squares estimates. The weighting filter in this sequence 
is updated to asymptotically satisfy the H ^ minimization criterion. The 
convergence of this procedure under relatively mild assumptions has been 
proven and computationally supported in [19, 20]. Convergence of the 
parameter estimates in the present paper is very similar to that of [19, 20]. 

In the present work, following the approach of [19, 20], iterations of a 
least-squares minimization algorithm with frequency weighting were car
ried out, adjusting the weights until the peak of the error frequency spec
trum is made as low as possible. The error of the model with an offset for 
Ao = 1 is given as a one step ahead prediction error by: e(kT) = y(kT)+ 
Ai[»((fc - l ) r ) - yo) - B0\u((k - 2)T) - u0] - y0. 

The error frequency spectrum is represented by the empirical transfer 
function estimate from u to e, denoted by ETFE(e, it, M), where M is the 
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number of frequency samples. The magnitude plot of this sampled transfer 
function from u to e is the function to be minimized in the weighted least 
squares sense through the selection of the model parameters. It represents 
the errors which result from modeling uncertainty, rather than random noise 
injected into the process or measurements, since it shows the frequency 
domain correlation with the input. 

The minimization of the magnitude peak of ETFE(e, u, M), denoted 
further as L\, is carried out through the iteratively weighted least squares 
(IWLS) procedure of [19, 20], as follows. Let at fc'th iteration 6k € R m and 
qk € R M denote vectors of model parameters and weights, respectively, 
#fc,i> i = l,-..,m, and qk,i, i = 1 , . . . , M, denote their i'th components, and 
M samples of ETFE(e, u, M) be arranged into M-vector with the complex-
valued components, denoted further as ETFE(e,u, M)k : R m —> C M . Fix 
a step size a s(0, 1] and a weighting exponent /3, 

(i) initialize counter k and weighting vector qk as k = 1 and 

_ [_l 1_ _J_ 
Ql ~ WMVM"'VM, 

repeat: 
(ii) find 8k (i.e. model coefficients Bo and Ai and offsets UQ and j/o in 

the present work) that minimize H^ »ETFE(e,u, M)fc||2, where (•) denotes 
componentwise multiplication (this step represents WLS minimization car
ried out in the present work by means of Levenberg-Marquardt algorithm); 

(iii) update each component of the weighting vector: 

qk+lti = \ A ^ ( ( 1 -a) +a |ETFE(e , u, M)k>if), i = l,...,M, 

(iv) normalize weights: qk+i = qk+i/Mk+ih; 
(v) increment k; 

until k > kMAX or | |ETFE(e,u,M) fe | |00 - £ £ 1 g £ < | E T F E ( e , u I M ) f c i i | / 

YLiLi it i < £> £ > ®> t n e v a m e s °f ^MAX and e in the stopping criteria 
above are usually obvious from the convergence behavior of the estimates. 
The H/lloo norm is the maximum absolute value over the components of / , 
H l̂̂  is the Euclidean norm of vector q. 

Thus, IWLS approach generates a sequence of weights qk such that a 
sequence of WLS solutions 

9k G arg min \\qk»ETFE(e,u,M)k\\l 
9eRm 

converges to the Hoo solution 

6* e arg min | |ETFE(e,u,M)| |0 0 . 

, respectively; 
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3.6. Identification results 

The HQO identification method was used to identify black box 1 (mix
ing dynamics from PRBS input acetone concentration to exit stream ace
tone concentration) and black box 3 (the overall system dynamics from 
PRBS input acetone concentration to the final product concentrations). 
Fixing AQ = 1, the identification procedure produced the polynomials 
B(z) = BQ = const, and A(z) = AQZ + A\ and the offsets yo and uo 
as well as the measures of the identification accuracy given by the bound 
on the unmodelled dynamics, denoted below by L\. The results of the com
putations are collected in Table 3. 

The relatively small size of the bound on the unmodelled dynamics given 
in Table 3 indicates that the quality of the identified models is relatively 
high. The relations between output acetone and final product concentra
tions were determined taking into account the known nonlinear relation 
between acetone and excited acetone concentrations. The transfer func
tions (black box 2 in Fig. 2) are then identified from the excited acetone 
concentration to the output. Since the dynamics of the oxidation process is 
extremely fast in comparison to the sampling rate of the experimental data 
collection, the relation between excited acetone concentration and reaction 
products could be well described by a constant. 

3.7. Validation of the nonlinear mathematical model and 
the region of model validity 

The ratios of the output concentrations generated by the linear models com
puted on the basis of the flow-through experiment data can be compared 

Table 3. Hoo identification results. Input: PRBS acetone concentra
tion, outputs: concentrations of output acetone and alcohols C2OH and 
C3OH. 

B = 0.0 B = 0.2 

Acetone, L\ = 0.36 
Bo = 11.3210, Ai = -0.8421 
2/0 = 6.4580, uo = 0.08 

C2OH, Li = 0.03 
Bo = 0.1841, Ai = -0.8075 
yo = 0.4480, u 0 = 0.08 

C3OH, Li = 0.039 
Bo = 0.2978, Ai = -0.8172 
yo = 0.7373, u0 = 0.08 

Acetone, L\ = 0.15 
Bo = 10.2407, Ai = -0.8405 
2/0 = 6.2620, u 0 = 0.08 

C2OH, £1 = 0.012 
Bo = 0.1115, Ax = -0.8767 
2/o = 0.3882, uo = 0.08 

C3OH, £1 = 0.016 
Bo = 0.1844, Ai = -0.8853 
2/0 = 0.6383, u 0 = 0.08 
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to the corresponding ratios of the concentration growth rates generated by 
the full nonlinear model computed on the basis of the batch experiment 
data to verify the relative change in the reaction rates corresponding to 
the change in magnetic field. These ratios for C2OH and C3OH production 
for the cases of MF strength B = 0 and B = 0.2 are computed using the 
output concentration of the model, y. Given an input, u, the steady state 
output of the models obtained via Hoc identification method and presented 
in Table 3 can be computed by the formula: 

y = [Bo/(l + ^ i ) ] ( « - « o ) + » b -

Due to the nonlinearity of the actual process, the following ratios produced 
by the linear models are evaluated at the minimum, mean, and maximum 
input values, UQ = 0.006, 0.08, 1.0, respectively. 

The ratios produced by the Hoo identification are as follows: 

^ j J M L ^ u - 0 . 0 8 ) + 0.448 

(i°-0
u

8%7)(tt-0-08)+ 0.388 
C2OH: ^ 01T15 ). n J . . 000 = 1-13 to 1.41, 

d S V " - 0 - 0 8 ) + 0-737 
C3OH: 0.1844 / „ „ „ „ = 1.14 to 1.32. 

(l-oT8453)("-°-08) + 0 - 6 3 8 

The error bounds of the Hoo identification are sufficiently small to ensure 
high confidence in the identification results. The above ratios are also con
sistent with the batch experiment data and therefore they indeed validate 
the nonlinear reaction model of the photosensitized free radical hexane oxi
dation under the influence of magnetic field developed on the basis of the 
batch experiment. As shown in Figs. 6-13, the experimentally supported 
range of model validity is as follows: (a) magnetic field strength: 0.0 Tesla-
0.4 Tesla, (b) excited acetone concentration: 10_ , i mol/1-5 • 10_ 1mol/l, 
(c) cumulative alcohols concentration: 4 • 10 - 8 mol/1-2 • 10 - 4 mol/1. 

4. Modeling and Identification of the MF-Influenced 
Oxidation of Linolenic Acid 

4 .1 . Experimental part 

The experimental study of the magnetic field influence on the photo-induced 
free-radical oxidation of lipids was carried out using the linolenic acid sup
plied by Sigma Chemical Co. For the exposure studies the solution of the 
linolenic acid in chloroform (5.263 mg/ml) in quantity necessary for the 
preparation of the experiment was placed into a tube, and CHC13 was 
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dried by rotary evaporation in argon at room temperature. The substance 
remaining in the tube was diluted by 0.1 mol Na3P04 prepared using the 
bidistilled water. After the one hour dilution the prepared solution of the 
linolenic acid was used in the experiments. 

Three batch experiments were performed. In the first batch experiment 
the 0.5 • 10~2 mol/1 concentration of linolenic acid was utilized. The acetone 
at the final concentration of 5 • 10~2 mol/1 was added to linolenic acid con
tained in the test tubes immediately before irradiation. The reaction vessel 
was placed within the coils of an electromagnet, capable of providing vary
ing magnetic fields and was held continuously under ultraviolet light with 
260-280 nm wavelength to provide a constant energy source for the oxida
tion reaction. The exit stream was sampled and analyzed. In the second 
batch experiment the linolenic acid with the concentration of 10 - 2 mol/1 
was utilized. The experimental procedure was identical to that of the first 
experiment. In the third batch experiment the linolenic acid and the acetone 
with the concentrations of 10 - 2 mol/1 and 10 _ 1 mol/1 respectively, were uti
lized. The experimental procedure differed from that of the first experiment 
only in the irradiation duration and the final value of the MF strength set 
here at 30min. and 0.2 T, respectively. 

4.2. Reaction scheme and differential equations, describing 
the process of photo-induced oxidation of linolenic acid 

The effect of the magnetic field on the photo-induced peroxidation of 
linolenic acid was studied by measuring the concentration of malonaldehyde 
(MDA) and the diene conjugates (DC). The formation of these products 
occurs according to the following scheme: 

(4.1) 

(4.2) 

(4.3) 

(4.4) 

cts (4.5) 

(4.6) 

Ac 

3 [Ac]* 

I 
[•Li.. 

T 
[ # L 2 • • 

T 
['U • • 

T 
[•La • • 

* 3[Ac]* 

T T 
+ LH -> [ 'Li . . . *AcH] 

T T T 
.•AcH] — [•L2...*AcH] 

T T I 
. *AcH] - ^ [*L2 . . . *AcH] 

I 
. *AcH] —• nonradical pn 

T 
. *AcH] -» *L2 + *AcH 
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H 2 00 2 , t 

L 2 00* 

L2OOH + *Li 

•L3 

L3H + «Li 

MDA + other products 

L2OOL2 + 0 2 

L2OOL2 

Ac + (CH3)2CHOH 

*L2 

(4.7) 

(4.8) 

(4.9) 

(4.10) 

(4.11) 

(4.12) 

(4.13) 

(4.14) 

(4.15) 

*L2 + 0 2 

LaOO* + LH 

L 2 0 0 * 

*L3 + LH 

L3H 

2 L 2 0 0 * 

•L2 + L 2 00* 

2 *AcH 

*Li 

LH — linolenic acid. 'Li — the radical of the abstraction of a hydrogen 
atom from a reactive methylene group of the linolenic acid. 

*L2 — an alkyl radical of the diene conjugate. L 2 00* — a peroxyl radi
cal of the diene conjugate. *L3 — a cyclic peroxide radical. L3H — cyclic 
endoperoxide. L2OOH — hydroperoxides of the linolenic acid diene conlu-
gates. L2OOL2 — peroxides of the diene conjugates. 

In the reaction scheme acetone in its triplet state 3[Ac] abstracts a 
hydrogen atom from fatty acid to generate a triplet radical pair, Eq. (4.2). 
The latter can follow two pathways: (1) intersystem crossing (ISC) to a 
singlet radical pair which recombines to give non-radical products, Eq. (4.5), 
or (2) separation, Eq. (4.6) — to produce radicals that are available for 
reaction with other molecules. The escaped radicals could react with oxygen 
to form peroxyl radicals (LOO*) and the propagation of lipid peroxidation 
proceeds by a well-known mechanism. 

As shown in the scheme, during the photoinduced oxidation of linolenic 
acid the process of peroxidation takes place. In our experiments the yield of 
this peroxidation was measured by quantifying the diene conjugation (for 
the third batch and flow-through experiments) and malonaldehyde (for all 
batch experiments). 

The results of the batch experiments on the dependence of the linolenic 
acid oxidation products concentration growth rates on magnetic field 
strength are summarized in Figs. 14-16. Figure 14 shows the change in 
the MDA concentration growth rates in the first batch experiment as a 
function of magnetic field strength. 

The data from two test days of the first experiment are plotted 
by dashed lines with data points of each day distinguished by (o) and 
(*) symbols, and with the average function drawn with a solid line. As 
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Linolenic Acid Test: Days 1(o) and 2(') and average 
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Fig. 14. The values of MDA concentration growth rate in linolenic acid oxidation versus 
magnetic field; day 1, day 2 and the average of both days. First batch experiment: 
C L A = 0.5 * 1 0 - 2 mol/1, uv = 20min, C A c = 5 * 10~2 mol/1. 

illustrated in this figure, the application of the magnetic field causes a 
growth rates decrease in the range of 0.0-0.1 T. Thereafter, the growth 
rates slightly increase in the interval 0.1-0.25 T, reaching a plateau between 
0.25 T and 0.4 T. No experiments were conducted for the field strengths 
higher than 0.4 T. 

The results of the second batch experiment are shown in Fig. 15. 
As illustrated in this figure, the application of the magnetic field causes 

an MDA concentration growth rates increase in the range of 0.0-0.15 T. 
Thereafter, a slight decrease is observed in the interval 0.15-0.20T, followed 
by a significant decrease in the range of 0.25-0.35 T and a plateau between 
0.35 and 0.4 T. No experiments were conducted for the field strengths higher 
than 0.4 T. 

The results of the third batch experiment are shown in Fig. 16. 
The upper plot shows that the application of the magnetic field causes 

a slight decrease of diene conjugates production rate in the range of 0.0-
0.06 T, followed by a slight rates increase in the range of 0.06-0.1 T, reaching 
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Linolenic Acid Experiment 

0.15 0.2 0.25 
Magnetic Field (B) 

Fig. 15. The values of MDA concentration growth rate in linolenic acid oxidation versus 
magnetic field. Second batch experiment: C L A = 1 0 - 2 mol/1, uv = 20min, C A C = 
5 * 1 0 - 2 mol/1. 
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Fig. 16. Concentration growth rates of diene conjugates (upper plot) and MDA 
in linolenic acid oxidation versus magnetic field. Third batch experiment: C L A = 
10~2 mol/1, uv = 30min, C A c = 0.1 mol/1. 
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the plateau between 0.1-0.2 T. The lower plot shows that the application of 
the magnetic field causes a significant growth rates decrease of MDA pro
duction in the range of 0.0-0.06T with the plateau reached between 0.06 
and 0.1 T. Thereafter, the MDA production rates increase in the interval 
0.1-0.16 T and then slightly decrease in the range 0.16-0.2 T. No experi
ments were conducted for the field strengths higher then 0.2 T. 

The results of the flow-through experiment with magnetic field off (solid 
curve) and on (dotted curve) for diene conjugates are shown in Fig. 17. 

The lower plot indicates that the average change in the diene conjugates 
growth rates caused by magnetic field for the concentration of linolenic acid 
0.5 • 10_2mol/l and magnetic field strength 0.17T is very small: 1.78%; i.e. 
within the measurement error, so that further flow-through experiments 
should be conducted to analyze MDA growth rate change. 

X10 Comparison of Magnetic field off and on (dotted) 

1.15 

100 120 
Time (min) 

Ratio and Average (1.0178) 

80 100 120 140 160 180 200 
Time (min) 

Fig. 17. Time domain data of diene conjugate concentration in the flow through 
linolenic acid experiment comparing the cases of magnetic field off (B = 0.0 T) (solid 
line) and magnetic field on (B = 0.17T) (dotted line). The second plot shows the ratio 
of the two concentrations as a function of time, and the overall average ratio. 
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Our findings for the common trend displayed by the batch experiments 
can be explained by the following mechanism: application of an external 
magnetic field during UV-irradiation of a solution of linolenic acid increases 
the rate of intersystem crossing of triplet radical pairs in several intervals 
of the field strength as shown in Figs. 14 and 16. This allows fewer radi
cal pairs to dissociate, resulting in lower average concentration of fatty acid 
free radicals in the solution and lower formation of malonaldehyde. We con
jecture that in the heterogeneous structures the processes of the oxidation 
under the influence of the magnetic field are significantly more complicated 
then in the homogeneous structures, and they could depend not only on the 
strength of the magnetic field but also on the concentrations of substrate 
and sensitizer as well as the duration of the UV-irradiation. 

The system of differential equations of the photo-induced oxidation of 
linolenic acid obtained on the basis of methods of competitive kinetics is 
given below and is further referred to as System 4.1. 

dxi/dt = kiu\ — k2x\x2 k\ — quantum yield 3[Ac]* 
dx2/dt = —k2x\x2 x\ — concentration of excited acetone 

-(fcgXg + /C10Z12)Z2 

dx3/dt = k2x\x2 — k3x3 x2 — concentration of lipid LH 
dxi/dt = £32:3 — {ki + k&)xi x3 — concentration of triplet radical pairs 

T T 
[•Lj. . . 'AcH] 

dxs/dt = k$X4 — £5X5 £4 — concentration of triplet radical pairs 
T T 

[•L2 . . . 'AcH] 
dx6/dt = k6X4 + ki^Xn £5 — concentration of singlet radical pairs 

— k7xex8 — ki3x6xg 
T T 

[•L2 . . . 'AcH] 
dxy/dt = k§x± — 2/C14X7 X6 — concentration of *L2 radicals 
dxs/dt — k\ix% — krxexs £7 — concentration of 'AcH radicals 
dxg/dt = krX6#8 ^(^8^2 + ^9 ^8 — concentration of 0 2 

+ 2fci2x9 + ki3x6)x9 
dxw/dt = ksXQX2 xg — concentration of L^OO* radicals 
dxn/dt = k8xgx2 + 1̂0X12X2 xi0 — concentration of (L2OOH) 

-ki5Xu 

dxi2/dt = kgxg — ki0xi2X2 i n — concentration of 'Li radicals 
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dxis/dt = 1̂0X122:2 — ^11^13 Z12 — concentration of cyclic peroxide 
•L3 radicals 

dxu/dt = fcna;i3 £13 — concentration of cyclic peroxide 
L3H 

dxis/dt = k\2x\ + ^3X6X9 xu — concentration of MDA 
dxie/dt = ksXgX2 + k^Xg x15 — concentration of peroxides of diene 

+ k\3XeXQ conjugates. 

2/1 = xu 
Vi = ^io + xis — the measured concentration of diene conjugates in 

solution. 

fciui = 5.95 • l ( r 7 , k2 = 2 • 106, fc3 = 1010, fc4 = 105, k5 = 109, 
fc6 = 4 • 105, k7 = 9 • 106, k8 = 30; k9 = 108, fci0 = 1, kn = 10, 
fc12 = 3 • 107, fcis = 5 • 107, k14 = 2 • 109, fcis = 1010. 

System 4.1. 

Analysis of the above equations reveals that the dynamics of the equations 
is more complicated than that of the case with hexane. The variables x\, 
X2, and X3 evolve very fast after the ultraviolet light excitation is turned 
on and settle into steady state values which depend on the other, slower 
states, especially on £9 and x\2- The equations of System 4.1 do not lend 
themselves to easy solution by the methods employed earlier. Still, these 
states will eventually settle into the constant values of concentration versus 
time. As before, the variables of interest (xu and x\e) depend only on the 
other states, therefore the derivatives of the concentrations (the concentra
tion growth rates) can be shown to quickly converge to positive constants. 
This is consistent with the almost linear concentration growth observed in 
the batch experiments. 

For the flow through test configuration, these equations are still valid. 
The test provides only a specific, finite time for the solution to be under 
the ultraviolet light. The product concentrations increase at some constant 
rate while they are in the presence of the excited acetone, and when the 
solution passes through the test setup, and out of the influence of the light, 
the reactions will stop, and the concentrations will remain at their final 
values. These final values depend on the rates of the production (the slopes 
in the batch test) which themselves might depend on magnetic field, the 
acetone concentration, and the time the solution remains in the influence 
of the light. In the tests with MF and without it, the input and output flow 
rates are identical and constant resulting in the same time of light irradia
tion, the irradiation parameters are identical, and the time patterns of the 
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change in the input acetone concentration are identical as well, therefore 
the only variation from the test with MF to the test without it will be in 
the rates of production. Consequently, any differences in the final concen
trations of products will be directly related to the changes in the slopes of 
their production. This implies that the detection of the MF effects can be 
carried out via comparison of the input-output relation identified from the 
data of the test with MF and that obtained from zero MF test data. 

4.3. Identification of the reaction dynamics under MF 
influence using the flow-through experimental data 

The model form for fitting the experimental data was selected as: 

y(t) = B(q)/F(q){u(t - 1) - du} + C(q)/D(q)e(t) + dy. 

Three identification methods have been employed in this part of the work: 
least squares (LS), empirical transfer function estimate (ETFE), both using 
MATLAB system identification toolbox, and H ^ identification method 
described in Sec. 3.5. 

The identification process demonstrated the following very important 
feature of the HQO identification method. Discrete models of real processes 
usually include a one-step measurement delay, which is routinely incorpo
rated into the identification model structure by defining input to be u(t — 1), 
as in the model above. The process variables were sampled in real time 
but analyzed off-line, with the analysis results recorded with no measure
ment delay. This specificity of the data record for the linolenic acid did not 
become clear until after the identification had been carried out, and one 
step input delay was included into the standard model structure above. The 
results of the LS identification are presented in Table 4 and Figs. 18 and 19 
for model with one step input delay, and Figs. 22 and 24 for input with no 
delay. The corresponding B.^ identification results are given in Table 5 and 
Figs. 20 and 21 for model with one step input delay, and Figs. 23 and 25 
for input with no delay. 

As seen in Figs. 18 and 19, the LS identification algorithms could not 
identify the plant model under one step delay data/model mismatch for 
the experiments with magnetic field on and off. The mismatch resulted in 
the high variance of the residual noise shown in Table 4 and in the large 
errors in the estimated frequency response from the input signal to the error 
signal. The HQQ identification algorithm, however, managed to adequately 
identify the plant parameters, and modeled the dynamics faithfully, as seen 
in Figs. 20 and 21, in spite of the large bound L\ on modeling uncertainty 
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Underlie Acid; B=0; Delay Mismatch 

80 100 120 
Time (min) 

Fig. 18. Linear linolenic acid model identification using output error least squares iden
tification, including a delay mismatch. Measured and simulated (lower curve) diene con
jugates concentration versus time. Magnetic field off (B = 0.0T). 

for the case with measurement delay given in Table 5. Thus, for a one 
step input delay data/model mismatch, which clearly represents a large 
unmodeled dynamic perturbation, the Hoc identification method shows a 
true strength in yielding a reasonably good model identification, while the 
LS method fails to do so. 

For the case of no delay both methods yield similar results as seen in 
Figs. 22-25. For this case, the relatively small size of the residual noise 
variance and the bound on the unmodeled dynamics, given in Tables 4 
and 5, respectively, indicate that the quality of the identified models is 
relatively high. 

The relations between output acetone and final product concentration 
were determined taking into account the nonlinear relation between acetone 
and excited acetone concentrations given in Table 2 and interpolated in 
Fig. 13. The transfer functions (black box 2 in Fig. 2) are then identified 
from the excited acetone concentration to the output concentration of diene 
conjugates. Since the dynamics of the oxidation process is extremely fast 
in comparison to the sampling rate of the experimental data collection, 
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Linolenic Add Test; B=0.17; Delay Mismatch 

80 100 120 
Time(min) 

Fig. 19. Linear linolenic acid model identification using output error least squares iden
tification, including a delay mismatch. Measured and simulated (lower curve) diene con
jugates concentration versus time. Magnetic field on (B = 0.17T). 

the relation between excited acetone concentration and reaction products 
could be well described by a constant. This is indeed confirmed by the 
ETFE estimate given in Table 6 and presented in Figs. 26 and 27. 

As seen in these figures, the ETFE estimates have almost flat magnitude 
spectra and phase spectra close to zero both with magnetic field on and off. 
This means that the model structure given earlier is simply a constant plus 
an offset, whose value depends on that of the magnetic field. Figures 28 
and 29 show that by including the nonlinear function of the input into 
the modeling and using it to reduce input/output nonlinearity, the model 
output captures the shape of the nonlinear process behavior at the maximal 
concentration values (the tops of the curves), unlike linear fit in Figs. 22-25. 
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Linolenic Acid Test; B=0.0 

125 

Fig. 20. Linear linolenic acid model identification using output error H-infinity 
identification, including a delay mismatch. Measured and simulated (smoother curve) 
diene conjugates concentration versus time. Magnetic field off (B = 0.0T). 

Linolenic Acid Test; B=0.17 

11 

1 0 • 

80 100 120 
Time (min) 

1 BO 200 

Fig. 21. Linear linolenic acid model identification using output error H-infinity 
identification, including a delay mismatch. Measured and simulated (smoother curve) 
diene conjugates concentration versus time. Magnetic field on (B = 0.17T). 
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Linolenic Acid Test; B=0 

100 120 
Time (min) 

Fig. 22. Linear linolenic acid model identification using output error least squares iden
tification. Measured and simulated (smoother curve) diene conjugates concentration ver
sus time. Magnetic field off (B - 0.0T). 

Linolenic Acid Test; B=0.0 

20 40 80 100 120 140 160 
Time (min) 

180 200 

Fig. 23. Linear linolenic acid model identification using output error H-infinity identifi
cation. Measured and simulated (smoother curve) diene conjugates concentration versus 
time. Magnetic field off (B = 0.0T). 
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Linolenic Add Teal; B=0.17 

80 100 120 
Time(min) 

Fig. 24. Linear linolenic acid model identification using output error least squares iden
tification. Measured and simulated (smoother curve) diene conjugates concentration ver
sus time. Magnetic field on (B = 0.17T). 

Linolenic Acid Test; B=0.17 

0 20 40 60 80 100 120 140 160 180 200 
Time(min) 

Fig. 25. Linear linolenic acid model identification using output error H-infinity identifi
cation. Measured and simulated (smoother curve) diene conjugates concentration versus 
time. Magnetic field on (B = 0.17T). 
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Table 4 
centration, outputs. 

Identification results 
Least squares identification results. Input: PRBS acetone con-

No 
measurement 
delay 

With 
measurement 
delay 

No magnetic field B = 0.0 

DCvar = 0.3017 
B(z) = 3 . 4 8 4 0 
F{z) = 1 - 0.9206 
dy = 5.5, du = 0 

DCvar = 1.3210 
B(z) =01 .3855 
F(z) = 1 - 0.9128 
dy = 5.5, du = 0 

Magnetic field on B = 0.17 

DC-Bvar = 0.1662 
B(z) = 3.39380 
F{z) = 1 - 0.9198 
dy = 5.5, du = 0 

D C B v a r = 1.1280 
B(z) = 00.2201 
F(z) = 1 - 0.9150 
dy = 5.5, du = 0 

Table 5. Hoc, identification results. Input: PRBS acetone concentra
tion, outputs: concentrations of diene conjugates. 

No 
measurement 
delay 

With 
measurement 
delay 
(mismatch) 

No magnetic field B = 0.0 

L\ = 0.4087 
F(z) = 1 - 0.8702 
B(z) = 3.82970 
dy = 9.4615, du = 0.08 

i i = 2.9834 
F(z) = 1 - 0.8242 
B(z) =03.2440 
dy = 9.6765, du = 0.08 

Magnetic field on B = 0.17 

Li = 0.3158 
F{z) = 1 - 0.8677 
B(z) = 3.68040 
dy = 9.3350, du = 0.08 

LY = 2.8432 
F(z) = 1 - 0.8226 
B(2) = 0 3.0601 
dy = 9.5394, du = 0.08 

Table 6. Identified gains for ETFE in linolenic acid. Input: 
PRBS acetone concentration, outputs: concentrations of 
diene conjugates. 

B = 0.0 :0.17 

DC Gain = 63351 
dy = 10.13, du= 1.20- 10~4 

DC Gain = 62524 
dy = 9.95, du = 1.20 • 10~4 

4.4. Sensitivity of the concentration growth rates to 
magnetic field strength in the batch and 
flow-through experiments 

The comparison of the trial with no magnetic field and that with the 
magnetic field turned on is carried out by computing the ratio of the 
corresponding slopes of concentration change versus time. The slopes are 
computed at either a batch data point, or at a point that matches the 
magnetic field strength of the flow-through experiment. 

For the latter case, the magnetic field is an interpolation at B — 0.17. 
These ratios are given below. 
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Amplitude 
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0 0.002 0.004 0.006 0.008 0.01 0.012 0,014 0.016 0.018 
frequency(rad/sec) 

PHASE 

0 0.002 0.004 0.006 0.008 0.01 0.012 0.014 0.016 0.018 
frequencyfrad/sec) 

Fig. 26. Empirical transfer function estimate from the input of estimated excited ace
tone concentration to the output of diene conjugates concentration in linolenic acid reac
tions, for zero magnetic field. The nearly flat magnitude response indicates a constant 
relationship between the input and the output. 

For the first set of batch experiment data for diene conjugates 
(cf. Fig. 14), 

V[DC](B = 0.0) 
1.395. 

V[DC](B = 0.17) 

For the second set of batch experiment data for MDA (cf. Fig. 15), 

V[MDA](B = 0.0) 
V[MDA](B = 0.25) 

: 0.6228. 

For the third set of batch experiment data for diene conjugates and MDA 
(cf. Fig. 16), 

V[DC]QB = 0.0) _ 

V[DC](B = 0.17) ' 
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Amplitude 

0.002 0.004 0.006 0.008 0.01 0.012 
frequency(rad/sec) 

PHASE 

0.014 0.016 0.018 

0.002 0.004 0.006 0.008 0.01 0.012 
frequency(rad/sec) 

0.014 0.016 0.018 

Fig. 27. Empirical transfer function estimate from the input of estimated excited ace
tone concentration to the output of diene conjugates concentration in linolenic acid reac
tions, with magnetic field (B = 0.17T). The nearly flat magnitude response indicates a 
constant relationship between the input and the output. 

V[MDA](g = 0.0) 
V[MDA](5 = 0.17) 

1.188. 

If the ratios are computed at B = 0.1 a more dramatic effect is observed: 

V[DC](B = 0.0) 
V[DC](B = 0.1) 

V[MDA](g = 0.0) 

V[MDA](B = 0.1) 

1.05, 

= 3.00. 

For the flow through test data for diene conjugates, the sensitivity of the 
oxidation to magnetic field is given by the ratio of the steady state con
centration values between the test with no magnetic field and the test with 
the magnetic field set at B — 0.17. 
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Linolenic Acid Test; B=0 

80 100 120 
Time (min) 

Fig. 28. Empirical transfer function of the constant gain of diene conjugate concentra
tion from the input of estimated excited acetone concentration in linolenic acid reactions. 
Measured and simulated (lower curve) diene conjugates concentration versus time. Mag
netic field off (B = 0.0T). 

Prom the Least Squares Identification of Table 4 (B = 0.0 and 
B = 0.17): 

3-484 I \ , r c 
(1-0.9206) \a> ' 0,° 

3.3938 ' 
Ratio = 1.01 to 1.03. 3.3938 ( \ . r e 

(1-0.9198) W + °-° 

Prom the H ^ identification of Table 5 (B = 0.0 and B = 0.17): 

3.8297 — m u, — u.uoj -p a . w i 
Ratio = 1.02 to 1.05. 

( 1 - 0 8 7 0 2 ) ( ^ ~ 0 - 0 8 ) + 9.462 

(u - 0.08) + 9.316 3.6804 
(1-0.8677 

From the empirical transfer function estimate of Table 6 (B = 0.0 and 
5 = 0.17): 

63351(u - 1.20 • 10~4) + 10.13 
: Ratio = 1.01 to 1.02. 

62524(u - 1.20 • 10~4) + 9.95 

As seen from the above ratios, there is a strong consistency between all 
three identification methods with the error bounds sufficiently small to 
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Linolenic Acid Test; B=0.17 
T 1 1 1 1 1 —i 1 1 r 

j 1 1 1 1 1 1 1 1 1 1 
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Time (min) 

Fig. 29. Empirical transfer function of the constant gain of diene conjugate concentra
tion from the input of estimated excited acetone concentration in linolenic acid reactions. 
Measured and simulated (lower curve) diene conjugates concentration versus time. Mag
netic field on (B = 0.17T). 

ensure high confidence in the identification results. The above ratios are 
also consistent with the third batch experiment data indicating that for 
the chosen acid concentration the sensitivity of the production of diene 
conjugates to MF irradiation in the photosensitized free radical linolenic 
acid peroxidation is small and that MDA production sensitivity to MF 
exposure should be investigated. 

4.5. Development of nonlinear equation constants and 
dependence on magnetic field 

Finally, the differential equations (presented above) governing the produc
tion of the MDA and diene conjugates must be expanded to include the 
effects of the magnetic field on the dynamics. From analysis of the equa
tions, it looks plausible that the equation which describes the production of 
the state X5 and the "inter-system crossing" constant £4 (which multiplies 
X4 in these equations), are the most likely to be affected by the change in 

i*» 

13 

12 

n 
5 10 
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magnetic field. It also looks plausible that System 4.1 is capable of support
ing the experimentally observed behavior and yielding the constant slope 
of the production of £14 (MDA) and xie (diene conjugates). By equating 
the empirical slopes obtained from the experimental data with the slopes 
obtained from the differential equations, it is possible to describe £4 as a 
function of magnetic field, thereby introducing the effect of the magnetic 
field into the differential equations, and tailoring the behavior of the equa
tions to be consistent with the results of the experiments. 

Conclusion 

The results of the experiment demonstrate a pronounced dependence of the 
oxidation of hexane on the strength of the MF irradiation. The methods 
of control theory permit obtaining a model with capability to predict the 
effects of MF influence on oxidation of lipid modeling substances and fatty 
acids. Establishing whether there is any link between the effects reported 
here and a danger from MF irradiation to humans and animals requires 
further investigation. 

5. Problems 

(1) Simulate system 3.1. Investigate the nature of system dynamics. Look 
for fast convergence onto slow manifold in the state space. 

(2) Relate the simulation results to the experimental data given in Sec. 3. 
(3) Relate equations of chemical kinetics for hexane oxidation to system of 

differential equations 3.1. 
(4) Using discrete models in Sec. 3, generate input/output data sequences 

and carry out Least Squares as well as HQQ identification. 
(5) Repeat problems 1-4 for system 4.1. 
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CHAPTER 5 

COMPUTER SIMULATION OF SELF REORGANIZATION 
IN BIOLOGICAL CELLS* 

DONALD GREENSPAN 

In this paper we describe supercomputer simulations for the self reorganiza
tion of tissue which has been separated into endoderm, mesoderm, and ecto
derm cells. 

Keywords: Morphogenesis; self reorganization; endoderm; mesoderm; 
ectoderm. 

1. Biological, Physical and Computational Preliminaries 

1.1. Introduction 

Steinberg [4] describes several interesting biological experiments in morpho
genesis, that is, in the self reorganization of biological cells. For example, 
Holtfreter showed that embryonic tissue, consisting of distinct endoderm, 
mesoderm, and ectoderm layers, when separated out, could recombine into 
tissue with normal endoderm, mesoderm, and ectoderm layers. (See Fig. 1.) 
As another example, in an experiment by Wilson, cells and cell clusters 
obtained by squeezing a sponge through a fine silk cloth could reunite and 
aggregates could reconstruct themselves into functional sponges. 

In this paper we will concentrate on a computer simulation of the 
Holtfreter experiment. 

1.2. Classical molecular mechanics 

For purposes of intuition, it will be important to review, first, how molecules 
interact. Within a larger body, molecules interact only locally, that is, with 
their nearest neighbors. This interaction is of the following nature [1]. If 
two molecules are pushed together they repel, if pulled apart they attract, 

•Material in this paper has been adapted from Chapter 6 of PARTICLE MODELING, 
Birkhauser, Boston, 1997, by Donald Greenspan, and reprint permission has been granted 
by Springer Science and Business Media. 
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Tissue 
A(Endoderm) Separated Self Reorganized 
B(Mesoderm) T i s s u e Tvssu* 
C(Ectoderm) 

Fig. 1. The Holtfreter experiment. 

and mutual repulsion is of a greater order of magnitude than is mutual 
attraction. Mathematically, this behavior is often formulated as follows. 
The magnitude F of the force F between two molecules which are locally 
r units apart is of the form 

F = -° + *, (1.1) 
rp rq' v ' 

where, typically, G > 0, H > 0, q > p > 6. The negative term in (1.1) is 
the attraction term and the positive term is the repulsion term. 

The major problem in simulating any physical body is that there are 
too many component molecules to incorporate into the model. The clas
sical mathematical approach is to replace the large, but finite, number 
of molecules by an infinite set of points. In doing so, the rich physics of 
molecular interaction is lost because every point has an infinite number of 
neighbors which are arbitrarily close. A viable computer alternative is to 
replace the large number of molecules by a much smaller number of parti
cles and then to readjust the parameters in (1.1). This is the engineering 
methodology called the lumped mass approach and it is this approach which 
we will follow. 

1.3. The computer algorithm 

The general idea outlined above will be implemented in the following con
structive fashion. Consider N particles, P,, i = 1 ,2 ,3 , . . . , N. For At > 0, 
let tk = kAt, k = 0,1,2,3, For each of i — 1 ,2 ,3, . . . , N, let m* denote 
the adhesive measure of Pi, and, in two dimensions, let Pi at tk be located 
at fi.fc = (xitk,Vi,k), have velocity vitk = («»,*,*,Ut.fc.i/), and have accelera
tion Sik = (fl%,k,xt<ii,k,y)- Let position, velocity and acceleration be related 
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by the recursion formulas [2]: 

Vi i = Vifl + -(At)aii0, (Starter) (1.2) 

viik+i =vi<k_i +(At)ffli,fe, fc = l , 2 , 3 , . . . (1.3) 

n.k+1 =n,k + (At)vitk+i, k = 0 , 1 ,2 ,3 , . . . . (1.4) 

Formulas (1.2)-(1.4) are the popular leap frog formulas, which are compu
tationally most convenient when the number of particle N is very large. At 
tk, let the force acting on Pi be F^k- We relate force and acceleration by 
the dynamical equation 

F%,k = ma^k- (1.5) 

As soon as the precise structure of F^k is given, the motion of each 
Pi will be determined explicitly and recursively by (1.2)-(1.5) from given 
initial data. The force Fi>k is now described as follows. Let r y ^ be the 
vector from Pi to Pj at time tk, so that ry,fc, the distance between the two 
particles, is given by r ^ = \\r^k — r*jyk\\- Then the force Fijtk on Pj exerted 
by Pj at time tk is assumed to be 

F =( ( Gij I Hij \ ^ ' f c N \ 
^ VV (r«,*)* + (r«,fc)V r y , J • 

in complete analogy with (1.1). The total force F^k on Pi due to all other 
particles different from Pi is defined by 

^-g((-<^ + 5&)&)- <L6) 

Note finally that the introduction of an additional parameter D is essen
tial to assure that particle interactions are local. We will require that when
ever rijtk > D, then (1.6) must be replaced by 

Filk = 0 (ry,fc > D). (1.7) 

2. Supercomputer Examples 

2.1. A morphogenesis simulation 

A large number of examples were run on a CRAY YMP/8. We will describe 
one in detail in this section and then discuss others in the next section. 

Since, in general, particles do not adhere when in a gaseous state and 
are rigid when in a solid state, self reorganization can occur only in a liquid 
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or near-liquid state. Relative to this observation, previous calculations [2] 
allow us now to fix the parameters as follows: At = 0.0001, p = 3, q = 5, 
Gij — Hij = 5miTTij, D = 2.2. For, then, if Pi is to be a liquid particle, the 
speed Vi of Pi has been deduced for various adhesive measures m* [2]. In 
particular; 

mi = 2000 implies 100 <Vi< 170 (2.1) 

rrii = 4000 implies 90 < vt < 160 (2.2) 

mi = 10000 implies 50 < v{ < 80. (2.3) 

Let us now examine a particular example. Consider a square region in 
the XY plane whose vertices are (-16, -16) , (-16,16), (16,16), (16, -16) . 
On this region construct a triangular grid of 1072 points using the recursion 
formulas 

x(l) = -15.5, 2/(1) = -16.0 

x(i + l) = x(i) + 1.0, y(i + l) = -16.0, z = 1,31 

x(33) = -16.0, y(33) = -15.0 

x(i + 1) = x{i) + 1.0, y{i + l) = -15.0, i = 33,64 

x{i) =x(i-65), y(i) = y(i - 65) + 2.0, i = 66,1072. 

This point set is shown in Fig. 2. 
We now fix a set A which consists of 38 particles each with adhesive 

measure 10000, a set B of 266 particles each with adhesive measure 4000, 
and a set C of 768 particles each with adhesive measure 2000. The particles 
are distributed at the 1072 points shown in Fig. 2, with no two particles 
at the same point. A particle at the point (x(i),y(i)) is denoted by Pj. 
In Fig. 3, the A particles, which have the largest adhesive measures, are 
denoted by circles; the particles of set B, which have the intermediate 
adhesive measures, are denoted by quadrilaterals; and the particles of set C 
which have the smallest adhesive measures are denoted by triangles. 

Next a velocity is assigned to each particle. In agreement with (2.1)-
(2.3), each A particle is assigned a speed of 60 while each of the B and 
C particles is assigned a speed of 150. The XY direction and the corre
sponding (±) signs of the velocity vectors are determined at random, and 
the resulting velocity is shown in Fig. 3 as a vector emanating from each par
ticle's center. For a complete listing of all the initial data, see Greenspan [3]. 

The motion of the system is now determined by (1.2)-(1.7). However, 
in order to keep the particles within the square while they are in motion, 
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Fig. 2. 1072 points in a 32 cm by 32 cm square. 

the following reflection rules are applied: 

(a) if Xi > 16, reset Xi —> 32.0 — X,, vXti —• —0.99vx>i, vy^ —• 0.99vVti 
(b) if Xi < —16, reset Xi —» —32.0 — Xi, vXti —> — 0.99vXii, vy^ —> 0.99^,1 
(c) if 2/j > 16, reset yt -> 32.0 — j/j, ux>i -> 0.99i>X]j, % , —» -0 .99%i 
(d) if yi < -16 , reset yi —> -32.0 - j / , , vx>i -» 0 . 9 9 ^ , % j —> -0.99%,, 

The small velocity damping in rules (a)-(d) insures numerical stability when 
using the time step At = 0.0001. 

The resulting self reorganization is shown in Figs. 4-13. Figures 4-9 
show the self reorganization of the A cells at T = 1.5, 9.0, 16.5, 24.0, 31.5, 
39.0. Notice that these cells first reorganize into small groups which then 
converge to form a central core. The self reorganization of the B cells at 
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Fig. 5. T = 9.0. 

* • 

Fig. 6. T = 16.5. 
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Fig. 7. T = 24.0. 
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Fig. 8. T = 31.5. 
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Fig. 9. T = 39.0. 
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Fig. 10. T = 24.0. 
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Fig. 11. T = 31.5. 

Fig. 12. T = 39.0. 

the respective times T = 24.0, 31.5, 39.0 is shown in Figs. 10-12. Figure 13 
shows the triple self reorganization of the A, B, and C sets at time T = 39.0. 
The exceptionally slow self reorganization of the sets B and C after the 
A particles formed into the core was accelerated by setting the damping 
factor 0.99 to 0.9 in rules (a)-(d) after T = 24.0. 

With regard to computer time on the CRAY, 1000 time steps require 
48 seconds of cpu time. 

2.2. Other examples 

If one varies parameters in Sec. 2.1 by no more that 5%, results completely 
analogous to those shown in Figs. 4-13. 
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Fig. 13. T = 39.0. 

The need for damping in rules (a)-(d) follows because the time step 
At = 0.0001 is relatively large. This protocol proves to be economically 
practical for the simulations. The damping rules however can be discarded 
if one wishes to use a time step At = 0.00001 or smaller. 

Next note that a "close" choice of the m* parameters, like m, = 10000 
for the A set and m, = 9500 for the B set, results in exceptionally slow self-
reorganization. 

If in rules (a)-(d) the damping factor 0.99 is replaced by 0.9 from the 
start, then trapping often results, and, in particular, a particle from the 
set B can often be found in the interior of the set A after the set A has 
formed a core. The reason is that there follows an excessive loss of system 
kinetic energy, which yields premature solidification in the core. 

If all other parameters are unchanged, the calculations are unstable for 
D > 3.0. 
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Finally note that the concept of temperature for molecules does yield 
a specific formula for temperature calculation. No such formula exists for 
particles. It would be of interest to develop such a formula, for it would then 
allow the determination of the temperature range in which morphogenesis 
can result. 
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CHAPTER 6 

MODELLING BIOLOGICAL GEL CONTRACTION B Y 
CELLS: CONSEQUENCES OF CELL TRACTION FORCES 
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S. RAMTANI 
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Mecaniques et Thermodynamiques des Materiaux, CNRS-UPR9001, 

Institut Galilee, Universite Paris 13, 
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Models based on the Murray-Oster continuum framework have been applied 
to a variety of biological settings in order to investigate the morphogenesis 
of living tissues. Collagen-matrix contracted by fibroblast model is an impor
tant example and a suitable way to study reciprocal geometric and mechanical 
interactions that regulate wound contraction of connective tissue cells. This 
contraction, which is due to cell traction forces, is essential in wound heal
ing and pathological contractures. In the present contribution, where thin disk 
sample geometry is considered, an attempt is made to investigate the effect 
of initial stress upon the kinematics of contraction. This aspect is probably 
source of novel insight into the roles of key biological parameters in determin
ing the biomechanical properties of contracted biological gel. Our hope is that 
this contribution will find a logical sound and contribute to gain a greater 
understanding of wound contraction mechanism. 

1. Introduction 

The mechanical interactions developed by motile cells with fibers in the 
surrounding extracellular matrix is essential to cell behavior and plays a 
major role in soft tissues and tissue-equivalent reconstituted gels, and thus 
to many biomedical and tissue engineering problems [1, 4, 8, 14, 16-19, 24, 
27-28, 33]. The ability of cells to organize collagen fibrils is fundamental 
to a variety of processes found in angiogenesis, embryogenesis, fibrosis, scar 
formation, and wound healing [3-6, 26-28, 30-34]. It has been suggested 
that fibroblast reorganize the collagen lattice either as a result of isometric 
tension applied to the collagen fibrils [1-23, 25, 27-29, 32]. Although the 
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mechanism of wound contraction, which is a clinically important biologi
cal process, is not completely understood. In fact what is well known is 
based on the two following theories: (a) the one advanced by Ehrlich [8-
9] suggest that wound contraction results from migrating fibroblasts that 
move trough and rearrange connective tissue in granulating wounds. The 
activity of the fibroblasts on the connective tissue is sufficient to cause cen
tripetal movement of the skin margin. Simultaneous formation of collagen 
cross-links maintains the dimensions of the wound as it decreases its sur
face area over time, (b) the second theory, which carries a recent study 
proposed by [13], has been suggested by Gabbiani et al. [10] who origi
nally described myofibroblasts; these highly specialized contractile fibrob
lasts found in granulating wounds are attached to one another by cell-cell 
connection and to the extracellular matrix (ECM). Thus, they are capa
ble of contracting synchronously to generate the centripetal force of wound 
contraction [10, 12]. Proponents of the later theory suggest that collagen 
has very little to do with wound contraction [15]. Based on experimental 
observations, Murray et al. [22] had proposed a continuum model for mes
enchymal morphogenesis which take into account the interaction between 
cells and ECM and which has been extensively used [1, 20-21, 23, 29-32]. 
Despite the fact that above studies have permitted to more understand the 
cell-ECM interactions mechanisms, the exact form of these forces and their 
relative distribution is still an open question [20]. Moreover, it has been 
shown that excessive and permanent contractile forces are characteristic of 
abnormal healing responses such as keloid scarring and other fibrocontrac-
tive diseases [23, 27]. Thus, there is a clear need to study the contraction 
mechanism which reflects the macroscopic manifestation of the intrinsic 
and local cell-matrix fiber mechanical interaction [3-4, 9]. 

In the present work, which is based on the theory proposed by Mur
ray and Oster [22], the interactive processes of cell migration and matrix 
deformation are derived from mass conservation equations for cell and 
extra-cellular matrix (ECM) which are coupled to the mechanical force 
balance for the tissue-equivalent composite. The above model is revisited 
with the new assumption dealing with: (a) the centripetal character of the 
cell traction force and, (b) the effect of the initial stress due probably to 
the cell-cell interactions. The mixed system of parabolic-hyperbolic-elliptic 
partial differential equations, obtained after spatial rescaling together with 
the ordinary differential derived from the zero stress condition at the free 
boundary, are solved numerically by the use of finite difference method. 
From our numerical investigation, it is clearly shown that the initial stress 
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has a predominant role in the mechanism of contraction. This aspect, which 
is often omitted, is probably source of novel insight into the roles of key 
biological parameters in determining the biomechanical properties of con
tracted biological gel. Our hope is that this contribution will find a logical 
sound and contribute to gain a greater understanding of wound contraction 
mechanism. 

2. The Mechanocellular Model 

Whereas in biochemical models cells respond in a programmed manner to 
chemical concentrations, in biomechanical models they participate directly 
in the dynamics of pattern formation and react actively and passively to 
mechanical forces. The basis of most biomechanical models of pattern for
mation lies largely in experimental observations of the effect of cell traction 
on artificial substrates [1, 7, 13-16]. 

Prom theoretical view point, Murray and Oster [22] proposed a 
mechanocellular model for pattern formation based on the following 
assumptions: 

(a) cell's migration occurs through the fibrous network of extracellular 
matrix; 

(b) cell's motility induces large traction responsible in part of the extracel
lular matrix deformation and; 

(c) this deformation and adhesion gradient influence the direction of the 
movement of cells (haptotaxis). 

According to this theory, the basic variables are cell density n(M,t) 
and ECM density p(M,t); these are locally averaged species variables that 
depends on space M and time t. The mechanical consequences of the cell-
ECM traction forces, the intrinsic response of the tissue-composite and the 
external resistance to tissue movement due to fibrous attachments to under
lying tissues, are encapsulated by a force-balance equation that governs the 
tissue displacement, u(M, t). Specifically, the model equations have the fol
lowing forms: 

• For the mass conservation of the local cells concentration, 

^ + d i v ( J ) = P(n,p) (1) 

where n(M, t) is the number of cells per unit volume, J is the flux of 
cell per unit area and P(n, t) is the mitotic rate process. The cell flux 
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vector is given by 

du 
J = n — - Dn grad(n) (2) 

where Dn is a diffusion coefficient which represents short-range effect 
in random dispersal. Each of the three terms of Eq. (2) reflects respec
tively, the convection term characteristic of the ECM deformation and 
the cell's diffusion by migration. 

In order to account for the mitosis process which is viewed as a 
logistic process, we used the well known relation for the mitotic rate 
P(M, t) = kn(N — n) where k is a growth rate and N is a maximum 
cell density. 

• For the mass conservation for the local ECM concentration, 

t + d i V ( ^ ) = 5 M (3) 

where the rate of ECM secretion and degradation by fibroblasts B (n,p) 
has been neglected in order to reflect the fact that the rate of ECM 
remodeling takes place on a relatively long time scale compared with 
the proliferative phase. 

• For the local mechanical equilibrium, with body and inertial forces 
neglected, 

div(or) = 0 (4) 

where the stress tensor for the composite material can be written as 

a = ap + a° + a°grad(u) (5) 

and in which ap, aa and or0 are the passive, the active and the ini
tial stress tensors, respectively. The superimposed bar represents the 
transpose of the displacement gradient tensor. 

We consider the behavior of the ECM as a linear, isotropic, compressible 
viscoelastic solid. Then, we shall write the ECM stress tensor ap as follows: 

d d . . _ E 
= /ii—£ + /i2^rtr[£]I + 

£ + T J ^ t r [ £ l I 
-0T ' ^ a t " l " J * • ( I + I/) [~ ' i - 2 i / " l " J ~ j ( 6 ) 

where e is the linearized strain tensor, I is the identity tensor, \i\ and /i2 
are related to the shear and bulk viscosities, E is the Young's modulus and 
v is the Poisson's ratio. 

Although this area has received significant attention, the origin of the 
forces exerted by the cells is poorly understood, but stress fibers, i.e. aligned 
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microfilaments, have been seen in the cytoplasm of these cultured cells and 
depend on adhesion between cell surface receptors and binding sites on 
collagen fibers [2,5]. To account for the short-range of the active cell-matrix 
interaction contribution, Murray and Oster [22] considered the stress <x?-
as a negative pressure proportional to the product pn. When a fibroblast 
is embedded and cultured in a collagen gel, for example, the collagen fibers 
near the cell align in a radial pattern [28], apparently also in response to 
an applied tension. Taking advantage of previous works, the centripetal 
direction of the internal traction force is chosen as follows 

a = 1 + An2 (7) 

where TO and A are positive constants. Moreover, A defines the saturation 
cell density; i.e. cell motion is restricted by contact inhibition, whereas TO 
is the constant value of the initial traction parameter. 

By the use of the relations (5)-(7) and with the following simplification 
or0 = <T0I, the equation of motion (4) can be rewritten more explicitly in 
polar coordinates 

sd fd2u ldu 

+ 
E{\ - v) 

d_ 
dr 

(1 + v) (1 - 2v) 

pn 

01 {cPu ldu 
\ dr2 r dr 

u 

To: 
1 

+ -
T°pn 

l + Xn2J r l + An2 = 0. (8) 

The symmetry properties associated with the hypothesis of free bound
ary condition at the moving surface gives respectively 

(/xi + /x2) 

dn 
dr 

&2u 
drdt 

dp 
0, ^ = 0 , u = 0 ; r 

or 

p,2 du | £ (1 — v) 
r dt + (1 + I / ) ( 1 - 2 I / ) 

= 0 

du v u 
dr 1 — v r 

(9) 

,<9u pn 
dr 1 + An2 0 (10) 

at the current moving boundary position S(t). 
We finally assume that local cell and ECM concentrations are initially 

distributed according to the uniform and normal laws, respectively. The 
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initial conditions are therefore, 

A> n ( r , 0 ) = n o , p(r,0) = - ^ e «2c«>, u(r,0) = 0. (11) 
V71" 

In order to solve the set of equations we have defined dimensionless 
variables as follow 

* n * P » u * T ,* t 
JV po a a i 
DT 

£>* = - = - , fc* = fciVT, A* = AAT2 

(12) 
Ml + M2 * A*2 » A)N . 0 l/j 

Ml = ET " l , M2 = -fijiVU TS = ̂ ^ " l . P* = <T° — 

1 / 1 = / / N » ^2 = 

(1 — v) l — i/ 
where a is the initial radius of the disk sample, T is a characteristic time, 
that is a factor scale. 

The governing equations, boundary and initial conditions are written in 
the new relative frame £ = ^ y which fixes the boundary at £ = 1 for all 
time. The set of equations is then 

S dt d^ + \dt)^+ Sd£\ S dt d£+V 

+ s \dt + z) V sdtdt;+y 

n / l S 2 n 1 dn\ , , , , n 

-D{<PW + KTd+knin-1) = 0 (13) 

Sdtd£ \dtJt Sd£\ S dt d£ 

1 (dp p\ ( idSdu \ n 

fd2u ldu u V , . d2 ( idSdu 

Mi 9 ( £ dS du \ m ( £ dS du 
+ Jd$, \~S~dt~di+V) ~!?\'S~dt~d(i+V 

, ad(T0np/l + Xn2) T0np _n 
+s % + 5 TTA^~° (15) 

where v is the cell-matrix composite velocity. 

file:///dtJt
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The initial conditions and boundary conditions are therefore in the rel
ative frame: 

n(€,t0) = n0, p(£,t0) = TI^* 5 "' U(S>*O) = 0 (16) 

(£)„-• ( t l A "«-•*>- (17» 

3. Model Predictions and Discussion 

Then, this transformed nonlinear governing moving boundary value prob
lem is reduced to a differential algebraic system of equations. This system 
is solved applying centered finite difference approximation to derivatives 
and a Newton-Raphson method. 

3.1. Uniaxial cell traction force effect 

We simulate the gel contraction for an inhomogeneous initial distribution 
of ECM density over the gel. First, an attempt is made to compare the 
uniaxial cell traction force hypothesis (aee = 0) with the spherical one 
(arr = aee) in the case where there is no initial stress. For the chosen set of 
parameters values taken back from Barocas et al. [20] and given in Table 1, 
we represents in the relative frame (0, £) and at successive time steps: 

(a) the simulated evolution of the cells concentrations (Fig. 1). It is clearly 
shown that the results are sensibly the same. However, one can note 
that for the spherical hypothesis the steady value (bold line) is not the 
maximal one contrarily to the centripetal hypothesis; 

(b) the simulated evolution of the apparent ECM concentrations is given 
Fig. 2. One notes different distributions between the two hypotheses 
and observes a reduction of the density on the left part of the curve 2b 
(£ < 0.5); 

Table 1. Model's parameters. 

Dimensionless Parameters no po TO D k X V2 /ii ^2 

0.80 1.00 1.00 0.10 1.00 0.80 0.96 1.0 0.1 
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Fig. 1. Simulated gel contraction for an homogeneous initial cell distribution. Cell den
sity along the gel radius is plotted as a function of time without initial stress, (a) Spherical 
active stress hypothesis, (b) Uniaxial active stress hypothesis. 

(c) the simulated evolution of the local volumetric dilatation illustrated in 
Fig. 3. The decrease of the ECM concentration is certainly due in part 
to the increase of the local volume as shown in Fig. 3(b). This result is 
in connection with the results shown in Fig. 4. 
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0.54 1 1 

(b) 

Fig. 2. Simulated gel contraction for an inhomogeneous initial gel distribution without 
initial stress. Gel density along the gel radius is plotted as a function of time, (a) Spherical 
active stress hypothesis, (b) Uniaxial active stress hypothesis. 

Effectively, it exists one area under tension even though the sample is 
globally under compression. Until now the measure of the boundary dis
placement attracted all the attention of experimental investigators. Maybe 
it is necessary to look at the displacement of the interior points. 
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Position % 

(a) 

Position % 

(b) 

Fig. 3. Simulated gel contraction for an homogeneous initial cell distribution and an 
inhomogeneous initial gel distribution without initial stress. Local dilatation along the gel 
radius is plotted as a function of time, (a) Spherical active stress hypothesis, (b) Uniaxial 
active stress hypothesis. 
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Fig. 4. Simulated gel contraction for an homogeneous initial cell distribution and an 
inhomogeneous initial gel distribution without initial stress. Displacement of each point 
with time is plotted as a function of the gel radius, (a) Spherical active stress hypothesis, 
(b) Uniaxial active stress hypothesis. 
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3.2. Initial stress effect 

With the hypothesis of an uniaxial cell traction force, we first represents 
in the relative frame (0, £) the effect of increasing initial stress upon the 
steady values of: 

(a) the cell concentration which is considerably increasing up to 40% of the 
initial concentration (Fig. 5), 

(b) the ECM density which exhibits a highly nonlinear distribution as 
shown in Fig. 6, 

(c) the local volumetric dilatation which is also increasing as shown in 
Fig. 7. 

Second, we illustrates during the time period (0, 3T) the evolution of 
both the boundary and midpoint displacements given in Figs. 8 and 9, 
respectively. In Fig. 8, we observe a significant increasing of the boundary 
as a function of the initial stress. It is shown in Fig. 9 that the behavior 
of midpoint is first compacted (negative displacement) before changing and 
to be in extension (positive displacement). Note that the apparition of the 
extension is delayed by the increase of the initial stress. 

We have examined the mechanical interactions of cells with tissue-
equivalent gels revisiting the well known monophasic theory to describe the 
biomechanics of the gel contraction. In particular, consequences of the cell 
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Fig. 5. Simulated gel contraction for an homogeneous initial cell distribution and an 
inhomogeneous initial gel distribution. Steady cell density along the gel radius is plotted 
as a function of initial stress. 



Modelling Biological Gel Contraction by Cells 161 

0.8 

ST 0.7 

O. 

£• 
•5 0.6 

& 
s a u - 5 

>> 
35 0.4 

0.3 

0.2 J 

/ / / 
s 

r 

/ 
/ 

0.5 

Position \ 

| pH) p=M),25 p--0,5 - •P-^J 

Fig. 6. Simulated gel contraction for an homogeneous initial cell distribution and an 
inhomogeneous initial gel distribution. Steady gel density along the gel radius is plotted 
as a function of initial stress. 
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Fig. 7. Simulated gel contraction for an homogeneous initial cell distribution and an 
inhomogeneous initial gel distribution. Steady local dilatation along the gel radius is 
plotted as a function of initial stress. 
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Fig. 8. Simulated gel contraction for an homogeneous initial cell distribution and an 
inhomogeneous initial gel distribution. Steady free boundary displacement along the gel 
radius is plotted as a function of initial stress. 
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inhomogeneous initial gel distribution. Steady midpoint displacement along the gel radius 
is plotted as a function of initial stress. 
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traction forces distribution and the initial stress effects are investigated. In 
this study, it is clearly shown that these two aspects plays a predominant 
role during the contraction process. In particular, the initial stress effect 
which is often omitted can affect the manner in which cells restructure the 
surrounding collagen network and this aspect is central to the modeling of 
such biomaterials. 

Nomenclature 

n Local cell concentration 
p Local ECM concentration 
u Displacement vector for cell/matrix composite 
u Radial displacement for cell/matrix composite 
J Net cell flux vector due to active migration 

Dn Cell motility coefficient 
k Logistic growth rate constant 

N Maximum cell concentration 
a Total stress tensor for cell/ECM composite 

ap Stress tensor for ECM 
aa Stress tensor associated with the active traction stress 

e Small strain tensor for cell/ECM composite 
6 Local dilatation of cell/ECM composite 

E Young's modulus 
v Poisson's ratio 

jUi Shear viscosity 
fi2 Bulk viscosity 

I Identity tensor 
r° Traction parameter 
A Contact inhibition parameter 
a Radius of the disk sample 

S(t) Position of disk boundary 
r Radial coordinate 
£ Relative frame 
T Time scale factor 
t Time 
v Velocity of cell/ECM composite 
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CHAPTER 7 

PERISTALTIC TRANSPORT OF PHYSIOLOGICAL 
FLUIDS 
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Physiological fluids in human or subhuman primates are, in general, 
pumped by the continuous periodic muscular oscillations of the ducts 
through which the fluids pass. These oscillations are supposed to be caused 
by the progressive transverse contraction waves that propagate along the 
walls of the duct. True peristalsis is usually defined as a coordinated 
reaction in which a wave of contraction is preceded by a wave of relaxation. 
Some electrochemical reactions are held responsible for this phenomenon. In 
fact, it is a reflex process. The swallowing of food through the oesophagus, 
the movement of chyme through the small intestine, the colonic transport 
in the large intestine, the passage of urine from the kidneys to the urinary 
bladder through the ureters, the spermatic flows in the ductus efferentes of 
the male reproductive tract, the vas deferens and the cervical canal, and the 
movement of ovum in the fallopian tube are all based upon the mechanism 
of peristaltic transport. The vasomotion of some blood vessels, e.g. venules 
and arterioles and the motion in the lymphatic vessels have also been found 
to be of peristaltic nature. Even some worms move peristaltically. More
over, biomechanical pumps are fabricated to save blood or similar fluids 
from any possible contamination arising out of the contact with the pump 
machinery while pumping the fluid. 

The peristaltic motion experienced in physiological flows is classified 
into different categories, a few of them being: (i) rush peristalsis, (ii) anti-
peristalsis and (iii) mass peristalsis. 
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Rush peristalsis is the ordinary peristalsis found in different physio
logical transportations. This term is mainly associated with the flow in the 
small intestine. 

Anti-peristalsis is the same peristalsis but it acts in the opposite 
direction. For example, in the oesophagus it moves in the oral direction. 
It is present in man in the second and the third parts of duodenum. 

Mass peristalsis is found in the large intestine and is analogous to 
the rush peristalsis in the small intestine. Indeed, it is the main movement 
of the large intestine. 

In order to have a proper understanding of the peristaltic transport in 
physiological systems, it is felt that we should have some information about 
the relevant matters. It is with this end in view, we first discuss briefly a 
few phenomena and some physiological systems associated with peristalsis. 

1. Phenomena Associated with Peristalsis 

Two very important fluid dynamical phenomena inherent in peristalsis are: 
(i) reflux and (ii) trapping. 

Reflux. There are two contradicting definitions prevailing from the begin
ning of the investigation on peristaltic motion of physiological fluids. One 
was propagated by Fung and Yih [20] and the other by Shapiro et al. [57]. In 
fact, they meant two different phenomena. Shapiro et al. associated their 
definition with the backward migration of bacteria from the bladder to 
the kidneys. According to them, it refers to the presence of fluid particles 
that move, on the average, in the direction opposite to the net flow. The 
backward migration takes place near the walls. It was also experimentally 
verified by Weinberg et al. [72]. According to Fung and Yih, it is the aver
age mean flow reversal near the axis of the duct. A similarity with vesico
ureteral reflux was expected with this definition. Shapiro et al. maintained 
that in order to examine the retrograde motion of fluid particles, Eulerian 
time-mean velocity should be taken into consideration whereas Fung and 
Yih stressed on Lagrangian displacement of fluid particles. In the light of 
this controversy reflux, hereafter, will be denoted by reflux1 for the defi
nition of Shapiro et al. and reflux2 for the definition of Fung and Yih as 
these two still perpetuate. 

Trapping. Shapiro et al. [57] held that at high flow rates and large occlu
sions there is a region of closed streamlines in the wave frame and thus 
some fluid is found trapped within a wave of propagation. The trapped 
fluid mass is found to move with the mean speed equal to that of the wave. 
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2. Physiological Systems Associated with Peristalsis 

2.1. Digestive system 

The human digestive canal (cf. Fig. 1) is a long muscular duct compris
ing mouth, tongue, pharynx, oesophagus, stomach, small intestine, large 
intestine, rectum and anal canal. 

2.2. Oesophagus 

It is a long muscular tube that commences at the neck opposite to the long 
border of cricoid cartilage and extends from the lower end of the pharynx 
to the cardiac orifice of the stomach. The cardiac sphincter regulates the 
proximal end of the stomach and the one which guards the distal end is 
known as pyloric sphincter. Small intestine follows the pyloric sphincter. 
It is about 76 mm long in an adult human being and is subdivided into 
duodenum, jejunum and ileum (see Fig. 1). Large intestine joins the lower 
end of the small intestine at the ileocolic sphincter. The last part in which 
the large intestine opens is rectum together with anal canal. 

Swallowing (or deglutition) takes place in three stages: (i) first, i.e. 
buccal, (ii) second, i.e. pharyngeal, and (iii) third, i.e. oesophageal. The first 
one is voluntary but the remaining two are controlled reflexly. 

Salivcry glands 

Epiglottis 
Mouth 

Tongue 

Stomach 

Pyloric 
sphincter 

Large 
intestine 

Appendix 

Fig. 1. Human digestive system. 



170 Biomathematics: Modelling and Simulation 

Buccal deglutition: The food after mastication is rolled into a bolus. 
Owing to the contraction of mylohyoid muscles upward and backward move
ments start in the tongue which throws the bolus into the pharynx. 

Pharyngeal deglutition: The soft palate is elevated and the nasal cavity 
is closed. There is a rise in the larynx together with the hyoid bone. The 
vocal cords are adducted and respiration is inhibited for a moment. Then 
there is an elevation in the epiglottis, which takes the bolus away from the 
laryngeal opening. The pharynx reopens and gathers the bolus. 

Oesophageal deglutition: The larynx retrieves its normal position and 
the bolus is propelled into the oesophagus by the contraction of cricopha-
ryngeus muscle. Peristaltic wave begins to propagate down the oesophagus 
carrying the bolus to the lower end where it is squeezed out into cardiac 
sphincter. The rate of propagation of the peristaltic wave is 20-40 mm per 
second. The vagus and the local plexus control the peristaltic movement. 
The cardiac sphincter relaxes within 2 sec of the swallowing. Gravity has 
little role in this process as the rate of progress along the oesophagus is not 
affected by posture, whether spine or erect (cf. Bosma [5]). 

2.3. Stomach 

In empty state two kinds of movements are seen in the stomach: 

(i) Tonus rhythm — Rhythmic variations of tone occur at the rate of 
about 3 per min. 

(ii) Hunger contraction — At intervals a series of strong contractions, 
called hunger contractions, takes place for about 30 sec. The entire 
stomach is involved in it. 

Two different types of movements are observed in the two halves — pylorus 
and fundus, after taking food. 

(i) Fundus movement: Here is tonic contraction but no peristalsis. A 
constant pressure is maintained upon the contents and these parts of 
the stomach send out more and more food into the pylorus, which in 
the mean time churns and pushes the food mass into the duodenum. 

(ii) Pylorus movement: This part exhibits movements like peristalsis. 
They are waves of constriction. The waves activate near the incisura 
angularis and move towards the pylorus slowly. They become stronger 
as they proceed but almost die out normally near the pyloric sphincter 
and never continue up to duodenum. Each such progressive wave varies 
rhythmically in intensity. The recurrence of the wave is seen at the 
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rate of 3-4 per min. In addition, three or more waves may exist on 
the pylorus at the same time. Sometimes the pyloric sphincter does 
not open and the food mass suffers from a backward reflection in an 
axial stream. After some time when such a wave becomes sufficiently 
strong, the sphincter is opened and as a result, a part of the gastric 
contents is propelled out into the duodenum. The sphincter closes itself 
immediately and the peristaltic process continues until it opens again. 

Vomiting. It is the act of forcible expulsion of the stomach contents 
through the mouth. In the beginning a feeling of nausea is experienced, 
followed by excess salivation. Glottis becomes closed and the nasopharynx 
is also shut off by elevating the soft palate. The stomach, the cardiac sphinc
ter and the oesophagus relax and then there is a rise in intra-abdominal 
pressure. 

It is a reflex process. A vomiting centre is situated in the medulla and 
is closely related to the vagus nucleus. Certain drugs (Apomorphine, etc.), 
toxins (such as those of uraemia) and increased intravascular pressure (as in 
the cases of brain tumour, asphysia, meningitis, etc.) directly stimulate this 
centre. It can be stimulated reflexly in various ways. The afferent impulses 
may arise in the throat, stomach, intestine, uterus, heart and from other 
viscera. The efficient impulses — both excitatory and inhibitory are carried 
in the vagus. The cause of vomiting is gastric irritation and its purpose is 
to drive out the irritant from the stomach (cf. Borison and Wang [4]). 

2.4. Small intestine 

The movement in the human small intestine are of four kinds: (i) segmen
tation, (ii) peristalsis, (iii) anti-peristalsis and (iv) pendular movement. 

Segmentation: These are local constrictions followed by immediate relax
ation. The constriction occurs at the site of maximum distension. In animals 
the group of constrictions succeeds at the rate of 20-30 per min. The rate 
is slower in man. The frequency which is 17 per min in duodenum and 
12 per min in ileum is inversely proportional to the distance from the stom
ach. These most fundamental movements of the intestine are myogenic in 
nature and are independent of all nerves. Their functions include proper 
admixture of food with the digestive juices, helping absorption by bringing 
the mucus membrane into closer contact with food and increasing vascular 
and lymphatic circulation through the wall of the gut. 
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Peristalsis: Peristalsis in small intestines is called "The law of intestine" 
or "Myenteric reflex". The presence of food acts as the normal stimulus 
causing relaxation below and constriction above the food-bolus. As the wave 
travels downwards the food is moved in a spiral manner and the direction 
of rotation is anti-clockwise. The length of bowel traversed in making a 
copalate spiral is about 30 cm on average. 

Peristalsis with two different speeds, are observed in the small intestine. 
It depends on nervous and chemical agents. 

A special manifestation of peristaltic movement in the ileum is called 
gastro-ilial reflex. This is a brisk peristalsis set up in the ileum after meal 
reflexly, although peristalsis is generally very sluggish in the last part of 
ileum. The purpose is to drive out the ilial contents into caecum creating 
space for fresh supply. 

Anti-peristalsis: It moves in the oral direction and is present in man 
in the second and third parts of duodenum only. Weak anti-peristalsis too 
takes place in the terminal part of the ileum and in this way restrains a rapid 
passage of the ilial contents into caecum. In the duodenum it helps through 
admixture, and also causes duodenal regurgitation into the stomach. 

Pendular movement: It is side to side movement of individual loops of 
the intestine as a consequence of the rush of the food material through the 
lumen. It is absolutely a passive movement. 

Large intestine: 

It has four types of motion: (i) rhythmic variations of tone, (ii) peristal
sis, (iii) mass peristalsis and (iv) anti-peristalsis. 

Rhythmic variations of tone: This occurs throughout the large intestine 
but not always and is not at all concerned with propulsion; it rather main
tains adequate circulation through the wall and helps in the absorption of 
water. 

Peristalsis: It is not the same as rush peristalsis seen in the small intes
tine. It is a weak peristalsis alternately shortening and elongating in the 
transverse colon. 

Mass peristalsis: This is the chief movement of large intestine governed 
by gastrocolic reflex. It occurs twice or thrice a day and after meal and 
during defaecation. 

Anti-peristalsis: In man it is rarely seen but is well marked in animals 
such as cats. 
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2.5. Ureter 

The two nearly 300 mm long muscular ducts joining the kidneys to the 
bladder are known as ureters (cf. Fig. 2). They are located in the extraperi-
tonial tissue behind the peritoneum to which they closely adhere. The upper 
aspect of the ureter lies in the abdomen while its continuing lower part is 
in the pelvis. The only known function of the ureter is that it collects urine 
from the kidneys and squeezes it out to the bladder at the ureterovesical 
junction against a pressure gradient. This ureterovesical junction functions 
as a one-way valve and refrains fluid from going back into the ureters from 
the bladder. At rest it is totally collapsed and gets activated when needed 
to function. The fluid is passed peristaltically with almost full occlusion of 
the duct. The diastolic phase is found to be twice as long as the systolic 
phase. The cross-section is almost circular when it is fully distended while 
it adopts a star-like shape with flat quasi-two-dimensional lobes when con
tracted. Several waves of length ranging from 10 mm to 150 mm per min 
have been observed experimentally. The largest diameter is found to be 
5 mm. In a normal ureter, the composition of urine is unchanged, but in a 
diseased state abnormal elements such as red or white cells or tumor cells 
may be present. The propulsion of fluid in a ureter is easily found to be 
primarily due to peristaltic motion (cf. Weinberg [71]). 
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Fig. 2. Male urogenital organs. 
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2.6. Vas deferens 

The vas deferens (or ductus deferens) is a long duct originating at the 
testis near epididymis and joins the seminal vesicle to form the common 
ejaculatory duct. It is the main duct through which seminal fluid passes. 
Its average length in an adult human is 45 cm. 

2.7. Experimental investigations on peristalsis 

Latham's [31] experiment (cf. Fig. 3) included a test duct of clear flexi
ble polyvinylchloride with a wall thickness of 0.05 in. It was confined, in a 
180° arc between a steel band and a stationary back plate formed in a semi
circle of 16 in radius, such that the tube became approximately rectangular 
in shape, height 2.5 in, and a mean width of about 0.3 in. The ends of the 
test duct, outside the semicircular arc of flattening, joined vertical reservoirs 
to maintain the fluid at a constant elevation. For adjusting the pressure rise 
between the reservoirs and measuring mean flow, a control valve was placed 

Fig. 3. Latham's apparatus of quasi-two-dimensional experiment (a) plane view, 
(b) section. 
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in the network. 32 pairs of adjustable fingers were mounted on the rotating 
wheel. Arrangements were made, by adjusting the fingers, for the propa
gation of an integral number of waves of approximately sinusoidal nature, 
having an amplitude of one-third of the half width of the rectangular duct. 
The motion of the fluid was approximately two-dimensional. 

In order to attain different viscosity levels, mixtures of either glycerin 
and water or corn syrup and water were used. The main features of this 
experiment were that the wave speed, the pressure rise and the viscosities 
could be adjusted. For Reynolds number, R < 0.2, no significant difference 
was observed. However, for R > 0.2, pumping performance was found to 
be degraded. For R = 38, pumping drastically deteriorated. 

Although it had some drawbacks such as (i) the wave was in only one 
wall and (ii) the whole duct was curved in a semicircle, the results of that 
experiment were generally in good agreement with the theoretical investi
gation of Shapiro [56]. 

A more refined experimental investigation was carried out by Weinberg 
et al. [72] on an improved apparatus for Reynolds number ranging from the 
inertia-free limit to values in which inertial effects were significant. Various 
mixtures of glycerin and water were used as the working fluid in order 
to obtain the range of viscosity necessary for wide variations of Reynolds 
number. 

The pumping duct, rectangular in cross-section, was bounded by a rigid 
semi-circular back wall, a flexible moving wall in which longitudinal waves 
of transverse displacement were driven by roller cams, and two transparent 
cover plates. The rectangular duct was 10 in high, with a mean width of 
0.50 in, giving a mean aspect ratio of 20. It was laid out on a semi-circle of 
radius 17.24 in. Exactly three wavelengths were fitted within the arc length 
of 54.0 in, so that the wavelength was equal to 18 in and the ratio of the 
half-width of the channel to the wavelength was 0.014 (cf. Fig. 4). 

The dimensionless time-mean flow was measured as a function of dimen-
sionless pressure rise per wavelength for very small values of R and with 
three different amplitude ratios (<p = 0.4, 0.7 and 0.9). 

No effects of Reynolds number in the range R = 0.024 to 0.034 were 
observed. The slight difference from the theory of Shapiro et al. [57] was 
attributed to the rectangular cross-section of the experimental pumping 
duct and end wall effects. Reflux1 was experimentally confirmed by inserting 
dye near the wall. The phenomenon of trapping as predicted by Shapiro 
et al. [57] was also verified. The following conclusions were made: 

(i) The inertia-free theory is valid up to R = 1. (ii) The phenomenon of 
reflux is determined by the Lagrangian time-mean velocity rather than by 
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Fig. 4. Apparatus of Weinberg's experiment. A, upstream transition chamber to reser
voir above; E, downstream transition chamber to reservoir above; B, spring steel flaps for 
sealing; C, cable to restrain rotational motion of moving wall I; D, cam rotor; F, radially 
adjustable arms and roller cams; G, semi-circular back wall; H, pressure-taps; / , flexible 
moving wall. 

the Eulerian time-mean velocity, (iii) The second order expansion in R is 
valid up to R S10. 

Yin and Fung [73] were of the opinion that since the experimental verifi
cation of Shapiro's model [56] had some drawbacks like consideration of the 
vibration of only one wall while the mathematical model included vibra
tions of both the wall, the comparison was not quite satisfactory. In order 
to match the experiment with the mathematical model, they extended and 
modified the theoretical analysis of Fung and Yih [20] by imposing vibra
tions in only one wall. They also tried to rectify the three dimensional 
effects that arise owing to finite width-to-height ratio. The experimental 
results matched very closely with the theoretical predictions. The differ
ence between the two was attributed partly to the experimental error and 
partly to the perturbation technique used in achieving the solution. They 
also performed experimental verification for reflux. 

Brown and Hung [8] who conducted an experiment as well as a numer
ical investigation claimed that their numerical solution agreed closely with 
experimental flow visualization and concluded that (i) the transport effec
tiveness is markedly reduced for pumping against a mild adverse pressure 
drop, and (ii) increasing the wave amplitude leads to the development of 
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traveling vortices within the core region of the peristaltic flow. An exper
imental investigation of the peristaltic flow of a mixture of fluid and solid 
particles was also carried out by Hung and Brown [26]. 

3. Theoretical Studies on Peristaltic Transport 

Various studies on peristaltic flows, Newtonian as well as non-Newtonian, 
have been carried out by different investigators with varied considerations. 
We give here a brief review of the same in a systematic manner. 

3.1. Newtonian flows 

As mentioned earlier, the investigation of peristalsis from a mechanical 
point of view was launched with a crude experiment by Latham [31] who 
examined the problem analytically too. The results of that experiment 
were generally in good agreement with the theoretical investigation of 
Shapiro [56]. 

Although investigations similar to that of peristalsis were reported ear
lier by considering varying breadth along the length such as that according 
to cosine law (without any reference to peristalsis), a theoretical inves
tigation truly for the peristaltic motion was carried out by Burns and 
Parkes [10], who studied the flow of a Newtonian fluid through a pipe and 
a channel by considering sinusoidal variations in the walls along the length. 
Two cases were examined in particular, viz, (i) peristaltic motion with no 
pressure gradient and (ii) flow under pressure along a pipe or a channel 
with fixed walls and sinusoidally varying cross-section. Perturbation solu
tions, in powers of the ratio of the amplitude of the variation in the pipe 
radius or channel breadth to the mean radius or the breadth respectively, 
were given for the stream function. 

A contemporary investigation was reported by Shapiro [56] for 
two-dimensional peristaltic pumping under the two conditions: (i) the 
appropriate Reynolds number is so small that the flow may be considered 
inertia-free, and (ii) the length of the peristaltic wave is very long com
pared to the width of the tube. The small Reynolds number approximation 
was endorsed by Jaffrin [28]. He further extended the analysis by consider
ing higher order terms to include cases where Reynolds number is higher. 
An exact solution having a parabolic velocity profile of Poiseuille flow was 
presented under the said assumptions, which made the flow steady in the 
wave frame. They also discussed the reflux phenomenon in detail. This was 



178 Biomathematics: Modelling and Simulation 

followed by a further investigation by Barton and Raynor [1] using large 
wavelength approximation for intestinal flow. They analyzed in a greater 
detail the case for small Reynolds number. 

Fung and Yih [20] formulated a mathematical model in order to study 
peristaltic pumping using perturbation technique by applying Fourier series 
expansion used by Taylor [68] for arbitrary Reynolds number but small 
amplitude ratio (i.e. the ratio between the amplitude of the wave and the 
width of the channel). The channel was supposed to be of constant width 
and infinite length. Apart from the application of their model to the flow of 
blood in arterioles and venules their investigation was focused on the situ
ation where there is some obstruction in the ureter or in the ureter bladder 
junction. Consequently, dilation of the ureter takes place at the site of the 
observation and the amplitude of the peristaltic waves become relatively 
small. In this context, there arises a question whether pumping takes place 
or not. The answer was found to be in the affirmative when the pressure 
gradient is less than a critical value depending on the situation. Whenever 
it exceeds the critical value, a flow reversal (or reflux) is observed. The 
corresponding analysis for the two-dimensional flow was extended for the 
axisymmetric case by Yin and Fung [73] for practical applications to biolog
ical problems. The two results are qualitatively similar but quantitatively 
different. 

An important investigation for ureteral flow was put forward by Shapiro 
et al. [57] who solved the problem of the flow of a Newtonian fluid through 
a circular cylindrical tube as well as through a channel by considering the 
propagation of an integral number of sinusoidal waves of arbitrary ampli
tude along the walls of the tube/channel of infinite length under the assump
tion of very small Reynolds number. They derived mathematical expressions 
for mechanical efficiency of pumping, for the phenomena such as reflux and 
trapping and also limits for reflux and trapping. A separate expression 
of the reflux function for small amplitude was also presented by them. 
Their results including that of reflux were experimentally verified through 
Latham's experiment [31]. These few studies laid the real foundation stone 
for the investigation of peristaltic pumping. 

Chow [17] generalized the solution put forward by Fung and Yih [20] by 
considering axisymmetrical geometry with initially non-stationary flow. In 
fact, it was also more general than that presented by Yin and Fung [73]. The 
solution given in the form of a power series expansion, dealt with two cases, 
viz. (i) when the amplitude-radius ratio of the pipe and Reynolds number 
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are small but the radius-wavelength ratio is unrestricted, and (ii) the radius-
wavelength ratio is small but the other two quantities are unrestricted. 

Lykoudis and Roos [35] pointed out that the shape of the ureter during 
peristalsis is not sinusoidal. In the light of this they solved the problem 
for arbitrary wave shapes and determined the minimum and maximum 
pressures in a tube the displacements of whose wall vary according to a 
power-law in the axial direction. The existence of reflux2 with adverse 
pressure gradient was, however, ignored by them. Manton [37] extended 
their approach to investigate some general properties of peristalsis. In his 
asymptotic expansion he accounted for the inertia! and viscous effects to 
an extent greater than that considered by Lykoudis and Roos [35]. These 
authors determined expressions for the relationship between the mean 
pressure gradient and the volume flux. A necessary and sufficient condi
tion for the occurrence of trapping was also obtained. They found that 
reflux occurs whenever there is an adverse mean pressure gradient, inde
pendent of the shape of wave. An estimate of the amount of reflux was also 
derived. Mahrenholtz et al. [36] examined the influence of wave form on 
peristaltic transport of a Newtonian fluid for high Reynolds number in a 
highly occluded channel. 

A study on ureteral peristalsis was made by Griffiths [21] by consider
ing the ureter as a collapsible muscular tube. The tube was supposed to be 
non-uniform and of finite length and was subjected to non-uniform external 
pressure. They observed that peristaltic pumping occurs effectively for low 
flow-rate and pressure. At higher mean flow rates the peristaltic contrac
tions of the ureter may even obstruct the flow of urine. Li and Brasseur [34] 
made an attempt to explore the pressure shear rate (at the wall) distri
bution of a Newtonian flow. The conventional sinusoidal wave equation 
was improved by considering the position of the wall as a function of the 
minimum radius of the tube, which vibrates in only one direction. The 
amplitude, which is equal to the radius of the tube minus the minimum 
tube radius is, however, to be adjusted whenever the degree of contraction 
of the tube is varied. They studied the difference between integral num
ber and non-integral number of waves propagating along a tube of finite 
length. Single bolus transport in oesophagus was also discussed. An active 
membrane model for peristaltic pumping with periodic activation waves 
has recently been reported by Carew and Pedley [12]. The predictions of 
their analysis on phase-lag in wall constriction with respect to peak acti
vation wave, lumen occlusion due to thickening of the lumen material with 
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smooth muscle, and the general bolus shape were reported to be in quali
tative agreement with experimental observation. 

3.2. Non-Newtonian flows 

As mentioned above, several authors considered the fluid to behave like a 
Newtonian fluid for physiological peristalsis including the flow of blood in 
arterioles. But such a model has only restricted application. Casson [13] 
derived a semiempirical equation for the flow behavior of varnishes and 
printing inks by assuming the presence of interparticle forces and disrup
tive stresses in chain like flocculus. Scott Blair [55] opined that the same 
description was applicable for blood flow too. He used the available experi
mental data for human blood and plotted a graph of square root of strain-
rate against square root of shear stress, which showed a remarkable linearity 
with a nonzero value for the intercept on the stress-axis. Experimental data 
available for animal blood too were reported to conform to this observa
tion. Merrill et al. [38] adopted two different methods to obtain data for 
two different suspensions of red cells in plasma. All the four sets of data dis
played linear graphs having positive stress intercepts. Moreover, this model 
was found to be satisfactory over a large range of shear rates. Charm and 
Kurland [14, 15] demonstrated that by using Casson's equation, it is possi
ble to extrapolate blood viscometry information obtained at shear-ranges 
of 5 to 200 sec - 1 to shear-rates of 10000 to 100000 sec - 1 with less than five 
percent error. 

Although viscoelastic behavior of blood as well as that of the blood 
vessel wall was adequately taken care of in several investigations (cf. Bohme 
and Priedrich [3]; Misra and Patra [47]; Imaeda and Goodman [27]), in view 
of the experimental observations mentioned above, the Casson fluid model 
of blood seems to bear the potential to explore some important aspects of 
blood flow through small vessels. 

Like blood since other physiological fluids also are mostly of non-
Newtonian nature, it is worthwhile to study the dynamics of such fluids by 
taking their non-Newtonian behavior into consideration. Patel et al. [50] 
found that human faeces is a non-Newtonian power low fluid. Further, 
Han and Bernett [25] pointed out that bronchial mucus behaves like a 
non-Newtonian fluid. Raju and Devanathan [53] reported a theoretical 
investigation for blood flow by considering blood as a non-Newtonian power-
law fluid. They employed the perturbation technique used by Chow [17] 
to solve the problem of the flow in a cylindrical tube with a sinusoidal 
wave of small amplitude. A similar problem was later considered by Devi 
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(a) Propagation of single wave of contraction. 
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(b) Propagation of train-waves of contraction against a pressure difference of p{L) -p(0) 
along the length of the oesophagus. 

Fig. 5. Schematic representation of the peristaltic transport through the oesophagus. 
c is the velocity of the wave, X the wavelength, L the oesophageal length, and h the 
position of the activated wall from the center line. 

and Devanathan [18] where the fluid was taken to be micropolar. For vis-
coelastic liquids, the solution of the problem was presented by Bohme and 
Priedrich [3]. They also discussed mechanical efficiency of pumping for such 
liquids. An analysis of this problem for Casson fluid model applicable to 
blood flow was carried out by Srivastava and Srivastava [63], by considering 
a peripheral layer of a Newtonian fluid. 

Misra and Pandey [44] investigated the transport of a food-bolus 
through the oesophagus by developing a mathematical model. The oesoph
agus was treated as a circular tube of finite length and the transport of the 
masticated food-grains was taken to be governed by a power-law, where 
the power-law index was supposed to vary, depending on the kind of the 
food material. (This consideration was based upon the experimental data 
reported by Patel et al. [50] for a similar case.) The peristaltic transport 
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was supposed to take place axisymmetrically where a single wave was con
sidered to propagate along the wall. The wall of the oesophagus is supposed 
to be brought under the influence of a periodic transverse contraction wave, 
owing to which the passage is first shortened by way of contraction of mus
cles. Then its path is retracted so that its original position is attained. 
This process continues until the propellant (food material) is completely 
squeezed out. Misra and Pandey [44] represented such a motion by an equa
tion of form 

h(z,t) = a-0.5</>il + c o s - ^ ( z - c £ ) l , 

where z denotes the axial distance, t the time variable, a the radius of the 
stationary tube, <j) the amplitude of the wave, A the wavelength, c the wave 
speed and h the radial displacement of the wave from the centreline (cf. 
Fig. 5). 

The wall equation of the tube was taken to fit the natural oesophageal 
wall contraction that did not involve the expansion beyond the stationary 
boundary. The spatial as well as the temporal dependence of pressure was 
studied for a fixed time-averaged flow-rate in the laboratory frame of refer
ence. Comparison was made between the effects of a single wave transport 
and the propagation of train-waves (cf. Fig. 5) with an integral number of 
waves in the train. On the basis of the study it has been concluded that 
in the single wave propagation, there is a forward flow within the wave, 
while beyond the wave in the oesophagus, there is a tendency of retrograde 
motion and that if there is some fluid within the duct apart from that in 
the wave, the average flow will be in the opposite direction. It has been 
reported that in the train-wave case, the flow is everywhere positive except 
at the junction of two waves where the rate of backward flow is very high. 

Basing upon the observations of the study, Misra and Pandey [44] made 
a conjecture that it is easier to swallow a pseudoplastic fluid than a dilatant 
fluid. They also remarked that in the single wave case, the occlusion of the 
duct should be sufficient to overcome the tendency of retrograde flow in 
the other region of the oesophagus and that the oesophagus undergoes 
total occlusion while transporting a single food-bolus. 

3.3. Non-stationary initial flows 

Chow [17] studied the problem of a non-stationary initial flow for the 
axisymmetric case. Srivastava and Srivastava [61, 62] studied the problem 
by incorporating an initial flow induced by an arbitrary periodic pressure 
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gradient for axisymmetric flow in order to model the flow through pul
monary arteries, arterioles, venules and other microvessels. The interac
tion between peristaltic flow and pressure driven motion was examined by 
Pozrikidis [51] for molecular connective transport. 

3.4. Two-phase flows 

As mentioned earlier, the investigation on peristaltic transport of a mix
ture of fluid and solid particles was initiated by Hung and Brown [26] who 
conducted an experiment for the channel flow of a single bolus. They found 
that for a neutrally buoyant particle propelled along the axis of the channel 
by a single bolus, the net particle displacement can be either positive or 
negative. The instantaneous force acting upon the particle and the result
ing particle trajectory are sensitive to the Reynolds number of flow. The 
net forward movement of the particle increases slightly with the increase in 
particle size but decreases rapidly as the gap-width of the bolus increases. 
A reduction in wave amplitude along with an increase in wave speed may 
lead to a retrograde particle motion. Further, when the centre of the par
ticle is off the longitudinal axis, the particle will undergo rotation as well 
as translation. Lateral migration of the particles was found to occur in the 
curvilinear flow region of the bolus leading to a reduction in the net longitu
dinal transport. The applications included transport of such a mixture for 
various technological purposes. A theoretical investigation was attempted 
by Kaimal [30] for the peristaltic motion of a fluid, in which rigid particles 
are uniformly distributed through an axisymmetric tube of arbitrary wave 
shape for low Reynolds numbers. He concluded that the presence of parti
cles does not disturb the flow-field. His study included reflux and trapping. 
This model too was mainly meant for engineering applications. Srivastava 
and Srivastava [64] used Drew's model [19] and solved a two-dimensional 
problem of peristaltic transport of a mixture of a Newtonian fluid and 
small spherical solid particles by neglecting inter-molecular forces for arbi
trary Reynolds number and considering the ratio between the amplitude of 
the wave and the width of the channel to be small. Reflux2 was also dealt 
with by them. The analysis was aimed at providing a model for chyme flow 
in the small intestine, spermatic fluid in the cervical canal and the flow of 
diseased fluid in arterioles. 

Peristaltic pumping induced by a sinusoidal travelling wave of moderate 
amplitude was investigated by Misra and Pandey [41] in the axisymmetrical 
case for a Newtonian viscous incompressibe fluid mixed with rigid spherical 
particles of identical size. They employed a continuum mechanics approach, 
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where the equations governing the conservation of mass and conservation 
of linear momentum for the fluid and the solid particle phases were taken 
as follows: 

For the Fluid Phase 

(i - C)Pf 
d d 
dt+V'*+U'Tz.Vf 

- ( I - C ) | + ( I - C K ( C ) 
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dp 
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In the equations given above, z represents the direction of the wave 
propagation, whereas r stands for the radial coordinate, (uf, Vf) denote the 
axial and radial velocity components of the fluid phase, and (up, vp) those 
of the particulate phase; pf, pp, (1 — C)pf and Cpp are, respectively, the 
actual densities of the materials consisting of the fluid and the solid particle 
phases, the fluid-phase density, and particle-phase density, C being the 
volume fraction of the particles in the mixture, p is the pressure, /is(C) is the 
particle-fluid mixture viscosity and S the drag coefficient of the interaction 
for the force exerted by one phase on the other. The expression of the drag 
coefficient was selected as (cf. [67]) 

S = 
2 a 2 A ( G ) ' 
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where A'(C) = 4 + 3 [^3 C2 + 3 , Mo being the fluid viscosity, and a the 
radius of each solid particle suspended in the fluid. The above expression 
for the drag coefficient bears the potential to account for the finite particu
late fractional volume through the function A'(C). For the viscosity of the 
suspension, the following empirical relation (cf. [15]) was used. 

Hs{C)=nol_ c , 

where q = 0.070exp[2.49C + 1 ^ ! I exp( l - 1.69C)], in which T represents 
the absolute temperature (°K). 

Charm and Kurland [15] asserted that the formula gives reasonable 
accuracy for values of C up to C = 0.6. The no-slip and impermeability 
conditions constituted the boundary conditions of the problem discussed 
by Misra and Pandey [41]. 

They used a perturbation technique, choosing the amplitude ratio (wave 
amplitude/tube radius) as the perturbation parameter. The analysis was 
carried out by duly accounting for the nonlinear convective acceleration 
terms and the no-slip condition on the wavy wall. The governing equations 
were developed up to the second order of the amplitude ratio. It was shown 
that the zeroth order terms yield the Poiseuille flow, while the first order 
terms give the Orr-Sommerfeld equation. In the absence of the pressure 
gradient and the wall motion, the mean flows (for the mixture of the fluid 
and the solid particles) and the mean pressure gradient (averaged over time) 
were found to be proportional to the square of the amplitude ratio. On the 
basis of this study they made the following conclusions: 

(i) The mean flow induced by the peristaltic motion is proportional to 
the square of the amplitude ratio and depends on the mean pressure 
gradient induced by the peristaltic motion. 

(ii) At a certain critical value of the pressure gradient, the reversal of flow 
takes place, which is favored by the presence of particles. 

(iii) The mean flow in the axisymmetric case may exhibit the reversal of 
flow at the boundaries also. 

As an illustration of the applicability of their analytical work, they 
investigated the peristaltic flow through the ureter, by using the necessary 
data reported by Orkins [49], Bergman [2], Weinberg [71], Boyarsky [6] and 
Griffiths [21]. 
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3.5. Two-layer flows 

Flows in certain physiological processes like the vasomotion of some blood 
vessels, motion in ductus efferentes of the male reproductive tract, transport 
of spermatozoa in the cervical canal, movement of chyme in the gastroin
testinal tract, involve flow of a mucus layer adhered to the innermost surface 
of the walls of the ducts (cf. Guyton [24]). It is observed that the viscos
ity of the fluid in the peripheral region is different from that in the core 
region. Bugliarello and Sevilla [9] as well as Cockelet [16] showed by car
rying out experiments that for blood flowing through small vessels, there 
is a peripheral layer of plasma, which is a Newtonian fluid, and a core 
region which is non-Newtonian, that can be regarded as a suspension of 
erythrocytes. Taking this fact into consideration, Shukla et al. [58] tried to 
include a peripheral layer of different viscosity in peristaltic flows through 
tubes and channels using Stokes approximation. They applied the tube 
solution to intestinal flows and the channel solution to the flows in the duc
tus efferentes of the male reproductive tract. Shukla and Gupta [59] further 
extended this analysis to incorporate power-law nature of the fluid in order 
to apply to blood flow problems. Both of these studies, however, ignored 
the conservation of mass in separate layers. Though quantitatively the flow 
rate might not have been affected to a very large extent, the shape of the 
interface was wrongly deduced. Brasseur et al. [7] pointed out this mistake 
and presented a correct solution where the interface was considered as a 
streamline in the steady wave frame. The mechanical efficiency and also the 
phenomena of trapping and reflux were also elucidated for channel flow. An 
extension of this study to axially symmetric case was carried out by Rao 
and Usha [52]. Peristaltic transport of a biological fluid in a pipe of elliptic 
cross-section was studied by Usha and Rao [70]. 

An analytical study of the two-dimensional flow of a power-law fluid 
with a peripheral layer was conducted by Misra and Pandey [43]. By using 
large wavelength approximations, the solution was obtained in the form of 
a stream function from which the shape of the interface was determined. A 
relation between the flow-rate and the pressure difference was established 
and using that relation, analytical expressions for the maximum pressure 
and the maximum flow-rate were derived. They also deduced the expres
sions for the mechanical efficiency of pumping, the trapping limit and the 
reflux limit. The study reveals that the flow increases with an increase in 
the flow behavior index or with an increase in the peripheral layer viscosity. 
They concluded that in the case of peristaltic pumping of physiological flu
ids for which the viscosity of the peripheral layer is usually less than that of 
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the core region, a thinner peripheral layer whose viscosity is considerably 
large (but does not exceed the viscosity of the core region) bears the poten
tial to enhance the flow-rate. This is in coherence with the observation of 
Brasseur et al. [7]. Misra and Pandey [43] made an observation that the 
maximum pressure difference for physiological power-law fluids is less than 
that for Newtonian fluids. They conjectured that the maximum pressure 
difference increases indefinitely for a more viscous peripheral layer when 
the occlusion is large enough and further that in the case of total occlusion, 
it may not be possible to check the flow by applying a finite pressure differ
ence, however large. They proclaimed that the peristaltic pumping is more 
efficient when the physiological power-law fluid has a thinner but a more 
viscous peripheral layer and is subjected to large occlusions and also that 
the pumping efficiency of physiological power-law fluids is less than that of 
Newtonian fluids. 

Misra and Pandey [45] developed a mathematical model with an aim to 
study the pulsatile flow of chyme through the small intestine treated as a 
long cylindrical intestinal duct under the influence of a mucus layer existing 
adjacent to the inner surface of the duct. The chyme was taken to be pro
pelled by the sinusoidal motion of the wall. The wall motion is due to some 
electrochemical reactions that take place within the human body. Both the 
chyme and the mucus are treated as power-law fluids having different viscos
ity. Small Reynolds numbers and inertia-free flows have been investigated. 
This is in coherence with the observation made by Han and Barnett [25] 
that mucus layer is non-Newtonian by nature. Small Reynolds number and 
inertia-free flows have been investigated with particular emphasis, because 
of the observation made by Jaffrin and Shapiro [29], Buthand [11] and 
Jaffrin [28] who on extending the inertia-free flow of Shapiro et al. [57] 
to next higher order terms for Reynolds number and wave number, found 
that their results were in good agreement with the zeroth order solution 
when Reynolds number and wave number are small. Misra and Pandey [45] 
concluded that the peripheral layer thickness is less uniform when it is 
less viscous and that a reduction in the value of the flow behavior index 
makes the peripheral layer thicker while waxing and thinner while waning. 
They pointed out that unlike two-layered axisymmetric Newtonian flows, 
reflux does not take place in the entire domain in the corresponding flow 
of power-law fluids. 

It was pointed out by Misra and Ghosh [40] that blood flow in the 
micro-vessels of the lung may be described as a channel flow, where as that 
in arterioles and venules as an axisymmetric flow. The peristaltic flow of 
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blood in small vessels was investigated by Misra and Pandey [46] through 
the development of a mathematical model in which blood was treated as a 
two-layer fluid where the core region was described by Casson model and the 
peripheral region was taken to be Newtonian viscous. Wave frame steady 
solutions for channel flow as well as axisymmetric flow were presented by 
them. Consideration of mass conservation has been made separately in the 
two layers. It has been shown that the higher the viscosity of the periph
eral layer, the greater is the flow rate. The study indicates further that 
(i) a thinner peripheral layer enhances the flow rate, whereas the flow-rate 
reduces when the yield stress increases, (ii) the flow-rate in the case of 
a single layer is higher than the two-layer flow-rate when the peripheral 
layer is more viscous than the core layer and (iii) the flow-rate in the case 
of axisymmetric flow is greater than that of channel flow under identical 
conditions. 

4. Flows through Tubes of Non-Uniform Cross-Section 

Lee and Fung [32] studied flow in small blood vessels of non-uniform cross-
section, considering the flow to be of peristaltic nature. Peristaltic trans
port as well as mixing of chyme in small intestine was investigated by Lew 
et al. [33]. 

Considering the non-uniform geometry of viscometric capillary tubes 
and blood vessels, Manton [37] examined the peristaltic flow of a Newtonian 
fluid through an axisymmetric tube whose radius varies slowly in the axial 
direction and whose wall is subjected to arbitrary wave propagation. Appli
cation of Stokes approximation and use of a perturbation technique were 
made for performing the analysis. Gupta and Seshadri [23] presented a 
solution of peristaltic pumping of Newtonian fluids in channels and tubes 
of non-uniform cross-section with a particular reference to the spermatic 
flow in the vas deferens. They concluded that peristalsis is responsible for 
one-third of the total flow in the vas deferens. Similar solutions of peri
staltic flows in non-uniform tubes were reported by Rath [54], Srivastava 
and Srivastava [61]. 

Misra and Pandey [42] studied the nonlinear peristaltic flow of a 
Newtonian viscous incompressible fluid through a tapered tube, where the 
wave propagating along the wall of the tube is sinusoidal and the initial 
flow is Hagen-Poiseuille. The derived analytical expressions were computed 
to have an in-depth study of an important physiological problem, viz. sper
matic flow through the vas deferens, in which the peristaltic motion is quite 
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dominant. Their theoretical prediction for the flux-rate was found to be in 
good agreement with the experimentally measured values reported by Guha 
et al. [22] for rhesus monkeys. 

5. Numerical Investigations 

A finite element approach was adopted by Tong and Vawter [69] to analyze 
peristaltic pumping, by considering that both the wavelength and the wave-
amplitude have a strong influence on the flow-field. They studied the reflux 
phenomenon for short wavelengths, as well as for longer wavelengths. Their 
method for solving peristaltic flow problems was subsequently extended by 
Nergin et al. [48]. 

Computational investigations of two-dimensional non-linear peristaltic 
flows under the assumption of finite wall-wave curvature and Reynolds num
ber were carried out by Brown and Hung [8]. They used orthogonal curvi
linear coordinates and employed an implicit finite-difference technique for 
solving the problem. The same problem was also studied by them exper
imentally. It was concluded that (i) the inertia-free theory is valid up to 
Reynolds number of the order of 1, and (ii) the second order expansion in 
Reynolds number is valid up to Reynolds number of the order of 10. 

Takabatake and Ayukawa [65] used upwind SOR method to solve 
two-dimensional peristaltic motion with moderate Reynolds number and 
compared their results with those achieved by applying perturbation tech
niques. It was found that the validity of the perturbation solutions given 
by Jaffrin [28] and Zien and Ostrach [74] are confined within a range nar
rower than that they had predicted. It was concluded that the reflux1 phe
nomenon in the flow changes the whole situation according to Reynolds 
number. They also claimed to find a good agreement of their computa
tional results with experimental results. 

Takabatake et al. [66] adopted an upwind finite difference technique 
to replace the channel cross-section of Takabatake and Ayukawa [65] by a 
circular one. They inferred that much greater peristaltic mixing and trans
port occur in a circular tube than that in a plane channel. Their discussion 
included mechanical efficiency of pumping, reflux and trapping. They also 
pointed out the term left out in the calculations for the mechanical effi
ciency in the case of a circular cylindrical tube and concluded that the 
efficiency is more in this case than that in the case of the channel. 

A numerical simulation of the peristaltic reflex of a small bowel was 
presented by Miftakhov and Wingate [39]. 
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1. Introduction 

A denning moment for DNA research was the discovery of its structure half 
a century ago on 25 April 1953 by James Watson and Francis Crick [15] 
describing the entwined embrace of two strands of deoxyribonucleic acid 
(DNA). The structure of DNA is the foundation for understanding differ
ent physiological phenomenon like molecular damage and repair, replication 
and inheritance of genetic material, as well as the diversity and the evolu
tion of species. One of the longstanding issues in molecular biology is the 
three-dimensional structure (shape) of proteins and deoxyribonucleic acid 
(DNA) in solution in the cell and the relationship between structure and 
function. Ordinarily, the structure of protein and DNA is determined by 
X-ray crystallography or electron microscopy. Because of the close packing 
needed for crystallization and the manipulation required to prepare a spec
imen for electron microscopy, these methods provide little direct evidence 
for molecular shape in solution. 

The structure of DNA suggests its three dimensional arrangement as 
two very long curves that are intertwined millions of times, linked to other 
curves, and subjected to four or five successive orders of coiling to con
vert it into a compact form for information storage. Hence the arrange
ment of these two curves is called the duplex DNA, consisting of two 
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backbone strands wound about each other in right-handed helical fash
ion. DNA strand consists of sugar phosphate backbone with a nitrogenous 
base attached to each sugar. The four bases are adenine (A), guanine (G), 
cytosine (C) and thymine (T) (cf. [2, 15, 16]). The two strands are held 
together by hydrogen bonding between the bases with A always paired 
with T with two hydrogen bonds and G always paired with C with three 
hydrogen bonds. The bacterial DNA is usually circular. Although human 
DNA is linear, it is extremely long and tacked down to a protein scaffold at 
various points on the DNA. This periodic attachment endows human DNA 
with topological constraints similar to those for circular DNA. Although 
DNA is considered to be the master molecule of the body, actually pro
tein is the working molecule. Hence these topological constraints of DNA 
can interfere with vital cellular processes such as replication and transcrip
tion due to different mode of interactions with proteins. Enzymes are usu
ally proteins and are involved in these topological entanglement problems 
that arise through cellular metabolism and replication. In this case topoi-
somerases, which are enzymes that mediate the passage of one segment of 
DNA through an enzyme-bridged transient break in the backbone strands 
of another DNA segment, are responsible for unlinking the DNA. Other 
enzymes called recombinases break two DNA segments and interchange the 
ends, resulting in an exchange of genetic information. Tangle calculus has 
been successfully used to study recombinases. The topological approach 
to enzymology is an experimental protocol in which the descriptive and 
analytical powers of knot theory and tangle calculus are employed in an 
indirect effort to determine the enzyme mechanism and the structure of 
active enzyme-DNA complexes in vitro (in a test tube). 

Due to the uniqueness of the bonding partner for each nucleotide, knowl
edge of the sequence along one backbone implies knowledge of the sequence 
along the other backbone. In the classic Watson-Crick double helix model 
for DNA [2], the ladder is twisted in a right-hand helical fashion, with an 
average and nearly constant pitch of approximately 10.5 base pairs per 
full helical twist. The local helical pitch of duplex DNA is a function of 
both the local base pair sequence and the cellular environment in which 
the DNA lives; if a DNA molecule is under stress, or is constrained to live 
on the surface of a protein, or is being acted upon by an enzyme, the heli
cal pitch can change. The packing, twisting, and topological constraints 
all taken together mean that topological entanglement poses serious func
tional problems for DNA. This entanglement would interfere with, and be 
exacerbated by, the vital life processes of replication, transcription, and 
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recombination. For information retrieval and cell viability, some geometric 
and topological features must be introduced into the DNA. For example, 
the Watson-Crick helical twist of duplex DNA may require local unwind
ing in order to make room for a protein involved in transcription to attach 
to the DNA. The DNA sequence in the vicinity of a gene may need to be 
altered to include a promoter or repressor. During replication, the daugh
ter duplex DNA molecules become entangled and must be disentangled in 
order for replication to proceed to completion. After the process is finished, 
the original DNA conformation must be restored. Some enzymes main
tain proper geometry and topology by passing one strand of DNA through 
another by means of a transient enzyme-bridged break in one of the DNA 
strands. Other enzymes break the DNA apart and recombine the ends by 
exchanging them, a move performed by recombinases. Recently, it has been 
found that Topoisomerase III and IV also help in DNA recombination. The 
description and quantification of the three-dimensional structure of DNA 
and the changes in DNA structure due to the action of these enzymes have 
required serious use of geometry and topology in molecular biology. This 
use of mathematics as an analytic tool is particularly important because 
there is no experimental way to observe the dynamics of enzymatic action 
directly. 

In the experimental study of DNA structure and enzyme mecha
nism, biologists developed the topological approach to enzymology, shown 
schematically in Figs. 1 and 2. In this approach, one performs experiments 
on circular substrate DNA molecules [7]. Cloning techniques to contain 
regions that a certain enzyme will recognize and act upon, genetically engi
neer these circular substrate molecules. The circular form of the substrate 
molecule traps an enzymatic topological signature in the form of DNA knots 
and links (catananes). These DNA knots and links of the reaction product 
DNA molecules are observed by gel electrophoresis and electron microscopy. 

w % ? Q Supareoilad 

Knotted 

Linked 

Fig. 1. Topological approach to enzymology. 
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Fig. 2. (a) DNA (+) Whitehead link, (b) DNA knot 65. 

By observing the changes in geometry (superceding) and topology (knot
ting and linking) in DNA caused by an enzyme, the enzyme mechanism can 
be described and quantized. 

The topological approach to enzymology poses an interesting challenge 
for mathematicians as to how one can deduce enzyme mechanisms from the 
observed changes in DNA geometry and topology. This requires the con
struction of mathematical models for enzyme action and the use of these 
models 'to analyze the results of topological enzymology experiments. The 
entangled form of the product DNA knots and links contains information 
about the enzymes that made them. In addition to utility in the analysis of 
experimental results, the use of mathematical models forces all of the back
ground assumptions about the biology to be laid out carefully. At this point 
they can be examined and dissected, and their influence on the biological 
conclusions drawn from experimental results can be determined. 

Ernst and Sumners [7] were the first to introduce tangle model. They 
also used the model to analyze the Tn3 resolvase site-specific recombina
tion system. It was proved mathematically that, in a processive recombi
nation event, Tn3 resolvase binds to its unknotted, negatively supercoiled 
substrate (sites in direct repeat), fixes three negative supercoils, and each 
round of recombination introduces a positive crossing in the domain. It was 
also proved that, given biologically reasonable assumptions, this is the only 
possible explanation for the experimental data. In 2001 Darcy [4] mod
elled the Xer recombinase using 4-plat oriented equation. But since Xer is 
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non-processive the model gave an infinite number of solutions. The solutions 
of the model depended upon the initial assumptions that were made. 

2. Mathematical Background 

Site-specific recombination affects the topology of circular DNA substrates. 
These changes in topology can be characterized experimentally. Based on 
the experimental data, biological models for enzymatic mechanisms can 
be proposed. Only a mathematical treatment of this problem can give a 
definite answer. The fields of knot theory and low dimensional topology are 
needed to analyze site-specific recombination reactions. 

2.1. Topological tools for DNA analysis 

Fortunately for biological applications, most of the circular DNA falls into 
the mathematically well-understood family of 4-plats (cf. [1, 6, 8, 11]). This 
family consists of knot and link configurations produced by patterns of 
plectonemic supercoiling of pairs of strands about each other. All "small" 
knots and links are members of this family — more precisely, all prime 
knots with crossing number less than 8 and all prime (two-component) 
links with crossing number less than 7 are 4-plats. For in vitro binding of 
circular DNA with enzymes, we can consider the enzyme mechanism as a 
machine that transforms 4-plats into other 4-plats. We need a mathematical 
language for describing and computing these enzyme-mediated changes. 
In many enzyme-DNA reactions, a pair of sites that are distant on the 
substrate circle are juxtaposed in space and bound to the enzyme. The 
enzyme then performs its topological moves, and the DNA is then released. 
A mathematical language is also required to describe configurations of linear 
strings in a spatially confined region. This is accomplished by means of the 
mathematical concept of tangles, which were introduced into knot theory 
by Conway [2]. Tangle theory is knot theory done inside a 3-ball with the 
ends of the strings firmly glued down. A mathematical model for the study 
of enzymatic action on DNA knots and links was recently developed and 
analyzed by Misra et al. [13]. 

The family of tangles that can be converted to the trivial tangle by 
moving the endpoints of the strings on 5 2 is the family of rational tan
gles [14]. Equivalently, a rational tangle is one in which the strings can 
be continuously deformed (leaving the endpoints fixed) entirely into the 
boundary 2-sphere of the 3-ball, with no string passing through itself or 
through another string. 
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Rational tangles form a homologous family of 2-string configurations 
in B3 and like 4-plats, look like DNA configurations being built up out of 
a pattern of plectonemic supercoiling of pairs of strings. More specifically, 
enzymes are often globular in shape and are topologically equivalent to 
our unit-defining ball. Thus, in an enzymatic reaction the enzyme bound 
DNA forms a 2-string tangle. Since the amount of bound DNA is small, 
the enzyme-DNA tangle so formed admits projections with few nodes and 
therefore is very likely rational. For example, all locally unknotted 2-string 
tangles having less than five crossings are rational. There is a second, more 
natural argument for rationality of the enzyme-DNA tangle. In all cases 
studied intensively, DNA is bound to the surface of the protein. This means 
that the resulting protein-DNA tangle is rational, since any tangle whose 
strings can be continuously deformed into the boundary of the denning ball 
is automatically rational. 

There is a classification scheme for rational tangles that is based on a 
standard form that is a minimal alternating diagram. The classifying vec
tor for a rational tangle is an integer entry vector (ai, 0 2 , . . . , an) of odd or 
even length, with all entries (except possibly the last) non-zero and hav
ing the same sign and with |ai | > 1. The integers in the classifying vector 
represent the left-to-right (west-to-east) alternation of vertical and horizon
tal windings in the standard tangle diagram, always ending with horizontal 
windings on the east side of the diagram. Horizontal winding is the winding 
between strings in the top and bottom (north and south) positions; verti
cal winding is the winding between strings in the left and right (west and 
east) positions. By convention, positive integers correspond to horizontal 
plectonemic right-handed supercoils and vertical left-handed plectonemic 
supercoils; negative integers correspond to horizontal left-handed plectone
mic supercoils and vertical right-handed plectonemic supercoils. Two ratio
nal tangles are of the same type if and only if they have identical classifying 
vectors. Due to the requirement that |oi| > 1 in the classifying vector con
vention for rational tangles, the corresponding tangle projection must have 
at least two nodes. There are four rational tangles {(0); (0;0); (1); (—1)} 
that are exceptions to this convention (|ai| = 0 or 1). 

Tangles can be used to build a model that will compute the topology 
of synaptic complex in a single recombination event, with knowledge of 
the topology of the substrate and product. In site-specific recombination 
on circular DNA substrate, two kinds of geometric manipulation of the 
DNA occur. The first is a global ambient isotopy, in which a pair of distant 
recombination sites are juxtaposed in space and the enzyme binds to the 



Mathematical Modelling of DNA Knots and Links 201 

molecule(s), forming the synaptic complex. Once synapsis is achieved, the 
next move is local and due entirely to enzyme action. Within the region 
occupied by the enzyme, the substrate is broken at each site, and the ends 
are recombined. 

Within the region controlled by the enzyme, the enzyme breaks the 
DNA at each site and recombines the ends by exchanging them. Hence the 
enzyme itself can be modeled as a 3-ball. The synaptosome consisting of 
the enzyme and bound DNA forms a 2-string tangle. 

2.2. Definitions 

A knot is a simple closed curve embedded in 3-space. A link is a disjoint 
union of such simple closed curves (cf. [1, 11]). Two knots A and B are 
said to be equivalent if and only if A can be smoothly deformed into B, 
and we write A = B. A knot that can be deformed to lie on a plane, with 
no crossings, is called a trivial knot, or the unknot. Likewise, a trivial 
link with two components consists of two circles that can be deformed to 
lie flat on a plane. The 2-dimensional representation of a 3-dimensional 
knot is known as the projection of a knot. The crossing number of a knot 
is the minimum number of crossings over all the projections of a knot. 
For example, the crossing number of a trefoil knot is 3 (see Fig. 3). The 
problem of deciding when two knots or links are equivalent is not easy. 
Many invariants of knots and links, both geometric and algebraic, have been 
developed throughout the years. Some examples of geometric invariants are 
the crossing number of a link, and the linking number of a link with two 
oriented components. 

trefoil knot f ig-8 knot Hopflink 

crossing # - 3 

o $=® ®=® 
unknot achiral chiral 

Fig. 3. Different types of knots. 
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The following definitions will lead to another knot invariant. Let K 
be a link with a fixed orientation. The link obtained after inverting the 
orientation of K is denoted by (-K), and it is called the inverse of K. 
Likewise, the link obtained by reflection of K with respect to a plane, is 
called the mirror image of K and is denoted by K*. If K = (-K), then 
K is said to be invertible. K is achiral if K = K*. If K ^ K*, K is said 
to be chiral. 

2.3. 2-string tangles 

A unit ball is considered in R3. In the XY plane (see Fig. 4) the posi
tive Y-axis is considered to point north, and the positive X-axis to point 
east. Let {NE, NW, SE, SW} be four fixed equatorial points of the unit 
ball. A 2-string tangle can be thought of as two strands with end-points 
{NE, NW, SE, SW} together with the unit ball to that contains them. The 
basic definition is illustrated in Fig. 4. 

As is the case with knots, tangles are also studied through their pro
jections. A tangle diagram is the image of the 2-string tangle when it is 
projected onto the equatorial disc. Two tangle diagrams represent equiva
lent tangles if strands of the one can be deformed into strands of the other. 

There are 3 types of tangles (see Fig. 5): 

• Rational Tangle: a, a') any rational tangle can be obtained from the 
trivial tangle shown in a) by moving the strands' ends on the boundary 
of the ball. 

• Locally knotted: b) a locally knotted tangle contains a knotted 
strand. 

• Prime Tangle: c) tangles which are not rational or locally knotted 
are said to be prime. 

Z Y 
1 

m/C 
sw x ^ 

L 

3f. y. 
Fig. 4. Projection of a unit ball from R3 to S 2 . 
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Fig. 5. Different types of tangles. 

Fig. 6. Tangle addition. 

Given two tangles A and B, the tangle addition A + B is defined 
in the figure above (cf. [3, 9]), as in Fig. 6. The resulting object A + B is 
obtained by gluing NE of A to NW of B, and SE of A to SW of B. One may 
note that the sum of two tangles is not always a tangle since the strands of 
(A + B) can include a simple closed curve. 

The figure given below (Fig. 7) is used to define two other tangle oper
ations called numerator and denominator. Given a tangle A, N(A) and 
D(A) denote these operations, respectively, and they produce knots and 
2-component links. N(A + B) and D(A + B) can be defined in a similar 
way. Note that if A + B is not a 2-string tangle, the result of N(A + B) or 
D(A + B) can be a link of more than two components. 

2.4. Rational tangle 

Rational tangle is a tangle whose strands can be deformed to a trivial tangle 
by moving the ends of strands on the boundary [14]. Rational tangles admit 
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£3 
B = N(A+B) 

B ) i = D(A+B) 

Fig. 7. Tangle operations. 

Fig. 8. Tangle surgery. 

of a classification in which a unique standard vector with integer entries is 
associated with each equivalence class of rational tangles. Such a vector 
( a i , . . . , am) must satisfy the following conditions: 

(1) a, ^ 0 when 0 < i < m 
(2) all entries are of the same sign 
(3) a\ is not equal to 1 or —1. 

The tangle can be constructed from its associated vector as shown in the 
figure above (Fig. 8). 

Four exceptional tangles are excluded by the convention; they can be 
visualized in Fig. 9 together with their standard vector. 

For each equivalence class of rational tangles, denoted by A, the stan
dard vector associated to it is called the Conway Symbol for A (cf. [2]). To 
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(0) (0,0) (l) (2,3,4) anon-rational 
(Mangle Infinity tangle +1 tangle 3<V7-tanglB langle 

Fig. 9. Canonical form of rational tangles. 

= (-5) 

Fig. 10. Integral tangle. 

each Conway symbol can be associated a unique extended rational number; 
f 6 Q U { o o } 

{3/a = ai-\ j . 
a-2-\ j 

«3H j -
••• + — 

A tangle is integral (shown in Fig. 10), if its canonical vector is of the 
form (z) for some integer z. It may be noted that integral tangles are in 
one-to-one correspondence with the integers, and that they are drawn as a 
row of horizontal twists (positive or negative). 

2.5. 4-plats 

A 4-plat is a knot or a link that admits a representation consisting of a braid 
on 4 strings closed up as in Fig. 11. The classification of 4-plats shows that 
each 4-plat K is characterized by a vector (c\, C2,.. . , c^n+i) such that c\ 
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Fig. 11. Standard 4-plats. 

and C2n+i are different from zero. A rational number is assigned, by means 
of the following continued fraction calculation, to each vector: 

/3/a= ^ 
c\ -I Y ' 

C2 + — 

The link K is denoted by b(a, (3) and is termed as the Conway notifica
tion for K. 

2.6. Classification of 4-plats 

b{a,(3) and b(a',P') are equivalent and non-oriented links if and only if 

a = a'; /?' = /3(mod a). 

See Figs. 12 and 13. 
The numerator closure of the sum of two rational tangles is a rational 

knot or link (Fig. 14). 



Mathematical Modelling of DNA Knots and Links 207 

(1) 

(2) 

(-1,-1,-4,1,3) (2,3,4) 
Fig. 12. Equivalent tangles. 

N ((2,3,0)) = N 

( \ 
1 

and N((2)) = N 7j=NfyJ=N((2)) 

((2,3,0)) = J y J = N [ J J = N ((2)), Thus N 

since 7 = 1 + 2(3). 

(a) 

(b) 

Fig. 13. (a), (b) Rational knot/link equivalence. 

where dp - qj = 1 

Fig. 14. Numerator closure for sum of two tangles. 
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3. Biological Statement and Assumptions 

The main goal when doing tangle analysis of experimental data arising 
from site-specific recombination reactions is to understand the enzymatic 
mechanism. The tangle model studies topological changes in DNA caused 
by the enzymes. The mechanism of recombinases involves local interaction 
of two DNA strands (Fig. 15). 

One of the goals of the tangle model is to compute the topology of 
the synaptosome (enzyme + bound DNA), before and after the enzymatic 
action. In an attempt to translate an enzymatic action on DNA into the 
language of mathematical 2-string tangles, DNA molecule with its two 
recombination sites as an embedding of one or more circles in 3-space has 
been considered. Therefore the substrate, DNA is considered to be a knot 
or a link. Each circular DNA molecule is represented by the axis of its 
double-helix (a simple closed curve in R3). A single event of recombination 
consists of two movements. One of them is a global movement where, by 
ambient isotopy of R3, the recombination sites are juxtaposed inside a ball. 
The ball represents the enzyme, together with any accessory proteins that 
bind the DNA substrate and are required for recombination. The ball with 
the two strands of bound DNA represents, by definition, the local synap
tic complex (or synaptosome). The second movement is a local movement 
in the interior of the ball where two strands are cut at the recombination 
sites, and then recombined. At this stage, the part of the knot or link that 
was left in the exterior of the ball remains fixed. Mathematically, the ball 
divides the space into two regions. Each region will be defined on the basis 
of its biological role. 

A ball with two embedded strands is, by definition, a 2-string tangle. 
Therefore the enzyme with the accessory proteins and the bound DNA form 
a 2-string tangle, where the proteins form the ball that defines the tangle. 
Call this tangle E. Likewise, the recombination sites can be surrounded by 
a small ball in the interior of E. Let P be this tangle in the interior of 

Fig. 15. Local interaction of two DNA strands. 
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Fig. 16. Sketch of a recombination site. 

E where the DNA is cut by the enzyme. This description is illustrated in 
Fig. 16. 

4. Tangle Model Assumptions 

In a site-specific recombination reaction, the recombinase and accessory 
proteins bind to the DNA. Enzyme and proteins are modelled as a ball; the 
circular DNA is modelled as a knot or link that intersects the ball in two 
strands. The synaptosome is a 2-string tangle called E. We can look upon 
E as the sum of two tangles, Ob + P. 

Assumption 1. E = Ob + P, where Ob contains the entire DNA that 
is bound to the enzyme or to the accessory proteins, except for the recom
bination sites that are contained in P. That is, the enzyme mechanism 
in a single recombination event is constant, independent of the geometry 
(supercoiling) and topology (knotting and catenation) of the substrate pop
ulation. Moreover, recombination takes place entirely within the domain of 
the enzyme ball, and the substrate configuration outside the enzyme ball 
remains fixed while the strands are being broken and recombined inside and 
on the boundary of the enzyme. 

We assume that any two pre-recombination copies of the synaptosome 
are identical, meaning that we can by rotation and translation superimpose 
one copy on the other, with the congruence so achieved respecting the 
structure of both the protein and the DNA. We likewise assume that all of 
the copies of post-recombination synaptosome are identical. 

Let Of be the tangle formed by the ball S3 — E that contains the DNA 
not bound to the enzyme/accessory proteins complex. It may be noted 
that both topology and sequence of Ob and Of remain unchanged upon 
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recombination. Of contains all the relevant topological information from 
the free DNA. Assumption 1 allows to see the whole synaptic complex 
simply as: 

N(Of + Ob + P) = N(Of + E). 

One may note that both Ob and Of remain unchanged upon recombi
nation. Let O be the "outside tangle" defined by the following sum: 

o=of + ob. 

In the calculations one will usually refer to the tangle O instead of Ob 

and Of. If the substrate is a knot or link Ki, then the synaptic complex 
can be represented by a substrate equation of the form: 

N(0 + P) = K1. 

Recombination occurs during the local movement, and strand exchange 
is restricted to the tangle P. This motivates the second mathematical 
assumption. 

Assumption 2. The recombinase action corresponds to a tangle surgery 
where the tangle P is changed by the tangle R. 

With this assumption, after one round of recombination leading to a 
knotted or linked product of type K2, the parental tangle P is removed from 
the synaptosome and replaced by the recombinant tangle R. The outside 
tangle O remains unchanged. The post-recombination synaptic complex is 
represented by the product equation: 

N(0 + R)= K2. 

Therefore, one round of recombination action is translated to the following 
system with two tangle equations: 

N(Of + Ob + P)=N(0 + P) = K1\ 
N(Of + Ob + P) = N(0 + P) = K2J

 U 

where {Of, Ob, P, R} are unknown. In general, two tangle equations on 4 
unknowns are not enough to find a unique solution array (Of,Ob,P,R), 
or even a finite number of solutions. Electron micrographs of the synaptic 
complex can sometimes characterize Of. 

For unknotted substrates it can generally be deduced that Of is ratio
nal; in particular, Of = (0) and therefore, O = Of + Ob = Ob. 
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4.1. Other substrates 

When the tangle model was used to study a resolvase system, the following 
assumption was crucial to unveil the enzymatic mechanism: 

Assumption 3. The recombination mechanism is constant, independent 
of the geometry (supercoiling) and topology (knotting and linking) of the 
substrate population. 

This means, in part, that the recombination is restricted to the inte
rior of the ball, and that the substrate's configuration outside the ball 
remains fixed during this event. It also implies that both P and R are con
stant, they do not depend on the nature of neither substrate nor product 
of recombination, and they are characteristic of the enzyme. Any change 
in the substrate would be translated into a change in the tangle O (in 
particular a change in Of). It follows from Assumption 3 that the tangles 
{Ob, P, R} are constants reflecting enzyme binding and mechanism, while 
the tangle Of reflects the variable geometry and topology of the substrates. 
In the case of enzymes with topological selectivity and specificity (e.g. Gin, 
Tn3 and Xer), given a fixed substrate K\ the tangles O, P and R are 
constants uniquely determined by the enzyme. Furthermore, if one consid
ers two experiments where a given enzyme acts on topologically different 
substrates, then two systems of equations appear in the tangle analysis. 
Assumption 3 allows taking P and R constant in both the systems. The 
tangle O will be denoted as O^1' for experiment 1 and as O^ for experi
ment 2. In the cases of Gin and Xer the assumption of constant mechanism 
is supported by experimental data (Gin, Xer). On the other hand, there are 
some enzymes such as A-int, mutant Gin and FLP that have no topological 
selectivity. In those cases, for a single substrate, the tangle O can vary. 
Assumption 3 in these cases only implies that P and R are constants. Thus 
the mechanism is not constant and it is not clear whether the enzymatic 
binding (characterized by the tangle O) changes from one substrate type 
to another. 

5. Site-Specific Recombination 

Site-specific recombination is one of the ways in which nature alters the 
genetic code of an organism, either by moving a block of DNA to another 
position on the molecule or by integrating a block of alien DNA into a 
host genome (cf. [2, 15]). One of the biological purposes of recombination 
is the regulation of gene expression in the cell, because it can alter the 
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relative position of the gene and its repressor and promoter sites on the 
genome. Site-specific recombination also plays a vital role in the life cycle 
of certain viruses, which utilize this process to insert viral DNA into the 
DNA of a host organism. An enzyme that mediates site-specific recombi
nation on DNA is called a recombinase. A recombination site is a short 
segment of duplex DNA whose sequence is recognized by the recombinase. 
Site-specific recombination can occur when a pair of sites (on the same or 
on different DNA molecules) becomes juxtaposed in the presence of the 
recombinase. The pair of sites is aligned through enzyme manipulation or 
random thermal motion (or both), and both sites (and perhaps some con
tiguous DNA) are then bound by the enzyme. This stage of the reaction 
is called synapsis. We shall call this intermediate protein-DNA complex 
formed by the part of the substrate that is bound to the enzyme together 
with the enzyme itself the synaptosome and the entire DNA molecule(s) 
involved in synapsis (including the parts of the DNA molecule(s) not bound 
to the enzyme), together with the enzyme itself, the synaptic complex. It 
is our intent to deduce mathematically the path of the DNA in the black 
mass of the synaptosome, both before and after recombination. 

After forming the synaptosome, a single recombination event occurs: 
the enzyme then performs two double-stranded breaks at the sites and 
recombines the ends by exchanging them in an enzyme-specific manner. 
The synaptosome then dissociates, and the enzyme releases the DNA. We 
call the pre-recombination unbound DNA molecule(s) the substrate and the 
post-recombination unbound DNA molecule(s) the product. During a sin
gle binding encounter between enzyme and DNA, the enzyme may mediate 
more than one recombination event; this is called processive recombination. 
On the other hand, the enzyme may perform recombination in multiple 
binding encounters with the DNA, which is called distributive recombina
tion. Some site-specific recombination enzymes mediate both distributive 
and processive recombination. 

Site-specific recombination involves topological changes in the substrate. 
In order to identify these topological changes, one chooses to perform exper
iments on circular DNA substrate. One must perform an experiment on a 
large number of circular molecules in order to obtain an observable amount 
of product. Using cloning techniques, one can synthesize circular duplex 
DNA molecules, which contain two copies of a recombination site. At each 
recombination site, the base pair sequence is in general not palindromic and 
hence it induces a local orientation on the substrate DNA circle. If these 
induced orientations from a pair of sites on a singular circular molecule 
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agree, this site configuration is called direct repeats (or head-to-tail), and if 
the induced orientations disagree, this site configuration is called inverted 
repeats (or head-to head). If the substrate is a single DNA circle with a 
single pair of directly repeated sites, the recombination product is a pair 
of DNA circles and can form a DNA link (or catanane). If the substrate 
is a pair of DNA circles with one site each, the product is a single DNA 
circle and can form a DNA knot (usually with direct repeats). In proces-
sive recombination on circular substrate with direct repeats, the products 
of an odd number of rounds of processive recombination are DNA links, 
and the products of an even number of rounds of processive recombina
tion are DNA knots. If the substrate is a single DNA circle with inverted 
repeats, the product is a single DNA circle and can form a DNA knot. In 
all the figures where DNA is represented by a line drawing, duplex DNA is 
represented by a single line, and supercoiling is omitted. 

a. Substrate 
/ 

b. Pre-recomblnaficn 
synaptic complex 

c. Post-recombination 
synaptic complex 

d Product 

Fig. 17. A single recombination event: direct repeats. 
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The geometry and topology of circular DNA substrate are experimental 
control variables. The geometry and topology of the recombination reaction 
products are observable. In vitro experiments usually proceed as follows: 

Circular substrate is prepared, with all of the substrate molecules rep
resenting the same knot type. The amount of supercoiling of the substrate 
molecules is also a control variable. The substrate molecules are reacted 
with a high concentration of purified enzyme, and the reaction products 
are fractionated by gel electrophoresis. Gel electrophoresis discriminates 
among DNA molecules on the basis of molecular weight; given that all 
molecules have the same molecular weight (as is the case in these topo
logical enzymology experiments), electrophoresis discriminates on the basis 
of subtle differences in the geometry (supercoiling) and topology of the 
DNA molecules. Under the proper conditions gel velocity is (surprisingly) 
determined by the crossing number of the knot or the link, knots and links 
of the same crossing number migrate with the same gel velocities. After 
running the gel, the DNA molecules are removed from the gel and coated 
with Rec A protein. It is this new observation technique (Rec A-enhanced 
electron microscopy) that makes possible the detailed knot-theoretic anal
ysis of reaction products. Rec A is an E. coli protein that binds to DNA 
and mediates general recombination in E. coli. The process of Rec A coat
ing fattens, stiffens, and stretches (untwists) the DNA. This facilitates the 
unambiguous determination of crossings (nodes) in an electron micrograph 
of DNA. 

6. Processive Recombination 

Processive recombination must be incorporated to the tangle model without 
contradicting the assumption of constant mechanism [2, 15]. Since P is 
assumed to be changed by R upon one round of recombination, R will be 
assumed to go to R + R after two rounds and so on and so forth. In this 
way processive recombination is modelled by tangle addition. Experimental 
data obtained from processive recombination adds equations to the system. 
These equations involve the same unknowns as before. 

Assumption 4. Processive recombination acts by tangle addition 
(Fig. 18). The implication is that, after n rounds of processive recombi
nation, the post-recombination synaptosome is (Ob + nR). This leads to a 
new equation for each round of recombination: 

N(0+ nR) = nth round product 
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111 rounds 

Fig. 18. Processive recombination. 

In the tangle analysis of Tn3 resolution and in that of Gin inversion, 
data arising out of the first few (three or four) rounds of recombination 
are enough to find unique solutions to the tangle equations. In addition, 
these computations correctly predict the products of additional rounds of 
processive recombination. 

7. Useful Facts and Theorems About Tangles 

(1) Both N{a/b) and D(a/b) are 4-plats. The knot/link N(a/b) is the 4-plat 
S{a, -b). The knot/link D(a/b) is the 4-plat 5(6, o). 

(2) The tangle corresponding to ai\6i is the same as the tangle correspond
ing to «2\62 if and only if a i \6i = a2\&2-

(3) ai \6i + «2\62 — a rational tangle unless either 6i = ±1 or 62 = ± 1 . 
(4) a/b + t = (a + bt)/t. 
(5) N{A + C) = N(C + A) where A and C are arbitrary tangles. 
(6) N(A + C) = 4-plat implies at least one of A and C is rational or locally 

knotted. 
(7) D(A + C) = D{A) ss D{C). 
(8) N(AN(ci, ...,Cn) + B) = N(A + BN(cn,..., ci)) where n is odd. 

Theorem 1. Let U and R be tangles such that N(U + iR) = 4-plat for 
some i>2, and N(U + jR) ^ N(U + iR) for some j . Then R is a rational 
tangle. Ifi>3, then R is an integral triangle. 

Proof. If R were locally knotted, then N(U + iR), i > 2 would be com
posite. Since 4-plats are prime, JR cannot be locally knotted. Suppose R is 
a prime tangle. By tangle properties U + (i — 1)R is rational or locally 
knotted and R prime implies that (i — 1)R prime and U must be oo-tangle 
or locally knotted. 



216 Biomathematics: Modelling and Simulation 

Now U cannot be a oo-tangle. If U were the infinity tangle, then 
N(U + iR) = D(iR) = D(R)# • • • #£>(£). Since 4-plats are prime, D(R) = 
unknot. But N(U + iR) = D(iR) = unknot = D(jR) = N(U + jR), a 
contradiction. Thus if U is locally unknotted, R must be rational. 

If i > 3, then R does not have parity oo since 4-plats have at most two 
components. If i > 3, U is locally unknotted, and R is not integral, then if U 
is not integral, U+R and (i — 1)R are prime. But N(U+iR) = 4-plat would 
then contradict the tangle property. If U is integral and if R is rational, 
then N(U + iR) = 4-plat, i > 3, if and only if R is integral. Thus if U is 
locally unknotted and i > 3, then R must be integral. 

Suppose U is locally knotted. Then if U' is the tangle formed from U 
by removing the local knot, then N(U' + iR) = unknot, since 4-plats are 
prime. N(U + jR) ^ N(U + iR) implies that N{U' + jR) + N(U' + iR). 
Since the unknot is a 4-plat and U' is locally knotted, R is rational if i > 2 
and integral if i > 3. • 

Theorem 2. / / N(U + P) = A-plat and N(U + R) = 4-plat where P = 
ai/b\, R = a2/b2, ai&2 — fl2&i ̂  ^1) then U is either a rational tangle or 
ambient isotopic to a sum of two rational tangles. 

Proof. If N(U + P) = 4-plat and N(U + R) = 4-plat where P = ax/bi, 
R — 02/62, ai&2 - &2&i ^ ± 1 , then the cyclic surgery theorem implies that 
the double branched cover of the tangle U is a Seirfert fibered space. This 
means, U is ambient isotopic to a Montesinos tangle (Ernst [8]). D 

Theorem 3. Let U and R be tangles such that N(U + iR) = Ki for 
0 < i < 3, where Ki's are 4-plats, and {K\,K2,Kz} represent at least 
2 different link or knot types. Then there is at most one solution for U and 
U is either rational or the sum of two rational tangles. 

Theorem 4. Lat E — t/w — tangle, (w, t) = 1 and ay — bx = l. Then the 
following are equivalent for \t\ > 2. For t = ± 1 , (2) and (3) are equivalent 
and imply (1): 

(1) dR(N(a/b),N(z/v))<l. 
(2) Ifw = i l m o d f , N(z/v) = N((tb + w)a)/(-ty + w)x)) or N((-tx + 

(tk + w)a)/(-ty + (tk + w)b)). Else w = i l m o d i and N(z/v) -
N((tp2b + sa)/(-tp2y - sx)) or N((-tp2x + sa)/(-tp2y + sb)) where 
s = tp(-q + pk)±l, (p,q) = l,p>0. 
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(3) N(a/b) = N(U + 0) and N(z/v) = N{U + t/w) have the following 
solutions when \t\ > 2: 

If w ^ ± lmod£, then U must be rational and U = a/(b + ka) or 
a/(—x + ka). 

If w = ± l m o d t , then U must be ambient isotopic to a sum of at 
most two rational tangles and U = (Ui + U2) o (h,0) where U\ — 
(—bja(d — kj))/(pb + a(pk — q)) or (xj + a(d — kj))/(—px + a(pk — q)) 
and U2 = j/p, pd — qj = 1 and h = (—w ± \)/t if {—w ± 1) G Z. If 
t = ± 1 , then the above list contains all solutions when U is ambient 
isotopic to a sum of rational tangles. 

Proof. dn(N(a/b), N(z/v)) < 1 if and only if there exists a U such that 
N(a/b) = N(U + 0) and N(z/v) = N(U + t/w). By Theorem 2, U is either 
a rational tangle or ambient isotopic to the sum of two rational tangles. 
If U is a rational tangle, N(U + 0) = N(a/b) implies by tangle fact that 
U = a/(b + ka) or a/(-x + ka) and N(z/v) = N((tb + w)a)/{-ty + w)x)) 
or N((—tx + (tk + w)a)/(—ty + (tk + w)b)). If U is ambient isotopic to 
the sum of two rational tangles, U\ + U2, then since N(U + 0) is a 4-
plat, U - (Ui + U2)o(h,0). Solving N((Ui + j/p)o(h,0) + 0) = N(a/b) 
implies U\ = (-bja(d - kj))/(pb + a(pk - q)) or (xj + a(d — kj))/(-px + 
a{pk - q)) and U2 = j/p, pd - qj = 1. If N((Ui + j/p) o (h, 0) + t/w) = 
N({Ui + j/p + t/(ht + w)). If Ui or U2 are non-integral, N((Ui + U2 + 
t/(ht + w)) is a 4-plat if and only if ht + w = ± 1 , i.e. w = ± l m o d t in 
which case h = (—w ± \)/t if (—w ± 1) G Z. Again by tangle properties 
if s = tp(-q + pk) ± 1, N{Ui + U2±t) = N((tp2b + sa)/(-tp2y - sx)) = 
N((-tp2x + sa)/(-tp2y + sb)). • 

Theorem 5. If N(U + fi/gi) = unknot and N(U + f2/g2) = N(2z/1) 
where f\g2 — f2gi = ± 1 , then U is rational. 

Lemma 1. If N(Ui + P) = unknot, i = 1,2, and U\ 7̂  U2, then P is 
rational. 

Theorem 6. If N(U +0/1) = N(l/0) andN(U+l/w) = N(2k/l), then 
U is rational. 

Corollary 1. Suppose bx - ay = 1, N(U + 0/1) = N(a/b) and N(U + 
t/w) = N(z/v) where N(a/b) andN(z/v) are unoriented A-plats. Ifw ^ ±1 
or ifU is rational, then t/w = (xz — av')/(bv' — yz — kt) and U = a/(b + ka) 



218 Biomathematics: Modelling and Simulation 

or t/w = (bz - av')/(xv' - yz - kt) and U = a/(x + ka) where v' is any 
integer such that v'v±x = l m o d z . If w = ± lmod£, then t divides z T a. 

8. Model for the Tn3 Resolvase 

Tn3 resolvase is a site-specific recombinase that reacts with certain cir
cular duplex DNA substrate with directly repeated recombination sites. 
One begins with supercoiled unknotted DNA substrate and treats it with 
resolvase. The principal product of this reaction is known to be the DNA 
4-plat. Resolvase is known to act dispersively in this situation to bind to the 
circular DNA, to mediate a single recombination event, and then to release 
the linked product. It is also known that resolvase and free (unbound) DNA 
links do not react. However, once in twenty encounters, resolvase acts pro-
cessively — additional recombinant strand exchanges are promoted prior to 
the release of the product, with yield decreasing exponentially with increas
ing number of strand exchanges at a single binding encounter with the 
enzyme. Two successive rounds of processive recombination produce the 
DNA 4-plat (2; 1; 1); three successive rounds of processive recombination 
produce the DNA 4-plat (1; 1; 1; 1; 1), whose electron micrograph appears 
in Fig. 2(a); four successive rounds of recombination produce the DNA 4-
plat (1; 2; 1; 1; 1) whose electron micrograph appears in Fig. 2(b). The 
discovery of the DNA knot (1; 2; 1; 1; 1) substantiated a model for Tn3 
resolvase mechanism. 

For resolvase, the electron micrograph of the synaptic complex reveals 
that Of = (0), since the DNA loops on the exterior of the synaptosome can 
be untwisted and are not entangled. This observation from the micrograph 
reduces the number of variables in the tangle model by one, leaving us 
with three variables {Ob; P; R}- One can prove that there are four possible 
tangle pairs {Of,; R}, which can produce the experimental results of the 
first two rounds of processive Tn3 recombination (cf: [1, 9, 11]). The third 
round of processive recombination is then used to discard three of these 
four pairs of extraneous solutions. The following theorems can be viewed as 
a mathematical proof of resolvase synaptic complex structure. The model 
proposed in [2] is the unique explanation for the first three observed prod
ucts of processive Tn3 recombination, assuming that processive recombina
tion acts by adding on copies of the recombinant tangle R. Mathematical 
analysis makes feasible the reconstruction of DNA topology from gel elec
trophoresis, avoiding the technically difficult electron microscopy of Rec 
A-enhanced DNA. 
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Theorem 1. Suppose that tangles Ob; P; and R satisfy the following 
equations: 

(1) N(Ob + P) = (1) (the unknot), 
(2) N(Ob + R) = (2) (the Hopf link), 
(3) N(Ob + R + R) = (2; 1; 1) (the figure 8 knot). 

Then {Ob;R} = {(-3;0); (1)}, {(3;0); ( -1)} , { ( - 2 ; - 3 ; - 1 ) ; (1)}, or 
{(2;3;1);(-1)}: 

In order to decide the biologically correct solution, we have to utilize 
more experimental evidence. The third round of processive resolvase recom
bination determines which of these four solutions is the correct one. 

Theorem 2. Suppose that tangles Ob; P; and R satisfy the following 
equations: 

(1) N(Ob + P) = (1) (the unknot), 
(2) N(Ob + R) = (2) (the Hopf link), 
(3) N(Ob + R + R) = (2; 1; 1) (the figure 8 knot), 
(4) N(Ob + R + R + R) = (1; 1; 1; 1; 1) (the (+) Whitehead link). 

Then Ob = (-3;0); R = (1), and N(Ob + R + R + R + R) = (1;2;1;1;1). 

The correct global topology of the first round of processive Tn3 recom
bination on the unknot is shown in Fig. 17. Moreover, the first three rounds 
of processive Tn3 recombination uniquely determine iV(Of, + .R-|-.R-|-.R-|-.R), 
the result of four rounds of recombination. It is the 4-plat knot (1; 2; 1; 1; 
1), and this DNA knot has been observed (cf. Fig. 2(b)). We note that there 
is no information in either Theorem 1 or Theorem 2 about the parental tan
gle P. Since P appears in only one tangle equation (Eq. (i)), for each fixed 
rational tangle solutions for Ob there are infinitely many rational tangle 
solutions to the equation for P. Most biologists believe that P = (0), and 
a biomathematical argument exists for this claim. 

9. Model for the Xer Recombinase and 
Topoisomerases III and IV 

Xer recombinase acting on an unknotted substrate produces only one 
product, the link AT(4/1). Thus there are only two equations involving 
3 unknowns and hence they have an infinite number of solutions. 

N(Ui +P)= unknot N(Ux + R) = iV(4/l) 
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This enzyme cannot act processively. So there is no experiment that can 
be performed in order to reduce the infinite number of solutions to a finite 
number. However, we can make a list of all possible solutions and propose 
experiments to reduce this list to a smaller number of solutions. These can 
then be analyzed to decide as to which solutions are the most biologically 
relevant, using additional biological assumptions. For example, if P and R 
are biologically restricted to have at most 4 crossings, then the solutions 
become finite. 

9.1. Biological model for recombinases and topoisomerases 

• Initial Configuration. 
• The accessory proteins fix three negative crossings in the domain. Xer 

binds to the two recombination sites. 
• Idea: the proteins and the three negative crossings remain fixed. 
• One round of recombination produces one negative crossing in the 

domain. 
• After recombination the enzyme releases the molecule. 

9.2. Biological model (unknotted substrates) 

• Substrate = unknotted circular DNA with sites in direct repeat. 
• Ki = 6(1,1) = (1) [where JTs are 4-plats] 
• Product = 4-crossings right-handed torus link with antiparallel sites. 
• K1 = 6(4,3) = (1,2,1) 

9.3. Biological model (catenated substrates) 

• Substrate = 6-crossings right-handed torus link with anti-parallel sites. 
. Kx = 6(6,5) = (1,4,1) 
• Product = 7-crossings knot or link. 

9.4. Tangle equations for unknotted substrates 

(i) AT(0 + P) = (1) = 6(1,1) 
(ii) N(0 + R) = (1,2,1) =b(4,3) 

together with the assumptions: 

(a) P = (0); 
(b) R= (k), k non-zero integer; 
(c) O is rational or sum of 2 rational tangles. 

We solve for O and R. 
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9.5. Tangle equations for catenated substrates 

(i) N(0 + P) = (1,4,1) = 6(6,5) 
(ii) N(0 + R) = K-i = 7-crossings knot or link. 

in which 

(1) P = ( 0 ) ; 
(2) R= (k), k being a non-zero integer; 
(3) O is rational or sum of 2 rational tangles; 
(4) K-2 is a 4-plat. 

We solve for 0 and R. 

9.6. Problems 

• Xer recombination is not processive. The action on substrates with a 
single topology provides only two tangle equations. 

• For known P rational and K 4-plat: N(0 + P) = K has infinitely many 
solutions for O. 

• For known P rational, Kx and K2 4-plats: N(0 + P) = KU N(0 + R) = 
Ki do not lead a unique solution. 

In order to solve the tangle equations, we intend to make use of the min
imum possible assumptions, with an aim to put forward the results in a 
realistic manner. 

9.7. Results 

• U N K N O T T E D SUBSTRATES: 1. When O is rational: 
• The solutions to the tangle equations are: 
• O = (-3,0) a n d f l = (-1) 
• O = (-5,0) a n d i ? = ( + l ) 
• O = (1) and R = (3) 
• O = (-1) and R = (5) 

The last two cases produce 4-crossing links with the wrong site alignment. 
These cases must be discarded. 

• When O is the sum of two rational non-integral tangles, there 
exist no solutions. 
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(a) 
(b) 
(c) 
(d) 
(e) 
(f) 

0 = { 
0 = { 
0 = ( 
0 = ( 

0 = 1 
0 = 1 

Conclusions 

• 7V(0 + P) = 6(1,1) 
• N(0 + R) = 6(4,3) with sites in anti-parallel P = (0), R = (k), 
• O is rational or the sum of two rational tangles. 
• The only solutions to the system are: 

O = (-3,0) , R=(-l); 
O = ( - 5 , 0 ) , J 2 = ( + l ) 

Results 

• CATENATED SUBSTRATES: 
• When O is rational, the solutions to the tangle equations are: 

(6) and R=(+l), K2 = b(7,6) 
(6) and R = (-13), K2 = 6(7,1) 
(6,2,0) and R = ( -1) , K2 = 6(7,6) 

-5, - 1 ) and R = (4), K2 = 6(14,9) 
-5, - 1 ) and R = ( -1) , K2 = 6(11,9) 
-5, - 1 , -2 ,0 ) and R = (+1), K2 = 6(11,9) 

The solutions (a)-(c) have to be discarded, since they correspond to 
torus knots, while the solution (d) is to be discarded because it corre
sponds to a link of parental genotype. The solutions (e) and (f) are the 
only acceptable ones since they correspond to twist knots of recombinant 
genotype. 

When O = X + A with X and A rational non-integral, the solu
tions to the tangle equations are: 

(1) X = ( -4 ,0) , A = (-2,0) and R = (+3), K = 6(18,13) 
(2) X = (-4,0) , A = (-2,0) and R = (-1) , K = 6(14,9) 
(3) X = ( -3 ,0) , A = ( -3,0) , and i* = (-1) , K = 6(15,11) 
(4) X = ( -3,0), A = (-3,0), and R = (+3), K = 6(21,13) 

The solutions (1) and (2) have to be discarded since they correspond to 
links. The solutions (3) and (4) are the only acceptable ones since they 
correspond to knots of recombinant genotype. 

10. Modelling Conclusions 

The tangle is modelled here, assuming that for a given enzyme, the tangles 
P and R are constant, independent of the topology of the substrate. We 
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made the tangle analysis of two recombination events mediated by recom-
binases. We showed that if P = (0), R is integral and O is rational or the 
sum of two rational tangles, and K2 is a 4-plat, then there are only three 
solutions that explain the observed products in both the experiments. 

Recapitulating, the tangle model looks upon the circular DNA substrate 
and products as knots or links. The site-specific recombinase and its acces
sory proteins are seen as a ball that intersects the DNA knot or link in two 
strands. The interior of the ball is divided into two regions. One of them 
is restricted to strand exchange and corresponds to a parental tangle P. 
This tangle can be chosen to be P = (0). P represents the only region in 
the synaptic complex that changes upon recombination. The region outside 
P but inside the ball, called 06 , traps all the conformation that, together 
with the change from P to R, determines the topology of the recombina
tion products. Finally, the region outside the ball, Of detects the varia
tion between substrates with different topology. The tangle model assumes 
that the synaptic complex can be expressed as N(0 + P) = KQ where 
O = Of + Of, is called the outside tangle. Recombination is modelled by 
a tangle surgery that replaces P by the recombinant tangle R, thus lead
ing to a product equation N(0 + R) = Kj_. The assumption of constant 
mechanism implies that P and R are constants uniquely determined by 
the enzyme. In the cases when there are both topological selectivity and 
specificity (e.g. Tn3 resolvase, Gin, Xer), the tangle O is also determined 
uniquely by both the enzyme and the topology of the substrate. If there is 
no topological selectivity (e.g. A -Int, mutant Gin and FLP) then, for a fixed 
substrate, P and R are constants but O can vary. Furthermore, processive 
recombination is modelled by tangle addition. A recombination event that 
consists of n-rounds of processive recombination is translated into a system 
of (n + 1) equations with unknowns O*-1', P and R. The tangle O^ is 
allowed to change from one equation to another if and only if there is no 
topological selectivity. This introduces more unknowns to the system, and 
the analysis becomes much more difficult. It was seen that solutions for a 
system of three tangle equations with three unknowns could be found if the 
unknowns are rational tangles. 
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Within the last decade computer models of cardiac excitation spread have 
become increasingly more realistic due to the interdisciplinary merging of tech
niques from biophysics, mathematics, cardiology and computer sciences. Com
puter models are considered as an indispensable complement to experimental 
and clinical studies. Both experimental as well as clinical methods for the 
determination of the cardiac activation sequence rely in most instances on the 
measurement of potentials outside the myocardium. For the interpretation of 
such measurement a profound understanding of the relationship between elec
trical processes in the tissue and the electric field caused by them outside the 
tissue is essential. Monodomain computer models are one of the most frequently 
used tools for the investigation of this relationship since they represent a bal
anced trade-off between level of detail and computational tractability. This 
paper summarizes theoretical basics necessary for the implementation of mon
odomain computer models for the simulation of the cardiac excitation spread 
and the concomitant electric field and reviews numerical techniques used for 
this purpose. 

1. Introduction 

The human heart is a mechanical pump with four chambers, two upper 
chambers, the atria, which act to fill the two lower main pumping cham
bers, the ventricles. Electrical signals propagate wavelike through the heart 
muscle to coordinate the mechanical contraction which guarantees appro
priate blood circulation under normal conditions. Disturbances of the elec
trical signal conduction may deteriorate or impede the coordination of the 
mechanical contraction leading to discomfort or even life-threatening con
ditions. As a vital organ the diagnosis of malfunctions of the heart has been 
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an important issue since ever. Clinical examinations are based on poten
tials measured on the body surface from which conclusions are drawn on the 
electrical processes occurring within the heart. In the last decades a further 
method was established which permits potential measurements inside the 
heart by means of electrodes introduced with catheters. Beyond mere mea
surements this method also facilitates the modification of conduction path
ways by delivering high-frequency impulses to the tissue. During in vitro 
experiments with heart preparations the situation is quite different. A wider 
gamut of methods, most of them not applicable in vivo, is applied, provid
ing measurement data from inside the tissue as well. Nevertheless, clinical 
examinations of the cardiac activation sequence still rely almost exclusively 
on the measurement of potentials outside the tissue. Therefore, the under
standing of the relation between the electrical processes occurring within 
the tissue and the concurrent electric field outside the tissue is fundamen
tal for the interpretation of clinically recorded signals. Numerous studies 
addressed this question trying to elucidate this source-field relationship with 
both in vitro experiments and numerical studies with computer models. 

The development of computer models is hampered by both structural as 
well as functional complexities of cardiac tissue. The tissue is composed of 
irregularly shaped and nonuniformly interconnected cells, surrounded by a 
fluid-filled space (interstitium) with embedded connective tissue and blood 
vessels. The cell borders are defined by an isolating membrane with highly 
nonlinear electrical properties. The local functional behavior of the tissue 
is determined by the cell membrane as the location of the electrical sources, 
however, the interaction of a membrane patch with adjacent tissue depends 
on the passive electrical properties determined by the tissue structure. All 
that constitutes evident difficulties to find an appropriate representation as 
electrical network. 

Early computer models represented the three-dimensional cardiac struc
ture as a one-dimensional cable and adopted membrane models appropri
ate for nerve membranes. Improved experimental techniques revealed more 
and more details of the basic mechanisms of cardiac electrical activity. 
Favored by the rapidly increasing availability of computational resources, 
these mechanisms were integrated subsequently into computer models to 
investigate their effects. 

Despite considerable technical advances, insurmountable limitations of 
experimental measurements persist. For technical reasons the number of 
different parameters which can be measured simultaneously during exper
iments is limited. Since the cardiac excitation process is determined by 
many factors, the analysis of interactions between them is considerably 



Using Monodomain Computer Models for the Simulation of Electric Fields 227 

complicated by the fact that just a small number of them can be measured 
and the majority of them remain unknown. 

In contrast to experimental measurements, the use of computer models 
allows a clear separation of effects caused by structure (connecting network) 
and function (membrane kinetics). These models, however, are based on 
simplifying assumptions on structure and function of the tissue and have to 
be considered as an approximation of the actual physical system. Therefore, 
computer models on its own are not particularly useful since the discrimina
tion between model artefact and real physical behavior is impossible with
out experimental validation. As a complementary method to experimental 
measurement, however, they have proven to be an extremely powerful tool 
permitting insights which cannot be gained otherwise. 

Computational resources available today are by far not sufficient to 
integrate all the available physiological knowledge into computer models. In 
fact, depending on the question being answered, a trade-off has to be made 
between the amount of details considered in the model and the tractability 
of simulations. If models are too simple, wrong or imprecise predictions will 
result, if too complex, computations will become intractable. 

Computer models typically consist of two parts, one representing the 
tissue structure and one the functional behavior of the cell membrane. 
Regarding the choice the structural representation of the tissue two model 
types exist, the monodomain and the bidomain model. Both models can 
be coupled with a large variety of ionic models to describe the dynamic 
membrane behavior. 

Since the excitation spread in cardiac tissue and the corresponding elec
tric field are inextricably linked, in a strict sense both excitation spread 
and corresponding field have to be considered simultaneously to account 
for the feedback effect of the field on the electrical processes in the tissue. 
Whenever these effects are of interest, a mathematical treatment based on 
a bidomain formulation is more appropriate, since it allows to account for 
the different electrical properties in both compartments inside and outside 
the tissue. 

Under the assumption, however, that these effects are negligible due 
to comparably small potentials in the extracellular medium, the excita
tion spread in the tissue and the extracellular potentials can be computed 
sequentially. Models based on these assumptions are generally referred to 
as monodomain models. All the techniques described in this work deal with 
that model type. Monodomain models are particularly suitable for the sim
ulation of cardiac tissue surrounded by an extensive fluid medium (volume 
conductor). This reflects, for instance, the common experimental setup of a 
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small tissue preparation immersed in an extended fluid bath or in a clinical 
context, potential measurements in the blood-filled cavities of the heart. 

The aim of this work is to provide the basic knowledge necessary for the 
setup of monodomain computer models for the simulation of the cardiac 
excitation spread and the corresponding extracellular potentials evoked by 
the sources within the tissue. 

2. Physiological Background 

This chapter is intended as a brief summary of basic concepts used in 
cardiac electrophysiology for readers unfamiliar with the subject. Charac
teristic properties of the cardiac tissue like its cellular structure, the basic 
ionic mechanisms responsible electric potential differences across the mem
brane and the response of the membrane to the application of stimulation 
currents will be elucidated. A more detailed introduction into membrane 
biophysics is found in [85]. 

2.1. Properties of cardiac cells 

Cardiac muscle is composed of densely packed cells arranged into fibrous 
bundles [111]. A single cell is typically 30-100jum long and 8-20/xm wide. 
Cells have an approximately cylindrical geometry with step-like irregular
ities at the cell ends. The cells are bounded by a thin plasma membrane 
(~75Athick) which separates the fluid-filled intracellular space from the 
interstitial fluid surrounding the cell. In general the membranes of adjacent 
cells are separated by narrow clefts, but at some points the membranes 
are connected via protein channels, called the nexus or gap junctions. The 
gap junctional membrane is localized mainly to the intercalated disks at 
the cell ends and, to a lesser extent, along the length of the cell. A typical 
cell is connected with ten neighboring cells [107]. As a consequence of the 
low conductance of the cell membrane and the spatial arrangement of gap 
junctions, the average conductance along the cell axes (longitudinal direc
tion) is approximately ten times higher than in the perpendicular direction 
(transverse direction) [13]. 

The main function of the membrane is to control the passage of sub
stances (ions and molecules) into and out of the cell. Its main constituent 
is lipid which is organized to form a lipid bilayer. The membrane lipid 
excludes passage of ions. Exchange of ions between intra- and extracellu
lar spaces is only possible via channel proteins which are embedded in the 
bilayer matrix of the membrane. 
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Solute transport through the membrane is facilitated by passive and 
active mechanisms. Passive transport tends to equilibrate ionic concentra
tions inside and outside the cell and requires no expenditure of metabolic 
energy, whereas active transport is metabolically driven. Passive mecha
nisms include diffusion as a result of the concentration gradient (intra-
and extracellular ionic concentrations are different), facilitated diffusion 
via carrier proteins (carrier-mediated transport) and through ion channels. 
Ion channels are specialized membrane proteins that allow the rapid move
ment of small ions like Na+,K+,Cl~ and Ca2+. An ion carrying channel 
consists of an aqueous pore (through which ions may traverse the mem
brane), a selectivity filter (reflecting the selective permeability property 
of the channel, which allows only ions of a certain species to permeate 
the channel) and a control gate which may be classified as voltage- or 
as ligand-gated, depending on the nature of the mechanism that triggers 
the gate. Voltage-gated channels open or close their gates depending on 
the potential difference across the membrane; ligand-gated channels act 
depending on the concentration of different ions, neurotransmitters, hor
mones or drugs among other substances. To maintain intracellular ionic 
concentrations, active transport mechanisms are necessary to antagonize 
the effect of passive transport. Active transport is driven by so-called ion 
pumps which use metabolic energy to transport ions against the concen
tration gradient. 

The unequal ionic concentration in the intra- versus the extracellu
lar space gives rise to diffusion of ions along the concentration gradient, 
whereby the rate of diffusion depends on the difference in concentrations 
and the membrane permeability. Regardless of the mechanism, the move
ment of ions across the membrane constitutes a flow of electric current since 
ions are carrying charges. The membrane accumulates these charges due to 
its associated capacitance resulting in a potential difference across the mem
brane. This potential difference is associated with an electric field which 
exerts forces on all charged particles within the membrane. A steady-state 
is reached when the ion fluxes driven by diffusion and electric field forces are 
equal. The corresponding non-zero electrical potential difference is called 
resting membrane potential. 

A quantitative description of diffusion is given by 

j d = -DPWCP (1) 

known as Fick's law, where Cp is the concentration of an ion of species p as 
a function of position and Dp is the corresponding diffusion constant. The 
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flux ja is the number of ions passing per unit time through a cross section 
of unit area. The flux resulting from the electric field forces is given by 

Je = -£i^RCP™ (2) 
where —V$ is the electric field, Zp the valence of the ion species, F the 
Faraday constant, R the gas constant and T the absolute temperature. 

The equilibrium potential difference for a given ion can be found from 
jd + je = 0. Under these conditions we obtain from (1) and (2) 

VCP = - ^ f ^ V $ (3) 

If we assume that quantities vary in the direction £ perpendicular to 
the membrane only we obtain 

dCp = FZPCP d$ 
d£ ~ RT d£ ^ ' 

Rearranging and integrating from the inner to the outer membrane surface 
yields 

resulting in 

This is the Nernst potential for which the ion of type p is in equilibrium 
with its diffusion force. For example, the potential difference EK necessary 
for the potassium to be in equilibrium is given by 

which is approximately EK « — 88 mV for [K+]e — 5.4 mM and [K+]i = 
145 mM. In general, biological membranes cannot be in equilibrium for all 
ions, since their Nernst potentials are different. The resting condition can 
be only characterized as a steady state (dVm/dt = 0) which requires the 
total ionic flux to be zero. Under these conditions and the assumption of 
constant field strength within the membrane the resting potential in a two-
ion system is given by Goldman's equation 

d> * RTlnPK[K+}e + PNa[Na+}e 

where PK and P^a are the permeabilities for potassium and sodium ions. 
At the resting membrane potential Vre3t ss — 84 mV the membrane is much 
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more permeable for potassium than for sodium and P/va hi the Goldman 
equation may be neglected. This yields the Nernst equation and the resting 
potential of the membrane is close to the Nernst equilibrium potential for 
potassium. 

2.2. The action potential 

During each heart beat all cardiac cells cycles through a deflection of the 
transmembrane voltage Vm = <£* — $ e which is in the most general case 
characterized by five distinct phases: the rapid upstroke (phase 0), the early 
repolarization (phase 1), the plateau (phase 2), the repolarization (phase 3) 
and the resting phase (phase 4). Such a cycle is called the action potential 
(see Fig. 1(a)). 

An action potential is the response of the membrane to a current 
either from an external source (stimulation) or from an adjacent membrane 
in excited state. No action potential is elicited unless the depolarization 
reaches a specific level, called the threshold potential. Once the threshold 
potential is reached an action potential is triggered which is always identical 
(all-or-nothing). That is, the shape of the waveform of the action poten
tial is independent of the initial depolarization. This property is known as 
excitability. 

The initial part of phase 0, generally referred to as the foot of the 
action potential (see Fig. 1(b)), reflects the passive membrane behavior. If 
the depolarization is driven by adjacent tissue the time course of the foot 
is exponential. Once the threshold is reached, active membrane behavior 
is triggered. Beyond the threshold, a positive feedback between membrane 
permeability for sodium ions and transmembrane potential begins. The 
depolarization of the membrane increases the sodium permeability due to 
the opening of the Na+ channels. As a consequence, the sodium current 
increases which leads to a further depolarization of the membrane and to 
a further increase of the sodium permeability which drives the membrane 
towards the Nernst potential for sodium E^a- The resulting upstroke of 
Vm is extremely fast due to positive feedback mechanism with a duration 
of approximately 1ms only (see Fig. 1(b)). During phase 1, a slight repo
larization occurs reflecting a decreasing number of open Na+ channels and 
the opening of K+ channels. The plateau phase of the action potential 
is mainly sustained by calcium currents. Subsequently the closing of the 
Ca2+ channels and the opening of the delayed outward rectifier K+ chan
nels repolarizes the transmembrane gradually back to its resting state. 
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Fig. 1. (a) Phases of a ventricular action potential: Starting from the resting potential 
VR which is close to the Nernst equilibrium potential for potassium Ex, the transmem
brane voltage Vm cycles through an action potential. During the rapid upstroke (0) the 
membrane rapidly depolarizes towards the equilibrium potential for sodium EN a, fol
lowed by early repolarization (1) and plateau (2). During repolarization (3) Vm returns 
gradually to its resting state (4). (b) Upstroke of the action potential: During the foot 
of the action the membrane behaves passively and the time course of Vm is exponential. 
Exceeding the threshold potential triggers active behavior, a positive feedback mecha
nisms causes a very fast upstroke of Vm. The derivative dVm/dt of the transmembrane 
voltage demonstrates the short duration of the upstroke of only ss 1 ms. (c) Phases of a 
pacemaker action potential: A pacemaker action potential is characterized by the absence 
of a constant resting potential. The membrane depolarizes up to the threshold without 
any external stimulation and triggers an action potential automatically. Compared with 
(a) the phases (1) and (2) are not present. 

The waveform of the action potential may differ depending on the 
cell type and not all the phases are observed in all types of cells. Par
ticularly pacemaker cells like found in the sino-atrial node, in the atrio
ventricular node and in the His-Purkinje system show different waveforms 
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(see Fig. 1(c)). The salient property of these cells is the absence of a resting 
potential. During phase 4 pacemaker cells depolarize progressively permit
ting to reach the threshold without any external stimulation. This property 
is referred to as automaticity. Under normal conditions the cells of the sino
atrial node depolarize faster than all other pacemaker cells and thus are 
setting the pace of the heart beat. In case of malfunction of the sino-atrial 
node pacemaker cells of the atrio-ventricular node or the His-Purkinje sys
tem assume this duty. 

Another important action potential characteristics is referred to as 
refractoriness. Once an action potential has been triggered, a subsequent 
depolarization will not elicit another action potential unless a certain min
imum period of time (the absolute refractory period) has elapsed. For a 
subsequent time period (the relative refractory period), the threshold for 
the second depolarization is higher than normal. Under normal conditions, 
this prevents the action potential from returning to its origin since the 
excitation wave front would encounter tissue in refractory stake; Under 
pathological conditions, however, reentrant circuits way arise resulting in 
flutter or fibrillation of the heart. 

3. Modelling the Membrane Kinetics 

Based on the voltage clamp technique which allows the measurement of 
ionic currents during an action potential, Hodgkin and Huxley derived 
a quantitative model describing the cell membrane of a squid axon [49]. 
Although the model was developed for a nerve action potential, the mathe
matical formalism has been used in models for the cardiac action potential 
as well, even in contemporary models this formalism is virtually unchanged. 
The behavior of cardiac cells in different regions of the heart (pacemaker 
cells, atrial and ventricular cells) differs considerably and depends moreover 
on the species as well. Technical advances of the voltage clamp technique 
allowed to correct formulations used in older models and to identify of new 
currents. This led to the development of numerous models which account for 
more and more physiological details, described by a considerably increased 
number of state variables (the number of state variables increased from 
the Luo-Rudy phase I model to the phase II model from 9 to 30, a fact, 
which poses significant computational problems in large scale computa
tions). Today specialized cardiac membrane models are available for the 
sino-atrial node [22], for Purkinje fibers [2, 24], for atrial [19, 62, 74, 96], 
and ventricular cells [5, 26, 28, 64-66]. 
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A membrane model for the cardiac action potential describes the electro
chemical events in a small membrane patch and the adjacent intracellular 
and interstitial media. The patch is assumed to be sufficiently small so that 
the diffusion in the adjacent media occurs essentially instantaneous, and 
at the same time sufficiently large that the membrane channels show their 
ensemble-averaged behavior and the probabilistic single channel behavior 
does not appear. Ionic current models in their most general form typically 
consist of three submodels: an electrical analog, a kinetic gating model, and 
a fluid compartment model. 

The electrical analog connecting in parallel the ionic currents and the 
capacitive current is known as parallel-conductance model (see Fig. 2(d)). 
The total transmembrane current density im [/xA/cm2] is given by 

~. _ . dVm - _ _ dVm T-^-
^m — Cm-7^7 <~ lion — cro o, + / _, *p (y) 

V 

where iion [/iA/cm2] is the sum of the ionic currents of ion species p and 
cm [/iF/cm2] is the specific membrane capacitance. Each parallel branch 
reflects the contribution of a partial current to the total transmembrane 

Fig. 2. (a) Physical model of a cylindrical fiber of radius a surrounded by a thin fluid 
film of radius b: Conductivity within the fiber is o~i, respectively <re in the extracellular 
fluid. A coordinate system is chosen so that the axis x aligns with the cylinder axis. Cable 
models of cardiac fibers neglect potential variations with ip or r according to the core 
conductor assumptions, (b) Discrete cable element of length dx: Since cross-sectional 
potential variations are neglected the inner and outer cylinder may be replaced by a 
resistor. The membrane is modelled as a capacitance in parallel with an electric model 
of the resistive membrane properties of Hodgkin-Huxley type, (c) Linear core conductor 
model for restricted extracellular space, (d) Electical representation of a fiber element of 
length Ax under sub- and transthreshold conditions: The conductances gp/a and gx are 
found from the Hodgkin-Huxley equations, ENa and EK are the equilibrium potentials 
for sodium and potassium, respectively. 
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current. The ionic currents branches are of the form of Ohm's law 

iP = 9P {Vm ~ Ev) (10) 

where gp [mS/cm2] is the membrane conductance and Ep the Nernst equi
librium potential for the ion species p. The net driving force for ion species 
p is (Vm — Ep) which is the deviation of the membrane potential from the 
equilibrium condition. Depending on the mechanism, the conductance gp 

may be represented as a simple constant or as a nonlinear term. Leakage 
or background currents accounting for nonspecific current flow are typi
cally modelled with fixed conductances. Nonlinear currents in cardiac mem
brane models, however, are described by kinetic gating models based on the 
Hodgkin-Huxley formalism. According to this formalism, it is assumed that 
the conductance of each channel is determined by a number of independent 
subunits or gates, each having two possible states: open or closed. Ions may 
pass through the membrane via a particular channel if all subunits are in 
the appropriate state. Switching between open and closed state of a single 
channel is a stochastic process where instant and duration of the opening 
and closing processes random variables. The current derived from a large 
number of such channels corresponds to the macroscopically measured cur
rent. The state transition of the gates is governed by first-order kinetics. 
If y is the probability of a particular gate to be in the open state, the 
ensemble-averaged transient behavior of this type of gate is given by 

^=a(Vm)(l-y)-/3(Vm)y (11) 

where a and (3 are non-negative monotonic functions depending on Vm only. 
To exemplify this formalism, the system of equations used by Hodgkin 

and Huxley in their first quantitative model of a nerve cell membrane is 
given (see Eq. (20)) [49]. Their model took into account the sodium current, 
responsible for the fast upstroke of the action potential, the potassium cur
rent for the repolarization of the membrane, and a leakage current. Currents 
were formulated as 

iNa = 9Na(Vm ~ ENa) (12) 

~iK=gK{Vm-EK) (13) 

*i = 9i(Vm - Ei) (14) 

where gi is a constant and g^a and gx depend on the gating variables m, h 
and n according to 

9Na = 9NamSh (15) 

9K = gKn3 (16) 
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where E^a and EK are the Nernst equilibrium potentials and g^a and C/K 
are the maximum conductances of sodium and potassium, respectively. 
Gating variable m represents the portion of open activation gates of a 
sodium channel and h the portion of open inactivation gates. In case of 
the potassium channel there is only one state variable determining the ion 
transport rate. The transient behavior of these gates is governed by 

- ^ = am(Vm)(l - m) - pm(Vm)m (17) 

^ = ah(Vm)(l -h)- Ph(Vm)h (18) 

dft 
-£ = an{Vm){l ~ n) - pn(Vm)n (19) 

Hence the total transmembrane ionic current of the Hodgkin-Huxley model 
is given by 

iion = 9Nam
3h(Vm - ENa) + gKnA(ym - EK) + gi(Vm - Et) (20) 

Contemporary membrane models like [19, 65, 74] include fluid compart
ment models. These models allow to account for variations of ionic con
centrations in intracellular and interstitial compartments as a consequence 
of ionic fluxes by enforcing mass conservation with the fluxes between the 
compartments. A fluid compartment model leads to one or more first order, 
ordinary differential equations. 

Thus a general membrane model comprises one equation imposing cur
rent conservation according to Kirchhoff's current law (9), some mass con
servation equations describing the fluid compartment model, and some 
kinetic gating equations like given in (11) or (17)-(19). The common inde
pendent variable is time, the dependent variables are the transmembrane 
voltage, the ionic concentrations and the gating variables. All equations 
together constitute a system of first-order, nonlinear ordinary equations. 
Since analytic solutions are not known for this system, numerical methods 
have to be applied. 

For mathematical methods presented in the following sections physio
logical details of the membrane models will not be considered, since they 
are not essential for the understanding of the basic concepts. Hence for the 
sake of simplicity the following abstractions are made. All model variables 
except the transmembrane potential are collectively referred to as mem
brane state variables and denoted by mn with n = 1 , . . . , N where TV is the 
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number of state variables of a particular model. The mass conservation and 
gating equations are written as 

^ T = / n ( m n ) V m ) (21) 
at 

where /„(m„, Vm) are nonlinear functions. The equation for the total trans
membrane current is written as 

*m — c m —7T7 r" lionyKni *m) \^^J 

The sum of all ionic currents is given by the nonlinear function 
Hon{fnni Vm) similar to (20), each single ionic current is given by an expres
sion as in Eq. (12). 

4. Modelling of Action Potential Propagation in 
Cardiac Tissue 

Early studies of action potential propagation [48, 49] used the one-dimen
sional cable equation to describe the electrical behavior of a cylindrical 
nerve fiber. In contrast to nerve fibers, cardiac tissue is better character
ized as a three-dimensional electrical network of complex geometry and 
discontinuous distribution of electrical parameters rather than a uniform 
continuous fiber. Experimental evidences [14, 125] suggested that cardiac 
tissue exhibits syncytial behavior which justified, to a certain extent, a 
homogenization of the discrete cellular structure into a uniformly continu
ous region. Based on the assumption of syncytial behavior, investigators 
began to apply the continuous cable theory to cardiac tissue consider
ing the conduction along a representative fiber and compared the results 
with experimentally obtained data. Based on the one-dimensional cable 
theory models were extended to two and three dimensions to account for 
effects of anisotropy [13]. A detailed deduction of the mathematical descrip
tion of the cable analysis may be found in various places like for instance 
in [37, 51, 54, 85], a summary of fundamental relations will be given here. 

4.1. Core conductor model 

4.1.1. Electrical parameters of a cylindrical fiber 

For a uniform continuous cylindrical structure it is convenient to define its 
electrical parameters on a per unit length basis. The axial resistance per 
unit length J-J [fcf2/cm] of the intracellular fluid (myoplasm) is defined as 
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the resistivity pi [kQ, cm] divided by the cross sectional area. If we designate 
the radius of the cylinder with a, the resistance per unit length is given by 

and the conductivity per unit length gi [mS cm] by 

gi = <Ji a27r (24) 

where Ui is the conductivity of the myoplasm in [mS./cm]. 
The cylindrical membrane enclosing the myoplasm shows resistive as 

well as capacitive properties and might be characterized as a capaci
tance shunted with a leakage resistance. If we designate the specific resis
tance of the membrane with fm [Wcm2], the specific conductance with 
gm [mS/cm2] and the specific capacitance with Cm [/xF/cm2], the per unit 
length quantities rm [fcficm], gm [mS/cm] and Cm [/uF/cm] are given by 

rm = fm/2iva (25) 

g-m = gm lira (26) 

Cm = C m 27TO (27) 

4.1.2. Electrical model of a single fiber 

A rigorous mathematical treatment of an infinite excitable fiber immersed in 
an extensive, homogeneous, conducting medium would require the solution 
of a three-dimensional field problem [12]. The potential field of such a fiber 
can be considered as quasi-static satisfying Laplace's equation in the exter
nal medium and the myoplasm. If we assume the membrane as infinitely 
thin Laplace's equation is satisfied everywhere and non-zero potential fields 
can only be explained with discontinuities across the membrane interface 
(that is, the sources of the fields are located on or within the membrane). 
If we designate the potential at an arbitrary point in the external medium 
in cylindrical coordinates (see Fig. 2(a)) with $e(r,<p,x), then 

A$e(r,y>,ar) = 0 r>a (28) 

must be satisfied in the extracellular space and 

A$i(r,ip,x)=0 r<a (29) 

in the myoplasm. 
Computer models based on these equations are rarely found, just a few 

studies are reported [58, 99, 124]. These models are based on a boundary 
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element approach which makes use of Green's theorem to simplify the three-
dimensional problem given by Eqs. (28)-(29) to two dimensions. 

Making various simplifying assumptions permits to reduce this three-
dimensional problem to the essentially one-dimensional problem of a core 
conductor. 

A formulation reduced by one dimension is obtained by assuming axial 
symmetry, that is d/dip = 0 with ip denoting the azimuth angle. If the 
extracellular fluid is restricted as shown in Fig. 2(a) to a thin cylindrical 
fluid sheet of radius b it may be further assumed that all the involved 
quantities, extra- and intracellular potentials and currents, are a function 
of x only. This is equivalent to the assumption that at a given site x no 
radial potential gradients of $j and $ e (i-e- no radial current flow) arise 
and consequently the current flow in both media must be confined to the 
axial direction only. 

In the intracellular space the assumption of axial current flow seems to 
be well satisfied, since the diameter of a cardiac cell is small compared to its 
length. In the extracellular space the validity of this assumption depends 
on the relation of o and b, but also on the spatial distribution of the sources 
within the membrane. For values of b < 1.5a, however, the core conductor 
assumptions are well satisfied independent of the source distribution within 
the membrane [102,118], for b 3> a deviations from core conductor behavior 
will occur. 

For instance, if we consider a bundle of parallel, tightly packed fibers 
instead of a single fiber, core conductor assumption might be well sat
isfied for a fiber near the center of the bundle, since the cross section 
available for interstitial current flow is comparable with the myoplasmic 
cross section. For fibers near the bundle surface, however, the interstitial 
space of the fibers is somewhat in closer contact with the surrounding 
fluid. This will give rise to radial current flow as well and, in consequence, 
the associated extracellular potentials will deviate from those expected 
from core conductor assumptions. In the context of monodomain computer 
models (see Sec. 4.2) it is common practice to neglect the extracellular 
resistance, since the extracellular potentials are small compared to the intra
cellular ones. Thus one forgive the ability to compute $ e directly from the 
model, however, the recovery of these potentials from the transmembrane 
current distribution is still possible (see Sec. 5). 

Starting from the core conductor assumptions a single fiber can be rep
resented as a discrete electrical network. Although the cable equations are 
based on a continuum, a representation as a repetitive network of finite-
length Ax is equivalent for Ax —> 0. Potentials and currents are designated 
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with $ e and Ie along the extracellular path, and with $j and Ii along the 
intracellular path, respectively (see Fig. 2(c)). Like illustrated in Sec. 3, the 
electrical behavior of the membrane depends on the transmembrane poten
tial Vm. Two ranges are to be discriminated, a linear subthreshold range 
Vm < Vth, where the membrane is characterized as a passive RC-structure, 
and a nonlinear transthreshold range Vm > Vth, where a characterization 
based on non-linear kinetic models is required (see Fig. 2(d)). 

4.1.3. Cable equations 

The application of Kirchhoff's laws to the electric circuit analog of a core 
conductor (see Fig. 2(c)) leads to the cable equations. In the subsequent 
analysis we will continue to consider an infinitely long cylindrical continuous 
cable of radius a surrounded by an extracellular fluid cylinder of radius b, 
respectively its analog representation as an electric circuit like shown in 
Fig. 2(c). 

According to Ohm's law the decrease in potentials $j and 4>e per unit 
length must be equal to the voltage drop caused by the axial currents Ii and 
Ie at the resistances r* and re. Hence 

B-t• = -'•'• <30> 

£ - * " <31> 
From Kirchhoff's current law we conclude that the axial decrease in the 

intracellular current occurs as a consequence of the loss of current which 
enters the extracellular space by crossing the membrane. Expressed on a 
per unit length basis this yields 

§ = -*„ (32) 

The current leaving the intracellular space must appear in the extra
cellular space and sums up there to the extracellular current. A further 
increase may occur due to applied stimulation currents. If we express the 
stimulation current is as current per unit length as well, we obtain 

-^- = im + is (33) 
ox 

The transmembrane voltage Vm is defined as the difference between 
intracellular and extracellular potential at the inner and outer surface of the 
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membrane. Since radial potential variations are neglected according to the 
core-conductor assumptions the transmembrane potential Vm is denned as 

Vm = $ , - $ e (34) 

In absence of a stimulating current is the magnitudes of the intra- and 
extracellular axial currents are equal and Ii = —Ie holds. Using this and 
Eqs. (30)-(31) allow the representation of the derivatives of $j and $ e as 
a function of Vm. This yielding 

d$i n dVm 

dx Ti + re dx 

d$e r, dVm 

(35) 

dx ri + re dx 

or if we just consider deflections from the resting values of Vm, $ , and $ e 

and designate them with vm, <pi and <f>e (these new quantities are equal to 
the original quantities aside from a constant) we obtain 

(pi — — r — v™ (37) 
n+re 

<pe = ^—vm (38) 
n + re 

The deflections of $i , $ e and Vm from their resting values are related by a 
simple voltage divider like expression. 

The relation between the transmembrane current im and the transmem
brane potential Vm can be found by subtracting (30) from (31) 

^ = -rJi+reIe (39) 

differentiating the result with respect to x 

dx* r%dx+redx ( 4 0 ) 

and substituting Eqs. (32)-(33) into (40) 

—^ = (n + re)im + reis (41) 

Equation (41) is valid under core conductor conditions, regardless 
whether the membrane is sub- or transthreshold. In absence of stimulat
ing currents (is = 0), Eq. (41) shows that the transmembrane current im 

and the second spatial derivative of the membrane potential Vm are 
proportional. 
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A fiber immersed in an extended volume conductor represents a setup 
which is not conform with the core conductor assumption. If we assume the 
volume conductor as infinitely conductive with r e « 0, no potential drops 
occur in the extracellular fluid and from $ e ~ 0 follows Vm ~ $*. Hence 
(41) may be written as 

1 3*? 

The same result can be deduced by differentiating (31) with respect to 
x and substituting into (32). Since Eq. (42) was deduced from intracellular 
quantities only it is valid whether or not the core conductor assumptions are 
fulfilled in the extracellular domain. Equations (41) and (42) are considered 
as monodomain equations, since a single partial differential equation is 
used to describe the behavior of a fiber. In contrast to this, a bidomain 
description of a cylindrical fiber can be deduced from Eqs. (30) and (31). 
Differentiation of (30)-(31) and substitution of (32)-(33) yield 

1 fl$? 
Vi dx2 

1 d&e 

re dx2 

= im + isi (43) 

+ ise (44) 

where iai and iae are internally or externally applied stimulation currents. 
Note that Eqs. (41)-(44) are equally valid for fa, </>e and vm, since a spatial 
derivative is involved. 

4.1.4. Linear subthreshold conditions 

If the deflections of the transmembrane voltage from the resting poten
tial are sufficiently small, the relationship of membrane current im and 
voltage Vm is given by a passive admittance. This subthreshold range where 
the membrane responds passively is referred to as linear or electrotonic. The 
electrical behavior of the membrane can be characterized as a capacity Cm 
in parallel with a resistance rm. In contrast to transthreshold conditions, 
r m is constant and does not depend neither on time nor on Vm. 

Examination of the membrane behavior under electrotonic conditions 
is important for several reasons. The tissue ahead of a propagating action 
potential is characterized as electrotonic corresponding to the foot of the 
action potential in the temporal course of Vm (see Fig. 1(b)). Also for the 
study of electric stimulation subthreshold conditions are frequently used, 
since it is often considered as sufficiently accurate to determine whether 
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a stimulation pulse raises the membrane potential enough to reach the 
threshold voltage Vth or not. Furthermore, in experimental studies passive 
conditions has been used frequently to determine membrane parameters. 

The transmembrane current under subthreshold conditions is given by 

% . dvm !m = hCm—— (45) 
rm dt 

where vm denotes the excursions of the membrane potential from its resting 
value as defined before. 

Substituting (45) in (41) yields 

rm d2vm dvm rt.Tr, 
a 2 - rmcm —— -vm = — • is (46) 

ti + re dxz dt n+re 

Characteristic properties of cable are identified as the time constant r m and 
the length constant A which are denned as 

1/2 
A = I — - — 1 and r m = rmcm (47) 

\ Ti + re j 
Substituting (47) in (46) results in 

A2 -r-Jp- - Tm—^r -vm = re\
2 i„ (48) 

Assuming steady-state conditions (d/dt = 0) and a current injection of 
strength 1$ at x = 0, represented as a spatial delta function is = Io S(x), is 
obtained the steady-state equation 

\2^-vm=re\
2I06(x) (49) 

with the solution of the homogeneous form 

vm{x)=Ae-x'x + Bex/x (50) 

where A and B are arbitrary constants. Imposing boundary conditions on 
A and B [85] to account for the effect of the stimulating current yields 

vm(x) = - r - ^ e - x / \ x>0 (51) 

vm(x) = - 1 ^ e x / \ x<0 (52) 

From inspection of (51) it can be concluded that the application of a 
stimulus current influences the transmembrane voltage, since vm is different 
from zero at all sites x. The strongest influence of the stimulus occurs at 
the stimulus site itself and decreases exponentially with x. A positive cur
rent causes a more negative transmembrane potential (hyperpolarization), 

http://rt.Tr
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whereas a negative current gives rise to an increase (depolarization) in vm. 
The length constant A represents a measure for the spatial extension of a 
disturbance as a consequence of a stimulating current, at x = A the change 
in vm is 1/e of the magnitude at the stimulus site. 

The general time-varying solution of Eq. (48) for x > 0 is given by 

where erf is the error function, defined by erf(y) = J* e~x dx. The solution 
for x < 0 is found from symmetry. A detailed elucidation of the solution 
steps is found in [85]. 

Since erf(oo) = 1 and erf(—oo) = —1, the spatial course of vm(x, t —> oo) 
reduces the expression (53) to (51), valid under steady-state conditions. 
Using erf(—y) = —erf(y) permits to derive the time course of vm at the 
origin x = 0 from (53). This results in 

Vm(x = 0,t) = - ^ e r f (xfT) (54) 

with a peak value of —re\I0/2 for t = oo. The quantity —reA7o is divided 
by two as a consequence of the tacit assumption of current sinks of 
strength — io/2 at x = ±oo, therefore half the current goes towards —oo 
and half towards +oo. 

Due to the presence of a capacitance, time is required to charge the 
membrane at a given distance x from the stimulus site to its steady-state 
value and r m is a measure for this effect (see Fig. 3(b)). For a given instant t, 
the spatial decay is exponential-like, with increasing t the spatial course 
vm(x) approaches the true exponential course of the steady-state solution 
in (51). This continuous decay of vm with x is explained by the leakage 
resistance of the membrane with A as a measure of this effect (see Fig. 3(a)). 

4.1.5. The propagating action potential 

Once a sufficiently large membrane patch is depolarized beyond the thresh
old voltage and active behavior is triggered, the membrane undergoes a 
change in transmembrane potential referred to as action potential. The rise 
of the potential relative to adjacent regions, where no potential changes 
occurred, leads to current flow between the active site and the surrounding 
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Fig. 3. Distribution of transmembrane voltage Vm of a passive cell membrane in 
response to the onset of a constant current, applied extracellularly at the origin x = 0. 
(a) shows the spatial distribution of Vm at different times, and (b) the time course of the 
potential at different distances along the fiber. Time T is expressed as multiples of the 
time constant T, the distance X along the fiber as multiples of the length constant A. 

inactive regions. These currents, known as local circuit currents, depolar
ize the vicinity of the active site up to the threshold, so that the adjacent 
inactive tissue becomes active as well. Stimulation is only required to initi
ate this process, once it is triggered, these changes in membrane potential 
propagate through the tissue in a self-sustained manner. This is referred to 
as action potential propagation and is associated with the conditions is = 0 
and Ii = — Ie. Consequently, (41) specializes to 

1 d2Vm 

dx2 (55) 

where the extracellular resistance re is assumed to be zero. It is a known 
fact that the propagation of the action potential along a uniform fiber 
takes place without distortion and damping. This is only possible since 
cardiac tissue is an active medium capable of storing metabolic energy. 
The property of undistorted propagation is mathematically expressed by 

vm(x,t) = vm(x-et) (56) 

or equivalently as a differential equation, obtained by differentiating (56) 
twice using the chain rule 

1 d2Vm d2Vm ^ 
dx2 62 dt2 (57) 
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Equation (57) is referred to as wave equation, where 6 is the propagation 
velocity of the action potential. 

For the foot of the action potential RC-behavior of the membrane can be 
assumed. Then the transmembrane current im is given by (45) and Eq. (55) 
can be rewritten using (47) to obtain 

A \ 2 d2vm dvr 

to describe the foot of the action potential. The solution of this equation is 
the sum of two exponentials with the time constants 

1 -e2
±^M?+4 m TFI2 2A2 2A 

In most cases T ^ 9 2 / A 2 » 4 is well satisfied and the foot of the action 
potential is a monoexponential process, characterized by the time constant 
Tp given by 

r,-m£ (60) 
<m 

Under transthreshold conditions the membrane behavior is nonlinear 
and more complex membrane models are required. Ionic membrane models 
usually describe the transmembrane current on a per unit area basis. Thus 
for the linkage of Eq. (55) with a kinetic model it is convenient to express the 
transmembrane current on a per unit area basis rather than on a per unit 
length basis. Both quantities, im and im, are related through the cylindrical 
geometry by 

im = 2Traim (61) 

This permits to rewrite (55) 

a d2Vm 
tm=2ii~d^ ( 6 2 ) 

If the membrane is capable of conducting an action potential at constant 
velocity, Eq. (57) may be used to obtain 

-• _ a d2Vm 

If the time course Vm (t) at a given site x is known, the time course of im (t) is 
determined as well. In general, the relation between Vm(t) and im(t) is com
plicated and there will not be a simple relation between them. As an exam
ple, the total transmembrane current as formulated in the Hodgkin-Huxley 
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model is stated here: 

im = Cm—ST + 9Nam
3h(Vm - ENa) + gKn4(Vm - EK) + gi{Vm - E{) 

(64) 

Prom Eqs. (62)-(64) several conclusions can be drawn. The transmem
brane current is determined by two factors, the electrical load seen by the 
membrane and the intrinsic properties of the membrane. The electric load 
is imposed by the properties of the conducting region which relates the cur
rent that crosses the membrane with the second spatial derivative of Vm. 
Equation (62) states how the potentials in the neighborhood of a certain 
patch and the resistive coupling affect the local transmembrane current. 
The intrinsic properties of the membrane like its capacitance and its time 
and voltage dependent permeability for ions of different species reflect the 
local dynamic behavior of the membrane, comprised by Eq. (64). 

Prom inspection of (63), however, an important result can be deduced 
without having to solve the equation explicitly. One pair of functions Vm(t) 
and im(t) satisfying (63) will continue to be a solution if 

where K is constant. Thus the conduction velocity is given by [50] 

(66) 

The values for im in Eqs. (62)-(64) must be equal. Equating two of them, 
(64) to (62) or (63), allows to solve for a propagating action potential. In 
general an analytical solution is not possible and numerical methods have 
to be applied. Equating (63) and (64) permits to solve for Vm as a function 
of time only. This method was originally used by Hodgkin and Huxley. 
They guessed a value 6 and stepped through the solution as a function of 
time. For an incorrect guess of 6 the solution was found to diverge, but 
with a correct 6 the time course of the action potential was found. Modern 
computer methods, however, are based on equating (62) to the intrinsic 
membrane current given by (64) which allows to find solutions for Vm as a 
function of space and time. 

4.1.6. Finite length cables 

Up to this point, all the analysis was based on the assumption of 
an infinitely long cable, real cables, however, are of finite length. This 
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discrepancy gives reason to expect a distinct behavior. Differences in behav
ior between finite and infinite cables should be examined in terms of the 
input impedance Zin, defined as 

Zin = V-j- (67) 

and evaluated at the stimulus site, by simply comparing their input 
impedances under steady state conditions. For this purpose we will regard 
a semi-infinite cable with one end at x = 0 and the other end at x = +00. 
The same equations as for the infinite cable are valid apart from the minor 
difference that the voltage at x = 0 for the semi-infinite cable, given by 

vm{x) = -re\he-x'x (68) 

is twice the voltage of the infinite cable. Insight is gained by regarding the 
infinite cable as a shunt of two semi-infinite cables (therefore the infinite 
cable has half the impedance of the semi-infinite cable), or equivalently, 
by taking into account that no current will flow in the —x direction in 
the semi-infinite case. Consequently, the entire current IQ will flow in the 
+a;-direction instead of IQ/2 in the infinite case. 

A stimulation current is is injected at x = 0, for x > 0 + , however, 
is = 0 holds and the axial currents are related by Ie = —Ii. Using this the 
intracellular current Ii is found from (39). This gives 

1 dVm reXI0 _x/x 

n+re dx {ri+re)X 

Division of (68) by (69) according to (67) permits to express the input 
impedance Zin = ZQ of the semi-infinite cable at x = 0 + as 

Z0 = 

or 

-reM0 e~x'x 

-r<.\In — x / \ 
(n+re)A e 

x=0+ 

= A(r •re) (70) 

Z0 = VVi + re)rm (71) 

To find Zin in general for a cable of finite length x = L, terminated with 
an arbitrary load impedance ZL at x = L, the homogeneous expressions 

vm{x) = Ae-x'x + Bex'x (72) 

and 

Ii = - i - (A e~x/x - B ex/x) (73) 
Zo 

will be used. Appropriate values for A and B are found by means of the 
reflection coefficient 7, a factor relating the terminal impedance ZL with 
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the impedance of the infinite cable ZQ. The impedance at a certain site x 
is given by 

'M=*C£W»-H^») (74) 

At x = 0 the input impedance is found from (74) with 

Zin = Zo{^§) (75) 

and the terminal impedance ZL at x = L with 

ZL = Z OUI-VA!BIL/A) (76) 

The reflection coefficient 7, a term adopted from the theory of travelling 
electromagnetic waves due to similarities of the mathematical representa
tion, at the cable end is defined as 

Ae~L^ ZL + ZQ 

^L) ~ -^TJx ~ Y^Z, (77) 

If the cable is terminated with ZL = ZQ, the cable is equivalent to 
an infinite cable and no "reflections" will occur (7 = 00). A reflection 
coefficient of 7 = ±1 corresponding to a load impedance of ZL = 00, 
0 represents a maximum discontinuity and everything will be "reflected". If 
we rewrite (76) by using (77) is obtained the input impedance as a function 
of the reflection coefficient 

Zin = Z° (7e2L/A_1J (78) 

A finite cable with a sealed end is considered as a cable terminated with 
an open circuit, that is ZL = 00 and 7 = 1 . For such a cable the input 
impedance is given by 

Z*» = Z°\-^Jx-Zl) = Z°coth (x) (79) 
Other special cable solutions like for cables terminated with a short cir
cuit or with a finite impedance are found in [21, 37]. Regarding (79), for 
L = 3A the ratio of Zin/Zo = 1.01, i.e. the deviation of the input impedance 
compared to a cable of infinite length is about 1%. For cables with L < X 
substantial deviations in behavior compared to infinite cables are to be 
expected. For instance Zin/Zo = 10 for a cable with L = 0.1A. This is of 
particular importance regarding numerical cable simulations. The majority 
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of studies considers the tissue terminated with sealed ends, although actu
ally the behavior of infinite tissue is of interest. Hence, to avoid boundary 
effects, a certain minimum fiber length should be simulated. The observa
tion site where simulation results are examined, should maintain a minimum 
distance of several A to the cable ends. In multidimensional tissue A depends 
on the direction of propagation (A transverse to the fibers is usually much 
smaller than along the fibers). This should be taken into account to find an 
optimum tissue size for a simulation. 

4.2. Monodomain models 

4.2.1. One-dimensional fiber 

The one-dimensional cable equation is given by 

£&"- + £?• 
where injection of the stimulation current in the intracellular space is 
assumed contrary to (41). Rewriting in terms of conductivities and with 
the transmembrane current density im yields 

9i9e dV£ ~ ge 
m - 2 7 r a i m H • is (81) gi+9e dx2 9i+ge 

Conductivities <ft and ge are given on a per unit length base. That is, 
<7i = OiAi and ge = creAe where Ai = a2ir and Ae = (b2 — a2)n (see Fig. 2). 

Although it is not essential for monodomain models to refer gt and ge 

to the entire cross-section (and it is not common practice to do it neither), 
it may be convenient particularly with regard to bidomain models and the 
comparison of used parameters. Bidomain models are based on the idea 
of two continuous interpenetrating intra- and extracellular domains which 
are separated everywhere by a membrane of unspecified topology [38, 45]. 
Therefore it is required to refer all quantities to the entire cross section 
At = Ai + Ae of a discrete element which entails an adjustment of the 
intrinsic conductivities. If we rewrite (81) in terms of intrinsic conductivities 
<7j and cre we obtain 

OiAi aeAe dV^ n_ -. , aeAe . 

(83) 

OiAi + creAe dz2 

We define the fractions ft and fe 

fi 
Ai 

At 
and 

°m T 

as 

fe 

OiAi + 

At 

creAe 
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and spread out the conductances of the respective domains of the entire 
volume to obtain the adjusted intrinsic conductivities Ui and ae as 

o% = Cj/i and ae - aefe (84) 

generally referred to as effective intra- and extracellular conductivity. Sub
stituting (83) into (82) yields 

o-j/i o-e/e dVm = 2na j aefe 1 . _ . 
0-,/j + CTe/e dx1 At

 m CTifi + <Jefe At 

If we further define the surface-to-volume ratio /3 as the ratio of the 
total membrane area to the total volume we obtain for a cylindrical fiber 
element of length 5x with the cross sectional fraction /* 

2naSx 2ira5x 2ira5x _ 2fi . . 
At Sx Ai/'fi Sx a2ir 5x/fi a 

This permits to rewrite (85) as 

- , - -£-o- = P%m + - , - h (87) 
<7i + ae oxz ai + ae 

where Is = is/At is identified as a stimulus current per unit volume. A com
mon assumption is that the fiber lies in an infinite, homogeneous conductive 
bath. Under these conditions the extracellular space can be assumed to be 
grounded (ae PS CO) and (87) simplifies to 

dV2 

ai-^=(3im + Is (88) 

This is a monodomain representation of a one-dimensional fiber in which 
a single partial differential equation describes the current flow in the intra
cellular space. 

4.2.2. Multi-dimensional tissue 

The monodomain model can be extended to two and three dimensions. 
Multi-dimensional models allow to account for the anisotropy of cardiac 
tissue which gives rise to a faster conduction velocity along than across the 
fibers. A general form of the monodomain model is 

V • (Di W m ) = 0im - I, (89) 

where Di is the intracellular conductivity tensor in [mS/cm] and Is a current 
source per unit volume in (/xA/cm3). 

If we continue to consider cardiac tissue as a set of parallel fibers it 
is mathematically convenient to choose a coordinate system whose axes 
align with the principal axes of Di. For instance, for tissue with straight 
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non-rotated fiber, a Cartesian coordinate system is denned such that the 
axis x aligns with the fiber direction. Then the conductivity tensor is a 
diagonal matrix Di = d\a,g(aiL,(7iT,^iT) with the conductivity on, along 
and OiT across the fiber. Under these conditions the discretized Eq. (89) 
may be interpreted as a network of resistors on a regular grid [47] like shown 
in Fig. 4 for a two-dimensional monodomain model. An expression [10, 79] 
typically used for such a model is 

&iL-
d2Vm 

+ OiT-
d2Vm 

' P^m ~r *s — P^ion "T PC7 

dVm 
+ 1. (90) 

dx2 ll dy2 f"m ' ~a """"" ' """" dt 

If the fibers are curved or rotated, Di is a function of space and the coor
dinate axes cannot be chosen to diagonalize Di everywhere. For instance, in 
the three-dimensional ventricular tissue the fiber orientation rotates slowly 
with tissue depth from the epicardium to the endocardium. Under these 
conditions the diffusion term in the most general case two-dimensional 
D;(x,y) is represented as 

dx y 

'da;2 

' dox 

V • (D;V/) n dJ-+n
 d-l Oxx o i O xy o 

ox dy 

8_ 
dy (Jxvdx+avydy 

— 4- 2<jxy 
d2f + o ^ + 

dxdy vv dy2 
d<Tx:i 

dx + 
d(7xy 

dy 
dj_ 
dx 

+ dx + 
do yy 

dy 
d£ 
dy 

(91) 
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Fig. 4. (a) Cardiac tissue as a set of parallel fibers: Using a coordinate system aligned 
with the principal axes of the fibers allows a representation as a regular lattice of resistor 
5 . Application of Kirchhoff's current law to the central node (i, j) by simply summing 
up the currents IM = IN + IE + Is + I\Y leads to the same equation as the spatial 
discretization of the diffusion part of monodomain equation, (b) Two-dimensional mon
odomain representation of a uniform continuous tissue model and (c) of a coupled cable 
tissue model. 
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4.2.3. Discontinuous monodomain models 

Prom a macroscopic point of view, cardiac tissue can be considered as a 
continuum based on the assumption of syncytial behavior. At a microscopic 
size scale, however, this is definitely not the case. The intracellular region 
of a cardiac cell is connected with the intracellular space of the neighboring 
cells by low-ohmic gap junctions, i.e. the intracellular space is continuous in 
the sense that a moving ion does not have to pass to the extracellular space 
to get from one cell to another, but the distribution of electrical parameters 
is discontinuous. A typical value of a junctional resistance is approximately 
equal to that of an entire cell region in the range of 0.5-5 MQ [14, 71]. 

One-dimensional monodomain models were developed to account for 
these discontinuities. The influence of the junctions was taken into account 
by subdividing a cell into several segments and adding the junctional resis
tances at the terminal segments of the cell where the gap junctions are 
assumed to be located [23, 42, 69, 103, 128]. Based on one-dimensional dis
continuous cables two- and three-dimensional discontinuous monodomain 
models were built as well. Leon et al. developed a multidimensional dis
continuous model by connecting one-dimensional cables laterally [59, 60]. 
The cables are allowed to be discontinuous and the lateral interconnections 
are placed in a staggered way so that no cable is connected with more 
than one neighboring cable at a certain junction site (see Fig. 4(c)). The 
arrangement of the lateral connections is a limitation of the computational 
technique which prevents the simulation of completely continuous tissue. 
This method was extended to three dimensions as well [121, 122]. 

Other studies started from the regular resistive network approach 
(Fig. 4(b)) and varied longitudinal and transverse resistances within cer
tain bounds. Probably the most detailed approach of this kind was proposed 
by Spach et al. [113-115]. They constructed a 2D model of multiple cells 
based on an approximation of the naturally occurring variations in size and 
shape of isolated cardiac cells and the distribution of the cell-to-cell connec
tions [126, 127] and adjusted the resistive grid to reflect both cell geometry 
and junctional coupling. 

4.3. Numerical solution of monodomain equations 

When modelling propagation of the cardiac excitation spread, simplify
ing assumptions of structural and functional details of the tissue. A com
puter model which takes into account all known details of cardiac tissue 
would exceed by far available computational resources. Therefore computer 
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models are tailored for specific problems. Macroscopic models are capable 
of simulating large pieces of tissue, but the spatial resolution of these mod
els is coarse and the functional aspects of the membrane do not regard too 
much physiological details. On the other hand, microscopic models are more 
detailed concerning the ionic current and have a fine spatial resolution, but 
they are restricted to the simulation of small pieces of tissue. Today there 
is no model available equally well suited for all questions and the amount of 
detail necessary for a specific problem, should be carefully selected, since the 
computational complexity increases with the amount of details included in 
the model. This is particularly true for ionic current based models, whose 
complexity increased considerably within the last years. Such membrane 
models [19, 62, 65, 74, 91] permit the simulation of complicated electrophys
iological phenomena [117] like early and delayed afterdepolarizations [55, 
66, 106], effects of antiarrhythmic drugs, the dynamical tracking of ionic 
movements [75], ischemia [11, 34, 110] and other pathological conditions. 
Unfortunately, the price to pay for such a variety of physiological details 
is high. If we consider a monodomain model using a modern description of 
the membrane behavior like e.g. [65] up to 85% of the overall computational 
workload is spent on the integration of the ordinary differential equations 
of the kinetic model [90]. Particularly if multidimensional tissue with ionic 
current based models is considered, simulations are usually limited to phe
nomena occurring within the time frame of several milliseconds or seconds. 
The observation of various phenomena like fibrillation or ischemia require 
the simulation of much longer periods. 

As a consequence of the computational costs of these models most three-
dimensional models reported in the literature use membrane models with a 
reduced number of ionic currents [33] or non-physiological models like the 
FitzHugh-Nagumo-model [1, 36] with a small number of state variables and 
a slow membrane kinetic. 

Efficient integration is rather hard to achieve owing to the very fast time 
scale and the short length scale of propagating action potentials. Physi
ological membrane kinetic models lead to an exceedingly stiff system of 
equations, a phenomenon which often occurs when some components in 
the solution change at a very fast time scale in comparison with other 
components and the overall time scale of the solution [52]. 

In the following a survey of the numerical methods reported in the 
research literature for action potential propagation in monodomain mod
els will be presented. Although nowadays bidomain models are considered 
as the state of the art, understanding of numerical methods used for the 
integration of monodomain models is still of great importance for several 
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reasons: the monodomain model represents a special case of a bidomain 
model, only when intracellular and interstitial anisotropy ratios are differ
ent the bidomain model will yield qualitatively different results; methods 
for monodomain integration were developed first and bidomain methods 
evolved from those methods which proved to be efficient there; besides mon
odomain models are still frequently used, partly because a given problem 
may not require a bidomain formulation and partly because the compu
tational costs of the monodomain are significantly less compared with a 
bidomain. 

For the purpose of illustration action potential propagation in a two-
dimensional sheet of tissue in the domain Q = [0, a] x [0, b] will be consid
ered. The monodomain model should be represented by the following set 
of equations 

V - ( D , W ( i , x ) ) = /? 

dmn 

'. av(t,x) -
Cm Q , ~r 1>ion\y i lY^n) 

dt 

-I,(t,x) (92) 

f(V,mn), n = l...N (93) 

where V(t, x) is the membrane potential at time t and location x = (x, y), 
Cm is the membrane capacitance per unit area, 8 is the surface-to-volume 
ratio, Di the conductivity tensor, iion the total ionic current per unit area 
and Is(t,x) a stimulus current per unit volume to initiate propagation. 
The variable mn represents the gating variables whereby iV depends on 
the used kinetic model. The initial values of V(io) and mn(to) are typi
cally computed by assuming steady-state conditions dV/dt = dmn/dt = 0. 
Neumann boundary conditions are imposed at all boundaries by 

n • (Di VV) = 0 (94) 

4.3.1. Spatial discretization of equations 

The majority of monodomain models has been implemented using finite 
difference schemes for the spatial discretization. The major drawback of this 
approach are difficulties regarding the modelling of complex geometries and 
realistic descriptions of the fiber direction. Since mostly regular domains 
were considered, the ease of implementation of finite differences was the 
crucial argument to prefer this method. There are just a handful studies 
reporting the use of other techniques. Finite elements have been used in [4, 
98, 100, 101, 108, 109] and a finite volume method in [40, 41] to model a 
two-dimensional domain with curved boundaries. 
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The most common approach to discretize the problem has been the use 
of a static uniform grid. Since the appropriate degree of spatial resolution 
varies with time when solving for a propagating action potential, the sim
plest means of obtaining sufficient spatial resolution is the use of a uniform 
fine grid for the entire domain. 

The spatial operators are mostly expressed in cartesian or cylindrical 
coordinates. The finite difference approximations to the Laplacian operator 
in cartesian coordinates typically use the centered^ second order accurate 
approximation 

djj_ 
dx2 

fi-l — %fi + fi+1 
Ax2 

(95) 

in the interior of the domain where /»_i, fi and /j+i are grid points and Ax 
is the spatial discretization step. The boundaries of the domain are typically 
assumed as sealed ends. At the right boundary x = a of the domain fi an 
expression for the boundary condition df/dx = 0 is obtained by using a 
ghost point Xi+i (which lies actually outside the domain, but substitution 
of the boundary condition into (95) at the boundary nodes will permit to 
let the ghost points disappear) with the first order accurate approximation 

a/ 
dx __, Ax 

or the second order accurate approximation 

a/ 
dx 

fi+i fi ( 9 6 ) 

fi+i fi-i ( 9 ? ) 

2Az 

Approximation (96), although less accurate, is useful because it corre
sponds to the discrete electrical network model [56, 61, 97] which has been 
used in several simulation studies. 

For the discretization of the diffusion term at the left hand side of (92) 
we assume that fi is defined as a set of nodes (xi, yj) with {a;i| ar̂  = i Ax, i = 
0 . . . Nx} and {yj | yj = jAy, j = 0 . . . Ny} representing a mesh on fi with 
Nx cells along and Ny cells across the fibers, each cell of size Ax x Ay 
with Ax = jj- and Ay = -^-. We will seek approximations of the solu
tion V defined everywhere in fi at the mesh points (xi,yi) of fi and will 
denote these values with Vij. If we rewrite the diffusion term, given in the 
invariant form in (92), in cartesian coordinates, assuming straight fibers 
and alignment of the fiber axis with x, we obtain 

d2V d2V 
V.(BiVV) = aiL-5-I+aiTW (98) 
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and for the boundary condition in (94) 

dV_ 
• dx 

= 0, aiT — 
x=o,o dV 

= 0 
y=o,b 

(99) 

where Di is a diagonal matrix diag(<TjL,<7jT) with <r,L designating the con
ductivity along the fibers and aiT across. The differential operators can be 
approximated by finite differences given in (95) and (97). Imposing of (97) 
on (95) at the boundaries permits to get rid of the ghost points. This yields 
the following approximations 

d2V 
lL dx2 

d2V 

» j 

<ji. lT dy2 

in the interior of ft and 

Ax2 

Vj,j-i — 2Vj,j + Vjj+i 
Ay2 

d2V 
lL dx2 

d2V 

' * £ 

cr. %L dx2 

02V 

dy2 

d2V 
Gi, 

dy2 

x=0,j/ 

x=a,y 

x,y=0 

x,y=b 

2(Vi+hj - Vitj) 

Ax2 

2 ( V J - I J - Vij) 

Ax2 

2(Vj,j+1 - Vjj) 

Ay2 

2 ( ^ - i - Vjj) 

Ay2 

i = 0, j = 0...Nv 

i = Nx, j = 0...Ny 

i = 0...Nx, j = 0 

i^0...Nx, j = Ny 

(100) 

(101) 

(102) 

(103) 

(104) 

(105) 

at the boundaries of Q,. 
Projection of the remaining variables mn,iion onto Cl and arrangement 

in vector form permits to rewrite Eqs. (92)-(93) in a spatially discretized 
form 

dv 1 

dt j3cm 

dm„ 

[-GiV-/?iion + Is] 

dt 
= / ( m „ , v ) 

(106) 

(107) 

where the spatial derivatives are represented by means of the conductance 
matrix G ; as Gi • v w - V • (Di W ) . The vectors v, 

m n j iion and I s are of 
length L = Nx • Ny (the number of mesh points), the conductance matrix 
Gi is L x L. Gi is sparse and pentadiagonal in the two-dimensional case. 
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4.3.2. Monodomain integration methods 

Due to the computational expense of integrating ionic models the use of 
efficient and inexpensive methods becomes important. One of the simplest 
methods is the explicit forward Euler method. Equations (106)-(107) are 
integrated with the following scheme: 

vfe+i = v * _ **_ [G i vfe +I l o„(in£, vfc) - Is
fe] (108) 

m*+ 1 =mk
n + At f(mk

n, vk) (109) 

where k denotes the time instant t = kAt. Although only first order accu
rate, this method has often been used [8, 9, 29, 30, 86, 89] owing to its 
simplicity and the ease with which vectorizable code may be written [86]. 
A severe restriction of this method is its limited stability. Explicit methods 
for parabolic partial differential equations impose a constraint on the size of 
the time step for numerical stability. A stability constraint using the mesh 
ratio, appropriate for the diffusion equation, given by 

a At 1 , , 
W^ * 2d <1 1 0> 

where d is the number of space dimensions [16, 73], has been found help
ful for the monodomain equations as well [85, 112]. An explanation why 
the stability constraints of diffusion and monodomain equation are linked 
is found in [52]. According to (110) the time step At has to be kept very 
small to prevent the solution from becoming unstable regardless of whether 
there are transients in the solution whose accurate solution would require 
such a small time step. 

An alternative to low-cost integration schemes like forward Euler is the 
use of implicit or semi-implicit methods which reduce the dependence of the 
time step on the spatial resolution substantially. Most studies report the use 
of a semi-implicit method referred to in the electrophysiological literature as 
Crank-Nicholson method. The linear term G} • v is treated implicitly as the 
weighted average (with weighting factor 1/2) of the spatial derivatives at the 
instants k and k + 1 like in the Crank-Nicholson method [20], the nonlinear 
term iion(mn,v), however, is treated explicitly. Hence Eq. (106) becomes 

v f c - i i o n ( m * , m * ) - I * . 

( I l l ) 

The stability of this semi-implicit method does not depend on the spa
tial resolution any longer and numerical stability is much better compared 

l n At 

2 G i + ^ : 1 
vfc+1 = -

2 ' Pcm 
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to forward Euler. The cost of this increased stability is that an algebraic sys
tem has to be solved at each integration time step. Direct methods [27, 39] 
factoring the coefficient matrix at the left-hand side of (111) once and using 
the factors at each time step to generate the result, have been used. For 
one-dimensional domains the coefficient matrix is tridiagonal and banded 
methods are optimal. For higher dimensions the equations should first be 
reordered [105] to reduce the cost of both the factor and solve steps. Beyond 
a certain number of nodes (i.e. large two-dimensional or three dimensional 
models) the storage costs of a direct method are prohibitive and iterative 
methods have to be applied. Classical iterative methods like Gauss-Seidel, 
Jacobi or SOR have been applied to that problem as well as semi-iterative 
Krylov subspace methods. These methods usually require a preconditioner 
to be effective such as diagonal preconditioning or incomplete Cholesky fac
torization [105]. For multidimensional domains, iterative methods [67, 68, 
97, 113, 114] or implicit treatment in one dimension by the ADI method [7, 
31, 32, 35, 56, 61, 72, 78, 92-94, 121, 123] have generally been preferred. 

The integration step of the state variables m n is performed separately 
using an explicit method. Several researchers used a method developed by 
Rush and Larsen [104]. Their technique is based on the observation that 
the equations for the gating variables can be viewed as linear equations, 
assuming that the voltage-dependent parameters used to update them 
change slowly. Other approaches to improve the efficiency of the integra
tion include the variation of the time step depending on the time scale of 
the variable being integrated [121] and the use of lookup tables to store 
voltage-dependent variables. It was demonstrated that with a sufficiently 
fine resolution of the lookup tables the resulting deviations are negligible 
and the computation time is just a third compared to the direct calculations 
of the coefficients a and /3 which involve the costly evaluation of several 
exponential terms [113]. 

In contrast to the common usage of semi-implicit methods, fully implicit 
methods (i.e. those that are implicit in both v and m n ) have rarely been 
used. Cooley and Dodge [18] used the Trapezoidal Rule method in one of the 
earliest computer simulations of a propagating action potential and solved 
the resulting equation system using the Gauss-Seidel method. Mascagni [70] 
applied the backward Euler method to the one-dimensional problem with 
the Hodgkin-Huxley membrane. Hooke developed a fully implicit algorithm 
based on a Trapezoidal and Backward Euler integration with a nonlinear 
Newton solver [52, 88]. This method, second order accurate in time, can be 
augmented for variable time stepping based on a rigorous error estimate. 
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4.3.3. Advanced techniques 

As stated above high temporal and spatial resolutions are required to 
resolve membrane depolarization with accurate upstroke and wave front 
conduction velocities [57, 112]. Solution times for sufficient cycles of elec
trical activity and the corresponding memory requirements are the main 
constraints to problem size. Solution time is proportional to the number of 
mesh points L = Nx • Ny • Nz and the number of time steps T/At. Mem
ory requirements are proportional to L. Since desktop processor speeds 
have increased dramatically over the last decade such simulations might be 
carried out on desktop computers up to a certain level of computational 
workload, beyond this, particularly if three-dimensional tissue should be 
simulated, high performance computing environments are required. 

Sophisticated numerical methods that address these constraints include 
adaptivity [3, 15, 95, 121], iterative linear system solution [53] and table 
lookup to accelerate gating variable evaluation [25, 113, 120, 121]. Paral
lel computing techniques become more and more important and have been 
applied with success to large scale monodomain problems on shared mem
ory supercomputers [17, 35, 86]. Recently the use of a cluster of worksta
tions as a practical alternative to supercomputers was suggested to distribute 
calculation and data storage among several machines connected by a local 
area network [90]. 

Most approaches try to reduce the computational costs using adaptiv
ity in space, in time or in both based on the following considerations: the 
fast components within the activated regions of the tissue determine the 
smallest possible time step, although the major part of the tissue is not 
in active state and would allow integration with much bigger time steps. 
Standard algorithms applied to this problem advance all the nodes of the 
domain with the same small At, whose size is limited by the time scale of 
activation. Hence, adjusting At locally is a key factor in improving compu
tational efficiency, particularly since most of the computing time is spent 
calculating the reaction term which is a purely local function without spatial 
dependencies. A further reduction of computational costs can be achieved 
by dynamically adapting the spatial resolution of the mesh with a very 
coarse grid in regions of quiescence and a fine grid around the activated 
regions. 

Barr and Plonsey [83] describe a physiologically based technique known 
as dynamically tracking of the active region. Again, a uniform grid is 
assumed throughout the domain, but at each integration step calculations 
are performed only on a subset of the grid points which includes only cells 
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located near the active wavefront. The choice of these cells is based on 
heuristic rules linked to the presumed shape of the depolarization waveform. 
The solution is found with substantially less computational efforts com
pared to conventional techniques and propagation velocity and the shape 
of the transthreshold waveform is preserved, but distortions of the initial 
electrotonic part of the waveform occurs. This method has proven to be 
efficient in large-scale simulation [86-88], however, it is only useful when 
gross features of propagation are of interest. 

A new method to control the time step locally was presented recently 
by Quan et al. [95]. The integration procedure consists of two stages: 
integration over the whole domain and integration over subdomains. 
In the first stage between two consecutive integrations over the whole 
domain the implicit integration method of Cooley-Dodge [18] with modified 
alternating-direction-implicit (ADI) is used. In the second stage the model 
is spatially decomposed into many subdomains and an explicit Euler inte
gration method is applied. Since At is defined locally, a priority queue is 
used to store and order next update time for each subdomain, the sub-
domain with the earliest update time is given the highest priority and 
advanced first. Domain decomposition and priority queue integration allow 
a large integration time step for nonactive subdomains. A performance 
improvement between 3 and 17 has been reported for the integration of a 
two-dimensional domain with the Luo-Rudy-II kinetic model. 

The coupled cable model developed by Leon et al. [60] uses a clever 
numerical algorithm that is amenable to a parallel implementation. Par
ticularly, if the number of lateral connections between neighboring cables 
is low, this method is highly efficient and has been used successfully to 
simulate three-dimensional tissue with fiber rotation. It is not clear if the 
algorithm is directly extensible to a true continuous structure (with lateral 
connections at all cells) or twisting fibers without performance degradation. 

Another adaptive approach based on this technique was presented by 
Vigmond et al. [121]. The identification of subdomains where update of 
variables with larger time steps is possible was done by using both temporal 
and spatial methods. Integration of the gating variables was optimized by 
exploiting the fact that different gates respond on different time scales. Fast 
responding gates were updated more frequently than slow responding gates. 
A performance improvement of 2 was reported in this study. 

Until recently adaptive methods were implemented by varying either 
the spatial or temporal resolution, but not both, locally and dynamically. 
A new approach involving a dynamical adaption of temporal as well as spa
tial resolution was proposed by Cherry et al. [6, 15]. The basic idea of this 
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adaptive mesh refinement approach is to focus the computational efforts on 
areas with large spatial and temporal gradients. It has been demonstrated 
that this method is able to reduce memory and computation time require
ments of a simulation of complex cardiac dynamics compared to a uniform 
space-time mesh by a factor of 5 to 15. 

Otani and Allexandre proposed a different approach based on a modi
fied backward Euler method that allows unsynchronized time steps across 
the domain. Neighboring values at new time steps are extrapolated lin
early in time from earlier values when they are not known. An increase of 
the maximum stable time step by around three orders of magnitude was 
reported [76, 77]. 

Qu et al. [93] suggested an advanced method for solving reaction-
diffusion-type equations for cardiac conduction using operator splitting 
[116] and adaptive time step methods. Operator splitting allows to sep
arate diffusion and reaction term. The advantage is that in one step the 
simplest possible diffusion equation has to be solved and in a further step 
the integration of the ordinary differential equations can be done adaptively. 

Veronese and Othmer have formulated an efficient algorithm for mon-
odomain and bidomain problems that uses an alternating direction implicit 
(ADI) step with a Multigrid step [119]. This method has been used on 
extremely large scale, three-dimensional problems, but may be limited to 
parallel fibers. 

5. Recovery of Extracellular Potentials and Fields 

Monodomain simulations do not provide extracellular potentials immedi
ately since <&e ss 0 is assumed. Nevertheless it is common practice to use the 
transmembrane currents obtained from monodomain simulations to com
pute $e- This procedure of first ignoring the effect of extracellular potentials 
to compute the excitation spread in the tissue, and then recover non-zero 
potentials $ e based on these data seems to be paradox, but it is justified by 
the fact that ignoring $ e introduces negligible errors in shape and velocity 
of action potential propagation [43, 46]. 

Although the approximation $ e « 0 is often satisfactory it is not appli
cable under all circumstances. Then it is more adequate to use the some
what more general bidomain model which accounts explicitly for current 
flow in both extracellular and intracellular spaces. A typical problem falling 
in this category is, for instance, the stimulation of cardiac tissue with exter
nal currents (defibrillation). Unfortunately the step from a monodomain to 
a putatively similar and closely related bidomain model is accompanied by 
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a significant increase in computational costs. Thus whenever there is no 
need to account explicitly for the extracellular flow, except in its contri
bution to the overall conduction velocity, a treatment of the tissue as a 
computationally more tractable monodomain [47] is preferred. 

The following considerations should elucidate the procedure of extra
cellular field recovery from data obtained with monodomain simulations. A 
two-dimensional sheet of cardiac cells in contact with an extensive homo
geneous isotropic bathing fluid (volume conductor) will be assumed. Under 
these circumstances the extracellular resistance is small and the assumption 
of a grounded extracellular region is quite well satisfied. 

5.1. Source-field concept 

For the computation of extracellular potentials and fields from monodomain 
simulations it is necessary to establish a relation between the electrical 
activation of a fiber (the source) and the concomitant volume conductor 
field [84]. For the basic understanding of this concept it is helpful to regard 
first the source-field relation of simple point sources. This will facilitate 
the interpretation of the more sophisticated relation of fields evoked by the 
sources of a cylindrical fiber. 

It has been shown that the current flow field in an electrophysiological 
volume conductor is quasi-static [12, 81]. This permits to derive the electric 
field E as the gradient of a scalar potential $. Consequently, the electric 
field can be expressed as 

E = - V $ (112) 

and the current density, which is related to E by Ohm's law, as 

J = creE (113) 

Assuming a point source of strength IQ, lying in an uniform conducting 
medium of infinite extent of conductivity ae, the radial current density 
results in 

J = - ^ e r (114) 

as a consequence of symmetry, where e r is a radial unit vector. Using (112) 
we find the associated potential field of a single point or monopole source 
at site Xf as 

$ m (x f ) = - To- (115) 
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where r is the distance from source point x s to field point Xf. A further 
source configuration of interest is a point source and a point sink of equal 
strength 7o very close together, separated by the displacement d, where 
Io —> oo and d —> 0 such that their product p = Iod remains finite. Such a 
source is known as a dipole source p = pea where ea is the unit vector of 
the dipole axis and p = Io d the magnitude of the dipole source strength. 
A mathematical expression can be found by superposition of two monopole 
sources located at xs and xs + d using (115). This is most conveniently 
evaluated by taking the directional derivative of (115), since $(xf + d) — 
$(X f) = $(x f) + V $ • d - $(x f) with V $ • d = d(d$/dd). Consequently, 
the potential field of a dipole source may be written as 

*,(**) = d • V*m = J - (I0ded) . V ( I ) = J L p • e, ( 1 ) (116) 

5.2. Volume conductor fields of cylindrical fibers 

If we consider again a single cell of cylindrical geometry, infinitely long and 
axially symmetric, which is immersed in a uniform medium of conductivity 
<7e, the extracellular potential is given by 

*(Xf) = - j ^ - J [ae$e(x) - <7^i(x)} V (j)dT (117) 

where r is the distance between the field point Xf and a source element 
located at the surface T of the cylinder and $i and $ e are the intracellular 
and extracellular surface potentials [82, 84]. Assuming that the potentials 
$;(:r) and $ e(^), defined at the membrane, take on the same value through
out the entire cross-section, permits to apply the divergence theorem to 
(117) and integrate over the fiber volume V. This results in 

*(Xf) = - ^ - J V • [ce*e(x) ~ tri*i(x)] V (±) dV (118) 

which is equivalent to 

$(Xf) = - L - J V [ae*e(x) ~ V&iW] • V (j)dV (119) 

since Xf lies outside the cell, hence r cannot become zero and V 2 ( l / r ) = 0 
holds. Taking into account that the dot product in (119) will be zero for all 
components apart from x we are allowed to further simplify the integrand to 

*(x f) = — / / a [ * * « ( ' ) - * * < ( ' ) ] f t / : dxdA (120) 
47rcre JA Jx dx dx 
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where dA is an element of the cross-sectional area and dV = dA dx repre
sents a volume element. Integration by parts of (120) yields the expression 

for the potential field, since the integrated parts, evaluated at x = ±00, are 
zero (the membrane is assumed to be in resting state there). 

Comparison with expressions (115)-(1!6) obtained for monopole and 
dipole point sources permits the following interpretation of equations (120) 
and (121): in (120) the field arises from a source that consists of stacks of 
double layer disks of thickness dx oriented in the positive x-direction. The 
dipole strength of one such disk is —a2ndxd(ae$e — a^i)/dx, where the 
term — 9(<re$e — <7j$j)/<9x is identified as a volume density function varying 
with x (see Fig. 51(c)). Comparison of (115) and (121) reveals that (121) 
is a single layer representation of the same source, where the monopole 
source strength of a disk is — a2ndxd2[<je$e — ai$i]/dx2, and the volume 
density function is given by d2[cre&e — <Ji$i]/dx2 (see Fig. 51(d)). These 
disk sources are not real sources, but they are equivalent in the sense that 
their evaluation yields the same field outside the fiber like expression (117), 
where the sources are assumed to be located at the membrane only. Both 
representation (120) and (121) are fully equivalent [63, 82]. 

If the field point Xf is located sufficiently far from the fiber in relation 
to the fiber radius a, the function 1/r in (120) and (121) can be considered 
essentially as constant over the cross-sectional area. Using the monodomain 
approximation $ e ~ 0 (hence Vm = $ , - $ e — $i), Eqs. (120) and (121) 
simplify to 

*^ = jkJ/™'^ldx (123) 

Substitution of expression (42) for the transmembrane current per unit 
length, im = a2-KOid2$i/dx2, permits to rewrite (123) as 

• ^ S S T / . T * (124) 

The assumption of a constant 1/r over the cross-section is equivalent to 
assume that all the sources are concentrated at the axis of the cylindri
cal fiber. Therefore the sources in Eqs. (122)-(124) are line densities and 
referred to as a "line-source" models. 
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I) SPATIAL COURSE II) TIME COURSE III) ELECTRIC FIELD AT Q 

Fig. 5. (I) Simulation of action potential propagation with a monodomain model: 
(a) Monodomain model with observation sites P and Q. Propagation is initiated at site 
STIM. The central fiber is marked with a dashed line, (b) Spatial course of Vm along the 
central fiber, (c) Distribution of dipole source density (arrows indicate dipole orienta
tion) and (d) monopole source density (+/— indicates source polarity). (II) Time course 
of intra- and extracellular signals at Q: Instants t\, *2 and £3 mark the maxima and 
minima of im • (a) transmembrane current im and (b) derivative im, (c) transmembrane 
potential Vm and (d) derivative Vm, (e) extracellular potential <Pe and (f) derivative <t>e. 
Scales are (a) 100jiA/cm2 , (b) 1000/iA/cm2 /ms, (c) 50mV, (d) 100V/s, (e) lOmV, and 
(f) 100 V/s. (Ill) The electric field at Q: (a)-(d) The electric field E x v in a plane parallel 
to the tissue surface, (a) time course of the components Ex and (b) Ev, and (c) the 
magnitude of E x v . (d) The maximum vector E x y occurs at the instant ti and points 
opposite the direction of propagation (the vector is orthogonal to the tangent tq of the 
local isochrone (curved line) at site Q). (e)-(g) The three-dimensional electric field at 
Q: (e) Component Ez of the field orthogonal to the tissue surface, (f) Magnitude of the 
field E. (g) Temporal evolution of a three-dimensional vector loop of E. 

If we assume a set of cylindrical fibers arranged in parallel, each fiber 
of radius a with a current density per unit area of im = im/2iTa at the site 
x s , the extracellular potential at the field point Xf is found with 

$(Xf) = _L [%J^dT (125) 
47rcre JT |r8f| 

where x5 designate the source point, rsf = Xf — x s the vector from source 
to field point and dT — 2andx is the surface area of one fiber element of 
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length dx. According to (112) the electric field E at Xf can be expressed 
by taking the negative gradient of $ e . Applying the gradient to (125) we 
obtain 

E(x f) = - V * e ( x f ) = - J - / h^pL dT (126) 
47rcre Jr \rst\* 

where V operates at the field coordinates. 

6. Volume Conductor Potentials and 
Fields during Depolarization 

This final section serves to demonstrate methods presented in this paper 
by means of a simulation example. Action potential propagation in a small 
piece of tissue will be simulated using a monodomain computer model. 
Extracellular potentials and fields will be recovered from transmembrane 
current data obtained from the monodomain model. Basic properties of 
intra- and extracellular signals will be discussed in terms of their relevance 
for electrophysiological measurements. 

6.1. Two-dimensional tissue model 

For the analysis of extracellular potentials and fields during depolariza
tion in the immediate vicinity of a cardiac tissue surface action potential 
propagation was simulated using a two-dimensional monodomain com
puter model representing a thin sheet of cardiac tissue of size 4 x 4 mm2 

(see Fig. 51(a)). The sheet was assembled with a set of cable-like cylindrical 
elements (radius a = 6/xm) arranged in parallel with a center-to-center 
distance of 15 jum. Cables were transversely connected by a network of 
resistances. The dynamic membrane behavior was described by a capac
itance in parallel with the ionic currents corresponding to the Luo-Rudy-I 
model [64]. The model parameters according to Eq. (90) were chosen as 
follows: anisotropy in conduction was represented by different intracellu
lar conductances along x (longitudinal to fibers) with an, = 4mS/cm, 
and along y (transversal to fibers) with a^ = 0.44mS/cm, the surface-to-
volume ratio was set to /3 = 2/a and the specific membrane capacitance 
was chosen with cm = 1 /iF/cm2. 

The spatial discretization steps were set to Aa; = Ay = 15 ^m, the 
temporal integration step to At = 2/xs. Boundaries of the sheet were 
considered to be sealed ends. Equation (90) was discretized using a semi-
implicit scheme. The ordinary differential equations of the ionic currents 
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were solved with an Euler Predictor-Corrector method. The equation sys
tem was reordered using the reverse Cuthill-McKee method, preconditioned 
with incomplete LU-factorization and solved with a conjugate gradient 
method. The model was implemented with Matlab, all simulations were 
carried out on a Linux-PC (Dual Pentium II, 2 x 850MHz, 2 GB RAM). 

Action potential propagation was initiated by pacing five central ele
ments at the left edge of the sheet. Propagation velocity of the elliptic 
wavefront at the center of the sheet was 0.68 m/s with a longitudinal-to-
transverse velocity ratio of 6L/8T ~ 3/1. 

The extracellular potential and field was computed at site Q (see 
Fig. 51(a)) at a distance of 30/nm from the tissue surface by evaluating 
Eqs. (125) and (126). 

6.2. Spatial source distribution at the central fiber 

The following matter relates to the initial phase (depolarization) of the 
action potential and its propagation. The spatial course of the transmem
brane voltage Vm and the volume source density functions dVm/dx and 
d2Vm/dx2 were examined along the central fiber at the instant of local 
activation at site P in the center of the tissue (see Fig. 51(a)). 

The action potential propagates in the positive x direction, therefore we 
have activated tissue with Vm ~ +20 mV at the left side of the upstroke and 
resting condition with Vm w —85 mV at the right side. The spatial course of 
the depolarization of Vm{x) is monophasic. The distance between the isopo-
tential contours of Vm = +20 mV and Vm = —80 mV is about 0.8 mm on the 
central fiber (see Fig. 51(b)). For uniform propagation the space-time behav
ior of Vm(x, t) satisfies the wave equation Vm(x, t) = Vm(x — 0t) where 0 is 
the propagation velocity. Consequently, the spatial course Vm(x) is a scaled 
and right-left reversed image of Vm(t) (compare Fig. 51(b) and 511(c)). 

As discussed earlier the equivalent double layer source density is propor
tional to —dVm/dx whereas the single-layer source density is proportional 
to d2Vm/dx2. Both functions are shown in Fig. 51(c) and (d). 

Since the central fiber (marked in Fig. 51(a) with a dashed line) repre
sents a symmetry axis in the given arrangement, the derivative d2Vm/dy2 

vanishes there and the transmembrane current im is proportional to 
d2Vm/dx2 (see Eq. (90)). Taking into account that the time course of im(t) 
is a right-left reversed image of im(x) allows a qualitative verification of 
this proportionality by comparing the waveforms of the signal im(t) at site 
Q (Fig. 511(a)) and im{x) ~ d2Vm/dx2 along the central fiber (Fig. 51(d)). 
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6.3. Time course of intra- and extracellular signals 

For the examination of the cardiac excitation spread it is required to deter
mine the activation pattern with electrophysiological measurements, that 
is to find out when activation takes place at a certain site and how fast 
and in which direction the wavefront propagates. A standard procedure is 
to determine local activation times (LAT) simultaneously at a given set 
of recording sites and construct isochrone maps from these time mark
ers. Each isochrone corresponds to a local activation time, the direction of 
propagation is orthogonal to the isochrone and the distance between two 
neighboring isochrones is inversely related to the conduction velocity (dense 
isochrones correspond to zones of slow propagation and vice versa). 

The most accurate determination of the instant of activation is achieved 
with intracellular measurements. Quantities measurable during action 
potential propagation are the intracellular potential $» (cells are impaled 
with microelectrodes) or the transmembrane potential (measurements with 
optical methods which give a relative measure of Vm). Extracellular mea
surements reflect the activation sequence as well, but deviations from the 
actual intracellular activation pattern will occur for several reasons: if 
conduction is discontinuous due to inhomogeneities of the tissue like for 
instance ischemic zones or conduction obstacles like connective tissue, prop
agation delays will occur which are not reflected in the same way in the 
extracellular space. Furthermore, due to the integration effect of the vol
ume conductor (all the sources of the tissue contribute to the extracellular 
signal, but to those sources which are closer to the recording site is given 
more weight by virtue of the factor 1/r) signals are smoothed out somewhat 
(compare Fig. 511(a) and 511(e)). 

Since in clinical routine intracardially only extracellular measurements 
are possible (by means of catheters), it is important to have a reliable 
marker for the local activation time. The most common practice to deter
mine LAT is by means of unipolar measurements of <l>e (Fig- 511(f)) or 
bipolar measurements of voltage differences of two closely spaced electrodes 
yielding signals similar to those in Fig. 5III(a)-(b). In the uniform case the 
temporal coincidence of the instants of maximum respectively minimum 
of the derivatives is very close, a property which is routinely exploited to 
determine LAT. This is shown at site Q in the lateral part of the elliptic 
wavefront (see Fig. 51(a)). The time course of the intracellular signals Vm 

and im, of the extracellular signal <J?e and of the corresponding derivatives 
Vm, im and $ e were computed. A very close coincidence of the maximum 
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derivative of Vm with the minima of the derivatives of im and $ e is observed 
(see Fig. 511(b), (d), (e)) [112]. 

6.4. The electric field evoked by an elliptic wavefront 

The electric field near the surface of cardiac tissue is a three-dimensional 
phenomenon which may be represented as a vector. The field vector E varies 
magnitude and direction during depolarization. The trajectory described by 
the tip of the vector is referred to as vector loop. At a given instant t the 
electric field vector E is accurately determined by its components, that is 
E(£) = [Ex(t),Ey(t),Ez(t)]

T, where Ex, Ey and Ez are the projections of 
E onto the cartesian coordinate axes defined in Fig. 2(a). 

In contrast to measurements of uni- and bipolar extracellular signals, 
measurements of the electric field are rarely used. This may be partly due 
to the somewhat more difficult interpretation of vector representations and 
partly due to the considerable technical efforts required for such measure
ments. The two-dimensional electric field in a plane parallel to the surface of 
the tissue can be measured with a square arrangement of four tightly spaced 
electrodes, very small inter-electrode distances of less than 100 /im and high 
sampling rates of at least 50 kHz are required [80]. This is explained as fol
lows: like stated in (112), the electric field E corresponds to the gradient of 
the potential. In the one-dimensional case the gradient is given by d$>/dx, 
graphically represented by the slope of the tangent t (Fig. 51(b)). Measure
ments are based on the approximation of the tangent t by a secant s like 
(<£>(x) — $(x + dx))/dx. From Fig. 51(b) it is evident that for the accurate 
determination of the tangent in the steep part of Vm(x) a spatial sampling 
interval much smaller than the distance of 0.8 mm between the isopoten-
tial contours of —80 and +20 mV is required. The high required sampling 
rate is explained in a similar manner. The elapsed time from t\ to £3 is 
just « 400 (is and the movement of the tip of the vector is extremely fast 
(Fig. 5111(d)). Thus a too low sampling frequency would cut off the tip of 
the vector loop. 

In Fig. 5III(a)-(b) the time course of the two-dimensional field compo
nents Ex and Ey are shown, in 5III(c)-(d) the magnitude of |EX2/| and the 
vector loop EXJ/. The instant of the maximum field of E x y coincides closely 
with the instant of local activation t^ in the tissue. A further interesting 
property is that the maximum field vector E x y points opposite the local 
direction of propagation. This is illustrated in Fig. 5111(d) for the vector 
loop at site Q. The vector Exy(i2) is orthogonal to the tangent tQ of the 
local isochrone (curved line) at site Q. 
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The three-dimensional field E is shown in 5III(e)-(g). During the initial 
lobe of the loop the field points upwards since the potential gradient during 
this phase is mainly sustained by the capacitive outward current cm dVm/dt 
(compare location of instant t<i in Fig. 511(a) and 5111(e), (g)). The terminal 
lobe of E is mainly driven by the sodium inward current and the field 
vector points downwards (compare location of instant £3 in Fig. 511(a) and 
5111(e), (g)). The time course of the magnitude of E is monophasic. The field 
strength E increases when the wavefront approaches, shows a maximum, 
when activation takes place at the recording site, and finally decreases when 
the wavefront departs. 
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0. Introduction 

The study of flow in tubes of complex geometry has invited a lot of attention 
due to its application to wide range of problems. Tubes of complex geometry 
are of common occurrence in almost all piping systems, several engineering 
devices such as heat and mass exchangers, chemical reactors, chromatog
raphy columns, processing equipments and human cardiovascular system. 
Fluid dynamic principles have been successfully applied to understand and 
solve many engineering problems and it is our belief that those ideas can 
be applied with confidence to understand physiological flows in general and 
blood flows in particular [7]. However, it is important to remember that 
fluid flows within the human body raise problems very different from those 
raised by engineering flows [35]. Modelling blood flows in the circulatory 
system would require incorporating various essential features like the prop
erties of blood, the pulsatility of flow, multiplicity of vessel branching and 
variation in pressure/velocity of the flow. 

The flow of a fluid in tubes of complex geometry can be used to under
stand the flow characteristics of blood flow in the cardiovascular system 
which provides the means for circulation of materials throughout the body. 
The anatomy of the canine aorta and its main branches is described in 
Fig. 1. The blood vessels are of different dimensions, are curved, elastic 
and branched. Hence, the flow, which is highly influenced by the geometry 
of the vessel, is never a Poiseuille flow. The repeated branching keeps it as 
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Fig. 1. A diagrammatic representation of the major branches of the canine arterial tree 
(After McDonald (1974)). 



Flow in Tubes with Complicated Geometries with Special Application 281 

an entry flow and due to the curvature, secondary motions are developed 
in addition to the primary flow. Localized hydrodynamic effects such as 
pressure distribution along the blood vessel, wall shear stress distribution, 
velocity distribution, secondary vortices, separation phenomena and onset 
of turbulence are crucial in understanding the nature of the flow in the 
cardiovascular system. 

0 .1 . Wall shear stress and atherosclerosis 

The possibility that arterial fluid mechanics may explain why certain vascu
lar sites are more prone than others to the development of atherosclerosis — 
a disease due to the thickening of the artery wall — is responsible for the 
interest in modelling the cardiovascular system through fluid dynamics. The 
belief that apart from physiological factors, additional factors like the mag
nitude of wall shear stress and physics of the blood flow in vessels of complex 
geometry may contribute to the initiation of the disease brought together a 
lot of fluid dynamicists to work in this area [22]. The flow details are found 
to be important in determining the distribution of wall shear stress in arter
ies, a major factor in atherogenesis. It is established that low and/oscillatory 
wall shear stress are the associated hemodynamic conditions at these sites 
where the disease is found to develop [6]. Departures from unidirectional, 
laminar and symmetrical flow patterns in the blood circulation are found to 
encourage plaque formation. The coronary arteries are exposed to greater 
fluctuations in flow direction and amplitude during systole than are other 
systemic arteries and increases in heart rate result in decreased diastolic 
time while systolic time remains nearly constant [24]. The hemodynamic 
investigations in the living systems being inadequate at the moment, the 
emphasis should be on models, both theoretical as well as experimental, in 
order to correlate the distribution of lesions in given anatomical regions of 
human subjects with quantitative fluid dynamic measurements. 

0.2. Arterial stenosis 

A consequence of the thickening of the arterial wall due to the atheroscle
rotic plaques is the occlusion of the artery — it is then called a stenosed 
artery. As a result of the occlusion, the blood supply to the corresponding 
organs is impaired. Arterial constriction/stenosis is associated with signifi
cant changes in the blood flow, pressure distribution and resistance to the 
flow. In regions of narrowing arterial constriction the flow accelerates and 
consequently the velocity gradient near the wall region is steeper due to 
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the increased core velocity resulting in relatively large shear stress on the 
wall even for a mild constriction. The large pressure loss across the stenosis 
is essentially dependent on the flow rate and the geometry (size as well as 
shape) of the stenosis. Thus, the important characteristics to be studied in 
problems of blood flow through a stenosed artery are (i) reduction in blood 
supply/enhanced impedance to flow (ii) changed flow pattern causing sepa
ration of flow or turbulence and (iii) changed properties of the artery walls 
like post stenotic dilatation. The mathematical study of stenosed blood flow 
was initiated by Young [55, 57]. Using a simple order of magnitude anal
ysis, the impedance factor was obtained. Subsequently, there have been 
numerous studies, both theoretical and experimental [34,38,41,42,44,56]. 

0.3. Entry flows 

When a fluid enters a tube with a flat velocity profile, the portion which 
comes into contact with the wall is forced to be motionless in view of the "no 
slip" condition. Immediately, a velocity gradient is established between the 
motionless fluid at the wall and the adjacent fluid in the core. As the flow 
proceeds along the tube, viscosity progressively modifies the blunt profile. 
The original velocity gradient at the wall becomes reduced, and more of the 
core is sheared. The core fluid is accelerated to maintain the constant flux 
across a cross section. There has been a keen interest in the study of entry 
flows and several publications [21,36,50-52] came up due to its application 
to blood flows, since, as in the words of Lighthill [35], blood flow in "large 
arteries is almost all entry region". This is due to the repeated branchings 
of the blood vessels which do not let the flow to become a developed one. 
The problem gets more acute when a stenosis is at the very entrance of a 
bloodvessel [28,29]. 

0.4. Influence of curvature 

The interest in understanding the fluid dynamics of blood circulation has 
also initiated a lot of study on problems related to flow in curved tubes. The 
aorta, which takes origin from the left ventricle, curves in a complicated 
three dimensional way, through about 180°, giving branches to the heart, 
head and upper limbs (Fig. 1). The exact distribution of velocity and pres
sure at these vessel entrances is dependent on the ventricular contractions 
and the heart valves. 

The flow in a curved tube is very different from that in a straight tube. 
In addition to the primary flow along the axis of the tube, there exist 
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secondary components of velocity due to the lateral forces. This secondary 
flow is in the form of the fluid in the core being swept to the outside of the 
bend and that near the wall returning towards the inside. This induces a 
pressure gradient, called the centrifugal pressure gradient, directed towards 
the inner bend of the curved tube. Computed axial velocity contours and 
secondary flow streamlines are shown in Figs. 2 and 3. The first theoretical 
study on steady fully developed flow of an incompressible Newtonian fluid 
in a loosely coiled curved pipe was made by Dean [15,16] for values of Dean 
number D (similarity parameter) up to 96. 

Subsequently, there have been numerous theoretical and experimental 
investigations on steady, unsteady, developing, and fully-developed flows in 
curved tubes of circular and non-circular cross-sections which are exten
sively reviewed by Pedley [46], Berger et al. [3], Ito [26]. 

The numerical solution of the Dean's problem for intermediate and 
higher values of Dean number D were obtained by McConalogue and 
Srivastava [37] for 96 < D < 605, Truesdell and Alder [54] for 96 < 
D < 3578, Greenspan [25], Collins and Dennis [11], and Dennis [18] for 
96 < D < 5000 by using finite difference schemes of different accuracy. The 
significance of the numerical solution by Collins and Dennis [11] was that 
it was of second order accuracy with respect to grid sizes and it established 

Fig. 2. Computed axial velocity contours (left) and two-vortex secondary flow stream
lines (right) for steady flow in a curved tube of small curvature at two values of the Dean 
number. (A) D = 500; (B) D = 5000 (Daskopoulos and Lenhoff [14]). 
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Fig. 3. Computed axial Velocity contours (left) and a secondary flow streamlines (right) 
for steady flow is a curved tube of small curvature at comparable values of the Dean 
number D, showing the non-uniqueness of the flow. The flows marked S are stable, those 
marked U are unstable (Daskopoulos and Lenhoff [14]). 

the asymptotic structure of the solution for D —> oo. The multiple solu
tion for flow in curved pipes/ducts were obtained by Dennis and Ng [19], 
Daskopoulos and Lenhoff [14], Kao [32], and Mees et al. [40]. 

With an objective to understand the role of fluid mechanics on cardio
vascular diseases like atherosclerosis (the disease occurs at certain preferen
tial sites like curved portions and flow dividers of the arterial tree), several 
studies related to flow in curved pipes were taken to estimate the wall 
shear stress. Padmanabhan and Jayaraman [44] and Jain and Jayaraman 
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[27] studied the flow characteristics in curved constricted tubes of circular 
and elliptic cross-sections, respectively, based on a double series pertur
bation analysis for small curvature and mild constriction. The numerical 
simulation of pulsatile or oscillatory flow in a curved tube was made by 
Chang and Tarbell [8,9] and Schilt et al. [49]. 

0.5. Artefacts of catheters 

Catheters attached with various functional tools have extensive use in con
temporary medical sciences. The measurements of various physiological flow 
characteristics (such as arterial blood pressure or pressure gradient and 
flow velocity or flow rate) as well as the diagnosis and treatment of various 
arterial diseases (such as X-ray angiography, intravascular ultrasound, and 
coronary balloon angioplasty) are done through an appropriate catheter-
tool device by inserting the device into a peripheral artery and positioning it 
in the desired part of arterial network [47,48]. In addition, when a catheter 
is inserted into a stenosed artery, it will further increase the impedance or 
frictional resistance to flow and will alter the pressure distribution. Thus, 
the pressure/pressure gradient or flow velocity/flow rate recorded by the 
device will certainly differ from that of uncatheterized artery. Recent inter
ests in flow in curved annulus [13,20,30,33] are due to their applicability 
to understand the changed flow pattern in a catheterized artery and to 
introduce corrections to the measured pressure or pressure gradient using 
catheters. 

With the evolution of coronary balloon angioplasty, there has been a 
considerable increase in the use of catheters of various sizes. It has been 
shown that, by reducing the obstruction through balloon angioplasty, the 
mean translesional pressure drop Ap, i.e. the difference of mean pressure 
between coronary ostium as measured through the guiding catheter (2.6 mm 
diameter) and just distal to the stenosis as measured through the angio
plasty catheter (1.4mm diameter), is reduced and the coronary blood flow 
as well as the coronary flow reserve is increased. The magnitude of mean 
translesional pressure drop |Ap| is often used by clinicians to gauge the 
severity of the lesion and the reduction in |Ap| due to angioplasty is used 
to judge the effectiveness of the interventions [23]. It is important to men
tion here that relatively large mean translesional pressure drop of about 
51 mm Hg (nearly 50% of «100mm Hg, mean overall pressure drop across 
the coronary artery) has been observed at basal flow before angioplasty. 

It is well-known that the standard angioplasty catheters cause coronary 
flow obstruction, and therefore, will certainly magnify the true pressure 
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drop. In a series of papers, Bjorno and Pettersson [4,5] studied extensively 
the hydro- and hemodynamic effects of catheterization of vessels with and 
without stenosis through various experimental models. Back [1] and Back 
et al. [2] studied the important hemodynamical characteristics like the wall 
shear stress, pressure drop and frictional resistance in catheterized coronary 
arteries under normal as well as the pathological situation of a stenosis 
present. The effect of catheterization on various flow characteristics in a 
curved artery was studied by Jayaraman and Tiwari [30]; it was shown that 
catheterization led to an increase in the axial wall shear stress and formation 
of increased number of secondary vortices. The experimental study on flow 
characteristics in a curved vessel with an aneurysm was made by Niimi et al. 
[43]; it was shown that the vortices induced in the aneurysm influenced and 
modified the axial velocity and secondary flow due to the vessel curvature. 

It is fairly obvious from the foregoing that in the past four decades, 
a lot of emphasis has been laid on internal flows, especially, in tubes of 
complex geometries with an objective of understanding the flow in the 
human blood circulation. We shall discuss in the following an example which 
takes into account most of the complexities discussed so far and explores the 
possibilities of mathematical modelling becoming a part of the procedures 
in clinical medicine. The details of mathematical formulation including the 
simplification of the governing equations of motion are given in Sec. 2. 
The methods of approach (i) a perturbed solution and (ii) a numerical 
scheme for the simplified equations are discussed in Sec. 3. The effects of 
Dean number D and radii ratio k on various flow characteristics — i.e. 
flow rate, pressure gradient, pressure drop, frictional resistance, friction 
factor, wall shear stress, and the primary and secondary flow patterns — 
are discussed in Sec. 4. Finally, we have discussed the important application 
of this study to the clinical problem — flow in a stenosed artery with an 
inserted catheter — as required to model in balloon angioplasty and during 
blood pressure measurement using catheters. The effect of catheterization 
on various physiologically important flow characteristics — i.e. pressure 
drop, impedance, wall shear stress and the change in flow. The results 
are used to obtain the estimates of increased pressure drop (and hence, 
impedance) and wall shear stress across a coronary artery stenosis during 
catheterization. In addition, many interesting fluid mechanical phenomena, 
i.e. the modification of secondary streamlines due to the combined action 
of stenosis and curvature, and formation of increased number of secondary 
vortices due to catheterization, are brought out. 
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1. Mathematical Formulation 

1.1. Flow geometry 

The mathematical formulation models the curved artery as a rigid circular 
tube of radius "a", coiled in the form of a circle of radius "6", and the 
catheter as a coaxial rigid tube with radius "fca" with k < 1. It is assumed 
that the stenosis has developed in an axi-symmetric manner due to some 
abnormal growth over a length "L" of the artery given by 

' z — d 
—— = 1 sm 7r 

a a 
d<z<d + L, (1) 

where fj(z) is the radius of the stenosis, z is along the axis of the artery and 
"ft" is the maximum projection of the stenosis into the lumen. Since we are 
interested in the instantaneous condition of the stenosis during catheteriza
tion, the growth of stenosis with time, which is very slow, can be neglected. 
The schematic diagram of the flow geometry corresponding to a catheter-
ized curved artery with stenosis is shown in Fig. 4. It is further assumed 
that the flow geometry lies in a plane so that the effect of torsion can be 
neglected. 

1.2. Co-ordinate system 

Figure 5 shows the system of toroidal co-ordinates (f, 8,4>) used to analyze 
the flow field in the geometry mentioned above. 

"C" is the center of the cross-section of the tube which makes an angle cf> 
with the fixed axial plane and "P" is an arbitrary point in the cross-section 

Stenosis 

Catheter \ 

Fig. 4. The schematic diagram of a catheterized curved artery with stenosis. 
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Fig. 5. The Toroidal co-ordinate of the flow geometry. 

whose polar co-ordinate is (r,9). OC is the length "6" which is the radius 
of curvature of the curved tube. The axial co-ordinate is defined by z = b<f>. 

1.3. Governing equations of motion 

Blood is modelled as an incompressible Newtonian fluid and the flow is 
assumed to be steady and laminar. The equations of motion governing 
the flow, in the co-ordinates system described above, are given in non-
dimensional form as [31,46]. 

r 
v ew2 cos 9 

H dr Re VV u 
75 

2 dv evsin9 
7>~d9+

 rH 

s sin 9 du e cos 9 du 

rH ~d9 + 

e2u cos29 

uv ew2 sin 9 AlV + — + — 
r H 

H2 

IdP + A. 
r 39 Re 

+ 

H dr 

e2v sin 9 cos 9 

2eS cos 9 dw 
H2 ~dz~ 

H2 (2a) 

V2v-
2 du eusin9 

+ r1~d9~ rH 

s sin 9 dv e cos 9 dv 2e8 cos 9 dw 

rH d9 

e2v sin20 
+ 

H dr 

e2u sin 9 cos 9 

H2 dz 

H2 (2b) 
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ew, . . .. 6 dp 1 L_2 e2w 
AlW + -(ucose-vSm6) = _ - _ + _ V w - - ^ 

+ • 

e sin 0 cfoo £ cos 9 dw 2eS sin 6 dv 
rH ~d6+ H ~dr~ H2 ~d~z 

2e8 cos 6 du 
H2 dz 

(2c) 

du u 1 dv eucosO eusinfl S dw „ .„ , . 
dr r r do H H H dz 

where 

~ dr2 + r dr + r2 c>02 + H2 dz2' { ' 

d v d 5w d .„, . 
Ai = « — + - — + — — , (3b 

dr r dv H dz 

q = (u, v, w) is the velocity field in (r, 6, z) co-ordinates, p is the pressure 
field and H = l + e r cos 6. The parameters occurring in the problem through 
these equations are the Reynolds number Re, curvature parameter e, and 
the geometric parameter 8, defined respectively, as 

aU0 a a . . 
Re = , e=T, 5 = - , (4) 

v b L 

where UQ is the characteristic velocity (centerline velocity in a straight 
tube), v = /j,/p is the kinematic viscosity, \i is the dynamic viscosity and 
p is the density of the fluid. The non-dimensionalization of the various 
variables has been performed as follows; 

/ u v w\ z-d f p 
( W ) = U ' CV Uo)' Z=~T' r=a' P=W (5) 

1.4. Boundary conditions 

The appropriate boundary conditions for the problem under study are the 
no-slip conditions at the arterial wall and the catheter wall, i.e. 

u = v = w = 0 a t r = TJ(Z) and r = k, (6) 

where 

r)(z) = 1 -Si sin nz, 0 < z < 1, (7) 

rj(z) is the non-dimensional radius of the stenosed artery and S\ = h/a is the 
non-dimensional maximum height of the stenosis (stenotic parameter). The 
pressure field is obtained by using the unity flux condition over the length 
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of the stenosis. It is to be noted that two more parameters, i.e. the non-
dimensional catheter radius k and the stenotic parameter Si, enter into the 
problem through the boundary conditions. The other boundary condition 
includes the symmetric condition for the flow field about the central plane 
(the plane passing through OX and perpendicular to OY in Fig. 2), i.e. 

-^r = v = -^r = 0 at 6 = 0 and 0 = vr. (8) 

2. Methods of Solution 

2.1 . Perturbation analysis 

Equations (2a)-(2d) are non-linear in nature, and hence, it is difficult to 
obtain a closed-form solution for all values of e, S and Re. Nevertheless, it is 
possible to find an approximate solution for small values of e and S through 
a double series perturbation analysis; small e (i.e. e = a/b <Cl) refers to 
small curvature ratio and small 5 (i.e. S = a/L <^l) corresponds to slowly 
varying cross-section and enables the use of lubrication theory. Thus, "z" 
will appear as a parameter in the problem and the solution in the stenotic 
region will correspond to 0 < z < 1. We perturb all the physical variables 
in powers of e and 5 and seek the solutions in the form of series expansions, 
as in Padmanabhan and Jayaraman [44] given by 

q = (<foo + Sqoi + S2q02 H ) + e(<fio + Squ+ <*2<?i2 H ) 

+ £2(g2o + <5<Z2i + <52<Z22 + •••) + •••» (9a) 

p = I TPO-I + Poo + Spoi H ) + £ ( 1Pl~l + Pw + Spn + ' 

+ £2 Q p 2 - i +P20 + Sp2i + • • •) + • • •, (9b) 

with ^oo = ^oi = uo2 = 0 (since the flow is two-dimensional in the absence 
of curvature, i.e. for e = 0) and uoo = 0. Thus, du0j/d9 = dwoj/d6 = 
dpoj/dO = 0, for all j , and also, dpi-i/dr = dpi-i/dd — 0 = dp2-i/dr = 
dp2-i/d6. The equations of 0(1) with 5\ = 0 corresponds to the Poiseuille 
flow. The differential equations of various orders of e and 5 can be obtained 
by substituting expansions (9a) and (9b) into Eqs. (2a)-(2d) and equating 
the coefficients of various orders on both sides. Details of these calculations 
are in Dash et al. [13]. 
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2.2. Numerical approach 

The three-dimensional non-linear elliptic partial differential equations 
(2a)-(2d) are not amenable directly to numerical solution. So, we simplify 
these equations through the following steps: 

(I) We define the characteristic velocity as UQ = n/pa so that the 
Reynolds number Re defined by Eq. (4) becomes unity. 

(II) Since the centrifugal force terms drive the secondary motion, we 
need to rescale the velocities to make the centrifugal force terms 
to be of the same order of magnitude as the viscous and inertial 
terms. This is accomplished through the transformation (u, v, w) —> 
(u,v,(26)-1/2w). 

(III) We assume that the radius of curvature of the outer pipe is large com
pared to its mean radius (i.e. e = a/b -C 1) so that the terms of 0(e) 
and higher order terms in e can be neglected. The effect of curvature 
is taken into account through the terms of 0(elt2). This is the loosely 
coiled approximations in curved pipe flows [3,15,16,46]. 

(IV) Again, we assume that the length of the constriction is very large as 
compared to the mean radius of the outer pipe (i.e. 5 = a/L <C 1) 
so that the terms of 0(5) and higher order terms in S can also be 
neglected compared to the terms of 0(1). Nevertheless, the effect of 
constriction is taken into consideration through the no-slip boundary 
condition (6) at the outer wall defined by Eq. (7) in the constricted 
region 0 < z < 1. This is, in fact, the order of magnitude approach of 
Young [57] modified for the flow characteristics in a curved constricted 
pipe/annulus. This assumption makes the governing equations locally 
two-dimensional and axial co-ordinate z appears as a parameter in the 
problem. 

Under the above assumptions, the pressure field can be approximated by 

p*±Gf(z)+Pl(r,0,z), 

where G is a constant and f(z) is an unknown function to be determined 
by using the constant flux condition; f(z) = z when Si = 0. Then the 
governing Eqs. (2a)-(2d) of motion are reduced to 

_ v2 v? dpi . u 2 dv 
V0u — cos0 = — — + A0u ^ 5- — , 

r 2 dr r2 r2 86' 
uv w2 . 1 dpi v 2 du 

(10a) 

_ uv w" . . i opi . v 2. ou , „, . 
V0« + — + —sinfl = — ^ + A 0 u - - 5 + - j — , 10b 

r 2 r do H H do 

Vow = D-f- + A0™, (10c) 
dz 
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du U 1 dv / . „ , v 
Tr+-r+-rm=^ <10d> 

where V0 = V« at 5 = 0, A0 = As at 6 = 0, and £> = (2e)1/2G = 
4(2ff)1//2 Res is the Dean number. Here, Res = G/4 is the Reynolds number 
defined with respect to the centerline velocity in a Poiseuille flow. D is 
regarded as the dynamical similarity parameter for curved pipe flows and 
is a measure of secondary flow. Now if we introduce the secondary stream 
function ip and the vorticity function fi denned through 

1 dip dip , ,_ dv v 1 du 
r d6 dr dr r r do 

then the equation of continuity (lOd) is identically satisfied and the momen
tum equations (10a)-(10c) are reduced to 

-fr2 + ~-fr + ^2-QffI = - ^ (1 2 a) 

dw . „ 1 dw _ 
-—sm6 + - — c o s f l 
dr r dv 

d2ft 1 d2Cl . afi „ w „.8fi 

(12b) 

d2w 1 d2w . „. dw „. . .. dw d/ ._„ . 
^ + ?W + ^ , 9 ) - +2X(r,0)- = - D £ (12C) 

where 

The boundary conditions (6) and (8) are reduced to 

w = ip = —— = o , at r = 77(2;) and r = k, (13a) 

- ^ = 0, V = 0 = Q, a t 6> = 0 and 6> = TT, (13b) 
OP 

w(r, -61) = w(r, 0), ^>(r, -9) = -ip(r, 9), Q(r, -6) = -fi(r , 0). (13c) 

As mentioned before, df/dz is an unknown function of z which will be 
determined by using the constant flux condition given by 

(nF\-\/2 rn(z) e-2-K 
^ / / w(r,9,z)rdrd9 = Q(k,D), (14) 

* Jk JO 

where Q(k, D) is the flow rate in a curved annulus without constriction. 
In view of the symmetric condition (13b)-(13c), it is necessary to deter
mine the flow field only within the semi-annular region k < r < rj(z), 
0 < 9 < TT. The simplified equation of motion (12a)-(12d), and the 
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boundary conditions (13a)-(13d) are considered in Collins and Dennis [11]. 
But, those were for flow in a non-constricted curved pipe in which f(z) = z. 
In contrary, the present analysis deals with the flow in a constricted curved 
annulus and f(z) is required to be determined using the constant flux con
dition (14). So, the flow variables will depend on the axial distance z and 
radii ratio k through the boundary condition (13a) in addition to their 
dependence on Dean number D. Details of the computational procedure 
are given in Jayaraman and Dash [31]. 

3. Discussions 

Since the heart surface is usually curved, the coronary arteries also tend 
to be curved as they follow the surface contour of the heart. The radius of 
curvature "b" of the coronary arteries is about 10 times their radius "a", 
and therefore, the value of the curvature parameter, e = a/b, is about 0.1. 
The average radius of the coronary arteries is about 1.5 mm. Although the 
mean Reynolds number in the coronary arteries is about 150 under resting 
condition under the pathological situation of a stenosis present, the mean 
Reynolds number can be even as small as 50. The values of density p and 
kinematic viscosity v are assumed to be 1.05gm/cm3 and 0.035 cm2/sec 
respectively. 

For our mathematical analysis, based on perturbation method, which 
is valid for small values of the geometric parameter S, we fix it at 0.1. The 
stenotic parameter Si is also fixed at 0.1. These values correspond to a 
typical mild stenosis in which the stenosis has a maximum height of 10% of 
the radius with a length of 100 times that of the height. This case, though it 
corresponds to a slowly varying mild stenosis, is expected to give an insight 
into the actual situation in which the values of S and <5i are larger. 

The angiographic data on coronary artery shows that the proximal ves
sel diameter ranged about from 2 to 4.7 mm and therefore, for an angio
plasty catheter (1.4 mm diameter), a rough range of values for k of interest 
is about from 0.3 to 0.7 Back [1]. For smaller infusion catheters 0.66 mm 
diameters as used by Ganz et al. [23], this range is even smaller and is about 
from 0.14 to 0.33. Therefore, in our calculations based on numerical scheme, 
the results are obtained for different values of radii ratio 0.1 < k < 0.7 and 
Dean number 50 < D < 2000 based on 11 grid points (i.e. N\ = 10) in 
radial direction and 19 grid points (i.e. N2 = 18) in azimuthal direction. 
Since our primary goal is towards the application of the model to blood 
flow in a catheterized stenosed artery, we have not done grid independent 
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test of the results. As discussed in Collins and Dennis [11], 11 x 19 number 
of grid points should be enough to obtain the desired accurate results. 

3 .1 . Pressure drop and impedance 

We define the pressure drop Apz over a stenotic length z, averaged over a 
cross-section, by 

Io'lS"S^(-^)rdrdBdz 
Apz = r»» r> A A* ' ( 1 5 ) 

Jo Ikrdrde 

Table 1 shows the comparison of the maximum pressure drop Apm a x across 
a stenosis with the pressure drop Ap over the whole stenotic length (i.e. 
Apz at z = 1) for e = 0.1, S = 0.1 and 8\ = 0.1, and different values of k 
and Re. Prom the table, the increase in the actual pressure drop due to the 
curvature and stenosis as well as the catheterization can be estimated. The 
estimated increased pressure drop due to catheterization can be used to 
find the error involved in the measured pressure gradient using catheters. 

Table 2 shows the ratio of the pressure drop in a catheterized artery 
to that in an uncatheterized artery as a function of catheter radius k and 
Reynolds number Re for S = 0.1, e = 0 and e = 0.1, 5\ = 0 (without steno
sis) and 5\ = 0 . 1 (with stenosis). In the absence of curvature and stenosis, 
the pressure drop is inversely proportional to the Reynolds number Re. The 
pressure drop ratio can then be obtained as 

Apc In k 
Apu (1 - fc4)lnfc + (l -fc2)2 (16) 

Table 1. Comparison of the maximum pressure drop (Ap max) across a 
stenosis with the pressure drop (Ap) over the whole stenotic length for 
e = 0.1, 5 = 0.1 and <5i = 0 . 1 , and different values of k and Re. 

K 

0.0 
0.1 
0.2 
0.3 
0.4 
0 5 

Re = 

^ P m a x 

2.25 
3.69 
5.14 
7.72 

13.77 
30.38 

25 

Ap 

2.23 
3.64 
5.08 
7.42 

11.64 
20.44 

Re = 

A p m a x 

1.13 
1.89 
2.94 
5.04 
9.97 

24.29 

50 

Ap 

1.09 
1.74 
2.44 
3.57 
5.63 
9.92 

Re = 

A p m a x 

0.74 
1.54 
2.34 
4.23 
8.80 

22.23 

75 

Ap 

0.69 
1.09 
1.52 
2.23 
3.52 
6.24 

Re = 

A p m a x 

0.57 
1.31 
2.05 
3.83 
8.18 

21.26 

100 

Ap 

0.50 
0.78 
1.08 
1.59 
2.52 
4.48 
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Table 2. The ratio of pressure drop in a catheterized artery to that 
in an uncatheterized artery (Ap c /Ap«) as a function of Re and k for 
S = 0.1, e = 0 and e = 0.1, S\ = 0 and <5i = 0.1. 

K e = 0 . 1 , 5 i = 0 . 1 e = 0.1, « i = 0.1 

0.0 
0.1 
0.2 
0.3 
0.4 
0.5 

For all Re 

1.00 
1.74 
2.35 
3.29 
4.89 
7.94 

Re = 25 

1.00 
1.63 
2.28 
3.33 
5.22 
9.17 

Re = 50 

1.00 
1.60 
2.24 
3.28 
5.16 
9.10 

Re = 75 

1.00 
1.58 
2.20 
3.23 
5.10 
9.04 

Re = 100 

1.00 
1.56 
2.17 
3.18 
5.03 
8.96 

where the subscripts "c" and "u" refers to a "catheterized" and an 
"uncatheterized" artery respectively. Thus, the pressure drop ratio is inde
pendent of the Reynolds number Re and depends only on the catheter 
radius k, as seen in Table 2 for e = 0 and Si = 0, which agrees with the 
estimation of increased mean pressure drop obtained by Back [1]. In the 
presence of curvature and stenosis with e = 0.1 and Si = 0.1, the pressure 
drop over the whole stenotic length is seen to be higher than the corre
sponding drop in pressure over an unit length in the absence of curvature 
and stenosis. Again, the insertion of a catheter into the artery leads to 
a considerable increase in their magnitudes. The increase in the pressure 
drop due to catheterization depends on the catheter radius k as well as the 
Reynolds number Re. 

The impedance or frictional resistance FRZ over a stenotic length z is 
defined by 

where Apz is the pressure drop over the stenotic length z and Q is the total 
flow rate over a cross-section which is taken as unity. This, in fact, gives 
a measure of reduction to blood flow rate for a given pressure gradient, 
and hence, may be interpreted as the resistance to blood flow (frictional 
resistance per unit length; Back et al. [2]) offered by the stenosis. 

The axial variation of frictional resistance FRZ for D = 1000 and dif
ferent values of k is shown in Fig. 6(A), while the variation of frictional 
resistance FRZ with the radii ratio k at the entrance (z = 0) and exit 
(z = 1) of stenosis for different values of the Dean number D (D = 100 and 
D = 2000) is shown in Fig. 6(B). The frictional resistance FR in a curved 
annulus without constriction (i.e. for Si = 0 or 77 = 1) corresponds to the 
value of FRZ at z = 0. It is seen from Fig. 6(A) that the frictional resistance 
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Fig. 6. (A) Axial variation of frictional resistance FR2 in the presence of constric
tion with constricted parameter S\ = 0.1, curvature parameter e = 0.1, Dean number 
D = 1000, and different values of radii ratio k; (B) Variation of FR2 with k at the 
entrance z = 0 and exit 2 = 1 of stenosis for <5i = 0.1, e = 0.1, and different values of D. 

FRZ in a constricted curved tube (i.e. for k = 0) does not vary much over 
the length of the constriction. But, in a constricted curved annulus with rel
atively higher value of radii ratio k, it varies significantly over the length of 
the constriction. It is further depicted that, the frictional resistance FRZ in 
the downstream of the constriction is higher than the corresponding value 
in the upstream. It is observed from Fig. 6(B) that, the frictional resistance 
FRZ does not vary much with the Dean number D, and it becomes almost 
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Fig. 7. (A) Axial variation of frictional factor FF2 in the presence of constriction with 
constricted parameter <5i = 0.1, curvature parameter e = 0.1, Dean number D = 1000, 
and different values of radii ratio k; (B) Variation of FF2 with D at the exit z = 1 of 
stenosis for Si = 0.1, e = 0.1, and different values of D. 

independent of D (i.e. the effect of curvature is nullified) for higher values 
of radii ratio k (e.g. for k > 0.4). It is further depicted that, for higher val
ues of k, the frictional resistance in the presence of constriction (i.e. FRZ at 
z = 1) is considerably higher than the corresponding value in the absence 
of constriction (i.e. FRZ at z = 0). However, the frictional resistance FRZ 

increases with the increase in the value of radii ratio k. 
It is inferred from our present results that the insertion of a catheter 

into an artery leads to an increase in the frictional resistance. The factor by 
which frictional resistance increases due to catheterization can be estimated 
by obtaining the ratio of frictional resistance in a catheterized artery to that 
in an uncatheterized artery. 

The comparison of frictional resistance ratio FRR in a curved 
catheterized artery (e = 0.1) with that in a straight catheterized artery 
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Table 3. Frictional resistance ratio FRR in a straight (e = 0) and curved (e = 0.1) 
catheterized artery without stenosis (S\ = 0) (i.e. FRRZ at z = 0) for different values of 
catheter radius k and Dean number D. 

K\D 

0.1 
0.2 
0.3 
0.4 
0.5 
0.6 
0.7 

e = 0.1, <5i = 0 . 1 

For all Re 

1.741 
2.349 
3.289 
4.894 
7.938 

14.586 
32.611 

D = 100 

1.705 
2.289 
3.201 
4.760 
7.719 

14.182 
31.709 

£ 

D = 500 

1.323 
1.732 
2.414 
3.590 
5.821 

10.695 
23.910 

= 0.1, (5i = 

D = 1000 

1.246 
1.523 
2.059 
3.049 
4.943 
9.082 

20.304 

0.1 

D = 1500 

1.220 
1.445 
1.865 
2.723 
4.408 
8.099 

18.105 

D = 2000 

1.202 
1.406 
1.756 
2.499 
4.033 
7.409 

16.563 

Table 4. Frictional resistance ratio FRR in a straight (e = 0) and curved (e = 0.1) 
catheterized artery with stenosis (<5i = 0.1) (i.e. FRRZ at z = 1) for different values of 
catheter radius k and Dean number D. 

k/D 

0.1 
0.2 
0.3 
0.4 
0.5 
0.6 
0.7 

e = 0.1, (Si = 0 . 1 

For all Re 

1.779 
2.461 
3.571 
5.596 
9.815 

20.491 
58.266 

D= 100 

1.734 
2.389 
3.463 
5.424 
9.511 

19.854 
56.452 

e 

Z> = 500 

1.339 
1.797 
2.596 
4.066 
7.189 

14.882 
42.315 

= 0.1, <5i = 

D = 1000 

1.261 
1.574 
2.206 
3.442 
6.034 

12.596 
35.813 

0.1 

D = 1500 

1.233 
1.489 
1.990 
3.066 
5.368 

11.206 
31.862 

D = 2000 

1.230 
1.466 
1.893 
2.845 
4.970 

10.373 
29.495 

(e = 0) corresponding to S\ = 0 (without stenosis) and <5i = 0.1 (with 
stenosis) and different values of k and D are shown in Tables 3 and 
4, respectively. It is observed that the frictional resistance ratio FRR 
increases with the increase in value of radii ratio k. Again, in a curved 
catheterized artery, FRR is smaller than the corresponding value in a 
straight catheterized artery, and it decreases further with the increase 
in Dean number D. Thus, these results indicate that the increase in the 
frictional resistance (or equivalently, the increase in the pressure gradi
ent at a constant flow rate) due to catheterization at a higher value of 
D is less than that at a lower value of D. For k = 0.5, the frictional 
resistance in the catheterized artery without stenosis (i.e. for <Si = 0 
or r] = 1) is about 5.8 times of the value in the uncatheterized artery 
at D = 500 and 4 times of the value in the uncatheterized artery at 
D = 2000. In the presence of stenosis with <$i = 0.1, this increase factor 
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(7.2 at D = 500 and 4.97 at D = 2000) is even higher than the correspond
ing value in the absence of stenosis for which 8\ = 0 or r\ = 1. 

The friction factor FF in a curved tube (i.e. for k = 0), is considerably 
higher than the corresponding value in a curved annulus. For D = 2000, the 
friction factor FF in a curved tube (i.e. for k = 0) is about 2 (implying a 
50% reduction in flow rate due to curvature effect). But, for the same value 
of D, the friction factor FF in a curved annulus with the value k = 0.1 is 
about 1.35 (implying a 26% reduction in flow rate due to curvature effect). 

For higher values of k, the friction factor decreases further, and for 
k > 0.4, it becomes almost independent of Dean number D, implying that 
the curvature effect is almost nullified for k > 0.4. It is further depicted 
that, for all values of A; > 0.1, the variation of friction factor FF with the 
Dean number D is insignificant compared to that in a curved tube (i.e. for 
k = 0) whenever D < 500. 

3.2. Wall shear stress 

The non-dimensional wall shear stress (shear stress non-dimensionalized 
with respect to p(fx/(pa)2) at any axial point z is approximated by 

,dw -<*r"V (18) 
r= l 

It is evaluated numerically using four-point backward difference formula. 
The axial variation of wall shear stress rz for D = 1000, D = 2000 and 
different values of radii ratio k is shown in Fig. 8(A, B), where as the 
variation of wall shear stress TZ with the Dean number D at the entrance 
z = 0 and peak z = 0.5 of stenosis for different values of radii ratio k is 
shown in Fig. 8(C, D). The wall shear stress r in a curved annulus without 
constriction (i.e. for 5\ = 0 or rj = 1) corresponds to the value of rz at z = 0 
or z = 1. It is seen from Fig. 8(A, B) that, for smaller values of radii ratio k, 
the wall shear stress TZ varies markedly along the length of the stenosis. It 
is further depicted that the wall shear stress rz increases with the increase 
in Dean number D but decreases with the increase in radii ratio k. For a 
fixed pressure gradient G, or equivalently for a fixed value of D, increase in 
the value of k results in the decrease in flow rate Q), which in fact results 
in the decrease in wall shear stress TZ. But, if the flow rate Q is maintained 
to be constant (independent of k), then the increase in the value of k would 
result in an increase in the pressure gradient G which would, in fact, lead to 
an increase in the wall shear stress TZ. It is seen from Fig. 8(A, B) that the 
wall shear stress TZ remains positive over the entire stenotic length. Thus, 
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Fig. 8. (A, B) Axial variation of wall shear stress T2 in the presence of constriction with 
constricted parameter Si = 0 . 1 , curvature parameter e = 0.1, Dean number D = 1000, 
and D = 2000, and different values of radii ratio fc; (C, D) Variation of T2 with D at 
the entrance 2 = 0 and peark z = 0.5 of stenosis for <5i = 0.1 E = 0.1, and different 
values of fc. 

this analysis could not detect the point of separation in the downstream 
of the flow field. To capture the separation points, the governing equations 
have to include all the neglected terms, and a better numerical procedure 
has to be adopted. 

3.3. Flow behavior 

Figure 9 shows the secondary streamlines (tp = constant) in r — 9 plane 
of a curved annulus without constriction (i.e. for 6\ = 0 or 77 = 1) for 
(a) fc = 0.1, D = 1000, (b) fc = 0.1, D = 2000, (c) fc = 0.3, D = 1000, 
(d) fc = 0.3, D = 2000, (e) k = 0.5, D = 1000, and (f) fc = 0.5, D = 2000. 
It is observed that the streamline pattern divides each half of the cross-
sectional plane into two parts forming two loops which is in contrast to the 
streamlines pattern in a curved tube where only one loop formation occurs 
unless a dual solution exists [3,11,25,37,46]. The loop near the inner wall 
is smaller for lower values of radii ratio fc. But, as the value of radii ratio fc 
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Fig. 9. Secondary streamlines. 

increases, the loop near the inner wall becomes larger and the loop near 
the outer wall becomes smaller. 

4. Concluding Remarks 

The example of flow through a curved annulus with a local constriction at 
the outer wall brings out many interesting fluid mechanical phenomena due 
to the effect of flow geometry (inner wall radius, outer wall variation and 
curvature) as well as the dynamics of flow governed by the Dean number 
(dynamical similarity parameter) D. These results can be used to estimate 
the increase in frictional resistance or pressure drop in an artery when 
a catheter is inserted into it. It is found that, because of the curvature, 
the increase in frictional resistance due to catheterization depends on the 
catheter size (radii ratio k) as well as the Dean number D. In the absence 
of constriction and depending on the value of k ranging from 0.1 to 0.7, 
the frictional resistance increases by a factor ranging from 1.32 to 23.91 for 
D = 500 and 1.20 to 16.56 for D = 2000. But, in the presence of constriction 
and with the same range for k, the increase in frictional resistance is by a 
factor ranging from 1.34 to 42.32 for D = 500 and 1.18 to 29.5 for D = 2000. 
These estimate for the increased frictional resistance can be used to correct 
the error involved in the measured pressure gradients using catheters. 
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The study gives a lot of hope tha t fluid dynamic principles can be used 

effectively to model physiological phenomena as well as the procedures in 

clinical medicine. The ult imate success in making these sort of studies as 

a par t of the clinical medicine or procedures will require a wholehearted 

interdisciplinary research involving engineers, physiologists, applied math

ematicians and physicists. 
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Biomechanistic and theoretical models can be applied to investigate complex 
reproductive processes. The application of Laplace equation to follicle rupture 
helps in obtaining insight into the simultaneous effect of a number of factors 
pertaining to bursting of the follicle. Gamete transport dynamics via peristaltic 
analysis for cilia beat has been outlined for the oviduct. The metachronal 
wave generated in the wall of the vas deferens contradicts peristalsis to be the 
dominating factor in spermatozoa transport. Biomechanical characterization 
of the forces involved in the mechanics of sperm-egg interactions are outlined. 
Generalized Hooks law to obtain displacements for specific load conditions 
during fetal head moulding and formulation of a fertilization index based on 
Von Foerster's equation accounting for both epididymal spermatozoa reserves 
and spermatozoa numbers for a specific ejaculation frequency are described. 

Keywords: Reproductive processes; theoretical models; mathematical analysis 
biomechanics; spermatozoa. 

1. In t roduc t ion 

Bioengineering is the application of engineering and technology to the 
problems of biology. Engineering methodology application to reproductive 
biology attempts to describe quantitatively the different reproductive phe
nomenon and to assess the effects of different mechanisms. Biomechanics 
of reproductive biology describes the mathematical modeling of processes 
and events in reproductive biology such as descriptions of processes of ovu
lation, models of cell cleavage, models of effects of contractions and cilia 
on gamete transport, models of contractile pattern in the uterus, relation 

305 



306 Biomathematics: Modelling and Simulation 

of viscosity of sperm transport in the cervix, computer models and simu
lation of hormone interactions, models of fluid flow in the tract and blood 
flow in the tract, analysis of sperm motility and relation of sperm motility 
to energetics and morphology. The mechanics of some reproductive pro
cesses, feedback control of spermatozoa maturation and fertilization index 
formulation are being presented. 

2. Mechanics of Ovulation 

The biochemical aspects of ovulation have been most extensively studied. 
However, in order to elucidate fully the mechanism of this complex pro
cess such as enlargement and rupture of follicle, it is important to study 
biomechanical aspects of the process to get an insight into the mechanis
tic dynamics of ovulation physiology [10]. This is facilitated by the use of 
mathematical and physical model of mammalian follicle. 

Experimental observations of follicular maturation suggest a hypothesis 
that distensibility of the follicular wall is compatible with constancy in pres
sure and increase in intrafollicular fluid volume together. Mathematically, 
bursting of the follicle without a pressure increase suggests the presence 
of a trigger at the time of rupture. Lardner et al. [7] have put forward 
a simple but elegant model correlating all the above mentioned findings 
and thoughts. They base the model on a thin shell approximation repre
sentation. With this approximation the wall stress 1 is given by Laplace 
equation 

where p is the internal pressure, R the inner radius of the shell and t is 
the wall thickness. The hypothesis proposed suggests that the distensi
bility of the follicular wall material begins to increase near the period of 
ovulation. An increase in distensibility implies a reduction in the mod
ulus of elasticity. The decrease can be estimated with the help of the 
equations formed. At the time of ovulation R/Ro = 1 . 5 where Ro is the 
unstressed radius. Current experimental techniques do not allow a reli
able quantitation of the modulus of elasticity of the follicular wall. But 
some verification of the model can emerge from an estimation of the fol
licular wall thickness. Indeed by ultrasonography, it is noted that during 
follicular maturation the follicular wall thickness reduces and there is a 
rapid decline in the thickness, close to the time of ovulation. Therefore, in 
spite of the gross approximations involved, the biomechanical model does 
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help in obtaining an insight into some of the factors pertaining to follicle 
rupture. 

3. Transport of Gametes 

The dynamics of transport of gametes is an important aspect of the repro
ductive process and controlled fertility. Hence, there is a need to understand 
the intrinsic physiology of the transport process. Major investigative meth
ods of experimental study cannot provide all details of the transport process 
without significantly altering the physiological process itself. Experimen
tal studies on gamete transport are accomplished through common imag
ing systems such as ultrasonics, X-rays and magnetic resonance. However, 
gamete imaging across the walls of reproductive tract cannot be performed. 
An alternative is to examine the problem from an analytical viewpoint 
with parameters and boundary conditions being obtained from experimen
tal observations whenever possible. By coupling experimental observation 
with theoretical modeling, various limitations can be surpassed. Experi
ments provide information regarding the movement patterns of the repro
ductive tract. Theoretical model correlates this data with gamete transport 
mechanism. 

3.1 . Ovum transport 

Ovum descends the fallopian tube at speed characteristic to the animal 
species and it is apparent that ovum does not possess a steady one direc
tional progression. The back and forth motions, periods of hold up at some 
sites and phases of rapid and slow movement seem to follow a stochastic 
pattern [13]. However, since the random motion is transient, the motion of 
the ovum undergoes a deterministic pattern. No intrinsic motility is evi
dent from the structural details of the ovum. The movement of ovum is 
passive under the influence of external forces. Considering the structure 
and function of the fallopian tube, the factors which may contribute to 
ovum propulsion include: drag by secretory fluid flow, cilia action or the 
wall contractions [1]. 

The secretory fluid volume being small, theoretically an object sus
pended in this fluid can be dragged in the direction of flow. Gupta and 
Sheshadri [5] have analysed peristalsis for a sinusoidal waveform. It is 
assumed that the tips of cilia in the testis form a sinusoidal envelope. If 
p(x, t) is the pressure at time t at any point (x, o) along the axis of the 
tube, and u(x, r, t) is the velocity of fluid within the tube at a point x, at 
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a distance r from the central axis at time t, the final flow rate equation is 
given as 

U(x,r,t) = *&{h*-r2)-x-
$ 2 2fcr 2TT , 
— H <3>sin — (x - c£) 
2 ao A 

„ i . 27T , . _ 9 o 27T . 
+ 2 $ s i n — (x-ct) + <Irsnr — (x - ct) 

A A 

where c is wave velocity of cilia metachronal wave; A the wavelength; k the 
taper coefficient; ao is the resting radius. The average flow velocity (£/) over 
the ovum is given by 

U = ^ y / • / u(x, r, t)dr dt 

where T is the total time period and R is ovum radius. The instantaneous 
ovum velocity is approximately equal to U because of the viscous drag. The 
expressions have been evaluated taking appropriate values: c = 200|xs_1; 
b = 5(xm; A = 500 u.m; k = -0.04; a0 = 2500 ^m; T = 2.5 s; and R = 
75 u.m. The flow velocity has been calculated to be 0.1 u.s - 1 . Hence, fluid 
flow generated by ciliary action cannot be a significant contributor to ovum 
propulsion. 

3.2. Transport of spermatozoa 

The dynamics of transport mechanism of spermatozoa is an important 
aspect of the reproductive process and controlled fertility. Spermatozoa as 
they emerge from the epididymis have already acquired a definite flagellar 
swimming character but the linear progression on account of this move
ment is too slow to contribute significantly to the rapid transport required 
at the time of ejaculation. Guha et al. [3] examined the mechanisms involved 
in the transport of spermatozoa in quiet and ejaculatory state. Based on 
biomechanical analysis of the morphological structures involved in trans
port mechanism, the following factors can be identified as possibilities for 
sources of pressure gradient: pressure exerted by the epididymis; negative 
pressure or a sucking action produced by the flow of seminal vesicle fluid; 
relaxation of elastic recoil of the stretched walls of the vas deferens and 
active contraction of the wall of the vas deferens constricting the lumen. 
The above factors may operate simultaneously, but the various parameters 
were initially analysed independently. The fluid transport parameters indi
cate that peristalsis plays an important role for slow filling of the ampulla 
in the vas deferens. A strong contraction of the ampullar end was observed 
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and it was estimated that the volume within the ampulla reduces by 90%. 
Thus 0.018 ml of spermatic fluid will be expelled for ampullar volume of 
0.02 ml, which may either move distally or proximally. At the proximal end 
is present the long lumen diameter vas deferens main segment, preventing 
any possibility of spermatic fluid flow due to high flow resistance. However, 
the wide ejaculatory duct at the distal region allows practically the entire 
volume to flow into the ejaculatory duct. 

For peristaltic analysis of spermatozoa the metachronal wave may be 
considered to be generated in the wall of the vas deferens [4]. The time 
period T of the cycle of the peristaltic waves is 7.5 sec, wave velocity 
c = 8 m m s _ 1 , peristaltic ratio <f> = 0.2 and lumen radius a = 0.16mm. 
Using low Reynolds-number infinite-wavelength analysis with appropriate 
parameter values the maximum flow for no pressure build-up is 

0 _ = ^{§ffl__|VH} = 1 . 5 6 x l O - m l / s e c 

And the maximum pressure per unit wavelength for no flow is 

AP m a x = 0.098 
\2-KO?) 

0.108 KN/m2 . 

64TT4>2(1 - </>716 

(1 - (j>2)V2 

Thus the reduction in the peristaltic action cannot be considered as a potent 
factor for the failure of pregnancy following vasectomy. Also, in designing 
reversible occlusion valves for the vas deferens, the interruption of peri
staltic wave at the site of implantation of the device need not be taken as 
a contraindication for sectioning the vas deferens. 

4. Mechanics of Sperm-Egg Interact ion 

The fusion between sperm and egg plasma membrane, during fertilization 
has been well studied. However, the molecular mechanism of the fusion pro
cess needs further investigation. The mammalian sperm traverses various 
barriers before fertilization can occur [11]. The mammalian egg is encap
sulated by the outermost cumulus and inner zona. Before reaching the egg 
plasma membrane, a sperm must first bind to the zona, reorient towards 
the egg, and penetrate the zona. The head of a motile mammalian sperm 
tends to move in three dimensions. Hence when bound to the zona, it not 
only pushes on the zona, but also pulls away from it. For the sperm to 
remain bound, the tensile strength (Fs) of the sperm zona bonds must be 
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great enough to withstand the maximum pulling force (Fp) exerted by the 
sperm. 

To mimic the mechanics of a motile sperm stuck to the surface of the 
zona, Baltz and David [6] employed a suction micropipet to exert a suction 
force (Fs) analogous to the adhesive force (Fp). Since the magnitude of Fs 
could be manipulated, it was possible to measure the minimum net strength 
required to tether the sperm to the zona. 

The force exerted by a suction pipet on a surface occluding the opening 
at its tip is 

FS = (Pout - Pin)^4 

where Pm is the pressure inside the pipet, P o u t is the pressure outside the 
pipet (i.e. 1 atmosphere) and A is the area of the opening. 

They proposed that if a motile sperm is being held on the pipet by 
suction alone, the suction force exerted by the pipet on the sperm must 
be greater than the force with which the sperm pulls against the pipet 
opening. If the suction force is then lowered slowly, the sperm first begins 
to swim freely when the suction force drops below the maximum pulling 
force extended by that sperm. Thus using the above equation together with 
the measured area of the opening, the pressure at which each sperm is first 
able to swim free yields the maximum pulling force exerted by that sperm. 
In a separate method the force exerted by a sperm was determined on the 
basis of flagellar beat parameters (length of the fiagellum, beat frequency 
and beat shape that were measured experimentally), 

For motile sperm (at 35° to 37°C), the maximum pulling forces were 
found to range between 11 and 28u.dyn, with a mean of 20 ± 1.5u.dyn 
(mean ± SEM, n = 15 sperm) using five different pipets whose openings 
had diameters from 1.0 to 1.5 u-m. 

5. Fetal Head Molding 

There have been various speculations regarding the forces producing mold
ing of the fetal head during labour. Limitations of force measurement data 
and its reliability and reproduction are a major hindrance in biomechan-
ical analysis of fetal head molding. The phenomena of head molding has 
then to be considered on the basis of direct experimental data on forces 
as well as inferences derived from other related observations. The parame
ters involved include: structure of the system, movement of the structures, 
measured forces and physical properties of the materials forming the fetal 
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head and the maternal pelvis. For biomechanical study, Hooks law, that is 
stress is proportional to strain, is the basis of all analysis. 

Modulus of Elasticity E = — —. 
Strain 

Taking notations in the Cartesian coordinates, in the general case in an 
elemental volume of a stressed body, there are six components of stress 
expressed as a vector 

{a} = \oxoyoZTTXyTyzTzx\ 

where crx, cry and az are the normal components of stress and rxy, ryz and 
TZX are the components of shear stress. At a point there are six normal 
components of strain given by the strain vector 

where ex, £y and ez are the normal strain and 7XV, "fyz and j z x are the 
shear strains. 

Each of the six stress components may be expressed as a linear function 
of the six components of strain, to obtain a generalized Hooke's law. 

C n C12 C13 C14 Ci5 C 
C2I C22 C23 C24 C25 ^26 
C3I C32 C33 C34 C35 C; 
C41 C42 C43 C44 C45 C, 
C51 C52 C53 C54 C55 C< 
Cei CQ2 CQ3 CQ4 CQ5 C( 

The terms Cs incorporate the relationship between the modulus of elas
ticity and the Poisson's ratio which is the ratio between the lateral strain 
and the longitudinal strain. In general case where the material is anisotropic 
21 elastic constants come into the picture. The present analysis is simplified 
considering the orthotropic nature of the material and that the thickness 
of the skull bone is small in relation to the overall dimension so that plane 
stress conditions will be applicable. Under these approximations all terms 
relating to the z direction disappear and stresses and strains are taken in 
the radial direction (r) and the tangential direction (t). These steps give 
the simplified expressions of McPherson and Kriewall [9]. 
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d i = 
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where vT% is the Poisson's ratio for load in the r direction with lateral 
contraction in the t direction; and vtr is the Poisson's ratio in the t direction 
with lateral contraction in the r direction. Grj is the shear modulus, which 
may be approximated by 

r — Er 

° r t " 2 ( 1 + 1,*) 

By symmetry C12 = C21 and hence 
Er _ Et 

VTt VtT 

The equation is solved by matrix inversion to obtain the strain and thereby 
the displacements for specific load conditions as derived from experimental 
study during labour. 

6. Fertility Index of Spermatozoa 

In analysing the contraceptive efficiency of a drug, an index for the fertiliz
ing capability of the aggregate of spermatozoa in the ejaculate is required 
[3]. Von Foerster's equation can be applied to the mode of sperm matura
tion in epididymis and sperm number in the ejaculate [12]. Here 'a' is the 
age of spermatozoa, Ai is the loss function, K\ = proportionality factor, 
K<i = factor representing biochemical rate processes and K3 = factor asso
ciated with destruction process of the spermatozoa. If r](t, a) is defined as 
the number of spermatozoa present of age between a and a + da at time t, 
then the relationship of this function with the loss function, neglecting 
ejaculatory loss, can be represented as 

g + ^ ~ A l ( . ) . « < < . . ) . 
The input into the system is at a constant rate. Therefore the input function 
a(t) is given by 

a(t) = r](t, o) = K4 
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where K4 is the input rate constant and having a typical value of 50 million 
per day. Thus 

rj(t, a) = a(t — a) exp — / x(x)dx 
L Jx=o 

Since a(t) is time independent function f](t,a) also becomes independent 
of time and may be written as 77(a). Therefore 

77(a) = K\ exp /li^-rrWh 
If no loss of ejaculation occurs, the total number of spermatozoa present in 
the epididymis at any time t is 

n(a) • da. N(t) = / 
Jo 

" ( * ) - rt 

The quantity is also termed as the epididymal reserve. The integration 
limit of t is taken because the upper bound of spermatozoa age is the time 
elapsed from the reference, that is, time equal to zero. At this instant the 
epididymis is considered as being empty. 

The average age of the spermatozoa in the epididymal reservoir at any 
instant of time t is given by 

/o ar}(a)da 

/o V(a)da 

As non-integral forms are involved, the expressions were numerically evalu
ated for discrete time intervals equal to a day. Different values are ascribed 
to the parameter K, to obtain the results. A value of K = 0.0004 meets the 
physiological requirements that the average age stabilizes at around 10 days. 
That is, if an ejaculation occurred following stabilization, the average epi
didymal transit time of the ejaculated spermatozoa would be 10 days. If 
the epididymis is emptied by two ejaculations per day continued through a 
week and then the subject is given sexual rest, the epididymis reserve builds 
up and stabilizes in about three weeks time [8]. For K = 0.0004, such char
acteristic is obtained. Based on these correlation's, it may be concluded 
that the above given expression with K = 0.0004 is appropriate. 

7. Conclusion 

The use of mathematical modeling is an effective method to link quan
titative engineering techniques with qualitative physiological descriptions. 
The integration of engineering with biology and physiology has invariably 
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brought new understanding to complex biological processes as is evident 

from the recent resurgence of utilization of physiological system modeling 

in most areas of biomedicine. 
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Investigation of bioelectricity phenomena has gained recently a steadily increas
ing interest in medical and engineering applications. This chapter deals with 
the computational aspects of bioelectromagnetic interactions and their related 
bioelectric processes, aiming to provide a better physical understanding of 
the effect of functional electrical stimulation (FES) on biological tissue and 
to set-up models that can provide quantitative insights into this bioelectro
magnetic phenomenon. These goals are achieved here by an explicit image 
series construction of the macroscopic electromagnetic field within the multi
layer tissue. The novel image series expansion scheme, outlined here for qua-
sistatic Green's function in multilayer media, utilizes a unique and explicit 
recursive representation for Green's function. Our recursive construction con
vergences under rather general constraints on the media parameters. The use
fulness and effectiveness of the proposed analysis is demonstrated through an 
hybrid scheme, combining image series and moment method procedures, that 
are capable of handling effectively layered medium problems excited by an elec
trode array. The inclusion of a collective image term, expressed in a closed form 
asymptotic evaluation of the series remainder integral, significantly accelerated 
the image series convergence and the overall algorithm speed and accuracy. 
This proposed computational procedure can be used as a simple tool for pro
ducing analytical data for testing numerical subroutines applied to simulate 
direct (FES) and inverse (bioelectromagnetic imaging) problems in biomedical 
applications. 
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1. Introduction 

1.1. Bioelectromagnetic interaction between electric field 
and biological tissue: computational aspects 

Knowledge of the potential distribution caused by an electrode array during 
functional electrical stimulation (FES) (forward problem) or detection of 
the potential caused by activation of excitable cells (inverse problem) is a 
very important topic in biomedical engineering [34,35,41,42,50,54,66,73]. 
For instance, when surface electrodes are used, for either stimulation or 
detection, the current has to pass through non-excitable regions such as 
skin, fat and connective tissues as well as through the actual excitable tissue. 

The major difficulties in the application of field theory on biological 
tissues include: (a) non-homogeneity, i.e. different tissues have different 
electrical properties; (b) anisotropy, i.e. properties depend on direction of 
measurement; (c) dispersivity, i.e. properties are frequency dependent [24]; 
(d) complex electrode/tissue interface [74]. 

Analytical electromagnetic field theory is well developed for handling 
problems involving isotropic, homogeneous infinite media. Field theory is 
also reasonably well developed for finite media of specific and limited types 
of geometry [18,43,88,92]. Planarly layered media remain the most studied 
non-homogeneous media due to simplicity of modeling. Meaningful results 
can be obtained from modeling without intensive computational calcula
tions. A layered medium may serve as a simplified first-order prototype 
model for a variety of realistic biomedical problems, where the dependence 
on the number of electrodes, tissue layers and their electrical properties has 
to be accounted for [36,87]. Furthermore, closed-form solutions in terms of 
spectral integrals (Sommerfeld integrals) allow for asymptotic approxima
tions, providing a more physical insight into the problems. 

Models of field distribution in a region of planar stratification 
have been applied in several disciplines such as geophysical prospect
ing [33,45,75,98], remote sensing [6,23], microstrip circuits and antennas 
[2,3,13,14,47,59,95,96], acoustical engineering [103], wave propaga
tion theory [4,18,94,101,102,105], and electrode grounding in power 
systems [19,20,49,104]. 

Most of the investigations dealing with electric field propagation the
ory in plane stratified media, fall into two main categories: the "harmonic 
school" and the "image school". 

1.2. Harmonic school 

Olendorff [76] gave the solution for the electric field in plane stratified media 
in the form of an integral involving Bessel functions. Later, Stefanesco and 
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Schlumberger [86] gave for the case of three layer media a particular deriva
tion of the Hummel formulae [40] by direct solution of Laplace's equation in 
terms of Bessel's functions. They also indicated the nature of the solution 
for the general case of n layers. Direct calculation of the determinants of 
order 2n, which occur in this solution, is computationally inefficient. Thus, 
Sunde [89] suggested instead a recursive relation based on the transmission 
line theory. 

The major problem with the harmonic approach has been the numerical 
computation of the potential expression, written as an infinite integral con
taining a combination of Bessel and kernel functions. This form does not 
lend itself to analytical integration. The kernel (Green's function) exhibits 
the well-known singularity 1/r. Recently, one of the following three tech
niques has been used to compute the space domain of Green's function: 

(1) Discrete complex image [19,39,48]. This method approximates the 
smooth part of the spectral domain Green's function by a sum of 
complex exponentials (Prony's method [37]). This technique heavily 
depends upon the accurate approximation of the kernel function. In 
the general case, this leads to a system of nonlinear equations whose 
solution is rather difficult. In addition, serious accuracy and stability 
problems make it impractical for application in more than two layers. 

(2) FFT scheme. These methods enforce Dirichlet or Neumann bound
ary conditions on a bounding box, and use 3D FFT to perform the 
transformation. They require, however, extremely fine sampling to suf
ficiently cover the spectral contents in order to achieve a reasonable 
accuracy [11]. 

(3) Numerical integration. Green's function may be represented via a one-
dimensional Hankel transform [29,105]. Although robust, the numeri
cal evaluation of this transform, is relatively time consuming. However, 
the use of the Fast Hankel Transform reduces this cost significantly. 
Nevertheless, numerical evaluation of the potential integral is not effec
tive, in particular, when this integral has to be evaluated repeatedly in 
a numerical algorithm. Such is the situation in the solution of a 3-D 
potential problem for a large number of mesh points to calculate the 
potential distribution in multi-layered media due to a finite electrode 
array. 

1.3. Image school 

In the static case, Laplace equation for electrostatic (or magnetostatic) 
potential can be solved in a space region using a technique, in which the 
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required boundary conditions for the potential are simulated by using one 
or more image charges placed in a different region. 

The physical interpretation via the wave/transmission line analog can be 
done as follows: At the beginning, the current source generates two starting 
voltage waves one up and one down at the excitation point. The two waves 
can independently propagate. If the waves meet an impedance discontinuity, 
they split into reflected and transmission waves according to the boundary 
conditions. The reflected and transmission waves then independently prop
agate, each being attenuated by the splitting process and the distance it 
has traveled. Waves passing the observation point are called images. 

In the quasi-optic limit, the physical interpretation via ray optics anal
ogy can be used. There is some analogy between the way in which a current 
travels through a medium and the way light rays spread through space. For 
instance, both the current density and light ray intensities obey the law 
of the inverse square of the distance from the point source. This analogy, 
however, does not imply, that the principles of geometric optics can be 
used to solve each and every problem in electrical current flow. In fact, the 
use of images is valid only in solving a limited number of potential prob
lems [44]. In setting up the optical analogy, current sources are replaced 
by light sources and the planes with different conductivities are replaced 
by semi-transparent mirrors having reflection and transmission coefficients 
correlated to the resistivities of the layers. Accordingly, the light intensity 
at a point in a given medium is due partly to the point source and partly 
to its images from the other layers. 

For a horizontally stratified medium consisting of two parallel layers, 
Maxwell [64] first expressed the electric field due to a current from a point 
source in terms of an infinite series of images by adopting the method 
of images first proposed by Lord Kelvin [90]. Several authors extended 
the method to three layers. For instance, Hummel [40] published, with
out an explicit derivation, formulae in terms of images. Other authors 
[7,49,79,82,105] extended the solution for the multilayer case by using 
different modifications of the image method. An extensive list of contribu
tions in this field can be found [45,98]. Evidently, the image method has 
also been asymptotically applied in optics [8] and wave propagation [31,55]. 

The main advantage of the image technique is that a clear physical 
interpretation can be attributed to the mathematical terms. This may help 
to easily simplify the resulting algebraic expressions, without significant 
loss in the calculation precision. A major difficulty, though, is the complex
ity in taking into account all the reflection combinations from the primary 
and secondary images. In addition, the image series schemes existing in the 
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literature neither led to explicit closed form expansions for n > 2 (where n 
is the number of interfaces), nor contained information regarding its conver
gence properties. Furthermore, while the existence of a direct link between 
quasioptic and quasistatic image series expansions is accepted [55], this link 
has not been outlined systematically and explicitly. 

The Institute of Scientific Information (ISI) database mentions more 
than 250 references dealing with this topic over the past decade alone, 
indicating that work on multiple-layer stratification is continuing and is far 
from being accomplished. 

1.4. Brief summary 

The first part of the chapter outlines the image series expansion of Green's 
function for a medium with planar stratification. The second part presents 
a hybrid model, dealing with the current density distribution in biological 
media. This latter model combines a novel image series expansion algorithm 
with the moment method [38] and illustrates an application of the image 
theory in bioelectromagnetics [62]. 

Upon developing the image series method, the following drawbacks were 
addressed: (1) For more than two layers, the infinite series expression is rel
atively hard to be derived and to implement; (2) Up to date no robust 
convergence testing procedure exists for the image series method. We thus 
focused on the following three goals: (i) rigorous closed form image series 
expansions for n (number of interfaces) >3, (ii) series convergence proper
ties via a truncation-error estimation, (iii) bridging analytically between 
the ray-optics and quasistatic regimes. These targets were achieved by 
introducing first an integral representation for the frequency-dependent 
Hertz potential via a recursively constructed characteristic Green's func
tion, in terms of reflection and transmission coefficients. The benefits of 
this construction were evidently overlooked in previous investigations, in 
which transmission-line impedances were used instead [65]. Next, the Hertz 
potential is expanded in finite image integral sums, often labeled as exact 
images [55] or ray integrals [31], and collective image integral (remainder) 
terms. The expansions utilize the unique recursive construction for Green's 
function which is a generic characteristic of the stratification and are explic
itly constructed for n < 3. While results for 0 < n < 2 are given for reference 
only, the expansion scheme for a double slab configuration, n = 3, is quite 
general and outlines the procedure for n > 3, without any increase in the 
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complexity. The n-layer finite expansion scheme is outlined by recursively 
extending the n = 3 procedure. 

The finite expansions lead to rigorous image series expansions in the 
quasistatic limit where the remainder terms can be made negligibly small 
for sufficiently large summation indices. Evidently, our expansion scheme, 
relying on the recursive construction of the associated Green's function, 
bridges smoothly between the low and the high-frequency regimes. The 
collective image, representing an error-estimation term, is a closed form 
expression obtained via an asymptotic evaluation of the series remainder 
integral and is valid for sufficiency large summation indices. The image 
series convergence is accelerated by including a collective image term. 

The fast convergence proved important when we further used this expan
sion, in conjunction with the moment method [38], to calculate the poten
tial distribution due to a finite electrode array in multiple-layered media, 
as shown in Sec. 3 of the chapter. 

Electrode excitation of a biological tissue is a well known and fundamen
tal phenomenon, related to almost every FES application. Nevertheless, the 
literature reports only a few elementary models dealing with either a single 
finite electrode in infinite space [81,99] (both reference make use of Jack
son's derivation for circular electrode [43]) [12,77,78,83], or arrays of point 
electrodes [84,93]. More general electrode models (analytical or numerical) 
in biomedical applications are not reported in the existing literature. 

Thus, we present in this part of the chapter the electromagnetic field 
interaction with multilayered biological medium as investigated for an elec
trode array excitation. A layered medium may serve as a simplified first-
order prototype model for many realistic biomedical problems where the 
dependence on the number of electrodes, tissue layers and their electri
cal properties has to be accounted for [36]. Mathematically, the addressed 
problem may be reduced into a system of integral equations of the elec
trodes' current distribution [61]. The solution of the integral equation is 
accomplished by using the hybrid method. This enables the construction 
of the electrodes voltage/current relations via the impedance (admittance) 
matrix of the electrode array and consequently, also to evaluate the elec
trode power. The inversion of the integral operator is carried out in a two-
step procedure: first its kernel is succinctly expanded in an image series 
expansion with a remainder term (collective image). Next, the moment 
matrix elements are calculated through an explicit analytic integration 
of the image terms. The hybrid scheme is further applied for numerical 
calculations. 
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The simulations are selected to address simple, yet fundamental, 
concepts associated with electromagnetic field interaction with biological 
tissues such as the potential distribution and electrode array impedance 
calculations. 

2. Rigorous Image Series Expansion of Green's Function 
for Plane-Stratified Media 

2.1. Finite image integral expansion 

The physical configuration of our problem, depicted in Fig. 1, consists 
of a time-harmonic point-source S located at r ' = (0,0,2'), an observa
tion point P located at r = (x,y,z), and n + 1 isotropic homogeneous 
layers. The electromagnetic vector fields E(r, r') and H(r, r') are assumed 
to be excited by ^-directed electric and magnetic point current elements, 
of length £, 

3e(r)=IeeS(r-r')z, (1) 

and 

J m W = ImlS(r - r')z, (2) 

respectively. In the above equations z is a ^-directed unit vector, J e ( r ) 
and J m ( r ) are the electric and magnetic source current densities, Ie and 
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Fig. 1. Physical configuration for plane-stratified media, consisting of n + 1 layers, 
with n planar boundaries between the layers. The observation point P, the source 
point S, and the transverse coordinate p are defined via; r = p + zi. = (x,y,z), 
r ' = p ' + zz ' = (0, 0, z') and p = \/x2 + y2, respectively. The parameters e and p. 
denote the medium permittivity and permeability, respectively. 
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Im electric and magnetic source currents, and <5(r — r') is the Dirac delta 
function. The fields may be expressed at r ^ r', assuming time-dependence 
eJwt [9,30,97], as: 

E(r, r') = V x V x zlle(r, r') - Juam{z)V x zllm(r, r'), (3) 

H(r, r') = Jujae{z)V x zlle(r,r') + V x V x zllm(r,r'), (4) 

where IIe(r, r') and IIm(r, r') represents the E-mode and H-mode Hertz 
potentials [88], respectively, J is the imaginary unit and u> is the angular 
frequency. The piecewise constant, generally complex, permittivity e(z) and 
permeability fi(z) of the medium are denoted by the parameters ae(z) and 
am(z), i.e. 

ae(z) = e(z) = Si, am(z) = fj,(z) = m, (5) 

in the ith layer, 

Zi-i < z < Zi, i = 0 ,1 , . . . , n + 1, z_i = —oo, ZQ — Z', zn+\ = oo. 

(6) 

The Hertz potential in (3) and (4) can be expressed most effectively via 
Green's function, 

n ( r ' r ' ) = of) G ( r ' r / ) ' (7) 

where 

Q = I/Ju. (8) 

The distinguishing subscripts e and m in (7) and (8) have been omitted 
since the equations apply to both modes. This rule is adopted throughout 
the entire paper for all the equations that apply to both modes. 

Equation (7) illuminates the role played in selecting longitudinal electric 
and magnetic current elements in (1) and (2), respectively. In particular, a 
longitudinal electric current element (Ie ^ 0, Im = 0) generates E modes 
only and a longitudinal magnetic current elements (Ie = 0, Im ^ 0) excites 
only H modes, whereas both modes types are generated by a transversely 
directed source of either electric or magnetic current [9,30,97]. Thus, only 
a single scalar potential function is involved in either the E- or H-mode 
quasistatic limit discussed later in Sec. 2.2. 

2.1.1. Integral representation 

The point-source coordinates selection, r ' = (0,0, z') (Fig. 1), leads to a 
circularly symmetric Green's function (Eq. (7)) which can be expressed 
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via a single spectral integral, known as the Fourier-Bessel representation 
[9,30,97] 

1 f°° 
G(r,r ' ) = - y Zg{z,z')MZp)dt, (9) 

where Jo is the Bessel function of the first kind and order zero, p is the 
radial coordinate (Fig. 1) and g(z, z'), the characteristic Green's function, 
is given via 

, „ \ "J&lK^Mle-™* ~ W)e™% i>0, 
gi(z,z') = { , , (10) 

j 2 / 3 i e , ( — u. 

The subscript i (or p) denotes specific expressions or values that are valid in 
the ith (pth) layer, defined in (6). Both G(r,r ' ) and g(z,z'), in (9) satisfy, 
3-D and 1-D wave equations, respectively, and appropriate constraints, as 
summarized in Table 1. 

The reflection and transmission coefficients R(£) and T(£) in (10), 
respectively, are obtained by imposing the constraints listed in the right
most column of Table 1: 

7? tn \K <r\ i [ 1 " KK0)Ri+x{t,YJ2^Zi\ r-.nB.» R , , * _ „ 
m) - [Ki(o + 1+Ki{0Ri+l{0ej2,i+1Zi)

e . H»+I«)-O, 
( i i ) 

, W 1 - Ri{0eJ2PiZi-1 

[1 4- K i (t\\eJWi~Pi-^Zi-'1 

l + ATi_i(0iii(0e-72/3iZi-1 ' 
where K{(£) denotes the local reflection coefficient of the ith interface, 

Kid) = a f + 1 T Q i + 1 ^ Ko® =0,a0 = alt 0o = Pi. (13) 

The representation of the z-directed transmission-line characteristic Green's 
function g(z, z') in terms of reflection and transmission coefficients R(£) and 
T(£) constitutes a unique recursive construction, via the intrinsic reflection 
coefficient Ki(£) in (13). Finally, substituting (9) in (7) results in an explicit 
integral representation for the Hertz potential, 

where the characteristic Hertz potential n(z,z') is obtained via (10) 

^(Z,z') = ^^igi(z,z'). (15) 
OLi 



Table 1. Wave equations and boundary/continuity conditions f 

Differential equation 

Wave number fc(z) 

Propag. constant (3(z) 

[value in i th layer] 

Source condition 

Continuity condition 

at z = Zi,i > 0 

Radiation condition 

G( r , r ' ) 

[V2 + fc2(z)]G(r,r') = -<5(r,r') 

fc(z) = wy/n(z)e(z), 3m[fc(z)] < 0 

[fci = uiy/mei) 

f V 2 G ( r , r ' ) d V = / VG(r, r ' ) • dA : 
JV-tO JA-.0 

G<(r,r ') = G i + i ( r , r ' ) 

1 0 G i ( r , r ' ) 1 a G i + i ( r , r ' ) 

dz 

TT+JHZ) or 

Oti+l 

G ( r , r ' ) 

dz 

= 0 
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2.1.2. Image integral expansions 

The recursive characteristics of Ri(£) and Ti(£) are now implemented to 
obtain finite expansions of n(z,z') and II(r, r') in (14), for an arbitrary 
number of boundaries (Fig. 1). While results for 0 < n < 2 are well known 
(see [9,30,55,97] for n < 1), the expansion scheme developed for a double 
slab configuration, n = 3, is quite general and outlines the procedure for 
n > 3, without any increase in the complexity. The n-layer finite expansion 
schemes are obtained here by recursively extending the n = 3 procedure, 
as outlined at the end of this section [26]. 

The representation of the finite expansion scheme is given, without any 
loss of generality, for the observation points (P in Fig. 1) that are embedded 
in a single layer selected here as —oo < z < z' (Eq. (6)) to assist the 
applications carried out in Sec. 3.4. 

The finite expansion is represented in terms of finite image integral 
expansions, often labeled as exact images [55] or ray integrals [31], and 
remainder terms. The remainder terms represents n — 1 collective sum
mations of the individual images related to each of the n — 1 slabs, that 
were excluded from the image series expansions due to truncation. These 
remainders can be made negligibly small for sufficiently large summation 
indices: (1) in the quasistatic limit (see later 2.4), as k{z) —> 0, leading to 
rigorous image series expansions [26] and (2) asymptotically in the qua-
sioptic (or the so-called geometric optical) limit, as k(z) —> oo, leading 
to asymptotic (ray-optical) image series expansions [27,28,31]. Evidently, 
our expansion scheme, relying on the recursive construction of n(z, z'), has 
a generic characteristic that bridges smoothly between the low-frequency 
and high-frequency image series expansions, via an appropriate frequency 
adjustment. This generic characteristic is obscured in alternative proce
dures, which first apply either one of the frequency limits and only then 
the image series expansion scheme [8,10]. 

The series expansion of (15) via (10) and consequently the image integral 
expansion of (14) are carried out by utilizing the binomial series expansion 

(l-x)N+i Z^ l m ^ t ^ U + p + i j ( i - i W l ^ i D ; 

containing M terms and remainder. The series converges as M —+ oo, for 
all \x\ < 1. 

This is illustrated in the following examples. 
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2.1.3. Unbounded medium, n — 0 

In an unbounded medium i?i(£) = 0 (Eq. (11)). Hence, the characteristic 
Hertz potential ni(z, Z') consists of a single outgoing wave in free space, 

Kl(z,z') = e-JWz-z'\. (17) 

A closed form expression for the Hertz potential can be obtained by sub
stituting (17) in (14) and applying the Sommerfeld integral identity, 

n l ( r,0 _ 3L [" JLe-™i.-,Vo(M«. j 2 ! ^ 2 . (18) 
4-rrai J0 Jp\ Anon | r - r ' | 

2.1.4. Semi-infinite medium, n = 1 

In a semi-infinite medium, i? i (0 = i f i ( 0 (Eqs. (11) and (13)). Thus, the 
potential in (15) contains two terms representing outgoing and reflected 
waves, 

7ri(z, z1) = e-3h\*-*\ - Ki(t)eJM*+z'l (19) 

The potential Hi(r, r ') in (14) can be expressed as, 

e-Jki\r-r'\ roo £ ^•^S |r-r | roo p 
—--/ ^-Kl(OeJ0i{2+z)M^)d( 
• r | Jo J Pi 

(20) 

2.1.5. Single slab configuration, n = 2 

In a three layers medium, i? i (0 can be expanded into a finite geometric 
series in Ki(£)R2(£), where # 2 ( 0 = K2(£)e~J2f32Z2, and a remainder term. 
The 1-D potential function ni(z,z') can be expressed, similarly, as 

Mi 

7ri(z,z') = e - ^ 1 ' * - ' ' 1 - ^ i ( 0 e m ( 2 + 2 , ) - £ [1 - K2($] 
mi=0 

x [-Ki(O}?K™1+l(OeJ[0l{zW)~2(mi+1)02Z2]
 +1M1(Z,Z') 

1 Mi / •, \ / 

' T £(,)(' 
J l = 0 m i = 0 v x / X 

= g-^ i iz-^ ' i _ e^/3i(2+z') y ^ y * ( l \ ( m i ~ll 

mi 

x if |(0[i -/r1
2(0]-'1+1[-^i(0]mi^2

roi"'1+1(0 

x e-
J2<-mi-ll+1)(h* +'yMl(z,z'), (21) 
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where the remainder term 7M1 (Z, Z') is given by means of (16), 

<v»,f (z z') - rJ0l(z+z)\l K2(*)V U C ; ] li? W f 

Mo 1 - J i 

= e ^ 
mo=0( 1 =0p i=0 V ' X 7 

x [i-jf?(£)]^[-jf0(ore-w--'') (X+iiii) 
[ _ ^ ' 1 ^ ) l M i + p i + l r ^ 2 ( ^ e - > 7 2 / 3 2 ( z 2 - z i ) l M 1 + p 1 - ( 1 + 2 

X [1 + K1{£,)K2{^~J2fS2{zi~Zl)]Vl+l ' ^ 
The last expressions in (21) and (22), though identical to the preceding 
terms, render the generalization to n layered media straightforward. 

Substituting (21) and (22) in (14) and changing the order of the inte
gration and summation, results in a finite expansion for IIi(r, r ' ) , 

DP (e-^kilr-r'l r°o c 

- E / -^[i-*?(0][--M0]roi*2mi+1(0 
mi=oJo Jl:>1 

rfcl | r-r ' | 1 M l / 1 ' 

/•oo c 

x e<7[ft(*-*')-2(">i-Ji+i)fc*Vo(fr)de + r M l ( r , r ' ) 1 , (23) 

where the remainder integral TMJ (r, r') is, 

/•°° £ 
r M l ( r , r ' ) = / - 7 ^ - 7 ^ , (*,*')•*>(&>><£• (24) 

Note that for Zi = 1 the series expansions in (21) and (23) are reduced into 
single terms, and the corresponding contributions to the remainder terms 
in (22) and (24) are zero. 

2.1.6. Double slab configuration, n = 3 

In a four-layer medium R\ (£) can be expanded into a finite geometric series 
in Ki(£)R,2(£) followed by two finite binomial expansions in K2(£)R3(£), 

Qt f e - ^ l - r ' ! 1 ** ( l \ . ( m i - h 

Anai r — r' ^-^ ^ U i / V mi 
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where R3(£) = K3(^)e~J2l3:iZ3, and two remainder terms. The characteristic 
Hertz potential -K\{Z,Z') can be expressed, similarly, as 

Mi mi + 1 M2 / i \ 

- E E E n - ^ i i K . r m;+1 

mi=0 l2=0 m2=0 \ 2 / 

x ^»(0[i - ir!(or i-'a+1 ( m i + m2 ~ h 

\ m2 

x [-K2(o}m2[K3{ori+m2~l2+1 

x e ^[ /5i (2+2 ' ) -2(mi + l)/32Z2-2(m1+m2-(2 + l)/33(z3-Z2)] 

+ 7 M i ( z , z ' ) + 7 M ! , M 2 ( « , « ' ) 

1 Mi m i - I i + 1 M2 • 

= e-j0i\z-z'\ _ej0l(z+z') -y y^ y^ V ( 
i i = 0 m i = 0 ; 2 =0 m 2 =0 ^ X 

m i — l̂ A / wi — /i + 1 "\ f mi + m.2 — l\ — h 
x • i \ i i \ 

m\ J \ «2 / \ m,2 

x Kl^(OK1^(0[l - Ki(Orh+1[l - K2(0}mi-h-h+1 

x [-/s:i(o]mi i-Kiior2 [K3{ori+m2-h-l2+i 

x e - ^ 2 [ ( m i - / i + l)/32z2 + ( m i + m 2 - i i - ( 2 + l)/33(z3-z2)] 

+ 7 M I ( ^ , 2 ' ) + 7 M I , M 2 ( ^ , ^ ' ) » (25) 

where the remainder terms 7 ^ (z, z') and 7M!,M2 {Z, Z') are given by means 
of (16), 

lMl(z,z') = -eJ^+^[l - KfiO] 

x 1 + ^ ( 0 ^ 2 ( 0 ' 
Mo 1 - J i 

eJ0i(z-z 

m 0 = 0 ( i = 0 p i = 0 x u / v x / 

x[i-if1^o]-'i+1i-^o(ore-^^-'')(^-^+1
1) 

[ - • M f l ] M l + P l + M ^ ( f l e J 2 f t ' 1 ] J " 1 + P l ~ t l + 2 

X [l + Jftfi(0i?2(0e J2 /322 l]Pl+1 ' 
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and 

7Mi ,Af 2 (2 , z ' ) 

Mi mi mi-h / , i \ 

^i(2+2,) E E E (mi,+1wo[i-*?«)] 
m i = 0 i 2 = 0 P2=0 

*2 

x [1 - K2
2(0]m i- '2 + 1[-^i(0]m ie- '7 2 ( r o i + 1 ) / 3^2 f M 2 »t m i ~ h t l 

\ M2 + p2 + 1 

r _ ^ 2 ( £ ) l M 2 + p 2 + lr^'3 /£MM2+P2+mi-i2+2e->72(M2+P2+mi-(2+2)/33(23-Z2) 
x [i+/r2(0^3(0e_>72f t (23^2)]P2+1 

Mo 1 Mi m i - J i+1 mi— /i —(2 

- J f t M ) E E E £ £ 
0 

m 0 =Ol i=Omi=0 (2=0 P2=0 

mi — /i \ / 1 \ (mi—li + 1 
Kl{ {£)!<%((•) 

m0J \ mi J \l\ j v '2 

x [i - tf1
2(or,i+i[i -/f2

2(o]+ r o i- ' i _ I a + 1[-^o(0]T n o[-^i(0]m i 

->72[/3l(Zl-2 ' ) + ( m i - i o - i l + l)/32(22-2l)] f M 2 + m i - l l - l 2 + l 
x e 

M2 + p2 + 1 

(27) 
[1 + K2(0R3(0eJ2l33Z2}P2+1 

respectively. As indicated previously (n = 2 configuration), the last expres
sions in (25), (26) and (27), though identical to the preceding terms, are 
given merely to render the generalization to n +1 layered problem straight
forward. Substitution of (25)-(27) in (14) and changing the order the of 
integration and summation, results in a finite expansion for IIi(r, r ' ) , 

ILI{T,I>) 
Altai 

' g - J ' fc i l r - r ' l roo p 

r - r ' 

r°° f 

Mi roi+1 M2 

E E E 
mi=0 (2=0 m2=0 

mi + 1 \ / mi + m2 - h 
h ) \ rn2 

f 
Jo 

Jh 
•[l-AftOHi-tfKO] mi-h+lr -A-i(0]m i 

x[-K2{Z)]m2Kl2{0[Ka(t)]mi+m'-h+1 

x e^[/3i(z+z')-2/3202(mi + l)-2/33(23-z2)(mi-l-m2-;2 + l)] 

x J0(^/9)rfC + r M i ( r , r ' ) + r M i ,M 2 ( r , r ' ) , 



330 Biomathematics: Modelling and Simulation 

3->7fci|r-r' | 1 M i m i - i i + 1 M2 

1 ' i 1 = 0 m i = 0 l2=0 m 2 =0 4nai 

1 \ (mi —h\ (mi — li + 1 \ (mi + m2 — h — l2 

li I \ mi I \ l2 I \ m2 

x 

x [1 -K2(0}mi-ll-h+1[-Ki(0]mi[-K2(0}m2 

x [K3(S)]mi+ma-ll-l'+1 

x eJ[0i(,z+z')-2(mi-h + l)P2Z2+(mi+m2-h-h + l)l33(z3-z2)] 

x JoKp)dC + TM l(r , r') + T M I , M 2 ( r , r ' ) (28) 

where the remainder integrals rM,( r , r ' ) and rMj,M2(r, r') are given via, 

/•°° £ 
r M l ( r , r ' ) = / ^ - T M . ^ ^ O ^ o ^ K , (29) 

and 
/•OO £ 

rM 1 ,M 2 ( r , r ' )= / -^^-jMltM2(z,z')J0(^p)d^, (30) 

respectively. It should be noted that for either li = 1 or l2 = mi + 1 the 
series expansion in (25) and (28) are reduced into single terms or single slab 
series, respectively, and both corresponding contributions to the remainder 
terms in (27), (29) and (30) are zero. 

2.1.7. Generalized image integral expansion (n > 1) 

The finite expansion scheme for a triple slab configuration (n = 4) can 
readily be confirmed to repeat the double slab procedure (n = 3) and then 
followed by two additional finite binomial expansions in Ks^R^) and 
additional remainder term. The extended procedure is due to the recur
sive expression (11) in which Kz(£) is replaced by i?3(£) and i?4(£) = 
K^)e~^2l3'lZ'1. Extension of the finite expansion scheme for n-interface 
configurations is straightforward, in view of the last expressions contained 
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in (21), (25), (22), (26) and (27), and can be carried out by induction: 

1 Ml 3n_2 + l M„_l 

7n(z, z') = e - ^ 1 ' - * ' ' - c-W*+*'> E E • * • E E 
l i=Omi=0 („_!=0 m n _ i = 0 

n - 1 
, , , , Sfe-l + 1 \ / Sfc 

x ^ ( 0 [ i - i r f c
2 ( 0 ] ' * - l - ' * + 1 

x [-Kfe(^)]m'=[iirn^)]'"«=-^e-'72(Sfc+1^+l(z'=+1-Zfc) l /f„(0 

n - l 

+ J ^ 7 M I , . . A ( « , A (31) 
fe=i 

where 

sn = ^2(mk - h), s0 = 0, (32) 
fe=i 

and 

Mo 1 Mfc_i sk-i+l Sk-i-h 

7,,.Aw = - ^ M E E - E E E 
m o = 0 d = 0 mie_i=0 lk=0 Pk=0 

*{n(n+1)te) 
x ^ ( 0 [ l - - K | ( 0 ] ' i - 1 " ' i + 1 

X [-K;._1(^)]m3-le-^2(^-l+1)ft(^-^-l) I 

'Mfc + sfe-i -ifc + r 
Mfc+pfe + l 

[l + ^(0^+i(0e-7 2 '3 f c+1^]P f c + 1 ' 
(33) 

X 
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Finally, 

n i ( r , r ' ) = 
47ro;i 

e-J0i\r-r'\ 1 M i Sn-2 + 1 M„_i 

( i=Omi=0 l„_ i=0 m „ _ i = 0 

0 
Klkm-Kk(Q]"'-i-lk+1 

x f—ifi.(f)lmfcfif (£)|mfc-^e-^
2(5fc+1)/3fc+iC2fc+i-zfc) 

^ n—1 

^ P 1 i = l 

(34) 

where 

f°° £ rMl,...,Mfc(r,r') = / -7f3-lMu...,Mk(z,z')J0{^p)d^. (35) 

It should be noted that, for Ik = sjt-i + 1 the series expansions in (31) and 
(34), carried out for n — 1 slabs, are reduced into expansions for fc — 1 slabs, 
and the corresponding contributions to the remainder terms (33) and (35) 
are zero. In general, the total number of summations iV in these equations 
is twice the number of slabs (n — 1). However, since the observation point 
lies within the seminfinite layer i = 1, the number of summation is reduced 
by one, i.e. 

AT = 2(n - 1) - 1 = 2n - 3. (36) 

The number N is an intrinsic characteristic of the stratification, and thus, 
invariant to r which can be arbitrarily embedded in any layer. The summa
tion indices Ik and rrik denote the number of bounces on the kth layer from 
the left and the right sides, respectively (Fig. 1). It can readily be verified 
that for a single interface problem (n = 1) the image series expansion in 
(34) contributes a single term and zero remainder, since IIA:=I — •*• anc^ 

E° f c = 1 - o. 

2.2. Image series expansion 

The quasistatic limit (k(z) = wy/fj,(z)e(z) —+ 0) of the electromagnetic vec
tor fields E(r, r ' ) , H(r, r') and the Hertz potential n( r , r') is completely 
specified by the leading terms of their low-frequency power series approxi
mations, in k(z). Since the propagation constant (3(z) is an even function 
of the wave number k(z) (Table 1), it can be readily shown by means of (7) 
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that the quasistatic limit of E(r, r') and H(r, r') in (3) and (4), respectively, 
is given by the following relations, 

V x V x zn(r,r ' ) = V x V x zP(r, r') + 0[k2(z)} 

= ^&P{Q,
Z

T') +0[k2(z)}, * ( * ) - < ) , (37) 

Jcja{z)V x zP(r , r ' ) = Jwa{z){V x zP(r,r') +0[k2(z)}}, k(z) -» 0. 

(38) 

Substituting (3 — —J£, (k(z) —• 0) into the Hertz potential H(z,z') 
(Eq. (14)), the characteristic Hertz potential n(z,z') (Eq. (15)), the reflec
tion coefficient i?(£) (Eq. (11)), the transmission coefficient T(£) (Eq. (12)) 
and the intrinsic reflection coefficient K(£) (Eq. (13)), result in their qua
sistatic limit in the following expressions: 

Vfar') = -J2L j°° V(z, zVofoW, (39) 

V (z z>) - I t n t - x TM ^ - ^)e^]e^\ i > 0, 

fti(0 
^+( l- /Cf)7e i + 1(Oe2^ 

-2«ZS 7 J n + 1 ( 0 = 0 , (41) 
I + JCiTli+1(Oe2^ 

and 

K,i = ^———, / C o = 0 , a0 = ai , (43) 

respectively. If the parameter a(z) is not singular, then the electroqua-
sistatic or magnetoquasistatic fields are obtained by setting Qe ^ 0, 
Qm = 0 or Qe = 0, Qm ^ 0, respectively. If, however, a(z) is singular 
as k(z) —» 0 then Juja{z) = cr(z), the latter denoting the conductivity of 
the medium [88,98] in the stationary-current regime. In this case Eq. (39) 
reduces, utilizing Eq. (8), to JwQ/Jija(z) = I/cr(z) and Eq. (43) reduces 
to Ki = Jwfa - ai+i)/Ju)(ai + ai+i) = fa + ai+i)/fa + cr i+i). 

2.2.1. Properties oj K{£) 

The reflection coefficients 1Zn(Q and 7£„_i(£) in (41) can be evaluated, at 
£ = 0, as, 

7M0) = /C„ = a " ~ a " + 1 , (44) 
an + o-n+i 
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and 

Kn-iiP) = Q " " 1 ~ a " + 1 , (45) 
O-n-1 + Q-n+l 

respectively. Consequently, 7^ (0 ) is obtained by induction leading to, 

ftm(0) = a m ~ Q n + 1 . (46) 
" m + 0>n+l 

Utilizing Eq. (46) and an alternative representation for the reflection coef
ficient 1lm{£,) in (41), 

1 _ l - K i l-TC i+i(g)e2{*' 

"•" 1+ACi l+7?-i+1(S)e2«*i 

results in, 

ITZn-iKJe24*—1! < 1, if both |/C„_i| < 1 and \JCn\ < 1. (48) 

The general rule for 1< m < n — 1 is obtained by means of induction in 
conjunction with the continuity conditions (Table 2), 

1 - nm(Qe2^ = l - £ m l - r e m + 1 ( Q e 2 ^ 

1 + ttmCOe8**" 1 + £m 1 + ^ + 1 ( 0 ^ " ™ l ; 

Table 2. Laplace equations and boundary/continuity conditions for G(r , r ' ) and 

0(*,*')-

C(r,p ') C(*,z') 

Differential V 2 e ( r , r ' ) = - 5 ( r , r ' ) ( j ^ ~ ^ ) 5 ( 2 ' z ' > = ~ 5 ( z ~ Z"> 
equation ^ z ' 

Source / V » J ( , , ^ * < » ' + *,* ' ) d B ^ - / , * ' ) 

= / V £ ( r , r ' ) d A = - l 

condition at dz dz 

= - 1 

h->0 

Continuity & ( r , r ' ) = ft+i(r,r') Gi(z,z') = & + 1 ( z , z ' ) 
condition at 

. ' 9S i ( r , rQ ag j+ i f r . r ' ) rift (*,*') d g i + i ( « , z / ) 
i>0 ai = a , + i a, = aj+i 

oz oz dz az 

Decay at rS ( r , r ' ) r - .oo < °o ( - 7 - + $ ) S(* .z ' )w- .oo = ° 
infinity 
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leading to 

|ftm(Oe2£zm | < 1, if both \JCn\ < 1 and \TZm+1^)e2^\ < 1. (50) 

Note that |/C,| < 1, 1 < i < n, if 3te[aj] > 0 whereas 9m[aj] < 0, 
since $$m[k(z)} < 0 (Table 1). Similarly, in a conductive medium where 
a(z) = Jua ± 0 (following Eq. (43)), j/C»j < 1, if 3ie[<7i] = SRefJwai] > 0 
whereas S m ^ ] < 0, since 3?m[<7i] = ^m[J^ai\ > 0. A very important 
property of the global reflection and intrinsic coefficient is thus proved 
which makes converging of the image series representation possible, as dis
cussed in Sec. 2.4. 

2.2.2. Quasistatic point-charge potential 

The longitudinal derivative of the quasistatic Hertz potential dV(r, r')/dz, 
in (37), identified as a dipole potential, can be expressed alternatively as 
the difference between two point-charge responses [88,98], 

dV(*>r>) = l im[$(r,r' - zi/2) - $ ( r , r ' + zl/2)] = - " ^ h . (51) 
dz e->o az' 

The point-charge potential <fr(r, r ') can be expressed via the quasistatic 
Green's function as 

$ ( r , r ' ) = -^-<5(r,r'), (52) 
ai 

where 
1 f°° 

a( r , r ' ) = — y £g(z,z')Jo(tp)dt> (53) 

Finally the quasistatic characteristic Green's function G(z, z') is given by 

ft(z,z) = 2e 1 ^ + ^ ( 0 ^ ] ^ , i = o. (54) 

The potential function $(r , r ' ) , representing a normalized point-source 
response {Q/a\ = 1), is more suitable for implementation in quasistatic 
problems than the potential difference, i.e. the dipole response [60,98] rep
resented by dV(r,r')/dz in (37). Furthermore, since the expressions for 
$(z,z') and V(z,z') in (52) and (40), respectively, are similar up to the 
sign of the reflection coefficient 7£(£), the image series expansions of $(r , r ') 
and T{r,r') in (54) and (39), respectively, are expected to be identical up 
to the sign of the corresponding terms (and the multiplication constant (.). 
Both Q(r, r ') and Q(z,z'), in (53), satisfy 3-D and 1-D Laplace equations, 
respectively, and appropriate constraints, as summarized in Table 2. 
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2.3. Infinite image series expansions 

In the quasistatic limit, Id, the intrinsic reflection coefficient in (43) is 
independent of the integration variable £, thus, the individual integrals 
contained in the finite expansions (Sec. 2.1) can be evaluated in closed 
form explicit expressions, interpreted as properly weighted and shifted 
point-source (image-source) responses. Since, the remainder integrals (i.e. 
(24), (29), (30) and (35)) can be made negligibly small by increasing the 
number of the expansion terms, under rather general set of constraints, 
to be discussed in the following section, the image series expansions may 
be regarded as converging representations. The complete image expansion 
derived here for —oo < z < z' is quite general and outlines the procedure 
for i > 1 without any increase in the complexity. 

The following cases illustrate the procedure. 

2.3.1. Unbounded medium, n = 0 

The reduction of the radiation integral in (18) into a close form expression, 

7>i(ry) = ^ / V a « - ' V o ( f r ) d g = Q * * (55) 
47rai J0 47rai [r — r' | 

is carried out via the Weber-Lipschitz integral identity [98] which is the 
quasistatic limit of the Sommerfeld identity (/? —• — J£ as k{z) —> 0). The 
integral identity is a vital tool in converting the finite integral summations 
into infinite image series representations. 

2.3.2. Semi-infinite medium, n = 1 

The quasistatic potential for n = 1, obtained from Eq. (20), is given by, 

r = - r ' = (0 ,0 , -2 ' ) . (56) 

As depicted in Fig. 2, both contributions from the point-source at r ' = 
(0,0, z') and the image-source at f' = —r' = (0,0, z') = (0,0, —z') reach 
the observation point P. The image-source contribution can be interpreted 
as the point-source contribution undergoing a single reflection {K\) at z = 
zi = 0 . 

V1(T,T') = 
Ql 

4-rrai 
ICx 
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Fig. 2. Physical configuration for a semiinfinite medium, n = 1. Both contributions from 
the point-source S at r ' = (0,0, z') and the image-source S at r ' = —r' = (0,0, z') = 
(0,0, —z') reach the observation point P. The image-source (S) contribution (solid line) 
can be interpreted as the point-source (S) contribution undergoing a single reflection 
(/Ci) at z = z\ = 0 (dashdot line). 

2.3.3. Single slab configuration, n = 2 

The quasistatic Hertz potential for a three layers medium, obtained from 
Eq. (23), is given [10] by, 

P i ( r , r ' ) 
Ql 

471721 • _ r / | l^i 2_^ I 7, 
i 1 = 0 m i = 0 

m i — Ji 

h) V mi 

^ [ I - /c?]-'i+1[-£i(0P1/c£li+1 

| r - r ; 1 ) m i | 
?Ji,mi = [0,0,2z2(mi - h + 1) - z']. (57) 

As depicted in Fig. 3, both contributions from the point-sources at 
r ' = (0,0,z') and the image-source set located at r'm t ,(Zi,mi) = 
(1,0), (0,0), (1,0), reach the observation point P. The contribution of the 
image-source set can be interpreted as a summation over all the point-
source responses undergoing, at z = Z\ = 0, either a single reflection {K\, 
h = 1, mi = 0) or a single transmission (li = 0) in (1 + /Ci) and out 
(1 — IC\) accompanied by single reflection (/C2) at z = z-i and mi (mi > 0) 
bounces both at zx ((-Ki)"11) and z2 (/C^1+1). Note that for h = 1 the 
series expansion in (57) is reduced into a single term. 
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Fig. 3. Physical configuration for a single slab, n = 2. Both contributions from the 
point-sources S at r ' = (0,0, z') and the image-source set S | 1 | m i at f'm ( , (Zi,mi) = 
(1, 0), (0, 0), (1,0), reach the observation point P. The image-source set (S j l i T n i ) contri
bution (solid line) can be interpreted as a point-source (S) contribution undergoing, at 
z = 2i = 0, either a single reflection (/Ci, dashdot line, h = 1, m\ = 0) or a single 
transmission in (1 + K\) and out (1 — K\) accompanied by single reflection (/C2) at 
z = Z2 (h = 0)and m i (mi > 0) bounces both at 21 ((—K-i)™1) and 22 ((—/C2)"11), 
dashed and dotted lines for m i = 0, and m i = 1, respectively. 

2.3.4. Double slab configuration, n = 3 

The quasistatic Hertz potential for a four layers medium, obtained from 
(28), is expressed as, 

Qi 
Vi(v,r') = 

47rai r - r ' 

1 00 m i - i i + l 00 

li=0mi=0 (2=0 m2;=0 

1 1 00 m i - I i + 1 00 

m\ —1\ 
mi 

m\—l\ + l 

h 
mi + m.2 - h - h 

rri2 

IC[1K.2
2[1 -ICi)-h+1[l - / C 2 ] m i - ' 1 - ' 2 + 1 [ - ^ i ] m i 

-/C2]m 2[/C : 
lmi+rri2 —(1 —I2 + I 

I (1,7711,(2,7712! 

?(i,m„(2,77.2 = [ 0 , 0 , 2 ( m 1 - l i + l ) z 2 

+ (mi + m2-h-h + l)(z3 - z2) - z'\. (58) 

As depicted in Fig. 4, both contributions from the point-sources 5, at 
r ' = (0,0, z') and the image-source set at f{ m i ( i 2 ) m 2 , reach the observation 
point P. The contribution of the image-source set can be interpreted as a 
summation, over all the point-source responses undergoing, at z = z\ = 0, 
either a single reflection (/Ci, h = 1) or a single transmission (/1 = 0) 
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Fig. 4. Physical configuration for a double slab geometry, n = 3. Both contributions 
from the point-sources S at r ' = (0,0,z ' ) and the image-source set 'S(i,m1,l2,m2

 a* 
rj , , where (Zi, m i , I2, w»2) = (1, 0,0,0), (0,1,1,0) reach the observation point P. 

The image-source set ( 5 j l i m i ] j 2 , m 2 ) contribution (solid line) can be interpreted as a 
point-source (S) contribution undergoing, at 2 = z\ = 0, either a single reflection (/Ci, 
dashdot line, l\ = 1) or a single transmission (l\ = 0) in (1 + K\) and out (1 — K\), 
accompanied by all possible combinations of bounces and transmissions z = zi = 0, 
2 = 22 and 2 = 23, ( m J + 1 ) C"1"1^1 2 - '2)) where m i (mi > 0) and m.2 denote the number 
of internal reflections at 2 = 21 = 0 ( (—K\) m i ) and 2 = 22 (—/C2)"12), respectively, and 
m i — I2 + 1 is the number of transmission in (1 + K2) and out (1 — K.2) at 2 = 22 
((Zi,mi, I2, T712) = (0,1,1,0) associated with the two only combinations depicted by 
dashed and dotted lines). 

in (1 + /Ci) and out (1 — K.\), accompanied by all possible combinations 
of bounces and transmissions at z = z\ = 0, z = z% and z = 2:3, 

r ^ H " 1 1 ^ 2 " ' 2 ) ' w h e r e m i ( m i ^ °) a n d m 2 d e n o t e t h e number of 
internal reflections at z\ ((—/Ci)mi) and z2 ((—^2)m2), respectively, and 
mi — I2 + 1 is the number of transmission in (1 + /C2) and out (1 — /C2) at 
2 = 22- It should be noted that for either mi — li + 1 = 0 or K.3 = 0 the 
series expansion in (58) is reduced into a single geometric series. 

2.3.5. n + 1 layered media 

Upon utilizing (34) one obtain 

P i ( r , r ' ) 

47rai 

-. 1 OO Sn-2 OO ( U— 1 

^ i - E E - E E n 
i i = 0 m i = 0 ( n _ i = 0 m n =0 I. fc=l 

x 4*[1 - /C£]s*-1-(fc+1[-/Cfe]m*/C'- i ' ' 

Sfc-1 + 1 

h 

fcn 

Sk 

mk 

\x^+y^ + {z-z'kYY^ 

(59) 
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where 
n - l 

z'k=2j2(sk + l)(zk+i-Zk)-z'. (60) 
fe=i 

Expressions in the quasistatic limit for any layer and any number of layers 
within the medium were recently reported [61]. 

2.4. Convergence and truncation-error estimation: the 
collective image approach 

The quasistatic reduction process which was successfully utilized to gener
ate closed form image series expansions, in the previous section, is applied 
here for reduction of the remainder integral terms, such as, TM1 (r, r ' ) , and 
rMi,M2( r) r ' )! m (24) (29), and (30), respectively. Two goals are readily 
accomplished: (i) the remainders are shown to be negligibly small for suf
ficiently large summation indices warranting the convergence of associated 
image series under rather general physically interpretable, set of constraints; 
(ii) closed form asymptotic expressions (end-point contributions), obtained 
via integration by parts, enable accurate truncation-error estimations, for 
sufficiently large number of summation indices. The asymptotic remainders 
are regarded here as collective image contributions. Image series expansions 
including a finitely small number of ordinary image terms together with 
(asymptotic) collective image contributions, are shown to converge faster 
than expansions containing ordinary image terms only. The following exam
ples illustrate the procedure. 

2.4.1. Single slab configuration, n = 2 

Equations (22) and (24) are reduced, in the quasi-static limit, into, 

1 , ,. ( l - /C?)(- /Ci)M l + 1AC^ 1 + 2e«l*+*'- 2«^+ 2 ) ] 
A M l ( ^ ) = l + ZCiiCe-^ ( 6 1 ) 

and 
/•CO 

A M l ( r , r / ) = / AMl(z,0</o(£/9)d£, 
Jo 

(62) 

respectively. Equation (62) can readily be reduced into the following 
inequality, 

| A M l ( r ' r }l < (l-\K1K*\)[2z2{M1+2)-z-z<\' ( 6 3 ) 
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which guarantees the convergence of the image series expansion in (57), if at 
least one of \Ki\ or I/C21 is less than unity, i.e. A ^ ^ r ' ) —> 0 as M\ —> 00, 
if either |/Ci| < 1 or |/Cs | < 1- The collective image contribution can be 
obtained asymptotically (for large Mi) via integration by the parts of (62), 
yielding, 

, / A A , A [l - /C?](- /Cl) M l + 1 /Cf 1 + 2 

AM, (r, O ~ AMl (,, z>) = - { ^ ^ ^ + 2)l_z_z,y «") 

where KM1 (Z, Z') is the asymptotic collective image contribution. 

2.4.2. Double slab configuration, n = 3 

Equations (26), (27), (29) and (30) are reduced, in the quasistatic 
limit, into, 

[ l - /C f ] ( - /C 1 ) ^+ 1 [7^2 (0 ] M l + 2 e^ + ^ , ) 
A M I ( Z , Z ) = 1+^^(0 ' (65) 

•^Mi,M2(z,Z ) 

Mi mi + l m i - l j , v , 7 , 1 

n , n n V l* ) \ M2 + p2 + 1 
mi=0 (2=0 p=0 X ' x 

x (1 - £ 2 ) ( - /Ci ) m i (£ 2 ) ' 2 {[ l - / C | ] ^ 3 } m i - i 2 + 1 

(_^ 2 ^ 3 ) M 2+P2 + 1
e-€[2(z3-22)(M2+p2+mi-i2+2)+2z2(mi + l )-z-z ' ] 

and 

[1 - /C 2 ^3e - 2 ^ - Z 2 ) ]P 2 + 1 ' ( 6 6 ) 

/•OO 

A M l ( r , r ' ) = / AM l(z ,z ' )Jb(^)de (67) 
JO 

/•OO 

AMl ,M2(r,r ') = / AMl>M2(z,zVo(£/0)A;, (68) 
Jo 

respectively. Equations (67) and (68) can be manipulated into the following 
inequalities: 

IA r r r M I r [ l - ^ ] l ^ r i + 1 1 ^ 2 ( e o ) e 2 ^ l M l + 2 , _ 
| A M i ( r ' r }l < [i-i«i)i]NM1+2)-,-,r (69) 

where £0 and £1 are defined via |1 + K{R.2{£)\ > 1 — |/Ci7£2(£)| > 1 — 
|/Ci72.2(€i)| and ft2(£)e2«Z2 < l^2(^o)e2&Z2| < 1, 0 < £ < 00 respectively, 
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and 

m i = 0 (2=0 P2=0 X ' S ' 

| - /C i r i | /C 2 | ' 2 { [ l - ^2 ] l ^3 | } m i ~ ' 2 + 1 | /C2 /C 3 | M 2 + P 2 + 1 

* (1 - |/C2/C3|)P2+i[2(z3 - z2)(M2 + p 2 + mi - /2 + 2) + 2z2(mi + \)-z-z'\' 

(70) 

The image series expansion in (58) converges if at least two of |/Ci|, |/C2| 
I/C31 are less than unity, i.e. AMi(r,r') —> 0 as M\ —> 00, if either \K.\\ < 1 
or \n2(to)e2ioZ2\ < 1. Note that |ft2(£0)e2?oZ2| < 1 if both | £ 2 | < 1 and 
I/C3I < 1 (see Sec. 2.2). Similarly, Ajvfi,M2(r, r ') —> 0 as M2 —» 00, if either 
|/C2| < 1 or |E 3 | < 1. 

The collective image contributions can be obtained asymptotically (for 
large Mi and M2) via integration by the parts of (67) and (68), yielding, 

. . , . . . , . [ l - /C?](- /Ci)M '+ 1 [ f t2(0)]M l + 2 

A M 1 ( r , r ) ~ A M l ( z , z ) = - [ 1 + W 2 ( 0 ) ] [ 2 z 2 ( M i + 2 ) _ z _ 2 r 

K2(0) = ^ 1 , 
tt2 +0(4 

where 72.2(0) is derived in 2.2, and 

A M i , M 2 ( r , r ) ~ AM1IM2(Z,Z ) 

E Y^ Y~v / m i + l \ / M 2 + m i - / 2 + l \ 
2^ 2^ I Z2 J\ M2+p2 + l i 

m , = 0 i 2 = 0 p 2 = 0 V 7 X - » * - • « / 

(1 - /c?)(-/Ci)miE2
2[(i - £ | ) /c 3 ]m i - ' 2 + 1Hc 2 ;c3)M 2 + P 2 + 1 

X (1 + X;2/C3)P2+i[2(z3 - z2)(M2 + p2 + mi - h + 2)+2z2(mi + \)-z-z'}' 

(72) 

The asymptotic collective image contribution in (71) and (72) is denoted 
by AMI(Z,Z') and AMI,M2(Z,Z'), respectively. Note that for either 
wi — l2 + 1 = 0 /C3 = 0, AM 1 ,M2(Z ) Z') in (72) is equal to zero. 

2.4.3. n + 1 layered media 

The remainder term obtained via end-point integration is given as 

Mo 1 M f c _! s i - i + l s i i - i - l i 

AMI M*(*.*') = - £ £••• 5Z H H 
p f c =0 
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x /Cj*[l - /C?]a'-1-''+1[-/Ci_i]m'-1 \ 

V Mfe+pfe + 1 j 

x [-x:f*+w+1[^fc+1(o)]^+'»*+«*--'*+2i 
[i + #fcrcfc+i(o)]«+i(*-^) 

where 
k 

+ (zk+1 - zk)(sk-i -lk + Mk+pk + 2)- z'. (74) 

In n-layered media, the finite expansion converges in the quasistatic 
limit, if at least n — 1 of the intrinsic reflection coefficients \lCi\, 1 < i < n, 
are less then unity, i.e. AMX (r, r') —> 0 as Mi —» oo, if either }/Ci | < 1 
or \n2(Zo)e2S°Z2\ < 1. Note that |ft2(£o)e2?oZ2| < 1 if both |/C2| < 1 and 
\K3(£)e2ZZ3\ < 1, etc. (see Sec. 2.2). Finally AMl,M2,...,M„_1(r,r') -» 0 as 
M„_i —> oo, if either |/C„_i| < 1 or \K.n\ < 1. 

The effectiveness of the collective image approach is demonstrated in 
Figs. 5 and 6, for n = 2 and n = 3, respectively. Both figures show the 
normalized truncation error dependence of the image series expansion on 

Fig. 5. Normalized truncation error of finite image series expansion truncated at Mi, 
for a single slab configuration, n = 2. Contributions incorporating either ordinary image 
terms only, 1 0 0 | A M I ( r , r ' ) | / | A 0 ( r , r ' ) | (Eq. (62)), or both the ordinary and collective 
image terms, 1 0 0 | A M ! (r, O — A M I (Z, z')\/\Ao(r, r ' ) | (Eq. (64)), are denoted by solid and 
dashed lines, respectively. The simulation parameters: /Ci = —0.89, IC2 = 0.75, z\ = 0.0, 
22 = 0.03m, z' = - 0 . 0 1 m , r ' = (0,0, z'), r = (0,0, dz'). 



344 Biomathematics: Modelling and Simulation 

9 

7 

SB 5 

3 

1 

1 3 5 7 9 

Fig. 6. Truncation error contours of finite image series expansion truncated at Mi, Mi, 
for a double slab configuration, n = 3. Contributions incorporating either ordinary image 
terms only, 100 |A M l ( r , r ' ) + A M l , M 2 ( r , r ' ) | / | A o ( r , r ' ) + A0,o(r, r ' ) | (Eqs. (67), (68)), or 
both ordinary and collective image terms, 1 0 0 | A M I ( r> r ' ) + •^Mi,M 2 ( r , r ' ) — •^M1(z,z') — 
AM1 ,M2( z> z ' ) l / l^o(r , r ' ) + Ao,o(r, r ' ) | (Eqs. (71), (72)), are denoted by solid and dashed 
lines, respectively. The simulation parameters: /Ci = 0.65, K.2 = —0.75, /C3 = 0.85, 
Z l = 0, z2 = 0.01m, z3 = 0.02m, z' = -0 .01m, r ' = (0,0, z'), r = (0,0,10z') . 

the summation indices (Mi for n = 2 and Mi, M2 for n = 3) using biological 
medium parameters [60,62]. 

The highest convergence rate is always achieved via contributions incor
porating both ordinary and collective image terms, thereby, establishing the 
superiority of the collective image approach over ordinary image summa
tion. This proved important when we further used this expansion, through 
the moment method, to calculate the potential distribution due to finite 
electrode array in multilayered media (Sec. 3). 

3. Electrode Array in Layered Media 

3.1. Integral equation formulation 

The physical configuration of our problem, depicted in Fig. 7 consists of a 
stratified biological medium with n boundaries separating between the n + 1 
homogeneous and isotropic layers. Each layer is characterized by its thick
ness, conductivity a(z) (generally complex), where a(z) — Oi as defined in 
(6). An array of P rectangular electrodes is placed in the first layer (i = 1). 
The evaluation of the electrodes' current distributions and potentials is car
ried out within the quasistatic (low-frequency) regime. Assuming that all 
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Fig. 7. Physical configuration for a layered biological tissue excited by an array of finite 
electrodes. 

the P electrode plates (Fig. 7) are perfect conductors, i.e. constant potential 
patches, the potential of each electrode V is specified. Hence, the problem 
constitutes a system of P Fredholm integral equations of the first kind [61] 
for the electrodes' current distribution ip(rp), 

1 P f 
Vq = * ( r , ) = — Y] & iP(rp)g(rg,rp)dsp, q = l,2,...,P, (75) 

CTl pTi Jsp 

where ip(r), the pth electrode current distribution, $(r) can be expressed 
as a superposition over all the electrode potentials $ p(r) , 

p 

$(r) = ^ $ p ( r ) , (76) 
P = i 

defined via the convolution integral 

$p(r) = — * ip(rp)G(r,rp)dsp. (77) 
°"i Jsp 

The point-source response Q(r, rp) (Green's function, Table 2) can be rep
resented most effectively as the image series expansion i.e. a collection of 
properly weighted and shifted point-source responses and a remainder term 
(collective image) as presented in Sec. 2.2 [60,61]. We note that o{z) should 
be replaced by the complex conductivity <;{z) — a(z) + J'uie(z), in every 
layer for which the inequality a(z) » Jwe(z) is not satisfied. The parameter 
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u denotes the angular frequency corresponding to the electrode excitation. 
To simplify the notation we allow a to be complex in the remainder of the 
paper. 

3.2. Electrode array 

The total current of each electrode Ip is obtained by integration of the 
electrode current density distribution ip(rp) over the electrode surface, 

IP = f ip(rp)dsp. 
Js„ 

(78) 

The uniqueness of the solution of system (75) in conjunction with the super
position principle leads to the following linear relation between the electrode 
currents and electrode voltages 

/ V i \ 
Vi 

\vPJ 

R-21 

R-12 

R.22 

R13 

R23 

R I P \ 

R-2P 

\ R p 1 Rp2 Rp3 • • • R p p / 

h 
= RI, (79) 

or, alternatively 

/ G 1 1 G12 

G21 G22 
1 = 

G13 

G23 

G I P \ 

G 2P 

\ G p i Gp2 G P3 G p p / \vPJ 
GV, (80) 

where G and R = G _ 1 denote the input conductance (admittance) and 
the input resistance (impedance) P x P matrices of the electrode array 
feeding network, respectively. It can be readily shown that the matrices 
R and G are symmetric due to the reciprocity property of Q(T, r p ) , i.e. 
Q(rq, rp) = G(rp, Tq). Furthermore, all the diagonal elements of both matri
ces are positive, whereas, the off-diagonal elements are positive for R and 
negative for G. 

In view of Kirchhoff's current law, the sum of all the electrode currents 
must be zero, 

i.e. (LHS), 

(1 ,1 , . . . ,1 ) I = (1 ,1 , . . . , 1 )GV = 0, (81) 

(82) 
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or, equivalently (RHS), 

p p 

^2 apVp = 0, ap = Y, G9P- (83) 
p = l g=l 

This restriction leads to the conclusion that only P — 1 of the elements of 
either the vector V or the vector I can be arbitrarily selected. Thus, the 
remaining P + 1 elements of V and I are explicitly specified via either (82) 
or (83), and (80). 

The total complex power S, delivered by a P-electrode array, can be 
expressed in terms of the vector V and complex conjugate of the vector I, 

S=^VTl*. (84) 

Note that for ui = 0, the real input power is S = V T I . 

3.3. Moment method 

The integral equation system in (75) can be inverted using the moment 
method with pulse base for the electrode current distribution and point 
match for the potential [38]. The discretized electrode potential # is a linear 
transformation of the discretized current density distribution i via L, 

* = Li. (85) 

The moment matrix L is a square matrix specified by its elements imn 

(representing the potential at the center of the subsection m due to unit 
current density distribution on the subsection n), given as, 

i rxn+b/2 rVn+b/2 

emn = — / g(rm,r'n)dx'ndy'n, (86) 
CT1 Jxn-b/2 Jy„-b/2 

where r m and r„ represent the location of the observation and source points, 
respectively. It can be readily verified that the discretization quantum is a 
square element of size b x b, thus a square electrode of size a x a contains 
N = (a/6)2 subdivisions (Fig. 7). Hence, a problem involving P identical 
square electrodes associates with vectors i and * of size PN and a moment 
matrix L of size (PN) x (PN). An explicit closed-form expression for the 
moment matrix element can be obtained by substituting (59) and (73) from 
Sec. 2 in (86) and utilizing the identity, 

ff ^ f fy dx'dy' 

f(x,y,z) = J J -y-
= x In (y + r) + y In (x + r) — z arctan (xy/zr), (87) 
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where r' = (x'2 + y'2 + z2)1/2. In this derivation we make use of reported 
procedures [25,46], or more efficiently, of symbolic software Mathematica 3 
(Wolfram Research Corp.). The expression can be reduced into Bancroft's 
result [5], upon setting z = 0. The resultant element £mn is given by, 

(•mn = [h(xm -xn + b/2, ym-yn + b/2, zm) 
47T(Ti 

- h(xm ~xn+ b/2, ym-yn- b/2, zm) 

- h(xm - x n - b/2, ym-yn + b/2, zm) 

+ h(xm -xn~ b/2,ym-yn- b/2, zm)], (88) 

where h(x, y, zm) is expressed via the (59) 

h(x,y,z) = f(x,y,z-z') 
1 Mi s„_ 2 M„_i 

+ E E - E E 
! i = 0 m i = 0 i n _ 1 = 0 m n _ i = 0 l.fe=l 

x ^[l-KlY^-l^[-Kk\
m^K^-^f{x,y,z + z'k)\lCn 

n - l 

+ Y/AMl,...,Mk(z,z')b2- (89) 
fc=i 

The last term in the RHS of (89) represents an asymptotic error esti
mation (Eq. (73)) of lmn due to the truncated image series expansion in 
(59). This collective image term significantly accelerates the image series 
convergence and the overall algorithm speed. 

Note that, the electrode voltages and currents in (80) are related to the 
discretized electrode potential and current density distribution in (85) via, 

* = UV = U G " 1 ! , (90) 

and 

I = b2\JTi, (91) 

where U is a (PN) x P rectangular matrix, 

f l ii,l+N(j-l)<i<Nj 
lJ \ 0 otherwise, i = 1,2,. . . ,PN, j = 1,2,. . . ,P. K ' 

Thus, using (90), Eq. (85) can be uniquely inverted once either the 
P — 1 electrode voltages or electrode currents are specified (Eqs. (81)-(83)). 
Furthermore, upon utilizing (91) as well, the conductance matrix G is 
completely determined via L _ 1 

G = 6 2 U T L- 1 U. (93) 
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3.4. Electrode array excitation of layered biological tissue: 
numerical simulations 

The hybrid image series and moment method scheme that has been out
lined in the previous sections is applied herein for numerical calculations. 
The simulations are selected to address simple, yet fundamental, concepts 
associated with low-frequency interaction between electromagnetic field and 
biological tissues. Thereby, they demonstrate the potential promise of the 
hybrid scheme that is capable of efficiently handling 3-D problems in lay
ered media excited by an array of finite electrodes of arbitrary (generally 
non-planar) shape. 

Since, all of the calculations are carried out for the physical configuration 
depicted in Fig. 7 where zv = z\ = 0, p = 1,2,. . . , P (zp is a component of 
rp = (xp, yp, zp)), to = 0, and o\ = 0 (air layer), the expression for Q\(y, r ') 
in (59) has to be modified in accordance with the identity, 

1+/Ci 1-/Ci ,. l + £ i 2 
= , hm = —. (94) 

0~\ (72 <TI—»0 (J\ <J<2 

Furthermore, the simulations are calculated assuming perfect conduct
ing electrode plates discretized as b = 0.05a (N = (a/b)2 = 400) and 
the following typical FES parameters [32]: n = 4, G\ = 0 (air), <Ji = 
0.4 S/m (wet skin), 03 = 0.04 S/m (fat), 04 = 0.7 S/m (muscle), 0$ = 
0.07 S/m (bone/fascia), z\ = 0, zi = 0.005 m, Z3 = 0.01 m, Z4 = 0.04 m. 

3.4.1. Potential map 

The potential in the mth layer (m = 1,2,... ,n + 1) is obtained via (76) 
through discretization of (77), 

b2 PN 

*m(r) = — V^fc£m(r,rfc), rfe € Sp, (95) 

where ik is a component of the PiV-dimensional vector i in (85) and 
Sm(r, rfe) is the corresponding mth layer Green's function. The current 
density J(r) and electric field E(r) are related via J(r) = a(z)E(r) and 
E(r) = —V$(r), respectively, and obtained through explicit (analytic) 
closed-form differentiation of $(r) and £/(r, rp) (i.e. term by term differ
entiation of the image series expansion). This is more accurate and stable 
than the numerical differentiation generally used in other solution schemes. 
A sketch of the computational algorithm is depicted in Fig. 8. 



350 Biomathematics: Modelling and Simulation 

Conductance 
matrix Eq(92) 

G=[cy 

I 
Moment Operator 

inversion 
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I 
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I=GV, or 
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Potential Eq(94) 
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Field Vectors 
Em(r) 
Jm(r) 

Fig. 8. Block scheme of the algorithm: (1) The kernel (Green's function) expanded 
in image series; (2) Moment matrix elements calculated through analytical integration 
of the image terms; (3) Moment matrix inversion; (4) Impedance matrix calculation; 
(5) Electrode current density distribution calculation; (6) Potential or field distribution 
at any point in any layer calculation. Note that we use image expansion on two different 
occasions: (a) To obtain the electrode current density distribution (using the image series 
expansion corresponding to the layer where the electrode array is placed), and (b) to 
obtain, after moment matrix inversion, the potential at any layer, using the image series 
expansion corresponding to that layer. Image series can be analytically differentiated to 
obtain the electric field and current density vectors. Since the impedance matrix depends 
only on the problem geometry, we need to perform matrix inversion only once, and then 
study the electrode array current—voltage relation for any given input voltage or current. 

The potential distribution and vector plot of the x — y components of 
the electric field, depicted in Fig. 9, is calculated for a four electrode array 
P = 4, PN = 4 x 400 = 1600, m = 1 and electrode size a = 0.04m. The 
map illustrates efficiently the complete excitation status of the biological 
tissue at the electrode plane zp = z\ = 0, p = 1,2,3,4. The electrode 
x — y spacings and the electrode potentials V are specified in Fig. 9. The 
plot of the x — y projection of the field vector E(r) is obtained through 
explicit (analytic) closed-form differentiation of $(r) and £?m(r, r-fc) in (95), 
i.e. term by term differentiation of the image series expansion. The method 
is illustrated for the case of a two electrodes. 
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Fig. 9. Potential map and vector plot of the x — y components of the electric field 
for a four-electrode array at z = zp — z\ = 0, p = 1,2,3,4. The electrodes' size are 
ap = 0.04ro, their x — y centers are x = (xi,X2,X3,Xi) = (0.1,0.1,0.1,0.2) [m], y = 
{yi,V2,y3,y4) = (0.05,0.15,0.25,0.15)[m], and their potentials are V = ( -0 .5 ,0 .5 , -0 .5 , 
0.5)[V], respectively. 

3.4.2. Two-electrode configuration 

We focus here on the dependence of electrode array and biological tissue 
interaction on the following three parameters: 1. electrode size, 2. electrode 
separation, 3. number of layers and their conductivities. The array config
uration, therefore, is reduced to the simplest possible, i.e. a two-electrode 
system. 

We focus herein on the evaluation of the conductance matrix elements 
Gn and G12 in (93) as well as the electrode input admittance Gin, given via, 

°™ = y^Zy[ = | ( G n - G i2) , (96) 

for the symmetrical two-electrode problem (Vi = — Vi & G n = G22, 
Eq. (83)). The dependence of G i i / G n m a x , G i 2 /G i i m a x and G i n /G i i m a x on 
the electrodes' normalized center spacing d/a > 1, is given in Fig. 10. Note 
that for d/a > 3, there is practically no interaction between the electrodes, 
i.e. G12 = 0, and G n reaches the single electrode limit. The normalized 
conductivity dependence on either a^ or 0-3 is depicted in Figs. 11 and 12, 
respectively. While the conductivities strongly depend on the skin layer 
conductivity (c^), that is in contact with the electrode array, the some
what more moderate dependence on the fat layer conductivity (as) cannot 
be ignored. 
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Fig. 10. Dependence of the normalized electrodes input conductance (Gj n in Eq. (96), 
dashed line) and conductance matrix elements (Gi i solid line and G12 dotted-dashed 
line, Eq. (93)) on the normalized distances between the electrode centers. 
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Fig. 11. Dependence of the normalized electrodes input conductance (dashed line, 
Eq. (96)) and conductance matrix elements G n (solid line) and G12 (dotted-dashed 
line, Eq. (93)) on the second layer conductivity, (T2, (skin). 

4. Conclusion 

A major outcome from this work was a novel image series expansion scheme 
for quasistatic Green's function in media with arbitrary number of layers. 
The expansions utilized a unique recursive representation for Green's func
tion that is a generic characteristic of the stratification and were explicitly 
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Fig. 12. Dependence of the normalized electrodes input conductance (dashed line, 
Eq. (96)) and conductance matrix elements (Gii solid line) and G n dotted-dashed 
line, Eq. (93) on the third layer conductivity, 173 (fat). 

constructed for multilayer media. Our recursive construction allowed us to 
prove analytically, to our knowledge for the first time, the convergence of 
n-layer image series under general conditions. 

The numerical simulations demonstrated the importance of appropriate 
modeling of the tissue layers for FES application. The proposed hybrid 
model was shown capable to handle effectively layered medium problems 
with any number of layers. Thus a decision whether a particular layer should 
be included in the model could be accurately made. 

The efficient handling of 3-D problems was achieved with the finite 
electrode arrays of arbitrary (generally non-planar) geometry due to the 
following: (a) The moment matrix elements were expressed explicitly via 
the analytical integration of image series terms combined with an asymp
totic truncation error estimation; (b) The field was obtained through an 
analytic closed-form differentiation of the potential (i.e. term by term dif
ferentiation of the image series expansion); (c) Utilization of complex con
ductivity enabled generation of low-frequency field data for layered media 
rather than for the DC component only. 

The inclusion of a collective image term, representing a closed form 
asymptotic expression of the series remainder integral, significantly accel
erated the image series convergence and the overall algorithm speed. The 
numerical simulations signify the importance of the appropriate model
ing of the tissue layers. Oversimplified models in FES problems, utilizing 
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a reduced number of layers, may result in inaccurate simulations, which 
greatly deviate from the real problem. Since our hybrid model can effec
tively handle layered medium problems with any number of layers, a deci
sion whether a particular layer should be included in the model can be 
accurately made. The simulation results can be readily implemented for 
the classification, calibration, verification and interpretation of reported 
numerical and experimental data. The proposed computational procedure 
can thus be used as a simple tool for producing analytical data for testing 
numerical subroutines applied to simulate direct (FES) and inverse (bio 
electromagnetic imaging) problems in biomedical application. 
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CHAPTER 13 

DYNAMICS OF H U M A N O I D ROBOTS: 
GEOMETRICAL A N D TOPOLOGICAL DUALITY 

VLADIMIR G. IVANCEVIC 

Defence Science & Technology Organization 
Adelaide, Australia 

vladimir. Ivancevic@dsto. defence.gov. au 

Humanoid robots are human-like, anthropomorphic mechanisms with biody-
namics that resembles human musculo-skeletal dynamics. The present chapter 
enlightens the underlying unique global mathematical structure beneath the 
general humanoid dynamics (HD, for short). It presents a parallel development 
of Hamiltonian and Lagrangian formulations of HD, proves both differential-
geometrical and algebraic-topological dualities between these two formulations, 
and finally establishes a unique functorial relation between HD-geometry and 
HD-topology. 

1. Introduction 

Highly complex, many-degree-of-freedom dynamics of humanoid robots 
resembles human motion dynamics (see [10] for technical details on 
biomechanically-realistic HD). Since the early papers of Vukobratovic 
[25-30], the vast body of research has been done in relation to kinemat
ics, dynamics and control of anthropomorphic robots [1, 6, 8, 9, 12, 18, 
22-24]. Some of the biped models had the ability of passive dynamic walk
ing [15] and others had powered walking ability [16]. The previous decade 
was dominated by various solutions to the kinematic problems of redun
dancy and singularities [31, 21]. The last decade of the twentieth century 
has been characterized mostly by extensive use of intelligent, adaptive, 
neuro-fuzzy-genetic control of HD [2, 5, 7, 17, 19, 20]. 

The present chapter uncovers the underlying unique global geometrico-
topological structure beneath the HD. It presents a parallel development 
of Hamiltonian and Lagrangian formulations of dissipative, muscle-driven 
HD (see [10]), proves both differential-geometrical and algebraic-topological 
dualities between these two formulations, and finally establishes a unique 
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functorial relation between HD-geometry and HD-topology (see [13] for the 
modern unifying mathematical language of categories, functors and natural 
equivalences). 

The finite-dimensional configuration manifold QN of HD is constructed 
using direct products of constrained rotational Lie groups. Lagrangian 
formulation of HD is performed on the tangent bundle TQN, while 
Hamiltonian formulation is performed on the cotangent bundle T*QN. 
Both Riemannian and symplectic geometry are used for these formulations. 
The geometrical duality (see [11, 3]) of Lie groups and algebras between 
these two HD-formulations is proved as an existence of natural equiva
lence between Lie and canonical functors. The topological duality (see [4]) 
between these two HD-formulations is proved as an existence of natural 
equivalence between Lagrangian and Hamiltonian functors in both homol
ogy and cohomology categories. 

2. Topological Preliminaries 

In topology of finite-dimensional smooth (i.e. C p + 1 with p > 0) manifolds, 
a fundamental notion is the duality between p-chains C and p-forms (i.e., 
p-cochains) w on the smooth manifold M, or domains of integration and 
integrands — as an integral on M represents a bilinear functional Jc w = 
(C, w) (see [3] and [4]). The duality is based on the classical Stokes formula 

I du = I uj. 
JC JdC 

This is written in terms of scalar products on M as (C, dw) = (dC, w), where 
dC is the boundary of the p-chain C oriented coherently with C. While the 
boundary operator d is a global operator, the coboundary operator, that is, 
the exterior derivative d, is local, and thus more suitable for applications. 
The main property of the exterior differential, 

d2 = 0 implies d2 = 0, 

can be easily proved by the use of Stokes' formula 

(d2C,u) = {dC,cLo) = (C,d2uj) = 0. 

The analysis of p-chains and p-forms on the finite-dimensional smooth 
manifold M is usually performed in (co)homology categories (see [4]) 
related to M. 

Let M* denote the category of cochains, (i.e., p-forms) on the smooth 
manifold M. When C = M*, we have the category S'(M') of generalized 
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cochain complexes A' in A4°, and if A'n = 0 for n < 0 we have a subcategory 
S£,n(M') of De Rham differential complexes in M' 

A'DR : 0 -» fi°(M) - i fi*(M) £ n 2 (M) 

• • • - i f i n ( M ) - i . . . . (1) 

Here A'n = Q.n(M) is the vector space over R of all p-forms w on M (for 
p = 0 the smooth functions on M) and dn = d: Qn~1{M) —> fi™(M) is the 
exterior differential. A form w G fl™(M) such that rfa; = 0 is a closed form or 
n-cocycle. A form u G ft"(M) such that w = d9, where 6 G fin_1(M), is an 
exact form or n-coboundary. Let Zn(M) = Ker(d) (resp. Bn(M) = Im(d)) 
denote a real vector space of cocycles (resp. coboundaries) of degree n. Since 
dn+idn = d2 = 0, we have Bn(M) C Zn(M). The quotient vector space 

HlR{M) = Ker(d)/Im(d) = Zn{M)/Bn{M) 

is the de Rham cohomology group. The elements of HpR(M) represent 
equivalence sets of cocycles. Two cocycles u>i, a>2 belong to the same equiv
alence set, or are cohomologous (written u>i ~ W2) if a n <i only if they differ 
by a coboundary u>i — W2 = d6. The De Rham cohomology class of any form 
w G D.n(M) is [w] G # g f i ( M ) . The De Rham differential complex (1) can 
be considered as a system of second-order differential equations d26 = 0, 
9 G fin_1(M) having a solution represented by Zn(M) = Ker(d). 

Analogously let M., denote the category of chains on the smooth mani
fold M. When C = M,, we have the category S,(M,) of generalized chain 
complexes A, in M,, and if An = 0 for n < 0 we have a subcategory 
St(M,) of chain complexes in A4, 

A. : 0 <- C°(M) £ C\M) £- C2(M) 

• •• 2- cn(M) £ . . . . 

Here A„ = Cn(M) is the vector space over R of all finite chains C on the 
manifold M and dn = d : Cn+1(M) -> C n (M) . A finite chain C such that 
9C = 0 is an n-cycle. A finite chain C such that C — dB is an n-boundary. 
Let Zn(M) = Ker(d) (resp. Bn{M) = Im{d)) denote a real vector space 
of cycles (resp. boundaries) of degree n. Since dn+idn — d2 = 0, we have 
Bn(M) C Zn{M). The quotient vector space 

H%(M) = Ker(d)/Im(d) = Zn(M)/Bn(M) 

is the n-homology group. The elements of H£(M) are equivalence sets 
of cycles. Two cycles C\, Ci belong to the same equivalence set, or are 
homologous (written C\ ~ C2), if and only if they differ by a boundary 
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Ci-C2 = dB). The homology class of a finite chain C G Cn(M) is [C] G 

The dimension of the n-cohomology (resp. n-homology) group equals the 
nth Betti number bn (resp. bn) of the manifold M. Poincare lemma says 
that on an open set U&M diffeomorphic to RN, all closed forms (cycles) 
of degree p > 1 are exact (boundaries). That is, the Betti numbers satisfy 
bv = 0 (resp. bp = 0) for p = 1 , . . . , n. 

The De Rham theorem states the following. The map $: Hn x Hn —> R 
given by ([C], [w]) —> (C, w) for C G Zn, u> G Z " is a bilinear nondegenerate 
map which establishes the duality of the groups (vector spaces) Hn and Hn 

and the equality bn = bn. 

3. HD-Configuration Manifold and Its Reduction 

3.1. Configuration manifold 

Kinematics of an n-segment humanoid chain is usually defined as a map 
between external (usually, end-effector) coordinates xr(r = l , . . . , n ) and 
internal (joint) coordinates q%{i = 1,...,N) (see [10]). The forward kine
matics are defined as a nonlinear map xT = xr(ql) with a correspond
ing linear vector functions dxr = dxr /dqldq% of differentials: and xr = 
dxr/dql q% of velocities. (Here and subsequently the summation convention 
over repeated indices is understood.) When the rank of the configuration-
dependent Jacobian matrix J = dxr /dql is less than n the kinematic 
singularities occur; the onset of this condition could be detected by the 
manipulability measure. Inverse kinematics are defined conversely by a 
nonlinear map q% = q%{xr) with a corresponding linear vector functions 
dql = dq%/dxr dxr of differentials and ql = dql/dxr xr of velocities. Again, 
in the case of redundancy (n < N), the inverse kinematic problem admits 
infinite solutions; often the pseudo-inverse configuration-control is used 
instead: ql = J* xr, where J* = JT(JJ ) _ 1 denotes the Moore-Penrose 
pseudo-inverse of the Jacobian matrix J . 

Humanoid joints, that is, internal coordinates ql (i = l,...,N), con
stitute a smooth configuration manifold QN, described as follows. Uniax
ial, "hinge" joints represent constrained, rotational Lie groups SO(2Ycnstr, 
parameterized by constrained angles q%

cnstr = ql G [ql
min, <7max]- Three-

axial, "ball-and-socket" joints represent constrained rotational Lie groups 
SO(3Ycnstr, parameterized by constrained Euler angles q% = qtnstr ( m t n e 

following text, the subscript "cnstr" will be omitted, for the sake of sim
plicity, and always assumed in relation to internal coordinates q%). 
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All 50(n)-joints are Hausdorff C^-manifolds with atlases (Ua, ua); 
in other words, they are paracompact and metrizable smooth manifolds, 
admitting Riemannian metric. 

Let A and B be two smooth manifolds described by smooth atlases 
(Ua,ua) and (Vp,vp), respectively. Then the family (Ua x Vp,ua x vp : 
Ua x V0 -> Rm x M.n)(a,P) G A x B is a smooth atlas for the direct 
product A x B. Now, if A and B are two Lie groups (say, SO(n)), then 
their direct product G = A x B is at the same time their direct product 
as smooth manifolds and their direct product as algebraic groups, with the 
product law 

(ai ,&i)(a2 ,62) = (0102,6162), o i , 2 G A, 61,2 G B. 

Generalizing the direct product to N rotational joint groups, we can 
draw an anthropomorphic product-tree (see Fig. 1) using a line segment "-" 
to represent direct products of humanoid's 50(n)-joints. This is our basic 
model of the humanoid configuration manifold QN. 

Let TqQ
N be a tangent space to QN at the point q. The tangent bundle 

TQN represents a union \Jq€QN TqQ
N, together with the standard topology 

on TQN and a natural smooth manifold structure, the dimension of which 
is twice the dimension of QN. A vector field X on QN represents a section 
X : QN -» TQN of the tangent bundle TQN. 

SO (3) 
SO (3) 

I 
SO (2) 

SO (3) 

-SO(3) 
I 

SO(2) 

SO(3) SO(3) 

SO(3) 1 SO (3) 

SO(2) SO (2) 

SO(3) SO (3) 

Fig. 1. Configuration HD-manifold QN modeled as anthropomorphic product-tree of 
constrained SO(n) groups. 
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Analogously let T*QN be a cotangent space to QN at q, the dual to 
its tangent space TqQ

N. The cotangent bundle T*QN represents a union 
\JqeQN TqQN, together with the standard topology on T*QN and a natural 
smooth manifold structure, the dimension of which is twice the dimension 
of QN. A one-form 0 on QN represents a section 6 : QN —• T*QN of the 
cotangent bundle T*QN. 

We refer to the tangent bundle TQN of HD configuration manifold QN 

as the velocity phase-space manifold, and to its cotangent bundle T*QN as 
the momentum phase-space manifold. 

3.2. Reduction of the configuration manifold 

The HD-configuration manifold QN (Fig. 1) can be (for the sake of the 
brain-like motor control [19, 20]) reduced to iV-torus TN, in three steps, as 
follows. 

First, a single three-axial 50(3)-joint can be reduced to the direct prod
uct of three uniaxial 50(2)-joints, in the sense that three hinge joints can 
produce any orientation in space, just as a ball-joint can. Algebraically, this 
means reduction (using symbol ">") of each of the three 50(3) rotation 
matrices to the corresponding 50(2) rotation matrices 

. , \ . / cos <b — sin <b 
0 cos© — sin® £ . , i 

. i , / Vsino!) cos® 
v0 sin0 coscp/ 

cost/; 0 sin ib \ . . . . 

o i o > (cost smV: 
, / V—sinw cosi/> 

—smip 0 cosV/ 

'cos0 — sin# 0 \ , . . . 
n „ I ^ / cose' — sinfl 

sin6» cos6» 0 > 
0 0 1 

sin 6 cos 6 

In this way we can set the reduction equivalence relation 50(3) > 
SO(2)(f> x 50(2),/, D< 50(2)0, where K denotes the noncommutative semidi-
rect product. 

Second, we have a homeomorphism: 50(2) ~ 5 1 , where 5 1 denotes the 
constrained unit circle in the complex plane, which is an Abelian Lie group. 

Third, let IN be the unit cube [0,1]N in RN and "~" an equivalence 
relation on RN obtained by "gluing" together the opposite sides of IN, pre
serving their orientation. The manifold of humanoid configurations depicted 
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in Fig. 1 can be represented as the quotient space of RN by the space of the 
integral lattice points in M.N, that is a constrained iV-dimensional torus TN: 

N 

RN/ZN =IN/~^Y[SI 

= {(q\i = l,...,N): mod 2TT} = TN. 

Since 5 1 is an Abelian Lie group, its iV-fold tensor product TN is also an 
Abelian Lie group, the toral group, of all nondegenerate diagonal N x N 
matrices. As a Lie group, the HD-configuration space QN = TN has a 
natural Banach manifold structure with local internal coordinates ql £ U, 
U being an open set (chart) in TN. 

Conversely by "ungluing" the configuration space we obtain the primary 
unit cube. Let "~*" denote an equivalent decomposition or "ungluing" rela
tion. By the Tychonoff product-topology theorem, for every such quotient 
space there exists a "selector" such that their quotient models are homeo-
morphic, that is, T i V / ~ * « A jV/~*. Therefore IN represents a "selector" 
for the configuration torus TN and can be used as an TV-directional 
"command-space" for the topological control of humanoid motion. Any 
subset of degrees of freedom on the configuration torus TN representing 
the joints included in humanoid motion has its simple, rectangular image 
in the command space — selector IN. Operationally, this resembles what 
the brain-motor-controller, the cerebellum, actually performs on the highest 
level of human motor control (see [20]). 

4. Geometrical Duality in Humanoid Dynamics 

Theorem 1. There is a geometrical duality between Lagrangian and 
Hamiltonian HD]-formulations on QN. In categorical terms, there is a 
unique natural geometrical equivalence 

Dualc : L ie = Can 

in HD (symbols are described in the next subsection). 

Proof. The proof has two parts: Lie-functorial and geometrical. • 

4.1. Lie-functorial proof 

If we apply the functor L ie on the category <S* [SO(n)1] (for n = 2,3 and i = 
1,...,N) of rotational Lie groups SO(n)1 (and their homomorphisms) we 
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obtain the category S,[so(n)i] of corresponding tangent Lie algebras so(n)i 
(and their homomorphisms). If we further apply the isomorphic functor 
Dual to the category S,[so(n)i] we obtain the dual category <S^[so(n)*] of 
cotangent, or, canonical Lie algebras so(n)* (and their homomorphisms). 
To go directly from <S*[SO(n)*] to S*[so(n)*} we use the canonical functor 
Can. Therefore, we have a commutative triangle: 

S'[SO(ny] 

S.[*o(n)t] D u = 1 ^ >S;[so(n)*] 

Applying the functor L i e on HD-configuration manifold QN (Fig. 1), 
we get the product-tree of the same anthropomorphic structure, but having 
tangent Lie algebras so(n)i as vertices, instead of the groups SO(n)1. Again, 
applying the functor Can on QN, we get the product-tree of the same 
anthropomorphic structure, but this time having cotangent Lie algebras 
so(n)* as vertices. Both the tangent algebras so(n)i and the cotangent 
algebras so(n)* contain infinitesimal group generators: angular velocities 
q1 = q't'i — in the first case, and canonical angular momenta pi = p^ — in 
the second case [10]. As Lie group generators, both the angular velocities 
and the angular momenta satisfy the commutation relations: [q^, q^*] = 
eg q9i and [p^ytyj = c^ipPOn respectively, where the structure constants 
eg and e]L, constitute the totally antisymmetric third-order tensors. 

In this way, the functor Dualc : L ie = Can establishes the unique geo
metrical duality between kinematics of angular velocities q% (involved in 
Lagrangian formalism on the tangent bundle of QN) and kinematics of 
angular momenta pi (involved in Hamiltonian formalism on the cotan
gent bundle of QN), which is analyzed below. In other words, we have 
two functors, L ie and Can, from the category of Lie groups (of which 
S'[SO(n)1] is a subcategory) into the category of (their) Lie algebras (of 
which S,[so(n)i] and S*[so(n)*] are subcategories), and a unique natu
ral equivalence between them defined by the functor Dualc. (As angular 
momenta pi are in a bijective correspondence with angular velocities ql, 
every component of the functor Dualc is invertible.) • 
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4.2. Geometrical proof 

Geometrical proof is given along the lines of Riemannian and symplectic 
geometry of mechanical systems (see [10] and [14]), as follows. The Rieman
nian metric g = (,) on the configuration manifold QN is a positive-definite 
quadratic form g : TQN —• R, given in local coordinates ql G U (U open in 
QN)as 

9ij ^> gij(q,m)dqldqj. 

Here 

i \ V^ x dxr dx" 

ti=i 

is the covariant material metric tensor defining a relation between internal 
and external coordinates and including n segmental masses mM. The quan
tities xr are external coordinates (r,s = 1 , . . . , 6n) and i,j = 1 , . . . ,N = 
6n — h, where h denotes the number of holonomic constraints. 

The Lagrangian of the system is a quadratic form L : TQN —* R depen
dent on velocity v and such that L(v) = j{v,v). It is given by 

L(v) = ^9ij{l'm)v%v:' 

in local coordinates ql,vl = ql G Uv (Uv open in TQN). The Hamiltonian 
of the system is a quadratic form H : T*QN —> R dependent on momentum 
p and such that H(p) = ^{p,p}. It is given by 

H(p) = -gv(q,m)pip:j 

in local canonical coordinates ql,p% G Up (Up open in T*QN). The inverse 
(contravariant) metric tensor is defined as 

(i=i 

For any smooth function L on TQN, the fiber derivative or Legendre 
transformation is a diffeomorphism FL : TQN -> T*QN, F(w) • v = (w, v), 
from the momentum phase-space manifold to the velocity phase-space man
ifold associated with the metric g = (,). In local coordinates ql, v% = ql G Uv 

(Uv open in TQN), FL is given by (q%,v*) i-> (qi,Pi). 
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On the momentum phase-space manifold T*QN exists: 

(i) A unique canonical one-form OH with the property that, for any one-
form (3 on the configuration manifold QN, we have (3*0H = P- In local 
canonical coordinates qx,p% € Up (Up open in T*QN) it is given by 
OH = Pidq\ 

(ii) A unique nondegenerate Hamiltonian symplectic two-form w#, which 
is closed (dwn = 0) and exact (UJH = dOn = dpi A dq%). Each body 
segment has, in the general SO(3) case, a sub-phase-space manifold 
T*SO(3) with 

uiH = dp,/, A dcp + dp^ A dip + dp$ A dO. 

Analogously, on the velocity phase-space manifold TQN exists: 

(i) A unique one-form Oj,, defined by the pull-back 6L = (FL) * 6H of OH 
by FL. In local coordinates ql,vl = ql £ Uv (Uv open in TQN) it is 
given by 9L = Lvidql, where Lvi = dL/dv%. 

(ii) A unique nondegenerate Lagrangian symplectic two-form CJL, defined 
by the pull-back UJL = (FL) * UJH of UJH by FL, which is closed (duj, — 
0) and exact (WL = dOi, = dLv% A dq%). 

Both T*QN and TQN are orientable manifolds, admitting the standard 
volumes given respectively by 

( - 1 ) ^ + 1 2 
^UJH = ^ j w ^ , and 

O ( - 1 ) ' - ^N 
W(1V + 1) 

I ; 
N\ 

in local coordinates q\pi G Up (Up open in T*QN), resp. ql,vl = ql £ Uv 

(Uv open in TQN). They are given by 

QH — dq1 A • • • A dqN A dpi A • • • A dp^, and 

SlL=dq1 A---A dqN A dv1 A • • • A dvN. 

On the velocity phase-space manifold TQN we can also define the action 
A : TQN -* R by A(v) = FL(v) • v and the energy E = A - L. In local 
coordinates qi,vi = q1 G Uv (Uv open in T<5W) we have A = vlLvi, so 
E = viLvi — L. The Lagrangian vector field XL on TQN is determined 
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by the condition ixL^L = dE. Classically, it is given by the second-order 
Lagrange equations 

d dL _ dL . . 
dtdv1 = d~q1' *• ' 

The Hamiltonian vector field XH is defined on the momentum phase-
space manifold T*QN by the condition ixHu = dH. The condition may be 
expressed equivalently as XH = JVH, where 

' " ( J 0 
In local canonical coordinates ql,Pi € Up (Up open in T*QN) the vector field 
XH is classically given by the first-order Hamilton's canonical equations 

q ~ dPi'
 Pl~ dqf ( 3 ) 

As a Lie group, the configuration manifold QN is Hausdorff. There
fore for x = (ql,Pi) € Up (Up open in T*QN) there exists a unique 
one-parameter group of diffeomorphisms (fit '• T*QN —» T*QN such that 
•§l\t=o<fitx = JVH(x). This is termed Hamiltonian phase flow and repre
sents the maximal integral curve 11—> (q%(t), Pi(t)) of the Hamiltonian vector 
field XH passing through the point x for t = 0. 

The flow (fit is symplectic if UJH is constant along it (that is, cfilOJH = 
LJH) if and only if its Lie derivative vanishes (that is, LXH<^H = 0). A 
symplectic flow consists of canonical transformations on T*QN, that is, 
local diffeomorphisms that leave UH invariant. By Liouville's theorem, a 
symplectic flow (fit preserves the phase volume on T*QN. Also, the total 
energy H = E of the system is conserved along (fit, that is, H o (fit = (fit. 

Lagrangian flow can be defined analogously (see [14]). 
For a Lagrangian (resp. a Hamiltonian) vector field XL (resp. XH) 

on QN, there is a base integral curve co(i) = (ql(t),vl(t)) (resp. co(t) = 
(q'l(t),pi(t))) if and only if co(t) is a geodesic. This is given by the con-
travariant velocity equation 

qi=vi, vi+Ti
jkv

jvk = 0 (4) 

in the former case and by the covariant momentum equation 

Qk = 9kiPu 

Pi + ri
jkg

jlgkmpiPm = 0 
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in the latter. Here r*-fe denote the Christoffel symbols of an affine connection 
in an open chart U on QN, defined on the Riemannian metric g = (,) by 

r _ 1 fdgki dgjt dgjk\ 
3kl~ 2\dqi + dqk dtf J' 

The left-hand sides if = vi + Ti
jkv

:ivk (resp. p~i = pi+Ti
:Jkg

:ilgkmpipm) in 
the second parts of (4) and (5) represent the Bianchi covariant derivative 
of the velocity (resp. momentum) with respect to t. Parallel transport on 
QN is defined by bl = 0, (resp. pt — 0). When this applies, Xi (resp. XH) 
is called the geodesic spray and its flow the geodesic flow. 

For the dynamics in the gravitational potential field V : QN —> R, the 
Lagrangian L : TQN -> E (resp. the Hamiltonian H : T*QN -> K) has an 
extended form 

L{v,q) = -gijVlv3 -V(q), 

(resp. H(p,q) = -gijPiPj + V{q)). 

A Lagrangian vector field XL (resp. Hamiltonian vector field XH) is 
still defined by the second-order Lagrangian equations (2) and (4) (resp. 
first-order Hamiltonian equations (3) and (5)). 

The fiber derivative FL : TQN —> T*QN thus maps Lagrange's equa
tions (2) and (4) into Hamilton's equations (3) and (5). Clearly there exists 
a diffeomorphism FH : T*QN -> TQN, such that FL = {FH)-\ In 
local canonical coordinates qx,Pi e Up (Up, open in T*QN) this is given 
by (q*,Pi) •—* (ql,vl) and thus maps Hamilton's equations (3) and (5) into 
Lagrange's equations (2) and (4). 

A general form of the forced, non-conservative Hamilton's equations 
(resp. Lagrange's equations) is given as 

q=dp-' « = - a ? + iW'«,'«>' 
d dL dL 4 t \ 

Here the Fi(t,ql,pi) (resp. Fi(t,ql,v1)) represent any kind of covariant 
forces, including dissipative and elastic joint forces, as well as actuator 
drives and control forces, as a function of time, coordinates and momenta. 
In covariant form we have 

• k ki 

q = g Pi, 
+ Ti

jkg
jlgkmpipm = Fi(t,q

i,Pi), 



Humanoid Dynamics 371 

(resp. ql = vl, 

vi + Ti
jkv^vk=giiFj(t,q

i,vi)). n 

This proves the existence of the unique natural geometrical equivalence 

Dualc : Lie = Can 

inHD. 

5. Topological Duality in Humanoid Dynamics 

In this section we want to prove that HD can be equivalently described in 
terms of two topologically dual functors Lag and Ham, from Di f f , the cat
egory of smooth manifolds (and their smooth maps) of class Cp, into Bund, 
the category of vector bundles (and vector-bundle maps) of class Cp~1, 
with p > 1. Lag is physically represented by the second-order Lagrangian 
formalism on TQN e Bund, while Ham is physically represented by the 
first-order Hamiltonian formalism on T*QN S Bund. 

Theorem 2. There is a topological duality between Lagrangian and 
Hamiltonian formalisms on QN (Figure 1). In categorical terms, there is a 
unique natural topological equivalence 

Dualy : Lag = Ham 

inHD. 

Proof. The proof has two parts: cohomological and homological. 

5.1. Cohomological proof 

If C = H'M (resp. C = CM) represents the Abelian category of cochains 
on the momentum phase-space manifold T*QN (resp. the velocity phase-
space manifold TQN), we have the category S*(H*M) (resp. S'(CM)) of 
generalized cochain complexes A' in H'M (resp. CM) and if A'n = 0 for 
n < 0 we have a subcategory S^,n(Ti*M) (resp. S^,n(CM)) of De Rham 
differential complexes in S'(H'M) (resp. S*(CM)) 

A'DR:0^n°{T*QN)±n\T*QN) 

-i n2(T*QN) -i • • • -i £lN(T*QN) 4 • • • 

(resp. 

A'DR : 0 -> n°(TQN) 4 Q\TQN) 4 tf(TQN) 4 

•••±nN(TQN)^---), 
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where A'N = Q.N{T*QN) (resp. A'N = nN{TQN)) is the vector space of all 
TV-forms on T*QN (resp. TQN) over R. 

Let ZN(T*QN) = Ker(d) (resp. ZN(T) = Ker{d)) and BN(T*QN) = 
Im(d) (resp. BN(TQN) = Im(d)) denote respectively the real vector spaces 
of cocycles and coboundaries of degree N. Since d/v+i^/v = d2 = 0, it 
follows that BN(T*QN) c ZN(T*QN) (resp. BN(TQN) c ZN(TQN)). 
The quotient vector space 

H%R(T*QN) = Ker(d)/Im(d) = ZN {T*QN)/BN {T*QN) 

(resp. H»R(TQN) = Ker(d)/Im(d) = ZN(TQN)/BN(TQN)), 

we refer to as the De Rham cohomology group (vector space) of HD on 
T*QN (resp. TQN). The elements of H%R(T*QN) (resp. H%R(TQN)) are 
equivalence sets of cocycles. Two cocycles u>i and u>2 are cohomologous, or 
belong to the same equivalence set (written wi ~ W2) if and only if they 
differ by a coboundary wi — U2 — d6. Any form OJH S ClN(T*QN) (resp. 
wL e QN(TQN) has a De Rham cohomology class [w//] G H%R(T*QN) 
(resp. [WL] G H»R{TQN)). 

Hamiltonian symplectic form w/j = dpi A dq'i on T*QN (resp. 
Lagrangian symplectic form CJL = dLv% A dql on TQN) is by definition both 
a closed two-form or two-cocycle and an exact two-form or two-coboundary. 
Therefore the two-dimensional De Rham cohomology group of humanoid 
motion is denned as a quotient vector space 

H2
DR(T*QN) = Z2{T*QN)/B2(T*QN) 

(resp. H2
DR{TQN) = Z2(TQN)/B2(TQN)). 

As T*QN (resp. TQN) is a compact Hamiltonian symplectic (resp. 
Lagrangian symplectic) manifold of dimension 2N, it follows that ui^ (resp. 
U>L) is a volume element on T*QN (resp. TQN), and the 2 TV-dimensional De 
Rham cohomology class [w#] € H2^R{T*QN) (resp. [wf ] e H%N

R(TQN)) 

is nonzero. Since [w$] = [w#] (resp. [w^] = [WL] ), then [w/f] G 
H2

DR(T*QN) (resp. [wL] G H2
DR{TQN)) and all of its powers up to the 

./Vth must be zero as well. The existence of such an element is a neces
sary condition for T*QN (resp. TQN) to admit a Hamiltonian symplectic 
structure U>H (resp. Lagrangian symplectic structure WL). 

A De Rham complex A'DR on T*QN (resp. TQN) can be considered as 
a system of second-order differential equations d26n —0,6H& QN(T*QN) 

(resp. d26L = 0, 0L G flN(TQN)) having a solution represented by 
ZN(T*QN) (resp. ZN(TQN)). In local coordinates q\pi G Up (Up open in 
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T*QN) (resp. q\vi G Uv (Uv open in TQN)) we have d 2 ^ = d2{pidqi) = 
d(dpi A dq1) = 0, (resp. d 2 ^ = d2(Lvidqi) = d(dLvi A dql) = 0). n 

5.2. Homological proof 

If C = H,M, (resp. C = C,M) represents an Abelian category of chains 
on T*QN (resp. TQN), we have a category S.(H,M) (resp. S.(C.M)) 
of generalized chain complexes A, in H,M (resp. £..M), and if A = 0 
for n < 0 we have a sub-category S^(H,M) (resp. <S^(L.M)) of chain 
complexes in 7i,M (resp. £,.M) 

A. : 0 • - C°(T*QN) £• Cl{T*QN) £ C2(T*QN) S-

(resp. 

4 . : 0 <- C°(TQN) £ C\TQN) &• C2(TQN) £ 

•••2-Cn{TQN) £-•••). 

Here AJV = CN(T*QN) (resp. A w = CN(TQN)) is the vector space 
of all finite chains C on T*QW (resp. TQ^) over M, and dN = d : 
CN+1(T*QN) -* CN(T*QN) (resp. 5JV = d : C^+^rQ^) -> CN{TQN)). 
A finite chain C such that dC = 0 is an Af-cycle. A finite chain C 
such that C = dB is an A-boundary. Let ZN(T*QN) = #e r (3 ) (resp. 
ZN{TQN) = Ker(d)) and BN{T*QN) = Im(d) (resp. BN{TQN) = 
Im{d)) denote respectively real vector spaces of cycles and boundaries of 
degree N. Since dN-idN = d2 = 0, then BN{T*QN) C ZN(T*QN) (resp. 
BN(TQN) C ZN{TQN)). The quotient vector space 

H%{T*QN) = ZN(T*QN)/BN(T*QN) 

(resp. H%(TQN) = ZN(TQN)/BN(TQN)) 

represents an N-dimensional homology group (vector space) of humanoid 
dynamics. The elements of H^(T*QN) (resp. H^(TQN)) are equivalence 
sets of cycles. Two cycles C\ and Ci are homologous, or belong to the same 
equivalence set (written C\ ~ C2) if and only if they differ by a boundary 
d - C2 = dB. The homology class of a finite chain C G CN(T*QN) (resp. 
C G CN(TQN)) is [C] G Hg(T*QN) (resp. [C] G H%(TQN)). • 
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Particularly, in the case of the ./V-torus (QN —TN), the Betti numbers 
of HD are given by 

6° = 1, 

b1 = N,...,P= (*),...,b»-l = N, (6) 
P 

bN = 1 (0 < p < N). 

Prom the homotopy axiom for De Rham cohomologies, it follows that 
HDR(QN) « H'DR{TQN) « H'DR(T*QN). Also from the De Rham theorem 
it follows that H})R(X) — H,(X) for any smooth manifold X. Therefore, 
bN = bN are given by (6) for all three HD-manifolds X = TN, TTN, T*TN. 

Therefore, bN = bN are given by (6) for both TN and T*TN, defining 
also their Euler-Poincare characteristic as [3] 

N 

x(TN,T*TN) = J2(-1)Pbr-
P=I 

In this way, we have proved a commutativity of a triangle: 

D i f f 

B u n d ^..=-i v. B u n d 
D u a l y > 

which implies the existence of the unique natural topological equivalence 

Dualr : Lag = Ham 

inHD. 

6. Global Structure of Humanoid Dynamics 

Theorem 3. Global structure of HD is defined by the unique natural 
equivalence 

Dyn : Dualp — Dualr-
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Proof. The unique functorial relation Dyn: DualG = Dualy, uncovering 
the natural equivalence between geometrical and topological structures 
ofHD: 

S'[SO(nY] 

S.[so(n)i] 
Dualfl ^ M » ) i 1 

Dyn 

Diff 

Bund 
Dualy 

Bund 

— has been established by parallel development of Lagrangian and 
Hamiltonian HD-formulations, i.e., functors Lag (Lie ) and Ham(Can). 
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CHAPTER 14 

THE EFFECTS OF BODY COMPOSITION ON ENERGY 
E X P E N D I T U R E A N D WEIGHT DYNAMICS D U R I N G 

HYPOPHAGIA: A SETPOINT ANALYSIS 

FRANK P. KOZUSKO 
Department of Mathematics, Hampton University, Hampton 

Virginia, USA 23668 
frank, kozusko @hamptonu. edu 

1. Introduction 

During hypophagia (under eating) loss of body weight is expected. The 
dynamics of the weight change involve complicated biochemical processes 
that produce changes in our daily energy needs, the amounts of fat and non
fat tissue stored in the body and the energy efficiency at which we function. 
If we consume fewer calories than are required for our daily activities, the 
body is forced to use the energy stored in the fat and nonfat tissues with 
resultant weight loss. Most of the energy will be supplied by the high energy 
density fat mass while a smaller quantity will be supplied by consumption 
of low energy density nonfat body mass. Since it is nonfat that is metabol-
ically active, loss of nonfat reduces the daily required energy, reducing the 
energy deficit. Chemical changes in the body sense the loss of fat, causing 
the appetite to increase. The body becomes more efficient at performing 
its metabolic and physical activities which will further reduce the rate of 
weight loss. Eventually body weight will decrease to the point where there 
is no longer a deficit for the dietary calories provided (unless the intake is 
less than minimum starvation requirements). 

Figure 1 is an energy block diagram. The dotted line to the Out arrow 
indicates the dependence of energy expenditure on the levels of fat and 
nonfat. What the average person understands about this diagram is that a 
3500 Calorie deficit will produce a loss of one pound of fat. Hence, reduce 
your diet by 500 Calories per day and loose a pound per week. This would 

379 
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In(C) 

Eb 

Store/Use , 

Fat/Nonfat | - -

Out (E) 

A * 

. 1 

Fig. 1. Energy block diagram. 

Time 

Fig. 2. Representive weight loss model results. 

produce a constant rate of weight loss as represented by the solid line in 
Fig. 2. However, this concept neglects the change in the energy expenditure 
as well as the fact that not all weight loss is fat. A more refined model 
allows the energy expenditure to decrease in relationship to the decrease in 
weight (dashed line in Fig. 2), with the slope determined by the proportion 
of fat/nonfat in the lost weight. A further refinement would be to model 
the increased energy efficiency achieved during f weight loss (represented 
by the + + + curve in Fig. 2). 

Figure 1 is a block diagram of the law of conservation of energy repre
sented functionally as [1]: 

— (energy stores) = —(energy supplied) — —(energy consumed) 
at at at 

and mathematically as 

dEl 
dt* 

= C* -E*. 

(1) 

(2) 

At times, it will be convenient to conduct analysis using normalized/ 
nondimensionalized parameters. We use * to indicate dimensional param
eters and those without * are nondimensional. Definitions are provided in 
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Table 1. Definition of Terms (reprinted from [2]). 

Term 

E* 

HB 
k* 

k* Kn 
k* 

N* 

o f 

W 

W* 

Definition Nondimensional 

Daily Calorie intake from diet. (Calories/day) C = C*/CQ 
Equilibrium (setpoint) value of C* {C£ = E£). 1 = Cyc^ 
Daily Energy Expenditure. (Calories/day) E = E*/E^ 
Equilibrium (setpoint) value of E* (E£ = C£). 1 = E^/E^ 
Energy stored in the body (Calories) 
Body Fat Weight (Lbs) F = F*/W* 
Equilibrium (setpoint) value of F* FQ = FQ/WQ 
Harris-Benedict 
Energy Density of Fat (Calories/Lb) 
Energy Density of Nonfat (Calories/Lb) 
Nominal Energy Density of Body Weight (Calories/Lb) 
Nonfat Body Weight (Lbs) N = N*/W* 
Equilibrium (setpoint) value of N* N0 = NQ/WQ 
Time (Days) t = f/tf, 
Characteristic Time: f0 = k^W^/E^ 
Total Body Weight (Lbs) W* = F* + N* W = W*/W* 
W = F + N and 1 = F0 + N0 

Equilibrium (setpoint) value of W. 1 = WQ/WQ 

Table 1, reprinted from [2]. C* (Calories/day) is the energy supplied from 
food consumption, assumed to readily determined. It is the modeling of 
the other two components of the energy equation which this chapter will 
explore: (1) How does the body's energy stores (fat/nonfat), E£ (Calories), 
change during a deficit energy balance? and (2) What is the daily energy 
expenditure, E* (Calories/day) for a person experiencing an energy deficit 
induced weight loss? 

2. Modeling Human Daily Energy Expenditure 

The energy expenditure of the human body consist of energy to digest the 
food consumed: Thermic Effect of Food (TE), energy to conduct Physical 
Activity: (PA), and the energy to conduct all other metabolic functions: 
Resting Metabolic Rate (RMR). Percent estimates for sedentary adults 
[3] are TE (10%), PA (20-30%) and RMR (60-70%). The sedentary total 
is called the 24 hour Energy Expenditure (24EE) or the Resting Energy 
Expenditure (REE). Predictive equations usually involve multilinear regres
sions of measured REE versus various combinations of body weight, fat free 
weight, body fat weight, age and gender. Since most of the metabolic activ
ity is carried out by the nonfat mass, models linearly dependent on fat free 
mass are popular. 
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2.1 . Equilibrium models 

The classic Harris-Benedict equations [4], first formulated in 1919 and esti
mating REE based on the subject's age, gender, height and weight, are the 
most common for research and clinical use [5]. Also popular in the litera
ture is the Brody-Kleiber Law where REE is proportional to body weight 
to the 3/4 power [6]. Additional energy expenditure for physical activity is 
directly proportional to body weight [7]. 

These and other models are based on equilibrium conditions and their 
use during nonequilibrium, such as weight loss, have been questioned in 
numerous studies. Leibel et al. [8] reported a decrease in both obese and 
never obese subjects following a 10% weight loss. Foster [9] found a decrease 
in the relative cost of physical activity (walking) following significant weight 
loss. Weigle [10] also found a reduction of the energy requirements of walk
ing even after a weighted vest was used to compensate for the lost weight. 
Stern et al. [11], studying rats, stated that the Brody-Kleiber law might 
not apply in a non-equilibrium state. Other studies of 24EE after weight 
loss showing reduced levels when compared to that anticipated for changes 
in body composition include [12] and [13]. 

2.2. Setpoint analysis and modeling nonequilibrium 
energy needs 

This "adaptive thermogenesis" [14] is attributed to the body's defense of 
a setpoint weight [15, 16]. The setpoint weight may be described as the 
genotypical "normal" weight of the individual. Hirsch et al. [17] define the 
setpoint weight as that weight for which the energy expenditure is in agree
ment with the Brody-Kleiber equation. Metabolic adaption to weight loss 
has been observed in both lean and, to a lesser extent, obese individuals 
[18]. Although some mathematical models of energy expenditure can be 
found in the literature, none adequately address this setpoint mechanism. 

The simplest model [19] provides energy consumption as a constant pro
portionality with weight. More robust models described by Alpert [1, 20, 21] 
track the change in fat and nonfat separately and provide some recogni
tion of setpoint dynamics by using different linear fits for underfed and 
equilibrium conditions. He also postulates a changing value of the energy 
supplied per unit of fat weight loss during underfeeding. [22] suggests a 
model describing physical activity as proportional to weight and a near 
Kleiber-Brody term for the remaining 24EE. The setpoint model of energy 
expenditure was introduced in [23]. 
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We ask how does energy expenditure vary from setpoint energy as 
weight decreases from its setpoint value because of a negative energy bal
ance (undereating). Since weight is the only variable in the HB equations 
during weight loss, we will model that the energy (E*) is proportional to 
weight (W*). To provide for metabolic adaption, we make the proportion
ality factor (a*) a variable depending on weight. Then 

E* = a*{W*)W*. (3) 

It is emphasized that we propose Eq. (3) only for variation around the 
setpoint and not to calculate setpoint. 

EQ, WQ and a j are the predicting equilibrium values (EQ = c^Wo). 
Parameters E*, W* and a* are introduced as the equilibrium starvation 
values. We define the nondimensional parameters 

E* W* a* 
E = ^ , W=%- and a = 5 L . (4) 

The model assumes a linear fit from (W^OJQ) to (Ws*,a*). The s sub
script may also stand for any secondary equilibrium condition established 
between setpoint and starvation. After nondimensionalization the linear fit 
yields: 

( 1 - W . ) + (1-W.)W W 

(W = 1 -+ a = 1 and W = Ws - a = a3.) Defining ft = {"{I^ and 

/?2 = (ilw)> * n e m°del becomes 

E = 01W + 02W
2. (6) 

We note that ft + ft = 1 and devise an analysis to first find ft. Since 
0 < as, Ws < 1, ft is always positive. We can postulate that as > Ws, that 
is the body's ability to reduce the per pound energy requirement is limited. 
Then 0 < ft, ft < 1. Rewriting the setpoint energy expression 

E = (3XW + faW2 = (1 - fa)W + foW2 = W + /32W{W - 1). (7) 

Then 

J j | = l+ft(2W-l). (8) 

The ft term provides for E to decrease faster than the weight and represents 
the metabolic adaption. The maximum adaption (ft = 1) we assign to the 
lean individual with a low setpoint body fat ratio (FQ = yft) and the 
minimum adaption (ft = 0) to the obese with a high body fat ratio. 
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Because Fo = 1 and Fo = 0 are mathematical but not physiological, we 
can anticipate an asymptotic approach to /?2 = 0 and /?2 = 1 versus Fo. An 
analytic function that fits this criteria is (Fig. 3): 

fo 
t a nK$^)+ 1 

(9) 

The value of m determines the inflection point and the value of / determines 
the maximum slope at the inflection point. (See [23] for /32 define for nonfat 
ratio.) We predict that the energy expenditure relative to setpoint energy 
will change with the (setpoint) relative weight change according to Eqs. (8) 
and (9) depending on the setpoint body fat ratio F0. Figure 4(a) provides a 
schema interpreted from [17] showing that weight loss from point 1 does not 
have a corresponding energy change along the equilibrium relationship to 

=£0.5 

0.2 0.4 0.6 0.8 

EQUILIBRIUM FAT MASS RATIO (F0) 

1.0 

Fig. 3. Metabolic reduction ( f t ) factor versus setpoint fat mass ratio ( / = 1.5 and 
m = 0.5), (reprinted from [2]). 

WEIGHT 
(a) 

WEIGHT 
(b) 

Fig. 4. (a) Hypothetical schema (interpreted from [17]) relating the experimental 
change of energy for a weight change (1 —• 26) versus that anticipated from equilib
rium relationships (1 —> 2a) and (b) schema depicting many setpoint paths from 1 —> 2 
depending on the level of metabolic adaption, (1 —» 2a: none and 1 —• 26: maximum). 
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2a but to a reduce level 2b. Figure 4(b) shows the setpoint model equivalent 
schema showing many paths from 1 to 2 depending on the level of metabolic 
adaption: 1 to 2a no adaption (high setpoint Fo) and 1 to 2b maximum 
adaption (low setpoint Fo). 

2.3. Comparing models 

The Harris-Benedict equation resting energy is of the form 

REE = aro+ariW (10) 

where aro represents all the linear regression factors for height, weight and 
gender which remain constant for an individual losing weight. aro is the 
linear regression factor for weight dependence. Adding apW for additional 
physical activity [7], the total energy expenditure is 

E = PA + REE = aro + (ari + ap)W = aCo + aClW (11) 

where 
dE 
—— = aCl => constant slope. (12) 

We require that E = 1 when W = 1 for a valid comparison with Eq. (6) 
and note that E = W will produce a lower limit of any line E = aCo +aCl W 
passing through (1,1) and so provides some reduction of energy from the 
Harris-Benedict model. The E = W model will be called the constant 
slope model. The setpoint model is equivalent to the constant slope model 
when /?2 = 0. Figure 5 shows E versus W for the setpoint model for /?2 = 
1.0,0.8,0.6,0.4, and 0.2 (bottom to top) and the constant model (dashed). 
The actual HB energy will be greater than the constant slope value. The 
figure should be read from right to left. Weight and Energy levels start at 
nondimensional values 1.0. As the weight decrease (to the left) the energy 

o l i i i i i 
0.5 0.6 0.7 0.8 0.9 1.0 

W 

Fig. 5. Energy versus weight for setpoint model with /32 = 1.0, 0.8, 0.6, 0.4 and 0.2 
(bottom to top) and the constant (fo = 0) model (dashed). 
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needs decrease, but more slowly for lower values of fa and slowest for the 
constant (dashed) model. 

3. Energy from Fat/Nonfat Body Mass 

When the body's energy requirements exceed the energy supplied from the 
diet, the deficit must be made up from the body's stored energy. These 
stores are in the form of glycogen, protein and fat [24]. Glycogen is stored 
in the muscles and liver and accounts for only 800-1600 Calories in 200-400 
grams, enough energy for less than a day of fasting. Because each gram of 
glycogen is bound to 2 to 4 grams of water, severe calorie restriction can 
produce 2 to 3 pounds of weight loss in the first day. We are interested 
in the long term effects of calorie restriction and will neglect the glycogen 
energy storage. 

The total body weight (W*) is the sum of the fat (F*) and the non
fat (N*) 

W* = F* + N*. (13) 

Fat has an energy density (k*-) of 9400 Calories/kg (4273 Calories/Lb) 
while nonfat body mass yields (&*) 1020 Calories/kg (464 Calories/Lb) [25]. 
Clearly, the way these energy compartments are used to make up the energy 
deficit will effect the rate of weight loss. 

3.1. The personnel fat ratio 

In the event of energy deficit, the body must respond by combining two 
disparate means. Consuming high energy density fat mass provides energy 
to compensate for the intake deficit with a slower loss of body weight. 
However, reducing the total body fat is not as effective in reducing the 
energy deficit itself as is reducing the metabolically active nonfat mass. 
Consuming low energy density nonfat mass produces a more rapid loss of 
weight. How is this partitioning determined? 

Kreitzman [26] defines a Personal Fat Ratio (PFR) as the ratio of fat to 
fat free mass in the excess weight above the core fat-free body. If we define 
W* = N* to be a theoretical starvation weight at which body fat is zero 
then 

F* AF* 
PFR = — — =» PFR = ——. (14) 

N* - N* AN* v ' 

Kreitzman reports that this ratio remain stable during weight reduc
tion in both lean and obese individual, even through a reduction in excess 
of 80 kg. 
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3.2. The ratio of nonfat loss to total weight loss 

In a similiar way to Kreitzman, Forbes [27] states that the ratio of nonfat 
loss to total weight loss is curvilinearly related to the initial percent body 
fat (Fo). Forbes shows that extremely low calorie diets will have a different 
curvilinear relationship from that of more reasonable calorie diets. Denning 

$ 
AN* 
AW* 

and using Eq. (13), shows 

1 + PFR 
= $. 

(15) 

(16) 

In modeling a relationship between $ and Fo, we can be comfortable in 
setting $ = 1 when Fo = 0. If there is no body fat, then the change in 
lean mass and the change in total weight must be equal. We are tempted 
to let $ = 0 when Fo = 1 (a very theoretical consideration). However, 
there is a limit to how low $ can go. The majority of body fat is stored 
in adipose tissue which is estimated at 80%-85% fat, the rest being water 
and a small amount of protein. This implies a minimum $ of 0.2-0.15. 
Forbes [28] cites a case of a 213 kg weight loss from an initial 304 kg and 
an estimated 38kg loss of nonfat weight ($ = 0.18). Setting $m in = 0.15, 

0.75 -

O 0 .5-

0.25-

Fig. 6. (a) The ratio of nonfat weight loss/total weight loss ($) versus initial body 
fat ratio and (b) The energy density ratio (A$) versus initial body fat ratio (reprinted 
from [2]). 
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data from [27] suggests a relationship (Fig. 6(a)) 

*={i+i/4n)+oA5Fo- (l7) 

3.3. The energy density and the energy density ratio 

The amount of energy supplied by the consumption of fat and nonfat for a 
specified change of body weight change is 

AE*b = k}AF* + k^AN* (18) 

using AW* = AF* + AN* and Eq. (15) yields 

AE*b = (k*f -*[k}- k*n])AW* = ( £ - * ^ r r ^ ) k^W* 
\KW KW / 

= A»A* AW* (19) 

k** — $[fcf — fc*] is the true energy density of the lost body weight. A$ 
is the energy density ratio and indicates how A££ varies from the sim
ple model of k^AW*. Using a common nominal value for k^, 7700 Calo
ries/kg (3500 Calories/Lb), values introduced with Eqs. (13) and (17) yields 
Fig. 6(b). Figure 6(b) shows that the energy density ratio is less than 1.0 
for all but the extremely obese, so most subjects will have an energy density 
less than the nominal value. 

4. The Setpoint /Body Composition Adjusted 
Energy Rate Equation 

Our goal was to develop a model for AE£ and E* to use in the conser
vation of energy equation (2). This has been accomplished and both these 
quantities modeled as dependent on the initial body fat ratio FQ- We will 
need to define additional nondimensional variables 

C=% and t = £ (20) 

where £Q is defined to simplify the resulting equation t0 = ^S-. Making 
the proper substitutions and completing the nondimensionalization, the 
setpoint body composition adjusted rate equation is 

w_ = c-fkw-{W*. w{t = 0) = h (21) 
at A$ 

Equation (21) shows how the partitioning of fat/nonfat consumption during 
weight loss effects the rate of weight loss. For most cases A<j> < 1.0 and the 
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rate of weight loss will be greater than anticipated using the nominal energy 
density. Equation (21) has the analytic solution 

with 

A = y/ft + 4(32C, K = cotlT1 

5. Analysis 

Equation (21) is the generalized nondimensional energy rate equation 
adjusted for body composition effects on Calories/pound in the lost weight 
and for the setpoint driven metabolic adaption (reduction) to weight loss. 
Setting /?2 = 0 (/?i = 1) eliminates the metabolic reduction and provides a 
constant slope model similiar to HB. When A$ = 1, the energy density is 
adjusted to a constant nominal value (no difference between energy density 
of fat and nonfat weight loss). We use the robustness of Eq. (21) to analyze 
and compare weight loss dynamics. 

5.1. The Minnesota experiment 

The seminal Minnesota Semistarvation Experiment was conducted dur
ing the last months of World War II using 32 volunteer conscientious objec
tors. The subjects were monitored during a three month control period 
establishing an equilibrium body weight and calorie consumption for a spec
ified activity regime. A six months dieting period followed, with the goal 
of 25% weight loss. The daily average calories were adjusted weekly to pro
vide weight versus time along a parabolic path flattening near the end of 
the period. The dieting period was followed by a three months rehabilita
tion period during which calorie consumption was gradually increased. An 
extensive report of the data taken during these periods is provided in [29]. 
Figure 7(a) shows the weekly averages of the daily calories consumption 
relative to setpoint for the 32 individuals of the Minnesota Experiment. 
The severity of the diet is clear with an average drop in calories of more 
than 50% during the 24 weeks of weight loss. Calories are increased dur
ing the rehabilitation period (weeks 25-36). Figure 7(b) shows the weekly 
average of the body weights relative to setpoint. The data (+ + +) shows 
the parabolic weight loss curve and weight increase during rehabilitation. 

2/?2 

2/32 + /?i 

(22) 

(23) 
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12 24 
(a) Time(Weeks) 

0.75 

0.5 
12 24 

(b) Time(Weeks) 
36 

Fig. 7. (a) Average weekly calories relative to setpoint calories for 32 individuals of the 

Minnesota experiment and (b) Averages of ( $-) for 32 individuals of the Minnesota 

experiment: data ( + + + ) , setpoint model (solid line) and constant model (modified 

from [30]). 

Because C varied with time, Eq. (21) had to be solved numerically. 
Results as first presented in [30] are shown graphically in Fig. 7(b) dis
playing the weekly averages of the setpoint normalized weights of the 32 
individuals of the Minnesota Experiment and the averages of solutions of 
Eq. (21) for the setpoint and constant models. The data was sufficient to 
calculate the characteristic time for each subject. The energy density A$ 
was set to 1.0. The constant slope model greatly over estimates the amount 
of weight loss. 

5.2. The characteristic time and rate of weight loss 

Setting Xj, = 1, and C = 0.75 to represent a 25% calorie reduction and solv
ing Eq. (21) for various values of /?2 yields results displayed in Fig. 8. This 
represents the weight loss dynamics if everyone had the same characteristic 
time, t^ and the same energy constant weight loss energy density. Since 
i* = ^WQ/EQ, a uniform characteristic time requires each individual to 
have the same setpoint -gS- value which is not the case. 

To get a true picture of the relative rates of weight loss, we need to 
move out of the nondimensional time units and calculate the individual 
characteristic time. Forbes [28] provides an estimate for EQ based on the 
initial fat mass (F0*) and nonfat mass (NQ) 

^(Calories/day) = 35.7iV*(kg) + 15.3F0*(kg) + 198 (24) 

derived form a study group with a range of body fat from 2 to 74 kg. We 

convert Eq. (24) to 

E*0 

Wr 
- (Calories/day/kg) = 38.7 - 20.4F0 (25) 
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Fig. 8. Weight ratio for j32 = 1.0, 0.8, 0.6, 0.4, 0.2 and 0.0 (bottom to top) for C = 0.75 
versus time units (A* = 1, t j constant) (reprinted from [23]). 

then 

*S(days) n,„ 

38.7 - 20.4F0 
(26) 

We can get a physical interpretation of t$ by evaluating Eq. (21) at t = 0 
(where the rate of weight loss is greatest). In the t* units (real time) 

dW 
dt* 

-(i-c) (27) 

Then the maximum rate of change of weight for a given calorie deficit 
(1 — C) is inversely proportional to £Q. Figure 9(a) show t$ versus Fo and 
Fig. 9(b) shows the maximum rate of weight loss versus FQ for diet ratios, 
C = 0.50-0.75. 

Considering a 25% diet (C = 0.75) and solving Eq. (21) for F0 = 10% to 
Fo = 55% in 5% steps (fa = 1.0 —» 0.2) and using Eq. (26) for characteristic 
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Fig. 9. (a) The characteristic time, £Q in days versus Fo and (b) The maximum rate 
of change of relative weight versus initial body fat percentage for 50%, 55%, 60%, 65%, 
70% and 75% Calorie Diet (top to bottom) (reprinted from [2]). 

times yields Fig. 10. The rates of weight loss for the high body fat cases 
have slowed compared to Fig. 8 because of the higher characteristic times 
(lower EQ/WQ ratio). The rates are nearly the same until the amount of 
weight loss is significant enough to induce the metabolic reduction. 

If we further introduce the fat/nonfat effects embodied in A$, we get 
the results displayed in Fig. 11. The rate of weight loss has increased sig
nificantly for the low fat (high fa) cases because more low density lean 
mass is providing a higher percentage of the energy deficit compared to the 
high fat cases. Again, when the weight loss is enough to trigger metabolic 
reduction, the energy deficit is lowered and the rate is reduced; more for 
the low fat than the high fat cases. 

5.3. Comparing the models in dynamics 

We start by solving Eq. (21) for (1) the Harris-Benedict case for nomi
nal energy density (fa = l,fa = 0,A$ = 1), and (2) the setpoint model 
adjusted for body composition. In both case t$ is calculated from Eq. (26). 
Figure 12 shows the comparative results for various values of F0 as indi
cated, for 25% calorie reduction (C = 0.75). For low values of F0, the HB 
model under estimates the rate of weight loss in the early days because 
it over estimating the calories from fat and the effects of metabolic adap
tion are small until there is some level of weight loss. As time goes on 
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Days 

Fig. 10. Weight ratio for F 0 = 10% to F 0 = 55% in 5% steps (/32 = 1.0 -> 0.2) versus 
time for 0.75 calorie ratio diet with individual characteristic time and constant energy 
density (A$ = 1). 

the metabolic reduction dominates the setpoint model and the HB over 
estimate the weight loss as shown in [23]. 

As FQ increases, the energy density increases coming closer to the 
nominal value while the level of adaption decreases (Fig. 3). The time 
to crossover, the time when the setpoint weight is greater than the HB 
weight, increases while the maximum difference between the two models 
gets smaller. For Fo = 0.55 there is no perceptible difference for the first 
300 days. 

Further comparing the models for more restrictive diets (50%-70%) 
shows that all cases exhibit the initial under estimate by the HB model 
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Fig. 11. Weight ratio for F0 = 10% to F 0 = 55% in 5% steps (/32 = 1.0 -» 0.2) versus 
Time for 0.75 calorie ratio diet corrected for characteristic time and energy density. 

where the cross over time is more sensitive to the initial body fat (FQ) 
than the caloric intake (Fig. 13(a)). The minimum cross over time occurs 
for Fo ss 0.3 where the metabolic adaption (02, Fig. 3) is high and the 
fat density ratio is approaching 1.0 (Fig. 6(b)). To the left of 0.3, the 
metabolic adaption slows the weight decrease while higher consumption 
of lean body weight increases the rate of weight loss. As FQ increases cross 
over time increases but the divergence between the two models get smaller 
(Fig. 13(b)), again showing the concurrence of the two model for the very 
obese subjects. 

5.4. Comparing the models in equilibrium 

Equation (21) shows that the selection of fat versus nonfat does not change 
the equilibrium ( ^ = 0) values of W, for a given C: 

Wx = ^p-{Setpoint), Wx = C(HB). (28) 
^P2 
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Fig. 12. Weight ratio for Harris-Benedict Model (dashed) with energy density of 
3500Kcal/Lb and Setpoint Model (solid) (adjusted for body composition) versus time 
for various initial fat ratios as indicated (C = 0.75) (reprinted from [2]). 

At f32 = 1, Woo = VC. For /?2 = 0 Eq. (28) reduces to W^ = C. Then 
C < Woo < y/C according to /?2- Figure (14) compares the final weight to 
the initial weight (-rf?- J, the final percentage body fat to the initial value 

( r v w " ) a n c ^ t n e n n a ^ percentage of nonfat body mass to the initial value 

( N*/W^ ) f° r a C = 0.75 diet. The setpoint model predicts a much higher 
final weight as the body defends the setpoint weight. Both models closely 
predict that the percentage of lean body mass will increase, this should 
be expected since $ = ^ ^ - < 1 (Fig. 6(a)). The setpoint models values 
of percent fat remain much higher, because of the higher body weight. 
Then the defense of setpoint weight is also a defense of setpoint body fat 
percentage. 
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Fig. 13. (a) The time in days until the Harris-Benedict Model predicted weight is less 
than the body composition adjusted Setpoint predicted weight versus initial body fat 
ratio (Fo) and (b) The ratio of the maximum difference between the two models before 
cross over divided by the initial weight versus initial body fat ratio (Fo). (Both figures 
for 50%, 55%, 60%, 65% and 70% Calorie Diet (top to bottom)) (reprinted from [2]). 
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Fig. 14. Ratios of equilibrium values for 75% Calorie diet versus original (Setpoint) 
values: Lean — % percent lean body mass, Fat — % percent body fat mass and Weight — 
final weight over initial weight. Harris-Benedict Model (dashed) and Setpoint Model 
(solid) (reprinted from [2]). 

6. Discussion and Conclusions 

Models have been presented for calculating a metabolic reduction factor 
(fo) and an energy density ratio (A$) which effect weight dynamics during 
a reduced calorie diet. These have both been modeled as dependent on the 
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initial (setpoint) percent body fat (F0). Of course, conversion to depen

dence on percent nonfat mass is easily accomplished. A characteristic t ime 

(£g) which also effects the rate of weight loss was defined and modeled as 

dependent on Fo. Expressing £Q in terms of Fo simplified the analysis. How

ever t$ can be calculated directly from the setpoint values EQ and WQ , if 

known. The models predict t ha t the obese will loose weight and fat/nonfat 

more closely to the nominal/equilibrium models while the lean will experi

ence significant departure. The difference of weight loss dynamics between 

lean and obese individuals is compactly displayed in Fig. 11. 

The shaping of Fig. 3 is from nominal values found in the l i terature. 

Future efforts will be to further refine the /?2 form. The present model will 

also be expanded to metabolic adaption to weight gain (an increase in the 

relative energy needs). 
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We introduce the most common quantitative approaches to population 
dynamics and ecology, emphasizing the different theoretical foundations and 
assumptions. These populations can be aggregates of cells, simple unicellular 
organisms, plants or animals. 

The basic types of biological interactions are analysed: consumer-resource, 
prey-predation, competition and mutualism. Some of the modern developments 
associated with the concepts of chaos, quasi-periodicity, and structural stability 
are discussed. To describe short- and long-range population dispersal, the inte
gral equation approach is derived, and some of its consequences are analysed. 
We derive the standard McKendrick age-structured density dependent model, 
and a particular solution of the McKendrick equation is obtained by elemen
tary methods. The existence of demography growth cycles is discussed, and 
the differences between mitotic and sexual reproduction types are analysed. 

1. Introduction 

In a region or territory, the number of individuals of a species or a com
munity of species changes along the time. This variation is due to the 
mechanisms of reproduction and to the physiology of individuals, to the 
resources supplied by the environment and to the interactions or absence 
of interactions between individuals of the same or of different species. 

Biology is concerned with the architecture of living organisms, its phys
iology and the mechanisms that originated life from the natural elements. 
Ecology studies the relations between living organisms and the environ
ment, and, in a first approach, detailed physiological mechanisms of indi
viduals have a secondary importance. 
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As a whole, understanding the phenomena of life and the interplay 
between living systems and the environment make biological sciences, biol
ogy together with ecology, a complex science. To handle the difficulties 
inherently associated to the study of living systems, the input of chem
istry, physics and mathematics is fundamental for the development of an 
integrative view of life phenomena. 

In the quantitative description of the growth of a population, several 
interactions are involved. There are intrinsic interactions between each 
organism and its environment and biotic interactions between individuals 
of the same or of different species. These interactions have specific char
acteristic times or time scales, and affect the growth and fate of a species 
or a community of species. Population dynamics deals with the population 
growth within a short time scale, where evolutionary changes and mutations 
do not affect significantly the growth of the population, and the population 
is physiologically stable. In this short time scale, the variation of the number 
of individuals in the population is determined by reproduction and death 
rates, food supply, climate changes and biotic interactions, like predation, 
competition, mutualism, parasitism, disease and social context. 

There exists an intrinsic difficulty in analysing the factors influencing 
the growth and death of a species. There are species that are in the mid
dle of a trophic web, being simultaneously preys and predators, and the 
trophic web exhibits a large number of interactions. For example, the food 
web of Little Rock Lake, Wisconsin, shows thousands of inter-specific con
nections between the top levels predators down to the phytoplankton, [1]. 
In this context, organisms in batch cultures and the human population are 
the simplest populations. In batch cultures, organisms interact with their 
resources for reproduction and growth. The human population is at the top 
of a trophic chain. Even for each of these simple cases, we can have different 
modelling approaches and strategies. 

From the observational point of view, one of the best-known populations 
is the human population for which we have more than 50 years of relatively 
accurate census, and some estimates of population numbers over larger time 
intervals. Observations of population growth of micro-organisms in batch 
cultures are important to validate models and to test growth projections 
based on mathematical models. 

Mathematical models give an important contribution to ecological stud
ies. They propose quantities that can be measured, define concepts enabling 
to quantify biological interactions, and even propose different modelling 
strategies with different assumptions to describe particular features of the 
populations. 
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In population dynamics, and from the mathematical point of view, there 
are essentially two major modelling strategies: (i) The continuous time 
approach using techniques of ordinary differential equations; (ii) The dis
crete time approach which is more closely related with the structure of the 
census of a population. Both approaches use extensively techniques of the 
qualitative theory of dynamical systems. 

In the continuous time approach, the number of individuals of a popula
tion varies continuously in time and the most common modelling framework 
applies to the description of the types of biotic inter-specific interactions and 
to the interactions of one species with the environment. They are useful for 
the determination of the fate of a single population or of a small number of 
interacting species. These models have been pioneered by Pierre-Prancoise 
Verhulst, in the 19th century, with the introduction of the logistic model, 
and by Vito Volterra, in the first quarter of the 20th century, with the 
introduction of a model to describe qualitatively the cycling behavior of 
communities of carnivore and herbivore fishes. 

In the discrete time approach, models are built in order to describe the 
census data of populations. They are discontinuous in time, and are closer 
to the way population growth data are obtained. These models are useful 
for short time prediction, and their parameters can be easily estimated from 
census data. 

Modern ecology relies strongly on the concepts of carrying capacity 
(of the environment) and growth rate of a population, introduced by the 
discrete and the continuous models. In the 20th century, the works of 
McKendrick and Leslie gave an important contribution to modern ecology 
and demography. 

The usefulness of population dynamics to predictability and resource 
management depends on the underlying assumptions of the theoretical 
models. Our goal here is to introduce in a single text the most common 
quantitative approaches to population dynamics, emphasizing the different 
theoretical foundations and assumptions. 

In the next two sections, we introduce the continuous and the discrete 
age-structured approach to quantitative ecology. These are essentially two 
review sections, where we emphasise on the assumptions made in the deriva
tion of the models, and whenever possible, we present case studies taken 
from real data. As the reader has not necessarily a background on the 
techniques of the qualitative theory of dynamical systems, we introduce 
some of its geometric tools and the concept of structural stability. In mod
elling situations where there exists some arbitrariness, structural stabil
ity is a useful tool to infer about the qualitative aspects of the solutions 
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of ordinary differential equations upon small variations of its functional 
forms. 

In Sec. 4, and in the sequence of the Leslie type age-structured discrete 
models (Sec. 3), we make the mathematical analysis of the Portuguese 
population based on the census data for the second half of the 20th century. 
Here we introduce a very simple model in order to interpret data and make 
demographic projections, to analyse migrations and the change of socio
economic factors. This is a very simple example that shows the importance 
of mathematical modelling and analysis in population studies. In Sec. 5 we 
introduce discrete time models with population dependent growth rates, 
and we analyse the phenomenon of chaos. In Sec. 6, the consumer-resources 
interaction is introduced, and we discuss the two types of randomness found 
in dynamical systems: quasi-periodicity and chaos. In Sec. 7, we derive a 
general approach to the study of population dispersal (short- and long-
range), and we derive a simple integro-difference equation to analyse the 
dispersion of a population. 

In Sec. 8, we introduce the standard continuous model for age-structured 
density dependent populations, the McKendrick model, showing the exis
tence of time periodic solutions by elementary techniques. In this context, 
we discuss demography cycles and the concept of growth rate. In Sec. 9, 
we derive a modified McKendrick model for populations with mitotic type 
reproduction, and compare the growth rates between populations with sex
ual and mitotic reproduction types. In the final section, we resume the main 
conclusions derived along the text and we compare the different properties 
of the analysed models. 

2. Biotic Interactions 

2.1. One species interaction with the environment 

We consider a population of a single species in a territory with a well-
defined boundary. Let x(t) be the number of individuals at some time t. 
The growth rate of the population (by individual) is, 

ldx . . 
x at 

If the growth rate r is a constant, independently of the number of individ
uals of the population, then Eq. (1) has the exponential solution x(t) = 
x(to)er(t~to\ where x(to) is the number of individuals in the population at 
time to. If, r > 0, x(t) —> oo, as t —> oo. In a realistic situation, such a 
population will exhaust resources and will die out in finite time. 
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Equation (1) with r constant is the Malthusian law of population 
growth. Exponential growth is in general observed in batch cultures of 
micro-organisms with a large amount of available resources and fast repro
duction times, [2] and [3]. From the solution of Eq. (1) follows that the 
doubling time of the initial population (td) is related with the growth rate 
by td = ln2/r . For example, with the data of the world population, [4], we 
can determine the variation of the doubling time or the growth rate of the 
human population along historical times, Fig. 1. The curve in Fig. 1 sug
gests that, for human populations and at a large time scale, the growth 
rate r cannot be taken constant as in the Malthusian growth law (1), 
but must depend on other factors, as, for example, large-scale diseases, 
migrations, etc. 

For large population densities, and in order to avoid unrealistic sit
uations of exponential growth or explosion of population numbers, it is 
expected that the growth rate becomes population dependent. Assuming 
that, for large population numbers, r = r(x(t)) < 0, for x > K, and, 
r = r(x(t)) > 0, for x < K, where K is some arbitrary constant, the sim
plest form for the growth rate r(x) is, r(x) = r0(K — x). Substitution of 
this population dependent growth rate into Eq. (1) gives, 

doc 
— = r0x(K - x) := rx{\ - x/K) (2) 
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Fig. 1. Evolution of the doubling time of the world population. The doubling time 
has been calculated according to the formula t^ = ln2/r, where r = (N(t + h) — 
N(t))/(hN(t)), and N(t) is the world population at year t. The data set is from 
reference [4]. 
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where ro is a rate constant. Equation (2) is the logistic or Verhulst equation 
for one-species populations. For a population with x(to) > 0 at some time 
to, the general solution of (2) is, 

_ x(t0)Ke^^ 
{> x(to)(e^t-to)-i)+K W 

and, in the limit t —• oo, x(t) —> K. The constant K is called the carry
ing capacity of the environment and is defined as the maximum number 
of individuals of a species that the territory can support. For the same 
species, larger territories and bigger renewable resources correspond to 
larger values of K. 

The logistic Eq. (2) describes qualitatively the growth of single colonies 
of micro-organisms in batch experiments, [3]. For example, in a batch 
experiment, Gause, [5], fitted the measured growth curve of the proto
zoa Paramecium caudatum, finding a good agreement with the solution 
(3) of the logistic equation. For the human population, the agreement is 
not so good, being dependent on technological developments, sociologi
cal trends and other factors, [2]. Depending on the data set, and from 
country to country, some authors find a good fit between the solutions 
of the logistic equation and demography data (see for example [4]), and 
others propose empirical models based on the delayed logistic equation, 
x'{t) = rxa{\ - x(t - T)/K), [4]. 

In the derivation of the logistic equation, the plausibility of the mathe
matical form of the growth rate is assumed, without any assumptions about 
the relations between population growth and environmental support, or 
about the mechanisms of interaction between individuals and the environ
ment. It is simply supposed that, for each species, the environment ensures 
enough resources. The carrying capacity constant can only be measured 
a posteriori through the asymptotic solution, x(t) —» if, as £ —> oo. 

A possible mechanism for the derivation of the logistic equation is based 
on the mass action law of chemical kinetics, [6] and [7, pp. 295-300]. To be 
more specific, we represent species and resources by, Aj, with j = 1 , . . . , m. 
The interactions between species or between species and resources can be 
represented by n collision diagrams, 

vnAi-\ h vimAm ^> naAi H h fiimAm, i = l,...,n (4) 

where rj measure the rate at which the interactions occur, and the constants 
Vij and nij are positive parameters measuring the number of individuals or 
units of resources that are consumed or produced in a collision. The mass 
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action law asserts that the time evolution of the (mean) concentration of 
Aj is given by, 

f - £ • * . - * x . - * - . ,-. - cs> 
As we have in general n interaction diagrams and m species or resources, 
the system of Eq. (5) are not independent. In general, by simple inspec
tion of the m Eq. (5), it is possible to derive the associated conservation 
laws, that is, a set of linear relations between the concentrations Aj. With 
these conservations laws, we obtain a system of s < m linearly independent 
differential equations. 

In this framework, reproduction in the presence of resources can be 
seen as the collision of the members of a population with the resources. In 
the case of the logistic equation, the collisions between individuals and the 
resource is represented by the diagram, 

A + x ^ (1 + e)x (6) 

where A represents resources, x is the number of individuals in the popu
lation, collisions occur at the rate ro, and the inequality e > 0 expresses 
the increase in the number of individuals. By (4) and (5), to the diagram 
(6) is associated the logistic equation (2), together with the conservation 
law x(t) + eA(t) = x(to) + eA(to), where the carrying capacity is given 
by K = x(to) + eA(to)- As, in the limit t —> oo, x(t) —> K, then, in the 
same limit, A(t) —• 0. In this interpretative framework, when the popula
tion attains the equilibrium value K, resources are exhausted. In realistic 
situations, after reaching the equilibrium, the number of individuals of the 
population decreases and, some time afterwards, the population disappears, 
[3]. However, this asymptotic behavior is not predicted by Eq. (2). To fur
ther include this effect, we can add to the collision mechanism (6) a new 

death rate diagram, x —>. In this case, by the mass action law, (4) and (5), 
the time variation of the number of individuals of the population is not of 
logistic type anymore, obeying to the equations, 

{ x'(t) = roexA — dx 

A'(t) = -r0xA 

without any conservation law and, consequently, without a carrying capac
ity parameter. Numerical integration of the system of Eq. (7) leads to the 
conclusion that, for a small initial population, a fast exponential grow
ing phase is followed by a decrease in the number of individuals of the 
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Fig. 2. (a) Comparison between the solutions of the exponential (1), logistic (2) and 
equation (7), for the initial conditions x(0) = 1, A(0) = 9, and the parameters r = 1, 
ro = 1, K = 10, d = 0.01 and e = 1. (b) Growth rates as a function of time for Eq. (1), 
(2) and (7). -

population, and extinction occurs when t —> oo, Fig. 2(a). The growth 
behavior predicted by Eq. (7) is in qualitative agreement with the growth 
curves observed in generic microbiological batch experiments, [3]. 

In Fig. 2(a), we compare the solutions of the three Eq. (1), (2) and 
(7) for the growth of one-species. In the growing phase, the solutions of 
the three growth models show qualitatively the same type of exponential 
behavior. For Eq. (7), the concept of carrying capacity is lost but the growth 
maximum is approximated by the value of the carrying capacity of the 
logistic equation. In these models, and for the same data set, it is possible 
to obtain different values for the fitted growth rates, as it is clearly seen in 
Fig. 2(b). 

The approach developed so far introduces into the language of popula
tion dynamics the concepts of exponential or Malthusian growth, growth 
rate, doubling time and carrying capacity. The agreement between the mod
els and data from laboratory experiments is, in some situations, very good, 
but in others deviates from observations. In the situations where no agree
ment with observations is found, it is believed that other relevant factors 
besides reproduction are not included in the modelling process. In modern 
ecology, the modelling concepts introduced here enable a rough estimate 
of the population growth and are the starting point for more specific and 
specialized approaches. For a more extensive study and applications of the 
exponential and logistic models see [8-10]. 

2.2. Two interacting species 

Here, we introduce the basic models for the different types of biotic interac
tions between the populations of two different species. As models become 
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non-linear, and no general methods for the determination of solutions of 
non-linear differential equations exist, in parallel, we introduce some of the 
techniques of the qualitative theory of differential equations (dynamical 
systems theory). 

We consider two interacting species in the same territory, and we denote 
by x(t) and y(t), their total population numbers at time t. The growth rates 
by individual of both interacting species are, 

y at 

defining the two-dimensional system of differential equations, or vector field, 

dx 
— = xf{x,y) 
7 (8) 
dy 
— =yg(x,y). 

The particular form of the system of Eq. (8) ensures that the coordinate 
axes of the (x,y) phase space are invariant for the flow defined by the 
vector field (8), in the sense that, any initial condition within any one of 
the coordinate axis is transported by the phase flow along that axis. Due to 
this particular invariant property, in the literature of ecology, Eq. (8) are 
said to have the Kolmogoroff form, [8, p. 62]. 

In general, the system of differential Eq. (8) is non-linear and there are 
no general methods to integrate it explicitly. We can overcome this problem 
by looking at Eq. (8) as defining a flow or vector field in the first quadrant 
of the two-dimensional phase space (x > 0,y > 0). Adopting this point 
of view, the flow lines are the images of the solutions of the differential 
equation in the phase space, Fig. 3. At each point in phase space, the flow 
lines have a tangent vector whose coordinates are xf(x,y) and yg(x,y), 
and the flow lines can be visualised through the graph of the vector field. 
In fact, given a set of points in phase space, we can calculate the x- and 
y-coordinates of the vector field components, xf(x,y) and yg(x,y), and 
draw the directions of the tangent vectors to the flow lines. The solutions 
of the differential Eq. (8) are tangent to the vector field. 

The phase space points for which we have simultaneously, xf{x, y) = 0 
and yg(x, y) = 0, are the fixed points of the flow. The fixed points are 
stationary solutions of the ordinary differential Eq. (8). In dimension two, 
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Fig. 3. The differential Eq. (8) defines a vector field or phase flow in the two-dimensional 
phase space. The flow lines are the images in phase space of the solutions of the differ
ential equation. The flow lines are parameterised by the time t. At each point (x,y) in 
phase space, the tangent vector to the flow line or orbit has local coordinates xf(x, y) 
and yg{x,y). 

the knowledge of these stationary solutions determines the overall topology 
of the flow lines in phase space. With the additional knowledge of the two 
nullclines, defined by equations xf(x,y) = 0 and yg(x,y) = 0, we can 
qualitatively draw in phase space the flow lines of the differential equation 
and to determine the asymptotic states of the dynamics, which, in generic 
cases, are isolated fixed points. 

The (isolated) fixed points of a differential equation can be (Lyapunov-) 
stable or unstable. They are stable if, for any initial condition sufficiently 
close to the fixed point, and for each t > 0, the solution of the equation 
remain at a finite distance from the fixed point. If in addition, in the limit 
t —> oo, the solution converges to the fixed point, we say that the fixed 
point is asymptotically stable. A fixed point is unstable if it is not stable. 

Around a fixed point, the stability properties of the solutions of a dif
ferential equation can be easily analysed. Let (x*,y*) be a fixed point of 
Eq. (8), and let (x(t) = x* + x(t), y(t) = y* + y(t)) be a solution defined 
locally around (x*,y*). Introducing this solution into (8), we obtain, up to 
the first order in x and y, 

/ dx\ 
dt 

— 
\dt / 

If(x*,y*)+x*?f(x*,y*) 

= :DF 

dx 

\ *%W> 

dy[ x'^-(x*,y*) \ 

g(x*,y*)+y*^(x*,y*)J 

(9) 
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where DF is the Jacobian matrix of the vector field (8) evaluated at (x*,y*). 
In the conditions of the theorem below, the solutions of the linear differential 
Eq. (9) are equivalent to the solutions of the nonlinear Eq. (8) near (x*,y*). 

Theorem 1 (Hartman-Grobman, [11]). If none of the eigenvalues of 
the Jacobian matrix DF rest on the imaginary axis of the complex plane, 
then, near the fixed point (x*,y*), the phase flows of Eqs. (8) and (9) are 
similar or topologically equivalent. 

Under the conditions of the Hartman-Grobman theorem (Theorem 1), 
by a simple linear analysis, it is possible to determine the stability of the 
fixed points of the non-linear Eq. (8), and, therefore, to determine the 
asymptotic behavior of the solutions of the non-linear Eq. (8). The global 
flow in the first quadrant of phase space is conditioned by the fixed points 
with non-negative coordinates. This approach is geometrically intuitive and 
is one of the most powerful tools of the theory of dynamical systems, [11] 
and [12]. As will see now, this enables the analysis of models for biotic 
interactions with a minimum of technicalities. 

We now introduce the most common types of two-species interactions. 
There are essentially three basic two-species interactions: prey-predator, 
competition and mutualism. In the prey-predator interaction, for large 
predator numbers, the growth rate of the prey becomes negative, but in 
the absence of predators, the growth rate of the prey is positive. If the prey 
is not the only resource for predators, the growth rate of the predators is 
always positive. In competition, and in the presence of both species, both 
growth rates decrease. In mutualistic interactions, the growth rates of both 
species increase. 

Adopting the same empirical formalism as in the case of the logistic 
equation (Sec. 2.1), we assume that the growth rates / and g are sufficiently 
well behaved functions, and the above ecology definitions can be stated into 
the mathematical form: 

(10) 

In the simplest situation where / and g are affine functions, f(x,y) = 
d\ + d2X + dzy and g(x, y) = d± + d&x + d§y, and further assuming that 

Prey-predator: 

Competition: 

Mutualism : 

:|U0, 
ay 

df n 

dy 

df 
dy 

dg 
7 T > 0 
ox 

dg n 
i r < 0 

ox 
dg 
/ > 0 . 
ox 
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in the absence of one of the species the growth of the other species is of 
logistic type, by (10), we obtain for the growth rates, 

Prey-predator: / = rx(l -x/Kx - ciy) and g = ry(l + c2x - y/Ky) 
Competition: f = rx(l — x/Kx - ciy) and g = ry(l - c2x — y/Kv) 
Mutualism: f = rx(l - x/Kx+Ciy) and g = r„(l + c2x - y/Kv) 

(11) 

where c\, c2, Kx and Ky are positive constants. The constants in the 
growth rate functional forms (11) have been chosen in such a way that, 
in the absence of any one of the species, we obtain the logistic equation (2). 
Introducing (11) into (8), we obtain three systems of non-hnear ordinary 
differential equations for prey-predation, competition and mutualism. The 
topological structure in phase space of the solutions of these equations can 
be easily analysed by the qualitative methods just described above. 

The generic differential Eq. (8) defines a flow in the first quadrant of 
the two-dimensional phase space, and the simplest solutions are the fixed 
points of the flow. These fixed points are obtained by solving simultaneously 
the equations, xf(x, y) = 0 and yg(x, y) = 0. For any of the values of the 
parameters in (11), and for the three biotic interaction types, we have the 
fixed points (x0,y0) = (0,0), (xi,yi) = (Kx,0) and (x2,y2) = (0,Ky), 
which correspond to the absence of one or both species. The fixed points 
(Kx, 0) and (0, Ky) are the asymptotic solutions associated to any non-zero 
initial condition on the phase space axis x and y, respectively. The zero 
fixed point corresponds to the absence of both species. For a particular 
choice of the parameters, a forth fixed point can exists: 

Prey-predator: ( a * > w ) = ( ^ . l ^ K ^ ^ l l t c ^ K , ) 

if cxKy < 1 

Competition: (.3,2/3) = (K, J ^ ' ^ V
Kv c ^ x K y - l ) 

if cxKy > 1, c2Kx > 1 

™ * i- 1 \ fir l+ciKy l+c2Kx \ 
Mutuahsm: (x 3 , , 3 ) = [K^ _ ^ ^ ^ _ ClC2KxKy) 

if Clc2KxKy < 1. (12) 

In Fig. 4, we show, for the differential Eq. (8) and the three growth rate 
functions (11), all the qualitative structures of the flows in phase space. The 
fixed points with non-zero coordinates (12) correspond to cases (a)-(c), and 
are marked with a square. 
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To determine qualitatively the structure of the solutions of Eq. (8) for 
the different cases depicted in Fig. 4, we have analysed the signs of the com
ponents of the vector field along the nuUclines. The arrows in Fig. 4 repre
sent the directions of the flow in phase space. Except the case of Fig. 4(a), 
the vector field directs the flow towards the fixed points, and the limiting 
behavior of the solutions as t —• oo is easily derived. 

(a) (<1) 

Fig. 4. Qualitative structures of the flow in phase space of the differential equation (8), 
for the growth rate functions (11). Bullets and squares represent fixed points. In cases 
(a)-(c), a non-zero fixed point exists if the conditions in (12) are verified. Cases (d)-(g) 
correspond to different arrangements of nuUclines. The arrows represent the directions 
of the vector fields, and the solutions of Eq. (8) are tangent to the vector field. The sign 
of the vector field is calculated from the sign of the functions / and g at each point in 
phase space. 
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Fig. 5. Vector field and nullclines for the prey-predator equation of Fig. 4(a), with 
parameter values c\ = 0.05, ci = 0.01, Kx = 15, Kv = 10 and rx = ry = 1. As it is 
clearly seen, the vector field directs the flow to the fixed point (13,2/3). This fixed point 
is asymptotically stable. 

To analyse the prey-predator case of Fig. 4(a), we have calculated the 
directions of the vector field near the fixed point (£3,2/3), Fig. 5. In this 
case, the flow turns around the fixed point (£3,2/3), and to determine the 
local structure of the flow, we use the technique provided by the Hartman-
Grobman theorem. Linearising Eq. (8) around (£3,2/3), by (11) and (12), 
we obtain the linear system of differential equations, 

/ dx\ 
~dl 

\ ^ / 
\dt / 

-rxx3/Kx -rxx3c\K., 

ryc2y3 -ryy3/K, 
DF (13) 

where (x, y) = (x3 + x,y3+y). The stability near the fixed point (x3,y3) is 
determined by the eigenvalues of the matrix DF, provided that they are not 
on the imaginary axis of the complex plane. As, Trace(DF) = Ai + A2 < 0 
and Det(DF) = A1A2 > 0, the eigenvalues Ai and A2 of DF are both 
real and negative or, complex conjugate with negative real parts. As the 
solution of the linear system of Eq. (13) is a linear combination of terms 
of the form eXit, and the eigenvalues have negative real parts, this implies 
that x(t) and y(t) converge to zero as t —» 00. Therefore, for non-zero initial 
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conditions, the solutions of the prey-predator system of Fig. 4(a) converge 
to the stable fixed point (X3, j/3), Fig. 5. 

In the prey-predator case of Fig. 4(d), c\Ky > 1, the effect of the 
predator on the prey is so strong that asymptotically predators consume 
all the preys, and, as t —> 00, the solutions converge for the fixed point 
(^2,2/2) = (0>-Ky)- In this case, we do not need to make the linear anal
ysis near the fixed points because the directions of the vector field show 
clearly the convergence of the solutions to the asymptotically stable fixed 
point. 

For the competitive and mutualistic interactions of Figs. 4(b) and 4(c), 
Eq. (8) has always a stable fixed point which is also an asymptotic solution 
for non-zero initial conditions. In cases (e) and (g), we have c\Ky < 1 or 
c-iK-x < 1, and, asymptotically in time, only one of the species survives. For 
the mutualistic interaction (f), we have c\C2KxKv > 1, and, asymptotically 
in time, both population numbers explode to infinity. (Note however that, 
in this last case, it is possible that the solutions go to infinity in finite time 
due to the non-Lipschitz nature of the right-hand side of (8).) 

From the models for the prey-predator, competition and mutualis
tic interactions, it is possible to derive some ecological consequences. In 
the prey-predator system, the prey brings advantage to the predator in 
the sense that its presence increases the number of predators at equilib
rium, but the presence of predator decreases the equilibrium population of 
the prey. If the effect of the predator on the prey is too strong, preda
tors consume all the preys, and, in the long time scale, predators lose 
advantage. 

For competition, the asymptotic equilibrium between the two species 
assumes lower values for both species when compared to the cases where 
they are isolated. 

In the mutualistic interaction, the situation is opposed to the compe
tition case, where the equilibrium between the two species assumes higher 
values. However, for strong mutualistic interactions, we can have overcrowd
ing as in the Malthusian model (1), leading to the death of the species by 
over consumption of resources. These conclusions, derived from the mathe
matical models (8) and (11), are in agreement with the biological knowledge 
about predation, competition and mutualism, [13] and [14]. 

Another model for the prey-predator interaction that has a conceptual 
and historical importance is the Lotka-Volterra model. This model has been 
used as an explanation to justify the resumption of carnivore fishes, after 
the cessation of fishing in the North Adriatic Sea after the First World 
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War, [8]. To be more specific, the prey-predator Lotka-Volterra interaction 
model is, 

= rxx(l - ay) 

= ryy(c2x - 1) 
(14) 

where c\, c2, rx and ry are constants. 
This model obeys the prey-predator conditions in (10), but assumes that 

predators have an intrinsic negative growth rate and do not survive without 
preys. For preys alone, it assumes that they have exponential growth as in 
model (1). 

The Lotka-Voltrerra model (14) has one horizontal and one vertical 
nullcline in phase space, Fig. 6, and one non-zero fixed point with coordi
nates (x, y) = ( l /c2 , l /c i ) . One of the eigenvalues of the Jacobian matrix 
of (14) calculated at the fixed point is zero, and as the conditions on the 
Hartman-Grobman theorem fail: the local structure of the flow cannot be 
characterized by the linear analysis around the fixed point. It can be shown 
that, in the first quadrant of phase space, the solution orbits of (14) are 
closed curves around the fixed point, Fig. 6, corresponding to oscillatory 
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Fig. 6. Qualitative structure of the flow in phase space of the Lotka-Volterra system 
of Eqs. (14), for parameter values c\ = ci = rx = ry = 1. Away from the non-zero 
fixed point, the solutions are periodic in time, suggesting a simple explanation for the 
oscillatory behavior observed in prey-predator real systems. It can be shown that the 
orbits of the system of Eqs. (14) are the level sets of the function, H(x,y) = ry log a; — 
rvc2x + rx logy - rxc\y. 
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motion in the prey and predator time series (for a proof see [12]). Moreover, 
along each phase space cycle, the temporal means of prey and predators 
are independent of the amplitude of the cycles, being given by, (x) — l/c2 
and (y) = l / c 1 ; respectively. This property of the solutions of Eqs. (14) has 
been used to assert that fluctuations in fisheries are periodic but the time 
average during each cycle is conserved, [8, p. 93]. 

One of the important issues in the Lotka-Volterra model is to suggest 
the possibility of existence of time oscillations in prey-predator systems. 
A long-term observation of prey-predator oscillations was provided by the 
hare-lynx catches data during 90 years, from the Hudson Bay Company, 
[14] and [15]. The catches of lynx and hare are in principle proportional 
to the abundances of these animals in nature, and the time series shows 
an out of phase oscillatory abundance, with the lynx maximum preceding 
the hare maximum. Making a naif analogy between the solutions of the 
Lotka-Volterra model and the oscillations found in the lynx-hare interac
tion, it turns out that the maximum number of preys is observed before 
the maximum numbers of predator. This is in clear disagreement with the 
Lotka-Volterra model where the prey maximum precedes in time the preda
tor maximum, Fig. 6. Several attempts were made to explain this out of 
phase behavior but no consistent explanations have been found, [15]. 

One possible meaningful argument against the plausibility of the Lotka-
Volterra model (14) to describe the prey-predator interaction is based on the 
property that any perturbation of the right-hand side of Eq. (14) destroys 
the periodic orbits in phase space. In mathematical terms, it means that the 
Lotka-Volterra system (14) is not structurally stable or robust. In general, 
a two-dimensional dynamical system is structurally stable if all its fixed 
points obey the conditions of the Hartman-Grobman theorem, and there 
are no phase space orbits connecting unstable fixed points (saddle points), 
[11] and [12]. The only types of structurally stable two-dimensional differen
tial equations with periodic orbit in phase space are equations with isolated 
periodic orbits or limit cycles. In this case, the growth rate functions / and g 
must be at most quadratic, and several models with this property appeared 
in the literature, [12] and [15]. However, all these models show the same 
wrong out of phase effect as in the hare-lynx data. 

In modern theoretical ecology, the development of more specialized 
models relies on the conditions (10) and on further assumptions on the 
functional behavior of the growth rate functions, [13], [12] and [14]. 
In some cases, the assumptions are introduced in analogy with some 
mechanisms derived from chemical kinetics, [6], [16] and [17]. For example, 
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the mechanisms, 

n A + x - ^ ( l + ei)x 
x + y ^ ( 1 + e2)y + cx 

d, (15) 
x—> 
2Z-4 

with ei > 0, e2 > 0, r i > 0, r2 > 0 and c < 1, and, 

A + x - ^ ( l + ei)x 
B + y ^ ( l + e2)y 

x + y ^ cix + c2y (16) 

x—> 
d.2 

with ei > 0, e2 > 0, r i > 0, r2 > 0, r3 > 0, ci > 0 and C2 > 0, are 
examples of possible mechanisms for the prey-predator and generic biotic 
interactions. The phase space structure of the orbits of the Lotka-Volterra 
system (14) and the model (8)—(11) are different from the ones derived from 
the model equations associated to (15) and (16). However, the mechanistic 
interpretation of models (15) and (16) are closer to the biological situations. 
A detailed account of models for predation and parasitism is analysed in 
[18] and [19]. 

3. Discrete Models for Single Populations. 
Age-Structured Models 

One important fact about the individuals of a species is the existence of age 
classes and life stages. Within each age class, the individuals of a species 
behave differently, have different types of dependencies on the environment, 
have different resource needs, etc. For example, in insets, three stages are 
generally identified: egg, larval and the adult. In mammals, in the childhood 
phase, reproduction is not possible, neither hunting nor predation. 

To describe a population with age classes or stages, we can adopt a 
discrete formalism, where the transition between different age classes or 
stages is described in matrix form. One of the advantages of this type of 
models is that they can be naturally related with field data. One discrete 
model that accounts for age or stage classes has been proposed by Leslie in 
1945, [20]. 

The Leslie model considers that, at time n, a population is described 
by a vector of population numbers, (Nn)T = (N™,..., N^), where N™ is 
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the number of individuals with age class i (or in life stage i). The time 
transition between age classes is described by the map, 

N 71+1 ANn (17) 

where A is the Leslie time transition matrix. Under the hypothesis that from 
time n to time n + 1 , the individuals die out or change between consecutive 
age classes, the matrix A has the form, 

0 

e2 e3 

0 0 
a2 0 

\ 0 0 0 

fifc-i 

0 
0 

Uk-l 

0 
0 

0 / 

(18) 

where the e* are fertility coefficients, and the on are the fraction of individ
uals that survive in the transition from age class i — 1 to i. Clearly, e* > 0 
and 0 < on < 1. We consider always that e^ > 0, where e*; is the last repro
ductive age class. If e^ = 0, the determinant of matrix A is zero. Obviously, 
we can have populations with age classes such that ep = 0 and ap > 0, for 
p > k. In this case, if e^ > 0, the solutions N£, with p> k, are determined 
from the solutions obtained from the discrete difference Eq. (17) in dimen
sion k. For example, if ek+i = 0, then N£+l = akNJ^"1. Therefore, without 
loss of generality, we always consider that e^ > 0 and ep = 0, for p > k. 

In Fig. 7(a), we show the distribution of age classes for the Portuguese 
population obtained from the census of 1991, 1992 and 1999, [21]. As it is 
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Fig. 7. (a) Total Portuguese population distributed by age classes for 1991, 1992 and 
1999, [21]. (b) Probability of survival between age classes calculated with the population 
data of 1991 and 1992. The fraction of individuals that survive in the transition from 
age class j — 1 to j is given by, Qj = WI+*"]1 /N?. 
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clearly seen, the population in 1992 and 1999 is approximately obtained 
from the population in 1991 by a translation along the age axis, a property 
shared by the Leslie transition matrix (18). In Fig. 7(b), we show the values 
of the survival probability ctj as a function of the age classes, calculated 
from the census of 1991-92. For age classes j < 45, the values of a_,- are 
close to 1. 

The solution of the Leslie discrete map model (17)-(18) is easily deter
mined. As the discrete Eq. (17) is linear, its general solution is, [22], 

Ni=Yl)=1^
xl (19) 

where the Cjj are constants determined by the initial conditions and the 
coefficients of the matrix A, and the Xj are the eigenvalues of (18). To 
simplify, we assume that the eigenvalues of A have multiplicity 1. As A is a 
non-negative matrix with non-zero determinant (e^ > 0), by the Frobenius-
Perron theory, [23], its dominant eigenvalue A is positive with multiplicity 1, 
implying the existence of a non-zero steady state if, and only if, A = 1. If, 
A < 1, the solutions (19) go to zero, as n —> oo. If, A > 1, the solutions (19) 
go to infinity. 

Calculating the characteristic polynomial of A, we obtain (by induction 
in k), 

P(A) = (- l) f c [ A f c - £ > A f c - * n a j _ i ) . (20) 
\ i=2 j=2 / 

Imposing the condition that A = 1 is a root of the polynomial (20), from 
the condition P ( l ) = 0, we define the constant, 

k i 
G:=x>n^-i (2i) 

i=2 j=2 

where G is the inherent net reproductive number of the population. If we 
make the approximation, otj w 1, we have the net fertility number G := 
Tk e-
Z_,i=2 e*' 

The condition for the existence of asymptotic stable population num
bers, given by the dominant eigenvalue of A, can be stated through the 
inherent net reproductive number of the population. So, in a population 
where G < 1, any initial condition leads to extinction. If, G > 1, we have 
unbounded growth. If, G = 1, in the limit n —> oo, the population attains 
a stable age distribution. 
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The Leslie model is important to describe populations where there exists 
a complete knowledge of the life cycle of the species, including survival prob
abilities and fertilities by age classes. For example, in the Leslie paper [20], 
it is described a laboratory observation of the growth of Rattus norvegicus. 
For a period of 30 days, the projected total population number was over
estimated with an error of 0.06% of the total population. 

For human populations, survival probabilities are easily estimated from 
census data, Fig. 7. However, data from the fertility coefficients are diffi
cult to estimate due to sex distinction and to the distribution of fertility 
across age classes. For an exhaustive account about Leslie type models, its 
modifications, and several case studies we refer to [23], [24] and [13]. For 
tables of the world population by country and the measured parameters of 
the Leslie matrix, we refer to [25]. 

Comparing the discrete and the continuous time approaches, the Leslie 
population growth model presents exactly the same type of unbounded 
growth as the exponential model (1). To overcome the exponential type 
of growth, we can adopt two different points of view. One approach is to 
introduce a dependence of the growth rates on the population numbers, 
as it has been done in Sec. 2, in the derivation of the logistic equation 
from the Malthusian growth equation. Another alternative is to introduce 
a limitation on the growth rates through the resource consumption of the 
population. These two types of development of the Leslie model lead to the 
introduction of the concepts of chaos and randomness and will be developed 
below. 

4. A Case Study with a Simple Linear Discrete Model 

Here, we introduce a simplified discrete linear model enabling to make 
projections about human population growth based on census data. With 
this simple model, we avoid the difficulty associated with the choice of the 
fertility coefficients by age classes, a characteristic of the Leslie model. 

We characterize a population in a finite territory at time n by a two-
dimensional vector (Bn,Nn)T, where Bn represents the age class of new
borns, individuals with less than 1 year, and Nn represents the total number 
of individuals with one or more years. By analogy with the Leslie approach 
of the previous section, the time evolution equations are now, 

{Nn+l) = [p a) [NnJ (22) 
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where e is the (mean) fertility coefficient of the population, a is the prob
ability of survival of the total population between consecutive years, and 
ft is the probability of survival of new-boms. In census data, the fertility 
coefficient is given in number of new-boms per thousand, but here we use 
the convention that the fertility coefficient is given in number of new-boms 
by individual. 

Following the same approach as in the previous section, the solution of 
the discrete Eq. (22) is, 

Bn = ciA? + c2\% 
Nn = c3A? + c4A£ (23) 

where Ai and A2 are the eigenvalues of the matrix denned in (22), and the 
Cj are constants to be determined from the initial data taken at some initial 
census time no. If the dominant eigenvalue of the matrix in (22) is A = 1, 
in the limit n —• 00, the solution (23) converges to a non-zero constant 
solution, from any non-zero initial data. As the characteristic polynomial 
of the matrix in (22) is, 

P(A) aX — eft 

the condition of existence of a non-zero steady state is, 

I = a + eft = l. (24) 

As in (21), we say that / = a + eft is the inherent net reproductive 
number of the population. If, J > 1, then A > 1, and the solution (23) 
diverges to infinity as n —> 00. If, / < 1, then the solution (23) goes to zero. 

In order to calibrate the simple model (22), we take the census data for 
the Portuguese population in the period 1941-1999, Fig. 8. 

, Total Portuguese population without new-borns New-boms 

7 x 1 0 ' ' ' 100000 
1940 1950 1960 1970 1980 1990 2000 1940 1950 1960 1970 1980 1990 2000 

year(n) year(n) 

Fig. 8. Portuguese population and new-borns for the years 1941-1999, from refer
ence [21]. 
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As we see from Fig. 8, the total Portuguese population without new
borns shows strong variations, sometimes with a negative growth rate. This 
negative growth rate is due to emigration, decrease of population fertility 
and other social factors. The data for new-borns also shows negative growth 
rates. Therefore, the growth behavior shown in Fig. 8 is influenced by other 
factors that are necessary to quantify. 

The values of the parameters a, (3 and e, are calculated from the census 
data and are shown in Fig. 9. The probability of survival of the population 
is approximately constant with mean a = 0.9891, and a standard deviation 
of the order of 10 - 6 . The coefficient of fertility e and the new-borns sur
vival probability /? vary along the years. The last two coefficients are very 
sensitive to socio-economic and technological factors, suggesting that, for 
growth predictions, we must introduce into model (22) their time variation. 

From the data of Fig. 9, the net reproductive number can be estimated. 
In Fig. 10, we show the variation of / = a + ej3 for the period 1960-1999. 
For 1960, we have I = 1.01137 and, for 1999, J = 1.00074, both very close 
to the steady state condition (24). Therefore, during this period of time, the 
Portuguese population is growing with a net reproductive number I > 1, 
but very close to 1. The decrease in the population number in the period 
1960-1974 is essentially due to emigration. 

To make population growth projections, we consider that a is constant, 
Fig. 9, with the mean value a = 0.9891, and we consider that e and /? 
are time varying functions. Due to the form of the curves in Fig. 9, the 
functions, 

C2 
e(t) = ci -| , 

w c3 + (t- 1945)c" 
/3(i) = l - c 5 e - C 6 ( t - 1 9 6 ° ) 

(25) 

1950 1960 1970 1980 1990 2000 
vear 

Fig. 9. (a) Probability of survival a, and (b) fertility coefficient e for the period 1945-
1999. (c) Probability of survival of new-borns /3 in the period 1960-1999. The proba
bilities of survival a and /9 have been calculated with the death rate data by thousand 
habitants, [21]. In (b) and (c), we show the fitting functions (25), for the parameter 
values (26). 
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Fig. 10. Dots represent the inherent net reproductive number of the Portuguese popu
lation, calculated from the data of Fig. 9 (1960-1999). The two lines correspond to the 
two possible projections for the net reproductive number J, for the period 2000-2010. In 
estimate (a), we have considered that the time dependence of j3 and e is given by (25), 
for the parameter values (26). In estimate (b), we have taken constant values for /9 and 
e, obtained with the 1999 census values, [21]. 

are reasonable choices, with fitting constants, 

d = 0.00979232, c2 = 5.65086 x 106, c3 = 3.93899 x 108, 
(26 

c4 = 5.63644, c5 = 0.09058, CQ = 0.06355. 

In Fig. 9, we show the fitting functions (25), for the parameter values 
(26). In the limit t —> oo, the new-boms survival probability converges to 
1 and the mean fertility coefficient converges to C\ « 0.0097, which corre
sponds roughly to 10 new-borns per thousand individuals in the population. 
The census value of e for 1999 corresponds to 11.6 new-borns per thousand. 

To estimate the population growth for the period 2000-2010, we adopt 
two strategies for the iteration of map (22). In the first case, we iterate 
(22) with the time dependent functions (25), and we introduce as initial 
conditions the census data for 1999, Fig. 11. In the second case, we take 
for (3 and e the 1999 values. We also apply these two strategies to estimate 
the net reproductive number (24) as a function of time, Fig. 10. 

With the simplified model (22), it is possible to make a short time pro
jection of population numbers. However, for a good calibration and greater 
accuracy, emigration and immigration factors must be taken into account. 

From the data and the fits in Figs. 10 and 11, we can derive sev
eral conclusions. The projections for the period 2000-2010 show two dif
ferent growth behaviors: In case (a) of Fig. 10 and Fig. 11, we have, 
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Fig. 11. Projections of the population numbers for the period 2000-2010, from the 
initial data of the year 1999. In estimate (a) we have considered that the time dependence 
of (3 and e is given by (25)-(26). In the estimate (b), we took /3 and e with the 1999 
census values. These projections do not take into account emigration or immigration 
factors. 

B20io = 9 9 ) 9 6 6 a n d jy20io = 9,835,840, with B 1 9 9 9 = 115,440 and 
./y-1999 = 9,882,150, implying a negative growth with an inherent net 
reproductive number 7 < 1. In case (b), we have, B 2 0 1 0 = 115,251 and 
iV2010 = 9,940,660, corresponding to a positive growth of the population 
but with I close to the transition value 7 = 1. 

Emigration and immigration are strongly dependent on several social 
factors. However, even in this simplified model, we can make an estimate 
of the balance between emigration and immigration. Iterating map (22) for 
all the initial conditions between 1960 and 1998, we can compare with the 
census data the projected value for the next year. The differences between 
these values is an estimate of the balance between emigration and immigra
tion, Fig. 12. In this case, we have used the mean value a = 0.9891, which 
does not change too much during the period under analysis. 

The period 1960-1974 is characterized by a strong emigration, reflected 
in the negative growth of the population and new-boms. During the period 
1974-1982, immigrants outnumber emigrants, introducing a larger growth 
in the population and in the newborns. For the period 1983-1999, we have 
an oscillatory balance. In the period 1960-1974, the emigration-immigration 
balance is of the order of 0.68 millions habitants, implying that emigra
tion was stronger than immigration. In the period 1975-1999, the external 
income of population dominates, and the emigration-immigration balance 
is of the order of -0.18 millions habitants. 

The example presented here shows how this type of simple discrete mod
els can help us to predict the overall growth of a population, the impact of 
historical events and the impact of policies of social protection and medical 
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Fig. 12. Emigration-immigration balance for the period 1961-1999 calculated with 
the census data and model Eq. (22). Positive values correspond to larger emigration 
when compared to immigration. Negative values mean that immigration is larger than 
emigration. 

care. In fact, the main features presented in the figures reflect important 
social transformations that occurred in Portugal in the last 40 years. This 
approach can be further extended in order to introduce emigration and 
immigration factors and age classes. 

In fact, in demography studies, the Leslie discrete model of Sec. 3 is 
nowadays the basic tool for demographic projections in human popula
tions, [25]. In microbiology, most of modelling approaches are based on the 
exponential and logistic models, [3]. 

5. Discrete Time Models with Population 
Dependent Parameters 

In discrete time models with population dependent parameters, we intro
duce the same kind of reasoning as developed in the continuous models 
of Sec. 2: In a bounded territory, the growth rate of a population shows 
sensitivity to population numbers, Fig. 1. As we have seen, this choice has 
been used in the derivation of the logistic model and, in some sense, has 
been validated by the predictions of growth of Paramecium caudatum in a 
batch culture. 

The simplest discrete population dependent model is described by the 
Ricker map [26], 

Nn+i = rNne (27) 
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where r is the growth rate and Nn represents the number of individuals 
of a population at time n. This map has been used for many years in the 
analysis of fisheries. 

The overall dynamics of map (27) is similar to the discrete logistic 
model, 

Nn+1 = aNn(l - Nn) (28) 

used in the modern theory of dynamical systems as a prototype of a chaotic 
systems, [27]. In particular, the map (28) is a finite differences approxima
tion to the logistic Eq. (2). Applying a finite difference approximation for 
the derivative in (2), we obtain, xn+\ = xn (1 + rAt - xnrAt/K). With the 
linear change of coordinates, Nn = rAtxn/K(rAt + 1) and a = (rAt + 1), 
we get the discrete logistic map (28). These types of models introduce a 
population dependent growth rate in the form of a decreasing function of 
the number of individuals in the population. The right-hand side of both 
maps (27) and (28) have a local maximum at Nn = 1 and Nn = 1/2, 
respectively. 

The dynamic behavior of maps (27) and (28) introduce into the lan
guage of population dynamics and ecology the concept of chaos, [27]. The 
motivation for this approach is based on some observations that, during 
time, some populations show erratic variations in the population numbers, 
apparently without external causes, as for example the diminishing of envi
ronmental resources. 

Prom the mathematical point of view, there are essentially two types 
of random behavior in dynamical systems. One type of random behavior, 
called quasi-periodicity, is associated with the non-periodicity of a temporal 
time series, as in the iteration of circle maps, [11]. The other type of erratic 
behavior, called chaoticity, is associated with the existence of an infinite 
number of unstable periodic orbits in phase space. The Ricker and the 
logistic maps have chaotic behavior for several parameter values. 

To analyse the type of random behavior of the Ricker map (27), we 
construct a bifurcation diagram: For each value of the parameter r, we 
iterate the Ricker map from a given initial condition, say 1000 times, and 
we plot the last 500 iterates. Then, we repeat this procedure for other 
parameter values. The graph obtained gives information about the asymp
totic states of the trajectories of the map, as a control parameter is varied, 
Fig. 13. For simple enough maps, as one-dimensional maps with one maxi
mum, the information obtained by this method is independent of the initial 
conditions. 
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Fig. 13. Bifurcation diagram for the Ricker map (27). Chaos occurs for r > r<xj. 

As we see from Fig. 13, for small values of the parameter r, the map 
(27) has an asymptotically stable steady state — the iterates converge to a 
stable period-1 fixed point or stable steady state. Increasing the value of the 
parameter r, the period-1 stable steady state disappears and a new stable 
steady state with period-2 appears. The parameter value of the transition 
is a bifurcation in the dynamics of the map. For the parameter values where 
the period-2 orbit is stable, there exists an unstable period-1 orbit, which 
obviously does not appear in the bifurcation diagram. For increasing values 
of the parameter r, a sequence of period doubling bifurcations appears. This 
sequence accumulates at r = Too. For r > r ^ , we say that the dynamics of 
map (27) is chaotic, [11]. 

One of the characteristics of the chaotic region in one-dimensional maps 
0* > foo) is the existence of an infinite number of unstable periodic orbits in 
phase space, even in the regions where the asymptotic states are stable fixed 
points. The typical time series of a chaotic map is represented in Fig. 14. 

It is generally believed that populations can have chaotic behavior in 
time [27]. In a laboratory experiment with a flour beetle, Costantino et al. 
[28] have shown that, by manipulating the adult mortality, the number of 
individuals of the population can have erratic behavior in time. In this case, 
the experimental system shows qualitatively the same type of bifurcation 
behavior as in a non-linear three-dimensional discrete model for the time 
evolution of the feeding larvae, the large larvae and the mature adults. How
ever, there is no clear evidence that such erratic behavior shares the same 
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Fig. 14. Chaotic time series obtained with the Ricker map (27), for r = 26. 

dynamic properties of maps with chaotic behavior, despite the similarities 
between bifurcation diagrams. 

Based on observational data, some authors claim that, in the time 
series of some populations, the observed erratic behavior has quasi-periodic 
characteristics, [29]. In the next section, we present a consumer-resource 
approach model with a bifurcation diagram with some characteristics that 
are similar to the one obtained with the Ricker map. 

6. Resource Dependent Discrete Models 

The consumer-resource interaction is a fundamental issue in ecology, [30] 
and [31]: Without resources, living organisms do not survive or reproduce. 
In a rich environment, it seams natural to assume that the effect of resources 
on a small population is not an important limiting factor for growth. How
ever, if resources are scarce, we can expect an increase of death rates and 
an increase in mobility for the search for other territories. 

In ecological modelling, the effect of resources is sometimes introduced 
as external forcing factors. A typical example is the modelling based on 
the logistic equation with a time varying carrying capacity. In this case, 
the response of the population numbers to the external forcing follows the 
time varying characteristics of the forcing function. Here, we adopt a more 
generic approach and introduce directly the dynamics of the resources into 
the models, [31]. 

To maintain some degree of generality in the derivation of resource 
dependent models, we adopt a Leslie age-structured approach. The compro
mise between simplicity and generality is to consider that, in age-structured 
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populations, resources only affect the probability of survival of the repro
ductive age classes. Under these conditions, we can write a resource depen
dent model in the generic form, [31], 

/ ^ r+1\ 
J V 2

n + 1 

N£+1 

\N£+1/ 

( 0 e2 

ai( i?n) 0 

0 a2{Rn) 

V 0 0 

e3 

0 

0 

0 

0 

0 

0 

a fc_!(ii") 0 / 

JV3" 

W/ 
(29) 

Rn+1 = /(jR«)0(AT") 

where we have introduced a dynamic for the resources, and Nn = JVjM 1-
N£ is the total number of individuals in the population at time n. We also 
assume that the fertility coefficients are resource independent, which must 
be understood as an oversimplification. 

To analyse the dynamical properties of map (29), we make some assump
tions on the form of the functions cti(R), f(R) and <f>(N). In order to derive 
general properties about the asymptotic states of the population numbers, 
we establish plausible limiting behaviors for the model functions, with
out specifying any particular functional forms for cti(R), f(R) and (f>(N). 
The function f(R) describes the dynamics of the resources alone through 
the iteration Rn+1 = f(Rn). We further assume that the resource map, 
Rn+1 = f(Rn), has a stable fixed point for Rn = K and an unstable fixed 
point for Rn = 0. 

We further assume that both cti(R) and f(R) are non-negative and 
monotonic increasing functions of R, and <fi(N) is non-negative and mono-
tonic decreasing function of N. Therefore, we have the following limiting 
values, 

ai(R) -> 0, as R -> 0 

(*i(R) - + 1 , 
f(R) - 0, 
cfr(N) -> 1, 
<KN) - 0, 

as R —> oo 
asi?->0 
as AT->0 
as N —> oo 

(30) 

Under these conditions, it can be proved that ([31]): 

Theorem 2. The map (29) together with conditions (30) is a diffeo-
morphism in the interior of the set B = (N\ > 0 , . . . , Nm > 0, 
R > 0). The resource dependent inherent net reproductive number 
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G{K) = YH=2eiYlU aj-i(K) is a bifurcation parameter for map (29). 
If G(K) > 1, but G(K) is close to the value 1, then the map (29) has a 
non-zero stable fixed and is structurally stable in the interior of B. 

The importance of Theorem 2 relies on the statement that the resources 
control the structural stability of model map (29), in the sense that any 
small perturbations of the map will not destroy the stability of the non-zero 
fixed point. Moreover, the structural stability result is independent of the 
functional form of cti(R), f(R) and (j>(N). 

In order to better understand the dynamic properties of map (29), we 
take a prototype model with three age classes, and we choose plausible 
functions oti(R), f(R) and <j>(N). For the resources, we choose a logistic 
growth function, 

K(3Rn 

f(Rn) (31) 
Rn{0-1) + K 

where /3 > 1 is the discrete time intrinsic growth rate, and K is the carrying 
capacity. Function (31) is a logistic type growth function for the resources 
and follows from (3), with t = At and /3 = e r°A t . For the probability of 
survival between age classes, we assume that it has the form of a birth-and-
death (stochastic) process, [32], 

nRn 

ai(Rn) (32) 
liRn +1 

where the 7* > 0 are parameters. As ji becomes large, the probability of 
survival in the transition between consecutive age classes becomes close 
to 1, and cti(Rn) becomes sensitive to the variations of resources only for 
small values of Rn (few available resources). The function <p(N) is assumed 
to have the Poisson form, 

cj)(Nn) = e -N" (33) 

With k = 3, and introducing (31)-(33) into (29), we obtain the resource 
dependent map, 

/ 0 e2 e 3 \ 

71-R" 
/JVT+ 1\ 

V 
iV2

n+1 

N%+1 

Rn+1 

jiRn +1 

0 
\ 

K(3Rn 

Rn{(3 - 1) + K 

0 

72-R" 

0 

72-R" + 1 / 

{Ni\ 
JV2" 

(34) 

exp(-(iVf + N% + N£)). 



430 Biomathematics: Modelling and Simulation 

Fig. 15. Bifurcation diagram of map (34) for the parameter values e3 = 0.8, 71 = 
7 2 = 1, K = 100 and 0 = 1000, [31]. 

The phase space of map (34) has dimension 4. However, to analyze the 
bifurcation diagrams of the number of individuals, we simply plot the total 
number of individuals of the population, Nn = N^+N^+N^, as a function 
of the control parameters. In Fig. 15, we show the bifurcation diagram for 
the total number of individuals calculated from map (34), as a function 
of the control parameter e^- The other parameters have been fixed to the 
values e3 = 0.8, 71 = 72 = 1, K = 100 and /? = 1000. 

For 0.11 < e2 < 1.04, the map (34) has a non-zero stable fixed point. 
Increasing e2, this fixed point becomes unstable. The instability of the fixed 
point is due to a discrete Hopf bifurcation, and an invariant circle in phase 
space appears, [33], Fig. 15. The discrete Hopf bifurcation occurs when 
two complex conjugate eigenvalues of the Jacobian matrix of (34) evalu
ated at the period-1 fixed point cross the unit circle in the complex plane. 
On the invariant circle, the time evolution is not periodic anymore, and 
any time series or orbit becomes quasi-periodic. Increasing further the con
trol parameter, there is a continuous region in the parameter space where 
regions of invariant circles in phase space and regions of periodic behav
ior appear. These regions are separated by bifurcations from quasi-periodic 
to periodic attractors (saddle-node discrete bifurcations) characteristic of 
circle maps, [33]. 

In Fig. 16, we show the attractors and the time series for two different 
values of the parameter e^. In Fig. 16(a), the invariant trajectory in phase 
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Fig. 16. Invariant sets in phase space and time series for map (34), for several values of 
the control parameter e2- In (a), the invariant set in phase space is homeomorphic to a 
circle, and in (b) it is similar to a fractal set. In both cases, the corresponding time series 
are quasi-periodic. The time series of these quasi-periodic motions should be compared 
with the chaotic time series of Fig. 14. 

space is homeomorphic to a circle and has a quasi-periodic time series. In 
Fig. 16(b), the invariant circle is destroyed and an invariant set appears, 
apparently, with a fractal structure. In this case, the quasi-periodicity of the 
time series is maintained. Further numerical analysis for other parameter 
values leads the conclusion that the random behavior found in this map 
has a different characteristic than the one found in the chaotic case of the 
previous section. 

Quasi-periodic time series have random behavior. In fact, there exists a 
continuous probability distribution characterizing the permanence time of 
the iterates of the map on the attractor in phase space, [34]. This probabil
ity distribution also exists in the chaotic maps (27) and (28). The difference 
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between map (34) and maps (27) and (28) is that, in map (34), the phase 
trajectories on the invariant set have no unstable periodic orbits, whereas in 
chaotic systems invariant sets contain an infinite number of unstable peri
odic orbits. In both cases, the trajectories on the invariant sets are random 
because they are ergodic, leaving invariant the above-mentioned probability 
distribution, with support on the attractor. The time series of the chaotic 
system is clearly irregular, contrary to the quasi-periodic case where it is 
almost regular, despite the apparent similarities of bifurcation diagrams. 

There is one more important distinction between the map (34) and the 
maps (27) and (28). The map (34) is a diffeomorphism in the positive part 
of phase space, and maps (27) and (28) are not invertible. Prototype models 
of chaotic dynamics are in general non-invertible. The map (34) becomes 
non-invertible in the limit (3 —> oo. In this limit, we obtain, for the resource 
dynamics, Rn+1 = Ke~(N™+Ni+N*\ This corresponds to the introduction 
of a fast recovery time of the resources when compared with the time scale 
of the population. In this case, the structure of the invariant sets in phase 
space becomes more complex than the ones depicted in Fig. 16, and we 
observe regions of quasi-periodic behavior mixed with regions with more 
complex time series, [31]. 

From the comparison between the models (27), (28) and (34), the main 
conclusion we want to point out is that, for hypothetical populations follow
ing these dynamics, the information provided by the bifurcation diagrams 
is not enough to decide about the degree of complexity of a time series. The 
structure of the attractors in phase space has to be taken into account. In 
principle, any analytical strategy in order to calibrate and validate models 
with chaotic or quasi-periodic behavior in time must elucidate about the 
topological structure of the attractors and about fixed points in phase space. 

7. Spatial Effects 

In general, in the search of resources or simply to avoid overcrowding, pop
ulations spread along space. In some species, the spreading is short-range 
and in others it has a long-range effect. In order to describe both effects in 
a simple formalism, we take the simplest case where the population at time 
n + 1 relates to the population at time n, through the difference equation, 

Nn+1 = y^jyn) (35) 

where / is some arbitrary function, and Nn is the number of individuals 
in the population at time n. To introduce the effect of spatial spreading 
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into (35), we let Nn = Nn(x), and the total population is, 

' Nn(x)dx = N?ot (36) 
/ 
J a where a and b define the limits of the territory. The limiting cases a = 

- c o and b = +oo are allowed. Now, N(x) is the number of individuals of 
the population per unit of length or area. The spatial spreading effect is 
introduced into (35) by a dispersion kernel k(y — x), and the local dynamics 
becomes, 

Nn+1(x)= f k(y-x)f(Nn(y))dy (37) 
J a 

where, to avoid spatial asymmetries, we assume that fc(-) is an even function 
of its argument. We impose further that, 

rb 

k(z)dz = 1. (38) 
/ 
J a 

With condition (38), the kernel function k(z) can be understood as 
a probability distribution, and the term k(y — x)f(Nn(y)) in (37) is the 
frequency of individuals that were at y at time n and will be at x at time 
n + 1. Introducing, z = y — x into (37), we obtain, 

rb 
Nn+1(x)= k(z)f{Nn(z + x))dz. (39) 

J a 

The integro-difference Eq. (39) describes the time evolution of the den
sity of individuals in the population and, depending of the form of the 
kernel function, it accounts for short- and long-range spreading effects. 

In order to describe only short-range effects, we develop f(Nn(z + x)) 
in Taylor series around 2 = 0, and from (39), we obtain, 

Nn+\x) = f(Nn(x)) + D^(f(Nn(x))) + ••• (40) 

where we have used the normalization condition (38), and, 

, b 

D= k(z)z2dz (41) 
J a 

is the diffusion coefficient or second moment of the kernel function k(z). 
The kernel function k(z) is specific to the species under consideration, and, 
in principle, is related with the mobility of the population. Obviously, D is 
also species dependent. In [15] and [35], some examples of kernel functions 
used in ecological modelling are discussed. 
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We apply now this formalism to the study of the dispersal of a hypothet
ical population that follows a Ricker type dynamics (Sec. 5). Introducing 
the Ricker map (27) into the integro-difference equation (39), we obtain, 

/

+oo 

k{z)Nn{z + x)e-N"(z+x^dz (42) 

-oo 
and we chose as dispersion kernel the normalized Gaussian function, 

1 
k(z) „-z'/4D (43) 

2V7TD 

where D is the diffusion coefficient. 
To follow in time and space the growth of this hypothetical popula

tion, we consider a one-dimensional infinite domain with the initial density 
distribution, 

N°(x) if M 
if \x\ 

< 1 
> 1 . 

(44) 

By (36), the initial total population described by (44) has four individuals. 
To follow the space and time evolution of the number of individuals in 

the population, we introduce (44) into (42), and we iterate (42) for several 
values of the growth rate parameter r. In Fig. 17, we show the first iterates 
of the integro-difference equation (42), for the initial condition (44), and 
parameter values: D = 0.1 and r = 5; D = 0.1 and r = 17. For these 
parameter values, the Ricker map (27) has periodic and chaotic behavior 
(Fig. 13), respectively. After four iterations, the total population numbers 
are: iV"t

4
ot = 9.6, for r = 5, and JVt

4
ot = 21.2, for r = 17. In both cases, the 

initial condition corresponds to iVt°ot = 4. 

Nn(x) 

b) 

(7 

r=17 
2 A 3 

- 2 

Fig. 17. First iterates of the integro-difference Eq. (42) associated to the Ricker map, 
for D = 0.1, (a) r = 5 and (b) r = 17. Nn(x) is the density of individuals at the spatial 
region x and time n. The initial condition at time zero is given by (44). The numbers in 
the graphs represent the iteration time n. 
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The numerical simulations in Fig. 17(a) show the formation of a disper
sal front. Initially, the front amplitude has small oscillations. After some 
time, the front amplitude stabilizes and its value equals the value of the 
fixed point of the Ricker map (27). The front propagates in space and 
the population number increase in time. When n —> oo, then Nn —> oo. 
In Fig. 17(b), the Ricker map has chaotic behavior, and a dispersion 
front appears as time increases. In this case, at each point of the spatial 
region, the oscillations of the population density during time are chaotic, 
Fig. 18. 

In Fig. 18(a), we show, for the Ricker map (27), the time evolution 
of Nn(0), calculated with the integro-difference equation (42). The time 
series at a given point of the extended system has the same type of chaotic 
behavior as the time series obtained with Ricker map. In Fig. 18(b), we show 
the graph of the points (ATn+1(0),iVn(0)). Also, in the extended system, 
the chaotic behavior of the local map persists. In real extended systems, 
this effect gives information about the chaoticity or periodicity of the local 
dynamics. 

This simple example shows that the dispersal effect strongly increases 
the equilibrium values of the population, implying that the dimension of 
the territory of a population is a constraining factor for the population 

71 

0 5 10 15 
n 

Fig. 18. (a) The heavy line is the time series of the first iterates of the density of 
individuals Nn(0), calculated with the integro-difference equation (42), for the Ricker 
map (27). The parameters values are, D = 0.1, r = 17, and the initial condition is 
given by (44). The thin line is the iterate of the Ricker map, for the same parameter 
values, and the initial condition N° = 2. For these parameter values, the Ricker map is 
chaotic. As it is clearly seen from the time series, the chaotic behavior is still present 
in the extended system. In (b), we show the graph of the function Nn+1 = f(Nn) = 
rNne-N" (thin line), and the points (Arn+x(0), Nn(0)) from the time series in (a). The 
iterates of the Ricker map are on the graph of the function f(Nn) (triangles). The points 
(JVn + 1(0), iVn(0)) obtained from the time series of the extended system are near to the 
graph of the function f(Nn) (squares). 

20 



436 Biomathematics: Modelling and Simulation 

growth. Note that, the Ricker map only admits finite values for the number 
of individuals of a population. 

Suppose now that we have a population evolving according to the 
logistic equation (2), and we want to take into account dispersal effects. 
Applying to the logistic equation the same reasoning leading to the integro-
difference Eq. (39), we obtain, 

dN 
~dt 

f k(z)rN(z + x,t)(l-N(z + x,t)/K)dz (45) 
J a 

together with the normalization condition (38). In this case, we obtain an 
integro-differential time evolution equation. To analyze short-range disper
sal effects, by (40), we have, 

^=rN(l-N/K) + rD-^(N(l-N/K)) (46) 

which is a parabolic partial differential equation. 
We take the simple equilibrium solution of the logistic equation, N(x) = 

K. Introducing this solution into (46), N(x) = K is a stationary solution of 
the parabolic Eq. (46). Therefore, by (36), the logistic model with dispersal 
admits an infinite population in an infinite territory. Once more, it is clear 
that population numbers are dependent of the dimensions of the territory. 

In the literature of ecology, dispersion effects are analysed through the 
parabolic equation, 

dN d2N 
-^=rN{l-N,K) + D ^ (47) 

which is known as the Kolmogoroff-Petrovskii-Piskunov or Fisher equation. 
This equation is in general derived under the assumption of Fick laws that 
asserts that migration occurs from regions with higher densities to regions 
with lower densities. One of the properties of the solutions of the equation 
(47) is the possibility of having a propagating front along space, [36] and 
[37], analogous to the fronts of Fig. 17(a). 

To incorporate dispersion effects into continuous models of population 
dynamics, we can follow the reasoning leading to equations (45) and (46), or 
adopt the view leading to Eq. (47), introduced by Kolmogoroff-Petrovskii-
Piskunov, [36]. In the last case, this corresponds to add a diffusive term, 
transforming the differential equations into a quasi-linear parabolic partial 
differential equation. Most of these spatial models are non-linear and their 
space and time solutions are found numerically. In references [15] and [35], 
several models with spatial effects are analysed. 
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8. Age-Structured Density Dependent Models 

In the literature of ecology, density dependent models appear in several 
contexts. In the Leslie approach, the effects on population density can be 
introduced through the dependence of the probability of survival between 
age classes on the population numbers. In this case, the survival probabili
ties between the age classes are of the form ai(Nn), where Nn is the total 
population at time n, [38], and the general non-linear map obtained falls 
in the class of non-linear maps of Sec. 5. Also, in the previous section, we 
found a density dependent model in the sense that the state variable of the 
population has the generic form N(x), representing the number of individu
als by unit of area or length. All these models are, in a certain sense, density 
dependent. Here, we are interested in density dependent models where the 
age and time variables have a continuous nature, [39], [23], [40] and [41]. 

We consider a population age density function n(a, t) such that, 

/-+oo 
N(t)= / n(a,t)da (48) 

Jo 
where N(t) is the total population at time t, and a represents age. The 
function n(a, t) is the density of the individuals of the population with age 
a at time t. The births are described by the fertility function by age class 
b(a, t), and are given by, 

»(0,t)= / 
JO 

b(a,t)n(a,t)da. (49) 

Assuming that the normalised death rate of the density of individuals 
(mortality modulus) of the population is constant (jtx), we have, 

dn , , 
- = - M „ . (50) 

As ageing is time dependent, a = a(t), and is measured in the same time 
scale of time, ^ = 1, by (50), the function n(a(t),t) obeys the first order 
linear partial differential equation, 

^ + ^ = "M»(M) (51) 

together with the boundary condition (49). Equation (51) is the 
McKendrick equation [39]. 

Let us find now a solution of the McKendrick partial differential 
Eq. (51) by elementary geometric methods. Writing Eq. (51) in the form, 

n^°' ' = —/xn(a,t), where a is also a function of t, the solutions of (51) 
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are obtained through the solutions of the system of ordinary differential 
equations, 

( dn 
dt 
da 

I ~dl 

= —fin 

= 1. 

(52) 

These two independent equations have the general solution, 

(n(a,t) = n(a0,tQ)e-^t-to'> 

\ a — ao = t — to 
(53) 

where ao is the continuous age variable for t = to- The second equation in 
(53) is the equation of the characteristic curves of the partial differential 
Eq. (51), Fig. 19. Introducing the second equation in (53) into the first one, 
we obtain the solution of the McKendrick equation, 

n(a,t) = n(a-t,0)e Mt, for t < a (54) 

t* 
ti" 

*2* 

r . 

3 / 

/ 2 

a / 

r / 

0 

Fig. 19. Characteristic curves a — ao = t — to for the McKendrick equation (51). The 
graph of the characteristic curves lies in the domain of the solution n(a,t). Given an 
arbitrary point (a*,f) in the domain of the partial differential equation, the solution 
ufa*,?*) is easily obtained following the thin line backwards in time down to t = 0. 
The heavy lines are characteristic curves defined by the equations t — a + ma\, for 

771 = 0, 1, . . . . 



Mathematical Models in Population Dynamics and Ecology 439 

where n(a, 0) is an initial density distribution of the population at to = 0. 
For t < a, the solution (54) is independent on the boundary condition (49). 
The domain of the solution (54) is the region labeled with a zero in Fig. 19. 

To extend the solution (54) for t > a, the boundary condition must 
be introduced, as well as some additional simplifications. We suppose that 
births occur at some unique fixed age a = ai, Fig. 19. Then, the fertility 
function is necessarily concentrated at the point a = a\. Therefore, as 
fertility function by age class, we take, 

b(a,t) = b5(a — ai) 

where 5(-) is the Dirac delta function and b is a (mean) fertility parameter. 
Under these conditions, the boundary condition (49) simplifies to, 

n(0,t) = bn(ai,t). (55) 

We extend now the solution (54) to t = a, with the boundary condition 
(55). By (53) and (55), the solution of the McKendrick equation (51) is, 

n(a,t) =n(0 ,0)e~" ' = 6n(ai,0)e_ / J t , for a = t. (56) 

With a simple geometric construction, we calculate now the solu
tion for t > a. We take the point (a*,t*) on the line t — t*, Fig. 19. 
This point is in the region labelled 2 in Fig. 19. By (53), the charac
teristic line that passes by (a*,t*) crosses the line a = 0 at some time 
t = tl, and n(a*,t*) = n ^ D e - " * * * - ' ! ) = n(0,t* - a'Je-"***-*^, where 
t* = t* — a*. Imposing on this solution the boundary condition (55), we 
obtain, n(a*,t*) = bn(ai,t* — a*)e~tJ'(-t*~t^. As n(ai,t* — a*) is the solu
tion of the McKendrick equation at the point (ai,t* —a*), we repeat the 
above construction, by drawing the horizontal line connecting the points 
(0,£j) with (oi.t j) , Fig. 19. Iterating this procedure backwards in time, we 
obtain, 

n(a*,t*) = b2n(aut* -a*- ai)e-^*'-^+^-^ 
= 62n(2ai + a* - t*, o)e-Mt*-t;+tJ-t2*+t2*-o) (57) 

= b2n(2ai + a* -t*,0)e-^' 

where t\ = t* — a | — a*, and we systematically have used the equation of 
the characteristic curves, a — ao = t — to- In Fig. 19, for any initial condition 
inside the region labelled with an integer, say m, an easy induction argu
ment shows that the solution of the McKendrick equation (51) has the form 
(57), where the factor 2 is substituted by m, where m — [(t — a)/a\ + 1] and 
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[x] stands for the integer part of x. Then, by simple geometric arguments, 
we have proved: 

Theorem 3. Let n(a, 0) be an initial data function for the McKendrick 
partial differential equation (51), with a > 0, t > 0 and /x > 0. Then, for 
the boundary condition (55), with a\ and b positive constants, the general 
solution of the McKendrick partial differential equation is, 

n(a,t) = n(a-t,0)e~^, fort<a 
n(a, t) = 6K*-«>/«i+1]n([(i - a)/ai + l]aj + a - 1 , 0 ) e ~ ^ , fort>a [ ' 

where [x] stands for the integer part of x. 

We analyse now the stability of the solution (58) of the McKendrick 
partial differential equation. As \(t — a)/ai] + 1 = m, where m is a positive 
integer, we have, (t — a)/a\ + 1 = m + e(a, t), and, for fixed a, with t > a, 
the function e(a,t) is time periodic with period ai . Therefore, 

^[(t-o)/ai + l)e-Mt _ e[(t-a)/ai](ln6-/iai)^e-^ae-/joie(a,t)> 

By (58), and for t > a, we have, 

n(a,t) = e[(*-«)/aiKlnb-Mai) 

x n([(t - a)/ai + l]ai + a - 1 , o )6 e - ' i a e-^ a i £ ( a ' t ) . (59) 

Then, if (In b — /j,ai) = 0, the asymptotic solution of the McKendrick partial 
differential equation is periodic in time. If, b > eM01, asymptotically in time, 
the population density goes to infinity, and if, b < eMai, the population 
density goes to zero. Hence, we have: 

Corollary 4. Let n(a, 0) be a differentiable and bounded initial data func
tion for the McKendrick partial differential equation (51), with boundary 
condition (55). Suppose in addition that In b = na\. Then, the asymptotic 
solution of the McKendrick equation is bounded and periodic in time, with 
period a\: 

n(a,t) = n{[(t - a)/ax + l]ai + a- t,0)be-^ae-"ai£{a't). 

In Fig. 20, we show the time evolution of an initial population with an 
uniform age distribution, with a maximal age class, and obeying to the sta
bility condition b = eMai. We have chosen for initial conditions the density 
function: n(a, 0) = 2, for a < 100, and n(a, 0) = 0, for a > 100. By (48), this 
corresponds to the initial population, JV(0) = 200. The calculated popula
tion numbers for t = 30 and t = 100 are N{30) = 110.7 and iV(100) = 70.9, 
respectively. As it is clearly seen in Fig. 20, after a transient time, the 
population density becomes periodic in time, as asserted in Corollary 4. 
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Fig. 20. (a) Time evolution of the solution of the McKendrick equation (51), for the 
age classes a = 8 and a — 35. (b) Distribution of the number of individuals by age class, 
for t = 30 and t = 100. All these solutions have been calculated with the initial data 
condition, n(a, 0) = 2, for a < 100, and n(a, 0) = 0, for a > 100, and parameter values, 
a\ = 25 (unique reproductive age class), /J, = 0.05 (death rate) and 6 = e*""1 = 3.49 
(mean fertility). 

100 

Fig. 21. Total population as a function of time, for the same parameter values of Fig. 20. 
After a transient time, the period of oscillations is a\, the age of the unique reproductive 
age class. 

In Fig. 21, we show the total population as a function of time, calcu
lated from Theorem 3 and (48), with the initial condition and parameters 
from Fig. 20. In the McKendrick continuous age-structured approach, the 
asymptotic stable state of the dynamics are not fixed points as in the case of 
the Leslie type maps (Sec. 3), but bounded time periodic function. More
over, by Theorem 3, the amplitude of oscillations depends on the initial 
data function n(a, 0). 

If, b > eMai, by (59), it can be shown that the growth curve is modulated 
by a time periodic function with period ai, [42]. For two reproductive age 
classes and boundary condition n(0, t) = bin(ai,t) + 62^1(02,*), the growth 
curves are always modulated by two time periodic functions with periods 
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ai and &2- If these periods are not rationally related (niai+n2a,2 = 0, has no 
integer solutions in ni and 712), the modulation function is quasi-periodic. 
In the population dynamics literature the quasi-periodic modulations of 
the growth curves are called demography cycles. For a detailed discussion 
see [42]. 

In the more general case of age dependent fertility function and mor
tality modulus, b(a) and /u(a), the qualitative behavior and stability prop
erties of the solutions of the McKendrick equation (51) are determined by 
the Lotka growth rate, [24] and [42], 

pa.2 

r= b(c)e-fo^)^dc (60) 
J a\ 

where a\ and a-i are the ages of the first and the last reproductive age 
classes, and b(a) and /x(a) are determined from demography data. 

To estimate the growth of populations, the Lotka growth rate is an 
important demography tool, [25]. A detailed analysis shows that, the dis
crete approximation of (60) coincides with the inherent net reproductive 
number of a population (21), [42], introduced in the discrete time and age 
Leslie formalism of Sec. 3. 

We can now compare the solution of the McKendrick equation derived in 
Theorem 3 with the exponential solution of the Malthusian growth model 
(1). Assuming that t > a, we have, n(a,t + sai) = n(a,t)rs, where s is 
an integer and r = be~^ai is the Lotka growth rate. With t = a\ and 
T = ai + sai, we obtain, n(a,r) = n(a,a\)r^T~ai^ai. Integrating n(a,r) in 
a, we have for the total population, 

N{T) = JV(ai)r(T-ai>/ai (61) 

which is a Malthusian growth function with Lotka growth rate r. Therefore, 
with a time step equal to the age of the only reproductive age class (ai), the 
solution of the McKendrick equation behaves like the exponential growth 
model of Sec. 2. In fact, taking the derivative of (61) in order to T, the total 
population N obeys to the differential equation, 

dN log r . r - p - = ——N 
dr a\ 

which is the Malthusian growth model (1). This shows that Malthusian type 
models describe population growth at a larger time scale when compared 
with age-dependent McKendrick type models. 
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9. Growth by Mitosis 

When reproduction occurs by mitosis as in cells and some micro-organisms, 
the growth model of the previous section must be modified. We consider a 
population of micro-organisms or cells in a media with enough resources, 
eventually infinite. We assume that the micro-organisms replicate by mito
sis, and the time of the mitotic processes can be neglected. We represent 
by n(a, t) the density of organisms in the media with age a at time t. 

We consider that the probability of dying depends only on the age. We 
denote by fi(a) the probability density of death with age a, and b(a) is 
the probability density of undergoing mitosis with age a . If an organism 
initiates mitosis, then, after some time, the organism transforms into two 
new ones with age zero. Therefore, the density of newborns at time t is, 

n(0,t) = 2 / 
Jo 

b(a)n(a,t)da (62) 

where the factor 2 accounts for the mitotic process. 
Hence, the time evolution of the colony of micro organisms is described 

by the modified McKendrick equation, 

^ + ^ = -<*«) +>(»>WM) (63) 
together with the boundary condition (62). 

We consider a population where all the individuals initiate mitosis at 
some fixed age a = a, such that b(a) — S(a — a). To simplify even further, 
we suppose that /x(a) = /i is constant, independently of the age. So, by 
(60), (62) and (63), the Lotka growth rate is now, 

/•OO 

r = 2 / S(a- a)e~ So W ' l + ' f ' - " ) ) * ^ (64) 
Jo 

As, 

' 0 , if a < a 

5(s - a)ds = I 1/2, if a = a ( 6 5 ) 

„ 1, if a > a 

by (65) and (64), for a population with mitotic reproduction type, the Lotka 
growth rate is, 

r = 2e-»ae-1/2. (66) 

Making /x = 0 in (66), for the Lotka growth rate, we obtain the constant 
value, 

r = 2e~1 / 2 = 1.21306. 

Jo 
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In the case of sexual reproduction and in the limit case of zero mortality, 
by (60), we have, 

r= b(c)dc (67) 
Jai 

which can be larger or smaller than 1, depending on the intrinsic fertility 
of the species. In mitosis, in the limiting case of zero mortality, the Lotka 
growth rate is always greater than 1, ensuring an exponential growth pro
cess. On the other hand, by (66), in organisms that reproduce by mitosis, 
r cannot take large values, but in the case of organisms with sexual repro
duction, by (67), r can be arbitrary large. 

The application of the McKendrick approach to the growth of colonies 
of micro-organisms is described in detail in Rubinow [43]. 

10. Conclusions 

Along this review we have derived the most common models used in ecol
ogy and population dynamics. Differential and difference equation models, 
describe a population as whole, in the sense that they do not distinguish 
either intra-specific characteristics of the individuals, or their spatial dis
tribution. The calibration of these models with real biological situations 
is not always successful and, in the context of growth projections, they 
must be considered as toy models. However, the analysis of their dynamic 
behavior introduced in the language of ecology new concepts that later 
were generalised to the age-structure approach. This is the case of the con
cept of growth rate, introducing a quantitative measure of the stability or 
instability of a population. 

The dependence of the carrying capacity and of the growth rate param
eters on the dimensions of the territories and on the available resources, is 
also an important issue. Experimental measurements of growth of micro
organisms as a function of resources has been done by Monod, [44]. 

The class of age-structured models gives us a more detailed insight on 
the dynamics of a population. In demography studies, the Leslie and the 
McKendrick approaches are nowadays the reference models. In the context 
of microbiology, the same structure and theoretical setting holds as it has 
been shown in Rubinow, [43]. One of the consequences of the age-structured 
McKendrick approach to the population growth is that, in a time scale of 
the order of the mean age of the reproductive classes, populations have a 
Malthusian type growth pattern with a Lotka growth rate. The Malthusian 
growth pattern is perturbed by periodic functions which globally induce 
quasi-periodic demography cycles. 
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The distinction between chaos and quasi-periodicity in real ecologi
cal systems, is not a simple subject. We have presented models based on 
the difference equations approach that are non-invertible and have chaotic 
behavior. However their calibration with real biological systems presents 
some difficulties. Models showing quasi-periodicity are invertible, and the 
restriction to the phase space attractors make them similar to circle maps. 
Technically, both chaotic and quasi-periodic systems are ergodic, leaving 
invariant a probability measure. This property implies that chaotic and 
quasi-periodic systems have the same type of randomness. 

In generic terms, the dynamical properties of chaotic and quasi-periodic 
systems are strongly dependent of the adopted mathematical models. The 
question whereas a basal population or a population at the top of a trophic 
chain follow any of these choices can only be verified by observation. 

One possible way of distinguishing between chaos and quasi-periodicity 
in populations is through the analysis of the population dispersal. As it has 
been seen in Sec. 7 for the dispersal of a population, the characteristics of 
the temporal dynamics is imprinted in the density profile along space. The 
analysis of this effect gives information about chaoticity or periodicity of 
the local dynamics. 

Some of these models are sensitive to perturbations of the functional 
forms of the growth rates, others are not. For populations at the top or at 
the bottom of a trophic chain, it is difficult to conceive that growth models 
could be too sensitive to arbitrary small external factors. In this case, the 
structural stability property should be a mandatory property for the choice 
of any mathematical model for the population growth. 

We have compared the dynamic properties of the models derived along 
this review. We have analysed the models according the possibility of 
describing population extinction and explosion, non-zero equilibrium states, 
oscillations, chaos and quasi-periodicity. The structural stability or robust
ness of the models in phase space is, in simple terms, related with the 
conditions of the Hartman-Grobman theorem (Theorem 1), and with the 
non-existence of phase space trajectories connecting unstable fixed points. 
For this global comparison, we have considered that growth rates are 
always positive. The properties of the analysed models are summarised in 
Table 1. 

For all the models analysed along this review, it is evident that, the 
same biological assumptions, but different technical options, lead to differ
ent models with different properties, Table 1. The choice of the appropriate 
model to describe a specific living system must rely on the calibration and 
validation of the model results with the growth projections. 



Table 1. Comparison between the properties of the population growth models analysed 
equation models, the concept of structural stability needs a different approach from 
stability refers to persistence upon perturbations of the non-zero equilibrium in phase 
have explosion of population numbers. This case has not been considered in this classific 
unstable. (4) Technically, if the rotation number around the closed trajectories is irrat 
general, the Leslie matrix has non dominant complex eigenvalues, introducing quasi-per 
the Leslie matrix has no eigenvalues on the unit circle of the complex plane, then the Les 
for some of these models when the recovery time of the resources goes to zero, [31]. (8) T 
behavior in the sense that growth curves are modulated by periodic functions, with per 
classes, [42]. (9) In general, the concept of structural stability is not denned for partial 

Population 
growth 
model 

Non-zero 
equilibrium 

Population 
goes to oo 

Population 
dies out 

Oscillations 

Malthusian 
Logistic 
Logistic 

controlled 
by resources 

Biotic 
interactions 
(Sec. 2.2) 

Lotka-
Volterra 
Leslie 
Leslie 

controlled 
by resources 

Ricker 
McKendrick 

no 
yes 
no 

yes 

yes 

yes 
yes 

yes 
no 

yes 
no 
no 

no (2) 

no 

yes 
no 

no 
yes 

no 
no 
yes 

no (3) 

no 

yes 
yes 

yes 
yes 

no 
no 
no 

no 

yes 

yes (5) 
yes 

yes 
yes 
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Some other modelling approaches to ecology and population dynamics 
were not focused in this review. This is the case of the dynamic energy 
budget approach, [45], topics related with resource exploration and eco-
economics, [46], harvesting, [47], [46] and [48], epidemics and dispersal of 
diseases, [15], [30] and [49]. In the dynamic energy budget approach, the 
main objective is to make an integrative view of the different levels of orga
nization of biological systems, from simple micro-organisms to ecosystems. 
In the resource exploration aspects of ecology and eco-economics, concepts 
of economic theory are introduced in the framework of ecology. Harvesting 
models are important to analyse problems of control and over consump
tion of natural resources, [46]. Also, harvesting models are an alternative 
approach to describe predation in species that are incorporated in trophic 
webs, [48]. Epidemics and dispersal of diseases are important subjects due to 
its immediate application to health prevention issues. For a recent account 
on more specialised mathematical models in biological sciences see [50]. 
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CHAPTER 16 

MODELLING IN BONE BIOMECHANICS 

J. C. MISRA* and S. SAMANTA 

Department of Mathematics, Indian Institute of Technology 
Kharagpur — 721302, India 
*jcm@maths. iitkgp. ernet. in 

This chapter gives a brief account of various mathematical models developed 
by different investigators in connection with various studies in Biomechanics of 
Bones. A mention of some relevant experimental investigations has also been 
made. For the convenience of readers some basic concepts and some associated 
topics useful for a better comprehension of this interesting interdisciplinary 
area of study are also included. 

1. Introduction 

As early as 1638 Galileo propounded the idea that the form of the bones 
depends on the load they carry (Ascenzi, 1993). But it was not easy to 
readily apply the laws of mechanics, that are used to discuss the stat
ics and dynamics of inanimate objects subjected to loads, to a biological 
material like bone which is capable of "self-repair" or "self-organization". 
Before renaissance period people used to think that the world of living 
beings has nothing in common with that of the non-living bodies. Nobody 
even thought of explaining biological events in physical terms. But from 
the time of Descartes, when people with liberal views were questioning the 
past habits and lines of thought, they were trying to give a systematic inter
pretation of every phenomenon. Serious attempts were made by them to 
investigate the mechanical behavior of biological elements. These studies 
helped develop the discipline of Biomechanics. As the application of the 
concepts of biomechanics to study different aspects of bone, from a struc
tural point of view and also as a system, this subject area of study grew as 
a subdiscipline of Biomechanics, known as Bone Biomechanics. The growth 
of bone biomechanics that took place till 1973 has been summarized by 
Evans (1973). This treatise contains a review of most of all the important 
researches on the mechanical properties of bones. Subsequently Cowin and 
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his associates (1976-1998) made significant contribution to mathematical 
modelling of the functional adaptation of bones under load. Roesler (1987) 
presented the historical development of the fundamental concepts of bone 
biomechanics and the important milestones in the history of researches in 
this interesting field of study. 

During the last three decades, a tremendous growth of bone biome
chanics has taken place. Basing upon adaptive elasticity theory and com
putational mechanics, Cowin and his co-workers investigated extensively 
different aspects of the process of bone remodelling. They also dealt with 
problems associated with bone implants. Lakes and Katz (1974-1979) made 
a series of investigations on the material behavior of bones using wave prop
agation technique, analyzed and compared their results with those reported 
by other workers in this field. They also tried to explain the discrepancies 
between experimental results and theoretical results estimated on the basis 
of the classical theory of elasticity in several cases, using the concept of 
Cosserat elasticity. Subsequently several other researchers also contributed 
significantly to the growth of bone biomechanics. A comprehensive discus
sion on the Mechanics of Head Injury and the Fracture and Remodelling 
Mechanics of bones are available in the recent book published by Misra 
(2005). 

The aim of the present chapter is to provide some useful information 
on mathematical modelling in Bone Biomechanics along with experimen
tal observations on different physical properties and mechanical behavior 
of bones. It is believed that the comprehensive material presented in this 
chapter would stimulate further research in the important domain of biome
chanics. Sections 3 and 4 deal with a brief account of the physical properties 
of ideal solids and the relevant constitutive relations. The subsequent sec
tions include discussions on the properties and relations that are adapted in 
case of bones. Theoretical formulations of the control mechanism for inter
nal and surface bone remodelling are also presented. The last section gives 
an idea of the current state-of-the-art of mathematical modelling of some 
important problems in Bone Biomechanics. 

2. Bone Biomechanics and Its Mathematical Analogues 

Biomechanics, according to Hatze (1974), may be denned as the study of 
the structure and function of biological systems by means of the methods 
of mechanics. The particular subdiscipline which is concerned with stud
ies pertaining to the mechanics of bones is called the Bone Biomechanics. 
The importance of researches in this important area lies in ascertaining the 
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mechanical properties of bone tissue with an aim to determine the patho
logical state of diseased bone, the fracture site etc., in understanding the 
remodelling processes that living bone continually undergoes in the course 
of our daily activities, by which bone adapts its histological structure to 
changes in long term loading and in constructing suitable biomechanical 
implants for replacements of skeleton joints e.g. vertebral, knee and hip 
joints. 

In the realm of physical sciences, the motions of inanimate bodies, which 
are its objects of study, can be analyzed within the limits of practical impor
tance but this is not exactly so for biological motions. The truth of this 
assertion lies in the fact that whereas a set of definite laws and almost a 
definite knowledge of the forces governing the motions of non-living objects, 
even in molecular and atomic levels exist, such basic information regard
ing the forces and the laws governing the biological motions is yet to take 
a definite shape. Although Medical Physics, in particular and Biomedical 
Engineering, in general, have undergone an unprecedented development in 
recent years, because of the lack of accurate knowledge of the basic prin
ciples governing the motions of biological elements, our knowledge of the 
human skeleton as a load carrying system which is so vital for mankind, 
has been in no more than a prenatal state as compared to our comprehen
sion of the mechanical behavior of technological structures. Even today this 
assertion continues to be largely true. So it is of utmost importance to ana
lyze the material response of bone, the most important constituent of the 
skeletal system. Only through a continual comparison of the theoretical pre
dictions derived by using suitable mathematical models for bones with the 
experimental data obtained from experiments on real bone specimen, the 
exact principles governing the biological motions may be developed — and 
finally an exact mathematical model simulating the osseous medium can 
be constructed. Punjabee (1979) pointed out that such a model combined 
with experimental data for physical properties of osseous tissue structure or 
system form a mathematical analogue which even without validation, has 
the possibility of representing the reality. Some recent experimental studies 
indicate success to actualize this possibility. 

At early stages of researches on bone, it was modelled as an isotropic, 
homogeneous and linear elastic solid and the mathematical methods of 
stress analysis used to be employed, based on the simplified rules of Strength 
of Materials. With the profusion of experimental studies on bone, it has 
been revealed that bone is rate-sensitive and it should be modelled as a 
viscoelastic solid. Time-dependence of the mechanical properties or the 
viscoelastic behavior of bones actually owes its origin to various on-going 
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physical processes e.g. thermomechanical coupling, piezoelectric coupling, 
etc. (Lakes et al., 1979) inside the bone. With passage of time, more compli
cated mathematical models have been proposed to account for the results 
of experimental observations on the material behavior of bones, carried out 
in a continuous manner by many researchers. However, it is always pos
sible to work on simplified bone models which provide useful information 
for many practical situations. On the basis of such mathematical models, 
it has already been possible to replace the hip and knee joints by artificial 
structures and attempts are now going on to design and improve many 
other replacement joints. 

It should, however, be borne in mind that bone is not exactly an engi
neering material — it is a living organ which continually undergoes the 
processes of growth, re-inforcement and resorption which are collectively 
referred to as bone remodelling due to which a living bone adapts its histo
logical structure to changes in the case of long term loading. What follows 
from this is that in formulating a mathematical analogue of a real bone 
specimen, which can be directly used in the design and construction of 
prosthetic devices, one must pay due attention to the mechanism of bone 
remodelling. 

It follows from the above discussion that one can mathematically ana
lyze the problems on bone, including its remodelling mechanism, by using 
the principles of mechanics but utmost importance should be paid to the 
choice or construction of a suitable mathematical model with due cog
nizance of experimental data available for different physical properties of 
bone tissues obtained from the latest experiments on bone specimens. Once 
this is done, such an analysis can provide information which should be of 
significant importance for further biomechanical and clinical investigations. 
Before we proceed further, let us discuss briefly some relevant matters asso
ciated with the response of structural solids subjected to external loading 
conditions. This will be followed by a brief discussion on human skeletal 
system, composition of bone as well as its mechanical and physical prop
erties. All these are deemed necessary for a better comprehension of the 
current state-of-the-art of the highly interesting interdisciplinary field of 
bone biomechanics. 

3. Material Response of Structural Solids to 
External Excitations 

In the classical formulation of the theory of elasticity it is generally held that 
the mechanical energy stored in a solid continuum during a deformation 
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process initiated by an external mechanical load, is completely recoverable. 
This implies that the classical theory totally ignores the possibility of energy 
loss. Thus in the case of a simple conservative system, it is possible to fit 
the classical elasticity theory exactly into the purview of reversible thermo
dynamics. But in reality, dissipation of energy is a common phenomenon 
exhibited in deformable bodies; this is quite apparent from the subsidence of 
vibrations set up in them due to excitation. This subsidence, as interpreted 
by Love (1927), is due to the loss of work done against viscous resistances 
offered by solid continua. So, in a deformation process, the work has to be 
done not only against the elastic forces with which the molecules in solids 
are bound together but also against the time and rate-dependent viscous 
resistances which render regular molar motions into molecular agitations. 
While the work done against elastic forces is completely recoverable upon 
withdrawal of the external load (in the classical theory), the work done 
against viscous resistances is totally dissipated as heat. 

There are, however, other interesting effects of viscous resistances on the 
material response behavior of solids when subjected to mechanical loads. 
If the specimen of a perfectly elastic solid is subjected to a sudden loading 
state held constant thereafter, response is supposed to be in the form of 
an instantaneous deformation which should remain constant. But the com
mon experience is that a real solid, under such a loading state, exhibits an 
instantaneous deformation followed by a flow process which may or may 
not remain limited as time progresses. This particular response behavior is 
termed as creep in solids. Again, if the specimen is subjected to a constant 
deformation state, the stress developed in it continuously decreases with 
time through a process which is known as stress-relaxation. Both creep and 
stress-relaxation in real solids can be explained by assuming induced vis
cous resistances which are time- as well as rate-dependent. Indeed, such 
material response behavior, though unnatural from the standpoint of clas
sical elasticity theory, is of common occurrence to people working with so 
called elastic metals at high temperatures and pressures, and with polymers 
and biological materials even at ordinary physical conditions. In fact, this 
type of material response may be described as the inherent property of all 
solids; it is observable only under favorable physical conditions. 

To account for the instantaneous deformation and the steady flow follow
ing it, which are respectively the characteristics of a perfectly elastic solid 
and a Newtonian viscous fluid occurring simultaneously in a solid specimen, 
an entirely new theory is essential. Such a theory, which combines both the 
features of material response of real solids subjected to external excitations, 
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is known as the theory of viscoelasticity. The materials whose mechanical 
response characteristics are represented through this theory are called as 
viscoelastic. 

It is quite interesting to note that due to the occurrence of such a 
flow process, the deformation field is dependent on the history of loading 
state. This is clearly observed when we consider the application of the 
external load to the specimen in two or more stages, in succession. It is 
understood that the deformation in the specimen, just after the last stage of 
loading, is the result of superposition of all the deformations induced at the 
current time by each increment of the load applied at different times in the 
stages preceding the last one, together with the instantaneous deformation 
produced by the last increment. This means that the specimen experiences 
not only the instantaneous response to the last stage of loading but also 
the continuing time responses of the other incremental loadings prior to the 
last one. Thus in order to study the net material response, one must keep 
an eye on the past history in addition to the current state of loading. Such 
materials are said to possess memory. The modern theory of viscoelasticity 
has been built upon the basis of the memory hypothesis. It may, however, be 
mentioned here that there exist other theories on the mechanical behavior 
of materials which have a memory of deformation. For example, incremental 
theory of plasticity accounts for the dissimilar material behavior in loading 
and unloading conditions in a specimen loaded beyond the elastic limit. This 
difference in material responses in loading-unloading programmes may be 
attributed to the memory of deformation in the specimen. In the plasticity 
theory, the time-scale involved in such programmes is deemed practically 
unimportant while the theory of viscoelasticity considers specific time- or 
rate-dependence (Boley and Weiner, 1967). 

It is clear from the above discussion that besides the deformation field, 
in a real solid specimen subjected to a loading state, a temperature field 
may also be induced due to heat dissipation in it. Of course, a temperature 
field is also induced in ideal elastic solids due to thermo-mechanical cou
pling, which is applicable only to the dynamical conditions of loading. But 
in a viscoelastic specimen the temperature field is present even under stat
ical conditions of loading due to the loss of work done against viscous resis
tances. It is true that except in cyclical loadings such dissipation is really too 
small in most solids to effect any appreciable temperature-rise. But theo
retically speaking such a temperature-rise, however small, can be accounted 
for by solving the appropriate energy equation conforming to the physical 
conditions of a particular thermo-viscoelastic boundary value problem. 
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In the mechanically loaded specimen of some crystalline solids, the 
deformation- and temperature-fields are associated, in general, together 
with an electric field. In such materials, known as piezoelectric solids, the 
electric field is induced by the deformation field. This thermodynamically 
reversible phenomenon is known as piezoelectric effect. A temperature field, 
instead of the deformation field, may also cause a similar effect, which is 
known as pyroelectric effect. But under isothermal or nearly isothermal 
conditions, only the former effect is of much importance. Elastic and vis-
coelastic solids, belonging to some particular classes of crystals exhibit these 
effects. A dynamical loading induces an electric field accompanied by a 
magnetic field in elastic solids and an electromagnetic field in viscoelastic 
solids, even in static loading situations. For many viscoelastic materials of 
common use, e.g. polymers, some biological elements, etc., both the tem
perature and the piezoelectric effects induced by the mechanical load, are 
not too small to be neglected; of course, the induced electrical polarization 
depends entirely on the degree of crystallization. 

So far, we have discussed how the deformation, temperature, electric 
and magnetic fields are induced in a specimen of real solid subjected to 
a mechanical excitation. But irrespective of the method of excitation — 
mechanical, thermal or electrical, all such fields are simultaneously induced 
in a continuum (particularly in a crystalline solid) and are usually coupled 
together. Besides these thermodynamically reversible or quasi-reversible 
processes, some other irreversible processes like electrostriction may also 
take place in the medium. 

It is now apparent that an exact theory of solids should account 
for all such material responses. Such a theory has been developed by 
Nowinski (1978) from thermodynamical considerations for elastic solids. 
One may develop a similar theory for viscoelastic solids from similar ther
modynamic reasoning. With reference to an experimental study carried 
out by Satter et al. (1999) for the treatment of bone fracture by pulse 
electromagnetic fields, Eringen (2004) has developed a general electromag
netic theory of microstretch elasticity considering different material prop
erties for determining different aspects of remodelling in bone, modelled 
as an elastic solid having interconnected voids, microcracks or stretch-
able micro elements. However, the mathematical analysis of a particu
lar problem, by considering such a general theory, is hardly tractable. So 
we shall now present the theories which are somewhat simple and at the 
same time do not cause much loss to the generality of the results derived 
therefrom. 
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4. Deformable Solids 

4.1. Basic concepts 

For the convenience of readers, before describing the theories regarding the 
material response behavior of solids subjected to external excitations, it 
is pertinent to present some fundamental concepts relevant to the central 
theme of our present discussion. Let the coordinates of a material point 
in a specimen of a solid be Xt and x» (i = 1,2,3) with reference to the 
rectangular cartesian coordinates X and x respectively. The system X is 
assumed to be fixed in space, whereas x is attached with the body, both 
being coincident initially. Then 

Xi(r) = Xi(XUT), -a<r<t (1) 

where T is the time variable and t is the current time. The displacement 
vector of the point may be given by 

Ui{r) = Xi{T) - Xi(r). (2) 

Differentiating (2) with respect to Xj, one obtains 

dui dxi 
dXj dXj Sa- (3) 

If || ^ : || <C 1, the deformation is said to be infinitesimal. In the infinites
imal deformation theory of solids, usually no distinction is made between 
differentiation with respect to Xi and that w.r. to Xi. Bearing this in mind, 
the strain components may be defined as 

Sij = -^{uuj+ujA) (4) 

in which a comma before an index denotes differentiation with respect to 
the corresponding space coordinate. 

Let us now consider an element of area, SA within the body or on its 
bounding surface, with its orientation defined by the unit positive normal 
n. If the total force acting on this area be Fi, the stress at the central point 
of the elementary area SA may be denned as 

Ti= lim ^ . (5) 
5A-*0 SA 

For each orientation of the area SA, there would be a different stress vector. 
Hence the stress tensor Tji is defined through the following transformation 
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which relates the components of the stress vectors to the orientation of the 
elementary surface. 

Ti = TjiUi. (6) 

By using the principle of conservation of linear momentum in a small tetra
hedron, one can derive the transformation (6). Similarly the conservation 
of angular momentum in an element of volume of the specimen gives rise to 

4.2. Equilibrium equation 

The principles of Newtonian mechanics assert that irrespective of the nature 
of the continuum and the type of excitations, the total force acting on a 
body is always zero; this means 

\y P ̂  ~ SO ^ + jg ^ HjdA = 0 (8) 

«2 

where fi is the body force density, %%£• the acceleration at a point, p the 
density of the material, V the volume of the body and B the area of the sur
face bounding it. By using Gauss divergence theorem in (8) and considering 
the equilibrium of each element of the volume, one finds 

Tij,j = pv-i (9) 

in which a dot denotes differentiation with respect to time. Equation (9) 
represents the equilibrium of a dynamical system. Under statical or quasi-
statical conditions the inertia term in (9) may be neglected, so that the 
condition of equilibrium reduces to 

Tijj = 0. (10) 

4.3. Linear viscoelastic constitutive relations: 
non-piezoelectric materials 

The phenomenological development of the relations among stress, strain 
and other fields is based on the memory hypothesis (explained in Sec. 3), 
together with the observation that different material bodies having identical 
mass and geometrical configuration, respond quite differently to the same 
excitation. This individual material response behavior is actually due to the 
difference in internal constitution, which is different for different materials. 
As a result, the functional form of the relation, commonly known as the 
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constitutive relation, is the same for all materials, though its constituents 
change from one material to the other. 

By employing the memory hypothesis and using relevant theorems of 
mathematical analysis, the following linear constitutive relations for vis-
coelastic materials which do not exhibit piezoelectric effects, have been 
developed in the form (cf. Christensen, 1971) 

Tti{x, t) = j Gijkl(t - r)^dT, (11) 

in which the relaxation functions G^ki (T) characterizing individual material 
response behavior have the following symmetry and analytical properties: 

Gijki (t) = Gjiki (t) = Gijik (t) 

Gijki(t) = 0 , - o o < t < 0 ; (12) 

Gijki(t) and Gijki(t) being assumed to be defined in 0 < t < oo and dots 
denote time-derivatives. 

Equation (11) represents the integral form of the linear constitutive rela
tions for viscoelastic solids with most general type of anisotropic material 
behavior, under isothermal conditions. The integral equations of the type 
(11) may be rewritten in an abridged form as 

Tij(x,t) = Gm(t) * Ski(x,t). (13) 

By inverting the relation (13), one may write 

Sij(x,t) = Jijki(t)*Tki(x,t), (14) 

in which the creep functions Jijki (t) obey the same symmetry and analytical 
conditions (12). 

For isotropic solids under isothermal conditions, the stress-strain rela
tions (13) reduce to 

tij(x,t) = 2G(t)*Sij(x,t) (15) 

and 

Tu(x,t) = 3K(t)*Sii(x,t) (16) 

where ty and sy represent deviatoric stress and strain defined respec
tively by 

Uj = Ty — -TkkSij (17) 
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and 

Sij = Sij - -Skk^ij. (18) 

G(t) and K(t) are termed as relaxation functions in shear and hydrostatic 
pressure respectively; they are also subjected to the analytical conditions 
(12). S^ is the Kronecker symbol. 

At this point, it is very much instructive to observe a close correspon
dence of the viscoelastic constitutive relations (11) with those for elastic 
solids given by 

Tij (x, t) = Cijki Ski (x, t) (19) 

in which Cijki are the elastic moduli. The Laplace transformations of the 
relations (11) and (19) with respect to time read 

1 ij{X, p) = pGijki(p)Ski(p) (20) 

fii(x,p) = Cijia(p)Ski(p), (21) 

in which p is the Laplace transform variable and a bar over a function 
denotes its Laplace transform. Prom (20) and (21), one may conclude that 
in the Laplace space, the solution of a viscoelastic boundary value problem 
can be obtained from the transform solution of the corresponding elastic 
problem, if one replaces the elastic moduli in it by p times the transforms 
of the viscoelastic relaxation functions. Using the elastic-viscoelastic cor
respondence principle, the final solution can be obtained just by inverting 
the transformed solution. 

Apart from the integral representations as above, the constitutive rela
tions of a rate sensitive linear material may also be expressed as (cf. Moghe 
and Hsiao, 1966; Bulanowski and Yeh, 1971) 

T^x, t) = Emi(D)Ski(x, t) (22) 

in which D = J^. 
It is easy to note that 

Eijki(p)=pGijki(p), (23) 

if Eijki (D) are expressible as a power series in D or as the quotient of two 
such power series in D. In a similar fashion the linear constitutive relations 
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for isotropic materials, in differential form, are written as 

Pi(D)ti:l(x,t) = Q1(D)Sij(x,t) (24) 

and 

P2(D)Tkk(x, t) = Q2(D)Skk(x, t). (25) 

Here P's and Q's represent power series in D. It is needless to mention that 
the concept of elastic-viscoelastic correspondence can also be realised by 
using this differential formulation of the viscoelastic constitutive relations. 
But the principal advantage of this formulation lies in the fact that using 
the said principle one can obtain the time-dependent relaxation or creep 
functions for materials whose response behavior can be characterized by a 
mathematical model. 

5. The Human Skeletal System 

The two hundred and six bones, which are highly connective tissues, form 
the rigid frame-work of the human skeletal system. They are organs that 
consist of bone tissues, bone membranes and bone marrow. Among the 
biological materials, bone is the hardest of all. According to shape and size, 
bones in the skeletal system may be classified into five categories, viz. long, 
short, flat, seasamoid and irregular. In a long bone, the axial dimension 
is large compared to transverse one. Such bones are almost cylindrical in 
shape. They usually have two or more ends termed as epiphysis. In some 
bones the axial and transverse dimensions are comparable; such bones are 
termed as short bones. If the transverse dimension of a bone is larger than 
its axial dimension, it is called a flat bone. It consists of two layers of 
compact bones, separated by a layer of spongy bone. The short bones that 
develop in tendons resemble seasame seeds and are called seasamoid bones. 
Bones whose shapes are irregular and not included in any of the categories 
mentioned above, are called irregular bones. They include those contained 
in vertebrae, shoulders etc. In recent researches vertebral joints have been 
modelled as circular discs of trabecular bone. 

Since some problems on long femur or tibia and inter-vertebral joints 
have been the subject of discussion in this chapter, brief discussions on 
these two types of bones will be made in the following two sections. 

6. Long Bones 

In femur and tibia, since the axial dimension is many times larger than the 
transverse one, they are long bones (cf. Fig. 1). Although microscopically 
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Fig. 1. A typical long bone 

(a) (b) 

Fig. 2. Geometry of (a) two layered bone, (b) compact bone. 

such bone is non-homogeneous and consists of osteons, interstitial tissues 
and other organic substances embedded in a viscoelastic matrix. A long 
bone can be described as a composite thick cylindrical shell of two types of 
materials (cf. Fig. 2) — compact in the outer layer and spongy in the inner 
layer (Vayo and Ghista, 1971). The outer surface or cortex of the femur 
is made of the hard tissue, the cortical bone. The cancellous or spongy 
bone inside the bone medium consists of a network of hard interconnected 
filaments called trabeculae filled with marrow and a larger number of blood 
vessels. Cancellous bone is structurally prominent near the joints, i.e. at 



464 Biomathematics: Modelling and Simulation 

the epiphyses while cortical bone is structurally prominent in the middle 
portion of the femur, the bone diaphysis. 

Carter et al. (1976) made an observation that adult bone has two or 
three distinct regions, which is in conformity to Vayo and Ghista's (1971) 
composite bone model. 

The bone cross-section is non-uniform, in general. In the diaphysis 
region of human femur, it is almost uniform, but for human tibia it gradu
ally decreases from the knee-joint, where the dimension of the cross section 
has its maximum value (Finlay et al., 1982). For this reason, a human tibia 
of finite length may be modelled as a truncated conical bar [cf. Misra et al. 
(1989, 1992)]. 

7. Intervertebral Discs 

There are 47 vertebral joints in the human spinal column. Each joint has 
three substructures (Fig. 3). The first substructure, called the intervertebral 
disc, lumps the cortical and trabecular bone regions with the end plates. 

Trans verse 

In terver tebra l 
disc 

Fig. 3. Body of vertebra, intervertebral disc and the spinal cord. 
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Region 1 

Region 3 Region2 

Regions: 

1 Vertebral body 
2 Annulus fibrosis 
3 Nucleus pulposis 

Fig. 4. Simplified model of the vertebral body/intervertebral disc. 

The second structure presents the annulus fibrosis of the intervertebral disc 
and the last one represents the nucleus pulposis, an incompressible fluid. 

In analytical studies, the vertebral discs have been supposed to possess 
circular shape with axial symmetry by some authors (Spilker, 1980; Spilker 
et al., 1984) while the disc material has been considered to be isotropic, 
linear and viscoelastic by some researchers (Lu et al, 2004; Lee et al, 2004). 

8. Composition of Bone 

The composite structure of bone consists of crystalline mineral (hydrox-
yapatite), amorphous mineral, crystalline organic (collagen), amorphous 
organic (protein molecule) and liquid phases. The macro structural prop
erties of bone depend on the properties and volume composition of dif
ferent phases present in them. The major portion of the bone is made of 
hydroxyapatite and collagen; the rest consists of liquid in haversian canal, 
canaliculi and lacunae. It is supposed that collagen and organic amor
phous phase lump together to form the fibre of the bone composite whereas 
lumping of hydroxyapatite crystals with the amorphous mineral provides 
the matrix in which the fibres are embedded. Spaces within the osseous 
media are interconnected and the flow of liquid through these pores can 
absorb large amount of energy, thereby increasing the toughness of the bone 
structure. 

9. Microscopic Anatomy of Bone Tissue 

The osteons or the haversian systems, which have an irregularly cylindrical 
and branching structure, form the primary histological units of bone struc
ture. Each osteon is roughly a cylinder of 150 microns in diameter and one 
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to two centimeters in length. In cancellous bones, the osteons are arranged 
in a pattern along the line of average principal stress (Koch, 1917). In cor
tical bones, the osteons are parallel to the axis. The walls of the osteons 
are thick. There is a fluid-filled hollow or lumen, called the haversian canal, 
each of forty microns diameter, along the centre of its long axis. Each lumen 
is provided with a blood vessel required to supply nourishment to the bone 
cells inside the osteons. The blood vessels and lumina together constitute 
what is called the haversian system. 

Osteoblasts, osteocytes and osteoclasts are the three cellular compo
nents of bones which actively participate in its remodelling mechanism. 
Osteoblasts are of cuboidal shape; they participate in the formation of bones 
and are attached to their surfaces. Osteoblasts that are present inside the 
bones are known as osteocytes; they help in the maintenance of bone as 
a living tissue. Osteoclasts, which are giant cells with a variable number 
of nuclei perform the function of resorption. Gottesman and Hasin (1980) 
investigated the mechanical properties of bone as a composite material, 
on the basis of a micromechanical model. They made an observation that 
the microscopic structure can be derived only when the exact mechanical 
properties of bulk bone are known. 

10. Physical P rope r t i e s of Bones 

Being the major important constituent of the skeletal system, bone is always 
subjected to internal and external loads. The stresses and strains induced 
in it are determined by its mechanical as well as other physical properties. 
The first study on the mechanical properties of bone was carried out by 
Wertheim (1847). Rauber (1876) provided the first hint that elastic mod
uli of bone tissues are direction-dependent and also that they are history 
dependent (viscoelastic). As mentioned earlier, in the early researches bone 
was modelled as an isotropic elastic solid. Dempster and Liddicoat (1952) 
observed that a compact bone should be modelled as a non-isotropic mate
rial. Subsequent experiments confirmed the orientational characteristics of 
the physical properties of hard tissues. Most of the non-isotropic crystalline 
solids have a tendency to exhibit piezoelectric effects — electric field is 
induced in them when they are subjected to mechanical loads. Bone is not 
any exception to that rule. Fukada and Yasuda (1957) investigated quan
titatively the piezoelectric effect in bone for the first time. Subsequently, 
intensive as well as extensive investigations were carried out in order to 
relate bone piezoelectricity with the mechanism of bone remodelling and 
search for piezoelectric effects in other biological tissues e.g. tendons, blood 
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vessels etc. Most relevant studies in this field were reviewed by Fukada 
(1968) as well as by Giizelsu and Demiray (1979). Like real solids, bone 
also exhibits viscoelastic material behavior. Early investigations on the vis
coelastic material behavior of bone were carried out by Sedlin (1965) and 
McElhaney (1966). Sedlin, on the basis of his experimental study, proposed 
a mechanical model — standard linear solid for osseous media. Lakes and 
Katz (1979c) proposed that bone is a non-linear viscoelastic solid. Nowinski 
(1971) commented that bone is generally non-homogeneous and anisotropic. 
Nowinski (1974) put forward a mathematical analysis by assuming power 
law variation for the physical constants of bone tissues. Carter (1976) 
observed experimentally that the elastic moduli are connected with the 
apparent density of osseous tissues, in a non-linear manner. In an experi
mental study, Morgan et al. (2001) observed that bone possesses non-linear 
elastic behavior even at small strains. 

Osseous tissues resemble a lattice structure, in which there are innumer
able cavities in a solid skeleton. These cavities are interconnected and the 
liquid phase is distributed in such a fashion that it has access to a drainage 
path to the surface of the bone. The difference between the two major types 
of bone — compact and spongy is rather relative. The difference is owing 
to the variation in the proportion of the volume of the pores to the volume 
of the solid matter in a unit volume of bone. Owing to porosity in bone, 
Nowinski (1970, 1971) considered it to be a two-phase material, the solid 
skeleton being perfectly elastic (1970) or viscoelastic (1971) and the liquid 
phase being Newtonian. 

It appears that bone has diverse physical properties. Basing upon the 
research studies carried out by Currey(1984) on the mechanical properties 
of bone, Roesler (1987) made an observation that "bone can have a wide 
variety of different mechanical properties, depending upon its function". So 
it is essential that each of these properties be considered separately, keeping 
an eye on the nature of the problem. The salient properties are discussed 
briefly in Sees. 11-15. 

11. Bone Anisotropy 

Rauber (1876) conjectured that the elastic moduli of bone are direction-
dependent. The directional effect of loading on the bone compressive 
strength was clearly observed by Dempster et al. (1952, 1961) in their 
experimental studies on compact bone in different directions. They reported 
that the ultimate compressive strength is least in the tangentially loaded 
femoral bones and greatest in the axially loaded ones. These tests were 
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carried out by taking cubical specimens of femur. Prom an experiment on 
bovine femoral bones, fresh and dried, Lang (1970) determined all the five 
independent elastic moduli needed to characterize the material behavior of 
osseous medium. Lang (1970) also established experimentally the existence 
of hexagonal symmetry in cortical bones by using ultrasound technique 
for the first time. The theoretical predictions on cortical bones by Yoon 
and Katz (1976a) were in conformity to the experimental observations of 
Lang (1970). Yoon and Katz (1976b) also determined experimentally the 
said elastic moduli for human femoral bones. Reilly and Burstein (1974) 
conjectured that bone is transversely isotropic. In a subsequent study they 
(1975) confirmed their hypothesis. Katz (1980) also showed that Young's 
modulus of bone is direction-dependent, van Buskirk and Ashman (1981) 
modelled bone as an orthotropic material with nine elastic constants. Using 
ultrasonic wave technique they measured these constants and came to the 
conclusion that cortical bone is non-homogeneous. 

The symmetry and consequently the anisotropic properties of osseous 
media result from the nature of its composition. The most important con
stituents of bone, hydroxyapatite and collagen are anisotropic in nature. 
Physical properties of bones are mostly derived from the relative orientation 
and amount of the organic and inorganic crystalline substances contained 
in them. In an experiment on bovine cortical bone, Lipson and Katz (1984) 
measured the elastic properties of bones having different histology along 
three different mutually orthogonal directions with an aim to investigate 
the influence of microstructure of bone on its mechanical properties. It 
was found that the plexiform bone is orthotropic while harversian bone is 
transversely isotropic. Ashman et al. (1984) also measured the correspond
ing elastic constants. They arrived at the conclusion that bone is both 
anisotropic and non-homogeneous and that the actual material behavior 
of human compact bone is orthotropic. Cowin and van Buskirk (1986) 
analysed the data reported by Ashman et al. (1984) and confirmed that 
their results were within the thermodynamic restrictions investigated by 
Mahanian and Pizialli (1985). In bone biomechanics the term "fabric" has 
been introduced to describe local anisotropy of a material microstructure. 
Based on the consideration of the orthotropy of bones, Cowin (1985, 1986) 
formulated elastic properties as a function of fabric and density. With an 
aim to analyze fabric dependence of orthotropic elastic constituents of bone, 
Turner et al. (1980), van Rietberger (1995,1996) and Odgaard et al. (1997) 
conducted further studies in this direction using methods based on finite 
element techniques. 
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In order to take into account the anisotropic elastic behavior of osseous 
tissues, Eq. (19) may be taken as the constitutive relation in the case 
of bone. 

12. Viscoelastic Properties of Osseous Tissues 

The creep and relaxation phenomena in real solids which have been dis
cussed in Section 3, are quite common in bones. Rauber (1876) studied 
creep as well as anisotropic material behavior of bones. On the basis of 
his experimental observations on bones under loads well below the fracture 
load, Sedlin (1965) proposed a viscoelastic model to explain the creep and 
relaxation behavior of bones in which a Hookean spring is in series with a 
Kelvin model; Kelvin model is that in which a Hookean spring is connected 
in parallel with a viscous dashpot. Smith et al. (1965) investigated vis
coelastic properties of bones. Mc Elhaney (1966) also observed the strain 
dependence of the elastic moduli of bones experimentally and concluded 
that osseous tissues are viscoelastic. 

The viscoelastic material behavior also owes its origin to the viscoelastic 
properties of the bone constituents — mainly the hydroxyapatite and col
lagen besides the ongoing physical processes, e.g. thermo-mechanical cou
pling, piezo-electric coupling etc. [cf. Lakes et al. (1979a)]. Gottesman and 
Hashin (1980) obtained the anisotropic relaxation functions by using the 
theory of composite materials. It is assumed that collagen together with 
the other organic phase constitutes the fibres whereas the mixture of the 
hydroxyapatite and another mineral phase acts as the matrix. In a the
oretical study Nowinski (1974) used the generalized Sedlin model (1965) 
in which the anisotropic material behavior of bone was considered. Sev
eral researchers have been working on the stress analysis in the vertebral 
body by assuming it to be represented by a two-, three- or four-parameter 
Kelvin model [cf. Spilker (1982), Spilker et al. (1984), Furlong and Pulazotto 
(1983), Burns et al. (1980, 1984)]. 

The linear viscoelastic constitutive relation for one-dimensional stress 
analysis connecting the stress T with the strain S may be written as 
(Nowinski, 1971) 

in which D = J^ is the time operator, E, H and r\ are model parameters. 
A relaxation process (mechanical, dielectric, magnetic or piezoelectric) 

is often described by means of a spectrum of relaxation times. A mechanical 
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system may possess a single characteristic rate at which it readjusts itself to 
equilibrium from its disturbed situation. Then the system is said to possess 
a single relaxation time. In this case its time dependent stiffness coefficient 
C(t) may be given by Debye model (Lakes and Katz, 1979b), described by 

C{t)=Co + C1e-t'To (27) 

where To is the single relaxation time and Co , C\ are model parameters. 
By taking both the viscoelastic and anisotropic material behavior of 

osseous tissues into account, the constitutive relation in the framework of 
a linear theory may be given by Eq. (11) presented above. In the operator-
form the linear anisotropic viscoelastic constitutive relations for osseous 
media are represented by (23) (cf. Bulanowski and Yeh, 1971). 

Lakes and Katz (1974) analyzed the experimental data obtained by 
Black and Korostoff (1973), Curry (1965), Lugassy and Korostoff (1969), 
Mc Elhaney (1965), Smith (1965) and Tennyson (1972) in order to compare 
them as well as to determine the relations among viscoelastic functions in 
anisotropic materials like bones. 

A non-linear study on the viscoelastic properties of wet cortical bones 
was presented by Lakes and Katz (1979b). Sanjibee (1982) and Sanjibee 
et al. (1982b) observed non-linear viscoelastic effects in collagen, an 
important constituent of bone. In ordinary solids, as mentioned earlier, 
viscoelasticity arises due to relative motions of the different layers in solids 
subjected to load. Apart from this bone viscoelasticity may have other ori
gins. A substantial part of recent research on bones aims at enlisting these 
causes and their contributions to the overall viscoelastic material behavior 
of bone. At the molecular level, investigation by Sasaki et al. (1995, 1997) 
suggests that an important constituent of bone, the collagen, a proteina-
ceous phase along with its water content may give rise to significant vis
coelastic effects. Thermomechanical coupling giving rise to heat dissipation 
in elastic solids may also be a cause for damping of waves in bones, but this 
has not been well investigated. Lakes and Katz (1979b, c) made an obser
vation that the piezoelectric coupling in hexagonal tissues may be a source 
of bone viscoelasticity; however, their study revealed that it has negligible 
contribution to the damping of waves in bones. Prior to these reports, it 
had been observed by Biot (1941) that fluid flow within bone induces vis
coelasticity, while Katz (1980) and Lakes and Saha (1979) observed viscous-
like cement line motion contributes significantly to bone viscoelasticity. 
Piekarski et al. (1977), Cowin (1993), Cowin et al. (1995) and Cowin (1998) 
observed that stress induced fluid flow leading to remodelling in bones is the 
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direct outcome of its viscoelastic properties. Misra and Samanta (1987) also 
studied the extent to which bone remodelling is influenced by viscoelasticity 
of osseous tissues. 

Due to viscoelastic properties, waves through bones are attenuated and 
vibrations are damped. Misra and Samanta (1982) put forward mathemat
ical analyses of several problems on waves and vibrations in bones and 
determined how wave and vibration parameters get modified, if bone vis
coelasticity is taken into account. Based on wave propagation technique, 
Brodt et al. (1995) and Garner et al. (2000) performed experiments to cor
relate wave characteristics with bone viscoelasticity in different frequency 
ranges. While experimenting with compact bones in torsion and bending in 
the frequency range from 5 mHz to 5 KHz in bending and 5 KHz to 50 KHz 
in torsion, Garner et al. (2000) showed that wet bones are more viscoelas
tic than dry bones and the results obtained by them confirmed the earlier 
observation by Lakes et al. (1979a) and Sasaki et al. (1993). Solomonow 
et al. (2001) investigated lumbar viscoelastic creep due to prolonged cyclic 
loading. Lu et al. (2004) concluded on the basis of experimental observation 
on vertebral discs that repetitive lumbar loading at fast rates is indeed a 
risk factor as it induces large creep in the lumbar viscoelastic tissues, which 
in turn intensifies the resulting neuromuscular disorder. In a recent mathe
matical analysis based on a finite element model of lumbar interbody fusion 
under axial loading, Lee et al. (2004) have demonstrated that if the mechan
ical behavior of the intervertebral disc is considered to be viscoelastic, in 
addition to its composite characteristics, their theoretical predictions are 
in good agreement with the relevant experimental observations reported by 
previous researchers. All these studies confirm the validity of the consider
ation of viscoelasticity of intervertebral discs in an earlier study conducted 
by Misra and Samanta (1988). 

13. Piezoelectric Effects in Bone 

As mentioned earlier, in some materials possessing anisotropic material 
behavior, electric field is induced while they are subjected to mechanical 
loading. This is known as piezoelectric effect. Fukada and Yasuda (1957) 
observed and quantified such piezoelectric effects in bones, for the first time. 
The experimental studies of Anderson and Eriksson (1968, 1970) indicate 
that collagen in bone continues to exhibit piezoelectric behavior even when 
the bone specimen is fully hydrated. They further showed that the stress 
generated potentials, which are strongly related to the rate of deformation 
in moist bone are neutralised by the conductivity of physiological milieu. 
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It was reported that at low frequencies, the measurements of Anderson 
and Eriksson (1970) supported the Maxwell-Wagner type of polarization 
in bone tissues. Further studies (Gurdijian and Chem, 1974) in this area 
indicate that electric current even of the order of microampere possesses 
the potential to cause bone deformation. It was inferred that electric cur
rent originated due to bone piezoelectricity produces similar effects in the 
physiological state. Like other physical properties (e.g. anisotropy and vis-
coelasticity), bone piezoelectricity also owes its origin to its basic con
stituents. Osteon, the unit of bone histology, possesses hexagonal symmetry 
and exhibits piezoelectric effects. However, bioelectrical signals are always 
generated in some biological tissues, while performing their physiological 
functions. Intensive as well as extensive researches were undertaken to ascer
tain whether electricity induced in bones was due to piezoelectric effects or 
it had any other origin. Of the three possible origins of bioelectricity viz. 
piezoelectric effect, streaming potential effect and p-n junction effect, the 
piezoelectric effect has the primary contribution to bio-electricity in dry 
bones. Even in physiologically moist bones it is mainly of piezoelectric ori
gin (cf. Giizelsu and Demray, 1979). 

The piezoelectric effect exhibited by certain materials which lack a 
centre of symmetry, may be defined as the production of an electrical 
response due to mechanical excitation and vice versa (Cady, 1946). The 
coupling between the mechanical deformation and electric polarization in 
elastic solids, may be described by the relations, (cf. Cady, 1947; and 
Giizelsu, 1978) 

Tm = CmnSn - ekmEk (28) 

Dk = ekmSm + 4iEh ( l < m , n < 6 ; l < i , / c < 3 ) (29) 

in which Ei is the electric field, Di the electric displacement, C^n the 
stiffness matrix at zero electric field, ekm the piezoelectric coefficient matrix 
and ej^ the dielectric tensor at zero strain. 

By considering the mechanical, dielectric and piezoelectric relaxations, 
in certain semi-crystalline polymers including those of biological origin, the 
above constitutive relations get modified to 

and 

Dk 
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in the convolution form. In operator formalism, they assume the form: 

Tm = C%n{D)Sn - ekm(D)Ek (32) 

and 

Dk = ekm(D)Sm + eki(D)Ek. (33) 

The frequency dependence of dielectric matrix is of common occur
rence. The piezoelectric relaxations in polymers were studied by Purukawa 
and Fukada (1976). Pfeiffer (1977) invoked the idea of Thomson model 
to represent both the mechanical and piezoelectric relaxation in osseous 
tissues. In the problems of wave propagation and vibration one may take 
(cf. Bulanowski and Yeh, 1971) 

when the medium is disturbed sinusoidally with a single frequency u>. One 
can also write 

C%n(iw) = CZn{L,)[l + i5(w)], (34) 

in which C ^ n is the storage modulus and S the loss tangent. It has been 
reported by Lakes and Katz (1979a) that for wave propagation problems 
in human cortical bones in the ultrasound frequency range, both storage 
modulus and loss tangent are independent of frequency. As a consequence of 
piezoelectric effects, mechanical strain waves propagating in a given spec
imen of bone along most directions are accompanied by induced electric 
fields which are in phase with the mechanical motion (if viscoelastic effects 
are disregarded). It is evident from the above constitutive relations that the 
electric field induced at high frequencies is accompanied by a magnetic field. 
The induced fields in the bone monitors effectively the characteristics of the 
traveling wave and can lift the equilibrium between osteogenic and osteo
clastic activities (Park, 1979). If properly oriented, the fields can also induce 
calcium ion movement. Hence bone piezoelectricity can play an important 
role in fracture healing. Demiray (1983) put forward an analysis for study
ing the electromechanical remodelling of bone tissues, by considering wet 
bone to be composed of a charged fluid and the solid bone matrix which 
possesses the piezoelectric property. Saha and Lakes (1977b) designed an 
experiment to detect the induced magnetic field accompanying the travel
ling ultrasonic wave for the purpose of determining the physical properties 
by a completely invasive technique. For this purpose theoretical investiga
tions were carried out by Giizelsu and Saha (1981), Misra and Samanta 
(1983a, 1983b, 1988) and Misra et al. (1988). 
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14. Bone Inhomogeneity 

Nowinski (1971) emphasized that like most biological materials, a real bone 
is non-homogeneous. With this in mind he proposed a power law of variation 
for the physical properties of bone material, by using which Nowinski (1974) 
carried out stress analysis in a cylindrical bone specimen, treating bone 
tissue as anisotropic and viscoelastic. The relations he proposed in this 
study are as follows: 

C?j = CHrP a n d Po = prp (35) 

in which r is the radial co-ordinate of a representative point in the bone 
specimen, C? the elastic moduli, p0 the density, Cy, p and p are material 
parameters. 

Patel (1969) pointed out that for porous materials, the modulus C is 
related to the apparent density p0 (mass per unit volume of the bone spec
imen including voids) according to the law: 

C = CoP
b

0 (36) 

where C0 and b are constants. From compression tests on cylindrical spec
imens of human and bovine trabecular bones, Carter and Hayes (1976) 
found that b = 2 for compressible strength. This is in agreement with 
the theoretical prediction made by Patel (1969) for cellular plastics and 
porous materials like bones. For shear strength, the value of the exponent 
obtained theoretically by Patel (for foams) is 1, whereas the experimental 
value of "b" for bones, as reported by Stone et al. (1982) is 1.65. It was 
also observed by Patel (1969) from his experimental studies on the shear 
strength of foams (which are porous material like bones), that the value of 
the exponent ranges from 1.0 to 1.5. The assumption of a linear variation 
of shear strength with density (i.e. 6 = 1 ) virtually leads to similar power 
laws for the shear modulus and density [see relations (35)]. 

15. Bone Remodelling 

As indicated earlier, living bones cannot be treated just as an ordinary 
engineering material. The reason for this is that the microscopic structure 
of engineering materials remains unaltered for all time under the influence 
of external mechanical loads, whereas living bones undergo the continual 
processes of growth, reinforcement and resorption, which constitute the 
mechanism of bone remodelling by which the bone adapts its histological 
structure to changes in long term loading. Frost (1964) classified the remod
elling processes as internal remodelling and surface remodelling. As early 
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as 1892, Julius Wolff, the German anatomist was the first scientist who car
ried out intensive research on this problem. The results of his experimental 
findings are embodied in what is called Wolff's law. According to this law, 
bone remodelling is dependent on strain or stress. The mechanism by which 
the bulk density of an osseous medium changes within fixed boundaries is 
termed as internal bone remodelling, while the process of bone deposition 
on the periosteal surface is known as surface remodelling. 

Electrical and chemical properties of bones were found to influence the 
remodelling processes (Basset and Becker, 1962; Shamos, 1963; Becker and 
Murray, 1970; Basset, Pawlick, and Becker, 1964; Justus and Luft, 1970). 
Gjelsvik (1973a) postulated that the surface aspect of bone remodelling 
is governed, at least in part, by the piezoelectric polarization produced in 
a deformed bone. The internal remodelling, according to him, is a second 
mechanism aimed at making the material direction aligned with the primary 
stress distribution throughout the volume of a bone specimen, if there is any 
misalignment between the two directions. According to the Gjelsvik model 
of bone remodelling, the piezoelectric polarization (Pi) in the bone tissue 
due to a stress field (Tm) caused by the external loads may be determined 
from the simplified relation 

Pi = dimTm (i = 1,2,3; m = l , 2 , . . . , 6 ) (37) 

in which dim are the piezoelectric constants for bone tissues. 
Apart from piezoelectric polarization, several mechanisms have been 

proposed for the transduction of mechanical loads to the remodelling 
response such as streaming potentials, alterations in mineral solubility 
due to stress, mechanical fatigue microdamage, extracellular fluid pres
sure effects on bone cells and direct load on bone membrane (Treharne, 
1981). Each of these mechanisms is supported by experiments. Cowin and 
Hegedus (1976), and Hegedus and Cowin (1976) developed performed the
oretical studies, by using the theory of adaptive elasticity, basing upon 
which Cowin et al. (1976-1981) explained the bone remodelling mechanism 
considering its chemical origin. They presented a porous and chemically 
reacting solid model for bone tissue to interpret its remodelling mechanism 
[cf. Cowin (1976), Cowin and Nachlinger (1978)]. They developed the mod
els by using the concept of small strain elasticity under isothermal condi
tions. According to these models, 

Ti = {i0 + e)CikSk, (»,fc = l , 2 , . . . , 6 ) (38) 

in which £o is the reference volume fraction of bone matrix material, "e" 
measures an increment of this fraction from £o and all other symbols retain 
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their earlier meanings. Cowin and van Buskirk (1978) used this model to 
analyze the problem of internal remodelling induced by a medullary pin. 
In a later communication Cowin and Van Buskirk (1979) proposed a the
ory of surface remodelling and applied it to determine the changes in the 
endosteal and periosteal diameters of the bone specimen, modelled as a 
hollow cylinder. In this theory it was assumed that the normal speed of the 
remodelling surface u at a point Q, for small strain, is proportional to the 
strain tensor Sik{Q) measured from a reference value Sfk(Q), so that 

u = Cik (n, Q)[Sik(Q) - S°k(Q)], (39) 

where Cik{n, Q) are surface remodelling rate coefficients which are, in gen
eral, dependent upon the point Q and the normal n to the surface at Q. 

Cowin and Firoozbaksh (1981) applied this theory of surface remod
elling to predict the shape evolution of right hollow circular cylinders — 
the idealized models of the diaphyseal region of a long bone. Based on finite 
element method, Hurt et al. (1982, 1984) developed a computational model 
for the same situation. Cowin et al. (1985) determined the values of surface 
bone remodelling coefficients for combined axial loading and bending for 
actual bone cross-sections. D'Antoni (1987) developed a computer simula
tion model for a similar problem to the one mentioned above. Cowin (1987) 
proposed a theory of surface remodelling to include the effects of shearing 
strains as well as normal strains. 

As discussed earlier, bone is viscoelastic and this material behavior is 
expected to have significant effect on bone remodelling dynamics. Misra 
et al. (1983, 1987) developed mathematical models and made pioneering 
contribution in this study of viscoelastic effects of osseous tissues on bone 
remodelling. Misra and Murthy (1983) analyzed the viscoelastic effect of 
osseous tissues on the physiological processes of internal bone remodelling 
induced by a medullary pin. The mathematical analysis they performed 
was, however, very much involved. Based on the remodelling equations (38) 
and (39), Misra and Samanta (1987) proposed an approximate method for 
solving remodelling problems by considering material damping behavior of 
bone tissues, in which undue mathematical complication could be avoided 
without diluting the physical relevance of the problem. It is worthwhile to 
mention that bone being dissipative, the condition of isothermality inher
ent in the remodelling theories of Cowin et al. is maintained. The study 
conducted by Misra and Samanta (1987) reveals that the effect of mate
rial damping behavior on the strain values is significant, particularly at 
intermediate times for smaller relaxation times. 
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Misra et al. (1989) also developed a mathematical model to study the 
internal bone remodelling mechanism in a specimen of long bone, by pay
ing due attention to the non-isotropic elastic property of osseous tissues 
and the non-uniformity of the cross section of a long bone. The process of 
remodelling was considered to have been initiated by the force fitting of a 
metallic pin into the medulla of the bone specimen. The results of numerical 
simulation of this study clearly indicate that both the non-isotropy of bone 
tissues and the cross-sectional non-uniformity bear the potential to affect 
the remodelling mechanism in quantitative as well as qualitative terms, to 
a significant extent. Misra et al. (1992) constructed and analyzed another 
mathematical model for studying the remodelling of the diaphyseal surfaces 
of the specimen of a long tubular bone induced owing to the force fitting of 
a pin as a part of a surgical operation. This study reveals that at different 
transverse sections of the bone specimen, the nature of remodelling and 
its saturation were different. Using surface bone remodelling law, given by 
Eq. (39) and the boundary element method (BEM), Sadegh et al. (1993) 
studied bone remodelling along an implant interface. Martinez et al. (1998) 
reformulated this method by combining it with sensitivity and optimization 
method to efficiently model bone in-growth into a slot of an implant. 

After reviewing many research studies on the functional adaptation of 
bone subjected to load and related problems, Ramtani and Zidi (2001) 
made an observation that throughout life, bone is continuously turning 
over by the well regulated process of bone formation and resorption. Bone 
damage occurring during daily activities of life is normally repaired in a 
continuous manner by means of remodelling processes. When an imbalance 
in this remodelling process occurs, bones may become more susceptible to 
fracture. With this observation, the authors made an attempt to formulate 
theoretically the competition between damage and internal remodelling in 
bones, under the purview of the general framework of continuum thermo
dynamics with reference to the theory of adaptive elasticity (cf. Cowin and 
Hegedus, 1976; Hegedus and Cowin, 1976). Their formulation was based 
upon a mathematical model developed by Prendergast and Taylor (1994) 
for prediction of bone adaptation by taking care of damage accumulation. 
They remarked that their formulation would provide a better understanding 
of bone remodelling induced by a medullary pin, if all the constants and the 
exact form of damage evolution during the adaptation process were known. 

In another study, Hazelwood et al. (2001) developed a constitutive 
model for bone remodelling by incorporating several relevant mechanical 
and biological processes. They used this model to address differences in 
the remodelling behavior as a volume element of bone is placed in disuse 
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or overload. The authors claimed that it was a complete model for bone 
remodelling that had the potential to help studying bone diseases and their 
treatment. 

It appears from the above discussion that the assumption of stress 
or strain dependence of the bone remodelling mechanism is common to 
all the models proposed so far. In determining experimentally the rela
tionship between elastic properties and microstructure of bovine cortical 
bones, Lipson and Katz (1984) offered an indirect validation of this assump
tion. They observed that the level of osteonal remodelling is related to the 
pattern of mechanical stress. 

16. Current State-of-the-Art 

The concept of viscoelastic behavior of materials, in the realm of solid 
mechanics, is not of recent origin. The celebrated physicists like Maxwell, 
Kelvin and Voigt contributed much to the initial development of the theory 
of viscoelasticity more than a hundred years ago. But the general develop
ment and broader applications of the theory are of relatively recent occur
rence. This is due to a rapid growth of research on polymers and materials 
of biological origin, which are mostly viscoelastic, during the last three 
decades. It is now widely accepted that polymers and metals at high tem
perature exhibit viscoelastic behavior, and a general theory for all such 
materials, linear or non-linear, are well-established. The excellent mono
graph of Bland (1960), Nowacki (1962), Boley and Weiner (1967), Ferry 
(1970), Christensen (1971), Findley et al. (1976) may be cited as the general 
references in this extensive field of research involving ordinary materials. 

The researches on the viscoelastic properties of bones, however, are not 
so extensive. As remarked by Herman and Liebowitz (1972), the exploration 
of bone as a viscoelastic material is still in its infancy. After McElhaney 
(1961) and Sedlin (1965), Nowinski (1974) analyzed a viscoelastic prob
lem involving a long bone by using the bone model proposed by Sedlin 
(1965). In a series of papers Lakes et al. carried out investigations on the 
viscoelastic cortical bone. In their first communication, Lakes et al. (1979) 
dealt with the dynamic measurements of relaxation properties in torsion. 
They observed that at high frequencies, in the ultrasound range, the mate
rial parameters are independent of frequency. In the second one, Lakes and 
Katz (1979a), discussed the possible contribution of the ongoing physical 
processes in bone to its relaxation mechanism. Non-linear viscoelastic con
stitutive relation for cortical bones was the subject of their third study (cf. 
Lakes and Katz, 1979b). Assuming bone to be a two-phase, fibre-reinforced 
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composite material, Gottesman and Hashin (1980) determined analytically 
the five relaxation functions by means of a micromechanical model. Pelker 
and Saha (1983) carried out an experiment on the propagation of stress 
waves in bones, modelled as a viscoelastic solid. By assuming that the 
material behavior of trabecular bone which is the chief constituent of the 
vertebral body at the intervertebral joints in the human skeletal system 
to be represented by two-, three- or four-parameter Kelvin model, a series 
of researches were made by various researchers [cf. Spilker (1980), Burns 
and Kaleps (1980), Furlong and Palazotto (1983), Spilker, Dangirda and 
Schultz (1984), Burns et al. (1984), Dangirda and Schultz (1984)]. These 
studies reveal that three- and four-parameter Kelvin models yield better 
results. 

Sanjibee et al. (1982a, b) established the non-linear constitutive rela
tions for a specimen of collagen, an important constituent of bone. 

As mentioned earlier, the semi-crystalline polymers and materials hav
ing biological origin possess another interesting material behavior — 
they exhibit piezoelectric effects. Having discovered bone piezo-electricity, 
Fukada and Yasuda (1957) concluded that this was mainly due to collagen, 
the crystalline organic constituent present in bones. Following the obser
vation made by Fukada and Yasuda (1957), many investigators tried to 
correlate bone piezoelectricity with the mechanism of bone remodelling [cf. 
Bassett et al. (1962), Cochran (1966), Cochran et al. (1968), Samos et al. 
(1963), Bassett (1965) and Marino et al. (1970)]. Bioelectricity in bones 
may have different origins, but Anderson and Ericksson (1970) tried to 
establish in a convincing manner that bone piezoelectricity is its primary 
source. Excellent reviews of the researches in this field of study are provided 
in Fukada (1968), Bassett (1971), Liboff et al. (1973,1974) and Giizelsu and 
Demiray (1979). 

As innumerable voids are present in bone, it is generally non-
homogeneous. Nowinski (1974) described bone inhomogeneity by a power 
law variation. He assumed that elastic moduli are proportional to the appar
ent density of bone. But Patel (1969) theoretically proposed a power law 
of variation of elastic modulus with apparent density, for porous materials. 
Carter et al. (1976) experimentally obtained such power law of variation of 
bone compressive strength with its apparent density. Later on, Stone et al. 
(1982) experimentally confirmed the validity of this law for shear strength 
of osseous tissue. 

Julius Wolff (1892) was the first to observe the strain-dependence of 
the mechanism of bone remodelling. Most of the experimental studies that 
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were aimed at relating bone remodelling with bone piezoelectricity have 
already been mentioned in Sec. 13. In his theoretical study, Gjelsvik (1973a) 
proposed a macrobone model by assuming that bone remodelling is effected 
mostly by piezoelectricity of osseous tissues. He used this model to explain 
the surface and internal bone remodelling and claimed that his results were 
justified from experimental and clinical observation on bone remodelling 
and the piezoelectric properties of bone. In a second study Gjelsvik (1973b) 
discussed the equilibrium and non-equilibrium forms of bone architecture 
by using his model. 

Cowin et al. (1976-1981) explained the bone remodelling mechanism 
from a different standpoint. Having assumed its chemical origin, they pre
sented a porous and chemically reacting elastic solid model for bone tis
sues to interpret its remodelling mechanism (Cowin, 1976; Cowin and 
Nachdinger, 1978). The concept of small strain elasticity under isother
mal condition has been used in developing their model. Cowin and van 
Buskirk (1978) used this model to analyze the problem of internal remod
elling induced by a medullary pin. In a later communication, Cowin and 
van Buskirk (1979) proposed a theory of surface remodelling of bone and 
applied it to obtain the changes in endosteal and periosteal diameters of a 
cylindrical bone specimen. In this study, remodelling was considered to be 
induced by an axial load or by a medullary pin. Cowin and Firoozbaksh 
(1981) made some theoretical predictions on the remodelling of diaphyseal 
surfaces under constant load. 

The balance between local remodelling and accumulation of trabecular 
bone micro damage is believed to play an important role in the maintenance 
of skeletal integrity. However, the local mechanical parameters associated 
with micro damage initiation are not well understood. Trabecular bone 
micro damage and micro structural stresses under uniaxial compression 
were studied by Nagaraja et al. (2005). 

Miller and Fuchs (2005) examined the effect of trabecular curvature on 
the stiffness of trabecular bone. They used simplified structural models of 
trabecular bone to model various forms of variability. The structural effects 
of variability of direction, length and thickness of the trabeculae have been 
studied using "lattice-type" finite element models. 

For choosing intramedullary devices, the surgeon has to take care of 
the factors that may affect the functional outcome, viz. the strength of the 
inserted device, bone quality and fracture reduction. Sheer body weight and 
muscle contraction can result in nail failure, as well as bone penetration 
due to improper positioning or bone quality. Steinberg et al. (2005) studied 
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experimentally the biomechanical properties of the nail and peg as well as 
the influence of the peg's expansion upon cadaveric femoral heads. 

The ability to accurately assess bone quality in vivo is essential for 
improving the diagnostic and therapeutic goals for bone loss from such 
varied etiologies as osteoporosis, micro gravity, bed rest, or stress-shielding 
from an implant. Early diagnostic ability is very important because the 
effectiveness of treatment diminishes with disease progressing, yet patients 
are rarely symptomatic before considerable bone loss has occurred and 
sometimes not until the first fracture has occurred (Davidson, 2003; 
Homminga et al., 2004). 

Stanczyk (2005) presented a study on modelling of PMMA bone cement 
polymerization. The model is constructed in such a way as to mimic the 
chemical processes taking place in the cement dough. On the basis of this 
study he could identify some important phenomena and put forward a 
mathematical formulation. 

So far we have given a brief account of various earlier researches on bone, 
particularly on its anisotropic, viscoelastic, piezoelectric, non-homogeneous 
material behavior and its remodelling mechanism. Before we conclude this 
section, we present a brief review on previous researches devoted to waves 
and vibrations in bones. 

It is known that studies on waves and vibrations in a continuum bear the 
potential to provide useful techniques for determining its elastomechanical, 
electromechanical, thermo-mechanical and damping characteristics. But for 
an osseous medium, which can adapt its shape according to loading condi
tions, such a study offers information regarding the pathological state, the 
site of fracture and the remodelling process in addition to its mechanical 
and electrical properties. Moreover, such information can be obtained for 
in vivo situations. 

In fact due to its piezoelectric material behavior, all such information 
can be derived by studying the electromagnetic waves radiated by bone, 
when disturbed by travelling elastic waves, using some appropriate monitor
ing devices [cf. Saha and Lakes (1977a, b), Giizelsu and Saha (1981, 1984)]. 
Giizelsu and Saha (1983) made an investigation on the diagnostic capacities 
of flexural waves in wet bones. Chen and Saha (1987) developed a math
ematical model for stress wave propagation in a long bone. Having used 
the data for human femurs for different age groups, reported by Martin 
and Atkinson (1977), they made an observation that osteoporosis sets in 
around the age of 55. They further suggested that the diagnostic meth
ods based on wave propagation characteristics may be potentially useful in 
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detecting the onset of osteoporosis changes in the human skeletal system. 
Based on waves and vibration techniques, there have been different stud
ies with a definite aim to assess bone pathology and monitor the rate of 
fracture healing [cf. Lewis (1975), Lewis and Goldsmith (1975), Wong et 
al. (1976), Wright et al. (1981), Pelker and Saha (1983, 1985), Rubin et 
al. (1984 a, b)]. Misra and Samanta (1984) put forward a mathematical 
analysis for a problem of wave propagation in tubular bones. 

By considering the damping material behavior of the skull and brain 
tissues, the effects of various pulse shapes in vehicular impact situations 
were studied by Misra et al. (1977, 1978b). Misra (1978a) carried out a 
detailed study in order to examine the effect of triangular pulse, which is 
one of the most frequently occurring pulses during accidents caused due 
to collision of the head with a hard surface. Misra (1978c) put forward a 
theoretical study on the deformation of human head impacted by an exter
nal load. The study takes care of the eccentricity of the skull structure 
and also the viscoelastic properties of osseous tissues. Misra and Murty 
(1979) put forward a theoretical estimate of the intensified stress-field 
generated in the neighbourhood of a crack in a human-sized skull, while 
Misra and Mishra (1984) reported similar estimates for an exterior star-
shaped crack in a bone medium. Misra (1986b) reported the results of 
his theoretical study on the distribution of stresses in a pre-cracked bone 
specimen. 

Misra and Chakravarty (1984a) modelled the human skull as a poroe-
lastic shell in their study of a problem concerned with head injury. In order 
to take care of the eccentricity of the human skull, Misra and Chakravarty 
(1984b) modelled the skull as a prolate spheroidal shell in their study of 
rotational brain injury. 

Misra (1985) carried out a theoretical analysis on the distribution of 
stresses in a tubular bone exposed to heat radiation from a distant heat 
source. Misra (1986a) studied theoretically the stress-field in the human 
skull generated due to thermogenesis. In this study he made use of the 
temperature-distributions in the human head reported by Thron (1956) 
and the results presented by Richardson and Whitelaw (1968) for their 
problem of heat conduction in the head. 

The three-layered structure of the skull bone was duly taken care of by 
Misra and Roy (1988) in their mathematical analysis of the free and forced 
vibrations of the cranial vault. They studied four different types of pulse 
shapes, viz. square pulse, half-sine pulse, triangular pulse and skewed pulse, 
which are reported to be encountered quite frequently in vehicular impact 
situations. 
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A study on local piezoelectric polarization of human cortical bone as a 
function of stress frequency was carried out by Pfeiffer (1977). Saha and 
Giizelsu (1981) derived the magnetic field induced by a travelling antisym
metric wave propagating in a single layered long bone. Pelker and Saha 
(1983) studied the viscoelastic effects on wave propagation in bones. Misra 
and Chakravarty (1982) analyzed the resonance spectrum of free vibra
tions of the human cranial system with due consideration to the damping 
material behavior of osseous tissues. 

By modelling long human bone as a solid or hollow circular cylindri
cal shells of uniform cross-section, Jurist et al. (1970, 1973), Doherty and 
Wilson (1974) calculated the resonance frequencies assuming bone to be 
an elastic solid. However, no attention to different types of resonances 
and their attenuation with time was paid in these studies. Collier et al. 
(1982) studied the resonances with the objective of identifying various res
onances in long human tibia in vitro with the consideration of constant 
cross-section of isosceles triangle. In this study too, damping of resonances 
was not considered. 

Since materials with hexagonal symmetry are piezoelectric and since 
osseous media are viscoelastic, Misra and Samanta (1983a) examined the 
effects of these material properties on the wave propagation characteris
tics of a bone specimen. This study corresponds to a situation in which 
both the endosteal and periosteal surfaces of the long bone specimen are 
maintained at zero electric potential and are free from traction. The study 
demonstrated that though the piezoelectric properties do not have appre
ciable effect on wave propagation characteristics, they are useful to deter
mine the induced radial polarization that affects bone remodelling, if one 
uses the method developed by Gjelsvik (1973). Misra et al. (1988) put for
ward theoretical estimates for the effects of inhomogeneity of bones on the 
wave propagation constant as well as on the remodelling processes. In a 
separate study Misra and Samanta (1983b) studied the torsional waves in 
long biphasic bones having viscoelastic and piezoelectric properties with 
material inhomogeneity. The authors determined the effects of material 
damping behavior on wave propagation constants and reported their the
oretical estimates for the induced electric and magnetic fields. They dis
cussed possible influence on bone remodelling processes. The study has been 
extended to a specimen of polymethyl methacrylate (bone cement) having 
geometry as that of the bone specimen. It was found that the effects of 
material inhomogenity and viscoelasticity are more prominent in the case 
of PMMA and dispersion of waves in it were also more significant, particu
larly at higher modes. It has been argued by Park et al. (1986) that owing 
to these differences in material properties between bone and PMMA (bone 
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cement), the two interfaces, viz. prosthesis-bone and bone-bone cement are 
vulnerable sites for loosening at the joints. 

In order to derive the micro-structural composition of osseous media 
from bulk material characteristics, such as modulus of elasticity, piezoelec
tric coefficients etc. one needs the complete knowledge of all such material 
parameters. But it is not possible to determine all of them from a sin
gle experiment. With this end in view, Misra et al. (1989) analyzed the 
thickness vibration of long bone, considering different properties of osseous 
tissues as in their earlier studies on bones. This study bears the potential 
to devise an electromechanical transducer that could generate ultrasound 
waves within the body itself and is also useful for correlating certain mate
rial properties with vibration characteristics of bones. By considering the 
material non-homogeneity as well as the dissipative material behavior of 
osseous tissues, Misra et al. (1986) studied theoretically the vibration char
acteristics of a tubular bone in axial planes and conjectured that the stress 
wave propagation in bones results in induced electric and magnetic fields, 
the magnitudes of which depend upon the frequencies of the stress waves. 
They studied the frequency spectrum of a vibrating bone specimen by using 
experimental results on the variation of elastic constants with density of 
osseous tissues, reported by Patel (1969). 

Since a real bone specimen is of finite length and non-uniform cross 
section, Collier et al. (1982) considered bone to have a non-uniform cross 
section. Finlay et al. (1982) assumed bone to have different circumferential 
dimensions at different locations. In analyzing the stress field inside the 
wall of carotid sinus von Maltzahn (1982) assumed it to be cone-shaped. 
Misra and Samanta (1988) treated human tibia as a truncated conical bar. 
This model took care of the finiteness of the length of bone specimen as well 
as non-uniformity of its cross section in a better manner. The geometrical 
model for bone specimen was used to analyze the lengthwise vibration of the 
bone specimen theoretically, with an aim to provide better correlation with 
the experimentally obtained vibration parameters. In a recent experiment, 
Garner et al. (2000) studied the viscoelastic dissipation in human compact 
bone, in dry and wet conditions, in torsion and bending in longitudinal and 
transverse directions. 
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