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CHAPTER 1

Computing technologies, theories, and

algorithms. The making of 40 years and

more of theoretical and computational

chemistry

Clifford E. Dykstra1, Gernot Frenking2, Kwang S. Kim3 and
Gustavo E. Scuseria4

1Department of Chemistry, Indiana University–Purdue University Indianapolis,
Indianapolis, IN 46202, USA

2Fachbereich Chemie, Philipps-Universität Marburg, Hans-Meerwein-Str.,
D-35032 Marburg, Germany

3Department of Chemistry, Pohang University of Science and Technology,
San 31, Hyojadong, Namgu, Pohang 790-784, South Korea

4Department of Chemistry, Rice University, 6100 Main Street, Houston,
Texas 77005-1892, USA

Abstract

In their earliest stages, theoretical chemistry and computational chemistry were often

distinct, with the latter having its developments and capabilities directly tied to the state of

computer technology. This was especially true for the part of computational chemistry

with some of the highest computing demands, ab initio electronic structure theory. The

point in time where ab initio electronic structure calculations were first beginning to be

carried out is roughly 40 years ago, and since that time, all parts of theoretical chemistry

have developed links to computation. The evolution in such links and connections has had

a powerful impact on science, something of historical, theoretical, and practical interest.

1.1 INTRODUCTION

Computational chemists have often given close attention to the specific technologies

associated with computer memory, data storage, processor speed, and program

development software. In more recent times, the list of technologies can be extended

to include processor architecture, data transmission, graphical displays, networking,

and interfaces. The state of technology, 40 years ago, provides a fascinating contrast with

q 2005 Elsevier B.V. All rights reserved.
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contemporary computing capabilities. For instance, 40 years ago, compilers for a

powerful high-level language known as FORTRAN were rather new. Prior to that,

programs were developed with more root-level instructions via languages such as

ASSEMBLER. A notable piece of early ab initio quantum chemistry work came from the

IBM Research Laboratory in California which produced calculational results for a

number of linear molecules as complex as HCCCN with a program in the ‘FAP Assembly

Language for an IBM 7094’ [1].

FORTRAN, whose name encodes ‘formula translation,’ was certainly the most

algebraic/number-crunching language when it was introduced. Its usefulness led to a

sequence of versions, with FORTRAN IV being a mid-1960s form that was widely

available and persisted as a standard version for some time. From the standpoint of

writing code, FORTRAN was very well suited to linear algebra algorithms. This had an

influence on computational chemistry developments. Theoretical work that cast problems

in a matrix form could be quickly exploited for computer calculations. In some cases,

presentation of a new method in a form that brought out a matrix structure helped

popularize the method. It proved important that interested theoretical chemists were able

to see how something could be coded. Without question, compiler technology has at

times impacted computational chemistry methodology.

Forty years after the heyday of FORTRAN IV, everything about computing is orders of

magnitude better. One could argue that theoretical and computational chemistry simply

marched along with the computer developments, but that would not be a fair

characterization. In applying theoretical ideas using computers, chemistry consistently

pushed the limits of computing capability. As a result, investigators were keen on exploiting

any variation in equipment and architecture that became available, and this had the effect of

drawing attention to the computational practicability of any new theoretical idea.

This chapter introduces a volume ofwork that shows the enormous breadth of theoretical

and computational chemistry today, a volume which gives insights and historical

perspectives on certain crucial developments and establishes how theory and computation

have become more and more linked as methodologies and technologies have advanced.

This first chapter recalls certain themes or trends in computing technology’s influence on

computational chemistry, these having been selected as samples, with no claim of being

comprehensive. A reverse effect, the role of computational chemistry in shaping computer

technology, becomes clear in certain places of the overall story covered by the entire

volume. Now, to begin a discussion of historical aspects of computing in chemistry, it is

worth noting what was not in existence and not normally available for the first

investigators: communication between computers, high-level languages for programming

other than FORTRAN, fast and sizable data storage, fast and extensive memory, and even

in some cases, the terminals to access computers conveniently.

1.2 TECHNOLOGY AND METHODOLOGY

Through almost two of the first four decades of computational chemistry, a crucial hands-

on tool for investigators was the punch card, commonly called an ‘IBM card’ (Fig. 1.1).

These held source codes and input data in a matrix of 80 columns by 12 rows. Editing
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a FORTRAN program required keypunching cards and inserting them in proper sequence

in a stack of cards. Code could not be generated anywhere near as quickly as is possible

with contemporary screen editors and graphical tools. Editing code was a laborious

process, and accidentally dropping a box of cards could be a disaster. Yet, a lot of codes

were produced and a lot of semi-empirical calculations, ab initio calculations,

calculations of classical and semi-classical reaction trajectories, statistical mechanical

modeling, and quantum dynamical calculations were performed—with punch card

communication to the processor.

An interesting marker in time for the start of computational chemistry was the

founding of the Quantum Chemistry Program Exchange (QCPE) in 1962. QCPE set out

to be a distributor of software that chemists had written, becoming more than that as

programming efforts got more involved [2]. The utility of semi-empirical electronic

structure methods, when first induced to the QCPE collection, sharply increased QCPE’s

distribution activity [2]. In many respects, the spread of semi-empirical codes in the

earliest days of computational chemistry did more than anything else to show that there

would be strong demand for debugged, working code to carry out calculational tasks of

interest to chemists. It was the start of what would spark the creation of many of today’s

for-profit companies that market computational chemistry software.

Electronic structure was the heavyweight among fields of theoretical chemistry when it

came to computation in the early days, and QCPE’s catalog certainly reflected that. Semi-

empirical electronic structure methods, which remain important today, approximate or

eliminate many of the electron–electron repulsion integrals of an ab initio approach and

thereby reduce calculational costs enormously. They were the first methods that could be

applied to the electronic structure of real molecular problems, though the approximations

and empiricismwould present unexpected problems from time to time. By themid-1970’s,

ab initio SCF calculations for small organic molecules done with modest Gaussian basis

sets could be called routine. In fact, as of December 31, 1969, the closing date for the first

compilation of ab initio calculations by Richards et al. [3], there were already about 300

Fig. 1.1. Punch cards for entering data or holding program source code had 80 by 12 spots to be punched or left

filled. In other words, there were 960 bits per card. The maximum information in a 15–20 kg box of 2000 cards

was a mere 240 kB, though rarely were cards used with formats that allowed for maximum data storage.
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species (counting an ionic form of a molecule as distinct from its neutral forms) that had

been subjected to some level of ab initio calculation, mostly small basis SCF. FutureNobel

prize winner John Pople undertook direct distribution of an ab initio code that was named

GAUSSIAN, and even one of the first versions, GAUSSIAN70 (dating from around 1970),

proved to be a lasting workhorse in numerous laboratories.

Computers available to most computational chemists in the earliest days were large,

central systems (mainframes) where users collected to read-in sets of punch cards and

recover some printed output. A small revolution, which we can rightfully dub a mini

revolution got its start in the early-to-mid 1970’s with the entrepreneurial development of

small computing machines called minicomputers, along with low-volume, inexpensive

card readers, printers, simple terminals, and disk systems.

Minicomputers did two things. They provided less expensive computing, which meant

more computing cycles per year in most cases, and they put control and operation in the

hands of the users, which is part of the reason costs were reduced. The Miller–Schaefer

experiment with a Datacraft 6024 minicomputer (Fig. 1.2) at Berkeley (University of

California) was probably the initial volley in this revolution against expensive, central

computer centers. The experiment turned out to be more than finding and demonstrating

cost-effectiveness. It also affected methods development, especially in electronic

structure. The Final Report to the (US) National Science Foundation on the Miller–

Schaefer project titled ‘Large Scale Scientific Computation via Minicomputer’ indicated

that classical trajectory calculations for simple chemical reactions could be handled

‘without major alteration of presently existing codes,’ but that problems such as MCSCF

called for ‘algorithms designed to optimally utilize the relatively small memory of

the minicomputer.’ Minicomputers had substantially less memory than mainframes of the

day, and algorithms or even whole new methods were needed. The reformulation

Fig. 1.2. The minicomputer revolution in computational chemistry began as machines like this Datacraft 6024/4

at the University of California (1973) came into use. This was a 24-bit machine (48 bits per word in extended

precision). Note the two rows of switches. These could be used to directly set the bit strings for one word of

memory at a time, a low-level feature that at least proved helpful for certain crashes.
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of the electron correlation problem in terms of matrices, the same size as used in SCF was

one example [4,5].

Digital Equipment Corporation (DEC) introduced a sophisticated minicomputer, the

VAX 11/780, in the mid- to late-1970s. At prices of 300 k USD (and up), machines could be

acquired thatwere as fast as 1960smulti-million dollarmainframes. Double precisionmeant

64-bit words, andmultiple external disk drives could be added to provide hundreds ofMBof

storage. DEC was not the only producer of minicomputers, and before long, with different

vendors and models, their use for computational chemistry became fairly widespread.

There was another mini revolution following fast on the spread of minicomputers.

Parallel and vector computing architectures were emerging by the early 1980’s (available

to a few even earlier), and computational chemists were adapting algorithms as soon as

they could get machine time. However, doing so-called for consideration of many aspects

of computer technology. It was not simply moving a box of cards from the central

mainframe to the minicomputer site. As pointed out in a 1984 report by J. S. Binkley [6]:

Modern, high-speed vector processing machines have some idiosyncrasies that most

developers of scalar algorithms have not previously encountered… [T]heir I/O

capabilities employ peripheral devices that are comparable to those available on

super minicomputers. Thus, algorithms that were developed on older machines where

CP-time and I/O times were well balanced become terribly I/O bound.

One of the specific types of solutions for ab initio electronic structure was direct

methods wherein intermediate quantities (two-electron integrals) normally stored on disk

were recomputed when needed [7]. Binkley’s report went on to say that the effort to adapt

to the special features of vector and parallel architectures led to ‘the production of better

scalar algorithms.’ In other words, the basic ideas behind algorithms were influenced by

the technology, in this case, computer architecture, and this is really a very significant and

constant theme in the evolution of theoretical and computational chemistry.

There has probably been a third mini revolution, though one more diffuse in time. It

could be called the workstation or even laptop revolution. Computing technology has

advanced so far and so fast that high-level calculations can be performed on battery-

powered devices of 100 cubic inches (1.6 L) or so. Memory is inexpensive and external

storage can seem limitless on these systems. Commercial software from a half-dozen

vendors, if not more, is available for most standard types of computational chemistry.

This state of technology has also had an impact on the evolution of theoretical and

computational chemistry, and from one view, that impact has been integration of

approaches. For instance, molecular mechanics calculations, originally a stand-alone

type of computation, are frequently carried out on laptops and workstations to provide an

initial geometry for an ab initio optimization, and they are directly tied in the emerging

QM/MM treatments. Ab initio treatments are combined with dynamical and statistical

understanding so that calculations often give thermodynamic values, not simply single

molecule energies. Molecular mechanics, molecular dynamics, Monte Carlo, and

quantum Monte Carlo calculations, newcomers compared to SCF calculations are

widespread, and increasingly, they are being incorporated into broad-based compu-

tational work on biomolecular problems. The typical capability of these powerful

computers, the laptops and workstations, facilitates interfacing and combining what are

Computing technologies, theories, and algorithms 5
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otherwise large, stand-alone blocks of code, or at least it provides for a wide variety of

calculational tools being available in one computer system.

These days, graphical control (input) and graphical analysis of the results are highly

sophisticated, and the user does not always need the detailed theoretical understanding to

use the software. This points to a newer theme. It is that in many problem areas, theory

has been so effectively translated into computational form that computations are

commonplace tools for everyday chemists as much as an IR or NMR spectrometer. It is

fair to argue that in some, maybe equal, proportion, hardware advances and

algorithmic/methodological advances have yielded the remarkable capabilities for

computational chemistry that exist now. Certain chapters in this volume provide a

glimpse of the evolution to genuine problem solving via computation in areas such as

electrical conductance at the molecular level, photobiology, fullerenes, carbon

nanostructures, and nanotechnology. There will be more in the next 40 years!

1.3 OUTLOOK

A clear point to this introduction to the volume about the first 40 years of the theory and

applications of computational chemistry (TACC) is that the connections between

technology and methodology, and between pure theoretical efforts and application via

computation are firmly in place. As well, computational chemistry has been driven by the

ever-evolving (ever-changing) technology of electronic computing both in terms of the

applications that can be approached and in the methodology. Advances in hardware

technology and in algorithms have been intertwined throughout. Of the many TACC

pioneers, a number of whom are pictured here (Figs. 1.3 and 1.4), had there been none

who pursued the use of computers to solve chemical problems until the current state of

Fig. 1.3. Birthday cakes for some of the speakers in the Theory and Applications of Computational Chemistry

Conference held at Gyeongju, Korea during February 15–20, 2004. Celebrating their 60th birthday in 2004 are,

from left to right, Tom Ziegler, Helmut Schwarz, M. H. Whangbo, Ad van der Avoird, Jack Simons, Henry

F. Schaefer, Per E. M. Siegbahn, Michael A. Robb, Leo Radom, Hiroshi Nakatsuji, Poul Jørgensen, Kimihiko

Hirao, William L. Hase, Michael B. Hall, Mark S. Gordon, R. Benny Gerber, Petr Cársky, Rodney J. Bartlett,

Yitzhak Apeloig, Jean-Marie André and Herschel A. Rabitz.
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computing technology had been achieved, there would likely be differences in the

methods, techniques, and algorithms that are in use. Hence, the link with technology is

not only a part of the history of computational chemistry, but it is also something that

provides insights to where the field stands, why some things are done the way they are

done, and hopefully guidance of how forthcoming computing technology might best

be used in chemistry. That guidance, of course, is subject to how well we can predict

where computing technology goes from here. The pioneers in TACC managed that just

right, and most likely the ones to follow will, too.
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CHAPTER 2

Dynamical, time-dependent view

of molecular theory

Yngve Öhrn and Erik Deumens

Quantum Theory Project, Departments of Chemistry and Physics,
University of Florida PO BOX 118435, Gainesville, FL 32611-8435, USA

Abstract

In this chapter we present a time-dependent, direct, nonadiabatic theory of molecular

processes. We put this approach in contrast to the current theory paradigm of approximate

separation of electronic and nuclear dynamics, which proceeds via approximate electronic

stationary states and corresponding potential energy surfaces (PESs). This established

approach in all its variants has provided a basis for qualitative understanding of rate

processes and, for systems with few nuclear degrees of freedom; it has produced

quantitative data that can be used to guide experiments. In this picture the dynamics of

the reacting system takes place on a stationary electronic state potential surface and

may under the influence of nonadiabatic coupling terms ‘jump’ to another potential

surface the probability of such transitions often viewed as a statistical ‘surface hopping’

[J. Chem. Phys., 55 (1971) 562] event. The time-dependent, direct, and nonadiabatic

theory presented here is fully dynamical in that the evolving state, which describes the

simultaneous dynamics of electrons and nuclei of a reacting system [Rev. Mod. Phys.,

66 (3) (1994) 917] changes in time under the mutual instantaneous forces in a Cartesian

laboratory system of coordinates. This approach, which has been applied to reactive

collisions involving polyatomic molecules over a large range of energies, proceeds

without predetermined PESs, uses total molecular wave functions that are parameterized

as generalized coherent states, and imposes no constraints on molecular geometries.

2.1 INTRODUCTION

Chemistry may be characterized as the science of transformation of matter at low to

moderate energies. The study of chemical reactions, i.e. how products are formed from

reactants, is central to chemistry [1]. Since the beginning of modern chemistry one has

q 2005 Elsevier B.V. All rights reserved.
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studied kinetics and attempted to infer reaction mechanisms by varying controllable

parameters, such as concentrations, temperature, substituents, etc. and determined the

effect on product yields. However, not until recent times has the actual microscopic

action of the reacting species been accessible to the chemist and the early theoretical

models developed to describe reactions were hence of a phenomenological nature. For

instance, the early work of Lindemann, Hinshelwood, Rice, Ramsparger, and Kassel on

unimolecular rate theory makes reasonable assumptions about the details of the dynamics

of the reacting molecular system without actually knowing whether they are true or not.

Later the seminal work of Eyring [2] introducing absolute reaction rate theory, also

known as activated complex theory or transition state theory, can be labeled as the

beginning of modern theoretical studies of chemical reaction rates by providing

interpretations of the Arrhenius rate parameters in terms of molecular structure and

properties. Common to this early theory and to most current work on chemical reactions

is the notion that the atomic nuclei of participating species move subject to forces derived

from a potential.

Chemical reactions in bulk are analyzed in terms of simple steps, called elementary

chemical reactions. Such elementary steps can be characterized as encounters of reactant

molecules to form product molecules. Such encounters take place in various media such

as a solvent or at a metal surface. The perhaps simplest and purest form of elementary

reactions take place in gas phase allowing experimental control over initial and final

states of participating species with the use of modern laser technology, and thus obtaining

detailed information from which to draw conclusions about reaction mechanisms. This

is often done in intricate molecular beam experiments involving ultrafast-pulsed lasers

to monitor the reacting molecular system on picosecond to femtosecond time scales.

In this way the experiment is not limited to viewing only the ‘opening act’, the reactants,

and the ‘final act’ the separated products, but can actually enjoy the entire ‘play’ as the

reaction proceeds from reactants to products.

The importance of the time parameter in the study of reactions is clear already in

the early kinetic studies, where it takes the form of the inverse rate constant. From the

point of view of fundamental chemical theory, elementary chemical reactions are simply

the detailed dynamics of electrons and atomic nuclei that constitute the total molecular

system of reacting species, which is governed by the time-dependent Schrödinger

equation

HC ¼ i"
›C

›t
ð1Þ

It is now a generally accepted view that electrons and atomic nuclei are ‘the fundamental

particles’ of chemistry and that the time-dependent Schördinger equation is the central

equation for the study of molecular structure and dynamics, and thus also for chemical

reactions in general. In spite of the tremendous advances in the power and speed

of electronic computers and in generally available sophisticated software for finding

adequate approximate solutions to the Schrödinger equation, accurate treatments are still

limited to rather simple systems, for which predictive results can be obtained from theory

alone. Nevertheless much can be achieved by approximations to the time-dependent

Schrödinger equation and even with approximate solutions to approximate equations.
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For time-independent Hamiltonians H one often equivalently studies the time-

independent Schrödinger equation

HF ¼ EF ð2Þ
not as a boundary value problem but seeking solutions for general energy values E: The
explicitly time-dependent formulation is more readily treated as an initial value problem.

The disparate masses of even the lightest atomic nucleus and an electron have led

to the widely accepted view that an adequate description of low energy processes can

be achieved by assuming an effective separation of electronic and nuclear degrees of

freedom. Considering the electron dynamics to take place in the field of stationary nuclei

leads to the introduction of an electronic Hamiltonian operator Hel consisting of the

kinetic energy operator of electrons, their mutual Coulombic interactions, and the

Coulombic attraction terms to each of the atomic nuclei. The corresponding Schrödinger

eigenvalue problem

Helð~RÞlnl ¼ Enð~RÞlnl ð3Þ
has the solutions lnl, which are electronic stationary states with characteristic electronic
energies Enð~RÞ: The lowest eigenvalue E0ð~RÞ corresponds to the electronic ground state
l0l can be obtained at some level of approximation for various chosen nuclear geometries
~R in an internal coordinate system attached to the nuclear framework. For 
N nuclei such

a function in 3 
N2 6 dimensions is commonly interpolated and fitted to some analytical

representation to also yield the energy at intermediate nuclear geometries. As a practical

matter most electronic structure codes use Cartesian coordinates to solve Eq. (3). Adding

the Coulomb repulsion terms of the nuclei to this function one obtains the ground state

potential energy surface (PES). Commonly this PES becomes the potential energy for

the nuclear dynamics, which can be treated classically, semi-classically, or fully quantum

mechanically.

Obviously, the electronic energies Enð~RÞ for n – 0 corresponds in a similar manner

to potential surfaces for electronically excited states. Each PES usually exhibits consider-

able structure for a polyatomic system and will provide useful pictures with reactant and

product valleys, local minima corresponding to stable species, and transition states

serving as gateways for the system to travel from one valley to another. However, for the

number of nuclear degrees of freedom beyond six, i.e. for more than four-atom systems it

becomes extremely cumbersome to produce the PES’s and quite complicated to visualize

the topology. Furthermore, when more than one PES is needed, which is not unusual,

there is a need for nonadiabatic coupling terms, which also may need interpolation in

order to provide useful information.

For those few systems for which one or more accurate PES have been determined

this strategy, of proceeding via precalculated potentials, works quite well [3]. Detailed

quantum dynamics obtains accurate differential and integral state–state cross sections

and rate coefficients in agreement with the best experiments for some small systems.

However, as the complexity of the reacting system increases it becomes increasingly

difficult to proceed via full PESs. One way out of this problem is to identify some active

modes and eliminate or discretize degrees of freedom that are either changing slowly
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throughout the critical part of the dynamics or which are not directly involved. This

reduced dimensionality dynamics [4] has been successful in some cases, but introduces

some arbitrariness or bias and hard to control errors. Another procedure that has gained

recent prominence is so called direct classical dynamics (see, e.g. [5]). This approach

calculates the forces on the nuclei during a classical trajectory making it necessary to

compute the PES only in those points where the dynamics take the nuclei. Since the

reacting system can tumble one commonly performs the calculations in 3 
N2 3

dimensions also including the rotational degrees of freedom but no coupling terms.

In the following sections we consider the Coulombic Hamiltonian of a general

molecular system and comment upon the difference between using an internal set of

coordinates with axes fixed in the molecular system and employing a Cartesian laboratory

system of axes. The study of reactive molecular systems in terms of stationary molecular

electronic states and their PESs as described above is put in contrast to a direct,

nonadiabatic, time-dependent treatment, which is fully dynamical in that the evolving

state, which describes the simultaneous dynamics of participating electrons and nuclei,

changes in time under the mutual instantaneous forces. The wave function parameters

carry the time-dependence and in the choice of parameters it is useful to consider

generalized coherent states. This approach proceeds without predetermined PES, and

the dynamical equations that describe the time evolution of the total system state vector

are derived using the time-dependent variational principle. A minimal form of this

dynamical approach to molecular processes is discussed in some detail.

2.2 MOLECULAR HAMILTONIAN

The molecular Hamiltonian contains a variety of terms. If we limit the description to

Coulombic interactions we can write (we are using the subscripts i and j for electron

labels and k and l for nuclear labels)

H ¼ 2
"2

2m

X
i

72xi 2
"2

2

X
k

1

mk

72Xk 2
X
i

X
k

Zke
2

l~xi 2 ~Xkl
þ 1

2

X
i

X
j–i

e2

l~xi 2 ~xjl

þ 1

2

X
k

X
l

ZkZle
2

l~Xk 2 ~Xll
ð4Þ

where the terms in order are the operators of kinetic energy of the electrons, kinetic

energy of the nuclei, the electron–nuclear attraction energy, the electron–electron

repulsion energy, and the nuclear–nuclear repulsion energy. Obviously, if it were not for

the electron–nuclear attraction terms the electronic and the nuclear energetics and

dynamics would be decoupled. Although this term is not small much of molecular

quantum mechanics can be performed with an effective decoupling of electronic and

nuclear degrees of freedom or rather a discretization of the nuclear coordinates.

One normally proceeds by eliminating the translational motion and chooses the

origin of a molecule-fixed coordinate system. A suitable choice is the center of mass
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of the nuclei. This choice introduces no additional coupling terms between the nuclear

and the electronic degrees of freedom. However, it introduces reduced masses and

so-called mass polarization terms. Such terms are of the form

"2

2M0

X
i

X
j–i

7i7j ð5Þ

for the electrons and a similar term for the nuclei, where M0 is the total mass of all

the nuclei. Because of this small factor these terms are small and often neglected.

Nevertheless, these omissions must be recognized as a source of errors. The potential

energy terms (collectively given the symbol U) all depend on the interparticle distances,

which are unaffected by the transformation to internal coordinates. Obviously, the choice

of an internal origin of coordinates leads to the elimination of three degrees of freedom,

which means, say, that the position of one of the nuclei is dependent on the position of all

the others.

Example. We consider a general molecular system in the laboratory frame with the

center of mass

~r ¼ 1

M

X
k

mk
~Xk þ m

X
i

~xi

" #
ð6Þ

The internal coordinates relative to the center of mass of the nuclei are

~ri ¼ ~xi 2
1

M0

X
k

mk
~Xk ð7Þ

for the electrons, and

~Rl ¼ ~Xl 2
1

M0

X
k

mk
~Xk ð8Þ

for the nuclei. The position of one nucleus, say p is then obtained as

~Rp ¼ 2
1

mp

X
k–p

mk
~Rk ð9Þ

from the fact that the center of mass of the nuclei is the origin. In the above expressions

we have used the notations M0 ¼
P

k mk and M ¼ M0 þ mN, where N is the number of

electrons in the system.

The kinetic energy terms are now altered and we can see how they change by using

the chain rule of differentiation. Note that the Cartesian components of the position

coordinates are such that

~r ¼ ðj;h; z Þ; ~x ¼ ða; b; cÞ; ~X ¼ ðA;B;CÞ; ~r ¼ ðx; y; zÞ; ~R ¼ ðX;Y ; ZÞ
and for example

›

›a
¼ ›

›x

›x

›a
þ ›

›j

›j

›a
¼ ›

›x
þ m

M

›

›j
ð10Þ
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yielding

7xi
¼ 7i þ m

M
7r ð11Þ

Similarly we obtain for k – p

›

›Ak
¼ ›

›Xk

›Xk
›Ak

þ ›

›j

›j

›Ak
þ

X
l

›

›Xl

›Xl
›Ak

þ
X
i

›

›xi

›xi
›Ak

¼ ›

›Xk
þ mk

M

›

›j
2

mk

M0

X
l–p

›

›Xl
2

mk

M0

X
i

›

›xi

leading to

7Xk
¼ 7k þ mk

M
7r 2

mk

M0

X
l–p

7l 2
mk

M0

X
i

7i ð12Þ

(for k – p) and for the particular nucleus p

7Xp
¼ mp

M
7r 2

mp

M0

X
l–p

7l 2
mp

M0

X
i

7i ð13Þ

Insertion of these expressions in the molecular Hamiltonian yields [6]

Hð pÞ ¼ 2
"2

2M
72r 2

"2

2

1

m
þ 1

M0

� �X
i

72i 2
"2

2M0

X
i–j

7i7j

2
"2

2

X
k–p

1

mk

2
1

M0

� �
72k þ "2

2M0

X
k–l
k;l–p

7k7l þ U ð14Þ

In the above example the choice of molecule fixed origin is the center of mass of

the nuclei, but any other point could have been chosen, and a different choice will give

a different internal Hamiltonian. For instance, if we choose the origin to be centered on

a particular nucleus p, which might be the preferred choice if that nucleus has a much

greater mass than all the others, then the corresponding Hamiltonian is


Hð pÞ ¼ 2
"2

2M
72r 2

"2

2

1

m
þ 1

mp

" #X
i

72i 2
"2

2mp

X
i–j

7i7j 2
"2

mp

X
k–p

X
i

7k7i

2
"2

2

X
k–p

1

mk

þ 1

mp

" #
72k 2

"2

2mp

X
k–l
k;l–p

7k7l þ U ð15Þ

where coupling terms between the nuclear and the electronic degrees of freedom appears

in the kinetic energy.
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In general one can use a product wave function with one factor depending only on

the center of mass coordinates ~r and a second factor depending on the rest, i.e. all the
internal coordinates and the three rotational degrees of freedom.

One normally proceeds by defining the electronic Hamiltonian

Hel ¼ 2
"2

2

1

m
þ 1

M0

� �X
i

72i 2
"2

2M0

X
i–j

7i7j 2
X
i

X
k

Zke
2

l~ri 2 ~Rkl

þ 1

2

X
i

X
j–i

e2

l~ri 2 ~rjl
þ 1

2

X
k

X
l

ZkZle
2

l~Rk 2 ~Rll ð16Þ

where the nuclear coordinates are now representing a fixed nuclear framework (classical

nuclei held fixed). The solution of the eigenvalue problem of the electronic Schrödinger

equation

HelFkð~r; ~RÞ ¼ Vkð~RÞFkð~r; ~RÞ ð17Þ

for a fixed nuclear geometry yields the (approximate) electronic stationary states and

the associated energy eigenvalues for that single nuclear configuration. This is then

commonly repeated for a number of different nuclear geometries usually chosen by some

rationale so as to cover a particular minimum in the energy or some barrier, etc. If a

sufficient number of nuclear geometry points are used and they are chosen to cover all

possible distortions of the molecule we get one or more PES Vkð~RÞ: The (approximate)
eigenfunctions and the associated PESs are known only in a number of discrete points

in 3 
N2 6 dimensions (for 
N nuclei), since for their determination also the rotational

motion is assumed to have been eliminated ðVkð~RÞ is rotation invariant) and the electronic
stationary states and PESs are constructed in a molecule-fixed coordinate system. Further

use of these quantities for the study of molecular processes involving nuclear motion

must then involve interpolation of some form. Note that the common procedure of just

neglecting the nuclear kinetic energy terms in the total Hamiltonian Eq. (4) will not

produce the reduced masses and the mass polarization terms.

The Schrödinger equation for the system when the center of mass kinetic energy term

has been eliminated can be expressed as

½Tn þ Hel	Cð~r; ~RÞ ¼ ECð~r; ~RÞ ð18Þ
where

Tn ¼ 2
"2

2

X
k–p

1

mk

2
1

M0

� �
72k þ "2

2M0

X
k–l
k;l–p

7k7l ð19Þ

It is then common to introduce the stationary electronic states as a basis, such that

Cð~r; ~RÞ ¼
X
k

Fkð~r; ~RÞxkð~RÞ ð20Þ
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and by inserting this into Eq. (18), multiplying from the left by Fp
l , integrating over the

electronic degrees of freedom, and using the fact that the stationary electronic states at a

fixed nuclear geometry are orthogonal, one obtains

½ðFllTnFlÞr þ Vlð~RÞ	xlð~RÞ2 Exlð~RÞ ¼ 2
X
k–l

ðFllTnFkÞrxkð~RÞ ð21Þ

This is a set of coupled partial differential equations with the terms ðFllTnFkÞr on
the right-hand side being the so called nonadiabatic coupling terms, with the subscript r

indicating integration over electronic coordinates. These equations form the basis of

the close-coupling approach to atomic and molecular scattering [7]. When these terms are

neglected we obtain what is called the adiabatic approximation. The nuclear dynamics

is then described by the Schrödinger equation

½ðFllTnFlÞr þ Vlð~RÞ	xlð~RÞ ¼ Exlð~RÞ ð22Þ
The term ðFllTnFlÞr can be expressed in more detail using the fact that

2
"2

2

X
k–p

1

mk

2
1

M0

� �
ðFll72kFlÞr þ "2

2M0

X
k–m
k;m–p

ðFll7k7mFlÞr ð23Þ

is an operator that acts on the nuclear wave function xlð~RÞ, and, for instance,
ðFll72kFlÞrxlð~RÞ ¼ 72kxlð~RÞ þ 2ðFll7kFlÞr·7kxlð~RÞ þ xlð~RÞðFll72kFlÞr ð24Þ

Now, the integral ðFll7kFlÞr over electronic degrees of freedom involves differentiation

with respect to parameters under the integral sign and since the electronic stationary

states are assumed to be normalized and orthogonal, we get for the case of real wave

functions

ðFll7kFlÞr ¼ 1

2
7kðFllFlÞr ¼ 0 ð25Þ

So, we can define the potential energy term

Blð~RÞ ¼ 2
"2

2

X
k

1

mk

2
1

M0

� �
ðFll72kFlÞr þ "2

2M0

X
k–m
k;m–p

ðFll7k7mFlÞr ð26Þ

which is usually small but not necessarily unimportant. The Schrödinger equation for the

nuclear motion then becomes

½Tn þ Vlð~RÞ þ Blð~RÞ	xlð~RÞ ¼ Exlð~RÞ ð27Þ
and when the mass polarization terms in the kinetic energy operator are neglected we can

write

2
"2

2

X
k–p

1

mk

2
1

M0

� �
72k þ Vlð~RÞ þ Blð~RÞ

24 35xlð~RÞ ¼ Exlð~RÞ ð28Þ

Chapter 216



which is the normal result of the so called adiabatic approximation. When also the Blð~RÞ,
is neglected one calls the result the Born–Oppenheimer approximation [8].

Example. We study the case of a diatomic molecule. The kinetic energy operator can

for this case be expressed as

2
"2

2

1

m1

2
1

M0

� �
721 ð29Þ

and when ~R ¼ ~R1 2 ~R2, and the center of mass of the nuclei is the origin, so
~R2 ¼ 2ðm1=m2Þ~R1, which yields ~R ¼ ðm1 þ m2Þ~R1=m2, and the kinetic energy can be

expressed in terms of ~R as

2
"2

2

1

m1

2
1

M0

� �
721 ¼ 2

"2

2

1

m1

þ 1

m2

� �
72 ¼ 2

"2

2m
72 ð30Þ

The above equation then becomes

2
"2

2m
72 þ VlðRÞ þ BlðRÞ

" #
xlð~RÞ ¼ Exlð~RÞ ð31Þ

where

2
"2

2m
72 ¼ 2

"2

2m

›2

›R2
þ 2

R

›

›R

" #
þ

~J2

2mR2
ð32Þ

with ~J2, the total angular momentum operator square of rotational motion and m ¼
m1m2=ðm1 þ m2Þ: Since for a diatomic the potential energy depends only on the bond
distance R, the wave functions can be expressed as

xð~RÞ ¼ y ðRÞYJMðu;wÞ ð33Þ

where YJMðu;wÞ is a spherical harmonic and the Schrödinger equation for vibrational
motion is

2
"2

2m

›2

›R2
þ 2

R

›

›R

{ !
þ "2JðJ þ 1Þ

2mR2
þ VðRÞ þ BðRÞ

" #
y ðRÞ ¼ Ey ðRÞ ð34Þ

showing the so-called centrifugal term. This illustrates that the vibrational and rotational

motions of a molecule are indeed coupled.
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2.3 THE TIME-DEPENDENT VARIATIONAL PRINCIPLE IN

QUANTUM MECHANICS

The time-dependent variational principle in quantum mechanics [9] starts from the

quantum mechanical action [10,11]

A ¼
ðt2

t1

Lðcp;cÞ dt ð35Þ

where the quantum mechanical Lagrangian is

Lðcp;cÞ ¼ cli"
›

›t
2 Hlc

� �
=kclcl ð36Þ

and H is the quantum mechanical Hamiltonian of the system. When the wave function c
is completely general and allowed to vary in the entire Hilbert space then the TDVP

yields the time-dependent Schrödinger equation. However, if the possible wave function

variations are restricted in any way, such as is the case for a wave function represented in

a finite basis and being of a particular functional form, then the corresponding Lagrangian

will generate an approximation to the Schrödinger time evolution.

We consider a wave function expressed in terms of a set of (in general complex)

parameters z (e.g. molecular orbital coefficients, average nuclear positions and momenta,

etc.). These parameters are time-dependent and can be expressed as za ; zaðtÞ and
thought of as arranged in a column or row array. We write

c ¼ cðzÞ ¼ lzl ð37Þ
and employ the principle of least action

dA ¼
ðt2

t1

dLðcp;cÞ dt ¼ 0 ð38Þ

with the Lagrangian

L ¼ i

2
kzl_zl2

i

2
k_zlzl2 kzlHlzl

� �
=kzlzl ð39Þ

where we have put " ¼ 1, and write the symmetric form of the time derivative term. One

way to see how this can come about is to consider

ðt2

t1

ð›=›tÞkzlzl
kzlzl

dt ¼ 0 ð40Þ

which holds if we require

kzðt2Þlzðt2Þl ¼ kzðt1Þlzðt1Þl ð41Þ
as our boundary condition.
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The variation of the Lagrangian can be expressed in more detail as

dL ¼ i

2
½kdzl_zl2 kd_zlzl2 kdzlHlzl	=kzlzl2 i

2
kzl_zl2

i

2
k_zlzl2 kzlHlzl

� �
£ kdzlzl=kzlzl2 þ complex conjugate ð42Þ

We would like to get rid of all the terms that contain the variation d_z: To this end we
add and subtract the total time derivative

d

dt

kdzlzl
kzlzl

¼ kd_zlzlþ kdzl_zl
kzlzl

2
kdzlzl
kzlzl2

d

dt
kzlzl ð43Þ

and its complex conjugate to write

dL ¼ i

2

kdzl_zl
kzlzl

þ i

2

kdzl_zl
kzlzl

2
i

2

kdzlzl
kzlzl2

d

dt
kzlzl2

i

2

d

dt

kdzlzl
kzlzl

2
kdzlHlzl
kzlzl

2
kdzlzl
kzlzl2

i

2
kzl_zl2

i

2
k_zlzl2 kzlHlzl

� �
þ complex conjugate ð44Þ

The time integration involved in dA ¼ 0 eliminates the total derivative terms since due

to the boundary conditions they are zero, i.e.

kdzðt2Þlzðt2Þl2 kdzðt1Þlzðt1Þl ¼ 0 ð45Þ

which follows from Eq. (41) and the fact that ldzl and kdzl are independent variations.
The surviving terms of dL can be expressed as

i
kdzl_zl
kzlzl

2
kdzlHlzl
kzlzl

2
kdzlzl
kzlzl2

½ikzl_zl2 kzlHlzl	 þ complex conjugate ð46Þ

Since dz and dzp can be considered as independent variations one can conclude that

i
›

›t
2 H

� �
lzl ¼ kzli›=›t2 Hlzl

kzlzl
lzl ð47Þ

which is the Schrödinger equation if the right-hand side is zero. By explicitly considering

the overall wave function phase we can eliminate the right-hand side. We write

lzl! e2iglzl ð48Þ
with g only a function of time and obtain

kzli›=›t2 Hlzl! kzleigði›=›t2 HÞe2iglzl ¼ _gkzlzlþ kzli›=›t2 Hlzl ¼ 0 ð49Þ
which means that the time derivative of the overall phase must be

2 _g ¼ kzli›=›t2 Hlzl
kzlzl

ð50Þ
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We introduce the notations Sðz; zpÞ ¼ kzlzl, and Eðz; zpÞ ¼ kzlHlzl=kzlzl, which leads
to the equation

2 _g ¼ i

2

X
a

_za
›

›za
2 _zpa

›

›zpa

� �
ln Sðz; zpÞ2 Eðz; zpÞ ð51Þ

where we have used the chain rule of differentiation. Note that for a stationary state

all _z ¼ 0, and Eðz; zpÞ ¼ E yielding g ¼ Et and the phase factor e2iEt=": The above
expression for dA can be similarly written as

0 ¼ dA ¼
ðt2

t1

dL dt ð52Þ

¼
ðt2

t1

X
a

X
b

i
›2 ln S

›zpa›zb
_zb 2

›E

›zpa

24 35dzpa
8<: ð53Þ

þ
X
a

X
b

2 i
›2 ln S

›za›z
p
b

_zpb 2
›E

›za

24 35dzpa
9=; dt ð54Þ

where say dz ¼ P
a ð›=›zaÞdza, and since dza and dzpa are independent variations we can

write

i
X
b

Cab_zb ¼ ›E

›zpa
ð55Þ

2i
X
b

Cp
ab_z

p
b ¼ ›E

›za
ð56Þ

where Cab ¼ ›2 ln S=›zpa›zb: We introduce the matrix C ¼ {Cab} and assume it to be

invertible to write

_z

_zp

" #
¼ 2iC21 0

0 iCp21

" #
›E=›zp

›E=›z

" #
ð57Þ

which is a matrix equation in block form. One may introduce a generalized Poisson

bracket by considering two general differentiable functions f ðz; zpÞ, and gðz; zpÞ and write

{f ; g} ¼ ½ ›f=›zT ›f=z†	
2iC21 0

0 2iCp21

" #
›g=›zp

›g=›z

" #

¼ 2i
X
a;b

›f

›za
ðC21Þab ›g

›zpb
2

›g

›za
ðC21Þab ›f

›zpb

" #
ð58Þ

It follows that

_z ¼ {z;E}; _zp ¼ {zp;E} ð59Þ
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which shows that the time evolution of the wave function parameters, and thus, of the

wave function, is governed by Hamilton-like equations. Such a set of coupled first-order

differential equations in time plus the equation for the evolution of the overall phase can

be integrated by a great variety of methods. Schematically we write _zðtÞ ¼ FðzðtÞÞ and
proceed by finite steps such that Dzi ¼ FðziÞDt and ziþ1 ¼ zi þ Dzi; zð0Þ ¼ z0:

2.4 COHERENT STATES

The discussion of the TDVP in the previous chapter exploits a family of state vectors

lzl labeled by a set of time-dependent, and complex parameters z ¼ {z1; z2;…; zM}
[12]. Such parameter spaces should be continuous and complete in the sense that as the

state vector evolves in time and the complex parameters assume all possible values

throughout their range, all states of the particular form lzl are obtained. Such demands
on parameter spaces are satisfied by (generalized) coherent states [13] which relates

the parameters to a particular Lie group G: Typically one chooses a unitary irreducible
representation of G and a corresponding lowest (or highest) weight state l0l of such a
representation. A maximal subgroup H of G that leaves l0l invariant is called the

stability group and the cosets of G by H provide a suitable nonredundant set of

parameters to label the coherent state. In general one would also require the existence

of a positive measure dz on this parameter space such that when the integralð
lzllkzldz ¼ I ð60Þ

is taken over the range of the parameter space one obtains the identity.

Already the notion of continuity of the labels rules out as coherent states some familiar

sets of states used in quantum mechanics. For instance, a set of discrete orthogonal states,

such as a set of orthonormal basis functions {lnl} cannot be coherent states.

2.4.1 Gaussian wave packet as a coherent state

A Gaussian wave packet in one dimension can be expressed as ð" ¼ 1Þ

cðxÞ / exp 2
1

2

x2 q

b

� �2
þipx

" #
ð61Þ

where we take the view that the parameters p, and q are time dependent, while the width

parameter b is time-independent. The interpretation of these parameters is evident from

the definition of quantum mechanical averages, i.e.

kxl ¼
ð1

21
x e2ððx2qÞ=bÞ2 dx=

ð1

21
e2ððx2qÞ=bÞ2 dx ¼ kclxcl=kclcl ð62Þ
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Since the average value kx2 ql ¼ 0, it follows that q ¼ kxl, which is the average position
of the wave packet. The average momentum of the wave packet

kp̂l ¼ 2i
›

›x

� �
¼ p2 kx2 ql=b2 ¼ p ð63Þ

defines the parameter p: The square of the width of the wave packet

kðx2 qÞ2l ¼ 2›kclcl=›ð1=b2Þ=kclcl ¼ ffiffi
p

p b3

2
=

ffiffi
p

p
b ð64Þ

making the width Dx ¼ kðx2 qÞ2l1=2 ¼ b=
ffiffi
2

p
:

The Gaussian wave packet has a number of interesting properties. For instance, it has a

minimal uncertainty product DxDp ¼ 1=2 in units of ": This follows from

k p̂2l ¼ 2"2
d2

dx2

* +
¼ p2 þ "2

2b2
ð65Þ

and Dp ¼ kp̂2 2 p2l1=2 ¼ 1=b
ffiffi
2

p
, ð" ¼ 1Þ:

In addition the Gaussian wave packet can be written as a displaced harmonic oscillator

ground state, such that

cðxÞ ¼ exp½ipx	 exp½2iqp̂	 exp 2
1

2

x

b

� �2" #
ð66Þ

i.e. the oscillator ground state is displaced, x! x2 q, and boosted 0! p: This can be
seen from

e2iqp̂exp 2
1

2

x

b

� �2" #
¼ 12 q

›

›x
þ q2

2

›2

›x2
2 · · ·

" #
exp 2

1

2

x

b

� �2" #

¼ exp 2
1

2

x2 q

b

� �2" #
ð67Þ

The Gaussian wave packet is a coherent state and can be expressed as a superposition

of oscillator states. This means that

cðxÞ ¼
X
n

cnlnl ¼ exp½za† 2 zpa	l0l ð68Þ

where lnl is a harmonic oscillator eigenstate a and a† are harmonic oscillator field

operators and z is a suitable complex combination of wave function parameters.

This can be seen from the result

cðxÞ / eipxe2iqp̂e2ð1=2Þðx=bÞ2 / e2iðqp̂2pxÞe2ð1=2Þðx=bÞ2 ð69Þ
where, since x and p̂ do not commute, the last step is nontrivial. Introducing the complex

parameter z ¼ ðq=bþ ibpÞ= ffiffi
2

p
, and observing that the harmonic oscillator field operators

can be expressed as

a† ¼ 2iððbp̂þ ixÞ=bÞ= ffiffi
2

p ð70Þ
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a ¼ iððbp̂2 ixÞ=bÞ= ffiffi
2

p ð71Þ
we can write za† 2 zpa ¼ 2iðqp̂2 pxÞ, and

cðxÞ / eza
†2zpa e2ð1=2Þðx=bÞ2 / eza

†2zpal0l ð72Þ
The last expression is the ‘classical’ or canonical coherent state lzl: The Baker–

Campbell–Hausdorff (BCH) formula, yields

eAþB ¼ exp 2
1

2
½A;B	2

� �
eA eB ð73Þ

which is true for the case when the commutator ½A;B	2 commutes with A and B: When

applied to

lzl ¼ eza
†2zpal0l ð74Þ

the BCH formula yields

lzl ¼ e2ð1=2Þlzl2 eza
†

e2zpal0l ¼ e2ð1=2Þlzl2 eza
†

l0l ¼ e2ð1=2Þlzl2 X1
n¼0

ðn!Þ21ðza†Þnl0l

¼ e2ð1=2Þlzl2 X1
n¼0

ðn!Þ21=2ðzÞnlnl ð75Þ

The Gaussian wave packet in this form is the original ‘coherent state’. Generalizations

of this concept have been made, in particular the work of Perelomov [14] has introduced

so-called group-related coherent states. Such a state is formed by the action of a Lie group

operator exp{
P

m zmFm} acting on a reference state l0l. The {zm} are the, in general
complex, Lie group parameters, and {Fm} are the generators of the corresponding Lie

algebra. The reference state is usually a lowest weight state and called the fiducial state.

It is commonly invariant to some of the group elements, thus defining a so-called stability

group of the fiducial state. The parameters labeling the coherent state are then associated

with the left coset of the Lie group with respect to the stability group. This assures

nonredundancy of parameters. The canonical coherent state has this form in terms of the

so-called Weyl group, whose Lie algebra generators are {1; a; a†}: The one parameter
stability group is just the phase factor eia and the coset representative is eza

†2zpa:
The scalar product of two coherent states

kz1lz2l ¼ exp{2 ðlz1l2 þ lz2l
2Þ=2}

X
n

ðzp1z2Þn
n!

¼ exp 2
1

2
lz1l

2 þ zp1z2 2
1

2
lz2l

2

� �
ð76Þ

i.e. a nowhere vanishing continuous function of the parameters. The canonical coherent

state has the property that

alzl ¼ zlzl ð77Þ
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which can easily be seen from

e2za†aeza
† ¼ aþ z½a; a†	2 þ z2

2
½a; a†	2; a†
h i

2
þ· · · ¼ aþ z ð78Þ

which means that e2za†aeza
†

l0l ¼ zl0l: Furthermore, the coherent state for all the values
of the complex parameter z is a set of states satisfying the resolution of the identity

p21
ð
lzlkzld2z ¼ 1

p

X
n;m

ðn!m!Þ21=2
ð
e2lzl2ðzpÞnðzÞmlmlknld2z

¼ 1

p

X
n;m

ðn!m!Þ21=2
ð1

0
e2lzl2 lzlnþmþ1dlzl

ð2p
0
eiðm2nÞf dflmlknl

¼
X
n

ðn!Þ21
ð1

0
e2lzl2 lzl2n dlzl2lnl knl ¼

X
n

lnlknl ¼ 1 ð79Þ

This result permits us to write

lz0l ¼ p21
ð
lzlkzlz0ld2z ð80Þ

which illustrates the overcompleteness of the set {lzl}: Thus, as a set of functions labeled
by the continuous complex parameter z the coherent state satisfies the resolution of the

identity and is inherently linearly dependent.

Considering the time evolution of a harmonic oscillator with lzl as the initial state,
we obtain

e2iHtlzl ¼ e2itvðnþð1=2ÞÞlzl ¼ e2ð1=2Þlzl2 X1
n¼0

ðn!Þ21=2ðze2itvÞnlnl e2itv=2 / le2itvzl
ð81Þ

This shows that the coherent state evolves into other coherent states by a time-dependent

label change that follows the classical oscillator solution.

Application of the TDVP to the wave packet dynamics with the coherent state lzl is
straightforward. We note that

Sðzp; z0Þ ¼ kzlz0l ¼ exp 2
1

2
lzl2 þ zpz0 2

1

2
lz0l2

� �
ð82Þ

Eðzp; zÞ ¼ kzlHlzl=kzlzl ¼ vkzl a†aþ 1

2

� �
lzl=kzlzl ¼ v zpzþ 1

2

� �
ð83Þ

and that the dynamical equations become

i 0

0 2i

" #
_z

_zp

" #
¼

vz

vzp

" #
ð84Þ

Chapter 224



since C ¼ ›2 ln S=›zp›z0lz0¼z ¼ 1: The equation i_z ¼ vz becomes in more detail

iffiffi
2

p ð_q=bþ ib_pÞ ¼ v
1ffiffi
2

p ðq=bþ ibpÞ ð85Þ

assuming a constant width wave packet. One easily deduces that

€p ¼ 2v2p ð86Þ
€q ¼ 2v2q ð87Þ

i.e. in an oscillator field with b ¼ 1=
ffiffiffiffiffi
mv

p
the Gaussian wave packet is coherent and

that its average position has a harmonic motion qðtÞ ¼ q0 cos vt þ ðp0=mvÞsin vt, while
pðtÞ ¼ p0 cos vt2 mv sin vt:

2.4.1.1 Gaussian wave packet with evolving width

Amore general coherent state description of a Gaussian wave packet is required when we

allow the width parameter to evolve in time. The corresponding Lie group is then

Spð2;RÞ, which is isomorphic to SUð1; 1Þ or SOð2; 1Þ: The generators of the Spð2;RÞ Lie
algebra are

t1 ¼ i

2

21 0

0 1

" #
; t2 ¼ i

2

0 1

1 0

" #
; t3 ¼ i

2

0 1

21 0

" #
ð88Þ

satisfying the relations

½t1; t2	 ¼ 2it3; ½t2; t3	 ¼ it1; ½t3; t1	 ¼ it2 ð89Þ
where the different signs on the right indicate that we are dealing with a noncompact

group.

Realization of the generators in terms of a Cartesian coordinate x and its conjugate

momentum p, such that ½x; p	 ¼ i", are

t1 ! T1 ¼ 2ðxpþ pxÞ=4"; t2 ! T2 ¼ ðp2=2m2 mv2x2=2Þ=2"v;
t3 ! T3 ¼ ðp2=2mþ mv2x2=2Þ=2"v

ð90Þ

Another useful realization obtains in terms of the oscillator field operator

a ¼ ip=
ffiffiffiffiffiffi
mv"

p þ
ffiffiffiffiffiffi
mv

"

r
x

� �
=

ffiffi
2

p ð91Þ

and its adjoint. We write

Tþ ¼ 2T2 þ iT1 ¼ 1

2
a†a†; T2 ¼ 2T2 2 iT1 ¼ 1

2
aa;

T0 ¼ T3 ¼ 1

4
ða†aþ aa†Þ

ð92Þ
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A common parameterization of the Spð2;RÞ group is in terms of Euler angles, such
that a group element would be

gða;b;gÞ ¼ eiat3 eibt1 eigt3 ð93Þ
One can readily show that

eibt1 ¼ eb=2 0

0 eb=2

24 35 ð94Þ

and

eigt3 ¼
cos g=2 2sin g=2

sin g=2 cos g=2

" #
ð95Þ

The operator exp½ibT1	 is a scale transformation as can be seen from the relation

eibT1 f ðxÞ ¼ exp 2
b

2
x
›

›x
2

b

4

� �
f ðxÞ ¼ e2b=4f ðe2b=2xÞ ð96Þ

This result is readily shown by considering the transformation of powers of the coordi-

nate. For instance, by using the power series representation

f ðxÞ ¼
X1
n¼0

f ðnÞð0Þ
n!

xn ð97Þ

and the defining expansion of an exponential operator

exp 2
b

2
x
›

›x
þ 1

2

� �� �
¼

X1
k¼0

bk

k!
2
b

2
x
›

›x
þ 1

2

� �� �k
ð98Þ

noting that

2
1

2
x
›

›x
þ 1

2

� �� �k
xn ¼ ð21Þk 2nþ 1

4

� �k
xn ð99Þ

and X1
k¼0

2b

4

� �k 1
k!

" #
£

X1
l¼0

2b

2

� �l 1
l!
x

" #n

¼
X1
k¼0

2b

4

� �k 1
k!

" #
£

X1
l¼0

2nb

2

� �l 1
l!

" #
xn

¼ xn
X1
j¼0

2b

4

� �j 1
j!

Xj
k¼0

j

k

0@ 1Að2nÞ j2k

¼
X1
j¼0

2ð2nþ 1Þb
4

� �j xn
j!

ð100Þ

the scaling property is shown.
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As discussed above, defining a coherent state involves choosing a Lie group G, a

unitary irreducible representation, the lowest (or highest) weight state of such a

representation, a stability subgroup, and corresponding cosets. This will yield a useful

parameter space in which to describe the coherent state. In analogy with the compact Lie

group SOð3Þ, the irreducible representations of Spð2;RÞ are labeled by the eigenvalues of
T3 corresponding to the lowest weight state. The harmonic oscillator ground state

l0l/ exp 2
1

2

x

b

� �2" #
ð101Þ

with b2 ¼ "=mv is the lowest weight state of an irreducible representation labeled by

k ¼ 1=8, where

T3l0l ¼ 2kl0l ð102Þ
We then identify the stability group H as the set

H ¼ hlTðhÞl0l ¼ eish l0l ð103Þ
Each element of the coset space G=H then corresponds to a coherent state. The

decomposition of the group into cosets, taking advantage of the stability group properties,

reduces the parameter space of the coherent state to a nonredundant set. In our case the

stability group is SOð2Þ and we can write

eivT3 l0l ¼ eivð1=4Þða
†aþaa†Þl0leiv2kl0l ¼ eiv=4l0l ð104Þ

A new choice of parameters is r, s, v, i.e.

gða;b; gÞ! gðr; s;vÞ ¼
ffiffi
r

p
0

0 1=
ffiffi
r

p
" #

1 0

s 1

" #
cos v=2 2sin v=2

sin v=2 cos v=2

" #
ð105Þ

where the new parameters are identified as

r ¼ cosh bþ sinh b cos a; s ¼ sinhb sin a ð106Þ

v ¼ aþ g2 arctan
sina sinh b=2

cosh b=2þ cosa sinh b=2

� �
ð107Þ

An element of G can now be expressed as

gðr; s;vÞ ¼ eit1 ln r eisðt32t2Þeivt3 ð108Þ
and going to the unitary irreducible representation carried by even functions the coherent

state becomes

lr; sl ¼ Tðr; s; 0Þl0l ¼ eiT1 ln r eisðT32T2Þ e2ð1=2Þðx=bÞ2 ¼ exp ðis2 1Þ x2

r2b2

" #
ð109Þ
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where Eq. (90) is used and b ¼ 1=
ffiffiffiffi
mv

p
: The parameters are related to average values of

the generators, such that

kr; slT3 2 T2lr; sl ¼ 1

b
ffiffiffiffi
pr

p
ð1

21
x2

2b2
expð2x2=rb2Þ dx ¼ b3r

ffiffiffiffi
pr

p
2b22b

ffiffiffiffi
pr

p ¼ r

4
ð110Þ

and

kr; slT3lr; sl ¼ i

2
x
›

›x
þ i

4

� �� �

¼ 1

b
ffiffiffiffi
pr

p
ð1

21
i
x2

2b2r
ðis2 1Þ þ i

4

" #
expð2x2=rb2Þ dx ¼ 2

s

4
ð111Þ

where s is real and r is real and positive (see [15]).

A convenient reparameterization of the wave packet in terms of u and w can be

accomplished as

b2r ¼ 2w2; s ¼ 2uw ð112Þ

so that the Gaussian wave packet becomes

cðxÞ / exp 2
12 2iuw

4w2

� �
ðx2 qÞ2 þ ipx

� �
¼ lp; q; u;wl ð113Þ

The Hamiltonian

H ¼ 2
"2

2m

›2

›x2
þ VðxÞ ð114Þ

yields the wave packet average energy

Eðp; q; u;wÞ ¼ p2

2m
þ u2

2m
þ Uðq;wÞ ð115Þ

with " ¼ 1 and

Uðq;wÞ ¼ 1

8mw2
þ ð2pÞ21=2

ð1

21
e2ð1=2Þy2Vðwyþ qÞ dy ð116Þ

We can now apply the TDVP equations to study the propagation of this wave packet.

The elements of the dynamical metric are

hrs ¼ i
›2

›r0›s
2

›2

›r›s0

" #
ln S ð117Þ

Chapter 228



with

S ¼ k p0; q0; u0;w0lp; q; u;wl ¼
ð1

21
exp½2ax2 þ bxþ c	dx

¼ ec eb
2=4a

ð1

21
exp½2ð ffiffi

a
p

x2 b=2
ffiffi
a

p Þ2	dx ¼ ec eb
2=4a

ffiffiffiffiffi
p=a

q
ð118Þ

and where

a ¼ 1þ 2iu0w0

4w02 þ 12 2iuw

4w2

� �

b ¼ 2
1þ 2iu0w0

4w02 q0 þ 12 2iuw

4w2
q2 ip0 þ ip

� �

c ¼ 2
1þ 2iu0w0

4w02 q02 þ 12 2iuw

4w2
q2

� �
ð119Þ

Differentiation of

ln S ¼ cþ b2=4b2
1

2
ln aþ 1

2
ln p ð120Þ

yields the elements of the upper triangle

hpq ¼ 1; hpu ¼ 0; hpw ¼ 0; hqu ¼ 0; hqw ¼ 0; huw ¼ 1 ð121Þ
in the antisymmetric metric matrix {hrs}: The TDVP equations then become

0 1 0 0

21 0 0 0

0 0 0 1

0 0 21 0

26666664

37777775
_p

_q

_u

_w

26666664

37777775 ¼

›E=›p

›E=›q

›E=›u

›E=›w

26666664

37777775 ð122Þ

or in more detail

_q ¼ p

m
; _p ¼ 2

›U

›q
; _w ¼ u

m
; _u ¼ 2

›U

›w
ð123Þ

which look very much like the classical Hamilton’s equations.

2.4.2 The determinantal coherent state for N electrons

For an N-electron system we choose a set of N spin orbitals uz ¼ {u1; u2; · · ·; uN} and
form a determinantal wave function

det u1ðx1Þu2ðx2Þ· · ·uNðxNÞf g ð124Þ

Dynamical, time-dependent view of molecular theory 29

References pp. 39–40



or in second quantization the state vector

l0l ¼
YN
i¼1

a†i lvacl ð125Þ

with lvacl the true vacuum state. We call this the reference state. The basis (of rank K)

and the associated field operators are divided into two sets, those that refer to the

reference state denoted by az and the rest denoted by ao, i.e.

ðaz; aoÞ ð126Þ
and of course a similar partition of the creators, so that the reference state is

l0l ¼
YN
k¼1

az†k lvacl ð127Þ

The creation operators and the basis transform in the same manner, so when we apply a

general unitary transformation to the basis, the creation operators suffer the same

transformation. We can write in matrix form

ðbz†; bo†Þ ¼ ðaz†; ao†Þ Uz U0

U00 Uo

{ !
ð128Þ

and conclude that the reference state becomes

YN
i¼1

bz†i lvacl ¼
YN
i¼1

XN
l¼1

az†l U
z
li þ

XK
j¼Nþ1

ao†j U
00
ji

24 35lvacl
¼

YN
i¼1

XN
l¼1

(
az†l þ

XK
j¼Nþ1

XN
k¼1

ao†j U
00
jk Uz21
 �

kl

)
U z
li

24 35lvacl
¼ a

YN
i¼1

az†i þ
XK

j¼Nþ1

XN
k¼1

ao†j U
00
jk Uz21
 �

ki

24 35lvacl
¼ a

YN
i¼1

1þ
XK

j¼Nþ1

XN
k¼1

ao†j U
00
jk Uz21
 �

ki
azi

24 35az†i lvacl
¼ a

YN
i¼1

1þ
XK

j¼Nþ1

XN
k¼1

ao†j U
00
jk Uz21
 �

ki
azi

24 35YN
l¼1

az†l lvacl ð129Þ

If we introduce the complex parameters

zji ¼
XN
k¼1

U 00
jk Uz21
 �

ki
ð130Þ

Chapter 230



and write the unnormalized state vector

YN
i¼1

bz†i lvacl ¼ lzl ð131Þ

with the parameters being time dependent. In terms of the orthonormal spin orbital basis

we write

lzl ¼
YN
i¼1

1þ
XK

j¼Nþ1
zjia

o†
j a

z
i

24 35l0l
¼

YN
i¼1

YK
j¼Nþ1

1þ zjia
o†
j a

z
i

h i
l0l

¼
YN
i¼1

YK
j¼Nþ1

exp zjia
o†
j a

z
i

h i
l0l

¼ exp
XN
i¼1

XK
j¼Nþ1

zjia
o†
j a

z
i

24 35l0l ð132Þ

In going from the second to the third line in the above equation we have used the fact that

the electron field operators are nilpotent and this also is the reason that the exponentiation

in the fourth line works. The end result is true because all the operators ao†j a
z
i commute.

From these equations it follows straightforwardly that the wave function representative

of this state is

det xiðxjÞ
h i

ð133Þ

with the ‘dynamical spin orbitals’

xi ¼ ui þ
XK

j¼Nþ1
ujzji ð134Þ

and where the parameters zji are complex and are considered to be functions of the

time parameter t: As they change during a process involving the electronic system the

determinantal state vector can in principle become any determinantal wave function

possible to express in the spin orbital basis. The spin orbitals xi are not orthonormal even
if the basis {uk} is and in actual application one will often use a raw basis of atomic spin

orbitals (often built from Gaussian type orbitals), which are not orthonormal. In such a

case the exponential form of the determinantal state is not applicable and one has to deal

with the full complications of the nonunit metric of the basis (see [16]). This is indeed

possible and has been coded into the ENDyne program system that uses narrow wave

packet nuclei and single determinantal electron states in an explicitly time-dependent,

nonadiabatic treatment of molecular processes.
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A determinantal wave function expressed in this form is a coherent state. The asso-

ciated Lie group is the unitary group UðKÞ and the reference state Eq. (127) is the lowest
weight state of the irreducible representation ½1N0K2N	 of U(K). The stability group is
UðNÞ £ UðK 2 NÞ: The norm in an orthonormal basis of spin orbitals is

kzlzl ¼ det½1þ z†z	 ð135Þ
which means that we can define an appropriate measure dz in the parameter space such

that the resolution of the identity ð
lzl kzldz ¼ 1 ð136Þ

holds. The derivation of the form of the measure dz is nontrivial [17].

2.5 MINIMAL ELECTRON NUCLEAR DYNAMICS (END)

The time-dependent variational principle introduced above with the quantum mechanical

action

A ¼
ðt2

t1

L dt ð137Þ

and the quantum mechanical Lagrangian ð" ¼ 1Þ

L ¼ kcl
i

2

›

›t
2

~›

›t

� �
2 Hlcl=kclcl ð138Þ

proceeds by making the action stationary, which leads to the Euler–Lagrange equations

d

dt

›L

›_q
¼ ›L

›q
ð139Þ

once the dynamical variables q have been chosen. The END theory starts with this

principle of least action, chooses a particular family of wave functions c and a basis set
for its description and derives a set of Euler–Lagrange equations as the dynamical

equations that for that choice of wave function form and basis represent the time-

dependent Schrödinger equation and can be integrated in time to yield the time-evolving

state vector or the system under consideration.

A simple choice of wave function family for a molecular system that makes sense is a

product state vector

lcl ¼ lz;R;PllR;Pl ¼ lzllfl ð140Þ
with lz;R;Pl ¼ lzl an electronic state vector, and lfl ¼ lR;Pl a nuclear state vector. It
should be noted that this product form is not an adiabatic type wave function since the

electronic part is parametrically dependent on the (time-dependent) average nuclear

positions R (and average momenta P), not their actual position (and momentum)

coordinates. This corresponds rather to a Born–Huang type product and is more like
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adiabatic wave function and could in principle be resolved into a number of adiabatic

states.

This lowest of END approximations aims at a description in terms of classical nuclei,

so a starting nuclear wave function is

lfl ¼
Y
j;k

exp 2
1

2

Xjk 2 Rjk

b

� �2
þiPjkðXjk 2 RjkÞ

" #
ð141Þ

i.e. of product form, where the parameters Rjk and Pjk are the Cartesian components of

the average nuclear positions and momenta, respectively. The simplest electronic wave

function that makes any sense is a complex spin unrestricted Thouless determinant [16,18]

lz;R;Pl ; lzl ¼ det{xhðxpÞ} ð142Þ
with

xh ¼ uh þ
X
p

upzph; 1 # h # N ð143Þ

where {ui}
K
1 is a set of atomic spin orbitals (GTO’s) centered on the average nuclear

positions

~Rk ¼ ðR1k R2k R3k Þ ð144Þ
In particular for high collision energies it is advantageous to include in this atomic basis so-

called electronic translation factors exp{i~k·~r}, with ~k ¼ m~Pk=Mk for nucleus k to produce

traveling atomic orbitals. The Lagrangian can now be written as

L ¼ i

2

h
kfl

›

›t
lfl=kflfl2 kfl

~›

›t
lfl=kflflþ kzl

›

›t
lzl=kzlzl

2 kzl
~›

›t
lzl=kzlzl

i
2 kcHlcl=kclcl ð145Þ

We then use the fact that the parameters z, R, and P are considered to be time-dependent

and employ the chain rule of differentiation to write

L ¼ i

2

X
i;l

kfl2
›

›Xil
lfl=kflflþ kfl2

›

›Xil
lfl=kflflþ › ln S

›Ril
2

› ln S

›R0
il

" #
_Ril

(

þ › ln S

›Pil
2

› ln S

›P
0
il

" #
_Pil

)
þ i

2

X
p;h

› ln S

›zph
_zph 2

› ln S

›zpph
_zpph

{ !
2 kclHlcl=kclcl

ð146Þ
where we have used the form of the nuclear wave function, which is such that the

differentiation with respect to Ril is the negative of the differentiation with respect to

the nuclear coordinate Xil: We have also introduced the overlap between two electronic

wave functions S ¼ kzlzl ¼ Sðzp;R0;P0; z;R;PÞ:
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The narrow wave packet limit ðb! 0; "! 0; "=b2 ! 1Þ leads to the Lagrangian

L ¼
X
j;l

Pjl þ i

2

› ln S

›Rjl
2

› ln S

›R0
jl

" #{ !
_Rjl þ i

2

› ln S

›Pjl
2

› ln S

›P0
jl

" #
_Pjl

( )

þ i

2

X
p;h

› ln S

›zph
_zph 2

› ln S

›zpph
_zpph

{ !
2 E ð147Þ

where

E ¼
X
j;l

P2jl

2Ml

2
kzlHellzl
kzlzl

ð148Þ

and contains the nuclear–nuclear repulsion terms, and where in the derivatives R0, P0 are
put equal to R and P, respectively, after differentiation. When the total Hamiltonian is

written

H ¼ Tn þ Te þ Vne þ Vee þ Vnn ð149Þ

with the nuclear kinetic energy terms Tn, the electron kinetic energy terms Te, the

nuclear–electron interaction terms Vne, the electron–electron interaction terms Vee, and

the nuclear–nuclear interaction terms Vnn one can discern the electronic Hamiltonian

Hel ¼ Te þ Vne þ Vee þ Vnn ð150Þ

Using this Lagrangian for quantum electrons and classical nuclei and choosing as the

dynamical variable q ¼ Rik we get

›L

› _Rik
¼ Pik þ i

2

› ln S

›Rik
2

› ln S

›R0
ik

" #
ð151Þ

and

d

dt

›L

› _Rik
¼ _Pik þ i
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0
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2
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2
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jl

" #
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þ i
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X
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2
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2
›2 ln S
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jl

" #
_Pjl
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2

X
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p
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" #
ð152Þ
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This expression should equal
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and cancellation of terms leads to the following result

_Pik þ 2
X
j;l

I
›2 ln S

›R0
ik›Rjl

( )
_Rjl þ I

›2 ln S

›R0
ik›Pjl

_Pjl

( )" #

2 i
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›2 ln S

›Rik›zph
_zph 2

›2 ln S

›Rik›z
p
ph

_zpph

" #
¼ 2

›E

›Rik ð154Þ
or by collecting the three Cartesian components for each nucleus (such as Rk ¼ R1k,

R2k;R3kÞ and the z parameters in a rectangular matrix z ¼ {zph} we can write the more

compact form1

2 _Pk þ
X
l

CRkRl
_Rl þ CRkPl

_Pl

h i
þ iC†

Rk
_z2 iCT

Rk
_zp ¼ ~7Rk

E ð155Þ

where

ðCRRÞik;jl ¼ ðCRkRl
Þij ¼ 22I

›2 ln S

›R0
ik›Rjl

l
R
0 ¼R;P0¼P ð156Þ

and

ðCRÞph;ik ¼ ðCRk
Þph;i ¼ ðCRik

Þph ¼ ›2 ln S

›zpph›Rik
lR0¼R;P0¼P ð157Þ

Similarly, for q ¼ Pk we obtain

_Rk þ
X
l

CPkRl
_Rl þ CPkPl

_Pl

h i
þ iC†

Pk
_z2 iCT

Pk
_zp ¼ ~7Pk

E ð158Þ

and for q ¼ zpp the equation is

iC_zþ iCR
_Rþ iCP

_P ¼ ›E

›zp
ð159Þ

1 One should note that ðC†
RÞph;ik ¼ ðCp

RÞik;ph ¼ ›2 ln S=›R0
ik›zph and that ðCT

RÞph;ik ¼ ðCRÞik;ph ¼ ›2 ln S= ›R00
ik›z

p
ph:
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The complex conjugate of this equation obtains when we choose q ¼ zp: All these
equations of motion can be put together in matrix form

iC 0 iCR iCP

0 2iCp 2iCp
R 2iCp

P

iC†
R 2iCT

R CRR 2Iþ CRP

iC†
P 2iCT

P Iþ CPR CPP

26666664

37777775
_z

_zp

_R

_P

26666664

37777775 ¼

›E=›zp

›E=›z

›E=›R

›E=›P

26666664

37777775 ð160Þ

The integration of this set of coupled first-order differential equation can be done in a

number of ways. Care must be taken since there are basically rather two different time

scales involved, i.e. that of the nuclear dynamics and that of the normally considerably

faster electron dynamics. It should be observed that this END takes place in a Cartesian

laboratory reference frame, which means that the overall translation as well as overall

rotation of the molecular system is included. This offers no complications since the

equations of motion satisfy basic conservation laws and, thus, total momentum and

angular momentum are conserved. At any time in the evolution of the molecular system

can the overall translation be isolated and eliminated if so should be deemed necessary.

This level of theory [16,19] is implemented in the program system ENDyne [20], and

has been applied to atomic and molecular reactive collisions. Calculations of cross

sections, differential as well as integral, yield results in excellent agreement with the best

experiments.

END theory at this level of approximation can be characterized as full nonlinear

time-dependent Hartree–Fock with moving classical nuclei. It is a direct, nonadiabatic

approach to molecular processes. One might surmise that such a method will do well

at hyperthermal collision energies where many potential surfaces and associated non-

adiabatic coupling terms will come into play. In particular, ion–atom and ion–molecule

reactions should be well described, since the direct as well as the charge transfer

processes can be treated on an equal footing. This is indeed true, and comparisons of

calculated and measured direct absolute cross sections for a number of systems at keV

energies, such as Hþ, H, and He on He and Ne (see [21–23]) have been published.
Also, charge exchange, energy loss, and differential absolute cross sections for Hþ and

H on H and H2 in excellent agreement with the best experiments have been obtained

with minimal END [24,25]. The same is true for Hþ on atomic nitrogen, oxygen, and

fluorine [26], and N2 [27].

Differential cross sections and state–state processes are more sensitive to the level of

treatment than are integral cross sections, for which minimal END can be shown to give

results in good agreement with experiment also for lower energies, in some cases down to

a fraction of an eV. Results for H2
þ on H2 [28], and H

þ on C2H2 [29], and on C2H6 [30].
Cross sections and possible mechanisms have also been studied for the reactions

[31–33]

D2 þ NHþ
3 ! NH3D

þ þ D ð161Þ
D2 þ NHþ

3 ! NH2D
þ þ Dþ H ð162Þ

with discovery of a two-step process for D! H exchange.
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That the simple minimal END wave function for the reacting system can get such good

results is puzzling to some and deserves a comment. Obviously, a single determinantal

electronic wave function, even if it is complex and has nonorthogonal spin orbitals, in a

‘static’ time-independent calculation, can only yield results of SCF quality. However,

in a time-dependent ‘dynamic’ calculation with the wave function adjusting at each time

step to the moving nuclei such a simple representation of the electrons provides a

surprisingly flexible description of the electron dynamics.

The classical description of the nuclei means that a product molecular species

vibrates and rotates as a classical object. Using the notion that coherent states bridges the

classical and quantum descriptions, one can view this classical motion as an evolving

state, which can be resolved into rovibrational states. In the case of low excitation

energies, when to a good approximation each vibrational mode and the rotations can

be considered to be decoupled, each normal vibrational mode can be represented by

the evolving state in Eq. (75). The energy of such a state is "vðlzl2 þ 1=2Þ, yielding the
vibrational excitation energy for such a mode to be lzl2 ¼ Evib="v, where the vibrational
energy Evib is obtained from a so-called generalized Prony analysis [25,34–36] of the

END trajectories. In this manner vibrationally resolved cross sections can be calculated

a posteriori. A similar treatment can be given the rotational motion via another choice

of coherent states [37].

The END theory is a general approach [38] to approximate the time-dependent

Schrödinger equation and is not limited to treatments of molecular reaction dynamics.

Other problems that have been studied include intramolecular electron transfer [16], the

effect of intense laser light on the vibrational dynamics of small molecules [39], and

solitonic charge transport in polyenes [40].

2.6 RENDERING OF DYNAMICS

When the forces between reactants are derived from a precalculated PES it is possible to

produce informative pictures with reactant valleys and product valleys perhaps connected

by saddles indicating transition states. Time-laps photography or movies of dynamical

events may show probabilities in terms of nuclear wave functions evolving on one

surface and then transfer to another surface if nonadiabatic coupling terms are present.

In the case of direct nonadiabatic dynamics the rendering of dynamical events needs

some rethinking. When the nuclei are treated as classical particles or by narrow wave

packets movies of dynamically changing ball and stick models can be quite effective and

informative. It is possible to use the rendering of such trajectories for finding errors in the

dynamics and to illustrate mechanisms.

When the participating electronic degrees of freedom are treated dynamically, rather

than being integrated out to provide the average forces, then one can augment the

rendering with an evolving electronic charge density of the reacting system. Sometimes

a simple picture, such as is provided by a spherical electron cloud around each atom,

the size of which changes in time with the electron population, is useful and provides

the crucial information about the studied process. This manner of depicting the reacting

system is shown in Fig. 2.1.
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Fig. 2.1. Six snap shots of Hþ þ C2H6 ! CH4 þ CHþ
3 with the dynamical electrons represented by a sphere

around each nucleus with the size proportional to the electronic population on each atom. The Hþ approaches

from above in the first frame, and polarizes the C–C bond in the second frame. The third through sixth frames

show the products departing rovibrationally excited.
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protons with acetylene molecules at 30 ev, J. Chem. Phys., 117 (2002) 1103.

30 R. Cabrera-Trujillo, J.R. Sabin, Y. Öhrn and E. Deumens, Energy loss studies of protons colliding with

ethane: Preliminary results, J. Electron Spectrosc., 129 (2003) 303–308.
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CHAPTER 3

Computation of non-covalent

binding affinities

J. Andrew McCammon

Department of Chemistry and Biochemistry and Department of Pharmacology, NSF Center for
Theoretical Biological Physics, Howard Hughes Medical Institute, University of California

at San Diego, La Jolla, CA 92093-0365, USA

Abstract

The ability to accurately predict and analyze molecular recognition is being achieved by

advances in several areas of theoretical chemistry and related fields such as applied

mathematics and computational science. This chapter provides an overview of the

history, current state and future prospects for computational studies of molecular

recognition.

3.1 INTRODUCTION

Non-covalent binding is central to many processes in the chemical sciences. To name

only a few, examples include the formation of host–guest complexes in physical organic

chemistry, the self-assembly of supramolecular structures in nanotechnology, and the

binding of drugs to their receptors in medicinal chemistry. The examples just listed, and

many others, involve binding in solution. Thus, an understanding of the strength of

binding requires consideration of desolvation (or solvent reorganization) in addition to

the direct interactions between the binding partners. The present account describes the

evolution of the computational methods for treating such problems, and a perspective on

the current state of this area of computational chemistry. In what follows, I will focus on

examples related to drug discovery, but it is clear that the methods have much more

general applicability.

In virtually all chemistry courses from the elementary level upward, it is shown that the

equilibrium constant for the binding of molecules A and B to form the complex AB

depends exponentially on the standard free energy change associated with complexation.

It has long been recognized that if one could compute the standard free energy

q 2005 Elsevier B.V. All rights reserved.
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of complexation of solute molecules, it would be possible both to gain a deeper

understanding of the origins of molecular recognition, and to contemplate the ‘first

principles’ design of pharmaceuticals and other compounds. Such calculations were

attempted, for example, by the Scheraga group as early as 1972 [1], although limitations

in computer power did not allow inclusion of solvation or entropic effects in this work.

In 1986, Wong and McCammon [2] combined the statistical mechanical theory of free

energy with atomistic simulations of solvent and solutes to calculate, for the first time, the

relative standard free energy of binding of different small inhibitor molecules to an

enzyme. The necessary statistical mechanical theory had been available for many years.

But several other factors and advances in computational and theoretical chemistry during

the 14 years between the two calculations were required to enable the 1986 work to

succeed. One important advance was the introduction of molecular dynamics simulations

into biochemistry in 1977 [3]. In such simulations, as is now well known, Newton’s

equations of motion are used with a detailed model of the forces within a molecular

system to generate trajectories of the atomic fluctuations. Another factor that made the

1986 work possible was the growth of computer power, by roughly a factor of 600 over

the 14-year period according to Moore’s law. Although the 1977 molecular dynamics

simulation was limited to a very small protein with no explicit solvent, the 1986 work

utilized a molecular dynamics simulation of the large enzyme trypsin in a bath of

explicitly represented water molecules. But, as with many advances in computational

chemistry, the key factor leading to the 1986 breakthrough was a new theoretical element,

in this case the concept of using thermodynamic cycles to relate the desired relative free

energy to that of two non-physical processes: computational ‘alchemical’ transform-

ations of one inhibitor into another one, in solution and in the binding site [4].

Subsequent work has shown that free energy calculations that involve systems as large

as proteins or other macromolecules can provide usefully accurate results in favorable

cases. But, in general, there are difficulties in achieving precise and accurate results with

reasonable amounts of computer time, even using current state-of-the-art machines.

These difficulties arise primarily from the incomplete sampling of the rough, many-

dimensional potential energy surfaces of such systems. Below, I mention several lines of

work that hold promise for making free energy calculations faster and more accurate for

biomolecular systems.

3.2 CURRENT METHODS

For calculations of relative free energies of binding, the theoretical framework outlined

by Tembe and McCammon [4] has often been used essentially without change. This

framework recognizes that brute force calculations of standard free energies of binding

will encounter convergence problems related to the dramatic changes in solvation of the

binding partners, conformational changes that require physical times longer that those

that can be explored by simulation, etc. Tembe and McCammon [4] introduced the use of

thermodynamic cycle analyses that allow the desired relative free energies to be

computed in terms of ‘alchemical’ transformations, as described above. The advantage is
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that only relatively localized changes occur in the simulated system, at least in favorable

cases.

Calculation of the standard free energy of binding itself can be viewed as a special case

of the above, in which one of the pair of ligands contains no atoms [5]. Some care is

required to be sure that such calculations yield answers that actually correspond to the

desired standard state [6,7]. Unfortunately, many calculations of free energies of binding

have not made appropriate contact with a standard state, so that results in the literature

must be interpreted with caution.

It has been mentioned that perhaps the greatest limitation to the precision of free

energy calculations to date has been the often-inadequate sampling of a representative set

of configurations of the system. Increases in computer power of course increase the

‘radius of convergence’ of such calculations. Such increases come not only from the

Moore’s Law improvements in hardware, but also from algorithmic advances for

parallelization and for increasing time steps in molecular dynamics [8]. New methods on

the physical/theoretical side have also been developed to speed convergence. One such

method is the use of soft-core solute models, so that one simulation can generate an

adequate reference ensemble for a family of alchemical changes [9,10]. Hamelberg et al.

[11] have recently introduced an ‘accelerated molecular dynamics’ method that

substantially improves sampling, while preserving the ability to recover thermodynamic

data. The ‘lambda dynamics’ method of Kong and Brooks [12] increases the efficiency of

free energy calculations by treating the coupling parameter as a dynamic variable.

More rapid convergence of free energy calculations can also be obtained by replacing

part of the system with a simpler model, such as a continuum model for the solvent. This

has the advantage of obviating the need for sampling the configurations of this part of the

system, and it also reduces the computation time so that longer simulations are possible

for the rest of the system. In view of the important role that specific hydrogen bonds may

play, the combination of fully atomistic simulations with subsequent continuum analyses

is probably a more reliable procedure than using a continuum solvent model exclusively.

The Kollman group demonstrated impressive success with this approach to calculations

of free energies of binding [13]. Below, I will outline how this approach can be further

developed, starting with a rigorous basis in statistical mechanics, to calculate standard

free energies of binding.

Calculations of relative free energies of binding often involve the alteration of bond

lengths in the course of an alchemical simulation. When the bond lengths are subject to

constraints, a correction is needed for variation of the Jacobian factor in the expression

for the free energy. Although a number of expressions for the correction formula have

been described in the literature, the correct expressions are those presented by Boresch

and Karplus [14].

3.3 FUTURE PROSPECTS

It was noted above that a continuum treatment of the solvent can be helpful, although

representing certain solvent molecules explicitly may be necessary. The expressions for
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handling the free energy contributions in such hybrid models have been derived by

Gilson et al. [6].

Two remaining problems relating to the continuum treatment of solvation include the

slowness of Poisson–Boltzmann calculations, when these are used to treat electrostatic

effects, and the difficulty of keeping buried, explicit solvent in equilibrium with the

external solvent when, e.g. there are changes in nearby solute groups in an alchemical

simulation. Faster methods for solving the Poisson–Boltzmann equation by means of

adaptive mesh techniques [15] and other techniques [16] are becoming available,

however. For buried solvent molecules, open ensemble methods should be helpful,

although extension of the existing methods to allow for solute flexibility is needed [17].

It is not uncommon for protons to be taken up or released upon formation of a

biomolecular complex. There is a need for methods that automatically probe for the

correct protonation state in free energy calculations. This problem is complicated by the

fact that proteins adapt to and stabilize whatever protonation state is assigned to them

during the course of a molecular dynamics simulation [18]. Recently, a method has been

described that allows for titration state adjustments for a protein that is undergoing

molecular dynamics simulation in a continuum solvent model [19]. It should be possible

to extend this approach to include ligand-binding processes. When the change in

protonation state during ligand binding is known, equations are available to account for

the addition or removal of protons from the solvent in the overall calculation of the free

energy change [6].

Finally, it is sometimes true that the binding of a ligand to a protein is associated with

large changes in conformation of one or both molecules. Our group has recently been

developing a ‘relaxed complex’ approach to the particularly challenging case in which

the protein undergoes conformational changes [20,21]. The basic idea is simple. One

selects a large number of ‘snapshot’ conformations from a molecular dynamics

simulation of the unliganded protein. Methods such as accelerated molecular dynamics

can be used to generate snapshots of a more diverse set of protein conformations [11].

One or a set of ligand molecules can then be docked to these snapshots, using any

convenient rapid docking algorithm. The most tightly bound complexes can then be

rescored using higher accuracy methods, ideally based on rigorous statistical mechanical

foundations [22].

3.4 CONCLUDING PERSPECTIVE: MOLECULAR DYNAMICS

SIMULATIONS AND DRUG DISCOVERY

It is worth noting that molecular dynamics simulations have already contributed greatly

to drug discovery and thereby to the improvement of human health. The most dramatic

contributions have been in the introduction of the HIV protease inhibitors that have

extended the lives of thousands of patients with HIV infections. AIDS was first

recognized as an infectious disease caused by HIV viruses in the early 1980s. Data from

the US Centers for Disease control show a disheartening increase in the US death toll

from HIV infections that had reached 50,000 per year by 1995. The addition of the HIV

protease inhibitors to the treatment regimen starting in late 1995 led to an abrupt drop in
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this death rate, to fewer than 20,000 per year by 1998. The first HIV protease inhibitors

were, in part, products of structure-based discovery [23,24]. Molecular dynamics plays a

role in any structure-based discovery program even in the earliest stages, as a tool for

refining crystallographic or NMR-derived structural data. Beyond this, molecular

dynamics has been used to generate samples of conformations of hypothetical lead

compounds in the binding sites of rigid models of target receptors. Molecular dynamics

has also been used to explore induced-fit effects, the conformational changes that a

receptor may exhibit upon the binding of a ligand. All of these approaches, and even free

energy calculations with molecular dynamics, contributed to the successful introduction

of HIV protease inhibitors as life-saving drugs [23,24].

Although challenges remain, and provide fruitful grounds for basic research, it is clear

that the types of methods described here will play an increasing role in drug discovery

research. Indeed, several drugs in addition to the HIV protease inhibitors have also been

shaped in part by such methods, including drugs for cancer and influenza. As the methods

for sampling conformations of protein molecules improve, we can hope that the

simulations will reach the state that they have for the more moderately sized host–guest

systems. In this realm, there are cases in which experimental results have been redone and

corrected in response to free energy calculations [25,26].
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CHAPTER 4

Electrodynamics in computational

chemistry

Linlin Zhao, Shengli Zou, Encai Hao and George C. Schatz

Department of Chemistry, Northwestern University, Evanston, IL 60208-3113, USA

Abstract

This chapter is concerned with the interaction of light with particles that are sufficiently

large in size that classical electrodynamics can be used to describe the optical properties

of the particle. Most of the review is concerned with metal nanoparticles (silver and

gold), where the linear optical properties (extinction, absorption, scattering) are strongly

dependent on particle size, shape, and local dielectric environment. To describe such

problems, there has been much recent progress in the use of computational electro-

dynamics methods including the discrete dipole approximation, the finite difference

time domain method, and other methods, and we review recent applications of these

methods that have been used to interpret the experiments. The review also describes

the development of electronic structure methods for describing the Raman spectra of

molecules adsorbed on the surface of the metal particles, including methods that

explicitly include the electric fields from classical electrodynamics calculations in the

calculation of Raman intensities.

4.1 INTRODUCTION

An important topic in computational chemistry is the interaction of molecules with

electromagnetic fields. This interaction leads to a number of familiar processes, including

light absorption, emission, fluorescence, and scattering, all of which refer to the linear

interaction of a molecule with the field, and there are many important non-linear

interactions as well. In essentially all computational chemistry studies of these processes,

the electromagnetic field is assumed to be periodic in time, and constant in space,

meaning that the molecule is assumed to be so small compared to the wavelength of light

that spatial variation of the field can be ignored. While this is an appropriate assumption

q 2005 Elsevier B.V. All rights reserved.
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for isolated small molecules, the spatial variation of the field becomes crucial in studies

of nanoscale materials, and under this circumstance, classical electrodynamics plays an

important role.

Although classical electrodynamics is not a subject that one normally associates with

computational chemistry, the subject has been of long-term interest to the chemistry of

nanoscale materials, even predating the discovery of quantum mechanics, and especially

in the last 10 years it has emerged as a major tool for describing both the linear and non-

linear optical properties of materials. Another important change in the last 10 years is that

electrodynamics has made the transition from a primarily analytical theory to a primarily

computational theory (using computational algorithms that are in many cases familiar to

chemists in other contexts). This has proven to be extremely useful, as advances in

lithography and supra-molecular assembly have increasingly provided materials with

dimensions up to 1000 nm where issues of nanoscale size and shape play an important

role in determining optical response.

This review is concerned with the advances in our understanding of chemical problems

that have occurred as a result of developments in computational electrodynamics, with an

emphasis on problems involving the optical properties of nanoscale metal particles. In

addition, in part of the review we describe theoretical methods that mix classical

electrodynamics with molecular quantum mechanics, and which thereby enable one to

describe the optical properties of molecules that interact with nanoparticles. Our focus

will be on linear optical properties, and on the interaction of electromagnetic fields with

materials that are large enough in size that the size of the wavelength matters. We will not

consider intense laser fields, or the interaction of fields with atoms or small molecules.

Electrodynamics was one of the great triumphs of 19th century science, and especially

of J.C. Maxwell [1]. Although the importance of Maxwell’s theory in describing

materials at the nanoscale was not immediately evident from his work, Maxwell’s theory

eventually saw significant applications, most notably as a result of Mie theory [2],

developed in 1908, in which the scattering of light by a spherical particle was solved

analytically. Mie theory applies to particles of any size, but its application to nanoscale

metal particles led to the resolution of a long-standing problem (going back to Faraday

[3]) as to the origin of the size dependence of the absorption spectra of metal particles.

Many metal particles, especially silver and gold, show a strong absorption band in the

visible portion of the spectrum that arises from collective excitation of the conduction

electrons. Fig. 4.1 shows figuratively how the electron cloud can oscillate relative to the

positions of the nuclei, leading to a characteristic oscillation frequency that is associated

Fig. 4.1. Schematic of plasmon oscillation for a sphere, showing the displacement of the conduction electron

charge cloud relative to the nuclei.
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with what is called plasmon excitation. For a spherical particle, the plasmon frequency

depends on the density of conduction electrons, and therefore on the chemical identity of

the elements. In addition, it depends on other aspects of the electronic structure of the

metal, such as the location of the filled d-orbitals relative to the Fermi energy, as d-orbital

excitation provides a mechanism for localized excitation rather than the delocalized

excitation that arises from conduction band excitation. The plasmon frequency also

depends on the size and shape of the particle as we show below. For the noble metals,

copper, silver, and gold, the plasmon wavelength is typically in the visible region of the

electromagnetic spectrum. Given this, as well as the favorable chemistry of silver and

gold which allows for the easy preparation of nanoparticles both in air and in solution,

there have been very extensive studies of plasmon resonance spectra of particles made

from these elements, as reviewed by Kreibig [4,5].

In the past few years, silver and gold particles have been developed for use in chemical

and biological sensing applications [6–9] in which the intense absorption associated with

the plasmon resonances has been found to be superior to fluorescence for some

applications, so the practical significance of plasmon resonance excitation is now well

established. This work has been accompanied by substantial theory work [10–39] in

which the optical properties have been studied by computational electrodynamics

methods for problems which range from isolated metal nanoparticles and nanoholes to

arrays and aggregates of nanoparticles. In addition, although much of the interest in

optical properties has centered on extinction and scattering, there is also interest in the

surface enhanced Raman spectroscopy (SERS) of molecules adsorbed on the surfaces of

the particles [38], and in non-linear optical properties of metal particles such as hyper-

Rayleigh scattering [26].

This article is divided into two sections. In the first section, we overview the recent

computational electrodynamics studies that have been performed on metallic (silver or

gold) particles with an emphasis on problems of more interest to chemistry, such as the

detection of molecules through adsorption-induced shifts of the plasmon resonance

wavelength. In the second section, we turn our attention to a subject of more direct

interest to theoretical chemistry, namely the calculation of SERS intensities using

electronic structure methods. The challenge to the electronic structure community here is

how to treat the interaction of an electronically localized system like a molecule with an

electronically delocalized structure like a metal particle that is tens of nanometer in

dimension. There have been attempts at dealing with this problem that we will describe,

but this is a field that is still in a relatively primitive state, so our review will also consider

new developments in the field that are likely to be important in the future.

4.2 ELECTRODYNAMICS OF METAL NANOPARTICLES

4.2.1 Methods

In this section we review the many recent studies that have been performed using

computational electrodynamics methods with gold and silver nanoparticles, often with

molecular adsorbates that one wishes to detect. Until about 10 years ago, almost all studies
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of this type were done using Mie theory, which is specifically for spherical particles, and

we will use Mie theory for the first applications that we present. While this is useful for

qualitative insight, and is often adequate for treating colloidal particles where there is

always a distribution of particle shapes and sizes, the modern generation of research in this

area has largely shifted to particles that are synthesized using methods that yield more

uniform particle shapes (often as plates, rods, or triangles) and size distributions as this

produces plasmon resonance spectra that are reproducible and controllable. To model

these spectra, a number of computational electrodynamics methods have been developed,

including the discrete dipole approximation (DDA), [40–42] the finite difference time

domain (FDTD) method, [43,44] and the multiple multipole method (MMP) [45–47].

These methods provide the capability of describing light scattering from particles or

assemblies of particles in which the total size of the system is less than 200 nm in each

dimension. Thus the bulk of the results that we discuss will be based on computational

electrodynamics calculations, particularly the DDA method.

4.2.2 Dielectric constants

One limitation of both Mie theory and the computational electrodynamics methods is that

the results are only as good as the dielectric constants that are used. Ideally, one would be

able to calculate such information directly from electronic structure calculations, but in

reality this is not practical for metals like silver and gold so the information is derived

from experimental data that is obtained for bulk metal (or more typically for films). Here

we use experimental dielectric constants from Hunter and Lynch (HL) [48] (with some

smoothing [12] as the HL compilation combines data from different sources that do not

overlap perfectly). Other compilations of dielectric constant information are also

available, but the HL compilation is relatively recent, and it provides a careful analysis of

data from many sources that attempt to reduce problems from void formation in the film

structure.

Fig. 4.2. Extinction spectra of spherical silver particles with radii 20–100 nm.
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This use of bulk dielectric constants for nanoparticle calculations is appropriate for

particles that are large enough (larger than the conduction electron mean free path), such

as particles having radii $20 nm considered in Fig. 4.2. For smaller particles, one needs

to correct the dielectric constant for the effect of scattering of the conduction electrons

from the particle surfaces. Procedures for doing this have been studied in several places,

as recently reviewed by Coronado and Schatz [37].

4.2.3 Spherical particles

To begin our presentation, we consider silver spheres using Mie theory. Fig. 4.2 shows

the spectra that we obtain from standard Mie expressions [49] for particle radii that range

from 20 to 100 nm. For small particles (20 nm), one sees a single extinction maximum at

about 360 nm that corresponds to the localized surface plasmon resonance (LSPR) in

which all of the electrons in the particle are oscillating in-phase with the applied radiation

(dipolar excitation). The figure shows that this resonance red-shifts and broadens as the

wavelength is increased. This occurs because of the finite size of the particle relative to

the wavelength of light, with the increased width arising because of radiative damping

(i.e. the particle emits light at a rate that is fast enough to limit the ability of the particle to

be excited) and the increased wavelength due to dynamic depolarization (i.e. the incident

field oscillates as function of position such that it is not possible to excite all the electrons

in-phase).

We also see in Fig. 4.2 that new peaks appear as the particle radius increases. These

correspond to higher multipole resonances associated with the sphere. For example, the

first new peak that appears after the dipole resonance red-shifts sufficiently corresponds

to quadrupole excitation. Such a higher resonance is not important for particles close to

the size of molecules, but becomes increasingly important as the particle size increases.

4.2.4 Effects of particle shape

Particle shape plays an important role in determining the plasmon resonance wavelength

of a silver nanoparticle. Fig. 4.3 shows typical results for silver spheroids (a three-

dimensional object that is obtained by rotating an ellipse about its long axis (prolate

spheroid) or a short axis (oblate spheroid) as a function of the ratio of major to minor axis.

Spheroids are one of the few particle shapes for which one can solve Maxwell’s equations

exactly, so in this case we used a solution due to Voshchinnikov and Farafonov (VF) [50]

to generate these results. The spheroids in this case are oblate in shape, and they show that

the dipole plasmon resonance peak shifts to the red (from 500 to over 1000 nm) as the

object goes from spherical to more and more oblate. This is a typical result for an

anisotropic nanoparticle. In addition, a strong quadrupole plasmon peak occurs at 370 nm,

which is most intense for a sphere shape, and is strongly suppressed in oblate particles.

Fig. 4.4 shows extinction spectra from many different shaped silver particles (spheres,

cylinder, cube, prism, pyramid), all for an effective radius (radius of a sphere of equal

volume) of 50 nm. This shows very clearly that the plasmon maximum is strongly shape
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dependent, with the sphere shape giving the bluest wavelength of all the particles, and

particles with sharp points giving the reddest plasmons (pyramids and prisms). In this

picture there are weak secondary peaks on the blue side of the dipole resonance peak,

some of which may be due to quadrupole and other higher multipole states.

4.2.5 Effects of solvent and of surrounding layers

Fig. 4.5 shows the effect of a solvent on the plasmon lineshape. Here we see the expected

red shifting of all resonance structures as the refractive index is increased from 1.0 to 2.0.

Fig. 4.3. Extinction spectra of oblate spheroids for minor:major axis ratios ranging from 1:1 (a sphere) to 1:10.

Each spheroid has the same volume, taken to be that for a sphere whose radius is 80 nm.

Fig. 4.4. Extinction spectra of silver nanoparticles having the following shapes: sphere, cylinder, cube,

triangular prism, and tetrahedron (pyramid). Each particle has the same volume, taken to be that of a sphere

whose radius is 50 nm.
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In addition, we see that the quadrupole peak becomes more and more noticeable as index

is increased. This is due to the fact that the dielectric response of silver leads to strong

damping for wavelengths below 400 nm where the quadrupole resonance is located for

the particle in vacuum, but not for higher refractive indices when the plasmon resonance

is shifted to wavelengths longer than 400 nm.

Fig. 4.6a considers a spherical core–shell particle in which the core is taken to be

vacuum and the shell is silver. The particle radius is 50 nm, so when the shell thickness is

50 nm we recover the solid particle result. As the shell becomes thinner, the plasmon

resonance red-shifts considerably, very much like we see for highly oblate spheroids. Fig.

4.6a assumes that the dielectric constant of silver is independent of shell thickness, so the

resonance width does not change much when the shell becomes thin. However, the

correct dielectric response needs to include for finite size effects (as noted above) when

the shell thickness is smaller than the conduction electron mean free path. Fig. 4.6b shows

what happens to the spectrum in Fig. 4.6a when the finite size effect is incorporated, and

we see that it has a significant effect for shells below 10 nm thickness, leading to much

broader plasmon lineshapes.

Recently, a new class of chemical and biological sensors has been developed based on

the shift of the plasmon resonance wavelength that arises when the analyte of interest

binds to the surface of the nanoparticle [9,38]. The effect is very much like that

considered in Fig. 4.5, except that the particles considered are anisotropic (truncated

tetrahedron shape), the particles are on a surface (glass or mica, typically) and the analyte

layer thickness can be varied. Fig. 4.7 shows an example of the type of information

studied, here showing the plasmon wavelength shift associated with binding many layers

of molecules on the surface of the particle as a function of the layer thickness. The curves

labeled B and D show results obtained in experimental studies for particles with

dimensions 100 nm (in-plane) and 30 or 50 nm (out of plane), while curves A and C show

calculated results for the same two structures. The molecules on the particle surface were

Fig. 4.5. Effect of the surrounding medium (n is the index of refraction of the medium) on the extinction

spectrum of a 50 nm spherical silver nanoparticle.
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carboxy-terminated alkane thioate self-assembled monolayers, with successive layers

‘glued’ together using Cu2þ ions. The index of refraction of the layers was found by

fitting to be about 1.65 (i.e. larger than the expected bulk phase result of about 1.50),

which is understandable given that the layer is ordered.

The results in Fig. 4.7 show that the plasmon wavelength increases rapidly with layer

thickness for small thickness, but then it saturates for large thickness. This behavior is

very much like the dependence of the externally induced electric field on distance from

the surface. Theory and experiment in Fig. 4.7 are in good agreement, and the theory

indicates that the field is largely asymptotic for layer thicknesses larger than 30 nm. This

indicates that a 30–50 nm particle has a field whose range is comparable to the size of the

particle. This distance is much smaller than the range associated with surface plasmon

resonances for flat surfaces (where 200 nm distances are common).

Fig. 4.6. (a) Extinction spectra of a 50 nm core–shell particle, with vacuum core and silver shell thickness

varying from 1.5 to 40 nm. (b) Same as in (a) except the dielectric constant is corrected for size-dependent

(surface scattering) effects.
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4.2.6 Local electric fields and SERS

One reason for the behavior in Fig. 4.7 can be inferred from Figs. 4.8 and 4.9, in which we

examine the electric fields near the particle surfaces. Fig. 4.8 shows contours of the field

for the truncated tetrahedron particle, for light polarized along the z-axis in the figure. We

see that the bottom tips of the particle are hot compared to the top and sides, with lEl2

being 12,000 at the tips, and only 6 on the cool sidewalls. Since the plasmon wavelength

Fig. 4.7. Shift of the plasmon resonance wavelength for particles coated with molecules whose refractive index

is 1.65 from that for a bare silver nanoparticle taken to have a truncated tetrahedral shape. (A) Calculation for a

particle with dimensions: bisector, a ¼ 100 nm, height b ¼ 30 nm. (B) Experiment results for a ¼ 100 nm,

b ¼ 30 nm. (C) Calculation for a ¼ 100 nm, b ¼ 50 nm. (D) Experiment for a ¼ 100 nm, b ¼ 50 nm.

Fig. 4.8. Plots of the logarithm of the square of the electric field around the surface of a truncated tetrahedral

silver nanoparticle having a ¼ 100 nm, b ¼ 50 nm. The field is averaged over distances from the surface

between 0 and 2.0 nm from the surface.
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shift is approximately proportional to field (as demonstrated explicitly in Fig. 4.9), we see

that the wavelength shift is primarily determined by the hot spots for those molecules

which are at the particle surfaces. However, Fig. 4.9 shows that the intensity of the hot

spot diminishes rapidly with distance from the particle surface, while intensity for the

cool regions has much longer range dependence. The results in Fig. 4.7 are the average

over hot and cool regions, so they average over the long-range and short-range effects.

Electromagnetic hot spots play an important role in many spectroscopic observations.

Fig. 4.8 shows how much the local field varies for truncated tetrahedron particles, but an

important question is how the field changes when other particle shapes are considered.

Fig. 4.10 shows local field contours for several other particle shapes including a sphere,

cylinder, cube, prism, and untruncated tetrahedron. This shows the peak field can vary a

lot, with the smallest lEl2 occurring for a sphere (less than 102), and the largest for
particles with sharp tips (104 for the tetrahedron). These lEl2 values provide an important
estimate of the intensity enhancement expected in single molecule SERS enhancements,

as the electromagnetic contribution to this intensity is approximately equal to the peak

value of the product lEðvÞl2lEðv0Þl2 where v is the incident frequency and v0 is the
Stokes frequency. (This is to be contrasted with the enhancement factor for conventional

SERS, which depends on the average of lEðvÞl2lEðv0Þl2 over all the molecules on the
surface.) Since the plasmon peaks are usually somewhat broader than the shift between v
and v0; the intensity enhancement is approximately lEl4: Thus if lEl2 is approximately
104, the Raman intensity enhancement is close to 108. This may seem to be a large

number, but in fact estimates of this enhancement based on single molecule SERS

measurements are much larger (1012–1015) [9,38,51–55].

One issue in the comparison of theory and experiment for single molecule SERS is

that the experiments have mostly been done for aggregates of particles. It is well known

that fields can be enhanced at the junction between two closely spaced particles, so a key

question is whether the additional field associated with small clusters of particles is

Fig. 4.9. Integrated electric field as a function of adsorbate layer thickness. The points labeled A, B, and C refer

to specific locations on the surface of the particle as indicated in Fig. 4.8, while D is the average over the particle

surface.
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Fig. 4.10. Electric field ðlEl2Þ around silver nanoparticles with the following shape: (a) sphere; (b) cylinder;
(c) cube; (d) prism; (e) tetrahedron. All particles have the same effective radius of 50 nm as considered in

Fig. 4.4. The wavelengths and peak lEl2 values are: (a) 407.5 nm and 54; (b) 421.5 nm and 96; (c) 466 nm and

745; (d) 489.4 nm and 1330; (e) 599.0 nm and 9770.
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sufficient to explain the observed enhancements. Fig. 4.11 shows examples of electro-

dynamics results for dimers of particles, including spheres and triangular prisms. This

shows that the peak lEl2 for a dimer of spheres is about 104 for a particle spacing of 2 nm,
so indeed it is possible to obtain greatly enhanced fields for dimers. Even larger

enhancements are possible if the spheres are spaced closer than 2 nm [29]; however, the

plasmon wavelength where this occurs is often shifted too far to the red (.1000 nm) to

be useful for SERS measurements. There are also concerns about the applicability of

classical electrodynamics with local dielectric constants to such problems [43].

However, another approach to generating large fields is to consider dimers of anisotropic

particles such as triangular prisms. These are included in Fig. 4.11 for two orientations

of the prisms, both for the 2 nm separation. Here we see that the field between two prisms

Fig. 4.11. Contours of lEl2 for dimers of silver particles, including two spheres (radius 19 nm, separation 2 nm)
and two triangular prisms placed head-to-head and head-to-tail (edge length 60 nm, width 12 nm, snip 2 nm and

separation 2 nm).
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is larger than that between two spheres, although not dramatically so. Based on these and

other results, we find that lEl4 enhancements up to 1010 can be obtained for dimers of
particles, which provide a rationalization of the origin of most of the enhancement factor

observed in single molecule SERS. This indicates that there must be some important

non-electromagnetic contributions to SERS, i.e. the ‘chemical enhancement’, and in

Section 4.3, we present some recent results regarding this mechanism.

4.3 ELECTRONIC STRUCTURE STUDIES OF SURFACE

ENHANCED RAMAN SPECTRA

4.3.1 Surface models and electronic structure methods

To study the ‘chemical’ contribution to SERS, it is necessary to use electronic structure

methods to model the interaction of molecules with metal particles. However, as we

describe below, this is a complicated procedure, and as a result, there have not been

many studies of this sort, and the available studies are not very sophisticated. Indeed,

the description of SERS intensities associated with molecules adsorbed onto nanoparticle

surfaces is one of the most difficult challenges in modern quantum chemistry. The

problem here is that one needs to treat the electronic properties of both the (microscopic)

adsorbed molecule and the (macroscopic) metal surface consistently in both ground and

excited states in order to properly model the SERS experiment. Two simplifying models

can be imagined [56]: (1) a single molecule (or a regular array of molecules) on a flat

perfect crystal surface and (2) a single molecule on a small metal cluster. The first model

is in principle amenable to treatment by band structure methods, and the closest work to

this have been jellium/RPA studies of induced dipoles (usually point dipoles) near semi-

infinite flat surfaces [57–59]. These studies were very useful in sorting out contributions

to SERS and other processes that can arise on flat surfaces, but they do not treat the

molecular electronic properties consistently, and they miss the influence of roughness of

the surface that is known to play a very important role in the SERS intensity.

The second model, that of a molecule on a cluster, is more easily related to experiment,

especially to SERS observations for colloidal systems and for metal island films, as the

molecular electronic structure properties can be consistently included in the calculation.

The basic idea here is that the molecule–cluster complex is more or less analogous to a

metal–ligand or perhaps cluster–ligand coordination complex, and as a result, its Raman

intensity might be increased in much the same way as that of ligand complexes [60].

Since the Fermi energy of most metals lies in a region intermediate between the energy

of the HOMO and the LUMO of many molecules, the creation of this complex might lead

to resonances in the visible region of the spectrum, even for colorless adsorbates, due to

possible metal-to-molecule or molecule-to-metal transitions. These states can contribute

resonantly to the Raman intensity of the molecule–cluster complex, thus increasing its

magnitude further. The biggest problem for this second model is that it is impossible to

choose the cluster used in calculations large enough to directly match what is studied in

the experiments. Even the smallest metal particles for which SERS has been observed
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so far contain thousands of atoms, and it is likely that smaller clusters are less SERS

active due to broadening of the plasmon resonance due to surface scattering.

Different approaches to using this model on small clusters in a way that provides

potentially meaningful conclusions about large clusters have been proposed by Arenas

[61,62], Corni [63–65], Nakatsuji [66,67], and Schatz [68–70]. Arenas’s approach

assumes that interaction with the surface leads to transfer of an electron to the molecule to

produce an excited state that is the same as the ground state of the negative ion of the

molecule. In this case the SERS spectrum is described as a resonance Raman effect that

couples the neutral molecule ground state to the anionic state. The relative intensities of the

different vibrational modes are then determined by Franck–Condon factors from ab initio

calculations. Corni proposed a two-step procedure, which is to treat the metal cluster as a

continuous body characterized by an electrodynamic response that is described using the

DDA method, and then to treat the molecule at the ab initio level with an effective

Hamiltonian that includes the molecule–metal interaction in the quasi-static approxi-

mation (long wavelength limit). In both Nakatsuji and Schatz’s approaches, ab initio,

mostly time-dependent Hartree–Fock (TDHF), methods have been used to calculate

Raman intensities for small molecules interacting with simple metal clusters in which all

atoms in the molecule and metal are described with Gaussian-orbital basis functions. In

these calculations, the excited molecular orbitals are given width factors (or damping

constants) that are characteristic of macroscopic metal clusters, thus forcing the clusters to

have polarization properties that are like the macroscopic cluster. Also, in the TDHF

version of the theory, the SERS intensities are evaluated at frequencies that correspond to

resonant excitations of themetal clusters (the small cluster analog of plasmon resonances).

These models are thus able to describe the influence of charge transfer states on the Raman

spectra without making any ad hoc assumptions about charge transfer, and they also

include dynamic coupling of the induced polarization in the molecule with that in the

metal. Since the molecule and metal cluster are described with standard quantum

chemistry methods, it is possible to determine the complete Raman spectrum (vibrational

frequencies and relative intensities), including the effects of molecule–metal interactions.

The primary flaw with this model is that it does not include the metal electrodynamic

response other than is contained in the small cluster electrodynamics, and as a result the

enhancement factor cannot be quantitatively determined.

4.3.2 Applications

Recently, we have proposed a methodology [71] similar to the last approach, but using

semiempirical molecular orbital methods instead of TDHF methods, to calculate the

frequency-dependent polarizability properties of the molecule–surface complex.

Although this is a lower level description of the electronic structure, the use of

semiempirical methods allows us to describe more complex molecules than has been

considered in earlier studies. In the following, we present some recent results for the

pyridine–copper tetramer system, and we examine the influence of molecule–metal

distance on the Raman intensities for this model. There are two components

to the calculation of the Raman intensity: (1) calculation of the ground state structure

and normal coordinates and (2) calculation of the derivative of the frequency-dependent
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polarizability with respect to these normal coordinates. For all the results to be presented,

we have used DFT calculations with the B3LYP exchange-correlation functional, 6-311G

basis set for the pyridine molecule, and the SBKJC basis set and effective core potential

for the copper tetramer, based on GAMESS [72], to calculate the normal coordinates. The

molecular polarizabilities were calculated using two different methods: zero frequency

DFT calculations based on GAMESS, and a sum-over-states (SOS) [68,73,74] evaluation

of the frequency-dependent polarizabilities that uses excited state energies and dipole

matrix elements from CIS (singles CI) calculations using the INDO/S semiempirical

method in the program CNDO [75]. The GAMESS DFT calculation directly determines

the zero frequency polarizabilities and Raman intensities, but we had to use finite

differencing to determine zero and non-zero frequency polarizability derivatives and

Raman spectra in the INDO/S-SOS calculations. For the GAMESS calculations we have

determined the minimum energy structure of pyridine, the Cu tetramer, and the pyridine/

Cu complex, along with the vibrational frequencies, normal coordinates and Raman

intensities. INDO/S does not provide meaningful minimum energy structures, so the

GAMESS geometry and Hessian have been used in all of the semiempirical calculations.

To estimate the SERS intensity, we assume that the surface orients theC2v axis of pyridine

perpendicular to it. According to surface selection rules [76,77], since the field near the

surface is dominated by its normal component, only the components of polarizability

derivatives perpendicular to the surface contribute to spectra. Denoting this perpendicular

direction as z; the intensities are proportional to the zz components of polarizability

derivatives.

Fig. 4.12 presents the static SER spectra of pyridine, a Cu4 cluster, and the Cu4–

pyridine complex. The structure of the Cu4–pyridine complex is also presented, while

Fig. 4.13 gives the experimental and the calculated frequency-dependent SER spectra of

pyridine only. Note that we have used a Y-shaped Cu4 cluster structure, rather than the

global minimum rhombus shape, as this leads to better behaved DFT calculations. As we

can see from Fig. 4.12, the static INDO/S and DFT spectra are in reasonable agreement

for all except the mode at 1253 cm21 for pyridine, and 1253 and 1500 cm21 for the Cu4–

pyridine complex. The intensities of these modes are suppressed in the INDO/S results

relative to DFT, but as shown in Fig. 4.13, the frequency-dependent INDO/S-SOS results

match experiment reasonably well, with the four major SERS-active vibrational modes at

around 630, 993, 1050, and 1600 cm21 having about the right relative intensities.

Moreover, both the DFT and INDO/S results in Fig. 4.12 suggest that for the Cu4–

pyridine complex orientation considered here, the spectrum of Cu4–pyridine complex is

approximately a combination of the spectrum of pyridine and that of Cu4.

Table 4.1 summarizes the variation of the enhancement factor of the Cu4–pyridine

complex relative to an isolated pyridine molecule as a function of closest N–Cu distance.

The applied frequency for both the Cu4–pyridine complex and the pyridine molecule

here is 2.81 eV (same as in Fig. 4.13), which corresponds to the resonant peak associated

with the lowest energy state of the Cu4 cluster. This frequency is higher than would be

appropriate for experimental studies of SERS on Cu nanoparticles, but this is one of the

problems associated with using a small cluster instead of a nanoparticle. The results show

that for a fixed closest N–Cu distance, the enhancement factor is different for

different vibrational modes, and for the same vibrational mode, the enhancement factor
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Fig. 4.12. Static SERS spectra of pyridine (a), Cu4 (b), and Cu4–pyridine complex (d). GAMESS results vs

INDO/S. Geometry obtained from GAMESS DFT/B3LYP calculation, with 6-311G basis set for pyridine and

SBKJC for Cu4. Orientation of Cu4–pyridine complex is shown in (c), with the closest N–Cu distance being

3.87 Å.
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Fig. 4.13. (a) Frequency-dependent SER spectrum of pyridine, INDO/S-SOS, with applied field being 2.81 eV.

(b) Experimental SER spectrum of pyridine absorbed on a rough silver electrode in water at 20.25 V vs a

saturated Ag/AgCl/KCl reference electrode.
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first increases then decreases as the closest N–Cu distance increases. The largest

enhancement is found when the closest N–Cu distance is in the range 4.84–5.81 Å, with

a value of almost 200. The N–Cu distance here is large enough that chemical interactions

between the molecule and cluster are not large. The large enhancement for these

geometries is therefore determined by electrostatic and electrodynamic interactions. This

is a similar conclusion to that of earlier work with cluster models [70], in which it was

demonstrated that local field enhancement (the analog of the enhancement effect

described by the electrodynamics calculations) is the dominant effect. This is a short-

ranged effect both here and in Ref. [70] because the metal cluster is extremely small. It is

also possible that a mechanism termed ‘Raman reflection’ in which the oscillating charge

distribution in the molecule produces oscillating polarization in the cluster also plays a

role (as noted earlier [70]), but this has not been verified in the present studies. The drop

in intensity at shorter distances is likely due to detuning of the cluster resonance from the

chosen frequency due to chemical interactions between the molecule and cluster. This is

an effect that would not occur if the cluster were replaced by a nanoparticle (as the

conduction band is always on resonance in the latter case); however, what we learn from

the present calculations is that no other enhancement mechanism plays an important role

when the molecule and metal cluster have strong chemical interactions.

The results in Figs. 4.12 and 4.13, and in Table 4.1 show that the current level of

description of SERS using electronic structure methods is quite primitive. Thus there

are significant opportunities for improved work in this area, especially through the

introduction of TD-DFT methods. However, a problem that must be dealt with in

future work is the direct (frequency-dependent) coupling of the molecule to a realistic

size metal nanoparticle that is described using electrodynamics. Such QM/ED (quantum

mechanics/electrodynamics) calculations represent a major challenge for future advances

in electronic structure theory.
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The applied field for both Cu4–pyridine complex and pyridine molecule here is 2.81 eV.
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Abstract

We present an overview of variational transition state theory from the perspective of the

dynamical formulation of the theory. This formulation provides a firm classical

mechanical foundation for a quantitative theory of reaction rate constants, and it provides

a sturdy framework for the consistent inclusion of corrections for quantum mechanical

effects and the effects of condensed phases. A central construct of the theory is the

dividing surface separating reaction and product regions of phase space. We focus on the

robust nature of the method offered by the flexibility of the dividing surface, which allows

the accurate treatment of a variety of systems from activated and barrierless reactions in

the gas phase, reactions in rigid environments, and reactions in liquids and enzymes.

5.1 INTRODUCTION

Transition state theory (TST) is a theoretical framework for calculating and interpreting

rate constants of chemical reactions. TST was formulated nearly 70 years ago [1–3] with

the goal of providing a computational tool for predicting rate constants from a knowledge

of the potential energy surface (PES) controlling the reaction. However, this goal was not

attained until much later because theoretical chemists were unable to calculate the PES

with sufficient accuracy. Thus, for many years, TST was used primarily for correlating

and interpreting rate constants, including kinetic isotope effects, and that aspect of its use

continues and will be discussed briefly. The major focus of this article, however, is on the

more recent use of TST as a computational tool for predicting rate constants. It is a

testament to the utility of TST that its development has continued over an unusually long

period of time. For historical perspectives on TST, we refer the reader to previous reviews

and perspectives [4–6]. In this work, we review variational transition state theory

q 2005 Elsevier B.V. All rights reserved.
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(VTST) with multidimensional tunneling (MT) contributions and its implementation for

calculating rate constants for chemical reactions in gaseous and condensed phases.

5.2 GAS PHASE REACTIONS

TST provides a means to evaluate the equilibrium rate constant, that is the rate constant

for an equilibrium ensemble of reactants described by a Boltzmann distribution of states

[7]. The method also assumes that the reaction is electronically adiabatic so that the

reaction dynamics of the system can be described by motion of the atoms on a single PES

[8]. TST is most easily described in its classical mechanical form, because when classical

mechanics is valid, TST can be derived by making a single approximation, the so-called

fundamental dynamical assumption [3]. We first review classical TST and the

justification for the variational form [9] of the theory before discussing approximate

methods for including quantum mechanical effects into the theory.

Our starting point for describing the computational approach to rate constant

calculations is to define the Hamiltonian H for a reaction of N atoms with masses mi;
i ¼ 1;…;N; and Cartesian coordinates Riz; i ¼ 1;…;N; z ¼ x; y; z; and conjugate

momentum Piz; i ¼ 1;…;N; z ¼ x; y; z; which can be reduced to the compact form

Hðq; pÞ ¼ p2

2m
þ VðqÞ ð1Þ

by introducing the mass-scaled coordinates

qiz ¼
ffiffiffiffiffi
mi

m

r
Riz ð2Þ

and momenta

piz ¼
ffiffiffiffiffi
m

mi

r
Piz ð3Þ

where m is a reduced mass that is chosen for convenience, and VðqÞ is the PES as a

function of the mass-scaled coordinates.

5.2.1 Classical mechanical theory

Exact classical equilibrium rate constants for electronically adiabatic reactions are

obtained by evaluating the flux of reactive trajectories through a dividing surface

separating the reactant andproduct regions of phase space (q,p). The dividing surface plays

an important role in TST and its variational formulation, and it is worthwhile being explicit

about how it is defined and used. For a system ofN atoms, the total phase space, excluding

overall translation and rotation, has 6ðN 2 2Þ degrees of freedom. The dividing surface is
then a 6N 2 13 degree of freedom hypersurface that is defined by the constraint Zðq; pÞ ¼
0:We consider only those dividing surface that separate reactants from products, where by
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convention Zðq; pÞ is a function that is negative for reactant-side regions and positive for
product-side regions of phase space. The flux of trajectories through the dividing surface at

phase point (q,p) on the dividing surface is given by

dZ

dt

����
Z¼0

¼ ›Z

›q

dq

dt
2

›Z

›p

dp

dt

� �����
Z¼0

¼ p

m

›Z

›q
2

›V

›q

›Z

›p

� �����
Z¼0

ð4Þ

The reactant rate constant is then obtained by the proper averaging of this flux through a

dividing surface. The dividing surface can be defined to be in the interaction region (e.g.

near the saddle point of the reaction) as well as in the reactant region. The question that

arises is what weighting of phase points to use in this averaging for arbitrary choices of

dividing surface, and there are two parts to this question. One is the correct statistical

weight and the other is the weight that should be used to select only reactive trajectories.

For the choice of dividing surface in the reactant region, the correct statistical weight to

obtain an equilibrium rate constant is an equilibriumdistribution of states. For example, the

correct statistical weight for a canonical rate constant is just the Boltzmann factor,

expð2bHÞ [7]. Liouville’s theorem of classical mechanics [10] shows that an equilibrium

distribution of reactant states will evolve into an equilibrium distribution at the dividing

surface and products [11]. Thus, the correct statistical weight for any choice of dividing

surface is an equilibrium distribution.

Now we turn to the question of the proper weight to select reactive trajectories. First,

note that the flux given by Eq. (4) can be both positive and negative. Averaging the flux

over an equilibrium distribution with no additional weighting will include all trajectories,

that is, those that cross the dividing surface in both directions, including nonreactive as

well as reactive trajectories, so that the equilibrium average is zero. Stated another way,

the principle of detailed balance insures that the equilibrium average of the total flux at

the dividing surface vanishes. The total forward flux is obtained by giving nonzero weight

to those phase space points on the dividing surface for which dZ=dt is positive. However,
some of these phase space points may actually lie on trajectories that recross the dividing

surface or are nonreactive or both (this includes trajectories that originate in the products

region and recross the dividing surface one or more times, reactive trajectories that

originate in the reactants region and cross an odd number of times, and nonreactive

trajectories that originate in the reactants region and cross an even number of times).

The total one-way reactive flux of reactants toward products is obtained by projecting out

only those phase space points that lie on trajectories originating in reactants and ending

up in products. For this choice of weighting, a reactive trajectory that recrosses the

dividing surface multiple times will have multiple contributions to the averaged flux.

The net one-way reactive flux of reactants to products is obtained by counting each of

these trajectories only at its first crossing, even if it crosses more than once. The latter

two are much harder to calculate because they require following trajectories to make sure

they are reactive. (The fundamental assumption of TST, as we shall see, is that the latter

net one-way reactive flux equals the former forward flux.) A compact expression for

the net one-way reactive flux through the dividing surface is written as

FZðq; pÞ ¼ dðZÞ p

m

›Z

›q
2

›V

›q

›Z

›p

� �
xðq; pÞ ð5Þ
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where the Dirac delta function dðZÞ restricts the phase space to the hypersurface dividing
reactants from products (i.e. Z ¼ 0). The characteristic function xðq; pÞ projects out the
net contribution from reactive trajectories and therefore requires following trajectories

from phase points on the dividing surface forward and backward in time to make sure

they originated in reactants and finished in products and that only the first crossing is

counted. With these definitions, the exact classical rate constant for a canonical ensemble

at temperature T is obtained from a phase-space average of the reactive flux

kCðTÞ ¼ 1

QðTÞð2p"Þ3N
ð
dqdp expð2bHÞFZ ð6Þ

where " ¼ h=2p; h is Planck’s constant, b ¼ 1=kBT ; kB is Boltzmann’s constant, and
QðTÞ is a normalization factor appropriate for the type of reaction (unimolecular or

bimolecular). For a unimolecular reaction the normalization factor is given by

QðTÞ ¼ 1

ð2p"Þ3N
ð
dqdp expð2bHÞuð2ZÞ ¼ qtrCMðTÞQR

CðTÞ ð7Þ

where the Heaviside step function [uðxÞ is zero for x , 0 and 1 for x . 0] restricts the

phase-space average to the reactant region, QR
CðTÞ is the vibrational–rotational partition

function of the reactant species, and qtrCMðTÞ is the translational partition function for the
center-of-mass motion of the system. For bimolecular reactions QðTÞ takes the form

QðTÞ ¼ qtrCMðTÞFR
CðTÞ ð8Þ

where FR
CðTÞ is the reactant partition function per unit volume and includes the

translational partition function per unit volume for the relative motion of the two reaction

species. The center-of-mass translational partition function in the normalization term

cancels an identical factor in the phase space average in the numerator of Eq. (6).

The fundamental dynamical assumption of TST [3] approximates the reactive flux

through the dividing surface by the forward flux of all trajectories (reactive and

nonreactive). If the reaction coordinate were truly separable, then there would be no

reversals in the reaction coordinate, as long as the potential energy has a negative second

derivative along the reaction coordinate, so the fundamental assumption may be restated

as an assumption that the reaction coordinate is separable and the effective potential

along the reaction coordinate is convex. In this case the characteristic function is replaced

by the TST approximation

xTSTðq; p; ZÞ ¼ u
p

m

›Z

›q
2

›V

›q

›Z

›p

� �
ð9Þ

and the reactive flux is approximated by

FTSTZ ðq; pÞ ¼ dðZÞ p

m

›Z

›q
2

›V

›q

›Z

›p

� �
u

p

m

›Z

›q
2

›V

›q

›Z

›p

� �
ð10Þ

In this approximation it is assumed that trajectories with positive flux at the dividing

surface (i.e. those with xTSTðq; p; ZÞ . 0) are reactive, and there is no need to follow

trajectories of phase points forward and backward in time. The exact classical rate
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constant is independent of the definition of the dividing surface, since every reactive

trajectory must cross any dividing surface separating reactants from products. The

generalized TST expression is not independent of the choice of arbitrary dividing surface

and is written as a explicit function of Z

kGTC ðT ; ZÞ ¼ 1

ð2p"Þ3NQðTÞ
ð
dqdp expð2bHÞFTSTZ ðq; pÞ ð11Þ

TST counts all forward crossings as reactive (each reactive trajectory must cross the

dividing surface with positive flux at least once), and errs by counting as reactive

nonreactive trajectories that cross the dividing surface an even number of times and

overcounting reactive trajectories that recross the dividing surface. Therefore, the

classical TST rate constant is always greater than or equal to the exact classical

equilibrium rate constant, and this fact is the basis for variational TST (VTST) in which

the dividing surface is optimized to minimize the rate constant and thereby give the best

upper bound to it [6,9].

In our most straightforward implementation of VTST for gas-phase reactions, rather

than allow arbitrary orientations of the dividing surface, we consider a one-parameter

sequence of dividing surfaces that are defined in terms of a reaction path [12,13]. This

procedure is applicable to complex problems, and it immediately provides a practical

improvement over the conventional choice of placing the dividing surface at the saddle

point. A robust choice for the reaction path is the minimum energy path (MEP), that is,

the path of steepest descent in the mass-scaled coordinates [14]. The coordinates on this

path are denoted qMEPðsÞ as a function of a progress variable s; and the path is defined by

q0ðsÞ ; d

ds
qMEPðsÞ ¼ 2

›qV

l›qV l

�����
q¼qMEPðsÞ

ð12Þ

This equation is integrated along the reaction coordinate s from the saddle point at s ¼ 0

with an initial step along the eigenvector for the unbound mode into the product region

ðs , 0Þ and reactant ðs . 0Þ region. Generalized transition-state dividing surfaces are
constrained to be hyperplanes that are orthogonal to the reaction path and are defined by

their location s along the reaction coordinate. Given the vector, q0ðsÞ; tangent to the MEP
at point s; the dividing surface orthogonal to this tangent vector is defined by

Zsðq; pÞ ¼ q0ðsÞ½q2 qMEPðsÞ	 ¼ 0 ð13Þ
For s not equal to 0, a dividing surface is called a generalized transition state (to

distinguish it from the conventional transition state where the gradient is zero). With this

choice of dividing surface the generalized TST rate expression given by Eq. (11) reduces

for a bimolecular reaction to

kGTC ðT; sÞ ¼ kGTC ðT ;ZsÞ ¼ s
kBT

h

QGT
C ðT ; sÞ
FR
CðTÞ

exp½2bVMEPðsÞ	 ð14Þ

where VMEPðsÞ is the potential evaluated on the MEP at s; the zero of energy of the
potential is defined to be the reactant equilibrium geometry (i.e. VMEPðsÞ at reactants is
zero), and QGT

C ðT; sÞ is the classical mechanical generalized transition state partition
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function for the bound modes orthogonal to the reaction path at s: Note that this partition
function is defined with its zero of energy at the local minimum of the potentials for the

bound modes orthogonal to the reaction coordinate. The symmetry factor s accounts for
the fact that the generalized transition state partition function is computed for one

reaction path, and for reactions with equivalent reaction paths, this partition function

needs to be multiplied by the number of equivalent ways the reaction can proceed. For

example, in the reaction D þ H2 ! DH þ H, D can react with either H atom, so there

are two equivalent pathways and s ¼ 2: The symmetry factor does not occur in the
more general expression for the rate constant given in Eq. (11) because the phase space

average includes all equivalent configurations that lie in the dividing surface. The

interested reader is directed to a more detailed discussion of symmetry factors in TST

by Pechukas [15]. The canonical variational theory (CVT) rate constant is obtained by

minimizing Eq. (14) with respect to s

kCVTC ðTÞ ¼ min
s

kGTC ðT ; sÞ ¼ kGTC ½T; sCVTC ðTÞ	 ð15Þ

where sCVTC ðTÞ is the location of the dividing surface that minimizes Eq. (14) at

temperature T : Eq. (14) provides a quantitative framework for discussing activation

energy and steric effects, with the former originating mainly in the exponential term and

the latter mainly in the partition function of the transition state.

The expression in Eq. (14) can be recast into a thermodynamic formulation as [13]

kGTC ðT; sÞ ¼ kBT

h
K0 exp½2DGGT;0

C ðT ; sÞ=RT	 ð16Þ

in which K0 defines the standard state and DGGT;0
C ðT; sÞ is the standard state free energy of

formation of the generalized transition state. Minimizing the canonical rate constant as in

Eq. (15) is equivalent to maximizing the free energy of activation with respect to the

location of the dividing surface [13,16].

Throughout this section, all rate constant expressions have had a subscript C to denote

classical mechanics. Consistent with notation used in previous work, no subscript is used

when quantum mechanical effects are included.

5.2.2 Inclusion of quantum mechanical effects

For many reactions, especially those including light atoms, such as reactions involving

the transfer of a hydrogen atom, proton, or hydride ion, classical mechanics is not

sufficient, and quantum mechanical effects on the motion of the atoms must be

included. The inclusion of quantum mechanical effects can also be important when

zero-point energies for modes with high vibrational frequencies change along the

reaction coordinate. High-frequencies can result from heavy-atom vibrations with large

force constants, as well as vibrational modes dominated by light atom motion. In

addition quantum effects may be smaller, but not necessarily negligible, for

rearrangements dominated by motions of heavier atoms. A rigorous quantum

mechanical formulation of TST that employs the fundamental assumption as its only
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approximation has been discussed [17] with the conclusion that no rigorous quantum

version of TST exists that does not require a solution of the full multidimensional

reaction dynamics [18]. Therefore, additional approximations are needed to include

quantum mechanical effects into TST. The standard approach is an ad hoc procedure

[1,19] that replaces classical partition functions by approximate quantum mechanical

ones and then includes correction factors for quantum mechanical effects (such as

tunneling) on the reaction coordinate motion. Replacing the classical partition

functions in Eq. (14) by quantum mechanical ones results in a quantized generalized

transition state rate constant given by

kGTðT; sÞ ¼ s
kBT

h

QGTðT ; sÞ
FRðTÞ exp½2bVMEPðsÞ	 ð17Þ

The classical phase-space averages for bound modes in Eq. (11) are replaced by

quantum mechanical sums over states. If one assumes separable rotation and uses an

independent normal mode approximation, the potential becomes decoupled, and one-

dimensional energy levels for the bound modes may be conveniently computed. In this

case, the quantized partition function is given by the product of partition functions for

each mode. Within the harmonic approximation the independent-mode partition

functions are given by an analytical expression, and the vibrational generalized

transition state partition function reduces to

QGT
HOðT ; sÞ ¼

Y
m

1

2 sinh½"vmðsÞb=2	 ð18Þ

where vmðsÞ is the harmonic frequency for mode m at location s along the MEP. When

low frequency modes are present, the harmonic approximation is very often not valid,

and methods for including anharmonicity must be considered [20].

Harmonic frequencies for bound modes at stationary points on the PES (i.e. locations

where ›V=›q ¼ 0) are obtained by diagonalizing the matrix of second derivatives

(properly mass-weighted or mass-scaled), which is denoted the Hessian matrix.

Frequencies for modes at other locations along the reaction coordinate require special

attention since the first derivatives are not zero, and diagonalization of the Hessian

would mix the reaction coordinate mode with bound vibrations. Determination of the

bound modes orthogonal to the reaction coordinate can be accomplished in a

straightforward manner by working in a space normal to the tangent to the reaction path

[12] or by projecting out the reaction coordinate motion from the Hessian matrix [21].

The latter method often has the unsatisfactory characteristic that transitional modes

(those that correspond to translations or rotations of the reactants or products in an

asymptotic region but that evolve into or from a hindered rotation or bending vibration

in the interaction region) can have unphysical imaginary frequencies (corresponding to

negative eigenvalues of the Hessian matrix) along the reaction coordinate [22]. The use

of curvilinear internal coordinates is an attractive alternative that helps with this

problem [23].

The quantized generalized transition state rate constant equation (17) is a hybrid

expression in which the bound modes are treated quantum mechanically but the reaction
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coordinate motion is treated classically. Consistent quantum mechanical treatments of

reaction coordinate motion rely on the fact that the adiabatic theory of reactions [24,25] is

equivalent to one form of VTST (microcanonical VTST) when the reaction coordinate is

treated classically [13,26]. In the adiabatic theory of reactions, coordinates orthogonal to

the reaction coordinate are treated as ‘fast’ variables. Reaction probabilities PAðn;EÞ for
a state defined by quantum numbers n at total scattering energy E are obtained by

considering the dynamics on the one-mathematical-dimensional vibrationally adiabatic

potential. In the harmonic approximation the vibrationally adiabatic potential is written

VAðs; nÞ ¼ VMEPðsÞ þ
X
m

"vmðsÞ nm þ 1

2

� �
ð19Þ

where the sum is over the bound modes of the generalized transition state at s; and the
energy level for state nm of mode m at location s along the reaction coordinate is given by

the harmonic approximation. The reaction probabilities PAðn;EÞ are then thermally

averaged to yield the rate constant. When reaction coordinate motion is treated

classically, the adiabatic theory of reactions yields an expression for the thermal rate

constant which is equivalent to that obtained from microcanonical variational theory

even though the approximations in the two theories are very different [13,26]. Since the

one-dimensional scattering problem can be treated quantum mechanically, a multi-

plicative tunneling correction factor for the adiabatic theory of reactions can be obtained,

and the equivalency of microcanonical VTST and adiabatic theory makes it consistent to

use the same correction factor to account for the quantization of reaction coordinate

motion in the variational theory.

The adiabatic approximation is made in a curvilinear coordinate system, and although

the potential energy term is simple, the kinetic energy term is complicated by factors

dependent upon the curvature of the reaction path [21,25,27]. As shown by Skodje et al.

[28], the most successful methods for including the multidimensional effect of the

reaction path curvature in the adiabatic calculations of the reaction probabilities specify a

tunneling path that ‘cuts the corner’ and shortens the tunneling length. Marcus and

Coltrin [29] found the optimum tunneling path for the collinear H þ H2 reaction by

finding the path that gave the least exponential damping. General multidimensional

tunneling (MT) methods, applicable to polyatomic reactions, have been developed that

are appropriate for systems with both small [28,30] and large [12,31,32] reaction path

curvature, as well as more general methods that optimize tunneling paths by a least-

imaginary-action principle [31,33]. In practice it is usually sufficient to optimize the

imaginary action from among a small set of choices by choosing either the small-

curvature tunneling approximation, or the large-curvature tunneling approximation,

which gives more tunneling at a given tunneling energy; this is called microcanonical

optimized multidimensional tunneling (mOMT), or, for short, optimized multidimen-

sional tunneling (OMT) [32,34].

The quantum mechanical CVT rate constant with the tunneling correction factor,

kMTðTÞ; included is given by [35]

kCVT=MTðTÞ ¼ kMTðTÞkCVTðTÞ ð20Þ
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Rather than compute the tunneling through all adiabatic potentials that contribute

significantly to the tunneling correction factor, the tunneling correction factor is

approximated by tunneling through just the ground-state potential [35]

kMTðTÞ ¼

ð1

0
dE e2bEPMTðn ¼ 0;EÞð1

0
dE e2bEPCðn ¼ 0;EÞ

ð21Þ

where PMTðn ¼ 0;EÞ is the multidimensional tunneling approximation to the probability
for tunneling through the ground-state adiabatic potential at total energy E and PCðn ¼
0;EÞ is the classical analog, which is zero for total energy E below the maximum of the

adiabatic barrier and one for energy above it. At low temperatures where tunneling

corrections are most important, quantized systems tend to be in the ground state, and this

approach provides a good approximation. As temperature increases, tunneling through

excited-state adiabatic potentials would contribute relatively more, but tunneling

becomes less important and the correction factor decreases until at sufficiently high

temperatures it tends to unity. The ground-state method gives the correct high

temperature limit, and for intermediate temperatures, the tunneling through excited-

state adiabatic potentials is approximated (implicitly) by the tunneling probabilities for

the ground-state potential with the energy scale shifted by the difference in the excited-

state and ground-state energies at the ground-state maximum.

After including variational and quantum effects, the quasithermodynamic variables of

TST, like entropy of activation and energy of activation, may be decomposed into

‘substantial’ contributions that derive from formulas analogous to those of statistical

thermodynamics [36] and ‘nonsubstantial’ contributions deriving from the transmission

coefficient [37].

5.2.3 Improved prescriptions for the reaction coordinate and dividing surface

The formalism summarized above is well suited for bimolecular reactions with tight

transition states and simple barrier potentials. In such cases we have found that the

variational transition state can be found by optimization of a one-parameter sequence of

dividing surfaces orthogonal to the reaction path, where the reaction path is defined as the

MEP. However, although dividing surfaces defined as hyperplanes perpendicular to the

tangent to the MEP (as described in Section 5.2.2) are very serviceable, a number of

improvements have been put forth.

It is important to emphasize, in describing these improvements, that the generalized

transition-state dividing surface is defined by the MEP only on the reaction path itself.

The full definition of the transition state dividing surface for VTST calculations is usually

specified by starting with a global definition of a reaction path, after which a one-

parameter sequence of dividing surfaces is defined by the location at which the dividing

surface crosses the path. In our original work [12,38] we took the dividing surface to

locally be a plane orthogonal to the MEP in isoinertial coordinates, but we approximated
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the partition functions in a way [13,26] that provided physical results even when this

surface is unphysical beyond a certain distance from the MEP. The first important

improvement is to use curved dividing surfaces defined in terms of nonredundant [22,23]

or redundant [39] internal coordinates. Because the neglect of anharmonic bend–stretch

interactions is less serious in curvilinear internal coordinates than in rectilinear

coordinates [15,40], a dividing surface defined in curvilinear internal coordinates is

much more physical, and the harmonic frequencies calculated this way provide much

better harmonic approximations to the bound motions in the dividing surface and hence to

QGTðT ; sÞ:
A next higher level of refinement is to optimize the orientation of the dividing surface

rather than assume that it is normal (in either rectilinear or curvilinear coordinates) to the

MEP [40–42]. This variational optimization should in principle improve the rate, just as

optimizing the location at which the dividing surface intersects the MEP improves the

rate. Even more significantly though it allows one [40,42] to carry out VTST calculations

without calculating (or without converging) an MEP, which is often expensive (because it

requires small step sizes to follow it) and/or hard to converge.

The use of curvilinear coordinates and optimization of the orientation of the dividing

surface are important for quantitative calculations on simple barrier reactions, but even

more flexibility in the dividing surfaces is required to obtain quantitative results for very

loose variational transition states such as those for barrier-less association reactions or

their reverse (dissociation reactions without an intrinsic barrier).

In the context of association reactions, an algorithm in which the reaction coordinate

definition is optimized along with the dividing surface along a one-parameter sequence of

paths is called ‘variable reaction coordinate’ (VRC) variational transition state theory

[43,44]. In the last few years there has been considerable progress in optimizing VRCs for

barrier-less association reactions with strictly loose transition states. A strictly loose

transition state is defined as one in which the conserved vibrational modes are uncoupled

from the transitional modes and have the same frequencies in the variational transition

state as in the associating reagents [45,46]. Conserved vibrational modes are modes that

occur in both the associating fragments and the association complex, whereas transition

modes (already mentioned above) include overall rotation of the complex and vibrations

of the complex that transform into fragment rotations and relative translations upon

dissociation of the complex. Progress has included successively refined treatments of the

definition of the dividing surface and of the definition of the reaction coordinate (the

coordinate that is missing in the transition state) [43,46–48], and elegant derivations of

rate expression for these successively improved reaction coordinates [48,49]. A guiding

principle in the choice of reaction coordinate in all these methods is to make the reaction

coordinate correspond to a physical motion that is relatively uncoupled from the motions

orthogonal to it, because the assumption of a separable reaction coordinate is a key aspect

of the fundamental assumption of TST, as mentioned above. The recent variational

implementation of the multifaceted dividing surface (MDS) VRC version of VTST seems

to have brought the theory to a flexible enough state that it is suitable for application to a

wide variety of practical applications to complex barrier-less association reactions of

polyatomic molecules [50].
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5.2.4 Spectroscopy of the transition state

The quantization of transition state energy levels is not simply a mathematical device to

add quantum effects to the partition functions. The quantized levels actually show up as

structure in the exact quantum mechanical rate constants as functions of total energy [51].

The interpretation of this structure provides clear evidence for quantized dynamical

bottlenecks, both near to and distant from the saddle points, as reviewed elsewhere [52].

Quantized variational transition states have also been observed in molecular beam

scattering experiments [53]. Analysis of the reactive flux in state-to-state terms from

reactant states to transition state levels to product states provides the ultimate limit of

resolution allowed by quantum mechanics [53,54]. Quantized energy levels of the

variational transition state have been used to rederive TST using the language of quantum

mechanical resonance scattering theory [55].

5.2.5 Applications

Recent applications of VTST/MT to polyatomic gas-phase reactions that illustrate the

power of the theory include the reactions of chlorine atoms with hydrogen molecules [56]

and the reactions of hydrogen atoms with ethylene [57,58] and methane [59], including

kinetic isotope effects.

5.3 REACTIONS IN CONDENSED PHASES

Compared to gas-phase reactions, those in condensed-phases systems are more difficult to

treat because of the close proximity of other atoms and molecules to the reacting species;

interactions with the surroundings affect both the energetics and dynamics of a reaction.

Short-range effects, due to atoms and molecules in the immediately vicinity of the

reacting species, can be treated using an embedded cluster approach in which the reacting

species and a finite number of surrounding atoms are included explicitly in calculations of

reaction energies and dynamics using standard approaches used in gas-phase

calculations. A major challenge for condensed-phase reactions arises from the fact that

long-range interactions of the reacting species with atoms or molecules, which are not

directly participating in the reaction, can affect both the energies and dynamics of

reactions thus requiring calculations on much larger systems than the embedded cluster

models. Sometimes such effects can be included by continuum solvent models [60] or by

the use of collective reaction coordinates [61,62], or both.

We first consider the case of a condensed-phase environment in which the atoms have

well defined equilibrium geometries and the fluctuations around these geometries are

small compared to the interatomic distances (e.g. solids). In this type of rigid

environment the long-range effects of the environment are restricted to the reaction

energetics and the dynamics, to the extent that dynamics may be separated

from energetics, can be treated accurately using an embedded cluster model. We then

discuss two approaches to treating reactions in an environment in which the atoms and
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molecules have many local equilibrium structures that are interconnected by small

barriers (i.e. ones that can be easily surmounted by thermal fluctuations). In this type of

fluid environment both the energetic and dynamic effects of anharmonicity and perhaps

also long-range interactions need to be considered.

The average environment that the reacting species encounter in gas phase and

condensed fluid environments is isotropic and translationally invariant. This is not true

for rigid environments with well-defined lattice sites, e.g. the average environment that a

reacting species sees near a lattice site is very different from that near an interstitial site.

5.3.1 Reactions in rigid environments and application to reactions

in crystals or at crystal–vapor interfaces

Solid-state reactions, at least in a crystal, are characterized by the need to consider only

one or a few environments for the reacting subsystem. The reacting subsystem may

interact with this environment by a variety of interactions, including electrostatic and

dispersion forces, hydrogen bonding, and dielectric screening of intramolecular

Coulomb interactions due to the electric field lines passing through the environmental

medium. These effects must be included in the Hamiltonian. One also needs to

consider effects such as relaxation of the lattice around the reacting subsystem or

reconstruction of a surface in absence and presence of the reacting subsystem. These

considerations also apply to the calculation of equilibrium properties in the solid state,

but a question that arises only when one considers dynamics is the inclusion of

medium degrees of freedom in the dividing surface, or medium participation in the

reaction coordinate.

As mentioned above, these effects can all be included by an embedded cluster

approach [63]. In this method one starts with a large but finite rigid lattice representing

the crystal and adds the reacting substance as a substitutional impurity, defect, or

interstitial in the solid (absorbate) or on its surface (adsorbate). The origin is defined in

some convenient way to be at or near the center of the reacting substance. All lattice

atoms within a distance Ro of the origin are fully included in the Hamiltonian, that is,

they are treated dynamically on an equal footing with the atoms of the absorbate or

adsorbate.

The other atoms in the lattice are held rigid. As such they enter the Hamiltonian and

they help to enforce the macroscopic habit on the environment of the reacting substance,

but they do not participate dynamically. In principle, both the size of the lattice and the

value of Ro are increased until the results converge.

This kind of treatment requires only minor changes in a VTST computer program. The

most significant changes are that there are no translational or rotational partition

functions or coordinates to project out of the Hessians. Reactants have 3N vibrations,

rather than 3N 2 6; and transition states have 3N 2 1 vibrations rather than 3N 2 7:
Examples of applications that have been studied by this method are surface diffusion of

hydrogen atoms on metal surfaces [63–66], bulk diffusion [64,66], subsurface-to-surface

transport [66], and dissociative chemisorption [67].
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5.3.2 Reactions in fluid environments with a single reaction coordinate

The prescription for using VTST for gas-phase and solid-state reactions relies on locating

saddle points and reaction paths. For reactions in fluids, there are many saddle points that

are close in energy and that differ significantly only in the configuration of solvent

molecules [68]. Similarly, the PESs of large clusters often have multiple minima, often

separately by low barriers [69], and when a molecule reacts on or with a large cluster,

these minima lead to multiple saddle points. The multiple saddle points may be

considered to result from the large anharmonicity of the solvent (i.e. of the liquid-phase

solvent or the large-cluster microsolvent), and their treatment requires special

consideration. As in the case of solid-state reactions, VTST including quantum

mechanical effects can be applied to an embedded cluster model, which contains solvent

molecules as well as the reacting subsystem; however, unlike the solid-state case where

the remainder of the system is fixed in a rigid configuration, it is important to sample over

configurations of the remainder of the solvent or to use a mean-field representation that

includes an average over solvent configurations.

To generalize the procedures of Sections 5.2 and 5.3.1 to the liquid phase, one can start

from the full microscopic description of the system. The Hamiltonian for the whole

system is partitioned into a gas-phase component, as given in Eq. (1), for a reactive

embedded molecule or embedded cluster (note: an embedded cluster is often called a

supermolecule) in the absence of the solvent, and a solvent component that includes

coupling between the solvent and reactive subsystem:

Hðq; p; x; pxÞ ¼ p2

2m
þ VCðqÞ þ p2x

2m
þ VSðx;qÞ ð22Þ

where q and p are coordinates and conjugate momentum of the embedded molecule or

cluster (henceforth called the solute), x and px are the solvent coordinates and conjugate

momentum, VCðqÞ is the PES for the isolated solute, and VSðx; qÞ is the PES for the

solvent including the solvent interactions with the solute. We first consider the classical

mechanical expression for the rate constant for this model

kGTC ðT ; ZÞ ¼ 1

ð2p "Þ3Nþ3NSQðTÞ
ð
dqdp

ð
dxdpx expð2bHÞFTSTR ðq; p; x; pxÞ ð23Þ

where 3NS is the number of degrees of freedom of the solvent, and the normalization

factor QðTÞ includes the partition function for both the solute and solvent. The reactive
flux is explicitly written as a function of solvent coordinates as well as those of the solute.

However, if the dividing surface is only a function of the solute coordinates and

momentum, Eq. (23) takes on a simpler form

kGTC;ESðT; ZÞ ¼ 1

ð2p"Þ3NQðTÞ
ð
dqdp exp 2b

p2

2m
þWðqÞ

{ !" #
FTSTR ðq; pÞ ð24Þ
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where the potential of mean force (PMF) [36] WðqÞ is defined by

exp½2bWðqÞ	 ¼ 1

ð2p "Þ3NS
ð
dxdpx exp 2b

p2x
2m

þ VCðqÞ þ VSðq; xÞ
{ !" #

ð25Þ

The normalization factor can also be rewritten in terms of the PMF

QðTÞ ¼ 1

ð2p "Þ3N
ð
dqdp exp 2b

p2

2m
þWðqÞ

{ !" #
uð2ZÞ ð26Þ

so that the rate constant takes the form of the gas-phase expression with an effective,

solvent-averaged potential. Classically, the only approximation is the fundamental

dynamical assumption of TST, with the restricted choice of dividing surface to not

include any of the solvent coordinates or momentum. We use the subscript ES on the rate

constant to denote an equilibrium solvation model, in which the only influence of the

solvent is to modify the interaction potential. It has long been realized that the effect of

equilibrium solvation can be included in TST using the PMF [5,70–74]; however, most

previous calculations of equilibrium solvation contributions to the TST rate constant

express the PMF as a function of a single coordinate—the reaction coordinate. Eq. (24)

differs by the fact that the rate constant is written as a function of a multidimensional

equilibrium solvation PES.

Although WðqÞ may be defined entirely in terms of condensed-phase averages, as in
Eq. (25), it can also be defined with reference to gas-phase calculations, in which case it

equals the gas-phase free energy of activation plus the free energy of solvation [60,

74–77]. Thus, the equilibrium solvation rate constant given in Eq. (24) takes the

thermodynamic form for the rate constant (as given in Eq. (16) for the gas phase)

kGTC;ESðT ; sÞ ¼ kBT

h
K0 exp½2DGGT;0

C;ESðT ; sÞ=RT	 ð27Þ

where the equilibrium-solvation standard-state free energy of activation is expressed as

DGGT;0
C;ESðT ; sÞ ¼ DGGT;0

C ðT ; sÞ þ DGGT;0
solv ðT ; sÞ2 DGR;0

solvðTÞ ð28Þ

and DGGT;0
solv ðT ; sÞ and DGR;0

solvðTÞ are the free energies for solvating the generalized

transition state at s and reactants, respectively.

If the reaction path and dividing surface are optimized in the gas phase, but the rate

constant is calculated with the equilibrium solvation Hamiltonian, the resulting rate

constant is called separable equilibrium solvation (SES) [57]. However, if the reaction

path and dividing surface are optimized with the equilibrium solvation potential, the

result is labeled equilibrium solvation path (ESP) [57,78].

The assumption of equilibration of the solvent at all geometries of the solute neglects

the coupling of solvent dynamics with solute dynamics. For example, if the solute

dynamics are rapid with respect to the solvent motion, the solvent will not have time to

equilibrate as the solute rearranges. Fluctuations of solvent molecules can induce

recrossings of the dividing surface and a breakdown of the fundamental dynamical
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assumption of TST. This type of influence of the liquid on the reaction rate is often

referred to as a nonequilibrium or dynamical solvent effect [5,70,71,73,79].

Formulating TST in terms of an approximate flux through a dividing surface reveals a

means to mitigate the effects of this breakdown. Variational optimization of a dividing

surface that is a function of solvent coordinates as well as the coordinates of the

embedded cluster will minimize the recrossings induced by solvent reorganization.

However, this procedure leads to more complicated calculations of the ensemble

averages in Eq. (23) because they are constrained to configurations lying on the dividing

surface. Evaluations of averages over solvent degrees of freedom for fixed configurations

of the solute, as required when the dividing surface is a function of only solute

coordinates, are standard in PMF calculations [75], whereas evaluations of ensemble

averages for more general dividing surfaces are much more complicated. (The

formulation of classical TST for arbitrary dividing surfaces [80] is related to the

formulation of potentials of mean force for constrained molecular dynamics [81] and to

PMF calculations for more complicated reaction coordinates [82].)

This use of arbitrary reaction coordinates also allows [62] inclusion of nonequilibrium

solvation effects in VTST by using the solvent energy-gap reaction coordinate that first

arose [83] in weak-overlap charge-transfer theory. In electron transfer kinetics,

nonequilibrium effects are often studied by a spin boson model [84] in which two

diabatic states of the electronic wave function are linearly coupled to a harmonic bath.

The coupling constant is a parameter of the model. A more general model, the

generalized Langevin treatment [71,85], also involves a linearly coupled harmonic bath,

but it has the advantage that the friction coefficient is related by the fluctuation-

description theorem [86] to the time autocorrelation function of the force exerted on the

system by the bath. In classical mechanics, the time autocorrelation function can be

obtained from a molecular dynamics simulation, and one can use this kind of friction

estimate to model nonequilibrium solvation [87,88]. This is accomplished by describing

solvent frictional effects by a collection of harmonic oscillators that are linearly coupled

to the solute degrees of freedom. In the limit of a continuum of oscillators, the classical

dynamics for this model are equivalent to the generalized Langevin equation for solute

dynamics [89]. When the reaction is treated as a reaction coordinate coupled to a

harmonic bath, harmonic TST with a dividing surface at the saddle point that includes

dependence on the harmonic solvent coordinates yields the Kramers [90] and Grote–

Hynes [91] theories, as reviewed elsewhere [92,93]. This simple model of a reaction in

solution is surprisingly robust for describing dynamical solvent affects, even for systems

for which the reaction dynamics appear to be controlled by anharmonic solvent

reorganization [94]. In an attempt to develop a widely applicable practical scheme for

estimating the conditions under which nonequilibrium solvent effects are important and

to increase physical insight, the friction has also been further approximated in terms of

effective diffusion constants [78,95]. This has the advantage that it neither assumes the

validity of classical mechanics nor requires large-scale simulations. We have presented

VTST treatments of multidimensional embedded cluster models linearly coupled to

harmonic solvent coordinates, including variationally optimizing the dividing surface

(including both harmonic solvent and embedded cluster coordinates) and quantum

mechanical effects [73,87,95]; and these treatments can be viewed as a generalization of
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Grote–Hynes theory to include multidimensional, anharmonic (in the embedded cluster

coordinates), and quantum mechanical effects.

The treatment of quantum mechanical effects, particularly tunneling, is especially

challenging for reactions in liquids. Comparisons of calculations using VTST methods

including multidimensional tunneling corrections for gas-phase reactions, as outlined in

Section 5.2.2, with benchmark calculations for a model reaction in solution (a reaction

coordinate linearly coupled to a harmonic bath) have shown that the methods are

capable of quantitative accuracy for these types of systems and that the largest

deficiencies arise from the approximate treatment of anhamonicity, not tunneling [96].

A general prescription for treating tunneling in the presence of a bath, based upon a

multidimensional tunneling approximation using the PMF, has been given [97] and

applied [76,95,98]. VTST has been used to study the effect of nonequilibrium solvation

on quantum mechanical tunneling in models of hydrogen addition to benzene [78] and

hydrogen abstraction from methanol [95] and to examine the importance of

multidimensional tunneling for a model of a proton transfer reaction in explicit

solvent [88].

5.3.3 Reactions in fluid environments with an ensemble of reaction coordinates

For some reactions in solution, it may be necessary to include a large number of saddle

points and reaction paths. These reaction paths might differ primarily in the conformation

of the bath. One can always attempt to model this situation, as in Section 5.3.2, by using a

single reaction coordinate and a mean field representation of the bath, but this will not

always be valid, and it requires considerable physical insight to properly include solvent

motion in the reaction coordinate, when that is necessary.

In order to treat this kind of system more reliably, ensemble-averaged VTST [99–101]

has been developed. In this method, the calculation is divided into two stages. In stage

one, one uses a predefined chemical reaction coordinate z to calculate a one-dimensional

PMF. The maximum value of this PMF defines the stage-1 free energy of activation,

DGð1Þ ¼ DG‡;oðzpÞ ð29Þ

at location zp: In carrying out this calculation, we quantized the vibrations perpendicular
to z by a new method developed for this purpose [102]. Because of this quantization, the

resulting free energy is not completely classical and we call it quasiclassical. In the

process of calculating this stage-1 quasiclassical free energy of activation we sample a

large number of systems with zp 2 dz # z # zp þ dz; where dz is a small numerical
tolerance (in principle dz should be zero). The equilibrium ensemble corresponding to

this small range of z is called the stage-1 transition state ensemble.

In stage 2, one calculates a transmission coefficient for the stage-1 rate constant. This

transmission coefficient is calculated by an ensemble average over CVT/mOMT
calculations for various reaction paths (labeled a ¼ 1; 2;…;Na) that pass through Na

samples from stage-1 transition state ensemble. In particular, the final ensemble-averaged
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VTST with multidimensional tunneling (EA-VTST/MT) rate constant is given by

kðTÞ ¼ gðTÞ kBT
h

K0expð2DGð1Þ=RTÞ ð30Þ

where

gðTÞ ¼

XNa

a¼1
kaðTÞGaðTÞ
Na

ð31Þ

In stage 1, all atoms are treated on an equal footing. However in stage 2, the system is

divided into N1 primary-zone atoms and N2 secondary-zone atoms. For each a; the N2
secondary-zone atoms are frozen and the N1 primary-zone atoms are optimized to the

nearest saddle point, then a MEP is calculated, again with N2 atoms frozen. In both steps,

the secondary-zone atoms are not neglected; they provided an effective potential field that

is included in the Hamiltonian. Continuing in this fashion, we calculate a free energy of

activation profile DGaðTÞ for the primary subsystem in the effective field of the secondary

subsystem; this is reminiscent of the method in Section 5.3.1. Then

GaðTÞ ¼ exp{2 ½DGaðTÞ2 DGð1ÞðTÞ	=RT} ð32Þ
Finally one calculates a transmission coefficient kaðTÞ that accounts for tunneling and
nonclassical reflection, and we use this in Eq. (31) to calculate the overall transmission

coefficient gðTÞ:
Some points should be noted about this treatment. The first is that the transmission

coefficient and the quasithermodynamic free energy of activation are not independent. If

we choose a poor reaction coordinate for stage 1, then the Ga values in stage 2 may be

very small. The second is that the procedure used for step 2 allows the secondary

subsystem to participate in the reaction coordinate. In other words, since each

conformation of the secondary subsystem has its own reaction path, the reaction path

does depend on the coordinates of the secondary subsystem.

It is also possible to include a third stage in which the secondary zone is relaxed as a

function of s for each a [99]. Although this is more expensive, it is not necessarily more
accurate because the transition state passage might be well modeled by an ensemble

average of essentially fixed secondary-zone structures [93].

EA-VTST/OMT has been applied successfully to several enzyme reactions, as

reviewed elsewhere [100,103].

5.4 SUMMARY AND CONCLUSIONS

“It is no criticism of a chemical theory to call it ‘approximate’ or ‘limited’. The value

of a theory is measured by the strength of its predictions within its restricted range

of applicability” [104]. TST is an approximate theory with a very broad range of

applicability, covering elementary reaction rate constants for virtually all kinds of

chemical reactions, provided that the reactants are in local thermal or microcanonical
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equilibrium, and it can even be extended to certain questions in state-selected chemistry.

It provides a language for discussing and analyzing activation energy, steric effects, and

solvent and other environmental effects. When the transition state is variationally

optimized and quantum effects, especially vibrational zero point energy and tunneling,

are included, it provides a quantitative theory as well. It seems unimaginable that it can

ever become obsolete, and we expect that research on its application to more and more

complex processes will continue to abound.

5.5 ACKNOWLEDGEMENTS

This work was supported in part at both Pacific Northwest National Laboratory (PNNL)

and the University of Minnesota (UM) by the Division of Chemical Sciences, Office of

Basic Energy Sciences, US Department of Energy (DOE) and by the National Science

Foundation at UM. Battelle operates PNNL for DOE.

5.6 REFERENCES

1 H. Eyring, J. Chem. Phys., 3 (1935) 107.

2 H. Eyring, Trans. Faraday Soc., 34 (1938) 41; M.G. Evans and M. Polanyi, Trans. Faraday Soc., 31

(1935) 875; M.G. Evans, Trans. Faraday Soc., 34 (1938) 49.

3 E. Wigner, Trans. Faraday Soc., 34 (1938) 29.

4 D.G. Truhlar and R.E. Wyatt, Ann. Rev. Phys. Chem., 27 (1976) 1; K.J. Laidler and M.C. King, J. Phys.

Chem., 87 (1983) 2657; D.G. Truhlar, B.C. Garrett and S.J. Klippenstein, J. Phys. Chem., 100 (1996)

12771; W.H. Miller, Faraday Disc., 110 (1998) 1; B.C. Garrett, Theor. Chem. Acc., 103 (2000) 200.

5 D.G. Truhlar, W.L. Hase and J.T. Hynes, J. Phys. Chem., 87 (1983) 2664.

6 D.G. Truhlar and B.C. Garrett, Ann. Rev. Phys. Chem., 35 (1984) 159.

7 M.A.Eliason and J.O.Hirschfelder, J. Chem. Phys., 30 (1959) 1426;R.K.Boyd,Chem.Rev., 77 (1977) 93.

8 J.N. Murrell, S. Carter, S.C. Farantos, P. Huxley and A.J.C. Varandas, Molecular potential energy

surfaces, Wiley, New York, 1984; D.G. Truhlar, in: R.A. Myers (Ed.), The encyclopedia of physical

sciences and technology, 3rd ed., Vol. 13, Academic Press, New York, 2001, p. 9.

9 E. Wigner, J. Chem. Phys., 5 (1937) 720.

10 H. Goldstein, Classical mechanics, Addison-Wesley, Reading, MA, 1965.

11 J.B. Anderson, J. Chem. Phys., 58 (1973) 4684; J.B. Anderson, Adv. chem. phys., 91 (1995) 381;

I. Mayer, J. Chem. Phys., 60 (1974) 2564.

12 B.C. Garrett and D.G. Truhlar, J. Chem. Phys., 70 (1979) 1593.

13 B.C. Garrett and D.G. Truhlar, J. Phys. Chem., 83 (1979) 1052.

14 R.E.J. Weston, J. Chem. Phys., 31 (1959) 892; I. Shavitt, J. Chem. Phys., 49 (1968) 4048; R.A. Marcus,

J. Chem. Phys., 49 (1968) 2617; D.G. Truhlar and A. Kuppermann, J. Am. Chem. Soc., 93 (1971) 1840;

K. Fukui, in: R. Daudel and B. Pullman (Eds.), The world of quantum chemistry, Reidel, Dordrecht

(1974); H.F. Schaefer, III, Chem. Brit., 11 (1975) 227.

15 M.A. Pariseau, I. Suzuki and J. Overend, J. Chem. Phys., 42 (1965) 2335.

16 A. Tweedale and K.J. Laidler, J. Chem. Phys., 53 (1970) 2045.

17 F.J. McLafferty, Chem. Phys. Lett., 27 (1974) 511; W.H. Miller, J. Chem. Phys., 61 (1974) 1823.

18 W.H. Miller, Acc. Chem. Res., 26 (1993) 174.

19 S. Glasstone, K.J. Laidler and H. Eyring, The theory of rate processes, McGraw-Hill, New York, 1941.

20 B.C. Garrett and D.G. Truhlar, J. Phys. Chem., 83 (1979) 1915; D.G. Truhlar, A.D. Isaacson, R.T. Skodje

and B.C. Garrett, J. Phys. Chem., 86 (1982) 2252; B.C. Garrett and D.G. Truhlar, J. Chem. Phys., 81

(1984) 309; D.G. Truhlar, J. Comput. Chem., 12 (1991) 266.

Chapter 584



21 W.H. Miller, N.C. Handy and J.E. Adams, J. Chem. Phys., 72 (1980) 99.

22 G.A. Natanson, B.C. Garrett, T.N. Truong, T. Joseph and D.G. Truhlar, J. Chem. Phys., 94 (1991) 7875.

23 K.A. Nguyen, C.F. Jackels and D.G. Truhlar, J. Chem. Phys., 104 (1996) 6491.

24 R.A.Marcus, J. Chem. Phys., 45 (1966) 4450; R.A. Marcus, J. Chem. Phys., 46 (1967) 959; R.A. Marcus,

J. Chem. Phys., 49 (1968) 2610; D.G. Truhlar, J. Chem. Phys., 53 (1970) 2041.

25 R.A. Marcus, J. Chem. Phys., 45 (1966) 4493.

26 B.C. Garrett and D.G. Truhlar, J. Phys. Chem., 83 (1979) 1079.

27 R.A. Marcus, J. Chem. Phys., 41 (1964) 2614; G.L. Hofacker, Z. Naturforsch. A, 18 (1963) 607;
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CHAPTER 6

Computational chemistry: attempting

to simulate large molecular systems

Enrico Clementi

Via Carloni 38, 22100 Como, Italy

Abstract

Computational chemistry is a very vast field dealing with atomic and molecular systems,

considered at different complexity levels either as discretized quantum mechanical

systems, or as statistical ensembles, amenable to Monte Carlo and Molecular Dynamic

treatments, or as continuous matter fluid-dynamical distributions, modeled with Navier-

Stokes equations. At the upper limits of complexity we encounter the mechanics of

living matter, a most fascinating area still highly unexplored.

6.1 INTRODUCTION

A flashback from a 1960 routine: the University of Chicago, Department of Physics,

Ryerson building, third floor. At about 5:00pm Prof. Robert S. Mulliken knocks at my

office door, opens it, and whispers some greetings, keeping unaltered his unique and

characteristic smile. The routine continues: he sits at my desk—on the extra chair for

visitors—then after having emptied my over-filled ashtray, he looks at me, by that time

already standing at the office large blackboard, ready to fill him in on the details of the last

round of computations performed at the Wright Patterson Air Force Base in Dayton,

Ohio. Well,…perhaps I should insert a few footnotes and start from the beginning for the

benefit of those who have been around less than a half of a century.

The Second World War was fought not only with soldiers on the battlefront but also

with the civilians, particularly scientists and engineers. The electronic computer was one

among the many innovations of that period, needed in the USA to build atomic weapons,

and in Germany to design missiles. After the war, however, it was soon most evident that

the computer could open doors to many new dimensions, affecting any aspect of human

life, including military supremacy.

q 2005 Elsevier B.V. All rights reserved.
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Since prehistoric times, mankind’s physical limitations and handicaps have been

mitigated with the invention of tools and related technologies; indeed the evolution and

the history of tool-making parallels the evolution and the history of humanity. However,

the traditional tools were all devised and then used to enhance the physical capabilities

of man, whereas the computer constitutes a unique and different kind of tool, devised

and used to enhance and complement our ‘brain’, our intellectual capacity.

It follows as no surprise that a few scientists, coming mainly from theoretical

physics, mathematics and also a few from chemistry, did look at the computers as

‘the’ way to bring together the relatively new field of quantum mechanics and the

prevailing hypotheses on the nature of the forces which held together the atoms in a

molecule. The meeting in 1951 at Shelter Island in Long Island, USA (reported in the

Proc. Nat. Acad. Sci. USA, by Parr and Crawford) was an occasion for an important

discussion on the topic; among the participants I would like to mention—in addition to

Parr and Crawford—Mulliken and Roothaan from the University of Chicago, Slater

from MIT, Boston, Löwdin from Uppsala University, Matsen from the University of

Austin, and Hirschfelder from the University of Wisconsin. The access to computers

was obviously a practical bottleneck, but the formulation of a general theory on the

chemical-bond and the solution of related mathematical algorithms were formidable

intellectual barriers.

6.2 THE LONG PREPARATION AND THE SEEDING TIME: 1930–1960

The computation of the potential energy curve of the simplest molecules, H2 in particular,

became the obvious test case, not only because there were good spectroscopic and

thermodynamic data for eventual comparison between laboratory data with theoretical

results [1], but mainly because at the time it was self evident that to test a theory one

should start by testing the simplest cases, to avoid the complexity of larger systems,

where accidental agreement by cancellation of errors could likely occur, invalidating

the test. Parenthetically, one could see that this very simple bit of good sense, a pillar of

the scientific method, was later on rather ignored by DFT proponents [2].

As we all know, since the early 1930s, there were two main approaches to explain

(rationalize?) molecular binding, one due to Heitler and London, HL for short [3], the

second due to Herzberg, Hund and Mulliken, namely the molecular orbital approxi-

mation, MO for short [1]. For a comparison between HL and MO results on the ground

state of H2 we refer to a review on this topic [4]. In the HL approximation, the electrons in

a molecule are considered as perturbed electrons of the constituting atoms, whereas in the

MO approximation the electrons are shared among the nuclei of the constituting atoms,

and therefore one does not have to explicitly make reference to the original atomic

orbital; of course this concept becomes somewhat fuzzy for inner shell electrons and for

all electrons near the molecular dissociation limit.

With evident oversimplification, one can say that the MO picture can provide a

reasonably good description for electronic excitation processes, including ground state

binding, less so if one wants to know the energy of the molecule as it dissociates into its

component atoms, whereas the HL approach, particularly after the conceptual extension

Chapter 690



due for example to Slater, Pauling, and Eyring leading to the Valence Bond, VB,

approach provided a good general language for the formation and stability of molecules

[5–8]. Reasonably well approximated (and manual) computations for both methods on

the hydrogen molecule ground state potential surface were performed [4], and it was clear

that neither of the two approaches was quantitatively exact: more accurate computations

and improved models were needed, a difficult task especially for molecules more

complex than H2. The chemistry community overall did favor the VB approach (until

around 1960), partly enchanted by the towering figure of Linus Pauling, partly because

the VB method was the one which allowed a description of chemical formation and

reactions. The physics community, however, knowledgeable of the atomic Hartree

model, was leaning toward the MO approach. It is of interest to read Slater’s comment [9]

‘More and more is becoming clear that the method of molecular orbital represents an

approach to chemical problems which is more satisfactory than any other, and that as it

becomes more and more quantitative, it can be hoped to lay a really exact foundation for

chemical theory. We must remember one reservation, however: the method of molecular

orbital does not lead to correct behavior at infinite internuclear distances.’

With the advent of the electronic computers in the early 1950s it was finally possible to

reexamine the two main approaches, and to take a closer look at the error implicit in these

formulations. Thus we witness a three-way effort: first, to establish a solid theoretical

method, second, to develop all the needed mathematical algorithms for its implemen-

tation and third to be able to effectively use the new tool, the electronic computer, to

obtain routinely numerical solutions. Incidentally, at the time there were relatively few

quantum chemical textbooks ‘computationally relevant’, computers were still extremely

expensive and rare; in short computational chemistry hardly existed for lack of teachers,

students, hardware and software.

In the early 1950s, still a chemistry student at the University of Pavia, in Italy,

I recall a lecture by Prof. C. Coulson; as Paul on the road to Damascus, I became sure

that his type of approach, quantum chemistry, was the one to be followed! Thus I

enrolled in a few classes given to theoretical physics students, since nothing relevant to

modern molecular theories was offered in the curriculum of my chemistry department.

Later, in my first postdoctoral year, 1955, at the Polytechnic of Milan, Prof. G. Natta

gave me the task to explain why a newly synthesized shining polymer, polyacetylene,

had a metallic-like reflectivity and to relate this property to the still experimentally

unknown structure of the polymer. Well,…despite being the only chemist in Natta staff

to have taken a theoretical physics class, and despite my hurried reading of Coulson’s

volume [7], I did not solve the assigned problem, and that fact gave me a chip on my

shoulder. Incidentally, this is one of the motivations at the origin of my interest for C2
and large carbon molecules [10,11] started in 1958–1959 on a semi-empirical level

with Kenneth S. Pitzer in Berkeley, and later continued in Chicago [12,13] and in

Kingston, New York [14].

Another flashback: 1957, Tallahassee, Florida State University, Department of

Chemistry, Prof. M. Kasha’s laboratory on a typical Saturday afternoon. Kasha and all his

group are in a self-study program going through Eyring, Walter and Kimball [8], page

after page, with enthusiasm and great care. The chemistry departments at the universities,

particularly in the USA, were preparing the future computational chemists.

Computational chemistry: attempting to simulate large molecular systems 91

References pp. 111–114



6.3 QUANTUM CHEMISTRY AND THE LABORATORY OF MOLECULAR

STRUCTURE AND SPECTRA, CHICAGO, 1960

Let me return to 1960 in Chicago, a period I personally remember well. Professors Robert

S. Mulliken and Clemens C. Roothaan Laboratory of Molecular Structure and Spectra,

LMSS, was the Mecca of theoretical chemistry. By the time I started my research

appointment in 1960, LMSS had Prof. Clemens C. Roothaan as its second faculty

member, Research Associated from USA, Japan, England, India, Spain, Italy, a number

of graduate students, later well-known theoreticians, and a most valid group of

‘associated non-contract personnel’ which in 1960 included Dr Wlodzimierz Kolos.

Anticipating by decades other theoretical laboratories, LMSS was structured along three

well-defined lines: computer program development, computational applications, and an

experimental laboratory in high resolution ultraviolet spectroscopy. Prof. Roothaan

(nicknamed C2, ‘C squared’) had the full responsibility for computer program

development, programming assistance and consultation for the ‘computational

application group’, development of mathematical algorithms and new methods in

theoretical chemistry. Prof. Mulliken (nicknamed RSM) had the responsibility to follow

closely the ‘application people’ who had a task either defined by RSM or mutually agreed

upon, for the more senior members of LMSS, and to supervise the spectroscopic

laboratory, located in the basement of the building. The third task of Prof. Mulliken was

one of public relations both with US government agencies and the international scientific

community. The atmosphere at LMSS was one of true excitement, since we were fully

aware of being members of an exceptional laboratory recognized worldwide; we felt part

of ‘the’ best team in the world.

In the decade 1950–1960 much progress was made and it is fair to say that

computational chemistry was conceived in that period. The paper by Roothaan in 1951

[15] proposed to obtain, for closed shell molecules, wave functions expressed by

orbitals obtained with the expansion method, using analytical basis set variationally

optimized with the self consistent field technique, expanding the previous proposal

by Hartree for atomic systems. The original work, made available to the scientific

community prior to publication as a technical report, contained a set of examples,

including the benzene molecule, omitted in the final publication [15] since it was ‘a

trivial example’, according to the author. That paper essentially marks the end of

Mulliken LCAO-MO concepts, since the expansion method does not have to rely on

the specification of atomic orbitals. Indeed Roothaan’s work starts the era of the

analytical (to distinguish it from the numerical) molecular Hartree–Fock technique.

The extension of the theory and related computer programs for systems with open shell

electrons [16] completed that effort, a landmark and a basic contribution to theoretical

and computational chemistry.

Incidentally, we note that at that time it was common for large research centers to

collect, publish and distribute their yearly scientific results either as reprints but often

also as preprints in order to quickly diffuse new ideas and computational results. In

particular the technical reports from LMSS had a very large and free dissemination; its

distribution list included research centers for over two hundred ‘domestic’ locations

(USA), over one hundred ‘foreign’ locations, particularly in England, in addition to
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a very extended list of US government agencies. I still treasure today a few of the red

covered volumes from the early 1960s.

The Chicago group was very careful in its use of semantics, not a surprise, for those

familiar with Mulliken’s way of thinking, writing and expressing himself (nearly an

obsession). The term ‘Hartree–Fock’ would be used only for sufficiently large and

optimized basis sets to ensure insignificant deviation from an eventual numerical

solution, the true Hartree–Fock limit. For all other cases one would simply talk of

SCF-MO. Today widespread misuse of the term Hartree–Fock definitively represents a

step backward, especially when, with exceedingly truncated basis sets, one magnifies the

superposition error thus obtaining ‘apparently good’ binding energies. Once I wrote a

paper on the subject, hoping to wake up some of my colleagues, a rather naive idea [17].

To obtain a Hartree–Fock or a SCF-MO solution one needs to compute, store and

retrieve a list of integrals over the basis set. That was a most difficult task first tackled

for diatomic and for linear molecules using the so-called Slater-type-orbital, STO basis

set (however, Slater would call the STO the ‘exponential’ type orbital). A general

solution for four center integrals for non-linear molecules was very hard to find, short of

paying a horrible price for computer time, implied, for example by performing a three-

dimensional numerical integration for electron 2 in the analytical potential of electron 1.

I should mention that the slow and difficult task of obtaining computer solutions for

molecular integrals, was preceded by the use of tables, where for given orbital

exponents, or related variable, tabular entries and simple formulas with interpolation

methods were available; I recall, for example the tables by Kotani from Japan, by

Preuss from Germany, by Matsen and by Roothaan from the USA. The first tabulations

were those for the overlap integrals, a particularly simple task also in tabular form.

Later, with the advent of computers, one would essentially compute the tabular entry

rather than look it up in a printed set of tables. I shall return later to other aspects of

these computations.

But by the time I arrived in Chicago, Roothaan and his collaborators’ effort was not

only to secure standard computer programs to deal with Hartree–Fock and SCF-MO

functions, but to go beyond the Hartree–Fock approximation toward a fully correlated

wave function both with CI techniques and with Hylleraas-type correlation methods.

Wlodzimierz Kolos’ deservingly most celebrated work [18] is one among the output of

this period; as usual Roothaan was selecting the hardest way tomake progress. At the same

time in England S.F. Boys and G.B. Cook [19] were also considering linear combinations

of determinants, a direct, nearly unelegant, cumbersome, brute force but pragmatic,

realistic and feasible algorithm. The notion of taking a linear combination of determinants

goes back to the mid-1930s, as one can see by reading J.C. Slater’s excellent volumes in

atomic, molecular and solid state quantum mechanics [20–22]. Concerning S.F. Boys,

I must mention his series of papers ‘Electronic wave functions’ started in 1950 [23].

The main stream of the chemistry community either ‘de facto’ ignored most of this

theoretical effort, or considered it with the sympathetic eye of the wise father looking at

children’s play: indeed, everybody knows that chemistry is to be carried out in a

laboratory, and in a laboratory only.

There is an excellent summary of the status of computational chemistry in 1959, in

a report of the Boulder, Colorado, ‘Conference on Molecular Quantum Mechanics’,
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June 1959, published in the Reviews of Modern Physics, Volume 32 (April 1960 issue).

Even if some of the papers presented at the meeting, were not included, when already

submitted to other Journals [10], this volume not only summarizes most of the field,

but reports the view of a highly recognized leader in applied quantum mechanics,

Prof. Coulson, from the Oxford Mathematical Institute. Coulson in effect divided

‘computational chemistry’ into two opposing efforts, the ‘semi-empirical’ one and the

‘ab initio’. Concerning the ‘ab initio’, Coulson’s opinion is sharp: ‘I see little chances—

and even less desirability—of dealing in this accurate manner with systems containing

more than 20 electrons. For I cannot help recalling Hartree’s remark, that if we were to

print the wave function values for the ground state of the iron atom with sufficiently small

interval in all the electronic coordinates, we should require a whole library to house the

books in which they were printed; and that there are not enough atoms in the solar system

to make the paper and ink necessary to do the same thing for the uranium atom.’ For

Coulson the future of computational chemistry manifestly belonged to semi-empirical

methods. Clearly for the ab initio minority Coulson’s opinion was rejected as

unimaginative and even uninformed. There was an apocryphal rumor circulating in

Boulder: Coulson did realize that only the American industry would be capable of

manufacturing and marketing the computer hardware of the future, and England’s

theoretical chemistry would not keep in step with the USA, an unbearable thought!

For reasons apparent later on in this paper, I hurriedly mention that E. Wigner in 1934

[24] introduced the term ‘correlation energy’ to identify the error in the Hartree–Fock

method, and proposed a simple functional of the electronic density to account for the

error; the approach was called ‘statistical method’ (since it was based on the density

rather than on the wave function). Wigner’s ideas were used in the computation of the

binding energy in metals, and later extended to atoms, particularly by Gombas and the

Hungarian school [25a] and even later (1972) to molecules by myself [25b,c]. Related

and rather parallel to Wigner innovation, there is Slater’s brilliant (even if not fully

original) exchange energy approximation [9] also expressed as a density functional

(obtained from the free electron gas density).

I do realize that these introductory pages are very incomplete. To present a proper

analysis of quantum chemistry in the period 1930–1960 would require a special volume,

which, if written by a critical and competent mind could show that the progress from

1960 to 2000 would have been more notable and rapid if in 1960 we would have had a

full grasp of the many accomplishments of the time and a mind free from prejudices.

Let me mention, and only as an example among many, the work of R. Daudel and

his school concerning aspects of chemical reactivity [26]. It is also of interest to recall

that relationships between electronic density and molecular properties, for example and

biological properties were the subject of publications by Otto Schmidt in Germany, since

the late 1930s. Mademoiselle Alberte Bucher, from the Daudel group, later continued

in this direction; as Madame Alberte Pullman, she also summarized the early ideas in a

first volume [27], the basis of a subsequent and more general volume [28] and of a very

vast literature. It is understandable, but nevertheless unfortunate, that at the time it

was assumed that far frontiers for quantum chemistry, like biological sciences, could be

tackled with rough approximations and rudimentary methods; there was no under-

standing that the enormous complexity of biological systems requires the maximum
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of rigor and realism to avoid explanation based on results plagued with error

cancellations, neither suspected and even less understood. Unfortunately this negative

trend, from time to time, reappears even today. A fully phenomenological approach can

be superior to a highly approximated version of a rigorous and exact method.

The organic chemists also considered quantum chemistry and from an early time; we

recall in this context the well-accepted and popular volume by Streitwieser [29]. In the

inorganic chemistry area we cannot avoid recalling the crystal field theory advances, and

refer for example to C. Ballhausen [30]. For additional references on this period we refer

also to the volumes published in memory of Per-Olov Löwdin [31]. I take this occasion to

stress the exceptional educational effort by Per-Olov in forming today’s computational

chemists; his Florida meetings and his summer school in Sweden had a truly catalytic

effect and introduced chemistry to the necessary level of mathematics rigor. As stressed

above, there should be many and many more references, omitted only because I must

cover the period 1960–2000, which ‘all in all’ mainly harvested what was seeded from

1930 to 1960.

6.4 MY HARTREE–FOCK, MC-SCF AND DENSITY FUNCTIONAL

PERIOD: THE 1960 DECADE

In Chicago, B. Ransil computations [32] for the ground state of hydrogen fluoride

created a puzzle, when it appeared that the MO picture seemingly suggested a charge

transfer opposite to the expected one. Was the Hartree–Fock basically untrustworthy

The fluorine atom Slater Type Orbital, STO, basis set was minimal, but the hydrogen

atom basis was extended with a 2p polarization function attempting to improve the

description; at the time the basis set superposition, BSS, error was still an unknown

disease and therefore the puzzle. RSM asked me to look into the problem and I decided

to push the MO-SCF computation as much as feasible, namely, to the limits (a) of the

computer code, written by D. McLean, M. Yoshimine, and A. Weiss, under the close

supervision of ‘C2’, (b) of the computer time availability in Dayton, Ohio, and (c) of my

enthusiasm and physical endurance.

All orbital exponents were optimized, assuming a parabolic behavior (but often

exploring a larger range of values) for a double-zeta type STO basis set with 2ps and

2pp on hydrogen and 3dp polarization functions on fluorine. Notice the distinction

in the orbital exponents between 2ps and 2pp, later on generally neglected. The

importance of polarization functions was a well-known fact, documented in Linnett’s

public notes, written during a sabbatical in Berkeley, California in the late 1950s. The

ground state potential energy curve for the HF molecule was computed for six

internuclear distances, and for each point and each choice of orbital exponents the

dipole moment was also computed, attempting to learn more on the mysterious charge

transfer. An energy minimum was obtained with 2100.05604 hartrees at a distance of

1.7326 bohr with a binding energy of 0.147 hartrees and with computed dipole moment

of 1.984 debyes; the HF total energy limit was estimated be about 0.004 hartrees

deeper. The corresponding spectroscopic laboratory data are: internuclear separation

of 1.74 bohr, dipole moment of 1.74 debyes, and binding of 0.2235 hartrees. In addition,
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a few excited states, the ionization potential and an analysis of the correlation error

were presented, stressing for the first time the importance to separate the total molecular

correlation into atomic and molecular components.

The hydrogen fluoride riddle was solved and the era of molecular Hartree–Fock

computations was open. The need to have adequately large, polarized and balanced basis

sets, is tantamount to require near to Hartree–Fock basis sets. The work was quickly

written, submitted and printed [33]; it was the first Hartree–Fock type computation for a

‘many electron’ molecule with the clear message not to waste computer time and human

effort with minimal basis sets. Well,…this was a rather strong message! Indeed, minimal

basis sets computations littered (embellished?) the computational chemistry literature

for decades to follow, with the more or less acceptable excuse that computer time can be

too expensive or not available.

Today we would assign the task to obtain an Hartree–Fock type function for the

HF molecule as a weekend home-work to computational chemistry students. In the

1960s it took few hours per computation on the Dayton ‘supercomputer’, the Scientific

Univac 1103 A. There were 16 orbital exponents to be optimized, thus a minimum

of 16 £ 4 ¼ 64 computations, yielding a total of a few hundred computations, when

multiplied by the number of internuclear distances. Actually the computations were

more numerous, since I made a detailed analysis of the energy and dipole moment

variations related to the orbital exponent optimization. In practice, it implied many trips

from Chicago to Dayton, Ohio for few months, hundreds and hundreds of computer

output pages to be analyzed for the input and output details and for energetic infor-

mation (at each SCF iteration). The orbital exponent optimization was carried out

explicitly for the molecule in consideration, rather than accepting pre-fabricated and

often over truncated basis sets, a typical situation in the 1960–2000 period and today.

Shortly after my work a very similar computation by R.K. Nesbet appeared in Journal

of Chemical Physics, with a nearly insignificantly worse energy but an improved dipole

moment and, somewhat later, there was a paper by M. Karplus attempting to discrimi-

nate which of the two (nearly equivalent) computations was the ‘best one’. These details

are reported to provide a feeling for the situation of computational chemistry in 1960.

Incidentally, today we know that both computations fell short of a near to Hartree–Fock

energy; for example G. Corongiu has obtained for the HF molecule an energy at its

minimum of 2100.071137 hartrees [34], obtained with a Gaussian basis (10,5,4/6,5,4)

for the hydrogen and (18,13,5,4/12,6,5,4) for the fluorine atom. Perhaps the relevant

observation is not which of the above quoted computations (Clementi versus Nesbet)

was the best one, but how far are these computations from the correct laboratory data!

Wigner [24] and afterward with more rigor Löwdin [35] defined the correlation

energy as the difference between the exact non-relativistic energy and the Hartree–

Fock energy (leaving most of us in suspense for a more general and accurate definition

that recognizes overlapping areas between relativistic effects and correlation energy).

In the 1960s the general idea (mainly a prevailing guess) was that ‘grosso modo’ there

is a contribution to the correlation energy between one or one and one half eV per

electron pair; this notion was badly in need of quantitative clarification, since clearly

we are talking of a large fraction of the molecular binding energy. For example, for the

HF molecule, the molecular correlation energy is about 2 eV [38], thus larger than
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generally guessed. This clarification was one of my first tasks in California; there is

little point in performing Hartree–Fock computations unless the magnitude of the

implied error is known and well understood.

Having accepted in the summer of 1961 a staff position with the IBM Research

Laboratory in San Jose, California (after much advice and discussions with RSM, since I

was torn between an offer from Prof. Herzberg, in Ottawa, a second one by the University

of Genoa, in Italy, at a center interested in neuron chemical physics (Mike Kasha’s

influence) and a third one by IBM) and being at liberty to decide on my research line,

as long as it would deal with the use of computers in science in general, chemistry

included, I felt finally free and ready to start a long range and very systematic research

plan to explain ‘living matter mechanisms’ via the law of physics, within the logical rigor

of mathematics and expressed in the form of unambiguous and reproducible computer

outputs. Verified laboratory experiments would decide on the correctness of the

theoretical frame, and vice versa, theory and computer simulations would expand the

limits of the laboratory. However, having only a feeling, rather than a knowledge, of

what is a correct definition of ‘living matter’, I generally use the surrogate and simpler

expression ‘large molecular systems’, when thinking of ‘living matter’. Clearly, the

obvious operational way to start to tackle ‘large molecule computational chemistry’

was to systematically perform simulations in the Hartree–Fock approximation and to

quantitatively calibrate the magnitude of the correlation energy error. Gradus ad

Parnassum [36]: I shall start with atoms, then pass to simple and later to more complex

and large molecular systems. It is a zoom-out methodology, and the resolution of

the simulated description will change each time it is felt to have reached the upper

complexity limit for a given methodology. From the quantum chemistry of atoms and

molecules, to the statistical description of N, P, T or N, V, T ensembles, to the fluid

dynamical description of continuous matter, to the organization of continuous matter

into specific self generating macro systems, cells in particular. It was 1960, the world

was still recovering from the horrors of the war; there had to be a better, just and without

wars world and a rational future!

My first selected task was to set a new standard in atomic computations—not a few

Hartree–Fock functions for published paper but dozens and dozens for atoms and ions,

positive and negative, ground and excited states, to make it clear that the time had come

for a new era in simulations, the Computational Chemistry Era. The functions were

supposed to help as the eventual starting point in the optimization of molecular basis sets,

assuming, incorrectly, that the four center general geometry STO two electron integrals

bottleneck would soon be broken. At the same time I wanted to put IBM San Jose on the

world map of computational chemistry. Several hundred wave functions were published

quickly [37–41], a very hard work at that time when one had to punch input cards for

each orbital exponent to be optimized, and repeat the process thousands of times! The

work was collected in a volume the ‘Table of Atomic Functions’ [42]. Few years later, I

returned to the atomic work, this time with Carla Roetti, extending the original work

limited to atoms and ions from Z ¼ 2 to Z ¼ 36 to atoms and ions from Z ¼ 2 to Z ¼ 54

[43]. The tables [42,43] have been requested by hundreds of scientists. Incidentally, the

most heavy users of these functions at first were the solid state physicists; the chemists

were still far behind.

Computational chemistry: attempting to simulate large molecular systems 97

References pp. 111–114



The next obvious step was to obtain reliable estimate of the atomic correlation

energy, but to do this I was in need of computing a reasonable accuracy the relativistic

correction at least for the ‘non-relativistic atoms’ from Z ¼ 1 to Z ¼ 36; the back bone
of the chemical world; the task was accomplished quickly [44]. At this point, using

the laboratory available atomic ionization potentials (or suitable extrapolations

obtained using the atomic data), it was simple to estimate rather accurately (within

0.001 hartrees) the atomic correlation correction, but more important, it was possible to

learn of the notable regularity of the correction [45–47] and from this to extrapolate

from atoms to simple molecules [48]. The correlation energy data were revised a few

times but it took about 20 years before someone would produce a relatively final set of

data [49].

In the mean time IBM San Jose, LMSS in Chicago, and few other centers, were busy

in computing systematically at the Hartree–Fock level, mostly diatomic or small

molecules. Thus the Hartree–Fock Era was advancing. The main obstacle—lack of

computer time and therefore a justification for minimal basis set computations and for

rough semi-empirical work in polyatomic molecules. A related problem—still no

progress in the generation of a general four-center electron–electron integral package

with STO.

The atomic work brought up as very evident the atomic Z-effect, namely the near

degeneracy effect first pointed out by Hartree [50], namely the non-dynamical correlation

energy discussed by Sinanoglu [51]. Incidentally, at that time Sinanoglu was proposing to

compute with reasonable accuracy the correlation energy without the need to compute a

Hartree–Fock energy (or density); it is interesting to recall that this idea was praised by

leading quantum chemists [52].

I recall that the main stream computational chemistry was bent to fully solve the

correlation problem with a single ‘technology’. At the time various kinds of configuration

interaction algorithms were considered, including configurations with non-orthogonal

orbitals. P.-O. Löwdin had written the equations needed to compute the interaction

energy for determinants containing non-orthogonal orbital. That work is essential for the

‘different orbital for different spins’ methods, a concept very dear to Löwdin and, in my

opinion, still insufficiently explored in computational chemistry.

Contrary to main stream computational chemistry, I felt that it would be worthy to

learn if one could substantially, but systematically, reduce the correlation energy

error [53] with some simple algorithm, being clear of the difficulties one would encounter

in a full elimination of the correlation error.

I confess that I had serious misgivings about the practicality in performing

configuration interaction computations, if the goal was to compute ‘large molecules’. It

all started with a work, unpublished, on LiO and MgO, using Nesbet’s CI code, shortly

after his arrival in San Jose. For LiO I managed to select a few different subsets each of

100 configurations (adopting Boys’ criteria) and to diagonalise the secular equation; at

the time, handling 100 £ 100 matrices was a very serious task. To my knowledge that

was the largest CI computation ever attempted, but the energy gain was totally

disappointing, around 1.5 eV. for LiO! For MgO I never managed to complete one run

after a few days of computer time! After much thinking and mental extrapolations on

eventual computer advances even in the far future, I came to the conclusion that CI
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would never be the method for large molecules. Of course I, like LMSS people, had still

much hope for the emerging Multi-Configuration-SCF techniques, but I felt that it was

not a task for me, since for large molecules it would take computers of enormous power,

perhaps available only after my lifetime. In addition the task was clearly more adapted

to someone very skilled and much interested in programming, and willing to spend

many years on that single task. Today, considering for example the work by Shavitt or

by Schaefer and by others excellent quantum chemists dealing with CI type techniques,

I am somewhat less confident on the validity of my early extrapolation on the future of

the CI method for large molecules.

It was this type of consideration that brought me in 1963 and 1964 to the coulomb hole

method [55]. Merely the simple sight of the electron–electron interaction integral

formula, where for a given space location of electron 1 it is possible for electron 2 to

occupy the same space position, tells you that something must be done to correct this

unphysical behavior. If in addition one has read the Wigner work [24], then one would

immediately ‘carve’ around electron 1 a variable size region, an approximated Coulomb

hole, impermeable to electron 2. Clearly the carving has to be done when one computes

the average field, thus it is a part of the SCF process. The equation for the coulomb

integrals with a coulomb hole were easily derived, and the corresponding code was added

to an atomic SCF program. The size of the carving was made proportional—via a rather

complicated expression—to the product density of the STO for the electron 1 with

the STO for electron 2, with an empirical proportionality constant. An atomic computer

code was made available to any interested user. Soon thereafter, I extended the Coulomb

hole correction method by computing atoms with a Gombas-type density functional

[25a]; these density functional computations, were later extended to molecular density

functional computations for CH4 [25b] and C2H2, C2H4, and C2H6 [25c], the ‘first density

functional molecular computation in quantum chemistry’. Unknown to most US compu-

tational chemists, since the early 1940s, the Wigner correction was carefully considered

in Europe, particularly by collaborators of Wigner, like Gombas and Gaspar in Hungary.

It was during a Löwdin meeting in Hungary that I had the pleasure to meet and discuss

this with the two Hungarian scientists.

The importance of team work learned particularly at Chicago LMSS, and the need to

create a laboratory with critical mass, lead in fast sequence to my promotion from staff

member, to group leader, to department manager (the name of the department was

‘Large-Scale Scientific Computations’). From this expansion the concomitant need to

hire promising scientists; among them A.D. McLean, M. Yoshimine, P. Bagus and later

B. Liu, all from LMSS, R.K. Nesbet from J.C. Slater group, W.A. Lester, Jr. from the

Bernstein-Hirschfelder group in Madison, Wisconsin, and even later J. Barker and

D. Henderson, at that time from the Waterloo University in Canada. A small group in

fluid dynamics was strengthened with the arrival of J. Fromm, from the famous T2 group

in Los Alamos. I did consider all of them as colleagues, and, thanks to the liberal support

from IBM, I provided as much computer time as they requested, travels to meetings, and

a good number of postdoctoral collaborators, chosen from all over the world.

It was not too easy to induce IBM management to start a postdoctoral program at

the IBM Research division, but I was determined, since I considered this addition as the

only avenue to ensure that my department, and therefore also the IBM Research

Computational chemistry: attempting to simulate large molecular systems 99

References pp. 111–114



Division, could be on equal footing with the best USA Universities. With the ‘explicit

support and complicity’ of J.C. Slater, L.H. Thomas, C.A. Coulson, M. Kotani, R.S.

Mulliken, M. Simonetta, R. Daudel, and P.-O. Löwdin and a bit of ‘savoir faire’ and

plenty of good luck, I managed by 1965 to get the program approved and financed.

By now hundreds and hundreds of scientists have participated in the IBM Research

postdoctoral program, open first in my department at IBM San Jose (later in the

Almaden location), then in Yorktown Heights, New York, and in the Zurich laboratory,

namely the three IBM Research Division locations. The postdoctoral program (or

visiting scientist, to use IBM proper terminology) provided IBM with a stream of new

blood, with ideas, with a network of relations, useful also for marketing, and at the same

time opened to computational chemistry many Universities, particularly where

computer time was still scarce or not available; note that for many years our scientific

computer codes were given away for free to the visitors or any requesting scientist. This

two-way stream was the case—to mention only a very few examples from the early

period—of B. Roos, P. Siegbahn, J. Almlöf, and U. Walgreen from Sweden, A. Veillard,

E. Kochanski, and C. Salez from France, G. Dierksen and W. Kramer from the Max

Plank in Garching, and W. von Niessen, H. Kistenmaker and W. Mayer also from

Germany, H. Popkie from Canada and G.C. Lie from Chicago. IBM management did

overall fully appreciate these initiatives and in 1968 honored me with the nomination to

IBM Fellow, thus I was free to do any research I wanted, at any IBM location, and with

a good research budget (I decided to remain in San Jose, to continue my work, but I

asked to be relieved of managerial duties).

The first assault to atomic systems was therefore successfully carried out, but the

progress in the molecular field was in my view much too slow; McLean and Yoshimine

were once more rewriting the linear molecule computer package, somewhat unable to

deal with the very difficult task of creating a general four center integral program; R.K.

Nesbet was getting more and more interested in scattering, thus I decided to take on me

the burden to produce a general molecular computer code. Two additional motivations:

firstly, the MIT group was working on a general molecular code, later known as

POLYATOM, and secondly, I had the pleasure to host, as a visiting scientist, S. Huzinaga

previously met at LMSS in Chicago. With Sigeru’s help I decided that a Gaussian basis

set package could be somewhat faster than a corresponding STO package, despite the

3-fold (or likely more) increase in the basis set size. In addition the integral equations,

available from MIT were carefully rechecked by Huzinaga, lastly I had hired from the

IBM San Jose site a programmer, Mr. D. Davis, willing to experiment the scientific

computing field. After 1 year, by December 1965, the documentation manual of IBMOL

(an obvious abbreviation for ‘IBM molecular package’), with table of test molecules and

timing was ready to be used and both manual and the corresponding code were distributed

free of charge to quantum chemists [56]. The code was open ended, limited to closed-

shell molecules, the basis set could be either primitive or contracted, up to and including f

functions [57]. I spent the Christmas holidays in a computer room, to obtain the barrier to

internal rotation in ethane [58]. By June 1966 a second version of the code was available,

much improved, for closed and open shells, with a rudimental inclusion of point group

symmetry features [59] with Alain Veillard as first author; I take occasion of this work

to express all my admiration to Alain, a most competent, efficient and constructive
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computational chemist from France. Subsequently, several versions of IBMOL were

written.

The Hartree–Fock model was known to fail in the case of near degeneracy, as pointed

out by Hartree [50], and the correct approach was to use a linear combination of the few

nearly degenerate configurations, optimized self-consistently; this is the well known

‘generalized Hartree–Fock method’ or the Multi-Configuration-SCF method. The four

electron Be ground state and especially the corresponding iso-electronic series of ions,

exhibit very clearly the degeneracy problem, with a correlation energy sharply increasing

with the atomic number Z:
With Veillard we decided to extend the SCF atomic code and to include more than one

determinant, obtaining variationally at the same time both the weight of the determinants

and the orbital expansion coefficients [54]. This was our beginning in the Multi-

Configuration-SCF work. It was natural to think to adapt the IBMOL package as to

include Multi-Configuration. There was no reason not to consider all the configurations

which can be generated from the ground state one, as it was done in the Complete CI

methodology, thus we proposed the Complete Multi-Configuration Self Consistent Field

Theory [60]. In San Jose, A. Veillard met G. Dierksen, and this provided the base of the

Strasbourg series of colloquia to implement and extend the Complete Multi-

Configuration Self-Consistent-Field Theory; several years later B. Roos also entered

the MC-SCF arena developing the well known CASSCF set of programs.

In the mean time McLean and Yoshimine had completely rewritten the linear molecule

code ‘McL-Yosh Linear Molecular Program. 1.’ available also from QCPE. At the end of

1967, ‘The Tables of Linear Molecule Wave Functions’ were available [61], with the

introductory comment that these were a prelude to ‘forthcoming tables at the Multi-

Configuration-SCF level’, following Das and Wahl [62], Clementi and Veillard [54,60],

and J. Hinze [63] (at LMSS) works. At that time the San Jose collaboration on MC-SCF

with B. Roos group had not yet started; the idea to invest on the MC-SCF path was widely

accepted in quantum chemistry.

1967, back in Chicago for a 1 year visiting professorial lecturer (during my San Jose

period—1961 to 1974—Mulliken and Roothaan were our very frequent visitors), this

time with a general geometry molecular code and ample machine time, even if in San

Jose and at Yorktown Heights, and not in Chicago. Mulliken was eager to see the

computation of a relatively large molecule exhibiting charge transfer, but had no idea of

the required computer time. The choice to study either NH3 or N(CH3)3 at two different

distances from HCl was influenced by recent studies by RSM in molecular complexes,

carried out not in the MO approximation but in the Valence Bond approximation, since

RSM felt that VB was superior to MO in describing chemical processes. I rather carefully

estimated the required computer time for a full potential with HCl approaching NH3, the

target, relaxing the molecular geometry for each choice of the Carbon-Chlorine distance.

I immediately dismissed the need to use VB methodology, after all I was addressing two

interacting closed shell systems, thus an overall single closed shell system. For

computational reason I also dismissed to consider N(CH3)3. It was an exciting and hard

project, very near to the limit of the computational resources at my disposal. Physically it

was a very demanding year, each Saturday and Sunday in the computer room in

Yorktown, New York (joined by A. Veillard, at the time visiting Moskowitz in New York
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and busy at extending IBMOL in the MC-SCF direction), and once a month in San Jose,

to supervise my department progress. The rest of the week in Chicago to analyze the

outputs and prepare the inputs, to briefly talk with LMSS people, including Prof. Kolos,

who would give me his inputs for the H2 molecule, also to be computed at IBM

Yorktown. I badly needed some moment to relax a bit, and for a short period, once a

week, I would spend an afternoon oil painting in a painter’s studio in Evanston [64].

To map the potential surface of NH3 reacting with HCl [65,66] was simply a thrill!

Before I always did associate these displaces to VB computations, now it was a MO one,

it was an all electron computer simulation with a robust method and a double zeta type

plus polarization basis set. The scientific community was also excited, and the work

eventually made its way also to the New York Times daily newspaper [67] and to Time

magazine [68]. The work was baptized by the French community ‘the supermolecule

approach’ a term I never did much appreciate. It was an important moment for

computational chemistry and a clear cut victory for the Hartree–Fock method. In this

period in San Jose, as a consequence of my invitation, arrived Jean-Marie and Marie-

Claude André; Jean-Marie wanted to continue his pioneering work on polymer-MO,

initiated in Belgium in Leroy group. I advised him to ‘go ab initio’, after all that was the

right tide, and I had the proper facilities. He accepted and in no time started his well-

recognized research plan in polymer quantum chemistry, the base for his well-known

Namur group, while Marie-Claude was working with me at the first all-electron ab initio

computation on molecules of biological interest in molecular genetics. I confess I was

reacting to the trend prevailing at the time that insisted that for molecular biology one

could be computationally sloppy! After all that to me was ‘a kind of personal affront’,

given my intense interest in ‘large molecular systems’. Thus, not surprisingly, we started

with computations on the four DNA bases and on a base pair, to learn more on the base

pair hydrogen bonds [69,70]. Incidentally, many more molecules were considered in that

period and the series of papers ‘Study of the Electronic Structure of Molecules’ grew

from the first paper [71] to paper number 23 [72].

The time was ripe to look more into the interaction between molecules, and this is the

topic of the series of papers ‘Study of the Structure of Molecular Complexes’ from a first

paper [73] dealing with a water molecule interacting with a lithium ion, to the paper

number 14 [74], all concerned with water–water, water interacting with positive and

negative ions and water interacting with molecules of eventual biological interest. The

one or two readers of this paper are referred to my publication list printed in the Int.

J. Quantum Chem. in a 1992 volume, kindly dedicated to me [75].

By the beginning of the 1970s, I could rather clearly foresee what could be obtained

from computational chemistry, even if it was necessary to wait for ‘operational details’,

like the level of efficiency of Multi-Configuration and geometry optimization codes, the

rate of increase in the interest from Research and Development centers to daily use

computational techniques and, most of all, the willingness of the electronic industry to

market computers of drastically increased performance and lower price; the technology

was available, but the market was not too clearly defined.

In 1972 I wrote a paper [76] to summarize my overall conclusion, a forecast and blue

print for computational quantum chemistry: use a combination of ab initio computations,

when feasible, and density functional SCF techniques, by that time already successfully
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tested [25b,c], for example with Wigner type functionals in the SCF contest, for larger

systems, and focus on simplifications to reduce the computational time dependency on

the size of basis set, by approximations of the integrals of small magnitude. In that paper I

pointed out that the computer time dependence was most clearly not a fourth power of the

basis set number, but somewhat less than a square power, and this limit could be

decreased further. Considering the DFT explosion after 1985, I conclude I was correct on

the first point. Looking at the work for example championed by Almlöf, Scuseria, and

others, it is evident I was correct also on the second point. However, these horizons were

not sufficiently evident to many colleagues in the field. For example at that time J. Pople

was also presenting his forecast for computational chemistry dismissing ab initio

chemistry in favor of semi-empirical approximations. Beside the IBM San Jose center,

LMSS, Löwdin’s groups in Uppsala, Sweden, and in Gainesville, Florida, Slater’s group

at MIT and the new ‘affiliations’ related to these laboratories, and the ‘traditional’

theoretical centers, particularly in Europe and Japan, there were relatively few other

centers for ab initio computational chemistry; the prevailing theoretical and

computational approach was semi-empirical.

Let me open a parenthesis on computer development, the life blood of computational

sciences. The computer industry was moving fast, but still very much far from the needs

of computational demanding jobs. The computer era started de facto in 1946 with the

ENIAC computer, followed by the IBM-650, and other first generation computers (ferrite

memory, vacuum tubes, no operating systems, no compilers, etc.). In the second

computer generation (1955–1965) we find, for example the IBM-7090, IBM-7094,

Univac, and the CDC computers (transistors, magnetized core memory, tapes, punched

cards, Fortran, etc.). The situation changed with the third computer generation, 1965–

1975 (integrated circuits, channels, magnetic disks, system software, virtual memory,

time-sharing), typified, for example by the computers IBM System 360, but particularly

by the appearance of the mini-computers, especially the VAX systems, which were

entering in many chemistry departments, starting the mass-computational chemistry

approach we know today. This was also the time for early hardware experimentations

with special purpose computers with parallel architecture and of my interest in this

new technique.

6.5 FROM SCHRÖDINGER TO NEWTON; MY SECOND SIMULATION

PERIOD

In any mechanics, there is an implicit complexity limit which is more efficiently dealt

with by renormalizing the objects of motion, and thus neglecting explicit account of

constant background interactions. Thus in dealing in quantum mechanics with the

electronic structure of atoms we do not have to explicitly deal with the details of sub-

nuclear particle interactions, which are normalized to a single charged, somewhat

spherical body of a given average radius, or, more simply, to a point charge with a given

mass. Equivalently, if we consider an ensemble of a given number of atoms and/or

molecules, at a given temperature and pressure (or volume) we do not have to explicitly

deal with the detailed nuclear–electron and electron–electron interactions within
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the atoms and/or molecules constituting the ensemble. Finally, in considering the

mechanics of even larger systems we assume a continuous distribution of matter and

the renormalized particle in fluid dynamics is the control volume element with conserved

mass and angular momentum.

In moving toward large molecular systems, it was for me the time to advance from

computational quantum chemistry to Monte Carlo and Molecular Dynamic simulations,

and to make use of the molecular interactions obtained from quantum chemical

computations during the last few years to define force fields. From here the first work on

liquid water [77]. I was ‘organizationally ready’ with the hiring of excellent scientists as

J. Barker and D. Henderson, and of a fluid dynamicist, J. Fromm (kept in reserve for

the next and forthcoming ‘renormalization’ effort). To ensure a positive transition, I also

invited R. O. Watts, from Canberra, Australia. One could wonder why it was needed

to increase the San Jose team, rather than move into the new area with the existing

collaborators. The simple answer is that most scientists like to stay in a ‘given well-

defined problem area’ for a life time, especially when recognized as area leaders. My

interest was in ‘large molecular systems’, but that implied a succession of ‘areas’.

The use of Wigner type correlation correction to Hartree–Fock energies [78] and/or

the inclusion of dispersion forces [79] and/or the use of CI energies [80] to define

different potentials in Monte Carlo simulations of liquid water, underscores the problem

on the reliability of ab initio potentials for force fields. Note that at the time the force

fields were obtained only semi-empirically, but I was championing the ab initio banner.

Soon the excitement to see for the first time graphical representations of computed

solvation shells for solvated ions from Monte Carlo simulations [81]. The next step was

to go to even more complex systems, like enzymes, proteins, and particularly nucleic

acids, A-DNA [82], B-DNA [83], without and with counterions [84] and in solution. The

quantum biology community was taken by surprise, but soon accepted the new path as a

new but necessary computational standard. I was proud to have forcefully recalled that

the correct dictionary of quantum biology must contain terms like temperature, volume

and free energy; eventually, I was elected president of the International Society of

Quantum Biology.

Personally, on my private side, this period was ‘a bit confused and even turbulent’.

In 1972 Hildegard Cornelius, my first wife, and I decided to divorce by mutual consent.

In an ensuing possibly somewhat not too lucid state of mind, this is my current opinion,

I left in 1974 IBM San Jose to accept the offer to build a computational department in

Novara, Italy, at the Donegani research center, with the chemical company Montedison.

It turns out that, unknown to me [85], the company had serious financial and political

problems; indeed, by 1977 Montedison essentially disbanded much of the research

effort initiated only a few years before. However, thanks to my old director of the San

Jose laboratory, Dr. Art Anderson, I was given the opportunity to return to IBM, this

time in Poughkeepsie, and later in Kingston, in the state of New York. Dr. Anderson

at the time, after having been promoted to vice director of the IBM Research Division,

and later site manager of San Jose plant, was the vice-president in charge of all IBM

manufacturing divisions.

One of the pleasant memories from my Novara period is the collaboration with

Octavio Novaro from the department of Physics at UNAM, in Mexico city. His notable
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experience in industrial catalysis and his competence in quantum mechanics and

quantum chemistry coupled to a marvelous human character made him and his

collaborators unique partners to study the mechanism of the Ziegler-Natta reaction.

That simulation [86] marks the beginning of computer simulations in chemical

catalysis, as he himself has later recalled [87]; about 10 years later, once more

computational chemists considered catalysis as an area of computational interest [88].

In the Novara time I renew the contacts with Pavia, and in one occasion I was awarded

the gold medal ‘Teresiana’ (the Empress Maria Teresa did foster the University system

in North Italy). In Novara there were other visitors for example W. Kolos, J.M. André,

G.C. Lie from IBM San Jose, J. Fernandez Rico, from Madrid, B. Jonssonn from

Lund, Sweden and a number of Italian young collaborators entering computational

chemistry for the first time.

Novara also marks the beginning of my collaboration with G. Corongiu [89] started

with the writing of her doctoral dissertation, a joint study between the quantum chemistry

group in Pisa and my department in Novara (‘Dipartimento di calcolo chimico’).

Since then, her collaboration has been continuous and very close as documented, for

example in the over 100 papers listed in Ref. [73].

6.6 STATISTICAL AND FLUID DYNAMIC SIMULATIONS, AND ALSO

COMPUTERS HARDWARE DEVELOPMENT IN THE HUDSON VALLEY

The graphics for the water molecules solvating DNA [82–84] was hand drawn; I

and Dr. Corongiu were starting a new research group in IBM Poughkeepsie, in a

manufacturing environment with no scientific graphics facilities. Dr. Corongiu would

point the compass—on a large millimeter paper—at the hydrogen or oxygen atom

computer coordinates, which I would read from the computer output and then she would

draw the atom circumference; an extenuating effort, done simply because in a very new

location with no scientific computation experience and related facilities one had to adapt

himself in the expectation the situation would soon improve, as indeed it did.

Let me open a second parenthesis on computer development. The fourth computer

generation, 1975–1990, was characterized by very large system integration, VLSI,

vector processing, large memories up to Giga bytes, and a broad spectrum of products

from high speed supercomputers to PC, workstations, UNIX became popular, CRAY,

IBM-3090, Fujitsu, Hitachi and NEC and also the beginning of parallelism. Prices came

down, performance and easy use increased and communication became important.

Computational chemistry became a must for more and more chemists, even if the

computer users had less and less awareness of the computational details of computer

programs, and hardly understood that the computed answer could be incorrect, because

of limitations of the selected method. In this computer generation and even more in the

following years, internet, communications, commercial computer programs, computer

servers, personal computers, desktop, graphics, Window, and Linux were common

words, memory and disk space seemed unlimited, price/performance improved yearly,

but faith in the computer replaced knowledge of the instrument and its software.

Computational chemistry was becoming a part of the global economy.
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Back to Poughkeepsie in 1978. The computer time was available in large amount,

assuming one was capable and willing to use the leftover computer time in a ten thousand

IBM employee site, where the electronic components were assembled for most of the

IBM mainframe computers worldwide. At the beginning, during day time the computer

was mainly for debugging and testing, in night time and especially during weekends the

only problem for us was to physically endure in the enormous computer rooms of the

IBM plant, keeping fully busy two or, at times, four dedicated computers from evening

to early morning. Corongiu quickly become an expert in mounting disks—with our

dedicated operating system—and tapes and in supervising the night crews of computer

operators. The programming, input preparation, and all the standard scientific activities

were left for the day time.

Molecular dynamics and its extension to fluid dynamics were the two main

computational efforts, but a new version of IBMOL and of other codes had to be written

once more. The IBM postdoctoral program was eventually extended also to

Poughkeepsie site and later to the Kingston site, with ‘full industrial IBM efficiency’,

namely, I had to prepare a yearly detailed research plan with inclusion of both permanent

and temporary (the postdoctorals and the visitors) personnel, and since IBM was in a

growth period, the expected yearly manpower increase! My work was supposed to

contribute to IBM understanding of the future needs in the scientific market for computer

hardware and software; this did imply for me close contacts with IBM Headquarters

in White Plains and in Armonk, with Dr. Anderson and his staff, and a very active

participation for me and for all my collaborators to many IBM scientific meetings, in

USA and abroad, where IBM would announce and market his products.

In 1981 at a dinner for my birthday, Dr. Weeler, my direct manager, presented me

his birthday gift, an IBM 4341, a small but flexible mainframe computer which could

be linked channel to channel to other mainframe computers. We had grown to a good size

group with permanent members and visitors, carrying out essentially the same research

life as in San Jose, but in a different environment, that made us ‘white flies’. Contacts

with the San Jose group were reestablished, but the interest were notably different, they

still working at MC-SCF and relatively small systems, with B. Liu as department

manager, we moving to more complex systems both in computational chemistry and in

computer hardware.

Time to time I am invited to present a seminar in locations of my previous

collaborators, some of them by now internationally well known; it is a most pleasant

feeling to renew contacts with my ‘extended family’. The highly successful meeting in

Gyeongju, Korea, 2004, organized by Prof. Kwang S. Kim was one of these occasions.

Other were with Andrés group in Namur, where the University of Notre Dame de la Paix

awarded me with an ‘Honoris causa’ degree or celebrated my 65th anniversary.

The relativistic correction was for a long time, since early 1960s [44] high on my list.

An atomic relativistic code was implemented [90], and a molecular relativistic code was

started, and eventually ultimated [91] at the L. Pasteur University, in Strasbourg, France,

my last (last?) working place, following an invitation from Jean-Marie Lehn.

Computer graphics was also an important topic, essential to visualize the complexity

of large molecular systems performed at the molecular dynamic and fluid dynamics

level. Water as a liquid [92] and as a solvent or as interstitial medium continued to be
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investigated, with Corongiu more and more behind this effort and with excellent and

highly motivated visitors dealing with molecular complex systems like proflavine-DNA

or the gramicidin channel [93]. A rather strong effort was mounted to obtain Hyllaraas

CI functions for very small systems, using Gaussian type functions. That, in turn,

required the derivation and subsequent coding of the complicated 4 electron integrals,

tested for several states of H2 and H
þ
3 [94]. Artificial intelligence was experimented to

solve conformational problems and a collaboration in artificial intelligence was

established with a specialized center in Finland. The preparation of ab initio derived

force field for proteins was managed by Corongiu, who was most validly assisted by a

young scientist from Japan, Dr. Misako Aida [95]. Fluid dynamics was carried out in

the traditional way, for example to study tidal behavior and atmospheric pollution, but

the specific interest was to link micro systems to macro systems. For simulating very

large systems we also wrote and use a cellular automata program. A Benard cell

simulation was a first step toward simulations with a cellular type organization [96]. In

this contest it is a pleasure to recall the collaboration with I. Prigogine and his group

from Bruxelles, in particular the visits by M. Mareshal, E. Kestenmont, F. Baras, and

M. Mansour; I had previously contacts with I. Prigogine, during a few month stay in

Bruxelles as a Chair Francqui recipient. Talking of visiting quantum chemists, let me

mention once more the Andrés, D. Vercauteren, and L. Leherte from Namur, working

mostly on zeolite chemistry [97] and ‘newcomers’ for example V. Carravetta from

Pisa, R. Buenker from Wupperthal, J. Ball from St. Andrews and many more in the

software area. Again, W. Kolos did visit us for a short time and so did C.C. Roothaan.

M. Dupuis joined the Kingston staff, eventually supported by a valid group of

postdoctorals and so did G.C. Lie.

It is rather difficult to give a correct account of the many directions of the

Poughkeepsie-Kingston effort; a complete, long and exhausting documentation is given

by the three large volumes of MOTECC, below mentioned, but a rather short account is

available in Phil. Trans. R. Soc. Lond. [98]. An overall account is reported in section 6.8.

The computer industry in the early 1980 was in ferment; the vector machines were

too expensive and did not fulfill the user needs, particularly the fast growing number of

small and medium users, the new market. Parallelism was a possible new trend, started

mainly in non-traditional industrial hardware centers, particularly at Universities. The

development of a parallel computer in my department in those Hudson valley years

was prompted by the feeling that I had obligations to IBM. In addition, an IBM strong

in the scientific area was directly beneficial to our work. Finally, several non-IBM

computational chemistry groups had hardware of definitively higher performance and I

was determined to have equivalent facilities. To design, assemble, and test a parallel high

performance computer and its system software it was a nearly impossible challenge, that

demanded a large attention from early 1980 to 1991, when I left IBM Kingston to move

to IBM Italy. I shall not summarize the hardware and software system work and the

parallelization of applications in computational chemistry: molecular quantum

mechanics, Monte Carlo, Molecular Dynamics, Car-Parrinello, several Fluid dynamic

computer programs. All this effort is documented in a relatively recent review paper [99].

IBM Kingston was the place were the first parallelization in computational chemistry

were successfully carried out and were a handful of quantum chemists, a few physicists
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and a few system programmers build, tested and heavily used a self-made parallel

computer, faster than CRAY, ‘the unquestioned supercomputer’ of the time.

Computational chemistry was becoming in my mind more and more simply a part

of computational sciences, with blurred boundaries of no essential value. Indeed, we

prepared an extended animated movie ‘The unity of Science’ linking quantum chemistry,

molecular dynamics and fluid dynamics computer simulations with parallelism; the

audio comments were given in English, French, German, Italian and Chinese. This was

the spirit also behind the volumes Modern Techniques in Computational Chemistry,

MOTECC [100], and Methods and Techniques in Computational Chemistry, METECC

[101], inspired from of the eighteen century Encyclopedia tradition; these volumes are a

contribution to move computational chemistry toward the ‘global simulations’ at first and

hopefully later toward the ‘cognizant simulation’ level [98,100,101].

I was also slowly realizing that even if this evolution was evolving along a path

ineluctable in the long range, it was unlikely to materialize in the next decades, because

‘most scientists like to stay in a given well defined problem area for a life time’. Still I

hope that true progress might come particularly from updating university curricula and

from some young computational chemists, perhaps in one of the new countries, entering

now the club of the ‘affluent and technically most advanced societies’. I often recall that

the spirit of the sixties was essential to the development and advances of computational

chemistry and of the computer industry.

Perhaps true new progress with breakthroughs, rather than the expected steady

growth, needs a right level of preparation, enthusiasm and also some naivety.

In the late eighties IBMwas entering a critical period, following a time of un-controlled

growth; I felt it was advisable to leave USA and I asked to be transferred to IBM-Italy.

A new laboratory in Sardinia, CRS4, was for a short time the new work location [75,

100a]. Soon thereafter, I left for the University L. Pasteur in Strasbourg [100b].

6.7 BACK TO THE BEGINNING: A NEW APPROACH

TO AN OLD PROBLEM

Let me briefly return on old concepts. The advantage to deal with the correlation

energy problem via corrections to the Hartree–Fock average potential is the backbone

of the density functional approach from Wigner seminal ideas, to our work, and to

popular DFT parameterizations. It was clear that the corrections cannot be limited to

the electron-electron interaction, but affect all interactions of the Hamiltonian, namely

also the kinetic and the nuclear-electron interactions. This view is the starting point of

the series of papers on the HFCC method (started at the L. Pasteur University in

Strasbourg [102] and continued with a A. von Humboldt-Stiftung in Bonn and at the

Max-Plank in Garching), which provides not only a new method successfully tested on

hundreds of molecules, but also an explanation of the origin of the chemical bond, with

a partitioning of the atomization energy into different interactions [103] leading to the

conclusion that the binding is due about 50% to exchange and 50% to the remaining

interactions (classical mechanics type interaction).
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In the HFCC semi-empirical method there is a first correlation correction for the

individual atoms of the molecule, a second for the molecular binding and a third for

van der Waals interactions. In the HFCC work we have always stressed that the use

of a HF single determinant is simply a temporary approximation to test different para-

meterization schemes.

However, the point I wish to address in this section concerns what should be

considered as a proper reference function, namely the function on which to add the

correlation correction. Note that generally it is assumed that the HF is the proper

reference function.

In the early seventies with G.C. Lie we felt that the proper reference function would

be a limited MC-SCF to ensure proper dissociation of the molecule. Therefore, we

performed density functional computations starting not with a single determinant but

with this short linear combination, yielding correct dissociation limits [103,104]; 10 years

later, the idea was revisited by Sabin [105].

We now propose the feasibility to use as reference function a linear combination – in

the MC-SCF spirit – of an Hartree–Fock, HF, function, CHF, and of a Heitler–London,

HL, function, CHF. This combination, CHF–HL ¼ aCHF þ bCHL; is designed to ensure a
reasonable behavior both in the binding and in the dissociation internuclear distances

(recall J.C. Slater’s comment [9]). The short-hand notation HF-HL will be used to refer

to the MC-SCF HF-HL reference function. Note that one could obtain seemingly

equivalent results selecting RHF, restricted HF, and UHF, unrestricted HF, but this would

lead to the well-known quantum mechanical problem implicit in the UHF use.

In Fig. 6.1 we report very preliminary results [106] on H2, LiH and Li2. The RHF,

UHF (in the figure we use dashed lines for both potentials) and the HL (long dashed

lines) are compared with the MC-SCF HF-HL potential energy (solid line), and with the

experimental values (dotted line). The improvement of the MC-SCF HF-HL energy

relative to the HF energies is notable, nearly irrelevant with respect to the HL energy;

appreciable also the quality of the overall shape of the MC-SCF HF-HL potential

curves, from the energy minimum to dissociation. For the case of H2, we report in

addition ab initio MC-SCF function results obtained with the six configurations 1sg,
1su, 2sg, 2su, 1pu, 1pg; the resulting binding energy is 107.47 kcal/mol versus

109.48 kcal/mol from Kolos [8]; delta and higher configurations are needed to reach

the experimental value. The basis sets used are large gaussian basis with extended

polarization; the optimization process is likely nearly full, but some marginal improve-

ment can be expected.

A main advantage of the CHF–HL is that the correlation error is now a smooth

decreasing function for all the internuclear distances, and this is the case both for covalent

and ionic bonds, thus the ideal starting point for the HFCC corrections. A second appeal

of the CHF-HL reference function is that one can either proceed semi-empirically as

already experimented [102,103], using however the CHF-HL starting point, or one can

introduce as much ab initio correlation as wished, but with a somewhat non-conventional

approach in the MC-SCF use. Indeed in the CHL part of CHF-HL one can either use

the traditional HL approach or substitute it with an appropriate pre-fabricated linear

combination of determinants designed to introduce correlation in specific atoms,

C
0
HL ¼ SaiCHLðiÞ; note that in this simplified notation the index i refers to atoms.
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Fig. 6.1. Potential energy computed in the RHF, UHF, HL and MC-SCF HF-HL approximations and

experimental data. For H2 we include also the potential for a six configuration MC-SCF (see text).
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This extension does not have to be applied to all the atoms of the molecule, but to as

many as chemically relevant; for example in the study of interacting molecules one can

select the relevant part of the atoms in the super-molecule. In equivalent fashion one can

add configurations to the CHF part of the CHF-HL function,C
0
HF ¼ SbjCHFðjÞ introducing

mainly ‘molecular correlation’; note that in this simplified notation the index j refers to

electronic configurations for the molecule. We recall that the presence of non-orthogonal

orbitals does not constitute a problem since long ago considered and resolved by

P.-O. Löwdin [35].

In conclusion we propose two approaches to the HFCC method [106]. The ab initio

HFCC, withCHFCC ¼ a
0
C

0
HL þ b

0
C

0
HF; allows one to selectively correlate both the atoms

of the molecular system (essentially atomic correlation) and that part of the electronic

density which is shared among atoms (molecular correlation). The semi-empirical HFCC

is designed to do the same but at much lower computational cost. Details on the HFHHL

method are given in Ref. [106].

6.8 CONCLUSIONS

We should not consider the evolution of computational chemistry as a ‘single rather

linear’ road, but rather as a network of approaches, with many bifurcations, overlaps, and

detours; in general, this is the way toward progress. I confess, I am looking with some

anxiety to the unbalance between the scarce development of new methods and the

abundance of applications, more and more in ‘standard areas’. We should likely move

with more rigor toward ‘large molecules’, namely toward simulations, on living cells

and later tissues and even more later toward full living organisms, developing new

approaches, new algorithms, new ‘renormalization’ levels, essential to extend our

frontiers. An extended discussion on computer simulations for cellular studies is given

in [106]. A bit more thinking and a bit less computing.
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69 E. Clementi, J.M. André, M.C. André, D. Klint and D. Hahn, Acta Physica Hungaricae, 27 (1969) 493.

70 E. Clementi, J. Mehl and W. von Niessen, J. Chem. Phys., 54 (1971) 508.

71 E. Clementi, J. Chem. Phys., 46 (1967) 3842.

72 E. Clementi and G. Corongiu, Theor. Chim. Acta, 543 (2001) 39.

73 E. Clementi and H. Popkie, J. Chem. Phys., 57 (1972) 1077.

74 E. Clementi and R. Barsotti, Theor. Chim. Acta (Berl.), 43 (1976) 101.

75 (a) Int. J. Quantum Chem. 42–43 (1992); (b) Int. J. Quantum Chem. 42 (1992) 529 for E. Clementi

publication list, (c) and Int. J. Quantum Chem. 42 (1992) 547 for an extended curriculum vitae, which

complements the present review.

76 E. Clementi, Proc. Natl Acad. Sci. USA, 69 (1972) 2942.

77 H. Popkie, H. Kisstenmacher and E. Clementi, J. Chem. Phys., 59 (1973) 1325.

78 H. Popkie, H. Kisstenmacher, E. Clementi and R.O. Watts, J. Chem. Phys., 60 (1974) 4455.

79 G.C. Lie and E. Clementi, J. Chem. Phys., 62 (1975) 2195.

80 O. Matsuoka, E. Clementi and M. Yoshimine, J. Chem. Phys. 64 (1976) 1351; G.C. Lie, E. Clementi and

M. Yoshimine, J. Chem. Phys. 64 (1976) 2314.

81 E. Clementi, Determination of liquid water structure, coordination numbers for ions and solvation for

biological molecules, Lecture notes in chemistry, Vol. 2, Springer, Berlin, 1976.

82 E. Clementi and G. Corongiu, Biopolymers, 18 (1979) 2431.

83 E. Clementi and G. Corongiu, Int. J. Quantum Chem., 16 (1979) 897.

84 E. Clementi and G. Corongiu, in: R.H. Sharma (Ed.), Biomolecular stereodynamics, Vol. 1, Adenine

Press, New York, 1981.

85 Note. Before acceptingMontedison invitation, I received a very confidential report on Montedison status,

written by a large and most reputable French chemical industry. The report was so negative that

unfortunately I dismissed it as ‘obviously incorrect’.

86 O. Novaro, E. Blaisten-Barojas, E. Clementi, G. Giunchi and M.E. Ruiz-Viscaya, J. Chem. Phys., 68

(1978) 2337.

Computational chemistry: attempting to simulate large molecular systems 113

References pp. 111–114



87 O. Novaro, Int. J. Quantum Chem., 42 (1992) 1047.

88 N. Koga, S.Q. Jin and K. Morokuma, J. Am. Chem. Soc., 110 (1988) 3417.

89 L. Carozzo, G. Corongiu, C. Petrongolo and E. Clementi, J. Chem. Phys., 68 (1978) 787.

90 (a) A.K. Mohanti and E. Clementi, Chem. Phys. Lett. 175, (1989) 348; (b) A.K.Mohanti and E. Clementi,

J. Chem. Phys., 93 (1990) 1829.

91 L. Pisani and E. Clementi, J. Chem. Phys., 101 (1994) 3079.

92 E. Clementi and G. Corongiu, Int. J. QuantumChem., 10 (1983) 31; G.C. Lie and E. Clementi, Phys. Rev.,

33 (1986) 2679; J.H. Detrich, G. Corongiu and E. Clementi, Chem. Phys. Lett., 112 (1984) 426; U. Niesar,

G. Corongiu, E. Clementi, G.R. Kneller and D.K. Bhattacharya, J. Phys. Chem., 94 (1990) 7949.

93 K.S. Kim and E. Clementi, J. Phys. Chem., 89 (1985) 3655; K.S. Kim and E. Clementi, J. Am. Chem.

Soc., 107 (1985) 227; K.S. Kim and E. Clementi, J. Am. Chem. Soc., 107 (1985) 5504; K.S. Kim, H.L.

Nguyen, P.K. Swaminatham and E. Clementi, J. Phys. Chem., 89 (1985) 2870.

94 A. Largo-Cabrerizo and E. Clementi, J. Comp. Chem., 8 (1987) 1191; A. Largo-Cabrerizo, C. Urdaneta,

G.C. Lie and E. Clementi, Int. J. Quantum Chem., 21 (1987) 677; D. Frey, G.C. Lie and E. Clementi,

J. Chem. Phys., 91 (1989) 2369; A. Preiskorn, G.C. Lie and E. Clementi, J. Chem. Phys., 92 (1990) 4941.

95 M. Aida, G. Corongiu and E. Clementi, Int. J. Quantum Chem., 42 (1992) 1353.

96 L. Hannon, G.C. Lie and E. Clementi, J. Stat. Phys., 51 (1988) 965.

97 L. Leherte, D.P. Vercauteren, E.G. Derouane, G.C. Lie, E. Clementi, J.M. André, in: P.A. Jacobs and
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CHAPTER 7

The beginnings of coupled-cluster theory:

an eyewitness account

Josef Paldus

Department of Applied Mathematics, Department of Chemistry, and
Guelph-Waterloo Center for Graduate Work in Chemistry—Waterloo Campus,

University of Waterloo, Waterloo, Ont., Canada N2L 3G1

Les chiffres autrefois hameçons de zéros

infiniment variés mijotaient en l’atome

indéfiniment nus indéfiniment beaux

mais leur compte était bon et les voici vaillants

chevauchant l’explosion ô jeunesse ô jeunesse

que le graphe griffait de son zig en zaguant…

(Raymond Queneau: Petite Cosmogonie Portative, Ier chant)1

Abstract

This is a quasi-historical outline of the origins of coupled-cluster (CC) theory, its

implementation, and its exploitation in the computation of atomic and molecular electronic

structure. It is primarily intended to be about the making of CC theory rather than about the

theory itself. The references to the literature are handled accordingly. The CC methods are

nowadays extensively exploited in a great variety of problems, yet the initial steps were

not at all obvious and took considerable time to germinate, develop and, eventually, flourish.

This highly personal—and thus biased—viewpoint attempts to describe the sources that

stimulated the derivation of the explicit form of CC theories, their working equations and

algorithms, as well as their first exploitations. It barely touches on the subsequent

1 I am not competent to translate Queneau’s surrealistic poems that are full of neologisms and hapax legomena,

often employing words that are—in his own estimation—‘petit-laroussables’. Nonetheless, responding to the

urging of the referee and the editors, here is a rough attempt: “Numbers once fish-hooks of zeros/infinitely varied

simmer in an atom/endlessly bare forever beautiful/but settling their affair they are here brave/riding the

explosion oh youthfulness oh youthfulness/let the graph (diagram) engrave its zig in zag…” (R. Queneau:

Concise Portable Cosmogony).

q 2005 Elsevier B.V. All rights reserved.
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developments, which brought the CC methodology to its present status, and which would

require a much more extensive treatment than is the scope of the present article. These

accomplishments will be undoubtedly covered by other authors.

Jécris ~F ¼ m ~g
et la fléche prend son essor

Jécris E2 2 E1 ¼ hv

et la feuille boit le soleil

………
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et le sel se fait cristal

………

Jécris ð ›2

›t2
2 c2 ~D2Þpð~r; tÞ ¼ 0

et j’entends ta voix.

J’écris, je·décris, je décréte.

L’ Univers se plie á la lettre.

Nul atome n’est censé ignorer la loi.

(Jean-Marc Lévy-Leblond: Lois de la Nature)2

7.1 ‘PREHISTORY’

natura non facit saltum3

In contrast to established scientific disciplines, such as physics and chemistry, whose

roots reach back several centuries, the field of quantum chemistry is a relative newcomer.

When, in 1937, the very first textbook bearing this name in its title4 was published [2],

its author, Hans Hellmann, who was later executed by Stalin’s henchmen, wrote in the

preface: “Quantum Chemistry is a young science that came into existence only a decade

ago” [3]. Yet, already at that time, the author was compelled to limit the relevant material,

lest the size of the book—comprising well over 300 pages—turn out to be excessive [3].

Indeed, the pioneering work of Heitler and London [4] on hydrogen molecule is

generally recognized as the milestone demarcating the birth of the discipline of quantum

chemistry. Since that time, the utility and need to elucidate the phenomenon of chemical

bonding from first principles became recognized by molecular physicists and chemists of

all sorts alike.

2 “I write…and the arrow takes flight/I write…and the leaf drinks the sun/…/I write…and there IS light/I

write…and salt forms a crystal/…/I write…and I hear your voice./I write, I describe, I decree./The Univers

bows to the letter./No atom can ignore the law.” (J.-M. Lévy-Leblond: The Laws of Nature).
3 Nature makes no leaps.
4 Note that the textbook by Pauling and Wilson [1] appeared 2 years earlier than Ref. [2]. However, it bears

the title: ‘Introduction to Quantum Mechanics’.
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The work of Heitler and London gave rise to the valence bond (VB) theory, developed

primarily by Pauling and collaborators [1], whose qualitative version in the form of

the so-called resonance theory was enthusiastically embraced by organic chemists. My

own first introduction to the subject, while still a high-school student (1950–1953), came

through the very nice university textbooks on general and inorganic [5] and organic [6]

chemistry by Otto Wichterle. I was particularly fascinated by his brief introduction to

the old quantum mechanics, including the Bohr model of the hydrogen atom, and its

astonishing simplicity in explaining the observed spectral series. His textbooks rely

heavily on the concepts of ‘resonance’, in spite of the fact that this theory, as advanced by

Wheland [7] in theWest and by Syrkin and Djatkina [8] in the East, was severely attacked

and, in fact, even labelled as ‘bourgeois pseudo-science’ by Soviet philosophers. When

Professor Wichterle was criticized for what he was teaching his students, he smartly

countered his critics by pointing out that resonance theory can perhaps mislead a poor

philosopher, but not his students, who in couple of weeks learn how to exploit the theory

to their advantage without any danger. Fortunately, thanks to such efforts, Czech and

Slovak quantum chemistry were not delayed in their development, as was the case in the

Soviet Union. In fact, the same is true for both Hungary and Poland, where strong schools

in this field arose and continue to thrive.

It is well known that, in view of the sheer mathematical complexity that we face when

we try to solve Schrödinger’s equation for the simplest molecular systems (already for the

one-electron H2
þ cation [9]), we have to focus on the design of computationally

manageable, yet reliable, approximation schemes, based on various model Hamiltonians.

Even when ignoring the relativistic effects and freezing the nuclear motion via the Born–

Oppenheimer approximation [10], the problem is still too formidable for any system

having more than two electrons. For this very reason, almost all quantum-mechanical

treatments of the molecular electronic structure are based on finite dimensional models.

Yet, even the finite dimensional standard VB approach runs into a number of

difficulties, such as the ‘nightmare’ of the inner shells [11], neglect of overlap integrals,

and the so-called N! ‘catastrophe’ (see, e.g. Ref. [12]). For this very reason, sometime

during the secondWorldWar, VB theory was eclipsed by the computationally much more

amenable molecular orbital (MO) method, relying on the independent-particle model

(IPM), which reduces the N-electron problem to effectively a one-electron, though highly

non-linear, one. A very important conceptual advance was achieved by the exploitation

of the variation principle, which led to the formulation of Hartree–Fock (HF) equations

[13,14] (cf. also Refs. [15,16]). These integro-differential equations are solved iteratively

by generating a suitable self-consistent field (SCF). The numerical solution of these

equations for one-center atomic problems became a reality in the 1950s, primarily owing

to the earlier efforts by Hartree and Hartree [17] (see Ref. [18] for a historical account).

The availability of numerical solutions of HF equations is still restricted to at most

two-center (or linear) systems. Nonetheless, the so-called ‘analytic’ approach, using

suitable basis sets, enabled the computation of SCF solutions within the Roothaan linear

combination of atomic orbitals (LCAO) SCF formalism [19]. Generation of such

solutions, even for systems with several hundreds of electrons, is nowadays routine,

although the handling of general open-shell states can still be frustrating at times, due to

the possible multiplicity of various SCF solutions.
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The fact that the HF approximation yields well over 99% of the total energy led

initially to a general belief that SCF wave functions are sufficiently accurate for

the computation of various properties of chemical interest. Unfortunately, once SCF

solutions became available for molecular systems, this hope was shattered. Moreover,

during the late 1960s, it became abundantly clear that, in spite of the conceptual

importance of HF solutions and their utility in supplying quantitative, or at least

semiquantitative, information about some molecular properties, their ability to provide a

reliable description of the electronic structure was, in general, rather limited. Indeed, the

first dramatic indication of the inadequacy of the SCF solutions emerged from Wahl’s

study of the F2 molecule [20]. Using a carefully optimized basis set, Wahl showed that at

the SCF level of approximation, F2 is not bound: the negative SCF dissociation energy he

obtained was as large as 1.6 eV!

The shortcomings of IPM are nowadays well recognized. Even though the HF total

energies are very accurate, say within 0.1% of their exact value, they are not accurate

enough to describe many chemical phenomena or properties of interest. For example, the

total energies of the first-row diatomics are of the order of 102 hartree, so we need at least

two orders of magnitude higher precision (i.e. 1023%) to achieve the so-called chemical

accuracy of 1 kcal/mol or ,1 millihartree. The situation is even more critical when

considering non-energetic properties. For this reason, all present day quantitative studies

account, in one way or another, for the many-electron correlation effects that are lacking

in IPM descriptions.

Presently, the widely used post-Hartree–Fock approaches to the correlation problem in

molecular electronic structure calculations are basically of two kinds, namely, those of

variational and those of perturbative nature. The former are typified by various

configuration interaction (CI) or shell-model methods, and employ the linear Ansatz for

the wave function in the spirit of Ritz variation principle (cf., e.g. Ref. [21]). However,

since the dimension of the CI problem rapidly increases with increasing size of the

system and size of the atomic orbital (AO) basis set employed (see, e.g. the so-called

Paldus–Weyl dimension formula [22,23]), one has to rely in actual applications on

truncated CI expansions (referred to as a limited CI), despite the fact that these

expansions are slowly convergent, even when based on the optimal natural orbitals

(NOs). Unfortunately, such limited CI expansions (usually truncated at the doubly

excited level relative to the IPM reference, resulting in the CISD method) are unable to

properly describe the so-called dynamic correlation, which requires that higher than

doubly excited configurations be taken into account. Moreover, the energies obtained

with the limited CI method are not size-extensive.

Both the above shortcomings can be largely avoided by relying on multireference

(MR) CI approaches, which account for configurations up to a chosen excitation

level relative to those spanning the model space (usually singles and doubles,

yielding the MR CISD method). This approach is particularly useful when handling a

manifold of closely lying states, a situation that is invariably encountered when

exploring the entire potential energy surfaces (PESs) or curves (PECs) near the

dissociation limit, since it is able to properly account for the so-called static and

non-dynamic correlations arising in degenerate and quasi-degenerate situations,

respectively. Yet, even the MR CISD methods cannot properly handle dynamic
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correlation, since this would require a large reference space and thus N-electron

spaces of too large a dimension. For this very reason, even the MR CISD results are

subsequently corrected for both their lack of dynamic correlation (usually via low-

order perturbation theory) and size extensivity (via various versions of semiempirical

Davidson-type corrections).

The approaches of a perturbative nature exploit, in one way or another, the many-body

perturbation theory (MBPT), whether of a finite or infinite order. Those of the Rayleigh–

Schrödinger (RS) type are generally preferred for their size-extensive character at any

level of truncation, since those of the Brillouin–Wigner (BW) type do not possess this

property. The RS PT that employs a Hartree–Fock reference is then usually referred to as

the Møller–Plesset PT or MPx, with x ¼ 2; 3;… designating the order of PT terms that

are retained [24]. Already MP2 can provide a very useful estimate of the correlation

effects and is very often relied upon when handling relatively large systems. The general

nature of PT expansions prefers the truncation at the even orders of PT [25,26]. Since,

however, the fourth-order MBPT already requires triply excited intermediates, its

practical exploitation is computationally demanding.

Another possibility is to increase the order of PT while restricting the excitation level

of the intervening intermediate states. This is most easily done when the excitations are

limited to doubles, yielding the nth order MBPT with doubles, or DMBPT(n). In fact, in

this case, the summation can be carried out to infinite order, yielding the DMBPT(1)
method [27]. However, this result can be easily seen to be equivalent to the linear version

of coupled-cluster (CC) theory that is restricted to two-body amplitudes, namely, to the

L-CPMET (linear coupled-pair many-electron theory) or, more succinctly, to L-CCD

(linear CC with doubles) in current terminology.

The need for the inclusion of higher-order effects increases with the degree of quasi-

degeneracy of the state considered. For this reason, much effort has been devoted to the

formulation of the so-called MR MBPT [28–30]. Here, however, a number of

ambiguities arises, which often limits the development of practical algorithms

(cf., e.g. attempts to extend the so-called CAS-PT2 method, which is based on the

complete active space self-consistent field (CAS SCF) reference, to higher than the

second order). In fact, we shall see that the same problem manifests itself, even when

extending the standard SR CC theory to the MR case.

In any case, the general formulation of the MBPT—primarily due to Brueckner [31],

Goldstone [32], Hugenholtz [33], and Hubbard [34]—has shed much light on the structure

of fully correlated, exact N-fermion wave functions, and was essential to the development

of perturbative-type methods, including CC theory. For this reason, the next section is

devoted to this topic.

7.2 GESTATION

Siehe! nahe blinkt

Ein Wasserquell;der ist auch unser. Nimm

Dein Trinkgefäß, die hohle Kürbis, daß der Trank
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Die Seele mir erfrische.

(Friedrich Hölderlin: Der Tod des Empedokles)5

A clear delineation of correlation effects was formulated in the early 1960s by Löwdin

[35], who also introduced the concept of the ‘symmetry dilemma’ [36] and the related

notions of various broken-spin IPM solutions, namely, the unrestricted-projected,

projected-unrestricted, and generalized HF solutions [37]. Furthermore, his pioneering

work on density matrices, which led to the concept of natural orbitals [38], and especially

his series of papers on perturbation theory [39], provided the major impetus for the study

of correlation effects in the context of atomic and molecular electronic structure. At that

time, computing technology hardly enabled computations at the ab initio level, so that he

and his collaborators developed the alternant molecular orbital (AMO) method [40,41],

in order to account, at least approximately, for the correlation effects within the context of

semiempirical Hamiltonians.

The field of atomic and molecular electronic structure was not the only one in which

the correlation problem turned out to be of key importance. Indeed, this problem arises in

any many-body quantum-mechanical system, particularly for many-fermion systems. For

this very reason, much attention was devoted to it by solid-state and nuclear physicists

alike. The important model systems that were intensely studied at that time were an

electron gas in the former case and the model of infinite nuclear matter in the later case.

Since both these models represent extended systems, the exploitation of the shell-

model or CI-type variational methods was a priori excluded. This placed emphasis on the

development of perturbative approaches for this type of problem. It was soon realized

that the most efficient methodological approach must be based on a mathematical

formalism that was originally developed in quantum field theory. Moreover, in view of

the extended character of the studied systems, it was absolutely essential that the method

employed yields energies that are linearly proportional to the particle number N in the

system or, in today’s parlance, that it must be size extensive, so that the limiting

procedure when N !1 makes sense. In terms of MBPT, this implies that only the

connected or linked energy terms be present in the perturbation series, a requirement that

automatically leads to the Rayleigh–Schrödinger PT.

The conjecture that the unlinked terms exactly cancel out in every order of the RS

MBPT, as implied by Brueckner’s observation [31] that this is the case up to and

including the fourth order, was soon proved by Goldstone [32]. At almost the same time,

independent derivations were also provided by Hugenholtz [33] and Hubbard [34].

Goldstone’s approach exploited a time-dependent PT in the interaction picture and was

based on the Gell-Mann and Low adiabatic theorem [42], as was the work of Hubbard

[34], while Hugenholtz [33] employed a time-independent PT. The time-dependent

version is thus based on the evolution operator or propagator UðtÞ;

UðtÞ ¼ expðiH0tÞ expð2iHtÞ ¼ expðiH0tÞ
X
n

lnl expð2iEntÞknl ð1Þ

5 “See! Near sparkles/a spring of water; which also belongs to us. Take/your drinking bowl, a hollow gourd,

so that the drink/will refresh my soul.” (E. Hölderlin: The Death of Empedocles).
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while the time-independent approach relies on the Green function or the resolvent

operator GðeÞ;

GðeÞ ¼ 1

e 2 H
¼

X
n

lnl
1

e 2 En

knl ð2Þ

where H is the Hamiltonian of the system,

H ¼ H0 þ V ð3Þ

with H0 designating the chosen IPM Hamiltonian that is associated with the system.

Clearly, lnl ; lCnl and En are the eigenstates and eigenvalues of H, respectively.

The relationship between the time-dependent and time-independent approaches, given

by a Fourier transform between GðeÞ and UðtÞ; was elucidated by Bloch [43]. Of course,
in either approach, the final result is time-independent, since, after all, we are solving a

time-independent or stationary Schrödinger equation. It would thus seem that the time-

independent approach—as followed by Hugenholtz—would turn out to be more natural

and simpler. This is indeed the case when we are primarily interested in the energy.

However, in order to elucidate the PT structure of the exact wave function, the time-

dependent approach is beneficial (cf. Ref. [34]).

Needless to say, it was the second quantization formalism of quantum field theory,

enabling the exploitation of Wick’s theorem together with a representation via Feynman-

like graphs or diagrams—the mathematical techniques relied upon by all the above

authors [32–34]—that made it possible to carry out the general proof of the extensive

nature of RSPT and to unscramble the general structure of MBPT wave functions and

energies. The principal results of these efforts are usually referred to as the linked cluster

and connected cluster theorems (see below).

There has been much confusion in the literature concerning the concept of linked vs

connected clusters or corresponding diagrams. In fact, already all three pioneers of

MBPT [32–34] differ in their definition of these concepts. In our view, and in most

present day works, the following distinction is most useful:

† A linked diagram has no disconnected vacuum component(s).

† A connected diagram is a connected graph in the sense of the standard graph theory.

† A vacuum diagram is a diagram having only internal fermion lines (i.e. oriented lines

connecting two vertices).

Thus, roughly speaking, a connected diagram consists of a single ‘piece’, while a

disconnected diagram has several distinct subgraphs. Further, an unlinked diagram

involves one or more disconnected vacuum diagrams. Connected diagrams are

automatically linked, but linked diagrams can either be connected or disconnected, as

long as no disconnected component is a vacuum diagram. Clearly, the energy is

represented in terms of vacuum diagrams, while diagrams involving external or free

fermion lines describe wave functions.
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The two main theorems mentioned above may then be formulated as follows (for a

brief outline, see, e.g. Refs. [44,45]):

Linked Cluster Theorem. Only linked (or connected) vacuum diagrams contribute to

the energy, while all unlinked (or disconnected) vacuum diagrams mutually cancel out,

so that

DE ¼ E2 kF0lHlF0l ¼
X1
n¼0

kF0lVðRVÞnlF0lL ð4Þ

where R is the RS resolvent

R ¼
X
i–0

lFilkFil
10 2 1i

ð5Þ

Here, 1i and lFil are the eigenvalues and eigenstates of the unperturbed Hamiltonian H0

and the subscript i ¼ 0 corresponds to the non-degenerate ground state.

Similarly, the exact wave function lC l ; lC0l is given by all non-vacuum linked

diagrams, namely,

lC l ¼
X1
n¼0

{ðRVÞnlF0l}L ð6Þ

In each case, the subscript ‘L’ indicates the linked component.

The connected cluster theorem, which is the basis of the CC theory as will be seen

below, then fine-tunes the linked-cluster theorem for the wave function in the following

sense:

Connected Cluster Theorem. Define the cluster operator T that generates all the

connected wave function diagrams by

TlF0l ¼
X1
n¼1

{ðRVÞnlF0l}C ð7Þ

the subscript ‘C’ now indicating that only contributions from connected diagrams are to

be included. Then

lC l ¼ expðTÞlF0l ð8Þ
This theorem was first clearly stated by Hubbard [34].

Going into the finer details of the diagrammatic representation, it is important to note the

distinction between the graphs employed by Goldstone [32] (and Hubbard [34]) and those

used by Hugenholtz [33]. Basically, the Goldstone diagrams employ non-symmetrized

interaction vertices that are associated with the two-body Coulomb integrals kablvlcdl;

kablvlcdl ¼
ð
fp
að1Þfp

bð2Þvð1; 2Þfcð1Þfdð2Þdt1 dt2 ð9Þ
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with fi designating the one-electron IPM (spin) orbitals, while Hugenholtz diagrams use

vertices representing the anti-symmetrized two-electron integrals, namely,

kablvlcdlA ¼ kablvlcdl2 kablvldcl ð10Þ

Goldstone’s interaction vertices are in fact ‘supervertices’ involving two simple vertices—

each associated with single ingoing and outgoing, oriented, fermion lines representing

the corresponding annihilation and creation operators of the two-body terms in the

Hamiltonian—that are interconnected by a non-oriented interaction (usually dashed or

dotted) line, while the Hugenholtz vertices result from merging simple vertices of a

Goldstone vertex into a single point-like vertex, while eliminating the interaction

line. Both of these representations have their advantages and disadvantages

(see, e.g. Refs. [46,47] for details).

The main benefit of the Hugenholtz representation is a greatly reduced number of

resulting diagrams that need to be considered (by roughly a factor of 2n for the nth order PT

diagrams), while its weakness is the fact that it does not allow an unambiguous

determination of the phase of the corresponding algebraic expressions. This shortcoming is

not present when Goldstone diagrams are employed, the phase being given by the simple

rule ð21Þhþl; where h is the number of internal hole lines and l designates the number of
closed loops of oriented (fermion) lines. In fact, both desirable features may be

conveniently combined by exploiting the so-called Brandow diagrams [29] (see also Čı́žek

[48]), namely, by representing each Hugenholtz diagram by one Goldstone version

(regardless of which one) and by accordingly adapting the rules for their algebraic

evaluation. The assignment of the weights, given by the reciprocal value of the number of

automorphisms of a graph (stripped of the labels), is easy for both kinds of diagrams.

Another advantage of Goldstone diagrams is the possibility to eliminate the explicit

spin-dependence for spin-free Hamiltonians by simply associating a factor of 2 with each

closed loop (i.e. a factor of 2l with the entire diagram). Of course, in this case, all the

Goldstone diagrams are required. Moreover, it is not difficult to show that the

corresponding spin-adapted configurations represent non-orthogonal valence bond (VB)

types of states [49]. One can still use the reduced number of Hugenholtz-type diagrams

and carry out the spin-adaptation by relying on the graphical techniques of spin algebras

(cf., e.g. Refs. [50,51]; for a short introduction see the Appendix of Ref. [52]). Clearly, in

this case, any spin coupling can be employed, including the preferable particle–particle

hole–hole (pp–hh) one, which leads to orthonormal states with desirable transformation

properties (cf., Refs. [52,53]).

Letmeadd, finally, a fewpersonal remarks. The readingofGoldstone’s paper by someone

who is not intimately familiar withmathematical techniques of quantum field theorymay be

a rather frustrating task, since the paper sketches out only the main steps of the proof, while

leaving out all the technical details. To fill in all these details is far from being trivial,

especially ifmathematical rigor is not to be sacrificed, aswitnessedby the fact that even some

textbooks present an incorrect or at least misleading exposition of these details.

My colleague and friend Jiřı́ Čı́žek and myself have been greatly helped in this regard

by Volodja Tolmachev, whose little known monograph [54] of 150 pages essentially

represents a detailed and mathematically rigorous version of the original Goldstone paper
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of about a dozen pages. While in the 1960s no textbooks presenting the MBPT in detail

were available, several such texts are available today (see, e.g. Refs. [55–59]; for a brief

outline of the modern version of the time-independent approach, see also Refs. [44–47]).

Clearly, themain ideas and results of theMBPTwere developed in the context of studies

of extended systems. In the development of electron gas theory (for the challenging high-

density region), much progress had already been made during the 1950s, starting with the

important work ofMacke [60], and culminating with the classical paper by Gell-Mann and

Brueckner [61]. These developments showed that at high densities, an electron gas has a

logarithmic singularity, which can be described by MBPT if the ring diagrams are

properly summed to infinite order. Similarly, the nuclear many-body problem was

vigorously pursued in the 1950s by relying on the reaction matrix theory of Brueckner (see

Ref. [62] for references to earlier work), which was then reformulated in terms of

Feynman-like diagrams by Goldstone [32]. In this case, the ladder diagrams play the

decisive role. These results were later built upon by Bethe, Brandow and others.

In the context of atomic and molecular electronic structure, it was Hugh Kelly [63]

who first applied Goldston’s MBPT to closed-shell-type atoms by developing several

very successful approximation schemes. In the molecular context, the handling of the

many-electron correlation problem was very much influenced by the work of Sinanoğlu

[64,65] and Nesbet [66], who emphasized the importance of pair (i.e. two-body) clusters

and developed techniques based on Bethe–Goldstone equations for their approximate

treatment. These approaches treat more or less independent pair clusters, while

neglecting the inter-cluster interactions.

Another important development was the realization of the importance of the ‘size-

consistency’ and ‘size-extensivity’ in the studies of associative or dissociative chemical

processes by Primas [67], as well as his clear delineation of the relationship between the

configuration interaction and the exponential coupled-cluster Ansätze.

Unlike the electron gas and nuclear matter, where a major role is played by ring and

ladder diagrams, respectively, the atomic and molecular correlation problem—or, in fact,

the finite nuclei problem—requires a proper account of both types of diagrams, as well as

of their combinations. This was certainly the main motivation for the development of CC

methodology, which we shall discuss in the next section.

7.3 BIRTH

…rem acu tetigisti!

(Titus Maccius Plautus, Rudens)6

The exponential cluster expansion has a long history in statistical physics, where it is

known as the Ursell and Mayer linked-cluster expansion for the partition function [68].

A very general argument for the exponential form of the exact wave function can be

found in a paper on the origins of the CC method by Kümmel [69]. Nonetheless,

6 Literally: “You have touched the thing with a needle”; meaning: “You have hit the nail on the head” (Plautus,

The Rope).
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historically, it was the study of the MBPT that led to the CC method. Although its

exponential structure is already implicit in the Gell-Mann and Low representation [42] of

a bound-state wave function in quantum field theory, it was really Hubbard’s paper [34]

where it appears in a clear and explicit form, and which led Coester and Kümmel [70]

to the idea of directly computing the relevant amplitudes rather than the energy terms in

the MBPT expansion (for the first-hand account, see Ref. [69]).

As already alluded to above, MBPT originated from attempts to solve the many-

fermion problem for electron gas and nuclear matter models. In the electron gas case,

already the second-order PT contribution to the energy diverges. The correlation problem

in nuclei is even more demanding, due to the hard-core or nearly hard-core behavior of

the internucleon potential, which already invalidates the Hartree–Fock approximation.

Although much has been achieved in this direction by Brueckner [31], Goldstone [32]

and others [71], the need for a general approach, which would simultaneously account for

both ladder and ring diagrams, as well as their combinations, was very much in demand.

Thus, the crucial step in this direction was Coester’s realization that one should focus

on the amplitudes rather than the energies themselves. However, the equations for these

amplitudes [70] were given in a very general, implicit form and could not be used in

actual applications. Indeed, to derive the working equations and to gain sufficient insight

into the structure of the theory—which may appear to be a very straightforward exercise

these days—was no small task at the time. It was a heroic effort of my cherished colleague

Jiřı́ Čı́žek that led to the formulation of a general procedure of deriving the exact explicit

form of the desired CC equations (see, e.g. Bartlett’s ‘perspective’ paper [72]). His task

was magnified by the fact that he was very much on his own in this effort, at least initially,

and could only rely on the available literary sources. It took considerable time before his

highly mathematical 1966 paper [73] was fully appreciated by quantum chemists.

To illustrate this point, let me quote one of the leading theoreticians in our field, Roy

McWeeny, who in his 1967 Inaugural Lecture at the University of Sheffield [74] showed

a page from Čı́žek’s 1966 paper (page 4262 of Ref. [73]) displaying the L-CCD diagrams

and CCD equations, which he commented by the statement:

…believe it or not, it is taken from one of the Chemistry Journals!

In fact, the main thrust of McWeeny’s lecture was to emphasize “the indivisibility of

Science and the artificiality of barriers and boundaries” between various disciplines, as

well as his deep “conviction that Mathematics provides the common thread on which all

the exact sciences could be strung”.

A more recent witness to this effect may be found in a paper on ‘A Biography of the CC

Method’ by Kümmel himself, presented in a special session at the 11th International

Conference on Recent Progress in Many-Body Theories in Manchester [75], honoring his

80th birthday. In a section entitled ‘The Slow Start and the Complexity of the CC

Method’, we read [76]

Considering the fact that the CC method was well understood around the late fifties it

looks strange that nothing happened with it until 1966, as Jiřı́ Čı́žek published his first

paper on a quantum chemistry problem [73]. He had looked into the 1957 and 1960

[70] papers published in Nuclear Physics by Fritz and myself. I always found it quite
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remarkable that a quantum chemist would open an issue of a nuclear physics journal.

I myself at that time had almost given up the CC method as not tractable7 and, of

course, I never looked into the quantum chemistry journals. The result was that I learnt

about Jiřı́’s work as late as in the early seventies, when he sent me a big parcel with

reprints of the many papers he and Joe Paldus had written until then.

It is certainly very gratifying that great progress has been achieved in this direction,

although another danger may be lurking in the offing, thanks to the ever-increasing build

up and availability not only of various ‘black box’ codes, but also of various symbol

manipulation packages, such as MAPLE or MATHEMATICA. In spite of their indisputable

utility to any researcher, the undeniable fact remains that these tools are more and more

often employed by users lacking an adequate background in the underlying theory or

mathematics (see, e.g. the introductory part of Robb’s ‘perspective’ paper [77] on the

unitary group approach (UGA). For an outline of UGA, see Refs. [22,23,78,79] and

references therein; for a brief introduction see Ref. [80]). Undoubtedly, this could lead to

very undesirable consequences in a long run. Perhaps the best compromise would be to

strive for modular-type codes, with a well-defined input and output, which could be

assembled or exploited as needed, not unlike the standard linear algebra or MAPLE and

MATHEMATICA packages.

At the time when Jiřı́ was struggling with MBPT and the related mathematical methods

of quantum field theory, I was in Ottawa as a post-doctoral fellow learning the art of

spectroscopy in the Larger Molecules Section, directed by Don Ramsay, which was a part

of the spectroscopy laboratory under the wings of the famous GH (Gerhard Herzberg).

Soon after my return to Prague in 1964, I became very interested in Jiřı́’s work and very

much encouraged him to pursue this line of research in his Ph.D. (called at that time

C.Sc. according to Soviet system) thesis, supervised by our common department head,

Jaroslav Koutecký, who had also been my thesis supervisor 3 years earlier. This was very

much facilitated by the fact that Jiřı́ and myself shared a small office in the attic of the

Institute of Physical Chemistry of the Czechoslovak Academy of Sciences.

Soon afterwards, we were able to meet V.V. [Vladimir (Volodja) Venjaminovich]

Tolmachev in Moscow, who taught us much about Goldstone’s MBPT, which is very

nicely explained in great detail in his little known lecture notes already quoted above [54]

(this text was later expanded into a full monograph [81]). However, Volodja was very

much ‘hooked’ on the time-dependent approach and did not much appreciate the time-

independent route taken by Jiřı́ and later by myself as well. He focused at the time on the

extension of the theory to the multireference case and atomic MBPT applications, which

culminated in his Frascati Lectures [28].

Čı́žek’s 1966 paper [73] and the subsequent paper from the Frascati Volume [48], both

resulting from his Ph.D. thesis, are often portrayed as a formulation of what is today

characterized as the CCD (CC with doubles), which he referred to as the CPMET

(coupled-pair many-electron theory) method. It is true that the actual explicit equations

that are given in his paper are the CCD equations. It must be emphasized, however, that

the essence of the paper is an entirely general formulation of the CCmethod, and the CCD

7 Emphasis mine.
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equations—which, after all, represent the most important approximation in the CC

theory—are given only as an illustrative example. The paper thus provides a completely

general algorithm enabling the derivation of explicit CC equations at any level of

truncation of the cluster amplitudes using the diagrammatic approach. Once this

procedure is mastered, it is a relatively simple—though often laborious—task to write

down the relevant CC equations for the higher-than-pair cluster amplitudes (their actual

implementation and exploitation is, of course, another story).

One puzzling aspect in the diagrammatic approach concerns the determination of

correct weight factors that are associated with each resulting diagram. This was the

reason why Jiřı́ introduced the concept of ‘skeletons’ in addition to actual diagrams.

A skeleton results when we strip a given diagram of all free (i.e. summation) spin orbital

or orbital labels. The desired weight factor is then given as the reciprocal value of the

number of all automorphisms (i.e. of the order of the group of automorphisms) of the

skeleton [46]. Since for the linked Goldstone-type MBPT energy diagrams these factors

can only be 1 or 1/2, the usefulness of this concept for the more general situations was not

fully appreciated, as witnessed by several errata in the literature correcting these factors.

The diagrammatic technique has certainly played an important role in the

development of both MBPT and CC theories, even though an algebraic approach is

equally expedient, particularly in the CC case. A purely algebraic formalism is certainly

more suitable for an automatic computerized implementation of the formalism and, in

fact, the only feasible one for the symmetry-adapted CC approaches based on UGA [22,

23,82–84] (see also below). The reason for a partiality to graphical representation is

perhaps due to the fact that most human brains are geometric in nature (i.e. image

oriented), rather than algebraic, particularly when dealing with such concepts as

connectivity or linkage.

In the 1960s and early 1970s, even the formalism of second quantization was shunned

by most quantum chemists, even deemed as an unnecessary extravagance. For this

reason, we wrote a paper [85] in which we derived the CCD equations using the standard

first quantization wave-function formalism, without any diagrams (for a similar CCSD

version, see Ref. [86], written in connection with the appearance of the quadratic CI

[87]). Yet, even here, we tried for too much brevity and compact mathematical notation.

For example, the key expression for the disconnected quadruples in terms of doubles,

later on usually written in its full form listing all 18 terms (see, e.g. the last Eq. (33) of

Ref. [88]; note already a much more compact form used in Eq. (11) of Ref. [89]),
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was given in Appendix III of Ref. [85] as (for an easier comparison we use the same spin

orbital labelling as in Eq. (11))

a b c d

i j k l

" #
u

¼
X3
r;s¼1

ð21ÞrþsðkV 00
r lt2lV

0
slAk 
V

00
rlt2l 
V

0
slA þ kV

00
r lt2l 
V

0
slAk 
V

00
rlt2lV

0
slAÞ ð12Þ

The beginnings of coupled-cluster theory: an eyewitness account 127

References pp. 140–147



where lV 0
1l ¼ lijl; lV 0

2l ¼ likl; lV 0
3l ¼ lill; with a bar designating a complementary bra or

ket, e.g. l 
V 0
1l ¼ lkll; l 
V 0

2l ¼ ljll; l 
V 0
3l ¼ ljkl; and similarly for the doubly primed

quantities, i.e. lV 00
1l ¼ labl; lV 00

2l ¼ lacl; lV 00
3l ¼ ladl; etc. to the chagrin of many a reader.

Clearly, both sets of amplitudes are related as

dabij ¼ kablt2lijlA ð13Þ

Let me also comment on a purely formal distinction that strikes the uninitiated.

We had chosen to let the ‘time’ run from right to left, while many other authors,

particularly Bartlett’s group, prefer it to run ‘skywards’. This distinction is of little

importance for CC diagrams that involve only one interaction vertex. However, the

advantage of the right–left convention lies in the fact that the vertices appear in the

same order as in the algebraic expression represented by the graph. Moreover, for

high-order MBPT diagrams, the right–left or ‘horizontal’ convention requires less

space on a printed page.

As the above narrative indicates, most of the ideas for the treatment of the many-

electron problem were first developed by the nuclear and solid-state physicists. This is

the case not only for perturbative methods, but also for variational ones, including the

configuration interaction method, which nuclear physicists refer to as the shell model,

or for the unitary group approach (see Ref. [90]; for additional references see Refs. [23,

78–80]). The same applies to the CC approach [70]. For this reason, quantum chemists,

who were involved in the development of post-Hartree–Fock methods, paid a close

attention to these works. However, with Čı́žek’s 1966 paper the tables were turned

around, at least as far as the CC method is concerned, since a similar development of

the explicit CC equations, due to Lührmann and Kümmel [91] had to wait till 1972,

without noticing that by that time quantum chemists were busily trying to apply these

equations in actual computations.

It did not take long, however, for the leading figures in the nuclear CC problem to

realize that this approach is “tailor-made” for the atomic and molecular correlation

problem and a useful interchange of ideas and collaborative efforts followed. First,

such “cross-fertilization” on a larger scale occurred during the Workshop on

Coupled-Cluster Theory at the Interface of Atomic Physics and Quantum Chemistry,

organized by Rod Bartlett at the Institute for Theoretical Atomic and Molecular

Physics of the Harvard-Smithsonian Center for Astrophysics (the Proceedings were

published in Volume 80 of Theoretica Chimica Acta). Nonetheless, the gulf still

persists, as nicely characterized by Kümmel’s observation at the just mentioned

Workshop [69]:

As much as the chemists must be praised for occasionally looking into nuclear physics

journals, as much I have to regret that nuclear physicists (including myself) did not

care to search in the other direction. This hasn’t changed much, especially the particle

physicists still believe that the higher the energy they are dealing with, the lesser they

need to look down to the low energy people.
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7.4 GROWING PAINS

…tu ne cede malis, sed contra audentior ito

[Publius Vergilius Maro (Virgil), Aeneid vi. 95]8

Soon after my return to Prague, I joined Jiřı́ in an attempt to test his CC theory in actual

calculations. He had himself carried out a preliminary study of a very simplified model of

the nitrogen and benzene molecules [73]. Since the computational facilities that were

available at the time, particularly those accessible to us in Prague (even at the NRCC in

Ottawa the only available machine during my first stay was an IBM 1620), were primitive

by today’s standards, we focussed on the semiempirical model Hamiltonians. We had

considerable experience with the Pariser–Parr–Pople (PPP) Hamiltonian and the PPP

model of linear polyenes, CNHN, N ¼ 4vþ 2; v ¼ 1; 2;…; having a non-degenerate

ground state, seemed particularly appealing to us for the following reasons:

(i) The results obtained with the AMO method [41,92] were available [40] for

comparison.

(ii) High symmetry ðDNhÞ of the model, fully determining the Hartree–Fock orbitals—
which are thus identical with the Brueckner (maximum overlap) orbitals—

implying that CCSD reduces to CCD.

(iii) The v ¼ 1 case corresponds to the benzene p-electron model, while the v!1
limit gives a model of the one-dimensional metal.

(iv) Exact solution via full CI could be obtained for benzene and via Lieb and Wu

equations [93] for the corresponding Hubbard Hamiltonian models.

For computational reasons, we first focused on the benzene and butadiene models [94],

as well as on the Be atom using a very limited basis set.

In 1966 we were fortunate to obtain 40 hours on the CDC 3600 at the Centre de

Méchanique Ondulatoire in Paris, thanks to the generosity of Carl Moser. We carefully

prepared our codes in Prague and managed to get them running the very first day. But, alas,

we ran into all sorts of convergence problems for large coupling constants (small resonance

integrals). Moreover, due to the magnanimous hospitality of Professors Lefebvre and

Chalvet, which included an obligatory visit to the ‘caves’ in the Sancerre region, I ended up

at the emergencywith excruciating pain, due to kidney stones, and had to return prematurely

to Prague.

In the meantime, we realized that our problem might be related to what is nowadays

referred to as the singlet instability. This peculiar behavior of the Hartree–Fock reference

in the b! 0 limit decidedly caught our interest. We found it very fascinating that, in

addition to the standard symmetry-adapted solution, there would exist another ground-

state closed-shell Hartree–Fock solution in that range of the coupling constant. The

broken-spin unrestricted Hartree–Fock solutions (of the different orbitals for different

spin or DODS type) were well known at the time, as well as the concept of the symmetry

dilemma of Löwdin [36], but no space-symmetry breaking Hartree–Fock solutions were

then known.

8 “…do not yield to misfortunes, but advance all the more boldly against them” (Virgil, The Aeneid).
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We thus embarked full time on the study of Hartree–Fock instabilities, introducing

the concepts of the singlet and triplet (or non-singlet) stability [95], which soon

became part of the quantum-chemical folklore. We then focused on the investigation

of space-symmetry broken Hartree–Fock solutions implied by the singlet instabilities.

For p-electron PPP models of planar hydrocarbons with conjugated double bonds

these solutions could be classified into those displaying the diagonal and off-diagonal

charge-density waves [96,97], the former ones being again singlet unstable. A more

detailed classification was later developed by Fukutome and co-workers [98]

(for general references see Refs. [99,100]). At the ab initio level, these effects

were later explored for the oxygen doubly negative ion (O22), in which case broken

space-symmetry Hartree–Fock solutions of both prolate and oblate type were again

found [101].

For simple open-shell systems, we formulated analogous doublet stability

conditions [102,103], and illustrated them on a series of polyenic radicals [104].

These type of solutions do not fit into Fukutome’s classification, but have now been

incorporated in its generalized version [100]. The doublet stability conditions were

formulated just at the time of the 1968 Soviet invasion of Czechoslovakia [105],

which greatly upset the everyday life of all citizens, not to mention the cultural and

scientific activities in the entire country. For this reason, Jiřı́ and myself gratefully

welcomed the hospitality the University of Waterloo kindly provided, thanks to the

efforts of Professor Sydney Davison, not knowing at the time that it would become

our permanent abode. Thus, the bulk of our work on the stability problem was carried

out at Waterloo.

In retrospect, our choice of cyclic polyenes, CNHN, for the study of correlation

effects via CC methods was a most unfortunate one, since these systems involve one

of the most difficult correlation problems. The main difficulty stems from the

increasing quasi-degeneracy of the reference configuration with both the increasing

coupling constant (or decreasing absolute value of the resonance integral b) and the
size of the chain N (see, e.g. Ref. [106]). As a consequence, the role of higher-order

connected cluster components, such as T4, T6, etc. becomes more prominent [107]

and the standard CCSD or CCD methods completely break down for sufficiently

large N, or even for small cycles when approaching the fully correlated limit (i.e.

when the resonance integral b! 0). On the other hand, the UHF solution yields the

exact energy for the b ¼ 0 limit. Let me note in passing that this problem was

recently explored anew by the Warsaw group, who showed that the same breakdown

is also encountered when using higher-order CC methods, such as CCSDT and

CCSDTQ [108].

Only much later were we able to account for some of these difficulties [109–112]

by developing methods that, under certain conditions, account for the T4 clusters. In

cases when the projected UHF method provides the exact pair clusters, it can be

shown [109] that the T4 contribution cancels the contribution from the non-linear T22
terms representing the important exclusion-principle-violating (EPV) diagrams.

Except for a numerical factor associated with the triplet-coupled pp–hh t2-

amplitudes, this method—referred to as ACPQ or CCDQ0—is identical to the

ACCD approach that was developed independently by Dykstra’s group [113–116]
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(see also Ref. [117]). This method is, in fact, simpler than the standard CCSD

method, because it avoids computationally the most demanding terms. In spite of the

fact that it invariably provides superior results to the standard CCSD, it is seldom

used in actual applications.

Soon after our arrival in Waterloo, Jiřı́ and myself were fortunate to make the personal

acquaintance of Isaiah (Shi) Shavitt, whose work we knew well from the literature. We

had learned much from him concerning the state of the art of ab initio calculations,

especially those using the configuration interaction method. We were particularly

interested in the role of higher than doubly excited configurations—and the related

adequacy of truncation of the CC expansion at the pair-cluster level—when attempting to

generate highly accurate energies. Thanks to the CC Ansatz, the four-body contributions

are well described via the disconnected T22 clusters. These are properly accounted for in

both the CCD and CCSD methods. The connected T4 clusters generally play a negligible

role, except in highly quasi-degenerate cases, such as the metallic-like linear polyenic

models, as can be verified by the cluster analysis of the relevant full CI wave functions

[107]. However, the role of three-body clusters required a closer examination for at least

two reasons: the role played by these triply excited configurations in the CI calculations

and, on a more fundamental level, by the order of PT in which these clusters contribute

for the first time to the energy.

Concerning the latter point, it is a simple exercise to see that, in contrast to the four-

body clusters, where the disconnected T22 clusters contribute for the first time in the

fourth order and the connected T4 clusters start contributing in the fifth order, the

reverse situation occurs for the three-body terms: the disconnected T1T2 clusters

contribute for the first time in the fifth order, while the connected T3 clusters contribute

already in the fourth order of PT. (The T31 clusters will, of course, contribute in the

eighth order and may be safely neglected, unless the T1 clusters are prominent, as when

using the localized orbitals.)

We were thus very pleased when Shi Shavitt became interested in this problem and

offered us a helping hand. Since, at that time, the largest triply excited contribution to

the CI wave function was found for the BH3 molecule (when using Slater-type

orbitals), we decided to focus on this system. Moreover, in order to examine the role

of the various cluster components, Shi Shavitt kindly generated additional CI results

(involving, say, only doubles and quadruples, for a comparison with the CCD

energies, etc.). He kindly provided us with the required one- and two-electron

integrals as a relatively small deck of IBM punched cards, since only a minimum

basis set of Slater-type orbitals was employed, in order to be able to generate the full

CI results for comparison.

On our side, we developed the required CC equations and codes, taking into account all

the important terms involving one-, two- and three-body clusters. This so-called extended

CPMET (E-CPMET) was not equivalent to the CCSDT method, since most cubic and

quartic terms were neglected. This was certainly a bona fide approximation, because

high-order terms play indeed a negligible role. These results [118], which represented the

very first application of the CC method at the ab initio level, showed very clearly the

capabilities of this approach, the E-CPMET energies agreeing with the full CI results to

within a microhartree.
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7.5 MATURATION

Vous m’écrivez, mon ange, des lettres de quatre page plus vite que je ne puis les lire9

(An epigraph from Alexander Pushkin’s ‘The Queen of Spades’)

A “great leap forward” in the development and exploitation of the CC method came with the

availability offirst powerful work-stations, at the time best represented by the VAXmachines

(in fact, the very first VAX was installed in Pople’s group). The first general-purpose codes

for the CPMET method, today referred to by the acronym CCD, were developed almost

simultaneously by the Pople and Bartlett groups. They were reported at the 1978 American

Conference on Theoretical Chemistry in Boulder, Colorado and published back to back in the

International Journal of Quantum Chemistry [119,120]. Another independently developed

and truly efficient code, which exploited the matrix form of electron-pair operators and

amplitudes in terms of the atomic orbital basis (cf. Ref. [121]), was soon produced by Chiles

and Dykstra [89]. In fact, Chiles and Dykstra’s code not only enabled efficient large basis set

calculations, but also paved the way to a practical use of Brueckner orbitals that warrant the

vanishing of one-body clusters. Eventually, these CCD codes were extended to the CCSD

method, fully accounting for the one- and two-body cluster amplitudes [122]. Presently, the

CCD, CCSD and CCSD(T) codes, often in both the spin-adapted or partially spin-adapted

and spin-orbital forms, constitute a part of most ab initio program packages (cf. ACES II [123],

GAUSSIAN [124], MOLCAS [125], MOLPRO [126], etc.; for a more complete list see Ref. [45])

and are being constantly updated and extended.

Undoubtedly, it has been Bartlett’s group that has become synonymous with CC

theory, as far as its development and promulgation is concerned. I believe it was the

Czech émigré novelist Milan Kundera, who once claimed that writers are lucky if they

possess—or, rather, are possessed by—one overriding obsession and their development

as literary figures is to be judged by their probing and handling of their favorite pet

subject. I believe that a similar statement could be made about other human endeavors,

including science, and Rod Bartlett is an excellent example of someone who has steadily

and admirably devoted his energies to the pursuit of CC theory in the broadest sense.

I vividly recall the Fifth School on Advanced Methods of Quantum Chemistry,

organized by the Toruń group of the Nicholas Copernicus University at Bachotek in 1987,

where I was presenting a series of lectures on the unitary group approach, which at the time

was fully oriented towards large-scale CI calculations. Following my first lecture, Rodney

approached me saying something like: “Why would you do this kind of stuff?”. What he

really meant, I believe, although he never used these words, was: “Real men don’t do CI!”.

Anyway, I later returned to the ‘CC fold’ and, with the help of Bogumil Jeziorski and

Xiangzhu Li, successfully used UGA even in the CC context [82–84,127] (see also later).

Let us now briefly mention some of the most important developments that originated in

Bartlett’s group, during the past two decades, and that are undoubtedly of lasting value.10

Since the late 1970s, significant attention has been devoted to the evaluation

of analytical energy derivatives (gradients and hessians) with respect to atomic

9 “To me, you write, my angel, four-page letters faster than I can read them.”
10 See Bartlett’s contribution in this issue for a more complete account.
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displacements, enabling an effective search of PESs for stationary points. By the early

1980s, these calculations were routine for most variational approaches (Hartree–Fock, CI,

MC SCF, etc.), where the energy is given as an expectation value in terms of variationally

optimized parameters (see, e.g. Ref. [128]). However, the corresponding calculations for

the perturbative-type methods, such as the MBPT or CC, where the energy is expressed in

terms of non-variational parameters, are much more challenging. The initial step in

deriving the necessary expressions was taken by Jørgensen and Simons [129], who relied

on response functions. Almost simultaneously, the required algebraic expressions for the

CCSD gradients were developed in Bartlett’s group [130]. Soon afterwards, they

formulated and implemented the gradient calculation for the MP3 energies [131], which,

however, involved a direct evaluation of the first-order changes in the cluster amplitudes.

Further development then avoided this direct evaluation and advanced a general

strategy for the computation of both MBPT and CC gradients [132,133] by relying on the

so-called ‘relaxed’ densities, a procedure that also enables the computation of other first-

order properties, such as various multipole moments. In fact, the relevant codes based on

this idea were first generated and exploited by Schaefer’s group [134] (for numerous

applications, see Refs. [18–26] in Ref. [135]).

Great progress was also made in the computation of higher-order derivatives

(particularly hessians) that are needed for second-order properties (polarizabilities,

spin–spin coupling constants, etc.). The required expressions were again first generated

in Bartlett’s group [136,137]. An alternative formulation, which essentially exploited the

technique used in variational approaches by rewriting the CC energy in terms of a fully

variational Lagrangian (with one Lagrange multiplier for each orbital rotation and cluster

amplitude), was simultaneously published by Schaefer’s group [135].

Bartlett and his collaborators also pushed the limits of the available computational

tools by extending the truncation of the CC expansion to higher and higher orders,

developing the CCSDT and CCSDTQ codes and their various approximate versions

[138–140]. In this connection, they explored the perturbative account of triples via the

CCSD[T] scheme [141], which is very close to the independently developed CCSD(T)

method of Raghavachari [142], the latter also accounting for the singles–triples

interaction terms. Although CCSDT, and especially CCSDTQ, methods are computa-

tionally very demanding and can presently be exploited only for relatively small model

systems, their conceptual importance, as well as their role as benchmarks, cannot be

underestimated. In due time, with ever-increasing computational power, they may

eventually become as standard as the CCSD or CCSD(T) method is today. Very recently,

even the pentuple [143] and higher [26,144] excitations have been considered. These

brute-force-type extensions aim for higher and higher accuracy but, primarily, reflect the

fact that the basic requirement of non-degeneracy of the SR CC reference is more and

more violated, as one stretches genuine chemical bonds, so that higher and higher-order

clusters are no longer negligible. Here the problems of the CC methodology approach

those of the CI-type methods and call for a multireference-type formalism (see below).

The CCSD(T) approach is probably the most often exploited CC method in actual

applications, and provides excellent results [145], as long as no quasi-degeneracy is present.

This is usually the case for the closed-shell ground states near the equilibrium geometry.

However, with the stretching of one or more genuine chemical bonds, the CCSD(T) method
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breaks down even more dramatically than does the standard CCSD approach. This

deficiency has been largely avoided in the so-called renormalized or completely

renormalized CCSD(T) method, R-CCSD(T) or CR-CCSD(T), respectively, developed

by Piecuch and Kowalski [146,147]. This methodwill likely be soon embraced in lieu of the

standard CCSD(T), at least when one is faced with quasi-degenerate situations. Indeed, a

proper description of the entire PESs or curves continues to be one of the most challenging

problems for CC theory, as we shall touch upon in the next section.
Another highly significant development, initiated by the Bartlett group, was the

exploitation of the CCAnsatz in the equations-of-motion (EOM) approach, resulting in the

EOM-CC method [148–150] that is, in fact, closely related to the CC linear-response

theory, first exploited in this context by Monkhorst [151]. The same Ansatz for the wave

function was already employed two decades earlier [152,153], as well as in the closely

related SAC/SAC-CI method of Nakatsuji and collaborators [154,155], not to mention the

relationship with Green function approaches [156–158] and the developments in nuclear

physics [159]. The EOM-CC method enables not only the calculation of principal

ionization potentials, but also of shake-up effects and, most importantly, of excitation

energies that are dominated by single or double excitations, even though in the latter case

there is a need to include connected three-body clusters in order to obtain a satisfactory

accuracy. The EOM-CCmethod was further extended to its similarity transformed version

STEOM-CC, as well as its perturbative analogue STEOM-PT exploiting the Fock space

MR CC Ansatz for the second similarity transform [160,161]. This method enabled the

handling of very large systems, such as the free base of porphin.
All these and other developments pioneered by Bartlett’s group stimulated parallel

activities elsewhere, often arousing beneficial competition. As already mentioned, the

first CCD codes were developed and published at the same time. Likewise, CCSDT codes

were developed at roughly the same time by Schaefer’s group [162] and an analogue of

the CCSDTQ method by Adamowicz’s group [163] (for later developments along these

lines, see Ref. [164]). As alluded to above, the evaluation of analytical derivatives also

witnessed a parallel and fast development, which still continues, since the computation of

certain properties, particularly NMR chemical shifts, requires additional attention to the

gauge-origin problem [165].

7.6 QUO VADIS?

Scepticism alone is a cheap and barren affair. Scepticism in a man who has come

nearer to the truth than anyone before, and yet clearly recognizes the narrow limits of

his own mental construction, is great and fruitful, and does not reduce, but doubles the

value of the discoveries.

(Erwin Schrödinger: Nature and the Greeks)

Although this very incomplete and biased account of the sources, emergence and rise of

the CC theory focusses on its beginnings, let me point out some more recent

developments and current trends, especially those that are most desirable, yet remain

elusive. Here, more than before, personal bias will be the rule, if for no other reason than

the fact that it is more and more difficult to follow all the literature, even in this very
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narrow subfield of quantum chemistry, not to mention developments exploiting the CC

Ansatz in other fields of the physical sciences. A cursory idea of these activities may be

found in various proceedings dedicated to this topic by quantum chemists and many-body

theorists alike (in particular, see Refs. [166–170]). Concerning molecular applications,

the reader is referred to recent reviews [45,171–178], and even monographs and

textbooks (see, e.g. Refs. [179–181]). We should also be watching for the monograph by

Shavitt and Bartlett [182] that will be appearing shortly.

While the CCmethod has beenmost widely exploited in atomic andmolecular electronic

structure calculations, as already pointed out, it has also received much attention in other

branches of physics. In addition to the problem of nuclear matter, where it originated, and

that of finite nuclei and pion-nucleon systems in general [183], it has been very extensively

exploited in studies of quantum spin chain and lattice models and the related problems of

quantum magnets, electron lattice models and lattice quantum field theories, namely, the

lattice gauge theory [184]. It has been further applied in the exploration of charged

impurities in polarizable media, in quantum fluid mechanics, quantum optics and solid-state

optoelectronics (see, e.g. Ref. [185] for references), not to mention the investigation of

numerous model systems, including anharmonic oscillators and various many-bodymodels

(Lipkin–Meshkov–Glick model, Heisenberg quantum spin Hamiltonian, Hubbard–Lieb

model, polaron problem, etc.). Finally, the CCmethod was also employed in studies of one-

component Coulomb plasmas and both continuous and relativistic quantum field theories,

as well as in studies of critical phenomena in F4 field theories. The standard and the so-

called extended CC methods (ECCM) [186] were likewise generalized to the temperature-

dependent case [187]. Needless to say, our cursory account completely ignores numerous

applications in atomic physics, including the handling of relativistic effects (see, e.g. Refs.

[188,189]) or parity violation in heavy atoms [190].

Of course, as in any field of endeavor, there have been a few ‘blind paths’ that were

followed, and that have yet to bring the expected ‘harvest’. These were particularly

associated with various attempts to produce a variational version of CC theory. In most

instances, it is the complexity of the resulting formalism and the implied computational

difficulties that preclude a successful exploitation of some of these ideas [191]. This is

also the case for the above-mentioned ECCM [186] that uses the exponential cluster

Ansatz in both bra and ket states, each involving distinct amplitudes. Such an Ansatz

would be desirable in studies of phase transitions and its truncated version is used in the

response theoretical approach to properties.

Let us thus concentrate on one very important and most desirable development that has

received much attention in the past, yet has produced very few actual applications and

results in the meantime and, presently, seems to be largely abandoned. I am talking here

about the multireference generalization of the standard single-reference CC theory,

which is essential for a proper treatment of general open-shell systems or, generally,

whenever the reference configuration is degenerate or quasi-degenerate. Needless to

say, such situations always arise when we break genuine chemical bonds, as when

computing the entire PESs or PECs, or when considering various radicals or excited

states. The same problem also arises in the study of one-particle states in field theories.

The difficulty in constructing a genuine MR CC theory stems from the fact that the

generalization of the SR CC Ansatz to the MR case is far from being unambiguous.
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In principle, we have essentially two options: either to define a single valence-universal

cluster operator that produces the desirable result when acting on any reference

configuration spanning the model space, or to introduce distinct cluster operators, one for

each model space configuration. Both options have been realized, the first one leading to

the so-called valence universal (VU) MR CC method [30,192–194] and the second one

yielding the state universalMRCC formalism [195]. The VU theory requires not only the

normal product form of the exponential Anzatz, as first pointed out by Lindgren [192], but

also the consideration of an entire family of model spaces that are associated with ionic

species, obtained by sequentially removing or adding the valence electrons, until the

closed-shell configuration involving only doubly occupied orbitals is reached. This latter

aspect generated a number of heated discussions with various claims and counter-claims.

The exact formulation of the valence universality conditions was given much later [196].

The necessity of considering the sequence of ionic species and themultiplicity of solutions

of MR CC equations leads to a ‘genealogy problem’ [197], which is avoided in the SU CC

type theories. The VU Ansatz has been primarily used in atomic calculations [198,199].

Both VU and SU MR CC methods employ the effective Hamiltonian formalism: the

relevant cluster amplitudes are obtained by solving Bloch equations and the (in principle

exact) energies result as eigenvalues of a non-Hermitian effective Hamiltonian that is

defined on a finite-dimensional model spaceM0. An essential feature characterizing this

formalism is the so-called intermediate or Bloch normalization of the projected target

space wave functions l ~Cil with respect to the corresponding model space configurations
lFil; namely kFil ~Cjl ¼ dij (for details, see, e.g. Refs. [172,174]).
Moreover, once the cluster Ansatz is introduced (for an option of directly solving

Bloch equations without invoking the cluster Ansatz, see Ref. [200]), it is essential that

the so-called complete model space (CMS), spanned by configurations involving all

possible occupancies of valence or active (spin) orbitals, be used, lest the desirable

property of size-extensivity be violated. This requirement, however, leads not only to

highly dimensional (and thus computationally demanding) model spaces, but, most

importantly, to the occurrence of the so-called intruder states.

Similarly as the SR CC theory requires the reference configuration lF0l to be non-
degenerate, the model space configurations lFil [ M0 of a MR theory should be well

separated in energy from those spanning the orthogonal complement M’
0 of M0.

However, as the target space M (of the same dimension as M0), that is spanned by the

exact wave functions lCil and is associated with a given model space M0, is far from

being unique (since any lCil that is not orthogonal toM0 can belong toM), the energy

of one or more excited configurations from M’
0 will often lie within the interval of the

energies of the model space configurations lFil or will be very close to it.
The intruder state(s) almost inevitably interfere when exploring the entire PESs

involving the breaking of genuine chemical bonds leading to open-shell fragments. In

such cases, the effective Hamiltonian formalism often breaks down, so that no physically

meaningful solution to the Bloch equations can be found. In fact, the same failure may

occur even at the equilibrium geometry. For example, when considering one of the

simplest four-electron systems, represented by the LiH molecule, both the VU [201] and

SU [202] MR CCSD approaches diverge when a complete model space is employed! For

this reason, much attention has been given to the construction of CC theories that use
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truncated or incomplete model spaces (IMSs) of various kinds. In fact, most VU MR CC

applications have employed such truncated spaces, often different ones for different

geometries [201,203,204].

In the SU CC context, the IMS based formalism preserving the size-extensivity was

first proposed by Meissner and Bartlett [205] in 1990 (see also Ref. [206]) and much hope

was expressed at the time of the Cambridge workshop [207]:

An important development presented at the meeting was the generalization of the

Hilbert space MRCC to incomplete active spaces [205]. This makes the theory primed

for a burst of computational activity. Although this helps to alleviate the severe

problem of intruder states, the intruder state is still endemic to the method. Much

activity in this area will be reported in the next few years.

Unfortunately, it was the cautionary statement concerning the endemicity of intruders

that turned out to keep plaguing the actual applications. Indeed, very few applications have

been accomplished and those few that were carried out used a CMS involving only two

active orbitals. In fact, the genuine MR CC methods were mostly ignored during the past

decade. The only exception was the formulation of the Brillouin–Wigner (BW) version of

the MR CC theory [208–210], which avoids intruders on principle grounds via a suitable

denominator shift, but, unfortunately, at the cost of a complete loss of size-extensivity.

Even here, however, additional approximations were made (e.g. handling of the coupling

constants and subsequent corrections for size-extensivity in the last iteration [211]),

requiring separate computations for each state and thus reducing the approach to the SS-

type one. Nonetheless, this approach produced many useful results [212] and its linkage

with the standard RS-type version [213] offers much hope for future developments.

For these and other reasons, much attention was given to the so-called state-selective or

state-specific (SS)MR CC approaches. These are basically of two types: (i) essentially SR

CCSD methods that employ MR CC Ansatz to select a subset of important higher-than-

pair clusters that are then incorporated either in a standard way [163,164], or implicitly

[109–117], or via the so-called externally corrected (ec) approaches of either the

amplitude [214–219] or energy [220,221] type, and (ii) those actually exploiting Bloch

equations, but focusing on one state at a time [222]. The energy-correcting ec CC

approaches [220,221] are in fact very closely related to the renormalized CCSD(T)

method of Kowalski and Piecuch mentioned earlier [146,147].

The ec-type approaches exploit the fact that the electronic Hamiltonian involves at

most two-body interactions, so that the energy is fully determined by one- and two-body

amplitudes (of either the CI or CC type). For the same reason, those equations in the chain

of CC equations that arise by projection onto singles and doubles involve at most

connected three- and four-body clusters T3 and T4, respectively, so that the decoupling of

the CCSD equations from the full CC chain results by setting T3 ¼ T4 ¼ 0. Thus, if we

know the exact T3 and T4 clusters, we can recover the exact FCI or full CC (FCC) energy

by accounting for them in the CCSD equations.

Now, let us recall the complementarity of variational and perturbative approaches,

specifically of the CI and CCmethods: while the former ones can simultaneously handle a

multitude of states of an arbitrary spin multiplicity, accounting well for non-dynamic

correlations in cases of quasi-degeneracy, they are not size-extensive, and are unable to
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properly describe dynamic correlation effects, unless excessively large dimensions can be

afforded. On the other hand, CC approaches are size-extensive at any level of truncation

and very efficiently account for dynamic correlations, yet encounter serious difficulties in

the presence of significant non-dynamic correlation effects. In view of this comple-

mentarity, a conjoint treatment, if at all feasible, seems to be highly desirable. Moreover,

in the limiting case, the FCI and FCC energies are identical, and the relationship between

the CI and CC amplitudes is well defined (note that any MR CISD wave function can be

easily rewritten as a SR CISDTQ… one relative to a chosen SR configuration).

We can thus conveniently exploit the CI-type wave functions as a source of

approximate three- and four-body amplitudes. This is precisely the basis of the so-called

reduced MR (RMR) CC method [216,218,219,221]. Modest-size MR CISD wave

functions are nowadays computationally very affordable, and their cluster analysis

provides us with a relatively small subset of the most important three- and four-body

cluster amplitudes, which can be used to correct the standard CCSD equations. Moreover,

such amplitudes implicitly account for higher than four-body amplitudes as well, as long

as they are present in the MR CISD wave function. In this way, we were able to properly

describe even the difficult triple-bond breaking in the nitrogen molecule [217].

Amplitude-type corrections are even more useful in the MR SU CCSD approach (see

below). Very similar results are obtained with the energy-correcting CCSD, in which case

we employ the MR CISD wave function in the asymmetric energy formula [220,221].

Finally, let me mention our recent contribution toward the MR CC methodology that is

based on a completely general model space (GMS) [202,223]. In contrast to an IMS,

which results by a truncation of the CMS, we define GMS as a model space that is

spanned, at least in principle, by a set of arbitrarily chosen configurations.

Exploring the cluster analysis of a finite set of FCI wave functions based on the

SU CC Ansatz [224], we realized that by introducing the so-called C-conditions (‘C’

implying either ‘constraint’ or ‘connectivity’, as will be seen shortly), we can achieve a

unique representation of a chosen finite subset of the exact FCI wave functions, while

preserving the intermediate normalization. (In fact, any set of MR CI wave functions

can be so represented and thus reproduced via an MR CC formalism.) These

C-conditions simply require that the internal amplitudes (i.e. those associated with the

excitations within the chosen GMS) be set equal to the product of all lower-order cluster

amplitudes, as implied by the relationship between the CI and CC amplitudes [223], rather

than by setting them equal to zero, as was done in earlier IMS-based approaches [205,206]

(see also Ref. [225]). Remarkably, these conditions also warrant that all disconnected

contributions, in both the effective Hamiltonian and the coupling coefficients, cancel out,

leaving only connected terms [202,223].

With the GMS-based SU CCSD method, we were able to carry out a series of test

calculations for model systems that allow a comparison with full CI results, considering

GMSs of as high a dimension as 14. These results are most promissing.Moreover, we have

formulated a generalization of the RMR CCSD method, resulting in the so-called (M, N)-

CCSD approach [226] that employs anM-reference MR CISD wave functions as a source

of higher-than-pair clusters in an N-reference MR SU CCSD (clearly, we require that

M ^ N). In this way, the effect of intruders can be taken care of via external corrections,

which are evenmore essential at theMR level than in the SR theory, because, in contrast to
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the latter, where the energy is fully determined by the one- and two-body amplitudes, the

effectiveHamiltonian of theMR theory always involves higher-than-pair clusters.We also

mention that the idea of C-conditions can be exploited in BW MR CC method (see Ref.

[227] for a preliminary study).

Although the results obtained so far are very promising, the ‘specter’ of intruderswill not be

easy to overcome if we require that a singleGMSbe suitable for all the geometries considered.

Yet, with a dose of ‘healthy’ scepticism, as expressed most fittingly in the motto to this

section, we hope that the MR CC formalism will eventually deliver the expected ‘harvest’.

In closing, let me take a fleeting glance back in time. There is no denying that during

the past four decades tremendous advances have been made in our field of endeavor, and

the CC method became the method of choice in many applications. Of course, these

advancements could not have been achieved without the enormous progress of

computing technology. Yet, in spite of their propitiousness—indeed necessity—they

are not without pitfalls, as already alluded to above. They greatly influence not only our

science, but our lives as well. The ever deepening commercialization of software is

certainly worrisome, if hardly avoidable. I understand that some scientists, in fact entire

institutions, are ‘banned’ from the use of competitor’s commercially available software.

But such ethical problems would take us too far astray from our topic.

Undeniably, during the past four decades, decisive progress has been made in our

understanding of correlation effects and in the ways of how to account for them. The

coupled-cluster approaches have certainly played their role here. Nonetheless, there is still

enough work left for future generations of molecular quantum theorists. Hopefully, these

will come not only from the brute-force exploitation of new and more powerful hardware,

but also from theoretical and algorithmic developments. And, in our striving for greater

and greater accuracy and reliability, wewill hopefully not forget that the building and study

of useful, simple models may often be more beneficial than the blind generation of ever

more accurate numbers. We certainly look forward to these advances!

…

les sauriens du calcul se glissent pondéreux

écrasant les tablogs les abaques les règles

Leur mères les trieuses les pères binaires

et l’oncle électronique avec son regard d’aigle

admirent effarés ces athlètes modestes

pulvérisant les records établis par les

bipèdes qui pourtant savent compter parler

soigner Soigner les sauriens du calcul et les

bipèdes qui…

(Raymond Queneau: Petite Cosmogonie Portative, VIe chant)11

11 “Sauriens of computation glide weightily/smashing log-tables abacuses rulers/Their mothers (punched card)

sorting machines binary fathers/and electronic uncle with his eagle gaze/scarily admiring these modest

athletes/pulverizing the records established by/bipeds who after all knew how to compute to speak/to care for To

care for sauriens of computation and the/bipeds who after all knew etc.” See also the Footnote 1 to the opening

quotation from Queneau.
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genannten Begrenzung übrig bleibende Material immer noch so groß, daß im Stoff eine gewisse

Beschränkung notwendig war, um den Umfang des Buches nicht zu sehr anwachsen zu lassen.

4 W. Heitler and F. London, Z. Phys., 44 (1927) 455.

5 O. Wichterle, General and inorganic chemistry, Academy of Sciences, Prague, 1950, in Czech.

6 O. Wichterle, Organic chemistry: Structure of organic molecules, Vol. 1, Reaction mechanisms, Vol. 2,

Academy of Sciences, Prague, 1952, in Czech.

7 G.W. Wheland, The theory of resonance and its application to organic chemistry, Wiley, New York,

1944, Resonance theory in organic chemistry, Wiley, New York, 1955.

8 J.K. Syrkin and M.E. Djatkina, Chemical bond and molecular structure, Mir, Moscow, 1946, in Russian,

English translation: Structure of molecules and the chemical bond, Interscience, New York, 1950.

9 See, e.g. I.V. Komarov, L.I. Ponomarev and S.Yu. Slavjanov, Spheroidal and Coulomb-spheroidal

functions, Nauka, Moscow, 1976, in Russian, and references therein.

10 M. Born and J.R. Oppenheimer, Ann. Phys. (Leipzig), 84 (1927) 457.

11 J.H. van Vleck and A. Sherman, Rev. Mod. Phys., 7 (1935) 167.

12 R. McWeeny, Valence bond theory. A re-examination of concepts and methodology, in: Z.B. Maksić,
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approaches to electron correlation in atoms, Yale University Press, New Haven, Connecticut, 1970,

pp. 350–360.

74 R. McWeeny, Theoretical chemistry—a link between disciplines (inaugural lecture delivered 8 February

1967), University of Sheffield, Sheffield, 1967, pp. 8–9.

75 R.F. Bishop, T. Brandes, K.A. Gernoth, N.R. Walet and Y. Xian (Eds.), Recent progress in many-body

theories (Proceedings of the 11th international conference), World Scientific Publishing, Singapore,

2002.
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118 J. Paldus, J. Čı́žek and I. Shavitt, Phys. Rev. A, 5 (1972) 50.

119 J.A. Pople, R. Krishnan, H.B. Schlegel and J.S. Binkley, Int. J. Quantum Chem., 14 (1978) 545.

120 R.J. Bartlett and G.D. Purvis, III, Int. J. Quantum Chem., 14 (1978) 561.

121 W. Meyer, J. Chem. Phys., 64 (1976) 2901; C.E. Dykstra, H.F. Schaefer, III and W. Meyer,

J. Chem. Phys., 65 (1976) 2740.

122 G.D. Purvis, III and R.J. Bartlett, J. Chem. Phys., 76 (1982) 1910.

123 ACES II, a CC and MBPT suite of codes by J.F. Stanton, J. Gauss, J.D. Watts, W.J. Lauderdale and

R.J. Bartlett, Int. J. Quantum Chem. Symp., 26 (1992) 879.

124 GAUSSIAN 92, a system of codes written by M.J. Frisch, G.W. Trucks, M. Head-Gordon, P.M.V. Gill,

M.W. Wong, J.B. Foresman, B.G. Johnson, H.B. Schlegel, M.A. Robb, E.S. Replogle, R. Gomperts,

J.L. Andres, K. Raghavachari, J.S. Binkley, C. Gonzales, R.L. Martin, D.J. Fox, D.J. Defrees, J. Baker,

J.J.P. Stewart and J.A. Pople, Gaussian, Inc., Pittsburgh, Pennsylvania.

125 MOLCAS-3, a system of programs by K. Andersson, M.R.A. Blomberg, M.P. Fülscher, V. Kellö, R. Lindh,
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209 J. Mášik and I. Hubač, Adv. Quantum Chem., 31 (1999) 75, and references therein.
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I. Hubač, Int. J. Quantum Chem., 90 (2002) 1031; J. Pittner, J. Šmydke, P. Čársky and I. Hubač, J. Mol.
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CHAPTER 8

Controlling quantum phenomena

with photonic reagents

Herschel Rabitz

Princeton University, Princeton, NJ, USA

Abstract

Efforts at controlling molecular dynamics and other quantum phenomena with lasers

have a history going back to the early 1960s. This quest has followed a torturous

evolution, but recent years have seen dramatic successes beginning to emerge. These

laboratory advances utilize shaped ultra-fast laser pulses as a special class of photonic

reagents having a fleeting existence, but with the capability of permanently altering

molecules and materials in specific ways. Theoretical concepts and modeling are

providing the basis for directing and analyzing the experiments. Although attempts at

photonic reagent control of quantum dynamics is a subject with a 40-year history, the

field may be viewed as just a few years young given only the recent emergence of

successful experiments on physically and chemically interesting systems. It is anticipated

that theory and modeling will continue to play leading roles in the further development of

this field.

8.1 HOW CAN CONTROL OF QUANTUM DYNAMICS PHENOMENA

BE ACHIEVED?

Light is well known to be capable of influencing chemical reactions, and this capability

is the foundation of photochemistry [1]. The advent of lasers, starting in the early 1960s,

was initially viewed in this context as a tool in the natural progression of the

photochemical field. In particular, lasers were thought of as high-intensity monochro-

matic sources of radiation, which under favorable circumstances could resonantly excite

a vibrational mode or chemical bond, subsequently influencing the molecule’s reactivity

[2]. Many efforts ensued in the 1960s and 1970s along these lines with various laser

sources [3]. The ability of lasers to create molecular excitations was documented in

q 2005 Elsevier B.V. All rights reserved.
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many studies, including some involving chemical reactions [4]. A critical missing

component of these efforts was controlled selectivity whereby, for example, one

particular bond versus that of another is dissociated. A most challenging objective is the

breaking of a strong bond over that of other weaker ones in the same molecule. Jumping

ahead to the present time, it is now attractive to view a shaped laser pulse as a photonic

reagent [5] as sketched out in Fig. 8.1, depicting the electric field of a laser pulse. The

structure in the pulse implies that it is multi-spectral in contrast to the earlier approaches

with continuous wave (cw) lasers. The detailed multi-spectral character of a shaped

laser pulse is generally necessary to fully take over the dynamics of the molecule and

steer the system from its initial state to the desired final state at time T. In this respect,

the entire molecule can be thought of as an antenna with components simultaneously

accepting different portions of the control pulse to ultimately create the desired

evolution lcð0Þl! lcðTÞl:
The discussion in the last paragraph jumps from the initial concepts of utilizing cw

lasers for manipulating molecular scale chemical and physical events in the 1960s up to

the current perspective employing tailored photonic reagents in 2004. However, a

number of events occurred in between, which are significant for appreciating the present

state of the field and perhaps where it might be heading. In the late 1970s and the early

1980s, considerable frustration was evident in the field, as extensive effort had already

gone into attempting to redirect chemical and physical processes with lasers, but the goal

of achieving good selectivity appeared difficult to reach [6]. It was recognized that the

underling laser driven dynamics is quantum mechanical and therefore could involve

quantum wave interferences [7], thereby suggesting that the desired selectivity could

be attained by exploiting two constructively interfering quantum mechanical pathways

for reaching the target. This proposal involved the use of radiation having two

colors where each is associated with a particular pathway. Simulations and ultimately

Photonic

Reagent

ε(t)

ψ(0)→ψ(T)

Fig. 8.1. A photonic reagent consisting of a shaped laser electric field 1ðtÞ interacts with a molecule.

The photonic reagent envelops the molecule, which acts as an antenna to accept the various coherent spectral

components of the shaped pulse. The ensuing coherent quantum dynamics steers the molecule towards a

desired target.
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experimental studies [8] verified the point that quantum wave interference could be

exploited, but merely expanding the control from being monochromatic to having two or

a few frequency components is too limited to generally deal with rich multi-spectral

motion especially in polyatomic molecules and complex media. A different proposal was

put forth involving a two step so-called pump–dump scheme whereby an initial ultra-fast

pump pulse would create a molecular excitation possibly to an upper electronic state, and

a second suitable time-delayed pulse would dump the excitation into the desired final

target state [9]. This alternative scheme also has a realm of validity, and it has been

verified as feasible under favorable conditions [10]. However, the mere timing of one

pulse versus that of another is generally not sufficient to deal with the highly complex

dynamics of polyatomic molecules.

Around the same time of the latter two developments, formal engineering design

techniques were introduced within quantum mechanics in order to computationally

identify an optimal control laser electric field 1ðtÞ for meeting the posed molecular

dynamical objectives [11]. Considering design as a means of finding effective laser fields

for this purpose is a natural perspective involving specification of the physical objective

along with any other processes in competition with that objective. Virtually all realistic

laser control applications involve competitive dynamical processes, minimally including

the desire that laser control be performed efficiently or even more generally that the

desired physical process occurs while simultaneously minimizing other accessible and

undesirable outcomes from the dynamics. The notion of employing optimization is quite

attractive in this context as one always aims to attain the best possible solution for the

manipulated dynamics. A rigorous formulation of this task leads to a set of design

equations for the control field 1ðtÞ; which take on various forms depending on the nature
of the physical objectives and dynamical processes to be avoided [11]. A simple form of

these design equations is presented below,

i"
›

›t
lcl ¼ ½H0 2 m1ðtÞ	lcl; lcð0Þl ð1Þ

i"
›

›t
lfl ¼ ½H0 2 m1ðtÞ	lfl; lfðTÞl ¼ lOlcðTÞl ð2Þ

1ðtÞ ¼ ImkfðtÞlmlcðtÞl ð3Þ

l ¼ kcðTÞlOlcðTÞl2 Otarget ð4Þ
Here H0 is the free Hamiltonian of the system, under whose dynamics alone the

desired physical goal is not met. The control field 1ðtÞ enters in this formulation

coupled through the dipole operator m: The evolving state of the system lcðtÞl satisfies
Eq. (1) starting from the initial condition lcð0Þl: Equation (1) cannot be standardly

integrated forward from this initial condition as the desired control field 1ðtÞ is

unknown upon initiation of the design process. Therefore, the remaining Eqs. (2–4) are

there to close this process. In particular, lfðtÞl satisfying Eq. (2) along with its final
condition lfðTÞl acts as a ‘helper’ function to guide the dynamics along the right path
to the target Otarget. The sought after control field 1ðtÞ is given by the matrix element in
Eq. (3) and the constant l characterizes the difference between the expectation value of
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the target operator O at time T and the actual desired target value Otarget. The design

equations (1–4) present a non-linear boundary value problem in time (i.e. Eq. (1) has

an initial condition and Eq. (2) has a final condition with the non-linearity expressed in

Eq. (3)), and they may be solved by appropriate iterative techniques [12]. Since the

introduction of these quantum optimal control design procedures in the late 1980s,

hundreds of simulated designs have been carried out on systems ranging from a few

levels out through the excitation of rotational, vibrational, and electronic degrees of

freedom and reactive processes. The first conclusion that may be drawn from these

efforts is simply that successful controls may be designed on the computer.

Furthermore, even the earliest design efforts [11] identified that successful controls

would often be pulses with complex waveforms as indicated in Fig. 8.1. The pulse

structures naturally arise as the laser control needs to cooperate with the delicate

dynamical capabilities of the quantum system placed under control in order to

effectively steer it to the target state. Numerous studies show this same complex pulse

shape characteristic [13], and generally, it will only be a rare case where a successful

control has one or a few frequency components.

Notwithstanding the ability to successfully design controls on the computer, the

current experiments [14–25] generally do not operate by implementing the resultant

designs. The reason for this lack of implementation is twofold [26]. First, we do not

‘know’ molecules well enough to design reliable laser controls. The notion of knowing

molecules refers to quantatively specifying their Hamiltonian components H0 and m:
The demand for high-quality Hamiltonian information is driven by the fact that

typically the control processes rely on manipulating constructive and destructive

quantum wave interferences, which can delicately depend on even slight errors in the

Hamiltonian. Although, to zeroth order virtually all Hamiltonians for molecules and

materials are known, very few of them could be categorized as quantitatively known for

control purposes. Second, even with good knowledge of the system Hamiltonian, the

design equations (1–4) need to be solved to high accuracy for meeting the same

demands of manipulating delicate quantum wave interferences. Accurately solving

Schrödinger’s equation is quite difficult for complex systems and the design equations

(1–4) are even more involved due to their coupled non-linear nature. These collective

circumstances generally produce significant uncertainty in the control designs thereby

preventing their direct successful implementation in the laboratory.

Design problems of the type above are common in the engineering disciplines, and the

natural way to proceed is to close the loop and let the molecule subjected to control dictate

the proper laser pulse shape to achieve its control [26]. This suggestion leads to a

laboratory laser control apparatus architecture having the structure in Fig. 8.2. A key

component of this machine architecture is the laser pulse shaper [27], which creates the

photonic reagents for interaction with the sample. The duty cycle for proceeding from one

laser pulse shape to another can be hundreds or even thousands or more per second thereby

opening up an unprecedented capability for performing massive numbers of independent

trial experiments in very short periods of laboratory time. The logic behind the

laser control apparatus in Fig. 8.2 sidesteps the uncertainty in our knowledge of the

Hamiltonian and the accuracy difficulties associated with solving Schrödinger’s equation

by using the actual quantum system under control to eliminate these issues. In particular,

Chapter 8152



the actual quantum system certainly has full knowledge of its own Hamiltonian

and secondly, solves its own Schrödinger equation to full precision and as rapidly as

possible upon exposure to a trial laser control field! Each time a new solution of

Schrödinger’s equation is called for with a particular trial laser field, then the associated

experiment is performed and the outcome recorded. The learning algorithm in the loop

serves as a pattern recognition tool observing the outcomes from the prior experiments

and suggesting new ones with the goal of homing in as rapidly as possible on the desired

physical objective.

The apparatus sketched out in Fig. 8.2 now exists in many laboratories with a

Ti:sapphire laser generally being the driving source functioning in the near fs regime

[28]. The operation of the pulse shaping [27] aspect of the apparatus to create the

photonic reagents can be readily understood as sketched in Fig. 8.3. The technology

involved is still evolving, but it is in practical form for many applications. Since these

experiments started [14] in 1997, many have been carried out [15–25] covering the

categories listed in Table 8.1. Chemical transformations are amongst the items in this

list, but it is evident that the objectives have expanded to include many other goals.

Perhaps most important is the scope and range of the systems being brought under

control, which covers atoms out through highly complex protein complexes. The system

size itself is not proving to be a hindrance including the cases involving control in

condensed phase environments.

Fig. 8.2. A closed loop apparatus for manipulating quantum dynamics phenomena [26]. A learning algorithm

guides the pulse shaper to optimize tailored laser pulses to act as photonic reagents. The tailored laser pulses

induce quantum dynamic excursions in a sample. Under high-duty-cycle closed-loop operation, the process can

home in on a particular pulse shape that steers the system as close as possible to the desired target. On each

excursion of the loop, a new quantum system is prepared in the same initial state for controlled manipulation.
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Two particular experiments hint at the novel capabilities of photonic reagents for

creating molecular transformations. The photonic reagent driven reaction [21]

CH3

CH3
C

O

+ + COPhotonic
Reagent

ð5Þ

Fig. 8.3. Ultrashort optical pulses can be shaped by adjusting the phase and amplitude of each spectral

component [27]. In the device, the input pulse is incident on a grating that disperses the different colors in

different directions, as shown in the figure. The colors are collimated and focused by a lens or mirror. A second

similar arrangement in reverse reconstitutes the pulse by redirecting the colors to another grating. At the mutual

focal plane of the two lenses, the spectrum of the input pulse is completely resolved so that each spatial location

corresponds to a single frequency (or a narrow band). By inserting at this plane a material that causes variations

in the phase of each resolved frequency, one can construct a pulse of arbitrary shape, constrained only by the

spatial resolution of the arrangement.

Table 8.1. Recent scope of adaptive quantum control experiments

(1) Atomic excitation tailoring

(2) Fluorescence spectrum manipulation

(3) Vibrational excitation tailoring in polymers

(4) Molecular fragmentation selectivity

(5) Molecular rearrangement selectivity

(6) Chemical (agent) discrimination

(7) High harmonic X-ray tailoring

(8) Ultrafast solid-state optical switching

(9) Distortion-free transmission of intense pulses in optical fibers

(10) Decoherence management

(11) High-resolution non-linear microscopy

(12) Photosynthetic bacteria electron transfer manipulation

(13) ?
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resulted in the breaking of two chemical bonds and the simultaneous formation of a third

bond to create the toluene product from the acetophenone. Furthermore, selective

breakage of the methyl–carbonyl versus the phenyl–carbonyl bonds could also be

achieved with distinctively different photonic reagents, all deduced from operating

the experiments as in Fig. 8.2. The reaction in Eq. (5) is chemically novel and

demonstrates that photonic reagents can have characteristics distinct from that of

ordinary chemical reagents. Ordinary chemical reagents inherently attack substrates

locally due to steric limitations. In contrast, photonic reagents envelop the substrate,

considering that the wavelength of light is much larger than typical molecules. As

explained earlier, the molecule acts as an antenna undergoing dynamical evolution

directed by a multi-spectral photonic reagent inducing associated coherent quantum

motion. The example in Eq. (5) is a novel reaction, which would be difficult to achieve by

any single chemical reagent. Beyond novelty of action, a hint also exists that photonic

reagents will have their own systematic behavior. An example suggesting this point [20]

is shown in Eq. (6).

Fe FeX

C
O

+
Photonic
Reagent
Pr (X)

X

OC OC
CO+

X=Cl or Br

ð6Þ

The photonic reagent Pr(Cl) optimized for removing the carbonyl group from the

chlorinated compound was found to be effective for the brominated compound, but not

optimal. The reverse situation was similarly found for Pr(Br) as the optimal photonic

reagent for the brominated compound, which also worked to some degree in removing the

carbonyl group from the chlorinated compound. This behavior is exactly what is typically

found with ordinary chemical reagents where the systematics of their chemical

transformations underlies practical chemistry. In summary, the two cases in Eqs. (5)

and (6) indicate that photonic reagents (a) may have unique properties for making

chemical and physical transformations, and (b) can do so in a systematic fashion.

Although, the theoretical concepts and computational simulations ensuing from the

most general formulations of optimal control [29] (i.e. based on Eqs. (1–4) and its

generalizations) continue to provide valuable insights into the control of quantum

systems, these designs have proved to be wanting for laboratory implementations.

Nonetheless, it was these same theoretical insights, which led to suggesting [26] the

overall architecture in Fig. 8.2 and its application for successful control in the laboratory

[14–25]. This situation speaks of the unusual roles that theory is playing in the successful

control of quantum phenomena. Further roles for theory and simulation are emerging, and

the remainder of this paper aims to highlight some of these continually growing

developments. The greatest advances in this field are likely to come from drawing

together the best capabilities of the laboratory control apparatus with those of theory and

computation to guide and analyze the experiments.
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8.2 WHY DOES QUANTUM CONTROL WITH PHOTONIC

REAGENTS APPEAR TO BE SO EASY?

The ongoing 40-year effort at controlling quantum phenomena with lasers certainly

indicates that the goal has been difficult to achieve. However, most of this period suffered

under a lack of conceptual understanding as well as a lack of the appropriate laboratory

tools to achieve the objectives. These latter circumstances began to change around 1990

and subsequently, rapid progress has been made culminating with a growing number of

successful control experiments. Although the laser pulse designs coming from computer

simulations are generally not being utilized in the laboratory, nonetheless, the simulations

do describe legitimate model quantum systems on the computer. In the laboratory and

on the computer, successful control outcomes have been reported for manipulating

broad classes of phenomena including rotational, vibrational, and electronic degrees of

freedom as well as reactive processes for systems ranging from atoms to highly complex

molecules and materials [14–25]. Whether in the laboratory or on the computer, typically

tens to hundreds of discrete control variables with respective gray scales often of at

least 50 settings are searched over, potentially corresponding to ,50100 accessible trial

control fields! Yet, it is typically found that only hundreds to thousands of iterations

(experiments) are needed to find successful controls for manipulating quantum

phenomena. Performing thousands of experiments under normal conditions would

require a quite prodigious effort, but the high-throughput nature of the apparatus sketched

in Fig. 8.2 permits such experiments to be carried out in the order of minutes. Section 8.1

addressed how quantum control may be practically achieved, and the puzzling question

[30] left by the collective observations above is why does the search for effective controls

beat the so-called ‘curse of dimensionality’? The curse of dimensionality refers to the

potential exponential scaling (i.e. 50100 accessible experiments) of the search effort with

respect to the number of variables involved. Under normal conditions, one would expect

such searches to result in local trapping with a poor quality control outcome, or the search

effort merely becoming lost in the vast domain of the search landscape. Global search

procedures such as genetic algorithms [31] are effective, but they are also not a panacea

for breaking the curse of dimensionality. If seeking the optimal control of quantum

phenomena behaved as a normal high-dimensional search problem, a rational assessment

would lead one to not even attempt an experiment involving a search over hundreds of

laser pulse shaper phase and amplitude control variables. This reasonable assessment was

reached by a number of researchers in the mid-1990s. Fortunately, other researchers

proceeded ahead despite these forebodings, ultimately enjoying success in the laboratory.

An important challenge is to explain the evidently contradictory outcome that quantum

control does work and it is easy to find good solutions! An analysis of this problem was

recently undertaken [30] for various quantum mechanical objectives, with the generally

most common case being

max
1ðtÞ

Pi!f ; Pi!f ¼ lkflUlill2 ð7Þ

where Pi!f is the probability of making a transition from state lil to state lfl and U is the

evolution operator describing the full dynamics of the system under control. Most of
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the computer simulations and experiments of controlled phenomena are concerned with

the goal in Eq. (7). The basic assumption in the analysis of this problem is that the

physical system is controllable [32], implying that in principle a field 1ðtÞ exists, which
may arbitrarily steer about the quantum system. Although a rigorous establishment of

controllability is difficult to come by in realistic applications, statistical arguments

suggest that virtually all quantum systems are expected to be controllable either fully or

to a high degree [33]. Thus, the assumption of controllability is a reasonable basic

premise. The transition probability Pi!f½1ðtÞ	 is a functional of the control 1ðtÞ through
the generally highly complex mapping 1ðtÞ! U: Little is presently understood about the
latter mappings, especially under the circumstances of strong control implying that U has

a highly non-linear dependence on the control field 1ðtÞ: Nonetheless, we seek to

understand the basic structure of control of landscape Pi!f½1ðtÞ	 and the nature of its
extrema satisfying

dPi!f

d1ðtÞ ¼ 0 ð8Þ

The structure of the control landscape Pi!f½1ðtÞ	 is the key to answering the question
posed by the title of this section in this chapter. To proceed with the analysis it is

convenient to introduce the transformation U ¼ expðiAÞ;A† ¼ A where A is a Hermetian

N £ N matrix corresponding to the system having N states. Equation (8) may then be

rewritten as

dPi!f

d1ðtÞ ¼
X
pq

›

›Apq

lkflexpðiAÞlill2 dApq

d1ðtÞ ¼ 0: ð9Þ

The mapping 1ðtÞ! A is not expected to generally be any simpler than 1ðtÞ! U:
However, with the system being controllable each matrix element in A should be

independently addressable by the control 1ðtÞ within hermeticity of the matrix. This

statement implies that the functions dApq=d1ðtÞ should be linearly independent over

0 # t # T: Thus, the only way that Eq. (9) can generally be satisfied is from the

requirement that the time-independent coefficients are zero,

›

›Apq

lkflexpðiAlill2 ¼ 0 for all p and q: ð10Þ

The lack of explicit dependence upon the system Hamiltonian in Eq. (10) is consistent

with the findings that successful control is being found across the board in both simple

and highly complex systems, therefore suggesting that specific Hamiltonian details are

not at the root of explaining why this is happening. A full analysis may be undertaken [30]

of the non-linear algebraic equations in Eq. (10), leading to the rather surprising

conclusion that Eq. (8), only has the solutions

Pi!f ¼ 0 or 1: ð11Þ
The control landscape, Pi!f½1ðtÞ	; only has extrema corresponding to either no control or
perfect control! Furthermore, as the control problem lil! lfl only specifies traversal
from the initial state lil to the final state lfl; generally an infinite number of optimal paths
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may be taken corresponding to the landscape being replete with an infinite number of

perfect extrema Pi!f ¼ 1 with null valued extrema Pi!f ¼ 0 in between.

The control landscape analysis leading to the conclusion in Eq. (11), provides the basis

to explain the many successful experiments and simulations of controlled quantum

phenomena. Typically, an initial guess for the control field 1ðtÞ is made, and this trial will
likely produce a very poor result for Pi!f ; landing at some interior low-value location in
the landscape. However, virtually any reasonable algorithm should be able to sense the

upward slope, towards the nearest prefect solution. Evidence shows that only a modest

number of additional trial experiments or simulations are needed to rapidly reach the

vicinity of Pi!f ¼ 1: Furthermore, additional detailed analysis of the Hessian at each of
the extrema of Pi!f ¼ 1 satisfying Eq. (8) shows that there is an inherent degree of

robustness to the control solutions. This observation is consistent with the laboratory

successes, as they likely would not occur with even modest control errors, especially in

the highly non-linear regime utilizing strong control fields.

Another important conclusion from this analysis concerns the significance of retaining

as much flexibility as possible in the controls when seeking to manipulate quantum

systems. This notion is perhaps intuitive, but its significance becomes more evident upon

considering that despite the control landscape only having prefect extrema, typical

quantum optimal control simulations produce less than perfect yields with common

values like Pi!f < 0:9:A closer examination of these calculations shows that they always

contain either explicit or implicit constraints on the controls through the imposition of

particular forms for the field, the fixing of the target time T ; or the introduction of other
costs to limit the field intensity. Inevitably, such limitations on the freedom for 1ðtÞ will
lead to the search for the control taking a constrained path through the landscape

producing convergence at a value of Pi!f , 1 corresponding to less than the attainable

perfect control yield. In extreme cases, the limitations on the freedom in the control can

also give the impression that the landscape itself has false structures as the search

traverses a torturous path up and down along the slopes of one or more of the landscape

features. Maintaining the broadest freedom for the control is essential for achieving the

best quality results, in lieu of the landscape structure findings.

8.3 WHAT IS OCCURRING DURING THE PROCESS OF CONTROLLING

QUANTUM DYNAMICS PHENOMENA?

Sections 8.1 and 8.2, respectively, addressed how to control quantum phenomena in the

laboratory and why it appears easy to achieve. However, left as a mystery is what happens

during the control excursions or equivalently, what is the nature of the control

mechanisms? It is evident that one may carry out successful control experiments using

the procedure in Fig. 8.2 without either imposing or ultimately determining the

underlying quantum control mechanism. Furthermore, this success may be achieved

without any detailed knowledge of the specific system Hamiltonian structure [26]. These

features of the overall procedure are very attractive for practical applications, but

nonetheless the fundamental desire to understand the underlying mechanisms remains as

a challenge. At the present time, little understanding exists about quantum control
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mechanisms, but the conceptual foundations for addressing this problem is coming into

place [34].

The traditional route to achieving understanding about the control mechanism would

be through the use quantum system simulations [25]. This approach to extracting the

control mechanism builds upon the fact that the outcome from a successful experiment

would consist of not only the observed objective yield, but also a determination of the

optimal control field 1ðtÞ involved. Assuming (a) that full knowledge of the system

Hamiltonian was available, the field determined in the laboratory could be folded in along

with the further assumption (b) that the quantum system simulations could be reliably

carried out describing the corresponding experiment. Lack of satisfaction of the latter two

assumptions was exactly the critical reason leading to the suggestion [26] of sidestepping

computational designs and performing the successful control experiments using the

procedure in Fig. 8.2. Nonetheless, under favorable circumstances [25], for simple

systems, these assumptions may be satisfied and the conditions for this to happen

are likely to improve with better computational capabilities. Although much information

about the mechanism could be learned in this fashion (when the simulations can be

performed!), operating along these traditional lines is likely to still leave an incomplete

understanding about quantum control mechanism in many cases. This point is evident

from the many quantum optimal control simulations [11,13], which always have full

access to the system dynamics including the wave function and yet they frequently have

provided incomplete mechanistic insights into the control process. Thus, traditional

simulations alone and even knowledge of the system wave function may not provide an

easy route to understanding the mechanisms of controlling quantum phenomena.

The observations above leave fully open how to proceed in assessing quantum control

mechanisms. A first issue to consider is the meaning of quantum coherences in

mechanistic analyses. Normal chemical and physical dynamics processes (i.e. those

without laser controls) are typically understood without the introduction of quantum

coherence concepts. But, in the case of quantum control, coherence is likely to be a

central enabling factor. A general perspective on quantum control mechanism analysis

appears feasible to develop [34] by considering the quantum system under control as a

functioning ‘machine.’ As in any area, the understanding of machine operation calls for

the introduction of a disturbance and subsequent monitoring of the system response. With

quantum control systems typically operating at the near fs time scale, a direct application

of this procedure in the laboratory would call for even faster modulation than already

contained in the control field to produce a discernable signal for mechanistic analysis in

the experiment. This procedure would be technologically extremely difficult to execute.

However, this difficulty can be overcome by taking advantage of the ability to perform

massive numbers of experiments over short periods of laboratory time, using the high-

duty cycle of the lasers and the pulse shapers. A pseudo-time-like variable s $ 0 can be

introduced, which in practice acts as an index labeling the sth experiment through a

specific encoded modulation of the phase and amplitude control variables. For example,

the nth control variable could be modulated in a Fourier fashion with the function

cosðnnsÞ; where nn is an arbitrary encoding frequency having no relation to the quantum
system frequencies. By choosing the collective set of frequencies {nn} to be

incommensurate and simultaneously modulating some or all of the control variables
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over a sequence of experiments s! sþ Ds! sþ 2Ds; · · ·; the observable signal OðsÞ
may be recorded as a function of s $ 0 discretized with resolution Ds:With this form of

Hamiltonian encoding, upon inverse Fourier transform of the signal over s $ 0; a
spectrum will result, revealing various fundamental and combination bands associated

with the frequencies {nn}: In turn, the Fourier amplitudes from this analysis may be

directly related to the interfering quantum amplitudes producing the desired physical

objective.

At the present time, no laboratory experiments have been carried out using this

proposed Hamiltonian encoding-dynamics decoding technique, although simulations

indicate the capability of the procedure [34]. As an example, Fig. 8.4 presents a

mechanistic analysis of the simple control process l1l! l3l in a four-level quantum
system. Although an optimal field was easily found that successfully achieves this

transition, as is typically the case, the mechanism of this process was not evident from

examining the quantum amplitudes or the field itself. However, the encoding–decoding

analysis sketched out above, demonstrated that the mechanism proceeded along the three

dominant pathways shown in Fig. 8.4. The amplitudes associated with these pathways

were found to constructively interfere reflecting the nature of their optimality. As the

amplitude k3lUl1l was nearly of unit magnitude, such that P1!3 < 1:0; it follows that the
other transition amplitudes out of state l1l must essentially be zero. For example,

k4lUl1l < 0; and the mechanistic analysis shows that the reason for this behavior does
not lie in the fact that state l4l is not visited during the dynamics. Rather, a destructive
interference is setup for the amplitudes arriving at this state as indicated in Fig. 8.4. This

illustration demonstrates the fundamental principal that quantum control involves the

search for an optimal field 1ðtÞ that can setup suitable constructive interferences in the
desired state and destructive interferences in the others. This mechanistic phenomenon

clearly points out the reason why simple intuition historically failed to identify successful

controls: it is simply not possible to intuit and balance highly complex constructive and

destructive quantum wave interferences in multi-state systems. Yet, the optimal control

operations following the architecture in Fig. 8.2 are fully capable of discovering

successful controls in diverse and even highly complex quantum systems.

Many questions and issues remain in the development of effective means to

experimentally determine and understand quantum control mechanisms. Ultimately, the

attainable knowledge about such mechanisms will be limited by the noise inherent in the

laboratory. However, this limitation is already present in the underlying experiments

attempting to achieve control over the dynamics, prior to extracting mechanistic insights.

The optimal control experiments reach an objective by working as best as possible in the

presence of laboratory noise, and nothing more can be expected of the mechanistic

analysis than the determination of the key dynamical features, which survive in the

presence of the noise. Any experiment achieving a reasonable level of control success

should be amenable to a comparable level of mechanistic analysis using suitable

encoding and decoding techniques. A further issue to consider is that both control and

mechanistic analysis typically involve lasers that have spatial inhomogeneities implying

that different subsets of the molecules of the sample may see fields of varying intensity.

In addition, as the ultra-fast laser pulse passing through the medium will interact with the

molecules effectively frozen and at various orientations, again, each molecule will
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Fig. 8.4. A pathway mechanism analysis performed on a four-level quantum system where the goal is to make

the transition l1l! l3l: The analysis reveals three dominant pathways. In addition, it is seen that the complex
amplitudes associated with these pathways align to constructively interfere in the state l3l: In contrast a non-
target state, such as l4l; has destructively interfering amplitudes.
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experience a distinctly different control field 1ðtÞ: Theoretical analysis [35] reveals the
rather surprising result that under these circumstances, at least one optimal field generally

exists to fully control the entire ensemble of molecules, despite the fact that each member

of the ensemble ‘sees’ the field in a different fashion. This outcome is very attractive from

a control prospective, but this analysis also indicates that each member of the molecular

ensemble may take a distinctly different pathway (i.e. have a different control

mechanism) while still reaching the same final control objective. Mechanism analysis

may ultimately have to be understood as an ensemble average process just as control

itself is an ensemble average over molecules exposed to different local field

environments.

8.4 CONCLUSION

Manipulating atomic and molecular scale phenomena is at the heart of many activities in

chemistry and physics. The introduction of specific chemical reagents to produce suitable

materials modifications constitutes the traditional means of achieving these manipula-

tions. After some 40 years of effort, it now appears that photonic reagents have the

capability of becoming a new tool in the arsenal for achieving such atomic and molecular

scale manipulations [5]. Furthermore, experiments are beginning to reveal the unique

nature of photonic reagents, suggesting that they have special capabilities beyond that of

ordinary chemical reagents. Their uniqueness lies in the inherent feature of photonic

reagents having the ability to envelop and totally speak to all dynamical aspects of a

molecule. Furthermore, we may change from one photonic reagent to another at a

blurring rate through the high-duty cycle of ultra-fast laser pulse shaping [27]. Although,

the cost of shaped photonic reagents remains high, many applications and fundamental

studies do not require the production of large amounts of materials. One could ultimately

envision a mix and match situation, whereby the special features of photonic and ordinary

reagents would be combined for fully flexible optimal manipulation of atomic and

molecular scale processes. Proceeding along these lines may enable the creation of novel

molecules and materials, as well as reveal deeper insights into quantum dynamics

phenomena. Table 8.1 shows that applications in this area, although starting with

chemistry, now go far beyond. It is reasonable to anticipate that the table will also expand

in new directions in the future, as virtually any atomic or molecular scale process should

be amenable to photonic reagent manipulation. The ultimate utility of photonic reagents

remains open for assessment, but at this juncture, we may conclude that photonic reagent

control is prime for development given that many of the basic principles and tools are

now in hand.
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Abstract

This review describes methods for computing directly the anharmonic vibrational spectra

of polyatomic molecules from potential surface points obtained from electronic structure

theory. The focus is on the state of the art of the methodology, on the approximations and

the algorithms involved and their limitations, and on the scaling of the computational

effort with the number of vibrational modes. The performance of different electronic

structure methods in obtaining accurate vibrational spectra is assessed by comparing the

theoretical predictions with experiment for various test cases. Finally, some of the many

open problems and challenges in this field are discussed.

9.1 INTRODUCTION

Vibrational spectroscopy is a tool of great importance for identifying molecular species,

exploring their properties and learning about their potential energy surfaces. For these

reasons, this discipline has been, since its birth, among the prime instruments of

molecular science and a major research field in its own right. The theoretical

interpretation and calculation of the vibrational spectra of polyatomic molecules was

confined for many years to the harmonic approximation: within the harmonic model,

combined with rigid-rotor treatment of molecular rotation, the vibrational Hamiltonian

can be separated into a set of one-dimensional harmonic oscillators by using normal

mode coordinates, thus yielding an analytic solution for the wave functions and energies.

q 2005 Elsevier B.V. All rights reserved.

Theory and Applications of Computational Chemistry: The First Forty Years

Edited by C. Dykstra et al. 165

References pp. 190–194



The computational effort required thus involves the finding of the equilibrium

configuration on the potential energy surface, then the calculation of the matrix of

second derivatives of the potential with respect to the nuclear displacements. The normal

modes, and the frequencies corresponding to the different normal modes are obtained by

diagonalization of the Hessian. The normal modes are transformation vectors between

Cartesian coordinates and normal mode coordinates. This elegant, conceptually simple

approach has served for decades as the basis for the theoretical interpretation, within the

harmonic approximation framework, of polyatomic vibrational spectroscopy. The

principles of this approach, and elegant mathematical analysis and procedures are

described by Wilson et al. [1] in their tour de force exposition of molecular vibrations.

When the potential surface is available as an analytic function of the coordinates, the

computational implementation of the harmonic normal-mode approach is very efficient.

Normal modes have been determined and harmonic frequencies have been obtained for

systems of the size of proteins, having thousands of vibrational modes. Calculations of

the harmonic spectra from electronic structure methods are computationally more

demanding, especially so is the evaluation of the matrix of second derivatives of the

potential function with respect to the displacements of the atoms from equilibrium.

However, algorithms for the calculation of the normal modes and harmonic frequencies

have become available for many of the important electronic structure codes [2]. Thus,

efficient algorithms for computing the harmonic frequencies are available for the ab initio

methods such as Hartree–Fock (HF), second order Møller–Plesset Perturbation Theory

(MP2), Quadratic Configuration Interaction including single and double substitutions

(QCISD), and many others. Likewise, algorithms for obtaining the harmonic frequencies

are available for several variants of Density Functional Theory (DFT), such as B-LYP, B-

P86, B3-LYP and B3-PW91, and extensive applications and tests have been presented.

Finally, algorithms for convenient evaluation of the harmonic frequencies were provided

also for the semiempirical electronic structure methods AM1 and PM3 and these also

have been extensively applied. These algorithms are conveniently implemented in

important electronic structure code packages such as GAMESS [3], GAUSSIAN [4], MOLPRO

[5], and others. It can thus be said that first-principles calculations of harmonic spectra

have become essentially a matter of routine.

The situation is quite different for computation of anharmonic vibrational spectra,

which despite the progress made is still to a large extent an open problem. The main

difficulty is that realistic polyatomic anharmonic Hamiltonians are inherently nonsepar-

able: there is no coordinate system in which the Hamiltonian becomes a sum of

independent one-dimensional oscillators, as is the case for harmonic Hamiltonians when

normal coordinates are used. The anharmonic vibrational problem is thus fundamentally

a quantum-mechanical many-body problem. This problem admits no analytical solutions,

and rigorous numerical approaches to the problem are a major challenge. Going beyond

the harmonic approximation is, however, often crucial for the interpretation of

experimental data. Very often anharmonic effects are so large that even assignment of

the transitions becomes problematic when the harmonic approximation is employed. One

pragmatic approach often used to bring harmonic ab initio calculations into closer accord

with experiment is to modify the computed ab initio frequencies using calibration from a

set of related compounds for which data on the anharmonic effects for the various
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transitions is available [6]. Several other non-first-principles prescriptions for

modification of the harmonic frequencies have been proposed [7,8]. The Scaled

Quantum Mechanical Method (SQM) due to Saebo and Pulay [7], for example, proved

very successful in reproducing experimental frequencies in many cases [7–9]. While

useful in a variety of applications, and the topic of much continuing activity [8,10], these

methods are not considered in the present review. As pointed out by Pulay [9],

these methods are essentially empirical. The introduction of the scaling factors to modify

the computed harmonic frequencies may compensate not only for the anharmonic effects,

but also for the inaccuracy of the ab initio method used at the harmonic level. Also, there

seems to be no systematic way to improve the accuracy of the scaling predictions. The

main limitation of these approaches is, however, from our perspective, the following:

the experimental frequencies contain information on the anharmonic parts of the

potential energy surface, and this anharmonicity is of great interest. To learn about the

anharmonicity of molecular potentials, one must aim at computing the contribution of

these anharmonicities to the observed spectrum. Thus it is essential for this purpose to

aim at methods that compute the anharmonic spectrum systematically and on a first-

principles basis from the given vibrational potential function. Such methods, and in

particular those that are applicable directly to potential energy surfaces from electronic

structure theory are the topic of this review.

The structure of this review is as follows. In Section 9.2, we briefly discuss methods for

computing vibrational states of systems having several coupled vibrational degrees of

freedom. Thiswill also covermethods that were not yet adapted for direct usewith ab initio

potentials, since in our view, such extensions may be possible in the future, at least for

some of the algorithms. The focus will be on methods that seem potentially applicable to

large polyatomics, rather than those of great accuracy for small systems. Section 9.3 also

deals with computational methods for anharmonic vibrational spectroscopy that are

applicable to potential surfaces from electronic structure calculations. Our main focus will

be on the Vibrational Self-Consistent Field (VSCF) approach in several variants and

extensions. The performance of the available method in the present state of the art is

discussed in Section 9.4. Future directions are outlined in Section 9.5.

9.2 ANHARMONIC VIBRATIONAL SPECTROSCOPY METHODS

Calculations utilizing the harmonic approximation are almost never of experimental

accuracy, except of course, for model potentials fitted to the data. For any realistic

potential not adjusted to the observed frequencies, the deviations from experiment are

substantial, even for the fundamental transitions in the most rigid molecules. Never-

theless, the progress in anharmonic vibrational spectroscopy calculations was stimulated

to a large extent by several advances in high-resolution experimental techniques that

explored systems and transitions for which anharmonic effects are highly pronounced.

This includes, for example, the vibrational spectroscopy of van der Waals and hydrogen-

bonded clusters [11–13], vibrational overtone spectroscopy of OH, CH and similar groups

in polyatomics [14,15], and spectroscopy that explores Intramolecular Vibrational

Energy Redistribution (IVR), whether in the time or in the frequency domain [16].
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A variety of methods for performing anharmonic vibrational spectroscopy computations

were developed to address these and related systems. At the early stages, essentially all the

methods were developed for potential surfaces available as explicit analytic functions of

the coordinates.

The function assumed for the potential surface is generally different for each case.

Indeed, application of a variety of methods involved attempts to fit parameters of the

assumed analytic force field so as to closely reproduce the experimental spectroscopic

data. Such a fitting strategy can result in some cases in superb agreement with

experiment. However, in general the problem of fitting spectroscopic data for a

polyatomic by an assumed potential, does not have a unique solution, especially when

only a limited number of transitions are available from experiment. Therefore, a

disadvantage of the fitting approach is that, in principle, the potential surface that is

determined may differ greatly from the real one, despite the agreement with experiment.

This is an important motivation for using potentials from first-principles calculations: the

potentials used are likely to be realistic (though, of course approximate). On the other

hand, agreement between spectra computed from ab initio potentials and experiment is

likely to be limited, due to variations in the accuracy of electronic structure methods.

In briefly surveying several of the many methods proposed for anharmonic vibrational

spectroscopy calculations, we mention also methods used so far only for analytic

potential surfaces. For many of these methods, adaptations to algorithms may be feasible,

and the methods seem promising in this respect.

9.2.1 Perturbation theory

Different forms of Perturbation Theory rank with the earliest methods applied to the

calculation of anharmonic energy levels of coupled molecular vibrations [17,18], and

these methods continue to be of great computational effectiveness in a range of

applications. The simpler methods of this type are based on standard Rayleigh–

Schrödinger Perturbation Theory, with the harmonic approximation as the zero-order

Hamiltonian and with the entire anharmonic part of the potential as the coupling. This is

conveniently pursued in the normal mode representation, with a polynomial expansion,

usually up to quartic terms, for the perturbation. The method is suited for weak

anharmonicity, and application is most commonly confined to first and second-order

perturbation treatment. The method was applied to spectroscopic calculations using

ab initio potentials, for example, see Refs. [19–23]. Recently, Barone [24,25] has

introduced an efficient algorithm for the perturbation-theoretic calculation of anharmonic

effects, interfaced with ab initio and DFT codes. His code has been included in the

GAUSSIAN program package, and has been used to carry out anharmonic calculations for

relatively large molecules such as the benzene analogs pyrrole and furan [25]. Important

advantages of this type of perturbation theory are its simplicity and computational

efficiency. An important issue in the method is the representation of the anharmonic part

of the potential, which is the perturbation in the treatment. It is represented in most

studies as a polynomial (up to quartic terms) in the normal mode displacements from

equilibrium. For very anharmonic, floppy systems such a polynomial expansion may not
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be adequate or sufficient. Expansions to very high orders in the normal mode

displacements may be required in demanding cases, and the computational generation

of such expansions is difficult except for very simple analytic potential functions. The

radius of convergence of the Rayleigh–Schrödinger perturbation expansion for realistic

vibrational Hamiltonians is not known, so the approach may not be generally applicable.

Also, in some cases, second-order perturbation theory may not suffice. When this is the

case, the available algorithms do not seem applicable. High-order perturbation theory is

expected to be computationally quite demanding. A very powerful form of perturbation

theory that has a number of theoretical advantages over the Rayleigh–Schrödinger

method is Canonical Van Vleck Perturbation Theory (CVPT), [26–28]. The origins of

this variant of perturbation theory are not new, but it was elegantly developed by Sibert

and McCoy [27,28]. The canonical transformation used in this approach provides insight

into the connections between the energy level sequences and the underlying Hamiltonian,

and is expected to provide improved convergence properties for the perturbation series.

The method was used also with Morse coordinates, which possess a better limiting

behavior. However, the algorithmic structure of CVPT is relatively complex, and so is the

handling of the perturbation potentials in this approach. Many of the earlier applications

address triatomic molecules, though more recently Sibert was able to treat larger systems

[29,30], by making several approximations and simplifications specific to the systems.

Except with such simplifying assumptions, CVPT has not been used so far for first-

principles potentials.

9.2.2 The vibrational self-consistent field approach

This approach, and the variants derived from it, have their origin in work done in the late

1970s. Early contributions are from Bowman [31], Carney et al. [18], Cohen et al. [32]

and Gerber and Ratner [33]. The approaches of Bowman [31] and of Carney et al. [18]

were fully quantum mechanical, while Gerber and Ratner employed a semiclassical

theory. As it turned out, the computational time saved by using semiclassical theory is

negligible, although at the same time the additional error due to the semiclassical

approximation is insignificant. Thus, it is preferable to use a fully quantum mechanical

method in most applications, and only in special cases does the greater mathematical

simplicity of semiclassical VSCF offer significant advantages. One example for which

the semiclassical VSCF method is advantageous, is the direct inversion of vibrational

spectroscopic data in order to obtain the multidimensional potential energy surface of a

polyatomic system. Such an explicit mathematical inversion of the complete vibrational

spectrum was demonstrated by Gerber, Roth and Ratner [34,35] in the framework of

semiclassical VSCF. The necessary complete spectrum is, however, rarely available in

practice.

The physical content of the VSCF approximation is simple: within this approximation,

each vibrational mode is described as moving in the mean field of the other vibrational

modes. The mean fields, and the wave functions of the different modes are determined

self-consistently, so that the approximation is analogous to the Hartree method for many-

electron systems. The total wave function within this simplest level of VSCF is thus
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separable into a product of single mode wave functions. When the coupling between

different vibrational modes is strong enough, it can lead to breakdown of separability and

result in important correlation effects between the modes. An important issue is which

coordinates (or modes) one should employ for best mutual separability in the sense of

VSCF. Near the bottom of the potential well, the choice of normal modes seems

reasonable: for low energies, the vibrational amplitudes are expected to be small and the

harmonic approximation should work reasonably well. Since within the harmonic

approximation normal modes give rigorous separability, it seems natural to employ these

modes also somewhat beyond the harmonic limit. For higher excitation energies, as for

the ground state of extremely anharmonic systems (such as clusters of helium and

hydrogen), this need not be the case, and the choice of good coordinates for VCSF is not

obvious. This issue of optimal choice of coordinates for highly anharmonic systems was

studied by Horn et al. [36], who for example, found that for treating a quantum cluster

such as XeHe2, VSCF in hyperspherical coordinates is far superior to VSCF in normal

mode coordinates and gives excellent results: (approximate) separability works in

hyperspherical modes in this system. Several VSCF calculations for specific systems

were similarly carried out using non-normal coordinates, according to the apparent

physically appropriate choice in these cases. Examples include: the HCN$ HNC

system, for states where isomerization takes place, for which Bačić et al. [37] showed that

spheroid coordinates are appropriate for VSCF separability; H2O and CO2 molecules for

which hyperspherical coordinates yield superior results [38]; the quantum cluster I2He for

which spheroid (ellipsoidal) modes were found suitable [36,39]; and excited vibrations of

Ar3, for which VSCF separability in hyperspherical modes works very well [40]. So far,

the only widely applicable, computationally efficient, implementation of VSCF has been

carried out in normal modes, since, as appealing as is the choice of physically motivated

‘good coordinates’ for VSCF separability, such coordinates could only be found for

certain specific cases. Fortunately, most experimental spectroscopic data are available for

fundamentals, or other rather relatively low excitations, where normal modes are usually

a physically motivated good choice.

Since separability is always approximate, correcting VSCF by the introduction of

correlation between different modes is desirable, and experience has shown that it is

essential for satisfactory agreement with experiment even in cases where the potential

employed is believed to be accurate [41–43]. The first approach used to improve VSCF

by the introduction of correlation between modes is the Configuration Interaction (CI)

method, analogous to the corresponding algorithm in electronic structure theory, for

example see: Bowman et al. [44], Ratner et al. [45], and Thompson and Truhlar [46]. In

this approach, primarily developed by the Bowman group [47–50], the vibrational wave

function is written as a linear combination of separable terms. Each term of the CI wave

function is thus a product of single-mode vibrational wave functions. The method was

applied first to small systems such as H2O and HCO, and then it became possible to tackle

increasingly larger systems, such as CO adsorbed on a Cu(100) surface, with the latter

represented by several vibrating atoms [50]. For small molecules, as for molecules of

moderate size (number of atoms smaller than 10 or so) the method is very effective, and

can be very accurate. Thus, Bowman and coworkers were able to incorporate vibration–

rotation coupling (including Coriolis coupling) in the CI-VSCF treatment of vibrational
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state calculations. With the extensions provided, the method can be applied to the full

Watson Hamiltonian [51] for the vibrational problem. The efficiency of the method

depends greatly on the nature of the anharmonic potential that represents coupling

between different vibrational modes. In favorable cases, the latter can be represented as a

low-order polynomial in the normal-mode displacements. When this is not the case, the

computational effort increases rapidly. The CI-VSCF is expected to scale as N5 or worse

with the number N of vibrational modes. The most favorable situation is obtained when

only pairs of normal modes are coupled in the terms of the polynomial representation of

the potential. The VSCF-CI method was implemented in MULTIMODE [47,52], a code

for anharmonic vibrational spectra that has been used extensively. MULTIMODE has

been successfully applied to relatively large molecules such as benzene [53].

Applications to much larger systems could be difficult in view of the unfavorable

scalability trend mentioned above.

Another approach to the extension of VSCF by the inclusion of correlation effects was

introduced by Jung and Gerber [54] and by Norris et al. [55]. Usually referred to as the

Correlation-Corrected VSCF (CC-VSCF) method, this approach brings in the correlation

effects, by applying second order perturbation theory to the anharmonic coupling

interactions between the modes, while the VSCF Hamiltonian is treated as the zeroth-

order approximation [54–56]. This approach to vibrational states is, of course, analogous

to the MP2 method of electronic structure theory [57,58]. The CC-VSCF method was

introduced with two alternative treatments to the anharmonic potential: either expansion

in a power series of the normal modes (truncated in practice to a low order polynomial,

such as cubic) or by assuming that the interaction can be represented by a sum of

interactions between pairs of normal modes [54,56]. The latter treatment neglects

couplings involving simultaneous triplets (or a greater number) of normal modes, but it

eliminates the need for a truncated power series representation. Experience has shown

that the pair representation is more accurate than a low-order polynomial for many

systems, including many strongly anharmonic systems such as hydrogen-bonded clusters.

The CC-VSCF method as presently formulated, ignores rotational–vibrational coupling

effects, such as Coriolis coupling. Its great advantage, though, is a favorable scalability of

the effort with the number of modes, N: Depending on whether the interaction potential is
treated as a truncated polynomial, or as a sum of pairwise interactions between the

different normal modes, the computational effort scales as N or as N2: In practical terms,
for simple analytic force fields, CC-VSCF is feasible for systems having up to hundreds

or thousands of normal modes. Jung and Gerber, for example, used CC-VSCF to treat

water clusters (H2O)n, up to n ¼ 8 [54,56]. The assumption of pairwise interactions

between different normal modes seemed to give much more satisfactory results in this

case, than a low-order polynomial representation [56]. With some technical improve-

ments of the VSCF algorithms, VSCF and CC-VSCF calculations were carried out for

small peptides and peptide–water complexes [59], for sugars (monosacharides) [60] and

even for a small protein BPTI [61,62]. The latter system, including a hydration shell of

196 water molecules, has approximately 3500 vibrational modes. The calculations

reported were at the VSCF level, but unpublished partial CC-VSCF results are available.

Another major advantage of CC-VSCF is that it proved convenient for interfacing with

electronic structure codes. Thus the method became a basis for an Ab initio Vibrational
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Spectroscopy algorithm, as will be outlined in the next Section. VSCF and CC-VSCF can

fail for strongly anharmonic soft modes such as torsions. This is related to the fact that for

large amplitude torsional motions, normal mode coordinates are not suitable, and when

used may give rise to extremely large coupling due to their geometric nature. Other than

such exceptions, the method seems in most cases of satisfactory accuracy.

In comparison with experimental frequencies, our estimates indicate that CC-VSCF

method errors are usually smaller than the errors due to the inaccuracy of the potential. At

the same time, it would be very useful to search for approaches of better accuracy, while

preserving the computational merits of CC-VSCF, the comfortable moderate scaling of

the effort with N and the convenient interfacing with electronic structure codes. One

possibility is to pursue higher-order perturbation corrections. This was recently proposed

by Senent and Dominguez-Gomez [63], however, since the authors present results for a

reduced-dimensionality treatment, one cannot readily assess the computational effort

involved for large systems. A very interesting new approach, related to VSCF but with

prospects on improved accuracy, is found in the recent work of Christiansen [64,65]. This

work pursues the development of a vibrational Coupled Cluster (CC) theory, in analogy

to the CC methods of electronic structure theory [58]. Initial results for model systems are

encouraging, and vibrational CC seems to out-perform vibrational CI in accuracy, for the

same amount of effort [65].

9.2.3 Grid methods

Grid methods are among the most rigorous numerical approaches for solving the

vibrational Schrödinger equation. These methods are, in principle, ‘numerically exact’,

i.e. can be pursued systematically to any desired accuracy. Unfortunately, the demands

on computer memory and CPU time are such that applications are feasible in the present

state of the art for systems of only a few atoms. Available grid methods include those

discussed by Bačić and Light [66], Hutson [67], Young and Peet [68], and Cohen and

Saykally [69]. Perhaps the most widely used grid method is, at present, the Discrete

Variable Representation (DVR) method. Some of the key papers are: Bačić and Light

[70]; Light et al. [71]; Henderson et al. [72]; Bramley et al. [73]; Mandelshtam and Taylor

[74]; and Wright and Hutson [75]. As powerful as the approach is for small molecules,

extensions to larger systems are difficult. On the other hand, it may well be possible to

combine it with ab initio codes for use in direct calculations of vibrational spectroscopy.

A technique of this type could be very useful in studies of vib-rotational spectroscopy of

small molecules.

9.2.4 Diffusion Quantum Monte Carlo

The Diffusion QuantumMonte Carlo (DQMC) algorithm and related methods such as the

Vibrational Quantum Monte Carlo approach have the important property of scaling well

with system size (number of degrees of freedom). At the same time the method can be

pursued in principle to yield a ‘numerically exact’ energy. DQMC was introduced
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by Anderson [76] for electronic structure calculations. The method is both rigorous and

simple for wave functions that have no nodes. It is thus very suitable for vibrational

ground states. The method is robust even for the most delocalized, anharmonic systems

such as 4He clusters. Studies of vibrational ground states of molecular systems and

clusters were performed by Suhm and Watts [77], Buch [78], Barnett and Whaley [79],

Bačić et al. [80], Vegiri et al. [81] and several other authors. In general, the method is not

applicable to excited vibrational states, since these have nodes. However, suggestions

were made for extending the method to excited states, either by using approximations to

determine the nodal structure of the excited wave functions, or by introducing systematic

procedures to determine the nodes. With these extensions, application of DQMC to

vibrational spectroscopy became possible [82–86]. The use of the method in molecular

spectroscopy has so far been limited, probably due to the incompletely solved problem of

the excited wave function nodes. To our knowledge, at present, there is no systematic

algorithm for direct DQMC with ab initio potentials.

9.2.5 Semiclassical methods

These approaches are, of course, inherently approximate. However, the errors due to the

semiclassical approximations are expected to be modest, and not a major concern. This

expectation is supported by the fact that in one-dimensional systems the WKB

approximation yields very accurate energies. Also, as previously mentioned, the results

of semiclassical VSCF are extremely close to those of full quantum VSCF [33].

Moreover, calculations by semiclassical approximations for multidimensional systems,

realistic ones or models, gave very accurate results. The main obstacle to more extensive

applications of semiclassical methods for vibrational state calculations is, in our view,

that computationally more convenient algorithms are desirable. As the field is extensive,

we cannot survey the various approaches proposed for semiclassical treatment of

polyatomic molecules. An interesting recent example is the calculations of Kaledin and

Miller [87], who used the semiclassical Initial Value Representation [88,89] for the

spectral density. The results show very good agreement with quantum calculations.

Applications were presented for systems such as H2CO, NH3 and CH4. Applicability of

SC-IVR to ab initio potential energies appears to be still an open question.

9.3 AB INITIO VIBRATIONAL SPECTROSCOPY

9.3.1 Fitting ab initio potentials versus direct ab initio spectroscopy calculations

An obvious way for carrying out spectroscopic calculations for an ab initio potential is by

fitting the latter to a suitable analytic function. With such an approach, any vibrational

spectroscopy method can be used. Indeed, such calculations have been pursued since the

first appearance of reliable ab initio potential surfaces, and this continues to be a very

active and successful direction of research. There are, however, several problems that

strongly limit the applicability of this approach. First, the requirements of the quality

of the fit are rather stringent. High-quality fitting is essential for spectroscopy of good
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accuracy. Second, fitting is an extremely difficult numerical task, the complexity of which

grows essentially exponentially with the dimensionality of the system. Thus, fitted

ab initio potentials were produced for systems of a few atoms only, and not in many

cases. We mention as example two recent studies of the spectroscopy of cis and trans-

HONO [90,91] that combine good quality fitting with a rigorous method for the

vibrational computations. The calculations are in very good agreement with the

experimental frequencies, but it seems extremely hard to treat larger systems by a similar

approach. We note that at present, it is hard to identify a generally accepted or agreed

upon algorithm for the objective of fitting potential functions. The field of fitting

methodology is rich, and useful algorithms and strategies are being introduced almost

constantly [92]. A very nice example of a fitted ab initio potential is presented in the

recent DQMC study of CH5
þ [92b]. At the present, however, it seems that the main

possibilities for ab initio vibrational spectroscopy calculations, for molecules having

more than 4–5 atoms, are with direct methods, that is, algorithms that employ directly ab

initio potential surface points in the computation of the spectroscopy.

9.3.2 Ab initio VSCF and CC-VSCF

These algorithms are at the core of the present review, as extensively used methods in the

field. We briefly review the relevant equations. In addition, the methodology involved in

the applications is discussed below.

9.3.2.1 VSCF equations

The description of the method follows closely that of Refs. [54,56,93]. We consider the

system in a state of total angular momentum J ¼ 0; and neglect all rotational coupling
effects. Using an electronic structure code, the minimum energy configuration is

obtained, and the normal-mode displacement coordinates from that minimum are

determined [2]. The vibrational Schrödinger equation in mass weighted normal

coordinates Q1; Q2;…:;QN can be written:

2
1

2

XN
j¼1

›2

›Q2
j

þ VðQ1;…;QNÞ
24 35CnðQ1;…;QNÞ ¼ EnCnðQ1;…;QNÞ ð1Þ

where V is the potential function of the system, n is the state number, and N is the number

of vibrational modes. Although normal modes are chosen to describe the vibrations of the

system, the harmonic approximation is not made, and the anharmonicity of the potential

function VðQ1;…;QNÞ is fully retained. The VSCF approximation is based on the ansatz:

CnðQ1;…;QNÞ ¼
YN
j¼1

CðnÞ
j ðQjÞ ð2Þ

whereCðnÞ
j ðQjÞ are single-mode vibrational wave functions. The importance of the choice

of coordinates in VSCF should be emphasized at this point. The accuracy of the

separability approximation (2) obviously depends on the choice of the variables that are

being factorized. As pointed out earlier, the choice of normal modes is a reasonable one
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for low-lying excitations, since the latter are not far from the bottom of the potential well

where the harmonic approximation applies (and for which separability in normal modes

is exact). Given the fact that very commonly normal modes are good choice for VSCF,

the standard codes for ab initio VSCF were written for these coordinates. While some

VSCF calculations were done for less common cases where other coordinates are

advantageous, e.g. [36–40], standard codes for such systems are not available. The use of

normal modes can lead to unsatisfactory results for, e.g. soft torsional modes that are

better described by angular variables.

Using the variational principle for the separability ansatz (2) leads to the single-mode

VSCF equations [41–43]:

2
1

2

›2

›Q2
j

þ 
VðnÞ
j ðQjÞ

" #
CðnÞ

j ðQjÞ ¼ 1ðnÞj CðnÞ
j ðQjÞ ð3Þ

where the effective potential 
VðnÞ
j ðQjÞ for the mode Qj is given by:


Vn
j ðQjÞ ¼

YN
l–j

CðnÞ
l ðQlÞlVðQ1;…;QNÞl

YN
l–j

CðnÞ
l ðQl

*
Þ
+

ð4Þ

Eqs. (3) and (4) for the single-mode wave functions, energies and effective potentials

must be solved self-consistently. A variety of methods for solving the single-mode

Schrödinger equations (3) can be used. The standard VSCF programs [54,93,94] employ

a grid method for this purpose. Both ground and excited states of VSCF are computed in

this way. The VSCF approximation for the total energy of the state n is given by:

En ¼
XN
j¼1

1ðnÞj 2 ðN 2 1Þ
YN
j¼1

cðnÞ
j ðQjÞlVðQ1;…;QNÞl

YN
j¼1

CðnÞ
j ðQjÞ

* +
ð5Þ

The main computational difficulty is solving Eqs. (3)–(5) for large systems is due to the

multidimensional integrals involved, which must be evaluated numerically. This is

accomplished by approximate (but sufficiently accurate) representations of the potential.

9.3.2.2 Representations of the potential

A very advantageous approach in many cases is to expand the potential function in

powers of the normal modes. The expansion can be written:

VðQ1;…;QNÞ ¼
X

m1;…;mN

Vm1;…;mN ðQ1Þm1…ðQNÞmN ð6Þ

This obviously leads to a simplification in which only the evaluation of one-dimensional

integrals is required in order to obtain the single-mode effective potentials. The numerical

effort in evaluating the integrals is not large, except if high-order terms in the expansion

must be retained. In many applications to molecular systems, a fourth-order polynomial

provides a sufficient representation of the potential. The simple evaluation of the single-

mode effective potentials is an important advantage, and many VSCF and CI-VSCF

applications have used that approach [47–50,59–62,95]. When this is the case,

the computational effort for the VSCF equations scales linearly with N: However, for
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highly anharmonic systems, the power series in normal modes may not converge at all, or

converge very slowly. This was found to be the case for several weakly bound hydrogen-

bonded and van der Waals clusters [54,56]. The use of the power series expansions is

especially problematic in ab initio calculations, since the evaluation of high-order

derivatives of the potential is computationally very costly. To deal with this difficulty,

Jung and Gerber [54] have introduced an alternative approximate representation of the

potential that proved very successful in ab initio VSCF and CC-VSCF [93,94]. In this

approach the potential is written as a sum of terms that include single-mode potentials,

and interactions between pairs of normal modes. Contributions to the potential from

interactions of triplets and quartets (or higher order interactions) of normal modes are

neglected. Thus, the potential is written as follows [54,56]:

VðQ1;…;QNÞ ¼
XN
j¼1

V
diag
j ðQjÞ þ

X
i

X
j.i

W
coup
ij ðQi;QjÞ ð7Þ

The potential at equilibrium is conveniently taken as zero. The ‘diagonal’ (single mode)

potential functions V
diag
j ðQjÞ are defined by:

V
diag
j ðQjÞ ¼ Vð0;…;Qj;…; 0Þ ð8Þ

and the pairwise interactions are:

W
coup
ij ðQi;QjÞ ¼ Vð0;…;Qi;…;Qj;…; 0Þ2 V

diag
i ðQiÞ2 V

diag
j ðQjÞ ð9Þ

Both the V
diag
j ðQjÞ and the W

coup
ij ðQi;QjÞ are readily obtained from ab initio codes by

computing the potential function along Qj while keeping the other modes at equilibrium

(for V
diag
j ðQjÞ), and by computing the potential for different Qi;Qj while keeping all

modes l – i; j at equilibrium (for the coupling potential). The calculation of the effective

VSCF potentials for the representation (7)–(9) requires evaluation of one-dimensional

numerical integrals, and obtaining the VSCF energies necessitates also two-dimensional

quadratures. The scaling of the computational effort with N becomes proportional to N2;
but this is still very satisfactory even for large systems. The representation (7) is an

assumption that must be tested. Already for empirical potentials, it was found satisfactory

in the case of water clusters (H2O)n [54]. It has been used extensively in ab initio VSCF

and CC-VSCF, for a wide range of molecules and clusters of various kinds, for example:

H2O, Cl
2(H2O) and (H2O)2 [93]; (H2O)n clusters, Cl2(H2O)n, H

þ(H2O)n and

H2O· · ·CH3OH [94]; glycine [96]; and N-methylacetamide [97]. So far, agreement of

the computed spectra with experiment (direct tests or indirect evidence) support the

pairwise interaction representation. Additional tests of this representation, especially by

direct examination of the ab initio potential surfaces are nevertheless desirable. We note

that it is not difficult to extend somewhat the representation (7), and include in the

calculations a limited number of triplets or quartets of normal modes. In fact, so long as

this is restricted to a small number of high order interaction terms, the scaling of

the computational effort with N will not be affected, and the effort itself may only be

moderately increased. Full inclusion of all higher order terms (e.g. quartets) in the

potential will, however, render the method impractical. In the case of ab initio VSCF,
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inclusion of couplings of triplets of normal modes was tested for H2O and Cl2(H2O) [94],

and the contributions were found to be non-negligible, but not significant enough to

justify the much increased cost of ab initio computation of a large number of additional

potential energy points.

9.3.2.3 CC-VSCF equations

The idea underlying this approach is that the difference between the (true) Hamiltonian of

a system and the separable VSCF Hamiltonian must be small, since VSCF is found to be a

good approximation. Thus, it should be reasonable to treat the difference as a

perturbation, and use perturbation theory to a low order [54,93]. The Hamiltonian is

written in the form:

H ¼ HSCF;ðnÞ þ DVðQ1;…;QNÞ ð10Þ
where HSCF;ðnÞ is the Hamiltonian in the VSCF approximation:

HSCF;ðnÞ ¼
X
j


HðnÞ
j ðQjÞ ð11Þ

with


HðnÞ
j ðQjÞ ¼ 2

1

2

›2

›Q2
j

þ 
VðnÞ
j ðQjÞ ð12Þ

being the VSCF Hamiltonian for mode Qj (in the state n). DV of Eq. (10) is given by:

DVðQ1;…;QNÞ ¼ VðQ1;…;QNÞ2
XN
j¼1


VðnÞ
j ðQjÞ ð13Þ

The correlation effects are all included in DV; the difference between the correct

Hamiltonian and the VSCF one. Assuming the term is sufficiently small, we apply second

order perturbation theory and find:

Eccn ¼ EVSCFn þ
X
m–n

YN
j¼1

CðnÞ
j ðQjÞ DVj j

YN
j¼1

CðmÞ
j ðQjÞ

* +������
������
2

EðoÞ
n 2 EðoÞ

m

ð14Þ

where Eccn is the correlation-corrected energy of state n: As noted previously, this is
analogous to the second order Møller–Plesset method in electronic structure theory [57,

58]. All the wave functions CðmÞ
j and the energy EðoÞ

m in Eq. (14) are calculated from the

VSCF Hamiltonian HSCF;ðnÞ; corresponding to state n: EVSCFn is the VSCF expectation

energy, given by Eq. (5). EðoÞ
m is given by:

EðoÞ
m ¼

XN
j¼1

1ðnÞ;mj ð15Þ

where 1ðnÞ;mj is the mth VSCF energy level of the j-mode, computed from the Hamiltonian

HðnÞ
j ðQjÞ:
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These expressions were used by Chaban et al. [93,94] in the first ab initio VSCF

calculations. Experience since then has shown that the correlation correction contributes

significantly, in many cases, to improve agreement with experiment. In applications of

the method since then, 8–16 grid points along each coordinate Qj were used in

computing the CC-VSCF energy levels, depending on the application. The compu-

tational effort involved is obviously dominated by the calculation of ab initio potential

surface points for the required grid of points. Denoting by MG the number of grid points

along each normal mode, and by N the number of vibrational modes, then the number of

ab initio potential points necessary for the anharmonic spectroscopy calculation is

NMG þ 1

2
NðN 2 1ÞM2

G:

9.3.2.4 Anharmonic infrared intensities

Ab initio anharmonic IR intensities are calculated using dipole moments estimated on

grids by an ab initio method (at the same time when potential energies are computed).

For fundamental and overtone excitations:

Ii ¼ 8p3NA

3hc
vilkCð0Þ

i ðQiÞl~uðQiÞlCðmÞ
i ðQiÞll2 ð16Þ

where ~u is the dipole moment, vi is the CC-VSCF vibrational frequency for the normal

mode i; Cð0Þ
i and CðmÞ

i are the VSCF wave functions for the ground and the mth excited

vibrational states.

For combination excitations of modes i and j:

Iij ¼ 8p3NA

3hc
vijlkCð0Þ

i ðQiÞCð0Þ
j ðQjÞl~uðQi;QjÞlCðmÞ

i ðQiÞCðnÞ
j ðQjÞll2 ð17Þ

where m and n are excitation levels for modes i and j.

9.3.2.5 Electronic structure methods used with VSCF

The accuracy of the spectroscopic calculations obviously depends strongly on the

electronic structure method used. High-level electronic structure methods are too costly,

except for very small molecules. Fortunately the MP2 method gives satisfactory

accuracy, while being computationally feasible to permit a fully coupled all-mode

treatment of molecules such as glycine [96], N-methyl acetamide [97], and the glycine–

H2O complex [98]. Suitable basis sets for these MP2 calculations are typically of double-

z or triple-z quality including polarization (DZP or TZP) [99,100]. For these basis sets,
we estimate that the average inaccuracy of the potential makes a larger contribution to the

errors of the computed frequencies than the inaccuracy of the vibrational method, but the

magnitudes of the two contributions are not very different. The augmented correlation

consistent triple-zeta (aug-cc-pVTZ) basis set [101] was also used, and in some cases

(such as the benchmark H2O molecule [93]) led to significantly improved results. For this

basis set, we estimate that the potential-induced errors, in many cases, may be smaller

than those due to the vibrational method. So far, methods of higher level than MP2 have

rarely been used with CC-VSCF. One such case is F2(H2O), a very challenging system

with respect to both electronic structure theory and the vibrational dynamics [102]. For
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this system, the CCSD(T) method was shown to provide an improvement over MP2, but

it is questionable whether the relatively modest improvement of the spectroscopic results

justifies the substantially increased computational effort.

CC-VSCF was also used for computing anharmonic vibrational spectra from DFT

potentials [103,104]. The most accurate spectroscopic results are obtained from the

hybrid functionals B97 [105] and B3LYP [106], of the non-hybrid DFT functionals,

HCTH [107] seems superior to BLYP [108]. The spectroscopic accuracy of B97 and

B3LYP was about equal to that of MP2.

Not surprisingly, standard semiempirical electronic structure methods such as PM3

give poor spectroscopic results when used with CC-VSCF. However, Brauer et al. have

recently succeeded with an improved PM3 potential [109]. This potential is improved by

input from ab initio harmonic frequencies: the standard PM3 potential surface in normal

coordinatesWPM3ðQ1;…;QNÞ is modified by the scaling of each normal mode coordinate
Qj by a constant lj: The scaling coefficients are chosen so that the improved potential
W IMP ¼ WPM3ðl1Q1;…; lNQNÞ reproduces at the harmonic level the harmonic

frequencies from ab initio calculations. Application of the improved PM3 potentials in

CC-VSCF calculations gave results in excellent accord with experiment for several

amino acids [109]. The improved semiempirical potentials are extremely fast to compute,

and can potentially be used for vibrational spectroscopy calculations of quite large

systems (with hundreds of normal modes).

VSCF, CC-VSCF and related algorithms are incorporated in the ab initio code

packages GAMESS [3] and MOLPRO [5]. In both cases, developers of the systems made

important improvements to the codes (Dr. M.W. Schmidt for GAMESS, Dr. G. Rahut and

Prof. H.-J. Werner for MOLPRO). There have been numerous applications of the VSCF

codes through use of the GAMESS suite of programs.

9.3.2.6 Improvements and extensions of VSCF and CC-VSCF

Matsunaga et al. [110] introduced VSCF-DPT2, a method that includes the effects of

degeneracies in the anharmonic vibrational spectra. The essential extension is to use

Degenerate Perturbation Theory (as opposed to Non-degenerate Perturbation Theory) in

introducing correlation effects. Also this method was interfaced with electronic structure

codes, and is incorporated in GAMESS. There have been several applications of ab initio

spectroscopy calculations with this method.

Wright and Gerber [111] have proposed another extension of VSCF that includes

correlation effects, the Partly Separable VSCF (PS-VSCF) method. This method is based

on an ansatz of the following type:

CðQ1;…;QNÞ ¼ FðQ1;…;QMÞ
YN

j¼Mþ1
CjðQjÞ ð18Þ

The function FðQ1;…;QMÞ fully correlates the modes Q1;…;QM; while the CjðQjÞ
are VSCF-like single mode wave functions. PS-VSCF is very appropriate for dealing

with strong correlation effects that are confined to a small subset of modes. The equations

for FðQ1;…;QMÞ andCjðQjÞ are solved by grid algorithms. Practically, only 2–3 modes
can be treated as fully correlated in this approach. In the calculations with this method,
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also terms representing couplings of triplets of normal modes were included in the

ab initio potential, and their inclusion was found to provide a small improvement.

An interesting improvement of the CC-VSCF algorithm was proposed by D.M. Benoit

[112]. He suggests a method for estimating which pairwise couplings between the normal

modes are negligibly small for the purpose of the spectroscopic calculation. In several

test calculations, a large reduction of computational effort compared with the standard

CC-VSCF was achieved. The speed-ups gained by this approach could be very useful in

calculations of large molecules.

K. Yagi et al. [113] developed an algorithm for both CC-VSCF and vibrational CI

calculations with quartic force fields (QFF) computed from ab initio potentials. In a more

recent paper, K.Yagi et al. [114] implemented QFF representations for couplings of

groups of normal modes, and applied these potentials in CC-VSCF. For the case of

pairwise coupling between modes, as in standard CC-VSCF, great reduction of the

computational effort is achieved, with only a modest loss of accuracy. The scheme of

Yagi et al. [114] is formally applicable also to the treatment of couplings of triplets,

quartets, etc. of normal modes. The approach referred to by the authors as ‘n-mode

coupling representations of the quartic force field’ (nMR-QFF) seems to open the way for

major reduction of the computational effort in anharmonic spectroscopy calculations,

especially for large molecules. This method has been recently implemented in GAMESS.

9.3.3 Ab initio anharmonic calculations using perturbation theory

Perturbation theory has been applied to anharmonic calculations of spectroscopy from ab

initio potentials in a large number of studies [19–25,115–121]. In nearly all cases so far,

second-order perturbation theory was employed. The representation of the anharmonic

potential generally used in these studies is a polynomial in the normal modes, most often

a quartic force field. A code implementing this vibrational method was recently

incorporated by V. Barone in GAUSSIAN [24]. Calculations were carried out for relatively

large molecules, such as pyrrole and furan [25], uracil and thiouracil [118], and

azabenzenes [119]. We note that in addition to spectroscopy, the ab initio perturbation

theoretic algorithms were also applied to the calculation of thermodynamic properties

[120]. Finally, a very useful extension of the methodology is to the inclusion of Coriolis

couplings [121]. These advances render the perturbation-theoretic method very

competitive with the VSCF approaches.

9.4 APPLICATIONS AND PERFORMANCE

9.4.1 Performance for large molecules

Major progress was made in recent years in ab initio calculations of anharmonic

vibrational spectroscopy. One of the important indicators is the good agreement with

experiment found in calculations for relatively large molecules, having more than 10

atoms (24 vibrational modes). Treatment of such large systems at a good anharmonic
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level has become possible only in the last several years, as a consequence of

methodological progress and increased computer power. Calculations of anharmonic

vibrational spectroscopy, including all modes are feasible now for electronic structure

methods such as MP2 or B3LYP, for molecules having up to 20 atoms. It seems that with

the vibrational state methodologies available, errors of the computed frequencies are on

the average mostly due to the electronic structure calculation (in the case of MP2/TZP)

and to a somewhat lesser extent due to the vibrational algorithm. The difference between

the contributions to the frequency errors is, however, probably not large on the average.

In other words, the accuracy of the electronic structure and of the vibrational

methodology is nearly balanced in typical calculations. Previous experience (based on

comparison with available experimental data) shows that the average accuracy provided

by the ab initio CC-VSCF method (in conjunction with MP2 or B3LYP potentials) is on

the order of 30–50 cm21.

Table 9.1 shows an example of comparison between ab initio vibrational spectroscopy

calculations (CC-VSCF/MP2-DZP) and experiment for the most stable conformer of

glycine, the structure of which is shown in Fig. 9.1. The results are from Chaban et al.

[96]. The agreement with experiment is good, much better than that provided by the

Table 9.1 Vibrational frequencies and IR intensities for the lowest energy conformer of glycine

Mode Vibrational frequencies (cm21) Intensity (km/mol) Description

Harmonic CC-VSCF Exp.a Exp.b

1 3829 3598 3560 3585 109 OH stretch

2 3688 3382 3410 5 NH2 asym stretch

3 3590 3343 3 NH2 sym stretch

4 3213 2986 17 CH2 asym stretch

5 3148 2959 2958 22 CH2 sym stretch

6 1836 1805 1779 414 CyO stretch

7 1702 1669 1630 23 HNH bend

8 1495 1473 1429 13 HCH bend

9 1443 1410 1373 30 C–O(H) stretch

10 1410 1377 0 CCN bend

11 1327 1290 23 NCH2 bend

12 1205 1185 1 CCN oop bend

13 1195 1167 1136 99 CN stretch

14 1155 1122 1101 232 CO2 bend

15 975 970 907 184 CNH2 umbrella

16 937 943 883 3 NCCO2 tors

17 852 847 801 60 C–CO2 stretch

18 665 613 619 143 CO2 oop bend

19 636 633 16 NCCO(H) shear

20 516 514 500 23 OCOH tors

21 467 463 463 38 NCCOH shear

22 259 270 11 NCCO shear

23 240 352 54 HNHC tors

24 58 143 4 NCCO(H) tors

aExperimental data obtained in Ar matrix.
bExperimental O–H stretch obtained in He cluster.
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harmonic approximation. The most dramatic improvement is obviously for the OH and

NH stretching modes, but there are significant improvements also for several other

modes. As pointed out in Ref. [96], the ab initio-based results strongly outperform

standard force fields, such as OPLS-AA [122], with respect to spectroscopic accuracy.

This, of course, is a reflection of the fact that the ab initio force field is much more

accurate. Table 9.2 is another comparison betweenCC-VSCF calculations (using theMP2/

DZP ab initio potential) and matrix experiments, for a conformer of N-methylacetamide

(NMA). The structure of the conformer is shown in Fig. 9.2, and the results are from

Gregurick et al. [97].Agreementwith experiment for thismolecule, an importantmodel for

peptides and for the peptide force field, is againmuch better for theCC-VSCF level than for

the harmonic approximation. Agreement with experiment can be said to support the MP2

force field. Vibrational spectroscopy is thus emerging as a tool for testing the force fields of

large polyatomic molecules.

9.4.2 Spectroscopy calculations as a test of ab initio and DFT force fields

In the spirit of the above observation, anharmonic vibrational spectroscopy calculations

provide, by comparison with experiment, an evaluation of the quality of the potential

surface used. It seems important to use spectroscopy as a way to compare the relative

accuracies of different force fields. The results may, of course, differ from case to case. A

crude general picture that seems to emerge from a limited set of small molecules (that

includes H2O, HCOOH, CH3COOH) [104] indicates that MP2, B97 and B3LYP are very

roughly comparable in the agreement with experimental spectroscopy, while HCTH and

BLYP functionals do significantly less well (in this order). Much more can be learned

about the quality of potential surfaces from different types of ab initio and DFT methods,

but this will require systematic studies for various types of molecules.

9.4.3 Vibrational spectroscopy of hydrogen-bonded clusters

Vibrational spectroscopy is a powerful tool for probing the potential energy surfaces of

weakly bound complexes. Both the intermolecular interactions of the species bound in

H

N

C

C

O

O

H

H

HH

Fig. 9.1. Geometrical structure of the lowest energy conformer of glycine.

Chapter 9182



Table 9.2 Vibrational frequencies and IR intensities of trans-N-methylacetamide

Mode Vibrational frequencies, (cm21) Intensity, (km/mol) Mode description

Harm CC-VSCF Exp.

1 3751 3523 3498 44 NH stretch

2 3261 3014 3008 27 CH asym str (NCH3)

3 3248 2993 3008 13 CH asym str (CCH3)

4 3245 2985 2978 31 CH asym str (CCH3)

5 3225 2979 2973 45 CH asym str (NCH3)

6 3133 2939 2958 16 CH sym str (NCH3)

7 3124 2940 2915 61 CH sym str (CCH3)

8 1780 1751 1708 400 CyO str—amide I

9 1585 1547 1511 249 C–N str—amide II

10 1548 1566 1472 30 CH2 bend (NCH3)

11 1526 1541 1446 30 CH2 bend (CCH3)

12 1520 1557 1446 29 CH2 bend (NCH3)

13 1509 1515 1432 6 CH2 bend (CCH3)

14 1484 1468 1419 14 CH3 umbr (NCH3)

15 1438 1422 1370 21 CH3 umbr (CCH3)

16 1310 1283 1265 91 NCO bend—amide III

17 1208 1214 1181 2 CNC bend

18 1174 1184 6 NCH3 rock

19 1133 1119 1089 7 CN str, NCH3 rock

20 1074 1083 1037 9 CCH3 rock

21 1020 1022 990 14 CCH3 rock

22 890 891 857 3

23 634 638 658 10

24 624 637 626 4

25 429 481 439 12

26 363 439 391 90

27 270 300 279 10

28 153 244 28

29 68 165 1

30 52 266 3

Fig. 9.2. Geometrical structure of trans-N-methylacetamide.
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the complexes, and the intramolecular force fields, are reflected in different parts of the

spectra. In applying ab initio vibrational spectroscopy calculations and comparing them

to experiment, one is examining whether the electronic structure method is adequate for

not only the intermolecular forces but also for the coupling between the intramolecular

and intermolecular degrees of freedom, which is an issue of great importance. For these

reasons, the study of hydrogen-bonded and other clusters by ab initio vibrational

spectroscopy has been extensively pursued [54,93,94,98,102–104,123–126]. Table 9.3

shows results of CC-VSCF/MP2-TZP calculations for the complex CH3OH–H2O [94].

The structure of the complex is shown in Fig. 9.3. Good agreement is found between the

experimental and theoretical fundamental frequencies (only transitions with

v . 1000 cm21 were measured). For the intensities, there is only a qualitative agreement

between theory and experiment. Theoretical results are within a factor of 2–4 larger than

the experimental intensities for the strong transitions. Theoretical intensities were

obtained using RHF (rather than MP2) dipole moments, and this could be one of the

reasons for the large difference with experiment. The origins of the discrepancy on

intensities may be also partly due to experimental errors, since both theory and

experiment are expected to be less accurate for intensities than for frequencies. For

several very interesting hydrogen-bonded clusters, such as glycine–H2O [98] and

nitrile–water complexes [126], detailed experimental data for comparison are not

available yet. The theoretical predictions may hopefully be useful in guiding future

experiments. Both for glycine–H2O and for the nitrile–H2O complexes, some of the

Table 9.3 Vibrational frequencies and IR intensities for methanol–water complex

Mode Vibrational frequencies (cm21) Intensity (kcal/mol) Description

Harmonic CC-VSCF Exp. CC-VSCF Exp.

1 4005 3661 3714 78 44 H2O asym str

2 3874 3645 3627 4 6 H2O sym str

3 3812 3595 3536 347 100 meth OH str

4 3194 3007 2982 42 8 CH3 str

5 3123 2904 71 CH3 str

6 3061 2891 2835 68 12 CH3 str

7 1619 1625 1601 77 23 H2O bend

8 1555 1523 1475 2 1 CH3 bend

9 1536 1516 1464 1 2 CH3 bend

10 1531 1495 1448 12 1 CH3 bend

11 1456 1420 1380 32 7 COH bend

12 1209 1189 1 OCH bend

13 1141 1128 1103 21 3 OCH bend

14 1094 1064 1048 94 30 CO str

15 721 827 167

16 252 614 256

17 209 432 8

18 188 284 21

19 99 270 15

20 81 102 6

21 75 192 23
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predicted features are surprising. For example, while complexation with water leads

to very strong red shifts of the carboxyl group (O–H and CyO) stretching frequencies

of glycine [98] and other organic acids, the CxN stretches of the nitriles are predicted to

shift to the blue upon complexation with water [126].

Small, very floppy hydrogen-bonded complexes reveal a failure of VSCF and CC-VSCF

for soft torsional modes. The effect is quite pronounced for (H2O)2 [54,93,94]. This failure

stems from the fact that the normal mode description (as used in the standard version of

VSCF) is inadequate for the treatment of large-amplitude torsions. Angular coordinates are

muchmore appropriate choices for suchmotions.When the standard normalmodes are used

to describe torsions, the anharmonic effects are extremely strong, resulting in breakdown of

VSCF and CC-VSCF; this yields unphysical results for the torsional (angular) modes. The

manifestation of such unphysical behavior is that the single-mode anharmonic correction in

such cases is computed to be positive and very large, e.g. 20% or more, relative to the

calculated harmonic frequency. Such breakdown of VSCF can also occur for molecular

internal rotations or soft torsions. Results by Firsov et al. showed [127] that even extremely

floppy systems, such as the van der Waals clusters SH…Ar, and SH…Kr, can be very

successfully treated by CC-VSCF, when the rotational (bending) mode is described by an

angular variable. Unfortunately, the standard VSCF codes do not have this option.

A comment is due regarding the performance of different electronic structure methods

for cluster systems. For covalently bound molecules, the available spectroscopic evidence

indicates, as was noted above, that the accuracy of the DFT B3LYP and B97 functionals

roughly matches that of MP2. For hydrogen-bonded clusters, comparisons that can be

made for systems such as (H2O)n and Cl
2(H2O)n, (by using the results of Refs. [93,94,103,

104]), show thatMP2 is in better accord with experiment than DFT. Such comparisons can

be viewed as a spectroscopic test as to which potential surface is more accurate.

9.4.4 Ab initio spectroscopy and the identification of new molecular species

Ab initio vibrational spectroscopy can have unique advantages as a tool for the

identification and characterization of new species. For existing molecules, available

empirical force fields may be at hand, and can be used in interpreting the spectra. For new

types of molecules, there may be no empirical force fields that one can rely on. A nice

example is the novel rare gas molecules of the type of HRgY, where Rg is a noble gas

atom, and Y is an electronegative group [128]. Synthesis of these molecules was

Fig. 9.3. Geometrical structure of methanol–water complex.
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pioneered byM. Räsänen and coworkers [129–131], who prepared them photochemically

by photolysis of HY in rare-gas matrices. Ab initio spectroscopy, and specifically CC-

VSCF calculations, played a key role in the development of this field [132–138]. The

most important application of CC-VSCF in this area was its use in the identification and

characterization of HArF [132], the first chemically bound compound of argon. CC-VSCF

calculations were likewise essential in the identification of HKrF (also a new compound)

and in understanding its properties [135]. CC-VSCF calculations contributed to the

characterization of HKrCCH, the first (neutral) organic molecule containing krypton

[138]. Currently, the spectroscopy of the new ‘organo-rare gas’ molecules HXeCCH and

HXeCCXeH [128] is being studied with interesting implications to their properties. Most

of the above calculations ignore matrix effects altogether, and these effects are indeed

secondary in importance. They can, however, be important in identifying matrix sites, as

was found in the cases of HKrF and HArF [135,137]. For these cases, vibrational

spectroscopy calculations that incorporate a large number of matrix atoms were indeed

carried out [135,137], using the approach of Bihary et al. [139]. However, the latter

method is not yet feasible for ab initio potentials, so analytical force fields were used.

9.4.5 Ab initio spectroscopy and the elucidation of complex spectra

Ab initio vibrational spectroscopy calculations have been able to provide dramatic

improvements in interpretation of spectra, or yield qualitatively new insights in a number

of intriguing cases. We mention here a single example, the work of A.T. Kowal [140], in

sorting out the vibrational spectra of hydroxylamine and its 15N, 18O, and deuterium

isotopomers, by using CC-VSCF calculations.

9.4.6 Overtones and combination mode transitions

The calculation of overtone and combination transitions is a challenge to anharmonic

vibrational spectroscopy algorithms. For such transitions, the anharmonic couplings are

much stronger than for fundamental ones. For many high-overtone transitions, the total

vibrational density of states at the overtone level is very high, therefore bringing up the

concern that a dense manifold of resonances may play a role. Overtone transitions were

successfully treated by useful ad hoc approaches [141–144], which involve model

Hamiltonians. Such models probably describe realistically the mode being excited, but

they cannot be used to predict other transitions in the same molecule, and the

representation of coupling between the overtone-excited mode and the other modes is in

any case empirically based. Useful as such models are, they cannot replace the need for

algorithms using ab initio potentials. Table 9.4 presents results of recent CC-VSCF/MP2-

TZP calculations for the OH overtone excitation frequencies of HNO3 [145]. In all cases

the results are, obviously, a large improvement over the harmonic approximation. Up to

vibrational level v ¼ 4 of the OH stretch, agreement between calculations and experiment

is quite reasonable [14,15,146,147]. For v ¼ 5 and beyond, the method clearly breaks

down. The anharmonic coupling between the OH stretch and other modes is very strong
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for the high overtones, to the point of breakdown of the CC-VSCF method. Calculations

were also carried out for HNO4 (not shown here). The three lowest overtones were

measured, and agreement between the CC-VSCF calculations and experiment is good for

the three transitions. In summary, CC-VSCF works well for low overtones, but not for the

high ones, probably due to the very strong anharmonic coupling. In Ref. [145],

calculations were also carried out for several combination transitions of HNO3 and the

HNO3–H2O complex. The agreement with experimental frequencies is reasonable. An

extensive CC-VSCF study was recently performed for overtone and combination

transitions in the complexes of NH3–HF and NH3–DF [148]. For the couple of overtone

transitions that were measured for these systems, agreement with experiment is

reasonable (but somewhat less good than is common for fundamental transitions).

9.4.7 Open-shell systems

At the present state of the art, it seems that the available ab initio vibrational spectroscopy

codes cannot yet be applied routinely to open-shell systems. In the case of CC-VSCF, the

problem seems to be due to difficulties of convergence of the electronic structure codes

employed, for at least some of the points used in the CC-VSCF calculations. A complete

solution for this problem may well come from the development of improved and more

versatile open-shell electronic structure codes. There are also, however, examples of

successful applications. Table 9.5 lists the CC-VSCF/MP2-TZP calculations of Chaban

Table 9.4 OH-stretching overtone excitation frequencies for HNO3

Vibrational state Frequencies (cm21)

Harmonic CC-VSCF/MP2-TZP Exp.

2 7568.59 6939.93

3 11,352.88 10,221.54 10,173a

4 15,137.17 13,462.74 13,250b, 13,245a, 13,248c

5 18,921.46 16,949.52 16,160d

6 22,705.76 20,980.72 18,950d

aRef. [146].
bRef. [14].
cRef. [15].
dRef. [147].

Table 9.5 Vibrational frequencies (cm21) and IR intensities (km/mol) for HOCO radical

Mode Harmonic CC-VSCF Exp(gas) Exp(Ne) Exp(Ar) Intensity

O–H stretch 3866 3654 3636 3628 3603 146

CyO stretch 1901 1877 1853 1848 1844 418

HCO bend 1254 1160 1210 1211 306

C–OH stretch 1100 1032 1050 1065 72

OCO bend 622 603 9

Out-of-plane torsion 560 454 508 515 84
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[149] for HOCO radical (the structure of which is shown in Fig. 9.4). The agreement with

gas phase and with matrix experiments is good, not less so than for typical closed-shell

systems. Ab initio anharmonic vibrational spectroscopy of open-shell systems is still in its

infancy, but these results are encouraging.

9.5 FUTURE DIRECTIONS

The field of Ab initio Anharmonic Vibrational Spectroscopy has seen rapid recent

advancements. Already, several methods are at hand, and a variety of codes are available

in several of the leading electronic structure suites of programs. It is tempting to speculate

on the possible directions of progress in the next few years.

9.5.1 Larger systems

At present, the state of the art makes possible satisfactory anharmonic vibrational

calculations for systems having more than 10 atoms, and probably with a major effort of

up to 20 atoms. In the area of small biological molecules, the increased capability of the

last several years is very substantial, yet far from what is needed. Several most recent

methods seem to promise major speed-ups of the vibrational algorithms. One can draw

much optimism also from the improvements in electronic structure methodology. For

example, MP2 has been the electronic structure method in most applications to date.

However, there have been important developments in fast, approximate MP2 algorithms,

that have not yet been applied to anharmonic vibrational calculations. These include RI-

MP2 and Local MP2 methods, see for example Refs [150–153]. With these electronic

structure and vibrational methodology advances, it seems safe to expect rapid progress in

the sizes of molecules amenable to spectroscopy calculations. For much larger molecules

than hitherto treated, it may be necessary to apply non-first-principles methods as an

intermediate step, until ab initio calculations become feasible. Improved semiempirical

electronic structure methods can be a possible candidate for such an intermediate role.

Another promising direction is ONIOM-like or QM/MM approaches [154–158], in

which the chemically important part of the system is treated with more accurate methods

(e.g. ‘exact’ MP2), while the rest of the molecular system is treated with more

approximate ab initio, semiempirical, or empirical potentials. Development of new

parallelization techniques within electronic structure packages GAMESS [3], MOLPRO [5],

C

H

O

O

Fig. 9.4. Geometrical structure of HOCO radical.
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and NWCHEM [159] will also greatly improve the applicability of anharmonic vibrational

spectroscopy to larger molecular systems.

9.5.2 Quest for increased accuracy

With regard to the electronic structure methodology, major obstacles must be surmounted

before improvements can be made. Calculations with Coupled-Cluster methods,

an obvious next step, are far more computationally costly than the presently used

MP2, or B3LYP methods. In fact, there are extremely few direct ab initio calculations of

anharmonic vibrational spectroscopy at higher than MP2 or DFT levels, even for small

polyatomics. From the point of view of ab initio anharmonic spectroscopy, the leap from

MP2 to the Coupled-Cluster method seems a bottleneck. One can draw encouragement

from faster Coupled-Cluster implementations, so far employed with the perturbation

theory anharmonic analysis [116,117].

The accuracy of the vibrational algorithms is probably sufficient at present in many

cases, so long as MP2 is used with DZP or TZP basis sets. The use of improved basis sets,

such as the correlation-consistent ones, may strongly motivate the formulation of higher-

level vibrational algorithms. One can expect improvements of the present algorithms, but

one can also expect the adaptation of other vibrational methods, so far used with

analytically fitted ab initio potentials.

9.5.3 Time-domain spectroscopy

This review focused exclusively on frequency-domain spectroscopy. There is, however,

major progress in time-domain spectroscopy. Methods such as 2D-IR spectroscopy offer

exciting possibilities, especially for studies of large molecules, and of molecules in

condensed phases [160]. Anharmonic interactions are of the essence in 2D-IR

spectroscopy. The impressive experimental development of recent years [160], and

pioneering theoretical studies, such as those conducted by Mukamel and coworkers

[161], contribute to our impression that this may become a major direction for ab initio

spectroscopic studies.
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CHAPTER 10

Finding minima, transition states, and

following reaction pathways on ab initio

potential energy surfaces

Hrant P. Hratchian and H. Bernhard Schlegel

Department of Chemistry and Institute for Scientific Computing, Wayne State University,
Detroit, MI 48202, USA

Abstract

Potential energy surfaces (PESs) form a central concept in the theoretical description of

molecular structures, properties, and reactivities. In this chapter, recent advancements

and commonly used techniques for exploring PESs are surveyed in the context of

electronic structure methods. Specifically, minimization, transition state optimization,

and reaction path following are discussed. In addition to reviewing current progress in

these areas, this chapter offers a number of practical discussions regarding minimization,

transition state optimization, and reaction path following, including suggestions for

overcoming common pitfalls.

10.1 INTRODUCTION

Potential energy surfaces (PESs) play a central role in computational chemistry. The

study of most chemical processes and properties by computational chemists begins with

the optimization of one or more structures to find minima on PESs, which correspond to

equilibrium geometries. To obtain reaction barriers and to calculate reaction rates using

transition state theory (TST) [1,2], it is necessary to locate first-order saddle points on the

PES, which correspond to transition states (TS). Often one needs to confirm that a TS lies

on a pathway that actually connects the minima corresponding to reactants and products

(i.e. a TS that is involved in the chemical process under investigation). This goal is

typically accomplished by following the steepest descent reaction pathway downhill in

each direction from the TS to the reactant minimum and to the product minimum. The

reaction path can also be used in the computation of reaction rates using more

q 2005 Elsevier B.V. All rights reserved.
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sophisticated models such as variational transition state theory (VTST) and reaction path

Hamiltonians (RPH) [3–7].

In this chapter, standard algorithms for these calculations—minimization, TS

optimization, and reaction path following—are discussed. It should be noted that a

number of reviews on these and related methods have appeared in the literature [8–24],

including an excellent book on PESs and methods for exploring their landscapes by

Wales [25]. Although an exhaustive review of the methods available to computational

chemists would be of historical value, our presentation here, heeding to space limitations

and a desire to maintain readability, focuses on algorithms commonly used in studies

presented in the current literature. Nevertheless, approaches that are less often used in

modern practice are included where they provide a map of methodology evolution and

are pedagogically useful.

In the next section, essential background material is provided. In Section 10.3, methods

for minimization are discussed followed by TS optimization methods in Section 10.4.

Reaction path following is considered in Section 10.5. In Section 10.6, we conclude by

summarizing the current state of this active area of research.

10.2 BACKGROUND

In this section, concepts that are common to multiple topics and those that form the

foundation for the methods and algorithms presented here are discussed. We begin by

developing the PES construct from the Born–Oppenheimer (BO) approximation. Next,

we discuss the computation of analytic PES derivatives in the context of quantum

chemical calculations. In the last part of this section, we consider the common coordinate

systems used in optimization and reaction path following.

10.2.1 Potential energy surfaces

The PES arises naturally upon application of the BO approximation to the solution of the

Schrödinger equation. We begin by considering the general Hamiltonian

H ¼ Tr þ TR þ Vðr;RÞ ð1Þ
where Tr is the operator for the kinetic energy of electronic motion, TR is the operator for

the kinetic energy of nuclear motion, and Vðr;RÞ is the potential energy due to

electrostatic interactions between all of the charged particles (electrons and nuclei). The

BO approximation is applied by assuming that the three order of magnitude difference in

the mass of nuclei and electrons renders the nuclei fixed in space on the time scale of

electron motion. As a result, the nuclear kinetic energy term, TR; in the molecular

Hamiltonian vanishes and the electronic and nuclear degrees of freedom can be separated.

This yields the time-independent Schrödinger equation for the electronic degrees

of freedom

½Tr þ Vðr;RÞ	Fðr;RÞ ¼ EðRÞFðr;RÞ ð2Þ
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In Eq. (2) Fðr;RÞ is the electronic wavefunction, which depends parametrically on the
nuclear positions, and the energy of the system, EðRÞ; is a function of the nuclear degrees
of freedom. A plot of E vs. R gives the PES. For each non-degenerate electronic state,

a different PES exists.

Fig. 10.1 shows a model PES. The potential energy of the system is given by the

vertical axis and nuclear coordinates are given by the horizontal axes. A common analogy

compares the topology of PESs to mountainous landscapes [26]. Molecular structures

correspond to the positions of minima in the valleys. Reaction rates can be determined

from the height and profile of the pathway connecting reactant and product valleys.

Relative stabilities of isomers can be determined from the energies, or elevations, of the

minima on the PES corresponding to each structure. From the shape of a valley, the

vibrational spectrum of a molecule can be computed, and the response of the energy to

electric and magnetic fields determines molecular properties such as dipole moment,

polarizability, NMR shielding, etc. [8,27–29].

For simple systems, the PES can be fitted to experimental data. Molecular mechanics

(MM) methods can also generate approximate PESs very quickly. However, the types of

reactions that can be investigated using conventional MM methods are very limited.

Thus, for more complex and reactive systems these options are not viable, and one must

rely on PESs generated using quantum chemical calculations (i.e. semi-empirical,

ab initio, density functional theory (DFT), etc.).

In this chapter, we will explore a number of methods designed to navigate through the

mountain ranges of a PES to find local valleys (minimization), the highest point along a

reaction path through a mountain pass connecting reactant and product valleys (TS

optimization), and the path of least resistance down from the mountain pass to the valleys

below (reaction path following). In general, we are concerned with reactive systems,

i.e. chemistries involving bond making and breaking that cannot be treated using

Fig. 10.1. Model potential energy surface showing minima, transition states, a second-order saddle point,

reaction paths, and a valley ridge inflection point (from Ref. [72] with permission).
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conventional MM methods. Therefore, the focus here is on PESs determined using

quantum chemical calculations. Additionally, minimization algorithms designed

specifically for use with hybrid quantum mechanical/molecular mechanics (QM/MM)

methods are included.

10.2.2 Analytic PES derivatives

One point that is not always obvious after one’s first encounter with the BO

approximation is that the PES is not known a priori. As discussed above, one may fit

a functional form to experimental and/or high-level quantum chemical calculation data,

but in most applications of electronic structure methods this is not practical. All of the

methodologies discussed in this chapter were designed with this in mind. When an

algorithm is used to navigate a PES, the value of the energy at each new point is unknown

and must be calculated.

Going back to the mountain range analogy [26], we can think of the starting structure

supplied by the user for a minimization, TS optimization, or reaction path following

calculation as a hiker who is dropped somewhere in the middle of the mountain range.

The hiker’s latitude and longitude correspond to the molecule’s geometry and the

elevation corresponds to the value of the PES. Depending on the type of calculation, we

may want the hiker to head to the bottom of a valley (minimization), to the top of a

mountain pass (TS optimization), or to follow the steepest pathway downhill from the top

of a mountain pass to a valley floor (reaction path following). Since the global PES is not

known, our hiker is essentially blind. Quantum chemical calculations provide the

navigation tools. Energy calculations can be thought of as an altimeter, giving the current

elevation. For the hiker to know the slope of the landscape, we also need to calculate the

first derivatives of the energy with respect to the nuclear coordinates, or gradients. Note

that the negative of the gradient on the PES is equal to the force. As a result, the terms

‘gradient’ and ‘force’ are often used interchangeably. If we compute the second

derivatives of the energy with respect to the nuclear coordinates, or Hessian, the hiker

now knows about the local curvature of the mountain range. The Hessian gives the force

constants of the harmonic vibrations of the molecule, and is therefore often referred to as

the ‘force constant matrix.’

Although the hiker would certainly like as much help as possible, we must consider the

relative cost of energy and derivative calculations and the usefulness of each

computation. There is a definite trade-off involved between information and expense.

To illustrate this point, let us consider minimization. The user’s initial guess at the

geometry of the structure places our hiker somewhere in the PES mountain range.

Calculating the energy alone at this initial position does not provide the hiker with

enough information to begin stepping toward the valley floor. Calculating the gradient,

though, tells the hiker which direction is downhill. Now, the hiker can take a step towards

the bottom of the valley. However, the optimal size of the step is not known. As a result,

if too large a step is taken the hiker may overshoot the minimum and go to the other side

of the valley. Or worse, the hiker may step through a mountain to a point in a different

valley altogether! If the hiker is also given the force constants, the local quadratic
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character of the mountain range is known. Combined with the gradient, the hiker can take

larger steps with greater confidence using the Hessian. Of course, in some applications

the cost of the Hessian may be more than what we are willing to pay for the hiker’s ability

to take larger steps.

To discuss the form and cost of analytic gradient and Hessian evaluations, we consider

the simple case of Hartree–Fock (HF) calculations. In nearly all chemical applications of

HF theory, the molecular orbitals (MOs) are represented by a linear combination of

atomic orbitals (LCAO). In the context of most electronic structure methods, the LCAO

approximation employs a more convenient set of basis functions such as contracted

Gaussians, rather than using actual atomic orbitals. Taken together, the collection of basis

functions used to represent the atomic orbitals comprises a basis set.

Within the LCAO approximation, the HF energy for a spin restricted, closed shell

system is given by

E ¼ kFlHlFl

¼ 2
X
i

ðfilH1lfiÞ þ
X
ij

2 fifj

1

r

���� ����fifj

� �
2 fifj

1

r

���� ����fjfi

� �� �
þ VNN

¼
X
mn

ðmlH1lnÞPmn þ 1

2

X
mnls

ðmnllsÞðPmnPls 2
1

2
PmsPlnÞ þ VNN ð3Þ

where F is the electronic wavefunction, H is the Hamiltonian, fi ¼ Scmixm are the MOs
expanded as a linear combination of basis functions x;H1 is the one-electron Hamiltonian

(kinetic energy and nuclear-electron attraction), ðmnllsÞ are the electron–electron

repulsion integrals, m; n; l and s denote the basis functions, and P is the density matrix
given by

Pmn ¼ 2
Xoccupied

i¼1
cpmicni ð4Þ

where the summation is over occupied MOs and the factor of two comes from the fact

that each occupied MO holds two electrons. Formally, calculation of the HF energy is

OðN4
basisÞ computational work, where Nbasis is the number of basis functions. Density

functional methods are comparable in cost to HF and a number of developments have

been made recently to achieve linear and near-linear scaling for large systems [30–38].

The first derivative of the energy with respect to a nuclear coordinate, qi; (i.e. the
gradient) is given by

›E

›qi
¼ Fl

›H

›qi
lF

� �
þ 2

›F

›qi
lHlF

� �
ð5Þ

The first term in Eq. (5) is the Hellman–Feynman term and the second term is the

wavefunction derivative, or Pulay, term. The Hellman–Feynman portion of the gradient

involves a basic computation of the expectation value of a one electron operator. The

wavefunction derivative term, which arises because atom-centered basis functions are

used, depends on the derivatives of the one- and two-electron integrals in Eq. (3).
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Expanding Eq. (5) into a more convenient form for quantum chemical calculations gives

dE

dqi
¼2

X
mn

dðmlH1lnÞ
dqi

Pmnþ
X
mnls

dðmnllsÞ
dqi

ð2PmnPls2PmlPnsÞ22
X
mn

dSmn

dqi
Wmn ð6Þ

where Smn are the overlap matrix elements and

W¼PFP ð7Þ

where F is the Fock matrix. In terms of the basis functions, the elements of the Fock

matrix are given by

Fmn¼2
X
mn

ðmlH1lnÞPmnþ
X
mnls

ðmnllsÞð2PmnPls2PmsPlnÞ ð8Þ

This form for the gradient was introduced by Pulay in 1969 [39], and it serves as the

basis for the subsequent development of analytic energy derivatives for many different

theoretical levels, including correlated methods [28]. The computational cost of the HF

gradient calculation is formally OðN4
basisÞ: Linear scaling methods have also been

developed [32,33,37]. The cost of an analytic gradient evaluation is roughly the same as

for the energy calculation. Thus, analytic gradient calculations are relatively routine for

ab initio PESs and do not generally represent a cost barrier for calculations.

Hessian calculations, on the other hand, are much more expensive and their use in PES

exploration methods adds appreciable cost to the calculations. Therefore, as we will show

in the later sections of this chapter, estimated and updated Hessians are often used where

second derivatives are required by the equations directing movement on the PES. For

some systems, the assumptions used to estimate the Hessian are not valid. In these cases,

or for cases where very accurate force constants are necessary for vibrational energy

calculations, computed (either numeric or analytic) Hessians may be necessary.

Prior to 1979, analytic calculation of second derivatives for ab initio methods was

thought to be unreasonably expensive [40]. However, in that year Pople et al. [41]

developed an efficient approach to solve the coupled perturbed HF (CPHF) equations

making analytic Hessian calculation very practical. Indeed, analytic computation of the

Hessian is generally cheaper than numeric evaluation of second derivatives and the

calculation of ab initio force constants by analytic methods is typical for systems with a

few hundred basis functions on commercially available computers. Analytic Hessians are

routinely available in electronic structure programs for semi-empirical, HF, DFT,

second-order Møller-Plesset (MP2), complete active space self-consistent field

(CASSCF), configuration interaction singles (CIS), and for other levels of theory.

Solution of the CPHF equations for force constants can be expanded to solve for third and

higher order derivatives as well [42–47]. However, derivative calculations become

increasingly expensive as the order is increased. Therefore, most PES exploration

methods developed for use with moderate to large systems limit analytic derivative

calculations to second order, and for large systems will often attempt to limit the number

of analytic Hessian evaluations.
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10.2.3 Coordinate systems

When defining the PES one can use a number of different coordinate systems to describe

the geometry of the system being studied; the simplest of these being Cartesian

coordinates. In Cartesian coordinate space, the position of each atom in the molecule (or

cluster, etc.) is given by three spatial coordinates, x; y; and z: For a system having Natoms
atoms there will be a set of 3Natoms Cartesian coordinates, {xi}: A similar coordinate

system, which naturally develops in the context of nuclear motion (i.e. molecular

vibrations, reaction path following, molecular dynamics, etc.), is mass-weighted

Cartesian coordinates, {~xi}; given by

~xi ¼ xi
ffiffiffiffi
mN

p ð9Þ

where {mN} give the atomic masses. Note that the subscript i goes over all of the

coordinates while the subscript N goes over the corresponding atomic centers.

An undesirable property of Cartesian coordinates (with or without mass-weighting) is

that they generate PESs with strongly coupled coordinates. An alternative to the

Cartesian coordinate systems is internal coordinates, sometimes referred to as Z-matrix

coordinates. This set of coordinates defines the molecular structure in terms of bond

lengths, angles, and dihedral angles. For a non-linear molecule, a unique structure is

defined by 3Natoms 2 6 internal coordinates; for a linear molecule 3Natoms 2 5 internal

coordinates are required. Because internal coordinates are based upon the connectivity of

the molecule, they are very natural for chemical systems. Furthermore, nuclear motion on

a PES defined in internal coordinates results in much weaker coupling between

coordinates than when the PES is given in Cartesian coordinates.

It has been shown that adding some redundancy in the internal coordinates generates a

more effective coordinate system, especially for cyclic molecules [48–52]. The

molecule’s geometry is described using all the chemically relevant bond lengths, angles,

and dihedrals, often more than the minimal 3Natoms 2 5 or 3Natoms 2 6 internal

coordinates needed to specify the structure. As a simple example, consider benzene.

There are 12 atoms in benzene, which gives rise to 36 Cartesian coordinates and 30

internal coordinates. The number of redundant internal coordinates is 54—12 bonds, 18

angles, and 24 dihedrals. It should be noted that the number of redundant internal

coordinates can be altered by using different degrees of redundancy, and a multitude of

definitions have been proposed [49,50,52–55]. They all perform as well as or better than

Cartesian and non-redundant internal coordinates.

Since the quantum chemical calculation of energy and derivatives is easiest in the

Cartesian space, it is necessary to convert these values to, and from, internals. Although

the transformation from Cartesian coordinates to internals (minimal or redundant) is

straightforward for the positions, the transformation of Cartesian gradients and Hessians

requires a generalized inverse of the transformation matrix [49] viz.

Dq ¼ BDx; gq ¼ B21gx; Hq ¼ B2t Hx 2
›B

›x
gq

� �
B21; B ¼ ›q

›x
ð10Þ
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In Eq. (10) q are the internal coordinates, x are the Cartesian coordinates, g is the

gradient, H is the Hessian, and the Wilson B matrix is given by B. Throughout this

chapter, a superscript ‘t’ denotes transpose. Finite displacements in redundant internal

coordinates require that the back transformation of the positions to Cartesian coordinates

be solved iteratively using Eq. (10) and

x1 ¼ x0 þ uBtG21Dq ð11Þ
where

G ¼ BuBt ð12Þ
and u is an arbitrary matrix.

The calculation of the generalized inverses in Eqs. (10) and (11) scales as OðN3
atomsÞ:

Although the cost for this calculation can become significant for large molecules, it is

often the case that this cost is far outweighed by the cost of energy and derivative

calculations. Nevertheless, for large systems and studies where a low level of theory is

used (resulting in relatively fast energy and derivative calculations) the computation of

the generalized inverse can become a bottleneck. To make the redundant internal$
Cartesian coordinate transformations more tractable, techniques such as iterative

solutions to linear equations, Cholesky decomposition, and sparse matrix methods

have been developed and reported in the recent literature [56–63]. Using these methods,

the redundant internal$ Cartesian coordinate transformations can be achieved with

linear scaling. The costs of coordinate transformations are more than compensated for by

the increased efficiency of the optimization algorithms that use them by decreasing the

number of steps required by the algorithm, which in turn decreases the number of energy

and derivative evaluations required to complete the job.

10.3 MINIMIZATION

At the start of nearly all chemical studies using electronic structure methods, geometry

optimization is required. In this section, we explore some of the most utilized algorithms

for minimization. As stated earlier, our focus here is on methods developed for use with

quantum chemical calculations where simple functions of the energy and derivatives of

the PES are not available but rather are calculated by electronic structure methods as

needed. It should also be kept in mind that compared to the cost of the energy calculation

a geometry optimization step in most cases is inexpensive. Topics related to global

optimization [13–17] and methods catered toward specific advantages or disadvantages

of fitted and empirical PESs [11,64–67] are beyond the scope of this chapter.

The problem of geometry optimization involves an unconstrained minimization on the

PES. The numerical analysis literature abounds with methods for minimizing non-linear

functions of many variables [68–71]. These methods can be placed in three general

categories: methods using only the energy, gradient based methods, and methods

employing second derivatives. Although energy-only algorithms are applicable across

the widest range of levels of theory and problems, they tend to be the least efficient and
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require a large number of steps to converge. On the other hand, methods that use the

Hessian are likely to converge in the least number of steps. However, as discussed in

Section 10.2, Hessian evaluation can be quite costly and convergence in a small number

of steps may not necessarily equate to the least expensive overall calculation. Gradient-

based optimizers often give the best balance between the energy/derivative costs and rate

of convergence. As a result, the most commonly used geometry minimization algorithms

are gradient based.

Regardless of which method is used, all geometry minimizations are comprised of

three basic elements. First, energy and derivatives are computed at the initial geometry.

Second, the geometry is changed to take a step toward the minimum. Third, a test

(or series of tests) is carried out to determine if the new position is close enough to the

PES minimum. If it is, the minimization is complete. If not, the process is repeated to take

another step toward the minimum.

Included in the methods discussed below are Newton-based methods (Section 10.3.1),

the geometry optimization by direct inversion of the iterative subspace, or GDIIS,

method (Section 10.3.2), QM/MM optimization techniques (Section 10.3.3), and

algorithms designed to find surface intersections and points of closest approach (Section

10.3.4). We conclude the discussion of minimization methods in Section 10.3.5 with a

discussion of practical considerations related to minimization, including suggestions for

overcoming common problems.

10.3.1 Newton methods

It has been well established that Newton-based methods are the most efficient type for

minimization problems [9,11,12,25,72]. The starting point for these algorithms is to

approximate the PES by a Taylor series expansion about the current point, x0: Truncating
the expansion at second order gives

EðxÞ ¼ E0 þ gt0Dxþ 1

2
DxtH0Dx ð13Þ

The gradient, gðxÞ; for this Taylor series is
gðxÞ ¼ g0 þH0Dx ð14Þ

In Eq. (13), E0; g0; and H0 give the energy, gradient, and Hessian at the point x0 and

Dx ¼ xi 2 x0 ð15Þ
At the minimum, the gradient will be zero,

gðxÞ ¼ g0 þH0Dx ¼ 0 ð16Þ
Solving for Dx gives the step that leads to the minimum in the local quadratic region,

Dx ¼ 2H21g ð17Þ
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where the subscript ‘0’ from (16) has been dropped for convenience. Eq. (17) is the

Newton step, which is the basis of most minimization methods. Formally speaking, when

analytic gradients and Hessians are both used to take steps according to Eq. (17) the

algorithm is known as Newton–Raphson (NR). A general flowchart for Newton methods

of optimization is shown in Fig. 10.2.

Since analytic Hessians can be rather expensive, especially for larger systems, it is

advantageous to avoid computing second derivatives. Nevertheless, the NR algorithm is

much more efficient than methods using only gradient or only energy information. The

quasi-Newton (QN) approach satisfies both of these concerns. The QN step direction is

still determined using Eq. (17), but instead of using an analytic Hessian at each step we

begin with an approximate Hessian at the start of the calculation (i.e. an empirically

estimated Hessian or a Hessian computed at a lower level of theory) and use Hessian

updating at the subsequent steps in the optimization. Hessian updating approximates the

Hessian using the change in position and gradient from the previous step. Commonly

used updating schemes include Murtagh–Sargent (MS) or symmetric rank 1 (SR1),

Powell symmetric Broyden (PSB), Davidson–Fletcher–Powell (DFP), and Broyden–

Fletcher–Goldfarb–Shanno (BFGS) [68–71,73–78]. The BFGS update is generally

yes

Choose coordinate system;
Input starting geometry;

Obtain initial estimate of Hessian.

Calculate energy and gradient.

Minimize along long between current
point and previous point.

Update the Hessian.

Use Hessian and gradient to take a step.
Employ RFO or TRM.

Check for convergence.

Check for maximum cycles.

Update geometry.

no

no

yes
Done

Stop

Fig. 10.2. Flowchart for quasi-Newton geometry optimization algorithms (from Ref. [72] with permission).
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accepted as the best formula for minimizations and is given by

Hnew ¼ Hold þ DgDgt

DxtDg
2
HoldDxDxtHold

DxtHoldDx
ð18Þ

Eq. (18) is symmetric and positive definite (i.e. the eigenvalues of the Hessian are all

positive), and minimizes the norm of the change in the Hessian. Corresponding updating

formulae also exist for the inverse of the Hessian [68–71,77], which allow the algorithm

to avoid the inversion of H needed in Eq. (17).

A modification to Bofill’s update method (which was originally designed for use in TS

optimizations) [79] is also very useful for minimization. This update combines the BFGS

and MS schemes, and is given by

Hnew ¼ fDHBFGS þ ð12 fÞDHMS ð19Þ
where the MS update is

DHMS ¼ ðDg2HoldDxÞðDg2HoldDxÞt
DxtðDg2HoldDxÞ ð20Þ

and the coefficient is computed according to

f ¼ lDxtðDg2HoldDxÞl
lDxllDg2HoldDxl

ð21Þ

Minimization of most small and moderately sized systems is handled very well by QN

optimization. For more difficult cases, it is sometimes useful to calculate analytic

Hessians at the beginning, every few steps, or even at every step, rather than using

updated second derivatives. It may also be useful to compute key elements of the Hessian

numerically, particularly those corresponding to coordinates changing rapidly in the

optimization [80]. These approaches are discussed in more detail in Section 10.3.5.

For cases where the current structure is far from the minimum (where the magnitude of

the gradient is large) or the PES is very flat (where the Hessian has one or more small

eigenvalues), a Newton step may be very large and lead to a point where the model

quadratic surface is no longer valid. Circumventing this problem is accomplished by

limiting the size of each Newton step [68–71]. There are two closely related methods

often used for this purpose: the trust radius method (TRM) and rational function

optimization (RFO) [79,81–85].

TRM specifies a maximum step size, know as the trust radius, t; and limits the size of
each step in the optimization to this magnitude. Minimizing the energy in Eq. (13) subject

to this constraint, lDxl # t; gives

Dx ¼ 2ðH2 lIÞ21g ð22Þ
where I denotes the identity matrix. l is less than the lowest eigenvalue of the Hessian,
less than zero, and is adjusted in order to satisfy the constraint. This ensures that the step
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moves downhill on the PES. The TRM step and t can also be written as

Dx ¼ 2
X
i$1

viðvtigÞ
bi 2 l

ð23Þ

t2 ¼
X
i$1

ðvtigÞ2
ðbi 2 lÞ2 ð24Þ

where bi and vi are the Hessian eigenvalues and the corresponding eigenvectors. The

value of the trust radius can be changed through the course of the optimization depending

on how well the estimated energy difference (using Eq. (13)) after each step compares to

the actual energy difference. When this difference is small, the trust radius is increased;

when it is large, the trust radius is decreased.

RFO can also be used to control the size of the trust radius by minimizing the energy on

a rational polynomial approximation to the PES

E ¼ E0 þ
gt0Dxþ

1

2
DxtH0Dx

1þ aDxtDx
ð25Þ

The parameter a is adjusted to ensure that the step direction leads to a lower energy and
that the trust radius is satisfied. This yields equations similar in form to Eqs. (22), (23),

and (24). A principle advantage of TRM and RFO is that they step downhill even when

the Hessian has one or more negative eigenvalues. Under the same conditions, a raw

Newton step will move toward a saddle point. Nevertheless, the character of the structure

resulting from a minimization using any algorithm should always be confirmed by

calculating the second derivatives and checking that the Hessian has all positive

eigenvalues (i.e. all real frequencies).

To ensure that the step lowers the energy and the magnitude of the gradient by a

sufficient amount (e.g. the Wolfe condition), it is also important to include an

approximate line search [70]. Often, satisfactory results can be achieved by fitting a cubic

or constrained quartic polynomial to the energy and gradient at the beginning and end of

the step [86]. If the minimum of the line search is within this interval, the energy and

gradient can be obtained by interpolation and used in the next Newton step.

For large systems with several hundred atoms, the standard QN algorithms for

determining the next geometry step can become a bottleneck. The QN step can also be a

bottleneck when the energy evaluation is inexpensive, as is the case when low levels of

theory such as molecular mechanics or semi-empirical MO methods are used. Storing the

Hessian requires OðN2Þ memory and solving the equations involves OðN3Þ work. One
alternative is to use conjugate gradient methods for minimization [70]. The storage and

cpu requirements for these methods scale linearly with the system size, but their rate of

convergence is significantly poorer than QN methods. Better convergence can be

achieved with limited memory QN methods such as L-BFGS [87,88]. In this approach,

the Hessian or its inverse is not stored or computed explicitly, but are constructed

implicitly as needed. An initial diagonal Hessian, Dx; and g from a fixed number of
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the most recent steps are stored. Thus, storage scales linearly with system size. The

update of the inverse Hessian is formed implicitly and multiplied by the gradient to get

the next step

Dx ¼ 2H21g; H21
kþ1 ¼ ðI2 DxkDg

t
kÞ

DxtkDgk
H21

k

ðI2 DgkDx
t
kÞ

DxtkDgk
þ DxkDx

t
k

DxtkDgk
: ð26Þ

The computational work involves mostly dot products. If the maximum number of

updates is fixed, the work scales linearly. The L-BFGS method has been used in a number

of optimization problems in computational chemistry [62,64,89,90].

10.3.2 GDIIS

An alternative optimization method to NR and QN is geometry optimization by direct

inversion of the iterative subspace, or GDIIS [91–94]. GDIIS is based on a linear

interpolation/extrapolation approach and is very well suited for flat PESs (i.e. one or more

eigenvalues of the Hessian are small), where NR can be less efficient. For other situations,

the efficiency of GDIIS is roughly the same as NR when the initial structure is near the

minimum. However, as discussed below, GDIIS can experience difficulties and a number

of modifications to the initial GDIIS approach have been developed to overcome these

impediments.

Using a linear combination of the structures from the previous n steps, q1;…; qn; the
guess for the next GDIIS structure is

qp ¼
Xn
i¼1

ciqi ð27Þ

where the coefficients ci are defined by minimizing the estimated error in qp: This
estimated error, or residuum vector, r; is given by

r ¼
Xn
i¼1

ciei ð28Þ

where ei is an error vector associated with qi: In practice the minimization of Eq. (28) is
done with respect to lrl2; since r is a vector. This leads to a least-squares problem to solve

for the coefficients, ci: To estimate the error, two common definitions are used. The first is
a NR step,

ei ¼ 2H21gi ð29Þ
and the second is the gradient,

ei ¼ gi ð30Þ
Clearly, if the point qi is very good (e.g. very near the true PES minimum) then its

gradient will be small as will the NR step from this point. Conversely, if qi is far from the

true PES minimum then ei will be large regardless of whether Eq. (29) or (30) is
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used. Since an estimate of the error in qp is available, the actual GDIIS step makes use

of r in defining the next structure, qiþ1:

qiþ1 ¼
Xn
i¼1

ciðqi 2H21giÞ ð31Þ

The NR definition for e; given in Eq. (29), has been used in Eq. (31). If optimization
convergence is not met at the point qiþ1; then it is added to the collection of structures and
a new GDIIS step is taken.

As mentioned above, the efficiency of GDIIS is similar to, and at times greater than,

NR. However, GDIIS comes with its share of problems. First, GDIIS tends to converge to

the nearest stationary point on the PES, which may or may not be a minimum. For this

reason, it is crucial to test the curvature (by computing the Hessian or harmonic

frequencies) of an optimized structure that has been found using GDIIS. A second

shortcoming of GDIIS is that it can fall into continuous oscillations if it steps near an

inflection point (points where one or more Hessian eigenvalues are zero and the

magnitude of the gradient is a minimum, but not zero) and the magnitude of the gradient

is larger than the convergence criteria of the optimizer. An additional problem develops

when many steps are taken. If a large number of points are used in the linear combinations

shown in Eqs. (27) and (28) linear dependencies can appear and result in numerical

instabilities in the least-squares solution for the expansion coefficients, ci:
To overcome these deficiencies, Farkas and Schlegel [95] have developed a controlled

GDIIS algorithm. Controlling numerical instabilities arising from linear dependencies in

Eqs. (27) and (28) can be achieved by limiting the number of points used. Before taking

the next GDIIS step, the linear combinations are built one term at a time beginning at the

latest point and working back toward the first point. Before adding the next term, near

linear dependency is tested for. If the addition of a point indicates a potential numerical

instability, only the points used in the GDIIS expansion before the instability are

employed.

Farkas and Schlegel [95] also suggested modifications to increase GDIIS’s likelihood

to converge on a minimum (or TS if desired; see below for further discussion), rather than

a higher order saddle point, and to avoid oscillation problems near inflection points. The

first modification employs a reference step, such as NR or any other standard

minimization method. By comparing each GDIIS step to this reference, steps that head

away from the stationary point of interest can be easily detected, and incorporation of

RFO or TRM into the NR step (for computing e) can be used to control the GDIIS step

direction. Further stability in this regard can be attained by combining the GDIIS and NR

(or other standard optimization method) steps. In this way, the actual step taken during

the GDIIS optimization results from a weighted mixing of the standard optimization and

GDIIS steps. A final modification involves Hessian updating. In general, the convergence

of GDIIS is not dependent on the quality of the Hessian. For this reason, early

implementations of GDIIS used a fixed Hessian for every step. However, it has been

shown that updating the Hessian yields increased stability and efficiency for GDIIS. By

implementing the modifications listed above, GDIIS minimization is an attractive

optimization algorithm, especially for large systems and for flat PESs.
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The GDIIS method and its modifications scale as OðN3Þ with system size because of

the need to invert the Hessian and to compute the reference step. If a diagonal Hessian is

used and a fixed maximum number of structures are retained in the GDIIS equations, the

method becomes linear in work and storage [95,96]. However, the convergence is

somewhat slower than the full matrix GDIIS approach. A linear scaling GDIIS method

with improved performance can be obtained by combining GDIIS with the L-BFGS

approach [87,88] for updating and utilizing the inverse Hessian (see Eq. (26)).

10.3.3 QM/MM optimizations

In recent years much progress has been made to adapt electronic structure calculations to

large systems, such as biochemical compounds. One of the more popular advances in this

area is the QM/MM approach (QM—quantum mechanics; MM—molecular mechanics)

[97–107]. Although there exists a wide variety of QM/MM methods, the basic principle

behind them is the same. Namely, a large molecule or system is broken-up into two

sections: one that will be treated at a high level of theory—the QM piece—and one that

will be treated at a low level of theory—the MM piece. Typically the QM region of the

system is defined as the sector where ‘the chemistry’ is occurring, and the rest of the

system is then defined as the MM region. For instance, a QM/MM calculation on an

enzyme generally places the active site in the QM region and the rest of the enzyme in the

MM region. The ONIOM scheme is a particular type of QM/MM approach that has

gained considerable attention because it is a generalized method that can break a system

into many layers, which may consist of multiple QM levels, not just one QM region and

one MM region [99,108–110].

Because the QM/MM energy, gradient, and Hessian are well defined, one can navigate

the combined QM/MM PES. Optimization of the entire system on the QM/MM PES can

require many optimization steps and be very costly. Most popular implementations of

QM/MM optimization decrease the cost of minimization by employing microiteration

schemes [111–114]. The idea here is to alternate between minimization of the QM and

MM regions of the system. Since calculations in the MM region are cheap (in terms of

computational cost), the typical use of microiterations fully optimizes the MM region

after each QM step. Because the QM and MM regions are treated individually and are

uncoupled during the optimizations, progress toward the QM/MM PES minimum can be

problematic. As a result, traditional microiteration approaches can converge quite slowly

or fail, especially when geometric constraints are imposed on the MM region.

One source of this problem is the choice and handling of the coordinate systems of

each region during their independent optimizations. Since the MM energy and

derivatives are very cheap, it may not be cost effective (in terms of computational

time) to use internal coordinates due to the conversion to and from Cartesians (see Eqs.

(10), (11), and (12)). However, within the QM region it is still useful to carry out the

optimization in internal coordinates. To overcome the difficulties associated with QM/

MM optimization using microiterations, Vreven et al. [112] chose a set of coordinates

consisting of Cartesian coordinates for the MM region and a set of internal coordinates

for the QM region. Furthermore, the Cartesian coordinates in the MM region are
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augmented to allow the QM region to undergo overall translation and rotation, which is

imperative for cases where constraints in the MM region are present. They also found that

this feature slightly improves efficiency when there are no constraints in the MM region.

Lastly, their method takes special care to ensure the QM region remains in the same local

minimum on the QM PES throughout the MM optimizations.

10.3.4 Finding surface intersections and points of closest approach

The search for conical intersections, avoided crossings and seams of intersection between

two PESs are also tasks involving optimization [115–123]. If the two surfaces represent

different spin states or have different spatial symmetry, they can cross. If they are the

same symmetry and spin, they can interact and the crossing is avoided. Where the matrix

element coupling the two surfaces is zero, they touch and give rise to a conical

intersection, as illustrated in Fig. 10.3. To study the mechanisms of photochemical

reactions, we often wish to find the lowest energy point on a seam or conical intersection.

For a seam of intersection between two adiabatic surfaces E1 and E2;we require E1 ¼ E2:
Since a (non-linear) molecule has 3Natoms 2 6 internal degrees of freedom, a seam of

intersection has 3Natoms 2 7 degrees of freedom because of the additional constraint. For

a conical intersection, we also require the coupling matrix element, H12; to be zero.
Hence conical intersections have 3Natoms 2 8 degrees of freedom. For molecules larger

than triatomic, finding the lowest point on a seam or conical intersection can be quite

challenging because of the number of degrees of freedom in the constrained

minimization.

One approach to finding the lowest point on a seam or conical intersection is to use

Lagrangian multipliers [118–122]. The Lagrangian,

L ¼ E2 þ l1ðE2 2 E1Þ þ l2H12 ð32Þ

is minimized with respect to l1; l2; and the geometric coordinates of the molecule so that
the constraints E1 ¼ E2 and H12 ¼ 0 are satisfied.

Alternatively, the constraints can be treated using projection methods [123]. Instead of

minimizing the absolute value of the energy difference, lE2 2 E1l; it is advantageous to
use the square of the energy difference, ðE2 2 E1Þ2; since this quantity is better suited for
quasi-Newton optimization methods. For the remaining 3Natoms 2 7 or 3Natoms 2 8

degrees of freedom, the energy of the upper adiabatic surface is minimized. The gradient

is given by

g ¼ dðE2 2 E1Þ2
dx

þ I2
v1v

t
1

lv1l
2

{ !
I2

v2v
t
2

lv2l
2

{ !
dE2
dx

ð33Þ

where

v1 ¼ dðE2 2 E1Þ
dx

ð34Þ
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Fig. 10.3. Interactions between two model potential energy surfaces showing (a) a seam, (b) a conical

intersection, and (c) a weakly avoided conical intersection (from Ref. [72] with permission).
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and

v2 ¼ dH12

dx
ð35Þ

The gradient given by Eq. (33) can be used directly in a conventional unconstrained

quasi-Newton optimization algorithm to find the lowest points on seams, avoided

crossings, and conical intersections.

10.3.5 Practical considerations

The principle factors affecting the success and efficiency of a minimization calculation

are the starting structure provided by the user, the coordinate system, the algorithm to

choose the direction and size of the step, the initial Hessian, and the quality of the updated

Hessian at later steps. In this section, we discuss these, and other, practical aspects of

minimization and offer suggestions for overcoming typical pitfalls. Illustrative

calculations have been carried out with the Gaussian series of programs [124] to

demonstrate some of these aspects, but the general considerations should also be relevant

to other electronic structure codes. Although previous sections have included

minimization techniques used with QM/MM calculations and algorithms for locating

conical intersections and points of closest approach, the discussion here is focused

primarily on standard minimization of structures using electronic structure methods.

10.3.5.1 Starting structure

Obviously the quality of the initial structure provided by the user will affect the success

and efficiency of an optimization calculation. The closer the starting structure is to the

PES minimum, the faster (in terms of the number of steps taken) the minimization will

complete. On the other hand, a poor starting structure can lead to a lengthy calculation

and even failure to converge. Preparing a starting structure for minimization is most

readily accomplished with the aid of molecular modeling and visualization software. It is

also common practice to use experimentally obtained structures (i.e. from crystal

structures) when available. Additionally, starting structures can be generated by

minimization at lower levels of theory.

While it is clear that a number of viable methods exist for building an initial structure

for minimization, it is important to note that optimization calculations cannot yet be

treated as black box operations. Instead, a basic understanding of the chemistry of the

problem being studied is necessary to ensure that the user is able to properly diagnose

problems and determine the appropriateness of an initial structure. For example, consider

cyclohexane. From undergraduate organic chemistry classes we know that there are two

conformations—chair and boat. Both conformations will have local minima on the PES

and using a boat-like structure for the start of a minimization will result in a converged

optimization at the boat conformation. If the goal of the optimization is to study the more

stable chair conformation this result is not what we want. To get the chair structure, one

must start with a chair-like structure. To further illustrate this point, Fig. 10.4 shows a

one-dimensional slice of the PES of 1-chloro 2-fluoroethane along the Cl–C–C–F
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torsion angle. In this case there are three local minima on the PES, although the minima at

70 and 2908 are mirror images. Again, the initial structure will determine which local
minimum the optimizer converges to. Starting an optimization with a Cl–C–C–F

dihedral of 308will lead to the minimum at 708, while starting at 1608will converge at the
global minimum at 1808. One must employ chemical insight when generating the initial
structure for minimization. For very complex systems, it may be necessary to generate

multiple structures representing different potential conformations, which allows for the

study of relative conformational energies, etc.

10.3.5.2 Coordinate system

Another aspect of geometry optimization affecting the success and efficiency of the

calculation is the choice of coordinate system. Section 10.2.3 included definitions for

different coordinate systems commonly used to describe PESs. Early work in geometry

optimization was nearly always done in non-redundant internal coordinates. This

coordinate system is easy to use when building acyclic structures and inherently removes

rotational and translational degrees of freedom from the system, making it advantageous

from an algorithmic standpoint. However, geometry optimization using non-redundant

internal coordinates does require some thought since the efficiency, and sometimes the

success or failure, of the optimization can depend on the choice of Z-matrix components.

An overview of techniques for building effective Z-matrix inputs appeared in an earlier

review, and interested readers are referred to that work for a more in depth discussion

[80]. Non-redundant internals perform especially poorly in the optimization of polycyclic

systems [48–53,63,125]. In these cases, it is better to use Cartesian coordinates than to

employ a Z-matrix representation. It has also been shown that mixing non-redundant and

Cartesian coordinates can also be useful at times [125].

The most efficient coordinate system, in general, for geometry optimization using

electronic structure methods is redundant internal coordinates, especially for cyclic

compounds [48–53,63,125]. Table 10.1 shows the number of steps necessary to minimize

a set of nine structures using these four different systems. All of the optimizations were
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C–F dihedral coordinate.
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started from the same initial geometries [51]. It is clear from this data that for rigid

compounds all four coordinate systems are essentially the same. As the flexibility of the

molecules increases, the advantage of using redundant internal coordinates becomes

increasingly apparent. Because of their obvious benefit, redundant internal coordinates

are favored for nearly all geometry optimization calculations used with electronic

structure methods.

There are two general problems that can arise in the course of an optimization

calculation due to the use of redundant internal coordinates. The first problem is caused

by a poorly chosen set of coordinates for the starting structure. Although most programs

use an automated mechanism to determine the initial definitions for the redundant

internal coordinates, these algorithms are not error proof. To the best of our knowledge,

all of the available codes use tables of covalent radii or standard bond lengths, or their

equivalent, to determine which atoms are bonded to each other. The user can also define

additional internal coordinates. Once the connectivity of the molecule is established,

angles and dihedrals can be readily defined. If fragments are detected (i.e. two or more

parts of the system that are not connected by bonds), then one, or more, coordinates are

added so that the fragments can interact and intermolecular distances can be accounted

for. Nevertheless, the tables used to define the initial bonding can ignore important bonds,

which can lead to considerably slower convergence. For this reason, it is essential to

check the definitions of the redundant internals, which are usually printed out in an output

file at the start of the optimization calculation. Our experience has shown that

modifications to the redundant internal coordinate definitions are often necessary for

transition and inner transition metal complexes.

Another problem that can occur during the course of a minimization in redundant

internal coordinates is the internal forces being reported as infinity or undefined [126]. As

discussed in Section 10.2.3, the energy derivatives are typically computed in Cartesian

coordinates and later converted to internals using Eq. (10). If the redundant internal

coordinate definitions become ill defined and/or include linear dependences, then the

conversion of forces and Hessians to internal coordinates can become problematic. The

easy fix to this problem begins by inspecting the latest structure in the optimization

using visualization software to ensure that the structure is reasonable. If all is well, start

Table 10.1 Comparison of the number of steps required to minimize geometries using various coordinate

systemsa

Molecule Cartesian Z-Matrix Mixed Redundant internals

2-Fluoro furan 7 7 7 6

Norbornane 5 7 5 5

Bicyclo[2.2.2]octane 19 11 14 7

Bicyclo[3.2.1]octane 6 6 7 5

Endo hydroxyl bicyclopentane 18 8 9 12

Exo hydroxyl bicyclopentane 20 10 11 11

ACTHCP .80 65 72 27

1,4,5-Trihydroxy anthroquinone 11 10 17 8

Histamine Hþ .100 42 47 19

aFor complete details see Ref. [51].
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the minimization again giving the last structure from the previous optimization as the

initial structure for the current calculation. This allows for generation of new coordinate

definitions. Again, these definitions should be checked to make sure that all of the critical

definitions have been included. In extreme cases, it may be necessary to reduce the

redundancy of the coordinate system.

10.3.5.3 Minimization algorithm

The third factor affecting the efficiency of an optimization calculation is the choice of the

minimization algorithm. In the sections above we discussed the most common procedures

used in practice—QN with RFO or TRM modifications, GDIIS, and controlled GDIIS.

The relative efficiencies of these three approaches have appeared in the literature [95],

and the results of that work are summarized in Table 10.2. As discussed in Section 10.3.2,

regular GDIIS can fall into continuous oscillations near inflection points on the PES. This

pathology is experienced in the optimization of five of the eight entries in Table 10.2. The

controlled GDIIS method corrects these problems and converges to the appropriate

minima. For the first three entries in Table 10.2, regular GDIIS optimization converges to

saddle points instead of minima. Again, this problem is solved by using the controlled

GDIIS algorithm. Minimization of the smaller systems is equally efficient using

controlled GDIIS or QN (with step size and direction control). When larger and more

flexible systems are studied, the controlled GDIIS method is often more efficient than

QN. Controlled GDIIS is also the recommended method for optimizations on flat PESs

and those employing tight convergence criteria.

10.3.5.4 Hessian quality

The final factors affecting optimization are the choice for the initial Hessian and the

method used to form Hessians at later steps. As discussed in Section 10.3.1, QN methods

avoid the costly computation of analytic Hessians by using Hessian updating. In that

section, we also showed the mathematical form of some common updating schemes and

pointed out that the BFGS update is considered the most appropriate choice for

minimizations. What may not have been obvious from Section 10.3.1 is that the initial

Table 10.2 Comparison of the number of steps required to minimize geometries

using QN with RFO, regular GDIIS, and modified GDIISa

Molecule QN with RFO Regular GDIIS Controlled GDIIS

Pterine 36 12b 36

Histamine Hþ 24 85b 25

Hydrazobenzene 25 41b 25

ACTHCP 31 –c 32

Taxol 64 –c 67

For-(Ala)10-NH2 67 –c 59

For-(Ala)20-NH2 103 –c 93

Crambin 190 –c 150

aFor complete details see Ref. [95].
bAttempted minimization yielded a transition state (i.e. first-order saddle point).
cAttempted minimization resulted in oscillations about an inflection point.
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Hessian does not need to be very accurate. During the optimization the Hessian will be

updated, and while the structure moves closer to the PES minimum the Hessian slowly

approaches the correct second derivative matrix. In general, the closer the initial Hessian

is to the correct Hessian, the faster the optimization will come to convergence.

Most QN optimizations use a Hessian generated from a valence force field or other

empirical method. Alternatively, analytic second derivatives can be computed and used

for the initial Hessian. This will often decrease the number of steps required to converge

to the minimum. However, depending on the size of the system being studied the cost of

the initial analytic Hessian calculation may yield a longer overall calculation time than an

optimization starting with an estimated Hessian, even though this calculation might

require a few more steps. For cases where the starting structure is far from the minimum

or when the topology of the PES is not well approximated by a quadratic function (i.e. the

Taylor series given in Eq. (13)), Hessian updating may be poor and convergence may be

difficult. In these situations it may be necessary to calculate analytic Hessians at every

step. In principle this should lead to fewer steps in the optimization, but the additional

cost of analytic Hessians will severely increase the overall computational cost for

moderate and large systems.

The data presented in Tables 10.3 and 10.4 illustrate some of these issues. Using a set

of six compounds, ranging in size from 6 to 72 degrees of freedom, we have carried out

optimizations using the identity matrix, an estimated empirical Hessian, and an analytic

Hessian for the initial second derivative matrix. Additionally, we have included data for

optimizations using analytic Hessians at every step, rather than updating the second

derivatives. Table 10.3 shows the number of optimization steps required to complete an

optimization using these different approaches to define the initial Hessian, and Table 10.4

contains the relative timing of each calculation. Clearly, using the identity matrix to

estimate the initial Hessian is not efficient. For roughly the same cost per step, one can use

an estimated Hessian based on empirical force fields [86,127] and achieve a significant

improvement in the rate of convergence. However, in the case of pterine and caffeine the

identity matrix incorrectly leads the minimization to a saddle point. Since the QN-RFO/

TRM method for optimization shifts negative eigenvalues of the Hessian to positive

Table 10.3 Comparison of the number of steps required to minimize geometries (QN with RFO

algorithm) using a unit matrix, empirically derived Hessian, and analytic Hessian for the initial Hessian

followed by Hessian updating and using all analytic Hessiansa,b

Molecule Initial unit matrix

with updating

Initial empirical Hessian

with updating

Initial analytic

Hessian with updating

All analytic

Hessians

Ammonia 14 8 6 4

Pterine 22c 56 15 10

Caffeine 26c 13c 67 13

ACTHCP .100 34 35 15

Histamine Hþ .100 23 30 11

Hydrazobenzene 90 30 29 19

aStarting structures taken from Ref. [51].
bAll calculations carried out at the HF/STO-3G level of theory.
cAttempted minimization yielded a transition state (i.e. first-order saddle point).
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values, describing the curvature correctly for these structures allows the optimizer to

properly converge to PES minima when analytic Hessians are used for the initial Hessian.

Nevertheless, for most of the compounds studied, and for many structures in general,

using an analytic Hessian at the start of the optimization provides very little, if any,

improvement to an optimization carried out with an empirically derived Hessian.

Moreover, calculating analytic Hessians only at the start of the minimization or at every

step can severely increase the computational cost (see Table 10.4).

In general, it is advisable to use an empirical Hessian at the start of a minimization and

to update the Hessian using any of the standard methods (see Section 10.3.1). After an

optimization has completed, the nature of the stationary point must be confirmed by

a calculation of the Hessian. This is not a significant extra burden, since the Hessian at the

optimized geometry is also needed to calculate the zero point energy and thermal

corrections to the enthalpy. If the Hessian calculation reveals that the optimization has

converged to a saddle point (first order or higher), then using an analytic Hessian at the

start of the minimization and Hessian updating at subsequent may be best. If this second

optimization has also converged to a saddle point, then employing analytic Hessians at

every step, or every few steps, may be necessary. What is clear from Table 10.4 is that the

decrease in optimization steps using all analytic Hessians does not make up for the cost

increase that such a calculation yields. Therefore, using all analytic Hessians in an

optimization is best treated as a last resort approach.

10.3.5.5 Tips for difficult minimizations

In this, the last portion of Section 10.3.5, we provide suggestions for solving difficult

minimization problems that have not yet been addressed. Specifically, this subsection

focuses onproblemsgenerally resulting because of the topology of the PESand not because

of numerical difficulties arising from the application of a particular method or algorithm.

In the previous section we suggested that analytic Hessians can be used to help

converge to a minimum when minimizations using empirical and/or updated Hessians

yield first- or higher-order saddle points. Often times, a more cost effective means to

achieve the same goal is to slightly distort the offending coordinate and start another

minimization using an empirical Hessian at the start with updating thereafter.

Table 10.4 Relative timings to minimize calculations using a unit matrix, empirically derived Hessian,

and analytic Hessian for the initial Hessian followed by Hessian updating and using all analytic Hessiansa

Molecule Initial unit matrix

with updating

Initial empirical Hessian

with updating

Initial analytic

Hessian with updating

All analytic

Hessians

Ammonia 2.2 1.3 1.1 1.0

Pterine 5.3b 13.8 4.3 8.8

Caffeine 8.5b 4.1b 12.1 23.0

ACTHCP .34.5 8.0 8.5 10.7

Histamine Hþ .34.5 4.8 6.4 5.7

Hydrazobenzene 29.8 10.2 11.0 34.3

aConvergence data is given in Table 10.3.
bAttempted minimization yielded a transition state (i.e. first-order saddle point).
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As an example, consider a minimization of 1-chloro 2-fluorethane starting with a Cl–

C–C–F torsion angle of 1258 that has converged to the saddle point at 1208 in Fig. 10.4,
even though our intent was to find the structure corresponding to the minimum at 1808.
We now have a couple of options. One option is to start the calculation over from our

initial starting geometry using an analytic Hessian for the initial second derivative

matrix. We could also choose to use analytic Hessians at every step or every few

steps in the optimization. Alternatively, we could use a molecular graphics package to

inspect the imaginary frequency corresponding to the negative Hessian eigenvalue

and distort the structure along that normal mode. In this particular case, visualization of

this frequency will show motion along the Cl–C–C–F torsion angle distorting the

molecule from an eclipsed geometry to a staggered one. Distorting the molecule by

setting the Cl–C–C–F angle to roughly 1508 will be enough to use an empirical

Hessian with updating to converge to the intended minimum. This last option will be

much more cost effective since it avoids analytic calculation of the Hessian during the

optimization. Of course, a Hessian calculation will still be needed when the calculation

has completed to ensure that the newly optimized structure is a minimum on the PES

and to obtain the zero point energy.

Another method for removing imaginary frequencies is to utilize constrained

optimizations. As the name implies, user defined coordinates are frozen and the remaining

coordinates are allowed to minimize. If one or more coordinates have negative Hessian

eigenvalues associated with them, it can be useful to freeze all of the other coordinates

and allow the offending coordinates to relax. Once the constrained optimization

has completed, a frequency calculation is in order to ensure that the imaginary frequency

has been removed. If the imaginary frequency still exists, then the other suggestions

given above may be helpful and applied together with constrained optimization. After

the negative second derivative eigenvalues have been removed, a full optimization

(i.e. without any constraints) should follow with a subsequent frequency calculation at

the end.

In some very troublesome cases, where only one imaginary frequency remains, a

method that can be used as an approach of last resort is to carry out a reaction path

following calculation (details on reaction path following are given below in Section 10.5)

for a few steps. Starting from a first-order saddle point, a reaction path following

calculation will move downhill toward two minima, one of which should correspond to

the structure of interest. It is not usually necessary to carry the calculation all the way to

the endpoints. After the calculation has been completed the two final structures can be

visualized and the appropriate one chosen. If enough steps have been taken this structure

should now be near the quadratic region of the minimum and a QN minimization should

be able to converge on the intended minimum. However, it may be necessary to calculate

analytic second derivatives for the initial Hessian of this optimization.

10.4 TRANSITION STATE OPTIMIZATION

As discussed earlier, minima on the PES correspond to equilibrium geometries and

chemical reactions can be described in terms of motion on the PES from one minimum
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corresponding to the reactant to a different minimum corresponding to the product.

Along the way, the system may pass through other minima, which correspond to

intermediates. The motion from one minimum to another can be approximated by the

path of least resistance, or the minimum energy pathway (MEP). While moving along

the MEP, the system will reach a point of highest energy—the transition state (TS).

Turning back to the mountain range analogy from Section 10.2, the TS is at the top

of the lowest mountain pass connecting two valleys. The TS will have one (and only

one) direction of downward curvature, which points in the direction of the reactant

minimum on one side and the product minimum on the other. In all other directions,

the TS will have local upward curvature. A stationary point (a point where the first

derivatives are zero) with this topology is known as a first-order saddle point. A nth-

order saddle point has n directions of downward curvature. In terms of the Hessian,

this means that the TS will have one (and only one) negative Hessian eigenvalue and

all of the other Hessian eigenvalues will be positive. Since the Hessian is the system’s

force constant matrix and the vibrational frequencies are proportional to the square

root of the eigenvalues of the mass-weighted Hessian, the TS will have one (and only

one) imaginary frequency. The eigenvector corresponding to the imaginary frequency

is known as the transition vector because it corresponds to molecular displacement

along the reaction path through the TS.

A number of good reviews on TS optimization have appeared in recent years [9,11,

12,21,23–25,128]. In this section, we provide an overview of the three general classes

of TS optimization methods—local schemes (Section 10.4.1), climbing, bracketing,

and interpolation algorithms (Section 10.4.2), and path optimization approaches

(Section 10.4.3). In Section 10.4.4 we discuss practical considerations related to TS

optimization and offer suggestions for difficult cases.

10.4.1 Local methods

Many of the standard minimization algorithms presented in Section 10.3 can be modified

to find TSs. Such methods are commonly referred to as local methods. Unfortunately,

simple applications of QN methods are often unsuccessful in TS searches. The problem

stems from the fact that they will only converge to the TS if the initial guess falls within,

or very near, the quadratic region of the true TS, which is generally much smaller than for

a minimum. This means the error tolerance in the starting structure is much less for TS

optimization than for minimization. Therefore, it is necessary to ensure the Hessian has

an appropriate eigenvector with a negative eigenvalue for a QN step to move closer to the

desired TS. Despite these difficulties, good chemical intuition (sometimes along with a

bit of luck) can provide adequate guesses for TSs to be found using local methods.

The adaptation of most minimization algorithms, such as QN and GDIIS, for TS

optimization is rather straightforward [68–71,93–95]. Just as with minimization it is

common to use Hessian updating. Unlike minimization, though, the BFGS updating

scheme is unacceptable in TS optimization because it forms positive definite Hessians.

When the Hessian becomes negative definite, as is the case near the TS, the BFGS

formula becomes ill conditioned [129].
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The Murtaugh–Sargent update, which was already discussed in Section 10.3.1, is one

option [79,130,131]. Another common choice is the Powell-symmetric-Broyden (PSB)

update, which was first recommended for TS optimization by Simons et al. [132]. A PSB

updated Hessian is given by

DHPSB¼ ðDg2HoldDxÞDxtþDxðDg2HoldDxÞt
DxtDx

2
DxtðDg2HoldDxÞDxDxt

ðDxtDxÞ2 ð36Þ

Bofill [79,89,129–131,133] has developed a hybrid updating scheme with better

performance for TS optimization. The Bofill update mixes MS and PSB solutions giving

DHBofill¼fDHMSþð12fÞDHPSB ð37Þ
where

f¼ ðDxtðDg2HoldDxÞÞ2
Dx2ðDg2HoldDxÞ2 ð38Þ

and DHMS is given by Eq. (20).

10.4.2 Climbing, bracketing, and interpolation methods

Since local methods will, in general, only succeed in finding a TS if the initial geometry

lies within the quadratic region of the first-order saddle point and the initial Hessian has

an appropriate eigenvector with a negative eigenvalue, the fate of TS optimization by

local methods rests in one’s ability to apply chemical intuition to problems that, at an ever

increasing rate, are anything but intuitive. To overcome this difficulty, a number of

methods have been developed that automate the initial guess procedure for TS

optimization. Using information provided by the user, these algorithms produce an initial

guess at the TS by climbing uphill from one minimum, or by bracketing or interpolating a

TS between the reactant and product minima. After the region of the TS is located by one

of these methods, the structure can be improved using local TS optimization. Again, the

literature abounds with climbing and walking, bracketing, and interpolation schemes [26,

84,132,134–152]. Here, we will consider coordinate driving, shallowest ascent and

walking up valleys, linear and quadratic synchronous transit, synchronous transit-guided

quasi-Newton, and ridge following.

For a limited number of reactions, the reaction pathway can be described by a scan of

the PES along one (internal) coordinate. The most prevalent classes of reactions falling

into this category are conformation and bond dissociation reactions, where a change in a

torsion angle describes the reaction for the former and a bond stretch coordinate describes

the latter. Climbing methods making use of this principle are often referred to as

‘coordinate driving’ algorithms. Beginning at a PES minimum (i.e. the reactant or

product), the method traces a path along the coordinate of interest by incrementing its

value from reactant to product minima. At each increment, the energy of the new

structure is calculated and the highest energy structure on the pathway is taken as an

estimate for the TS, which can be used in a local TS optimization calculation. Since other
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internal coordinates are affected by changes in the driven coordinate, most applications of

this approach include a constrained optimization of the other N 2 1 coordinates at each

increment. This provides a much better guess than a rigid scan. Although coordinate

driving can yield a good estimate for the TS, it can be costly if small increments are

necessary. Additionally, constrained optimization at each step will increase the

computational cost since multiple energy and gradient calculations will be required at

each point in the scan. If more than one coordinate are involved in the reaction,

coordinate driving will not provide an adequate estimate of the TS. Further difficulties,

such as discontinuities, can be encountered if the reaction path is strongly curved

[153–155]. The reduced gradient following (RGF) method is an improved version of

coordinate driving that is better able to handle curved reaction paths [156–161]. The

RGF approach works by defining a path that connects stationary points on the PES

according to the differential equation

r2
g½xðtÞ	
lg½xðtÞ	l ¼ 0 ð39Þ

At each point in the RGF point, the gradient, g; has a constant direction given by the
unit vector r: Typically, this direction is chosen in a similar manner to the coordinate
driving algorithms. As we will see in Section 10.5, the second term in Eq. (39) comes

from the steepest descent path definition used in reaction path following [162].

An alternative to coordinate driving is the ‘shallowest ascent’, ‘eigenvector following’

or ‘walking up valleys’ approach [26,84,132,134–137,143–145]. There are two general

flavors of walking up valleys algorithms—one requires the structure of either the reactant

or the product, while the other uses the structures of both minima. Starting at one

minimum, one can walk uphill along the shallowest ascent direction by following the

Hessian eigenvector corresponding to the lowest eigenvalue. The need for the Hessian at

each step can make this method costly. As a result, most implementations employ

Hessian updating. In order to assure that the shallowest ascent direction is followed, and

to minimize along all other directions, methods similar to RFO and TRM have been

implemented. In this way, each step is defined according to

Dx ¼ 2ðH2 lIÞ21g ð40Þ
The parameter l is chosen such that ðH2 lIÞ has only one negative eigenvalue and the
step has an appropriate length. The use of Eq. (40) is also at the heart of successful local

TS optimization methods and greatly expands the radius of convergence for TS

optimization. Different values for l can be used for the directions corresponding to the
uphill climb and the downhill minimization [83,85,134]. However, following the

shallowest ascent path may not necessarily lead to the correct TS. This issue is addressed

by considering the model surface shown in Fig. 10.1. Although the shallowest ascent

pathway from Product A correctly leads to the TS connected to the reactant, the

shallowest ascent pathway from the reactant does not head toward the same TS. Instead,

it leads to Product B.

Another interpolation method using structural information from the reactant and

product minima is linear synchronous transit (LST) [139]. These two points on the PES
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can be used to form a rough approximation for the reaction pathway by interpolating a

line between them. The maximum (in terms of energy) along this line serves as an upper

bound to the TS. Although the Hessian at the LST maximum often has more than one

negative eigenvalue, it is usually a satisfactory estimate for the TS and can be refined

using a local optimization method.

An improvement to LST is incorporated in the quadratic synchronous transit (QST)

method [139,148,149]. QST begins with the LST maximum and minimizes perpendicular

to the LST path. Then, a new quadratic pathway is interpolated using this new

approximate TS, the reactant, and the product. The maximum point on the QST pathway

is located and serves as the QST estimate for the TS. For some reactions the LST and

QST estimates can be quite similar. However, systems with curved reaction paths can

show significant differences between the LST and QST estimates. As before, the

estimated TS can be refined by a local method, using Eq. (40) to control the step size and

direction. A variation of QST is synchronous transit-guided quasi-Newton (STQN) [138],

which directly combines QN with LST or QST. STQN also uses the arc of a circle for the

estimated path. The algorithm takes a limited number of initial steps to maximize the

energy along the LST or QST path, and then heads toward the TS using the Hessian

eigenvector that overlaps best with the LST/QST path. The Hessian eigenvalues are

adjusted according to Eq. (40).

Fig. 10.5 shows the LST and QST pathways and their estimated TSs on a model PES.

For some reactions, for instance Reactant ! Product B, both pathways agree. For other

reactions, for instance Reactant ! Product A, the LST pathway can differ from the QST

path. It is clear that for the latter case the QST estimate for the TS is much closer to the

actual TS. For some reactions with strongly curved paths, QST and STQN

interpolations can be enhanced by a user-supplied guess at the TS that differs from

the automated search result [138].

Fig. 10.5. Model potential energy surface illustrating linear synchronous transit (LST) and quadratic

synchronous transit (QST) paths (from Ref. [72] with permission).
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The ridge following method of Ionova and Carter [146,147] can be viewed as another

modified version of LST. This approach begins with reactant and product structures and

interpolates a line between them. In the same way as LST, an initial estimate for the TS is

determined by finding the highest energy point on the linear path. Instead of feeding this

point into a local method, the ridge following algorithm now picks two points on the LST

pathway that lie on either side of the estimated TS. The distance between these points is

kept small, and they are both allowed to move downhill toward the reaction path. Each

step in the progression toward the reaction path and the TS is controlled by side step

followed by a downhill step. Let xai and x
b
i be the structures of the two points that straddle

the TS ridge, where a maximum energy structure xpi exists on the line ðxai ; xbi Þ: The side-
step portion finds two new points, xa

0
i and x

b0
i ; which are on the line ðxai ; xbi Þ and are found

according to

xa
0
i ¼ ðxpi þ spiÞ; xb

0
i ¼ ðxpi 2 spiÞ ð41Þ

where

pi ¼ xb
0
i 2 xa

0
i

lxb0i 2 xa
0
i l

ð42Þ

and s is a side-step step size. The downhill step is then given by

xaiþ1 ¼ xa
0
i 2 uga

0
i ; xbiþ1 ¼ xb

0
i 2 ugb

0
i ð43Þ

where u is the size of the downhill step, gai and g
b
i are the gradients at x

a0
i and x

b0
i ; and x

a
iþ1

and xbiþ1 give the next set of structures along the ridge. Alternatively, the step can be
taken along the gradient at xpi : In either case, it can be shown [146] that unless the
gradient at xpi is zero, values of s and u can be chosen such that there is a maximum of

energy on the line connecting the next set of points, xa
0
i and xb

0
i ; and that this energy is

lower than the maximum on the line connecting the previous set of points. One can think

of this process as a constrained optimization following the ridge from a second-

(or higher-) order saddle point to the first-order saddle point. When the component of the

gradient perpendicular to the line between the two points is zero, or very near zero, they

lie close to the reaction path and an intermediate point between them provides a very

good estimate for the TS. A local TS optimization method can then be used to converge

the ridge following TS to the stationary point.

A novel interpolation method proposed and refined by Jensen and others uses MM or

valence bond PESs [140–142,150–152]. Earlier we mentioned that most MM methods

do not properly describe reactive systems. This is due to the fact that atom types and

molecular connectivity define the force fields generating the MM PES. Therefore, motion

on the PES involving bond breaking or bond making is discontinuous. Jensen’s approach

makes use of this characteristic and treats the MM PESs of the reactant and product as

separate surfaces that intersect and form a seam. One can then find the minimum on this

seam and use the corresponding molecular configuration as the initial guess for the TS,

which is optimized using a local TS optimization method on an electronic structure PES.

The problem of finding this point on the intersecting seam is equivalent to the task
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of finding points of closest approach and minima on seams between different electronic

state PESs (see Section 10.3.4) [115–123].

10.4.3 Path optimization methods

Clearly, the principle obstacle to interpolation methods is the choice of the approximate

reaction pathway. A series of methods have been developed to find not just the TS, but

the entire MEP. As a class of algorithms, these approaches have been called chain of

states and path optimization methods [163]. Starting with the reactant and product

structures as input, these methods search for the MEP by minimizing the energy of a

number of points, known as images, which lie on an initial interpolated pathway. As a

result, many energy and derivative calculations are required for each image making path

optimization methods generally much more expensive than interpolation methods.

However, path optimization provides a means for finding TSs while simultaneously

elucidating the MEP (or at least a good approximation) without a priori knowledge of

the TS or the curvature of the reaction path, making it an effective and robust alternative

to the other approaches discussed above. Path methods are especially useful for difficult

problems where the previously described methods fail to converge to a first-order saddle

point or the TS of interest.

In this section, we begin by outlining the elastic band theory of Elber and Karplus

[164], which forms the basis for most, if not all, of the development of chain-or-states

methods. We then outline two popular methods that correct some of the failures of elastic

band theory: the nudged elastic band (NEB) method [165] and the path optimization

algorithm of Ayala and Schlegel [166]. Lastly, we consider approaches that develop the

reaction pathway by growing separate paths from the reactant and product minima, which

have been referred to as growing string methods [167]. Using any of these algorithms

provides an estimate for the TS that is usually quite good (as opposed to the rough

approximation to the TS provided by LST). Nevertheless, full TS optimization using a

local approach is still advisable if one wishes to elucidate an accurate barrier height or

characterize the TS geometry.

The elastic band method developed by Elber and Karplus [164] is based on the

minimization of a line integral, which has the form

Sðqi; qfÞL ¼ 1

L

ðqf
qi

½GðqÞdlðqÞ	L ð44Þ

where S is the objective function (the function that will be optimized), qi and qf are the

coordinates for the initial and final structures in the reaction (i.e. reactant and product

configurations), G is a vector that is a function of the system coordinates given by

GðqjÞ ¼ Ejuj ð45Þ
and dlðqÞ is an infinitesimal line segment on the path L of length L: In Eq. (45) uj is a unit
vector in the direction qj 2 qj21: The path L begins as the initial guess at the reaction

path, which we seek to modify and relax to the MEP. In order to find the path L that
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minimizes S; Eq. (44) must be discretized. This results in a series ofM points, q1 through

qM ; being placed along L between the reactant and product structures, q0 and qMþ1:
Substituting Eq. (45) into (44) and discretizing yields

Sðq0; qMþ1ÞL ¼ 1

L

XM
j¼1

Ejuj·Dlj ð46Þ

where

Dlj ¼ ljuj ð47Þ
Substitution of Eq. (47) into Eq. (46) gives

Sðq0; qMþ1ÞL ¼ 1

L

XM
j¼1

Ejlj ð48Þ

In the original implementation, Elber and Karplus also found it necessary to add two

penalty functions to Eq. (44) that avoid rotation by the images and also keep the images

from collecting to one location on the path, i.e. in the minima wells and flat regions of the

path [168]. Other pitfalls of the elastic band method include a failure to actually converge

to a reaction pathway without a large number of images and for the path to develop kinks

and to turn back on itself. Subsequent work by Elber and coworkers [164,168–171] and

others [172–175] sought to correct these difficulties and resulted, most notably, in the

development of the self-penalty walk [168–171] and locally updated planes algorithms

[168,171]. However, most present-day implementations of the basic ideas put forth in

elastic band theory are best encapsulated in discussions of the path optimization [166]

and NEB approaches [165,176].

In the path optimization method [166] a series of constrained optimizations is used to

find the transition state and points on the steepest descent reaction path. The path is

relaxed by applying a QN-like optimization scheme on each image in turn, in a manner

resembling the reaction path following algorithm developed by Gonzales and Schlegel

[177,178] (see Section 10.5.2). Microiterations are used to simultaneously relax the

images toward the reaction path and maintain even spacing. The highest energy point on

the path is optimized to the TS using a modified version of the STQN optimization

algorithm discussed in Section 10.4.2 [138]. Additionally, an initial guess for the TS can

be provided by the user to better define the initial path.

The original elastic band approach places ‘springs’ between successive images to

prevent them from falling down into the minima. Adding the springs, with a force

constant k; gives the objective function, S; as

Sðq0; qMþ1ÞL ¼
XM
j¼1

Ej þ
XM
j¼1

k

2
l2j ð49Þ

Many of the problems with elastic band theory are rooted in this definition and their effect

on the relaxation of the path. The effective elastic band force acting on image j; FEBj ; in
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this method is a modified force that is dependent upon k;

FEBj ¼ Fj þ F
spring
j ð50Þ

where

F
spring
j ¼ ðkljþ1 2 kljÞ ð51Þ

Recall that F ¼ 2dE=dx: The first term in Eq. (50) is the ‘true’ force and the second term

is known as the ‘spring’ force. If k is too large the elastic band becomes stiff and the final

path will not converge to the MEP. Instead, the elastic band path will cut corners. If k is

too small, the images begin to slide down the path to the two minima wells.

A simple correction to these problems is achieved by projecting out the parallel (with

respect to the path) component of the true force and the perpendicular (with respect to the

path) component of the spring force before evaluating Eq. (50). In this way, the images

are ‘nudged’ in the optimal direction, i.e. toward the MEP, while the springs carry out

their intended responsibility. Hence, the method is known as NEB [165,179]. Now, the

effective force is given by

FEBj ¼ ðI2 t̂k·t̂
t
kÞFj þ ðt̂k·t̂ tkÞFspringj ð52Þ

where t̂k and t̂’ are unit vectors pointing parallel and perpendicular to the path. The

definitions of t̂k and t̂’ can greatly affect the success of an NEB calculation and a number
of different definitions have been contemplated and applied [165,179]. Regardless of the

choice for the tangent vectors, NEB tends to maintain good spacing along the path.

However, NEB is not without its problems. In order to get a smooth path a large number

of images are often required, which in turn makes NEB a very costly method.

Furthermore, the standard implementation of the method relaxes the path using the

velocity Verlet algorithm, a scheme used in classical dynamics. The result is that many

path relaxation iterations are often necessary before convergence is satisfied.

Modifications to NEB have included dynamic adjustment of the end points to focus on

regions of specific interest and choosing one image to climb uphill toward the TS [176,

180]. The L-BFGS algorithm (see Section 10.3.1) can be employed in the image

relaxation steps to decrease the cpu and memory cost of NEB [181–183]. Another

efficient extension of NEB, known as the replica path scheme, has been developed by

Brooks and coworkers [184]. All of these developments dramatically cut down on the

total cost of the calculation by leading to faster and more stable path convergence.

Another class of TS optimization algorithms is based on a ‘burn the wick from both

ends’ principle. These methods begin at the reactant and product minima and grow two

pathways that communicate and simultaneously head toward the TS. These approaches

are possibly best described as hybrids of path optimization and bracketing philosophies.

They have been included here in order to draw on the ideas presented above and also

because the calculation yields an estimate for the reaction pathway that, in many cases, is

a very good approximation to the MEP. In this regard, these methods are very similar to

the path optimization schemes just discussed. The most basic application of this idea was

originally encompassed by the saddle method [144], which begins by considering the

coordinates of the reactant and product structures, R and P; which are a distance d apart
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on the PES. Let R0 and P0 denote the coordinates of the current step in the reactant and
product valleys, respectively. One can simultaneously walk up these two valleys by

letting the lower energy structure take a step that decreases d by a small amount

(i.e. 5–10%) followed by a minimization that constrains the distance between R0 and P0:
This process is repeated enough times to converge to an estimate for the TS. Similar

methods present in the earlier literature include the sphere optimization technique [185]

and the locally updated planes method [168].

The most recent addition to this category of TS optimization methods is the growing

string approach of Peters et al. [167]. The growing string algorithm is based on a modified

version of the string path optimization scheme, which redistributes the images along the

interpolated pathway after each minimization step [186]. In the simplest case, the

redistribution step uniformly spaces the images along the path. This step can also

distribute the images in an uneven manner. For instance, a higher density of images can

be used near the TS or regions of the path with large curvature. Additionally, the number

of images can be dynamically modified during the calculation. The growing string

method makes use of all of these options by growing two strings, one from the reactant

well and one from the product well. These individual strings are allowed to relax and the

images along each string are redistributed after each step. When the force normal to the

path is small at a frontier image (the image on each string closest to the TS), an additional

image is added to the local string. After the two frontier images are close to each other,

the two strings are merged and the TS optimization can be completed using a local

method. This method has been shown to require fewer energy and gradient calculations

than traditional path optimization schemes [167], making it an attractive alternative to the

path optimization algorithms already discussed.

10.4.4 Practical considerations

In this section, we consider a few points related to the practical application of the methods

described above for TS optimization. The factors affecting TS optimization are the same

as for minimization: the starting structure provided by the user, coordinate system,

algorithm choice, initial Hessian, and quality of the updated Hessian. Since the points

made in Section 10.3.5 are also valid for TS optimization, we do not restate them here.

Instead, we focus on specific issues unique to TS optimization and recommend that the

reader first read Section 10.3.5. This section also contains suggestions for difficult TS

problems.

10.4.4.1 Building an initial structure

For local methods, it can be difficult to build a guess at the TS structure. Using a guess at

the TS is also useful for interpolating, bracketing, and path optimization methods.

However, generating an initial structure of a TS is usually non-trivial. Unlike minima,

there are no direct experimental observations of TS geometries. Instead, the best tools

available to computational chemists for this purpose are chemical intuition and the

theoretical literature. Over the past two decades, thousands of optimized TSs have been
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reported in the literature for a vast array of reaction classes. Here, we offer some general

suggestions based on these data and our own experience.

Initial TS structures for unimolecular reactions, such as ring closures, hydrogen

transfers, internal isomerizations, etc. are most easily built after the reactant and product

structures have been minimized. Using these two structures, a TS guess can be made by

choosing a molecular configuration lying between the two ground state structures that

lines up along a reasonable reaction pathway. The requirement that the structure lie along

a reasonable reaction pathway is crucial to the success of the TS optimization. For

instance, consider the rearrangement reaction HCN! HNC. Both minima are linear, and

choosing a structure that lies exactly between them (i.e. by averaging the Cartesian

coordinates) produces a configuration that places the H atom in the middle of the C–N

bond. Obviously, this is not a viable TS. A more reasonable reaction path has the H atom

moving in a arc starting where the H atom is bonded to C and the H–C–N angle is 1808,
passing through a structure where the H atom lies above the C–N bond and the three

atoms form a triangle, and finishing with the H atom bonded to N and the C–N–H angle

is 1808. A suitable guess for most bimolecular reactions can be generated by setting the

lengths of the bonds being formed to 80–120% longer than equilibrium [52].

When the cost of a frequency calculation is reasonable, it can be useful to evaluate the

Hessian for the TS guess structure. The purpose of this calculation is twofold: (1) to see if

the initial guess has one, and only one, imaginary frequency; and (2) to see if this

imaginary frequency corresponds to a reasonable displacement given the reaction being

studied. If the guess structure does not have any imaginary frequencies, using a rigid scan

along the perceived reaction coordinate and taking the highest energy structure in the scan

can often yield an appropriate guess. For cases where multiple imaginary frequencies

exist, there are two options. The first option, which is best when the largest magnitude

imaginary frequency corresponds to the reaction coordinate and the other imaginary

frequencies are much smaller in magnitude (i.e. one or more orders of magnitude

difference), is to use this structure and carry out the TS optimization nevertheless. Often,

the other imaginary frequencies will relax and the optimization algorithm will find the

correct TS. The second option is to freeze the internal coordinate(s) corresponding to the

reaction path and minimize the structure for a few steps (,10–20). This approach is best

when the reaction coordinate has an imaginary frequency that is not the largest in

magnitude or the additional imaginary frequencies are the same order of magnitude as the

correct imaginary frequency. After a few steps of minimization the Hessian can be

reevaluated. If the erroneous imaginary frequencies have become real or the conditions

for the first option are met, the current structure can be used for the TS optimization.

Otherwise, the process should be repeated.

10.4.4.2 Coordinate system

The coordinate system choice is also important in TS optimization. As with

minimization, redundant internal coordinates have been shown to be the best choice

for TS optimization [52]. Table 10.5 compares the number of optimization steps required

for convergence using the three-structure STQN method with Z-matrix and redundant

internal coordinates. Clearly, redundant internals work best. In Section 10.3.5.2, we

advised that users check the redundant internal coordinate definitions to ensure all of
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the coordinates are included in the definitions. The same issue arises in TS optimization.

It is imperative that the redundant internal definitions include all of the coordinates

relevant to the reactant and the product. Methods using these structures in their input can

generate the union of the reactant and product internals for the TS coordinate definitions.

However, local methods are not able to make use of that additional information and other

coordinates will often need to be defined.

10.4.4.3 Algorithm choice

The algorithm chosen to carry out a TS optimization can dramatically affect the success

of the optimization and the efficiency of the calculation. Unfortunately, a thorough

comparison of all of the methods discussed above is not yet available in the literature and

is beyond the scope of this review. Nonetheless, Table 10.6 is included to show a general

comparison of the efficiency of local, interpolating, and path optimization methods.

Specifically, we have used the QN local TS optimization, three point STQN, and path

optimization approaches. The interpolating method has roughly the same cost or less cost

than the local method. For the ene reaction, the local method is unable to optimize to the

TS while the interpolating algorithm converges to the proper TS within 20 steps. The path

optimization method also performs well. However, the path method requires many more

energy and derivative evaluations since it must compute this information for each image

each time a step is taken.

Table 10.5 Comparison of the number of steps required to optimize TS geometries

using three point STQN with various coordinate systems

Reactiona Z-Matrix internals Redundant internals

CH4 þ F! CH3 þ HF 6 5

CH3O! CH2OH 9 9

SiH2 þ H2 ! SiH4 11 8

C2H5F! C2H4 þ HF 15 11

Diels–Alder reaction 23 14

Claisen reaction 15 15

Ene reaction 28 18

aFor complete details see Ref. [51].

Table 10.6 Comparison of the number of gradient evaluations required to complete TS optimization

using a QN with RFO, three point STQN methods, and the path optimizationa

Reaction QN with RFO Three point STQN Path optimization

CH3O! CH2OH 12 9 51

SiH2 þ H2 ! SiH4 11 8 47

C2H5F! C2H4 þ HF 16 11 73

Diels–Alder reaction 56 14 41

Ene reaction Fail 18 101

aFor complete details see Refs. [138,166].
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10.4.4.4 Hessian quality

The quality of the Hessian significantly affects the behavior of TS optimization.

Generally speaking, the cost issues raised in Section 10.3.5.4 also hold for locating TSs.

One notable difference for TS optimization is that the ability of the algorithm to converge

to a first-order saddle point is much more sensitive to the initial Hessian quality. For this

reason, using an analytic Hessian at the start of the optimization is very useful, provided

that the cost of the Hessian is not too large. Analytic Hessian calculations can be

prohibitively expensive for many systems. In these cases, an empirical Hessian can work

well provided that it has a suitable negative eigenvalue and eigenvector. Another method

often used to generate the Hessian is to use second derivatives computed at a lower, and

cheaper, level of theory. For example, a HF/3-21G Hessian can be used at the start of a TS

optimization at the HF/6-311G(d) level. An alternative approach is to analytically or

numerically calculate the rows and columns of the Hessian that are important in the

reaction coordinate [52,80,138]. The other elements can be determined using standard

force field estimates [127].

10.4.4.5 Verifying TSs

After a TS optimization has completed, it is always necessary to verify the structure.

Verification of a TS consists of two steps. First, the Hessian must be evaluated at the

optimized structure and diagonalized to ensure that there is one, and only one, negative

eigenvalue. The second step in verifying an optimized TS is to test if the saddle point lies on

a path connecting the intended reactant and product minima. This task is readily

accomplished by employing reaction path following (see Section 10.5) and/or by

visualizing the displacement along the vibrational mode corresponding to the imaginary

frequency. For instance, consider the rearrangement reaction of HCN ! HNC.

Visualization of the TSs imaginary frequency clearly shows movement of the H atom

from C to N. Some reactions have curved reaction paths and visualization of the TSs

imaginary frequency may not directly indicate that the TS is connected to the reactant and

product. In these cases, reaction path following is required. If either verification test fails,

the optimized TS is not a valid structure and the search for the proper structure must be

restarted.

10.5 REACTION PATH FOLLOWING

After a TS has been located, it is necessary to confirm that it lies on a pathway connecting

the requisite reactant and product. This can be done by following the path of steepest

descent downhill from the TS to reactant and product PES minima. Following the

reaction path can also show if any intermediates lie between the reactant and product. A

reaction path determined in isoinertial coordinates (i.e. a coordinate system where all of

the coordinates are scaled to have the same reduced mass) is known as a MEP [187–191].

Using the structure and vibrational frequencies at the TS, one can apply TST to determine

rates of reaction. Knowing the MEP, especially near the TS, allows one to employ more

sophisticated methods for determining reaction rates such as VTST and RPH methods

[3–7]. Gradient extremals [137,192–196] also define paths across PESs, but because

they do not necessarily connect stationary points as directly as MEPs we do not consider
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them further in this context. Also beyond the scope of this review are methods that

determine the free energy along an MEP [114,197–205]. Interested readers should

consult the literature.

The actual path mapped out by the MEP on the PES is dependent on coordinate system.

However, changes in coordinate system do not alter the nature of the stationary points on

the PES (i.e. minima, TSs, etc.). One coordinate system, mass-weighted Cartesian

coordinates (see Section 10.2.3), is especially significant for reaction dynamics, and the

MEP in this coordinate system is known as the intrinsic reaction coordinate (IRC) [162].

In this section, we use the terms MEP, IRC, steepest descent path, and reaction path

synonymously.

The starting point for mathematically defining the MEP is a Taylor expansion of the

PES.

EðxÞ ¼ E0 þ g0Dxþ 1

2
DxtH0Dxþ · · · ð53Þ

In Eq. (53), EðxÞ is the energy at point x and E0; g0; and H0 are the energy, gradient, and

Hessian at the point x0: It is convenient to think of the MEP as a one-dimensional slice
through the PES. Defining the parameter s; which is dependent on x; as the arc length
along this one-dimensional slice gives rise to another Taylor series.

xðsÞ ¼ xð0Þ þ n0ð0Þsþ 1

2
n1ð0Þs2 þ 1

6
n2ð0Þs2 þ · · · ð54Þ

In Eq. (54), n0 and n1 are known as the tangent and curvature vectors. The tangent vector
is given by

n0ðsÞ ¼ dxðsÞ
ds

¼ 2
gðsÞ
lgðsÞl ð55Þ

Eq. (55) is the differential equation solved when following reaction paths. The curvature

vector in Eq. (54) is given by

n1ðsÞ ¼ 2
Hn0 2 ðn0tHn0Þn0

lgðxÞl ð56Þ

The magnitude of the curvature, k; is equal to the inverse of the radius of curvature, R

k ¼ ln1l ¼ 1

R
ð57Þ

Large curvature indicates the reaction path is undergoing a tight turn, and small curvature

corresponds to a shallow turn.

At the TS, where the gradient is zero, Eqs. (55) and (56) become ill defined and the

tangent is equal to the Hessian eigenvector corresponding to the negative eigenvalue—

this eigenvector is known as the transition vector. The curvature at the TS is given by

n1ðsÞ ¼ 2½Hn0 2 ðn0tHn0ÞI	21½F1n0 2 ðn0tF1n0Þn0	 ð58Þ
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where

F1ij ¼
X
k

Fijkn
0
k ð59Þ

Since the MEP is defined by an ordinary differential equation (ODE), standard

numerical integration techniques can be used. The basic idea behind any numerical

integration algorithm is to rewrite dx and ds as Dx and Ds: In this way, the solution to
Eq. (55) is given by a discrete set of points, {xi}; which are found by ‘stepping’ along the
path with a step size of Ds: Although Eq. (55) appears to be rather benign, it can display
stiff behavior [206] and be difficult to solve, especially in the regions where the gradient

is very small. Therefore, solving Eq. (55) requires special care, and a number of

specialized methods have been developed and reviewed in the literature [10,23,24,72,

128,177,178,207–217]. Generally speaking, numerical methods for integrating ODEs

are classified as either explicit or implicit. Explicit methods use only information at the

current point to define the position at the next point, while implicit methods use

additional information from the next point, which typically means that these methods

include some sort of iterative algorithm to converge the end point of each step.

Because the integration is numerical, different integration schemes yield different

degrees of accuracy (i.e. the proximity of the points to the true MEP). The accuracy of a

numerical integrator is defined by an order (i.e. first order, second order, etc.). The order

of the integrator gives the highest order term in the Taylor expansion of the true solution.

Hence, first-order methods give the correct first-order term in Eq. (54), second-order

methods give correct first- and second-order terms in Eq. (54), and so on.

In the following sections, we describe some common methods for solving the reaction

path equation and also discuss some interesting features and properties of MEPs. In

Section 10.5.1, first-order methods are described. Included in the discussion are the

explicit Euler integrator and its implicit and stabilized versions [212,213,216]. Second-

order methods are considered in Section 10.5.2. There, we focus on the local quadratic

approximation (LQA) method [214,215], the second-order Gonzalez–Schlegel algorithm

[177,178], and the Hessian based predictor–corrector integrator [177,178,210,211].

Higher order methods are considered in Section 10.5.3 [209,214]. Path following

methods based on classical dynamics, known as dynamic reaction path (DRP) methods

[218–221], are discussed in Section 10.5.4. Lastly, in Section 10.5.5, we have included

some practical considerations and common troubleshooting tips related to reaction path

following calculations.

10.5.1 First-order methods

Perhaps the simplest integrator (both conceptually and in terms of coding) is the Euler

method. This method is correct only to the first-order term in Eq. (54) and gives the next

point in the integration, xiþ1; as

xiþ1 ¼ xi 2
gðxiÞ
lgðxiÞl Ds ¼ xi þ n0i Ds ð60Þ
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In the limit of infinitesimally small step size, Euler integration yields the exact MEP.

However, in practice Euler integration suffers from a number of pathologies. The steps

taken in an Euler integration are linear, meaning that the Euler path will deviate from the

true reaction path wherever the MEP is at all non-linear. Indeed, Euler integration is

notorious for developing wild oscillations back and forth across the true solution for

larger step sizes. This pathology is especially apparent in regions where the path

curvature is large or where the slope along the path is small. As a result, reaction path

following calculations using Euler integration must use very small steps. The problem,

though, is that calculations using a small step size require a large number of energy and

gradient evaluations (one energy and gradient evaluation is needed per step), which may

be quite costly for moderate to large systems.

To combat this problem, Ishida, Morokuma, and Komornicki (IMK) developed the

Euler stabilization (ES) algorithm [212]. The IMK algorithm is shown in Fig. 10.6a. Each

ES step can be broken into two parts. First, an explicit Euler step, i.e. Eq. (60), is taken

from xi to x
p; where the energy ðEpÞ and gradient ðgpÞ are both evaluated. The second

piece of ES is to stabilize the Euler step by minimizing the energy along the line bisecting

the angle between ðxi 2 xpÞ and gp: The minimum on the bisector is chosen as xiþ1; and
the next ES step starts from there. In cases where the angle between ðxi 2 xpÞ and gp is

Fig. 10.6. Schematic representations of implicit reaction path following integrators: (a) Ishida, Morokuma, and

Komornicki; (b) Müller–Brown; and (c) second-order Gonzalez and Schlegel (from Ref. [72] with permission).

Finding minima, transition states, and following reaction pathways 233

References pp. 243–249



nearly linear or when small step sizes are used, the stabilization step must be omitted.

Although ES is much more stable than explicit Euler, difficult regions of the PES can still

be problematic and cause oscillations in the ES pathway.

Another first-order method developed to overcome the problems of explicit Euler

integration is the Müller–Brown (MB) method [213]. The MB method makes use of the

implicit Euler integrator. Here, the step depends on the gradient at the endpoint, which

is unknown. To find the endpoint of each step, a constrained optimization is required.

The MB step begins with an explicit Euler step. Then, the energy is minimized

according to the constraint that the distance between the starting and ending points

remains constant

lxi 2 xiþ1l ¼ Ds ð61Þ
Fig. 10.6b shows, schematically, the MB method. The gradient at the endpoint after the

constrained minimization will be parallel to the step direction, ðxi 2 xiþ1Þ: Therefore,
the MB step can be given by

xiþ1 ¼ xi 2
giþ1
lgiþ1l

Ds ¼ xi þ n0iþ1Ds ð62Þ

10.5.2 Second-order methods

Second-order methods have also been proposed in the literature for integrating MEPs.

Although a standard numerical integrator, such as the second-order Runge–Kutta

method, could be used, it is generally accepted that a more effective approach is to

directly expand the PES as a second-order Taylor series. Truncating the Taylor series in

Eq. (53) at the second-order term and differentiating gives

gðxÞ ¼ g0 þH0Dx ð63Þ
Substituting Eq. (63) into Eq. (55) gives the LQA of Page and McIver [213–215], which

is an explicit second-order integrator.

dxðsÞ
ds

¼ 2
g0 þH0Dx

lg0 þH0Dxl
ð64Þ

In practice, Eq. (64) is integrated by parameterization and casting the problem in the

Hessian eigenvector space. Sun and Ruedenberg [217] have modified the LQA

algorithm by using each point, xi; as the midpoint in the integration range, rather than
the endpoint.

Gonzalez and Schlegel developed an implicit second-order integrator for reaction path

following (GS2) [177,178], which is shown in Fig. 10.6c. Each GS2 step consists of two

components. First, an explicit Euler step of length 1
2
Ds is taken from the current point, xi;

to a pivot point, xp:

xp ¼ xi þ 1

2
v0i Ds ð65Þ
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The second piece of a GS2 step begins by taking an additional step of length 1
2
Ds from

the pivot point to the end point, xiþ1: The energy, Eðxiþ1Þ; is minimized using QN under

the constraint that

lxiþ1 2 xpl ¼ 1

2
Ds ð66Þ

At the end of the optimization, the component of the gradient perpendicular to lxiþ1 2 xpl
is zero. Just as with the MB implicit integrator, the GS2 step can be written in terms of the

tangent at the initial point, xi; and at the final point, xiþ1:

xiþ1 ¼ xi 2
1

2

gi
lgil

Ds2
1

2

giþ1
lgiþ1l

Ds ¼ xi þ 1

2
n0i Dsþ 1

2
n0iþ1Ds ð67Þ

Eq. (67) is similar to the implicit trapezoid approach for integrating stiff differential

equations, except that the GS2 method utilizes optimization to obtain xiþ1: It should be
noted that no energy or derivative calculations are necessary at the pivot point.

Furthermore, since

lxp 2 xil ¼ lxiþ1 2 xpl ¼ 1

2
Ds ð68Þ

the points xi; x
p; and xiþ1 form an isosceles triangle. By construction, two tangents to a

circle form an isosceles triangle. Therefore, the GS2 algorithm will follow an arc of a

circle exactly.

Recently, Hratchian and Schlegel (HS) introduced a second-order predictor–corrector

reaction path following integrator [210,211]. A related algorithm has also been used for

integrating ab initio classical trajectories [222,223]. Predictor–corrector integrators, as

their name suggests, couple two different integration methods. The predictor integrator

moves from the current point, xi; to a guess for the next point, xiþ1: Using information
(e.g. energy and/or derivatives) at the predicted xiþ1; the corrector integrator re-integrates
over the same interval and refines, or corrects, xiþ1: The basic idea is illustrated in

Fig. 10.7. The HS method uses LQA for the predictor step and a modified Bulirsch–Stoer

integrator [206,224–227] for the corrector step. The corrector step increases the stability

of LQA and allows for large steps without loosing accuracy. Bulirsch–Stoer integration

requires several gradient evaluations per step, which would make direct use with

electronic structure methods quite costly. To overcome this bottleneck, the HS integrator

uses the positions, energies, gradients, and Hessians at xi and the predicted point, xiþ1; to
construct a local analytic surface. The Bulirsch–Stoer corrector integration is carried out

on this fitted surface. Relative to the cost of electronic structure energy and derivative

x3

E3, g3, H3

x1

x2

E1, g1, H1

E2, g2, H2

predictor step predictor step

corrector step corrector step

Fig. 10.7. Schematic representation of predictor–corrector integration, such as the integrator used in the

Hratchian–Schlegel method (from Ref. [223] with permission).
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calculations, energy and gradient evaluations on the fitted surface are free and the

corrector step adds a negligible cost to the standard LQA calculation, which is more than

compensated for by the larger step sizes that the HS algorithm allows. In the current

implementation, HS fits the LQA data to a distance weighted interpolant surface for the

corrector integration [228–231]. The energy on this surface, EDWI; is given by

EDWI ¼ wiTi þ wiþ1Tiþ1 ð69Þ
where Ti and Tiþ1 are Taylor expansions about xi and xiþ1; respectively. These Taylor
expansions,

TiðxÞ ¼ Ei þ gtiðx2 xiÞ þ 1

2
ðx2 xiÞtHiðx2 xiÞ;

Tiþ1ðxÞ ¼ Eiþ1 þ gtiþ1ðx2 xiþ1Þ þ 1

2
ðx2 xiþ1ÞtHiðx2 xiþ1Þ

ð70Þ

are weighted by wi and wiþ1;

wi ¼ lðx2 xiÞl2
lðx2 xiÞl2 þ lðx2 xiÞl2

; wiþ1 ¼ lðx2 xiþ1Þl2
lðx2 xiþ1Þl2 þ lðx2 xiþ1Þl2

ð71Þ

The LQA and HS methods require second derivatives. Although the GS2 equations do

not explicitly require the Hessian, second derivatives are used for the constrained

optimization step. For the same reasons we discussed in Section 10.3.5.4, the calculation

of second derivatives can greatly increase the cost of a reaction path following

calculation and limit the usefulness of these methods for the study of moderate and large

chemical systems. As before, Hessian updating can be employed, and previous studies

have shown that Hessian updating is a viable option for reaction path following using

these second-order integration schemes [177,211,232]. Also noteworthy is that Hessian

updating methods designed for minimization cannot be used with reaction path following

since the formulas for most of those updates become ill conditioned when the Hessian has

one or more negative eigenvalues [129]. Recall that the same concern was encountered in

our earlier discussion of TS optimization. Therefore, Hessian updating methods

developed for TS optimization are also useful in reaction path following (i.e. MS,

PSB, Bofill, etc.).

10.5.3 Higher order integrators

Higher order methods can also be envisioned. Here, we provide only a brief discussion of

two sets of higher order integrators, since they are not often used in connection with

electronic structure calculations. The first set of these methods, developed by Page

et al. [214], consists of two explicit third-order integrators. One of these integrators finds

each point on the reaction path by directly solving the first four terms of Eq. (54). The

PES third derivatives are required for n2; which can either be computed analytically or
numerically. A similar method provides a third-order analogue to LQA, the CLQA

algorithm. After each LQA step, the Hessians at the initial and final points can be used
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to estimate n2 by finite difference by recognizing that n2 depends on the derivative of the
force constants with respect to the arc length, s:
Gonzalez and Schlegel [209] have also developed a series of third- and fourth-order

methods. All of their higher order approaches use implicit integrators and are extensions

of the GS2 algorithm. One of these, a fourth-order method, uses the tangent and curvature

vectors at the initial and final points of each step.

xiþ1 ¼ xi þ 1

2
n0i Dsþ 1

2
n0iþ1Dsþ 1

12
n1i Ds

2 2
1

12
n1iþ1Ds

2 ð72Þ

10.5.4 Dynamic reaction path

The solution for the MEP, as shown above, is time independent. Of course, molecular

systems exist in a time dependent universe and they are constantly exercising motions on

the PES different than the specific motion described by the MEP. An alternative picture

for the reaction path is to allow the nuclei to move on the PES according to Newton’s

equations of motion. In terms of time, the coordinates of the system at time ti; xi; can be
given by the Taylor expansion

xi ¼ xi21 þ vi21Dt þ 1

2
ai21Dt

2 þ · · · ð73Þ

where v and a are velocity and acceleration, respectively. The velocity is given by a

similar Taylor series,

vi ¼ vi21 þ ai21Dt þ · · · ð74Þ
and the acceleration is given by

F ¼ ma

where m is a diagonal matrix of atomic masses and

F ¼ 2
dV

dx
¼ 2g ð75Þ

where V is the potential energy of the system, which is given by the value of PES. For the

case where infinitesimal steps in t are taken and the kinetic energy is completely

removed, or damped, from the system at every step, the path mapped out by classical

dynamics (beginning at the TS) is identical to the IRC.

Starting at the TS and following a time-dependent path according to Newton’s

equation of motion yields the DRP of Stewart et al. [221]. Since a DRP without removing

any kinetic energy is the same as a classical trajectory calculation, it can be used to study

energy transfer processes during the course of a reaction, and understand how the energy

in specific modes behaves relative to the reaction coordinate, or IRC [220]. By damping

the kinetic energy at each step one can use the DRP as a means for finding qualitative

MEPs. This is especially useful where the purpose for finding the MEP is to ensure that a

located TS lies on a pathway connecting specific PES minima, and has been shown to be

an efficient alternative to conventional integration of the MEP (i.e. using methods
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discussed in Sections 10.5.2 and 10.5.3). We have developed a method called damped

velocity Verlet (DVV) that controls the path accuracy by employing a variable step size,

Dt [219]. The DVV step size control is based on the third-order error scaling of velocity

Verlet. Given the current step size of Dti and desired error in the path, D0; the next step
size, Dtiþ1; is set according to

Dtiþ1 ¼ Dti
D0

Di

���� ����1=3 ð76Þ

In Eq. (76) Di is an estimated error in the path at step i: This estimated error is shown
schematically in Fig. 10.8, and is obtained by propagating a double sized step from xi22
to x0i and comparing this to the point xi:

10.5.5 Practical considerations

We conclude Section 10.5 by discussing a few practical points related to reaction path

following. This section begins with tips for choosing an appropriate reaction path

following algorithm based on the application at hand. Projected frequencies and the

relationship between path accuracy and errors in the path’s tangent, curvature, and

projected frequencies are considered in the second subsection. The third subsection is

concerned with bifurcations, which are novel topological features of PESs and reaction

paths. In the last subsection we suggest steps for difficult reaction path calculations.

10.5.5.1 Algorithm choice

We begin this section by briefly outlining some of the key points that need to be

considered when choosing an algorithm for a reaction path following calculation. As

mentioned earlier, reaction path following is typically employed to ensure that an

optimized TS lies on a MEP connecting the correct reactant and product minima and/or to

accurately determine reaction rates. These two applications of reaction path following

calculations have different requirements on the quality and efficiency of the integration.

In the former case, efficiency has primacy over strict accuracy, although it is essential that

the MEP integration be trustworthy and able to qualitatively follow the true pathway. In

the latter case, efficiency is desirable, but the accuracy of the path is paramount

(see Section 10.5.5.2).

Xi-2

Xi-1
Xi′

Xi

∆i

Fig. 10.8. Graphical depiction of damped velocity Verlet (DVV) path error estimation used for time variation

(from Ref. [219] with permission).
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First, we consider the ability of the various integrators discussed above to provide

accurate pathways, such as those required for VTST and RPH calculations. DRP methods

are not appropriate for these applications of reaction path following since they provide

only an approximate path. A comparison of the accuracy of multiple integrators has been

provided in a series of papers by Truhlar and coworkers [207,208,233]. Schlegel and

colleagues have also provided comparisons of the accuracy afforded by a series of typical

first- and higher-order integrators [209,234]. Fig. 10.9 shows results of reaction path

following using a number of first- and second-order methods on the Müller–Brown

surface. A step size of 0.2 has been used for all of the integrations shown. The solid line is

the MEP computed by Euler integration using a very small step size (0.0001). The portion

of the MEP considered in this example connects the TS at (20.822, 0.624) and the

minimum at (20.558, 1.442). Because the reaction path is curved, this surface can be

challenging for reaction path following integrators. It is clear from the figure that the first-

order methods deviate most from the true MEP while the second-order methods perform

very well. The accuracy of the first-order methods can be improved by decreasing the step

size, but this option is undesirable since it means an increased number of energy and

derivative evaluations. On the other hand, most second- and higher-order methods, such

as LQA, CLQA, and HS, all require second derivatives that are often more expensive

than multiple energy and gradient calculations, but this characteristic may not represent a

bottleneck if the MEP is being determined for subsequent rate constant calculations since

Fig. 10.9. Reaction path following on the Müller–Brown surface using Euler, Ishida, Morokuma, and

Komornicki (IMK), local quadratic approximation (LQA), Hratchian–Schlegel (HS), and second-order

Gonzalez–Schlegel (GS2) methods.
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VTST and RPH calculations also require Hessians along the MEP. Formally, the GS2

method does not require second derivatives. However, in practice the constrained

optimization at the end of each step uses Newton minimization and requires a Hessian

matrix. Although updated Hessians can be used with GS2, it has been shown[234] that

analytic Hessians are useful in providing very accurate pathways. One particularly

advantageous feature of GS2 over LQA and CLQA is that larger steps can be used to give

similar error in the path since GS2 is an implicit method. Additionally, the implicit nature

of GS2 makes it much more stable and robust along flat PESs and in regions of the MEP

where the gradient is small. This is especially important near the TS. Although this result

makes GS2 an attractive method for accurate path following, the integration can be

somewhat expensive due to the constrained optimizations, which typically require three

or four cycles per step. The HS method is also able to accurately follow the MEP in

difficult regions of the path, and only requires one evaluation of the energy and

derivatives per step.

If reaction path following is used to confirm a TS lies on a pathway connecting

appropriate reactant and product minima, the approaches used for kinetics studies are

more expensive than the nature of the application demands. For qualitative path

following, first-order methods are still not preferred since they require very small steps

and consequently progress down the MEP relatively slowly. To make second-order

methods more tractable for large systems Hessian updating can be employed [177,211,

232]. The use of updated Hessians only requires a slight decrease in the step size. As a

result, methods such as LQA, CLQA, GS2, and HS progress down the MEP faster than

the first-order approaches since they are able to take larger steps. To demonstrate the

applicability of Hessian updating to reaction path following integrators requiring force

constant matrices we have included Table 10.7, which shows the perpendicular distance

between points on a path computed with the HS integrator using all analytic Hessians and

using all updated Hessians. From this data, it is clear that Hessian updating can lead to

qualitatively good pathways. DRP approaches are efficient methods for elucidating

qualitative reaction pathways. Although these methods are able to take moderate step

sizes, methods such as LQA, GS2, and HS are able to take considerably larger steps. The

DVV method, which uses a dynamic time step, requires more integration steps than GS2,

Table 10.7 RMS errors in position (Å) for HS reaction path following Hessian updatinga,b

Reaction Step size (bohr) RMS error

HNC! HCN 0.10 3.05 £ 1024

0.40 1.05 £ 1022

CH3CH2F! CH2CH2 þ HF 0.10 4.73 £ 1023

0.40 8.46 £ 1022

ClCH3 þ Cl2 ! Cl2 þ CH3Cl 0.10 3.04 £ 1023

0.40 3.46 £ 1022

Diels–Alder 0.10 1.58 £ 1022

0.40 9.50 £ 1022

aFor complete details see Ref. [211].
bBofill’s updating scheme for transition state optimization has been employed.
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but becomes more efficient because it is an explicit method and does not require

constrained optimizations at each step. Table 10.8 shows the total number of Fock matrix

evaluations, which is the bottleneck for large systems, necessary to follow a series of

reaction paths using DVV and GS2 methods. The data clearly indicates that DVV is more

efficient than GS2.

10.5.5.2 Projected frequencies and coupling matrix elements

As mentioned earlier, MEPs can be used to compute reaction rates using VTST or RPH

methods. In order to use either of these approaches it is necessary to compute the

vibrational frequencies lying perpendicular to the MEP [234]. The perpendicular

vibrational frequencies are determined by projecting out motion along the tangent, n0;
from the Hessian and then calculating the projected frequencies according to the normal

procedures [235]. Mathematically, the projected Hessian, ~H, is given by

~H ¼ PHP ð77Þ
where the projector, P; is

P ¼ I2 n0n0t ð78Þ
If the calculation is carried out in mass-weighted Cartesian coordinates then overall

translation and rotation are also projected out of the Hessian.

Reaction rate calculations also require the coupling matrix terms B: The vector B
indicates the coupling between motion along the reaction path and the normal modes of

vibration corresponding to the projected frequencies, i.e. the normal modes that are

perpendicular to the MEP. The ith element of B is

Bi ¼ n0t
dLi

ds
¼ 2n1tLi ð79Þ

where Li is the ith eigenvector of ~H: In order to compute reliable projected frequencies
and coupling matrix elements, it is necessary to integrate the MEP accurately. This is

especially important in the region very near the TS where the gradient is very small.

Precise MEPs are also required for accurate projected frequencies and coupling matrix

Table 10.8 Comparison of the number of Fock matrix evaluations for damped velocity Verlet and

second-order Gonzalez–Schlegel reaction path followinga

Reaction Fock evaluations for DVVb Fock evaluations for GS2c

CH3 þ HF! CH4 þ F 1276 716

CH2OH! CH3O 1236 668

Diels–Alder reaction 2142 1352

CH3CH2F! CH2CH2 þ HF 1439 4281

Ene reaction 2134 7406

[Ir(CO)2I3(CH3)]
2 ! [Ir(CO)I3(COCH3)]

2 1078 9579

aFor complete details see Ref. [219].
bDVV calculations were run with a damping factor of 0.04 au/fs.
cGS2 calculations were run with a step size of 0.1 amu1/2 bohr.
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elements in regions where the valley has steep walls since small displacements from the

MEP can cause large errors in the tangent and curvature vectors.

10.5.5.3 Bifurcation

Bifurcation is a novel topological feature that can be present on a PES [236], which

occurs when one valley branches into two. More specifically, bifurcation can occur as a

valley progresses down the MEP from the TS and splits into two different minima, or as a

valley rises from a minimum and splits into two different MEPs heading toward two

different TSs. Along the reaction path of a simple valley, all of the projected frequencies

will be real. This corresponds to all of the eigenvalues of the projected Hessian being

positive. If one or more of the projected frequencies are imaginary, this indicates that the

PES is a maximum perpendicular to the reaction path and the path lies on a ridge. The

development of the ridge is marked by a valley-ridge inflection (VRI) point. At the VRI

point one projected frequency is zero. On one side of the VRI point this projected

frequency is real and on the other side it is imaginary. Fig. 10.1 shows a model PES that

has a VRI point on the MEP leading from Transition State B. At the VRI point the MEP

integration is displaced slightly (along the Hessian eigenvector with a corresponding

eigenvalue of zero) leading to the branching displayed in the figure. Bifurcation and

methods for locating VRI points are active areas of research, and interested readers are

referred to the current literature for more detailed discussion [156,158,236–251].

10.5.5.4 Tips for difficult reaction path calculations

In this subsection we offer suggestions for difficult reaction path following calculations.

In conjunction with suggestions for correcting problems, we describe some useful

diagnostics. Testing these diagnostics is especially important for calculations that

terminate improperly (e.g. an SCF failure is encountered, etc.). Our principle focus here

is on calculations where reaction path following is employed to ensure that an optimized

TS lies on a pathway connecting the appropriate reactant and product minima. For

situations where the primary concern is a very accurate path for determining reaction

rates, these suggestions may also be useful.

The first test is to generate a plot of energy vs. reaction coordinate. This plot should be

smooth and show a monotonic decrease in energy as the reaction path progresses from the

TS to the reactant and product minima. A second diagnostic is to plot the r.m.s. force vs.

reaction coordinate. This plot should show zero force at the TS and an increasing r.m.s.

force for part of the progression to the minimum. Before reaching the minimum, the

r.m.s. force will reach a maximum and begin to decrease until it goes to zero when the

minimum is reached. Sharp spikes or sudden drops in either of these plots can indicate

problems with the level of theory being used to study the chemistry under investigation.

Mild undulations in either plot can indicate a problem with the actual integration of the

MEP. In many cases, this problem can be corrected by taking smaller steps. If a first-order

method is being used, an alternative solution is to switch to a second-order integrator.

For predictor–corrector and implicit integrators, the accuracy of the path can often be

enhanced by tightening convergence criteria. Of the methods discussed in this chapter,

this approach is applicable for MB, GS2, and HS. MB and GS2 both employ constrained

optimizations to determine the tangent at the endpoint of each step. In the practical
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implementation of the constrained optimization the accuracy of the endpoint is based on

convergence criteria, which can be tightened. In the case of HS, the Bulirsch–Stoer

corrector step repeats the integration of the MEP with decreasing step size until an

extrapolation to zero step size can be made with an estimated error in the energy below a

threshold. Decreasing this acceptance threshold can lead to a more accurate integration

by the HS algorithm.

DVV pathways can also display energy and force oscillations. This pathology can

usually be corrected by modifying the various parameters involved in the calculation.

Specifically, smaller n0 and D0 values can lead to DVV paths more closely resembling the

actual MEP. In fact, Andersen and Carter [252,253] have used values for these

parameters that are much more stringent than those originally proposed. Note, though,

that small values for either parameter will require more points along the MEP to progress

to the minima, leading to more gradient evaluations and longer calculation times.

10.6 SUMMARY AND OUTLOOK

In this chapter, we have provided an overview of the current status of local minimization,

transition state optimization, and reaction path following using electronic structure

methods. This review also offered a number of suggestions for overcoming difficulties

commonly encountered in geometry optimization and reaction path following. Clearly,

great progress has been made in these areas in the past 40 years; however, the work is far

from complete. Indeed, the development of new methods for exploring ab initio PES

continues to be an active area of research in the computational quantum chemistry

community, especially within the context of hybrid methods (i.e. QM/MM and QM/QM)

and the study of very large systems.

In recent decades, electronic structure methods were used to study an ever-increasing

diversity of chemistries ranging in size from a few atoms to thousands of nuclei.

Doubtless, the future will bring faster computers and more efficient energy algorithms

that will expand the limits of computational chemistry beyond the fringes of today’s most

optimistic estimates. As we have shown here, tools for exploring PES are invaluable and

developments in this area will continue to respond to the demand for minimization

algorithms featuring fast convergence, robust transition state optimization techniques,

and reaction path following integrators coupling accuracy with efficiency.
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Abstract

We present a review of progress in the quantum description of the vibrational motion of

polyatomic molecules, with a focus on developments made in the code ‘MULTIMODE’

(MM). Following a brief historical perspective of the use of normal modes in vibrational

analysis we show how this approach has been extended to provide a computationally

powerful approach to accurately describe the vibrations of fairly large molecules. The

approach is based on an exact Hamiltonian in normal coordinates, a general n-mode

representation of the full potential, and the implementation of Vibrational Self-Consistent

Field/Configuration Interaction methods. Several case studies are presented based on

what we refer to as the Single-Reference (SR) version of MM. Following that we describe

a major generalization of MMwhich blends the key aspects of MM-SR with the Reaction

Path Hamiltonian. This version is illustrated for the fluxional complex (OH2)H2O. We

conclude with a critical examination of the current bottlenecks in the computational

approach and prospects for future progress.

11.1 INTRODUCTION

Chemistry students learn the theory and technique of normal mode analysis of molecules

in introductory courses in quantum chemistry or spectroscopy. Perhaps the simplest way

to describe this approach is to start with a Taylor series expansion of the potential about

a stationary point, i.e. where the first derivatives vanish. In this case the lowest order
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of the coordinate dependence of the potential appears in second order. Truncating the

series at this order still leads to coupling (called bi-linear) in pairs of coordinates. Thus

there is coupling even at the lowest order. The good news, however, is that this bi-linear

coupling can be eliminated by a linear transformation of the original coordinates to a new

set of mass-weighted coordinates, called normal coordinates. Doing this uncoupling

transformation leads to a description of the motion as independent harmonic oscillators,

which has a simple, analytical solution.

This basic approach, elaborated brilliantly in the classic book by Wilson et al. [1], was

the only method used to perform vibrational analysis, both theoretically and

experimentally during much of the 20th century. The approach is still used today in

most of the popular electronic structure codes [2,3] and also has become a valuable tool in

biomolecular chemistry [4].

11.2 BEYOND THE HARMONIC APPROXIMATION

Part of the reason for the longevity of the normal mode analysis is that it is quite difficult

to go beyond it. However, there has been great progress in doing just that and we will

review some of that progress in this chapter. We acknowledge that this is still a very

active field and is very much a ‘work in progress’. The most straightforward approach

beyond the harmonic, normal mode approximation is to continue the expansion of the

potential beyond second-order terms. Broadly speaking, there are two approaches that go

beyond the harmonic approximation; one is based on Perturbation Theory (PT) and the

other on Variational Theory (VT). Historically PT was developed first [5,6] and was

widely used by experimentalists in the development of so-called Spectroscopic

Hamiltonians [7]. PT has been elegantly and powerfully developed further recently

[8–10] and is currently a very useful tool in computational chemistry [11–13].

Wewill focusmainly onVariational Theory in this chapter and use the Vibrational Self-

Consistent Field (VSCF) theory as the starting point for this. This theory, however, also

lends itself to a very workable form of PT, which we will briefly review as well. A much

more detailed account of the PT approach is found in the chapter byGerber and co-workers.

In our approach, we use the Watson Hamiltonian [14]. For the general case of non-

linear molecules this Hamiltonian is given (in atomic units) by

H ¼ 1

2

X
ab

ðĴa 2 p̂aÞmabðĴb 2 p̂bÞ2 1

2

X
k

›2

›Q2
k

2
1

8

X
a

maa þ VðQÞ ð1Þ

where Ĵ is the total nuclear angular momentum, p̂ is the so-called vibrational angular

momentum, and m is the inverse of the effective moment of inertia tensor and V is the

potential. For simplicity consider the case of zero angular momentum and expanding the

potential in a multinomial series beyond second order we get

H ; 2
1

2

X
k

›2

›Q2
k

þ v2
kQ

2
k

" #
þ Tc þ

X
ijk

FijkQiQjQk þ
X
ijkl

GijklQiQjQkQl þ · · · ð2Þ
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where

Tc ;
1

2

X
ab

p̂amabp̂b 2
1

8

X
a

maa ð3Þ

The Hamiltonian contains coupling among the normal modes and to obtain eigenvalues

and eigenfunctions requires either an approach based on PT or VT.

In either the VT or PT approach it is convenient to write H as

H ; Hð0Þ þ Tc þ
X
ijk

FijkQiQjQk þ
X
ijk

GijklQiQjQkQl þ · · · ð4Þ

where Hð0Þ is just the first two (separable) terms in the right hand side of Eq. (2).

Eigenfunctions of Hð0Þ are simply direct products of harmonic-oscillator eigenfunctions
and these can be used as a basis for a representation of the full Hamiltonian H. Matrix

elements of H are analytical in this basis and this facilitates variational calculations as

well as perturbation ones. Several codes making use of the above representation of the

Hamiltonian have been developed. Examples based on VT are ‘POLYMODE’ [15] and

‘ANHAR’ [16].

Another approach to obtain approximate eigenvalues and eigenfunctions of H is the

VSCF method [17–19]. In this approach a trial wavefunction is given by a simple Hartree

product

CVSCF
n1;n2;…;nN ðQ1;Q2;…QNÞ ¼

YN
i¼1

fðiÞ
ni
ðQiÞ ð5Þ

and the optimum modal wavefunctions fðiÞ
ni
ðQiÞ are obtained from the solution of the

VSCF equations for J ¼ 0

Tl þ k
YN
i–l

fðiÞ
ni
lV þ Tcl

YN
i–l

fðiÞ
ni
l2 e ðlÞnl

" #
fðlÞ
nl
ðQlÞ ¼ 0; l ¼ 1;N ð6Þ

where Tl denotes the kinetic energy operator 2ð1=2Þð›2=›Q2
l Þ and the integration is over

the coordinates of N 2 1 modals. These coupled equations are typically solved iteratively

and for low-lying reference states convergence procedure is usually rapid and stable. If

the modal wavefunctions are expanded in terms of a primitive harmonic-oscillator basis,

the resulting procedure is analogous to the Hartree–Fock–Roothaan–Hall method in

electronic structure calculations. In the 1978 formulation of the VSCF approach the

coupled equations were solved on a grid [17]. Once convergence is achieved a VSCF

Hamiltonian can be defined as

HVSCF
n1;n2;…nN

;
X
l¼1

Tl þ k
YN
i–l

fðiÞ
ni
lV þ Tcl

YN
i–l

fðiÞ
ni
l

" #
ð7Þ

and the eigenfunctions of this Hamiltonian form an orthonormal set. The eigenfunction

CVSCF
n1;n2;…;nN ðQ1;Q2;…QNÞ is the VSCF state and all other eigenfunctions are termed

virtual states, which we discuss further below.
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As noted the integration over the potential in the VSCF equations is N 2 1 dimensional

and so it is clear that if N is larger than 4 or so the integration becomes extremely

computer intensive. Further it is usually necessary to go beyond the VSCF description to

obtain accurate energies. Gerber and co-workers use second-order perturbation theory to

correct VSCF energies [20,21]. This approach uses the virtual states defined above

to correct the VSCF energies. The first-order correction vanishes since VSCF is correct

to first order, and the second-order correction is

DEð2Þ
n ¼

X
n0

lkn0lDV lnl2l
ðEVSCFn 2 EVS

n0 Þ

where EVSCFn the (zero-order) VSCF energy and EVSn0 is a corresponding virtual state

energy and kn0l and lnl are the corresponding bra and kets.
This theory is analogous to second-order Möller–Plesset theory of electronic structure

theory. Gerber and co-workers term the resulting theory ‘Correlation-corrected VSCF’ or

‘cc-VSCF’. Christiansen refers to the method as ‘VMP’ [22]. As noted already Gerber

and co-workers use the 2-mode representation of the potential and so at most two-

dimensional integrals have to be done in the approach. The use of second-order

perturbation theory together with the 2-mode representation of the potential (see below

for more details) renders this method very efficient and thus feasible to apply to large

molecules [23]. Also it is important to note that the approach taken by Gerber and co-

workers, although formulated in terms of normal coordinates, neglects the vibrational

angular momentum and Watson terms and also is restricted to J ¼ 0: A recent critical

examination of convergence properties of vibrational MPn theory has been given by

Christensen [22].

11.3 VIBRATIONAL CI THEORY

Another approach to go beyond the VSCF approximation is the Configuration Interaction

(CI) variational approach. There are two schemes that can be used. In one, which we have

denoted ‘VSCF þ CI’, the many-mode wavefunction is expanded in a basis of VSCF

states. These states are not orthogonal and this results in a generalized eigenvalue

problem, which can be solved by standard methods. In the other scheme, denoted VCI,

the many-mode wavefunction is expanded in terms of the virtual states of a given VSCF

Hamiltonian HVSCF
n1;n2;…nN

: Usually the ground state VSCF Hamiltonian is used. This basis is
orthonormal and results in a standard eigenvalue problem. Both approaches were

proposed and applied to model problems, 20 years ago [24]. The method was

incorporated into the code POLYMODE [15] and more recently into the code

‘MULTIMODE’ (MM) which we describe in detail here.

In the VSCF theory as well as the MP2 and CI methods, matrix elements of the

Hamiltonian are required. For example, matrix elements of the potential occur in all

methods. These elements are the most demanding ones in general. They require high-

dimensional quadratures and for more than six degrees of freedom their straightforward

evaluation can become prohibitively demanding.

Chapter 11254



One way to deal with this, which was exploited explicitly in POLYMODE, for

example, is to expand the potential as in Eq. (2). In this case the matrix elements are

simply products of one-dimensional integrals. This is certainly a viable approach;

however, it does have some limitations, especially for larger molecules. First, it was

recognized that this expansion converges slowly for variational approaches. That is, often

terms to sixth order or higher are needed to obtain well-converged eigenvalues, even for

low-lying ones. Second, evaluating the coefficients for the higher-order terms becomes

problematic if one is using an ab initio approach because these coefficients are high-order

derivatives of the potential evaluated at the reference stationary point. Third, the number

of terms in the expansion is a rapidly increasing function of the number of degrees of

freedom and so its utility becomes very limited for larger molecules.

11.3.1 The n-mode representation of the potential

If the multinomial expansion of the potential is abandoned, then in both the VT and PT

approaches a major bottleneck is the evaluation of matrix elements. This severely limits

the applicability of these methods to molecules beyond tetraatomics.

Recently, another representation of the potential has been proposed that extends the

applicability of the VT and PT approaches to larger molecules. One way to think about

this new representation is to sum the terms in the expansion given by Eq. (2) in a different

way. Suppose we sum all terms involving two modes, three modes, four modes, etc. to

infinite order. Then the potential for N modes would be given by the following n-mode

representation [25]

VðQ1; · · ·QNÞ ¼
X
i

V ðiÞðQiÞ þ
X
i–j

V ð2ÞðQi;QjÞ þ
X

i–j–k

V ð3ÞðQi;Qj;QkÞ

þ · · ·þ
X

i–j–k;…

V ðnÞðQi;…Þ ð8Þ

where V ð1Þ
i ðQiÞ terms are cuts through the hyperspace of normal coordinates with just one

coordinate varying at a time, V ð2Þ
ij ðQi;QjÞ is an intrinsic 2-mode potential where only pairs

of normal coordinates are non-zero, etc. Each summation in Eq. (8) is the overall

combination of modes, thus there are N!=½n!ðN 2 nÞ!	 terms in each sum. The above
representation, limited to 2-mode coupling, was introduced by Jung and Gerber [20].

Obviously if n equals N there is no point in doing this expansion, which is exact in this

case, and which offers no advantages over dealing directly with the full potential. Also

note that these intrinsic potentials are not written as multinomial expansions in the

coordinates and thus the matrix elements of the potential need to be done numerically.

The advantage of using the above representation is that the dimensionality of the

numerical quadratures is equal to n. However, the expectation is that accurate results can

be obtained for n substantially less than N and thus matrix elements of the potential can be

done much more efficiently. To summarize the state of progress with respect to

the potential: the n-mode representation of the potential given by Eq. (8) has replaced the

earlier expansion of the potential as a more general and robust approach for vibrational
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calculations. For example, in the case of a triatomic molecule, the 3-mode representation

of the potential is exact.

Next consider how the methods used to treat vibrational motion exploit the n-mode

representation of the potential. Clearly there can be a great simplification in these

methods if n is small. We will examine the accuracy of this approach in the next section.

In the latest version of the code MULTIMODE [26] n can vary from 1 to 6. Having the

option of a varying n-mode representation of the potential is very useful because it

permits a systematic way to increase the accuracy of the calculation and also to monitor

the convergence of results with respect to n. An important point to be made about the n-

mode representation is that it does place limitations on the space of excitations in both

MP2 theory and VT theory. To see this, consider the 2-mode representation of the

potential and for simplicity for a triatomic molecule. General matrix elements of the

potential are given by

kn01n
0
2n

0
3lVln1n2n3l ¼

X3
i;j;k¼1

kn0ilV ð1ÞðiÞlnildn0jnjdn0knk þ kn01n
0
2lV ð2Þð1; 2Þln1n2ldn0

3
n
3

þ kn01n
0
3lV ð2Þð1; 3Þln1n3ldn0

2
n
2
þ kn02n

0
3lV ð2Þð2; 3Þln2n3ldn0

1
n
1

ð9Þ

Thus, if the primed numbers are all different from the unprimed ones this matrix

element vanishes. So, the 2-mode representation limits excitations to pairwise ones. So,

for example, a ‘Fermi’ resonance among three modes cannot be described with MP2

theory with a 2-mode representation of the potential. It is described in the lowest order

by a 3-mode representation of the potential. Analogous limitations apply to any value of

n less than N.

The VCI approach can quickly lead to very large Hamiltonian matrices, and perhaps it

is worth noting that a ‘benefit’ of using a value of nmuch less than N in the VCI approach

is that the Hamiltonian matrix is very sparse. This has not been exploited yet, and we

return to this point in the last section. The major strategy to contain the size of the

H-matrix in MM is based on a CI-selection scheme that depends on the type of mode

excitation. The basic strategy is to restrict the sum of excitations involving two modes,

three modes, etc. Details are given elsewhere [27] but the effect of the selection scheme is

to have a more complete basis of 2-mode excitations than 3-mode excitations, etc. This

strategy is consistent with the assumption that the importance of intrinsic n-mode terms in

nMR representation of the potential decreases with n.

Before presenting results of some illustrative calculations using the n-mode

representation, there are several important technical points regarding these n-mode

potentials that are worth noting. In addition to greatly simplifying the calculation of

potential matrix elements, this representation of the potential can result in great savings in

doing ab initio calculations of the potential. One obvious saving occurs in doing ‘direct-

dynamics’, i.e. calculating the potential directly at the configurations used in doing

matrix element calculations. For example, consider a five-atom molecule, e.g. CH4,

where the potential depends on nine coordinates. Suppose that a modest quadrature grid

of 10 points per degree of freedom is sufficient to do potential matrix elements. This

would mean that 109 ab initio electronic energies would be required for this grid.
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However, if a 3-mode representation of the potential were sufficiently accurate this would

require 9!/(6!3!) £ 103 ¼ 8.4 £ 104 ab initio electronic energies. This is a dramatic

reduction relative to 109, however, still a very large, barely feasible number of energies.

For a 2-mode representation of the potential only 360 points are needed, which is a very

feasible calculation. Even using a grid-based approach to obtain the VSCF and virtual

eigenfunctions, as done by Gerber and co-workers, where the number of points would be

perhaps 10 times larger the approach is still quite feasible.

Several variants of the ‘direct-dynamics’ approach have been coded in MM. Because a

3-mode and 4-mode representation of the potential is typically used in that code, the

direct evaluation of ab initio energies on the 3 or 4-mode grids is not feasible, as the above

example for CH4 illustrates. Instead we use interpolation approaches on sparse grids.

These methods have been described in detail elsewhere and so we only give a brief

description here. In one approach local interpolation is used to obtain energies from

relatively sparse grids where energies and gradients are known [28]. (The interpolation is

termed ‘reduced’ Hermite interpolation.) In the second approach [29], least squares

fitting is done for the n-mode (sparse) grids and then used to obtain approximations of the

potential at quadrature points. (An added benefit of this approach is that the least-squares

basis is a direct-product in the normal coordinates and so the matrix elements are

products of 1d elements, as in the case of a multinomial expansion of the potential.)

As an aside, we note that the n-mode representation of the potential can be made in any

set of coordinates and for use in the corresponding Hamiltonian. For triatomic and

tetraatomicmolecules it is possible to avoid this representation because the dimensionality

of the internal space is 3 or 6 and exact treatments are possible in both normal [30,31] and

various curvilinear coordinates which have been used in exact formulations and

calculations for triatomic and tetraatomic molecules [32–34]. However, for larger

molecules it could prove quite useful.

A summary of the points made above is shown graphically in Fig. 11.1. The figure

emphasizes that accuracy depends on both the level of treatment and the value of n in the

n-mode representation. Finally, because the above theory is based on a set of normal

coordinates defined with respect to a single stationary point we refer hereafter to the

version of MM based on this approach as MM-SR.

11.3.2 Results of selected calculations

In this section we present a small survey of calculations that illustrate the points discussed

above. First, we examine the dependence of vibrational energies on the n-mode

representation of the potential. The first example we consider is for H2CN. This is a

simple example of a 6-mode system, with a single minimum and localized states. This

work was reported some time ago and made use of an ab initio-based force field [35].

Here we focus on both the accuracy of the VSCF method and the n-mode representation

of the potential for fairly low-lying states. ‘Exact’ variational results were obtained for

this molecule and reported as well. In Fig. 11.2 we show the error relative to these exact

calculations of VSCF energies for 1–4 mode representations of the potential. As seen the

1MR results are very inaccurate, the 2MR are a very significant improvement and for
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most states quite close to the 3 and 4MR energies, which are virtually identical. There are,

however, two states for which the 2MR is substantially different from the 3 and 4MR

results. Finally, note that the errors in the converged VSCF energies, relative to VCI ones,

are in range of 10–40 cm21, which is typical for this type of system.

Consider next 9-mode CH4. Several calculations have been reported for methane using

MULTIMODE [36–37], including a very recent one for values of the total angular

A
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VSCF/MP2
VFCI

1 2 3 4 5 ... N

n-mode representation of the potential

Fig. 11.1. Schematic of the accuracy of the n-mode representation of the potential and the method of treatment

of the vibrational dynamics.
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Fig. 11.2. Comparison of the errors in Vibrational SCF energies for H2CN for the indicated n-mode
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momentum up to 50 [38]. (These calculations made use of several different potentials.

The ones in Refs. [36] and [37] were based on ab initio force fields in symmetry-adapted

valence coordinates, whereas the one in Ref. [38] used a more global potential that is part

of a reactive potential energy surface for H þ CH4.) This is clearly a challenging problem

for 2, 3, or 4-mode representations of the potential. In Table 11.1 we show the

convergence of low-lying states with respect to these levels of representation. We also

include the harmonic normal-mode energies and results of an independent ‘exact’

calculation using the same potential energy. First, note that the 2MR of the potential

generally produces energies that are quite close to the 3MR and 4MR ones. However,

there are some exceptions (as seen in the previous example), where errors are of the order

of 40–50 cm21. However, in all cases the 2MR results are a substantial improvement

over the harmonic results. The 3MR results are quite close to the 4MR ones indicating

good convergence of the eigenvalues with respect to the n-mode representation. Note that

there is very good agreement with the independent calculations.

The final example in this series is H3O
þ. This is a more challenging system because

like NH3, it is a double-well molecule with a small barrier separating the two minima.

The first calculations we did on this molecule [39] used a ‘non-spectroscopically’

accurate potential and so the results do not compare well with experiment. However, for

the present purpose the results are adequate. In these calculations we also compared the

2MR, 3MR, and 4MR representations of the potential, but for two sets of calculations. In

one set, one of the two equivalent minima was chosen as the reference, as is conventional.

This reference, however, is not a good choice to describe the tunneling splittings, which

are large. Thus, a second reference geometry at the (planar) saddle point was considered.

Some results of these calculations are given in Table 11.2. First consider the zero-point

energy (zpe) obtained using the minimum as the reference. The 2MR result is below the

4MR one by nearly 90 cm21 whereas the 3MR result is only 5 cm21 below the 4MR one.

So, this indicates that the 2MR is quite inaccurate for the zpe. Also, there is no

meaningful tunneling splitting of the zero-point level for any nMR for this choice of

reference geometry. Looking now at the energies using the saddle point as the reference

geometry, we do see reasonable tunneling splittings; however, we see even larger errors

in the 2MR results. There are significant, although much smaller differences between the

4MR and 3MR results. Also, it is not clear that the 4MR results are converged, although

Table 11.1 Energies (cm21) of low-lying states of non-rotating CH4

State H.O. 2MRa 3MRa 4MRa Lanczosb

ZPE 9835.0 9693.1 9707.4 9707.2 –

n4(F2) 1344.0 1311.7 1312.9 1313.3 1314.1

n2(E) 1570.8 1531.1 1534.4 1534.5 1534.0

n1(A1) 3034.7 2925.7 2948.3 2949.4 2955.8

2n4 2688.0 2626.1 2621.6 2623.9 2627.2

n2 þ n4 2914.8 2881.6 2831.5 2836.4 2838.1

n3(F2) 3153.9 3004.3 3053.7 3053.1 3056.5

2n2 3141.6 3067.3 3067.2 3067.3 3069.0

aRef. [36].
bH.-G. Yu, J. Chem. Phys., 117 (200) 8190.
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the observation that the two 4MR zpe’s are nearly equal suggests that these are near the

correct answer. (That the zpe using the minimum reference is above the value using

the saddle point reference is expected owing to the tunneling splitting, which would be

expected to lower the single-well zpe estimate.) In fact, we showed in subsequent papers

[40,41] that 4MR calculations are quite accurate compared with exact results using the

specialized code ‘RVIB4’ [42]. In the latest set of calculations we also reported [26] the

5MR version of MULTIMODE and demonstrated improved accuracy compared to

RVIB4 results. These calculations were done for angular momentum J equal to 0 and 1

and employed a much more accurate ab initio potential energy surface. (We note that

Halonen and co-workers subsequently reported [43] an even more accurate potential

energy surface for H3O
þ.)

MULTIMODE has been applied to a substantial body of molecules and complexes

including H2O and HO2 where J greater than zero was considered and treated exactly and

approximately [44], to CO–Cu(100) [25,45], NH3
þ [46], NH3 [47,48], benzene [49],

Cl2H2O [50], H5O2
þ [51,52], thioformaldehyde [53], furan, pyrrole, and thiophene [54],

and cis and trans-HOCO [55]. The code has also been used to obtain vibrational energies

at transition states [56,57], which are usually done in the harmonic approximation. MM-

SR has been adapted to obtain IR spectra and applications have been made to H2O [58],

furan, pyrrole, and thiophene [59].

11.3.3 The ‘Reaction Path’ version of MULTIMODE

The use of the saddle point as the reference geometry in H3O
þ (and NH3 [46,47]) has

enabled MULTIMODE to provide an accurate treatment of a double minimum problem.

However, as we have seen in the case of H3O
þ, a 4MR at least is required to obtain

accurate results. For more challenging problems with more than one minimum, or where

two minima are separated by a torsional mode, this approach cannot be expected to work

as well.

Recently, Carter and Handy have addressed this very effectively by incorporating the

approach taken in MULTIMODE into the ‘Reaction Path Hamiltonian (RPH)’ [60]. In

this approach one special, large amplitude mode is singled out and the n-mode coupling

idea is applied to the normal modes orthogonal to this mode. The kinetic energy operator

is somewhat complex and is given elsewhere [60]. This version of MULTIMODE is

denoted MULTIMODE-RPH or abbreviated as MM-RPH.

Table 11.2 Comparison of VCI zero-point energies and splitting of that energy (cm21) of H3O
þ at the

C3v global minimum and at D3h saddle point, using 2,3, and 4-mode representations (MR) of the potential

Energy (cm21) Minimum Saddle point

4MR 3MR 2MR 4MR 3MR 2MR

Zero point energy 7118.9 7123.1 7030.3 7114.1 6967.0 7236.2

Splitting 0 0 0 15.2 72.7 143.0

No splitting exists for C3v calculations, as discussed in the text.
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MM-RPH has been described and tested very successfully on H2O2 [61,62], using a

high-quality, ab initio-based full-dimensional potential energy surface [63]. For this

specific application a method very similar to that proposed by Hougen et al. [64] was

adopted since we made use of an analytical potential in the six internal coordinates; for a

given choice of torsional angle, it was possible to minimize the energy with respect to the

remaining coordinates. The potential is represented as

Vðt;Q1;Q2;…Þ ¼ V ð0ÞðtÞ þ
X
i

V ð1Þ
i ðt;QiÞ þ

X
ij

V ð2Þ
ij ðt;Qi;QjÞ

þ
X
ijk

V ð3Þ
ijk ðt;Qi;Qj;QkÞ þ

X
ijkl

V ð4Þ
ijklðt;Qi;Qj;Qk;QlÞ þ… ð10Þ

The Cartesian coordinates of the resulting structure were then formed at the center-of-

mass and were rotated to obey the Eckart conditions with the previous structure (the path

was defined for torsional angles in half-degree intervals). Note that in general this

approach does not generate the true reaction path as defined by Miller et al. [60] in that

the path does not conform to that of steepest descent; it is expected to be very close to it,

however, and their Hamiltonian is still valid. The choice of H2O2 was used for the initial

test of this RPH version of MULTIMODE, where it was shown to produce results in

excellent agreement with previous exact calculations [61,62].

The code has also very recently been applied to glyoxal [65], methanol and

malonaldehyde [66]. These examples have all been studied by different variants of MM-

RPH. For glyoxal, for which an analytical potential did not exist, the true reaction path

was formed by deriving the energies and first derivatives from ab initio calculations,

starting at the ‘cis’ and ‘trans’ transition states in turn, from which the path of steepest

descent could be found. There are numerical difficulties associated with this approach,

however, particularly in finding the true path close to the transition states where the first

derivatives are almost zero. This leads to oscillations about the path in the initial searches,

resulting in two equilibrium configurations which are not identical, depending on whether

the starting point is ‘cis’ or ‘trans’. In the initial calculations using this approach [65], the

second-derivatives were calculated ‘ab initio’ by finite differences to obtain the harmonic

frequencies and normal coordinate vectors at each point along the path. The potential in

the expression above is therefore truncated at the second term and is not expected to be

very accurate. In subsequent calculations [67], partial anharmonicity was introduced by

calculating third and semi-diagonal fourth derivatives at each path point.

Calculations on methanol [66] were carried out by ab initio techniques using a

combination of the techniques adopted for H2O2 and glyoxal. The path was defined for

one of the three equivalent torsional angles CHOH and the energy was minimized at each

half-degree interval prior to the determination of the first and second derivatives. No

anharmonicity was included in these calculations, but we now have a full-dimensional

potential in all nine coordinates which will be used for more advanced studies. In the

latter calculations on glyoxal and methanol, it was found possible to omit the Eckart

rotations by modifying the moment-of-inertia tensor from that in the original (RPH). This

then removed the ambiguities associated with rotation of the coordinate axes. However,
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we favor the use of the original steepest descent path coordinate where possible, because

this removes coupling between the path and the vibrational modes in an optimum way.

Calculations on malonaldehyde [65] used a totally different path coordinate, where it

was almost obvious to choose R1–R2, these distances being those from the migrating

proton to the neighboring oxygen atoms. These calculations were in the full 21

dimensions, with all the fundamentals being split due to the tunneling motion (with one

exception, namely the one vibration which is centered on the symmetric transition state).

This is the first time that such a large study has been undertaken.

Very recently, MM-RPH has been applied to H3O2
2 (the mono-hydrated hydroxide ion

sometimes written as (OH2)H2O using a full-dimensional potential energy surface [67].

Recent fascinating, though somewhat puzzling, experiments by Johnson and co-workers

[68] using the Ar-messenger technique stimulated us to apply the MM-RPH code to this

molecule. The equilibrium structure is shown in Fig. 11.3. The bridging H atom is located

roughly collinear with the OO axis with a minimum slightly closer to one O atom than the

other. This implies, of course, that there is a double minimum in the O–H–O stretch

coordinate. The barrier separating these two minima is roughly 100 cm21 and was first

reported by Samson and Klopper [69]. They argued (correctly) that the zero-point motion

of the bridging H atom is delocalized over the two minima. The relaxed potential, from

the full-dimensional one [67], along this coordinate is also shown in Fig. 11.3. Full-

dimensional calculations of the zero-point state done with MM-RPH (see below for more

details) as well as Diffusion Monte Carlo by McCoy [70] clearly show that the

corresponding wavefunction is delocalized over the two minima. Thus the zero-point

averaged structure has C2-symmetry.

In addition to the delocalization in the OHO-stretch it was subsequently determined

that, like H2O2, there is fairly facile torsional motion of the two monomer OH-groups

[67]. For the application of MM-RPH, we chose a torsional path that passes through

Fig. 11.3. The equilibrium structure of (OH2)H2O and the relaxed potential for the H-atom motion parallel

to the OO-axis.
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the bridging H atom transfer barrier (actually a second-order saddle point) and maintains

C2-symmetry. This places the path on the barrier shown in Fig. 11.3 where the zero-point

wavefunction has its maximum value. The potential [67] along this path is shown in

Fig. 11.4. As expected the fundamentals show significant splittings (of the order of

20 cm21) due to tunneling through the torsional barrier. The IR spectrum has also been

obtained with MM-SR and this together with new MM-RPH and Diffusion Monte Carlo

calculations have very recently been used to help assign a new band determined

experimentally at around 1070 cm21 [70, 71].

11.4 CURRENT BOTTLENECKS AND FUTURE PROGRESS

There are two major bottlenecks associated with MM calculations on large molecules.

The first is that for nMR calculations the integration of the matrix elements is very time-

consuming. This is particularly true for ‘Reaction Path’ calculations (even for n ¼ 4)

because the integration must always be carried out over the path coordinate, and the nMR

refers only to the 3N 2 7 orthogonal normal coordinates. Hence 4MR for such

calculations is equivalent to 5MR for standard calculations. Furthermore, for molecules

such as methanol where the path coordinate is like a torsional angle, integration of the

torsional basis expressed in sinðmtÞ and cosðmtÞ must be carried out by quadrature from
0 to 2p radians, and this typically involves between 90 and 120 integration points. Hence,
until very recently, calculations above 3MR have been limited either to small molecules

or low quanta of excitation in the CI basis. To overcome this problem [72] we have taken

Fig. 11.4. The torsional potential of (OH2)H2O along a C2-symmetric path described in the text.
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least squares fits of the intrinsic 4MR cuts of the potential (the last terms in Eq. (9) above)

to polynomials in the coordinate y ¼ tanhðgQÞ and then formed the one-dimensional
integrals over the now separable terms in the 4MR intrinsic potentials. These fits must be

performed at each torsional quadrature point required along the ‘Reaction Path’, and for

all 4MR combinations of the 3N 2 7 orthogonal modes. However, as the order of nMR

increases, the impact of the nMR cuts decreases, and the potentials required in the fits are

weak and smoothly varying functions of Q which can be fit to high accuracy by low-

degree polynomials. Use of such one-dimensional integrals effectively reduces the

integration coupling from 4MR to 3MR, and this technique has recently been adopted in

new calculations for H3O2
2.

The second bottleneck is also caused by the number of normal modes for large

molecules, and this is the final size of the CI Hamiltonian matrix. In a way similar to the

nMR coupling of the modes required for integration, we set up the CI matrix in terms of

successive nMQ excitations (quanta) of the expansion set. For a molecule withMmodes,

one product function (corresponding to the zero point level) is present with no excited

quanta in any of the M basis functions; there then follows M sets of 1MQ product

functions in which only a single mode is excited; these are followed byM!=½2!ðM 2 2Þ!	
sets of 2MQ product functions in which any two modes are excited, and so on. Clearly for

large molecules, the size of the matrix explodes as M and n increase. Depending on the

nMR integration coupling, however, it is also clear that this matrix will also be sparse,

unless the value of nMR is at least twice the maximum value of nMQ, in which case it

will be full. Furthermore, many of the non-zero matrix elements, especially involving

multiple excitations, will be small, which is the key to a new method we have used to

reduce the size of the matrix [72]. For fundamentals (and possibly first-overtones and

combination bands), the main contributors to the final wavefunctions will arise from the

1MQ and 2MQ basis, and we build this matrix to complete convergence, and diagonalize

it, saving the eigenvectors. We set a second-order tolerance between all of these 2MQ

eigenfunctions and any new 3MQ, 4MQ expansion function, etc. whereupon many of the

additional nMQ functions are neglected. For a tolerance of 1023 cm21, we have found

that the H3O2
2 CI matrix is reduced from about 126,000 to 40,000, and this is then

diagonalized by a Lanczos-like iteration procedure [27]. An optimum variant of this

procedure is ongoing. There are operational hazards involved with this approach. Firstly,

the path must be a smoothly varying function of all cartesian coordinates. When the

coordinate axes are not rotated to conform to the Eckart conditions, it is not uncommon

for the directions of axes (or even two different axes) to interchange. This leads to

singularities along the path, which we have overcome by first normalizing the coordinates

and then constructing the dot products between coordinates of adjacent points, for which

the result should be almost unity. Any axis switch is then readily identified, which can be

investigated and corrected. Secondly, the vectors of the 3N 2 7 normal coordinates

orthogonal to the path must also vary smoothly around the path. We follow the progress

of the vectors in a way similar to that adopted for the path points themselves, by defining

the ordering of the vectors as that at the start point, and ensuring that this order is

maintained at all subsequent points. We form the dot products of the adjacent

(normalized) vectors, and if large deviations from unity arise, the most probable

explanation is that the vector ordering has switched, whereupon we interchange vectors
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for modes ‘m’ and ‘m þ 1’ which usually corrects the discontinuity. Exceptions to

this arise when two modes of the same symmetry appear to interchange (like an avoided

intersection in electronic structure theory) when some trial-and-error method has to

be introduced until the crossing point has been passed. A satisfactory solution to this

important problem is still ongoing.

We are currently working on parallelizing both MM-SR and MM-RPH. Near linear

speed-ups with the number of processors for the parts of the codes that evaluate the many

n-mode terms on the n-mode representation of the potential, as well as matrix elements

are being achieved. Further work on exploiting the sparse nature of the final H-matrix is

also any area where progress can be made.

Finally, we expect to see many more ‘direct’ calculations using MULTIMODE and

progress in making this more efficient. Very recently Rauhut [73] has reported an

implementation of a code very similar to MULTIMODE interfaced to MOLPRO. The

least squares fitting approach described is used and a ‘screening’ strategy is used to limit

the number of 3-mode grids in the 3MR representation of the potential.
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CHAPTER 12

Toward accurate computations

in photobiology

Adalgisa Sinicropi and Massimo Olivucci

Dipartimento di Chimica, Università di Siena, Siena, Italy

Abstract

In this chapter, we review the results of recent computational studies of the

spectroscopy and molecular mechanism underlying the activity of very different

photoactive proteins. Our aim is to show that, nowadays, high-level (i.e. accurate)

ab initio quantum chemical methodologies may be used to unveil the mechanistic

details of photochemical processes occurring in photobiological systems. Accordingly,

we discuss some recent spectral simulations of the bovine visual pigment Rhodopsin

(Rh) and of the green fluorescent protein (GFP) of the luminescent jellyfish Aequorea

victoria. We will also discuss a recent attempt to map the photoisomerization path of

the full Rh protein.

12.1 INTRODUCTION

There are two molecular events that may follow light energy absorption: energy wastage

or energy exploitation (Scheme 12.1). The control of these events can be considered a

basic requirement for the rational design of efficient photochemical reactions, artificial

photosynthetic systems and for the design of novel materials, molecular devices and

molecular level machines. In fact, technology often requires molecules where this energy

is exploited to achieve specific chemical, conformational and electronic changes. In

contrast, other applications, as those in the field of photoprotection or photostability, need

molecules that eliminate the stored photon energy (i.e. be structurally unaffected by light

absorption) efficiently via emission and/or internal conversion.

In this respect, during the last few years, computational methods have been

successfully applied to explore photon energy wastage mechanisms (e.g. in fluorescent

probes) [1–3] and the mechanism of fast internal conversion in the DNA basis [4].

Similarly, as an example of process where light is exploited to drive stereospecific

q 2005 Elsevier B.V. All rights reserved.
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reactions, we can recall the photochemical pericyclic reactions [5]. The same types of

processes can be found in photobiology. For instance, there are fluorescent proteins, such

as the green fluorescent protein (GFP), where the energy of the photon is ‘wasted’

radiatively to produce fluorescence while there are other proteins, such as the visual

pigment Rhodopsin (Rh), where the energy of the photon is exploited to produce a change

in the protein conformation.

In the past, we have shown that a suitable approach to these mechanistic problems

involves the computation of the photochemical reaction path. As illustrated in Fig. 12.1,

after photoexcitation the reactant A starts to evolve on the excited state potential energy

surface. As a consequence of such relaxation (that may even involve the overcoming of a

transition state (TS) on the upper energy surface) the species reaches a point of conical

intersection (CI) and decays. This process can be described by computing a minimum

energy path (MEP) starting at the Franck–Condon (FC) point (i.e. at the ground state

equilibrium structure) and ending at CI. The CI is a key mechanistic entity for the

reaction as it provides a very efficient channel for the decay to ground state that, in the

past, has been referred by the (organic) photochemists as the ‘photochemical funnel’

[6,7]. A photochemical funnel corresponds to a molecular structure that lives for only few

femtoseconds (10215 s). For this reason computer simulations based on modern quantum

chemical methods appear to be the only practical source of direct information.

For a complete description of the reaction we need to compute also the ground state

MEP describing photoproduct formation. In Fig. 12.1 we show that the entire

photochemical reaction path is defined and computed in terms of a set of connected

MEPs. In particular, the path starting at FC (structure Ap) on the potential energy surface

of the spectroscopic excited state and ending at the photoproduct energy minimum B

located on the ground state energy surface is constructed by joining two MEPs. A first

Scheme 12.1.
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MEP (grey arrows) connects the FC point to the conical intersection (Ap ! CI). A second

MEP (black arrows) connects the conical intersection to the photoproduct (CI!
photoproduct B). A third MEP that starts at CI describes the reactant reconstitution

process (CI ! A) responsible for partial return to the ground state. As we will see below

the mechanism of Fig. 12.1 appears to be general.

The nature of the CI has been a subject of research for at least three decades. Between

1966 and 1972, Zimmerman, Michl and Salem [9–14] were the first to propose,

independently, that for a broad class of organic reactions the structure of the funnel could

be determined by locating a ‘cone shaped’ crossing of the excited and ground state

(potential) energy surfaces, known as conical intersection. More recently, Yarkony

[15–17] and Ruendenberg [18] identified conical intersections geometries in small

molecules.

At the end of the 1980s improved quantum chemical methods and faster computers

became available which were suitable for computing excited state energy surfaces. In

1990 these methodologies were used to investigate the reaction path of the photochemical

cycloaddition of ethylene [19,20]. It was shown that

(i) a conical intersection exists right at the bottom of the excited state energy surface

of two interacting ethylene molecules.

(ii) the molecular structure of the conical intersection was intimately related to the

observed production of cyclobutane, a hydrocarbon which is squared in shape.

These initial results suggested that conical intersections could indeed act as

photochemical funnels.

Since there is no general theorem supporting the existence of low-lying conical

intersections in organic molecules, the only way to prove the general validity of

Fig. 12.1. Left side: Model intersecting the ground (S0) and the first excited state (S1) potential energy surfaces.

The Franck–Condon point (Ap) is geometrically identical to the minimum on the ground state, but it is located

on the excited state surface. The arrows indicate the direction of the minimum energy path connecting the FC

point (Ap) to the conical intersection (CI) and then to A and to the photoproduct B (adapted from Ref. [8]).
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the hypothesis above was a painstaking systematic search for properties (i) and (ii) in

different classes of organic molecules. For this reason, in 1992 Olivucci and Bernardi in

Bologna and Robb in London started a long-term computational project. The excited

energy surface of ca. 25 different organic chromophores was mapped to search for

conical intersections [21]. The examination of this fairly large set of computed data

allowed for the formulation of a few general results that lie at the basis of the ‘chemistry’

of conical intersections (as opposed to the ‘usual’ chemistry of transition structures):

1. Similar organic chromophores (e.g. conjugated hydrocarbons) have similar conical

intersection structures.

2. All basic chemical events such as breaking, making and exchange of bonds between

atoms can be mediated by conical intersections.

Computational tools and strategies have been developed to tackle the problem of

determining the molecular structure and energy of mechanistically relevant conical

intersections. These tools have the ability to

(a) trace the excited state MEP starting from the FC point (i.e. the ground state

equilibrium structure of the system Ap in Fig. 12.1) or from an excited state

reactant and ending at a conical intersection or excited state intermediate.

(b) locate the lowest energy conical intersection for a given, initial, molecular

structure [17,22].

(c) determine the possible initial (steepest) relaxation directions starting from the

located conical intersection and follow the associated MEPs connecting the

intersection to the primary photoproduct energy minima [23,24].

12.2 AB INITIO QUANTUM CHEMICAL METHODS FOR EXCITED STATES

Among the possible types of available quantum chemical technologies (e.g.

semiempirical, DFT and ab initio; see Scheme 12.2 for a rough classification in terms

of computational cost—vertical—and accuracy—horizontal) one could use to compute

Scheme 12.2.
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the potential energy surface of an excited state molecule, we adopt a ‘mixed’ ab initio

CASPT2//CASSCF approach. This is considered a ‘practical’ compromise between

computational cost and computational accuracy as well as a robust quantum chemical

strategy when comparison with observed spectroscopic quantities and reaction barriers is

needed. In fact, the CASPT2 (i.e. an implementation of second-order multireference

perturbation theory) level ensures a correct balance of dynamic and non-dynamic

electron correlation in the wavefunction. However, CASPT2 geometry optimizations are

presently unpractical even for medium size organic molecules. Thus in CASPT2//

CASSCF computations equilibrium geometries and reaction coordinates are computed

at the CASSCF (Complete Active Space—Self Consistent Field) level of theory while

the associated energy profile (determining the reaction energetics) is re-evaluated

along a selected series of reaction coordinate points, performing single-point CASPT2

computations.

The potential accuracy of the CASPT2//CASSCF strategy has been evaluated taking as

a benchmark the stability of a transient organic intermediate such as the diazomethyl

radical [25] to fragmentation (i.e. N2 loss). The CASSCF energy profile is consistent

with a barrierless C–N bond breaking process. Very recently we set up for numerical

derivative computations at the more accurate CASPT2 level [26] and found that the

reaction coordinate clearly shows a 5 kcal mol21 barrier. If we now compare the

CASPT2 energy profile with the CASPT2//CASSCF profile in Fig. 12.2 we can clearly

see that, at least for this process, the CASPT2//CASSCF strategy is substantially

quantitative with respect to the CASPT2 level.

Fig. 12.2. Comparison of the CASSCF, CASPT2 (numerical gradients evaluation at the CASPT2 level) and

CASPT2//CASSCF energy profiles for the denitrogenation of the methyl diazenyl diradical, which provides

evidence of the correctness of the CASPT2//CASSCF strategy (redrawn with permission Ref. [25] q 2003

American Chemical Society).

Toward accurate computations in photobiology 273

References pp. 288–289



Notice that, in the presence of limited barriers (i.e. of short lifetimes of the reactive

species) the CASPT2//CASSCF level appears to be required even if one is interested in a

mechanistic (i.e. qualitative) rather than quantitative description of the reaction

energetics. This is also demonstrated in the same figure where the CASSCF level of

theory predicts an unbound radical species that will therefore denitrogenate spon-

taneously. In contrast the fact that the CASPT2//CASSCF level predicts a ca.

5 kcal mol21 fragmentation barrier implies that the reactive species is bounded and

that in certain experimental conditions may be detected.

The same type of conclusion is reached when one deals with the reactivity of excited

state species. In Fig 12.3 we report the comparison between the CASPT2//CASSCF and

CASSCF excited state reaction paths corresponding to two different isomerizations of the

excited state GFP chromophore in vacuo [27]. It is clearly seen that, in contrast to

CASSCF, the CASPT2//CASSCF level suggests a mechanism where there is no planar

excited state intermediate (i.e. no planar energy minimum along the excited state energy

surface). The effect of the dynamic correlation energy, only accounted for at the

CASPT2//CASSCF level, is thus mechanistically relevant.

The use of TD-DFT methods for mapping the excited state potential energy surface

represents a very attractive alternative to the ab initio methods due to the possibility to

achieve similar accuracies at a much reduced computational cost. These methodologies,

that, in principle, are valid only for excited states dominated by singly excited

configurations (or when the linear response theory is valid) are currently under intensive

testing. For the case of simple polyene protonated Schiff bases it has been possible to

carry out a thorough test of the TD-DFT energetics within a TD-DFT//CASSCF scheme

for the first excited state (a charge transfer state dominated by a single excitation) [28].

Fig. 12.3. CASSCF (full squares) and CASPT2 (open squares) energy profiles for the S1 state along the

computed t and f torsional reaction coordinates of the HBDI chromophore (redrawn with permission from

Ref. [27] q 2004 American Chemical Society).
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In other words, the TD-DFT energies are computed for each point along a reaction

coordinate determined at the CASSCF level. With respect to the CASPT2//CASSCF

scheme defined above, the practical advantage is that single point TD-DFT

computations replace the more expensive CASPT2 computations. The result of this

test is given in Fig. 12.4.

More work devoted to the testing of the TD-DFT methodologies can be found in

different review articles [29,30]. A different approach that has been pursued with the

target of computing both reaction paths and trajectories at a lower computational cost is

based on ad hoc reparameterized multireference semiempirical methods. Indeed, recently

these methods accounting for excited state calculations of specific chromophores have

been reported [31–33].

A step forward along the route to the correct modelling of the spectroscopy and

photochemical reactivity of photoreactive proteins is represented by the implementation

of a Quantum Mechanics/Molecular Mechanics (QM/MM) computational strategy

based on a suitable QM part coupled with a protein force field such as AMBER [34] (or

CHARMM [35]). Very recently a CASPT2//CASSCF/AMBER method for rhodopsin

has been implemented in our laboratory [36,37] within the QM/MM link-atom scheme

[38]. Special care has been taken in the parametrization of the protonated Schiff base

linkage region that describes the delicate border region between the MM (the protein)

Fig. 12.4. Energy profiles along the S1 photoisomerization coordinate of a PSB11 minimal model at

CASPT2//CASSCF and TD-DFT//CASSCF levels of theory. Notice that both the reaction paths and the conical

intersection family are qualitatively described at the TDDFT levels (redrawn with permission from Ref. [28]

q 2004 American Chemical Society).
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and QM (the chromophore) subunits [37] (see Scheme 12.3). While below we will

review the results of this ab initio QM/MM methods other alternative QM/MM

approaches, originally pioneered by Warshel [39], have been presented. In particular,

Vreven and Morokuma [40] applied the ONIOM method to the photoisomerization of

the Rh chromophore in the gas phase. Hayashi et al. [41,42] reported a CASSCF//HF/

DZV/AMBER computation of the lmax of the related pigment bacteriorhodopsin (bR).
The same authors have reported a trajectory computation at the CASSCF/AMBER level

for bR [42]. Warshel used a reparameterization of the QCFF/PI semiempirical method

in their work on bR [33,43]. Martinez et al. implemented a semiempirical FOMO-CI to

locate conical intersections and performing excited state dynamics in both condensed

phase and protein environments [31,32]. Excited state dynamics calculations have also

been reported by Robb and coworkers in a recent study of photoactive yellow protein

(PYP) [44].

12.3 FATE OF LIGHT ENERGY IN PHOTOBIOLOGY

Below we revise the results of the application of the CASPT2//CASSCF strategy to the

investigation of two very different spectroscopic problems. The first problem regards

GFP, a protein that can waste light energy with great efficiency through fluorescence

(left side of Fig. 12.5). The second protein, the visual pigment Rh, is instead designed

to exploit light energy to drive a double bond photoisomerization reaction (right side

of Fig. 12.5).

The GFP consists in a rigid b-sheet based structure and the prosthetic group

responsible for the green fluorescence is the anionic form of a p-hydroxybenzilidene-

imidazolone (HBDI) moiety located at the centre of the barrel-like protein backbone (left

side of Fig. 12.5). The fluorophore is excited with UV light and fluoresces with an 80%

quantum yield [45,46]. The structure of the visual pigment rhodopsin is totally different;

it is more flexible and its secondary structure is mainly characterized by seven a-helix
segments. The chromophore of the Rh is the protonated Schiff base of the 11-cis retinal

(PSB11) and it is bounded to a lysine residue (Lys296) via a covalent linkage (right side

Scheme 12.3.
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of Fig. 12.5). PSB11 undergoes a 11-cis ! all-trans Z/E photoisomerization, which

triggers the Rh activity [47,48]. Notice that both the chromophores of GFP and Rh are ion

pairs (see Fig. 12.6). For GFP, the HBDI anion is coupled to an Arg cation, while in

the visual pigment the retinal PSB cation is interacting with a Glu113 carboxylate

counterion.

The excited state lifetime of the GFP chromophore is very long in the protein

(ca. 3 ns) but much shorter (less than 0.3 ps) in solution. The mechanistic hypothesis is

that the decay is due to a Z/E isomerization. Thus, while in solution the fluorophore

may undergo an ultrafast internal conversion, the protein should act by restraining the

isomerization. In contrast in Rh the excited state lifetime is ca. 150 fs. However, if we

look at the solution lifetime this is increased of one order of magnitude. Furthermore,

one has 24% quantum yield in solution and 65% quantum yield in the protein. Thus, in

this case the protein is ‘catalyzing’ the reaction. The absorption maxima (lmax
a ) of

Fig. 12.5. Ball and stick representation of the green fluorescent protein chromophore (left side) as an example of

molecule which can waste the photon energy and of the visual pigment rhodopsin chromophore (right side)

which can efficiently convert the light energy into molecular motion (adapted from Ref. [8]).

Fig. 12.6. Absorption maxima for the green fluorescent protein chromophore (left side) and the visual pigment

rhodopsin chromophore (right side) in different environments (solution and protein). These features contribute

to explain the different behaviour of the two proteins (adapted from Ref. [8]).
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the two proteins are also environment dependent. In fact, while the absorption of HBDI

in solution is 426 nm, GFP has a much red shifted (495 nm) absorption maximum.

The same behaviour has been found in Rh: the absorption of retinal is 442 nm in

solution and it becomes 498 nm in the protein. We begin our CASPT2//CASSCF

investigation by trying to reproduce these spectral features. Why there is a red shifted

absorption inside the protein?

12.3.1 GFP spectroscopy

The case of the GFP chromophore is important since its gas-phase spectra are available

and one can make a direct comparison with the experiment at various level (gas phase,

solution, protein matrix) [27,49]. Such comparison is schematically reported in

Scheme 12.4. Inspection of these data reveals that the gas-phase absorption maximum is

substantially closer to the protein absorption maximum than to the solution absorption

maximum. This suggests the rather naı̈ve idea that the GFP protein cavity offers an

environment more similar to the gas phase than to the solution.

The simulation correctly reproduces the closeness of the gas phase and protein

absorption lamax: Geometry optimizations in the different environments indicate that

the protein, gas phase and solution spectral features are related to the nature of the

chromophore structure. Notice that, remarkably, as shown in Fig. 12.7, the equilibrium

structures in the protein (Fig. 12.7a) and in the gas phase (Fig. 12.7c) display close absorp-

tion maxima in spite of the different geometrical structures. In contrast, the solution

equilibrium structure (Fig. 12.7b) differs dramatically. Thus, even the geometrical analysis

is consistent with the spectroscopy.

The CASSCF/AMBER method allows for geometry optimization on the excited state.

Thus, we can also predict the emission maxima. The results, schematically illustrated in

Scheme 12.5, indicate that the protein/gas-phase similarity also holds for the emission

suggesting that the protein matrix mimics the gas phase even for the relaxed excited state

chromophore.

Scheme 12.4.
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12.3.2 Rh spectroscopy

As already mentioned above, the visual pigment Rh [47,48] is a G-protein-coupled

receptor containing an 11-cis retinal chromophore (PSB11) bounded to a lysine residue

(Lys296) via a protonated Schiff base linkage (see dashed frame in the structure below).

While the biological activity of Rh is triggered by the light-induced isomerization of

PSB11, this reaction owes its efficiency (e.g. short time-scale and quantum yields) to the

protein cavity.

Fig. 12.7. Ground state CASSCF optimized structures for the GFP chromophore in three different

environments: (a) protein, (b) water solution and (c) in vacuo. Geometrical parameters are in Å and degrees

(adapted from Ref. [8]).

Scheme 12.5.
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Accordingly, the investigation of the environment-dependent properties of PSB11 is a

prerequisite for understanding Rh ‘catalysis’. As for GFP the equilibrium geometry and

absorption maximum (lmax
a ) are indicators of the environment effect.

We recently [36] provide evidence that our CASPT2//CASSCF/AMBER QM/MM

strategy can be correctly applied to the investigation of the excited state of Rh with a

computational error ,5 kcal mol21. Thus, our simulation allows for a semiquantitative

analysis of the factor determining the properties of the protein environment. Comparing

the computed vertical excitation energy with the experimental values (see Scheme 12.6),

we found that for Rh the absorption maximum is reproduced with only 3 kcal mol21

(476 nm vs. 498 nm) while for the solution the error is only 1 kcal mol21 (433 nm vs.

442 nm). These results confirm the quality of our approach and allow to reproduce the so-

called ‘opsin-shift’ (the 445 nm lmax observed for PSB11 in methanol is red shifted to
498 nm in Rh) with a 2 kcal mol21 error.

As shown in Fig. 12.8, the S0 Rh chromophore optimized structure (protein) is close to

the crystallographic (X-ray) and NMR structures observed experimentally for bovine Rh.

Comparing this geometry with the one obtained for PSB11 in methanol solution, using

Cl2 as counterion, it is evident that the central segment of PSB11 is nearly planar and the

b-ionone ring is 108 more twisted than in the protein.
The excitation energy of the chromophore–counterion (Glu113) system (RPSB þ

count., taken with its Rh geometry) is increased leading to a strongly blue shifted lamax:
The isolated RPSB displays instead an absorption maximum much closer to that of the

protein. The results are illustrated in Scheme 12.7 (where we report the S1–S0 and S2–S0

Scheme 12.6.
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energy gaps). From a more technical point of view, Scheme 12.7 suggests that the protein

matrix offsets or counterbalances the electrostatic effect of the counterion. The excitation

energy in solution is more similar to the chromophore–counterion couple than to the

protein thus indicating that the offsetting effect of solvent environment is less marked.

Furthermore, the same data reveal that the dynamic correlation energy provided by the

CASPT2 correction is important both in the protein environment and in the gas phase

(indeed in the specific case of Rh it is even larger in the protein).

Why is the counterion causing this effect? Quantum chemistry may help us to give an

explanation. In fact (see Fig. 12.9) it has been shown that, upon photoexcitation, the

positive charge of a simplified model of the Rh chromophore undergoes a 34% (with

respect to the centre of the chain) displacement of the positive charge along the molecule

Fig. 12.8. Ground state CASSCF optimized structures for the Rh chromophore in solution, in vacuo and in the

protein compared to the crystallographic and NMR structure (adapted from Ref. [36]).

Scheme 12.7.
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backbone and toward the C end. When the counterion is close to the PSB, the Glu113

stabilizes preferentially the ground state, where the positive charge is located at the

N-terminal, than the excited state. This effect yields a larger S1–S0 energy gap, leading to

the observed blue shift. The specific charge distribution of the protein cavity

counterbalances the effect of the counterion decreasing the S1–S0 energy gap. Notice

also the effect of the counterion stabilization of the S2 state. As reported in Fig. 12.9,

the S2 state does not show the same charge translocation phenomena seen in S1. Thus, the

counterion do not effectively destabilize S2 with respect to S0 and the S2–S1 energy gap

decreases considerably in the ion pair of Scheme 12.7.

12.3.3 The photoisomerization path of Rh

We have recently demonstrated that the CASPT2//CASSCF level of theory can be used to

get realistic information on the excited and ground state relaxation of PSB11 in the Rh

cavity or, in other words, to compute the entire photochemical reaction path [50,51]. This

information will enable us to understand the mechanism driving the excited state decay

and photon energy storage in Rh. Time resolved spectroscopy studies have established

that a first transient species (see Fig. 12.10) is formed after 50 fs. This fluorescent

intermediate (FS-Rh) features a lmax in the range of 600–700 nm. A second transient

species is detected after ca. 200 fs (photoRh). The first ground state isolable intermediate

is instead formed in 2 ps (bathoRh). In Fig. 12.10 we display the points recently

computed along the photochemical reaction path of Rh. We have located the excited state

structure corresponding to FS-Rh. Its energy is evaluated to be 1 kcal mol21 of the

experimental value. Then we located the structure of the lowest lying S1/S0 conical

intersection (CI-Rh), which corresponds also to the absolute S1 minimum. This structure

Fig. 12.9. Ground and excited state Mulliken charges along the backbone of Rh showing the displacement of the

positive charge along the molecule and toward the C end (adapted from Ref. [8]).
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displays a ca. 908 twisted central C11–C12 double bond. Starting at the conical

intersection geometry and via standard geometry optimization it has been possible to

locate the first stable ground state intermediate (bathoRh) with a 540 nm of absorption

and featuring an all-trans-like chromophore structure (about 1508 twisted C11–C12
double bond).

It has not yet been possible to unambiguously assign the photoRh transient that may

well be a low energy excited state or an high energy ground state transient.

Concerning the energy storage problem (ca. 32 kcal mol21 are efficiently stored in

bathoRh), the results of our CASPT2//CASSCF/AMBER energy profile (Fig. 12.11)

show that we are able to reproduce energy storage with an error of 5 kcal mol21.

What about the geometry evolution on the excited state? The change in the

chromophore structure, occurring immediately after excitation, regards the bond lengths

of the –C9yC10–C11yC12–C13yC14– moiety. In fact, at FS-Rh there is a complete

inversion of the single and double bond positions (Fig. 12.12). The CI-Rh displays a

highly helical structure compared to Rh and FS-Rh and is mainly characterized by large

structural change in the –C9yC10–C11yC12–C13yC14– moiety. Thus, the motion

driving the S1 ! S0 decay is mainly torsional with rotation of about 688 (228 ! 908)
around the C11yC12 bond and 37 and 158 twisting around the C9yC10 and C13yC14
bonds, respectively. In contrast to the initial excited state relaxation, at conical

Fig. 12.10. Computed points along the photochemical reaction path of Rh (adapted from Ref. [8]).

Fig. 12.11. CASPT2//CASSCF/AMBER energy profile for the Rh! bathoRh photochemical reaction com-

pared to the experimental values (in bold) (redrawn with permission from Ref. [50] q 2004 by The National

Academy of Sciences of the USA).
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intersection all the other bonds remain substantially unchanged. Therefore, from a

general point of view, during photoisomerization the structural changes do not occur

exclusively at the central double bond but also involve the other two adjacent double

bonds leading to a global change in the helicity of the chromophore.

12.3.4 Nature of the energy storage

By decomposing the computed 26 kcal mol21 stored photon energy in terms of change

in steric interaction between the chromophore and the protein cavity we have seen

that this contributes for only ca. 7 kcal mol21. This is consistent with the fact that the

photoisomerization requires little displacement/reorientation of the PSB11 backbone.

The superposition of the optimized bathoRh and Rh ground state structures shows that

the position of the PSB11 and b-ionone ring remains substantially unchanged while the
structural change affects only the central fragment (Fig. 12.13).

Since the calculated change in the electrostatic interaction between the chromophore

and the protein cavity reveals a contribution of other ca. þ6 kcal mol21, the change in
steric and electrostatic interaction must account for only half of the stored energy. So the

photon energy has to be mainly stored in terms of the strain energy of the chromophore.

In particular, it is due to the distorted p system of bathoRh (bond lengths and angles of

the other moiety of the bathoRh are close to Rh) with respect to Rh.

In conclusion, the 32 kcal mol21 photon energy stored in bathoRh are not fully related

to a charge separation (a change in the electrostatic interaction between the chromophore

and the protein cavity) but mostly ‘reside’ in the highly strained chromophore of

bathoRh where three different double bonds are not completely reconstituted. Indeed

the calculations reveal that three highly twisted double bonds in the first (isolable)

Fig. 12.12. Geometry evolution along the excited state reaction path connecting Rh to CI-Rh (adapted from

Ref. [8]).
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intermediate bathoRh are responsible for,50% of the stored photon energy. The change

in electrostatic and steric interaction of the chromophore with the protein cavity accounts

each one for the 25% of the stored energy.

12.4 FROM PHOTOBIOLOGY TO BIOMIMETIC

MOLECULAR SWITCHES

Can what we have learnt from photobiology be used to design novel and more efficient

light-driven molecular devices? In other words, can we design biomimetic photochemical

switches that exploit radiative energy to achieve a well-defined molecular structure

deformation? The design, synthesis and characterization of this type of molecular devices

appear to be of great importance in the field of modern technology such as the

construction of light powered nanodevices and, in particular, in the field of the

conformational control of biopolymers [52–54]. In this last field one can envision

applications such as that of using light pulses to trigger protein folding/denaturation or to

generate dynamical combinatorial libraries based on polypeptide backbones [55–57].

Prototypes for the preparation of fully efficient single-molecule switch may be found

among molecules involved in photochemical reactions of biological photoreceptors, such

as those occurring in Rh proteins. Indeed the photoisomerization of PSB11 can be seen

as extremely efficient single-molecule molecular motors due to the fact that the

photoisomerization is stereoselective, unidirectional, ultrafast and occurs with high

quantum yield. Thus, molecules mimicking the PSB chromophore of Rh can be proposed

as new types of biomimetic switches.

In the present context, we are currently studying peptidomimetic polycyclic

structures derived from the thioredoxin reductase active site [56,57], which consist of

a domain of peptidic nature containing the sequence for the recognition and of a domain

of non-peptidic nature. In the present case, this last domain is formed by an unnatural

amino acid of the size (i.e. isosteric) of a bi- or tri-peptide that can undergo cis–

trans photoisomerization. Such isomerization induces conformational changes in

Fig. 12.13. Superposition of bathoRh and Rh structures. The frame indicates the part of a molecule that

undergoes a structural change (redrawn with permission from Ref. [50] q 2004 by The National Academy of

Sciences of the USA).
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the peptide domain covalently attached to the motor mainly due to changes in the

skeletal strain tension (angular or torsional). In general, such a ligand will have at least

two tunable states.

The structure in blue, that represents the non-peptidic domain currently investigated in

our group, is displayed in Fig. 12.14 together with the computed excited state reaction

path [58]. It is constituted by a protonated Schiff base in which the isomerization of the

two terminal double bonds is blocked by the inclusion in two five-membered rings and

that mimics the photoisomerization of Rh chromophore. Such chromophore is rigid

because of the presence of the central double bond and of the rings. Obviously, a light

triggered cis– trans isomerization in the switch will lead to remarkable conformational

modifications in the peptide moiety. These conformational changes have been simulated

using the same QM/MM method (CASPT2//CASSCF/AMBER) implemented in our

laboratory [58]. In the diagram of Fig. 12.14 is shown the results of a photochemical

reaction path calculations (in vacuo) for the whole system. The CI is 908 twisted as in
the retinal chromophore. Along the excited state reaction path, the oligopeptide structure

does not change, but following the ground state relaxation toward the trans form of the

chromophore the oligopeptide structure is largely modified.

A series of systems chemically similar to the chromophore shown in Fig. 12.14 have

already been synthesized in our laboratory [59].

Fig. 12.14. Energy profiles along the S1 and S0 cis ! trans photoisomerization coordinate of the chromophore

in blue included in the oligopeptide chain (adapted from Ref. [58]).
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A different, minimal, non-natural aminoacid, that has been investigated in an attempt

to control the conformation of an oligopeptide with light, is N-methylthioacetamide

(NMTAA). As shown in Fig. 12.15, trans-NMTAA is isosteric to a dipeptide that

contains a single thiocarbonyl group. The presence of such functional group in the

amidic bond has two important consequences: (i) the lmax
a of the thioamidic bond is

distinct from the one of standard amidic bonds and (ii) light absorption at such

wavelengths induces selective cis ! trans isomerization of the thioamidic group. The

mechanism of NMTAA has been studied in depth using the CASPT2//CASSCF

approach. These studies have shown that both excited singlet and triplet states are

involved in the reaction [60].

12.5 CONCLUSIONS

We hope we have provided some evidence that it is, nowadays, possible to investigate, at

a semiquantitative level, photobiological problems using computational tools. In

particular, the use of the ab initio CASPT2//CASSCF computational strategy hybridized

with molecular mechanics force fields can be used to investigate both biological

photoresponsive molecules and to design new biomaterials inducing conformational

changes in oligopeptides. We believe that these two complementary aspects of modern

research in computational chemistry will become more and more important in the near

future.

Fig. 12.15. Structure of trans-NMTAA. Trans-NMTAA can be inserted in an oligopeptide chain and

photoisomerized to its cis form (adapted from Ref. [60]).
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CHAPTER 13

The nature of the chemical bond in the

light of an energy decomposition analysis

Matthias Lein and Gernot Frenking

Fachbereich Chemie, Philipps-Universität Marburg, D-35043 Marburg,
Hans-Meerwein-Strasse, Germany

Abstract

In this work we summarize the results of quantum chemical calculations where we

investigate the nature of the chemical bond in main-group and transition metal

compounds with an energy decomposition analysis (EDA). The EDA decomposes the

instantaneous interaction energy A–B between two fragments A and B into three terms

which can be interpreted in a chemically meaningful way. The three terms are the

quasiclassical electrostatic interaction between the frozen charges of the fragments

DEelstat; the exchange (Pauli) repulsion between electrons possessing the same spin

DEPauli; and the orbital interaction term DEorb: The latter term can be divided into

contributions of orbitals having different symmetry, which allows an estimate of the

strength of s, p, and d bonding. The results show that the quasiclassical electrostatic

interaction significantly contributes to the bonding interactions in all molecules. The

trend of the bond strength is in most cases correctly predicted by the orbital term DEorb
but there are cases where the electrostatic attraction or the Pauli repulsion are more

important for an understanding of the bonding interactions. The EDA is an

unambiguously defined partitioning scheme, which considers all terms yielding a

chemical bond. The EDA can be considered as a bridge between the classical heuristic

bonding models of chemistry and the physical mechanism of chemical bond formation.

13.1 INTRODUCTION

Numerical quantum chemistry has been the most rapidly developing field of chemistry in

the second half of the last century. Forty years ago, quantum chemistry was mainly

practiced by theoretical physicists while very few chemists were actively engaged in the

field. It was hardly considered by orthodox chemists to be part of chemical sciences

q 2005 Elsevier B.V. All rights reserved.
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because the foundations of quantum chemistry are deeply rooted in theoretical physics

while chemistry in the past was nearly exclusively an experimental science [1]. After

20 years of ground-breaking method development, quantum chemistry made a first

impact on a broad scale in organic chemistry in the 1970s when MO theoretical methods

were used for explaining and predicting electrocyclic reactions which could not be

understood with classical bonding models. The breakthrough came with the introduction

of the frontier orbital model of Fukui [2] and the orbital symmetry model of Woodward

and Hoffmann [3]. At the same time, the numerical accuracy of quantum chemical

methods which was achieved due to method development and technical advances in

computer hardware reached a level which led theoretical chemists to question experi-

mental results. This was a daring undertaking in those days! The trust, which is nowadays

placed on the results of high-level ab initio calculations stems from the time when the

results of the decade long development of quantum chemical methods showed that

theory and experiment can challenge each other. Chronicles of this development have

been published by Henry F. Schaefer III who is one of the pioneers of Computational

Chemistry [4].

At a conference on molecular quantum mechanics in Boulder, Colorado in 1960,

Charles Coulson reminded the theoretical chemists that computational quantum

chemistry did not pay enough attention to the heuristic chemical concepts and bonding

models which were used by experimental chemists. He requested that “the role of

quantum chemistry is to understand these concepts and show what are the essential

features in chemical behavior”. The statement “give us insight not numbers” is a quote

from his famous after dinner speech of that conference. It points to the missing link

between numerical quantum chemistry and experimental chemistry. While the former

discipline impressed by ever higher accuracy in computing molecular geometries,

energies and other properties, most theoretical chemists did not bother in the inter-

pretation of the results in terms of chemical bonding models. A notable exception besides

Coulson [5] was Linus Pauling [6], who underpinned the pre-quantum chemical bonding

model of Gilbert Lewis [7] with quantum theoretical arguments which were not

undisputed, however. Paulings dogmatic view in favor of valence bond theory and his

refusal of recognizing molecular orbital theory as a valid theory of chemical bonding

made it deceptively easy for experimental chemists to continue using their classical

bonding models, but a true understanding of the nature of the chemical bond in terms

of quantum chemical laws was not achieved.

An important contribution to the latter goal was made in the 1960s by Klaus

Ruedenberg [8] who studied the contributions of potential and kinetic energy to the

chemical bond. According to the quantum virial theorem, the total energy E of a molecule

at equilibrium is related to the average values of the potential energy kVl and kinetic
energy kTl as given by Eq. (1):

E ¼ 1=2kVl ¼ 2kTl ð1Þ
According to Eq. (1), the energy lowering caused by the formation of a chemical bond

means lowering of the potential energy and increase of kinetic energy. Ruedenberg [8]

showed that the driving force for the chemical bond formation is actually a lowering of

the kinetic energy and rising of the potential energy [9]. This is because, during the bond
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formation, the valence electrons of the atoms are initially moving away from the nuclei

toward the interatomic bonding region where the kinetic energy is lower than near the

nucleus. The virial theorem at equilibrium [10] becomes fulfilled by the contraction of the

atomic orbitals which is an intra-atomic process [11].

The ground breaking work in the 1970s by Fukui [2] and by Woodward and Hoffmann

[3] pioneered the acceptance of MO theory by experimental chemists. Because of the big

success in explaining chemical phenomena, most textbooks discuss now covalent bonds

in terms of orbitals and orbital interactions. It is important to recognize that the model of a

covalent bond consisting of a pair of electrons shared between two atoms was introduced

into chemistry by Lewis already 50 years earlier and before modern quantum chemistry

was developed [7]. The present understanding of chemical bonding considers orbital

interactions as the driving force for covalent bonding while ionic bonds are discussed

in terms of classical electrostatic attraction between opposite charges. It is not true,

however, that classical electrostatic attraction is unimportant for covalent interactions.

The latter impression which is held by many chemists stems from the analysis of the

interatomic interactions in H2 which goes back to the pioneering work of Heitler and

London [12]. In this chapter, which is the work that gave birth to the field of quantum

chemistry [13] the authors show that the attractive hydrogen–hydrogen interactions

come mainly from “a characteristic quantum mechanical resonance phenomenon which

is closely related to the resonance vibrations that were found by Heisenberg“ [12]. But the

bonding in dihydrogen is atypical for nonpolar bonds! Hirshfeld and Rzotkiewicz

reported in 1974 that the net electrostatic attraction in the heavier first-row E2 molecules

provides more of the binding energy than those contributions that are the source of the

strong binding in H2 [14]. In 1986 Spackman and Maslen calculated the electrostatic

energies of 148 polar and nonpolar diatomic compounds [15]. They showed that the

quasiclassical electrostatic attraction is always very large except for H2. The calculated

values were in many cases even larger than the bond dissociation energies! For example,

the quasiclassical electrostatic attraction between two spherical nitrogen atoms in the 4S

ground state at the equilibrium distance of N2 was calculated as DEelstat ¼ 2330:7 kcal/
mol [15] while the bond dissociation energy (BDE) of dinitrogen is De ¼ 228:5 kcal/mol
[16]. This is in striking contrast to H2 which has a BDE of De ¼ 109:6 kcal/mol [16]
but the calculated value for DEelstat is only 21.4 kcal/mol [15].

The work by Spackman and Maslen did not address the question about other energy

contributions to the chemical bonding in diatomic molecules E2: In particular, the

question about the strength of the orbital interactions DEorb which are frequently

considered as the sole driving force of covalent bonding needs to be answered. Because

the classical electrostatic attraction is already larger than the BDE, there must be

significant Pauli repulsion DEPauli between electrons having the same spin which is

the third contributor to the total interatomic interactions energy DEint in E2: The quanti-
tative knowledge about the strength of DEelstat; DEorb and DEPauli would yield a complete
picture of the nature of the chemical bond using three mathematically well-defined terms

(see below) which can be meaningfully interpreted. Since DEelstat can be identified with
ionic bonding while DEorb gives the conceptually different type of binding interactions in
covalent bonds, the calculated size of the energy terms may be used as a bridge between

exact quantum chemical calculations and the heuristic bonding models of chemistry.
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In this chapter we summarize our systematic investigations of the nature of the

chemical bond in transition metal (TM) molecules [17–37] and main group compounds

[37–43] employing an energy decomposition analysis (EDA) which was originally

developed by Morokuma [44] for ab initio methods and by Ziegler and Rauk [45] for

DFT methods. The EDA method has been further developed by Baerends and coworkers

[46]. Initially, the focus of our work was on the chemical bonding in donor–acceptor

complexes which has been summarized in a review [47]. In more recent studies we

analyzed the nonpolar bonds between main-group elements, which are classified as

typical covalent bonds. The goal of this work is to give a rigorously defined quantum

chemical analysis of the chemical bond that connects the established qualitative bonding

models of chemistry with quantitative data which come from accurate calculations. The

data are not exclusive in the sense that they give a definite answer about the nature of

the chemical bond, because other partitioning schemes than the EDA may be suggested.

The advantage of the EDA is that the energy terms can be interpreted in a plausible way

which provides a quantitative ordering scheme for different chemical bonds.

We wish to comment on the interpretation and meaning of covalent bonding [48]. The

definition of the latter according to Pauling is: “The covalent bond consists of a pair of

electrons shared between two atoms, and occupying two stable orbitals, one of each

atom” [49]. Paulings definition is based on the suggestion of Lewis who wrote: “The

chemical bond is at all times and in all molecules merely a pair of electrons held jointly

by two atoms” [50]. This type of bonding is distinguished from ionic bonding that is

found, for example, in ionic solids. Covalent bonds thus arise from shared-electron

interactions while ionic bonds come from closed-shell interactions between separated

charged species. Purely, ionic bonds can be explained with classical electrostatic

interactions. Nonpolar bonds like in N2 are according to Paulings definition purely

covalent, while polar bonds have ionic and covalent contributions [51]. As noted above,

nonpolar bonds have significant contributions from classical electrostatic interactions

besides the ‘resonance phenomenon’ which in modern terminology is called orbital

interactions. In our previous work, we suggested that covalent bonding should be

identified with orbital interactions (resonance interactions) because the difference

between a shared-electron bond and an ionic bond lies in the quantum theoretical

resonance term that is important for the former bond. Pauling identified ionic bonding

with classical electrostatic bonding which according to the valence bond model [52]

becomes important in polar molecules where the ionic resonance forms contribute to the

bond energy [51]. It was later found [14,15] that classical electrostatic interactions are

strong in nonpolar bonds, too. It is thus reasonable to identify covalent bonding with

orbital interactions. This means, however, that the understanding of a covalent bond in

our work is different from the definition given by Pauling. According to our definition,

nonpolar bonds are only partially covalent and partially electrostatic. Ionic bonds are

purely electrostatic in our and Paulings definition, but strong electrostatic interactions are

also found in bonds which according to Pauling are purely covalent.

The work which is mentioned above and the results which are presented here show

that the progress which was made during the first 40 years in theory and application of

Computational Chemistry is not restricted to numerical quantum chemistry. Enormous

advances have also been made in the interpretation and understanding of the chemical
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bond bridging the gap between the physical origin of the chemical bond [9] and chemical

bonding models.

We wish to point out that other groups have also been very active in analyzing the

chemical bond using the EDA. Most previous work was devoted to closed-shell donor–

acceptor interactions. Early work particularly about metal–ligand interactions has been

reported by Ziegler et al. [53]. More recent EDA studies which included studies about the

interactions between open-shell fragments have been published by Bickelhaupt and

coworkers [54].

13.2 ENERGY DECOMPOSITION ANALYSIS

The focus of the bonding analysis is the instantaneous interaction energy, DEint; of the
bond, which is the calculated energy difference between the molecule and the fragments

in the frozen geometry of the compound. The interaction energy is divided into three

main components:

DEint ¼ DEelstat þ DEPauli þ DEorb ð2Þ
DEelstat gives the electrostatic interaction energy between the fragments, which are

calculated using the frozen electron density distribution of the fragments in the geometry

of the molecules. Note that the choice of the electronic state of the fragments is not

always trivial. It must be the proper reference state with regard to the electronic state of

the molecule. The reference state may not be the electronic ground state of the fragment.

For example, the electronic reference state of the CH fragment in acetylene, HCxCH, is

the ð4S2Þ quartet state but the electronic ground state is 2P: The reader should, therefore,
pay attention to the choice of the fragments in the EDA calculations. Details about the

electronic states and the spatial arrangement of the fragments are given in the original

publications. In some cases it was useful to analyze the bonding interactions twice using

different fragments for the EDA calculation.

The second term in Eq. (2), DEPauli; refers to the repulsive interactions between the
fragments, which are caused by the fact that two electrons with the same spin cannot

occupy the same region in space. DEPauli is calculated by enforcing the Kohn–Sham
determinant on the superimposed fragments to obey the Pauli principle by antisymme-

trization and renormalization. The stabilizing orbital interaction term, DEorb; which is
equivalent to the Heitler–London resonance phenomenon [12] is calculated in the final

step of the energy partitioning analysis when the Kohn–Sham orbitals relax to their

optimal form. This term can be further partitioned into contributions by the orbitals

belonging to different irreducible representations of the point group of the interacting

system. The interaction energy, DEint; can be used to calculate the BDE, De; by adding
DEprep; which is the energy necessary to promote the fragments from their equilibrium

geometry in the electronic ground state to the geometry and electronic reference state in

the compounds (Eq. (3)). Further details of the energy partitioning analysis can be found

in the literature [46].

2De ¼ DE ¼ DEprep þ DEint ð3Þ
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It is important to recognize the physical meaning and the relevance of the energy terms

given by the EDA, DEelstat; DEPauli and DEorb; in order to avoid misinterpretations of the
calculated numbers. In particular, we want to point out that the calculation of DEelstat uses
the electron density distribution of the fragments without considering the polarization of

the charge distribution that comes from the chemical interactions. The polarization is

only considered in the final step of the EDA, which means that the stabilization due to

polarization and relaxation is completely included in the DEorb term. Thus, the calculated
electrostatic interaction energy is not the same as the total potential energy change in the

bond formation, because the final electron density differs from the superposition of the

two fragment densities. While the DEelstat term contains only quasiclassical electrostatic

interactions which come from the frozen electron densities of the fragments, the DEorb
term contains electrostatic attraction coming from quantum interference, potential energy

changes due to polarization and relaxation and kinetic energy contributions. The DEPauli
term contains also potential energy contributions because electronic charge is removed

from the overlap area of the fragments closer to the nuclei which is actually lowering the

energy. The increase of the total energy due to the DEPauli term comes from the kinetic

energy of the electrons which is much higher when they come closer to the nuclei. This is

the reason that the DEPauli term is sometimes called kinetic repulsion [46].

The calculations which are reported have been carried out at the following levels

of theory. The bond lengths and EDA data of the diatomic molecules which are discussed

in Sections 3.1–3.3 have been calculated at the nonlocal DFT level of theory using

the revised PBE exchange functional proposed by Hammer–Hansen–Norskov [55] in

conjunction with the correlation functional of Perdew–Burke–Ernzerhof [56] (RPBE).

The geometries of the other molecules have been optimized at the nonlocal DFT

level using the exchange functional of Becke [57] in conjunction with the correlation

functional of Perdew [58] (BP86). Uncontracted Slater-type orbitals (STOs) were

employed as basis functions for the SCF calculations at the RPBE and BP86 levels [59].

The basis sets have triple-z quality augmented by either one (RPBE/TZP; BP86/TZP) or
two (BP86/TZ2P) sets of polarization functions, i.e. p and d functions on hydrogen and

d and f functions on the other atoms. The core electrons of the atoms were treated by the

frozen core approximation [60]. An auxiliary set of s; p; d; f and g STOs was used to fit
the molecular densities and to represent the Coulomb and exchange potentials accurately

in each SCF cycle [61]. Scalar relativistic effects have been considered using the zero-

order regular approximation (ZORA) [62]. All structures have been verified as minima on

the potential energy surface by calculating the Hessian matrices. The EDA calculations

were performed at the same level as the geometry optimizations. All calculations were

carried out with the program package ADF [46].

13.3 BONDING IN MAIN-GROUP COMPOUNDS

We will first present the EDA results for the dihydrogen molecule which is the standard

molecule in curricula and textbooks for discussing the nature of covalent bonding. Then

we compare the results for H2 with heavier diatomic molecules N2 and isoelectronic CO
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and BF followed by a discussion of the dipnicogens N2–Bi2 and the dihalogens F2–I2.

After this we will present the results for more complex molecules.

13.3.1 Diatomic molecules H2, N2, CO, BF [40]

We begin the discussion of the nature of the chemical bond with the archetypical example

H2. According to the definition of Pauling [6] H2 should be a purely covalently bound

species. The partitioning of the energy given in Table 13.1 shows, that this complies with

our definition which identifies covalent bonding with orbital interactions.

The calculated BDE of D0 ¼ 106.3 kcal/mol is in good agreement with the experi-

mental value of D0 ¼ 109.5 kcal/mol [16]. The interaction energy between the two

hydrogen atoms in their respective doublet ground state yields DEint ¼ 2112:9 kcal/mol.
Because there are only two electrons with opposite spin, there is no Pauli repulsion

between the two fragments [63]. Quite interestingly the electrostatic term DEelstat ¼
5.8 kcal/mol at the equilibrium distance is repulsive. The quasiclassical electrostatic

interactions become attractive only at longer H–H distances. Thus it is only the orbital

term DEorb ¼ 2118:7 kcal/mol that leads to a chemical bond in H2.
What about the bonding situation of heavier diatomic molecules? The EDA results

for the isoelectronic species N2, CO and BF are given for comparison in Table 13.1. The

zero-point corrected interaction energy DEint of N2 is 2232.2 kcal/mol which yields a

BDE of D0 ¼ 228.8 kcal/mol. This is in excellent agreement with the experimental value

of D0 ¼ 225.0 kcal/mol [16].

The individual terms that sum up to DEint show, that the largest contribution to the
interatomic interactions in N2 comes from the Pauli repulsion DEPauli: The absolute value
of the attractive orbital term DEorb ¼ 2715:4 kcal/mol is smaller than the Pauli term
DEPauli ¼ 791:7 kcal/mol by 76.3 kcal/mol. This in turn means that the quasiclassical
electrostatic attraction DEelstat ¼ 2308:5 kcal/mol is larger than the BDE De ¼
232.2 kcal/mol. This is in agreement with the work of Spackman and Maslen [15].

Thus, unlike in dihydrogen, the quasiclassical electrostatic attraction in dinitrogen

Table 13.1 Energy decomposition analysis of the H–H, N–N, C–O and B–F bonds at RPBE/TZP [40]

H2 N2 CO BF

DEint 2112.9 2232.2 2258.4 2180.8

DEPauli 0.0 791.7 575.8 476.1

DEelstat
a þ5.8 2308.5 (30.1%) 2240.0 (28.8%) 2210.5 (32.0%)

DEorb
a 2118.7 (100%) 2715.4 (69.9%) 2594.2 (71.2%) 2446.4 (68.0%)

DEs
b 2118.7 (100%) 2470.0 (65.7%) 2301.7 (50.8%) 2396.4 (88.8%)

DEp
b 0.0 2245.4 (34.3%) 2292.5 (49.2%) 250.0 (11.2%)

R 0.745 (0.741) 1.105 (1.09768) 1.144 (1.128) 1.285 (1.262)

De 2112.9 2232.2 2258.4 2180.8

D0 2106.3 (2103.3) 2228.8 (2225.0) 2255.4 (2255.7) 2178.9 (179.9)

Energy values in kcal/mol. Bond lengths R in Å. Experimental values are given in parentheses.
aThe values in parentheses give the percentage contribution to the total attractive interactions DEelstat þ DEorb:
bThe values in parentheses give the percentage contribution to the orbital interactions DEorb:
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significantly contributes to the interatomic attraction. According to our definition of

covalent bonding, N2 is bound 30.1% electrostatic and 69.9% covalent.

The very large values for the quasiclassical attraction in N2 and in other neutral

molecules are sometimes met with scepticism. Referees called it ‘unconceivable’ or even

‘unbelievable’ because it seems difficult to imagine that the interaction of two overall

neutral species yields strong attraction. The data have been criticized because the

calculation of DEelstat is obtained from a promolecule whose wave function is neither

normalized nor antisymmetrized. A reply to the criticism is given in the following.

The first step of the EDA approach is an estimate of the hypothetical electrostatic

interactions between the fragments A and B in terms of classical laws of electrostatic

forces. The charge densities rðAÞ and rðBÞ are calculated from quantum chemical

methods, but DEelstat is determined by evaluating the integrals over the unperturbed

charge distributions [64]. There are repulsive interactions between the nuclei of A and B

which can be considered as point charges and between the electronic charges rðAÞ and
rðBÞ: There are attractive interactions between the nuclei and the electronic charges. At
large distances RðA–BÞ; the attractive and the repulsive terms cancel. At shorter

distances when rðAÞ and rðBÞ start to overlap the two interpenetrating electronic charges
have a repulsion which is smaller than the repulsion between two point charges at the

center of the charges. This is the reason that at intermediate distances, when the overlap

between rðAÞ and rðBÞ becomes significant the net interaction between the unmodified
charges becomes attractive. Only at very short internuclear distances the nuclear

repulsion term, which becomes singular at R ¼ 0; dominates the other terms and DEelstat
becomes repulsive. It should be noted that the quasiclassical electrostatic interaction

between polarizable fragments would become even more attractive at intermediate

distances than for frozen fragments, because the polarization induces a more favorable

charge distribution.

But is it reasonable to use the DEelstat term of the EDA for estimating the quasiclassical

electrostatic interaction in real molecules? We argue in favor of doing so and we will use

dinitrogen as example. Fig. 13.1 shows the changes of the electron density DrðN2Þ in the
various steps of the EDA. Fig. 13.1a gives the change of the density distribution when

the wave function becomes normalized and antisymmetrized, i.e. the difference between

the density of the first step when DEelstat is calculated and the second step when the
DEPauli term is determined. It becomes obvious that charge density is removed (dashed

lines) from the overlapping region between the nuclei to the backside regions. This is

reasonable because, after the first step, electrons with the same spin overlapped in the

same space. The charge movement shown in Fig. 13.1a should give a much lower charge

attraction than it is given by the DEelstat term. But the electron flow from the overlapping

region to the nonoverlapping area is reversed in the third step of the EDA when the

orbitals are allowed to relax (Fig. 13.1b). It becomes obvious that there is charge

accumulation in the bonding region between the atoms which enhances the quasiclassical

electrostatic attraction. Although Ruedenberg [8] has shown that the enhancement of the

electrostatic attraction is not the driving force for the bond formation, the final result of

the orbital relaxation is an increase of the electrostatic attraction. Fig. 13.1c shows the

total electron flow which comes from steps 1–3, i.e. it is the sum of the changes which

are displayed in Fig. 13.1a and b. It becomes obvious that there is an accumulation in
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the bonding region between the nuclei and at the s lone pair region of the nitrogen atoms.

The conclusion is that the values given by the DEelstat term may rather underestimate the

strength of the quasiclassical electrostatic attraction.

Table 13.1 shows that, in N2, 65.7% of the orbital term DEorb comes from orbitals with

s symmetry. The remaining 34.3% come from the contributions of the p orbitals. This is

Fig. 13.1. Density difference plots of N2 at various steps of the EDA calculated at BP86/TZ2P). Solid lines

indicate charge accumulation while dashed lines give charge depletion. The contour line values [e/bohr3] are

^0.001, 0.002, 0.005, 0.01, 0.02, 0.05, 0.1, 0.2, 0.5. (a) Charge flow when the wavefunction of N2 which is

constructed from the superposition of two nitrogen atoms becomes normalized and antisymmetrized: DEelstat !
DEPauli: (b) Charge flow when the wavefunction completely relaxes after normalization and antisymmetrization:

DEPauli ! DEorb: (c) Sum of the previous two steps: DEelstat ! DEorb:
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in nice agreement with the general concept of s bonds being stronger than p bonds. The

absolute values of the orbital interactions appear very large, however. It is important

to recognize that the definition of orbital interactions given by the EDA formula for the

DEorb term is different from the orthodox understanding of orbital interactions which

comes from orbital interaction diagrams. The latter model considers Pauli repulsion as

part of the orbital interactions. This makes the interaction between two doubly occupied

orbitals repulsive. The EDA separates the repulsive interactions between electrons

having the same spin from the interactions between electrons having opposite spin which

yields attractive DEorb values even for the interaction between doubly occupied orbitals
like in He2. The overall repulsion then comes from the DEPauli values.
The separation of total orbital interactions into repulsion ðDEPauliÞ and attraction

ðDEorbÞ in the EDA must be considered when the results are compared with conclusions

which are made from other work. For example, a previous examination of the strength of

s and p orbital interactions in N2 came to the result that the s bond between two nitrogen
atoms is always much weaker than a s bond [65]. This is at variance with the EDA results

shown in Table 13.1 which suggest that s bonding is much stronger than p bonding.

However, the electrons in the s orbitals encounter much stronger Pauli repulsion than

the electrons in the p orbitals. Although the DEPauli term cannot be broken down into s
and p contributions it is possible to estimate the differences between them. N2 has a much
larger Pauli repulsion (791.7 kcal/mol) than Xð1Sþ

g Þ C2 (252.3 kcal/mol) [66]. This is
because the 2p(s) AO of carbon is empty in the 2s22px(p)

12py(p)
12pz(s)

0 atomic

reference state (3P) which is used for the interaction in C2 while the 2p(s) AO of nitrogen

in the 4S reference state is singly occupied (2s22px(p)
12py(p)

12pz(s)
1). The larger Pauli

repulsion in N2 comes mainly from the overlap of the 2p(s)1 AO of nitrogen atomwith the

2s2 AO of the other nitrogen. This means that the increase of the DEPauli term from C2 to

N2 (539.4 kcal/mol) can be attributed to the s orbitals which compensates the attractive

value of DEs ¼ 2470:0 kcal/mol for N2.
The individual contributions to the interaction energy DEint as a function of the N–N

distance are shown in Fig. 13.2. On a large scale (Fig. 13.2a) it can be seen, that the Pauli

term DEPauli almost cancels the orbital term DEorb: The curve of the interaction energy
DEint follows the general trend of the electrostatic attraction DEelstat; but the latter term
has a much lower-lying energy minimum of, 2 450 kcal/mol at a rather short distance.

If the quasiclassical electrostatic attraction between the two nitrogen atoms in their
4S ground state would be the only contributing term, the nitrogen molecule would have

a bond distance of just ,0.85 Å. Since the Pauli repulsion becomes dominant at short

distances the equilibrium bond length becomes 1.1 Å. It is interesting to note that a

quasiclassical calculation of the bond energy of N2 yields a value which is close to the

experimental data. According to the virial theorem (Eq. (1)) the kinetic energy at the

equilibrium distance is equal to 21/2 of the potential energy (,2450 kcal/mol) which
would give a quasiclassical BDE of De ¼, 225 kcal/mol.

The results for the EDA analyses of CO and BF are also given in Table 13.1 [67]. CO is

the strongest bound diatomic molecule. The experimental BDE D0 ¼ 255:7 kcal/mol
[16] is nicely reproduced by our calculations which yield a value ofD0 ¼ 255:4 kcal/mol.
The interaction energy DEint ¼ 2258:4 kcal/mol is about 26 kcal/mol larger than in N2.
The individual terms that contribute to DEint suggest, that 71.2% of the attractive
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contributions come from the orbital term and only 28.8% come from the quasiclassical

electrostatic attraction. Even though CO is heteroatomic, and therefore a polar molecule,

the electrostatic attraction DEelstat ¼ 2240:0 kcal/mol is weaker than in the homopolar
N2. It is thus not only the relative contributions of DEelstat and DEorb that are smaller in
CO than in N2 but also their absolute values. CO is stronger bonded than N2 although the

attractive terms in the former are weaker than in the latter. The difference between the

two molecules, that finally leads to the higher dissociation energy of CO, is the smaller

Pauli repulsion in CO.

The molecule BF is isoelectronic with N2 and CO but it has the lowest BDE of the

three species. The calculated value D0 ¼ 178:9 kcal/mol is in excellent agreement

with the experimental value of D0 ¼ 179:9 kcal/mol. The interaction energy DEint ¼
2180:8 kcal/mol of BF is also smaller than for N2 and CO. Is there an energy term which

explains the weaker bond of BF? Inspection of the calculated data given in Table 13.1

shows that the values for all three main contributions DEelstat; DEPauli; and DEorb in BF are
smaller than in N2 and CO. An explanation for the weaker bonding in the former diatomic

can be found when the s and p contributions to the orbital term are considered. There is

Fig. 13.2. Energy contributions to the bonding in N2 as a function of N–N interatomic distance [Å] calculated

at RPBE/TZP. (a) Small scale. (b) Large scale.
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a significant difference between the strength of the p bonding in BF and the other species.
The DEorb term in BF is smaller than in CO although the s contribution in the former

molecule is actually larger. It is the dramatic decrease of the p bonding which leads to the
comparatively weak B–F bond. Only 11.2% of the orbital term stems from the contri-

butions of the p orbitals. If BF would have a p bond strength which is comparable to that

in N2 and CO it would have an even stronger bond than CO. The results in Table 13.1

clearly show that CO has a triple bond while BF should be written with a single bond.

This is in agreement with the standard Lewis model of chemical bonding.

13.3.2 Dipnicogens N2–Bi2 [40]

The analysis of the bonding situation in the dipnicogens N2–Bi2 was carried out in order

to investigate the difference between first octal-row elements and the heavier homologues

in the light of the energy partitioning analysis. The EDA results of the diatomic group-15

molecules are given in Table 13.2.

The EDA results for N2 have already been discussed in Section 13.3.1 where they were

compared with the data for isoelectronic CO and BF. The calculated interaction energy of

N2 DEint ¼ 2232:2 kcal/mol is much larger than for the heavier analogues P2–Bi2. The
bond dissociation energies and the interaction energies DEint become smaller for the
heavier elements. The results clearly show, that the electrostatic character of the E–E

bonds increases from N2 (DEelstat ¼ 30:1%Þ to Bi2 ðDEelstat ¼ 58:3%Þ: This leads to the
interesting result that, according to our definition based on the EDA results, the E–E

bonds of Sb2 and Bi2 are more electrostatic than covalent although the molecules are

nonpolar.

The relative contribution of the p orbitals to the DEorb term increases from N2
ðDEp ¼ 34:3%Þ to P2 ðDEp ¼ 40:0%Þ:Then it decreases slowly fromAs2 ðDEp ¼ 37:4%Þ
and Sb2 ðDEp ¼ 35:6%Þ to Bi2 ðDEp ¼ 32:2%Þ: Experimental experience shows that

Table 13.2 Energy decomposition analysis of the E–E bond for E ¼ N–Bi at RPBE/TZP [40]

N2 P2 As2 Sb2 Bi2

DEint 2232.2 2109.2 280.6 254.4 248.4

DEPauli 791.7 299.3 247.9 182.3 168.1

DEEelstat
a 2308.5 (30.1%) 2175.8 (43.0%) 2160.5 (48.9%) 2131.5 (55.6%) 2126.3 (58.3%)

DEorb
a 2715.4 (69.9%) 2232.7 (57.0%) 2168.0 (51.1%) 2105.2 (44.4%) 290.3 (41.7%)

DEs
b 2470.0 (65.7%) 2140.1 (60.0%) 2105.1 (62.6%) 269.9 (66.4%) 261.2 (67.8%)

DEp
b 2245.4 (34.3%) 292.6 (40.0%) 262.9 (37.4%) 235.3 (35.6%) 229.1 (32.2%)

Overlap sc 1.58 1.46 1.35 1.26 1.15

Overlap pc 0.74 0.61 0.55 0.48 0.47

R(E–E) 1.105 (1.0977) 1.935 (1.8931) 2.161 (2.103) 2.579 (2.48) 2.728 (2.660)

De 2232.2 2109.2 280.6 254.4 248.4

D0 2228.8 (2225.0) 2108.1 (2116.1) 280.0 (291.3) 254.0 (71.3) 248.1 (247.0)

Energy values in kcal/mol. Bond lengths R in Å. Experimental values are given in parentheses.
aThe values in parentheses give the percentage contribution to the total attractive interactions DEelstat þ DEorb:
bThe values in parentheses give the percentage contribution to the orbital interactions DEorb:
cReference [40] gives only the ps –ps values for the s orbitals and only one component of the p orbitals.
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molecules with multiple bonds between main group elements of the third period and

higher are much less stable than comparable compounds of elements of the first octal row

[68]. It is often assumed that this behavior is caused by weaker p interactions in multiple

bonds between the heavier main-group elements. Table 13.2 shows that this assumption is

not justified. The relative contribution of p bonding to the orbital term in N2 is not higher

than for the other elements of the pnicogen-group. On the contrary, only the value for Bi2
is slightly lower than the value for N2. The EDA results also do not agree with the

statement that thes bond in N2 is very weak and that only thep bonds are actually bonding
at the equilibrium distance [69]. The latter statement is often based on the size of the

overlapping orbitals. Table 13.2 shows that the overlap of the s orbitals which is the sum
the ps and s AOs in N2 is rather large (1.58) much larger than the overlap of the pp AOs
(0.61). The values for the overlaps of the s and p orbitals become smaller when the atoms
become heavier, but the ratio does not change very much. The main difference in the

relative contributions to the E–E interactions between N2 and the heavier homologues is

the smaller percentage value of the DEorb term in P2–Bi2.

13.3.3 Dihalogens F2–I2 [40]

The experimental bond dissociation energies of the dihalogens F2–I2 exhibit an unusual

trend because the lightest member F2 has a weaker bond than Cl2 and Br2. This is usually

explained with the repulsion between the lone-pair electrons, which is assumed to

become very large in difluorine because the F–F distance is rather short. On the other

hand, the radius of fluorine is very small because the electron density of the highly

electronegative atom is rather dense which means that the overlap of the p(p) orbitals in
F2 should be small. The EDA is an ideal method to investigate the validity of the standard

textbook explanation because the Pauli repulsion is explicitly calculated. Table 13.3

gives the results for the dihalogens.

The calculated bond dissociation energies are in good agreement with experiment

except for difluorine. The theoretical result D0 ¼ 46:0 kcal/mol is higher than the experi-
mental value of D0 ¼ 36.9 kcal/mol. The trend however, that the BDE of F2 is smaller

than the bond dissociation energies of Cl2 and Br2 is preserved. Table 13.3 shows that the

values of both DEPauli and DEorb increase steadily from I2 to F2. We want to point out that

the increase of the Pauli repulsion from Cl2 to F2 is not particularly steep. This becomes

obvious from Fig. 13.3 which gives a graphical display of the trends of DEPauli; DEorb;
DEelstat and the total interaction energy DEint:
It becomes obvious that there is only a comparatively moderate increase of DEPauli

and DEorb from Cl2 to F2. The trend of the Pauli repulsion and orbital interaction terms

thus behave normally. An abnormal trend is found, however, for the quasiclassical electro-

static interactions. The DEelstat value steadily increases from I2 to Cl2 but then it decreases

to F2. Fig. 13.3 shows nicely that only the DEelstat values show the same trend as the total

interaction energies DEint: If the quasiclassical electrostatic attraction would further

increase from Cl2 to F2, the total interaction energy would also increase and thus, the BDE

of difluorine would be larger than for dichlorine. The EDA results suggest that F2 has

a weaker bond than Cl2 because the quasiclassical Coulomb attraction is less attractive
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in the former molecule. This comes from the compact electron density distribution of

fluorine atom which does poorly overlap with the nucleus of the other F atom.

A comparison of the EDA results for the dihalogens (Table 13.3) with the dipnicogens

(Table 13.2) shows that the relative contributions of the orbital interactions in the former

are much larger (74.4–79.7%) than in the latter (41.7–69.9%). According to our defini-

tion, bonding in the dihalogens F2–I2 is clearly more covalent than in the dipnicogens

N2–Bi2. But although the contributions of the DEelstat term in the dihalogens are rather

Table 13.3 Energy decomposition analysis of the E–E bond for E ¼ F–I at RPBE/TZP [40]

F2 Cl2 Br2 I2

DEint 247.4 259.1 247.8 234.1

DEPauli 140.8 123.2 76.7 45.4

DEelstat
a 238.2 (20.3%) 244.1 (24.2%) 231.9 (25.6%) 219.8 (24.9%)

DEorb
a 2150.0 (79.7%) 2138.1 (75.8%) 292.6 (74.4%) 259.7 (75.1%)

DEs
b 2144.6 (96.4%) 2123.8 (89.6%) 285.9 (92.8%) 259.4 (99.5%)

DEp
b 25.4 (3.6%) 214.3 (10.4%) 26.7 (7.2%) 20.3 (0.5%)

R(E–E) 1.424 (1.412) 2.037 (1.987) 2.381 (2.281) 2.860 (2.666)

De 247.4 259.1 247.8 234.1

D0 246.0 (236.9) 258.3 (257.2) 247.4 (245.4) 233.8 (235.6)

Energy values in kcal/mol. Bond lengths R in Å. Experimental values are given in parentheses.
aThe values in parentheses give the percentage contribution to the total attractive interactions DEelstat þ DEorb:
bThe values in parentheses give the percentage contribution to the orbital interactions DEorb:

Fig. 13.3. Trends of the various terms of the energy decomposition analysis for the dihalogens F2–I2 calculated

at RPBE/TZP.
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small, they determine the trend of the BDE (Fig. 13.3). We want to comment on the small

attractive contribution of the p orbitals to the binding interactions in F2–I2 (Table 13.3)

which are surprising at first glance. The negative values for DEp do not come from weak

p bonding but from the relaxation of the frozen p(p) orbitals of the halogen atoms in the
dihalogen molecules. The changes in the electronic structure of the fragments in the last

step of the EDA procedure is not only the result of genuine orbital interactions. The

interfragment interactions lead also to a rearrangement of those electrons which are not

involved in chemical bonding.

13.3.4 Nonpolar single bonds of the first octal row HnE–EHn

(E 5 Li–F; n 5 0–3) [42]

In Sections 13.3.5–13.3.7 we discuss EDA results for polyatomic molecules which are

representative for nonpolar bonds between main group elements. We first present the

results of a ‘first-row sweep’ for the single bonds in hydrogen bonded molecules HnE–

EHn. In Section 13.3.5 we discuss multiple bonding in HByBH, H2CyCH2, HNyNH and

HCxCH. In Section 13.3.6 we give the results for the single bonds in the heavier group-

14 homologues H3E–EH3 (E ¼ C–Pb).

The EDA results for the HnE–EHn bonds (E ¼ Li–F) are given in Table 13.4. The

calculated geometries and bond dissociation energies are in good agreement with

experimental data. As mentioned above, the only exception is difluorine where the

calculated dissociation energy is too high.

Table 13.4 shows nicely, that the C–C bond of ethane has the largest interaction

energy (DEint ¼ 2114:8 kcal/mol) of all molecules investigated in this section. The BDE
(De ¼ 93:1 kcal/mol), however, is significantly smaller because of the relatively large
preparation energy (DEprep ¼ 21:7 kcal/mol) of the two CH3-fragments. This is partly
due to the fact, that CH3 has a planar ground state structure while it is pyramidal in

ethane. Adding the zero-point energy correction yields D0 ¼ 83:4 kcal/mol which is in
reasonable agreement with the experimentally determined value of 89.9 ^ 0.5 kcal/mol.

The individual contributions to the interaction energy DEint show, that the quasi-
classical electrostatic term DEelstat contributes 41.4% of the total attractive terms. The

remaining 58.6% stem from the orbital term DEorb: As shown before in the case of

dinitrogen, the electrostatic attraction is even larger than the total interaction energy.

Table 13.4 also shows, that the electrostatic character of the E–E bond increases mono-

tonically from difluorine ðDEelstat ¼ 20:7%Þ to HBe–BeH ðDEelstat ¼ 58:4%Þ but then it
decreases for Li–Li ðDEelstat ¼ 37:3%Þ: The irregular behavior of Li2 can be explained
with the rather diffuse 2s AO of lithium and with unusually strong induction forces [9].

We want to point out that the atomic partial charges must not be used to estimate the

quasiclassical electrostatic interactions between the atoms E. The largest absolute values

of q(E) are calculated for Be2H2 and N2H4. A naive consideration could lead to the

suggestion that the quasiclassical E–E interaction in the two molecules should be

repulsive. Table 13.4 shows that N2H4 has the strongest electrostatic attraction (DEelstat ¼
2178:3 kcal/mol) while Be2H2 has the highest degree of electrostatic character (58.4%).
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Table 13.4 Energy decomposition analysis of HnE–EHn single bonds (E ¼ Li–F) at BP86/TZ2P [42]

Li2 Be2H2 B2H4 C2H6 N2H4 O2H2 F2

Symmetry D1h D1h D2d D3d C2 C2 D1h

DEint 220.6 270.3 2114.5 2114.8 276.8 262.6 252.8
DEPauli 1.9 41.1 161.7 201.6 407.9 384.6 145.8
DEelstat

a 28.4 (37.3%) 265.1 (58.4%) 2140.5 (50.9%) 2130.9 (41.4%) 2178.3 (36.8%) 2145.8 (32.6%) 241.1 (20.7%)
DEorb

a 214.1 (62.7%) 246.3 (41.6%) 2135.7 (49.1%) 2185.5 (58.6%) 2306.4 (63.2%) 2301.4 (67.4%) 2157.5 (79.3%)
DEs

b 246.3 (100%) 2119.7 (88.2%) 2175.5 (94.6%) 2151.3 (96.1%)
DEp

b 216.0 (11.8%) 210.0 (5.4%) 26.2 (3.9%)
DEprep 0 1.6 6.1 21.7 4.2 3.2 0

De 20.6 68.7 108.4 93.1 72.6 59.4 52.8
D0 20.1 (26.4 ^ 1.0) 64.9 (71.7) 103.0 (104.0) 83.4 (89.9 ^ 0.5) 62.8 (65.8) 53.6 (50.9 ^ 1.0) 51.5 (37.9)
q(E) 0.0 0.196 0.081 20.105 20.214 20.153 0.0
R(E–E) 2.737 (2.673) 2.101 (2.101) 1.623 (1.656) 1.532 (1.535) 1.443 (1.449) 1.473 (1.464) 1.421 (1.412)

Energy values in kcal/mol. Bond lengths R in Å. Experimental values are given in parentheses. Atomic partial charges q.
aThe values in parentheses give the percentage contribution to the total attractive interactions DEelstat þ DEorb:
bThe values in parentheses give the percentage contribution to the orbital interactions DEorb:
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In H2N–NH2 the Pauli-repulsion term DEPauli ¼ 407:9 kcal/mol is very large. This
strong destabilizing contribution comes mainly from the repulsion between the lone

electron pairs of the nitrogen atoms in the equilibrium gauche conformation of

hydrazine [42]. Obviously the attractive terms reach their largest values for hydrazine as

well. This indicates that the comparatively low BDE of H2N–NH2 is due to the large

destabilizing effect of the Pauli repulsion rather than small attractive contributions to

the interaction energy DEint: In fact the pure numerical values of both the interaction
energy DEint and the BDE De can be misleading when one tries to assess the nature of

bonding. In the cases of H2N–NH2 and HBe–BeH the interaction energy as well as the

BDE are comparable but the individual contributions to, e.g. the Pauli repulsion are 10

times higher in H2N–NH2.

It seems plausible that the weaker bond of F2 compared to H2B–BH2 is caused by the

larger DEPauli value due to the repulsion of the lone pairs in the former molecule which

is missing in the latter. This is, however, not supported by the data given in Table 13.4.

A comparison shows that in difluorine the strength of the orbital interactions is larger

and the Pauli repulsion is weaker than in H2B–BH2. The weaker bonding is rather caused

by the weak electrostatic attraction (DEelstat ¼ 241:1 kcal/mol in F2 as compared with
DEelstat ¼ 2140:5 kcal/mol in H2B–BH2). In the discussion of the chemical bonding in
the dihalogens it was already shown that the weak quasiclassical attraction in F2 is the

reason why difluorine has a lower BDE than Cl2. The low value of DEelstat can be

rationalised by the compact 2p orbital of the most electronegative element fluorine. The

same reasoning explains why the Pauli repulsion in F2 is much weaker than in HO–OH

and H2N–NH2 although difluorine has a much shorter bond. The absolute values for the

orbital interactions in F2 are also weaker than in HO–OH, H2N–NH2 and H3C–CH3
although the E–E bonds of the latter molecules are longer. Please note that the absolute

values of the EDA calculation for F2 given in Table 13.4 are slightly different from the

data given in Table 13.3 because the latter values have been calculated at the RPBE/TZP

level while the former data come from BP86/TZ2P calculations. However, the relative

contributions of the energy components which are calculated at the two theoretical levels

are very similar to each other.

Table 13.4 also contains the s and p contributions to the E–E orbital interactions,

for all cases where s and p contributions are separable. As expected, the p contributions

for B2H4, C2H6 and F2 are rather small. In the case of B2H4 the only contribution with

p symmetry is the hyperconjugative stabilization of the empty p(p) orbitals of boron.

This interaction amounts to 11.8% of the total orbital stabilization. Each empty p(p)

orbital of boron yields 4.0 kcal/mol adding to the total of 16.0 kcal/mol in H2B–BH2.

It was already mentioned above that the stabilizing p contribution in F2 comes from the

relaxation of the p(p) AOs of fluorine rather than from genuine p bonding.

The most important conclusion of this section is that the quasiclassical electrostatic

attraction significantly contributes to the chemical bonding of the single bonds between

first octal-row elements HnE–EHn. The EDA results show that it is not sufficient to

consider only orbital interactions for gaining an understanding of the trends of the

bond strength. Besides the attractive energy terms DEelstat and DEorb; the Pauli repulsion
DEPauli plays an important role for the formation of a chemical bond.
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13.3.5 Nonpolar multiple bonds HByBH, H2CyCH2, HNyNH

and HCxCH [42]

The EDA results of the single bonds in H2B–BH2, H3C–CH3 and H2N–NH2 shall now

be compared with the multiple bonds in HByBH, H2CyCH2, HNyNH and HCxCH. The

EDA data of the latter molecules are given in Table 13.5. To compare the strength of the

double bonds in question, the boron compound was calculated at the excited ð1Sþ
g Þ state.

The ground state of HByBH is ð3S2
g Þ [70]. In addition to the double bonds in HByBH,

H2CyCH2 and HNyNH the triple bond of HCxCH was also analyzed.

The contributions of the electrostatic attraction to the binding interactions in the

multiple bonds are smaller than in the respective single bonds (see above) but they are still

rather large. The DEelstat term contributes between 34.6–40.1% to the attractive inter-

actions in the respective double bonds. Thus, more than one third of the attractive forces

stems from the quasiclassical electrostatic term. Even in the triply bound acetylene still

27.6% of the attractive force comes from the DEelstat term.
The calculated bond length for HByBH (1.526 Å) is much shorter than in H2B–BH2

(1.623 Å). Hence the interaction energy in the former compound (DEint ¼ 2159:8
kcal/mol) is significantly larger than in the latter species (DEint ¼ 2114:5 kcal/mol).
The question that comes to mind is: How much of this increase can be attributed to the

formation of the boron–boron p bond? Compared to the results of H2B–BH2 the orbital

term DEorb of HByBH has a larger absolute (DEorb ¼ 2135:7 kcal/mol for H2B–BH2
compared to DEorb ¼ 2165:5 kcal/mol for HByBH) and relative (DEorb ¼ 49:1% for

H2B–BH2 compared to DEorb ¼ 59:9% for HByBH) value. However, the s contribution
to DEorb in HByBH (DEs ¼ 2111:1 kcal/mol) is actually smaller than in H2B–BH2

Table 13.5 Energy decomposition analysis of the HByBH, H2CyCH2, trans HNyNH and HCxCH

multiple bonds at BP86/TZ2P [42]

B2H2 C2H4 trans N2H2 C2H2

Symmetry D1h D2h C2h D1h

DEint 2159.8 2191.1 2137.4 2280.0

DEPauli 116.3 281.9 599.4 255.4

DEelstat
a 2110.6 (40.1%) 2181.6 (38.4%) 2254.6 (34.6%) 2147.5 (27.6%)

DEorb
a 2165.5 (59.9%) 2291.4 (61.6%) 2482.2 (65.4%) 2387.9 (72.4%)

DEs
b 2111.1 (67.1%) 2212.2 (72.8%) 2392.6 (81.4%) 2215.5 (55.6%)

DEp
b 254.4 (32.9%) 279.2 (27.2%) 289.6 (18.6%) 2172.4 (44.4%)

DEprep 4.4 12.9 5.6 32.8

De 155.4 178.2 131.8 247.2

D0 [42] 149.8 168.3 (175.4 ^ 2) 123.7 (123.8 ^ 1) 238.7 (230.9 ^ 2)

q(E) 0.031 20.086 20.106 20.093

R(E–E) 1.526 (1.498) 1.333 (1.339) 1.249 (1.252) 1.206 (1.203)

Energy values in kcal/mol. Bond lengths R in Å. Experimental values are given in parentheses. Atomic partial charges q.
aThe values in parentheses give the percentage contribution to the total attractive interactions DEelstat þ DEorb:
bThe values in parentheses give the percentage contribution to the orbital interactions DEorb:
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(DEs ¼ 2119:7 kcal/mol). So the formation of the p bond leads to a reduction of the

s contribution at the shorter B–B distance in HByBH. The interaction energy DEint is
not lowered, because the p contribution overcompensates the loss of s interaction.

Table 13.5 also shows that DEp contributes254.4 kcal/mol (32.9%) to DEorb while DEs

contributes to2111.1 kcal/mol (67.1%). This leads to the conclusion that the p bonding

in HByBH is half as strong as the s bonding while the electrostatic interactions

contribute less than in H2B–BH2.

The interaction energy in ethylene is also higher than in ethane. In contrast to the boron

systems discussed above, now all the contributions are larger than in the singly bound

species. The covalent contribution of the DEorb term is slightly larger in ethylene (61.6%)

than in ethane (58.6%). The p bond strength in H2CyCH2 (DEp ¼ 279:2 kcal/mol)
contributes to 27.2% of the total orbital term DEorb; while the s contribution is much

stronger DEs ¼ 2212:2 kcal/mol. So the s bond in H2CyCH2 is about three times as

strong as the p bond. Unlike the boron systems, the s contribution in H2CyCH2 is much
larger than in H3C–CH3 (DEs ¼ 2175:5 kcal/mol).
The EDA data in Table 13.5 show that the nitrogen–nitrogen interaction in trans-N2H2

(DEint ¼ 2137:4 kcal/mol) is also bigger than the N–N bond strength in hydrazine

(DEint ¼ 276:8 kcal/mol), but still clearly less than the interaction in ethylene. Although
the absolute values of the contributions to DEint are significantly higher than in ethylene,
the strong Pauli repulsion leads to a smaller net attraction. It is important to distinguish

between the absolute values of the p bonding interactions, which increase from HByBH

to H2CyCH2 and HNyNH, and the relative contributions to the DEp term which are

decreasing.

The much higher interaction energy of acetylene (DEint ¼ 2280:0 kcal/mol)
compared with ethylene (DEint ¼ 2191:1 kcal/mol) comes from the increase in the

strength of the orbital contribution in DEorb: As can be seen in Table 13.5 the quasi-
classical electrostatic interaction in HCxCH (DEelstat ¼ 2147:5 kcal/mol) is weaker
than in H2CyCH2 (DEelstat ¼ 2181:6 kcal/mol), whereas the orbital interaction of the
triple bond (DEorb ¼ 2387:9 kcal/mol) is much higher than that of the double bond

(DEorb ¼ 2291:4 kcal/mol). The increase in the orbital term DEorb is almost exclusively
due to the p bonding interactions in HCxCH (DEp ¼ 2172:4 kcal/mol). This value is
much higher than the corresponding value for H2CyCH2 (DEp ¼ 279:2 kcal/mol). The
reason for this is obvious. While in acetylene both components of the bonding p orbital

are occupied, in ethylene only one of these orbitals is occupied. Hence the stabilizing

effect is smaller. From a comparison of the two DEp terms it is obvious that each

individual component of the p bonds in acetylene has about the same strength as the

single p bond in ethylene. The s bond in HCxCH is slightly stronger (DEs ¼ 2215:5
kcal/mol) than in H2CyCH2 (DEs ¼ 2212:2 kcal/mol).
If one finally compares the carbon–carbon triple bond in acetylene with the triple bond

in dinitrogen (Table 13.2) the calculated terms indicate that the larger interaction energy

of the triple bond in C2H2 comes from the weaker Pauli repulsion in the former bond.

The attractive interactions in N2 are almost twice as large as in C2H2 but the difference

between the Pauli repulsion of the two molecules is even larger. This is another example

which shows that it is not sufficient to consider attractive (orbital or quasiclassical)

interactions for getting insight into the nature of chemical bonding.
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13.3.6 Nonpolar group-14 bonds H3E–EH3 (E 5 C–Pb) [42]

The third part of the EDA investigation of nonpolar bonds between main group elements

in polyatomic molecules focuses on the difference between atoms that come from

different rows of the periodic system. The changes in the nature of the homopolar bonds

in H3E–EH3 are given in Table 13.6. The results of the EDA analyses predict that the

interaction energies DEint decrease monotonically from the lighter elements

(DEint ¼ 2114:8 kcal/mol for EyC) to the heaviest element (DEint ¼ 248:2 kcal/mol
for EyPb). The dissociation energies D0 follow the same trend because the preparation

energies are rather small except for ethane.

The quasiclassical electrostatic contribution to the H3E–EH3 bond becomes more

important compared to the DEorb term when one goes from EyC to EySn. This trend

is reversed in the last step. The lead–lead bond has a slightly larger contribution from

the orbital term DEorb than the tin–tin bond. This may be due to relativistic effects,
which should be most important for such heavy elements as lead [71]. Apart from the

latter result, the changes along the series in the H3E–EH3 bond are smooth. Only the

absolute values of the Pauli repulsion DEPauli and the electrostatic interaction DEelstat in
H3Ge–GeH3 are larger than in the silicon compound. This is possibly caused by the,

in comparison to silicon, contracted atomic radius of Ge, which is due to the filled

3d shell of the Ge atom. In summary, the EDA results suggest that the nature of the

chemical bonding in H3E–EH3 (EyC–Pb) changes little. The weaker bonds can be

explained with the fact that the valence electrons of the heavier atoms are further away

from the nucleus and therefore, have less energy than the valence electrons of the

lighter elements.

Table 13.6 Energy decomposition analysis of H3E–EH3 single bonds (E ¼ C–Pb) at BP86/TZ2P [42]

C2H6 Si2H6 Ge2H6 Sn2H6 Pb2H6

Symmetry D3d D3d D3d D3d D3d

DEint 2114.8 275.2 269.7 258.8 248.2
DEPauli 201.6 101.2 114.4 98.3 84.0
DEelstat

a 2130.9 (41.4%) 283.8 (47.5%) 295.2 (51.7%) 286.6 (55.1%) 268.3 (51.7%)
DEorb

a 2185.5 (58.6%) 292.6 (52.5%) 288.9 (48.3%) 270.5 (44.9%) 263.9 (48.3%)
DEs

b 2175.5 (94.6%) 287.8 (94.8%) 284.3 (94.8) 267.5 (95.7%) 261.2 (95.8)
DEp

b 210.0 (5.4%) 24.8 (5.2%) 24.6 (5.2%) 23.0 (4.3%) 22.7 (4.2)
DEprep 21.7 2.8 2.2 1.4 1.4

De 93.1 72.4 67.5 57.4(61.3) 46.8
D0 83.4 (89.9 ^ 0.5) 68.3 (74 ^ 3) 63.8 (70.2) 54.4 43.6
q(E) 20.105 0.208 0.184 0.263 0.250
R(E–E) 1.532 (1.535) 2.352 (2.331) 2.418 (2.403) 2.786 (2.758) 2.898 (2.897)

Energy values in kcal/mol. Bond lengths R in Å. Experimental values are given in parentheses. Atomic partial charges q.
aThe values in parentheses give the percentage contribution to the total attractive interactions DEelstat þ DEorb:
bThe percentage values in parentheses give the percentage contribution to the orbital interactions DEorb:
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13.3.7 Donor–acceptor bonds Y3B–NX3 and Y3B–PX3
(X, Y 5 H, Me, Cl) [38,72]

Boron–nitrogen and boron–phosphorous compounds are classical textbook examples of

donor–acceptor complexes. The chemical bonds of the Lewis-acid Lewis-base

complexes are usually explained in terms of frontier orbital interactions and/or

quasiclassical electrostatic attraction in the framework of the Hard and Soft Acid and

Base (HSAB) model [73]. We were interested in seeing if the differences between the

bond strengths of boron–nitrogen and boron–phosphorous complexes for different

boranes, amines and phosphanes can be explained with the EDA method.

Table 13.7 shows the results of the EDA for borane–amine complexes Y3B–NX3
(X, Y ¼ H, Me, Cl). Note that the preparation energies are rather large for all structures.

It means that the bond dissociation energies may not be used for estimating the strength

of the donor–acceptor interactions. For example, the De value of H3B–NMe3 is signi-

ficantly larger (36.2 kcal/mol) than that of Cl3B–NMe3 (21.0 kcal/mol). This comes from

the larger preparation energy of the latter complex (31.2 kcal/mol) than for the former

(15.2 kcal/mol). It costs more energy to distort BCl3 from its planar equilibrium structure

to the pyramidal geometry in the complex than to distort BH3. Unlike the De values, the

interaction energies of H3B–NMe3 (251.4 kcal/mol) and Cl3B–NMe3 (252.2 kcal/

mol) are similar. We will focus in our discussion of the donor–acceptor interactions on

the analysis of the DEint values rather than on the De data.

The Lewis base NH3 has a significantly lower DEint value with the Lewis acid BMe3
(227.7 kcal/mol) than with BH3 (244.6 kcal/mol) and BCl3 (241.3 kcal/mol). The

same trend is found for the NMe3 complexes where the DEint value in Me3B–NMe3
(231.3 kcal/mol) is much smaller than in H3B–NMe3 (251.4 kcal/mol) and Cl3B–

NMe3 (252.2 kcal/mol). Inspection of the three energy terms (Table 13.7) shows that

Me3B complexes with NH3 and NMe3 are less covalent than the BH3 and BCl3
complexes. This is revealed by the lower percentage values of the DEorb term in the

former species. Since the orbital interactions come mainly from the s(a1) orbitals it
is reasonable to inspect the energy levels of the LUMO of BY3. The LUMO of BMe3
(21.264 eV) is significantly higher in energy than the LUMO of BH3 (23.058 eV) and

BCl3 (22.786 eV). The EDA results show that the weaker donor–acceptor interactions

in Me3B–NH3 and Me3B–NMe3 can be explained with the frontier-orbital model [2].

The same reasoning explains why BCl3 is a stronger Lewis acid than BF3 [41].

The NCl3 complexes with BY3 are much more weakly bonded than the NH3 and NMe3
homologues (Table 13.7). The geometry optimizations of Me3B–NCl3 and Cl3B–NCl3
led to very weakly bonded van der Waals complexes which have long B–N distances.

In order to present a meaningful comparison of the latter species with the bonding

interactions in H3B–NCl3 and for explaining the weak bonding in Me3B–NCl3 and

Cl3B–NCl3, the EDA analyses were carried out for structures which were optimized

with an enforced B–N distance of 1.624 Å which is the optimized bond length

H3B–NCl3. A comparison of the EDA data of H3B–NCl3 with the results for H3B–NH3
shows immediately that the weak quasiclassical electrostatic attraction in the formers

species is responsible for the weak bonding. The values for DEorb and DEPauli for the two
compounds are very similar, but the DEelstat term of H3B–NCl3 is much smaller.

The nature of the chemical bond in the light of an energy decomposition analysis 311

References pp. 367–372



The lone-pair s donor orbital of NCl3 is more compact and has a smaller radius than the

donor orbitals of NH3 and NMe3. The donor–acceptor interactions in Me3B–NCl3 and

Cl3B–NCl3 are further weakened by stronger Pauli repulsion, but the most important

reason for the weak attraction is the weak quasiclassical attraction (Table 13.7).

Table 13.8 shows the EDA results of the boron–phosphorous bonds in complexes

Y3B–PX3. Note that the preparation energies are rather high. The rather large DEprep

Table 13.7 Energy decomposition analysis of the boron–amine complexes X3B–NY3 (X, Y ¼ H, Me,

Cl) at BP86/TZ2P [38,72]

H3B–NH3 Me3B–NH3 Cl3B–NH3

DEint 244.6 227.7 241.3

DEPauli 108.8 128.5 192.8

DEelstat
a 277.3 (50.4%) 283.8 (53.7%) 2120.5 (51.5%)

DEorb
a 276.0 (49.6%) 272.4 (46.3%) 2113.6 (48.5%)

DEsðA1Þb 268.4 (89.9%) 265.1 (89.9%) 2102.2 (89.9%)

DEðA2Þ 0.0 20.2 20.2

DEpðE1Þb 27.7 (10.1%) 27.1(9.8%) 211.3 (9.9%)

DEprep 12.7 15.1 21.5

DE(¼ 2De) 231.9 212.6 219.8

R(B–N) 1.657 1.697 1.633

H3B–NMe3 Me3B–NMe3 Cl3B–NMe3

DEint 251.4 231.3 252.2

DEPauli 119.8 115.1 187.4

DEelstat
a 289.4 (52.2%) 279.8 (54.5%) 2123.7 (51.6%)

DEorb
a 281.8 (47.8%) 266.6 (45.5) 2115.9 (48.4%)

DEsðA1Þb 271.1 (87.9%) 257.6 (86.5%) 299.3 (85.7)

DEðA2Þ 0.0 20.6 20.8

DEpðE1Þb 210.7 (13.1%) 28.5 (12.7%) 215.8 (13.7%)

DEprep 15.2 21.8 31.2

DEð¼ 2DeÞ 236.2 29.5 221.0

R(B–N) 1.651 1.777 1.677

H3B–NCl3 Me3B–NCl3
c Cl3B–NCl3

c

DEint 223.1 210.3 29.4

DEPauli 108.0 142.7 186.4

DEelstat
a 253.9 (41.1%) 269.2 (45.2%) 291.0 (46.4%)

DEorb
a 277.2 (58.9%) 283.8 (54.8%) 2104.9 (53.6%)

DEsðA1Þb 260.4 (78.2%) 262.2 (74.2%) 284.1 (80.2%)

DEðA2Þ 0.0 20.3 20.4

DEpðE1Þb 216.9 (21.8%) 221.3 (25.4%) 220.4 (19.4%)

DEprep 9.2 17.1 21.0

DEð¼ 2DeÞ 213.9 6.8 11.6

R(B–N) 1.624 1.624c 1.624c

Energy values in kcal/mol. Bond lengths R in Å.
aThe values in parentheses give the percentage contribution to the total attractive interactions DEelstat þ DEorb:
bThe values in parentheses give the percentage contribution to the orbital interactions DEorb:
cCalculated with a fixed bond length R(B–N) ¼ 1.624 Å.
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values compensate the moderately strong interaction energies of Me3B–PH3 and Cl3B–

PH3 and they wipe out the weakly attractive interactions of Me3B–PCl3 and Cl3B–PCl3.

The interaction energies of the PH3 complexes with BY3 are smaller compared to the

DEint values of the NH3 analogues while the interaction energies of the PMe3 and NMe3
complexes are nearly the same (Tables 13.7 and 13.8). The common difference between

the phosphane and amine complexes is that the former species have a higher covalent

character than the latter. The rather weak interaction energy of Me3B–PH3 can again be

explained with the energetically high-lying LUMO of BMe3. It becomes obvious by

Table 13.8 Energy decomposition analysis of the boron–phosphane complexes X3B–PY3 (X, Y ¼ H,

Me, Cl) at BP86/TZ2P [38,72]

H3B–PH3 Me3B–PH3 Cl3B–PH3

DEint 238.6 214.7 225.1

DEPauli 113.3 112.1 166.4

DEelstat
a 258.0 (38.2%) 259.4 (46.8%) 289.8 (46.1%)

DEorb
a 293.9 (61.8%) 267.4 (53.2%) 2104.7 (53.8%)

DEsðA1Þb 279.3 (84.6%) 256.9 (85.4%) 292.0 (87.8%)

DEðA2Þ 0.0 20.1 20.1

DEpðE1Þb 214.7 (15.6%) 210.4 (15.5%) 212.6 (12.1%)

DEprep 12.2 13.7 23.0

DEð¼ 2DeÞ 226.4 21.0 22.1

R(B–P) 1.939 2.070 2.026

H3B–PMe3 Me3B–PMe3 Cl3B–PMe3

DEint 255.3 232.1 252.7

DEPauli 130.7 139.9 201.2

DEelstat
a 279.4 (42.7%) 284.7 (49.2%) 2121.8 (48.0%)

DEorb
a 2106.6 (57.3%) 287.3 (50.8%) 2132.1 (52.0%)

DEsðA1Þb 292.7 (87.0%) 276.1 (87.2%) 2119.0 (90.1%)

DEðA2Þ 0.0 20.2 20.3

DEpðE1Þb 213.9 (13.0%) 211.0 (12.6%) 212.8 (9.7%)

DEprep 15.5 20.1 31.4

DEð¼ 2DeÞ 239.8 212.0 221.3

R(B–P) 1.924 2.014 1.986

H3B–PCl3 Me3B–PCl3 Cl3B–PCl3

DEint 230.8 26.8 28.4

DEPauli 112.4 94.0 109.7

DEelstat
a 248.7 (34.0%) 244.0 (43.6%) 250.2 (42.5%)

DEorb
a 294.4 (66.0%) 256.8 (56.4%) 268.0 (57.5%)

DEsðA1Þb 273.9 (78.3%) 243.4 (76.4%) 256.2 (82.6%)

DEðA2Þ 0.0 20.1 20.1

DEpðE1Þb 220.5 (21.7%) 213.4 (23.5%) 211.7 (17.2%)

DEprep 8.7 8.2 13.9

DEð¼ 2DeÞ 222.1 1.4 5.5

R(B–P) 1.909 2.110 2.166

Energy values in kcal/mol. Bond lengths R in Å.
aThe values in parentheses give the percentage contribution to the total attractive interactions DEelstat þ DEorb:
bThe values in parentheses give the percentage contribution to the orbital interactions DEorb:
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comparing the EDA results for Me3B–PH3 with H3B–PH3 (Table 13.8). The absolute

contributions of DEPauli and DEelstat values are nearly the same but the DEorb value of
Me3B–PH3 (267.4 kcal/mol) is much smaller than that of H3B–PH3 (293.9 kcal/mol).

It is difficult to identify a single factor which is responsible for the weaker bonding in

H3B–PH3 and Cl3B–PH3 compared with the analogous PMe3 complexes. Both attractive

components, DEorb and DEelstat are weaker in the former species.
The still weaker bonding interactions in the PCl3 complexes H3B–PCl3, Me3B–PCl3

and Cl3B–PCl3 can be explained with the weaker quasiclassical attraction which comes

from the more compact lone-pair electron density at the phosphorous atom of PCl3.

We want to point out that H3B–PCl3 has the shortest B–P bond length of all Y3–PX3
complexes and yet, the bonding is not very strong. A comparison with the EDA

data for H3B–PH3 shows that, in H3B–PCl3, the repulsive contribution of DEPauli is
smaller and the attractive contribution of DEorb is slightly larger but the DEelstat value
(248.7 kcal/mol) is significantly smaller than that of H3B–PH3 (258.0 kcal/mol). Note

that the general trend of the strength of the phosphane and amine complexes given by

the DEint values, which is PMe3 . PH3 . PCl3 and NMe3 . NH3 . NCl3 correlates

with a decrease of the relative contribution of quasiclassical attraction given by the

percentage values of DEelstat (Tables 13.7 and 13.8).
The EDA results for the phosphane complexes given in Table 13.8 thus give a plausible

answer why PCl3 is a good p acceptor while at the same time the BDE in donor–acceptor
complexes is less than the BDE of the weaker p acceptors PH3 and PMe3. The EDA

results do not support the suggestion that PCl3 is a weak p acceptor [105].

13.3.8 Main group metallocenes ECp2 (E 5 Be–Ba, Zn, Si–Pb) and ECp

(E 5 Li–Cs, B–Tl) [39]

The fortuitous synthesis of the first metallocene compound ferrocene by Kealy and

Pauson which was published in 1951 [74] was not only a landmark event in organo-

metallic chemistry because it was the starting point for a new class of compounds. It

was also a challenge for chemical bonding models. The initial suggestion of the structure

having two Fe–C5H5 s bonds [74a] was soon corrected in two independent publications
by Fischer and Pfab [75] and by Wilkinson, Rosenblum, Whiting and Woodward [76]

who showed that the molecule has a p bonded sandwich structure. A qualitative bonding

model for ferrocene using symmetry adapted molecular orbitals, which is also valid for

other metallocenes of the transition metals was introduced by Shustorovic and Dyatkina

[77]. The orbital correlation model is now generally accepted and used as a standard

in many textbooks. A quantitative investigation of the metal–ligand interactions in

ferrocene and related compounds using the EDA will be given in Section 13.4.7.

Metallocenes have in the meantime also been synthesized with main group elements

E which may be metals or other atoms. Recent reviews of main group metallocenes

show that a large number of compounds with the formula ECp and ECp2 particularly with

elements E of the groups 1, 2, 13, 14 and 15 have been synthesized and structurally

characterized by X-ray analysis [78]. Numerous quantum chemical calculations of main

group metallocenes have also been published in recent years. The theoretical knowledge,
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which has been gained in these studies was recently reviewed by Kwon and McKee [79].

The bonding situation in the compounds has also been analyzed with qualitative bonding

models. There is general agreement that, in main group metallocenes, p-type interactions
are weaker than in transition metal metallocenes because the main group elements do

not have d-type valence orbitals [78,79]. The bonding of the Cp ligand to the s-block

elements (groups 1, 2) is considered to be mainly ionic, while complexes of the p-block

elements should be predominantly covalent. Therefore, orbital correlation diagrams of

main group metallocenes use only the s and p orbitals of E for a discussion of the covalent

bonding in ECp and ECp2 complexes [78,79].

It would be very helpful if the covalent and electrostatic contributions to the E–Cp

bonding and the strength of the different orbital terms could be quantitatively given.

A recent review by Kwon and McKee recognized this by saying “there is not enough

data from high-level theoretical calculations to have a quantitative understanding of the

factors involving covalent or ionic bonding between the Cp ligand and the main group

element” [79]. We have therefore carried out a systematic investigation of the chemical

bonding in main-group metallocenes with one and two Cp ligands ECp2 (E ¼ Be–Ba,

Zn, Si–Pb) and ECp (E ¼ Li–Cs, B–Tl) [39]. The most important results are

summarized in this section.

Table 13.9 shows the EDA results for metallocenes of the alkali metals. A qualitative

orbital correlation for the interaction between a singly charged metal atom Eþ with a

singly charged cyclopentadiene anion Cp2 is shown in Fig. 13.4. The six E–Cp bonding

electrons occupy the lowest lying a1 and the degenerate e1 orbitals.

In order to assess which of the two contributions to the covalent bond is stronger a

series of energy decomposition analyses have been carried out. The results are shown in

Table 13.9.

The bonding between Eþ and Cp2 is in all cases dominated by the quasiclassical

electrostatic interactions. The DEelstat term contributes between 80 and 90% of the total

interaction energy DEint for all alkali metals in this investigation. Although the trend
is not perfectly smooth, as expected, the lowest amount of covalent interaction is found

Table 13.9 Energy decomposition analysis of group-1 metallocenes ECp (E ¼ Li–Cs) using the

fragments Eþ and Cp2 at BP86/TZP [39]

Li Na K Rb Cs

DEint 2164.1 2138.0 2120.8 2113.9 2105.9

DEPauli 22.6 21.5 27.5 24.1 22.9

DEelstat
a 2148.7 (79.6%) 2138.0 (86.6%) 2128.2 (86.4%) 2121.0 (87.7%) 2114.7 (89.1%)

DEorb
a 238.1 (20.4%) 221.4 (13.4%) 220.1 (13.6%) 217.0 (12.3%) 214.1 (10.9%)

DEsðA1Þb 29.6 (25.2%) 26.4 (29.9%) 25.2 (25.7%) 24.8 (28.4%) 24.2 (30.0%)

DEðA2Þ 0.0 0.0 0.0 0.0 0.0

DEpðE1Þb 224.0 (63.0%) 212.3 (57.5%) 213.0 (64.4%) 210.5 (62.1%) 28.5 (60.7%)

DEdðE2Þb 24.5 (11.8%) 22.7 (12.6%) 22.0 (9.9%) 21.6 (9.5%) 21.3 (9.3%)

q(E) þ0.90 þ0.91 þ0.91 þ0.94 þ0.93
The symmetry point group is C5v: Energy values in kcal/mol. Atomic partial charges q.
aThe values in parentheses give the percentage contribution to the total attractive interactions DEelstat þ DEorb:
bThe values in parentheses give the percentage contribution to the orbital interactions DEorb:

The nature of the chemical bond in the light of an energy decomposition analysis 315

References pp. 367–372



for E ¼ Cs ðDEorb ¼ 10:9%Þ and the largest amount is found for E ¼ Li ðDEorb ¼
20:4%Þ: The largest contribution to the orbital term DEorb comes always from the

degenerate e1 orbitals. Only between 25.2% (E ¼ Li) and 30.0% (E ¼ Cs) of the orbital

term stem from the lowest lying orbital with a1 symmetry.

Fig. 13.5 shows the orbital correlation diagram for sandwich complexes that includes

the d orbitals of the main-group elements. Both, the parallel D5d and the bent C2v

structures are shown. Usually the d orbitals are left out because they are considered

unimportant for the covalent bonding. It will be shown below that this may not always be

justified.

The group-2 metallocenes E(Cp)2 with D5d symmetry have 12 valence electrons

which occupy the lowest lying 1a1g, 1a2u, 1e1u and 1e1g orbitals. Ligand to metal electron

donation takes place via (1a1g)! (s), (1a2u)! (pz) and (e1u)! (px,y), where z is the

bonding axis. There is no valence orbital with e1g symmetry on the central metal atom,

and thus, the highest occupied e1g orbital of the ligand should not significantly contribute

to the covalent bonding. The only metal AOs with e1g symmetry are the empty dxz and dyz
orbitals. As will be shown below in Section 13.4 about transition metal compounds,

the covalent bonding in transition metal metallocenes may have significant contributions

from ligand to metal electron donation in the e1g symmetry because the respective

d orbitals are in the valence space for transition metals.

Table 13.10 shows the result of the energy partitioning analysis of the alkaline-

earth metallocenes with D5d symmetry. For all molecules the major contribution to

E

a1

e1

e2

a1

a1

e1

Fig. 13.4. MO correlation diagram for the interactions between a main group atomic ion Eþ and a Cp2 ligand in
(C5v) ECp.
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Fig. 13.5. MO correlation diagram for the interactions between a main group atomic ion E2þ and two Cp2 ligands in ðD5dÞ ECp2.
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Table 13.10 Energy decomposition analysis of group-2 metallocenes ECp2 (E ¼ Be–Ba) and ZnCp2 using the fragments E
2þ and Cp2

22 at BP86/TZP [39]

Be Mg Ca Sr Ba Zn

DEint 2780.9 2636.7 2549.0 2504.5 2461.0 2707.9

DEPauli 35.9 52.7 73.6 66.5 62.2 85.5

DEelstat
a 2483.2 (59.2%) 2493.6 (71.6%) 2477.9 (76.8%) 2458.3 (80.3%) 2437.0 (83.5%) 2533.6 (67.3%)

DEorb
a 2333.6 (40.8%) 2195.8 (28.4%) 2144.7 (23.2%) 2112.7 (19.7%) 286.2 (16.5%) 2259.8 (32.7%)

DEs(A1g)
b 258.6 (17.6%) 238.9 (19.9%) 221.5 (14.9%) 218.2 (16.1%) 213.8 (16.0%) 280.6 (31.0%)

DE(A2g) 0.0 0.0 0.0 0.0 0.0 0.0

DEp(E1g)
b 253.5 (16.0%) 247.6 (24.3%) 263.0 (43.5%) 245.5 (40.4%) 232.0 (37.1%) 239.1 (15.0%)

DEd(E2g)
b 215.8 (4.7%) 212.5 (6.4%) 29.1 (6.3%) 27.1 (6.3%) 25.5 (6.4%) 215.1 (5.8%)

DEðA1uÞ 0.0 0.0 0.0 0.0 0.0 0.0

DEsðA2uÞb 258.9 (17.6%) 226.6 (13.6%) 213.0 (9.0%) 210.0 (8.9%) 27.9 (9.2%) 235.5 (13.7%)

DEpðE1uÞb 2132.8 (39.8%) 259.0 (30.1%) 229.6 (20.5%) 224.7 (21.9%) 221.2 (24.6%) 278.4 (30.2%)

DEdðE2uÞb 214.1 (4.2%) 211.3 (5.8%) 28.5 (5.9%) 27.2 (6.4%) 25.9 (6.8%) 211.2 (4.3%)

q(E) þ1.68 þ1.74 þ1.72 þ1.77 þ1.77 þ1.60
The symmetry point group is D5d : Energy values in kcal/mol. Atomic partial charges q.
aThe values in parentheses give the percentage contribution to the total attractive interactions DEelstat þ DEorb:
bThe values in parentheses give the percentage contribution to the orbital interactions DEorb:
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the attractive interaction comes from the quasiclassical electrostatic interaction DEelstat:
The covalent character of the bond ranges between 41% (E ¼ Be) and just 17% (E ¼ Ba)

but is in general higher than for the alkaline complexes discussed above.

The individual contributions to the orbital term DEorb show, that for beryllocene, the
strongest interaction arises from the e1u orbitals (39.8%) followed by the a1g and the a2u
orbitals (each 17.6%). The smaller contributions in the e2g and the e2u symmetries stem

from the relaxation of the corresponding ligand orbitals in the electrostatic field of the

central metal atom. The contribution of the e1g orbitals (16.0%) is, however, somewhat

stronger than might have been expected. This contribution arises from the mixing of the

ligand HOMOwith the dðe1gÞ polarization functions of the central metal atom which have

a very large overlap with the former.

The change of the individual contributions to the orbital term DEorb is very interesting.
Table 13.10 indicates that the relative contribution of the e1g orbitals increases for

heavier central metal atoms. For the last three compounds Ca(Cp)2, Sr(Cp)2 and Ba(Cp)2
this interaction is the largest contribution to DEorb: This contribution, coming from the

alkaline earth metal d orbitals, becomes even larger than the contributions from the a1g,

a2u, and e1u orbitals which come from covalent interactions of the ligand and the central

metal atom. A similar observation has been made before [80] employing the Mulliken

analysis. It is interesting to note, however, that although the relative contribution of

the e1g orbitals to the DEorb term increases, the absolute value does not change very

much. Furthermore, if one takes into account that, especially for the molecules with a

large contribution of the e1g orbitals, the overall contribution from the orbital term DEorb
is rather low, we think it is not justified to classify the d orbitals of the alkaline earth

metals as true valence orbitals in the molecules. They rather play a very important role

in polarizing the HOMO of the ligand and should therefore be included in an orbital

correlation diagram.

To address the question whether zinc behaves like a main-group metal or like a

transition metal Zn(Cp)2 was included in the investigation. Table 13.10 shows that the

bonding in zincocene is similar to the bonding in magnesocene. The electrostatic

interaction (67%) is stronger than the covalent orbital interaction (33%). The contri-

butions to the DEorb term reveal, that there is only a small contribution from the e1g
orbitals (15%). Zinc has a filled d-shell and thus, there are no d(e1g)-acceptor orbitals in

zincocene. Like in the lighter alkaline earth metals the main contribution to the DEorb
term comes from the orbitals with a1g and e1u symmetry.

How reliable are the results of an energy analysis of the D5d forms of Be(Cp)2, Sr(Cp)2
and Ba(Cp)2 when the equilibrium structures of these complexes have in fact a slipped

sandwich or a bent geometry? Although the energy differences between the energy

minima and the D5d forms are small a dramatic change in the composition of the

interaction energy could occur. The calculations showed that this is indeed not the case

[39]. To assess whether the large contribution of the e1g orbitals was special to the D5d

form of the complexes, Sr(Cp)2 and Ba(Cp)2 were calculated in bent structures with C2v

symmetry. The results are shown in Table 13.11.

The energy differences between the C2v structures and the bent equilibrium forms

of SrCp2 ðC1Þ and BaCp2 ðCsÞ are very small (,0.1 kcal/mol). In the C2v structures it is

possible to correlate the irreducible representations to their corresponding representations
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in D5d: As can be seen in Fig. 13.5, the p orbitals of the central metal atom have a1; b1
and b2 symmetry, respectively. The ligand HOMO with e1g symmetry splits into two

orbitals with a2 and b2 symmetry. Since there is no corresponding metal orbital with a2
symmetry, one can use the a2 contribution as a probe for the interaction of the metal d

orbitals in DEorb:
A comparison of the data in Table 13.11 with those in Table 13.10 shows, that although

the individual terms are slightly larger than for the C2v structures, the relative weight

of the individual terms does not change very much. The contributions to DEorb are
comparable to the D5d forms. The a2 contribution in particular is as important as the a1;
b1 and b2 contributions. So the d orbitals play an important role in the bent geometries

as well. Note that the p and d orbital contributions in the D5d (Table 13.10) and C2v

(Table 13.11) forms can not directly be compared because different mirror planes are

used to assign the symmetry of the orbitals.

The next molecules in this discussion are the group-13 half sandwich complexes.

The results of the EDA are given in Table 13.12. In comparison to the group-1 half

sandwich complexes the covalent contributions are larger. While in the boron complex

50% of the attractive interaction come from the DEorb term, this relative contribution
decreases steadily to a mere 28% for the thallium complex. But this value is still larger

than the largest value of the group-1 complexes (DEorb 20% for Li). The relative

contributions of the a1 orbitals are significantly higher in the group-13 complexes than

in the group-1 half sandwiches. This can be rationalised by the energy decrease of the

corresponding acceptor orbitals of the Eþ cations (E ¼ B–Tl) compared to those of the

E00þ cations (E00 ¼ Li–Cs).

Finally the bonding analysis for the group-14 sandwich complexes shall be discussed.

The results for the EDA of the D5d forms are given in Table 13.13. It can be seen that

the covalent contributions of the DEorb term are significantly larger than in the group-2

metallocenes, although the main attractive contribution to the interaction energy still

Table 13.11 Energy decomposition analysis of group-2 metallocenes ECp2
(E ¼ Sr, Ba) using the fragments E2þ and Cp2

22 at BP86/TZP [39]

Sr Ba

DEint 2505.7 2461.3

DEPauli 79.8 88.1

DEelstat
a 2466.9 (79.7%) 2452.8 (82.4%)

DEorb
a 2118.6 (20.3%) 296.6 (17.6%)

DEsðA1Þb 235.9 (30.3%) 230.8 (31.9%)

DEdðA2Þb 227.9 (23.5%) 220.8 (21.5%)

DEpðB1Þb 216.9 (14.2%) 215.3 (15.8%)

DEpðB2Þb 237.9 (32.0%) 229.8 (30.8%)

q(E)c þ1.77 þ1.74
The symmetry point group is C2v: Energy values in kcal/mol. Atomic partial charges q.
aThe values in parentheses give the percentage contribution to the total attractive

interactions DEelstat þ DEorb:
bThe values in parentheses give the percentage contribution to the orbital interactions

DEorb:
cThe partial charges q(E) have been calculated for the bent equilibrium structures.
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comes from the electrostatic term DEelstat: It is interesting to note that the ratio of

electrostatic versus covalent bonding is almost the same for the group-14 sandwich

complexes E(Cp)2 (E ¼ Si–Pb) and the group-13 half sandwich complexes E00(Cp)
(E0 ¼ Al–Tl) for elements of the same period.

The largest contribution to the DEorb term comes from the e1u orbitals which yield

52–55% of the covalent interaction. The e1u term resembles the donation from the occu-

pied ligand orbitals into the vacant p(p)-AOs of E2þ. Overall the relative contributions
from the different irreducible representations to the DEorb term do not change very much

from Si to Pb. In these complexes the e1g orbitals have a rather small influence on the

orbital interaction even for the heaviest element E ¼ Pb. This leads to the conclusion that

Table 13.12 Energy decomposition analysis of group-13 metallocenes ECp (E ¼ B–Tl) using the

fragments Eþ and Cp2 at BP86/TZP [39]

B Al Ga In Tl

DEint 2256.0 2188.4 2181.2 2164.6 2155.0

DEPauli 202.2 118.1 97.1 81.6 67.2

DEelstat
a 2226.1 (49.3%) 2197.8 (64.6%) 2183.5 (65.9%) 2172.3 (70.0%) 2160.0 (72.0%)

DEorb
a 2232.1 (50.7%) 2108.6 (35.4%) 294.8 (34.1%) 273.9 (30.0%) 262.2 (28.0%)

DEsðA1Þb 293.9 (40.4%) 247.9 (44.1%) 238.4 (40.5%) 229.7 (40.2%) 222.7 (36.5%)

DEðA2Þ 0.0 0.0 0.0 0.0 0.0

DEpðE1Þb 2130.1 (56.1%) 255.2 (50.8%) 251.9 (54.8%) 240.3 (54.5%) 236.3 (58.4%)

DEdðE2Þb 28.10 (3.5%) 25.6 (5.1%) 24.5 (4.7%) 23.9 (5.3%) 23.2 (5.1%)

q(E) þ0.18 þ0.61 þ0.57 þ0.63 þ0.62
The symmetry point group is C5v: Energy values in kcal/mol. Atomic partial charges q.
aThe values in parentheses give the percentage contribution to the total attractive interactions DEelstat þ DEorb:
bThe values in parentheses give the percentage contribution to the orbital interactions DEorb:

Table 13.13 Energy decomposition analysis of group-14 metallocenes ECp2 (E ¼ Si, Ge, Sn, Pb) using

the fragments E2þ and Cp2
22 at BP86/TZP [39]

Si Ge Sn Pb

DEint 2685.4 2661.4 2601.4 2577.2

DEPauli 120.4 108.7 101.6 91.3

DEelstat
a 2506.7 (62.9%) 2501.3 (65.1%) 2490.0 (69.7%) 2480.2 (71.8%)

DEorb
a 2299.1 (37.1%) 2268.7 (34.9%) 2213.0 (30.3%) 2188.3 (28.2%)

DEsðA1gÞb 216.6 (5.6%) 213.2 (4.9%) 212.2 (5.7%) 210.3 (5.5%)

DEðA2gÞ 0.0 0.0 0.0 0.0

DEpðE1gÞb 248.9 (16.3%) 237.7 (14.0%) 228.9 (13.6%) 224.9 (13.2%)

DEdðE2gÞb 29.7 (3.2%) 29.0 (3.3%) 27.8 (3.6%) 27.3 (3.9%)

DEðA1uÞ 0.0 0.0 0.0 0.0

DEsðA2uÞb 258.7 (19.6%) 254.2 (20.2%) 241.5 (19.5%) 236.3 (19.3%)

DEpðE1uÞb 2156.4 (52.3%) 2146.5 (54.5%) 2115.2 (54.1%) 2102.7 (54.5%)

DEdðE2uÞb 28.8 (2.9%) 28.2 (3.1%) 27.5 (3.5%) 26.8 (3.6%)

q(E) þ0.80 þ0.86 þ0.98 þ0.99
The symmetry point group is D5d : Energy values in kcal/mol. Atomic partial charges q.
aThe values in parentheses give the percentage contribution to the total attractive interactions DEelstat þ DEorb:
bThe values in parentheses give the percentage contribution to the orbital interactions DEorb:
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the metal d orbitals are not very important for the description of the bond in group-14

sandwich complexes.

Table 13.14 finally gives the result for the bent structures of the group-14 metallocenes

with C2v symmetry. In contrast to the alkaline earth metallocenes, the bent structures

exhibit a larger amount of covalent bonding than the D5d forms although the difference

is not very big. The degenerate e1u orbitals split into a1 and b1. Table 13.14 shows that

the sum of the orbital contributions a1 þ b1 provides more than 60% of the DEorb term.
Thus the orbital correlation diagram shown in Fig. 13.5 provides a reasonable qualitative

bonding model for the interactions of the central metal atom and the ligands in the group-

14 metallocenes.

13.3.9 Bonding in SF6 and XeF6 and a comparison with WF6 [43]

The closing chapter on main group compounds will address an old issue which connects

the bonding in main-group elements with the bonding in transition metals. The pivotal

questions concern the use of d functions for the bonding of heavier main group elements

and the importance of p functions for TM compounds. The nature of the bonding in

noble gas compounds, which is another longstanding topic will also be addressed. We

compare the bonding in octahedral compounds EF6 (E ¼ S, Xe, W) between the central

atom E and the fluorine atoms. We do not address the question about the equilibrium

geometry of XeF6 which has a fluctional structure where the C3v distorted form is

energetically nearly degenerate with the Oh structure [81]. We will first compare then

discuss the chemical bonding in the main-group compounds. It has been shown before

that a qualitative orbital picture leads to a good description of the chemical bonding in

octahedral XeF6 and SF6 [82]. Fig. 13.6 shows such an MO diagram for an octahedral

complex with a central atom E and six surrounding ligand-atoms F. For the bonding in

XeF6 and SF6 it is usually assumed that only s bonding takes place in these main-group

Table 13.14 Energy decomposition analysis of group-14 metallocenes ECp2 (E ¼ Si, Ge, Sn, Pb) using

the fragments E2þ and Cp2
22 at BP86/TZP [39]

Si Ge Sn Pb

DEint 2690.5 2663.1 2603.9 2577.8

DEPauli 144.8 118.9 109.8 93.8

DEelstat
a 2511.6 (61.2%) 2504.1 (64.5%) 2492.5 (69.0%) 2481.0 (71.6%)

DEorb
a 2323.7 (38.8%) 2278.0 (35.5%) 2221.1 (31.0%) 2190.6 (28.4%)

DEsðA1Þb 2117.4 (36.3%) 297.9 (35.2%) 279.6 (36.0%) 266.8 (35.0%)

DEdðA2Þb 230.1 (9.3%) 223.4 (8.4%) 218.8 (8.5%) 216.1 (8.4%)

DEpðB1Þb 285.4 (26.4%) 278.9 (28.4%) 262.6 (28.3%) 255.4 (29.1%)

DEpðB2Þb 290.8 (28.1%) 277.9 (28.0%) 260.1 (27.2%) 252.3 (27.4%)

q(E)c þ0.88 þ0.89 þ1.01 þ1.00
The symmetry point group is C2v: Energy values in kcal/mol. Atomic partial charges q.
aThe value in parentheses gives the percentage contribution to the total attractive interactions DEelstat þ DEorb.
bThe value in parentheses gives the percentage contribution to the total orbital interactions DEorb:
cThe partial charges q(E) have been calculated for the bent equilibrium structures.
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compounds [82], therefore only orbitals of s type are shown. The EDA makes it

possible to see if the assumption is justified.

From the xenon 5s and 5p orbitals and one p orbital from each fluorine one can

construct orbitals having a1g; eg and t1u symmetry in an octahedral environment. The

14 valence electrons of XeF6 occupy these orbitals according to the Aufbau-principle. In

the a1g symmetry the bonding combination 1a1g is doubly occupied, as is the antibonding

combination 2a1g thus leaving no net stabilization in this irrep. The eg orbitals of the

fluorine ligand cage have no symmetry-counterpart on the central xenon atom, hence

leaving four electrons occupying an essentially nonbonding 1eg orbital. The only

Fig. 13.6. MO correlation diagram for the interaction between a main group element E and a cage of six s-

bonded ligands X in octahedral EF6.
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stabilizing contribution comes from the triply degenerate t1u orbital. As SF6 has only 12

valence electrons the antibonding combination of the a1g orbitals, the HOMO in XeF6,

remains empty. This should lead to a bonding contribution from this irreducible

representation.

Before looking into the bonding between the central atoms and their surrounding F6
cages, one has to make sure that the assumption of an essentially s bonding situation is

justified. Therefore an EDA has been carried out in order to investigate the bonding

interactions between the EF5
þ fragment and F2. The results are given in Table 13.15.

The EDA data given in Table 13.15 show that the binding interactions between EF5
þ

and F2 have a larger electrostatic character than covalent character. The contribution of

DEelstat to the attractive interactions is 60.0% for SF6 and 65.1% for XeF6. The bonding in

WF6 has an even higher electrostatic character (71.8%). The orbital term in the main-

group hexafluorides is dominated by the s term which comes from the a1 orbitals (80.5%

in SF6 and 77.2% in XeF6) while the p bonding contribution is much smaller. It is

therefore justified to qualitatively analyze the orbital interactions in SF6 and XeF6 in

terms of s bonding only. This does not hold for WF6! The s and p bonding contributions

in WF6 have nearly the same strength.

The results of the energy partitioning analyses for the interaction of the central main

group atoms with the surrounding hexafluoride cage are given in Table 13.16. The

analysis was carried out between the charged species E6þ and (F6)
62 because on this way

it is possible to compare the bonding using the same fragment configurations and spin

states for the main-group compounds and WF6.

Because of the choice of the highly charged fragments, the calculated values for the

interaction energy are very large. The attractive interactions have a larger electrostatic

character (57.1–68.0%) than the covalent bonding. EDA calculations using neutral

fragments with different configurations gave a similar ratio of the DEorb and DEelstat terms
[43]. The focus of this part of the analysis is on the different orbital terms, however. Since

we compare the bonding in octahedral main-group compounds SF6 and XeF6 with the

transition metal compound WF6 we must include valence d orbitals in the analysis.

Table 13.15 EDA results for the binding interactions in EF6 (E ¼ S, Xe, W) using the fragments EF5
þ and

F2 at BP86/QZ4P [43]

SF5
þ þ F2 XeF5

þ þ F2 WF5
þ þ F2

DEint 2283.0 2237.6 2277.4

DEPauli 343.0 235.5 214.4

DEelstat
a 2375.6 (60.0%) 2307.8 (65.1%) 2353.1 (71.8%)

DEorb
a 2250.2 (40.0%) 2165.2 (34.9%) 2138.7 (28.2%)

DEsðA1Þb 2201.5 (80.5%) 2127.6 (77.2%) 270.4 (50.7%)

DEðA2Þb 20.35 (0.1%) 20.2 (0.1%) 20.2 (0.2%)

DEðB1Þb 21.1 (0.4%) 20.5 (1.8%) 21.0 (0.7%)

DEðB2Þb 20.5 (0.2%) 20.2 (0.1%) 20.8 (0.6%)

DEpðEÞb 246.8 (18.7%) 236.8 (22.3%) 266.3 (47.8%)

Energy values in kcal/mol.
aThe value in parentheses gives the percentage contribution to the total attractive interactions DEelstat þ DEorb:
bThe value in parentheses gives the percentage contribution to the total orbital interactions DEorb:
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An orbital correlation diagram for the splitting of the valence s, p and d orbitals of a

transition metal in an octahedral ligand field is shown in Fig. 13.9 which is discussed

in Section 13.4 which describes the bonding in TM hexacarbonyls. A schematic

representation of all orbital terms which give a non zero contribution to the DEorb term is

presented there in Fig. 13.10.

The data in Table 13.16 indicate that the largest contribution to the orbital interaction

in SF6 and WF6 comes from the t1u term which comes from the p orbitals of the central

atom. This is in agreement with the orbital correlation diagram shown in Fig. 13.6.

However, Fig. 13.10 shows that the t1u term comes not only from s interactions but it may
also come from p-orbital interactions. The latter interactions cannot be distinguished in
the EDA when octahedral fragments are used. But the EDA results for the interactions

between EF5
þ and F2 have shown that s bonding is much more important than p bonding.

Thus, the largest orbital contributions in SF6 and XeF6 come indeed from the s
interactions of the valence p orbitals of the central atom. The a1g contribution in SF6
(2672.3 kcal/mol) is much larger than in XeF6 (254.6 kcal/mol) which is in agreement

with the qualitative orbital interaction diagram (Fig. 13.6). Nevertheless, the relative

contribution of the a1g orbitals even in the former compound (18.8%) is much smaller

than that of the t1u orbitals. We want to point out that the contribution which comes from

the d(s) orbitals in SF6 and XeF6 (17.4 and 14.5%) is not negligible. The latter term
becomes the largest orbital contribution in WF6 (32.6%) followed by the t2g term (27.4%)

which comes from the d(p) orbitals (Table 13.16). This means that the d orbitals of
tungsten yield 50.0% of the orbital interactions. Which valence orbitals contribute to the

remaining 50% of DEorb?
Table 13.16 shows the contribution of the t1u term of WF6 which comes from the

p(s and p) orbitals is 25.7% of DEorb: This is much larger than the contribution of

Table 13.16 Energy decomposition analysis of EF6 using the fragments E
6þ and F6

62 (E ¼ S, Xe, W) at

BP86/QZ4P [43]

S6þ þ F6
62 Xe6þ þ F6

62 W6þ þ F6
62

DEint 28129.4 26504.2 26560.0

DEPauli 188.73 392.3 517.1

DEelstat
a 24746.9 (57.1%) 24720.1 (68.4%) 24815.3 (68.0%)

DEorb
a 23571.2 (42.9%) 22176.4 (31.6%) 22261.9 (32.0%)

DEðA1gÞb s(s) 2672.3 (18.8%) 254.6 (2.5%) 2131.2 (5.8%)

DEðA1uÞb 0.0 (0.0%) 0.0 (0.0%) 20.16 (,0.1%)

DEðA2gÞ 0.0 0.0 0.0

DEðA2uÞ 0.0 0.0 0.0

DEðEgÞb d(s) 2622.8 (17.4%) 2316.6 (14.5%) 2738.4 (32.6%)

DEðEuÞ 0.0 0.0 0.0

DEðT1gÞb p(ligand) 284.5 (2.4%) 270.9 (3.3%) 277.9 (3.4%)

DEðT1uÞb p(s and p) 21760.3 (49.3%) 21444.4 (66.4%) 2581.7 (25.7%)

DEðT2gÞb d(p) 2307.5 (8.6%) 2181.5 (8.3%) 2620.4 (27.4%)

DEðT2uÞb p(ligand) 2123.9 (3.5%) 2108.4 (5.0%) 2112.2 (5.0%)

Energy values in kcal/mol.
aThe value in parentheses gives the percentage contribution to the total attractive interactions DEelstat þ DEorb:
bThe value in parentheses gives the percentage contribution to the total orbital interactions DEorb:
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the tungsten s orbital which yields only 5.8% of the orbital interactions. The calculated

energy values of the t1g and t2u terms makes it possible to estimate the strength

of the relaxation of the ligand p orbitals (Fig. 13.10). The relative contributions are

between 2.4 and 5.0%. It can therefore be estimated that .20% of the t1u term which

comes from the p(s and p) orbitals are genuine orbital interactions. The EDA results of

WF6 indicate that the (n)p orbitals of tungsten are genuine valence orbitals.

13.4 BONDING IN TRANSITION METAL COMPOUNDS

The qualitative bonding models which are used for describing the bonding situation

in transition metal compounds are very different from those which are employed for

main group elements [83]. Covalent bonding of the latter is described in terms of sp

hybridization and by obeying the octet rule. The valence orbitals of the transition metals

are the ðn2 1Þs and ðn2 1Þd AOs which are supplemented by the ðnÞp orbitals. This
leads to the 18 electron rule which is, however, less strict than the octet rule. It has

recently been suggested that the bonds in TM compounds should be described using

only the ðn2 1Þs and ðn2 1Þd AOs while the ðnÞp AOs should only be considered as
polarization functions like the d AOs of main group elements but not as valence orbitals

[84]. This view has been challenged, however, in more recent quantum chemical work

which indicates that the ðnÞp AOs of the TMs are genuine valence orbitals [17,85].
The chemical bonds of TM compounds are frequently discussed in terms of

donor–acceptor interactions between the metal TM and the ligand L using the synergistic

bonding model of TMˆ L s donation and TM! L p-backdonation which was

introduced by Dewar [86] and by Chatt and Duncanson (DCD) [87]. The synergistic

bonding model was later extended to other metal–ligand bonds where the energetically

high-lying occupied orbitals of the ligand, which have in most cases s symmetry

with regard to the whole complex, are considered as donor orbitals. The backdonation

then occurs from occupied p orbitals of the metal to low-lying empty pp orbitals of

the ligand [88]. Since s and p interactions can be quantitatively estimated using the

EDA method it is possible to examine the validity of the DCD model. At the same time

it is possible to estimate the strength of the quasiclassical interaction between the metal

and the ligand which is neglected in the DCD model.

13.4.1 Carbonyl complexes TM(CO)6
q (TMq 5 Hf22, Ta2, W, Re1, Os21, Ir31) [17]

It is reasonable to begin a discussion of bonding in transition metal compounds with

carbonyl complexes because they can be used as a parent system for many TM

molecules just like the hydrocarbons are used as parent compounds for organic

molecules. Fig. 13.7 gives the standard textbook description of bonding between a

transition metal and CO using the DCD model. The main bonding contributions should

arise from the electron donation of the CO s HOMO into the an empty d(s) orbital of
the metal and the backdonation from occupied d(p) orbitals of the metal into the

unoccupied pp orbital of CO.
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Numerous theoretical studies investigated the question which of the two contributions

that are shown in Fig. 13.7 are more important for the bonding. Most investigations

analyzed the charge distribution between the metal and the ligand [89] and only few

papers analyzed the contributions of the different energy terms to the metal–CO inter-

actions [90]. Nearly all studies focused on neutral compounds [91]. There is general

agreement that, in most carbonyl complexes, the TM! CO p-backdonation is more
important for the chemical bonding than the TMˆ CO s-donation. However, recent
experimental research showed that carbonyl complexes which have been termed non-

classical carbonyls can be prepared which are mainly bonded by s-donation [92]. An
ideal set of molecules for analyzing the individual contributions of both the s-donation
and the p-backdonation to the TM–CO bonding is the series of isoelectronic hexa-

carbonyls TM(CO)6
q (TMq ¼ Hf22, Ta2, W, Reþ, Os2þ, Ir3þ) [17].

Table 13.17 gives the EDA results for the metal–ligand bonding in the hexacarbonyls

TM(CO)6
q between the closed-shell fragments TM(CO)5

q and CO. The calculated data

indicate that the (CO)5TM
q ! CO p-backdonation which is given by the contribution of

the orbitals having e symmetry decreases from Hf(CO)6
22 to Ir(CO)6

3þ. This is reasonable
because the p-backdonation should become weaker when the electronic charge becomes
less negative or more positive. However, the trend of the backdonation does not agree

with the trend of the total interaction energy DEint which exhibits a U-shaped form

instead (Table 13.17). The DEint values and the bond dissociation energies become

smaller from Hf(CO)6
22 to W(CO)6 but then they increase. The highly positively charged

Ir(CO)6
3þ even has the strongest (CO)5TM

q–CO bond among the hexacarbonyls.

Inspection of the various energy terms shows that the increase of the interaction energy in

the cations comes from the large contribution of the (CO)5TM
q ˆ CO s-donation which

becomes very strong in Ir(CO)6
3þ. Note that the increase of DEint from W(CO)6 to

Hf(CO)6
22 does not come from stronger attraction (Table 13.17). The electrostatic

attraction and the orbital term decrease in the order, but the decrease is compensated by

an even larger decrease of the Pauli repulsion DEPauli: Fig. 13.8 shows the trend of the
energy terms which contribute to the total interaction energy. It becomes obvious that

the DEorb term correlates nicely with the DEint values except for the trend from Hf(CO)6
22

to W(CO)6. The EDA results indicate that the trend in the metal–CO bonding can be

σ

TM

TM

π

C O

C O

Fig. 13.7. Schematic representation of the synergistic TMˆ CO s-donation and TM! CO p-backdonation.
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Table 13.17 Energy decomposition analysis of TM(CO)5
q þ CO at BP86/TZP [17]

Hf(CO)6
22 Ta(CO)6

2 W(CO)6 Re(CO)6
þ Os(CO)6

2þ Ir(CO)6
3þ

DEint 256.6 251.3 249.6 252.7 261.9 278.9

DEPauli 76.6 100.7 118.3 126.9 125.4 115.9

DEelstat
a 259.4 (44.6%) 276.6 (50.4%) 290.1 (53.6%) 297.7 (54.4%) 298.5 (52.6%) 293.1 (47.8%)

DEorb
a 273.8 (55.4%) 275.5 (49.6%) 277.9 (46.4%) 281.9 (45.6%) 288.9 (47.4%) 2101.8 (52.2%)

DEsðA1Þb 217.2 (23.3%) 225.8 (34.3%) 235.9 (46.1%) 247.3 (57.8%) 260.1 (67.6%) 275.4 (74.2%)

DEðA2Þ 0.00 0.00 0.00 0.00 0.00 0.00

DEðB1Þ 0.05 0.02 20.03 20.07 20.09 20.10

DEðB2Þ 20.05 20.07 20.07 20.07 20.06 20.05

DEpðEÞb 256.6 (76.7%) 249.6 (65.8%) 241.9 (53.8%) 234.4 (42.1%) 228.6 (32.2%) 226.2 (25.8%)

DEprep 5.8 3.1 3.7 4.4 5.0 5.2

DEð¼ 2DeÞ 250.8 248.3 246.0 248.4 256.9 273.7

R(TM–C) 2.195 2.112 2.061 2.036 2.034 2.055

Energy values in kcal/mol. Bond lengths R in Å.
aThe value in parentheses gives the percentage contribution to the total attractive interactions DEelstat þ DEorb:
bThe value in parentheses gives the percentage contribution to the total orbital interactions DEorb:

C
h
a
p
ter

1
3

3
2
8



discussed in terms of frontier–orbital interactions, while the electrostatic term does not

agree with the changes of the bond strength. There are classes of compounds where the

opposite correlation was found, such as the phosphane complexes which are presented

and discussed below.

There is another surprising result which comes out of the energy analysis. Fig. 13.8

shows that, for the highest charged species Hf(CO)6
22 and Ir(CO)6

3þ, the covalent bonding
is larger than the electrostatic bonding while for W(CO)6, Re(CO)6

þ and Os(CO)6
2þ

it holds that DEorb , DEelstat: This is a counterintuitive result because it means that
the highest charged complexes have the smallest degree of electrostatic bonding. The

explanation for this finding can be given when the energy levels of the interacting orbitals

are considered. The highly charged pentacarbonyls have a very high lying HOMO

(Hf(CO)5
22) and low lying LUMO (Ir(CO)3þ) which leads to very strong orbital inter-

actions with the LUMO and HOMO of CO, respectively. Thus, the charge of the ionic

hexacarbonyls has a larger effect on the covalent bonding through its raising or lowering

the orbital energy levels than on the electrostatic interactions.

Even more insight into the metal–CO binding interactions can be obtained when the

bonding in the octahedral complexes TM(CO)6
q is analyzed between the bare metal center

TMq and the ligand cage (CO)6. The TM
q–(CO)6 bonding is often discussed with the

help of a qualitative orbital correlation diagram which is shown in Fig. 13.9 [81]. The s
donor orbitals of the six CO ligands split in an octahedral field into three sets of orbitals

which have eg; t1u and a1g symmetry. Fig. 13.9 shows that the metal acceptor orbitals

are the s AO (a1g), p AOs (t1u) and the eg set of d AOs. The remaining set of (t2g) d AOs

of a d6 TM is occupied and serves as donor orbital for the TM! (CO)6 p-backdonation.
The advantage of the octahedral ligand field is that the contributions of the eg, t1u and a1g

Hf(CO)6
2− Ta(CO)6

− W(CO)6 Re(CO)6
2+ Os(CO)6

2+ Ir(CO)6
3+
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Fig. 13.8. Trends of the various terms of the energy decomposition analysis of (CO)5TM
q–CO calculated at

BP86/TZP.
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orbitals to the TMˆ (CO)6 s donation gives directly the relative importance of the metal
valence orbitals to the metal ligand bonding.

Table 13.18 gives the results of the EDA of TMq–(CO)6. The most important results

come from the breakdown of the orbital term into the contributions by the orbitals, which

have different symmetry. The contribution of the t2g orbitals which gives the TM !
(CO)6 p-backdonation is rather small in the trication Ir(CO)6

3þ but it becomes stronger

when the metal is less positively charged and it is the dominant orbital term in the neutral

and negatively charged hexacarbonyls. The eg orbitals make clearly the largest contri-

bution to the TMˆ (CO)6 s donation. The eg term is always much larger than the t1u

Fig. 13.9. Splitting of the orbital energy levels of an octahedral d6 transition metal complex TML6 where the

ligand L has occupied donor orbitals with s symmetry (top) and empty acceptor orbitals with p symmetry.
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Table 13.18 Energy decomposition analysis of TMq þ (CO)6 at BP86/TZP [17]

Hf(CO)6
22 Ta(CO)6

2 W(CO)6 Re(CO)6
þ Os(CO)6

2þ Ir(CO)6
3þ

DEint 2543.9 2525.6 2473.9 2456.6 2544.4 2801.6

DEPauli 367.4 413.4 438.8 454.5 451.3 420.9

DEelstat
a 2358.6 (39.4%) 2397.6 (42.3%) 2396.2 (43.4%) 2375.1 (41.2%) 2353.4 (35.5%) 2337.8 (27.6%)

DEorb
a 2552.7 (60.6%) 2541.3 (57.7%) 2516.4 (56.6%) 2536.0 (58.8%) 2642.3 (64.5%) 2884.7 (72.4%)

DEsðA1gÞb 29.5 (1.7%) 210.5 (1.8%) 215.4 (2.8%) 227.4 (4.6%) 247.6 (6.4%) 278.8 (7.5%)

DEðA2gÞ 0.0 0.0 0.0 0.0 0.0 0.0

DEsðEgÞb 283.4 (14.6%) 2113.1 (20.3%) 2159.1 (29.3%) 2233.7 (39.6%) 2348.8 (46.9%) 2520.7 (49.5%)

DEðT1gÞb p(CO) 21.3 (0.3%) 21.0 (0.2%) 22.9 (0.5%) 28.9 (1.5%) 219.4 (2.6%) 233.9 (3.2%)

DEpðT2gÞb 2437.4 (76.6%) 2397.6 (71.2%) 2308.2 (56.8%) 2200.3 (34.0%) 2101.1 (13.6%) 243.8 (4.2%)

DEðA1uÞ 20.03 20.04 20.03 0.0 20.02 20.02

DEðEuÞ 0.0 20.00 0.00 0.0 0.00 0.00

DEðT2uÞb p(CO) 22.7 (4.8%) 22.0 (0.4%) 24.4 (0.8%) 211.6 (2.0%) 223.9 (3.2%) 240.2 (3.8%)

DEs;pðT1uÞb 218.4 (3.2%) 217.2 (3.1%) 226.5 (4.9%) 254.0 (9.2%) 2101.4 (13.6%) 2167.3 (15.9%)

DEsðT1uÞc 213.0 212.1 218.7 238.5 274.0 2125.7

DEpðT1uÞc 25.4 25.2 27.9 215.5 227.4 241.7

Energy values in kcal/mol.
aThe value in parentheses gives the percentage contribution to the total attractive interactions DEelstat þ DEorb:
bThe value in parentheses gives the percentage contribution to the total orbital interactions DEorb:
cThe s and p contributions of the T1u orbitals have been estimated from the size of the overlaps.
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and a1g terms. Table 13.18 gives also energy contributions by t1g and t2u orbitals which

are not shown in Fig. 13.9. Fig. 13.10 shows schematically all orbitals which contribute

to DEorb: The t1g and t2u orbitals are occupied ligand orbitals. The relaxation of the ligand
orbitals in the final step of the energy partitioning analysis lowers the energy of the

molecule. Thus, part of the stabilization energy, which comes from the orbital term is

not related to the metal–ligand bonding. Fig. 13.10 shows also that the t1u term does not

only give the TMˆ (CO)6 s donation into the p(s) AO but part of the t1u stabilization

energy comes from the TMˆ (CO)6 p donation of the occupied p orbitals of CO into

the empty p(p) AO of the metal. In order to estimate the s and p contributions to the t1u
term, we used the size of the overlaps of the metal p orbitals with the s and p orbitals of

(CO)6. Table 13.18 shows that the p contribution to the t1u term is always much smaller

than the s contribution.

Concerning the question whether the metal p orbitals should be considered as valence

orbitals or polarization function, the results in Table 13.18 show that the contribution

of the t1u term (metal p orbitals) is always larger than the a1g term (metal s orbital). Thus,

the p orbitals are as important as the s orbitals for the bonding in these compounds and

thus, must be considered as valence functions.

13.4.2 Group-13 heteroleptic diyl complexes (CO)4Fe–ER (E 5 B–Tl;

R 5 Cp, Ph, Me) and homolytic diyl complexes Fe(EMe)5 (E 5 B–Tl)

and TM(EMe)4 (TM 5 Ni, Pd, Pt; E 5 B–Tl) [18,21]

The group-13 diyl complexes are an example where quantum chemical studies deter-

mined the understanding of the metal–ligand bonding situation since the very first

compound of the new class of molecules (CO)4Fe–AlCp
p was isolated and characterized

by X-ray structure analysis [93]. The TM–ER bonding situation can be qualitatively

Metal orbitals Metal orbitalsLigand orbitals Ligand orbitals Ligand orbitals

dz2

p

p

s dxz

eg

t1u

a1g

t1g

t2u

t1u

t2g

σ-type interaction π-type interaction orbital relaxation

Fig. 13.10. Graphical representation of the orbital interaction terms of the energy decomposition analysis of

TMq–(CO)6 given in Table 13.18.
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described with the DCD model in a similar way as the TM–CO bonding but there are

significant differences. Fig. 13.11 shows a schematic representation of the TM–ER

interactions in terms of TMˆ ER s-donation and TM! ER p-backdonation.

The difference between the TM–ER and TM–CO bonding (Fig. 13.7) lies in the p-

backdonation which can be tuned in TM–ER by the p-donor ability of the group R which

competes with the TM! ER p-backdonation. Early examples of stable group-13 diyl

complexes had strong donor-groups R such as Cpp [93] and NR2 [94] which indicated that

the TM! ER p-backdonation in such compounds may be weak. The later synthesis of

the stable complex (CO)4Fe–GaAr
p where Arp is a bulky aryl substituent which is a poor

p donor substituent let the authors suggest that there is strong Fe! Ga p-backdonation

and that the compound would have a FexGa triple bond [95]. This view was soon

challenged by other workers who analyzed the charge distribution in model compounds

of (CO)4Fe–GaAr
p with less bulky aryl groups which indicated that there may only be a

bond order of ,1 [96]. Questions like the strength of p-backdonation in TM complexes

can be quantitatively addressed with the EDA which. Therefore, we undertook

comprehensive studies of the bonding situation in group-13 diyl complexes using the

EDA method [18,19,21,47].

As a first project we analyzed the metal–diyl interactions in the complexes Fe(CO)4–

ECp (E ¼ B–Tl) which have the strong donor group Cp as substituent [18]. The results of

the energy decomposition analyses are given in Table 13.19. Only the axial isomers are

σ
E

TM

TM

TM

R

π

E R

E R

E

q(+)TM

R

q(-)

(a)

(b)

Fig. 13.11. (a) Schematic representation of the TM–ER orbital interactions when R has occupied p(p) orbitals.

(b) Schematic representation of the dominant electrostatic interactions between the local electronic charge

concentration at the donor atom E and the nucleus of the acceptor atom Fe. Note that the donor atom E has an

overall positive partial charge and the TM atom an overall negative partial charge.
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Table 13.19 Energy decomposition analysis of the axial isomers of Fe(CO)4–ECp and Fe(CO)5 at BP86/TZP [18]

BCp AlCp GaCp InCp TlCp CO

DEint 290.3 265.2 231.7 227.1 233.1 254.6

DEPauli 211.6 154.3 69.8 63.6 64.1 134.8

DEelstat
a 2186.0 (61.6%) 2112.1 (51.1%) 247.1 (46.6%) 240.0 (44.1%) 242.7 (44.0%) 298.0 (51.7%)

DEorb
a 2115.9 (38.4%) 2107.4 (48.9%) 254.4 (53.4%) 250.7 (55.9%) 254.2 (56.0%) 291.4 (48.3%)

DEs
b 293.8 (80.9%) 292.3 (85.9%) 247.2 (86.8%) 245.3 (89.3%) 248.9 (89.4%) 247.6 (52.1%)

DEp
b 222.1 (19.1%) 215.1 (14.1%) 27.2 (13.2%) 25.4 (10.7%) 25.8 (10.6%) 243.8 (47.9%)

DEprep 15.0 12.5 8.7 7.3 19.5 8.1

DEð¼ 2DeÞ 275.3 252.7 223.0 219.8 213.6 246.5

q(Fe) 20.56 20.58 20.51 20.49 20.45 –

q(E) 0.32 1.18 0.96 1.06 0.89 –

R(Fe–E) 1.968 2.253 2.395 2.548 2.578 –

Energy values in kcal/mol. Bond lengths R in Å. Atomic partial charges q.
aValues in parentheses give the percentage contribution to the total attractive interactions DEelstat þ DEorb:
bValues in parentheses give the percentage contribution to the total orbital interactions DEorb:
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reported here. Fig. 13.12 shows the trend of the energy contributions DEPauli; DEelstat and
DEorb for E ¼ B–Tl. For comparison we give in Table 13.19 also the EDA result for

Fe(CO)5.

The most important results of the complexes (CO)4Fe–ECp can be summarized as

follows. The Fe–B bond between iron and the lightest group-13 element boron has a

significantly higher electrostatic (61.6%) than covalent character (38.4%). The covalent

contributions to the Fe–E bonds increase for the heavier group-13 elements E where

it becomes as large as the electrostatic contribution. The covalent bonding comes mainly

from the Feˆ ECp s-donation. The contribution of the Fe! ECp p-backdonation
is much smaller, i.e. ,20% of the total DEorb term.

Fig. 13.12 shows nicely that the values of DEPauli; DEelstat and DEorb for (CO)4Fe–ECp
run parallel from E ¼ B–Tl except for the DEorb value of the boron complex. There is a
steep increase of DEPauli and DEelstat from Al to B while the DEorb value remains nearly

the same. The larger values for DEPauli and DEelstat for the boron complex can be

explained with the much shorter Fe–B distance compared to Fe–Al which leads to

stronger overlap repulsion between the occupied orbitals of the ligand and the metal

fragment ðDEPauliÞ and to stronger attraction between the Fe nucleus and the electron lone
pair of the donor ligand (DEelstat; see Fig. 13.11b) but why is there hardly any change in
the DEorb value? The explanation can be given when the nature of the dominant orbital
interaction is analyzed. Table 13.19 shows that the dominant contribution of DEorb comes

from the Feˆ ECp s donation. Fig. 13.11a displays the shape of the interacting orbitals.

The s donor orbital of E at first overlaps in a bonding fashion with the lobe of the dz2

orbital of Fe, which has the same sign. At shorter distances, there is an overlap with

the tubular-shaped lope of the dz2 orbital which has an opposite sign, thus leading to
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orbital interactionsDEorb andp-orbital interactionsDEp to the Fe–E bonding interactions in the axial isomers of
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antibonding orbital interactions. This cancels the increase of the bonding orbital

interactions, which therefore remains nearly constant. The electrostatic interactions do

not depend on the sign of the orbitals.

Table 13.19 gives also the atomic partial charges of the complexes which have been

calculated with the NBO method. The charges suggest that (i) there is charge attraction

between the positively charged atoms E and the negatively charged Fe; (ii) the charge

attraction of the Fe–B bond should be significantly weaker compared to the Fe–E

bonds of the heavier atoms E. The EDA reveals that and why both conclusions are not

valid. The atomic partial charges are scalar properties, which do not reveal any

information about the topography of the charge distribution of an atom in a molecule.

The quasiclassical electrostatic attraction between Fe and E in (CO)4Fe–ECp stems

from the interaction between the local concentration of negative charge of the overall

positively charged atom E and the local depletion of negative charge of the overall

negatively charged atom Fe.

Table 13.19 gives also the results of the energy partitioning analysis of the Fe–CO(ax)

bond of Fe(CO)5. What is the difference between the nature of the Fe–ECp and Fe–CO

bonds? The data show that the ratio between electrostatic to covalent bonding of the two

ligands is quite similar. A significant difference, however, is found when the

contributions by the Fe! L p-backdonation for L ¼ CO and L ¼ ECp are compared.

The calculated values show that CO is a strong p-acceptor ligand while ECp is not.
In order to examine the statement that the Fe! ER p-backdonation becomes a

significant part of the orbital interactions when the substituent R is a weak p donor such

as an aryl group [95] we next carried out an energy partitioning analysis of (CO)4Fe–EPh

(Ph ¼ phenyl) [18]. The results are given in Table 13.20. The trend of the energy

contributions is displayed in Fig. 13.13.

The calculations show that the interaction energies DEint and bond dissociation

energies De of the (CO)4Fe–EPh complexes are larger than those of the (CO)4Fe–ECp

molecules. A comparison of the calculated energy contributions of the axial Fe–EPh

bonds (Table 13.20) with those of the Fe–ECp bonds (Table 13.19) reveals that the

nature of the bonding with regard to the ratio of covalent and electrostatic bonding is very

similar to each other. This becomes obvious when the trends of DEelstat and DEorb in the
two sets of molecules are compared (Figures 11 and 12). For boron, the DEorb value in
(CO)4Fe–EPh exhibits a similar anomaly as for the (CO)4Fe–ECp compounds. The

crucial information, however, concerns the degree of p bonding to the DEorb term. Table
13.20 shows that the contribution of DEp to the covalent bonding in the series (CO)4Fe–

EPh is indeed larger than in (CO)4Fe–ECp. However, Fe–E p bonding remains much

smaller than s bonding in the former complexes. The largest contribution is found in the
boron complex (CO)4Fe–BPh where DEp is 33.4% of the total covalent term. The value

for DEp in (CO)4Fe–GaPh is only 17.2% of DEorb (Table 13.20). It follows that the iron–
gallium bond in (CO)4Fe–GaAr

p should not be considered as a triple bond. The stronger

and shorter Fe–E bonds in the (CO)4Fe–EPh complexes are caused by several factors of

which enhanced p bonding is only a minor component.

Table 13.20 shows also the results of the energy analysis of the equatorial isomers

of (CO)4Fe–EPh. The calculated data show that the Fe–EPh bonding interactions in the

axial and equatorial isomers are very similar. However, the latter isomers have C2v
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Table 13.20 Energy decomposition analysis of the axial and equatorial isomers of Fe(CO)4–EPh at BP86/TZP [18]

BPh AlPh GaPh InPh TlPh

ax eq ax eq ax eq ax eq ax eq

DEint 2110.3 2109.8 273.2 271.1 261.0 255.5 248.8 248.7 249.4 242.9

DEPauli 276.6 319.2 173.8 192.3 129.5 130.0 112.3 112.2 98.7 96.4

DEelstat
a 2230.4

(59.6%)

2258.8

(60.3%)

2127.3

(51.5%)

2147.6

(56.0%)

2102.3

(53.7%)

2107.5

(58.0%)

287.0

(54.0%)

291.7

(57.0%)

279.3

(53.5%)

281.3

(58.6%)

DEorb
a 2156.5

(40.4%)

2170.2

(39.7%)

2119.7

(48.5%)

2115.8

(44.0%)

288.2

(46.3%)

276.0

(42.0%)

274.1

(46.0%)

269.2

(43.0%)

268.8

(46.5%)

258.0

(41.4%)

DEs
b 2104.3

(66.6%)

2110.3

(64.8%)

298.2

(82.0%)

291.6

(79.1%)

273.0

(82.8%)

261.7

(79.1%)

263.4

(85.6%)

257.7

(83.4%)

259.8

(86.9%)

248.6

(83.8%)

DEp
b 252.2

(33.4%)

259.9

(35.2%)

221.5

(18.0%)

224.2

(20.9%)

215.2

(17.2%)

216.3

(20.9%)

210.7

(14.4%)

211.5

(16.6%)

29.0

(13.1%)

29.4

(16.2%)

DEpðb1Þc – 239.3 – 215.6 – 211.4 – 28.2 – 26.7

DEpðb2Þc – 220.7 – 28.6 – 24.9 – 23.3 – 22.7

DEprep 10.1 10.8 9.4 8.2 8.7 6.1 8.1 5.2 8.6 4.9

DEð¼ 2DeÞ 2100.2 299.0 263.8 262.9 252.3 249.4 240.7 243.5 240.8 238.0

R(TM–E) 1.803 1.800 2.217 2.206 2.296 2.304 2.478 2.488 2.478 2.544

Energy values in kcal/mol. Bond lengths R in Å.
aThe value in parentheses gives the percentage contribution to the total attractive interactions DEelstat þ DEorb:
bThe value in parentheses gives the percentage contribution to the total orbital interactions DEorb:
cp (b1)-orbital is in the Ph plane and p (b2)-orbital is perpendicular to the Ph plane.
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symmetry while the axial forms have only Cs symmetry. Thus, the calculated energy

values of the orbitals having different symmetry can be used to distinguish between the

in-plane ðb1Þ and out-of-plane ðb2Þ contributions to the Fe–EPh p bonding. The results

show that the in-plane contributions are as expected larger than the out-of-plane values

but the latter are not negligible. This is a nice example of how the EDA gives detailed

information about the strength of different orbital interactions.

The EDA results show that the group-13 ligand ER is a weaker p acceptor than CO

even when the substituent R is a poor p-donor group. What about the p-acceptor
strength of group-13 diyl ligands ER when there is no other ligand which competes for

the p electrons of the transition metal such as in homoleptic complexes TM(ER)n?

Examples of homoleptic complexes are only known for the group-12 elements Ni and

Pt. Uhl and coworkers reported for the first time about the synthesis and X-ray structure

analysis of Ni(ER)4 and Pt(ER)4 with E ¼ In, Ga where R is a bulky silyl group [97].

The bonding situation in homoleptic model compounds was analyzed with the EDA

method and the results were compared with the data for heteroleptic species [18]. In the

investigation we first analyzed the compounds (CO)4Fe–EMe and Fe(EMe3)5 (E ¼ B–

Tl) in order to compare the previous results of the iron complexes with the data which

were obtained for the group-10 complexes TM(EMe3)4 (E ¼ B–Tl, TM ¼ Ni, Pd, Pt).

The EDA results for the complexes (CO)4Fe–EMe (Table 13.21) are very similar to

those of (CO)4Fe–EPh (Table 13.20). This means that the methyl and phenyl groups

behave as weak p-donor groups. A comparison of the bonding analysis of the

homoleptic complexes Fe(EMe)5 (Table 13.22) with the results of the heteroleptic

species (CO)4Fe–EMe (Table 13.21) shows that the BDEs of the former are higher

than those of the latter. The EDA data suggest that the higher bond strength of
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Table 13.21 Energy decomposition analysis of the axial and equatorial isomers of Fe(CO)4–ECH3 at BP86/TZP [18]

BCH3 AlCH3 GaCH3 InCH3 TlCH3

ax eq ax eq ax eq ax eq ax eq

DEint 2110.0 2108.8 274.4 272.9 262.0 256.7 256.3 250.8 251.2 251.6

DEPauli 274.2 322.4 178.9 201.6 133.4 138.7 119.1 120.6 104.8 103.6

DEelstat
a 2228.2

(59.4%)

2258.8

(60.0%)

2131.5

(51.9%)

2153.9

(56.1%)

2106.1

(54.3%)

2114.0

(58.3%)

293.7

(53.4%)

299.0

(57.8%)

283.2

(53.4%)

285.7

(55.2%)

DEorb
a 2156.0

(40.6%)

2172.4

(40.0%)

2121.8

(48.1%)

2120.6

(43.9%)

289.3

(45.7%)

281.4

(41.7%)

281.7

(46.6%)

272.4

(42.2%)

272.8

(46.6%)

269.5

(44.8%)

DEs
b 2105.5

(67.4%)

2127.8

(74.1%)

2101.0

(82.9%)

2101.9

(84.5%)

275.0

(84.0%)

271.1

(87.3%)

271.4

(87.4%)

265.3

(90.2%)

264.3

(88.3%)

275.1

(93.1%)

DEp
b 250.5

(32.4%)

244.6

(25.9%)

220.8

(17.1%)

218.7

(15.5%)

214.3

(16.0%)

210.3

(12.7%)

210.3

(12.6%)

27.1

(9.8%)

28.5

(11.7%)

5.6

(6.9%)

DEprep 10.0 10.7 9.0 8.3 8.2 5.9 7.9 5.3 5.4 5.2

DEð¼ 2DeÞ 2100.0 298.1 265.4 264.6 253.8 250.8 248.4 245.5 245.8 -46.4

Energy values in kcal/mol.
aValues in parentheses give the percentage contribution to the attractive interactions DEelstat þ DEorb:
bValues in parentheses give the percentage contribution to the total orbital interactions DEorb:
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the homoleptic species is caused by the intrinsic interactions energies DEint which are

significantly larger than those of the heteroleptic molecules. Further breakdown of the

DEint term into the attractive forces shows that, in Fe(EMe)5, the electrostatic

interactions contribute more to the chemical bonding than in (CO)4Fe–EMe. Another

difference between the homoleptic and heteroleptic species is the relative contribution

of the p-backdonation. Table 13.22 shows that the Fe! ER p-backdonation in

Fe(EMe)5 is between 32–46% of the DEorb term which means that it contributes

significantly to the covalent bonding. The conclusion is that the group-13 diyl ligand ER

is an intrinsically strong p acceptor but the p-acceptor strength is smaller than that of

CO. In (CO)4Fe–ER, the two forces compete and hence, Fe! ER p-backdonation is

weak. In homoleptic complexes Fe(EMe)5 there is no competition and therefore,

Fe! ER p-backdonation becomes quite strong.

The EDA results of the group-10 homoleptic complexes TM(EMe)4 (E ¼ B–Tl,

TM ¼ Ni, Pd, Pt) are given in Table 13.23. The data indicate that the statement

concerning significant Fe! ER p-backdonation holds also true for other transition

metals. In TM(EMe)4 (TM ¼ Ni, Pd, Pt), the contribution of TM ! EMe p-

backdonation is between 33–49% of the covalent term DEorb: However, the bonding
interactions in the group-14 complexes TM(EMe)4 is mainly electrostatic. The DEelstat
term contributes between 75–65% of the total attractive interactions. Table 13.23 gives

also the results for the tetracarbonyls TM(CO)4. The covalent bonding in the latter is

larger than in the TM(EMe)4 compounds but it remains smaller than the electrostatic

bonding. Another difference between the two sets of compounds is the strength of the

TM! L p-backdonation which is larger for L ¼ CO than for L ¼ EMe. The most

important difference between the tetracarbonyls and the tetradiyl complexes is the total

bond energy. Table 13.23 shows that the BDE of the TM–CO bond is always less than

the BDE of the weakest TM–EMe bond which is TM–TlMe. This is the reason why

Ni(CO)4 but not Pd(CO)4 and Pt(CO)4 are stable complexes at room temperature while

the tetradiyl species of the heavier group-14 elements can be isolated [21].

Table 13.22 Energy decomposition analysis of the equatorial Fe–E bonds of the complexes Fe(ECH3)5
at BP86/TZP [18]

BCH3 AlCH3 GaCH3 InCH3 TlCH3

DEint 2119.2 287.0 267.0 259.5 254.1

DEPauli 247.8 140.2 120.8 113.9 113.0

DEelstat
a 2228.4 (62.2%) 2135.4 (59.6%) 2115.2 (61.3%) 2107.8 (62.2%) 2103.8 (62.1%)

DEorb
a 2138.6 (37.8%) 291.8 (40.4%) 272.6 (38.7%) 265.6 (37.8%) 263.3 (37.9%)

DEs
b 274.6 (53.8%) 255.0 (59.9%) 245.5 (62.7%) 241.7 (63.6%) 242.9 (67.8%)

DEp
b 264.0 (46.2%) 236.8 (40.1%) 227.1 (37.3%) 223.9 (36.4%) 220.4 (32.2%)

DEprep 13.6 7.8 2.9 2.1 1.1
DEð¼ 2DeÞ 2105.6 279.2 264.1 257.4 253.1

R(TM–E) 1.772 2.174 2.255 2.434 2.474

Bond lengths R in Å. Energy values in kcal/mol.
aThe value in parentheses gives the percentage contribution to the total attractive interactions DEelstat þ DEorb:
bThe value in parentheses gives the percentage contribution to the total orbital interactions DEorb:
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Table 13.23 Energy decomposition analysis of the TM–L bonds in TM(EMe)4 and TM(CO)4 (TM ¼ Ni,

Pd, Pt; E ¼ B–Tl) at BP86/TZP [21]

Ni(BMe)4 Ni(AlMe)4 Ni(GaMe)4 Ni(InMe)4 Ni(TlMe)4 Ni(CO)4

DEint 295.4 266.2 257.0 249.8 239.4 239.5

DEPauli 236.2 140.1 130.9 113.5 94.3 123.0

DEelstat 2215.5

(65.0%)

2132.7

(64.4%)

2123.7

(65.8%)

2108.5

(67.5%)

289.2

(67.7%)

296.6

(59.4%)

DEorb
a 2116.2

(35.0%)

273.5

(35.6%)

264.2

(34.2%)

254.7

(33.5%)

244.6

(33.3%)

265.9

(40.6%)

DEs 259.9

(51.5%)

244.9

(61.0%)

238.9

(60.6%)

233.4

(61.0%)

226.9

(60.3%)

230.6

(46.4%)

DEp
b 256.4

(48.5%)

228.6

(39.0%)

225.3

(39.4%)

221.3

(39.0%)

217.7

(39.7%)

235.3

(53.6%)

DEprep 3.3 1.3 3.6 3.1 4.1 10.6

DEð¼ 2DeÞ 292.1 264.9 253.4 246.7 235.3 228.5

Pd(BMe)4 Pd(AlMe)4 Pd(GaMe)4 Pd(InMe)4 Pd(TlMe)4 Pd(CO)4

DEint 280.5 256.1 246.7 240.7 230.4 225.6

DEPauli 280.6 169.6 154.3 131.7 110.6 126.6

DEelstat 2248.5

(68.8%

2162.6

(72.0%)

2145.0

(72.1%)

2127.6

(74.0%)

2105.5

(74.8%)

294.7

(62.2%)

DEorb
a 2112.6

(31.2%)

263.1

(28.0%)

256.0

(27.9%)

244.8

(26.0%)

235.5

(25.2%)

257.5

(37.8%)

DEs 260.2

(53.5%)

238.3

(60.7%)

234.0

(60.8%)

228.0

(62.5%)

222.6

(63.8%)

229.7

(51.6%)

DEp
b 252.4

(46.5%)

224.8

(39.3%)

222.0

(39.2%)

216.8

(37.5%)

212.8

(36.2%)

227.8

(48.4%)

DEprep 6.6 2.4 4.7 3.9 4.7 12.8

DEð¼ 2DeÞ 273.90 253.7 242.0 236.8 225.7 212

Pt(BMe)4 Pt(AlMe)4 Pt(GaMe)4 Pt(InMe)4 Pt(TlMe)4 Pt(CO)4

DEint 296.9 267.1 257.7 249.7 238.1 235.4

DEPauli 362.4 220.4 204.0 174.8 149.6 194.5

DEelstat 2316.5

(68.9%)

2206.9

(72.0%)

2187.1

(71.5%)

2164.5

(73.2%)

2137.8

(73.4%)

2140.3

(61.1%)

DEorb
a 2142.9

(31.1%)

280.5

(28.0%)

274.6

(28.5%)

260.1

(26.8%)

249.9

(26.6%)

289.5

(38.9%)

DEs 280.3

(56.2%)

251.9

(64.5%)

248.2

(64.7%)

239.8

(66.3%)

233.7

(67.5%)

249.2

(55.0%)

DEp
b 262.5

(43.8%)

228.6

(35.5%)

226.4

(35.3%)

220.2

(33.7%)

216.2

(32.5%)

240.3

(45.0%)

DEprep 9.2 4.1 7.4 6.5 7.9 20.7

DEð¼ 2DeÞ 287.7 263.0 250.3 243.2 230.2 214.7

Energy values in kcal/mol.
aThe value in parentheses gives the percentage contribution to the total attractive interactions DEelstat þ DEorb:
bThe value in parentheses gives the percentage contribution to the total orbital interactions DEorb:
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13.4.3 Carbene and carbyne complexes and heavier homologues (CO)5W–CH2,

(CO)5W–E(OH)2, Cl4W–EH2, Cl(CO)4W–EH and Cl3W–EH

(E 5 C, Si, Ge, Sn, Pb) [37]

Transition metal complexes with carbene (CR2) or carbyne (CR) ligands are examples

where two different orbital models are commonly used to describe the metal-ligand

interactions. This comes from the observation that complexes with the general formula

LnTM-CR2 and LnTM-CR can be divided into two different categories which exhibit

different chemical behavior. Fischer complexes usually contain the transition metal in a

low oxidation state and the TM–EH bonding is well described in terms of donor–acceptor

interactions. Schrock type carbenes and carbynes, on the other hand, usually contain a

transition metal in a high oxidation state and are properly described in terms of covalent or

electron-sharing interactions [98]. A more appropriate name for the latter compounds is

therefore metal alkylidenes and metal alkylidynes rather than Schrock carbenes and

carbynes.Wewill still use the latter names because they are quite common in the literature,

and they emphasize the relationship with the Fischer complexes. The qualitative orbital

models which are used to describe the metal–ligand interactions in Fischer and Schrock

type carbene and carbyne complexes are shown in Fig. 13.14. The same models may be

used for complexes containing ligands ER2 and ER with the heavier analogues of carbon

(E ¼ Si, Ge, Sn, Pb). We analyzed the metal–ligand interactions in the series of model

compounds (CO)5W–CH2, (CO)5W–E(OH)2, Cl4W–EH2, Cl(CO)4W–EH and Cl3W–

EH (E ¼ C, Si, Ge, Sn, Pb) [37].

The results of the EDA for the Fischer-type carbene complexes (CO)5W–E(OH)2 are

given in Table 13.24. Chemical experience shows that the substituent R must be a

p-donor group in order that a Fischer-type complex becomes stable enough to be isolated.

We included the model compound (CO)5W–CH2 in our study in order to analyze the

influence of the p-donor group OH on the bonding situation.

The effect of the donor OH groups is indeed significant. The interaction energy

for (CO)5W–C(OH)2 (DEint ¼ 256:0 kcal/mol) is much smaller than for (CO)5W–

CH2(DEint ¼ 293.8 kcal/mol). Not only the strength of the interaction is changed, the

individual contributions to the DEint term change as well. The covalent character of

the former compound is higher ðDEorb ¼ 67:3%Þ than in the latter ðDEorb ¼ 61:2%Þ but at
the same time the importance of the p contributions drops (DEp ¼ 33:9% for (CO)5W–

C(OH)2, DEp ¼ 53:7% for (CO)5W–CH2). As expected, the major contribution to the

p-orbital interactions comes from the b1 orbitals which are the out-of-plane orbitals where

the plane is defined by the ligand atoms. As the carbon homologues become heavier, the

covalent character of the TM-E bond increases and the contribution of the s interaction

becomes more important.

Table 13.25 gives the EDA results of the Schrock-type carbene complexes Cl4W–EH2.

The strength of the interaction is much higher than in the corresponding Fischer-type

complexes, the absolute value decreases when the group-14 elements get heavier but

remains rather high, even for the lead compound. Along the group-14 elements, the

nature of the interaction changes very little. The interaction for all the complexes is about

half electrostatic and half covalent. About two thirds of the orbital interaction stem from
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Fig. 13.14. Schematic representation of the dominant orbital interactions in (a) Fischer-type carbene

complexes; (b) Schrock-type carbene complexes; (c) Fischer-type carbyne complexes using charged closed-

shell fragments; (d) Fischer-type carbyne complexes using neutral open shell (doublet) fragments; (e) Schrock-

type carbyne complexes using neutral open-shell (quartet) fragments.
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Table 13.24 Energy decomposition analysis of the Fischer complexes (CO)5W–CH2 and (CO)5W–E(OH)2 using the metal fragments (CO)5W and the

ligands CH2 and E(OH)2 in the singlet state (see Fig. 13.13a and text) at BP86/TZ2P [37]

(CO)5W–CH2 (CO)5W–C(OH)2 (CO)5W–Si(OH)2 (CO)5W–Ge(OH)2 (CO)5W–Sn(OH)2 (CO)5W–Pb(OH)2

DEint 293.8 256.0 249.3 230.8 227.2 215.0

DEPauli 188.1 129.2 120.8 74.7 63.7 35.0

DEelstat
a 2172.4 (38.8%) 2124.7 (32.7%) 2103.9 (38.9%) 256.7 (46.3%) 248.6 (46.6%) 220.9 (58.2%)

DEorb
a 2109.5 (61.2%) 260.5 (67.3%) 266.2 (61.1%) 248.8 (53.7%) 242.4 (53.4%) 229.1 (41.8%)

DEsðA1Þb 250.6 (46.2%) 239.6 (65.5%) 244.7 (67.5%) 233.8 (69.3%) 231.5 (74.3%) 222.1 (75.9%)

DEdðA2Þb 20.1 (0.2%) 20.4 (0.7%) 20.3 (0.5%) 20.1 (0.2%) 20.1 (0.2%) 20.1 (0.3%)

DEpðB1Þb 253.1 (48.5%) 214.2 (23.5%) 212.7 (19.2%) 29.8 (20.1%) 26.9 (16.3%) 24.6 (15.8%)

DEpðB2Þb 25.7 (5.2%) 26.3 (10.4) 28.5 (12.8%) 25.1 (10.5%) 23.8 (9.0%) 22.4 (8.2%)

DEp
b 258.8 (53.7%) 220.5 (33.9%) 221.2 (32.0%) 214.9 (30.5%) 210.7 (25.3%) 27.0 (23.9%)

Energy values in kcal/mol.
aThe value in parentheses gives the percentage contribution to the total attractive interactions DEelstat þ DEorb:
bThe value in parentheses gives the percentage contribution to the total orbital interactions DEorb:
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the s bonding coming from the a1 orbitals. Another third comes from the p-bonding
orbitals, mainly from the out-of-plane (b1) and less from the in-plane (b2) orbitals.

The orbital model for the bonding in Fischer-type carbyne complexes has the problem

that the choice of the fragments is somewhat arbitrary. A description in terms of closed-

shell fragments analogous to Fischer-type carbenes yields charged moieties as interacting

species (Fig. 13.14c). Choosing neutral fragments one faces open-shell interactions in

Fischer carbynes (Fig. 13.14d). The EDA method makes it possible to analyze Fischer

carbynes in both ways. Table 13.26 gives the EDA results for Fischer-type carbyne

complexes with charged fragments in a closed-shell state. Table 13.27 gives the EDA

results with neutral fragments in their respective doublet states.

The interaction energies given in Table 13.26 are rather high. This is not surprising as

the fragments carry opposite charges. In the case where E ¼ C, the bond is much more

electrostatic than covalent. As the group-14 element becomes heavier this effect levels

out. For the heaviest elements, the chemical bond is about half electrostatic and half

Table 13.25 Energy decomposition analysis (kcal/mol) of the Schrock complexes Cl4W–EH2 using the

fragments Cl4W and EH2 in the triplet state (see Fig. 13.13b and text) at BP86/TZ2P [37]

Cl4W–CH2 Cl4W–SiH2 Cl4W–GeH2 Cl4W–SnH2 Cl4W–PbH2

DEint 2132.5 288.0 283.3 271.5 265.3

DEPauli 260.7 156.3 150.2 129.1 120.1

DEelstat
a 2190.0 (51.7%) 2120.4 (50.7%) 2114.8 (50.8%) 2100.8 (49.8%) 286.9 (53.1%)

DEorb
a 2203.2 (48.3%) 2123.9 (49.3%) 2118.6 (49.2%) 299.9 (50.2%) 298.5 (46.9%)

DEsðA1Þb 2129.7 (63.8%) 280.7 (65.1%) 279.1 (66.7%) 267.4 (67.5%) 264.2 (65.2%)

DEdðA2Þb 20.1 (,0.1%) 20.1 (0.1%) 20.1 (0.1%) 20.1 (0.1%) 20.1 (0.1%)

DEpðB1Þb 260.7 (29.9%) 237.5 (30.3%) 234.1 (28.8%) 228.4 (28.4%) 229.8 (30.3%)

DEpðB2Þb 212.7 (6.3%) 25.5 (4.4%) 25.4 (4.5%) 24.0 (4.0%) 24.4 (4.5%)

DEp
b 273.4 (36.1%) 243.0 (34.7%) 239.5 (33.3%) 232.3 (32.5%) 234.2 (34.8%)

Energy values in kcal/mol.
aValues in parentheses give the percentage of the attractive interactions DEelstat þ DEorb:
bValues in parentheses give the percentage contribution to the total orbital interactions DEorb:

Table 13.26 Energy decomposition analysis (kcal/mol) of the Fischer complexes Cl(CO)4W–EH

using the charged fragments Cl(CO)4W
2 and EHþ in the singlet state (see Fig. 13.13c and text) at

BP86/TZ2P [37]

Cl(CO)4W–CH Cl(CO)4W–SiH Cl(CO)4W–GeH Cl(CO)4W–SnH Cl(CO)4W–PbH

DEint 2350.3 2217.5 2204.4 2181.5 2164.0

DEPauli 208.9 126.4 112.2 99.2 78.3

DEelstat
a 2192.7 (65.5%) 2157.2 (54.3%) 2146.7 (53.7%) 2145.0 (48.4%) 2124.6 (48.6%)

DEorb
a 2366.5 (34.5%) 2186.7 (45.7%) 2169.9 (46.3%) 2135.7 (51.6%) 2117.8 (51.4%)

DEsðA1Þb 247.8 (13.0%) 238.3 (20.5%) 233.8 (19.9%) 228.6 (21.1%) 224.7 (21.0%)

DEðA2Þ 20.4 20.4 20.4 20.3 20.3

DEðB1Þ 20.7 21.1 21.1 20.9 20.9

DEðB2Þ 21.8 22.4 22.1 21.7 21.6

DEpðEÞb 2315.7 (86.1%) 2144.5 (77.4%) 2132.5 (78.0) 2104.2 (76.8%) 290.4 (76.7%)

Energy values in kcal/mol.
aValues in parentheses give the percentage contribution to the attractive interactions DEelstat þ DEorb:
bValues in parentheses give the percentage contribution to the total orbital interactions DEorb:
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covalent. The largest contributor to the orbital term DEorb are the p orbitals (e symmetry).

They contribute as much as 86.1% to the orbital term.

A comparison between the EDA results with different choices of interacting fragments

given in Tables 13.26 and 13.27 shows that the interaction energies between the neutral

fragments (Table 13.27) are much smaller. This effect is even more pronounced for

the heavier elements. The nature of the interactions shifts only slightly, however. The

electrostatic and covalent contributions have comparable strength for all compounds.

The p interaction is, as before, the dominant contribution to the orbital term DEorb but the

relative contributions are slightly smaller than for the closed-shell interaction. Note that

the EDA data make it possible to distinguish between the donor–acceptor interactions in

p symmetry which are given by the b1 term, and the electron sharing p interactions which

are given by the b2 term. It is interesting to note that the electron-sharing contribution is

smaller than the electron donation when E ¼ C while for the heavier atoms the electron-

sharing contribution is the larger term.

The results of the energy decomposition analyses for the Schrock-type carbyne

complexes are given in Table 13.28. The absolute values of the interaction energies are

Table 13.27 Energy decomposition analysis (kcal/mol) of the Fischer complexes Cl(CO)4W–EH using

the neutral fragments Cl(CO)4W and EH in the doublet state (see Fig. 13.13d and text) at BP86/TZ2P [37]

Cl(CO)4W–CH Cl(CO)4W–SiH Cl(CO)4W–GeH Cl(CO)4W–SnH Cl(CO)4W–PbH

DEint 2161.3 297.6 288.1 277.9 270.5

DEPauli 294.8 178.31 154.6 134.4 103.5

DEelstat
a 2226.9 (49.7%) 2133.0 (48.2%) 2114.0 (47.0%) 2104.6 (49.3%) 276.5 (44.0%)

DEorb
a 2229.2 (50.3%) 2143.0 (41.8%) 2128.7 (53.0%) 2107.7 (50.7%) 297.4 (56.0%)

DEsðA1Þb 271.2 (31.1%) 251.2 (35.8%) 246.9 (36.4%) 241.6 (38.6%) 235.4 (36.3%)

DEdðA2Þb 20.1 (,0.1%) 20.4 (0.3%) 20.3 (0.2%) 20.3 (0.3%) 20.2 (0.2%)

DEpðB1Þb 294.7 (41.3%) 240.2 (28.1%) 234.9 (27.1%) 225.0 (23.2%) 220.6 (21.1%)

DEpðB2Þb 263.2 (27.6%) 251.2 (35.8%) 246.6 (36.2%) 240.8 (37.9%) 241.3 (42.4%)

DEp
b 2157.9 (68.9%) 291.4 (63.9%) 281.5 (63.3%) 265.8 (61.2%) 261.9 (63.4%)

Energy values in kcal/mol.
aThe value in parentheses gives the percentage contribution to the total attractive interactions DEelstat þ DEorb:
bThe value in parentheses gives the percentage contribution to the total orbital interactions DEorb:

Table 13.28 Energy decomposition analysis (kcal/mol) of the Schrock complexes Cl3W–EH using the

fragments Cl3W and EH in the quartet state (see Fig. 13.13e and text) at BP86/TZ2P [37]

Cl3W–CH Cl3W–SiH Cl3W–GeH Cl3W–SnH Cl3W–PbH

DEint 2193.0 2128.0 2121.1 2103.6 298.5

DEPauli 310.1 180.6 187.7 164.7 158.8

DEelstat
a 2213.5 (57.6%) 2138.1 (55.3%) 2143.2 (53.7%) 2133.6 (50.2%) 2121.6 (52.7%)

DEorb
a 2289.6 (42.4%) 2170.6 (44.7%) 2165.7 (46.4%) 2134.8 (49.8%) 2135.6 (47.3%)

DEsðA1Þb 2147.3 (50.9%) 282.4 (48.3%) 286.8 (52.4%) 270.7 (52.5%) 274.2 (54.7%)

DEðA2Þ 0.0 0.0 0.0 0.0 0.0

DEpðEÞb 2142.3 (49.1%) 288.2 (51.7%) 279.0 (47.6%) 264.1 (47.5%) 261.5 (45.3%)

Energy values in kcal/mol.
aThe value in parentheses gives the percentage contribution to the total attractive interactions DEelstat þ DEorb:
bThe value in parentheses gives the percentage contribution to the total orbital interactions DEorb:

Chapter 13346



very high for metal–ligand interactions between neutral fragments. The Cl3W–EH

bonds are slightly more electrostatic than covalent but the differences to the Fischer-

carbynes shown in Table 13.26 are very small. The s and p interactions in the Schrock

carbynes have almost the same strength while the latter clearly dominates the orbital

interactions in the Fischer carbynes. This seems to be the major difference between the

two classes of carbyne complexes.

13.4.4 Ethylene and acetylene complexes (CO)5TM–C2Hx and Cl4TM–C2Hx

(TM 5 Cr, Mo, W), (CO)4TM–C2Hx (TM 5 Fe, Ru, Os) and TM1–C2Hx

(TM 5 Cu, Ag, Au) [35]

The same dichotomy of bonding models for TM-ligand interactions which has proven

to be very helpful for understanding the bonding situation in TM carbene and carbyne

complexes in terms of donor-acceptor interactions or shared-electron bonding is also

found in the theoretical literature about the structure and bonding of TM complexes with

alkene and alkyne ligands. TM alkene complexes have actually been the first example

of TM compounds for which Dewar suggested the model of synergistic TMˆ ligand

s-donation and TM! ligandp-backdonation [86]. Fig. 13.15a shows that thes-donation

arises from the occupied p MO of the alkene, which has s symmetry in the complex,

while the p-backdonation occurs through charge donation from the occupied dxz MO of

the metal to the vacant pp orbital of the olefin. The alternative bonding model has two

electron-sharing s bonds between the metal and the carbon atoms which leads to a

description of the molecule as a metallacyclopropane (Fig. 13.15b). We want to point out

that the two bonding models should be considered as sketches of two extreme situations

while the electronic situation of real molecules has components of both forms. The value

of such dichotomic models lies in the fact that they establish an ordering scheme, which is

very useful for describing the physical and chemical properties of molecules. A previous

charge-decomposition analysis of alkene and alkyne complexes has shown that

complexes exist which are intermediate between the two extreme cases [99b–d].

The chemical bonding in TM alkyne complexes can be discussed in a similar way as

for the TM alkene complexes, i.e. the bonding may be considered either to arise from

donor–acceptor interactions between the alkyne ligand and the TM or as a metallacyclic

compound (Figure 14c and d). Both approaches have been shown to be helpful in terms of

understanding the chemistry of transition metal ethylene and acetylene complexes [98].

The major difference between alkene and alkyne complexes is the fact that the alkyne

ligand has a second set of occupied and vacant p orbitals orthogonal to the TMC2 plane

which may engage in TM–alkyne bonding. The latter TMˆ alkyne donation is denoted

as p’-interaction while the TM! alkyne backdonation into the out-of-plane p’
p orbital

of the ligand has d symmetry (Fig. 13.15c). Thus, alkynes may be 2e or 4e donors. Thus,
three major topics arise in the bonding analysis of TM alkene and alkyne complexes: (a)

Metallacyclic versus donor–acceptor bonding. (b) Participation of the p’ orbitals of the

alkyne in the binding interactions. (c) Difference between alkene and alkyne complexes.

The topic has been addressed in an EDA study of the TM complexes (CO)5TM–C2Hx
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Fig. 13.15. Schematic representation of the most important orbital interactions in TM-alkene and alkyne

complexes and description as metallacyclic compounds: (a) TMˆ ligand s-donation ða1Þ and TM! ligand

p-backdonation ðb2Þ in alkene complexes. (b) Metallacyclopropane. (c) TMˆ ligand s-donation ða1Þ;
TM! ligand in-plane pk-backdonation ðb2Þ; TMˆ ligand out-of-plane p’-donation ðb1Þ and TM! ligand d-

backdonation (a2) in alkyne complexes. (d) Metallacycloropene. The symmetry assignments a1; a2; b1; b2 are

given with respect to overall C2v symmetry.
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and Cl4TM–C2Hx (TM ¼ Cr, Mo, W), (CO)4TM–C2Hx (TM ¼ Fe, Ru, Os) and TMþ–
C2Hx (TM ¼ Cu, Ag, Au) [35].

The EDA results of the ethylene and acetylene complexes of the group-11 elements

TMþ–C2Hx (TM ¼ Cu, Ag, Au) are given in Table 13.29. The interaction energies and

the bond-dissociation energies exhibit a U-shaped trend from Cu to Ag and Au. The

slightly stronger bonding energies of the ethylene complexes are reflected in the

interaction energies. They are therefore an intrinsic property of the metal–ligand

interaction and not connected to the preparation energy. Yet the bond lengths of the

acetylene complexes are smaller, hence there is no bond-length bond-strength correlation

for this type of complexes.

As suggested by previous work [100] the electrostatic interaction DEelstat is the major
contributor to the attractive term of the interaction energy DEint in the group-11

complexes TMþ–C2Hx, but in contrast to the results of previous work, the influence of

the covalent contribution DEorb is not negligible. The DEorb term contributes 41–44% of

the attractive interactions. The principal orbital interactions shown in Fig. 13.15 can be

seen in the individual contributions to the orbital term DEorb: The different types of
donation and backdonation are labeled next to the symbol of the irreducible

representation in C2v symmetry that contains them in Table 13.29. The largest

contribution comes in all cases from the s-donation in the a1 orbitals. These orbitals
contribute between 59.4 and 69.2% of the covalent orbital interaction DEorb in ethylene
complexes and between 55.7 and 68.4% in acetylene complexes. As expected the

backdonation of the b2 orbitals is the second most important term. It contributes between

20.6 and 30.5% for ethylene complexes and between 21.8 and 33.4% for acetylene

complexes. The (TMþ)ˆ C2Hx p’-donation (b1) and the d interaction (a2) are, however,
both small and appear to be negligible.

The EDA results of group-8 complexes (CO)4TM-C2Hx (TM ¼ Fe, Ru, Os) are given

in Table 13.30. The chemical bonding in these and similar complexes has been subjected

to theoretical analysis before [101]. As the complexes discussed before the bond

dissociation energies of the group-8 complexes exhibit a U-shaped trend from the first to

the second and third TM row, but in contrast to the group-11 species, the BDEs of the first

row TM-complexes are slightly higher than the BDEs of the third row TM-complexes.

This is due to the larger values of the corresponding preparation energies and not to a

change in the metal–ligand interaction. The metal–ligand interaction has a slightly

higher electrostatic than covalent character. The orbital term contributes 43.7–47.5% of

the total attractive interactions. Yet, the metal–ethylene bond has a lower covalent

character than the metal–acetylene bond although the differences are minute. The ratio of

quasiclassical electrostatic interaction and covalent orbital interaction is very similar to

those observed in the cationic group-11 TM-complexes.

In the case of the group-8 TM-complexes the (CO)4TM! C2Hx pk-backdonation

(b2 symmetry) becomes the most important contribution to the DEorb term. The contri-
butions of the (CO)4TMˆ C2Hx p’-donation (b1) and the d interaction (a2) are both
small. Because the preparation energies are higher for the acetylene ligands, the BDEs

become larger for the ethylene ligands although their interaction energy DEint is smaller.
The EDA results of the group-6 TM-complexes (CO)5TM–C2Hx (TM ¼ Cr, Mo, W)

are shown in Table 13.31. In agreement with the results of the other complexes,
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Table 13.29 Energy decomposition analysis of TM–C2Hx
þ at BP86/TZP using closed-shell fragments TMþ(d10) and C2Hx [35]

Cuþ Agþ Auþ

C2H4 C2H2 C2H4 C2H2 C2H4 C2H2

DEint 263.5 262.0 240.8 235.9 279.1 270.8

DEPauli 98.9 103.6 61.8 56.4 157.2 161.0

DEelstat
a 290.6 (55.8%) 294.6 (57.1%) 259.8 (58.3%) 254.8 (59.4%) 2134.7 (57.0%) 2134.1 (57.8%)

DEorb
a 271.8 (44.2%) 271.1 (42.9%) 242.8 (41.7%) 237.5 (40.6%) 2101.6 (43.0%) 297.8 (42.2%)

DEðA1Þsb 242.6 (59.4%) 239.5 (55.7%) 229.6 (69.2%) 225.6 (68.4%) 268.0 (67.0%) 263.1 (64.6%)

DEðA2Þdb 22.2 (3.1%) 20.9 (1.3%) 21.6 (3.7%) 20.3 (0.8%) 22.6 (2.6%) 21.3 (1.4%)

DEðB1Þp’
b 25.1 (7.1%) 26.9 (9.7%) 22.7 (6.4%) 23.4 (9.0%) 25.5 (5.4%) 26.9 (7.0%)

DEðB2Þpk
b 221.9 (30.5%) 223.7 (33.4%) 28.8 (20.6%) 28.2 (21.8%) 225.5 (25.0%) 226.5 (27.1%)

Eprep 3.5 3.7 2.0 1.8 6.2 5.8

DEð¼ 2DeÞ 260.0 258.3 238.8 234.1 272.9 264.9

2D0 258.5 257.7 237.5 233.6 271.2 264.3

q(TM) 0.85 0.88 0.81 0.83 0.73 0.77

q(C2Hx) 0.15 0.12 0.19 0.17 0.27 0.23

R(C–C) 1.390 1.238 1.374 1.225 1.414 1.250

Energy values in kcal/mol. Bond lengths R in Å. Atomic partial charges q.
aThe value in parentheses gives the percentage contribution to the total attractive interactions DEelstat þ DEorb:
bThe value in parentheses gives the percentage contribution to the total orbital interactions DEorb:
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Table 13.30 Energy decomposition analysis of (CO)4TM–C2Hx at BP86/TZP using closed-shell fragments TM(CO)4 and C2Hx [35]

Fe(CO)4 Ru(CO)4 Os(CO)4

C2H4 C2H2 C2H4 C2H2 C2H4 C2H2

DEint 248.3 249.6 241.7 252.3 262.2 270.2

DEPauli 123.1 128.0 137.1 149.4 180.4 185.5

DEelstat
a 291.0 (53.1%) 292.3 (51.9%) 2100.6 (56.3%) 2107.3 (53.2%) 2133.5 (55.0%) 2134.3 (52.5%)

DEorb
a 280.4 (46.9%) 285.3 (48.1%) 278.2 (43.7%) 294.4 (46.8%) 2109.2 (45.0%) 2121.5 (47.5%)

DEðA1Þsb 235.2 (43.8%) 234.1 (39.9%) 231.3 (40.0%) 232.6 (34.5%) 246.3 (42.4%) 245.5 (37.4%)

DEðA2Þdb 20.9 (1.1%) 21.1 (1.3%) 20.8 (1.1%) 21.0 (1.1%) 21.1 (1.0%) 21.3 (1.1%)

DEðB1Þp’
b 22.9 (3.6%) 23.5 (4.1%) 22.7 (3.4%) 23.4 (3.6%) 23.6 (3.3%) 24.4 (3.6%)

DEðB2Þpk
b 241.4 (51.5%) 246.7 (54.7%) 243.4 (55.5%) 257.4 (60.8%) 258.2 (53.3%) 270.3 (57.9%)

Eprep
c 14.9 (5.3 þ 9.6) 18.9 (6.0 þ 12.9) 24.6 (14.3 þ 10.3) 35.7 (18.2 þ 17.5) 32.9 (17.9 þ 15.0) 41.4 (21.3 þ 20.1)

DEð¼ 2DeÞ 233.4 230.8 217.1 216.6 229.3 228.8

2D0 230.6 228.8 215.3 215.2 226.9 227.0

q(TM)d 0.09 0.14 0.10 0.19 0.12 0.21

q(C2Hx) 20.09 20.14 20.10 20.19 20.12 20.21

R(C–C) 1.411 1.258 1.415 1.269 1.438 1.278

Energy values in kcal/mol. Bond lengths R in Å. Atomic partial charges q.
aThe value in parentheses gives the percentage contribution to the total attractive interactions DEelstat þ DEorb:
bThe value in parentheses gives the percentage contribution to the total orbital interactions DEorb:
cThe values in parentheses give the preparation energies of the metal fragment and ligand, respectively.
dPartial charge of TM(CO)4.
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Table 13.31 Energy decomposition analysis of (CO)5TM–C2Hx at BP86/TZP using closed-shell fragments TM(CO)5 and C2Hx [35]

Cr(CO)5 Mo(CO)5 W(CO)5

C2H4 C2H2 C2H4 C2H2 C2H4 C2H2

DEint 229.9 229.6 225.6 226.5 235.4 238.1

DEPauli 83.9 86.2 69.1 74.9 93.0 103.5

DEelstat
a 259.5 (52.3%) 259.8 (51.7%) 252.0 (55.0%) 254.5 (53.8%) 270.0 (54.5%) 275.0 (52.9%)

DEorb
a 254.3 (47.7%) 256.0 (48.3%) 242.6 (45.0%) 246.9 (46.3%) 258.4 (45.5%) 266.6 (47.1%)

DEðA1Þsb 229.0 (53.5%) 227.1 (48.4%) 220.4 (47.9%) 219.8 (42.3%) 228.8 (49.3%) 228.4 (42.6%)

DEðA2Þdb 20.6 (1.2%) 21.3 (2.3%) 20.6 (1.5%) 21.1 (2.2%) 20.7 (1.3%) 21.4 (2.1%)

DEðB1Þp’
b 22.2 (4.0%) 22.5 (4.5%) 22.1 (5.0%) 23.0 (6.4%) 22.7 (4.6%) 24.1 (6.1%)

DEðB2Þpk
b 222.5 (41.4%) 225.1 (44.9%) 219.4 (45.6%) 223.0 (49.0%) 226.2 (44.9%) 232.8 (49.2%)

Eprep
c 6.3 (0.9 þ 5.4) 8.4 (1.0 þ 7.4) 4.9 (1.3 þ 3.6) 7.5 (1.4 þ 6.1) 7.5 (1.9 þ 5.6) 11.6 (2.2 þ 9.4)

DEð¼ 2DeÞ 223.6 221.2 220.6 219.0 227.9 226.6

2D0 220.9 219.6 218.8 218.0 225.9 225.3

q(TM)d 0.03 0.07 0.04 0.08 0.06 0.11

q(C2Hx) 20.03 20.07 20.04 20.08 20.06 20.11

R(C–C) 1.383 1.237 1.375 1.235 1.388 1.245

Energy values in kcal/mol. Bond lengths R in Å. Atomic partial charges q.
aValues in parentheses give the percentage contribution to the attractive interactions DEelstat þ DEorb:
bValues in parentheses give the percentage contribution to the total orbital interactions.
cThe values in parentheses give the preparation energies of the metal fragment and ligand, respectively.
dPartial charge of TM(CO)5.
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the metal–ligand interaction is more electrostatic than covalent ðDEelstat ¼ 51:7–55:0%Þ
and the relative contribution of the covalent term DEorb is stronger in the acetylene

complexes than in the ethylene complexes. Again the out-of-plane (CO)5TMˆ C2Hx

p’-donation and the d interaction are negligible. In these complexes the s-donation
and the p-backdonation are of comparable strength. Yet, the s-donation is stronger in
the ethylene complexes, while the p-backdonation is more important in the acetylene
complexes. This effect is even more pronounced in the heavier complexes.

As before, the bond dissociation energies are slightly larger for the ethylene complexes

than for the acetylene complexes. This is again caused by the effect of the preparation

energy rather than the metal–ligand interaction. The deformation of the acetylene ligand

always costs more energy than the geometric deformation of the ethylene ligand.

To compare previously discussed low-valent transition metal compounds with high-

valent transition metal compounds, the former results can be compared with the energy

decomposition analyses of the complexes Cl4TM–C2Hx (TM ¼ Cr, Mo, W). The EDA

results are given in Table 13.32.

The high-valent compounds Cl4TM–C2Hx show much larger interaction energies than

the low-valent complexes discussed above. This is in agreement with the comparably

small bond distances in these complexes. However, the bond dissociation energies

are rather small. Note, that the predicted BDE of Cl4Mo–C2H4 is positive. Thus, this

molecule is only kinetically stable. This is caused by the large preparation energies which

are in turn dominated by the large singlet to triplet excitation which is necessary

Table 13.32 Energy decomposition analysis of Cl4TM–C2Hx at BP86/TZP using triplet fragments

TMCl4 and C2Hx [35]

MoCl4 WCl4

C2H4 C2H2 C2H4 C2H2

DEint 2126.1 2153.1 2139.7 2169.4

DEPauli 209.1 268.7 257.9 313.9

DEelstat
a 2132.6 (39.6%) 2165.9 (39.3%) 2172.8 (43.5%) 2206.8 (42.8%)

DEorb
a 2202.6 (60.4%) 2256.0 (60.7%) 2224.7 (56.5%) 2276.5 (57.2%)

DEðA1Þsb 2101.9 (50.3%) 2121.4 (47.4%) 2116.0 (51.6%) 2135.0 (48.8%)

DEðA2Þdb 22.5 (1.2%) 22.8 (1.1%) 22.8 (1.2%) 22.4 (0.9%)

DEðB1Þp’
b 26.9 (3.4%) 227.4 (10.7%) 28.4 (3.7%) 230.0 (10.9%)

DEðB2Þpk
b 291.3 (45.1%) 2104.4 (40.8%) 297.5 (43.4%) 2109.1 (39.4%)

Eprep
c 133.9 (44.8

þ 89.1)

141.2 (47.5

þ 93.7)

126.8 (41.0

þ 85.8)

131.5 (41.7

þ 89.8)

DEð¼ 2DeÞ 7.8 211.9 212.9 237.9

2D0 9.4 29.8 211.4 235.6

q(TM)d 0.03 0.07 0.04 0.08

q(C2Hx) 20.03 20.07 20.04 20.08

R(C–C) 1.429 1.307 1.451 1.317

Energy values in kcal/mol. Bond lengths R in Å. Atomic partial charges q.
aValues in parentheses give the percentage contribution to the attractive interactions DEelstat þ DEorb:
bValues in parentheses give the percentage contribution to the total orbital interactions.
cThe values in parentheses give the preparation energies of the metal fragment and ligand, respectively.
dPartial charge of TMCl4.
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to promote the fragment from its electronic ground state to the reference state used in the

analysis.

In this case the contribution of the covalent interaction in the DEorb term is more

important than the electrostatic interaction. The DEelstat term contributes only to 39–44%

of the total attractive contributions. The individual contributions to the covalent orbital

term DEorb reveal, that although the s-donation is dominant, the contribution of the

backdonation in the b2 symmetry is of almost comparable size. The largest difference

between low- and high-valent transition metal complexes can be seen in the out-of-plane

p’-interaction in b1 symmetry. In the ethylene complexes this contribution is small. It

contributes to only up to 3.7% of the orbital term and is almost negligible, but in the

acetylene complexes this contribution rises to 10.7–10.9% of the covalent contribution.

Although comparably large, the amount of interaction is still insufficient to classify

acetylene as a 4-electron donor in Cl4TM–C2H2 complexes.

13.4.5 Phosphane complexes (CO)5TM–PX3 (TM 5 Cr, Mo, W;

X 5 H, Me, F, Cl) [22]

The chemical bonding of transition metal phosphane complexes has been analyzed and

reviewed many times in the chemical literature [102]. Usually the emphasis of the

investigation is on the strength of the TM! PR3 p-backdonation. This has led to a
controversy because different methods which were used to estimate the p-acceptor
strength of different phosphanes PR3 came to conflicting conclusions particularly with

regard to PCl3. The interpretation of IR data of phosphane complexes by means of the

Cotton-Kraihanzel force-field technique [103] led to the order of p acceptance PF3 .
PCl3 . P(OR)3 . PR3 [104]. The interpretation of experimental NMR chemical shifts

of (CO)nMo–(PR3)62n (n ¼ 3–5) and a re-examination of the various parameters used

to evaluate s and p contributions to the TM–P bond led to the suggestion that PCl3
should be a weak p acceptor [105]. However, a subsequent theoretical study of [94] Mo

and [32] P NMR chemical shifts indicated that PCl3 is actually a very strong p acceptor

which should be stronger than PF3 and particularly PH3 and PMe3 [106]. The conflicting

suggestions illustrate the dilemma which is often found when one tries to examine the

nature of a chemical bond by correlating a particular property with specific components

of the bonding interactions. A correlation is not the same as an explanation, which comes

from the analysis of the electronic structure. The EDA is ideally suited to investigate

the question about the correlation between the strength of the total interactions and the

p-backdonation. Therefore, we carried out an EDA investigation of group-6 phosphane

complexes (CO)5TM–PX3 (TM ¼ Cr, Mo, W; X ¼ H, Me, F, Cl) [23]. The results are

given in Table 13.33.

The breakdown of the TM–P interaction energies into the contributions of DEelstat;
DEorb and DEPauli shows that the repulsive term DEPauli has always the largest absolute
values. For the TM–PH3 and TM–PMe3 bonds, the largest attractive contributions come

from DEelstat: The bonding in the PH3 and PMe3 complexes has between 56 and 65%
electrostatic character. Thus, any discussion of the bonding in these molecules in terms of

covalent bonding neglects the dominant part of the attractive interactions! The covalent
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Table 13.33 Energy decomposition analysis of (CO)5TM–PX3 at BP86/TZP [22]

Cr(CO)5PH3 Mo(CO)5PH3 W(CO)5PH3

DEint 233.7 231.8 236.4

DEPauli 81.5 70.7 83.7

DEelstat
a 264.9 (56.3%) 259.4 (58.0%) 271.5 (59.6%)

DEorb
a 250.3 (43.7%) 243.1 (42.0%) 248.5 (40.4%)

DEðA0Þ 242.5 235.9 240.7

DEðA00Þ 27.8 27.4 27.9

DEs
b 234.6 (68.8%) 228.3 (65.7%) 232.8 (67.6%)

DEp
b 215.9 (31.2%) 214.8 (34.3%) 215.7 (32.4%)

DEprep 1.2 0.8 2.4

DEð¼ 2DeÞ 232.4 231.0 234.0

Cr(CO)5PMe3 Mo(CO)5PMe3 W(CO)5PMe3

DEint 243.7 240.9 246.4

DEPauli 96.5 85.6 99.3

DEelstat
a 285.1 (60.7%) 280.7 (63.8%) 294.9 (65.1%)

DEorb
a 255.1 (39.3%) 245.8 (36.2%) 250.8 (34.9%)

DEðA0Þ 248.0 239.5 244.0

DEðA00Þ 27.1 26.3 26.8

DEs
b 241.0 (74.3%) 233.1 (72.3%) 237.3 (73.4%)

DEp
b 214.2 (25.7%) 212.7 (27.7%) 213.5 (26.6%)

DEprep 2.5 3.0 2.6

DEð¼ 2DeÞ 241.2 237.9 243.8

Cr(CO)5PF3 Mo(CO)5PF3 W(CO)5PF3

DEint 235.1 233.5 238.6

DEPauli 92.0 82.3 97.0

DEelstat
a 262.9 (49.5%) 257.4 (49.6%) 270.2 (51.8%)

DEorb
a 264.2 (50.5%) 258.4 (50.4%) 265.4 (48.2%)

DEðA0Þ 248.5 243.1 248.9

DEðA00Þ 215.8 215.3 216.5

DEs
b 232.7 (50.8%) 227.8 (47.6%) 232.4 (49.5%)

DEp
b 231.6 (49.2%) 230.6 (52.4%) 233.1 (50.5%)

DEprep 1.3 2.7 3.1

DEð¼ 2DeÞ 233.8 230.9 235.4

Cr(CO)5PCl3 Mo(CO)5PCl3 W(CO)5PCl3

DEint 227.8 226.1 231.1

DEPauli 78.4 70.1 83.3

DEelstat
a 249.6 (46.7%) 245.3 (47.3%) 255.8 (48.8%)

DEorb
a 256.6 (53.3%) 251.0 (52.9%) 258.5 (51.2%)

DEðA0Þ 243.5 238.6 244.9

DEðA00Þ 213.1 212.4 213.6

DEs
b 230.4 (53.7%) 226.3 (51.5%) 231.2 (53.3%)

DEp
b 226.2 (46.3%) 224.7 (48.5%) 227.3 (46.7%)

DEprep 1.0 2.5 2.5

DEð¼ 2DeÞ 226.8 223.7 228.6

Energy values in kcal/mol.
aThe value in parentheses gives the percentage contribution to the total attractive interactions DEelstat þ DEorb:
bThe value in parentheses gives the percentage contribution to the total orbital interactions DEorb:
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contributions become somewhat larger in the halophosphane complexes (CO)5TMPF3
and (CO)5TMPCl3 where the electrostatic forces and covalent forces have nearly the

same strength (Table 13.33). This is one difference between the TM–PX3 (X ¼ F, Cl)

bonds and the TM–PX3 (X ¼ H, Me) bonds. The second difference concerns the degree

of p contributions to DEorb: Table 13.33 shows that p bonding in the TM–PH3 bonds

(31–34%) and particularly in the TM–PMe3 bonds (26–28%) is clearly weaker than

s bonding, while the s and p contributions in the TM–PF3 and TM–PCl3 bonds have

about equal strength. The latter result answers once and for all the question about

the strength of the p contributions in PCl3 complexes. The ligand PCl3 is as strong

a p acceptor than PF3! However, the interaction energies DEint and the bond dissociation
energies De show clearly (Table 13.33) that PCl3 is weaker bonded than PF3.

Fig. 13.16 exhibits the trend of DEint and the energy contributions DEelstat; DEorb and
DEPauli to the W–PX3 bonds. The p contribution to DEorb is also given. The trends of the
chromium and molybdenum complexes are nearly the same and thus, they are not shown

here. The most important conclusion is that the trend of the electrostatic term DEelstat
shows a much better agreement with the total interaction energy DEint than the orbital
term DEorb: In particular, the trend of the p-bonding values DEp is very different from the

curve of DEint: The best correlation is actually found between DEint and DEelstat:Note that
the stronger bonding of the PMe3 ligand compared with the other PX3 phosphane comes

clearly from the larger DEelstat values and not from DEorb (Table 13.33). The weaker
bonds of the PCl3 ligands compared with the TM–PF3 bonds is also mainly caused by the

weaker electrostatic attraction. Only the relative values of DEint and DEelstat for PH3 and
PF3 do not agree with each other. Nevertheless, the results of the energy analysis [22]

suggest that the trend of the metal-phosphane bond strength is determined by the

electrostatic interactions and not by the orbital interactions. Thus, focusing on the

strength of p-backdonation in phosphane complexes can be misleading!
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Fig. 13.16. Trends of the absolute values of the interaction energies DEint and the energy contributions DEPauli;
DEelstat; total orbital interactions DEorb and p-orbital interactions DEp to the W–PX3 bonds of W(CO)5PX3 at
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13.4.6 Dihydrogen complexes TM(CO)5(h
2-H2) (TM 5 Cr, Mo, W) and

W(CO)3X2(h
2-H2) (X 5 CO, PH3, PCl3, PMe3) [26]

The dichotomy of two bonding models for TM–ligand interactions which was

successfully employed to describe TM complexes with carbene, carbyne, alkene and

alkyne ligands is also helpful for describing the two classes of hydrid complexes which

are known. One class are the metal hydrids LnTM(H)m where one or more hydrogen

atoms are directly bonded to the metal. They are called classical hydrides. Nonclassical

hydrides have dihydrogen ligands H2 in an h
2-bonded way LnTM(h

2-H2)m. Since the first

synthesis of such a complex by Kubas [107] in 1984 transition metal–dihydrogen

complexes have been subject of many experimental and theoretical studies which

have been reviewed recently [108]. The nature of the metal–dihydrogen interactions in

nonclassical hydrides is still disputed. Therefore, we carried out an EDA investigation of

the model complexes TM(CO)3X2(h
2-H2) (TM ¼ Cr, Mo, W; X ¼ CO, PH3, PCl3) [26].

We will first discuss the results of the parent systems E(CO)5–H2 (E ¼ Cr, Mo, W). The

results of the EDA are given in Table 13.34.

The EDA results of the parent compounds show, that all three components of DEint
vary parallel with the total interaction energy. Due to the larger TM· · ·H2 distance in

Mo(CO)5H2, both the repulsive Pauli interaction and the attractive electrostatic and

orbital interactions are considerably weaker in this complex. The larger decrease in the

attractive interactions as compared to that in the Pauli forces leads to ca. 3 kcal/mol

destabilization with respect to Cr(CO)5H2 and W(CO)5H2. On the other hand, the ratio of

the electrostatic and orbital interactions, and that of the components of DEorb; is rather
similar in all the three complexes. Thus, the nature of the TM–H2 bonding in

TM(CO)5H2 is slightly more electrostatic (53.1–54.4%) than covalent. We want to point

out that the high electrostatic character and the trend of the electrostatic attraction is not

obvious from the calculated partial charges. Table 13.34 shows that the NBO charges

Table 13.34 Results of the energy decomposition analysis of (CO)5TM–H2 at BP86/TZP [26]

Cr(CO)5–H2 Mo(CO)5–H2 W(CO)5–H2

DEint 221.2 218.3 222.6

DEPauli 51.6 42.8 54.0

DEelstat
a 238.8 (53.2%) 232.4 (53.1%) 241.6 (54.4%)

DEorb
a 234.0 (46.8%) 228.6 (46.9%) 234.9 (45.6%)

DEða1Þsb 221.8 (64.1%) 218.1 (63.3%) 222.3 (63.9%)

DEðA2Þdb 20.1 (0.3%) 0.0 0.0

DEðB1Þp’
b 21.3 (3.8%) 21.2 (4.2%) 21.3 (3.7%)

DEðB2Þpk
b 210.8 (31.8%) 29.3 (32.5%) 211.3 (32.4%)

DEprep 2.5 2.3 3.2

DEð¼ 2DeÞ 218.7 216.0 219.4

q(TM) 21.37 21.03 20.78

q(H2) 0.22 0.18 0.18

Energy values in kcal/mol. Atomic partial charges q.
aThe value in parentheses gives the percentage contribution to the total attractive interactions DEelstat þ DEorb:
bThe value in parentheses gives the percentage contribution to the total orbital interactions DEorb:
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of the metal and the H2 ligand suggest that the electrostatic attraction in Cr(CO)5H2
should be much higher than in W(CO)5H2. The electrostatic interaction between

the H2 ligand and the TM(CO)5 fragment comes mainly from the attraction between

the electronic charge of the dihydrogen ligand, which serves as a Lewis base, and the

positively charged nucleus of the metal. This becomes obvious by the topological

analysis of the electron density distribution of the molecules, which has earlier been

published by us [109]. There is an area of local charge depletion of the overall negatively

charged metal atom and an area of local charge concentration of an overall positively

charged ligand which leads to strong electrostatic attraction. The calculated partial

charges give the wrong impression that the electrostatic attraction comes from the

negatively charged metal atom and the positively charged ligand. The same problem was

discussed in Section 13.4.2 about the group-13 diyl complexes.

On the basis of the energy components we can quantify the relative importance of

donation and backdonation for the TM–H2 interaction strength. Since the C2v point group

is preserved during the formation of the TM(CO)5H2 complexes, the energy contribution

from the a1 representation accounts for the donation from sH2
to the metal center, whereas

the contribution from the b1 representation can be attributed to the dp ! sp(H2) back-

donation. According to the data in Table 13.34, the s-donation dominates over the

p-backdonation in the TM(CO)5H2 complexes. The energy contribution of the former
interaction is nearly twice of that of the p-backdonation. This phenomenon is reasonable
in TM(CO)5L complexes because of the strong p-acceptor character of the CO groups

which compete with the poor p-acceptor ligand H2. A previous study on various

TML(CO)4H2 complexes showed the importance of the trans ligand for the magnitude of

the metal! sp(H2) p-backdonation [110].
In order to assess the influence of ancillary ligands on the metal–dihydrogen bonding a

series of EDA analyses of the model compounds W(CO)3X2–H2 (X ¼ PH3, PCl3, PMe3)

have been carried out. The dihydrogen ligand is trans to one CO ligand and cis to the

phosphane ligands which have a trans position to each other [26]. The results of the

energy analysis are shown in Table 13.35.

The EDA studies of W(CO)3(PR3)2(h
2–H2) have been carried out with two different

orientations of the H–H bond with respect to the P–W–P axis. In the global minimum

structures of W(CO)3(PH3)2H2 and W(CO)3(PMe3)2H2 the H2 bond vector is aligned

along the P–W–P axis (k), whereas the alignment along the C–W–C axis (’)

corresponds to a first-order saddle-point. On the other hand, the global minimum of the

PCl3 complex is the (’) conformer, whereas W(CO)3(PCl3)2H2 (k) is a slightly higher
lying local minimum. The interaction energy in the (k) isomers is always considerably
larger than in the (’) conformers (Table 13.35) but the preparation energy in the former

species is also higher. This leads to a lower energy for the (’) form of W(CO)3(PCl3)2H2.

Note that the (k) isomers have a significantly larger p-orbital contribution to the DEorb
term than the (’) conformers while the overall bonding character in terms of relative

covalent/electrostatic bonding does not change very much (Table 13.35).

The data in Table 13.35 show that substitution of the strong p-acceptor ligand
CO by the relatively poor p-acceptor phosphanes increases the W–H2 interaction

energy. In agreement with the very weak p-acceptor character of PH3 (vide supra),
the W–H2 interaction becomes the strongest in W(CO)3(PH3)2H2. On the other hand,

Chapter 13358



Table 13.35 Results of the energy decomposition analysis of (CO)3X2W–H2 at BP86/TZP

X

CO PH3(k) PH3( ’ ) PCl3(k) PCl3( ’ ) PMe3(k) PMe3( ’ )

DEint 222.6 227.6 221.2 224.1 220.8 225.6 220.5

DEPauli 54.0 66.0 54.4 61.6 57.5 65.3 54.9

DEelstat
a 241.6 (54.4%) 250.8 (54.3%) 241.8 (55.3%) 245.8 (53.5%) 242.3 (54.0%) 249.8 (54.8%) 242.2 (55.9%)

DEorb
a 234.9 (45.6%) 242.7 (45.7%) 233.8 (44.7%) 239.9 (46.5%) 236.0 (46.0%) 241.0 (45.2%) 233.3 (44.1%)

DEðA1Þsb 222.3 (63.9%) 223.1 (54.1%) 220.5 (60.6%) 224.2 (60.6%) 223.3 (64.7%) 222.1 (53.9%) 219.5 (58.6%)

DEðA2Þdb 0.0 20.1 (0.2%) 20.1 (0.3%) 20.1 (0.3%) 20.1 (0.3%) 20.1 (0.2%) 20.1 (0.3%)

DEðB1Þp’
b 21.3 (3.7%) 21.3 (3.0%) 21.6 (4.7%) 21.3 (3.3%) 21.5 (4.2%) 21.3 (3.2%) 21.8 (5.4%)

DE(B2)pk
b 211.3 (32.4%) 218.2 (42.6%) 211.6 34.3%) 214.3 (35.8%) 211.1 (30.8%) 217.5 (42.7%) 211.9 (35.7%)

DEprep 3.2 8.3 3.5 8.1 3.9 5.9 3.4

DEð¼ 2DeÞ 219.4 219.3 217.7 216.0 216.9 219.7 217.1

q(W) 20.78 21.03 21.01 21.08 21.08 21.01 21.01

q(H2) 0.18 0.16 0.17 0.20 0.20 0.16 0.16

The two structures of W(CO)3X2–H2 are characterized by the orientation of the H–H bond which is parallel ðkÞ or perpendicular ð’Þ to the P–W –P axis [26]; Energy values in kcal/mol.

Atomic partial charges q.
aThe value in parentheses gives the percentage contribution to the total attractive interactions DEelstat þ DEorb:
bThe value in parentheses gives the percentage contribution to the total orbital interactions DEorb:
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the comparatively strong p-acceptor character of PCl3 (see Section 13.4.5 about

phosphane complexes) compared with the other phosphanes yields the weakest W–H2
interaction in W(CO)3(PCl3)2H2. Inspection of the energy contributions to the total

interaction energy shows that the relative strength of DEelstat and DEorb remains nearly
the same in the complexes W(CO)3X2H2 for X ¼ CO and X ¼ PR3 (Table 13.35). The

absolute values of the attractive interactions Eelstat and DEorb are slightly higher for

X ¼ PR3 than for X ¼ CO, but also the values forEPauli are larger in the former complexes

than in the latter. Fig. 13.17 shows nicely that the trend of the Eelstat and DEorb values
follow closely the trend of Eint: However, there is a noteworthy difference between the
s and p contributions to the two types of complexes. The increase of the DEorb term in

the PR3 complexes is mainly due to the stronger p contributions (Table 13.35) while

theDEs values change very little. In fact, the change of theDEp values follows closely the

change of the total interaction energy DEint: This is clearly shown in Fig. 13.17 where
the trend of DEp is graphically displayed. The calculations indicate that there is a correla-

tion between the energy contribution of the W! sp(H2) p-backdonation and the total
interaction energy.

13.4.7 Metallocene complexes Fe(h5-E5)2 and Ti(h
5-E5)2

22 (E 5 CH, N, P, As, Sb)

and bis(benzene)chromium [20,23,29,31]

The landmark synthesis of ferrocene in 1951 [74] which was already mentioned in

Section 13.3.8 and the equally important preparation of bis(benzene)chromium in 1955

[111] set the stage for the development of the chemistry of metallocene and arene

complexes which are also known as sandwich compounds. The synthesis and application

of metallocenes, which are important catalysts has been flourishing until today. It is thus

appropriate to analyze the bonding situation in the two parent compounds in some more

detail with the EDA method.
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Fig. 13.17. Trend of the energy contributions to the metal-H2 interaction energy DEint in the complexes

W(CO)3X2(h
2-H2) (X ¼ CO, PH3, PCl3, PMe3) at BP86/TZP.
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The metal–ligand interactions in metallocenes and metal arene complexes are

usually discussed in terms of qualitative MO correlation diagrams. Fig. 13.18 shows a

correlation diagram which gives the relevant orbitals of a d6 transition metal with the

reference electron configuration ða1gÞ2ðe2gÞ4ðe1gÞ0 and a cyclic 12 p-aromatic sandwich

ligand which can be used for ferrocene and bis(benzene)chromium. The symmetry

assignments of the orbitals are related to the D6h conformation of Cr(Bz)2 and to the

D5d form of Fe(Cp)2. Most textbooks discuss the orbital interactions in ferrocene using

the D5d form because it is more convenient for comparison with other transition metal

complexes. We have also chosen to use the D5d form of Fe(Cp)2 because the molecular

orbitals have the same symmetry as those of Cr(Bz)2. Note that the a1g and a2u orbitals

of the complexes have s symmetry, the e1u and e1g orbitals have p symmetry, and

(σ)

(σ)
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e1u

a2u

a2u(σ)
a1g

a1g(σ)

(π)
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Fig. 13.18. MO correlation diagram between a d6 transition metal with the electron configuration ða1gÞ2 �
ðe2gÞ4ðe1gÞ0 and a cyclic 12 p-aromatic sandwich ligand. The shape of the ligand orbitals have been taken from
the Bz2 ligand. The orbitals of the Cp2 ligands look very similar.
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the e2g and e2u orbitals have d symmetry. According to the qualitative bonding model
shown in Fig. 13.18, the s and p orbitals describe Mˆ L donation while the d orbitals
describe M! L backdonation.

The qualitative MO diagram shall now be discussed in the light of the results of the

EDA of bis(benzene)chromium and ferrocene which are given in Table 13.36. The first

column gives the results for Cr(Bz)2 which were calculated using Cr atom with the

valence electron configuration ða1gÞ2ðe2gÞ4ðe1gÞ0 and (Bz)2 as fragments [31]. The

occupied valence orbitals of Cr are dz2, dxy and dx2 2 y2. The calculations predict that

the interaction energy between the excited chromium atom and the (Bz)2 ligand is

DEint ¼ 2268:5 kcal/mol. The largest component of the interaction energy is the attrac-
tive orbital term DEorb ¼ 2377:2 kcal/mol. The electrostatic attraction DEelstat ¼
2230:5 kcal/mol is clearly weaker than the covalent attraction. The energy partitioning
analysis suggests that the metal–ligand bonding in bis(benzene)chromium is 62.1%

covalent and 37.9% electrostatic. The largest contribution to the covalent interactions

comes from the e2g (d) orbitals which give 73.4%. Thus, the energy partitioning analysis
shows that bis(benzene)chromium is a d bonded molecule.
The energy partitioning analysis of ferrocene has been carried out using two different

fragmentation patterns. First we used the fragments which are isoelectronic with the

fragments of Cr(Bz)2, i.e. Fe
2þ with the valence electron configuration ða1gÞ2ðe2gÞ4ðe1gÞ0

and (Cp2)2. Table 13.36 shows that the interaction energy of the charged fragments

is much larger (DEint ¼ 2893:9 kcal/mol) than for bis(benzene)chromium. The largest

Table 13.36 Energy decomposition analysis of Cr(Bz)2 and Fe(Cp)2 at BP86/TZP [31]. The electron

configurations of the metal fragments are given below. The electron configurations of the ligands are

(a) neutral benzene dimer (Bz)2, (b) Cp2
22 and (c) triplet Cp2

bb. Energy values in kcal/mol

(D6h,D5d) (a) Cr(Bz)2
Cr[dz

2, dxy, dx22y2]
6

(b) Fe(Cp)2
Fe2þ[dz

2, dxy, dx22y2]
6

(c) Fe(Cp)2
Fe2þ[dz

2, dxy, dx22y2]
6[dxz, dyz,]

aa

DEint 2268.5 2893.9 2274.2

DEPauli 339.2 279.9 409.6

DEelstat
a 2230.5 (37.9%) 2599.9 (51.1%) 2307.5 (45.0%)

DEorb
a 2377.2 (62.1%) 2573.9 (48.9%) 2376.3 (55.0%)

DEs(A1g)
b 235.4 (9.4%) 248.6 (8.5%) 224.6 (6.4%)

DE(A2g) 0.0 0.0 0.0

DE(B1g)
b 20.1 (,1%) c c

DE(B2g)
b 20.2 (,1%) c c

DEp(E1g)
b 255.6 (14.7%) 2371.2 (64.7%) 2231.2 (61.4%)

DEd(E2g)
b 2277.0 (73.4%) 247.8 (8.3%) 2111.9 (29.7%)

DEðA1uÞ 0.0 0.0 0.0

DEsðA2uÞb 22.9 (,1%) 228.3 (4.9%) 22.9 (,1%)

DEðB1uÞb 20.2 (,1%) c c

DEðB2uÞb 20.1 (,1%) c c

DEpðE1uÞb 23.8 (1.0%) 261.5 (10.7%) 24.8 (1.3%)

DEdðE2uÞb 21.8 (,1%) 216.6 (2.9%) 21.0 (,1%)

aThe value in parentheses gives the percentage contribution to the total attractive interactions DEelstat þ DEorb:
bThe value in parentheses gives the percentage contribution to the total orbital interactions DEorb:
cThere is no representation of this symmetry in the point group D5d :
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contribution comes from the electrostatic term ðDEelstat ¼ 2599:9 kcal/mol) but

the covalent attraction is only slightly weaker (DEorb ¼ 2573:9 kcal/mol). Thus, the
calculations indicate that the strength of the covalent bonding in ferrocene (48.9%) is

nearly as high as the electrostatic bonding (51.1%). The large value for DEorb can be
explained with the energetically low-lying acceptor orbitals of Fe2þ which strengthen the
Mˆ L donation. The calculated values for the orbitals with different symmetry show

that the contributions of the Mˆ L donor interactions (s and p orbitals) are indeed

stronger in Fe(Cp)2 than in Cr(Bz)2 while the M! L backdonation (d orbitals) is weaker.
The largest contribution to the covalent bonding in ferrocene comes from the e1g (p)
orbitals which give 64.7% of DEorb (Table 13.36).
The analysis of the bonding situation in ferrocene may be biased towards Mˆ L donor

interactions because of the choice of charged fragments Fe2þ and (Cp2)2. Therefore, we
carried out a second energy partitioning analysis of Fe(Cp)2 using neutral Fe and Cp2 as

interacting fragments. We solved the problem of occupying the degenerate e1g orbitals

with only two electrons by choosing the triplet states of Fe, which has a valence electron

configuration ða1gÞ2ðe2gÞ4ðe1gÞaa and Cp2 which has a the valence occupation ða1gÞ2 �
ða2uÞ2ðe1uÞ4ðe1gÞbb: Table 13.36 shows that the interaction energy (DEint ¼ 2274:2 kcal/
mol) is much less than in case when the charged fragments are used. However, the

relative contributions of DEelstat and DEorb are very similar in both analyses. The

calculations show that the Fe–(Cp)2 bonding between neutral Fe and Cp2 is 45.0%

electrostatic and 55.0% covalent. The breakdown of the latter term into orbitals having

different symmetry indicates that the e1g (p) orbitals contribute 61.4% of DEorb which is
not much less than the value of 64.7% which was calculated when charged fragments are

used (Table 13.36). The contribution of the d bonding orbitals are larger when neutral
fragments are used (29.7%) than in case of charged fragments (8.3%) but the main

conclusion remains that the covalent bonding in ferrocene comes mainly from p orbitals.

The recent interest in all-heteroatom analogues of ferrocene led us to investigate

the isoelectronic nitrogen analogue of ferrocene, i.e. ironbispentazole Fe(h5-N5)2 and
its heavier homologues Fe(h5-E5)2 with E ¼ P, As, Sb [20,29]. The EDA was carried out

for the interactions between Fe(h5-E5)
þ and E5

2 rather than between the bare metal

and the ligands. This was done because in our study we also investigated the complexes

FeCp(h5-E5) where we were interested in the differences between the metal–ligand

interactions in the homoleptic and heteroleptic complexes. The EDA was also carried out

for ferrocene using the above fragments which makes it possible to compare the EDA

results using different fragments.

According to the qualitative model shown in Fig. 13.19, the most important orbital

interactions take place (i) between the occupied e1 (p) orbital of the ligand and the empty
e1 metal fragment orbital mainly via the dxz and dyz orbitals of Fe and (ii) between the

empty e2 (p) ligand orbital and the occupied e2 metal fragment orbital mainly via the dxy
and dx22y2 orbitals of Fe. The interactions between the occupied a1 orbitals of the ligand

(lowest lying p orbital) and metal fragment (mainly via the dz2 Fe orbital) contributes to

the bonding only by mixing in of the empty s and pz orbitals of Fe. We will now discuss

the results of the energy analysis in order to estimate quantitatively the strength of the

orbital interactions with respect to each other and with respect to electrostatic attraction

which is not considered in the orbital correlation model.
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Table 13.37 shows the results of the energy partitioning analyses of the sandwich

complexes of the form Fe(E5)2 with E ¼ CH, N, P, As, Sb [23]. It is interesting to note,

that the interaction energy DEint is almost the same for the nitrogen and the phosphorous
compounds. The larger BDE of the former stems from the contribution of the preparation

energy DEprep: The energy partitioning suggests that the bonding in all the complexes is
half electrostatic and half covalent, although the electrostatic contribution DEelstat is a
little higher for ferrocene. The dominant contribution to the orbital term DEorb is the
p interaction in the e1 symmetry. This term contributes between 65 and 69% to the total

orbital interactions. The conclusion is that the nature of the bonding in the carbocyclic

and heterocyclic Fe(h5-E5)2 complexes does not vary significantly from E ¼ CH to

+

Fe Fe

Fig. 13.19. MO correlation diagram showing the most important orbitals of the ligand cyclo-E5
2 and the

fragment Fe(h5-E5)
þ, which are relevant for the bonding in Fe(h5-E5)2.
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Table 13.37 Energy decomposition analysis of Fe(E5)2 using the fragments Fe(E5)
þ and E5

2 at BP86/

TZ2P [23]

E ¼ CH E ¼ N E ¼ P E ¼ As E ¼ Sb

DEint 2237.6 2198.0 2199.5 2183.8 2165.1

DEPauli 172.4 149.7 190.2 221.6 220.8

DEelstat
a 2238.5

(58.2%)

2184.3

(53.0%)

2207.3

(53.2%)

2223.1

(55.0%)

2205.1

(53.1%)

DEorb
a 2171.5

(41.8%)

2163.4

(47.0%)

2182.5

(46.8%)

2182.3

(45.0%)

2180.9

(46.9%)

DEsðA1Þb 225.0

(14.6%)

222.4

(13.7%)

228.1

(15.4%)

229.1

(16.0%)

235.7

(19.7%)

DEðA2Þ 0.0 0.0 0.0 0.0 0.0

DEpðE1Þb 2109.3

(63.8%)

2106.1

(65.0%)

2120.7

(66.1%)

2123.7

(67.8%)

2125.6

(69.4%)

DEdðE2Þb 237.1

(21.6%)

234.9

(21.3%)

233.7

(18.5%)

229.6

(16.2%)

219.6

(10.8%)

DEprep 2.8 13.1 28.0 23.3 46.3

DEð¼ 2DeÞ 2234.8 2184.9 2171.5 2160.5 2118.8

Energy values in kcal/mol.
aThe value in parentheses gives the percentage contribution to the total attractive interactions DEelstat þ DEorb:
bThe value in parentheses gives the percentage contribution to the total orbital interactions DEorb:

Table 13.38 Energy decomposition analysis of Ti(h5-E5)2
22 at BP86/TZ2P using the fragments

Ti(h5-E5)
2 and (h5-E5)

2 [29]

Ti

E ¼ CH E ¼ N E ¼ P E ¼ As E ¼ Sb

DEint 230.5 227.5 239.5 233.3 229.4

DEPauli 116.7 132.7 178.5 198.2 195.1

DEelstat
a 222.4

(15.2%)

23.7

(2.3%)

263.0

(28.9%)

284.5

(36.5%)

287.4

(38.9%)

DEorb
a 2124.8

(84.8%)

2156.5

(97.7%)

2154.9

(71.1%)

2147.0

(63.5%)

2137.2

(61.1%)

DEsðA1Þb 28.5

(6.8%)

212.7

(8.1%)

216.5

(10.7%)

218.9

(12.9%)

225.5

(18.6%)

DEðA2Þ 0.0 0.0 0.0 0.0 0.0

DEpðE1Þb 230.6

(24.5%)

234.8

(22.3%)

248.8

(31.5%)

249.6

(33.7%)

252.0

(37.9%)

DEdðE2Þb 285.7

(68.7%)

2109.0

(69.6%)

289.6

(57.8%)

278.5

(53.4%)

259.6

(43.5%)

DEprep 83.0 44.4 27.4 27.5 30.5

DEð¼ 2DeÞ 52.5 16.9 212.1 25.8 1.1

Energy values in kcal/mol.
aThe value in parentheses gives the percentage contribution to the total attractive interactions DEelstat þ DEorb:
bThe value in parentheses gives the percentage contribution to the total orbital interactions DEorb:
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E ¼ Sb. In the same paper [23] we reported also about the bonding situation in the mixed

Cp/E5 complexes FeCp(h
5-E5). The EDA results showed that there are no major changes

in the relative contributions of the energy components in the mixed complexes compared

with the homoleptic molecules. Therefore we do not give the data here. The interested

reader may read the original publication [23].

Shortly after the theoretical analysis of the bonding situation in Fe(h5-E5)2 complexes
was published a paper appeared which reported about the first synthesis of a homoleptic

sandwich complex with a pentaphospholyl ligand, Ti(h5-P5)2
22 [112]. The authors

reported also about a theoretical analysis of the metal–ligand bonding situation using

a MO-correlation diagram. We extended our EDA work about the chemical bonds in

metallocenes with heterocyclic ligands and investigated the compounds Ti(h5-E5)2
22

(E ¼ CH, N, P, As, Sb). The calculations were done in the same fashion as for the neutral

Fe(h5-E5)2 species, which are 18-electron compounds while Ti(h
5-E5)2

22 are formally

16-electron complexes. Thus, the highest-lying occupied a1 orbital of Fe(h5-E5)2
(Fig. 13.19) is empty in Ti(h5-E5)2

22. The EDA results using the fragments Ti(h5-E5)
2

and (h5-E5)
2 are shown in Table 13.38.

A comparison of the EDA results for Ti(h5-E5)2
22 (Table 13.38) with the data for

Fe(h5-E5)2 shows that the a1 contribution to the orbital interactions is indeed smaller in
the former compounds than in the latter. However, other differences are much more strik-

ing. The orbital interactions in the negatively charged titanium complexes Ti(h5-E5)2
22

come mainly from the E2 orbitals which have d symmetry while the largest contribution
to DEorb in Fe(h

5-E5)2 come from the E1 orbitals which have p symmetries. The relative

contributions of the d orbitals in Ti(h5-E5)2
22 become smaller when E is a heavier element

but the E2 orbitals are always more important than the E1 orbitals (Table 13.38).

Thus, the complexes Ti(h5-E5)2
2- are d-bonded compounds like Cr(Bz)2. Note that, in

Ti(h5-E5)2
22, the orbital interactions contribute between 61.1–97.7% to the total interac-

tion energy which indicates a much higher degree of covalent bonding than in Fe(h5-E5)2.

13.5 CONCLUSION

The results of the EDA which have been presented and discussed in this paper for a large

variety of molecules and chemical bonds show that it is possible to address the question

about the nature of the chemical bond in terms of familiar concepts which can be

identified and quantitatively expressed using accurate quantum chemical methods. The

three energy terms DEelstat; DEPauli and DEorb which are uniquely defined in the EDA
method can be interpreted in a plausible way which connects heuristic bonding models

with the physical mechanism of the chemical bonds. The EDA method can be used to

investigate controversial topics such as the multiplicity of bonding interactions and the

relative strength of quasiclassical electrostatic and covalent (orbital) interactions. The

EDA results show that the repulsive forces, which come from the Pauli exclusion

principle can be very important for understanding the strength of the interatomic

interactions. It is also misleading to consider only orbital interactions as the crucial term

for determining the trend of the bond strength. Another advantage of the EDA

partitioning method is that the instantaneous interaction energy of a chemical bond is

Chapter 13366



considered. The DEint values can be very different from the bond dissociation energies

because the preparation energy of the interacting fragments may be large.

There is still much room for progress in the field of energy decomposition of the

chemical bond, both in application and method development. An important issue is the

application of the EDA method for polar bonds. Another promising field, which is hardly

touched is the bonding analysis of transition state structures, which could reveal

important information about the reactivity of molecules. From a methodological point of

view it is desirable that the EDA partitioning becomes developed for correlated ab initio

wavefunctions. Another future avenue for further development is the choice of different

interacting moieties. For example, the atomic basins as defined by the atom-in-molecule

method of Bader [113] may be used as starting point of the analysis instead of using

the undisturbed charge distributions of the fragments. It would also be useful for some

molecules to study the interactions between more than two fragments at the same time.

For example, the difference between the s and p bonding interactions in benzene could

then be studied with the EDA by taking three C2H2 fragments as interacting species. The

energy decomposition of the interatomic interactions remains a promising tool in the

large arsenal of quantum chemical methods for addressing the famous statement: “Give

us insight not numbers” [114].
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26 D.S. Nemcsok, A. Kovács, V.M. Rayón and G. Frenking, Organometallics, 21 (2002) 5803.

27 K.K. Pandey, M. Lein and G. Frenking, J. Am. Chem. Soc., 125 (2003) 1660.

28 M. Lein, J. Frunzke and G. Frenking, Angew. Chem., 115 (2003) 1341; M. Lein, J. Frunzke and

G. Frenking, Angew. Chem. Int. Ed., 42 (2003) 1303.

29 M. Lein, J. Frunzke and G. Frenking, Inorg. Chem., 42 (2003) 2504.

30 C. Massera and G. Frenking, Organometallics, 22 (2003) 2758.

31 V.M. Rayón and G. Frenking, Organometallics, 22 (2003) 3304.

32 C. Esterhuysen and G. Frenking, Chem. Eur. J., 9 (2003) 3518.

33 O. Dietz, V.M. Rayón and G. Frenking, Inorg. Chem., 42 (2003) 4977.

34 C. Loschen and G. Frenking, Inorg. Chem., 43 (2004) 778.

35 M.S. Nechaev, V.M. Rayón and G. Frenking, J. Phys. Chem. A, 108 (2004) 3134.

36 K.K. Pandey, M. Lein and G. Frenking, Organometallics, 23 (2004) 2944.
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CHAPTER 14

Superoperator many-body theory of

molecular currents: non-equilibrium

Green functions in real time

Upendra Harbola and Shaul Mukamel

Department of Chemistry, University of California, Irvine, CA 92697-2025, USA

Abstract

The electric conductance of a molecular junction is calculated by recasting the Keldysh

formalism in Liouville space. Dyson equations for non-equilibrium many-body Green

functions (NEGF) are derived directly in real (physical) time. The various NEGFs appear

naturally in the theory as time-ordered products of superoperators, while the Keldysh

forward/backward time loop is avoided.

14.1 INTRODUCTION

Recent advances in the fabrication and measurements of nanoscale devices have led to

a considerable interest in non-equilibrium current-carrying states of single molecules.

The tunneling of electrons between two metals separated by a thin oxide layer was first

observed experimentally by Giaever [1] and later by others [2]. Vibrational resonances

can be observed for molecules absorbed at the metal–oxide interface by analyzing the

tunneling current as a function of the applied bias [3,4]. More recent development of

scanning tunneling microscopy (STM) led to a direct, real space determination of surface

structures. A metal tip is brought near the surface so that tunneling resistance is

measurable. A contour map of the surface is obtained by recording the tunneling

resistance as the tip scans the surface. The tunneling electrons interact and may exchange

energy with the nuclear degrees of freedom of the absorbed molecule. This opens up

inelastic channels for electron transmission from the tip to the surface, leading to inelastic

electron tunneling (IET). IET may play an important role in manipulating molecules with

STM [5,6]. Recently, IET was combined with STM for the chemical analysis of a single

absorbed molecule with atomic spatial resolution [7,8]. The atomic-scale STM images

q 2005 Elsevier B.V. All rights reserved.
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have been useful in analyzing different binding configurations of the molecule

chemisorbed on a semiconductor surface [9,10]. Recent advances in the theory of

STM are reviewed in Ref. [11].

Electron tunneling was first analyzed by Bardeen [12] and Cohen et al. [13] using the

perturbative transfer Hamiltonian (TH) approach and more recently by many other

authors [14–16]. Although the TH gives, in many cases, a good description of the

observed effects, it lacks a firm first principles theoretical basis and does not account

properly for many-body effects [17]. An improved form of TH [18] that involved energy

dependent transfer matrix elements was used to incorporate many-body effects. However,

this model does not describe the electron–phonon interaction properly [19].

A many-body non-equilibrium Green functions (NEGF) formulation of electron

tunneling was proposed by Caroli et al. [20]. The NEGF theory was originated by

Schwinger [21] and Kaddanof and Baym [22], and developed further by Keldysh [23] and

Craig [24]. This formalism involves the calculation of four basic Green functions, time

ordered ðGT Þ; anti-time ordered ðG ~TÞ; lesser ðG,Þ and greater ðG.Þ: Additional retarded
(Gr) and advanced (Ga) Green functions are defined as specific combinations of these

basic functions. At equilibrium it is sufficient to know only the retarded or advanced

Green functions; all other Green functions simply follow from the fluctuation–

dissipation theorem that connects the ‘lesser’ and ‘greater’ with the retarded Green

function through the equilibrium Fermi distribution function ðf0ðEÞÞ [25]. However, for
non-equilibrium measurements, where the distribution function is not known a priori,

one needs to solve for the various NEGFs self-consistently.

Electronic transport in molecular wires and STM currents of single molecules have

received considerable attention [26–31]. Electron transport through a single molecule

[32–34] or a chain of several atoms [35] was studied. From a theoretical point of view,

this is very similar to the electron tunneling in semiconductor junctions and various

theories developed for STM [36,37] can directly be applied to molecular wires. The

NEGF technique developed for tunneling currents has been used to analyze the electron

conduction through a single molecule attached to electrodes [26,36,38–42]. The method

has also been combined with density functional theory for the modeling of transport in

molecular devices [43,44].

In this chapter, we develop a non-equilibrium superoperator Green function theory

[23,25,45] (NESGFT) of molecular currents [46]. A notable advantage of working with

superoperators in the higher dimensional Liouville space [44,47] is that we need to

consider only time-ordered quantities in real (physical) time; all NEGFs show up

naturally without introducing artificial time variables. Observables can be expressed in

terms of various Liouville space pathways (LSP) [46]. The ordinary (causal) response

function which represents the density response to an external field is one particular

combination of these LSPs. Other combinations represent the spontaneous density

fluctuations and the response of these fluctuations to the external field [47,48]. A simple

time ordering operation of superoperators in real time is all it takes to derive the non-

equilibrium theory, avoiding the Keldysh loop or Matsubara imaginary time. The NESGF

theory provides new physical insights into the mechanism of the current. It can also be

more naturally used to interpret time domain experiments involving external pulses.
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In Section 14.2, we give a brief introduction to the superoperator formalism and recast

the NEGFT in terms of the superoperator Green functions. Starting from the microscopic

definitions for various NESGF, we construct equations of motion and obtain the

Dyson matrix equation of Keldysh which couples the various NESGFs. In Section 14.3,

we apply the NESGFT to the conduction through a molecular junction. In Section 14.4

we end with a discussion.

14.2 DYSON EQUATIONS FOR SUPEROPERATOR GREEN FUNCTIONS

We consider a system of externally-driven electrons and phonons described by the

Hamiltonian [16,23,26,38],

H ¼ H0 þ Hep þ Hex ð1Þ
where H0 represents the non-interacting electrons and phonons,

H0 ¼
ð
drc†ðrÞh0ðrÞcðrÞ þ

ð
drf†ðrÞV0ðrÞfðrÞ ð2Þ

h0ðrÞ ¼ ð2"2=2mÞ72 is the kinetic energy andm is the electron mass. cðc†Þ represent the
annihilation (creation) operators which satisfy the Fermi anticommutation relations,

cðrÞc†ðr0Þ þ c†ðr0ÞcðrÞ ¼ dðr2 r0Þ
c†ðrÞc†ðr0Þ þ c†ðr0Þc†ðrÞ ¼ 0

cðrÞcðr0Þ þ cðr0ÞcðrÞ ¼ 0

ð3Þ

and fðf†Þ are boson operators with the commutation relations,
fðrÞf†ðr0Þ2 f†ðr0ÞfðrÞ ¼ dðr2 r0Þ

f†ðrÞf†ðr0Þ2 f†ðr0Þf†ðrÞ ¼ 0

fðrÞfðr0Þ2 fðr0ÞfðrÞ ¼ 0

ð4Þ

The second term in Eq. (1) denotes the electron–phonon interaction,

Hep ¼
ð
drlðrÞ½f†ðrÞ þ fðrÞ	c†ðrÞcðrÞ ð5Þ

where lðrÞ is the coupling strength. Finally, Hex represents the coupling to a time-

dependent external potential jðr; tÞ;

Hex ¼
ð
drjðr; tÞc†ðrÞcðrÞ ð6Þ

We next briefly survey some properties of Liouville space superoperators that will be

useful in the following derivations [49]. The elements of the Hilbert space N £ N density

matrix, rðtÞ; are arranged as a Liouville space vector (bra or ket) of length N2: Operators
of N2 £ N2 dimension in this space are denoted as superoperators. With any Hilbert space

operator A; we associate two superoperators AL (left) and AR (right) defined through their
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action on another operator X as

ALX ; AX and ARX ; XA ð7Þ
We further define symmetric and antisymmetric combinations of these superoperators

Aþ ¼ 1

2
ðAL þ ARÞ and A2 ¼ ðAL 2 ARÞ ð8Þ

The commutator and anticommutator operations in Hilbert space can thus be

implemented with a single multiplication by a ‘2’ and ‘þ’ superoperator, respectively.
We further introduce the Liouville space–time ordering operator T . This is a key

ingredient for extending NEGFT to superoperators: when applied to a product of

superoperators it reorders them so that time increases from right to left. We define

kAðtÞl ; Tr{AðtÞreq} where req ¼ rðt ¼ 0Þ represents the equilibrium density matrix of

the electron-phonon system. It is straightforward to see that for any two operators A and B

we have

kT AþðtÞB2ðt0Þl ¼ 0; t0 . t ð9Þ
kT AþðtÞB2ðt0Þl is thus always a retarded function. This follows from the definitions (8):

since a ‘2’ superoperator corresponds to a commutator in Hilbert space, this implies that

for t , t0; kAþðtÞB2ðt0Þl becomes a trace of a commutator and must vanish, i.e.
kT AþðtÞB2ðt0Þl ¼ Tr{B2ðt0ÞAþðtÞreq} t , t0

¼ 1

2
Tr{½Bðt0Þ;AðtÞreq þ reqAðtÞ	} ¼ 0

Similarly, it follows that the trace of two ‘minus’ operators always vanishes

kT A2ðtÞB2ðt0Þl ¼ 0 for all t and t0 ð10Þ
We shall make use of Eqs. (9) and (10) in discussing the retarded and advanced Green

functions in Appendix 14D. Superoperator algebra was surveyed in Ref. [49].

In Liouville space the density matrix, r(t) is a vector whose time dependence is given by

rðtÞ ¼ Gðt; t0Þrðt0Þ ð11Þ
with the Green function,

Gðt; t0Þ ¼ T exp 2
i

"

ðt

t0

H 2ðtÞdt
� �

ð12Þ

andH 2 is the superoperator corresponding to the Hamiltonian (Eq. (1)). Note that unlike

Hilbert space, where time dependence of the ket and the bra is governed by forward and

backward time-evolution operators, respectively, in Liouville space one keeps track of

both bra and ket simultaneously and the density matrix needs only to be propagated

forward in time (Eq. (11)).

To introduce the interaction picture in Liouville space we partition H 2 ¼ H 02 þ
H 0

2 corresponding to the non-interacting (H 0) and interacting (H 0 ¼ H ep þH ex)
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Hamiltonians. With this partitioning, Eq. (12) can be written as

Gðt; t0Þ ¼ G0ðt; t0ÞGIðt; t0Þ ð13Þ
where G0 represents the time evolution with respect to H0;

G0ðt; t0Þ ¼ uðt2 t0Þ exp 2
i

"
H 02ðt2 t0Þ

� �
ð14Þ

GIðt; t0Þ is the time evolution operator in the interaction picture,

GIðt; t0Þ ¼ T exp 2
i

"

ðt

t0

~H 0
2ðtÞdt

� �
ð15Þ

and ~H 0
2 is the interaction picture representation ofH 0

2:We shall denote superoperators

in the interaction picture by a (,),

~AaðtÞ ; G†
0ðt; t0ÞAaðt0ÞG0ðt; t0Þ ð16Þ

where a ¼ þ;2 or L, R. Superoperators in the Heisenberg picture will be represented

by a caret

ÂaðtÞ ; G†ðt; t0ÞAaðt0ÞGðt; t0Þ ð17Þ
By adiabatic switching of the interaction H 0

2 starting at t0 ¼ 21 we have

rðtÞ ¼ r0 2
i

"

ðt

21
dtG0ðt; tÞH 0

2ðtÞrðtÞ ð18Þ

where r0 ¼ rð21Þ is the equilibrium density matrix of the non-interacting system

r0 ¼ expð2bH0Þ
Tr{expð2bH0Þ} ð19Þ

An iterative solution of Eq. (18) yields

rðtÞ ¼ G0ðt;21ÞGIðt;21Þr0 ð20Þ
which can also be obtained by applying the time evolution operator (13) to r(t0)
and setting t0 ¼ 21: Using Eq. (20), the equilibrium density matrix of the interacting

system can be generated from the non-interacting one by switching on the interactions

adiabatically, starting at t ¼ 21: The external potential is constant in time for t , 0 and

is assumed to be time dependent only for t . 0 in the interaction picture. We then get

~req ¼ GIð0;21Þr0 ð21Þ
This adiabatic connection formula [49] is very useful for calculating expectation values

using the interaction picture. In the corresponding Gellman-law expression in Hilbert

space [50] there is an extra denominator that takes care of the phase of the wavefunction.
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This is not necessary in Liouville space, since the density matrix does not acquire such a

phase.

In the Heisenberg picture, the expectation value of an operator ÂaðtÞ is given by
kÂaðtÞl ; Tr{ÂaðtÞreq} ð22Þ

where req ¼ rðt ¼ 0Þ: Using Eqs. (16), (17) and (20), this can be recast in the interaction
picture as

kÂaðtÞl ¼ Tr{ ~AaðtÞGIðt;21Þr0} ; k ~AaðtÞGIðt;21Þl0 ð23Þ
Eq. (23) is a good starting point for developing a perturbation theory around the non-

interacting system. Through Eqs. (22) and (23) we also define the expectation values k· · ·l
and k· · ·l0. While the former represents the trace with respect to the interacting density

matrix, the latter is defined with respect to the non-interacting density matrix. This will be

used in the following.

Corresponding to the Hilbert space electron and phonon operators, ĉ; ĉ†; f̂ and f̂†

we define ‘left’ (a ¼ L) and ‘right’ (a ¼ R) superoperators, ĉa; ĉ
†
a; f̂a and f̂

†
a: The

dynamics of a superoperator, ĉa; is described by the generalized Liouville equation,

2i"
›ĉaðtÞ
›t

¼ ½H 2ðtÞ; ĉaðtÞ	 ¼ H 2ðtÞĉaðtÞ2 ĉaðtÞH 2ðtÞ ð24Þ

where H 2 is the superoperator corresponding to the Hamiltonian given in Eq. (1). A

similar equation can be written down for the phonon superoperators. In order to evaluate

the commutator appearing in the RHS of Eq. (1), we need the commutation relations of

superoperators [51]. The ‘left’ and the ‘right’ operators always commute. Thus, for

a – b we have

½caðrÞ;cbðr0Þ	 ¼ ½c†aðrÞ;c†bðr0Þ	 ¼ ½c†aðrÞ;cbðr0Þ	 ¼ 0

½faðrÞ;fbðr0Þ	 ¼ ½f†aðrÞ;f†bðr0Þ	 ¼ ½f†aðrÞ;fbðr0Þ	 ¼ 0

ð25Þ

For Fermi superoperators we have

caðrÞcaðr0Þ þ caðr0ÞcaðrÞ ¼ 0

c†aðrÞc†aðr0Þ þ c†aðr0Þc†aðrÞ ¼ 0

caðrÞc†aðr0Þ þ caðr0Þc†aðrÞ ¼ dðr2 r0Þ
ð26Þ

Similarly for the boson operators

f†aðrÞf†aðr0Þ2 f†aðr0Þf†aðrÞ ¼ 0

faðrÞfaðr0Þ2 faðr0ÞfaðrÞ ¼ 0

faðrÞf†aðr0Þ2 f†aðr0ÞfaðrÞ ¼ kadðr2 r0Þ
ð27Þ

Here ka ¼ 21 for a ¼ R and unity for a ¼ L:
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Using the commutation relations (25) and (26) and the identity

ðXY…ZÞa ¼ XaYa…Za; a ¼ L;R ð28Þ
we can recast H 2 in terms of the elementary field superoperators,

H 2 ¼ H 02 þH ep
2 þH ex

2 ð29Þ
with

H 02 ¼
X

a¼L;R
ka

ð
drðc†aðrÞh0ðrÞcaðrÞ þ f†aðrÞV0ðrÞfaðrÞÞ

H e2p
2 ¼

X
a¼L;R

ka
ð
drlðrÞFaðrÞc†aðrÞcaðrÞ

H ex
2 ¼

X
a¼L;R

ka
ð
drc†aðrÞjðr; tÞcaðrÞ

ð30Þ

where Fa ¼ fa þ f†a:
We next define electron and phonon superoperator Green functions

Gabðrt;r0t0Þ¼2
i

"
kT ĉaðr;tÞĉ†bðr0;t0Þl

Dabðrt;r0t0Þ¼2
i

"
kT F̂aðr; tÞF̂†

bðr0; t0Þl
ð31Þ

As shown in Ref. [44] (see Appendix 14A), GLL, GRR, GLR and GRL, respectively,

coincide with the standard Hilbert space–time ordered GT ; antitime ordered G
~T; lesser

G, and greater G. Green functions defined on a closed time loop.

Using the commutation relations (3), the Heisenberg equations of motion for

superoperator ĉaðtÞ reads

i"ka
›ĉaðr; tÞ

›t
¼ hðr; tÞĉaðr; tÞ þ lðrÞF̂aðr; tÞĉaðr; tÞ ð32Þ

where hðr; tÞ ; h0ðrÞ þ jðr; tÞ: By taking the time derivative of the electron Green

function in Eq. (31) and using Eq. (32), we obtain the equation of motion for Gab;

i"
›

›t
2 kahðr; tÞ

� �
Gabðrt; r0; t0Þ

¼ dabdðx2 x0Þ2 i

"
kalðrÞkT F̂aðr; tÞĉaðr; tÞĉ†bðr0; t0Þl ð33Þ

In order to derive the equation of motion for the phonon Green functionDa;we add the
following coupling term ð

drJðr; tÞFðrÞ ð34Þ

to the Hamiltonian. Here Jðr; tÞ is some artificial field that will be set to zero at the end of
calculations. This new term does not effect the electron Green functions since F and c
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commute. Thus, the superoperator H ex
2 in Eq. (30) takes the form

H ex
2 ¼

X
a¼L;R

ka
ð
dr½c†aðrÞjðr; tÞcaðrÞ þ Jaðr; tÞFaðrÞ	 ð35Þ

where fields JL and JR couple to the ‘left’ and ‘right’ boson operators, respectively. Using

the boson commutation (Eq. (26)), the Heisenberg equation for the superoperator fa is
obtained as

2i"ka
›f̂aðr; tÞ

›t
¼ V0ðrÞf̂aðr; tÞ þ lðrÞĉ†aðr; tÞĉaðr; tÞ þ Jaðr; tÞ ð36Þ

Using Eq. (36) we next obtain the equation of motion for operator Fa

2
"2ka
V0ðrÞ

›2F̂aðr; tÞ
›t2

¼ V0ðrÞF̂aðr; tÞ þ 2lðrÞĉ†aðr; tÞĉaðr; tÞ þ 2Jaðr; tÞ ð37Þ

Taking a trace with respect to the density matrix rðt ¼ 0Þ we obtain

2
1

2

"2ka
V0ðrÞ

›2

›t2
þV0ðrÞ

{ !
kF̂aðr; tÞl ¼ lðrÞkĉ†aðr; tÞĉaðr; tÞlþ Jaðr; tÞ ð38Þ

Using the interaction picture representation (Eq. (23)) with H ex
2 given by Eq. (35), we

can write

kF̂aðr; tÞl ¼ k ~Faðr; tÞGIðt;21Þl0 ð39Þ
By taking the functional derivative with respect to Jb; and setting JL ¼ JR ¼ 0;we obtain

d

dJbðr0; t0Þ kF̂aðr; tÞl
�����

�����
JL¼JR¼0

¼ 2
i

"
kbkT ~Faðr; tÞ ~F†

bðr0; t0ÞGIðt;21Þl0
¼ kbDabðrt; r0t0Þ ð40Þ

Using Eqs. (38)–(40), the equation of motion for the phonon Green function is obtained as

2
1

2

"2kb
V0ðrÞ

›2

›t2
þV0ðrÞ

{ !
Dabðrt; r0; t0Þ

¼ dabdðx2 x0Þ þ i

"
lðrÞkakT ĉ†aðr; tÞĉaðr; tÞF̂†

bðr0; t0Þl ð41Þ

We shall denote the space and time coordinates collectively by x ¼ r; t; thus in Eqs. (33)
and (41) dðx2 x0Þ ; dðr2 r0Þdðt2 t0Þ:
Following Keldysh, we shall rearrange the superoperator Green functions in a 2 £ 2

matrix 
G;


Gðx; x0Þ ¼ GLLðx; x0Þ GLRðx; x0Þ
GRLðx; x0Þ GRRðx; x0Þ

{ !
ð42Þ
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and similarly for the phonon Green function matrix 
D with elements Dab: The corres-
ponding Green functions of the non-interacting system described by the Hamiltonian (2)

are denoted by 
G0 and 
D0; respectively. These are given by

G0
abðrt; r0t0Þ ¼ i"

›

›t
2 kahðr; tÞ

� �21
dabdðx2 x0Þ

D0
abðrt; r0t0Þ ¼ 2

1

2

"2kb
V0ðrÞ

›2

›t2
þV0ðrÞ

{ !21

dabdðx2 x0Þ
ð43Þ

Using our matrix notation, we can recast Eqs. (33) and (41) in the form of Dyson

equations


G ¼ 
G0 þ 
G0 
S 
G;


D ¼ 
D0 þ 
D0 
P 
D
ð44Þ

The effect of all interactions is now included in the electron ð 
SÞ and phonon ð 
PÞ self-
energies. Formal expressions for the self-energies are obtained by comparing Eqs. (33)

and (41) with Eq. (44)

Sabðrt; r0t0Þ ¼ 2
i

"
kalðrÞ

X
b0

ð
dt

ð
dr1kT F̂†

aðr; tÞĉaðr; tÞĉ†b0 ðr1; tÞlG21
b0bðr1t; r0t0Þ

Pabðrt; r0t0Þ ¼ i

"
kalðrÞ

X
b0

ð
dt

ð
dr1kT ĉ†aðr; tÞĉaðr; tÞF̂†

b0 ðr1; tÞlD21
b0bðr1t; r0t0Þ

ð45Þ

Eqs. (43)–(45) are exact and constitute the NESGFT.

In order to evaluate the self-energies perturbatively, we rewrite the Green functions,

Eq. (31), in the interaction picture

Gabðrt; r0t0Þ ¼ 2
i

"
kT ~caðr; tÞ ~c†bðr0; t0ÞGIðt;21Þl0

Dabðrt; r0t0Þ ¼ 2
i

"
kT ~Faðr; tÞ ~F†

bðr0; t0ÞGIðt;21Þl0
ð46Þ

where GIðt;21Þ is given by Eq. (15) with t0 ¼ 21: Using Eqs. (13), (16) and (20), the
self-energies (45) can also be expressed in the interaction picture as

Sabðrt;r0t0Þ¼2
i

"
kalðrÞ

X
b0

ðð
dtdr1kT ~F†

aðr;tÞ ~caðr;tÞ ~c†b0 ðr1;tÞGIðt;21Þl0G21
b0bðr1t;r0t0Þ

Pabðrt;r0t0Þ¼ i

"
kalðrÞ

X
b0

ðð
dtdr1kT ~c†aðr;tÞ ~caðr;tÞ ~F†

b0 ðr1;tÞGIðt;21Þl0D21
b0bðr1t;r0t0Þ

ð47Þ
Eq. (47) together with Eq. (46) constitutes closed form equations for the self-energies

where all the averages are given in the interaction picture, k· · ·l0, with respect to
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the non-interacting density matrix. By expanding GI (Eq. (15)) perturbatively in
~H 0

2 we

can obtain perturbative expansion for the self-energies. Each term in the expansion can

be calculated using Wick’s theorem for superoperators [49] which is given in

Appendix 14E. This results in a perturbative series in terms of the zeroth order Green

functions.

14.3 THE CALCULATION OF MOLECULAR CURRENTS

We have applied NESGFT to study the charge conductivity of a molecular wire attached

to two perfectly conducting leads. In the simplest approach the leads ‘a’ and ‘b’ are

treated as two free electron reservoirs. Nuclear motions in the molecular region are

described as harmonic phonons which interact with the surrounding electronic structure

and the environment (secondary phonons) [26]. We first recast the general Hamiltonian,

Eq. (1), in a single electron local basis and partition it as

H ¼ Hf þ Hint ð48Þ
where Hf represents the free, non-interacting electrons and phonons and with no coupling

between molecule and leads

Hf ¼
X
i; j

Ei; jc
†
i cj þ

X
k[a;b

ekc
†
kck þ

X
l

Vlf
†
l fl þ

X
m

vmf
†
mfm ð49Þ

The indices ði; jÞ represent the electronic basis states corresponding to the molecule, k
labels the electronic states in the leads (a and b), l denotes primary phonons which

interact with the electrons and m denotes the secondary phonons which are coupled to the

primary phonons and constitute a thermal bath. The applied external voltage V maintains

a chemical potential difference, ma 2 mb ¼ eV ; between the two leads and also modifies
the single electron energies. In addition it provides an extra term

P
i Vic

†
i ci which is

included in the zeroth order Hamiltonian, Hf ; by modifying the single electron energies.
The interaction Hamiltonian is given by

Hint ¼
X

k[a;b;i

ðVkic†kci þ h:c:Þ þ
X
l;i

lliFlc
†
i ci þ

X
l;m

UlmFlFm ð50Þ

The three terms represent the molecule/lead interaction, coupling of primary phonons

with the molecule and the interaction of primary and secondary phonons, respectively.

The total current passing through the junction can be expressed in terms of the electron

Green functions and the corresponding self-energies. At steady state it is given by (see

Appendix 14B, Eq. (B22))

IT ¼ 2e

"

X
ij0

ð dv

2p

h
Sij 0
LRðvÞGj 0i

RLðvÞ2 Sij 0
RLðvÞGj 0i

LRðvÞ
i

ð51Þ

GRL and GLR are the electronic Green functions and SLR and SRL represent the

corresponding self-energies that account for all interactions (Eq. (50)).
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Sij
ab has contributions from the electron–lead (s) and electron–phonon (J ) interactions

Sij
abðvÞ ¼ sijabðvÞ þJ ij

abðvÞ ð52Þ

These are given in Eqs. (C29) and (C38). The self-energy expressions (C38) and (C40) are

calculated perturbatively to second order in the electron–phonon coupling in terms of the

zeroth order Green functions (Eq. (55)). The simplest expression for current is obtained

by substituting Eqs. (55), (C29) and (C38) in Eq. (51). This zeroth order result can be

improved by using the renormalized Green functions obtained from the self-consistent

solution of the Dyson equation (44).

In order to solve self-consistently for the electron Green functions that appear in

the current formula, Eq. (51), the self-energy is calculated under the Born

approximation by replacing the zeroth order Green functions, G0
ab and D0

ab with

the corresponding renormalized Green functions, Gab and Dab; as is commonly done
in mode-coupling theories [52,53]. This approximation sums an infinite set of non-

crossing diagrams [54,55] that appear in the perturbation expansion of the many-body

Green function, Gab:
Since the electron self-energy (Eq. (C38)) also depends on the phonon Green function,

the phonon self-energy,Pll0
ab; is also required for a self-consistent solution of the electron

Green functions. The phonon self-energy calculated in Appendix 14C is given by

Pij
abðvÞ ¼ gijabðvÞ þ Lij

abðvÞ ð53Þ

where gijabðvÞ (Eq. (C30)) and Lij
abðvÞ (Eq. (C40)) represent the contributions from the

phonon–phonon and the electron–phonon interactions, respectively.

Computing the renormalized electron and phonon Green functions and the

corresponding self-energies involves the self-consistent solution of the following

coupled equations for the Green functions:

GLRðvÞ ¼ G0
LLðvÞSLLðvÞGLRðvÞ þ G0

LLðvÞSLRðvÞGRRðvÞ
GRLðvÞ ¼ G0

RRðvÞSRLðvÞGLLðvÞ þ G0
RRðvÞSRRðvÞGRLðvÞ

GLLðvÞ ¼ G0
LLðvÞ þ G0

LLðvÞSLLðvÞGLLðvÞ þ G0
LLðvÞSLRðvÞGRLðvÞ

GRRðvÞ ¼ G0
RRðvÞ þ G0

RRðvÞSRLðvÞGLRðvÞ þ G0
RRðvÞSRRðvÞGRRðvÞ

ð54Þ

Similarly, the equations for the phonon Green functions are obtained by replacing Gab

withDab and Sab withPab:Here Green functions corresponding to the free Hamiltonian,
G
0ij
ab and D

0ll0
ab , are given by

G
0ij
abðvÞ ¼

dab
vdij 2 kaEij þ ih

; D0ll0
ab ðvÞ ¼

2Vldabdll0

ka"
2v2 2V2

l þ ih
ð55Þ
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where we set " ¼ 1 and h! 0: Eij ¼ Ei 2 Ej is the energy difference between single

electron ith and jth states. Vl denotes the molecular phonon eigenstates.

Once the Green functions, GLR; GRL and the corresponding self-energies SLR; SRL;
are obtained from the self-consistent solution of Eq. (54) together with Eq. (52), Eq. (51)

can be used to calculate the total current through the molecular junction.

14.4 DISCUSSION

In this chapter, we have developed the NESGFT and applied it to the computation

of molecular current. The Liouville space–time ordering operator provides an elegant

way for performing calculations in real time, thus avoiding the artificial backward

and forward time evolution required in Hilbert space (Keldysh loop). Wick’s theorem

for superoperators is used to compute the self-energies perturbatively to the second

order in phonon–electron coupling. Eqs. (54) have been derived earlier by many

authors [19,43,55]. Recently, Galperin et al. [26] have used a fully self-consistent

solution to study the influence of different interactions on molecular conductivity for a

strong electron–phonon coupling. The main aim of the present work is to demonstrate

that by doing calculations in Liouville space one can avoid the backward/forward time

evolution (Keldysh loop) required in Hilbert space. This originates from the fact that in

Liouville space both ket and bra evolve forward in time. Thus, one can couple the

system with two independent, ‘left’ and ‘right’ fields. This property of Liouville space

can be used to construct real (physical) time generating functionals for the non-

perturbative calculation of the self-energies.

The present model [37–39] ignores electron–electron interactions. These may be

treated using the GW technique [56–58] formulated in terms of the superoperators and

extended to non-equilibrium situations. All non-equilibrium observables can be

obtained from a single generating functional in terms of ‘left’ and ‘right’ operators.

The retarded (advance) Green function that describes the forward (backward) motion of

the system particle can also be calculated in terms of the basic Green functions, Gab

(see Appendix 14D).

The NESGFT can also be recast in terms of the þ and 2 (rather than L/R)

superoperators which are more directly related to observables. This is done in

Appendix 14D where we focused on the primary quantities that are represented in

terms of the ‘left’ and ‘right’ superoperators. All other quantities are obtained as the

linear combination of these basic operators.
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APPENDIX 14A: SUPEROPERATOR EXPRESSIONS FOR

THE KELDYSH GREEN FUNCTIONS

The standard NEGFT formulated in terms of the four Hilbert space Green functions:

time ordered ðGT Þ; anti-time ordered ðG ~TÞ; greater (G.) and lesser (G,) [23,25]. These

are defined in the Heisenberg picture as

GT ðx; x0Þ ; 2
i

"
kTĉðxÞĉ†ðx0Þl

¼ 2
i

"
uðt2 t0ÞkĉðxÞĉ†ðx0Þlþ uðt0 2 tÞkĉ†ðx0ÞĉðxÞl

G
~Tðx; x0Þ ; 2

i

"
k ~TĉðxÞĉ†ðx0Þl

¼ 2
i

"
uðt0 2 tÞkcðxÞĉ†ðx0Þlþ uðt2 t0Þkĉ†ðx0ÞĉðxÞl

G.ðx; x0Þ ; 2
i

"
kĉðxÞĉ†ðx0Þl

G,ðx; x0Þ ; i

"
kĉ†ðx0ÞĉðxÞl

ðA1Þ

These are known as T ð ~TÞ is the Hilbert space–time (anti-time) ordering operator: when
applied to a product of operators, it reorders them in ascending (descending) times from

right to left.

The four Green functions that show up naturally in Liouville space are defined as

GLLðx; x0Þ ¼ 2
i

"
kT ĉLðxÞĉ†Lðx0Þl

GRRðx; x0Þ ¼ 2
i

"
kT ĉRðxÞĉ†Rðx0Þl

GLRðx; x0Þ ¼ 2
i

"
kT ĉLðxÞĉ†Rðx0Þl

GRLðx; x0Þ ¼ 2
i

"
kT ĉRðxÞĉ†Lðx0Þl

ðA2Þ

T is the Liouville space–time ordering operator that rearranges all superoperators in

increasing order of time from right to left.
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To establish the connection between Liouville space and Hilbert space Green functions

we shall convert the superoperators back to ordinary operators [44]. For GLR, and GRL,

we obtain

GLRðx; x0Þ ; 2
i

"
Tr{T ĉLðxÞĉ†Rðx0Þreq}

¼ 2
i

"
Tr{ĉðxÞreqĉ†ðx0Þ}

¼ 2
i

"
kĉ†ðx0ÞĉðxÞl ¼ G,ðx; x0Þ

GRLðx; x0Þ ; 2
i

"
Tr{T ĉRðxÞĉ†Lðx0Þreq}

¼ 2
i

"
Tr{ĉ†ðx0ÞreqĉðxÞ}

¼ 2
i

"
kĉðxÞĉ†ðx0Þl ¼ G.ðx; x0Þ

ðA3Þ

where req is the fully interacting many body equilibrium density matrix.

For GLL and GRR we have two cases

(i) For t . t0; we get

GLLðx; x0Þ ; 2
i

"
Tr{T ĉLðxÞĉ†Lðx0Þreq}

¼ 2
i

"
Tr{ĉðxÞĉ†ðx0Þreq} ¼ 2

i

"
kĉðxÞĉ†ðx0Þl

GRRðx; x0Þ ; 2
i

"
Tr{T ĉRðxÞĉ†Rðx0Þreq}

¼ 2
i

"
Tr{reqĉ

†ðx0ÞĉðxÞ} ¼ 2
i

"
kĉ†ðx0ÞĉðxÞl

ðA4Þ

(ii) For the reverse case, t , t0; we get

GLLðx; x0Þ ; 2
i

"
Tr{T ĉLðxÞĉ†Lðx0Þreq}

¼ 2
i

"
Tr{ĉ†ðx0ÞĉðxÞreq} ¼ 2

i

"
kĉ†ðx0ÞĉðxÞl

GRRðx; x0Þ ; 2
i

"
Tr{T ĉRðxÞĉ†Rðx0Þreq}

¼ 2
i

"
Tr{reqĉðxÞĉ†ðx0Þ} ¼ 2

i

"
kĉðxÞĉ†ðx0Þl

ðA5Þ
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Combining Eqs. (A4) and (A5) we can write

GLLðx; x0Þ ; 2
i

"
Tr{T ĉLðxÞĉ†Lðx0Þreq}

¼ 2
i

"
½uðt2 t0ÞkĉðxÞĉ†ðx0Þl2 uðt0 2 tÞkĉ†ðx0ÞĉðxÞl	

¼ GT ðx; x0Þ
GRRðx; x0Þ ; 2

i

"
Tr{T ĉRðxÞĉ†Rðx0Þreq}

¼ 2
i

"
½uðt2 t0Þkĉ†ðx0ÞĉðxÞl2 uðt0 2 tÞkĉðxÞĉ†ðx0Þl	

¼ G
~Tðx; x0Þ

ðA6Þ

Eqs. (A3) and (A6) establish the equivalence of Hilbert and Liouville space Green

functions and they can be summarized as

GLLðx; x0Þ ¼ GT ðx; x0Þ; GRRðx; x0Þ ¼ G

Tðx; x0Þ

GLRðx; x0Þ ¼ G,ðx; x0Þ; GRLðx; x0Þ ¼ G.ðx; x0Þ
ðA7Þ

APPENDIX 14 B: SUPEROPERATOR GREEN FUNCTION

EXPRESSION FOR THE CURRENT

In this appendix, we present a formal microscopic derivation for the current flowing

through a conductor. The conductor could be a molecule or a metal or any conducting

material attached to two electrodes held at two different potentials.

In Hilbert space the charge–current density is given by

jðr; tÞ ¼ 2
ie"

2m
k½ĉ†ðr; tÞ7ĉðr; tÞ2 ð7ĉ†ðr; tÞÞĉðr; tÞ	l ðB8Þ

where e and m are the electron charge and mass, respectively. Eq. (B8) can also be

expressed in a slightly modified form as

jðr; tÞ ¼ ie"

2m
½kð72 70Þĉ†ðr; tÞĉðr0; t0Þl	x0¼x ðB9Þ

where 70 represents the derivative with respect to r0.
Using relation (A7), the current density can be expressed in terms of the superoperator

Green function as

jðr; tÞ ¼ 2
e"2

2m
½ð72 70ÞGLRðrt; r0t0Þ	x0¼x ðB10Þ
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At steady state, the Green functions only depend on the time difference ðt2 t0Þ and the
total current density (JT) becomes time independent. Transforming to the frequency

(energy) domain, the current density per unit energy is

jðr;EÞ ¼ 2
e"

2m
½ð72 70ÞGLRðrr0;EÞ	r0¼r ðB11Þ

and the total current density

JTðrÞ ¼
ð dE

2p
jðr;EÞ ðB12Þ

Eq. (B12) provides a recipe for calculating the current profile across the conductor once

the Green function GLR is known from the self-consistent solution of the Dyson equation.

For computing the total current passing through the conductor, Eq. (B11) can be

expressed in the form of Eq. (51). In order to get the total current per unit energy ðITðEÞÞ
passing between electrode and conductor we need to integrate the current density over the

surface area of the conductor–electrode contact

ITðEÞ ¼
ð
s
jðr;EÞ · n̂dS ¼

ð
7 · jðr;EÞdr ðB13Þ

where n̂ is the unit vector normal to surface S: Substituting into Eq. (B13) from Eq. (B11),

we get

ITðEÞ ¼ 2
e"

2m
Tr½ð72 2 702ÞGLRðrr0;EÞ	 ðB14Þ

In general, a conductor–electrode system can be described by the Hamiltonian

H ¼ H0 þ Hint ðB15Þ
where H0 represents the non-interacting part

H0 ¼
ð
drc†ðrÞh0ðrÞcðrÞ ðB16Þ

where h0ðrÞ ¼ 2 "2

2m
72 and all the interaction terms (conductor–electrode, electron–

phonon) are included in Hint: The total current per unit energy, Eq. (B14), is

ITðEÞ ¼ 2
e

"
Tr½ðh0ðrÞ2 hp0ðr0ÞÞGLRðrr0;EÞ	 ðB17Þ

The Dyson equations for the retarded Green function (see Appendix 14D, Eq. (D48)) in

frequency (energy) can be expressed in the matrix form as

h0Gr ¼ EGr 2 I2 SrGr ðB18Þ
where I is the identity matrix and Sr is the retarded self-energy, Eq. (D50). E ¼ "v is a

number. Henceforth, we write all the expressions in the matrix notation. Taking
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the complex conjugate of Eq. (B18), we obtain the Dyson equation for the advanced

Green function,

Gah0 ¼ EGa 2 I2 GaSa ðB19Þ

with the corresponding advanced self-energy, Sa: From the matrix Dyson equation

(D48), we also have the relation

GLR ¼ GrSLRGa ðB20Þ

Using the relations (B18)–(B20), it is easy to see that

h0GLR 2 GLRh0 ¼ GLRSa þ GrSLR 2 SrGLR 2 SLRGa ðB21Þ

Substituting this in Eq. (B17), the total current per unit energy becomes

ITðEÞ ¼ 2e

"
Tr½SLRðEÞGRLðEÞ2 SRLðEÞGLRðEÞ	 ðB22Þ

where a factor of 2 is introduced to account for the spin degeneracy.

We have calculated the total current in real space. In practice, the Green functions and

the self-energy matrices are calculated in an electronic basis ði; jÞ: The total current
through the conductor is obtained by integrating Eq. (B22) over energy resulting in

Eq. (51).

APPENDIX 14C: SELF-ENERGIES FOR SUPEROPERATOR GREEN

FUNCTIONS

The basic quantities required for describing the coupled molecule–lead system are the

one particle electron and the phonon Green functions. Following the steps outlined in

Section 14.2, the time development for various superoperators (Heisenberg equations) is

(all primed indices should be summed over)

i"ka
›

›t
ĉiaðtÞ ¼ Eij0 ĉj0aðtÞ þ Vk0iĉk0aðtÞ þ ll0if̂l0aðtÞĉiaðtÞ

2i"ka
›

›t
f̂laðtÞ ¼ li0lĉ

†
i0aðtÞĉi0aðtÞ þVlf̂laðtÞ þ Ulm0f̂m0aðtÞ

i"ka
›

›t
ĉkaðtÞ ¼ ekĉkaðtÞ þ Vki0 ĉi0 ðtÞ

2 i"ka
›

›t
f̂maðtÞ ¼ vmf̂maðtÞ þ Ul0mf̂l0 ðtÞ

ðC23Þ

Using Eq. (C23) and following the procedure described in Section 14.2, it is

straightforward to write the matrix Dyson equation (44) for the electron and phonon
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Green functions defined as

G
ij
abðx;x0Þ¼2

i

"
kT ciaðr;tÞc†jbðr0; t0Þl

Dll0
abðx;x0Þ¼2

i

"
kT Flaðr; tÞF†

l0bðr0;t0Þl
ðC24Þ

with the corresponding self-energy matrix elements

Sij
abðt; t0Þ ¼2

i

"
ka

X
b0; j0

ð
dt

X
l0
ll0ikT F̂l0aðtÞĉiaðtÞĉ†j0b0 ðtÞlþ

X
k0
Vk0ikT ĉk0aðtÞĉ†j0b0 ðtÞl

" #
�Gj0j21

b0b ðt; t0Þ;J ij
abðt; t0Þþsijabðt; t0Þ

ðC25Þ

Pll0
abðt; t0Þ ¼ i

"

ð
dt

X
b0;l00

X
m0
Ulm0kT F̂m0aðtÞF̂†

l00b0 ðtÞlþ
X
i0
lli0 kT ĉ†

i0aðtÞĉi0aðtÞF̂†
l00b0 ðtÞl

" #
£Dl00l021

b0b ðt; t0Þ; gll
0
abðt; t0ÞþLll0

abðt; t0Þ

The two terms in the electron self-energy represent the contributions from the phonon–

electron (J) and molecule–lead (s) interactions. Similarly, the phonon self-energy has
contributions from the electron–phonon (L) and the primary–secondary phonon (g)
couplings. The self-energy due to the molecule–lead coupling can be calculated exactly.

To this end we need to obtain the quantity kT ~ck0aðtÞc†j0b0 ðtÞl: By multiplying the third
equation in Eq. (C23) by c†

j0b0 ðtÞ from the left and from the right, taking trace and

subtracting, we get (here primed indices are not summed over)

i"ka
›

›t
2 ek0

� �
kT ĉk0aðtÞĉ†j0b0 ðtÞl¼

X
i0
Vk0i0 kT ĉi0aðtÞĉ†j0b0 ðtÞl

) kT ĉk0aðtÞĉ†j0b0 ðtÞl¼ i"
X
i0
Vk0i0gk0 ðtÞGi0j0

ab0 ðt;tÞ
ðC26Þ

where gkðtÞ ¼ ði"ka ›
›t 2 ek0 Þ21: Substituting expression (C26) in Eq. (C25) gives for the

molecule–lead self-energy

sijabðt; t0Þ ¼kadab
X

k0[a;b
Vk0iVk0jgk0 ðtÞdðt2 t0Þ ðC27Þ

Similarly, the contribution to the phonon self-energy from the interaction with secondary

phonons can be calculated exactly

gll
0

ab¼2kadab
X
m0
Ulm0Ul0m0g0m0 ðtÞdðt2 t0Þ ðC28Þ

where g0m0 ðtÞ ¼ ði"ka ›
›t þvm0 Þ21: At steady state all Green functions and self-energies

depend only on the time difference ðt12 t2Þ and it is very convenient to express them in

the frequency space. The self-energy contributions due to molecule–lead ðsijabÞ and
phonon–phonon ðg l0

abÞ interactions, Eqs. (C27) and (C28), can be represented in
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frequency space as

sijabðvÞ ¼ kadab
X
k0

Vk0iVk0j

kav2 ek0 þ ih
ðC29Þ

g ll0
abðvÞ ¼2kadab

X
m0

Ulm0Ul0m0

kavþvm0 þ ih
ðC30Þ

where h!0: However, in real calculations it is a common practice to calculate self-
energies sab and gab in the wide band approximation, implying that the real parts of the
self-energies can be ignored and the imaginary parts are considered as frequency

independent. Eqs. (C29) and (C30) then reduce to simpler forms

s ij
ab¼ kadab

i

2
G ij; g ll0

ab¼2kadab
i

2
~G ll0 ðC31Þ

where G ij¼ 2p
P

k0 Vk0iVk0j and ~G ll0 ¼ 2p
P

m0Um0lVm0l0 :
The phonon contribution to the electronic self-energy is obtained perturbatively in the

phonon–electron coupling. We recast the phonon contribution (first term on the RHS of

Eq. (C25) for S ij
ab) in the interaction picture by writing

kT F̂laðtÞĉiaðtÞĉ†jbðt0Þl ¼ kT ~FlaðtÞ ~ciaðtÞ ~c†jbðt0ÞGIðt;21Þl0 ðC32Þ

where

GIðt;21Þ ¼ exp 2
i

"

ð
dt

X
i0a0
ka0

X
l0
ll0i0 ~Fl0a0 ðtÞ ~c†

i0a0 ðtÞ ~ci0a0 ðtÞ
"(

þ
X
k0
Vk0i0 ð ~c†k0a0 ðtÞ ~ci0a0 ðtÞþ ~c†

i0a0 ðtÞ ~ck0a0 ðtÞÞ
# )

ðC33Þ

Substituting Eq. (C33) in Eq. (C32), expanding the exponential to first order in lli and
using Wick’s theorem for superoperators [49] we obtain

kT F̂laðtÞĉiaðtÞĉ†jbðt0Þl¼2"2
X
l0i0a0

ka0ll0i0
ð
dtD0ll0

aa0 ðt;tÞ
h
G
0ij
abðt; t0ÞG0i0i0

a0a0 ðt;tþÞ

þG0ii0
aa0 ðt;tÞG0i0j

a0bðt; t0Þ
i

ðC34Þ

Here the superscript ‘0’ represents the trace with respect to the non-interacting density

matrix. The zeroth order Green functions are given in Eq. (55). The terms coming from

the lead-molecule coupling (Vki) vanish because they are odd in creation and annihilation

operators. Substituting Eq. (C34) in Eq. (C25) gives for the phonon contribution
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to the self-energy

J ij
abðt; t0Þ ¼ i"

X
l1l2

kall1i kbll2jD
0l1l2
ab ðt; t0ÞG0ij

abðt; t0Þ
h

þ dijdabdðt2 t0Þ
X
i1a

0
ll2i1ka0

ð
dtD0l1l2

aa0 ðt;tÞG0i1i1
a0a0 ðt;tþÞ

i
ðC35Þ

In the derivation of Eq. (C35), we have used the identity

ð
dt

X
a0j0

G
0ij0
ab0 ðt;tÞG21 0j0j

b0b ðt; t0Þ ¼ dabdijdðt2 t0Þ ðC36Þ

Similarly the contribution of the electron–phonon interaction to the phonon self-energy

(second term in Eq. (C25) for Pij
ab) can be obtained perturbatively. To second order in

phonon–electron coupling, we obtain

Lll0
abðt; t0Þ ¼2i"

X
ij

kakbllill0j½G0ji
baðt0; tÞG0ij

abðt; t0Þ þG0ii
aaðt; tþÞG0jj

bbðt0; t0þÞ	 ðC37Þ

The electronic self-energy depends on both the electron and phonon green functions

while the phonon self-energy contains only the electron Green functions.

At steady state we transform to the frequency domain and obtain

J ij
abðvÞ ¼ i"

X
l1l2

kakbll1ill2j
ð dv0

2p
D
0l1l2
ab ðv0ÞG0ij

abðv2 v0Þ

þ dijdab
X

l1;l2;i1;a
0
ka0ll1ill2i1r

0
i1i1
D
0l1l2
aa0 ðv ¼ 0Þ ðC38Þ

where

r0ii ; i"Gii
aaðt ¼ 0Þ ¼ i

ð dE

2p
Gii
aaðEÞ ðC39Þ

The phonon self-energy becomes

Lll0
abðvÞ ¼ 2i"

X
ij

kakbllill0j
ð dv0

2p
G
0ij
abðv0ÞG0ji

baðv0 2 vÞ

þ i

"

X
ij

kaebllill0jr
0
iir

0
jjdðv ¼ 0Þ ðC40Þ
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APPENDIX 14D: DYSON EQUATIONS IN THE 1 /2 REPRESENTATION

In this appendix, we define the retarded and advance Green’s functions and the

corresponding self-energies and relate them to the basic Green functions and self-

energies obtained in Appendix 14C. The Liouville space retarded (Gr) and advance (Ga)

Green functions are defined as

Gij
r ðt; t0Þ ; 2

i

"
kT ciþðtÞc†j2ðt0Þl ðD41Þ

Gij
a ðt; t0Þ ; 2

i

"
kT ci2ðt0Þc†jþðtÞl ðD42Þ

We further introduce the correlation function

Gij
c ðt; t0Þ ; 2

2i

"
kT ciþðt0Þc†jþðtÞl ðD43Þ

It follows from Eq. (10) that there are only three Green functions in the þ /2
representation. These are given by Eqs. (D41)–(D43). Using Eq. (8) these can be

represented in terms of the basic Green functions (31) as

Gij
r ðt; t0Þ ¼ 1

2
½Gij

LLðt; t0Þ2 G
ij
LRðt; t0Þ þ G

ij
RLðt; t0Þ2 G

ij
RRðt; t0Þ	

¼ G
ij
LLðt; t0Þ2 G

ij
LRðt; t0Þ

Gij
a ðt; t0Þ ¼ 1

2
½Gij

LLðt; t0Þ2 G
ij
RRðt; t0Þ2 G

ij
RLðt; t0Þ þ G

ij
LRðt; t0Þ	

¼ 2G
ij
RRðt; t0Þ þ G

ij
LRðt; t0Þ ¼ G

ij
LLðt; t0Þ2 G

ij
RLðt; t0Þ

Gij
c ðt; t0Þ ¼ 1

2
½Gij

LLðt; t0Þ þ G
ij
RRðt; t0Þ þ G

ij
LRðt; t0Þ þ G

ij
RLðt; t0Þ	

¼ G
ij
LLðt; t0Þ þ G

ij
RRðt; t0Þ

ðD44Þ

where we have used the identity GLL þ GRR ¼ GLR þ GRL which can be verified using

Eq. (10). A Dyson equation corresponding toGr;Ga andGc can be obtained from Eq. (44)

using unitary transformation

G ¼ S 
GS21 ðD45Þ
where G represents the matrix

G ¼
0 Ga

Gr Gc

{ !
ðD46Þ

and

S ¼ 1ffiffi
2

p 1 21

1 1

{ !
ðD47Þ
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The transformed Dyson equation (44) reads

G ¼ G0 þ G0 ~SG ðD48Þ
and the corresponding self-energy matrix reduces to

~S ¼
Sc Sr

Sa 0

{ !
ðD49Þ

with the matrix elements given by

Sij
r ðt; t0Þ ¼ Sij

LLðt; t0Þ þ Sij
LRðt; t0Þ

Sij
a ðt; t0Þ ¼ Sij

RRðt; t0Þ þ Sij
LRðt; t0Þ

Sij
c ðt; t0Þ ¼ Sij

RRðt; t0Þ þ Sij
LLðt; t0Þ

ðD50Þ

Similar relations also hold for the phonon Green functions and self-energies.

Using Eqs. (D44) and (D50), the retarded self-energies for electron and phonon Green

functions (retarded) coming from the electron–phonon coupling are obtained as

J ij
r ðvÞ ¼ i"

X
ll0
ll0illj

ð dv0

2p
½D0ll0

r ðv0ÞG0ij
r ðv2 v0Þ þ D0ll0

r ðv0ÞG0ij
LRðv2 v0Þ

þ D0ll0
LRðv0ÞG0ij

r ðv2 v0Þ	

Lll0
r ðvÞ ¼ 2i"

X
ijllill0j

ð dv0

2p

h
G
0ij
LRðv0ÞG0ij

a ðv2 v0Þ

þ G0ij
r ðv0ÞðG0ij

RLðv2 v0Þ þ G0ij
a ðv2 v0ÞÞ

i
ðD51Þ

Similarly the retarded self-energies due to the lead and secondary phonons can be written

in the wide band limit as

s ij
r ¼ i

2
G ij and g ll0

r ¼ 2
i

2
~G ll0 ðD52Þ

where Gij includes contributions from both the leads a and b, i.e. G ij ¼ G ij
a þ G ij

b :

APPENDIX 14E: WICK’S THEOREM FOR SUPEROPERATORS

Wick’s theorem for superoperators was formulated in Ref. [49]. Using Eqs. (8) and (27),

it can be shown that similar to the L and R superoperators, the commutator of ‘þ ’ and

‘2 ’ boson superoperators are also numbers. Thus, boson superoperators follow Gaussian

statistics and Wick’s theorem holds for both the L, R and ‘þ ’, ‘2 ’ representations.

However, for Fermi superoperators life is more complicated. The anticommutator

corresponding to only the ‘left’ or the ‘right’ Fermi superoperators are numbers but that

for the ‘left’ and ‘right’ superoperators, in general, is not a number. Thus, the Fermi

superoperators are not Gaussian. However, since the left and right superoperators always

commute, the following Wick’s theorem [49] can be applied to the time-ordered product
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of any number of ‘left’ and ‘right’ superoperators, e.g.

kT Ai1n1 ðt1ÞAi2n2ðt2Þ· · ·Ainnn ðtnÞl0 ¼
X
p

kT Aiana ðtaÞAibnbðtbÞl0 · · · kT Aipnp ðtpÞAiqnq ðtqÞl0
ðE53Þ

Here Ainnn ; nn ¼ L;R; represents either a boson or a fermion superoperator. iana…iqvq is a

permutation of i1n1…innn and sum on p runs over all possible permutations, keeping the

time ordering. In case of fermions, each term should be multiplied by ð21ÞP; where P is
the number of permutations of superoperators required to put them into a particular order.

Only permutations among either ‘left’ or among ‘right’ superoperators count in P:
The permutations among ‘L’ and ‘R’ operators leave the product unchanged.
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CHAPTER 15

Role of computational chemistry in the

theory of unimolecular reaction rates
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Abstract

Initiated by the chemical dynamics simulations of Bunker in 1962, of the unimolecular

decomposition of model triatomic molecules, computational chemistry has had an

enormous impact on the development of unimolecular rate theory. These pioneering

calculations showed that the molecular lifetime distribution PðtÞ is the critical diagnostic
for RRKM and non-RRKM dynamics. They also identified properties of molecules which

lead to non-RRKM dynamics. Chemical dynamics simulations motivated the need to

distinguish between intrinsic non-RRKM dynamics resulting from restricted intramo-

lecular vibrational energy redistribution (IVR) and apparent non-RRKM dynamics

arising from non-random excitation and a non-microcanonical ensemble of initial states.

Extensive calculations and study of the classical dynamics of vibrationally excited

molecules led to an understanding of the relationship between RRKM and non-RRKM

dynamics and a molecule’s intramolecular motion. RRKM theory requires irregular

trajectories and ergodic dynamics on the time scale for unimolecular decomposition. A

molecule, whose ensemble of trajectories includes a significant fraction with regular

motion, will have non-ergodic and intrinsic non-RRKM dynamics. Small molecules, with

a low density of states, decompose via isolated compound state resonances. If the

dynamics of such a molecule are ergodic, the fluctuations in properties of the resonances

(i.e. lifetime, wave function, etc.) are purely random. On the other hand, if the molecule’s

dynamics is totally or in part regular, the resonances will exhibit mode-specific

characteristics and all or some will be assignable. Quantum dynamics calculations of the

resonance states do not show ‘steps’ in the unimolecular rate constant with increase in E;
as predicted by RRKM theory, and they have suggested there may not be a fundamental

reason for expecting steps in kðEÞ: Direct dynamics simulations, which couple electronic
structure theory to the methodology of classical trajectory calculations, have made

q 2005 Elsevier B.V. All rights reserved.
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it possible to investigate the unimolecular and intramolecular dynamics of a diverse

group of molecules. An important application of direct dynamics is the study of post-

transition state dynamics. The statistical model for post-transition state dynamics is one

in which the transition state, multiple minima and product channels are connected via

reaction paths, with RRKM theory used to determine the time the molecular system

spends in each potential minimum and the probabilities for transitions between minima

and forming products. The actual dynamics may be investigated by direct dynamics

simulations.

15.1 INTRODUCTION

Different approaches have been followed to develop a theory of unimolecular reaction

rates [1]. For example, one may make fundamental assumptions concerning the

intramolecular dynamics of highly vibrationally excited molecules and then develop a

theoretical model based on these assumptions. This was the approach used in the

derivation of the Slater [2] and Rice–Ramsperger–Kassel–Marcus (RRKM) [3–5]

theories. The former assumes the vibrational motion of an energized molecule is

represented by a superposition of the molecule’s uncoupled normal mode coordinates. In

contrast, the latter is based on statistical mechanics and assumes that energy is

randomized amongst the molecule’s vibrational degrees of freedom. If it is further

assumed that unimolecular decomposition is described by a reaction coordinate which

attains a critical value representing the transition from reactant to products (i.e. the

transition state), the latter yields the following well known RRKM/quasi-equilibrium

theory (QET) expression for the unimolecular rate constant:

kðEÞ ¼ N–ðEÞ
hrðEÞ ð1Þ

Here, N–ðEÞ is the sum of vibrational states for the transition state and rðEÞ is the density
of states for the unimolecular reactant. (In the above equation and in the following

discussion, total angular momentum J and its conservation is not explicitly included in

representing the RRKM/QET rate constant. This is done to simplify the presentation.)

Experimental studies have had an enormous impact on the development of

unimolecular rate theory. A set of classical thermal unimolecular dissociation reactions

by Rabinovitch and co-workers [6–10], and chemical activation experiments by

Rabinovitch and others [11–14], illustrated that the separability and symmetry of

normal modes assumed by Slater theory is inconsistent with experiments. For many

molecules and experimental conditions, RRKM theory is a substantially more accurate

model for the unimolecular rate constant. Chemical activation experiments at high

pressures [15,16] also provided information regarding the rate of vibrational energy

flow within molecules. Experiments [17,18] for which molecules are vibrationally

excited by overtone excitation of a local mode (e.g. C–H or O–H bond) gave results

consistent with the chemical activation experiments and in overall good agreement with

RRKM theory [19].
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Amuch more detailed microscopic picture of a unimolecular reaction may be obtained

from time-domain experiments in which the number of reactant and/or product molecules

is followed in real time [20–26]. At this level of experimental measurement, differences

with the RRKM model have been observed. The unimolecular reactions studied in

this manner include H2O2 ! 2OH [20], NCNO! CN þ NO [21], HOCO! HO þ CO

[22,23], NO2 ! NO þ O [24,25], and CH3CO! CO þ CH3 [26]. Pronounced non-

RRKM kinetics were observed for the latter two reactions.

At the most fundamental level, unimolecular dissociation occurs via resonance states,

which may be viewed as an extension of the bound states into the vibrational/rotational

continuum of the energized molecule [27]. Computational chemistry has pioneered

the study of these resonances and this is discussed in detail in Section 15.2.4. The

unimolecular resonances for a molecule may be characterized experimentally, if

the average line-width of the resonances is smaller than the average distances between

neighboring resonances, i.e. the resonances are isolated. The line width for a resonance

state gives its lifetime and, therefore, its unimolecular rate constant. Thus, resolving all of

the resonance states, in a specific energy range for an energized molecule, gives a

detailed, fundamental understanding of the molecule’s state-specific unimolecular

kinetics. This type of information has been obtained from experiments for D2CO [28],

HFCO [29], HCO [30], DCO [31], CH3O [32], HOCl [33,34], HN3 [35], and HONO [36]

decomposition, and extensive fluctuations (i.e. orders of magnitude) were observed for

the resonance state rate constants in a small energy range. In contrast to these fluctuations

in rate constants at the quantum mechanical level, RRKM theory assumes the

unimolecular rate constant kðEÞ increases smoothly (or with small steps) [27] as E is

increased. As discussed in Section 15.2.4, for molecules whose classical unimolecular

dynamics agrees with RRKM theory, it is possible to find a relationship between the

quantum mechanical state specific rates and the RRKM kðEÞ: Analyses of the

computational quantum dynamics have been very helpful in this regard.

Initiated by the chemical dynamics simulations of Bunker [37,38] for the unimolecular

decomposition of model triatomic molecules, computational chemistry has had an

enormous impact on the development of unimolecular rate theory. Some of the

calculations have been exploratory, in that potential energy functions have been used

which do not represent a specific molecule or molecules, but instead describe general

properties of a broad class of molecules. Such calculations have provided fundamental

information concerning the unimolecular dissociation dynamics of molecules. The goal

of other chemical dynamics simulations has been to accurately describe the unimolecular

decomposition of specific molecules and make direct comparisons with experiment. The

microscopic chemical dynamics obtained from these simulations is the detailed

information required to formulate an accurate theory of unimolecular reaction rates.

The role of computational chemistry in unimolecular kinetics was aptly described by

Bunker [37] when he wrote “The usual approach to chemical kinetic theory has been to

base one’s decisions on the relevance of various features of molecular motion upon the

outcome of laboratory experiments. There is, however, no reason (other than the arduous

calculations involved) why the bridge between experimental and theoretical reality

might not equally well start on the opposite side of the gap. In this paper… results are

reported of the simulation of the motion of large numbers of ‘triatomic’ molecules by
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a very fast digital computer.” In the following sections, descriptions are given of how

computational chemistry has improved our understanding of the lifetime distribution,

non-RRKM kinetics, the role of classical phase space structures, resonance states, and

‘steps’ in unimolecular rate theory. A discussion is also given of the important impact

expected from direct dynamics simulations of unimolecular decomposition. The article

concludes with a ‘look’ into the future.

15.2 ROLE OF COMPUTATIONAL CHEMISTRY

15.2.1 The lifetime distribution

The Hinshelwood–Lindemann model [5], in which molecules are activated and

deactivated by collisions, is well accepted for describing the temperature T and pressure

P dependence of thermal unimolecular reactions. The unimolecular rate constant,

kuniðT ;PÞ; for this model is given by

kuniðT ;PÞ ¼ v
ð1
E0

kðEÞPðEÞdE
kðEÞ þ v

ð2Þ

where v is the collision frequency proportional to pressure, kðEÞ is the unimolecular rate
constant for reactants with energy E; and PðEÞ is the Boltzmann probability the reactants
have energy E: Slater [2] and Bunker [37,38] showed that Eq. (2) requires the probability
the reactant molecules have lifetime t; i.e. the lifetime distribution PðtÞ; is given by

PðtÞ ¼ 2
1

Nð0Þ
dNðtÞ
dt

¼ kðEÞe2kðEÞt ð3Þ

where Nð0Þ is the number of reactant molecules at t ¼ 0: Eq. (3) assumes that the
ensemble of reactant molecules has the same unimolecular rate constant kðEÞ at all times
as it dissociates, so

2
dNðtÞ
dt

¼ kðEÞNðtÞ ð4Þ

Integration of this equation yields Eq. (3). For RRKM kinetics, both the intercept of PðtÞ
and its exponential decay are given by the RRKM kðEÞ:
The questions posed, at the time of the understanding of the relationship between

Eqs. (2) and (3), are whether actual molecules behave according to Eq. (3) and if the

rate constant kðEÞ is given by the RRKM/QET model in Eq. (1). The latter was probed

by experimental studies, in particular the classic work by Rabinovitch and co-workers

[6–11]. However, experimental techniques were not sufficiently developed to test

Eq. (3) and the validity of this expression was first tested in computer simulations by

Bunker [37,38].

Bunker [37] surmised that the unimolecular rate constant kðEÞ should correspond to that
for a microcanonical ensemble of reactant molecules, for which every state in the energy
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window E! E þ dE has equal probability of being populated. The classical mechanical

representation of this ensemble is a uniform distribution over the reactant’s phase space, a

procedure still used today. Trajectories were then calculated for this ensemble of initial

conditions to determine whether its lifetime distribution corresponded to Eq. (3).

The intercept of Eq. (3) is the unimolecular rate constant kðEÞ for a microcanonical
ensemble of reactant states. Bunker found that kðEÞ is well represented by the RRKM
expression in Eq. (1) if anharmonicity effects are included for N–ðEÞ and rðEÞ and if
variational effects are included in identifying the transition state for reactions which do

not have a barrier for the reverse association reaction [37–40]. Each of these two findings

motivated extensive future studies [41–47].

Bunker’s pioneering finding was that not all of his model triatomic molecules have

lifetime distributions in accord with Eq. (3). Models with disparate force constants and/or

masses, giving rise to a hierarchy of low and high vibrational frequencies, have a non-

exponential PðtÞ; i.e.
PðtÞ ¼

X
i

ci e
2kit ð5Þ

with an initial rate d ln PðtÞ=dt larger than that of RRKM theory and a long-time rate

much smaller than the RRKM kðEÞ: (By definition the sum of the ci in Eq. (5) equals kðEÞ;
since the initial decay is for a microcanonical ensemble.) An initial rate constant larger

than that of RRKM theory suggests the molecule is behaving smaller than its actual size.

The possibility of such behavior was first proposed by Rice [48] of RRKM theory. A

long-time rate, much smaller than the RRKM kðEÞ; suggests that the decomposition of the
long-time trajectories is not controlled by the transition state for chemical reaction, but by

a ‘bottleneck’ for the transfer of energy into the coordinate(s) leading to decomposition

[38]. Bunker identified the phase space structure for his non-RRKMmodels as metrically

decomposable [37]. His finding of non-RRKM dynamics was consistent with and

followed the earlier simulation by Fermi et al. [49] of non-random energy transfer in a

linear chain. Examples of RRKM [50] and non-RRKM [51] PðtÞ distributions are given in
Figs. 15.1 and 15.2.

Bunker’s work was pioneering in that it documented, by computational chemistry

simulations, that actual molecules may have non-RRKM unimolecular dynamics. The

concept of intramolecular relaxation [i.e. intramolecular vibrational energy redistribution

(IVR)] and its role in insuring RRKM dynamics was introduced. Oxtoby and Rice [52]

later showed that Bunker’s non-RRKM models do not have overlapping resonances,

which are necessary for efficient IVR and RRKM dynamics. Preliminary discussions

were also given by Bunker of the relationships between RRKM and non-RRKM

dynamics and the structure of the phase space for a unimolecular reactant. The following

statement by Bunker [37] is very insightful and a forerunner to later detailed analyses of

the relationships between unimolecular dynamics and classical phase space structures,

which are discussed in the next section, i.e. “In terms of the molecular phase space: a

change in the character of the surface H; from harmonic to anharmonic, alters very little

the number of representative points on trajectories which lead quickly (i.e. within a few

vibrations periods) to dissociation. Points originally confined to non-dissociating

trajectories require some little time to ‘leak’ into regions from which the critical surface
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Fig. 15.1. Trajectory Al6 ! Al5 þ Al lifetime distribution, following microcanonical sampling. The histogram

plot represents the number of Al6 dissociations per time interval. The dashed line represents the random lifetime

distribution of Eq. (3). The energy is 40 kcal/mol and the angular momentum is zero. Adapted from Ref. [50].

Fig. 15.2. Trajectory lifetime distributions for HCO, HNO, and HO2 dissociation, following microcanonical

sampling. Extensive intrinsic non-RRKM dynamics are present in HCO and HNO decomposition. The smooth

curves are obtained by fitting the data to an exponential function, with the initial fast decomposition times being

excluded. Adapted from Ref. [51].
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is easily accessible. This interpretation, that anharmonic representative points stay near

the corresponding harmonic trajectories for an appreciable time, may be verified by

inspection of the details of trajectories.”

15.2.2 Intrinsic and apparent non-RRKM behavior

Though RRKM theory assumes an excited molecule decomposes from a microcanonical

ensemble of states, it is doubtful whether any experiment actually excites a molecule in

this manner. For example, there is a non-microcanonical component in the ensemble of

states prepared by thermal collisions. For excitation processes like chemical activation,

i.e. F þ C2H5 ! C2H5F
p [53], overtone excitation, i.e. HOO–H þ hv ! HOOHp [54],

and internal conversion, i.e. H2CO (S1)! H2CO (S0)
p [55], the initially prepared

ensemble of states is expected to be far from microcanonical. Computational chemistry

simulations motivated the need to distinguish between non-RRKM dynamics resulting

from restricted intramolecular relaxation, as discussed in the previous section, and non-

RRKM dynamics arising from non-random excitation and a non-microcanonical

ensemble of initial states [56–60].

Intrinsic RRKM behavior is defined by Eq. (3), where an initial microcanonical

ensemble of states decomposes exponentially with the RRKM rate constant [56]. Such

dynamics can be investigated by computational chemical dynamics simulations.

Therefore, an intrinsic non-RRKM molecule is one for which the intercept in PðtÞ is
kðEÞ; as a result of the initial microcanonical ensemble, but whose decomposition

probability versus time is not described by kðEÞ: For such a molecule there is a bottleneck
(or bottlenecks) restricting energy flow into the dissociating coordinate. Intrinsic RRKM

and non-RRKM dynamics are illustrated in Fig. 15.3(a), (b), and (e).

Apparent non-RRKM behavior arises from non-random initial excitation [56], which is

present in all experiments, including collisional activation (Fig. 15.3(c)) [56]. As a result,

the initial form of the lifetime distribution, including intercept will not be the exponential

assumed by RRKM theory. Nevertheless, the RRKM assumption of rapid IVR requires

the distribution of states to become microcanonical in a negligibly short time compared to

the RRKM lifetime 1=kðEÞ; resulting in a RRKM PðtÞ following the initial non-RRKM
short-time component. The extent of this component, and whether it enhances or

suppresses reaction, depends on properties of the excitation process and where the energy

is initially localized in the molecule. If the molecule is also intrinsically non-RRKM, its

PðtÞ will be a convolution of its apparent and intrinsic non-RRKM dynamics. Three

possible PðtÞ with apparent non-RRKM behavior are illustrated in Fig. 15.3(d).

The pioneering chemical activation experiments of Rabinovitch and co-workers

[15,16] are classic examples of short time apparent non-RRKM behavior and longer

time RRKM dynamics.

Trajectory calculations have been used to study the intrinsic RRKM and apparent non-

RRKM dynamics of ethyl radical dissociation, i.e. C2H5 ! H þ C2H4 [61,62]. When

C2H5 is excited randomly, with a microcanonical distribution of states, it dissociates with

the exponential PðtÞ of RRKM theory [61], i.e. it is an intrinsic RRKM molecule.

However, apparent non-RRKM behavior is present in a trajectory simulation of C2H5
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non-randomly excited by H þ C2H4 association [62]. For a H þ C2H4 relative

translational energy of 30 kcal/mol, association deposits both the 40 kcal/mol reaction

exothermicity and the 30 kcal/mol relative translational energy non-randomly into C2H5,

with preferential excitation of the formed C–H bond as compared to the other C–H

bonds. As shown in Fig. 15.4, this leads to an initial dissociation rate that is faster than

that of RRKM theory. This apparent non-RRKM component lasts for about 0.25 ps and

then the rate constant (i.e. the slope of log N versus t) attains the RRKM value of

7 £ 1010 s21.

Fig. 15.3. Relation of state occupation, schematically shown at constant energy, to the lifetime distribution for

RRKM theory and other situations. Dashed lines in the lifetime distributions indicate RRKM behavior. Adapted

from Ref. [56].

Chapter 15404



15.2.3 Phase space structures

The above apparent non-RRKM and intrinsic RRKM and non-RRKM dynamics are

reflections of a molecule’s phase space structure. Extensive calculations and study of

the classical dynamics of vibrationally excited molecules have shown that they may

have different types of motions, e.g. regular and irregular [63]. A trajectory is regular if its

motion may be represented by a separable Hamiltonian, for which each degree of

freedom is uncoupled and moves independent of the other degrees of freedom. All

trajectories are regular for the normal mode Hamiltonian, i.e.

H ¼
X
i

Hi ¼
X
i

ðP2i þ liQ
2
i Þ=2 ð6Þ

which is the model assumed by the Slater theory [2]. This Hamiltonian is only rigorously

accurate for small displacements from equilibrium and as energy is increased anharmonic

and vibration/rotation coupling terms become increasingly important and must be added

to the Hamiltonian [47]. The simulations show that these terms, and the presence of

‘internal’ or ‘anharmonic’ resonances [64,65], begin destroying some of the regular

motion as the energy is increased and the fraction of the trajectories in the phase space

with regular motion, i.e. freg; becomes smaller. At some energy, the number of regular
trajectories becomes negligibly small, leading to ergodic dynamics. The increase in

chaotic dynamics, as the energy is increased, is illustrated in Fig. 15.5 for a two-

dimensional model of HOCl; the OH bond distance is frozen in the calculations [66].

There are multiple ways to determine if a trajectory’s motion is regular. For a large

molecule a straightforward approach is to determine if it has well-defined vibration

frequencies, a diagnostic of independent, uncoupled motion for each coordinate. This is

Fig. 15.4. Classical trajectory lifetime distribution for decomposition of C2H5, formed by H þ C2H4
association. Adapted from Ref. [62].
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done by taking the Fourier transform of the auto-correlation function for the molecule’s

coordinate displacements versus time [67]. In contrast, an irregular trajectory has a broad

spectrum which cannot be characterized by specific vibration frequencies for individual

coordinates [67]. An analysis of its motion shows chaotic dynamics.

If regular trajectories are important for a vibrationally excited molecule, its

unimolecular dynamics is intrinsically non-RRKM. Regular and irregular trajectories

are depicted in Fig. 15.6, where plots are given of the H–C versus C–C bond lengths,

H–C bond length versus H–C–C angle, and C–C bond length versus H–C–C

angle as a function of time for a Hamiltonian representing the model system

H–C–C! H þ C ¼ C [68,69]. The trajectories are excited above the unimolecular

threshold with the same total energy. The different motions for the trajectories are a

reflection of where they are initiated in H–C–C’s phase space. The regular trajectories

are excited with a large fraction of the energy in the C–C bond, which leads to regular

dynamics. On the other hand, energy is more equally distributed between the H–C

and C–C stretch and H–C–C bend degrees of freedom for the irregular trajectories.

The regular trajectories exhibit quasiperiodic motion and are trapped in the H–C–C

phase space. They may never dissociate. Quantum numbers for each of the quasiperiodic

trajectories’ three degrees of freedom may be determined by quantizing their action,

Fig. 15.5. Poincare’ surface of section for a two-dimensional model of HOCl; the HO distance is frozen in the

classical trajectory simulations. The symbol g is the Jacobi angle and pg is the corresponding momentum.

Different symbols in square brackets denote different types of regular trajectories. Adapted from Ref. [66].
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Fig. 15.6. Regular and irregular trajectories for the model H–C–C! H þ C ¼ C reaction. Adopted from

Ref. [68].
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as given by the Einstein–Brillouim–Keller (EBK) semiclassical quantization

condition [70]

þ
pðqÞdq ¼ ðnþ 1=2Þh ð7Þ

The correspondence between classical and quantum mechanics tells us that this trajectory

corresponds to a resonance state with a localized wave function in the H–C–C vibration

continuum. The quantum mechanical resonance state (discussed in detail in

Section 15.2.4) will have nearly the same energy and be assignable with the semiclassical

quantum numbers. It is also expected to have a very long lifetime as a result of the

classical quasiperiodic motion.

The irregular trajectories in Fig. 15.6 display the type of motion expected by RRKM

theory. These trajectories moves chaotically throughout the coordinate space, not

restricted to any particular type of motion. RRKM theory requires this type of irregular

motion for all of the trajectories so that the intramolecular dynamics is ergodic [1]. In

addition, for RRKM behavior the rate of intramolecular relaxation associated with the

ergodicity must be sufficiently rapid so that a microcanonical ensemble is maintained as

the molecule decomposes [1]. This assures the RRKM rate constant kðEÞ for each time
interval t! t þ dt: If the ergodic intramolecular relaxation is slower than 1=kðEÞ; the
unimolecular dynamics will be intrinsically non-RRKM.

A simple phase space structure with intrinsic non-RRKM dynamics is one consisting

of only regular and irregular trajectories, with the latter exhibiting chaotic intramolecular

dynamics on a time scale shorter than that for unimolecular decomposition. Though this

phase space structure has an exponential lifetime distribution PðtÞ; as assumed by RRKM
theory for an initial microcanonical ensemble of states, the two PðtÞ0s are not the same.
The intercept of PðtÞ for the non-RRKM phase space is still kðEÞ [37], but the rate
constant in the exponential is larger reflecting the smaller volume of phase space in which

the irregular trajectories move. The density of states for the irregular trajectories is

firregrðEÞ; so that the rate constant becomes kðEÞ=firreg:
Though the above analysis is instructive, computer simulations show that the actual

intramolecular and unimolecular dynamics is significantly more complex for a molecule

with a non-negligible fraction of regular trajectories. This is clearly illustrated by

the non-exponential PðtÞ for intrinsic non-RRKM molecules. The complexity of the

molecule’s dynamics arises from trajectories in the vicinity of regular trajectories and

the non-ergodic structure of the molecule’s multi-dimensional phase space. For a period

of time, trajectories in the vicinity of regular trajectories retain some degree of

regularity in their motion and, thus, do not have the chaotic dynamics assumed by

RRKM theory [63]. As a result, their unimolecular lifetimes may be much longer than

expected by RRKM theory. The chaotic regions of phase space, with irregular

trajectories, are intermingled with the regions of phase space with regular and

‘somewhat’ regular trajectories and are connected via an Arnold web [64,65] of

anharmonic resonances. This complex, non-ergodic phase space structure leads to a

non-exponential PðtÞ: The general structure of the classical phase space is also reflected
in the quantum mechanical decay rates discussed next.
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15.2.4 Resonance states

In the quantum mechanical modeling of unimolecular reactions, resonances are the

central quantities. Resonance states are the continuation of a molecule’s bound states into

its continuum above the dissociation threshold. Unlike the true bound states resonances

have a finite width G and therefore a finite lifetime t ¼ "=G; where " is Planck’s constant
divided by 2p: The dissociation rate is then given by k ¼ G=": However, these simple
relations between width and dissociation rate are valid only when the resonances do not

(significantly) overlap, i.e. when kG l=DE ¼ kG lrðEÞ is markedly smaller than one. Here,
kG l is the average width in a small energy interval, rðEÞ is the density of states and DE is
the average spacing between the resonances. For overlapping resonances the relationship

between width and dissociation rate is more involved [71].

Resonances are prominent features in many fields of physics and chemistry such as

nuclear [72] and atomic [73] physics, electron [74] and molecular [75] scattering, and

photodissociation [76]. A detailed account of resonances in molecular systems, with

particular emphasis on unimolecular reactions, has been given by Grebenshchikov et al.

[27]. Experimentally, resonances in molecules can be studied in several ways; preparation

by electronic excitation [28] (i.e. excitation to a bound state in an excited electronic state,

which is mixed by non-adiabatic coupling with resonance states of the ground electronic

state), overtone pumping [54] (i.e. direct excitation by several quanta of one bond, usually

a bond which involves a hydrogen atom), stimulated emission pumping [77] (excitation of

a long-lived excited electronic state and subsequent stimulated emission to a particular

rovibrational state of the ground electronic state). These methods allow one to determine

the widths of individual resonances states, even with rotational resolution [78].

Illuminating examples of molecules for which resonances have been studied are D2CO

[28], HFCO [29], HCO [30], DCO [31], CH3O [32], HOCl [33,34], and HONO [36].

Results of resonance widths for the dissociation of HCO are depicted in Fig. 15.7.

The pronounced state and mode dependence are significant and remarkable.

Because resonances are states in the continuum of a potential well, their numerical

treatment is much more involved than the calculation of true bound states. For a given

potential energy surface (PES) resonance energies Er and widths G can be calculated by
several methods [27]. In an indirect approach one calculates a quantity which includes

the quantum mechanical wave function, e.g. the scattering cross section or an

absorption-type spectrum, as a function of energy. These quantities show sharp features

in the vicinity of a resonance, and provided the resonances do not significantly overlap,

it is easy to extract Er and G: This method is similar to a spectroscopic experiment. In a
direct approach the positions and widths are obtained as complex eigenvalues of the

Hamiltonian H with eigenfunctions satisfying special boundary conditions as

the fragments separate. The two most common numerical approaches for obtaining

the complex eigenvalues are complex scaling [79] and augmentation of the Hamiltonian

with a complex absorbing potential [80–82], i.e. Ĥeff ¼ Ĥ2 ilWðRÞ: In the complex-
scaling method the dissociation coordinate R is rotated into the complex plane, which

makes the kinetic and potential energy complex, but forces the eigenstates to become

square integrable. The function of the absorbing potential is to damp the wave function

in the different fragmentation channels, with the effect that the wave function becomes
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square integrable. In both methods numerical procedures known from bound state

calculations can be used with only small modifications. Examples of extensive

resonance calculations on (accurate) ground state PESs include HCO [83], DCO [84],

HOCl [85], H2O [86], and NO2 [25]. Although not trivial, resonance calculations for

triatomic molecules are feasible.

Resonance energies and widths can be compared to experimental results. Since these

are state-specific data and do not include any sort of averaging, in contrast to thermal rate

constants, the accuracy of a PES can be assessed directly. Molecules for which such

comparisons have been performed are HCO [83], DCO [84], and HOCl [85]. In Fig. 15.7

the calculated widths for HCO are compared to the experimental results. Although for

Fig. 15.7. Calculated (dashed lines and open squares) and measured (solid lines and filled circles) HCO

resonance widths as a function of the CO stretching quantum number n2 and the bending quantum number n3 for
three progressions. Adapted from Ref. [30].
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a few states the agreement is not perfect, the general trends are nicely reproduced by the

calculations. The maxima superimposed on a smoothly increasing ‘background’ are due

to mixings with nearby ‘dark’ states [87]. These mixings are difficult to reproduce with

accuracy and therefore deviations between experiment and theory are largest for these

‘resonances’ between resonance states. If an accurate PES is not available, valuable

information can be deduced from fitting experimental data with an effective Hamiltonian

model as done for DCO [88].

All spectroscopic experiments as well as all resonance calculations univocally

revealed that the state-specific rate constant ki is not a smooth function, which gradually

increases with energy, but instead fluctuates over several orders of magnitude. A

particularly intriguing example is shown in Fig. 15.8 [89]. Near threshold, the rates

fluctuate over seven orders of magnitude and at higher energies ki still varies over three

orders. HOCl as well as HCO are examples of mode-specific decay. In such cases, the

intramolecular coupling is comparatively weak with the result that many states, even

resonance states, can be uniquely assigned, i.e. the corresponding wave functions have a

clear nodal structure [83]. As a consequence, states which are very close in energy can

have dissociation rates which differ by orders of magnitude. As energy becomes larger

the average rate increases and the differences between states become generally smaller.

For HOCl and HCO it is essentially the large mismatch between the HO and CO

frequencies, respectively, and the other two frequencies which lead to the weak coupling.

Also shown in Fig. 15.8 is the result of the statistical adiabatic channel model (SACM).

Statistical theories cannot reproduce the large fluctuations in the rates. Especially the

very small rates are not represented by the statistical theory.

If the intramolecular coupling is strong, i.e. if the molecule is more irregular, the

differences between neighboring states are not so large and the fluctuations of the rates

extend over a smaller range as compared to those for a regular molecule such as HOCI.

Fig. 15.8. Overview of the calculated dissociation rates of HOCl as a function of the excess energy. The solid

line is the prediction of the statistical adiabatic channel model (SACM). Adapted from Ref. [89].
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Nevertheless, even for a molecule like NO2, which is known to be classically chaotic, the

fluctuations near threshold are still more than two orders of magnitude [25]. The large

fluctuations of the dissociation rates lead to non-exponential decay curves as has been

demonstrated for NO2 in a time-dependent pump-probe experiment [25]. The short-time

decay is determined by the larger rates, whereas the long-time behavior is governed by

the smallest rates. Statistical models reproduce the short-time behavior satisfactorily, but

fail to correctly describe the decay at long times. The case of NO2 can be classified as

statistical state specific [47]. Other molecules which fall into this category are HO2 [90]

and D2CO [8]. For molecules like NO2 and D2CO comparisons with experimental data on

a state-specific level are difficult and one has to retreat to averaged quantities like the

average dissociation rate or the distribution of rates. On the basis of random matrix

theory, developed in nuclear physics, the rates follow a x 2 distribution [91,92]. The

measured rates for D2CO as well as the calculated rates for NO2 confirm this prediction.

The classical unimolecular dynamics is ergodic for molecules like NO2 and D2CO,

whose resonance states are highly mixed and unassignable. As described above, their

unimolecular dynamics is identified as statistical state specific. The classical dynamics

for these molecules are intrinsically RRKM and a microcanonical ensemble of phase

space points decays exponentially in accord with Eq. (3). The correspondence found

between statistical state specific quantum dynamics and quantum RRKM theory is that

the average of the N resonance rate constants kkil in an energy window E! E þ DE
approximates the quantum RRKM rate constant kðEÞ [27,90]. Because of the state

specificity of the resonance rates, the decomposition of an ensemble of the N resonances

is non-exponential, i.e.

PðtÞ ¼
XN
i¼1

ki e
2kit=N ð8Þ

and not the exponential, Eq. (3), of classical RRKM theory [47]. The x 2 distribution of
resonance rates, described above for statistical state specific decomposition [91,92], has a

width specified by the parameter n [47]. For unimolecular reaction, for energies in excess
of the decomposition threshold, n has been associated with the transition state sum of

states of N–ðEÞ [92]. The x 2 distribution narrows as N–ðEÞ increases. Inserting this
distribution into Eq. (8) and taking the n!1 limit, results in an exponential PðtÞ with a
rate constant given by kkil [47].
An interesting question is whether the large fluctuations in the quantum mechanical

decay rates have an influence on the temperature and pressure dependent unimolecular

rate constant kuniðT ;PÞ defined within the strong collision model, in Eq. (2). In the state-
specific quantum mechanical approach the integral over the smooth temperature

dependent rate kðEÞ is replaced by a sum over the state-specific rates ki: Applications
have been done for HCO [93], HO2 [94–96], and HOCl [97]. The effect of a broad

distribution of widths is to decrease the observed pressure dependent rate constant as

compared to the delta function-like distribution, assumed by statistical theories [98,99].

The reason is that broad distributions favor small decay rates and the overall dissociation

slows down. This trend, pronounced in the fall-of region, was clearly seen in a study

of thermal rate constants in the unimolecular dissociation of HOCl [97]. The extremely
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broad distribution of resonances in HOCl causes a decrease by a factor of two in the

pressure-dependent rate, as compared to the RRKM predictions. The best chance to

see the influence of the quantum mechanical fluctuations on unimolecular rate constants

are studies performed close to the dissociation threshold, i.e. at low collision

temperatures, because there the distribution of rates is the broadest. The state-specific

ansatz for the unimolecular rate constant has been tested by Hippler et al. [100] by

comparison with experimental rates for HCO measured over large ranges of T and P:
They claimed: “An analysis of the pressure dependence of the rate constants shows that

standard treatments like a Lindemann–Hinshelwood model or a master equation

formalism are not able to describe the experimentally observed pressure dependence

adequately. An isolated resonance model, however, which is based on calculated

resonance lifetimes… allows for a description of the observed T- and P-dependence.”

The main obstacle for applying the state-specific variant of Eq. (2) is the calculation of

resonance widths for many rotational states ðJ;KÞ: Even at room temperature many pairs

ðJ;KÞ are populated and each rotational state has its own decay rate kiðJ;KÞ: Exact
calculations for large angular momenta are prohibited because of ‘exploding’ computer

times. Therefore, one has to rely on approximations such as the commonly used J-shifting

approximation [101]. Efficient determination of reliable resonance widths for high

rotational states, potentials with deep wells, and molecules like O3 with heavy atoms is

the bottleneck for calculating unimolecular reaction rates within the quantum mechanical

approach.

15.2.5 Steps in unimolecular reaction rates

The RRKM/QET unimolecular rate constant kðEÞ in Eq. (1) is derived from classical

mechanics. The widely used quantum RRKM model is an ad hoc modification of the

classical RRKM rate constant by simply replacing the transition state’s sum of states

N–ðEÞ and the reactant molecule’s density of states rðEÞ by their quantum counterparts.

Though this gives a ‘working equation’ it is not rigorously justified by quantum

mechanics. An interesting feature of the quantum RRKM kðEÞ expression is that N–ðEÞ
increases incrementally as E is increased. The minimum rate constant is at the threshold

E0 where N–ðE0Þ ¼ 1; i.e. kðE0Þ ¼ 1=hrðEÞ: A stepwise increase is then predicted for

kðEÞ as additional states become available at the TS with increase in E: The largest step
is the first one for an increase in N–ðEÞ from 1 to 2. As illustrated by the harmonic model

for the TSs vibrational energy levels, the energy intervals, at which successive steps

occur, are determined by the TSs vibrational frequencies, i.e.

E–ðn–Þ ¼
X3N27
i¼1

ðn–i þ 1=2Þhn–i ð9Þ

Thus, it would be possible to determine properties of PESs in TS regions by experimental

measurements of such steps, if they exist and are indeed described by quantum RRKM

theory.
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The first report of the observation of steps in kðEÞ was by Lovejoy et al. [102] for
ketene dissociation on its triplet PES. This was followed by the study of Ionov et al. [103]

for which steps were observed in NO2 ! NO þ O dissociation. Leu et al. [104] also

observed step-like structures in kðEÞ for triplet acetaldehyde, CH3CHO, dissociation and
associated them with energy levels at the TS.

These were indeed exciting results, and the report by Lovejoy et al. lead to the

pronouncement that the fundamental assumption of a TS for unimolecular dissociation

with quantized energy levels had been proven [105,106]. However, the proposal that the

above steps arise from TS quantum energy level structures has not withstood tests of

computational chemistry. Triplet ketene dissociates by tunneling and RRKMmodeling of

the observed steps requires a broad barrier with an imaginary frequency of ,100i cm21

[107]. In contrast, high-level ab initio calculations give a much narrower barrier of

321i cm21 [108], which gives rise to tunneling rates that would occlude any RRKM

steps. A similar result was found for triplet acetaldehyde, for which RRKM modeling

[104] gives a barrier frequency of 60i cm21 in contrast to the ab initio prediction of

frequency greater than 350i cm21 [109]. Thus, RRKM analyses of the reported steps for

both triplet ketene and acetaldehyde are inconsistent with TS properties of their PESs

determined from ab initio calculations.

The reported steps for NO2 ! NO þ O dissociation are inconsistent with a RRKM

calculation based on an accurate PES for the reaction [110]. The observed steps for NO2
dissociation are separated by ,100 cm21 which, if resulting from a quantized TS,

indicates a O–NO bending frequency at ,100 cm21. However, adiabatic potential

energy curves calculated by Grebenshchikov et al. for this dissociation show that the

bending frequency at the TS (i.e. variational in this case) is much less than 100 cm21.

This is expected given the looseness of the variational TS and the heavy masses. Thus,

the reported steps for NO2 dissociation are inconsistent with RRKM theory. The origin

of the steps in the experimental studies may arise from fluctuations in the unimolecular

decay of wave packets prepared in the experiments [25]. The wave packets are

superpositions of the unimolecular resonance states and the fluctuations in the wave

packet rates would originate from the extraordinary fluctuations in the resonance rates

discussed in Section 15.2.4.

As pointed out above, RRKM theory has its roots in classical mechanics and the

classical RRKM kðEÞ is continuous without steps. Steps are introduced by the ad hoc

introduction of the quantum N–ðEÞ which is quantized. Computational chemistry

dynamical calculations have provided the type of information needed to determine

whether steps should be expected in the unimolecular rate constant kðEÞ: As pointed out
by Grebenshchikov et al. [27] “In all quantum mechanical calculation which have been

performed as well as in the few state-resolved experiments (D2CO, CH3O, HCO, and

DCO) of unimolecular decomposition the resonance decay rates are found to fluctuate

over several orders of magnitude. These fluctuations are especially pronounced and

the distribution of rates is the widest near the dissociation threshold—exactly where the

‘step’ in the RRKM rate is expected to be the largest. The increase of the RRKM

(i.e. average) rate by a factor of 2 is much smaller than the breadth of the distribution

of rates—even if the narrowest resonances are not taken into account. Thus, the variation

of the quantum mechanical rates in a small energy interval exceeds greatly the energy
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variation of kðEÞ as predicted by RRKM theory at a ‘step’. Moreover, an increase in E so

that N–ðEÞ increases by 1 has little effect on the quantum distribution of the resonance

rates—even at threshold.” Thus, the quantum RRKM prediction of steps in kðEÞ is
inconsistent with the findings from quantum dynamical calculations.

Grebenshchikov et al. [27] have also shown that “the existence of steps can be

questioned by reviewing the main assumptions made in RRKM theory. First, the ad hoc

replacement of the classical N–ðEÞ by its quantum analog completely neglects the state-

specific nature of the coupling of the resonance states to the continuum. Second, the

energy levels at the TS are defined in the adiabatic approximation, in which the ‘slow’

dissociation mode is decoupled from the ‘fast’ vibrational modes. In a more accurate

description non-adiabatic matrix elements, which couple the different adiabatic channels,

have to be taken into account. They are usually not small at the TS where the potential

‘perpendicular’ to the reaction path and likewise the adiabatic vibrational wave functions

change considerably as the reaction coordinate varies. Inclusion of non-adiabatic

coupling would tend to smear out the ‘steps’. Third, tunneling through the one-

dimensional adiabatic potential curves also tends to round-off the step-like structures

predicted by the RRKM expression as was convincingly demonstrated by model

calculations for ketene by Gezelter and Miller [107].”

The conclusion one reaches is that quantum RRKM theory is an incomplete model for

unimolecular decomposition. It does not describe fluctuations in state-specific resonance

rates, which arise from the nature of the couplings between the resonance states and the

continuum. It also predicts steps in kðEÞ; which appear to be inconsistent with the actual
quantum dynamics as determined from computational chemistry. However, for

molecules whose classical unimolecular dynamics is ergodic and intrinsically RRKM

and/or whose resonance rates are statistical state specific (see Section 15.2.4), the

quantum RRKM kðEÞ gives an accurate average rate constant for an energy interval
E! E þ DE [47].

15.2.6 Impact of direct dynamics simulations

Direct dynamics simulations, in which the methodology of classical trajectory

simulations is coupled to electronic structure, have had and will continue to have an

enormous impact on the use of computational chemistry to develop [111,112] the theory

of unimolecular kinetics. In these simulations the derivatives of the potential, ›V=›qi;
required for numerically integrating the classical trajectory, are obtained directly from

electronic structure theory without the need for an analytic PES. Direct dynamics is

particularly important for studying the unimolecular dynamics of molecules with many

degrees of freedom, for which it is difficult to construct an accurate analytic PES.

Two methods, identified as Car–Parinello [113] and Born–Oppenheimer [114], have

been advanced for performing direct dynamics simulations. For the former, the motions

of the electrons are determined simultaneously as the nuclear classical equations of

motion are integrated, to determine the change in the electronic wave function as the

nuclei move. For the second method the electronic wave function is optimized during the

numerical integration of the classical trajectory.
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An important issue in direct dynamics simulations is the often large amount of

computer time required to calculate the trajectories and the need to use a level of

electronic structure theory which is computationally feasible and also gives a meaningful

representation of the reaction’s PES. Clearly, a higher level and more accurate theory

may be used for a small molecule as compared to a larger one. A practical approach for

studying the unimolecular decomposition of large molecules is to use a semiempirical

electronic structure theory, but re-parameterized with specific reaction parameters (SRPs)

[115,116] to fit properties of the reaction’s PES obtained from experiment and/or high-

level ab initio calculations. These properties often include structures, energies, and

vibrational frequencies for the PES’s stationary points and reaction path(s). The resulting

model may also be supplemented with analytic potential energy functions to improve its

accuracy [117].

Direct dynamics has made it possible to investigate the unimolecular decomposition of

a broad group of molecules for different excitation processes, to compare with

experiment and determine fundamental information concerning intramolecular and

unimolecular dynamics. Summarized in Table 15.1 are the unimolecular direct dynamics

simulations performed by the Hase research group [117–129]. Some degree of non-

RRKM behavior is present in each of the reactions. It would not have been possible to

determine this level of understanding of the unimolecular dynamics of these reactions

without access to direct dynamics.

An important application of direct dynamics is the study of post-transition state

intramolecular and unimolecular dynamics. To understand the issues at hand for

these processes, consider starting at a high energy transition state and looking towards the

reaction products and observing a rough landscape, with multiple potential energy

minima, reaction pathways, low energy barriers, etc. connecting the transition state to

multiple product channels. The statistical model for the exit-channel dynamics is one in

which the transition state, multiple minima and product channels are connected via

Table 15.1 Direct dynamics simulations of unimolecular decomposition

Unimolecular reaction Level of theory Simulation result Reference

Trimethylene decomposition AM1-SRP Apparent non-RRKM

dynamics

[117–120]

Cl2–CH3C1 decomposition MP2/6-31Gp [Cl–CH3–C1]
2 central

barrier recrossing and

intrinsic non-RRKM

dynamics

[121]

[HO–CH3–F]
2 ! HO2 þ CH3F

decomposition

MP2/6-31þGp Non-reaction path and

non-statistical dynamics

[122]

Crþ(CO)6 and protonated
peptide surface induced

dissociation (SID)

AM1 Shattering fragmentation,

apparent non-RRKM

dynamics

[123–125]

Vinylcyclopropane! cyclopentene

rearrangement

AM1-SRP Apparent non-RRKM

dynamics

[126,127]

O(3P) þ C2H6 ! products MSINDO,

PM3-SRP

Shattering decomposition [128,129]
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reaction paths, with RRKM theory used to determine the time the molecular system

spends in each potential minimum and the probabilities for transitions between minima

and forming products. For the actual intramolecular and unimolecular dynamics to follow

such a scenario, the potential energy that is released, as the system moves off the

transition state, must be rapidly equilibrated between all the degrees of freedom by IVR.

If instead, the potential energy is released to only a subset of the degrees of freedom and it

remains there, extensive non-RRKM exit-channel dynamics is expected.

The question concerning exit-channel dynamics described above have been

investigated for the OH2 þ CH3F ! CH3CH þ F2SN2 reaction [122], whose

reaction path potential energy curve is shown in Fig. 15.9. The geometry for the initial

reaction path, from the central barrier toward products, has an approximate O–C–F

collinear axis. At s of about 5 amu1/2-Bohr the reaction path enters a flat region that is

apparently a remnant of a backside potential energy minimum that is ‘lost’ because of the

presence of the much deeper CH3OH–F
2 hydrogen-bonded minimum. At s of

approximately 12 amu1/2-Bohr the reaction path leaves the flat region and starts its

descent into the CH3OH–F
2 minimum. RRKM theory assumes the molecular system

becomes temporarily trapped in this minimum, with its vibrational energy randomized.

Thus, the reaction path/RRKM mechanism is an indirect process.

MP2/6-31þGp direct dynamics was used to study the actual exit-channel dynamics

for this reaction. Initial conditions for the trajectories were selected by sampling the

[HO–CH3–F]
2 central barrier’s 300 K Boltzmann distribution. The simulations showed

Fig. 15.9. Potential energy along the intrinsic reaction coordinate (IRC) for OH2 þ CH3F! CH3OH þ F2;

s is the distance along the IRC. This figure shows the structures at the potential energy minima and at the saddle

point barrier. Adapted from Ref. [121].
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that only a small fraction (roughly 10%) of the trajectories actually followed the above

reaction path. The vast majority of them followed a direct dissociation pathway with a

departure of the F2 ion approximately along the O–C–F2 collinear axis. Fig. 15.10

depicts these two pathways for two of the trajectories. The origin of the propensity for this

latter pathway is seen in Fig. 15.11, where the potential energy is plotted versus the C–F2

distance and the O–C–F2 angle. The release of potential energy to the asymmetric

O–C–F2 reaction coordinate’s stretch motion, as the system moves off the central

barrier, tends to propel F2 from CH3OH, with the O–C–F
2 angle maintained at nearly

1808. The PES is rather flat for bending the O–C–F2 angle; there is only a very weak

force to pull the reactive system from the direct dissociation reaction path into the

Fig. 15.10. The two pathways for motion from the [HO–CH3–F]
2 central barrier to the CH3OH þ F2 reaction

products. Most of the trajectories follow the direct dissociation path. A small amount, roughly 10%, form the

CH3OH–F
2 hydrogen-bonded intermediate and follow an indirect path. Adapted from Ref. [121].
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CH3OH–F
2 potential energy well, with an O–C–F2 angle of 102.88. As the system

moves off the central barrier, it tends to move directly to products without forming an

intermediate trapped in the CH3OH–F
2 potential energy well.

This simulation shows how the efficiency of IVR and formation of a statistical reaction

intermediate are intimately linked to the hierarchy of time scales for intramolecular

motions and structural transitions on the PES. Inefficient formation of the CH3OH–F
2

reaction immediate arises from rapid separation of the CH3OH þ F2 products in

comparison to the longer time scale for O–C–F2 bending to form the intermediate. Such

a hierarchy of time scales appears in previous work, in which a solvent cage’s structural

changes are too slow to allow a reactive system to access its deep potential energy

minimum [130]. A hierarchy of time scales and inefficient access of deep potential energy

minima could be important in enzyme catalysis, in which motions associated with the

reaction center may be much faster than those associated with conformational changes

and other multi-atom motions of the enzyme.

15.3 THE FUTURE

Computational chemistry will continue to make important contributions to unimolecular

rate theory. The continual advance in computer technology and the development of

computer programs with more sophisticated numerical algorithms and theoretical

methods will allow the application of computational chemistry to larger scale and more

complex unimolecular processes. Quantum dynamics provides a fundamental under-

standing of unimolecular rate theory and additional calculations of resonances in

unimolecular decomposition are needed. These studies can address the role of resonances

for larger molecules (e.g. the calculations to date have been for three atoms) and also the

importance of vibrational/rotational coupling. Total angular momentum J is conserved,

Fig. 15.11. Potential energy contour diagram for [HO–CH3–F]
2 fragmentation as a function of the C–F

distance and the O–C–F angle. The remaining coordinates are optimized at each point on the PES. Adapted

from Ref. [121].
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but is uncertain whether the projection of J onto a molecular axis, identified by the K

quantum number, is also conserved [131]. Extensive vibrational/rotational coupling

destroys K as a good quantum number. However it is possible that, though Kmay not be a

good quantum number for long-time intramolecular dynamics, it may be conserved on

the shorter time scale for unimolecular decomposition. Dynamics associated with the K

quantum number may be investigated by classical as well as quantum dynamics.

Continual advances will be made in using direct dynamics to study unimolecular

dynamics. By directly coupling classical dynamics with quantum mechanics allows one

to probe the dynamics of a broad spectrum of unimolecular reactions. In future

calculations, it is expected that RRKM and non-RRKM dynamics will be probed for

many different unimolecular reactions to compare with and interpret experiments. The

unimolecular dynamics of very large molecules may be studied by QM/MM methods

[132,133], for which degrees of freedom directly participating in the reaction are

represented by quantum mechanical electronic structure theory (QM) and analytic

molecular mechanics (MM) functions are used for the remaining degrees of freedom.

QM/MM direct dynamics may be used to study the intramolecular and unimolecular

dynamics of large biomolecules such as peptides.
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Abstract

Molecular dynamics is a powerful theoretical method that is now routinely used to

simulate the dynamics of complex physical and chemical systems. Its success stems from

the development of a battery of algorithms and the availability of powerful computers. In

this chapter we recount how molecular dynamics evolved from its very modest

beginnings to its status as an indispensable tool for the investigation of the statistical

mechanics of complex chemical and biological systems.

16.1 INTRODUCTION

Molecular dynamics and Monte Carlo computer simulation methods are now two of the

most powerful tools that are used to explore the statistical mechanics of complex

condensed phase and biochemical systems. A great deal of modern theoretical research is

based on the results of such simulations or is devoted to the development of algorithms to

extend the range of such simulation methods to larger systems and, in the case of

molecular dynamics, to longer times. The list of applications is very broad: it ranges from

studies of the dynamics of biomolecules and chemical reaction rates in the condensed

phase to studies of solids under stress. Systems currently being investigated may contain

up to 1010 particles or simulation times may be as long as ms. Molecular dynamics has
been combined with ab initio electronic structure methods in order to be able to study

systems with realistic interactions that include bond-making and bond-breaking

processes. Molecular dynamics and Monte Carlo methods are being extended to treat

quantum mechanical systems and large scale simulations are being carried out to study

hydrodynamic flows and phase segregation processes.
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This wide use and acceptance of computer simulation in statistical mechanics is

relatively recent. In this chapter we adopt a narrow focus and present a description of how

Molecular Dynamics (MD) simulation evolved to take such a prominent role in modern

science.

Molecular dynamics had its modest beginnings in the late 1950s and early 1960s with a

number of pioneering studies. The challenges were great because computers had limited

power and capacity and suitable algorithms had to be developed. We document the

evolution of molecular dynamics from a novel approach to solve selected problems in

statistical mechanics to the pervasive powerful technique we have today. A parallel set of

developments took place for the Monte Carlo method, which was introduced in a seminal

paper by Metropolis et al. [1] in 1953, but we shall not review this work except where

it is relevant to our description of molecular dynamics. Of course, the development of

molecular dynamics simulation methods is not at an end; in fact, the challenges are as

great as ever, since nature provides us with complexity that has been, thus far, beyond our

grasp.

16.2 EARLY DAYS

The earliest research in a field builds on past work and this always makes it difficult to

ascribe priority to important discoveries that lead to new directions or paradigms for

future research. Certainly, there were many early investigations that used computer

simulation of Newton’s equations of motion to tackle important open problems. For

instance, Hirschfelder et al. [2] studied the dynamics of the gas phase H þ H2 reaction on

a model potential surface to determine the reaction rate. In later years this investigation

spawned the field of gas phase molecular dynamics. The paper by Fermi et al. [3] on the

simulation of the dynamics of a model one-dimensional solid was influential in the field

of non-linear dynamics. Neither these papers nor the body of work they stimulated had an

immediate important impact on statistical mechanics [4].

Alder and Wainwright [5,6] published the first paper of a molecular dynamics

simulation of a condensed phase fluid system and this paper began a trend that did have a

strong impact on statistical mechanics. These authors tackled one of the open questions of

the day, whether a solid–fluid phase transition existed in a system of hard spheres. This

problem could not be solved by existing analytical methods and Alder and Wainwright’s

simulation demonstrated that such analytically intractable problems could be studied and

solved by direct MD simulation of the equations of motion of a many-body system. Of

course, the simulation was modest by today’s standards and was carried out on systems

containing 32 and 108 hard spheres. This research set the stage for the development of

MD as a basic tool in statistical mechanics.

Hard spheres are a highly idealized model for physical systems. The first MD

simulations of a realistic fluid model were performed by Rahman in a now classic paper

[7]. The system consisted of 864 Lennard-Jones particles with potential parameters fit to

model liquid argon. The paper demonstrated that MD simulations can be used not only to

address theoretical questions like the existence of a phase transition or the validity of the

H-Theorem [8] in an idealized model, but to gain insight into and interpret experiments,
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in this case neutron scattering experiments on liquid argon. Because this work showed

that MD could be used to model a real system, the paper has had a wide impact on the

field and stimulated further work. It led to developments related to construction of

potential models for other real systems and the use of MD to explore more complicated

systems, in particular molecular fluids.

Molecular dynamics simulation investigations of Lennard-Jones fluids were continued

by Verlet [9] and in the course of his studies he introduced several important techniques

that have continued to be in use to the present day. The now-famous Verlet algorithm

for integrating Newton’s equations of motion was first presented in this paper. In this

algorithm the positions of the particles are updated according to the following scheme: if

FðrijÞ is the force on particle i due to particle j, the position of particle i at time t þ h can

be found from the positions at two earlier times using,

riðt þ hÞ ¼ 2riðt2 hÞ þ 2riðtÞ þ
X
j–i

1

m
FðrijðtÞÞh2; ð1Þ

where h is the time step. This simple algorithm, precise to order h4, preserves phase space

volumes and is very stable. It forms the basis for many of the current MD codes in use

today. The Lennard-Jones simulations of Rahman used a more elaborate predictor–

corrector method to integrate the equations of motion. The predictor–corrector algorithm,

although more precise, was much less reliable because of its non-symplectic character,

a fact that was appreciated only relatively recently. Verlet also introduced the use of

neighbor lists to evaluate the intermolecular forces, one of the most time consuming steps

in MD codes. Neighbor lists are employed in many modern MD codes and can lead to

savings of an order of magnitude in time.

The 1960s also saw the publication of Alder and Wainwright’s important paper on the

long time tail in the velocity correlation function [10]. This paper used MD simulation to

show that hydrodynamics, constructed to describe behavior on macroscopic distance and

time scales, can also explain phenomena related to the microscopic dynamics of particle

motion. The t23/2 decay of the velocity correlation function at long times which they

found has its origin in the coupling of the particle velocity to the collective hydrodynamic

modes of the surrounding fluid. This paper stimulated a large literature in an attempt

to provide a rigorous theoretical basis for this phenomenon. It also showed that

hydrodynamic concepts could be pushed to scales that were previously thought to be

inaccessible. In turn, this prompted modelling of experimental molecular relaxation data

in terms of macroscopic concepts and also was a forerunner of developments in mode

coupling theory that have had a large impact on the dynamics of critical phenomena

and glasses.

These early MD studies were limited to hard sphere or Lennard-Jones interactions

appropriate for simple fluids. In the early 1970s the first attempts to apply MDmethods to

molecular fluids were made. Harp and Berne [11] studied a model for carbon monoxide

while Rahman and Stillinger [12] carried out MD simulations of liquid water. The MD

simulations of water were especially important because they addressed questions related

to the dynamics and structure of an ubiquitous solvent that would figure prominently

in later work on biological and condensed phase systems. Furthermore, because of

the nature of the long-range Coulomb forces in this system and the delicate nature
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of the hydrogen bonded structure of water, the construction of a suitable force field and its

simulation presented a major challenge for the field at that time [13]. An earlier

simulation of the structural properties of water was carried out by Barker and Watts [14]

using the Monte Carlo method. For molecular systems like water one must deal with the

internal rotational and vibrational degrees of freedom. Rahman and Stillinger considered

a water model where the bonds were rigid so that vibrational degrees of freedom were

frozen and rotational motion was described in terms of Euler angles. The long-range

Coulomb forces were truncated. We now know that this procedure is not satisfactory and

Ewald summation [15,16], although not free from artifacts and difficulties, is often

currently used to treat such long-range forces. Other methods, such as the particle–

particle/particle mesh method [17] and the fast multipole method [18] are computation-

ally more efficient for large systems.

16.3 CLASSICAL PERIOD OF CLASSICAL MOLECULAR DYNAMICS

By the early 1970s MD computer simulation was evolving from its initial development

phase and proving itself to be a powerful tool to explore the dynamics of dense fluids. The

advances that occurred over the next 15–20 years helped to give MD the central role that

it now plays in science. In this period MD methods for generalized ensembles were

constructed, constraints that allowed one to simulate molecular systems using Cartesian

coordinates were developed and methods for sampling rare events were introduced. In

addition, simulations of more complicated condensed phase molecular systems,

including the first MD simulations of proteins and chemical reactions in liquids, were

performed.

The Monte Carlo method is easily carried out in any convenient ensemble since it

simply requires the construction of a suitable Markov chain for the importance sampling.

The simulations in the original paper by Metropolis et al. [1] were carried out in the

canonical ensemble corresponding to a fixed number of molecules, volume and

temperature, (N, V, T). By contrast, molecular dynamics is naturally carried out in the

microcanonical ensemble, fixed (N, V, E), since the energy is conserved by Newton’s

equations of motion. This implies that the temperature of an MD simulation is not known

a priori but is obtained as an output of the calculation. This feature makes it difficult to

locate phase transitions and, perhaps, gave the first motivation to generalize MD to other

ensembles.

In 1979 Andersen [19] constructed a MD scheme for systems with constant pressure by

introducing the volume V as an extra coordinate. The volume changes couple to the

system degrees of freedom since a change in the volume corresponds to a scaling of

particle positions. The usual Newton’s equations of motion were augmented with

equations for the volume and an additional momentum conjugate to V. The volume

variable was assigned a fictitious mass. The system energy is no longer conserved in this

extended system; instead a quantity closely related to the total enthalpy is conserved.

Thus, although the dynamics is fictitious, equilibrium properties may be determined from

MD simulations on the extended system. Andersen also introduced a stochastic scheme

for carrying out constant temperature and pressure simulations, (N, p, T) ensemble.
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Parrinello and Rahman [20,21] extended Andersen’s method to treat changes in the MD

cell shape and in this way could study structural changes in solids and determine the

crystal structure corresponding to the various pair potentials available at that time.

In well-known papers [22,23] Nosé showed how a deterministic canonical ensemble

(N, V, T) MD simulation scheme could be constructed. Again the system phase space

variables were augmented with an additional degree of freedom s. The physical system

variables ðq0i; p0it0Þ were related to ‘virtual’ variables ðqi; pi; tÞ by a non-canonical

transformation q0i ¼ qi; p
0
i ¼ pi=s and t0 ¼ Ðt

dt=s: The Hamiltonian of the extended

system is

H ¼
X
i

p2i
2mis

2
þ VðqÞ ¼ p2s

2Q
þ gkBT ln s; ð2Þ

where Ps is the momentum associated with the variable s, Q is its mass and g is a free

parameter in the model that is put equal to 3N þ 1 to reproduce the canonical ensemble.

The equations of motion are constructed from this Hamiltonian and then reinterpreted in

real variables. Hoover [24] showed that a different set of non-Newtonian equations of

motion, that is free of the time scaling introduced by Nosé, can be used to carry out

canonical ensemble MD simulations. Many subtle statistical mechanical issues arise in

this approach which have been clarified later by Tuckerman et al. [25,26].

Most current applications of the MD method have as their aim an understanding of the

dynamics of molecular systems with many components. Solvents of interest include

water or other polar molecules and solutes can be very large proteins or other molecules.

In such systems certain degrees of freedom, typically those associated with internal

vibrational modes whose dynamics takes place on fast time scales, often do not affect the

properties of interest but place heavy demands on computer time because of the small

time step needed to accurately integrate the equations of motion. If the molecules are

treated as rigid bodies, one may introduce a coordinate system consisting of the center of

mass of the molecule and Euler angles describing its orientation. The singularities that

appear in the evolution equations make it difficult to carry out simulations using such

coordinates without the introduction of schemes to circumvent the singularities [27].

Another method, which is also applicable to flexible molecules, is to introduce

constraints that remove certain degrees of freedom in the molecules. If the system is

subjected to l holonomic constraints saðrÞ ¼ 0 a ¼ 1;…; l; where the sa are bond

constraints or any other set of constraints, the constrained equations of motion are

_ri ¼ pi
mi

_pi ¼ Fi 2 la7isaðrÞ ð3Þ
where Fi ¼ 27iV is the force on particle i due to the potential energy and the second

term represents the constraint forces with Lagrange multipliers la: These equations of
motion can be integrated in Cartesian coordinates [28–30]. The use of constraints and the

SHAKE algorithm for their implementation has proved very powerful for the simulation

of complex molecular systems. The original iterative SHAKE algorithm could not be
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parallelized. Only recently, [31], by an elegant reformulation of the problem, was it

possible to construct a parallel version of the scheme.

Another method for dealing with molecular systems, especially molecules where

vibrational degrees of freedom are important and cannot be frozen by molecular

constraints, is the use of multiple time step integrators [32,33]. In these integrators the

classical Liouville operator is decomposed into parts pertaining to fast and slow degrees

of freedom. A Trotter factorization of the propagator is made to derive reversible and

measure preserving integration algorithms that treat the two types of degrees of freedom

with different time steps. Such algorithms allow one to simulate systems with vibrational,

or other rapidly varying, degrees of freedom efficiently.

In this period a thrust was made to develop MD techniques to simulate the rates of

activated chemical reactions in the condensed phase. Activated rate processes typically

take place on very long time scales because high-energy barriers must be traversed in

passing between metastable states corresponding to chemical species. Direct MD

simulation of the reaction rate is an impossible task in such situations. However, given

that one knows the reaction coordinate jðrÞ; the statistical mechanical expression for the
time-dependent rate of the reaction AO B;

kf ðtÞ ¼ kTSTf

kð _jdðjðrÞ2 j‡ÞÞuðjðrðtÞÞ2 j‡Þl
k _jdðj ðrÞ2 j‡Þuð _j Þl ð4Þ

where kTSTf ¼ k _jdðjðrÞ2 j‡Þuð _j Þl=neqA ; shows that it can be computed from a knowledge

of the transition state theory (TST) rate constant, kTSTf ; which involves the free energy
along the reaction coordinate, and dynamical effects that may be determined from an

average over trajectories starting from the free energy barrier top [34–36]. Keck [37]

and Anderson [38] computed gas phase reaction rates using similar ideas involving

trajectories initiated at the transition state. Bennett formulated the theory of activated

defect migration in solids in these terms and carried out simulations of this rate process

[35]. Early simulations of condensed phase reaction rates using these rare event

sampling techniques include a study of butane isomerization in a model CCl4 solvent

[39], the Cl þ Cl2 reaction in a rare gas solvent [40], and ion association in a dipolar

solvent [41].

Configurations at the barrier top may be obtained by Monte Carlo umbrella sampling

[42], followed by MD trajectory segments to obtain dynamical corrections to the TST

rate. One may also prepare ensembles of trajectories conditioned on starting from the

barrier top using constrained MD trajectories instead of Monte Carlo sampling. The

conditional average of the reaction coordinate in the expression for the rate constant may

be expressed in terms of the ensemble of configurations generated from trajectories where

jðrÞ is fixed by a holonomic constraint on the equations (j-constrained ensemble). While

the value j‡ one needs to sample is rare in the original ensemble, only configurations with
j ¼ j‡ are sampled in the j-constrained ensemble. The relation between conditional

averages and averages in the constrained ensemble is

kAðrÞdðj ðrÞ2 j 0Þl
kdðjðrÞ2 j 0Þl ¼ klZl21=2AðrÞlj 0

klZl21=2lj 0
ð5Þ
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where AðrÞ is any function of the configuration space [43,44]. The factor Z accounts for
the bias introduced in the momentum distribution from constraining the reaction

coordinate. This Blue Moon Ensemble method takes its name from the fact that it is

designed to compute the rates of reactions that occur ‘once in a blue moon’ [43].

Computations of activated rate processes are now routine using rare event sampling

techniques. However, often it is difficult to identify the reaction coordinate(s) in a

complex (or even simple) condensed phase reaction and current research has focused on

the development of methods to determine reaction paths. A number of methods [45],

including an early application dealing with reaction paths in biochemical systems [46],

have been suggested to determine reaction paths. One approach is to find the optimal TST

estimate to the rate by finding the optimal hyperplane that determines the minimal TST

rate [47–49]. Techniques have been introduced to determine the minimum energy path,

such as that of Ulitsky and Elber [50], the Nudged Elastic Band (NEB) [51] and methods

based on the minimization of the action [52]. Transition Path Sampling [53,54] does not

assume a transition mechanism and determines dynamical trajectories that connect

reactant and product metastable states. The finite temperature string method uses an

adaptive blue moon sampling to determine the optimal reaction coordinate in terms of

level sets that are the isoprobability surfaces for the system to reach one metastable state

before the other [45,55,56]. Mile-Stoning is an algorithm to compute time scales of

complex processes by following predetermined milestones along a reaction coordinate

[57]. Methods to force the system to escape from free energy minima have been devised

[58,59].

Proteins and many other biomolecules are often very large and have complex

structures. Proteins are folded into characteristic shapes which give them specific

properties; for example, they catalyze biochemical reactions. Structural fluctuations and

solvent dynamics influence how proteins function and this fact has stimulated the

development of molecular dynamics simulation methods for such biomolecules. The

problems are challenging because of the size and complexity of proteins, the need to

account for solvation effects and the disparity of time scales involved in the dynamics.

While few relevant local motions occur on short molecular time scales, many important

dynamical effects, such as protein folding or other activated conformational changes,

may take place on very long macroscopic time scales. With the development of the

molecular dynamics simulation techniques described above, in particular, stable

integration algorithms, the construction of effective force fields, methods for dealing

with long-range forces, introduction of constraints to remove inessential degrees of

freedom, and rare event sampling methods, progress has been made also on these

complex and important systems. Following the first protein simulations of bovine

pancreatic trypsin inhibitor [60], the field of biomolecular simulation developed rapidly

[61–64] and is one of the most currently active research areas where MD is providing

insights into structure and function. Large molecular dynamics simulation programs with

model force fields for biomolecule simulations have been developed [65–67] and are in

wide use today for theoretical studies of biochemical problems.

Linear response theory provides autocorrelation function expressions for transport

properties [68] and, starting with early investigations of hard sphere [69] and Lennard-

Jones [70] systems, MD has been used, and continues to be used, to estimate transport
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coefficients using these Kubo formulas. However, very early it was recognized that MD

could be employed to study non-equilibrium processes and transport beyond the linear

response regime. In this more general perspective, linear response theory itself is

considered to be an approximate theory, whose validity needs to be tested, rather than an

exact algorithm from which the response of the system can be computed. More

importantly, not only can molecular dynamics be used to simulate equilibrium

phenomena but it also provides an approach to the study of non-equilibrium phenomena.

Such simulations are particularly simple in the non-equilibrium stationary state (where

fluxes are present but do not depend explicitly on time) and can also be carried out in

more general situations, as was shown in the dynamic approach to non-equilibrium

developed by Ciccotti and Jacucci [71].

The earliest efforts to develop non-equilibrium molecular dynamics (NEMD) methods

used special boundary conditions and/or external fields to induce non-equilibrium

behavior in the system. Important contributions to this development include those of Lees

and Edwards [72], Gosling et al. [73], Hoover and Ashurst [74] and Ciccotti and Jacucci

[71]. Later methods made adjustments to external forces to account for periodic boundary

conditions and introduced suitable modifications of the Hamiltonian or the Newtonian

equations of motion [75–78]. Considerable progress has been made since those early

efforts, both with the original [79–83] and modified Hamiltonian approaches [84].

However, many subtle issues remain to be resolved. These issues concern the non-

Hamiltonian nature of the models used in NEMD and the need to introduce a thermostat

to obtain a stationary state. Recently Tuckerman et al. [25] have considered some

statistical mechanical aspects of non-Hamiltonian dynamics and this work may provide a

way to approach these problems. Although the field of NEMD has been extensively

explored for simple atomic systems, its primary applications lie mainly in treating non-

equilibrium phenomena in complex systems, such as transport in polymeric systems,

colloidal suspensions, etc. We expect that there will be considerable activity and progress

in these areas in the coming years [85].

16.4 QUANTUM MECHANICS AND MOLECULAR DYNAMICS

Thus far, the developments we described had as their aim the construction of algorithms

for the study of some aspects of the physics of condensed phase classical systems. The

calculation of the dynamical properties of condensed phase quantum systems remains

one of the challenging problems in statistical mechanics. It is still impossible to solve the

time-dependent Schrödinger equation for a large many-body system. Nevertheless, there

has been some success in applying MD techniques to the study of quantum systems.

Progress in this area has been made on diverse aspects of the problem. Molecular

dynamics methods may be used to investigate equilibrium quantum statistical mechanics.

Quantum electronic structure calculations have been married to MD to allow one to

simulate the dynamics of complex systems using more realistic potential information. If

only few degrees of freedom are treated quantum mechanically and the remainder is

treated using classical mechanics, then algorithms for the solution of the dynamics may

be constructed. We now briefly describe these advances.
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Equilibrium properties can be determined from the partition function ZQ and this

quantity can, in turn, be computed using Feynman’s path integral approach to quantum

mechanics in imaginary time [86]. In this representation of quantum mechanics, quantum

particles are mapped onto closed paths rðtÞ in imaginary time t, 0 # t # b": The path
integral expression for the canonical partition function of a quantum particle is given by

the P!1 limit of the quantum path discretized into P segments,

ZQ ¼ lim
P!1

mP

2pb"2

{ !1=2ðYP
i¼1

dri e
2bVeff ðrÞ ð6Þ

where

VeffðrÞ ¼ Pm

2ðb"Þ2
XP
i¼1

ðriþ1 2 riÞ2 þ 1

P

XP
i¼1

VðriÞ

is an effective potential. In simulations a finite number P of segments or beads is chosen.

Thus, considering the form that this potential takes, the single quantum particle with

coordinate r is mapped to a closed or ring polymer with P beads with coordinates ri[87].

The problem is then reduced to sampling from a classical canonical distribution involving

Veff : In molecular dynamics, this can be achieved by defining the Hamiltonian Heff ¼PP
i¼1 ð1=2Þmeff _r

2
i þ VeffðriÞ; where meff is an arbitrary mass assigned to the polymer

beads.

The formulation is easily generalized to systems with many degrees of freedom,

although the treatment of permutations needed to cope with the symmetrization postulate

raises a difficult problem for MD (it is less severe, but still present, for MC and currently

only bosonic systems can be treated satisfactorily [88]). The sign problem for fermionic

systems is still essentially unsolved [89]. In the path integral formulation, classical

particles are represented by single beads. It typically takes about 1000 polymer beads to

represent an electron and about 30 beads for a proton. Methods for carrying out path

integral simulations have been developed [90,91]. Monte Carlo or MD sampling of the

configuration space described by Veff is very difficult because the polymer spring stiffness

increases with the number of beads. This problem has been solved by the introduction of

the staging algorithm [92,93] where the size of the polymer chain is increased in a

systematic fashion during the calculation. Early investigations concerned studies of

quantum degrees of freedom in classical solvents and quantum bulk phases. In particular,

electron solvation in molten potassium chloride [94] and in liquid ammonia [92] were

investigated. Bulk quantum fluids were also studied; for example, bulk liquid water

where only rotational degrees of freedom were treated quantum mechanically [95] and

liquid 4He [96]. The path integral method is now commonly used to investigate

equilibrium properties of quantum fluids [88].

Almost all of the early MD studies used either model potential functions or effective

potential functions constructed to reproduce structural data on condensed phase systems.

Examples include the choice of Lennard-Jones parameters to reproduce argon fluids and

the water potentials discussed earlier. A much more systematic approach is to combine
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a quantum chemical calculation of the potential energy function in the course (‘on the

fly’) of an MD simulation. This is now termed ab initio molecular dynamics.

Car and Parrinello [97,98] proposed a scheme to combine density functional theory

[99] with molecular dynamics in a paper that has stimulated a field of research and

provided a means to explore a wide range of physical applications. In this scheme, the

energy functional E½{ci}; {Rl}; {an}	 of the Kohn–Sham orbitals, ci; nuclear positions,
Rl; and external parameters such as volume or strain, an; is minimized, subject to the
ortho-normalization constraint on the orbitals, to determine the Born–Oppenheimer

potential energy surface. The Lagrangian,

L ¼
X
i

m

2

ð
V
drl _cil

2 þ
X
l

Ml

2
_R2l þ

X
n

mn
2

_a2n 2 E½{ci}; {Rl}; {an}	; ð7Þ

which depends on fictitious mass parameters for the c and a variables, is used to generate
equations of motion that can be solved by classical MD to determine the potential energy

surface. The original application dealt with the structure and dynamics of crystalline

silicon [97] but now this method is widely used in MD simulations since it is able to

determine the intermolecular potentials for complex materials and provide a realistic

description of equilibrium structure and dynamical properties [98]. The technique is very

powerful for the study of chemical properties, for example, association and dissociation

processes, mixtures with reactive agents, etc. since it describes the bond-making and

bond-breaking events at a quantum mechanical level. Classical MD with empirical

potential functions is much more ‘rigid’ and it is difficult to account for such processes in

a realistic and general fashion.

While the Feynman path integral method can be used to determine equilibrium

properties of condensed phase systems, thus far, it has not led to a computationally

feasible scheme for real time dynamics needed to compute transport properties. As a

result a number of approaches have been used to study quantum dynamics, most often for

a few quantum degrees of freedom interacting with a classical environment. The simplest

such scheme is adiabatic dynamics where the Schrödinger equation for the quantum

degrees of freedom is solved in the fixed field of the classical particles to determine the

ground state energy. This energy is used as the potential energy to evolve the classical

degrees of freedom by Newton’s equations of motion. Molecular dynamics investigations

of electron solvation [100] and proton transfer [101,102] in condensed phase systems

have been carried out using this method. There is now a large literature employing this

simulation method for studying reactive systems [103].

Various simulation schemes have been suggested to go beyond the adiabatic limit,

such as mean field methods where the wave function obtained from the solution of

the time-dependent Schrödinger equation is used to compute an effective force for

the evolution of the classical equations of motion, and surface hopping schemes where

evolution on single adiabatic surfaces is interspersed with quantum transitions that cause

the system to hop from one surface to another. The most widely used surface hopping

method is Tully’s fewest switches algorithm [104]. In this algorithm, the probabilities for

switching between adiabatic surfaces are determined from the off-diagonal elements of

the density matrix which are, in turn, computed from the solution of the time-dependent
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Schrödinger equation assuming that the classical degrees of freedom evolve by Newton’s

equations of motion on single adiabatic surfaces. This method has been used extensively

to investigate non-adiabatic dynamics in condensed phase systems; for example, proton

transfer reactions in molecular solvents have been studied using this MD scheme [105].

Variations on this surface hopping method that utilize Pechukas’ [106] formulation of

mixed quantum-classical dynamics have been proposed [107,108]. Surface hopping

algorithms [109–111] for non-adiabatic dynamics based on the quantum-classical

Liouville equation [109,111–113] have been formulated. In these schemes the dynamics

is fully prescribed by the quantum-classical Liouville operator and no additional

assumptions about the nature of the classical evolution or the quantum transition

probabilities are made. Quantum dynamics of condensed phase systems has also been

carried out using techniques that are not based on surface hopping algorithms, in

particular, centroid path integral dynamics [114] and influence functional methods [115].

Currently, the above path integral, ab initio MD methods and quantum-classical

surface hopping methods are being combined to produce powerful algorithms for

studying physical problems. For example, proton transfer in ice has been studied by

combining ab initioMD with path integrals [116] and ab initioMD ‘spawning’ methods

[117] have been constructed to deal with dynamics on multiple energy surfaces

encountered in photochemical reactions.

16.5 COARSE GRAINED AND MESOSCOPIC DYNAMICS

Classical MD simulations have been carried out on very large systems with up to 1010

particles using massively parallel computer resources. Such large-scale simulations

demonstrated that brute force MD provides a way to study problems, such as

hydrodynamic flows [118] and shock compression of solids [119], whose characteristic

space and time scales are very long. Nevertheless, for most applications dealing with the

dynamics of complex molecular systems, such as polymers, biomolecules and glasses,

MD simulation times are too long to be able to extract the desired information. This is

also true in most instances even for simple models of fluids if one is interested in pattern

forming processes which also occur on long distance and time scales.

These facts have prompted the development of coarse grained and other mesoscopic

MD methods that sacrifice details on short scales but are able to efficiently capture

dynamics that occurs on longer scales. Such coarse grained methods have a long history

dating at least to Langevin equation models where the effects of the solvent on particle

motion is taken into account through frictional and random forces [120]. There have been

many applications of Langevin dynamics to the study of complex molecular systems, too

numerous to mention here. Langevin dynamics has also been used in conjunction with

MD as a way to contract variables; for instance, in an early study of the dynamics of the

active site of ribonuclease [121].

There is a rapidly expanding literature on techniques to construct coarse grained

models for intermolecular potentials. A number of atoms are grouped together to form

interaction sites that interact through effective potentials that are constructed to reproduce

structural or dynamical data. A variety of different schemes have been used to construct
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such effective potential models. They have proved to be especially useful in

investigations of lipid systems, polymers and colloids. Many of these applications and

a discussion of the techniques used to determine the coarse grained models can be found

in the articles in Refs. [122–124].

If one is interested in properties that vary on very long distance and time scales it is

possible that a drastic simplification of the molecular dynamics will still provide a

faithful representation of these properties. Hydrodynamic flows are a good example. As

long as the dynamics preserves the basic conservation laws of mass, momentum and

energy, on sufficiently long scales the system will be described by the Navier–Stokes

equations. This observation is the basis for the construction of a variety of particle-based

methods for simulating hydrodynamic flows and reaction-diffusion dynamics. (There are

other phase space methods that are widely used to simulate hydrodynamic flows which

are not particle-based, e.g. the lattice Boltzmann method [125], which fall outside the

scope of this account of MD simulation.)

One of the earliest particle-based schemes is the Direct Simulation Monte Carlo

(DSMC) method of Bird [126]. In DSMC simulations, particle positions and velocities

are continuous variables. The system is divided into cells and pairs of particles in a cell

are chosen for collision at times that are determined from a suitable distribution. This

method has seen wide use, especially in the rarefied gas dynamics community where

complex fluid flows can be simulated.

An even more drastic simplification of the dynamics is made in lattice-gas automaton

models for fluid flow [127,128]. Here particles are placed on a suitable regular lattice so

that particle positions are discrete variables. Particle velocities are also made discrete.

Simple rules move particles from site to site and change discrete velocities in a manner

that satisfies the basic conservation laws. Because the lattice geometry destroys isotropy,

artifacts appear in the hydrodynamics equations that have limited the utility of this

method. Lattice-gas automaton models have been extended to treat reaction-diffusion

systems [129].

Another method that introduces a very simplified dynamics is the Multi-Particle

Collision Model (or Stochastic Rotation Model) [130]. Like DSMC particle positions and

velocities are continuous variables and the system is divided into cells for the purpose of

carrying out collisions. Rotation operators, chosen at random from a set of rotation

operators, are assigned to each cell. The velocity of each particle in the cell, relative to the

center of mass velocity of the cell, is rotated with the cell rotation operator. After rotation

the center of mass velocity is added back to yield the post-collision velocity. The

dynamics consists of free streaming and multi-particle collisions. This mesoscopic

dynamics conserves mass, momentum and energy. The dynamics may be combined with

full MD for embedded solutes [131] to study a variety of problems such as polymer,

colloid and reaction dynamics.

Dissipative Particle Dynamics (DPD) is a coarse graining method that groups several

atoms into simulation sites whose dynamics is governed by conservative and frictional

forces designed to reproduce thermodynamics and hydrodynamics [132,133]. Since

the effective interactions are constructed to reproduce macroscopic properties soft

repulsive forces can be used, thereby avoiding the small MD step sizes needed to

integrate the system when full interactions are taken into account. In addition, random
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forces can be constructed to conserve momentum, consistent with dynamics leading to

the Navier–Stokes equations. Smoothed Particle Hydrodynamics (SPH) [134] is a related

technique that is used to discretize continuum equations by employing weight functions

assigned to fictitious particles so that hydrodynamic simulations can be carried out in

a particle based MD framework.

Particle-based methods have been linked to continuum models in order to exploit the

efficiency of finite element schemes and yet account for boundary layers and other

regions where continuum approaches may fail [135]. It is very likely that coarse grained

methods will continue to be developed and used since many physical systems are too

large or too complex to be treated by full MD.

16.6 CONCLUSION

Over the last several decades molecular dynamics evolved from a theoretical tool with

very modest capability to the method of choice for exploring the dynamics of complex

systems in chemistry, physics and biology. The results of molecular dynamics

simulations now often play the role of ‘thought experiments’ in regimes where physical

theory is lacking and cannot act as guide. The term ‘computer experiment’ reflects this

usage. Molecular dynamics serves several functions. It is used to model and gain insight

into real physical phenomena and to provide a microscopic dynamical picture, which

forms the basis for the construction of a theoretical treatment or the interpretation of

experiments. Molecular dynamics owes its success perhaps more to the construction of

powerful algorithms rather than to the advances in the power of computers, although both

are significant factors.

The success of molecular dynamics can be gauged by its very widespread use in science

today. As a result, any account of the sort we have attempted here is bound to have left out

many important and exciting developments in the field. Even by limiting the perspective

to the impact of molecular dynamics on statistical mechanics, it is impossible to

completely survey all contributions to this broad field. There are several texts [136,137]

and proceedings [138,139] that provide access to the extensive literature in the field and

give details of the methods used inMD as it is now practiced. While ab initioMD is now a

well-developed method, there is no comprehensive text that summarizes the progress in

this field. By contrast, quantum non-adiabatic molecular dynamics is a field that is still in

flux and further advances will likely change the face of this topic in the coming years.

Hopefully, our account pointed to some of the major developments that helped shape

molecular dynamics into the powerful tool it is today and provided links to other work

which was not explicitly described.
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CHAPTER 17

Equations of motion methods for

computing electron affinities and

ionization potentials

Jack Simons

Chemistry Department and Henry Eyring Center for Theoretical Chemistry,
University of Utah, Salt Lake City, UT 84112, USA

Abstract

The ab initio calculation of molecular electron affinities (EA) and ionization potentials

(IP) is a difficult task because the energy of interest is a very small fraction of the total

electronic energy of the parent neutral. For example, EAs typically lie in the 0.01–10 eV

range, but the total electronic energy of even a small molecule is usually several orders of

magnitude larger. Moreover, because the EA or IP is an intensive quantity but the total

energy is an extensive quantity, the difficulty in evaluating EAs and IPs to within a fixed

specified (e.g. ^0.1 eV) accuracy becomes more and more difficult as the size and

number of electrons in the molecule grows. The situation becomes especially problematic

when studying extended systems such as solids, polymers, or surfaces for which the EA

or IP is an infinitesimal fraction of the total energy. Equations of motion (EOM) methods

and other related approaches offer a route for calculating the intensive EAs and IPs

directly as eigenvalues of a set of working equations. A history of the development of

EOM theories as applied to EAs and IPs, their numerous practical implementations, and

their relations to Greens function or propagator theories are given in this contribution.

EOM methods based upon Møller–Plesset, multiconfiguration self-consistent field, and

coupled-cluster reference wave functions are included in the discussion as is the

application of EOM methods to metastable resonance states of anions.

17.1 INTRODUCTION

The vertical (i.e. at any given fixed molecular geometry) electron affinity (EA) of a

molecule can be computed by (approximately) solving the Schrödinger equation for

the energy Eð0;NÞ of the N-electron neutral molecule and the Schrödinger equation

q 2005 Elsevier B.V. All rights reserved.
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for the energy EðK;N þ 1Þ of the Kth state of the N þ 1-electron anion and subtracting

the two energies:

EA ¼ Eð0;NÞ2 EðK;N þ 1Þ ð1aÞ
The corresponding vertical ionization potential (IP) is given as

IP ¼ EðK;N 2 1Þ2 Eð0;NÞ ð1bÞ
Here, we use K to label the electronic state of the anion or cation that one wishes to study,

and 0 to label the state of the neutral (usually but not necessarily the ground state) to

which the electron is being attached or from which it is removed.

In using such an approach for obtaining the EA or IP, one is faced with a very difficult

numerical challenge because Eð0;NÞ; EðK;N 2 1Þ; and EðK;N þ 1Þ tend to be extremely
large (negative) numbers, whereas EA and IP nearly always lie in the range 0–20 eV. For

example, the EA of the 4S3/2 state of the carbon atom is [1] 1.262119 ^ 0.000020 eV,

whereas the total electronic energy of this state of C is 21030.080 eV (relative to a C6þ

nucleus and six electrons infinitely distant and not moving that defines the zero of

energy). Since the EA is ca. 0.1% of the total energy of C, one needs to compute the C and

C2 electronic energies to accuracies of 0.01% or better to calculate the EA to within 10%.

This observation shows only the ‘tip of the iceberg’, however, as the major problem

relates to the fact that Eð0;NÞ; EðK;N 2 1Þ; and EðK;N þ 1Þ are extensive properties
whereas EA and IP are intensive quantities. For example, the EA of C2 in its X

2Sg
þ

ground electronic state is [1] 3.269 ^ 0.006 eV near the equilibrium bond length Re but

only 1.2621 eV at R!1 (i.e. the same as the EA of a carbon atom). However, the total

electronic energy of C2 is 22060.160 eV at R!1 and lower by ca. 3.6 eV (the

dissociation energy [2] of C2) at Re; so again EA is a very small fraction of the total

energies. For buckyball C60, the EA is [1] 2.666 ^ 0.001 eV, but the total electronic

energy is 60 times 21030.080 eV minus the atomization energy (i.e. the energy change

for C60 ! 60 C) of this compound. Clearly, the challenge of evaluating EA (or IP) to

within even 50% becomes more and more difficult as the size (i.e. number of electrons) in

the molecule grows, and it becomes impossible when the system of interest is an infinite

solid, surface, or polymer. This same kind of difficulty (i.e. calculating an intensive

quantity as the difference between to extensive energies) plagues the computation of EAs

and IPs, bond energies, and electronic excitation energies.

The problems discussed in the preceding paragraph do not disappear if one uses a

computer with higher numerical precision in its arithmetic (i.e. a longer word length) or

algorithms that compute the one- and two-electron integrals needed for any quantum

chemistry calculation to more significant figures. No mater how precise the integrals and

how long the floating point word length (as long as they are finite), the evaluation of

intensive properties such as IPs, EAs, and excitation energies as differences between pairs

of extensive total electronic energies is doomed to fail.

Of course, much progress can be made in computing EAs and IPs as differences

between anion and neutral or cation and neutral total energies [3] because of large

systematic cancellation in energy errors [4,5]. For example, the pair correlation energies

of the two 1s electron pairs in C2 is quite large, but is very nearly the same as in C2
2, so

even a large percent error made in computing these contributions to the total energy may
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not greatly affect the EA computed by subtracting EðK;N þ 1Þ from Eð0;NÞ: Some of the
earliest high-quality ab initio calculations of EAs were in fact carried out by Professor

Schaefer [6] during his PhD work with Frank Harris using wave function techniques and

calculating separate neutral and anion energies. Nevertheless, in the late 1960s and early

1970s, workers were motivated to develop methods that would allow intensive energy

differences such as EAs, IPs, and excitation energies (DEs) to be computed

‘directly’ rather than as differences in two very large numbers. This point of view is

what led to the development of so-called equations of motion (EOM) methods as well as

Greens function methods [7] and, more recently, response function approaches [8],

within electronic structure theory. In all these theories, one performs a derivation in which

the two total energies (i.e. ion and neutral or ground and excited states) are subtracted

analytically (rather than numerically) thereby achieving an analytical expression for

the desired intensive energy difference. It is by thus dealing with equations that

involve only intensive energies that one can overcome the problems detailed earlier.

Among the earliest practitioners of EOM methods in the chemistry community were

Prof. V. McKoy [9] and his group (including Thom Dunning) at Cal Tech. They imported

many ideas and mathematical tools from the nuclear physics literature [10], where EOM

theories had been used to study excited states of nuclei, and they focused their efforts on

electronic excitation energies DE; not IPs or EAs. Because the present chapter is

dedicated to how such methods are used to compute EAs and IPs, not much more will be

said about the McKoy group’s pioneering work on EOM theory for excitation energies,

although its ultimate relationship to other excitation energy methods will be discussed

briefly later.

In 1973, the author used the framework of EOM theory [11] as expressed by the

McKoy group to develop a systematic (i.e. order-by-order in the Møller–Plesset

perturbation theory sense) approach for directly computing molecular EAs and IPs as

eigenvalues of the EOM working equations. It is this development and its subsequent

improvement and extensions [12] by our group and others that we now wish to

describe.

17.2 BASICS OF EOM THEORY AS APPLIED TO EAs AND IPs

17.2.1 The EA equations of motion

The fundamental working equations of any EOM theory are derived by writing the

Schrödinger equations for the neutral and anion (or neutral or cation or ground and

excited) states of interest and subtracting the two equations as a first step toward

obtaining a single equation that will yield the EA or IP or DE: That is, the EOM theory

produces the intensive energy difference directly as an eigenvalue of the working

equation. As above, we use l0;Nl to denote the 0th electronic state of the N-electron

neutral and lK;N þ 1l to denote the Kth state of the N þ 1-electron anion and write the

two Schrödinger equations as

Hl0;Nl ¼ Eð0;NÞl0;Nl ð2aÞ
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HlK;N þ 1l ¼ EðK;N þ 1ÞlK;N þ 1l ð2bÞ
Because l0;Nl and lK;N þ 1l contain different numbers of electrons, it is convenient and
most common in developing EOM theories of EAs to express the electronic Hamiltonian

H in second-quantized form [13]:

H ¼
X
i; j

hði; jÞiþjþ 1=2
X

i; j; k; l

ki; jlk; lliþjþlk ð3Þ

where hði; jÞ represents a matrix element of the one-electron operators (i.e. kinetic energy,
electron-nuclear Coulomb attraction, etc.) within the orthonormal molecular spin-orbital

basis {fj}; ki; jlk; ll is a matrix element of the two-electron operators (i.e. electron–
electron repulsion), and the set of Fermion creation operators {iþ} create an electron in
the {fi} spin-orbitals, whereas the {i} operators destroy such an electron. Writing H in

such a form allows us to use the same H in Eqs. (2a) and (2b) even though these two

Schrödinger equations relate to N and N þ 1 electrons, respectively.

The next step in developing an EOM equation is to assume that the anion state

lK;N þ 1l can be related to the neutral state l0;Nl through an operator QþðKÞ
lK;N þ 1l ¼ QþðKÞl0;Nl ð4Þ

that maps the neutral molecule wave function into the desired anion wave function. For

the EA case at hand, the operator QþðKÞ is usually written in terms of scalar coefficients
tðK; lÞ multiplied by operators TþðlÞ; also expressed in second-quantization language,
each of which involves adding an electron

QþðKÞ ¼
X
l

tðK; lÞTþðlÞ ð5Þ

It has been shown [14] that a complete set of such TþðlÞ operators consists of the union of
sets of operators {pþ} that add an electron to a spin-orbital fp; operators {p

þqþa} that
add an electron to fp and excite another electron from fa to fq; operators {p

þqþrþab}
that add an electron to fp; excite an electron from fa to fr and excite another electron

from fb to fq as well as higher-level electron addition and excitation operators up to the

highest-level operators that add an electron and induce N excitations. In labeling these

operators, the indices a; b; c; d; etc. are used to denote spin-orbitals occupied in a so-
called reference Slater determinant within l0;Nl and p; q; r; s; etc. are used to denote
unoccupied (i.e. virtual) spin-orbitals. The reference determinant, which is what defines

the concept of occupied and unoccupied spin-orbitals, is usually chosen to be the

determinant l0l within the neutral molecule wave function

l0;Nl ¼
X

J¼0;M
Cð0; JÞlJl ð6Þ

with the largest amplitude Cð0; 0Þ; but it has been shown [14] that l0l can actually be
taken to be any determinant within l0;Nl that possesses non-zero amplitude. Later we
will deal with how one determines the Cð0; JÞ amplitudes in the wave function l0;Nl; for
now, suffice it to say these amplitudes can, for example, be taken from Møller–Plesset

(MP) perturbation theory, from multiconfiguration self-consistent field (MCSCF) theory,

from configuration interaction (CI) theory or from coupled-cluster (CC) theory.
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Using Eq. (4) in Eqs. (2a) and (2b) and subtracting Eq. (2a) from Eq. (2b) gives a single

equation whose eigenvalue gives the desired EA:

ðHQþðKÞ2 QþðKÞHÞl0;Nl ¼ ðEðK;N þ 1Þ2 Eð0;NÞÞQþðKÞl0;Nl ð7aÞ

or, in terms of the commutator ½H;QþðKÞ	

½H;QþðKÞ	l0;Nl ¼ EQþðKÞl0;Nl ð7bÞ

where the eigenvalue E is the negative of the EA. The key point is that one now has a

single equation to be solved that produces the intensive EA as its eigenvalue. This

equation appears to be of the conventional eigenvalue–eigenfunction form, but it is

somewhat different because the operator that acts on the eigenfunctionQþðKÞl0;Nl is not
the Hamiltonian but a commutator involving the Hamiltonian. The fact that the

commutator appears is what causes the eigenvalue to be an energy difference.

To progress further toward practical implementation, specific choices must be made

for how one is going to approximate the neutral molecule wave function l0;Nl and at
what level one is going to truncate the expansion of the operator QþðKÞ given in Eq. (5).
It is also conventional to reduce Eq. (7) to a matrix eigenvalue equation by projecting this

equation onto an appropriately chosen space of N þ 1-electron functions. Let us first deal

with the latter issue.

Once the number of TþðlÞ operators used to construct QþðKÞ has been chosen (we
discuss this choice later), the total number lmax of tðK; lÞ amplitudes has been determined.
Multiplying Eq. (7) on the left by the adjoint TðjÞ of any one of the Tþ operators, and then
projecting the resultant equation against k0;Nl gives one form of the working EOM-EA

equations:X
l

k0;NlTð jÞ½H; TþðlÞ	l0;NltðK; lÞ ¼ E
X
l

k0;NlTð jÞTþðlÞl0;NltðK; lÞ ð8Þ

To make use of this equation, the k0;NlTð jÞ½H; TþðlÞ	l0;Nl and k0;NlTð jÞTþðlÞl0;Nl
matrices of dimension lmax £ lmax must first be evaluated in terms of one- and two-

electron integrals (appearing in H) and one-, two- and higher-body density matrices

(depending upon the level at which the {TþðlÞ} operator expansion is truncated).

Subsequently, the EA values (i.e. EAs for the various anion states, K; relative to the l0;Nl
state of the neutral) are computed as minus the eigenvalues E of Eq. (8).

17.2.2 The analogous equations of motion for ionization potentials

Before proceeding further, it is useful to explore how this same framework has been used

to compute molecular ionization potentials (IPs). It is fairly straightforward to show that

an equation analogous to Eq. (7) but reading

k0;NlðHQþðKÞ2 QþðKÞHÞ ¼ ðEð0;NÞ2 EðK;N 2 1ÞÞk0;NlQþðKÞ ð9Þ
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is valid if the operators {QþðKÞ} are as given in Eq. (5) but with the {TþðlÞ} defined
to include operators of the form {aþ; aþbþp; aþbþcþqr; etc.}. Of course, in Eq. (9),
the operators within QþðKÞ act to the left on k0;Nl to generate cationic states. As a result,
neutral-cation energy differences appear in Eq. (9) and thus this offers a route for

computing IPs. Multiplying this equation on the right by any one of the Tð jÞ operators
and then projecting against l0;Nl gives

X
l

k0;Nl½H; TþðlÞ	Tð jÞl0;NltðK; lÞ ¼ E
X
l

k0;NlTþðlÞTð jÞl0;NltðK; lÞ ð10Þ

but now the eigenvalues E denote values of ðEð0;NÞ2 EðK;N 2 1ÞÞ; which are the

negatives of the IPs.

Thus far, we see that EOMs can be written that allow EAs or IPs to be computed. The

fundamental constructs within these equations are as follows:

(i) for the EA case, matrix elements k0;NlTð jÞ½H; TþðlÞ	l0;Nl involving the

commutator of H with the TþðlÞ operators then multiplied on the left by a Tð jÞ
operator, as well as an analogous overlap matrix element k0;NlTð jÞTþðlÞl0;Nl;

(ii) for the IP case, matrix elements k0;Nl½H; TþðlÞ	Tð jÞl0;Nl of the same commutator
but with the TðjÞ operator on the right, as well as the corresponding overlap matrix
element k0;NlTþðlÞTð jÞl0;Nl;

(iii) the neutral molecule wave function l0;Nl with respect to which the EA or IP is to

be evaluated.

17.2.3 The rank of the operators

It is now useful to analyze the density matrix elements [15] that enter into these

equations. Each of the Tþð jÞ operators contains an odd number of creation or annihilation
operators, and the Hamiltonian H contains two (i.e. iþj) or four (i.e. iþjþlk) such
operators. It can be seen that the commutator ½H; TþðlÞ	 does not contain four plus the
number of creation or annihilation operators in TþðlÞ; but two fewer operators. For

example, the commutator ½iþjþlk; pþqþa	 does not yield any terms with four creation and
three annihilation operators but only terms with three creation and two annihilation

operators. We say that the act of forming the commutator (which is what causes the

higher order operators to cancel) gives rise to a reduction in the rank of the operators. As

a result, both the operator products Tð jÞ½H; TþðlÞ	 and ½H; TþðlÞ	Tð jÞ; which appear in
the EA and IP-EOM, respectively, contain terms only involving both creation and

annihilation operators equal to the number of creation operators in TþðlÞ plus one plus the
number of creation operators in Tð jÞ: For example, if TþðlÞ ¼ pþqþa and Tð jÞ ¼ bþrs;
then Tð jÞ½H; TþðlÞ	 and ½H; TþðlÞ	Tð jÞwill contain terms with no more than four creation
and four annihilation operators. This means that the density matrices needed from

k0;NlTð jÞ½H; TþðlÞ	l0;Nl and k0;Nl½H; TþðlÞ	Tð jÞl0;Nl will be, at most, fourth-order
density matrices of the k0;Nl· · ·l0;Nl density.

Chapter 17448



17.2.4 Equations of lower rank for both EAs and IPs

Indeed, in the early years of using EOM methods [16] to compute EAs and IPs, operator

manifolds of the form {TþðlÞ} ¼ {pþ; pþqþa; pþqþrþba; etc:} or {TþðlÞ} ¼
{aþ; aþbþp; aþbþcþqr; etc:} were employed with Møller–Plesset approximations to

l0;Nl (usually taken through first order) to form the kind of matrix elements appearing in

Eqs. (8) and (10) and to then evaluate EAs and IPs from their eigenvalues E: However, it
became more common to use a combination of the EA and IP-EOMs formed by adding

Eqs. (8) and (10), while expanding the {TþðlÞ} operator manifold to include those needed
to evaluate EAs {pþ; pþqþa; pþqþrþba; etc.} and those needed for the IPs

{aþ; aþbþp; aþbþcþqr; etc.}, to simultaneously compute both such energy differences.
To understand why such a combination has proven beneficial, it suffices to examine the

form and rank of the operators whose k0;Nl· · ·l0;Nl matrix elements must be evaluatedX
l

k0;Nl½H; TþðlÞ	Tð jÞ þ Tð jÞ½H; TþðlÞ	l0;NltðK; lÞ

¼ E
X
l

k0;NlTþðlÞTð jÞ þ Tð jÞTþðlÞl0;NltðK; lÞ ð11Þ

Recall that the Tþð jÞ operators contain an odd number of creation or annihilation

operators. Each of the products ½H; TþðlÞ	Tð jÞ; Tð jÞ½H; TþðlÞ	; TþðlÞTðjÞ and Tð jÞTþðlÞ
thus contain an even number of such operators. However, because of the fundamental

anti-commutation properties of these operators

iþjþ jiþ ¼ di;j ð12aÞ
ijþ ji ¼ 0 ð12bÞ

iþjþ þ jþiþ ¼ 0 ð12cÞ
it can easily be shown that the operator combinations TþðlÞTð jÞ þ Tð jÞTþðlÞ and
½H; TþðlÞ	Tð jÞ þ Tð jÞ½H; TþðlÞ	 contain one fewer creation and one fewer annihilation
operator than does either of the two terms in the sums. So, by combining the EA and IP-

EOMs, one effects a rank reduction in the operators appearing in the equations although

the dimensions of the matrices one needs to construct are doubled (because the {TþðlÞ}
operator manifold was doubled when both EA and IP operators were included. The rank

reduction is important because it means that the density matrices that need to be evaluated

to compute the k0;Nl· · ·l0;Nlmatrix elements are of lower rank in Eq. (11) than in either
Eq. (8) or Eq. (10). As we said, it has become more common to use the combined EA and

IP equation (11) because lower-order density matrices are required.

17.2.5 Summary

Thus far, we have shown how one can obtain eigenvalue equations, in which the energy

eigenvalues correspond to the intensive EAs (or IPs), by postulating that the anion

(or cation) wave function can be related to the neutral molecule wave function through

an operator. We have also shown how the EA and IP-EOM can be combined to generate
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a combined EOM from which both EAs and IPs can be obtained. The advantage to the

latter approach is that the operators appearing in the resultant equations are of lower rank

and thus lower-order density matrices must be evaluated to carry out the calculations. Let

us now move on to address more specific embodiments of such EOM theories that result

from different choices of the neutral molecule wave function and of the operator

connecting the neutral and anion wave functions.

17.3 PRACTICAL IMPLEMENTATIONS OF EOM THEORIES

FOR EAs AND IPs

The basic ideas underlying any EOM method for computing EAs or IPs appear above.

However, as discussed earlier, in any specific embodiment of such a method, one must

commit to

(i) a specific approximation to the neutral molecule wave function l0;Nl;
(ii) a specific choice of how large an operator manifold {TþðlÞ} to employ; and
(iii) how to solve the resultant EOM equations for the eigenvalues E that then produce

the EAs or IPs.

In the following subsections, we describe the most commonly used choices for these

three issues.

17.3.1 The Møller–Plesset based approximations

In the earliest implementation of EOM approaches to EAs, the author’s group [11,16]

chose to represent the l0;Nl wave function in a Møller–Plesset expansion

l0;Nl ¼ c0 þ c1 þ c 2 þ · · · ð13Þ

with the single-determinant unrestricted Hartree–Fock (HF) function being c0 and the
corresponding neutral molecule HF Hamiltonian being H0: This choice was made

because there existed substantial evidence that EAs and IPs computed at the Koopmans’

theorem level would not meet the desired 0.1 eV accuracy. The evidence on atoms and

small molecules also showed that EAs and IPs computed using standard second-order MP

theory were much more accurate but not sufficient to approach the 0.1 eV standard. For

this reason, the author’s group set their sites on the next reasonable level, that of third-

order MP theory.

The operator manifold {TþðlÞ} was taken to consist of {pþ; pþqþa} and {aþ; aþbþp}:
This choice of operator manifold was shown to be capable of producing EAs and IPs that

were precise through third order [17] in the MP perturbation, which is why this choice

was made.

The resultant variant of Eq. (11) was not solved by finding the eigenvalues of this

matrix eigenvalue equation whose dimension is the sum of the dimensions of the

{pþ; pþqþa} and {aþ; aþbþp} operator manifolds. Rather, that large matrix eigenvalue
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problem was partitioned [11] using a primary subspace defined by the {pþ; aþ} operators
and a secondary subspace defined by the {pþqþa; aþbþp} operators. The partitioned
eigenvalue problem X

j¼a;p

Hi; jðEÞXj ¼ EXi ð14Þ

whose dimension was that of the {pþ; aþ} operator space was used to find the

eigenvalues E: Of course, the act of partitioning the higher-dimension matrix eigenvalue
problem does not change the values of E that represent solutions to the equations. That is,

the same E values that fulfill the original equations are also solutions to the partitioned

equations. However, once one introduces approximations designed to evaluate elements

of the partitioned Hi; jðEÞmatrix to a chosen order in perturbation theory, this equivalence
is lost. It is precisely by making such an order analysis (e.g. computing Hi; jðEÞ through
second or third order) that EOM theories capable of evaluating EAs or IPs to a given

order were obtained.

When the elements of the partitioned matrices were evaluated through second order in

the MP series, the following expression was obtained for the matrix elements Hi; j

Hi; jðEÞ ¼ 1idi; j 2
X
p;q;a

ki; akp; qlkp; qkj; al=ð1p þ 1q 2 1a 2 EÞ

þ
X
a;b;p

ki; pka; blka; bkj; pl=ð1a þ 1b 2 1p 2 EÞ ð15Þ

Here, the 1j denote the UHF spin-orbital energies of the neutral molecule and the ki; jkk; ll
denote differences in two-electron integrals ðki; jkk; ll ¼ ki; jlk; ll2 ki; jll; klÞ:
The expression for Hi; jðEÞ valid through third order in the MP series is more

complicated and is derived in Refs. [11,17]. The partitioned matrix eigenvalue equation

was written in those works as

HðEÞX ¼ EX

where the elements of the H matrix were defined as follows:

Hi; jðEÞ ¼Ai; jþ
X

a,b;m

½Bi;ambB
p
j;amb	=½Em

abþE	2
X

Nþ1,n;a

½Bi;naNþ1B
p
j;naNþ1	=½ENþ1n

a 2E	

2
X

Nþ1,m,n;a

½Bi;namB
p
j;nam	=½Emn

a 2E	

In turn, the elements of the A and B matrices are shown below:

Bi;amb¼2kimlabl21=2
X
p;q

kimlpqlKð pqÞ
ab þ

X
g;p

�
kiglpalKðmpÞ

ðbgÞ 2 kiglpblKðmpÞ
ðagÞ

�
Bi;nam ¼ kialmnlþ1=2

X
g;d

kialgdlKmn
ðdgÞ þ

X
g;p

�
kiplgnlKðmpÞ

ðagÞ 2 kiplgmlKðnpÞ
ðagÞ

�
Ai; j ¼ di; j1iþ

X
k;l

kikljllFkl
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to which one adds the following E-independent terms

dAi; j ¼
X

d;b;p;m;n

k jpkidlkdbkmnlkmnkpbl=½ð1d21pÞð1dþ1b21m21nÞ	

þ
X

d;b;p;m;n

k jdkiplkpbkmnlkmnkdbl=½ð1d21pÞð1dþ1b21m21nÞ	

þ
X

d;a;b;p;n

k jpkidlkdnkbalkabkpnl½ð1d21pÞð1aþ1b21p21nÞ	

þ
X

d;a;b;p;n

k jdkiplkdnkbalkabkpnl½ð1d21pÞð1aþ1b21p21nÞ	

The energy denominators appearing in the Hij matrix elements are

Emn
a ¼ 1mþ1n21a2 kamlaml2 kanlanlþ kmnlmnl

E
p
dg¼ 1p21d21g2 kdpldpl2 kgplgplþ kdgldgl

Finally, the F quantities appearing above are given as

Fkl ¼
X

a,b;p

½Kpk
abK

pl
abþK

kp
abK

lp
ab	2

X
p,q;a

½Kpq
al K

pq
akþK

pq
laK

pq
ka	

where

K
ðpqÞ
ab ¼K

pq
ab2K

qp
ab

K
pq
ðabÞ ¼K

pq
ab2K

pq
ba

K
ðpqÞ
ðabÞ ¼K

pq
ab2K

qp
ab2K

pq
baþK

qp
ba

and the latter quantities are the MP expansion coefficients of the first-order wave

function:

Kmn
ab ¼ kmnlabl=ð1aþ1b21m21nÞ

Although more complicated than their second-order counterparts, the basic structure of

the above expressions for Hi; jðEÞ are the same as those shown earlier.
These third-order equations have been used in many applications in which molecular

EAs have been computed for a wide variety of species as illustrated in Ref. [16]. Clearly,

all the quantities needed to form the second- or third-order EOM matrix elements Hj;k are

ultimately expressed in terms of the orbital energies {1k} and two-electron integrals

k j; kll; hl evaluated in the basis of the neutral molecule’s Hartree–Fock orbitals that form
the starting point of the Møller–Plesset theory. However, as with most electronic

structure theories, much effort has been devoted to recasting the working EOM equations

in a manner that involves the atomic orbital (AO) two-electron integrals rather than the

molecular orbital based integrals. Because such technical matters of direct AO-driven

calculations are outside the scope of this work, we will not delve into them further.
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17.3.2 Relationship to Greens functions/propagators

It turns out that in the early 1970s when the author was developing and implementing the

EOM method for treating EAs and IPs, several groups had taken a different approach to

the evaluation of atomic and molecular electronic energy differences using what were

called Greens functions (GF) or propagators. Linderberg and Öhrn [18] pioneered the use

of such methods in quantum chemistry, while Cederbaum and co-workers [19], Doll and

Reinhardt [20], Taylor, Yaris, and co-workers [21] and Pickup and Goscinski [22] were

among the first to apply the methods to EAs and IPs using an ab initio approach. Purvis

and Öhrn [23] soon thereafter expanded the range of the theory to include open-shell

systems. These workers as well as Jørgensen and Oddershede [24] and others [25]

developed Møller–Plesset based GFs for evaluating electronic excitation energies but we

will not discuss these developments further here because our emphasis is on IPs and EAs.

The GF EA and IP theories were derived from consideration of the following time-

dependent matrix elements:

Gj;kðtÞ ¼ ð1=i"ÞQðtÞk0;NlexpðiHt="Þjþ expð2iHt="Þkl0;Nl
þ ð1=i"ÞQð2tÞk0;Nlk expðiHt="Þjþ expð2iHt="Þl0;Nl ð16Þ

Here, QðtÞ is the Heaviside step function, which equals unity when t is positive and zero
when t is negative, jþ and k are the same creation and annihilation operators discussed

earlier and l0;Nl is the neutral molecule reference wave function. Introducing complete
sets of N 2 1 and N þ 1 electron Hamiltonian eigenfunctions into the first and second

terms in Eq. (16), it is straightforward to see that one observes time dependences

varying as expði½Eð0;NÞ2 EðK;N 2 1Þ	t="Þ and expði½EðK;N þ 1Þ2 Eð0;NÞ	t="Þ;
respectively.

Taking the time derivative of Eq. (16), one obtains expressions involving

commutators of the form ½H; jþ	k and k½H; jþ	 just as one finds in Eq. (11). By

analyzing the resulting time-derivative equations, workers in this field were able to

obtain equations that such Gj;kðtÞ matrix elements obey (n.b.: these were called the

EOM for these quantities). The workers named above were able to express the resulting

equations in terms of one- and two-electron integrals and corresponding density

matrices much as the author had done within the EOM framework. In fact, it turned out

that the final working equations of the so-called one-electron Greens function (GF) or

electron propagator defined in Eq. (16), when Fourier transformed from the time to the

energy domain, were exactly the same as the EOM equations given above, i.e. Eq. (15)

and those reproduced from Refs. [11,17]. However, only the Cederbaum group achieved

the full third-order expressions within the GF framework analogous to what we

reproduced above.

It should be noted that although the GF equations are identical to the combined EA and

IP equations (Eq. (15)), they are not equivalent to Eq. (8) or Eq. (10). In fact, only by

making additional assumptions about the action of QþðKÞ on l0;Nl (i.e. that QðKÞl0;Nl
vanishes) is one able to fully justify adding Eqs. (8) and (10) to obtain Eq. (15) and thus to

obtain an equivalence between the EOM and GF results.

Equations of motion methods for computing electron affinities and ionization potentials 453

References pp. 461–464



Especially in recent years, much of the work aimed at calculating EAs and IPs

using these direct-calculation EOM and GF methods has been performed within

the notation of Greens functions and has been carried out by Vince Ortiz’s group

[26] as well as by the Cederbaum group. To further illustrate the impact that such

advances have had within the quantum chemistry community, we note that the Ortiz

group has implemented various (i.e. Møller–Plesset and other) variants of these

theories within the highly successful Gaussian [27] suite of computer codes as a

result of which many workers worldwide now employ EOM of GF-type methods to

evaluate EAs and IPs.

17.3.3 The natural orbital or extended Koopmans’ theorem approach

In the mid 1970s, Parr and co-workers [28] and, independently, Smith and co-workers

[29] proposed to use an equation such as Eq. (10) for computing IPs and they referred to

these methods as natural orbital or extended Koopmans’ theorem theories.

Subsequently, Andersen and the author [30] analyzed the working equations of this

approach through second and third order in the MP series and noted the differences

between them and the Greens function and equivalent EOM theories computed through

these same orders. Of course, based on the discussion of Section 17.2.4, these

differences relate to the ranks of the operators appearing in the working equations and

are not surprising. More recently, Cioslowski et al. [31] have shown that these extended

Koopmans’ theorem approaches indeed offer a very efficient and reasonably accurate

route to computing IPs or EAs, so it is likely that these methods will continue to

develop. One of the more attractive aspects of the extended Koopmans approaches is

that they have been shown [32] to be capable, at least in principle, of yielding the

correct lowest ionization potential of a neutral molecule because they are capable of

generating the proper asymptotic form for the density.

17.3.4 Multiconfiguration-based approximations

Following on the proof by Manne [14] that the operator spaces {Tþ(l)} ¼ {pþ; pþqþa,
pþqþrþba, etc.} and {TþðlÞ} ¼ {aþ; aþbþp; aþbþcþqr; etc:} can be used (i.e. is capable
of forming complete sets of ion states) even when no single determinant forms a

dominant component of the neutral molecule wave function l0;Nl; the author’s group
extended the combined EA and IP-EOM theory to the case in which l0;Nl is of an
arbitrary MCSCF form [33] and the ionization operator manifold {TþðlÞ} included

operators of the form {pþ; pþqþa} and {aþ; aþbþp}: The resultant working equations
were written as in Eq. (14), with the Hj;k matrix elements given in Eq. (18) of Ref. [33],

which we do not reproduce here because of their complexity. The primary additional

difficulty involved in implementing these multiconfiguration-based equations is the fact

that three-electron density matrices k0;Nliþjþkþlhnl0;Nl taken with respect to the

MCSCF wave function l0;Nl are involved. These density matrices arise when the

commutators ½H; pþqþa	 and ½H; aþbþp	 are evaluated.
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To date, not much use has been made of the MCSCF based EOM theories as developed

in the author’s group. Instead, the framework of time-dependent response theory, which

can treat essentially any kind of reference wave function l0;Nl including the MCSCF
variety, has superceded the EOM-based developments for such cases. It is important to

keep in mind, however, that both the EOM and response function theories involve

formulating and solving sets of equations whose solution (i.e. the unknown energy) is an

intensive energy.

17.3.5 Coupled-cluster based EOM

The use of coupled-cluster (CC) wave functions within EOM theory for excitation

energies, IPs and EAs has been developed [34,35] upon slightly different lines than

outlined in Section 17.2. The CC wave function ansatz for l0;Nl is written as usual in
terms of an exponential operator acting on a single-determinant (e.g. unrestricted HF)

‘reference function’ l0 .

l0;Nl ¼ expðTÞl0l ð17Þ

The so-called cluster operator T is expressed in terms of spin-orbital excitation operators

of the form {T1} ¼ {pþa}; {T2} ¼ {pþqþba}; {T3} ¼ {pþqþrþcba}; etc. with Tk
relating to the excitation of k electrons from occupied spin-orbitals (a; b; c; etc.) to virtual
spin-orbitals (p; q; r; etc.). Prior to forming any EA EOM, the neutral molecule CC

equations need to be solved for the amplitudes {tn} that multiply the {Tn} operators to

form the CC T operator. For completeness, let us briefly review how the conventional CC

wave function evaluation is carried out.

We recall the CC equations are formed by manipulating the Schrödinger equation

H expðTÞl0l ¼ E expðTÞl0l ð18Þ

to read

expð2TÞ H expðTÞl0l ¼ El0l ð19Þ

and subsequently projecting this equation against the set of functions {k0lTþ
n }: Because

the T operator contains only creation operators for unoccupied spin-orbitals and

annihilation operators for occupied spin-orbitals, it turns out that the commutator

expansion

expð2TÞ H expðTÞ ¼ H 2 ½T ;H	 þ 1=2½T; ½T ;H		2 1=3!½T; ½T ; ½T ;H			
þ 1=4!½T; ½T ; ½T ; ½T ;H				 þ · · · ð20Þ
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exactly truncates at the fourth-order term. So, the final working equations of CC theory

can be written as

k0lTþ
n {H 2 ½T;H	 þ 1=2½T; ½T ;H		2 1=3!½T; ½T ; ½T ;H			
þ 1=4!½T ; ½T ; ½T; ½T ;H				}l0l ¼ 0

ð21Þ

Once the CC amplitudes {tn} are determined by solving these quartic equations, the CC

energy is computed as

k0lH 2 ½T ;H	 þ 1=2½T ; ½T;H		2 1=3!½T ; ½T; ½T ;H			
þ 1=4!½T; ½T ; ½T ; ½T;H				l0l ¼ E

ð22Þ

The operatorQþðKÞ that maps the CC wave function l0;Nl into an anion or cation state
is expressed as in Eq. (5) with the {TþðlÞ} operators including, e.g. {TþðlÞ} ¼
{pþ; pþqþa; pþqþrþba; etc:} when EAs are to be computed and the adjoints of

{aþ; aþbþp; aþbþcþqr; etc:} when IPs are computed The basic EOM analogous to

Eq. (7b) is then written as

½H;QþðKÞ	 expðTÞl0l ¼ EQþðKÞ expðTÞl0l ð23Þ
Multiplying on the left by expð2TÞ and realizing that T and QþðKÞ commute reduces this
equation to

½H 0;QþðKÞ	l0l ¼ EQþðKÞl0l ð24Þ
where

H 0 ¼ expð2TÞ H expðTÞ ð25Þ
which can be expanded as in Eq. (20) to involve at most quartic terms in the {tn}

amplitudes. Then, multiplying on the left by k0lTð jÞ reduces the EOM equations to their

final working formX
l

k0lTð jÞ½{H 2 ½T ;H	 þ 1=2½T; ½T;H		2 1=3!½T; ½T; ½T ;H			

þ 1=4!½T; ½T ; ½T ; ½T ;H				}; TþðlÞl0ltðK; lÞ
¼ E

X
l

k0lTðjÞTþðlÞl0ltðK; lÞ ð26Þ

This set of matrix eigenvalue equations are then solved to obtain E which gives the EA or

the IP (depending on what operator set was used). Such so-called electron-attached and

electron-removed EOM (EA-EOM and IP-EOM) approaches have proven highly

successful [34,35] in computing EAs and IPs of a wide range of atoms and molecules

primarily because the coupled-cluster treatment of electron correlation provides such a

highly accurate treatment of the dynamical electron correlation. At present there is a great

deal of activity within this framework of utilizing EOM theories for computing EAs, IPs,

and DEs.
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It should be noted that Eq. (26) does not contain an E-dependent matrix element on

its left-hand side as do the MPn EOM equations (Eq. (14)) or the equivalent GF

equations. This is because the EOM-CC equations are usually not subjected to the

operator-space partitioning that the GF and MPn-based EOM theories commonly

employ. It should also be noted that the operators appearing on the left-hand side of Eq.

(26) produce non-Hermitian matrices. As a result, there arise non-orthogonal left- and

right-eigenvectors in solving Eq. (26). As discussed in Refs. [34,35], it is important to

compute both sets of eigenvectors if one wishes to compute, e.g. photo-electron

intensities.

17.4 SOME SPECIAL CASES

17.4.1 Calculating EAs as IPs

In this discussion, we have focused on computing EAs and IPs by forming a neutral

molecule wave function l0;Nl and computing the EA or IP as an eigenvalue of an EOM

matrix problem. Consider applying such an approach to evaluate the EA of the X2P state

of the NOmolecule. Because the X-state wave function of NO is spatially degenerate (i.e.

the px and py orbitals should be degenerate), one may encounter artifactual symmetry

breaking when forming this neutral molecule wave function. That is, the px and py

orbitals may not turn out to be degenerate; in fact, most commonly employed electronic

structure codes are not able to guarantee this degeneracy as they should. It would then be

unwise to use this symmetry-broken wave function to compute any property of this state

of NO, including the EA. To overcome such difficulties, one could use the X3Sþ state of
NO2 as l0;Nl and employ an EOM method to evaluate the IP of NO2 (actually the

electron detachment energy of NO). The advantage to this approach is that the open-shell
3Sþ state of NO2 would not be susceptible to symmetry breaking because it is not

spatially degenerate and has its px and py orbitals equivalently occupied. This example

shows that it may sometimes be better to compute an EA of a molecule as the IP of the

corresponding anion. Likewise, it may be better to compute an IP of a molecule as the EA

of the molecule’s cation in some cases.

Another example is provided by the EA of the 2S state of the Na atom to generate the
1S Na2 anion. Because the 2S state is open shell, one would have to employ the

unrestricted Hartree–Fock method to evaluate its orbitals and orbital energies to use in

an EOM or GF EA calculation. However, one could, alternatively, compute the EA of

Na by evaluating the IP of Na2. The advantage would be that the Na2 is closed shell, so

one could employ restricted Hartree–Fock methods to compute the requisite orbitals

and orbital energies.

17.4.2 Metastable anion states

A different kind of problem arises when one attempts to compute the EA of a molecule

whose anion is not electronically bound relative to the corresponding neutral. For
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example, the X1Sg
þ state of the N2 molecule does not bind an electron to form an

electronically stable anion. Instead the X2Pg state of N2
2, formed by adding an electron to

the pg anti-bonding orbital of N2 is a so-called resonance state that lies higher in energy

than N2 and can spontaneously eject its excess electron. One cannot simply employ

conventional basis sets and ab initio electronic structure methods (including EOM or GF

or response-function methods) to correctly determine the energies of such states.

The most common and powerful tool for studying such metastable states theoretically

is the so-called stabilization method (SM). This method, pioneered by Professor

Howard Taylor’s group [36], involves embedding the system of interest (e.g. the N2
21

anion) within a finite ‘box’ in order to convert the continuum of states corresponding,

e.g. to N2 þ e2, into discrete states that can be handled by conventional square-

integrable basis functions using, e.g. the EOM method. By varying the size of the box,

one can vary the energies of the discrete states that correspond to N2 þ e2 (i.e. one

varies the box size to vary the kinetic energy KE of the orbitals containing the excess

electron). As the box size is varied, one eventually notices (e.g. by plotting the orbitals)

that one of the N2 þ e2 states obtained in the EOM process possesses a significant

amount of valence character. That is, one such state has significant amplitude not only

at large r but also in the region of the two nitrogen centers. It is this state that

corresponds to the metastable resonance state, and it is the EOM eigenvalue E of this

state that provides the stabilization estimate of the resonance state energy relative to

that of the neutral N2.

Let us continue using N2
21 as an example for how one usually varies the box within

which the anion is constrained. One uses a conventional atomic orbital basis set that

likely includes s and p functions on each N atom, perhaps some polarization d functions

and some conventional diffuse s and p orbitals on each N atom. These basis orbitals serve

primarily to describe the motions of the electrons within the usual valence regions of

space. To this basis, one appends an extra set of diffuse p-symmetry orbitals. These

orbitals could be pp (and maybe dp) functions centered on each nitrogen atom, or they

could be dp orbitals centered at the midpoint of the N–N bond. Either choice can be used

because one only needs a basis capable of describing the large-r L ¼ 2 character of the

metastable 2Pg state’s wave function. One usually would not add just one such function;

rather several such functions, each with an orbital exponent aJ that characterizes its radial

extent, would be used. Let us assume, for example, that K such additional diffuse p

functions have been used.

Next, using the conventional atomic orbital basis as well as the K extra p basis

functions, one carries out an EOM calculation for the EA of the N2 molecule. In

this calculation, one tabulates the energies of many (sayM) of the EOM-EA eigenvalues.

One then scales the orbital exponents {aJ} of the K extra p basis orbitals by a factor

h : aJ ! haJ and repeats the calculation of the energies of the M lowest EOM

eigenvalues. This scaling causes the extra p basis orbitals to contract radially (if h . 1)

or to expand radially (if h , 1). It is this basis orbital expansion and contraction that

produces expansion and contraction of the ‘box’ discussed above. That is, one does not

employ a box directly; instead, one varies the radial extent of the more diffuse basis

orbitals to simulate the box variation.
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If the conventional orbital basis is adequate, one finds that the extra p orbitals, whose

exponents are being scaled, do not affect appreciably the energy of the neutral N2 system.

This can be probed by plotting the N2 energy (computed as k0;NlHl0;Nl) as a function of
the scaling parameter h; if the energy varies little with h; the conventional basis is
adequate.

In contrast to plots of the neutral N2 energy vs. h; plots of the energies of the M N2
21

anion states relative to the energy of N2, obtained as EOM eigenvalues, show significant

h-dependence as Fig. 17.1 illustrates.
What does such a stabilization plot tell us and what do the various branches of the plot

mean? First, we notice that each of the plots of the energy of an anion state (relative to the

neutral molecule’s energy, which is independent of h) grows with increasing h: This h
dependence arises from the h-scaling of the extra diffuse p basis orbitals. Because most

of the amplitude of such basis orbitals lies outside the valence region, the kinetic energy

is the dominant contributor to such states’ relative energies. Because h enters into each
orbital as expð2har2Þ; and because the kinetic energy operator involves the second

derivative with respect to r; the kinetic energies of orbitals dominated by the diffuse p
basis functions vary as h2: It is this quadratic growth with h that appears as the basic

trends in the energies vs. h plots in Fig. 17.1.
For small h; all the p diffuse basis functions have their amplitudes concentrated at

large-r and have low kinetic energy. As h grows, these functions become more radially
compact and their kinetic energies grow just as the particle-in-a-box energies grow as

the box length decreases. For example, note the three lowest energies shown above in

Fig. 17.1 increasing from near zero as h grows. As h further increases, one reaches a

point at which the third and fourth anion-state energies in Fig. 17.1 undergo an avoided

crossing. At higher h values, it is the second and third states and then the first and

Orbital Scaling Parameter η

Anion State Energy (eV)

Resonance State Energy (eV)

E

0

1

2

3

4

Fig. 17.1. Plots of the EOM-EA eigenvalues for several anion states vs. the orbital scaling parameter h:Note the

avoided crossing of state energies near 1 eV.
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second states whose energies undergo such avoided crossings. At such h values, if one

examines the nature of the two anion wave functions (obtained as in Eq. (4)) whose

energies avoid one another, one finds they contain substantial amounts of both valence

and extra diffuse p function character. Just to the left of the avoided crossing, the lower-

energy state (the third state in Fig. 17.1 for the smallest h at which an avoided crossing
occurs) contains predominantly extra diffuse p orbital character, while the higher-

energy state (the fourth state) contains largely valence pp orbital character. To the right

of the avoided crossing, the situation is reversed—the lower-energy state (the third state

in Fig. 17.1 for small h) contains predominantly valence orbital character, while the
higher-energy state (the fourth state) contains largely diffuse orbital character.

However, at the special values of h where the two states nearly cross, the kinetic

energy of the diffuse state (as well as its radial size and de Broglie wavelength) are

appropriate to connect properly with the valence state to form a single resonance state. By

connect properly we mean that the two states have wave function amplitudes, phases and

slopes that match. It is such boundary condition matching of valence-range and long-

range character in the wave function that the stabilization method achieves. So, at such

special h values, one can achieve a description of the resonance state that correctly

describes this state both in the valence region and in the large-r region. Only by tuning the

energy of the large-r states using the h scaling can one obtain this proper boundary

condition matching.

Another observation helps to understand the content of such stabilization plots. One

considers the density of states (i.e. how many states are there between energy E and

E þ dE for a fixed small value of dE?) in a plot such as Fig. 17.1. Clearly, in the range of

energies near the avoided crossings, there is an enhanced density of states, while the state

density is lower at ‘off resonance’ energies. When viewed either from the point of view of

state densities or avoided crossings, there is something special about the region of

energies near such resonances. As noted above, it is the fact that the valence-range and

continuum components of the wave function can be properly matched at such energies

that is ‘special’.

If one attempts to study metastable anion states without carrying out such a

stabilization study, one is doomed to failure, even if one employs an extremely large

and flexible set of diffuse basis functions. In such a calculation, one will certainly obtain

a large number of anion ‘states’ with energies lying above that of the neutral, but one

will not be able to select from these states the one that is the true resonance state

because the true state will be buried in the myriad of ‘states’ representing the N2 þ e2

continuum.

In summary, by carrying out a series of anion-state energy calculations for several

states and plotting them vs. h; one obtains a stabilization graph. By examining this

graph and looking for avoided crossings, one can identify the energies at which

metastable resonances occur. It is absolutely critical to identify these resonance energies

if one wishes to probe metastable anions. It is also possible [37] to use the shapes (i.e.

the magnitude of the energy splitting between the two states and the slopes of the two

avoiding curves) of the avoided crossings in a stabilization graph to compute the

lifetimes of the metastable states. Basically, the larger the avoided-crossing energy

splitting between the two states, the shorter is the lifetime of the resonance state.
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17.5 SUMMARY

We have tried to illustrate how, by focusing on the intensive energies that one wishes to

compute when studying EAs, IPs or electronic excitation energies, one can replace the

solution of the Schrödinger equation by the solution of so-called EOM. It is the

eigenvalues of these EOMs that produce the EAs and IPs directly. We have reviewed

some of the history of the development of EOM theory, especially as it applied to EAs

and IPs, and we have attempted to show its relationships to Greens functions and

extended Koopmans’ theorem approaches to these same intensive energies. We have

shown that a wide variety of EOM theories can be developed depending on how one

chooses to describe the neutral molecule’s wave function (i.e. in MP, MCSCF or CC

fashion). Finally, we discussed some of the pitfalls that one encounters when applying

EOM theory to EAs of molecules whose anion states are not bound but are metastable

resonance states. It is our hope and belief that EOM methods have proven useful

computationally and for gaining insight and will continue to have a bright future.

Readers who wish to learn more about how molecular EAs (and to a lesser extent, IPs)

have been studied theoretically are directed to this author’s web site http://simons.hec.

utah.edu as well as to a series [38] of his reviews and chapters. The species that this group

have examined include dipole-bound anions, zwitterion ions, conventional valence

anions, multiply charged anions as well as a wide variety of metastable anions.
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Abstract

This chapter deals with quantum chemical applications in which the electronic state of

the system treated is degenerate or quasidegenerate. In chemistry this situation occurs in

problems in which an accurate description of a large part of the potential energy surface is

required to be treated on the same footing. Commonly used approaches such as the

Møller–Plesset theory, configuration interaction, coupled cluster methods CCSD and

CCSD(T), or DFTmay fail in such cases. Instead, the multireference coupled cluster (MR

CC) approach is recommended as the method of choice. A survey of MR CC methods of

different kind is given, with a brief description of their main features, merits and

drawbacks. Special problems of the MR CC methods, size extensivity and the intruder

state problems, are discussed. A variant of the MR CC theory, based on the Brillouin–

Wigner type resolvent, is presented. A few applications demonstrate its performance and

utility in practical chemical applications.

18.1 INTRODUCTION

Recent progress in the development of quantum chemical computational methods [1]

and quantum chemical software provided a user-friendly tool to chemists, helping them

to explain many problems met in a chemical laboratory. The most frequent task is

to determine the optimum structure of molecules, relative energies of reaction

components, heats of formation, vibrational frequencies, energies of activation and

energies of ionization. In all these cases, a standard theoretical approach is to perform first

q 2005 Elsevier B.V. All rights reserved.
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a Hartree–Fock (self-consistent field, SCF) calculation for obtaining a set of molecular

orbitals (MOs). In the next step, the main defect of the Hartree–Fock approach is

eliminated, which is the neglect of dynamic electron correlation. This is done by assuming

the wave function for the ground state (or a particular excited state) as a linear combination

of singly, doubly and even higher excited configurations. The respective expansion

coefficients are fixed in one way or another. The most popular options are the variational

approach in a form of the configuration interaction (CI), the perturbational approach by

means of the Møller–Plesset (MP) theory and coupled cluster (CC) expansion.

Alternatively, if computational feasibility is favored over the rigor of strictly ab initio

treatments, density functional theory (DFT) can be applied. In DFT the two-electron part of

the Hamiltonian is replaced by an adjusted coulomb and exchange-correlation functional

and the MOs so obtained give electron density which takes account of electron correlation.

All these approaches can be referred to as ‘single-reference’ approaches because the starting

(‘reference’) wave function is taken in the form of a single Slater determinant or a symmetry

adapted configuration state function constructed from several Slater determinants. Besides

the availability of the user-friendly software, also the progress in the chemical education of

undergraduates should be noted. Basic quantum chemistry and its applications to chemical

reactivity and spectroscopy is contained in a curriculum which gives an opportunity to

students to acquire the necessary basic knowledge and skill for performing routine quantum

chemical calculations on their own. This favorable state in the field of theoretical chemistry

may lead to a false impression that all important problems in quantum chemistry have

already been solved and that the reliability and feasibility of quantum chemical calculations

will increase in parallel with the anticipated continuing progress in the construction of

computers in the near future. Unfortunately, there is a type of applications that does not

conform to this optimistic outlook. It concerns problems in which an accurate description of

a large part of the potential energy surface is required to be treated on the same footing. If the

respective part of the surface is associated with a chemical bond breaking, the single-

reference methods may fail, unless an enormously large CI or CC expansion is used, which

prevents applications to all but the smallest molecular systems. We show an example of

such a failure in Section 18.2. A more accessible solution to this problem is provided by a

class of ‘multireference’methods. In Section 18.3, we give a survey of suchmost commonly

used methods that are based on the coupled cluster expansion and comment briefly on their

merits and drawbacks. A version of the multireference coupled cluster method based on the

Brillouin–Wigner perturbation theory (MR BWCC) is a method developed by the present

authors. In Sections 18.4 and 18.5, we describe briefly the essence of the method and its

properties and present the working equations for its computer implementation. A few

selected MR BWCC applications are presented in Section 18.6 and in Section 18.7 we

summarize our experience with the method in its present form and note on the prospects for

its next development.

18.2 SINGLE-REFERENCE VERSUS MULTIREFERENCE METHODS

It is generally accepted that the family of coupled cluster methods, CCSD, CCSD(T) and

CCSDT represents the most sophisticated class of single-reference methods that are
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commonly used for chemical applications. Unfortunately, even these sophisticated

methods fail in some instances, as it has been demonstrated for potential curves of

diatomic molecules on many occasions (see, for example, Ref. [2]). We present it in

Fig. 18.1 for the F2 molecule because of our MR BWCC study of that molecule [3]. The

potential energy curves shown in Fig. 18.1 were obtained with the cc-pVTZ basis set. The

CCSD curve overestimates the dissociation energy by a factor of about 2. CCSD(T) gives

excellent result for geometries near to the equilibrium bond distance but a typical failure

of the method is seen at intermediate and large interatomic distances. Only CCSDT and

MR BWCCSD give correct potential curves for the whole range of interatomic distances.

At the equilibrium bond length the MR BWCCSD energy is closer to the CCSD energy

than to the CCSDT energy. This is caused by the fact that in the wave function at the

equilibrium F–F bond length a single configuration dominates and hence MR BWCCSD

represents only a slight improvement over CCSD. Inclusion of higher excitations by

means of T3 clusters in CCSDT is more effective than extension of the reference space to

two configurations at the CCSD level. This is reflected in the obtained dissociation

energies De of F2: 1.40 eV with MR BWCCSD and 1.60 eV with CCSDT, to be

compared with the experimental value of 1.66 eV [4]. Unfortunately, the cost of CCSDT

calculations prevents their application to larger molecules. By using the ACES program

[5] and the Xeon 4 2400 MHz/2 GB RAM, computer time (no use of symmetry was

made) for a single-point calculation was 3 min for two-reference BWCCSD and 14.6 h

for CCSDT.

2 4 5 6

R (F – F) , a.u.

−199.35

−199.3

−199.25

−199.2

E , a.u.

3

Fig. 18.1. Potential energy curves for the F2 molecule calculated by CCSD (dotted line), CCSD(T) (staggered

line), CCSDT (dashed line) and MR BWCCSD (solid line) methods. The cc-pVTZ basis set was used.
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The origin of such a failure is well understood. The ground-state configuration of F2
at the equilibrium bond length is (1pg)

4(3sg)
2. As the interatomic F–F distance

increases, the energy gap between the (1pg)
4(3sg)

2 and (1pg)
4(3su)

2 configurations

decreases to become zero at the dissociation limit. Evidently the (1pg)
4(3sg)

2

configuration becomes a poor representation of the electronic state of F2 at large

interatomic distances. An obvious way how to treat this defect is to include highly excited

configurations in the CI expansion or to include T3 and higher clusters in the CC

expansion. Since an approximate inclusion of triples by means of CCSD(T) is not

applicable in this case, and a rigorous treatment of T3 clusters by means of CCSDT is too

costly, it is more profitable to apply a ‘multireference’ approach in which instead of the

regular SCF procedure a multiconfiguration SCF (MC SCF) is used. In the case of F2 it

means to include both the (1pg)
4(3sg)

2 and the (1pg)
4(3su)

2 configurations. This ensures

that all parts of the potential curve are treated on the same footing. As Fig. 18.1 shows,

extension of CCSD to two-configuration CCSD is successful in providing a realistic

shape of the potential curve with the correct dissociation limit.

18.3 OVERVIEW OF MULTIREFERENCE CC METHODS

Over the years, many different CC-based approaches for treatment of systems with static

correlation have been proposed:

1. The treatments based on single-reference CC expansion as CCSDtq [6], CASCC

[7,8], and the recent state-specific method [9], which are based on a single (possibly

formal) Fermi vacuum and include higher amplitudes with part of their indices confined

to an active space. This has the advantage of retaining the formal simplicity of the single-

reference CC ansatz, while being able to describe processes like dissociation, where one

needs to consider higher than double or triple amplitudes. Since the active space is

typically very small, the number of the higher amplitudes can be kept manageable,

resulting in a reasonable disc storage and computational cost. However, so far we are not

aware of a really efficient implementation of these techniques, which would allow us to

compute chemically interesting molecules. The disadvantage of these approaches is that

they do not treat all reference configurations on an equal footing and the results may be

dependent, e.g. on the reference chosen as the Fermi vacuum.

2. The externally corrected CCSD and reduced multireference CCSD methods

developed by Paldus and coworkers [10–13] make use of external data, typically from a

CI calculation, to correct the CC calculation for multireference effects. They can be

subdivided into two basic classes: energy corrected and amplitude corrected [14]. The

amplitude-corrected methods analyze the CI wavefunction and take a selected set of T3
and T4 amplitudes from it and include them in the CC calculation, while using the

standard CC energy formula. On the other hand, the energy-corrected methods use so-

called asymmetric energy formula [14] to correct a posteriori the energy obtained from a

standard CC calculation. Recently, the authors developed a general scheme that covers

the state-universal multireference as well as amplitude-corrected CCSD methods [15].

A general disadvantage of any externally corrected CC method is that a potential
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formulation of the analytic gradients for such a method becomes difficult, since the

quantities which have been taken from the external source (like CI coefficients) depend

on the molecular geometry and their derivatives would be needed.

3. The method of moments coupled clusters developed by Kowalski and Piecuch

[16–18] belongs essentially also to the general scheme of energy-corrected methods

described above, since it gives an a posteriori correction of a CC, EOMCC, or state-

universal MR-CC energy based on an external wave function of CI or PT type. In

principle, if the external wave function were full CI, this correction would recover the

exact full CI energy, regardless on the level of approximation used as an input. In practice,

the authors have shown a remarkable improvement of the CCSD(T)method, when applied

to describe, e.g. bond breaking and dissociation of molecules like F2 or N2. As a

disadvantage of this technique one can think of the lack of rigorous size-extensivity of the

corrected energy. However, at least for some applications this should not be a serious

obstacle, since on the basis of some test calculations the errors are expected to be small.

4. The spin-flip EOMCC method, suggested by Spilchenko and Krylov [19],

describes a special class of systems exhibiting static correlation. It treats the state which

has MS , S and has multireference character as an spin-changing excitation from the

high spin MS ¼ S component, which is well described by a single reference. This

technique is not limited to CC method; it has been implemented also in the DFT

framework. It is particularly suited for treatment of diradicals or triradicals; probably it is

not able to describe whole sections of potential energy surfaces, where the nature of the

wavefunction changes from single reference to multireference one.

5. We should also mention the conceptually very interesting general two-body cluster

expansion [20–22], which—if a practicable numerical treatment can be found—would

include the static correlation implicitly in a FCI-like manner. The assumption on which

this approach is based is still a subject of discussion. Recently, some arguments against its

validity [23] have been given. Even if a rigorous solution could not be found, the idea still

might be a source of some useful approximations.

6. The Fock space multireference CC methods and the intermediate Hamiltonian

techniques (see e.g. Refs. [24–29] and references therein), as well as closely related

similarity transformed EOMCC [30–33] are methods particularly suited for calculation

of excited/ionized states with a multireference character. Recently, a Brillouin–Wigner

formulation of Fock space CC has also been derived [34].

As a disadvantage, we see particularly the very complex structure of the working

equations resulting from these formalisms. This obstacle could be overcome by some

automatized implementation tools like the ‘Tensor Contraction Engine (TCE)’ [35],

however, at least some of the methods have also very big computational demands, since

solutions for many sectors of the Fock space are required.

7. The Hilbert space multireference CC (see e.g. Refs. [36–40]), based on the

Jeziorski–Monkhorst ansatz for the wave operator [36]. This ansatz can be either

combined with the standard (Rayleigh–Schrödinger) Bloch equation, or with the

Brillouin–Wigner Bloch equation (cf. Section 18.4), or with a linear combination of both

[41]. Recently, an important progress has been achieved by Li and Paldus [15,42,43],

who generalized the Jeziorski–Monkhorst formulation to arbitrary incomplete model

spaces. This brings two advantages—computational savings due to smaller number of
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amplitudes and decrease of the probability of occurrence of the intruder state problem.

The Hilbert space MRCC methods are highly relevant to the subject of this review and

will be mentioned in more detail in Section 18.4.

18.4 MULTIREFERENCE BRILLOUIN–WIGNER COUPLED

CLUSTER METHOD

Our interest in Brillouin–Wigner perturbation theory was stimulated by our finding [44]

that this theoretical tool proved very useful in the scattering theory. The fundamental

equation, known in the scattering theory as Lippmann–Schwinger equation, expresses

the scattering operator as

T ¼ V þ VB0T ð1Þ
which can be rewritten in the Brillouin–Wigner perturbation series as

T ¼ V þ VB0V þ VB0VB0V þ VB0VB0VB0V þ · · · ð2Þ

This can be compared with the MP expansion,

E ¼ kF0lV lF0lþ kF0lVQ0V lF0lþ kF0lVQ0VQ0VlF0lþ kF0lVQ0VQ0VQ0V lF0l

2 kF0lVQ0V lF0lkF0lVQ0VQ0VlF0lþ · · · ð3Þ
well known in the electronic structure theory and commonly used for the evaluation of

MP2, MP3, MP4, and higher order ground state MP energies. In Eqs. (1)–(3) V stands for

the perturbation

H ¼ H0 þ V ð4Þ
and in the scattering theory it has the meaning of the interaction potential between the

scattering particles. Eqs. (2) and (3) also differ by the form of the propagator B0 or Q0: As
already noted, in scattering theory use is made of the Brillouin–Wigner perturbation

theory and therefore the propagator is defined as

B0 ¼ 12 lF0lkF0l
12 H0

ð5Þ

where 1 is the exact energy and H0 is the unperturbed Hamiltonian with ground state F0:
MP theory is based on the Rayleigh–Schrödinger perturbation theory and the propagator

is defined therefore as

Q0 ¼ 12 lF0lkF0l
E0 2 H0

ð6Þ

where E0 is the unperturbed ground state energy.

In contrast to the MP theory, interaction V in the Lippmann–Schwinger equation is

strong and cannot be considered as a small perturbation. Hence, the scattering amplitude

Chapter 18470



cannot be calculated by means of Eq. (2) order by order, as we are used to do so in the MP

theory. Instead, Eq. (1) is used in the form

T ¼ ð12 VB0Þ21V ð7Þ

where contributions to all orders are summed up by means of the matrix inversion. We

tried to exploit the merits of the Brillouin–Wigner for the evaluation of the correlation

energy. On going from the Rayleigh–Schrödinger to the Brillouin–Wigner perturbation

theory the ‘renormalization’ terms in Eq. (3) drop and we obtain

E ¼kF0lVlF0lþ kF0lVB0V lF0lþ kF0lVB0VB0VlF0l
þ kF0lVB0VB0VB0VlF0lþ · · · ð8Þ

with B0 defined by Eq. (5). Next we tried various approximations to Eq. (8) to obtain a

practical method for calculations but all our attempts resulted [45] in one or another

known version of the CI method [46–50]. We concentrated therefore on the development

of the multireference coupled cluster method based on the Brillouin–Wigner

perturbation theory. Derivation of working equations for the MR BWCC theory is

beyond the scope of this chapter and therefore we refer the interested reader to our earlier

papers [40,41,51–54]. Here we only present an outline of the method to explain its

essence. As it is usual in the multireference coupled cluster theory we are using the

concepts of the effective Hamiltonian and Bloch equation (see, for example, Ref. [55]).

Let us consider a complete model space spanned byM reference configurations, so that

the model function for the ground state is expressed as

C P
0 ¼

XM
m¼0

CmFm ð9Þ

Such a wave function was used for the two-reference MR BWCCSD calculation of F2 in

Section 18.2, where F0 was the (1pg)
4(3sg)

2 configuration and F1 the (1pg)
4(3su)

2

configuration. Higher number of reference configurations has been employed in the study

of IBr [56] and oxygen molecule [57]. The superscript P is used to indicate that C P
0 is a

‘projected’ wave function. Its relation to the exact wave function C0 is provided by the

(so far) unknown ‘wave operator’

C0 ¼ V0C
P
0 ð10Þ

Our task is then to find an effective Hamiltonian which would give us exact energy from

the following equation

HeffC P
0 ¼ 10C

P
0 ð11Þ

instead of solving rigorously the Schrödinger equation with the exact Hamiltonian and

the exact wave function

HC0 ¼ 10C0 ð12Þ
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As it is usual in the MR CC theory, we also used the wave operator in a form suggested by

Jeziorski and Monkhorst [36]

V0 ¼
XM
m¼0

eTðmÞlFmlkFml ð13Þ

which is then substituted on the right side of the Brillouin–Wigner analogue of the Bloch

equation [58]

V0 ¼ 1þ B0VV0 ð14Þ
where V is the perturbation in the MP partitioning of the Hamiltonian (4) and B0 is defined

by a multireference generalization of Eq. (5) which reads as

B0 ¼
X
q.M

lFqlkFql
10 2 Eq

ð15Þ

Once we know the wave operator through Eqs. (13) and (14), we are ready to evaluate the

matrix elements of the effective Hamiltonian in the basis of reference configurations

because the effective Hamiltonian is given by the following relationship (see, for

example, Ref. [55])

Heff ¼ PHV0P ð16Þ
where P is the projection operator onto the model space

P ¼
XM
m¼1

lFmlkFml ð17Þ

We arrange the M2 matrix elements kFmlHeff lFnl in a square matrix, diagonalize it, and
save the lowest root as the updated ground state energy to be used for a new resolvent

(Eq. (15)). The updated resolvent is then used for M single-reference BWCCSD

treatments for F1;…;FM for obtaining new Heff matrix elements. Actually, the theory

yields slightly modified single-reference-like equations, in particular additional

Brillouin–Wigner specific terms are included to their right-hand sides. Construction of

a new Heff matrix completes a cycle of the iterative procedure for obtaining 10. Our
approach may be referred to as MR BWCCSD because only T1 and T2 clusters are

allowed to enter the exponential ansatz (13). The T1 and T2 amplitudes may be obtained

by a small modification of the CCSD T1 and T2 equations [40].

18.5 INTRUDER STATES AND SIZE EXTENSIVITY

For avoiding the intruder state problem in BWCCSD we pay the price of losing size

extensivity. Unfortunately, for the purpose of chemical application of MR BWCCSD, the

size-extensivity error is not tolerable. For example, the MR BWCCSD value of the

singlet–triplet gap in twisted ethylene exhibits an error of 3 kcal/mol with respect to full

CI [40]. Even worse case is the dissociation of the F2 molecule, where MR BWCCSD
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overestimates the dissociation energy by 17 kcal/mol, but the error can be reduced to less

than 0.5 kcal/mol by the size-extensivity correction (see below) [3].

Extent of the size-extensivity error depends on several factors: type of the resolvent,

active space, derivation of working equations for amplitudes and the presence or absence

of disconnected diagrams in the diagrammatic representation of working equations. In

Table 18.1 we show some examples.

As in the single-reference CC approaches, the working equations for amplitudes in

the MRCC approach are obtained by projection of the Schrödinger equation on the

manifold of excited configurations (for a review see, e.g. Ref. [1,60,61]). This can be

done in two different ways. Assume the CCSD approach and denote the manifold of

singles and doubles as SD. Then the Schrödinger equation for the ground state CC wave

function

HeT l0l ¼ EeT l0l ð18Þ

can be projected on the manifold of singles and doubles as follows

kSDlHeT l0l ¼ EkSDleT l0l ð19Þ

Table 18.1 Size extensivity problem in different MR CC methods

Method Resolvent Active space Disconnected

diagrams

Size

extensivity

MR BWCCSD

uncorrected

BW Complete Yes No

MR BWCCSD

uncorrected

BW Incomplete Yes No

MR BWCCSD

last iteration corrected

BW Complete Yes (No)a

MR BWCCSD

last iteration corrected

BW Incomplete Yes (No)a,b

MR BWCCSD

iteratively corrected

BW Complete No Yes

MR BWCCSD

iteratively corrected

BW Incomplete No Yesb

MR CCSD

Kucharski–Bartlett [37]

RS Complete No Yes

MR CCSD

Kucharski–Bartlett [37]

RS Incomplete No Yesb

MR CCSD

Jeziorski–Monkhorst [36]

RS Complete No Yes

MR CCSD

Jeziorski–Monkhorst [36]

RS Incomplete No Yesb

MR CCSD Mukherjee [38] RS Complete No Yes

aA small size-extensivity error can be expected.
bC-conditions for the incomplete model space [42,59] have to be employed.
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Alternatively, we can multiply by e2T from the left and do the projection in the

Baker–Campbell–Hausdorff manner [1]

kSDle2THeT l0l ¼ kSDle2TEeT l0l ð20Þ

For single-reference CC approaches the two equations, Eqs. (19) and (20), give the

same set of diagrams and therefore the same set of equations for the amplitudes. It is

profitable that only connected diagrams are obtained which in accordance with the

linked cluster theorem guarantees size extensivity. With the MRCC approaches the

situation is more complicated. First of all, for state-universal MRCC methods it is

necessary to remove explicit occurrence of the energy E from the basic equation

(analogy of Eq. (18)). One thus starts from the Bloch equation instead [55,60], which is,

however, equivalent to the Schrödinger equation. The projection onto kSDle2T still

gives only connected diagrams, whereas the plain kSDl projection gives both connected
and disconnected diagrams and it therefore does not apparently ensure size extensivity.

Hence the Baker–Campbell–Hausdorff approach may be viewed as the method of

choice. There is a problem with this approach, however. The price one has to pay for

removal of energy from the Bloch equation is the occurrence of a term quadratic in the

wave operator, which leads to products of amplitudes as TðmÞTðnÞ; where the indices m
and n denote different reference configurations. Explicit formulas for evaluation of these
coupling terms have been recently derived by Paldus and his coworkers [42,62],

however, they are rather complicated, their implementation tedious, and evaluation

computationally expensive. Their code is able to treat any number of reference

configurations and incomplete model space, but is limited to rather small molecules. It

seems therefore preferable to develop methods based on an MR analog of Eq. (19),

since they lead to coupling terms, which are substantially easier to implement.

Kucharski, Balková and Bartlett [37,63–65] proceeded along that way. They identified

and dropped disconnected diagrams and achieved size extensivity. An implementation

of this method for open-shell singlet two-reference case has been coded in the ACES

program by Szalay [66]. General implementation for more than two reference

configurations has been developed recently by Pittner [41], also within the ACES2

program. Moreover, based on a certain formula derived by Kowalski and Piecuch [18]

in the context of the method of moments coupled clusters [16], it can be shown [67] that

a method based on Eq. (19) is equivalent to the Jeziorski–Monkhorst approach based on

Eq. (20) in the case of complete model space, thanks to an exact cancellation of the

disconnected diagrams arising from HeT and the coupling terms.

In contrast, BWCCSD requires only one set of amplitudes for one reference configura-

tion at a time and this feature makes the method easily amenable to tasks with more than

two reference configurations and makes the extension of the method to connected triples

(MR BWCCSDT) feasible.

Elimination of the size-extensivity error in the MRBWCC theory was suggested by

Hubač and Wilson [68]. The Brillouin–Wigner perturbation theory has been known

notoriously as a method not furnishing size extensivity. There was therefore every

reason to believe that the size-extensivity error in MR BWCCSD originated from the

use of the Brillouin–Wigner type resolvent (15) instead of the Rayleigh–Schrödinger
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type resolvent. Hubač and Wilson found the following identity for the two resolvents

X
q.M

lFqlkFql
10 2 Eq

¼
X
q.M

lFqlkFql
E0 2 Eq

þ
X
q.M

ðE0 2 10ÞlFqlkFql
ð10 2 EqÞðE0 2 EqÞ ð21Þ

where M is the number of reference configurations. Since the BW resolvent on the

l.h.s. is not size extensive, and the RS-type resolvent in the first term of the r.h.s. is

size extensive, the last term on the r.h.s. cannot be size extensive. The idea was to find

all terms corresponding to that last term and eliminate them in the equations for

amplitudes. In practice we did it in several ways. In the simplest one [52] the MRCC

procedure is iterated as described in Section 18.4 without paying any attention to the

presence of size-inextensive terms. These are only eliminated in the last iteration. The

amplitudes so obtained are free from disconnected diagrams. From them the Heff

matrix is constructed and its diagonalization gives the corrected energy. It should be

realized that the size-extensivity error is not completely eliminated in this way. The

amplitudes so obtained are not converged and they cannot be expected to give a

rigorous result. A more sophisticated approach [41] is based on a continuous transition

between Brillouin–Wigner and Rayleigh–Schrödinger perturbation theory. Computa-

tionally, a step-wise correction is performed in each CC iteration, finally leading to

converged amplitude equations in the rigorously size-extensive Rayleigh–Schrödinger

limit.

Absence of disconnected diagrams in the working equations alone is not a sufficient

condition for size extensivity. In addition to that a stronger condition of a complete active

space (CAS) is required. By a CAS we mean all configurations that can be formed by a

given number of N electrons in a given number of n orbitals. For two electrons in two

orbitals the CAS is formed by four configurations, unless the contribution of two singly

excited configurations is vanishing on symmetry grounds, in which case the CAS is

represented by the ground and doubly excited configuration. For example, for carbenes

the important reference configurations are those that represent two electrons in the active

space consisting of HOMO and LUMO orbitals f1 and f2 located on the carbenic

center. Four spin-unrestricted reference configurations can be formed: F1 ¼ ðf1Þ2ðf2Þ0;
F2 ¼ ðf1Þ0ðf2Þ2 and F3;4 ¼ ðf1Þ1ðf2Þ1; where the last two differ by the spin of the two
electrons. However, except for systems of C1 symmetry only two of these,F1 andF2; are
required for the description of the singlet ground state.

There have been several attempts to avoid the CAS restriction and achieve size

extensivity for an incomplete model space (see, for example, Refs. [69,70]). The methods

based on abandoning the intermediate normalization condition resulted in an excessively

complex formalism and as far as we know were actually never implemented. Only

recently this problem has been attacked successfully by Li and Paldus, who introduced so

called C-conditions for the amplitudes of internal excitations [15,42,43,71]. When these

conditions are incorporated into the MRCC amplitude equations of the Jeziorski–

Monkhorst method, the solutions with a general incomplete model space become also

exactly size extensive. The C-conditions are, however, not limited to the original

Jeziorski–Monkhorst formulation [36], but rather they apply to any Hilbert-space MRCC
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method, including BWCC, which can be corrected for size extensivity also in the

incomplete model space [59].

As with the single-reference methods, size extensivity does not guarantee size

consistency (a proper dissociation limit in the case of potential curves). The

reference space must be carefully chosen to contain important configurations at any

point of the potential curve as it was recognized long time ago [72]. But this is not a

specific problem of MR BWCCSD.

18.6 PERFORMANCE OF THE MULTIREFERENCE BRILLOUIN–WIGNER

CC METHOD AND APPLICATIONS

Computationally, MR BWCCSD may be viewed as a set of weakly coupled single-

reference CC calculations. Equations for the determination of amplitudes depend only on

a set of amplitudes (from a previous iteration) of a single reference configuration and

coupling between reference configurations is only ensured by the energy, which is

eigenvalue of the effective Hamiltonian matrix. This simplicity of the computational

scheme is beneficial for the feasibility of calculations. The computer time for a MR

BWCCSD run with M reference configurations is about M times higher than it is for a

standard CCSD run. This permitted us to perform MR BWCCSD calculations on a

desktop PC even for molecules that have been of interest to organic chemists and

biochemists. The largest molecules we treated were tetramethyleneethane (TME) [73]

C

H2C

H2C

C

CH2

CH2

and benzyne [74]. The purpose of the calculations on TME was to bring some theoretical

evidence on the ordering of the lowest singlet and triplet states. From the EPR spectra of

TME measured in a matrix it was concluded (for references to experimental work, see

Ref. [73]) that TME has D2d structure at the triplet state. This was at variance with the

gas-phase negative ion photoelectron spectra showing that the triplet state is about 2 kcal/

mol above the singlet state. The MR BWCCSD/cc-pVDZ calculations support the latter

assignment. At the optimum triplet geometry (dihedral angle of 498) the calculated S–T
energy gap is 1.2 kcal/mol, and the triplet is predicted to lie above the singlet at any

dihedral angle. However, a firm interpretation of the observed triplet state of the matrix-

isolated TME would need more rigorous calculations, including triple excitations and

using a larger basis set. In parallel, we also used the MR CCSD method by Kucharski and

Bartlett [37]. The results obtained by the two methods were close in absolute value,

showing that the deficiency of the MR BWCCSD method—its size inextensivity—may

be eliminated by an a posteriori correction (correction done in the last CC iteration only).

The calculations on benzyne [74] had a biochemical experimental background (see

Ref. [74]). The natural products shown in Fig. 18.2 displayed high activity against a
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number of tumor cell lines, both in vivo and in vitro, but unfortunately also showed

unacceptable toxic effects in both animal and human trials. The active site is believed to

be the hex-3-ene-1,5-diyne moiety, which yields 1,4-didehydrobenzene (benzyne) by the

Bergman cyclization reaction (Fig. 18.3). Benzyne abstracts hydrogen from a saccharide

phosphate backbone to form benzene, which denaturates the DNA and ultimately causes

cell death. Benzyne is a diradical species and it is therefore difficult to calculate it by

standard single-reference methods. The objective of MR BWCCSD calculations was to

provide reliable data on the heat of reaction and enthalpy of activation for the Bergman

reaction, which would be used as standards for less sophisticated (and less demanding)

calculations, and to show the accuracy attainable by the present state-of-the-art

techniques in designing new antitumor agents with an enediyne-like structure. The

entries in Table 18.2 show that the MR BWCCSDmethod with the a posteriori correction

for size extensivity improves greatly the CCSD results and it gives results in good

agreement with the MR CI and experimental data. Good performance of CCSD(T) is

probably fortuitous in this case.

MeSSS

HO

O

NHCO2Me

sugar

H MeSSS

HO

O

NHCO2Me

sugar
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calicheamicin esperamicin
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COOH
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Fig. 18.2. Natural products with a high activity against a number of tumor cell lines.
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Fig. 18.3. Bergman reaction.
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We have also studied the automerization barrier in cyclobutadiene, where the

transition structure has a diradical character [75] and the singlet–triplet gaps in alkyl-

carbenes [76].

Besides calculations of organic compounds, we have assessed the accuracy of the MR

BWCCSD technique on benchmark systems, like the insertion of Be into hydrogen

molecule [77], and compared its accuracy with other multireference methods. We have

also employed the MR BWCCSD method for accurate treatment of diatomic molecules

like F2 [3] or IBr [56], which required four reference configurations to span the complete

model space. We have also extended calculations by our method to low lying excited

states and up to eight reference configurations, used for calculation of the oxygen

molecule [57]. The isoelectronic, but heteronuclear NF molecule has been investigated

along the same lines [78].

A series of carbide diatomics, CaC, ZnC, BeC, and MgC, were another challenge for

the MR BWCCSD to treat systems of multireference nature caused by near-degeneracy

effects. The task was to examine theoretically [79,80] the competing 3S2 and 5S2 states.

In Table 18.3 we present results for CaC.

Single-reference methods CCSD and CCSD(T) give a wrong order of the two states,

predicting the triplet to lie 10.0 and 0.4 kcal/mol above the quintet state. Experimentally,

the ground state is not known but MR BWCCSD with the a posteriori size-extensivity

correction and MR CI predicts consistently that the triplet is the ground state. The former

gives Te ¼ 0:9 kcal=mol for the quintet and the later gives 3.0 kcal/mol.

Table 18.2 Enthalpy of activation and heat of reaction of the Bergman

reaction.a

Method DH†298 (kcal/mol) DH0
298 (kcal/mol)

CCSD 38.2 27.5

MR BWCCSD 32.7 12.9

MR CI 29.4 10.3

CCSD(T) 27.6 10.1

Experiment 28.2 8.5

aThe cc-pVTZ basis set was used in all calculations; for details see Ref. [74].

Table 18.3 Spectroscopic constants of the CaC molecule

Method De (kcal/mol) re (Å) ve (cm
21) vexe (cm

21)

ROHF 1.2 2.838

CCSD 35.5 2.368 464.0 3.67

CCSD(T) 46.1 2.383 464.2 2.39

MR BWCCSD 45.8 2.357 468.3 2.06

MR ACPF 48.0 2.365 465.1 2.65

MR CI 48.6 2.364 462.4 2.37

MR CI þ Q 49.3 2.364 461.3 2.51
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18.7 SUMMARY

We do not advocate MR BWCCSD as the method of choice for general use. Instead we

wanted to show that in applications where a system with a quasidegenerate electronic

state is to be calculated, it may be profitable to use a multireference approach as a more

advantageous alternative to the single-reference treatment. This applies particularly to

cases where the number of reference configurations needed is low. The computer time for

MR BWCCSD increases about linearly with the number of reference configurations.

Hence, if a regular single-reference CC calculation is feasible for the particular system,

also the MR BWCCSD would be likely affordable. Of course, as with any other

multireference method, some experimentation with the number of reference configur-

ations would be necessary. In its present form and at the level of MR CCSD, the MR

BWCC method seems to be slightly less accurate than large scale MR CI calculations

with some sort of a posteriori correction [52,68] (such as the averaged coupled pair

functional) for retaining size extensivity. However, MR BWCCSD has good prospects

for its further development. Its inherent feature of being not size extensive is now well

understood [41] which is a good starting point for the development of more accurate size-

extensivity corrections. Also, development of the MR BWCCSDT computer program is

in progress. First results obtained using an approximation of MR BWCCSDT for

calculation of vibrational frequencies and anharmonicities of O2 molecule [81] show that

inclusion of T3 clusters into the multireference CC expansion greatly improves the

accuracy of the method. A profitable feature of MR BWCCSD is also the similarity of the

MR BWCCSD working equations to those in CCSD, which enables to formulate

analytically the MR BWCCSD energy gradient along the same lines as in CCSD.

However, even in its present form the applications performed so far show that MR

BWCCSD can be taken as a more economic alternative to MR CI for treatments of

systems with a quasidegenerate electronic state.
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CHAPTER 19

Electronic structure: the momentum

perspective

Ajit J. Thakkar

Department of Chemistry, University of New Brunswick, Fredericton, New Brunswick,
Canada E3B 6E2

Abstract

This article provides an introduction to the momentum perspective of the electronic

structure of atoms and molecules. After an explanation of the genesis of momentum–

space wave functions, relationships among one-electron position and momentum

densities, density matrices, and form factors are traced. General properties of the

momentum density are highlighted and contrasted with properties of the number (or

charge) density. An outline is given of the experimental measurement of momentum

densities and their computation. Several illustrative computations of momentum–space

properties are summarized.

19.1 INTRODUCTION

The Schrödinger equation is the foundation of the theory of the electronic structure of

atoms and molecules. Within the Born–Oppenheimer approximation, it is usually

formulated in position or r space as

ĤCnð~x1; ~x2;…; ~xNÞ ¼ EnCnð~x1; ~x2;…; ~xNÞ ð1Þ

in which En is the electronic energy, the {~xj ¼ ð~rj;sjÞ}Nj¼1 are space–spin coordinates of
the N electrons in the system, and Cnð~x1; ~x2;…; ~xNÞ is the wave function for the nth

electronic state of the system defined by the Hamiltonian operator Ĥ: The latter is
obtained from its classical counterpart by replacing each Cartesian component of position

q by a multiplicative operator q̂ and each Cartesian component of linear momentum pq by

the corresponding operator p̂q ¼ 2ið›=›qÞ: Atomic units are used in the previous

expression and throughout this chapter. The non-relativistic electronic Hamiltonian can

q 2005 Elsevier B.V. All rights reserved.
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be written as

Ĥ ¼ 2
1

2

XN
j¼1

72j þ Vð~r1; ~r2;…; ~rNÞ ð2Þ

in which the first term is a sum of the kinetic energy operators for each of the N electrons,

and the second term is the potential in which the electrons move. Typically, the potential

V can be decomposed into terms corresponding to the Coulombic interactions between

electron–nucleus pairs, electron pairs and nuclear pairs. Techniques for the computation

and interpretation of position–space wave functions Cnð~x1; ~x2;…; ~xNÞ are the subject of
many of the chapters in this book.

Unlike a trajectory in classical mechanics, the wave function depends only on the

space–spin coordinates {~xj}
N
j¼1 of the electrons in the system, and not on their momenta

{~pj}
N
j¼1: This lack of dependence of the wave function on the momenta reflects

Heisenberg’s uncertainty principle which in turn arises from the non-commutativity of

conjugate pairs of position and momentum operators.

An equally valid but different approach is to work with momentum–space wave

functions Fnð ~y1; ~y2;…; ~yNÞ which depend upon the momentum–spin coordinates {~yj ¼
ð ~pj;sjÞ}Nj¼1 of the N electrons in the system but not on their positions. A momentum

representation of the wave function does not yield any more or less information than

the position representation of the wave function does. However, the momentum

representation does provide a different perspective—one from the other end of

Heisenberg’s eyeglass.

In this chapter, an overview of the momentum perspective on the electronic structure

of atoms and molecules is provided. The genesis of momentum–space wave functions is

described in Section 19.2. Relationships among one-electron position and momentum

densities, density matrices, and form factors are traced in Section 19.3. General

properties of the momentum density are highlighted and contrasted with properties of the

number density in Section 19.4. The experimental measurement of momentum densities

is outlined in Section 19.5, and their computation in Section 19.6. Several illustrative

computations of momentum–space properties are summarized in Section 19.7. Some

concluding remarks are made in Section 19.8.

19.2 MOMENTUM–SPACE WAVE FUNCTIONS

There are three distinct ways by which the momentum–space wave function can be

obtained: directly by solving either a differential or an integral equation in momentum or

p space, or indirectly by transformation of the position–space wave function.

One direct method involves a differential Schrödinger-like equation, ĤFn ¼ EnFn;
which contains a Hamiltonian operator obtained from its classical counterpart by

replacing each Cartesian component of linear momentum pq by a multiplicative operator

p̂q and each Cartesian component of position q by the corresponding operator q̂ ¼
ið›=›pqÞ: This approach is not at all simple because the q̂ operators transform Coulomb

potentials, which involve r21; into fearsome operators. Nevertheless, Egil Hylleraas,
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a Norwegian physicist, did succeed in solving this equation for the hydrogen atom [1].

To my knowledge, nothing further has been done with this technique.

The other direct method is to Fourier transform the Schrödinger equation to obtain an

integral equation forF that can be written, after suppression of spin variables, as follows:

En 2
1

2

XN
j¼1

~pj·~pj

0@ 1AFnð ~p1; ~p2;…; ~pNÞ

¼
ð
d~p01 d~p

0
2…d~p

0
NWð ~p1 2 ~p01; ~p2 2 ~p02;…; ~pN 2 ~p0NÞFnð ~p01; ~p02;…; ~p0NÞ ð3Þ

in which

Wð ~p1; ~p2;…; ~pNÞ ¼ ð2pÞ23N
ð
d~r1 d~r2…d~rNVð~r1; ~r2;…; ~rNÞexp 2i

XN
j¼1

~rj · ~pj

24 35:
ð4Þ

This equation was solved for the hydrogen atom by Vladimir Fock [2,3]. The solution in

p space revealed the four-dimensional symmetry responsible for the degeneracy of states

with the same n but different l quantumnumbers in the hydrogen atom. This is a fine example

where themomentum–space perspective led to fresh and deep insight. Fock’swork spawned

much further research on dynamical groups and spectrum-generating algebras.

Most work on the integral Eq. (3) has utilized an iterative method of Svartholm [4,5]

for solving it. The integral equation was first applied to He and H2
þ by Roy McWeeny and

Charles Coulson [6,7] during McWeeny’s doctoral work. At the 5th Canadian

Symposium on Theoretical Chemistry, Ottawa, 1974, McWeeny delivered a tribute to

Coulson who had passed away in January of that year. In that lecture, McWeeny

described how he felt when he was first assigned the project by Coulson:

I’d been given a thesis to read; by Svartholm, on ‘The Binding Energies of the

Lightest Atomic Nuclei’—which both flattered and frightened me. I could understand

hardly a word of it; and my ignorance was so shameful (especially for a physicist in a

chemistry department) that I couldn’t ask for help—the only acceptable remedy was

to follow the instructions: read the books by Pauling and Wilson, and by Dirac, and go

to Maurice Pryce’s lectures on quantum mechanics.

Students should take heart from the outstanding career in theoretical chemistry that

McWeeny was able to build from this anxious start. Interesting work on exact solution of

the integral equation for polyatomic one-electron systems was published by Shibuya and

Wulfman [8] and Novosadov [9,10]. The integral equation approach has been developed

and tested by several groups since then but the amount of effort devoted to this pales in

comparison with the stupendous amount of work done on solving the position–space

Schrödinger equation. A list of the relatively few references on approximate solution of

the integral equation forF can be found in a recent review [11]. Beginning with the work

of Armstrong [12], the integral Schrödinger equation has also been used to derive

conditions to check and possibly improve the accuracy of approximate wave functions

obtained by position–space methods; a bibliography can be found elsewhere [11].
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The technology for solving the Schrödinger equation is so much more advanced

in r-space than in p-space that it is most practical to obtain the momentum–spaceF from

its position–space counterpart C: The transformation theories of Dirac [13,14] and

Jordan [15,16] provide the link between these representations:

F ¼ ð2pÞ23N=2
ð
C exp 2i

XN
k¼1

~pk·~rk

" #
d~r1 d~r2…d~rN ð5Þ

and its inverse

C ¼ ð2pÞ23N=2
ð
F exp þi

XN
k¼1

~pk·~rk

" #
d~p1 d~p2…d~pN ð6Þ

In short, C and F are related by a 3N-dimensional, norm-preserving, Fourier transform.

The first use of the Fourier transformation technique for atoms or molecules was

made by Boris Podolsky and Linus Pauling [17] for the hydrogen atom. Coulson [18]

noted that if the r-space wave function is constructed from one-electron functions, then

there is an isomorphism between C and F: In particular, if the wave function C can be

written in terms of spin-orbitals {cj} as a single Slater determinant,

C ð~x1; ~x2;…; ~xNÞ ¼ ð1= ffiffiffiffi
N!

p Þ detlc1ð~x1Þc2ð~x2Þ· · ·cNð~xNÞl ð7Þ
then the corresponding p-space wave function is also a Slater determinant,

F ð ~y1; ~y2;…; ~yNÞ ¼ ð1= ffiffiffiffi
N!

p Þ detlf1ð ~y1Þf2ð ~y2Þ· · ·fNð ~yNÞl ð8Þ
in which the spin-momentals,1 or p-space spin-orbitals, {fj} are obtained from the

r-space spin-orbitals by the one-electron version of Eq. (5)

fjð ~p;sÞ ¼ ð2pÞ23=2
ð
cjð~r;sÞe2i~p·~rd~r ð9Þ

If the r-space wave function is a linear combination of Slater determinants constructed

from a set of spin-orbitals {cj}; then its p-space counterpart is the same linear

combination of Slater determinants constructed from the spin-momentals {fj} obtained

as Fourier transforms, Eq. (9), of the spin-orbitals. The overwhelming majority of

contemporary r-space wave functions can be expressed as a linear combination of Slater

determinants, and in these cases only three-dimensional Fourier transforms, Eq. (9), of

the spin-orbitals are necessary to obtain the corresponding N-electron wave function in

p space. Use of the full Eq. (5) becomes necessary only for wave functions, such as

Hylleraas- or Jastrow-type wave functions, that are not built from a one-electron basis set.

Examples of transformations to momentum space of such wave functions for He and H2
can be found elsewhere [20–22].

1 The term ‘momental’ for the p-space counterpart of an orbital is due to Robert S. Mulliken; in a private letter to

me dated August 1, 1986, he confirmed that the term originated with him. The term was used in the 1970s in an

unpublished manuscript by William (Bill) Henneker and Paul Cade, and then in print in a short paper of mine

[19]. I have tried to keep this nomenclature alive since then in honor of Mulliken.
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19.3 DENSITIES AND DENSITY MATRICES

If we are interested only in properties that can be expressed in terms of one-electron

operators, then it is sufficient to work with the first-order reduced density matrix rather

than the N-electron wave function [23–27].

We can write the r-space, first-order, density matrix as

Gð~xl~x0Þ ¼ N
ð
C pð~x0; ~x2;…; ~xNÞC ð~x; ~x2;…; ~xNÞd~x2…d~xN ð10Þ

and the p-space, first-order, density matrix as

Pð ~yl~y0Þ ¼ N
ð
Fpð ~y0; ~y2;…; ~yNÞF ð ~y; ~y2;…; ~yNÞd~y2…d~yN ð11Þ

If electronic spin is not a focus of attention, then the spin-traced (spin-summed) versions

of these density matrices can be used. The r-space, spin-traced, first-order, reduced

density matrix is

Gð~rl~r 0Þ ¼
ð
Gð~xl~x0Þdðs2 s 0Þds ds 0 ð12Þ

where d is the Dirac delta function. Similarly, the p-space, spin-traced, first-order,

reduced density matrix is

Pð ~pl~p0Þ ¼
ð
Pð ~yl~y0Þdðs2 s 0Þds ds 0 ð13Þ

Just as the N-electron wave functions in the two spaces are related by Fourier

transformation, so are the density matrices in the two representations. Specifically, the

first-order r- and p-space density matrices (whether spin-traced or not) are related by a

six-dimensional Fourier transform [28,29]:

Pð ~pl~p0Þ ¼ ð2pÞ23
ð
Gð~rl~r0Þexp½2ið ~p·~r2 ~p0·~r 0Þ	d~r d~r 0 ð14Þ

and its inverse

Gð~rl~r 0Þ ¼ ð2pÞ23
ð
Pð ~pl~p 0Þexp½þið ~p0·~r2 ~p·~r 0Þ	d~p d~p 0 ð15Þ

The physically meaningful quantities are the densities—the diagonal elements of the

density matrices. We have the usual one-electron number or position density

rð~r Þ ¼ Gð~rl~r Þ ¼ N
ð
lCl2dð~r1 2 ~r Þd~x1 d~x2…d~xN ð16Þ

and the one-electron momentum density

Pð ~pÞ ¼ Pð ~pl~pÞ ¼ N
ð
lFl2dð ~p1 2 ~pÞd~y1 d~y2…d~yN ð17Þ
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Letting ~p 0 ¼ ~p in Eq. (14) yields

Pð ~pÞ ¼ ð2pÞ23
ð
Gð~rl~r 0Þexp½þi~p·ð~r 0 2 ~rÞ	d~r d~r 0 ð18Þ

and letting ~r 0 ¼ ~r in Eq. (15) gives

rð~r Þ ¼ ð2pÞ23
ð
Pð ~pl~p0Þexp½2i~r·ð ~p 0 2 ~pÞ	d~p d~p 0 ð19Þ

Eq. (18) was first pointed out and exploited for electron correlated wave functions by

Robert Benesch and Vedene Smith [30,31] during Benesch’s doctoral studies.

It is clear from Eqs. (18) and (19) that the number and momentum densities are not

related by Fourier transformation. This is most readily understood for a one-electron

system where the r-space density is just the squared magnitude of the orbital and the

p-space density is the squared magnitude of the Fourier transform of the orbital. The

densities are not Fourier transforms of one another because the operations of Fourier

transformation and taking the absolute value squared do not commute. Moreover, there is

no known direct and practical route from one density to the other even though the

Hohenberg–Kohn theorem [32] guarantees that it must be possible to obtain the ground

state Pð ~pÞ from rð~r Þ:
In fact, the Fourier transform of rð~r Þ is the form factor of X-ray crystallography:

Fð ~m Þ ¼
ð
ei ~m·

~rrð~r Þd~r ð20Þ

How is the form factor related to the p-space density matrix? Substitution of Eq. (19) into

Eq. (20) and integration over ~r and ~p 0 yields [28,29]

Fð ~mÞ ¼
ð
Pð ~pl~pþ ~mÞd~p ð21Þ

What does Fourier transformation of the momentum density yield? This question has been

considered [29] in some generality and detail. Here we merely summarize the outcome

for the one-electron momentum density [28,29]. Consider the Fourier transform, or

characteristic function in the terminology of probability theory, of Pð ~pÞ :

Bð~sÞ ¼
ð
e2i~s·~pPð ~pÞd~p ð22Þ

Substitution of Eq. (18) in Eq. (22) followed by integration over ~p using the Fourier

representation of the Dirac delta function

dð~r Þ ¼ ð2pÞ23
ð
ei
~p·~rd~p ð23Þ

gives

Bð~sÞ ¼
ð
Gð~rl~r 0Þdð~r 0 2 ~r2 ~sÞd~r d~r 0 ð24Þ
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and hence

Bð~sÞ ¼
ð
Gð~rl~rþ ~sÞd~r ð25Þ

Bð~sÞ is variously called the reciprocal form factor, the p-space form factor, and the

internally folded density. Bð~sÞ is the basis of a method for reconstructing momentum
densities from experimental data [33,34], and it is useful for the r-space analysis of

Compton profiles [35–37].

Fig. 19.1 provides a concise summary of these relationships. A more elaborate

figure that adds the connections to the Wigner [38,39] and Moyal [40] mixed position–

momentum representations of the first-order reduced density matrix can be found in an

article that also works out all these functions in closed form for a simple harmonic model

of the helium atom [41].

If the system is in a pure spin state, that is Ŝ2C ¼ SðSþ 1ÞC and ŜzC ¼ MsC; then the
electron density can be decomposed into spin components as follows

rð~rÞ ¼ rað~rÞ þ rbð~rÞ ð26Þ

and it is then conventional to introduce the spin density defined by

rsð~rÞ ¼ rað~rÞ2 rbð~rÞ: ð27Þ

Similarly, the corresponding decomposition of the momentum density is

Pð ~pÞ ¼ Pað ~pÞ þPbð ~pÞ ð28Þ

and the spin momentum density is

Psð ~pÞ ¼ Pað ~pÞ2Pbð ~pÞ ð29Þ

Sometimes a ð2MsÞ–1 factor is included in the definitions of the spin densities, Eqs. (27)
and (29).

F F F

r(r)

Ú

Ú

∫P (pp + m) dp = F(m)→ → → → P (pp′)→ → P (p)→

G (rr ′)→ →→
r ′=→ r→

p′=→ p→

B(s) = ∫G (rr + s) dr
→ → → → →

Fig. 19.1. Connections among ~r- and ~p-space densities, density matrices, and form factors. Two-headed arrows

signify reversible Fourier transformations F whereas single-barbed arrows signify irreversible integrations or

contractions.
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19.4 PROPERTIES OF THE MOMENTUM DENSITY

Within the Born–Oppenheimer approximation, the nuclear configuration of a molecule

may have geometrical symmetry described by the point group Gn: In the absence of
degeneracies, this guarantees that both the exact number density rð~rÞ and the exact

momentum densityPð ~pÞ transform as the totally symmetric irreducible representation of

Gn: If there are degeneracies, averages of the densities over the ensemble of degenerate
states exhibit the same symmetry properties. Densities obtained from approximate wave

functions also have this symmetry provided that the underlying basis set is closed under

the symmetry operations of Gn; and that there are no methodological symmetry-breaking
artifacts.

The one-electron momentum density for bound states of atoms and molecules always

has inversion symmetry as a consequence of time-reversal symmetry or the principle of

microreversibility [42,43]:

Pð ~pÞ ¼ Pð2~pÞ ð30Þ
Most approximate wave functions lead to momentum densities that have inversion

symmetry. Within the Born–Oppenheimer approximation, the total electronic system

must be at rest, and the at-rest conditionð
Pð ~pÞ~p d~p ¼ 0 ð31Þ

follows from the inversion symmetry of the momentum density [44]. Another

consequence of inversion symmetry is that ~p ¼ ~0 is always a critical point of Pð ~pÞ
because the gradient of Pð ~pÞ vanishes at ~p ¼ ~0: By contrast, the number density always
has critical points, in fact maxima, at the locations of the nuclei [45].

When the geometrical and inversion symmetries are considered together, it follows

that the symmetry of the momentum density Pð ~pÞ is Gn^C i: If Gn does not contain the

inversion operation ı̂, then the symmetry of the momentum density is higher than Gn: For
example, a heteronuclear diatomic molecule like HF has C1v symmetry as does its

electron density rð~rÞ; but its momentum densityPð ~pÞ has C1v^C i ¼ D1h symmetry, as

seen graphically in the work of Thakkar et al. [46]. Further discussions of the symmetry

of Pð ~pÞ may be found elsewhere [47–50].
In the Born–Oppenheimer approximation, the nuclei are fixed and have zero

momenta. So the momentum density Pð ~pÞ is an intrinsically one-centered function

whereas rð~r Þ is a multi-centered function. Thus one-center expansions in spherical

harmonics work well for one-electron momentum densities [51–53]. The leading term of

such an expansion is the spherically averaged momentum density P0ð pÞ defined by

P0ðpÞ ¼ ð4pÞ21
ð
Pð ~pÞdV~p ¼ ð4pÞ21

ð2p
0

ðp
0
Pð ~pÞsinupdupdwp ð32Þ

The small p behavior ofP0ð pÞ is most easily treated with the MacLaurin expansion given
by [19,54]:

P0ð pÞ ¼ P0ð0Þ þP 00
0ð0Þp2=2!þOð p4Þ ð33Þ
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in which P0ð0Þ ¼ Pð~0Þ ¼ Pð0Þ is the electron momentum density at zero momentum,

and P 00
0ð0Þ is its curvature at that point. Odd powers of p do not appear in the expansion

because of the inversion symmetry of Pð ~pÞ:
The asymptotic expansion of P0ð pÞ for large p is given [19,55–57] by

P0ð pÞ ¼ b8p
28 þ b10p

210 þOð p212Þ ð34Þ
in contrast with the exponential decay of the electron number density. Eq. (34) is

best understood by recognizing that an orbital e2r leads to a momental cð1þ p2Þ22: In
atoms, the coefficient of the leading term in Eq. (34) can be expressed in terms of one- and

two-electron r-space densities [56,57].

The moments of the electron momentum density are defined by

k pkl ¼
ð
pkPð ~pÞd~p ð35Þ

Integration over the spherical polar angles leads to

k pkl ¼ 4p
ð1

0
pkþ2P0ð pÞdp ¼

ð1

0
pkIð pÞdp ð36Þ

in which the radial momentum density Ið pÞ is defined by
Ið pÞ ¼ 4pp2P0ð pÞ: ð37Þ

An immediate consequence of the asymptotic behavior of P0ð pÞ shown in Eqs. (33) and
(34) is that the moments k pkl are finite only for23 , k , 5: By contrast, the moments of
the electron number density are finite for 23 , k , 1: The k ¼ 0 moment of Pð ~pÞ is
simply the number of electrons because of the normalization condition

k p0l ¼
ð
Pð ~pÞd~p ¼ N ð38Þ

k p2l=2 is the electronic kinetic energy, and 2a2k p2l=8; where a is the fine structure

constant, is the Breit–Pauli correction to the kinetic energy [58–60] due to the relativistic

variation of mass with velocity.

19.5 EXPERIMENTAL DETERMINATION OF MOMENTUM DENSITIES

There are several experimental techniques for the measurement of electron momentum

densities. Inelastic scattering [54,61–64] of high-energy electrons, X-rays or g-rays by a
molecule allows us to measure the intensity of the Compton scattering at wavelengths

shifted, by a Doppler broadening-like mechanism, from the wavelength at which

Compton scattering by a motionless electron would be predicted. Provided that the

experiment can be analyzed within the impulse approximation, this intensity yields the

probability of an electron having a certain momentum—the electron momentum density.

The impulse approximation is valid whenever the energy of the incident projectile is

much larger than the target electron’s binding energy. In that case, the momentum

transfer between the electron and incoming particle can be assumed to take place
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instantaneously, allowing the target electron to be treated as a free electron with the same

momentum. Under these circumstances, we can imagine that the projectile catches the

target electron between collisions with other particles in the system, and the main effect

of the other electrons and nuclei in the molecule is to smear out the probability of finding

the target electron with a given momentum ~p:
Jesse DuMond [65,66] showed that, within the impulse approximation, the gas-phase

Compton profile J0ðqÞ is related to the isotropic momentum density by

J0ðqÞ ¼ 1

2

ð1

lql
p21Ið pÞdp ¼ 2p

ð1

lql
pP0ð pÞdp ð39Þ

where q is the momentum transfer, and its inverse

P0ð pÞ ¼ 21

2pp

d J0ðqÞ
dq

� �
p

ð40Þ

Comparison with Eq. (36) reveals that the peak height of the isotropic Compton profile is

half of the K ¼ 21 moment,

J0ð0Þ ¼ ð1=2Þk p21l ð41Þ
Other moments of momentum can also be obtained directly from the Compton profile

without first going through the numerical differentiation of Eq. (40) which is prone to

roundoff and truncation errors. Several groups [55,67–70] independently reported one or

more of the sum rules

k pkl ¼ 2ðk þ 1Þ
ð1

0
qkJ0ðqÞdq; 0 # k # 4 ð42Þ

The remaining integral moment k p22l can be obtained from a less widely known sum

rule [71]

k p22l ¼ 2
ð1

0
q22½J0ð0Þ2 J0ðqÞ	dq ð43Þ

The Compton profile and the stopping power are connected [72].

Typically the experimental measurements are most accurate at small q. Inserting the

MacLaurin expansion, Eq. (33), ofP0ð pÞ into Eq. (39) leads to the MacLaurin expansion
[54,73] for the isotropic Compton profile:

J0ðqÞ ¼ J0ð0Þ2 ½pP0ð0Þ	q2 2 ½pP 00
0ð0Þ=4	q4 þOðq6Þ ð44Þ

and hence fitting the measured profile at small momentum transfers q to a polynomial in

q2 yields values of P0ð0Þ and P 00
0ð0Þ: These coefficients have been extracted from

experimental Compton profiles for several atoms and molecules [54]. Insertion of

the asymptotic expansion of the momentum density, Eq. (34), into Eq. (39) leads to

the large-q expansion [55,73]

J0ðqÞ ¼ ðpb8=3Þq26 þOðq28Þ ð45Þ
No directional information is obtained from gas-phase experiments because the

molecules are freely rotating. In the solid state, the rotational motion can be frozen,
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and the directional Compton profile can be written as:

Jðq; ~q=qÞ ¼
ð
S
Pð ~pÞdS ð46Þ

where S is the plane surface defined by ~p·~q ¼ q2: In other words, the Compton profile is
given by the momentum density integrated over a plane perpendicular to the scattering

vector. In the special case that the scattering vector is parallel to one of the coordinate

axes, this expression looks much simpler. For example, if ~q is parallel to the z-axis, the

directional Compton profile, expressed in Cartesian coordinates, is simply the marginal

momentum density along the pz-axis:

Jð0; 0; pzÞ ¼
ð
Pð px; py; pzÞdpx dpy ð47Þ

There are two main methods for the reconstruction ofPð ~pÞ from the directional Compton

profile. In the Fourier–Hankel method [33,51], a spherical harmonic expansion of the

directional Compton profile is inverted term-by-term to obtain the corresponding

expansion of Pð ~pÞ: In the Fourier reconstruction method [33,34], the reciprocal form
factor Bð~sÞ is constructed a ray at a time by Fourier transformation of the measured Jð~qÞ
along that same direction. Then the electron momentum density is obtained from Bð~sÞ by
using the inverse of Eq. (22). A vast number of directional Compton profiles have been

measured for ionic and metallic solids, but none for free molecules. Nevertheless, several

calculations of directional Compton profiles for molecules have been performed as

another means of analyzing the momentum density.

In binary (e,2e) or electron momentum spectroscopy [54,74–77], an incoming electron

collides with a molecule, removes an electron and leaves a cation behind. Within the

plane-wave impulse approximation, the spherically averaged momentum density of the

pertinent Dyson orbital can be extracted from the measured differential cross-section.

A Dyson orbital ck is defined by

ck ¼ S21
ð
C p

kþð~x1;…; ~xN21ÞC ð~x1;…; ~xN21; ~xNÞd~x1 d~x2…d~xN21 ð48Þ

whereS is anormalization constant,C is theground statewave functionof the targetmolecule,

andCkþ is the wave function for some state of the resulting cation. If the neutral molecule is
described within the Hartree–Fock model, then the Dyson orbital is a linear combination of

the occupied Hartree–Fock orbitals. Further, if Koopmans’ approximation is invoked to

describe the cation by a Slater determinant constructed from the canonical Hartree–Fock

orbitals of the parentmolecule, then theDyson orbital is just a canonicalHartree–Fock orbital

of the target molecule. When all these approximations are valid, (e,2e) spectroscopy can be

thought of as a technique for looking at or imaging orbitals in the laboratory.

Positron annihilation techniques [78] can be used to obtain information about the

momentum density of the annihilating positron–electron pair. In solids, particularly metals,

the distortion of the electron momentum density by the Coulomb interaction between the

positron and electrons is relatively small, and this technique then gives us the electron

momentum density.
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19.6 AB INITIO COMPUTATIONS

Application of the Fourier transformation technique to the overwhelming majority

of r-space wave functions that are constructed from a one-particle basis set

{xjð~rÞ; j ¼ 1;…; n} is straightforward. For such wave functions the r-space one-electron
density matrix can be expressed in the underlying basis set as:

Gð~rl~r 0Þ ¼
Xn
i¼1

Xn
j¼1

Pijx
p
j ð~r 0Þxið~rÞ ð49Þ

Substitution of Eq. (49) in Eq. (14) leads to an isomorphic expression for the p-space one-

electron density matrix:

Pð ~pl~p 0Þ ¼
Xn
i¼1

Xn
j¼1

Pijv
p
j ð ~p 0Þvið ~pÞ ð50Þ

where

vjð ~pÞ ¼ ð2pÞ23=2
ð
xjð~r Þexpð2i~p·~rÞd~r ð51Þ

The momentum density is then simply

Pð ~pÞ ¼
Xn
i¼1

Xn
j¼1

Pijv
p
j ð ~pÞvið ~pÞ ð52Þ

Many of the off-diagonal terms in Eq. (52) are complex-valued, even when the r-space

basis functions and expansion coefficients are all real. However, the momentum density is

always real because each off-diagonal ij term in Eq. (52) is the complex conjugate of the

corresponding ji term.

The Fourier transforms of Eq. (51) can be performed in closed form for most

commonly used basis sets. Moreover, formulas and techniques for the computation of the

spherically averaged momentum density, isotropic and directional Compton profiles, and

momentum moments have been worked out for both Gaussian- and Slater-type basis sets.

Older work on the methods and formulas has been summarized in a review article by

Kaijser and Smith [79]. A bibliography of more recent methodological work can be found

in another review article [11]. Advantages and disadvantages of various types of basis

sets, including many unconventional ones, have been analyzed from a momentum–space

perspective [80–82]. Section 19.7 describes several illustrative computations chosen

primarily from my own work for convenience.

19.7 ILLUSTRATIVE CALCULATIONS

The exact, non-relativistic, ground-state momental for the hydrogen atom and

isoelectronic cations with nuclear charge Z, first worked out by Podolsky and Pauling

[17], is important because it provides a hook for one’s intuition. The r-space wave

Chapter 19494



function is spherically symmetric and given by

C ðrÞ ¼ Z3=2p21=2expð2ZrÞ ð53Þ
and the corresponding p-space wave function is also spherically symmetric and given by

F ð pÞ ¼ 2
ffiffi
2

p

pZ3=2ð1þ p2=Z2Þ2 ð54Þ

The electron number density is exponentially decaying and given by

rðrÞ ¼ Z3p21e22Zr ð55Þ
whereas the electron momentum density has a p28 decay and is

Pð pÞ ¼ 8

p2Z3ð1þ p2=Z2Þ4 ð56Þ

The isotropic Compton profile has a Lorentzian shape given by

J0ðqÞ ¼ 8

3pZð1þ q2=Z2Þ3 ð57Þ

the momentum moments are given by

k p22l ¼ 5=Z2; k p21l ¼ 16=ð3pZÞ;
k pl ¼ 8Z=ð3pÞ; k p2l ¼ Z2;

k p3l ¼ 16Z3=ð3pÞ; k p4l ¼ 5Z4

ð58Þ

and the reciprocal form factor by

BðrÞ ¼ e2Zrð1þ Zr þ Z2r2=3Þ ð59Þ
The reciprocal nature of r- and p-space densities is seen clearly from Eqs. (55) and

(56)—as the nuclear charge is increased the momentum density becomes more and more

diffuse whereas the electron number density becomes more and more compact.

For the hydrogen atom, the ground state wave function is the Dyson orbital.

Remarkably detailed agreement has been found with non-coplanar symmetric (e,2e)

experiments on atomic hydrogen over a wide range of total energies [83]. In this case, it is

legitimate to say that an experimental determination of the p-space wave function for H

has been carried out and agrees well with Eq. (54). This is a tremendously important

experiment because it provides the first direct confirmation of the ground state wave

function for the hydrogen atom obtained by solution of the Schrödinger equation.

Another manifestation of the reciprocity of densities in r- and p-space is provided by

Fig. 19.2. It shows the radial electron number density DðrÞ ¼ 4pr2rðrÞ and radial

momentum density Ið pÞ ¼ 4pp2Pð pÞ for the ground state of the beryllium atom

calculated within the Hartree–Fock model in which the Be ground state has a 1s22s2

configuration. Both densities show a peak arising from the 1s core electrons and another

from the 2s valence electrons. However, the origin of the peaks is reversed. The sharp,

Electronic structure: the momentum perspective 495

References pp. 502–505



small-r peak in DðrÞ is primarily due to the core electrons whereas the sharp, small-p
maximum in Ið pÞ is primarily due to the valence shell electron pair. This is a general
phenomenon and is often referred to as reciprocity of the number and momentum

densities.

Numerical Hartree–Fock calculations, free from basis set artifacts, have been used to

establish that the ground state momentum densities of all the atoms and their ions can be

classified into three types [84,85]. Type I and III momentum densities are found almost

exclusively in metal atoms: He, N, all atoms from groups 1–14 except Ge and Pd, and all

the lanthanides and actinides. These momentum densities all have a global maximum at

p ¼ 0 and resemble the momentum density shown in Fig. 19.3 for the beryllium atom.

The maximum at p ¼ 0 comes mainly from the outermost s-subshell, 2s in this case. Type

I and III densities differ in that the latter have a secondary maximum that is so small as to

be invisible on a diagram such as Fig. 19.3. Type II densities are the norm for non-

metallic atoms and are found in Ge, Pd and all atoms from groups 15–18 except He and

N. Type II densities have a local minimum at p ¼ 0 and a global maximum at pmax . 0:
A representative density of this type is shown in Fig. 19.3 for the neon atom.
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Fig. 19.2. The radial electron density DðrÞ ¼ 4pr2rðrÞ (left) and radial momentum density Ið pÞ ¼ 4pp2Pð pÞ
(right) for ground state Be. 1s contribution (dotted), 2s contribution (dashed), and total (solid). Adapted from

Thakkar [11].
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Fig. 19.3. Types of electron momentum densities Pð ~pÞ ¼ P0ð pÞ in atoms. Solid lines are used for the total
density. Left: a Type I density for the beryllium atom; the contribution from the 2s orbital is indistinguishable

from the total density. Right: a typical Type II density for the neon atom; the 2s and 2p contributions are shown

as dashed and dotted lines, respectively.
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Themaximum arises because the unimodal contribution from the outermost p-subshell, 2p

in this case, dominates themonotonic contribution from the outermost s-subshell. All Type

I and III momentum densities have P 00
0ð0Þ , 0 and all Type II densities have P 00

0ð0Þ . 0:
The qualitative study of electronic structure through the electron momentum density

Pð ~pÞ relies heavily on graphical representations of the density and density differences.
Coulson [18,86] made the pioneering effort in this direction. Early work was carried out

by Bill Henneker and Paul Cade [87], and Irving Epstein and Bill Lipscomb [88–90].

Other early work by Henneker and Cade was unpublished but widely circulated in

preprint form during the 1970s. A synthesis of the early work was made by Epstein and

Tony Tanner [91] who abstracted some principles that they hoped would be generally

applicable to chemical bonding. One of their abstractions pinned down an observation

about the anisotropy of Pð ~pÞ that had been made in several of the earlier studies. Epstein
and Tanner called it the bond directional principle and they stated it as follows [91]:

The momentum of an electron in a chemical bond is more likely to be directed

perpendicular to than along the bond axis. Furthermore, in the chemical bond there is

greater density at low momentum along the bond and greater density at high

momentum perpendicular to the bond than was the case in the isolated atoms.

This principle served as an inspiration for many researchers interested in uncovering

the links between the reorganization of electron momentum densities and chemical

bonding. Unfortunately, it turned out to have many exceptions. Tanner [92] carefully

reassessed it and formulated a new version as follows:

In a chemical bond in a bound molecule at its equilibrium configuration, there are

values ~pm of momentum which are more probable, i.e. which correspond to local

maxima of Pð ~pÞ: Those values are determined by both the geometric and electronic
symmetries of the molecule. For momenta, ~p ¼ ~pm þ d~p; near a maximum it is more

likely that d~p is perpendicular rather than parallel to the bond axis.

Tanner emphasized that although the revised principle has a few known exceptions,

attempts to make it more precise would only serve to defeat its purpose which is to give a

qualitative feel for Pð ~pÞ:
A parallel development to the study [45] of the topography of rð~rÞ is the consideration

[49,93] of the topography of Pð ~pÞ: The topography is characterized in terms of the

Hessian of Pð ~pÞ at its critical points, that is the set of points {~pc} for which 7Pð ~pcÞ ¼ ~0:
Recall that ~p ¼ ~0; that is p ¼ 0; is always a critical point because of the inversion
symmetry of Pð ~pÞ: Topographic studies [49,94] of Pð ~pÞ find that the p ¼ 0 critical point

is perhaps the most important one because it is a harbinger of the other critical points [95]

in the sense that the nature of the other critical points can be predicted from the type of

critical point found at p ¼ 0: Connections between the zero-momentum critical point and

the bond-directional principle [91,92] have been explored [95,96]. Unfortunately, simple

rules are hard to find and all allowed types of topographies are found even in linear

molecules [97]. The value of Pð0Þ has been found to be a useful [98,99] measure for
following a chemical reaction in p-space.

The high sensitivity of the topography of Pð ~pÞ to computational details has been

examined. A critical point is characterized by the rank r and signature s of the Hessian
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matrix at ~pc: The rank is the number of non-zero eigenvalues and the signature is the
number of positive eigenvalues minus the number of negative ones. Even the signature of

a critical point can vary with the basis set and amount of electronic correlation included in

a calculation [96,100–102]. Formaldehyde, H2CO, is an egregious example in which the

signature was found to take on three (^1, 23) of its four possible values (^1, ^3)

depending on the basis set used and amount of electron correlation included in the

computation [102]. Clearly, there is a need for careful development of basis sets for the

computation of the zero-momentum Hessian of Pð ~pÞ: There are some numerical

Hartree–Fock computations, free of basis set errors, for 78 diatomic molecules [103] that

should be helpful for the calibration of such basis sets.

Provided that the Hessian is of full rank ðr ¼ 3Þ; that is none of its eigenvalues vanish,
there can be four types of critical points at p ¼ 0 corresponding to the four possible

values of the signature ðs ¼ ^3; ^1): maxima, minima, and ðr ¼ 3; s ¼ ^1Þ saddle
points. Graphical examples of each type were given earlier [97,11]. Fresh examples are

given here. H2 has a ðr ¼ 3; s ¼ 23Þ global maximum at p ¼ 0; and CO2 has a ðr ¼ 3;
s ¼ þ3Þ global minimum at p ¼ 0 as seen in Figs. 19.4 and 19.5, respectively. Fig. 19.5

for CO2 shows that in the vertical pxpz plane of symmetry, the local minimum at p ¼ 0

is surrounded by a ring of critical points including two local maxima located along the
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Fig. 19.4. Surface plots of the electron momentum density of H2 illustrating a (3,23) maximum at ~p ¼ ~0: The

left and right plots are in planes parallel and perpendicular to the molecular axis: Pðpx; 0; pzÞ and Pð px; py; 0Þ;
respectively.
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Fig. 19.5. Surface plots of the electron momentum density of CO2 illustrating a (3,þ3) minimum at ~p ¼ ~0: The

left and right plots are in planes parallel and perpendicular to the molecular axis: Pðpx; 0; pzÞ and Pð px; py; 0Þ;
respectively.
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pz axis. Critical points along the px axis must also appear in all other directions

perpendicular to the pz axis as seen in the plot for the horizontal pxpy plane of symmetry.

Typical electron momentum densities with (3, 21) and (3, þ1) saddle points at zero
momentum are found in MgO and acetylene (HCCH), respectively. A momentum density

with a zero momentum (3, 21) critical point is shown for MgO in Fig. 19.6. In the

vertical plane of symmetry Pð px; 0; pzÞ has the structure of two hills separated by a ridge
or col, and one sees two local (and global) maxima located symmetrically along the

pz axis. The plot in the horizontal symmetry plane has the structure of a hill.

The electron momentum density for acetylene is shown in Fig. 19.7. The plot in the

pxpz plane has a complicated structure. The zero-momentum (3, þ1) critical point is a
pass between two peaks located along the px axis, and is a barrier separating two troughs

centered along the pz axis. Critical points along the px axis must also appear in all other

directions perpendicular to the pz axis. The plot of Pð ~pÞ in the horizontal pxpy plane
resembles a volcano.

A good example of quantitative work is the calculation of the isotropic Compton

profile for N2. The deviations of five different gas-phase measurements from the latest

calculations are shown in Fig. 19.8. The computations [104] used a multi-reference
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Fig. 19.6. Surface plots of the electron momentum density of MgO illustrating a (3,21) saddle point at ~p ¼ ~0:

The left and right plots are in planes parallel and perpendicular to the molecular axis: Pð px; 0; pzÞ and
Pð px; py; 0Þ; respectively.
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Fig. 19.7. Surface plots of the electron momentum density of HCCH illustrating a (3, þ1) saddle point
at ~p ¼ ~0: The left and right plots are in planes parallel and perpendicular to the molecular axis: Pð px; 0; pzÞ
and Pð px; py; 0Þ; respectively.
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configuration interaction (MRCI) wave function constructed from a (5s5p4d3f) basis set

of Slater-type functions, referred to as T hereafter. The dotted lines in Fig. 19.8 indicate

^0:01J0ð0Þ ¼ 0:05 which is the estimated uncertainty in the experimental values. There
is good agreement between theory and the three sets of g-ray data [105–107]. However,
the X-ray [108] and particularly the electron impact data [109] are not in totally

satisfactory agreement with the calculations.

Table 19.1 shows a comparison between the experimental values and a representative

subset of the theoretical values of P0(0) and P
00
0(0) for N2. Comparison of the basis set-

free numerical Hartree–Fock value [103] of P 00
0(0) with the self-consistent field (SCF)

value in a (5s5p4d3f) basis set of Slater-type functions shows that the latter is

significantly in error. This is due to the lack of diffuse functions as shown by the

significantly better value obtained with Dunning’s aug-cc-pVTZ Gaussian basis set [110]

which does contain diffuse functions. Comparison of the SCF and correlated values of

P 00
0ð0Þ shows that electron correlation effects are about 50% of the SCF value or larger.

All the correlated values of P0ð0Þ lie outside the error bars of the 160 keV g-ray data but
within the error bars of the other three experimental values. Further experimental work

would be helpful. The correlated values of P 00
0ð0Þ lie within the wide error bars of the

electron impact data but outside the error bars of the remaining data. This is less

disturbing since numerical second derivatives extracted from experimental data cannot

be expected to be very reliable.

There are many cases of good agreement between MRCI calculations of Dyson

orbitals and those obtained from (e,2e) experiments. A perceptive survey of the

insights into quantum chemistry gained from these computations has been given

by Davidson [111].
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Fig. 19.8. Differences between the isotropic Compton profile computed from theory and various experiments.

The theoretical data is from a multi-reference configuration interaction (MRCI) calculation in a (5s5p4d3f) basis

set of Slater-type functions [104]. Experimental data: (þ), 25 keV electron impact at 128 [109]; (p), average of

Ag Ka and Mo Ka X-ray scattering [108,105]; (A), 160 keV g-ray scattering [105]; (W), 160 keV g-ray

scattering reanalyzed [105,106]; (K), 60 keV g-ray scattering [107]. The dotted lines enclose the band of

uncertainty in the experimental data.
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Finally, we consider density functional theory (DFT) computations of p-space

properties. A naive way of calculating p-space properties is to use the Kohn–Sham

orbitals obtained from a DFT computation to form a one-electron, r-space density matrix

Gð~rl~r 0Þ; Fourier transform G according to Eq. (14), and proceed further. This approach is
incorrect because the Kohn–Sham density matrix G is not the true one and, in fact,

corresponds to a fictitious non-interacting system with the same rð~rÞ as the true system.
On the other hand, Hamel and coworkers [112] have shown that if the exact Kohn–Sham

exchange potential is used, then the spherically averaged momentum densities of the

Kohn–Sham orbitals should be very close to those of the Hartree–Fock orbitals. Of

course, in practical computations the exact Kohn–Sham exchange potential is not used

since it is generally not known.

In practice, using currently available exchange and correlation potentials, this path

leads to results [113] worse than those obtained with the Hartree–Fock method. This is

illustrated for momentum moments in Table 19.2 which shows median absolute percent

errors of k pkl for 78 molecules relative to those computed by an approximate singles
and doubles coupled-cluster method often called QCISD [114,115]. The molecules are

mostly polyatomic, and contain H, C, N, O, and F atoms. The correlation-consistent cc-

pVTZ basis set [110] was used for these computations. Table 19.2 shows the median

errors for the Hartree–Fock method, for second-order Møller–Plesset perturbation

theory (MP2), and for DFT calculations done with the B3LYP hybrid density functional

[116,117] which is based upon the adiabatic connection, and uses a mixture of Hartree–

Fock exchange and generalized gradient approximations (GGA) for exchange

Table 19.1 Coefficients in the small-p expansion, Eq. (33), of the momentum density for ground state N2

Method/Basis R P0ð0Þ P00
0ð0Þ

SCF/Ta 2.068 1.449 23.76

SCF/aug-cc-pVTZb 2.074 1.434 23.22

Numerical HFc 2.068 1.436 23.07

MRCI4/Ta 2.068 1.528 25.60

MRCI4/Tþzero point vibrationa 2.068 1.528 25.55

SDQMP4/aug-cc-pVTZb 2.074 1.534 25.28

160 keV g-raysd 1.39 ^ 0.04 22.9 ^ 1.5

160 keV g-rayse 1.40 ^ 0.09 22.8 ^ 1.0

60 keV g-raysf 1.40 ^ 0.17 22.7 ^ 1.4

Ag Ka and Mo Ka X-raysg 1.51 ^ 0.20 23.1 ^ 1.3

25 keV electron impacth 1.56 ^ 0.31 24.0 ^ 2.0

aRef. [104]. T is a (5s5p4d3f) basis set of Slater-type functions. SCF is self-consistent field, MRCI is multi-reference

configuration interaction.
bRef. [102]. The aug-cc-pVTZ basis set of Gaussian-type functions is from Dunning [110]. SDQMP4 is fourth-order

Møller–Plesset perturbation theory excluding triples.
cRef. [103].
dRef. [105].
eData of Ref. [105] reanalyzed in Ref. [106].
fRef. [107].
gData of Ref. [108] as reported in Ref. [105].
hRef. [109].
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and correlation. Clearly the B3LYP results are worse than Hartree–Fock for k pkl;
k ¼ 22; 21, 3, 4, and worse than MP2 in all cases.

What is needed for a correct computation of momentum–space properties from DFT

is an accurate functional for approximating the exact first-order reduced density matrix

Gð~rl~r 0Þ; or failing that, good functionals for each of the p-space properties of interest.
Of course, a sufficiently good functional for k p2l would obviate the necessity of using
Kohn–Sham orbitals and enable the formulation of an orbital-free DFT. Unfortunately, a

kinetic energy functional sufficiently accurate for chemical purposes remains an elusive

goal [118,119].

19.8 CONCLUDING REMARKS

The momentum perspective is not a transparent one and perhaps this is why it has

attracted a minuscule amount of attention in comparison with that devoted to the position

space perspective. Despite this, some useful insights into the electronic structure of

molecules have been achieved by taking the electron momentum density viewpoint.

Momentum space is an area of opportunity for young scientists. Applied mathematicians

and numerical analysts should consider work on the integral Schrödinger equation in

p-space. Quantum chemists should use recent developments in computer hardware,

quantum chemical methods, software for generating wave functions, and visualization

software to mount a sustained effort to understand momentum densities from a chemical

perspective. A recent review article [11] that has more than 400 references is a good

starting point for familiarizing oneself with the literature.
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Abstract

Recent advances in electronic structure theory achieved in our group have been reviewed.

Emphasis is put on development of ab initio multireference-based perturbation theory,

exchange and correlation functionals in density functional theory, and molecular theory

including relativistic effects.

20.1 INTRODUCTION

Accurate theoretical/computational chemistry has evolved dramatically and has opened

up a world of new possibilities. It can treat real systems with predictive accuracy.

Computational chemistry is becoming an integral part of chemistry research. Our

research group, the University of Tokyo (UT) group, was founded in 1993. Since then

the UT group has continued to grow and now becomes one of the centers of

theoretical/computational chemistry. We are interested in theory development and

application calculations. We have continued our research in the following three

directions: (i) development of new ab initio theory, particularly multireference-based

q 2005 Elsevier B.V. All rights reserved.
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perturbation theory; (ii) development of exchange and correlation functionals in

density functional theory (DFT); and (iii) development of molecular theory including

relativistic effects. We have enjoyed good progress in each of the above areas. We are

very excited about our discoveries of new theory and algorithms, and new findings in

chemistry. We would like to share this enthusiasm with readers. The present review is

a summary of our research activities which have been achieved in the last 10 years at

the University of Tokyo.

20.2 MULTIREFERENCE PERTURBATION THEORY AND VALENCE BOND

DESCRIPTION OF ELECTRONIC STRUCTURES OF MOLECULES

The development of multireference methods represents important progress in electronic

structure theory in the last decades. The multiconfiguration self-consistent field (MCSCF)

method, and configuration interaction (CI), coupled cluster (CC), and perturbation

methods based on the MCSCF functions play a central role in the studies of electronic

structure of molecules and chemical reaction mechanisms, especially in those concerned

with electronic excited states.

Among several types of the MCSCF method, the complete active space self-consistent

field (CASSCF) method is commonly used at present. In fact, it has many attractive

features: (1) applicable to excited state as well as the ground state in a single framework;

(2) size-consistent; (3) well defined on the whole potential energy surface if an

appropriate active space is selected. However, CASSCF takes into account only non-

dynamic electron correlation and not dynamic correlation. The accuracy in the energy

such as excitation energy and dissociation energy does not reach the chemical accuracy,

that is, within several kcal/mol. A method is necessary which takes into account both the

non-dynamic and dynamic correlations for quantitative description.

Our multireference Møller–Plesset (MRMP) perturbation method [1–4] and MC-

QDPT quasi-degenerate perturbation theory (QDPT) with multiconfiguration self-

consistent field reference functions (MC-QDPT) [5,6] are perturbation methods of such a

type. Using these perturbation methods, we have clarified electronic structures of various

systems and demonstrated that they are powerful tools for investigating excitation spectra

and potential energy surfaces of chemical reactions [7–10]. In the present section, we

review these multireference perturbation methods as well as a method for interpreting the

electronic structure in terms of valence-bond resonance structure based on the CASSCF

wavefunction.

20.2.1 Multireference perturbation theory

Many-body perturbation theory (MBPT) has been utilized as a convenient way of taking

account of electron correlation beyond the Hartree–Fock (HF) approximation. In

particular, its single-reference version is now fully established. Møller–Plesset

perturbation method [11], up to the fourth order, is provided as a standard tool in most
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program systems such as GAUSSIAN or GAMESS. However, the application of the single-

reference many-body perturbation theories (SR-MBPT) is limited only to the system

where the Hartree–Fock approximation is a good starting point. It cannot describe open-

shell molecules, dissociation to open-shell fragment, and transition state of chemical

reaction.

Conventional QDPT [12–21] has been developed to be applied to open-shell systems

and excited states. Although much effort has been made to develop the QDPT, it is not

widely used among chemists. The major reason is that the QDPT often provides incorrect

potential curves, since the perturbation series frequently diverges owing to the existence

of intruder states [22].

In the 1980s and 1990s, multiconfigurational self-consistent field (MCSCF) reference

perturbation theories [1–6,23–30] were proposed to overcome the defects of the single-

reference PT and the QDPT, and now they are established as reliable methods that can be

applied to wide variety of problems: potential energies surfaces of chemical reactions,

excited spectra of molecules, etc. In fact, they have many advantages:

1. Generally applicable to a wide class of problems and a wide variety of molecules

in a single framework;

2. Almost size-consistent;

3. Applicable to excited states and open-shells as well as the ground state;

4. Stable on the whole potential surface if reference CASSCF function is

appropriately chosen;

5. Accurate enough to provide the chemical accuracy. Although MRMP and MC-

QDPT at the lowest non-trivial order (the second order) does not yield very close

total energy to the exact one, they are well balanced and the relative energies like

dissociation energies, excitation energies, the activation energy are quite good.

6. Much more efficient and handy than MRCI and MRCC methods. The energy is

computed as a sum of the product of molecular integrals and coupling constants

between the target state and CSF divided by energy difference. The resource

required does not depend strongly on the size of the active space and basis set. This

presents a keen contrast to the case of MRCI and MRCC.

The MRMP method [1–4] and MC-QDPT [5,6] are perturbation methods in this

category. In these methods, the CASSCF wavefunction(s) is(are) first determined, and

the perturbation calculation is done with those wavefunctions used as reference (zeroth-

order wavefunction) based on Rayleigh–Schrödinger PT in MRMP and van Vleck PT in

MC-QDPT.

In the following sections, we show the formalism of the multireference perturbation

theory and some applications to potential energy surfaces and electronic excited

spectra.

20.2.1.1 Multireference Møller–Plesset perturbation method [1–4]

Our basic problem is to find approximations to some low-lying solutions of the exact

Schrödinger equation

HC ¼ EC ð1Þ
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H is the Hamiltonian and it is decomposed into two parts, a zeroth-order Hamiltonian H0

and a perturbation V

H ¼ H0 þ V ð2Þ
We assume that a complete set of orthonormal eigenfunctions {C ð0Þ

i } and corresponding

eigenvalues are available

H0C
ð0Þ
i ¼ E ð0Þ

i C ð0Þ
i ð3Þ

Then the state wavefunction CI is expanded in terms of basis functions C
ð0Þ
k as

CI ¼
X
k

CIkC
ð0Þ
k ð4Þ

Some of the basis functions define an active space P and the remaining part of Hilbert

space is called the orthogonal space Q ¼ 12 P: The active space is spanned by the basis
functions that have a filled core and the remaining active electrons distributed over a set

of active orbitals. The orthogonal complete space incorporates all other possible basis

functions that are characterized by having at least one vacancy in a core orbital. The state

wavefunction in an active space is written as

C ð0Þ
I ¼

X
k

CkFk ð5Þ

where the sum runs over active space basis functions {Fi} and Ck are the coefficients

of only active space basis functions. It is convenient to use intermediate normalization,

i.e.

kC ð0Þ
I lC ð0Þ

I l ¼ kC ð0Þ
I lCIl ¼ 1 ð6Þ

We also assume that C ð0Þ
I is diagonal in P space

kC ð0Þ
I lHlC ð0Þ

J l ¼ dIJðE ð0Þ
I þ E ð1Þ

I Þ ð7Þ
with

E ð0Þ
I ¼ kC ð0Þ

I lH0lC ð0Þ
I l ð8Þ

E ð1Þ
I ¼ kC ð0Þ

I lV lC ð0Þ
I l ð9Þ

The state-specific Rayleigh–Schrödinger perturbation theory based on the unperturbed

eigenvalue equation

H0C
ð0Þ
I ¼ E ð0Þ

I C ð0Þ
I ð10Þ

leads to the first E ðkÞ
I as

E ð2Þ
I ¼ kC ð0Þ

I lVRV lC ð0Þ
I l ð11Þ

E ð3Þ
I ¼ kC ð0Þ

I lVRðV 2 E ð1Þ
I ÞRV lC ð0Þ

I l ð12Þ
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Eð4Þ
I ¼ kC ð0Þ

I lVRðV 2 E ð1Þ
I ÞRðV 2 E ð1Þ

I ÞRV lC ð0Þ
I l2 E ð2Þ

I bkC ð0Þ
I lVR2V lC ð0Þ

I l

þ kC ð0Þ
I lVRH0SH0RVlC ð0Þ

I lc; etc: ð13Þ
The R and S are the resolvent operators

R ¼ Q=ðE ð0Þ
I 2 H0Þ ð14Þ

S ¼ P0=ðE ð0Þ
I 2 H0Þ ð15Þ

where P0 ¼ P2 lC ð0Þ
I lkC ð0Þ

I l:
The zeroth-order energies E ð0Þ

I are given in terms of orbital energies as

E ð0Þ
I ¼

X
ps

npsðIÞ1ps ð16Þ

where 1ps and npsðIÞ are the energy of orbital p with spin s and the occupation number of
orbital p with spin s in wavefunction FI ; respectively.
We have mainly used canonical Fock orbitals, which are defined so that the

generalized Fock matrix

Fpq ¼ hpq þ
X
rs

ðDa
rs þ Db

rsÞ½ðpqlrsÞ2 1
2
ðpslrqÞ	 ð17Þ

is partially diagonal in the core, active, and virtual orbital sub-blocks (Da
rs and D

b
rs

represent alpha and beta one-particle density matrices, respectively) and have adopted the

diagonal elements of the generalized Fock matrix, Fpp; as orbital energies

1pa ¼ 1pb ¼ hpp þ
X
rs

ðDa
rs þ Db

rsÞ½ðpplrsÞ2 1
2
ðpslrpÞ	 ð18Þ

However, in an open-shell system involving unpaired alpha electrons, the electron

environment depends on whether the electron is in an alpha or a beta orbital. Thus, we

have also proposed that we retain canonical Fock orbitals but adopt spin-dependent

orbital energies defined by

1pa ¼ hpp þ
X
rs

{Da
rs½ðpplrsÞ2 ðpslrpÞ	 þ Db

rsðpplrsÞ} ð19Þ

and

1pb ¼ hpp þ
X
rs

{Db
rs½ðpplrsÞ2 ðpslrpÞ	 þ Da

rsðpplrsÞ} ð20Þ

for alpha- and beta-spin orbitals, respectively [31].

When CASSCF wavefunction is used as the reference, the zeroth plus first-order

energy E ð0Þ
I þ E ð1Þ

I is equal to the CASSCF energy. The lowest non-trivial order is,

therefore, the second order. Let the reference function lC ð0Þ
a l be a CASSCF wavefunction

lal ¼
X
A

CAlAl ð21Þ
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The energy up to the second order in MRMP is given by

Eð0–2Þ
a ¼ ECASa þ

X
I

kalV lIlkIlVlal
E ð0Þ
a 2 E ð0Þ

I

ð22Þ

where {lIl} is the set of all singly and doubly excited configurations from the reference

configurations in CAS. The first term of the RHS is the CAS-CI energy.

20.2.1.2 Multiconfigurational quasi-degenerate perturbation theory (MC-QDPT) [5,6]

We have also proposed a multistate multireference perturbation theory, the QDPT with

MCSCF reference functions (MC-QDPT). In this PT, state-averaged CASSCF is first

performed to set reference functions, and then an effective Hamiltonian is constructed,

which is finally diagonalized to obtain the energies of interest.

The van Vleck PT for the CASSCF reference wavefunctions gives the order-by-order

expansion of the effective Hamiltonian

ðHð0–1Þ
eff Þab ¼ ECASb dab ð23Þ

ðHð2Þ
eff Þab ¼ 1

2
kalVRV lblþ ða$ bÞ ð24Þ

ðHð3Þ
eff Þab ¼ 1

2
kalVRðV 2 E ð0Þ

b ÞRV lblþ ða$ bÞ; etc: ð25Þ
where R is the resolvent operator given by Eq. (14). Thus, the effective Hamiltonian to

second order is given by

ðHð0–2Þ
eff Þab ¼ ECASb dab þ 1

2

X
I

kalV lIlkIlV lbl
E ð0Þ
b 2 E ð0Þ

I

þ kblVlIlkIlVlal
E ð0Þ
a 2 E ð0Þ

I

( )
ð26Þ

Substituting the second-quantized operator into V; we obtain an explicit formula using
molecular integrals and orbital energies instead of matrix elements

ðHð0–2Þ
eff Þab ¼ ECASa dab 2

X
pq;B

kalEpqlblCBðbÞ
X
e

upeueq

1e 2 1q þ DEBa

2
X

pqrs;B

kalEpq;rslBlCBðbÞ
X
e

upegeqrs

1e 2 1q þ 1r 2 1s þ DEBa

"

þ
X
e

gpersueq

1e 2 1q þ DEBa
þ 1

2

X
ða;bÞ

gparbgaqbs

1a 2 1q þ 1b 2 1s þ DEBa

35
2

X
pqrstu;B

kalEpq;rs;tulBlCBðbÞ
X
e

gpersgeqtu

1e 2 1q þ 1t 2 1u þ DEBa
þ ða$ bÞ

ð27Þ

with

gpqrs ¼ ðpqlrsÞ ð28Þ

upq ¼ ðhpq 2 dpq1pÞ2
Xdoc
i

ð2gpqii 2 gpiiqÞ ð29Þ
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and

DEBa ¼ E ð0Þ
B 2 E ð0Þ

a ð30Þ

the difference between the energies of the zeroth-order state and configuration. The

orbital labels {i}, {a}; and {e} are for doubly occupied, active, and external orbitals,
respectively, and {a0; b0} run over both active and external orbitals, and the suffix of the
generator {p; q; r; s; t; u} run over only active orbitals. The terms including doubly
occupied orbitals are omitted in this equation. See Ref. [5] for the full formula.

This theory includes MRMP PT (the case that the set of reference functions reduces

to a single function). Note that MRMP energy can be also calculated with the formula

Eq. (27) by setting the number of the states to one.

20.2.1.3 Application of multireference perturbation theory to singlet–triplet

splitting of CH2 and CF2 [31]

Many applications of the MRMP and MC-QDPT methods to chemical reactions and

excitation spectra have been collected in our review articles [7–10]. Here we present the

singlet–triplet splitting of CH2 and CF2: examples where the use of the spin-dependent

orbital energies is crucial.

Various methods have been applied to the adiabatic singlet–triplet (ST) splitting of

methylene with the same geometry, active space, and basis set given in Ref. [32]. We first

calculated it with the same condition for comparison. The active space is a full-valence

type CAS[6e,6o], and the basis set used is the double zeta plus polarization (DZP) basis.

The results are listed in Table 20.1. The ST splitting by the original MRMP (MRMP with

spin-averaged orbital energies, hereafter MRMP(SA)) is 15.9 kcal/mol; the deviation

from the full CI value of 12.0 kcal/mol is 3.9 kcal/mol. This is improved by MRMP with

spin-dependent orbital energies, MRMP(SD); the splitting is 12.6 kcal/mol, the

discrepancy being only 0.6 kcal/mol.

We next carried out calculations with a larger basis set and active space to compare the

calculated and experimental results. The splitting with Dunning’s correlation consistent

polarized valence triple zeta (cc-pVTZ) basis set is 10.1 kcal/mol, which is in good

agreement with the experimental value of 9.4 kcal/mol [33]. In the calculations with

CAS[6e,6o], even the reference CASSCF gives good results: 12.8 (DZP) and 10.5 (cc-

pVTZ) kcal/mol. The deviation from the full CI and experimental values are only 0.8 and

1.1 kcal/mol, respectively. However, it is known that the energy splitting at the CASSCF

level gets worse if the active space is enlarged to CAS[6e,12o]. We next calculated the

splitting using CAS[6e,12o] as a further check. The result of CASSCF is 4.3 kcal/mol,

which is rather poor compared with the CAS[6e,6o] value. On the contrary, the value

9.9 kcal/mol of MRMP(SD) is in much better agreement with experiment.

The geometry of CF2 used in the calculations was determined with CASSCF

[6e,6o]/cc-pVTZ. The active space and basis set for MRMP are CAS[12e,9o] and

cc-pVTZ, respectively. The ST splitting energy calculated with MRMP(SD) is

52.6 kcal/mol. This is a fairly good estimate of the experimental value, 56.6 kcal/mol.

[34] On the other hand, the value fromMRMP(SA), 46.7 kcal/mol, is too small compared

with experiment.
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MROPT2 by Kozlowski and Davidson [29] also reproduces the splitting, 10.5

(CAS[6e,6o]) and 9.9 kcal/mol (CAS[6e,12o]) for CH2. These numbers are very close

to those of MRMP(SD). For CF2, however, it gives a slightly smaller splitting of

48.9 kcal/mol.

20.2.1.4 Extension of reference wavefunctions—quasi-degenerate

perturbation theory with quasi-complete active space self-consistent field

reference functions (QCAS-QDPT) [35]

In the study of chemical reaction mechanisms, CAS-SCF method is a very useful

approach and hence frequently used. However, CAS-SCF often generates far too many

configurations, and the size of the active space outgrows the capacity of present

technology. Perturbation methods using a selected reference configuration space but

retaining the advantages of the CAS-based PTs are necessary.

We have proposed an MC-SCF method with a quasi-complete active space (QCAS),

i.e. a QCAS-SCF method. In the MC-SCF method, we partition orbitals into core, active,

and virtual, then construct the CI space by distributing active electrons among the active

orbitals. Let us further divide the active electron and orbital sets into N sub-sets and fix

Table 20.1 Energy splitting between the 1A1 and
3B1 states in CH2 and CF2

Method Energy (hartree) DE (kcal/mol)

1A1
3B1

CH2

[6e,6o]CASSCF/DZP 238.94532 238.96578 12.8

[6e,6o]MRMP(SA)/DZP 239.01106 239.03636 15.9

[6e,6o]MRMP(SD)/DZP 239.01106 239.03115 12.6

Full CI/DZP 239.02718 239.04626 12.0

[6e,6o]CASSCF/cc-pVTZ 238.95422 238.97099 10.5

[6e,6o]MRMP(SA)/cc-pVTZ 239.04461 239.06778 14.5

[6e,6o]MROPT2/cc-pVTZ 239.04461 239.06138 10.5

[6e,6o]MRMP(SD)/cc-pVTZ 239.04461 239.06064 10.1

[6e,12o]CASSCF/cc-pVTZ 239.02090 239.02778 4.3

[6e,12o]MRMP(SA)/cc-pVTZ 239.06931 239.08723 11.2

[6e,12o]MROPT2/cc-pVTZ 239.06931 239.08513 9.9

[6e,12o]MRMP(SD)/cc-pVTZ 239.06931 239.08504 9.9

Exptla 9.4

CF2
[12e,9o]CASSCF/cc-pVTZ 2236.85497 2236.76085 59.1

[12e,9o]MRMP(SA)/cc-pVTZ 2237.38184 2237.30738 46.7

[12e,9o]MROPT2/cc-pVTZ 2237.38184 2237.30391 48.9

[12e,9o]MRMP(SD)/cc-pVTZ 2237.38184 2237.29807 52.6

Exptlb 56.6

aRef. [33].
bRef. [34].
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the number of active electrons, mi; and orbitals, ni; in each sub-set

mact ¼
XN
i

mi; nact ¼
XN
i

ni ð31Þ

where mact and nact denote the number of active electrons and orbitals, respectively. We

define the quasi-complete space as the product space of CAS spanned by the determinants

or CSF as follows:

QCASð{mi}; {ni}Þ ¼ CASðm1; n1ÞCASðm2; n2Þ· · ·CASðmN ; nNÞ ð32Þ

such that the number of electrons in each orbital group satisfies the restriction in Eq. (31).

Combining QCAS with MC-QDPT provides an effective tool for electronic structure

theory. We present MC-QDPT using QCAS-SCF reference functions. (Hereafter, we call

it QCAS-QDPT or QCAS-PT.)

Adopting (state-averaged) QCAS-SCF wave functions aðbÞ as reference functions (i),
which define P space, we obtain the effective Hamiltonian to the second order

ðHð0–2Þ
eff Þab ¼ EQCASa dab þ 1

2

X
I
QCAS

kalV lIlkIlVlbl
E ð0Þ
b 2 E ð0Þ

I

þ ða$ bÞ
8<:

9=; ð33Þ

which corresponds to Eq. (26) in the CAS-SCF reference case. Let us define a

corresponding complete active space (CCAS) to a QCAS as the complete active space

(CAS) that has the same active orbital set and electron but does not have the limitation

(Eq. (31)). In other words, the corresponding CAS is the minimal CAS that includes the

QCAS. Then the summation for I in Eq. (33) may be divided into the summations for

determinants/CSFs outside the CAS and for the determinants/CSFs outside the QCAS but

inside the corresponding CASX
I
QCAS

¼
X

I
CCAS

þ
X

I[CCAS^I
QCAS
ð34Þ

and then the former second-order term in Eq. (33) may be written as

ðHð2Þ
eff Þab ¼

X
I
CCAS

kalVlIlkIlV lbl
E ð0Þ
b 2 E ð0Þ

I

þ
X

I[CCAS^I
QCAS

kalVlIlkIlVlbl
E ð0Þ
b 2 E ð0Þ

I

ð35Þ

The former term in Eq. (35) involves excitations from core orbitals and excitations to

virtual orbitals in the intermediate states I (the external terms), while the latter term

involves excitations where only active orbitals are involved (the internal terms).

The external term may be further written as

ðHð2Þ
extÞab ¼

X
A;B[QCAS

CAðaÞCBðbÞðHð2Þ
extÞAB ð36Þ
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with

ðHð2Þ
extÞAB ¼

X
I
CCAS

kAlHlIlkIlHlBl
E ð0Þ
B 2 E ð0Þ

I þ ðE ð0Þ
b 2 E ð0Þ

B Þ ð37Þ

where ðHð2Þ
extÞAB is the effective Hamiltonian in the determinant/CSFs basis in the

conventional QDPT except for the energy shift, E ð0Þ
b 2 E ð0Þ

B ; in the denominator. Since
the second-order diagrams do not depend on the denominator, the second-order effective

Hamiltonian equation (37) (hence, also Eq. (36)) is expressed by the same diagrams as

the conventional QDPT. This situation is the same as MC-QDPT: the diagrams and

the rule for translating them into mathematical expressions is described in detail in

Ref. [35]. The internal terms are also expressed by diagrams. Since QCAS is a natural

extension of CAS, computation of these diagrams can be done efficiently in a similar

manner to CAS-QDPT.

20.2.1.5 Further extension of reference wavefunctions—quasi-degenerate

perturbation theory with general-multiconfiguration space self-consistent

field reference functions (GMC-QDPT) [36]

Adopting (state-averaged) general MC-SCF (or MC-CI) wavefunctions aðbÞ as reference
functions F ð0Þ

A ðF ð0Þ
B Þ; which define the P space, the effective Hamiltonian to the second

order becomes

ðHð0–2Þ
eff Þab ¼ EMCa dab þ 1

2

X
I
GCS

kalHlIlkIlHlbl
E ð0Þ
b 2 E ð0Þ

I

þ ða$ bÞ
8<:

9=; ð38Þ

where I is now a determinant/CSF outside the general configuration space (GCS). The

notation ða$ bÞ means interchange a with b from the first term in curly brackets. The

complementary eigenfunctions of the MC-CI Hamiltonian and the determinants/CSFs

generated by exciting electrons out of the determinants/CSFs in GCS are orthogonal to

the reference functions and define theQ space. The functions in the space complementary

to the P space in GCS, however, do not appear in Eq. (38) since the interaction between

the complementary functions and the reference functions is zero.

The GMC-QDPT computation scheme is similar to that of QCAS-QDPT [35]. We

define again the corresponding CAS (CCAS) as a CAS constructed from the same active

electrons and orbitals, that is, the minimal CAS that includes the reference GCS. The

summation over I in Eq. (38) may be divided into the summations over determinants/

CSFs outside CCAS and over the determinants/CSFs outside the GCS but inside CCAS:X
I
GCS

¼
X

I
CCAS

þ
X

I[CCAS^I
GCS
ð39Þ

then the former second-order term in Eq. (38) may be written as

ðHð2Þ
eff Þab ¼

X
I
CCAS

kalHlIlkIlHlbl
E ð0Þ
b 2 E ð0Þ

I

þ
X

I[CCAS^I
GCS

kalHlIlkIlHlbl
E ð0Þ
b 2 E ð0Þ

I

ð40Þ
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The first term in Eq. (40) represents external excitations, while the latter term represents

internal excitations.

The external terms may be computed with diagrams in the same manner as the QCAS-

QDPT case. On the other hand, for internal terms, the diagrammatic approach may not be

applied. Instead, matrix operations for the Hamiltonian matrix are used

ðHð2Þ
int Þab ¼ vTðaÞ ·wðbÞ ð41Þ

with

vIðaÞ ¼
X

A[GCS

kIlHlAlCAðaÞ ð42Þ

wIðbÞ ¼
X

B[GCS

kIlHlBlCBðbÞ=ðE ð0Þ
b 2 E ð0Þ

B Þ ð43Þ

The intermediate determinants/CSFs I are constructed by exciting one or two electron(s)

from the reference determinants/CSFs within the active orbital space. In general, the

number of I is not large, and thus they may be managed in computer memory.

20.2.1.6 Application of QCAS- and GMC-QDPT

20.2.1.6.1 Transition state barrier height for the unimolecular dissociation reaction of

formaldehyde H2CO ! H2 þ CO [35]. This reaction is Woodward–Hoffmann

forbidden, and therefore, proceeds via the highly asymmetric transition structure. We

examined in a previous paper [37] the barrier height using the MRMP method. In the

present section, we show the QCAS-PT results and the comparison of them with the

MRMP results.

The CAS we used for comparison is CAS(12,10), which is the full valence active

space. We split the active orbitals into {CO(s, sp)}, {CO(p, pp)}, and {CH(s, sp),
CH(s0, s0p), O(lp, lp)}, where lp denotes a lone pair orbital, and then we distributed two,
two, and eight electrons among the above groups, respectively, to construct

QCAS[(2,2)2 £ (8,6)]. The dimension of the CAS is 44,100, while that of the QCAS

is 3600.

The results with cc-pVTZ and cc-pVQZ are shown in Table 20.2. First let us compare

the results at the reference function (QCAS- and CAS-SCF) level. Although differences

in the energy itself between QCAS-SCF and CAS-SCF are about 10 millihartree for both

basis sets, the differences in the barrier height are 1.65 and 1.62 millihartree (1.0 and

1.0 kcal/mol) for cc-pVTZ and cc-pVQZ, respectively. The agreement of QCAS-SCF

with CAS-SCF is very good.

Now let us compare the results at the multireference PT level. In total energy, there still

remains a difference of about 8 millihartree between the results of QCAS-PT and MRMP.

In relative energy, for the barrier height the QCAS-PT results are very close to those of

CAS-PT in both basis sets. The barrier height of QCAS-PT is 83.7 kcal/mol in both basis

sets, the differences from those of MRMP are only 0.1 and 0.3 kcal/mol for cc-pVTZ and

cc-pVQZ, respectively. Moreover, the barrier height is also close to the experimental

value, 84.6 kcal/mol [38]. The error of 0.9 kcal/mol is within twice the experimental

uncertainty 0.8 kcal/mol.
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20.2.1.6.2 Valence excitation energies for formaldehyde [36]. The second example

is the GMC-QDPT calculation of valence excitation energies for formaldehyde molecule.

Calculations on formaldehyde were carried out at the ground state experimental geometry

(i.e. r(CO) ¼ 1.203 Å, r(CH) ¼ 1.099 Å, and u(HCH) ¼ 116.58). The basis set used was
Dunning’s cc-pVTZ.

Five reference spaces were constructed from eight electrons, 16 ½ða1; a2; b1; b2Þ ¼
ð7; 1; 3; 5Þ	; 18 ½¼ ð7; 1; 4; 6Þ	; 20 ½¼ ð8; 1; 5; 6Þ	; 22 ½¼ ð8; 2; 5; 7Þ	; and 24 orbitals

½¼ ð9; 2; 6; 7Þ	; by exciting one and two electrons from the following parent

configurations:

1A1 states : …n2ðHFÞ; p! pp; n! sp

3A1 states : p! pp; n! sp

1;3A2 states : n! pp; 1b2ðsÞ! pp

1;3B1 states : 5a1ðsÞ! pp

1;3B2 states : n! 6a1ðspÞ

All the calculations were done in each symmetry.

The results are summarized in Tables 20.3 and 20.4. The calculations with CAS-SCF

and CAS-QDPT are far too large to be done. We, therefore, compare the results with

available experimental results and some recent theoretical results, i.e. MR-CI results by

Hachey et al. [39], the second-order complete active space perturbation theory (CASPT2)

calculations by Merchán and Roos [40], and the equation of motion coupled cluster

(EOM-CC) calculations by Gwaltney and Bartlett [41].

As can be computed from Table 20.3, the maximum differences in excitation energy

for the largest three (two) numbers of active orbitals is 0.09 (0.05) eV. We can, therefore,

consider that the excitation energies at the MC-SCF level are almost converged values for

Table 20.2 Transition state barrier height for the reaction H2CO! H2 þ CO

Eq. (hartree)a Tr. (hartree)b DE (kcal/mol) Error (kcal/mol)

cc-pVTZ

CAS-SCF 2114.04696 2113.91381 83.6 21.0

QCAS-SCF 2114.03786 2113.90306 84.6 0.0

MRMP 2114.30451 2114.17134 83.6 21.0

QCAS-PT 2114.29674 2114.16338 83.7 20.9

cc-pVQZ

CAS-SCF 2114.05624 2113.92300 83.6 21.0

QCAS-SCF 2114.04712 2113.91226 84.6 0.0

MRMP 2114.33057 2114.19763 83.4 21.2

QCAS-PT 2114.32316 2114.18981 83.7 20.9

Exptl. (classical)c 84.6 ^ 0.8

aEquilibrium structure.
bTransition state structure.
cRef. [38]. Barrier height not including zero-point energy correction.
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Table 20.3 Valence excitation energies of H2CO (eV)

State Orbital picture MC-SCF GMC-QDPT Exptl

(8,16) (8,18) (8,20) (8,22) (8,24) (8,16) (8,18) (8,20) (8,22) (8,24)

1A1 p! pp; n ! sp 10.07 10.03 10.03 10.02 10.02 9.66 9.67 9.72 9.72 9.72

n ! sp; p! pp 11.01 11.01 11.00 11.03 11.01 10.65 10.63 10.65 10.63 10.64 10.70
1A2 n ! pp 4.32 4.43 4.27 4.25 4.22 4.04 4.02 4.01 4.02 4.08 4.07

1b2(s)! pp 10.96 11.16 10.97 10.98 10.94 10.30 10.34 10.33 10.37 10.43
1B1 5a1(s)! pp 9.63 9.89 9.82 9.81 9.80 9.31 9.24 9.26 9.20 9.28 9.00
1B2 n ! 6a1(s

p) 7.73 8.16 8.22 8.32 8.31 8.31 8.23 8.41 8.45 8.45

3A1 p! pp; n ! sp 6.18 6.28 6.19 6.13 6.11 6.13 6.13 6.18 6.17 6.18 6.00

n ! sp;p! pp 9.66 9.64 9.70 9.74 9.75 9.60 9.61 9.62 9.62 9.62
3A2 n ! pp 3.84 3.95 3.78 3.75 3.71 3.63 3.58 3.58 3.61 3.63 3.50

1b2(s)! pp 10.52 10.68 10.52 10.52 10.47 10.04 10.03 10.02 10.07 10.10
3B1 5a1(s)! pp 8.78 9.02 8.92 8.91 8.90 8.45 8.41 8.39 8.27 8.50 8.50
3B2 n ! 6a1(s

p) 7.36 7.79 7.85 7.95 7.94 7.89 7.80 7.99 8.02 8.07
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Table 20.4 Valence excitation energies of H2CO (eV)

State Orbital picture MC-SCF (8,24) GMC-QDPT (8.24) Exptl MRCIa CASPT2b EOM-CCc CCSDd CIS-MP2e SAC-CIf

1A1 p! pp, n ! sp 10.02 9.72 9.60 9.77 9.47 9.27 9.19 –

n ! sp, p! pp 11.01 10.64 10.70 10.83
1A2 n ! pp 4.22 4.08 4.07 4.05 3.91 3.98 3.95 4.58 4.16

1b2(s)! pp 10.94 10.43 10.38 10.08 11.19
1B1 5a1(s)! pp 9.80 9.28 9.00 9.35 9.09 9.33 9.26 9.97 9.49
1B2 n ! 6a1(s

p) 8.31 8.45

3A1 p! pp; n ! sp 6.11 6.18 6.00 5.99 6.72 6.10

n ! sp;p! pp 9.75 9.62
3A2 n ! pp 3.71 3.63 3.50 3.48 4.15 3.70

1b2(s)! pp 10.47 10.10 10.52 10.80
3B1 5a1(s)! pp 8.90 8.50 8.50 9.18 8.52
3B2 n ! 6a1(s

p) 7.94 8.07

aRef. [39].
bRef. [40].
cRef. [41].
dRef. [42].
eRef. [43].
fRef. [44].
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the change of the active orbital numbers. However, the agreement with the experimental

values is not so good: the error is 0.32 eV on average and 0.80 eV at maximum.

At the GMC-QDPT level, the excitation energies are also almost converged (though

the differences are a little larger than those at MC-SCF level are). Compared to the

reference MC-SCF level, the results are somewhat improved. The error from the

experimental value was reduced to 0.11 eV on average and 0.28 eV at maximum.

20.2.1.6.3 The most stable structure of SiC3 [45]. Silicon-containing carbon

clusters, SimCn; have recently received much attention from various fields, such as

astrophysics and nanoscience. In particular, SiCn ðn ¼ 1–4Þ molecules have been well
studied, both experimentally and theoretically. However, among the theoretical studies,

the most stable structure of SiC3 was in dispute. The most stable structure of the SiC3
molecule was investigated using second-order perturbation theory with general

multiconfiguration self-consistent field reference functions (GMC-PT).

The basis sets used were Dunning’s cc-pVXZ (X ¼ D, T, Q) and augmented cc-pVXZ

(X ¼ D, T, Q) basis sets. Using these basis sets, we first carried out Hartree–Fock (HF)

calculations (unrestricted HF calculations for 1t and restricted HF calculations for 2s and

3s; see Fig. 20.1). The active spaces in the reference MC-SCF calculations were

constructed from the HF configuration plus single and double excitation configurations

among valence orbitals, that is, valence configuration interaction singles and doubles

(CISD) space. The 16 electrons in the 16 orbitals were correlated in MC-SCF

calculations; hereafter, we refer to these spaces as MC(16,16) following the CAS(n, m)

notation.

Table 20.5 shows the relative stability of the 1t, 2s, and 3s isomers. The results indicate

that the 2s isomer is most stable in all the basis sets and at both the CCSD(T) and

Fig. 20.1. Three isomers of SiC3: 1t, 2s, and 3s. The numbers in roman and italic type represent the bond lengths

in ångstrom optimized by CCSD(T)/cc-pCVQZ (Refs. [47,49]) and FORS-SCF/6-31G(d) (Ref. [46]) methods,

respectively.
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CAS-SCF geometries except for some spin-averaged orbital energy numbers. The second

most stable isomer is the 3s isomer, although the energy difference from the 1t isomer is

quite small. The relative energy of the 3s isomer measured from the 2s isomer was 5.3

(9.0) kcal/mol in the calculations with the aug-cc-pVQZ basis and CCSD(T) (CAS-SCF)

geometry, while the relative energy of the 1t isomer was 6.7 (9.9) kcal/mol. This order of

the isomers is unchanged even though the zero-point vibrational energy (ZPVE)

correction is included. The ZPVEs for the 1t, 2s, and 3s isomers are very close to one

another: 7.41, 7.37, and 7.07 kcal/mol, respectively, at the CAS-SCF level [46]. (The

differences of ZPVEs at the CCSD level are EZPVð1tÞ2 EZPVð2sÞ ¼ 0:5 kcal/mol and
EZPVð3sÞ2 EZPVð2sÞ ¼ 20:2 kcal/mol at the CCSD level [47]. ZPVEs themselves were

not reported in Ref. [47]). The zero-point corrected energies are also listed in Table 20.5.

Table 20.5 also tells us a clear trend of the basis set effect, with a larger basis set giving

larger 2s–3s and 2s–1t energy separations. This implies that the most stable isomer will

not change if we use larger basis sets than those used. To check the basis set effect on the

order of the isomers, we calculated the complete basis set limits. The complete basis set

extrapolation of the CCSD energy is given by the Gaussian dependence [48] on basis set

sizes, i.e.

EðnÞ ¼ Eð1Þ þ E0 exp½2ðn2 1Þ	 þ E1 exp½2ðn2 1Þ2	 ð44Þ
where n is the cardinal number of the basis set (2, 3, 4 for DZ, TZ, QZ, respectively),

Eð1Þ is the complete basis set limit, and E0 and E1 are constants. By assuming the basis
set dependence of GMC-PT is the same, apart from a multiplicative factor, we

extrapolated the energy in the complete basis set. The relative energies at the complete

Table 20.5 Relative energy of the 1t and 3s isomers measured from the energy of the 2s isomer (in

kcal/mol)

Structure cc-pVXZ sets aug-cc-pVXZ sets CCSD(T)a

(cc-pCVQZ)

MC-QDPTb

(aug-cc-pVDZ)

X ¼ D X ¼ T X ¼ Q X ¼ D X ¼ T X ¼ Q

CCSD(T) geometry

1t (SD) 3.4 5.1 6.3 3.7 5.4 6.7 (7.2)c 7.5 (8.0)c –

1t (SA) 21.1 20.4 0.7 21.6 20.4 0.9 (1.4)c –

2s 0.0 0.0 0.0 0.0 0.0 0.0 0.0 –

3s 4.2 4.9 5.3 3.4 4.8 5.3 (5.1)c 6.2 (6.0)c –

FORS-SCF geometry

1t (SD) 4.6 7.3 8.8 5.5 7.9 9.9 (9.9)d – –

1t (SA) 0.1 1.8 3.0 0.3 2.1 3.9 (4.0)d – 24.4 (24.3)d

2s 0.0 0.0 0.0 0.0 0.0 0.0 – 0.0

3s 7.3 8.5 9.0 6.6 7.7 9.0 (8.7)d – 3.4 (3.1)d

aRefs. [47,49].
bRef. [46].
cThe numbers in the parentheses are zero point corrected energies. The zero point vibrational energies are taken from

Ref. [47].
dThe numbers in the parentheses are zero point corrected energies. The zero point vibrational energies are taken from

Ref. [46].
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basis set limit, computed through the above extrapolation, were 7.6 (11.1) and 5.6

(9.9) kcal/mol for the 1t and 3s isomer, respectively, in the CCSD(T) (FORS-SCF)

geometry. The relative order of the 1t and 3s isomers was unchanged which supports our

conclusion that the 2s isomer is most stable.

20.2.2 Valence bond description of complete active space self-consistent

field function

A defect of the multireference-based methods is that the wavefunction is too complicated

to extract chemical description from it. There are too many CI coefficients, cluster

amplitudes, or terms corresponding to diagrams in those methods. The information of the

chemical picture is hidden behind them and to extract it seems quite difficult.

Classical valence bond (VB) theory is very successful in providing a qualitative

explanation for many aspects. Chemists are familiar with the localized molecular orbitals

(LMO) and the classical VB resonance concepts. If modern accurate wave functions can

be represented in terms of such well-known concepts, chemists’ intuition and experiences

will give a firm theoretical basis and the role of the computational chemistry will

undoubtedly expand.

The CASVB functions [50,51] can be obtained by transforming the canonical CASSCF

functions without loss of energy. First we transform the CASSCF delocalized MO to

localized MO using the arbitrariness in the definition of the active orbitals. Then we

perform a full CI again in the active space. The CASVB method provides an alternative

tool for describing the correlated wave functions.

Similar approaches have been employed by various workers. Lam et al. [52] showed

that wave functions in FORS can be expressed in terms of localized configuration-

generating MOs which have essentially atomic character. Cundari et al. [53] extended the

idea and used it successfully to study the high-valent transition metal complexes. They

used the orthogonal spin functions generated by the Kotani–Yamanouchi branching

diagrams. Also our method has some relation to the spin-coupled valence bond (SCVB)

method of Cooper et al. [54,55], where the spin-coupled orbitals and the spin-coupling

coefficients are optimized simultaneously. Goddard et al. [56,57] have proposed the

generalized valence bond (GVB) method. GVB has the advantage of compactness, as the

wave functions are generally assumed to be formally purely covalent. However, GVB

does not offer the clear relationship between the wave function and the various Lewis

structure. Hiberty et al. [58,59] have also developed a general VB method and discussed

chemical reactivity and structure.

20.2.2.1 The CASVB method [50,51]

We have proposed two types of CASVB method. In one method the valence bond

structures are constructed over orthogonal localized orbitals, and in the other the

structures are written with non-orthogonal localized orbitals. These are henceforth

referred as orthogonal CASVB and non-orthogonal CASVB, respectively.

The idea of CASVB is based on the fact that the densities of variational wave functions

are invariant under the transformations which hold the variational space unchanged.
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In the CASSCF case, a complete active space (CAS) is invariant under the linear

transformation of active orbitals and also that of configuration state functions (CSFs).

One may re-define the active orbitals utilizing the invariance of the active orbital

space. In the orthogonal CASVB method, the LMOs constructed by Boys’ localization

procedure are used; that is, active orbitals are transformed so as to have the minimum sum

of r2 expectation values. If the active orbitals are defined appropriately, the LMOs

obtained nearly always turn out to be localized on a single atomic center with small

localization tails on to neighboring atoms. In the non-orthogonal CASVB case, the

atomic-like orbitals are constructed by Ruedenberg’s projected localization procedure.

Let C CASSCF be a CASSCF wave function

C CASSCF ¼
X
i

CiF
CSF
i ; FCSF

i ; FCSF
i ð{wi}Þ ð45Þ

where FCSF
i are the CSFs constructed by the orthogonal orbitals set {wi} and Ci are the

known CAS configuration interaction (CI) expansion coefficients. Similarly, one may

define the CASVB function in terms of spin-paired functions as

C CASVB ¼
X
i

AiF
VB
i ; FVB

i ; FVB
i ð{li}Þ ð46Þ

where FVB
i is are a spin-paired function constructed by LMOs. The spaces, spanned by

{FCSF
i } and {FVB

i }; are identical. Since Eqs. (45) and (46) are different expressions of the
identical wave function, one may writeX

j

AjF
VB
j ¼

X
j

CjF
CSF
j ð47Þ

Multiplying Eqs. (45) and (46) by FCSF
i and integrating the products, one has a linear

equation X
j

VijAj ¼ Ci with Vij ¼ kFCSF
i lFVB

j l ð48Þ

whose dimension is equal to the dimension of CAS. Solving this linear equation, one

obtains CASVB wave functionC CASVB. In the orthogonal CASVB case, one can use the

common set of (Boys’) LMOs as {wi} as well as {li} since the LMOs remain CASSCF
MOs. In that case, the linear equation (48) is reduced to a set of linear equations for each

orbital configuration, and the matrix Vij for each linear equation becomes a triangular

matrix depending only on spin configurations. The linear equation (48) can, therefore, be

solved with ease, compared with the non-orthogonal CASVB case.

The occupation number (or weight) of a resonance structure is calculated with

ni ¼ Ap
i

X
j

SijAj ð49Þ

where Sij are overlaps between the structures i and j; defined by

Sij ¼ kFVB
i lFVB

j l ð50Þ
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and satisfies the normalization X
i

ni ¼ 1 ð51Þ

Note that the occupation number ni could be negative because of the non-orthogonality of

resonance structures.

20.2.2.2 Description of electronic structure of benzene

As an example, a CASVB description for benzene is given in Fig. 20.2. See Refs. [50,51]

for the computational details. The CASVB affords a clear view of the wave functions for

the various states. The excitation process is represented in VB theory in terms of the

rearrangement of spin couplings and charge transfer. The former generates the covalent

excited states and the latter gives rise to the ionic excited states, in which the covalent

bond is broken and a new ionic bond is formed. Thus, the singly, doubly, etc. polar

structures are generated from their respective parent ground state covalent (nonpolar),

singly, etc., polar structures.

Fig. 20.2. CASVB description for the ground and p! pp singlet excited states of benzene.
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The ground state is represented by two covalent Kekulé structures as expected. The

lowest excited 1B2u
2 state is again described by a combination of the Kekulé structure.

There are no significant contributions from the Dewar structures or the corresponding

orthopolar structures. The linear combinations of the two equivalent Kekulé structures

generate the plus and minus states. Their positive combination gives rise to the totally

symmetric 1A2g
2 ground state, while the negative combination yields the excited 1B2u

2

state. The second and third p! pp excited states are described by a number of ionic

structures. There is no contribution from the covalent structures. The ionic character of

these states can easily be found from a CASVB description. The highest valence excited

states are the covalent 1E2g
2 state. The state has a predominantly Dewar character with no

contribution from the Kekulé structures. Thus, the Kekulé structures dominate the ground

state and the singly excited 1B2u
2 state while the Dewar structures dominate the doubly

excited degenerate 1E2g
2 states. The states described by Dewar structures are described by

doubly, triply, etc. excitations in an MO language.

20.2.2.3 Description of chemical reaction—hydrogen exchange reactions

H2 þ X ! H þ HX (X ¼ F, Cl, Br, and I) [60]

We examine a series of reactions including ionic bonds

H2 þ F! Hþ HF ðR1Þ
H2 þ Cl! Hþ HCl ðR2Þ
H2 þ Br! Hþ HBr ðR3Þ
H2 þ I! Hþ HI ðR4Þ

The reaction for fluorine (R1) is highly exothermic, while the reactions for chlorine (R2),

bromine (R3), and iodine (R4) are endothermic. The heats of these reactions are 30.8,

21.2,216.7, and232.7 kcal/mol for reactions (R1), (R2), (R3), and (R4), respectively.

According to Hammond’s postulate, reaction (R1) should have an early TS, and reactions

(R2) and (R3) should have late TSs. What the electronic states are during these reactions,

and how the CASVB method describes the electronic structure, are our interests in this

section.

The active spaces were constructed by distributing three electrons in three orbitals

consisting of H1(1s), H2(1s), and X(2ps), i.e. CAS(3,3). The dimension of the CAS is
eight. According to this CAS, eight linearly independent VB structures

wHA
wHB

ðab2 baÞ·wXa; HA 2 HB
_X ðIÞ

wHB
wHB

ab·wXa; Hþ
A

2HB
_X ðIIÞ

wHA
wHA

ab·wXa; H2
A

þHB
_X ðIIIÞ

wHA
a·wHB

wXðab2 baÞ; _HA HB 2 X ðIVÞ
wHA

a·wHB
wHB

ab; _HA H
2
B

þX ðVÞ
wHA

a·wXwXab; _HA H
þ
B

2X ðVIÞ
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wHB
a·wXwXab; Hþ

A
_HB

2X ðVIIÞ
and

wHA
wHA

ab·wHB
a; H2

A
_HB

þX ðVIIIÞ
were used to construct CASVB functions, where the normalization constants and

antisymmetrizers are omitted.

The contributions of the covalent HAHB bond, ionic HAHB bond, covalent HBX bond,

ionic HBX bond, and ionic HAX bond are defined by

nCovalent HAHB
¼ nI ; nIonic HAHB

¼ nII þ nIII ð52Þ
nCovalent HBX

¼ nIV; nIonic HBX
¼ nV þ nVI ð53Þ

and

nIonic HAX
¼ nVII þ nVIII ð54Þ

Furthermore, the contributions of the total HAHB and HBX bond structures are defined by

the sums of the covalent structure (I)/(IV) and ionic structures (II)/(V) and (III)/(VI)

nHAHB
¼ nCovalent HAHB

þ nIonic HAHB
; nHBX

¼ nCovalent HBX
þ nIonic HBX

ð55Þ
Let us first examine the electronic structure at the TS structure of the four reactions.

Table 20.6 shows the VB structure at the TSs of H2 þ X! H þ HX. We can see that the

covalent VB structures are dominant: the structures are well described by the

superposition of the HH and HX covalent structure with small HþH and HþX2 ionic

contributions. Using Eq. (55), these structures are further classified as the HH and HX

bonds, as shown in Table 20.6. For X ¼ F, the contribution of the HH bond (55.5%) is

larger than that of the HX bond (39.4%). This relation is reversed for X ¼ Cl, Br, and

I. The contribution of the HH bond increases as the halogen atom becomes heavier

(55.8 (Cl), 69.8 (Br), and 76.4% (I)). This means that the TS of chemical bonds (that is,

the point where the occupation numbers of the two chemical bonds are equal) is placed in

Table 20.6 Occupation numbers of the VB structures at the TS

H þ H þ F H þ H þ Cl H þ H þ Cl H þ H þ Cl

H–H Ẋ (I) 0.485 0.328 0.217 0.172

Hþ 2H Ẋ (II) 0.053 0.059 0.043 0.034

H2 þH Ẋ (III) 0.017 20.022 20.023 20.019

Ḣ H–X (IV) 0.252 0.385 0.514 0.591

Ḣ H2 þX (V) 20.005 0.018 0.042 0.073

Ḣ Hþ 2X (VI) 0.147 0.155 0.142 0.100

H2Ḣ þX (VII) 0.006 0.013 0.011 0.010

HþḢ –X (VIII) 0.045 0.064 0.053 0.039

HH bond 0.555 0.365 0.237 0.187

HX bond 0.394 0.558 0.698 0.764

Others 0.051 0.077 0.064 0.049
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the reactant side in the X ¼ F case and in the product side for the case of X ¼ Cl, and it

shifts more to the product side as the halogen atom becomes heavier.

We then examine the bond nature during the reactions. Fig. 20.3 shows the changes in

the total occupation number of the HH and HX bond structures along the IRC. The

occupation numbers of the HH and HX bond structures change rapidly and the curves

cross near the TS. The crossing points are located at 0.07, 20.11, 20.25, and

20.33 bohr(a.m.u.)1/2 for X ¼ F, Cl, Br, and I, respectively, where a negative sign means

the crossing point is located before the TS and a positive sign after the TS. We can see the

trend that the crossing point shifts from the reactant side to the product side as the halogen

atom gets heavier. The changes in the contents of the HH and HX bonds are plotted in

Fig. 20.4. As expected in these reactions including ionic bonds, the contribution of ionic

bond increases as that of the covalent bond increases. However, the crossing point of

HH and HX covalent bonds are still close to that of the HH and HX bonds in Fig. 20.3.

The covalent bonds are mainly responsible for determining the crossing points.

If we re-take the TS of chemical bonds as the origin, these facts well explain the shift of

TS (from the early TS side to the late TS side) that Hammond’s postulate predicts,

indicating that the CASVB method is a powerful tool for describing the electronic

structure and chemical bond during chemical reactions.
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Fig. 20.3. Changes in the occupation numbers of the total HH bond (X), total HX bond (W), and the other (£)
VB structures along IRC. The origin of the horizontal axis corresponds to the TS.
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20.3 LONG-RANGE AND OTHER CORRECTIONS FOR DENSITY

FUNCTIONALS

20.3.1 Conventional correction schemes in density functional theory

In this century, the main concerns of theoretical chemistry obviously make the transition

from accurate investigations of small molecules to the designs of complicated large

molecular systems; e.g. proteins, nano-materials, environmental catalyses, and so forth.

What is necessary for approaching these systems is an accurate theory of low-

computational order. DFT [61–63] is expected to be a major candidate for such a theory

at present, because this theory gives accurate chemical properties despite its low-

computational order that may be reduced to order-N. In DFT, electronic states are usually

determined by solving the nonlinear Kohn–Sham equation [61] with an exchange-

correlation density functional. The most remarkable characteristic of DFT is the

exchange-correlation energy part that is approximated by a one-electron potential

functional. Hence, calculated DFT results depend on the form of this exchange-

correlation functional.

In last two decades, various kinds of exchange functionals have been suggested

especially for generalized gradient approximations (GGA) [64–67] beyond the local
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Fig. 20.4. Changes in the occupation numbers of the covalent HH bond (X), ionic HH bond (B), covalent HX

bond (W), ionic HX bond (A), and the other (£) VB structures along the IRC.
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density approximation (LDA) functional [68]. Due to the requirement of order, these

GGA exchange functionals are usually expressed as a functional of xs ¼ l7rsl=r
4=3
s ;

where rs is the electron density of spin s and 7rs is the gradient of the density [69].
What should be noticed is that most GGA exchange functionals have unique behaviors

only for large xs [69,70]. This is because small-xs behaviors of functionals are restricted

by the physical condition for slowly-varying density [71], although there is no definite

conditions for rapidly varying density [67,69,70]. Hence, GGA exchange functionals are

usually characterized by the behaviors for large-xs (i.e. low-density-high-gradient)

density. Conventional exchange-correlation functionals will be discussed by Prof.

Scuseria in this book. We will give a summary account of correction schemes for

exchange functionals in this section.

Since the latter half of 1990s, hybrid functionals have appeared in DFT calculations. In

hybrid functionals, (pure) GGA functionals are combined with the Hartree–Fock (HF)

exchange integral at a constant rate. This idea may have come from an observation that

DFT calculations using pure GGA functionals often give opposite errors to those in HF

calculations. In 1993, Becke suggested hybrid B3LYP functional [72]. Based on a

concept of adiabatic connection, B3LYP exchange-correlation energy are expressed by a

combination of Becke 1988 (B88) exchange [64] and Lee–Yang–Parr (LYP) correlation

[73] GGA functionals, Slater (S) exchange [68] and Vosko–Wilk–Nusair (VWN)

correlation [74] LDA functionals, and the HF exchange integral with three parameters:

EB3LYPxc ¼ a0E
HF
x þ ð12 a0ÞESx þ axE

B88
x þ ð12 acÞEVWN

c þ acE
LYP
c ð56Þ

where EAx and E
B
c are exchange and correlation energies of A and B, and a0; ax; and ac are

0.2, 0.72, and 0.81, respectively. Atomic units have been used (" ¼ e2 ¼ m ¼ 1; energies
are in hartree, and distances are in bohr). This adiabatic connection may have some

incompatible parts; for example, parameters in B88 and LYP functionals were originally

determined to reproduce exact exchange and correlation energies. Nevertheless, B3LYP

becomes the most popular DFT functional in quantum chemistry, because it gives very

accurate results for a wide variety of chemical properties. Becke 1997 (B97) [75] and

Perdew–Burke–Ernzerhof 1996 (PBE0) [76] functionals are also hybrid functionals.

Similar to B3LYP, these functionals combine GGA functionals with the HF exchange

integral at a constant rate, and give accurate results for various chemical properties of

molecules. However, inconsistencies in the adiabatic connection remains unsettled in

these functionals.

Asymptotic corrections for exchange functionals have attracted attentions especially in

time-dependent DFT (TDDFT) studies. In far regions from atomic nuclei, it is proved that

exchange potential for s-spin electrons, vsxc ¼ dExc=drs has the asymptotic relation [77]

limR!1v
s
xcðRÞ ¼ 2

1

R
ð57Þ

where R ¼ lRl and R is the distance vector from the nearest nucleus. On the ground of

this relation, Van Leeuwen and Baerends suggested an exchange functional (LB) [78]

by adapting the B88 exchange functional to the asymptotic behavior. Tozer

and Handy suggested the asymptotic correction (AC) scheme that imposes, instead
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of Eq. (57) [79,80]

limR!1v
s
xcðRÞ ¼ 2

1

R
þ 1HOMOs þ Is ð58Þ

where 1HOMOs is the eigenvalue of the highest occupied s-spin molecular orbital and Is is
the ionization potential of the s-spin electron. It has been reported that underestimations
of Rydberg excitation energies in TDDFT calculations are modified by using LB and AC

schemes.

Besides, self-interaction correction (SIC) is one of the most popular correction

schemes. Perdew and Zunger suggested a scheme for the application of SIC to occupied

orbitals where the self-interaction components of the Coulomb and exchange energies are

simply subtracted from the total exchange-correlation energy [81]

ESICxc ½ra; rb	 ¼ Exc½ra; rb	2
X
i;s

1

2

ð risðRÞrisðR0Þ
lR2 R0l

d3R d3R0 þ Exc½ris; 0	
� �

ð59Þ

and potential

vis;SICxc ðRÞ ¼ dESICxc
drisðRÞ ¼ dExc½ra; rb	

drisðRÞ 2
ð risðR0Þ

lR2 R0l
d3R0 2

dExc½ris; 0	
drisðRÞ ð60Þ

where ris is the ith orbital component of rs: This SIC scheme has been frequently used in
energy band calculations of solid states for improving underestimated band gap

energies. However, this scheme essentially requires an orbital-localization process

[82] or transformation of functionals to an orbital-dependent form [83] due to the

degrees of freedom in unitary transformations of orbitals. Tsuneda, Kamiya, and Hirao

suggested a regional self-interaction correction (RSIC) scheme as a simple SIC method

requiring no additional processes [84]. On the ground that total kinetic energy density,

ttotals ¼ Pocc
i l7cisl

2; approaches the Weizsäcker kinetic energy density, tWs ¼
l7rsl

2=ð4rsÞ for self-interacted electrons, an exchange functional is spatially replaced
with a self-interaction energy density only for regions, where ttotals approaches tWs ; in this
scheme. As the self-interaction energy density, exact exchange self-interaction energy

densities of 1s orbitals in hydrogen-like atoms, c1sis ¼
ffiffiffiffiffiffiffi
a3=p

q
expð2aRÞ; is employed

such as

1RSICxs ¼ 2
rs
2R

� �
½12 ð1þ aRÞexpð22aRÞ	 ð61Þ

where 1s is defined by Ex ;
P
s

Ð
1xs d

3R and a ¼ 7rs=ð2rsÞ: By applying the RSIC
scheme to chemical reaction calculations, it was found that underestimated barrier

energies of pure functionals were clearly improved for some reactions.

As mentioned above, various correction schemes have been developed up to the

present. However, there is room for further improvement in conventional correction

schemes. Conventional hybrid functionals give poor excitation energies in TDDFT

calculations as mentioned later. Asymptotic and SICs have little (or worse) effect on

reproducibilities of molecular chemical properties. Recently, it has been proved that a

long-range correction for exchange functionals obviously brings solutions to various
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DFT problems that have never been solved by other functionals or corrections. In later

sections, we will briefly review the background of the long-range correction scheme and

will reveal the applicabilities of this scheme.

20.3.2 Long-range correction schemes for exchange functionals

Pure DFT exchange-correlation functionals have been represented by using only local

quantities at a reference point: e.g. electron density, gradient of density, and etc. (We are

now describing ‘local’ quantity as a quantity determined at a reference point for clarity,

although gradient of density is known as a ‘nonlocal’ quantity in common use.) It is,

therefore, presumed that pure functionals overestimate local contributions and under-

estimate nonlocal contributions. The most significant nonlocal contribution neglected in

pure functionals may be the long-range electron–electron exchange interaction, because

it may be impossible to represent this interaction as a functional of a one-electron

quantity.

In 1996, Savin suggested a long-range exchange correction scheme for LDA functional

[85]. In this scheme, the two-electron operator, 1=r12; is separated into the short-range
and long-range parts naturally by using the standard error function erf such that

1

r12
¼ 12 erfðmr12Þ

r12
þ erfðmr12Þ

r12
ð62Þ

where r12 ¼ lr1 2 r2l for coordinate vectors of electrons, r1 and r2; and m is a parameter
that determines the ratio of these parts. Based on Eq. (62), the long-range exchange

interaction is described by the HF exchange integral

Elrx ¼ 2
1

2

X
s

Xocc
i

Xocc
j

ðð
cp
isðr1Þcp

jsðr2Þ erfðmr12Þ
r12

cjsðr1Þcisðr2Þd3r1 d3r2 ð63Þ

where cis is the ith s-spin orthonormal molecular orbital. The LDA exchange functional

is applied to the short-range exchange interaction such that

Esrx ¼2
3

2

3

4p

� �1=3X
s

ð
r4=3s 12

8

3
as

ffiffi
p

p
erf

1

2as

� ���
þ 2as 2 4a3s

 �
exp 2

1

4as

� �
2 3as þ 4a3s

��
d3R ð64Þ

where as ¼ m=ð2ksÞ: The averaged relative momentum ks is written for LDA as the

Fermi momentum, i.e. kFs ¼ ð6p2rsÞ1=3: Eq. (64) is derived by using the density matrix
form corresponding to the LDA exchange functional

PLDA1s Rþ r

2
;R2

r

2

� �
¼ 3

j1ðkFsrÞ
kFsr

rsðRÞ ð65Þ

where j1 is the first-order spherical Bessel function.
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However, Savin’s scheme is inapplicable to conventional GGA exchange functionals,

because GGA functionals usually have no corresponding density matrices unlike LDA.

In 2001, Iikura et al. solved this problem by pushing gradient terms of GGA functionals

into the momentum ks [86]. That is, the corresponding density matrix is determined

for any GGA exchange functional by substituting kFs in Eq. (65) with

kGGAs ¼ 9p

KGGA
s

� �1=2
r1=3s ð66Þ

where KGGA
s is defined in an exchange functional used: EGGAx ¼ Ð

r
4=3
s KGGA

s d3R:
Eq. (66) correctly reproduces the Fermi momentum kFs for K

LDA
s : By using kGGAs ; the

short-range exchange energy in Eq. (64) is substituted by

Esrx ¼2
3

2

3

4p

� �1=3X
s

ð
r4=3s KGGA

s 12
8

3
as

ffiffi
p

p
erf

1

2as

� ���
þð2as 2 4a3sÞexp 2

1

4as

� �
2 3as þ 4a3s

��
d3R ð67Þ

It is easily confirmed that Eq. (67) reproduces the original GGA exchange functional for

m ¼ 0: Parameter m is determined to optimize bond distances of homonuclear diatomic

molecules up to the third period asm ¼ 0:33: This scheme is called ‘long-range correction
(LC) scheme’. The applicabilities of the LC scheme will be discussed in the later section.

Besides the LC scheme, we should mention the screened Coulomb potential hybrid

functional as an attempt to take account of the long-range exchange effect. Heyd et al.

developed this functional by dividing the exchange terms of the hybrid PBE0 functional

into short- and long-range parts and by omitting a part of long-range exchange term as [87]

EvPBEhxc ¼ aEHF;srx ðvÞ þ ð12 aÞEPBE;srx ðvÞ þ EPBE;lrx ðvÞ þ EPBEc ð68Þ
where a ¼ 1=4 is a mixing coefficient and v is an adjustable parameter. The main

characteristics of this functional are the inclusion of the short-range HF exchange integral

and the exclusion of the long-range HF exchange integral. This functional gives more

accurate chemical properties than those of B3LYP for G2 and G3 set of molecules [87,88].

It is, however, presumed that this functional may not solve DFT problems arising from the

lack of long-range exchange effects due to the exclusion of the long-range HF exchange

integral. Moreover, Leininger et al. extended the above Savin’s scheme by using the long-

range exchange integral for the multireference configuration interaction (MRCI)

wavefunction [89]. Electron correlations in long-range interactions may hardly affect

calculated properties of standard molecules. However, electron correlations may be

important for the comparison of molecules that have much different spin-multiplicity or

neardegeneracy.

20.3.3 Applicabilities of long-range correction scheme

In this section, the LC scheme are examined by illustrating its applicabilities to three DFT

problems that have never been solved: (1) poor reproducibilities of van der Waals (vdW)
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bondings, (2) underestimations of Rydberg excitation energies, oscillator strengths, and

charge transfer excitation energies in time-dependent density functional calculations, and

(3) systematic overestimations of atomization energies of transition metal dimers.

20.3.3.1 Van der Waals calculations

One of the most critical DFT problems is the poor reproducibility of vdW bondings.

Actually, conventional correlation functionals have incorporated no vdW interactions.

Since vdW bondings, however, often determine structures of large-scale molecules,

accurate calculations of vdW bondings are a pressing problem in DFT. Several DFT

studies have been made on vdW calculations by using, e.g. a perturbation theory based on

DFT [90]. The most effective and general way may be the use of a vdW functional. Up to

the present, various types of vdW functionals have been suggested [91–93]. Some of

these functionals reproduce accurate vdW C6 coefficient comparable to the results of

high-level ab initio methods [91]. However, these functionals give poor vdW bondings

of, e.g. rare gas dimmers by simply combining with a conventional exchange-correlation

functional in DFT calculations. It is presumed that this problem may be due to the lack of

long-range interactions in exchange functionals, because vdW bondings are supposed to

be in the balance between vdW attraction and long-range exchange repulsion

interactions. On this ground, Kamiya et al. applied the LC scheme with a vdW

functional to calculations of dissociation potentials of rare-gas dimmers [94].

Andersson–Langreth–Lundqvist (ALL) functional was used as the vdW functional

[91]. This functional was developed to be correct for both separated electron gas regions

and far-apart atoms. In this functional, a damping factor was used to diminish the vdW

energy for regions at a short distances.

In Fig. 20.5, calculated dissociation potential energy curves of Ar2 are shown for pure

GGA functionals (BOP and PBEOP) [95] and LC functionals (LC-BOP and LC-PBEOP)

with no vdW functionals. The 6-311þþG(3df,3pd) basis functions was used [96–98].
The basis set superposition error was corrected by a counterpoise method [99]. As the

figure shows, LC functionals give very close potential curves to each other, although pure

GGA functionals provide obviously different curves. This may indicate that a long-range

correction is necessary for exchange functionals to reproduce vdW bondings.

Next, Fig. 20.6 displays calculated dissociation potentials of Ar2 by LC-BOP þ ALL

and conventional sophisticated functionals (mPWPW91 [100], mPW1PW91 [100], and

B3LYP þ vdW [101]). The second-order Møller–Plesset perturbation (MP2) and

experimentally predicted (Expt) [16] potential curves are also shown for comparison.

The figure clearly shows that LC-BOP þ ALL functional gives accurate vdW potential

curve in comparison with the results of MP2 and other conventional DFTs. It is,

therefore, necessary for accurate DFT calculations of vdW bondings to use both long-

range-corrected exchange and vdw-incorporated correlation functionals.

20.3.3.2 Time-dependent density functional calculations

Time-dependent density functional theory (TDDFT) becomes widely used as a simple

method for rapid and accurate calculations of molecular excitation energies. It has,

however, been reported that conventional TDDFT calculations underestimate

Rydberg excitation energies, oscillator strengths, and charge-transfer excitation energies.
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Tawada et al. supposed that this problem may also come from the lack of long-range

exchange interaction, and applied the LC scheme to TDDFT calculations [102].

Table 20.7 summarizes mean absolute errors in calculated excitation energies of five

typical molecules by TDDFT. The table also displays calculated results of asymptotically

corrected AC [79] and LB [78] (AC-BOP and LBOP) and hybrid B3LYP [72]

functionals, which are mentioned in the former section. The ab initio SAC-CI [103]

results are also shown to confirm the accuracies. The 6-311Gþþ (2d,2p) basis set was
used in TDDFT calculations [104,105]. As the table indicates, the LC scheme clearly

improves Rydberg excitation energies that are underestimated for pure BOP functional,

at the same (or better) level as the AC scheme does. It should be noted that LC and AC

schemes also provide improvements on valence excitation energies for all molecules.

LC and AC results are comparable to SAC-CI results. The LB scheme clearly modifies
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Fig. 20.5. Calculated bond energy potentials of argon dimer for long-range exchange corrected functionals

(LC-SOP, LC-BOP, and LC-PBEOP). Pure functionals are also presented for comparison. Highly accurate

potentials are also shown for comparison.
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Rydberg excitation energies, and however brings underestimations of valence excitation

energies. B3LYP results are obviously worse than LC and AC results for both valence

and Rydberg excitation energies.

Next, calculated oscillator strengths of excited states by TDDFT are shown in

Table 20.8. As is clearly shown in the table, LC scheme drastically improves oscillator

strengths, which are underestimated for BOP as second to hundredth part of experimental

values, to the same digit. Although AC-BOP, LBOP, and B3LYP also provide closer

oscillator strengths to the experimental values than BOP do, the accuracies are

unsatisfactory in comparison with LC-BOP ones. It is, therefore, concluded that the lack

of long-range interactions in exchange functional may also cause the underestimations of

oscillator strengths in TDDFT calculations.

Finally, calculated lowest charge transfer excitation energies of ethylene–tetrafluor-

oethylene dimer are shown in Fig. 20.7. Dreuw et al. recently suggested that poor charge

transfer excitation energies of far-aparted molecules may be one of the main problems
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Fig. 20.6. Calculated bond energy potentials of argon dimer for LC-BOPþALL functional. For comparison,

calculated potentials of conventional sophisticated density functional schemes (mPWPW91, mPW1PW91, and

B3LYP þ vdW) and those of MP2 are also presented. Highly accurate potentials are also shown for comparison.
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of TDDFT [106]. They pointed out that intermolecular charge transfer excitation energies

of far-aparted molecules should have the correct asymptotic behavior for long inter-

molecular distance. That is, for long molecular–molecular distances R and R0 ðR . R0Þ;
charge transfer energy vCT should satisfy

vCTðRÞ2 vCTðR0Þ $ 2
1

R
þ 1

R0
ð69Þ

The figure shows that LC-BOP gives the correct asymptotic behavior as is different

from AC-BOP and LBOP do. Although B3LYP recovers a part of this behavior, the

degree is in proportion to the mixing rate of the HF exchange integral. Hence, this result

may also indicate that problems in conventional TDDFT calculations come from the

lack of long-range exchange interactions in exchange functionals rather than the poor

far-nucleus asymptotic behavior of exchange functionals.

Table 20.7 Mean absolute errors in calculated excitation energies of five typical molecules by TDDFT

in eV

Molecule LC-BOP BOP AC-BOP LBOP B3LYP SAC-CI

N2 Valence 0.36 0.40 0.27 1.48 0.54 0.33

Rydberg 0.90 2.37 0.84 0.43 1.30 0.25

Total 0.54 1.06 0.46 1.13 0.79 0.30

CO Valence 0.19 0.28 0.17 1.02 0.36 0.26

Rydberg 0.75 2.06 0.79 0.42 1.16 0.27

Total 0.47 1.17 0.48 0.72 0.76 0.27

H2CO Valence 0.25 0.59 0.24 0.52 0.26 0.45

Rydberg 0.47 1.66 0.59 0.07 0.84 0.13

Total 0.40 1.30 0.47 0.22 0.64 0.24

C2H4 Valence 0.30 0.47 0.24 1.52 0.47 0.11

Rydberg 0.18 1.41 0.58 0.69 0.92 0.17

Total 0.20 1.28 0.53 0.80 0.85 0.16

C6H6 Valence 0.21 0.28 0.24 0.84 0.26 0.35

Rydberg 0.24 1.01 0.88 0.35 0.56 0.15

Total 0.23 0.74 0.64 0.53 0.44 0.22

Table 20.8 Calculated oscillator strengths of excited states of typical molecules by TDDFT ( £ 1022)

System State LC-BOP BOP AC-BOP LBOP B3LYP SAC-CI Exptl

N2
1Pu 11.05 0.28 2.02 4.18 1.33 8.14 24.3
1Su

þ 24.06 0.69 6.07 3.60 3.84 15.67 27.9

CO 1P 19.76 8.66 6.68 5.97 11.24 9.63 17.6

H2CO
1B2 2.19 1.68 1.02 3.02 2.71 1.88 4.13, 2.8, 3.8, 3.2
1A1 6.94 2.11 2.62 1.80 3.64 4.26 6.05, 3.2, 3.8, 3.6
1B2 6.50 1.75 2.42 2.23 2.32 2.95 2.81, 1.7, 1.9

C2H4
1B3u 12.85 3.49 4.77 5.08 6.75 8.20 4.00
1B1u 73.85 12.85 24.41 32.38 34.67 40.65 29.00

C6H6 11E1u 134.02 49.71 48.59 53.48 58.31 103.05 120, 90.0, 95.3
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20.3.3.3 Transition metal dimer calculations

Yanagisawa et al. calculated the equilibrium geometries and the atomization energies for

the first- to third-row transition metal dimers and concluded the following [107,108]:

1. Pure functionals tend to overstabilize electron configurations that contain orbitals

in a high-angular momentum shell that is not fully occupied. This tendency is

reduced from the first- to third-row transition metal dimers.

2. The overestimations of atomization energies of dimers are associated with the

errors in outermost s–d interconfiguration transition energies of atoms. The latter

errors may be due to the lack of long-range exchange interactions of outermost s

and d orbitals that are fairly different in distributions. Hence, this lack may also

cause the overestimations of the atomization energies.

3. B3LYP generally gives more accurate atomization energies than those of pure

functionals, even if high-angular momentum orbitals are present in the configura-

tion. However, B3LYP gives an erroneous energy gap between the configurations

of fairly different spin-multiplicity probably due to the unbalance of the exchange

and correlation functionals.

Based on this discussion, Tsuneda et al. applied the LC scheme to calculations of

transition metal dimers [109].

Errors in calculated atomization energies of transition metal dimers are displayed

in Fig. 20.8. The Wachters þ f basis set was used [110–112]. The figure shows that the

LC scheme obviously improves the systematic overestimations calculated by pure
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Fig. 20.7. The lowest charge transfer excitation energy of ethylene–tetrafluoroethylene dimer for the long

intermolecular distance calculated by TDDFT employing various types of functionals. For all methods, the

excitation energy at 5.0 Å is set to zero.

Chapter 20538



BOP functional. It was, therefore, proved that these overestimations maybe due to the

lack of long-range exchange interactions in exchange functionals. It was also found that

LC-BOP fairly underestimates the atomization energies of V2 and Cr2. As supposed from

the similarity to B3LYP results, this underestimation may come from the errors in the HF

exchange integral. That is, the HF exchange integral overstabilizes high-spin electronic

states, because it only incorporates parallel-spin electron–electron interactions. It is,

therefore, expected that this problem may be solved by taking well-balanced electron

correlation into account for the long-range exchange part. The figure also shows that the

LC scheme makes calculated atomization energies of different functionals much closer to

each other. That is, the uniquenesses of functionals dissappeared after the long-range

correction in this calculation. This may also support the conclusion that the lack of long-

range exchange interactions is deeply committed to the overestimated atomization

energies of dimers.
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Fig. 20.8. Errors in calculated atomization energies of the first-row transition metal dimers for LC functionals

(LC-BOP and LC-PBEOP), pure functionals (BOP and PBEOP), and B3LYP in eV. The line of no-error is also

illustrated.

Table 20.9 Calculated barrier energies and bond distances of H2 þ H! H þ H2 reaction

Molecule functional Barrier height Optimized geometry

Classical ZPVC R(H2) R(H3)

LC-BOP 10.1 9.3 0.752 0.940

BOP 3.5 2.8 0.743 0.934

BLYP 2.9 2.2 0.745 0.930

B3LYP 4.3 3.5 0.742 0.934

Refs. – 9.6 0.741 –

Barrier energies are in kcal/mol and optimized geometries are in Å. Reference values are the quantum Monte Carlo results.
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20.3.3.4 Other calculations

Besides the above-mentioned calculations, Tsuneda et al. are now applying the LC

scheme to calculations of chemical reactions [113] and (hyper)polarizabilities [114].

We will exhibit some present works to show the wide applicabilities of this scheme.

First, calculated results of H2 þ H! H þ H2 reaction are summarized in Table 20.9

[113]. The pV6Z basis set was used [115]. The table shows that the LC scheme

remarkably improves underestimated reaction barrier energies of BOP. As far as we

know, this result is certainly superior to results of other corrections that have ever

reported. This may indicate that underestimations of reaction barriers in DFT calculations

are also due to the lack of long-range interactions.

The LC scheme was also applied to overestimations of polarizabilities in DFT as

shown in Table 20.10 [114]. The Sadlej valence triple zeta basis set was used [116,117].

The table shows that calculated polarizabilities of LC-BOP are obviously more accurate

than those of BOP. Compared to B3LYP results, LC-BOP shows more improvements

in many cases. Similar results were found in calculations of anisotropies and S24 Cauchy

moments of polarizabilities. Hence, we may say that these overestimations also come

from the lack of long-range interactions in exchange functionals.

As mentioned above, the LC scheme was found to give better results for various

chemical properties than the results of conventional corrections including hybrid

functionals. For some properties, the LC scheme provided equivalent improvements in

comparison with B3LYP. This may indicate that accurate B3LYP results may be due to

the equivalency in the mixed HF exchange energy to the LC scheme, rather than the

validity of the constant weight hybridization of the HF exchange. This argument may

require further examination of the LC scheme.

20.4 RELATIVISTIC MOLECULAR THEORY

20.4.1 Introduction

The relativistic effect has been considered as an essential factor to figure out mol-

ecular structures, chemical activities, or various properties of heavy-element systems.

Table 20.10 Calculated static isotropic polarizabilities by time-dependent

Kohn–Sham theory in atomic unit

Molecule LC-BOP BOP B3LYP Exp.

Cl2 30.87 31.69 31.16 30.35

CO2 17.58 17.82 17.36 17.51

F2 8.83 8.87 8.69 8.38

H2O 10.03 10.49 9.95 9.64

H2S 24.72 25.64 25.11 24.71

HCl 17.74 18.33 17.90 17.39

HF 5.99 6.17 5.83 5.60

N2 11.99 12.07 11.88 11.74

SO2 25.63 26.30 25.75 25.61
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Recently many quantum chemists have dedicated a lot of efforts to the calculation and

treatment of the electronic structures of polyatomic systems including heavy elements,

which are involved in many interesting chemical and physical phenomena. They still

present unique difficulties to the theoretical study. Until recently, the relativistic effect

had ever been thought less important for chemical properties because the relativity

appears primarily in the core electrons, which had been believed to be unlikely to affect

chemically active valence regions dramatically. Recent studies, however, have revealed

not only quantitatively but also qualitatively that the relativistic effect plays essential and

comprehensive roles in total natures of molecular electronic structures for heavy-element

systems. We are nowadays convinced that the relativistic effect is definitely important for

the accurate theoretical treatment of heavy-element systems as well as the electron

correlation effect.

To treat relativistic effects theoretically, the Dirac equation is usually solved rather

than the non-relativistic Schrödinger equation. The one-electron Dirac Hamiltonian is

written by

HD ¼ ca·pþ bc2 þ Vext ð70Þ

where the constant c is the speed of light, Vext is the external potential, and p ð¼ 2i7Þ is
the momentum operator. The 4 £ 4 Dirac matrices a and b in Eq. (70) are given by

at ;
02 st

st 02

{ !
; t ¼ ðx; y; zÞ; b ;

I2 02

02 2I2

{ !
ð71Þ

with the 2 £ 2 Pauli spin matrices st;

sx ;
0 1

1 0

{ !
; sy ;

0 2i

i 0

{ !
; sz ;

1 0

0 21

{ !
ð72Þ

Since the Dirac equation is valid only for the one-electron system, the one-electron

Dirac Hamiltonian has to be extended to the many-electron Hamiltonian in order to treat

the chemically interesting many-electron systems. The straightforward way to construct

the relativistic many-electron Hamiltonian is to augment the one-electron Dirac operator,

Eq. (70) with the Coulomb or Breit (or its approximate Gaunt) operator as a two-electron

term. This procedure yields the Dirac–Coulomb (DC) or Dirac–Coulomb–Breit (DCB)

Hamiltonian derived from quantum electrodynamics (QED)

H ¼
X
i

HDðriÞ þ
X
i.j

gij ð73Þ

where

gCij ¼ 1

rij
ð74Þ
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and

gCBij ¼ 1

rij
2

1

2

ðai·ajÞ
rij

þ ðai·rijÞðaj·rijÞ
r3ij

{ !
ð75Þ

The DCB Hamiltonian is covariant to first order, and the presence of the Breit (or

approximate Gaunt) interaction serves to increase the accuracy of calculated spectro-

scopic splittings and core binding energies.

Historically, approaches to treat the electronic structure relativistically have split

into two camps: one is the four-component relativistic approach and another is the

two-component one. Focusing on our recent studies, in this section, we will introduce

these two types of relativistic approaches. The reader is referred to the detailed reviews

for our recent relativistic works [118–120].

20.4.2 Four-component relativistic molecular theory

20.4.2.1 Dirac–Hartree–Fock and Dirac–Kohn–Sham methods

By an application of an independent-particle approximation with the DC or DCB

Hamiltonian, the similar derivation of the non-relativistic Hartree–Fock (HF) method

and Kohn–Sham (KS) DFT yields the four-component Dirac–Hartree–Fock (DHF) and

Dirac–Kohn–Sham (DKS) methods with large- and small-component spinors.

The matrix DHF/DKS equation is generally written as

Fc ¼ 1Sc ð76Þ
where c is a matrix of molecular spinor coefficients, 1 a spinor energy matrix, and S an

overlap matrix

Spq ¼
SLLpq 0

0 SSSpq

0@ 1A ¼
kx L

p lx L
q l 0

0 kx S
p lx S

ql

0@ 1A ð77Þ

with two-component atomic spinors x L
p and x

S
p for large (L) and small (S) components,

respectively. Assuming the DC Hamiltonian, the Fock matrix F is given by

Fpq ¼
FLLpq FLSpq

FSLpq FSSpq

0@ 1A

¼
VLL
pq þ JLLpq 2 texK

LL
pq 2 txcV

LL
xcpq cPSL

pq 2 texK
SL
pq

cPLS
pq 2 texK

LS
pq VSS

pq 2 2c2SSSpq þ JSSpq 2 texK
SS
pq 2 txcV

SS
xcpq

0@ 1A
ð78Þ

Here, PX 
X
pq ; V

XX
pq ; V

XX
xcpq; J

XX
pq ; and KXY

pq (X, Y ¼ L or S, 
L ¼ S; and 
S ¼ L) are kinetic

energy integral, electron–nuclear attraction integral, exchange-correlation potential,
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Coulomb integral, and exchange integral matrices, respectively,

PX 
X
pq ¼ kx X

p lðs·pÞlx 
X
q l ð79Þ

VXX
pq ¼ kx X

p lVnuclx X
q l ð80Þ

VXX
xcpq ¼ x X

p

D ��� dExc
dr

x X
q

��� E
ð81Þ

JXXpq ¼
X

Y¼L;S

X
r;s

DYY
sr ðx X

p x
X
q lx Y

r x
Y
s Þ ð82Þ

KXY
pq ¼

X
r;s

DXY
sr ðx X

p x
X
s lx Y

r x
Y
q Þ ð83Þ

with the density matrix

DXY
sr ¼

XNocc
i

cXsic
Yp

ri ð84Þ

The parameter txc is set to zero and one for the DHF and DKS approaches, respectively,

and the constant tex is the parameter for the hybrid DFT approach, usually set to zero for

the pure DFT approach.

The four-component DHF/DKS method is a theoretically straightforward relativistic

approach. For heavy atoms four-component basis set expansion calculations are routine

and attain spectroscopic accuracy together with extant correlation methods [121,122].

Recently the molecular DHF and DKS methods have become familiar and powerful

relativistic approaches with the continuous development of efficient computational

algorithms using the basis set expansion. Several four-component ab initio molecular

orbital programs for polyatomics, e.g. MOLFDIR [123], DIRAC [124], BERTHA [125], and

others [126–128], have been developed so far. Unfortunately, however, the treatment of

more than one heavy atom within a molecule is not yet routine. The bottleneck in four-

component calculations on heavy-element systems is evaluation of the two-electron

electron repulsion integrals (ERIs). The number of relativistic integrals is greater than

that of non-relativistic ones because the kinetic balance [129] between the large- and

small-component primitive GTSs must be incorporated.

We have recently developed an efficient computational scheme for the four-component

method that employs four-component contraction for molecular basis spinors and the

new atomic spinor (AS) integral algorithm [130–132]. In the following sections we will

briefly introduce our new relativistic scheme.

20.4.2.2 Generally contracted Gaussian-type spinors and kinetic balance

Accurate treatment of core spinors and of the valence spinors in the core region by a large

basis set expansion is necessary, because most major relativistic effects, or the kinematic
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effects, come from the region near the nuclei. Because the core changes little with

chemical environment, the extensive basis set contraction is possible. The difficulty

in introducing contracted GTSs lies in the fact that the kinetic balance condition [129]

between the large- and small-component primitive GTSs and spin–orbit splitting of

spinors must be incorporated.

In our four-component molecular approach, thus, we use spin-coupled, kinetically

balanced, generally contracted Gaussian-type spinors (GTSs) as basis functions. The

basis expansion is

c2Li

c2Si

{ !
¼

Xn
m

cLmiw
2L
m

cSmiw
2S
m

0@ 1A ð85Þ

where w2Lm and w2Sm are two-component basis spinors, and cLm and cSm are expansion

coefficients. In Eq. (85), both scalar wavefunctions within a two-component basis spinor

are multiplied by a common coefficient, thus, the dimensions of both the large and small

components are n and the total number of variational parameters is 2n: In the pioneering
four-component program package, MOLFDIR, as well as in DIRAC, four-spinors are

expanded in decoupled scalar spin-orbitals

ci ¼
XnL
m

cLami w
La
m

1

0

0

0

0BBBBBB@

1CCCCCCAþ
XnL
m

c
Lb
mi w

Lb
m

0

1

0

0

0BBBBBB@

1CCCCCCAþ
XnS
m

cSami w
Sa
m

0

0

1

0

0BBBBBB@

1CCCCCCAþ
XnS
m

c
Sb
mi w

Sb
m

0

0

0

1

0BBBBBB@

1CCCCCCA ð86Þ

There are 2nL large-component and 2nS small-component basis spinors. Imposing the

kinetic balance implies that 2nS . n ¼ 2nL: Our scheme thus reduces the number of
functions required for the small component.

The form of the large-component primitive set c 2L
k is chosen from large-component

spinors obtained by analytical solution of the one-electron Dirac equation. The small-

component set c 2S
k is derived so that it satisfies the accurate and rigorous kinetic balance

condition versus c 2L
k ;

c 2S
k ¼ iðV 2 E2 2c2Þ21ðs·pÞc 2L

k ð87Þ
rather than the condition

c 2S
k ¼ iðs·pÞc 2L

k ð88Þ

20.4.2.3 Efficient evaluation of electron repulsion integrals

In construction of Coulomb and exchange integral matrices (Eqs. (82) and (83)), three

types of ERIs, (LLlLL), (LLlSS) (or (SSlLL)), and (SSlSS), are required within the

Coulomb approximation to the electron–electron interaction. Evaluation of ERIs
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includes a scaling with the forth power of the number of basis functions formally and is

the most time-consuming step within the DHF/DKS calculation. To evaluate relativistic

ERIs efficiently, we have recently developed a new integral evaluation method

specialized for relativistic contracted GTSs [130,132]. The algorithm exploits the

transfer relation of Head–Gordon and Pople (HGP) [133] and the accompanying

coordinate expansion (ACE) formulas derived by Ishida [134] in the non-relativistic case.

In this method, four-component ERIs (LLlLL), (LLlSS), and (SSlSS) reduce to several
common two-center terms using the HGP transfer relation. The common integrals are

evaluated rapidly using the ACE method.

We have performed comparative calculations of ERIs using MOLFDIR2000 and DIRAC

version 3.2 in comparison with our REL4D program. MOLFDIR and DIRAC do not

treat separately contracted REL4D-type basis sets. To make direct comparison possible,

calculations with REL4D were done with the commonly contracted basis spinors

employed in MOLFDIR and DIRAC, although the program is not optimized for such basis

sets. Table 20.11 displays CPU times for computations on Au2 with the [19s14p10d5f]/

(6s4p3d1f) set. REL4D proved fastest for LLLL þ LLSS þ SSSS. LLLL þ LLSS

calculations with the present code were comparable to those of DIRAC. In the LLLL

calculations, the present code worked about four times slower than DIRAC. Note that the

numbers of spinors generated are different for each program: 160 for the large and small

components in REL4D; 160 for the large component and 420 for the small component

in MOLFDIR; 184 for the large component and 424 for the small component in DIRAC.

The slightly larger basis size in DIRAC is caused by the fact that it uses, not spherical

harmonic GTSs, but contracted Cartesian GTSs. This feature improves DIRAC’s perfor-

mance in some cases because the transformation from Cartesian to spherical harmonic

is omitted. The reduced size of the small component basis renders our computational

scheme efficient in storage, computation, and transformation of integrals, and in matrix

manipulations.

20.4.2.4 Relativistic pseudospectral approach

Recently we have proposed more efficient relativistic molecular theory by an application

of the pseudospectral (PS) approach [135]. In the PS approach [136,137], we use the

mixed basis function between a grid representation in the physical space and spectral

representation in the function space.

Table 20.11 CPU times (in hours) for computing four-component ERIs for Au2, where the basis set used

for Au is [19s14p10d5f]/(6s4p3d1f ), which is commonly contracted between A ¼ þ and A ¼ 2

LLLL þ LLSS þ SSSS LLLL þ LLSS LLLL

Presenta 1.37 0.77 0.21

diracb 2.09 0.62 0.050

molfdirc 76.35 21.16 1.63

aNumber of basis spinors: 160 (for the large and small components).
bNumber of basis spinors: 184 (for the large component) and 424 (for the small component).
cNumber of basis spinors: 160 (for the large component) and 420 (for the small component).
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In the relativistic PS approach, the Coulomb matrix element (Eq. (82)) is given as

JXXpq ¼
X

Y¼L;S

X
r;s

DYY
sr ðxXp xXq lxYr xYs Þ ø

XM
g

wgA
XX
pq ðgÞ

XL;S
Y

XN
r

XN
s

DYY
rs x

Yp

r ðgÞxYs ðgÞ
{ !

;
XM
g

wgA
XX
pq ðgÞrðgÞ ð89Þ

with the three-center one-electron integral

AXY
pq ðgÞ ¼

ð
xX

p

p ð1Þ 1

r1 2 rg

��� ��� xYq ð1Þdr1 ð90Þ

and rðgÞ is the electronic density, which is calculated in terms of the density matrix and
atomic spinors at a coordinate rg: Likewise, the exchange contribution in the relativistic
PS approach is given as

KXX
pq ¼

X
r;s

DXX
sr ðxXp xXs lxXr xXq Þ ø

XM
g

wgx
Xp

p ðgÞ
XN
r

XN
s

DXX
rs x

X
s ðgÞ

{ !
AXX
rq ðgÞ

" #
ð91Þ

and

KX 
X
pq ¼

X
r;s

DX 
X
sr ðxXp xXs lx 
X

r x

X
q Þ ø

XM
g

wgx
Xp

p ðgÞ
XN
r

XN
s

D

XX
rs x

X
s ðgÞ

{ !
A


X 
X
rq ðgÞ

" #
ð92Þ

for diagonal (LL and SS) and non-diagonal (LS and SL) parts in the DHF or DKS matrix,

respectively. We note that no non-diagonal three-center one-electron integral is required

in construction of both Coulomb and HF-exchange matrix elements within the DC

approximation. Only diagonal ALL
pq ðgÞ and ASS

pq ðgÞ integrals are required. The high

efficiency is hence achieved in the relativistic PS approach.

The features of the relativistic PS-DHF/DKS method are as follows:

(1) The computational scaling is reduced from OðN4Þ to OðN3Þ (N; the number of basis
sets).

(2) Since the PS evaluation of HF-exchange matrix elements as well as Coulomb ones

is efficient, post HF methods and hybrid-type DFT are applicable.

(3) It is possible to treat the large molecular systems that are compact and three-

dimensional with high-quality basis sets in contrast to the fast multipole moment

(FMM) method.

(4) The multigrid technique can powerfully save considerable CPU time in the direct

SCF procedure.

(5) The PS program code is parallelized efficiently because of adoption of the

numerical grid partition.
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(6) It is possible to obtain the numerical result with arbitrary accuracy at adequate

CPU time by careful choice of the number of grid points.

Table 20.12 shows the spectroscopic constants and total energies of the gold dimer

calculated with the relativistic PS-DFT method using three types of grids. The details of

computations are given in Ref. [135]. The results obtained by the conventional DFT

method with the analytical ERIs and the experimental data [138,139] are also listed for

comparison. The PS results for spectroscopic constants and total energies become closer

to the analytical results as the level of grids is improved. The relativistic PS-DFT method

with the ultrafine grid, the highest level of grid sets in this study, gives excellent good

agreement with the analytical result. For the equilibrium bond length and the harmonic

frequency for Au2, the deviation of the ultrafine PS result from the analytical one is

negligibly small. The discrepancies of the dissociation energy and the total energy

between ultrafine PS and analytical results are DDe ¼ 20:4 eV and DE ¼ 0:0098 a.u.,
respectively. It is also found that the fine grid yields satisfactory results; the difference of

the equilibrium bond length, the harmonic frequency, the dissociation energy, and the

total energy between fine PS and analytical results are DRe ¼ 0:005 Å, Dve ¼ 1 cm21,

DDe ¼ 0:3 eV, and DE ¼ 0:0376 a.u., respectively.
The multigrid technique can be used in the SCF procedure of present PS calculations.

This technique realizes the faster SCF calculation with the PS method. Average CPU

times per one cycle for the direct SCF step in the DFT calculation including the ERI

evaluation, the KS matrix construction, and the SCF diagonalization are also listed in

Table 20.12. These times are taken from each single-point calculation at R ¼ 4:8 a.u. In
the present multigrid calculation, the coarse and medium grids are used in the first and

second SCF stages, respectively. By adoption of the multigrid approach in this system,

the PS methods with medium, fine, and ultrafine grids are 19, 13, and 9 times faster than

the traditional analytical method, respectively.

Other PS applications to molecular systems also show that the relativistic PS-

DHF/DKS approach is more efficient than the traditional approach without a loss of

accuracy.

Table 20.12 Spectroscopic constants of the Au dimer calculated by conventional DFT and PS-DFT

(B3LYP)

Analytical PS (medium)a PS (fine)b PS (ultra)c Exptl

Re (Å) 2.554 2.526 2.549 2.554 2.472

ve (cm
21) 168 191 169 168 191

De (eV) 1.98 2.11 2.01 1.94 2.36

Energy (a.u.)d 20.7302 20.8075 20.7678 20.7400 –

Time (s)e 17497 927 1352 1979 –

aMedium grid: 50 £ 110 ¼ 5500/atom.
bFine grid: 75 £ 194 ¼ 14550/atom.
cUltrafine grid: 96 £ 302 ¼ 28992/atom.
dTotal DFT energy: 238096 a.u.
eAverage CPU time per one cycle for the direct SCF step in the DFT calculation including the ERI evaluation, the KS matrix

construction, and the SCF diagonalization.
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20.4.3 Two-component relativistic molecular theory

20.4.3.1 Approximate relativistic Hamiltonians

Despite recent implementations of an efficient algorithm for the four-component

relativistic approach, the DC(B) equation with the four-component spinors composed of

the large (upper) and small (lower) components still demands severe computational efforts

to solve, and its applications to molecules are currently limited to small- to medium-sized

systems. As an alternative approach, several two-component quasi-relativistic approxi-

mations have been proposed and applied to chemically interesting systems containing

heavy elements, instead of explicitly solving the four-component relativistic equation.

An approximate relativistic Hamiltonian should include the following desirable

features:

(1) It should be accurate enough to give a close result to the one-electron Dirac or many-

electron Dirac–Coulomb(–Breit) Hamiltonian.

(2) It should be efficient and effective to apply to large molecular systems containing

heavy elements.

(3) It should be well balanced so as to describe molecular systems containing a wide

variety of atoms in the periodic table with the same quality.

(4) It should be variationally stable in order to avoid variational collapse in the sense

that at least the non-relativistic limit is obtained correctly.

(5) It should be variational and not perturbative in order to evaluate various energy

values and one-electron properties.

The Breit–Pauli (BP) approximation [140] is obtained truncating the Taylor expansion

of the Foldy–Wouthuysen (FW) transformed Dirac Hamiltonian [141] up to the ðp=mcÞ2
term. The BP equation has the well-known mass–velocity, Darwin, and spin–orbit

operators. Although the BP equation gives reasonable results in the first-order

perturbation calculation, it cannot be used in the variational treatment.

One of the shortcomings of the BP approach is that the expansion in ðp=mcÞ2 is not
justified in the case where the electronic momentum is too large, e.g. for a Coulomb-like

potential. The zeroth-order regular approximation (ZORA) [142,143] can avoid

this disadvantage by expanding in E=ð2mc2 2 VÞ up to the first order. The ZORA

Hamiltonian is variationally stable. However, the Hamiltonian obtained by a higher order

expansion has to be treated perturbatively, similarly to the BP Hamiltonian. Other quasi-

relativistic methods have been proposed by Kutzelnigg [144,145] and Dyall [146].

We have developed two quasi-relativistic approaches. One is the RESC method

[147–149], and the other is the higher order Douglas–Kroll (DK) method [150–152].

In the following sections we will introduce RESC and higher order DK methods briefly.

20.4.3.2 RESC method

The Dirac equation is equivalent to the Schrödinger–Pauli type equation composed of

only the large component

V þ ðs ·pÞ c2

2mc2 2 ðV 2 EÞ ðs·pÞ
" #

C L ¼ eC L ð93aÞ
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with the normalization condition

kC Ll1þ XþXlC Ll ¼ 1 ð93bÞ
Here the X operator is defined by

X ; ½2mc2 2 ðV 2 EÞ	21cðs·pÞ ð94Þ
If Eq. (93a) could be solved with Eq. (93b), the solution to the Dirac equation can be

obtained exactly. However, Eq. (93a) has the total and potential energies in the

denominator, and an appropriate approximation is needed. In our strategy, E2 V in the

denominator is replaced by the classical relativistic kinetic energy (relativistic

substitutive correction)

T ¼ ðm2c4 þ p2c2Þ1=2 2 mc2 ð95Þ
This simple approach is referred to as the relativistic scheme by eliminating small

components (RESC). The derivation and the form of the RESC Hamiltonian are given in

Ref. [147]. The RESC approach has several advantages. It is variationally stable. It can

easily be incorporated in non-relativistic ab initio programs, and relativistic effects are

considered on the same footing with electron correlation. RESC works well for a number

of systems, and recent studies have shown it to give results similar to the Douglas–

Kroll–Hess (DKH) method for chemical properties, although very large exponents in the

basis set can lead to variational collapse in the current RESC approximation, which

includes only the lowest truncation of the kinematic operator.

20.4.3.3 Douglas–Kroll method

The Douglas–Kroll (DK) approach [153] can decouple the large and small components

of the Dirac spinors in the presence of an external potential by repeating several unitary

transformations. The DK transformation is a variant of the FW transformation [141] and

adopts the external potential Vext as an expansion parameter instead of the speed of light,

c; in the FW transformation. The DK transformation correct to second order in the

external potential (DK2) has been extensively studied by Hess and co-workers [154], and

has become one of the most familiar quasi-relativistic approaches. Recently, we have

proposed the higher order DK method and applied the third-order DK (DK3) method to

several systems containing heavy elements.

The first step in the DK transformation consists of a free-particle FW transformation to

the Dirac Hamiltonian with the external potential Vext

HD ¼ Vext þ c2 cs·p

cs·p Vext 2 c2

{ !
ð96Þ

in momentum space. The resulting Hamiltonian yields the free-particle FW Hamiltonian

and is also referred to as the first-order DK Hamiltonian. In successive DK

transformations, in order to remove odd terms of arbitrary order in the external potential,

the unitary operator defined by Douglas and Kroll [153],

Un ¼ ð1þW2
n Þ1=2 þWn ð97Þ
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or the exponential-type unitary operator [150]

Un ¼ expðWnÞ ð98Þ
is employed sequentially. HereWn is an anti-Hermitian operator of nth order in Vext: The
resultant DK Hamiltonian is still a four-component formalism. Its two-component

reduction is achieved by replacing b by the unit matrix and a by the 2 £ 2 Pauli spin

matrixs. In order to correspond to the non-relativistic limit, the resulting two-component
Hamiltonian is shifted by 22c2:
The first-order, second-order, and third-order DK (DK1, DK2, and DK3) Hamiltonians

in the two-component form are given as

HDK1 ¼ Ep 2 c2 þ E1 ð99Þ
HDK2 ¼ HDK1 2

1
2
½W1; ½W1;Ep	þ	þ ð100Þ

HDK3 ¼ HDK2 þ 1
2
½W1; ½W1;E1		 ð101Þ

with

Ep ¼ c½ðs·pÞ2 þ c2	1=2 ð102Þ
E1 ¼ AðVext þ RVextRÞA ð103Þ
W1 ¼ AðRv2 vRÞA ð104Þ

where the kinematical A and R operators and the v operator are defined by

A ¼ Ep þ c2

2Ep

{ !1=2
ð105Þ

R ¼ cs·p

Ep þ c2
ð106Þ

vðp; p0Þ ¼ Vextðp; p0Þ
Ep þ Ep0

ð107Þ

and ½a; b	þ and ½a; b	 denote the anti-commutator and the commutator, respectively.

20.4.3.4 Extended Douglas–Kroll transformations applied to the relativistic

many-electron Hamiltonian

The DK approach satisfies all of the criteria in Section 20.4.3.1: the DK transformation

avoids the high singularity in the FW transformation by adoption of the external potential

as an expansion parameter, and thus the DK Hamiltonian is variationally stable. The DK

Hamiltonian can be applied to the variational calculation in contrast to the Breit–Pauli

Hamiltonian. Criterion (1) is also satisfied by the higher order DK method for the

one-electron system. The DK3 Hamiltonian was shown to give excellent agreement with

the one-electron Dirac Hamiltonian [150].

By an application of the DK transformation to the relativistic many-electron

Hamiltonian, recently, we have shown that the many-electron DK Hamiltonian also

gives satisfactory results for a wide variety of atoms and molecules compared with
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the DC(B) Hamiltonian [152]. To consider the higher order DK transformation to the

two-electron interaction, the present approach adopts the effective one-electron potential

in the DHF/DKS operator as an expansion parameter in the DK transformation.

The DHF/DKS operator, Eq. (78), can be written in the same form to the one-electron

Dirac Hamiltonian, Eq. (96), by the following replacements:

Vnuc þ JLL þ JSS 2 texK
XX 2 txcVxc ! Vext ð108Þ

s·p2
tex
c
KXY ! s·p ð109Þ

By substituting these relations into Eqs. (99)–(107), we can straightforwardly obtain

the DKn-Fock operators with the DK transformation to the DHF/DKS potential in the

two-component DKn-HF/KS equation

FDKnc i ¼ 1ic i ð110Þ
where c i is the (orthonormalized) two-component DKn spinor and 1i is its spinor energy.
The first-order DK (DK1) operator is given as

FDK1 ¼ E0 2 c2 þ E1 ð111Þ
with

E0 ¼ c s·p2
tex
c
KLS

� �
s·p2

tex
c
KSL

� �
þ c2

� �1=2
ð112Þ

E1 ¼ AðVnuc þ JLL þ JSS 2 texK
LL 2 txcVxcÞA

þ ARLSðVnuc þ JLL þ JSS 2 texK
SS 2 txcVxcÞRSLA ð113Þ

where the A and RXY operators are defined by

A ¼ E0 þ c2

2E0

{ !1=2
ð114Þ

RXY ¼ c

E0 þ c2
s·p2

tex
c
KXY

� �
ð115Þ

In this approach, the density matrix is evaluated self-consistently with both the large and

small component spinors, wLi and w
S
i ; which can be reconstructed from the free-particle

FW spinors c i in the Schrödinger picture

wLi ¼ Ac i ð116Þ
wSi ¼ RSLAc i ð117Þ

It is easy to verify that the DK1 operator, Eq. (111), is equivalent to the Fock operator

derived from the no-pair or free-particle FW Hamiltonian. Likewise, the higher order DK

operators are also derived straightforwardly by repeating the DK transformations, though

their formulae are omitted only because of their lengthy forms.
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As molecular applications of the extended DK approach, we have calculated the

spectroscopic constants for At2: equilibrium bond lengths ðReÞ; harmonic frequencies
ðveÞ; rotational constants ðBeÞ; and dissociation energies ðDeÞ: A strong spin–orbit effect

is expected for these properties because the outer p orbital participates in their molecular

bonds. Electron correlation effects were treated by the hybrid DFT approach with the

B3LYP functional. Since several approximations to both the one-electron and two-

electron parts of the DK Hamiltonian are available, we define that the DKn1 þ DKn2

Hamiltonian ðn1; n2 ¼ 1–3Þ denotes the DK Hamiltonian with DKn1 and DKn2

transformations for the one-electron and two-electron parts, respectively. The

DKn1 þ DK1 Hamiltonian is equivalent to the no-pair DKn1 Hamiltonian. For the

two-electron part the electron–electron Coulomb operator in the non-relativistic form

can also be adopted. The DKn1 Hamiltonian with the non-relativistic Coulomb operator

is denoted by the DKn1 þ NR Hamiltonian.

Table 20.13 shows the results for At2 obtained by approximate DK schemes in

comparison with four-component DKS results. The DK results for the spectroscopic

constants and the total energy in the equilibrium geometry ðEtotÞ become closer to the
DKS results as the level of theory is improved. The highest level of theory, DK3–DK3, as

well as DK3–DK2, gives fairly good agreement with the four-component result for At2.

The DK3–DK3 operator yields Re ¼ 3:1102 Å, ve ¼ 102:3 cm21, and De ¼ 0:546 eV,
the corresponding four-component DKS values being Re ¼ 3:1121 Å, ve ¼ 102:0 cm21,

and De ¼ 0:542 eV. The discrepancy between DK3–DK3 and DKS Hamiltonians is

DRe ¼ 0:0019 Å, Dve ¼ 0:3 cm21, and DDe ¼ 0:004 eV.
By comparison between the DK3–DK3 and DK3–NR results, it can be seen that two-

electron relativistic effects are comparatively large, especially in the dimer; the bond

length decreases by 0.06 Å, the frequency increases by 7 cm21, the rotational constant

increases by 0.0006 cm21, and the dissociation energy increases by 0.12 eV. Neglect of

the relativistic correction to the electron–electron interaction yields inferior results and

gives relatively large deviations from the DK3–DK3 or DKS result. It is interesting that

the importance of the two-electron DK correction for the bond length is shown, because it

has been believed so far that the bond length is scarcely affected by the relativistic

Table 20.13 Bond lengths ðReÞ; harmonic frequencies ðveÞ; rotational constants ðBeÞ; dissociation
energies ðDeÞ; and total energies ðEtotÞ in the equilibrium geometry of At2 with B3LYP

Hamiltonian Re (Å) ve (cm
21) Be (cm

21) De (eV) Etot (a.u.)

DKS 3.1121 102.0 0.0166 0.542 245838.2314

DK3–DK3 3.1102 102.3 0.0166 0.546 245841.9720

DK3–DK3 3.1080 102.3 0.0166 0.552 245849.7971

(no mod. Vxc)
a

DK3–DK2 3.1108 102.3 0.0166 0.545 245842.2586

DK3–DK1 3.1074 102.6 0.0166 0.552 245839.6417

DK3–NR 3.1697 95.5 0.0160 0.429 245849.7240

DK2–DK2 3.1013 103.0 0.0167 0.561 245773.7217

aResults without the relativistic modification to Vxc:
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correction to the electron–electron interaction, while the harmonic frequency and the

dissociation energy are often influenced.

The first-order DK correction to the electron–electron interaction is satisfactory also

in molecular systems, as well as the atomic case. The deviation of DK3–DK1 from

DK3–DK3 is DRe ¼ 0:0028 Å, Dve ¼ 0:3 cm21, and DDe ¼ 0:006 eV for At2.

In the DFT approach with our general DK transformation, the exchange-correlation

potential, Vxc; is corrected relativistically. The effect on the DK transformation to the

exchange-correlation potential was estimated by comparison with the result without the

relativistic modification to Vxc ((no mod. Vxc) in Table 20.13). Compared with the full

DK3–DK3 approach, neglect of the relativistic DK correction to the exchange-

correlation potential hardly affects the calculated spectroscopic values; its effect merely

contributes 0.002 Å for Re and 0.006 eV for De and does not affect ve and Be for the At
dimer. Thus, it is found that the relativistic correction to the electron–electron interaction

contributes mainly to the Coulomb potential, not to the exchange-correlation potential.

In consequence, the several numerical results including the present results show that

the third-order DK transformation to both one-electron and two-electron Hamiltonians

gives excellent agreement with the four-component relativistic approach. The first-order

DK correction to the two-electron interaction is shown to be satisfactory for both atomic

and molecular systems.

20.5 SUMMARY

The recent advances in electronic structure theory achieved in our research group have

been reviewed. New theory/algorithm has been implemented and incorporated into the

program package, UTCHEM [155]. Software forms a basis for computational chemistry.

It is not an easy task for an individual/group to develop a comprehensive new program

package in quantum chemistry from scratch. Several years ago, we decided to accept

this challenge. In view of the availability of such good programs as GAUSSIAN, GAMESS,

MOLCAS, NWCHEM, etc., one may question the relevance of a new program package. We

have three arguments for our project. (1) First, we believe that healthy competition is very

important in science. (2) Second, we can have a good harvest by doing research using

other programs, but it is an abortive flower. We could not make a true breakthrough if

we were circumscribed by current software limitations. (3) Third, in spite of the excellent

performance of other programs, there are important and powerful methods that others

cannot yet handle. We have developed new methodologies in quantum chemistry,

particularly the multireference-based perturbation theory for describing chemical

reactions and excited states, relativistic molecular theory to treat heavy elements,

parameter-free (less) and long-range corrected (LC) exchange and correlation functionals

in DFT, highly efficient algorithms for calculating molecular integrals over generally

contracted Gaussians, etc. UTCHEM is a research product of our work to develop new and

better theoretical methods in quantum chemistry. Most of the codes have been developed

recently by Hirao’s group at the University of Tokyo. The basic philosophy behind

UTCHEM is to develop methods that allow an accurate and efficient computational

chemistry of electronic structure problems for molecular systems in both the ground and
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excited states. UTCHEM also contains codes for well-developed methods such as MPn, CI,

CC, etc., which are standard in most quantum chemistry programs. We are aiming

ultimately at better performance than other programs. UTCHEM has been released. If you

want more information on UTCHEM, visit http://utchem.qcl.t.u-tokyo.ac.jp/.
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CHAPTER 21

Semiempirical quantum-chemical

methods in computational chemistry

Walter Thiel

Max-Planck-Institut für Kohlenforschung, Mülheim, Germany

Abstract

This review of semiempirical quantum-chemical methods outlines their development

over the past 40 years. After a survey of the established methods such as MNDO, AM1,

and PM3, recent methodological advances are described including the development of

improved semiempirical models, new general-purpose and special-purpose parametriza-

tions, and linear scaling approaches. Selected recent applications are presented covering

examples from biochemistry, medicinal chemistry, and nanochemistry as well as direct

reaction dynamics and electronically excited states. The concluding remarks address the

current and future role of semiempirical methods in computational chemistry.

21.1 INTRODUCTION

Quantum mechanics provides the conceptual framework for understanding chemistry.

The ab initio methods of nonrelativistic quantum mechanics aim at the solution of the

time-independent Schrödinger equation, employing well-defined approximations that can

be improved systematically on a convergent path to the exact solution. They do not use

experimental data, except for the fundamental physical constants.

Standard dictionaries define ‘semiempirical’ as ‘involving assumptions, approxima-

tions, or generalizations designed to simplify calculation or to yield a result in accord

with observation’ [1]. In this spirit, the semiempirical methods of quantum chemistry

start out from the ab initio formalism and then introduce rather drastic assumptions to

speed up the calculations, typically by neglecting many of the less important terms in the

ab initio equations. In order to compensate for the errors caused by these approximations,

empirical parameters are incorporated into the formalism and calibrated against reliable

experimental or theoretical reference data. If the chosen semiempirical model retains

the essential physics to describe the properties of interest, the parametrization may
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account for all other effects in an average sense, and it is then a matter of validation to

establish the numerical accuracy of such methods.

Semiempirical approaches to quantum chemistry are thus characterized by the use of

empirical parameters in a quantum mechanical framework. In this sense, many current

methods contain semiempirical features. For example, some high-level ab initio

treatments of thermochemistry employ empirical corrections for high-order correlation

effects, and several advanced density functionals include a substantial number of

empirical parameters that are fitted against experimental data. We shall not cover such

approaches here, but follow the conventional classification by considering only

semiempirical methods that are based on molecular orbital (MO) theory and make use

of integral approximations and parameters already at the MO level.

In the following, Section 21.2 gives a brief historical overview, Section 21.3 surveys

established semiempirical methods introduced before 1990, Section 21.4 addresses some

more recent methodological developments, Section 21.5 presents selected recent

applications, and Section 21.6 offers a summary and an outlook.

21.2 HISTORICAL OVERVIEW

One of the first semiempirical approaches in quantum chemistry was the p-electron
method due to Hückel (1931) [2] which generates MOs essentially from the connectivity

matrix of a molecule and provides valuable qualitative insights into the structure,

stability, and spectroscopy of unsaturated molecules. This approach was extended to

include all valence electrons by Hoffmann (1963) [3,4] and applied in many qualitative

studies of inorganic and organometallic compounds. These early semiempirical methods

have had a lasting impact on chemical thinking because they guided the development of

qualitative MO theory which is commonly employed for rationalizing chemical

phenomena in terms of orbitals interactions [5–7]. They are normally not used any

longer as computational tools.

Hückel-type methods include only one-electron integrals and are therefore

noniterative. Two-electron interactions are taken into account explicitly in semiempi-

rical self-consistent-field (SCF) methods. Again, the first such approaches were

restricted to p-electrons, most notably the Pariser–Parr–Pople (PPP) method (1953)

[8,9] which describes the electronic spectra of unsaturated molecules quite reliably

[10,11]. The generalization to valence electrons was given by Pople (1965) [12] who

introduced a hierarchy of integral approximations that satisfy rotational invariance and

other consistency criteria (CNDO complete neglect of differential overlap, INDO

intermediate neglect of differential overlap, NDDO neglect of diatomic differential

overlap). This landmark paper forms the basis of most current semiempirical SCF-MO

methods.

The original parametrization of these all-valence-electron MO methods was designed

to reproduce ab initio Hartree–Fock (HF) results obtained with a minimal basis set.

This gives rise to approximate MO treatments which can at best reach the accuracy of

the target ab initio HF methods. Prominent examples are the CNDO/2 [13] and INDO

[14] methods.
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A different parametrization strategy was pursued by Dewar. He realized that ab initio

HF results with a minimal basis are not accurate enough for most chemical problems, and

therefore advocated a calibration of semiempirical methods against experimental

reference data which leads to semiempirical MO methods in the proper sense. Extensive

developments and parametrizations of semiempirical SCF methods were performed in

the Dewar group, both at the p-electron level (1965–1970) and the all-valence-electron
level (1967–1990). This work aimed at a realistic description of ground-state potential

surfaces, particularly for organic molecules. It culminated in an INDO-based

method named MINDO/3 (1975) [15] and two NDDO-based methods labeled MNDO

(1977) [16,17] and AM1 (1985) [18]. An independent later parametrization of the

MNDO model gave rise to PM3 (1989) [19,20]. Formally, AM1 and PM3 differ from

MNDO only in the choice of the empirical core repulsion function, and they can therefore

be viewed as attempts to explore the limits of the MNDO electronic structure model

through extensive parametrization.

In the time before 1990, there are two other noteworthy INDO-based developments. In

the work by Jug (1973–1990), orthogonalization corrections to the one-electron integrals

were included in an INDO scheme which was then parametrized against ground-state

properties to yield the SINDO1 method [21,22]. A different direction was followed by

Zerner (1973–1990) in the development of the INDO/S method [23,24] for calculating

electronic spectra, particularly vertical excitation energies: INDO/S is a semiempirical CI

method parametrized at the CIS level (configuration interaction with single excitations),

like the older CNDO/S approach [25].

The established semiempirical methods developed until 1990 have been applied

extensively in chemical research. There are thousands of publications with applications

of semiempirical methods to solve chemical problems, as indicated by the Science

Citation Index where the number of citations for the original papers on CNDO/2 [13],

MINDO/3 [15], MNDO [16], AM1 [18], PM3 [19], and INDO/S [23] currently (June

2004) exceeds 2500, 2100, 5800, 9800, 4500, and 1200, respectively. This is further

illustrated in Fig. 21.1 which shows the corresponding citations per year between 1966

and 2003. Assuming that the number of citations reflects the actual use of these methods,

it is obvious that AM1 and PM3 are presently the most popular semiempirical tools in

computational work.

During the past 40 years, the role of semiempirical calculations has changed. In the

1960s, the development of semiempirical SCF-MO methods was motivated to a large

extent by the very limited capabilities of the available computer hardware: ab initio

calculations could then be done only for small molecules at low levels of theory, and

drastic simplifications were mandatory to handle somewhat larger systems at all. In the

1970s, computational chemistry seemed to split into two camps, and there were heated

debates about the relative merits of ab initio and semiempirical calculations [26–29]: the

ab initio side doubted the significance and accuracy of semiempirical SCF-MO results,

whereas the semiempirical side maintained that, despite advances in methodology and

computer hardware, ab initio calculations could not yet address most chemically

interesting problems. During this time, several quantum-chemical computer programs

became available that allowed nontheoreticians to carry out theoretical calculations

by themselves and to judge the strengths and weaknesses of different approaches.
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In the 1980s, computational chemistry thus gained widespread acceptance, and the

ab initio and semiempirical branches moved towards peaceful coexistence: it was now

generally recognized that ab initio calculations can give the right results for the right

reason not only in principle, but often also in practice, and that semiempirical

calculations can offer qualitatively correct results of useful accuracy for many larger

and chemically interesting systems. Consequently, semiempirical SCF-MO methods

(particularly MNDO and later AM1) became one of the workhorses of computational

chemistry (see Fig. 21.1). In the 1990s, density functional theory (DFT) entered the

mainstream of computational chemistry: gradient-corrected and hybrid functionals often

provide fairly accurate results at relatively low computational costs, and corresponding

DFT calculations have therefore replaced semiempirical SCF-MO calculations in many

standard applications involving larger molecules (typically up to 100 atoms). However,

semiempirical SCF-MO computations are still faster than DFT computations by more

than two orders of magnitude, and therefore they often remain the method of choice in

applications that involve really large molecules (e.g. in biochemistry) or a large number

of molecules (e.g. in QSAR studies) or a large number of calculations (e.g. during direct

dynamics and sampling). At the present stage, there seems to be no longer a sharp

distinction between the ab initio, DFT, and semiempirical branches of computational

chemistry, but rather a pragmatic coexistence: in practice, chemical problems are often

solved by the combined use of these methods.

In the years since 1990, there have been some major new developments in

semiempirical methodology which will be summarized in Section 21.4. To put these

developments into perspective, the basic features of the established semiempirical

methods (see above) will be outlined briefly in the following Section 21.3; for a more

detailed account, the reader is referred to the available books [30–35] and review articles

[36–45] on semiempirical MO theory.

C
ita
tio
ns
pe
r p
ap
er

Year

Fig. 21.1. Annual citations for original papers [13,15,16,18,19,23].

Chapter 21562



21.3 ESTABLISHED METHODS

21.3.1 Basic concepts

A semiempirical model is defined by the underlying theoretical approach and the integral

approximations that determine the types of interactions included. The established models

employ a Hartree–Fock SCF-MO treatment for the valence electrons with a minimal

basis set. The core electrons are normally only taken into account through a reduced

nuclear charge (assuming complete shielding) although they are sometimes also

represented by an effective core potential. Electron correlation is treated explicitly only if

this is necessary for an appropriate zero-order description. Dynamic correlation effects

are often included in an average sense by a suitable representation of the two-electron

integrals and the overall parametrization.

In semiempirical approaches, the standard Hartree–Fock SCF-MO equations are

simplified by integral approximations which are designed to neglect all three-center and

four-center two-electron integrals. The CNDO, INDO, and NDDO schemes have been

introduced for this purpose [12,31]. They are rotationally invariant generalizations of the

zero-differential-overlap approximation from p-electron theory to valence-electron

systems. The most refined of these schemes is NDDO which assumes

mAn Bdt ¼ dABm
An Bdt ð1Þ

during integral evaluation where the superscripts assign an AO (m or n ) to an atom (A or

B) and dt denotes the volume element. NDDO is equivalent to INDO for the one-center

integrals, but keeps a much larger number of the two-center integrals and does not require

any spherical averaging for maintaining rotational invariance. NDDO retains the higher

multipoles of charge distributions in the two-center interactions (unlike CNDO and

INDO which truncate after the monopole), and therefore accounts for anisotropies in

these interactions. The CNDO, INDO, and NDDO approximations are applied to all

integrals that involve Coulomb interactions, and to the overlap integrals that appear in the

Hartree–Fock secular equations.

The implementation of a semiempirical model specifies the evaluation of all

nonvanishing integrals and introduces the associate parameters. The integrals are either

determined directly from experimental data or calculated exactly from the corresponding

analytical formulas or represented by suitable parametric expressions. The first option is

generally only feasible for the one-center integrals which may be derived from atomic

spectroscopic data. The selection of appropriate parametric expressions is normally

guided either by an analysis of the corresponding analytical integrals or by intuition.

The parametrization of a given implementation serves to determine optimum

parameter values by calibrating against suitable reference data. The most widely used

methods (see Section 21.2) adhere to the semiempirical philosophy and attempt to

reproduce experiment. However, if reliable experimental reference data are not available,

accurate theoretical data (e.g. from high-level ab initio calculations) are now generally

considered acceptable as substitutes for experimental data. The quality of semiempirical

results is strongly influenced by the effort put into the parametrization.
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Fig. 21.2 summarizes the various stages of semiempirical method development. The

specification of the model and its implementation are followed by the parametrization

and the subsequent validation for a broad range of systems not included in the

parametrization. If all these steps are completed successfully, the method is ready for

general use. If the results are not satisfactory at any stage, it is necessary to return to

previous stages and look for improvements. Semiempirical method development is thus

an iterative process which may be quite cumbersome: it is essential to explore the

accuracy that can be reached by a given model and implementation, to determine the

corresponding inherent limitations, and to move towards an improved model and/or

implementation if necessary.

21.3.2 MNDO and related methods

The most popular semiempirical methods for studying ground-state potential surfaces are

based on the MNDO model [16]. We shall therefore outline the MNDO formalism for

closed-shell molecules as a point of reference for the following discussion.

The molecular orbitals ci are expressed in the usual manner as linear combinations of

atomic orbitals (AOs, fm). The expansion coefficients cmi and the orbital energies 1i are

Model

Implementation

Parametrization

Validation

Application

Fig. 21.2. Semiempirical method development.
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obtained from the solution of the secular equations.

ci ¼
X
m

cmifm; ð2Þ

0 ¼
X
n

ðFmn 2 dmn 1iÞcn i: ð3Þ

As a consequence of the NDDO integral approximation, the overlap integrals in the

ab initio secular equations are replaced by Kronecker deltas, and the MNDO Fock matrix

elements Fmn contain only one-center and two-center terms. They are defined as

FmAn A ¼ HmAn A þ
X
lA

X
s A

PlAs A ðmAn A; lAs AÞ2 1

2
ðmAlA; n As AÞ

� �

þ
X
B

X
lB

X
s B

PlBs BðmAn A; lBs BÞ; ð4Þ

FmAn B ¼ HmAn B 2
1

2

X
lA

X
s B

PlAs B ðmAlA; n Bs BÞ; ð5Þ

where Hmn and Pls are elements of the one-electron core Hamiltonian and the density

matrix, respectively, and ðmn ;ls Þ denotes a two-electron integral. The total energy Etot
of a molecule is the sum of its electronic energy Eel and the core-core repulsions E

core
AB

which are composed of an electrostatic term EcoulAB and an additional effective term EeffAB
(see below).

Eel ¼ 1

2

X
m

X
n

Pmn ðHmn þ Fmn Þ; ð6Þ

Etot ¼ Eel þ
X
A ,

X
B

EcoreAB : ð7Þ

TheMNDOmodel is defined by the equations given above. In its original implementation

[16] the one-center terms are derived from atomic spectroscopic data, with the refinement

that slight adjustments of the one-center one-electron energies are allowed in the

parametrization. The one-center two-electron integrals provide the one-center limit

(RAB ¼ 0) of the two-center two-electron integrals while the asymptotic limit for RAB !
1 is determined by classical electrostatics. The semiempirical calculation of

ðmAn A; lBs BÞ conforms to these limits and evaluates the integrals from semiempirical

multipole–multipole interactions [46,47] damped according to the Klopman–Ohno

formula. At small and intermediate distances, the semiempirical two-electron integrals

are smaller than their analytical counterparts which is attributed to some average

inclusion of electron correlation effects. Aiming for a reasonable balance between

electrostatic attractions and repulsions within a molecule, the two-center core-electron

attractions ðmAn A;BÞ and the core–core repulsions EcoulAB are expressed in terms of the

two-electron integrals ðmAn A; sBsBÞ and ðsAsA; s BsBÞ; respectively. The additional

effective atom-pair potential EeffAB (with an essentially exponential repulsion) attempts to

account for Pauli exchange repulsions and also to compensate for errors introduced by
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other assumptions. Finally, following semiempirical tradition, the resonance integrals

bmn ¼ HmAn B are taken to be proportional to the corresponding overlap integrals.

The parametrization of MNDO has focused on ground-state properties, mainly

heats of formation and geometries, with the use of ionization potentials and dipole

moments as additional reference data. The choice of heats of formation as reference data

implies that the parametrization must account for zero-point vibrational energies and for

thermal corrections between 0 and 298 K in an average sense. This is not satisfactory

theoretically, but it has been shown empirically that the overall performance of MNDO is

not affected much by this choice.

AM1 [18] and PM3 [19,20] are based on exactly the same model as MNDO and differ

from MNDO only in one aspect of the implementation: the effective atom-pair term E eff
AB

in the core–core repulsion function is represented by a more flexible function with

several additional adjustable parameters. The additional Gaussian terms in E eff
AB are not

derived theoretically, but justified empirically as providing more opportunities for fine

tuning, especially for reducing overestimated nonbonded repulsions in MNDO. The

parametrization in AM1 and PM3 follows the same philosophy as in MNDO. However,

more effort has been spent on the parametrization of AM1 and PM3, and additional terms

have been treated as adjustable parameters so that the number of optimized parameters

per element has typically increased from 5 to 7 in MNDO to 18 in PM3.

21.4 SELECTED RECENT DEVELOPMENTS

In this section, we summarize advances in semiempirical MO theory that have been made

in the years since 1990 in seven areas. In most of these cases, there are current activities

aiming at further methodological improvements, and the discussion in this section should

thus give an indication on where the field is moving. It should be stressed, however, that

the selection of topics is subjective and not intended to be comprehensive.

21.4.1 Beyond the MNDO model: orthogonalization corrections

The ab initio SCF-MO secular equations include overlap and require a transformation

from the chosen nonorthogonal to an orthogonal basis to arrive at the standard eigenvalue

problem, FC 5 CE, where F and C denote the Fock and the eigenvector matrix in the

orthogonal basis, respectively, and E is the diagonal matrix of orbital energies.

The semiempirical integral approximations yield such secular equations without overlap

directly (see Section 21.3) which suggests that the semiempirical Fock matrix implicitly

refers to an orthogonalized basis and that the semiempirical integrals should thus be

associated with theoretical integrals in an orthogonalized basis.

In the case of the two-electron integrals, this provides the traditional justification for the

NDDO approximation [42]: Numerical studies have shown that the three- and four-center

as well as certain two-center two-electron integrals are indeed small in a Löwdin-

orthogonalized basis and may therefore be neglected. For the remaining two-center two-

electron NDDO integrals, the orthogonalization transformation leads to a moderate
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reduction of these integrals at intermediate distances which is consistent with the

Klopman–Ohno scaling of the semiempirical integrals.

The one-electron integrals are usually affected more strongly by the orthogonalization.

The importance of orthogonalization corrections for the one-electron integrals is

generally recognized. In an ab initio framework, the Pauli exchange repulsions and the

asymmetric splitting of bonding and antibonding orbitals arise from these corrections.

When using the standard semiempirical integral approximations, these and related effects

are formally neglected, and many deficiencies of the established semiempirical SCF-MO

methods may be attributed to this cause (see Ref. [42] for further details).

As mentioned (Section 21.3.2), the MNDO-type methods attempt to incorporate the

effects of Pauli exchange repulsion in an empirical manner, through an effective atom-

pair potential EeffAB that is added to the core–core repulsion. It would clearly be better to

include the underlying orthogonalization corrections explicitly in the electronic

calculation and to remove the effective atom-pair potential from the core–core repulsion.

In a semiempirical context, the dominant one-electron orthogonalization corrections can

be represented by parametric functions that reflect the second-order expansions of the

Löwdin orthogonalization transformation in terms of overlap. These corrections can then

be adjusted during the parametrization process.

Following previous INDO-based work [21,22], these basic ideas have been

implemented at the NDDO level in three steps [48–52]. First, the Pauli exchange

repulsions were introduced as valence-shell orthogonalization corrections only in the

one-center part of the core Hamiltonian [48,49]. In the second step, they were also

included in the two-center part of the core Hamiltonian [50,51], i.e. in the resonance

integrals. In the third step, less important second-order correction terms were

omitted [52].

The first approach (labeled OM1) contains only one-center and two-center terms,

whereas the second and third approach (labeled OM2 and OM3) include three-center

contributions in the corrections to the resonance integrals. These three-center

contributions reflect the stereochemical environment of each electron pair bond and

should thus be important for modeling conformational properties. OM1, OM2, and OM3

have been parametrized for the elements H, C, N, O, and F. They perform well for

ground-state properties and offer consistent small improvements over the established

MNDO-type methods in the usual statistical validations [49,50,52,53]. More significant

qualitative advances are found in several other areas where the explicit inclusion of Pauli

exchange repulsions is expected to be important, in particular for excited states (vertical

excitation energies), conformational properties (rotational barriers, relative energies of

conformers and isomers), and hydrogen bonds [49,50,52]. More work is needed to extend

these approaches to other elements.

21.4.2 Implementation of d orbitals in MNDO-type methods

MNDO, AM1, and PM3 employ an sp basis without d orbitals in their original

implementation. Therefore, they cannot be applied to most transition metal compounds,

and difficulties are expected for hypervalent compounds of main-group elements where
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the importance of d orbitals for quantitative accuracy is well documented at the ab initio

level. It is easier to include d orbitals in CNDO and INDO than in NDDO. Consequently,

extensions to d orbitals have long been available for CNDO methods [31] and INDO-

based methods [22,24], but only more recently for MNDO [47,54].

In the MNDO/d approach, the established MNDO formalism and parameters remain

unchanged for hydrogen, helium, and the first-row elements. The inclusion of d orbitals

for the heavier elements requires a generalized semiempirical treatment of the two-

electron interactions. The two-center two-electron integrals for an spd basis are

calculated by an extension [47] of the original point-charge model for an sp basis [46].

They are expanded in terms of semiempirical multipole–multipole interactions that are

truncated at the quadrupole level and evaluated with the use of the Klopman–Ohno

formula. All nonzero one-center two-electron integrals are retained to ensure rotational

invariance. The implementation and parametrization of MNDO/d are analogous to

MNDO, with only very minor variations in certain details [47,54]. MNDO/d parameters

are available for the second-row elements, the halogens, and the zinc group elements. The

corresponding results from MNDO/d are much improved over those from MNDO, as

expected in particular for hypervalent compounds [54].

The two-electron integral scheme for an spd basis [47] can be implemented in

combination with MNDO, AM1, or PM3. This has been done by several groups, and a

number of corresponding parametrizations have become available, including PM3/tm

for transition metals [55], AM1/d for Mo [56] and P [57] as well as AM1* for P, S, and

C1 [58].

21.4.3 Modified general-purpose methods

In the MNDO model, the two-center core–core repulsions are composed of an

electrostatic term EcoulAB and an additional effective term EeffAB (see Section 21.3.2). The

latter can easily be modified to allow for a more flexible parametrization. This basic idea

has led to the development of AM1 and PM3, and corresponding parametrizations with

improved optimization technology and more extended reference data sets are still being

pursued in the quest for more accurate general-purpose MNDO-type methods that

provide parameters for most elements in the periodic table; the latest product of these

efforts is PM5 [59].

Following an analogous general strategy, another general-purpose implementation

of the MNDO model has been introduced recently [60] which represents the effective

core–core repulsion term EeffAB by Pairwise Distance Directed Gaussians (PDDG) and,

moreover, differs from the established methods by treating the energy of each gaseous

atom as an adjustable parameter (rather than computing it). PDDG/MNDO and PDDG/

PM3 parameters have been published for H, C, N, and O [60] and for the halogens [61],

and further work is in progress to extend the parametrization to other elements that are

important in biochemistry. For the chosen large validation sets, PDDG/MNDO and

PDDG/PM3 yield heats of formation with significantly smaller mean absolute errors than

the parent methods [60,61], and PDDG/PM3 shows substantial improvement over density

functional methods with large basis sets in this regard [60]. It will be interesting to see
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how these new general-purpose methods perform in other applications that were not

considered in their development [62].

At the INDO level, a substantial modification of the established SINDO1 formalism

[21,22] has led to a new treatment namedMSINDO [63,64]. Both SINDO1 and MSINDO

explicitly include orthogonalization corrections, but their implementation is different:

MSINDO includes only the first-order terms, whereas SINDO1 also keeps the less

important second-order terms. In addition, there are several other differences with

regard to basis set (e.g. d orbitals included for Al–Cl in MSINDO) and integral

evaluation [21,22,63,64]. As in MNDO-type methods, the parametrization of SINDO1

andMSINDO focuses on ground-state properties (employing binding energies rather than

heats of formation as reference data). MSINDO has been parametrized for the elements

H, C–F, Na–Cl, Sc–Zn, and Ga–Br [63–66]. The results generally appear to be of

similar accuracy as those from MNDO-type methods.

The INDO/S method has recently been extended to the calculation of Rydberg states

by adding a shell of diffuse orbitals at a single center in the molecule [67]. This required

new integral approximations to take into account that a Rydberg orbital has a much

greater radial extent than the valence basis functions and to allow mixing between the

valence and Rydberg excited states [67]. Preliminary results for the vertical excitation

energies of small unsaturated organic molecules seem encouraging.

To conclude this section, we mention an article [68] that discusses desirable features

for ‘next-generation’ NDDO-based semiempirical methods. Apart from orthogonaliza-

tion corrections and effective core potentials that are already included in some of the

more recent developments (see above) it is proposed that an implicit dispersion term

should be added to the Hamiltonian to capture intramolecular dispersion energies in large

molecules. It is envisioned that dispersion interactions can be computed self-consistently

from an additive polarizability model with some short-range scaling [68].

21.4.4 Special-purpose parametrizations

Up to this point, we have focused on general-purpose semiempirical methods which

attempt to describe all classes of compounds and many properties simultaneously and

equally well. This is an ambitious goal, and it is obvious that compromises cannot be

avoided in such an endeavour. It is therefore an attractive idea to develop specialized

semiempirical methods for certain classes of compounds or specific properties because

such methods ought to be more accurate in their area of applicability than the general-

purpose methods.

Such specialized semiempirical treatments exist (see Ref. [42] for a review on early

work), many of which are based on the MNDO model in one of its standard

implementations. For example, there are several early MNDO and AM1 variants with a

special treatment of hydrogen bonds [42], which have recently been supplemented with

an elaborate PM3-based parametrization for water–water interactions named PM3-PIF

(pair interaction function) [69]. These special approaches exploit the flexibility offered in

MNDO-type methods by the presence of the effective core–core repulsion term EeffAB
which can be modified for fine tuning.
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Other special-purpose approaches focus on chemical reactions and employ NDDO-

based methods with specific reaction parameters (NDDO-SRP) [70]. This concept has

been adopted by a number of groups for direct dynamics calculations. Typically, the

parameters in a standard method such as AM1 are adjusted to optimize the potential

surface for an individual reaction or a set of related reactions (allowing moderate

parameter variations up to 10%). This is done by fitting against experimental data

(reaction energies, barriers) and/or high-level ab initio data (relevant points on the

potential surface of a suitable model system), often with the use of genetic algorithms

[71]. The NDDO-SRP scheme serves as a robust and economic protocol for generating

realistic potential surfaces in a cost-effective manner.

Special parametrizations are also available [42] for a number of properties including

electrostatic potentials and effective atomic charges for use in biomolecular modeling.

Another example concerns the semiempirical calculation of NMR chemical shifts at the

GIAO-MNDO level [72]. In this approach, the NMR shielding tensor is evaluated in

MNDO approximation using gauge-including atomic orbitals (GIAO) and analytic

derivative theory. Calculations using the GIAO-MNDO formalism with standard MNDO

parameters overestimate the variation of the paramagnetic contribution to the NMR

chemical shifts which is caused by the systematic underestimation of excitation energies

in MNDO. This failure can be rectified by a reparametrization [72] where some of the

usual MNDO parameters are adjusted to increase the gap between occupied and

unoccupied MOs and thus decrease the paramagnetic contribution to the NMR chemical

shifts. This leads to significant improvements: the mean absolute errors of the computed

shifts drop to less than 5% of the total chemical shift range of a given element, with

values around 8, 29, and 43 ppm for C, N, and O, respectively [72]. The GIAO-MNDO

approach also provides realistic nucleus-independent chemical shifts which are often

used as a magnetic criterion for aromaticity [73]: the aromatic or antiaromatic character

of a given system can normally be assigned correctly on the basis of the GIAO-MNDO

results [74].

It is obvious from these examples that special-purpose parametrizations of established

semiempirical models can be used in a pragmatic manner to enhance their accuracy for

specific applications.

21.4.5 Computational aspects

Semiempirical SCF-MO methods are designed to be efficient. Due to the integral

approximations commonly used (see Section 21.3) integral evaluation scales asO(N2) for

N basis functions. For large molecules this becomes negligible compared with the O(N3)

steps in the solution of the secular equations and the formation of the density matrix.

Whenever possible, full diagonalizations of the Fock matrix are avoided by adopting a

procedure [75] that involves transformation of the Fock matrix from the AO basis to the

MO basis and subsequent noniterative annihilation of matrix elements in the occupied-

virtual block. Therefore, most of the work in the O(N3) steps occurs in matrix

multiplications. The small number of nonzero integrals implies that there are usually no
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input/output bottlenecks. The calculations can normally be performed completely in

memory, with memory requirements that scale as O(N2).

Given these characteristics, it is evident that large-scale semiempirical SCF-MO

calculations are ideally suited for vectorization and shared-memory parallelization: the

dominant matrix multiplications can be performed very efficiently by BLAS library

routines, and the remaining minor tasks of integral evaluation and Fock matrix

construction can also be handled well on parallel vector processors with shared memory

(see Ref. [43] for further details). The situation is less advantageous for massively

parallel (MP) systems with distributed memory. In recent years, several groups have

reported on the fine-grained parallelization of their semiempirical SCF-MO codes on MP

hardware [76–79], but satisfactory overall speedups are normally obtained only for

relatively small numbers of nodes (see Ref. [43] for further details).

Efficient explorations of potential surfaces require the derivatives of the energy with

respect to the nuclear coordinates which can, in principle, be computed either analytically

or numerically. Analytic derivatives generally contain contributions from integral

derivatives and from density matrix derivatives (CPHF terms). At the semiempirical

level, the evaluation of the former normally involves little computational effort since

there are only few integral derivatives due to the neglect of most integrals, while the

evaluation of the CPHF terms may be more demanding. Over the past decade, efficient

analytic derivative codes have been developed for computing the gradient [80,81] and the

harmonic force constants [82] in MNDO-type methods. The greatest practical benefits of

these developments are found in the case of the gradient for semiempirical CI

wavefunctions where a previous implementation [83] employed a procedure for solving

the CPHF equations that scales as O(N4). This time-determining step can be reformulated

[80] to scale as O(N3) when making use of the Z-vector method [84] which leads to

dramatic speedups (by factors of about N). The analytic CI gradient code [81] is general

and can therefore be used not only with the minimal CI treatments that are traditionally

employed in semiempirical work, but also with elaborate multi-reference MR-CI

approaches that have recently been implemented for semiempirical methods [85,86]. The

evaluation of the analytic CI gradient is significantly faster than the underlying SCF and

CI calculations, both for minimal CI and for large-scale MR-CI approaches [81,86].

These computational advances greatly facilitate semiempirical CI studies of electro-

nically excited states of large molecules.

21.4.6 Linear scaling methods

In practice, conventional semiempirical SCF-MO calculations are easily done on current

hardware for molecules containing up to about 1000 nonhydrogen atoms. For much

larger molecules, it is advisable to employ alternative algorithms that attempt to achieve a

linear scaling of the computational effort with system size, by exploiting the local

character of most relevant interactions and the sparsity of the associate matrices. In

semiempirical quantum chemistry, the primary objective of linear scaling methods is to

avoid the bottlenecks related to diagonalization, i.e. to avoid the steps that scale as O(N3).

Over the past decade, three different approaches have been developed for this purpose.
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In the localized molecular orbital (LMO) approach [87], 2 £ 2 rotations are applied to

annihilate the interactions between occupied and virtual LMOs that are located within a

certain cutoff radius, whereas all other interactions are considered to be negligible and

therefore not treated. The resulting small numerical errors can be controlled by a

renormalization of the LMOs and a suitable choice of the cutoff radius.

The divide-and-conquer methods [88–90] are based on a partitioning of the density

matrix. The overall electronic structure calculation is decomposed into a series of

relatively inexpensive, standard calculations for a set of smaller, overlapping subsystems.

A global description of the full system is then obtained by combining the information

from all subsystem density matrices.

The conjugate gradient density matrix search (CG-DMS) [91–93] avoids diagonaliza-

tions by a direct optimization of the density matrix. An acceptable density matrix must be

normalized and idempotent, and it must commute with the Fock matrix after SCF

convergence. In the CG-DMS treatment, a suitable functional of the density matrix is

minimized with respect to the density matrix such that the resulting density matrix

satisfies these criteria. By neglecting density and Fock matrix elements close to zero,

sparse matrices are obtained, and linear scaling can be approached by applying sparse

matrix techniques.

All these linear scaling methods introduce some approximations so that the results will

show some deviations from the conventional results obtained by a full diagonalization

(which can be controlled by the choice of suitable cutoffs). Furthermore, all require some

overhead so that the conventional calculations remain faster for small molecules: the

crossover point depends on a number of factors (e.g. the chosen cutoffs and the molecular

shapes), but 200–300 atoms seems to be a typical range. Finally, it should be kept in

mind that none of these algorithms can exhibit true linear scaling without addressing

other parts of semiempirical computations that scale formally as O(N2), such as integral

evaluation. However, in practice this is only a minor point since the O(N2) steps are

generally very fast.

Applications of linear scaling semiempirical methods have focused on large

biomolecules, and calculations have been reported for molecules up to about 20,000

atoms [93]. The merits of such calculations are most obvious for large systems with long-

range charge transfer or long-range charge fluctuations since such effects can only be

captured by quantum-chemical approaches that cover the complete system.

21.4.7 Hybrid methods

There are many processes in large systems where the electronically active part is quite

localized, for example chemical reactions in a well-defined active site or electronic

excitations in a chromophore. In such cases, hybrid methods may be appropriate where

the electronically active region is described by quantum mechanics (QM) and the

environment by molecular mechanics (MM). These QM/MM methods offer a versatile

approach that can be tailored to the specific systems studied, by a suitable choice of

the QM/MM partitioning and of the QM and MM methods employed.
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A thorough review of QM/MM methods is beyond the scope of this article, and the

reader is referred to the extensive literature for this purpose [94–104]. We shall only list

some methodological issues that had to be resolved in the development of semiempirical

QM/MMmethods. These include the choice of a proper QM/MM coupling scheme [105]

(mechanical, electronic, polarized, or self-consistent polarized embedding [106–108]),

the treatment of the QM/MM boundary [109] (in terms of link atoms [95], localized

orbitals from a local SCF scheme [110], generalized hybrid orbitals [111,112], or

parametrized connection atoms [113]), the specific parametrization of QM/MM

interaction terms (both for van-der-Waals [114] and electrostatic [115] contributions),

and the treatment of long-range electrostatic interactions [116]. Based on these and

other methodological developments, semiempirical QM/MM approaches have now

become a popular tool for studying large (bio)molecules. Of course, ab initio and DFT

methods can also serve as QM component in QM/MM calculations, and the choice

between them and semiempirical methods depends on the required accuracy and the

tolerable computational effort.

Semiempirical QM/MM methods are computationally much less demanding than pure

QM methods, even compared with linear scaling semiempirical methods: factors of

around 500 have been reported for the computation times in typical applications on

enzymes [117]. In practice, semiempirical QM/MM methods are therefore used for

extensive potential energy explorations and sampling in biomolecular simulations, while

linear scaling semiempirical QMmethods can be employed in single-point calculations to

check the validity of the QM/MM approach (e.g. with regard to charge transfer and

charge fluctuations). Both approaches are thus complementary since they may be used to

address different questions. Their availability has made it possible to study complex

systems with thousands of atoms such as enzymes at the semiempirical level.

21.5 SELECTED RECENT APPLICATIONS

In spite of the advent of density functional theory (see Section 21.2), the number of

publications with semiempirical calculations remains high. In the Science Citation Index,

one finds for each of the past ten years more than 1000 such papers under the topic

‘semiempirical/MNDO/AM1/PM3’, the actual numbers fluctuating between 1100 and

1500 (1994–2003); this should be regarded as a lower limit of the actual usage, for

obvious reasons. Since DFT calculations have replaced semiempirical calculations in

many studies on medium-sized molecules, the latter must have found new areas of

application. In this section, we attempt to identify such areas from a survey of the recent

literature. Given the diverse activities in this field, it is clear this cannot be a

comprehensive overview and that the selection of topics will necessarily be subjective.

Large biomolecules with thousands of atoms are an attractive target for semiempirical

work. Higher-level ab initio and DFT calculations are very costly for such systems even

in the case of QM/MM approaches, especially when considering the need for an adequate

sampling of conformational space, and the accuracy of semiempirical methods is

normally best for organic compounds. Therefore, semiempirical QM/MM studies on

large biomolecules have become very popular in recent years. In particular, many
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enzymatic reactions have been examined at this level (see Refs. [98,101] for

corresponding reviews). Semiempirical QM/MM calculations are fast enough to

compute potentials of mean force along the reaction coordinate (e.g. via umbrella

sampling or free energy perturbation theory) so that free energy barriers of enzymatic

reactions can be obtained. Comparing with the results from an analogous treatment of the

reaction in aqueous solution and with gas-phase results allows an analysis of the origin of

the rate enhancement in the enzyme. Examples of such semiempirical QM/MM work are

the recent investigations on chorismate mutase [118,119] and on catechol O-methyl

transferase [120]. Dynamical effects on enzyme kinetics have been incorporated on the

basis of semiempirical QM/MM potential surfaces by a variety of techniques, including

mixed quantum-classical molecular dynamics and variational transition state theory (see

Ref. [101] for a review), and kinetic isotope effects have been evaluated for a number of

enzymatic reactions [101,121,122]. Some of these QM/MM studies employ specific

reaction parameters (mostly AM1-SRP or PM3-SRP) to improve the accuracy of the QM

component [101,122,123].

Large biomolecules can also be treated by linear scaling semiempirical QM

calculations, but at notably higher costs as compared to analogous QM/MM work

[117]. Such calculations are thus done less often. Applications of the linear scaling

divide-and-conquer approach to biological systems have been reviewed [124]. Topics

that have been addressed by linear scaling semiempirical methods include charge-

transfer interactions in macromolecular systems such as the protein/water interface [125],

the electrostatic potential in the potassium channel [126], charge fluctuations in the

nucleic acids DNA and RNA in solution [127], the regioselectivity and RNA-binding

affinity of HIV-1 nucleocapsid protein [128], and the calculation of NMR chemical shifts

in biomolecules using a divide-and-conquer implementation [129] of the GIAO-MNDO

method [72]. In addition to such large-scale calculations on systems with thousands of

atoms, there are of course conventional semiempirical calculations that address

biochemical problems using smaller model compounds (e.g. to give just one example,

the reaction mechanism of phosphoryl transfer in kinases [130,131]).

In medicinal chemistry and drug design, the focus is often not on the detailed

understanding of one particular biomolecular system, but rather on the comparison and

screening of a large number of complex molecules that may have certain

pharmacological effects. Hence, quantitative structure-property and structure-activity

relationships (QSPR and QSAR, respectively) are of interest that correlate properly

chosen molecular descriptors with the desired properties and activities. Semiempirical

MO methods are well suited for this purpose, and many different theoretical descriptors

have been proposed and tested in semiempirical QSPR and QSAR work. Recent AM1-

based applications include a QSPR study that uses 66 descriptors in an attempt to

distinguish between drugs and nondrugs in a database of more than 2000 compounds

[132], the introduction of new molecular descriptors based on local properties at

the molecular surface [133], and a QSAR investigation aimed at the prediction of

blood–brain barrier permeation [134].

Apart from biomolecules, there are many other nanoparticles that are of considerable

experimental interest and are amenable to semiempirical calculations. Large fullerenes

and carbon nanotubes are prime examples, and there have a large number of corresponding
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semiempirical studies which are too numerous to be listed here (see Ref. [42] for a

review of early MNDO work). The performance of MNDO, AM1, and PM3 in fullerene

chemistry has recently been validated by systematic comparisons with DFT results for a

set of 153 fullerene species [135]. MSINDO has been employed to investigate the

structure and the growth mechanism of siloxane-based nanotubes (up to 840 atoms)

[136–138]. In molecular electronics, where large metal clusters have been proposed to

serve as nanoelectrodes in complex devices, it has been shown that INDO/S provides an

efficient computational scheme for studying a wide range of nanoparticle electronic

properties [139]: due to the inclusion of exchange effects, INDO/S yields more realistic

charge distributions and energetics than continuum electrostatics or classical atomistic

electrostatics [139], and may even be superior to DFT in this area because of well-

known DFT failures concerning dispersion, charge transfer, extended p conjugation,

and bond cleavage [140].

Solids and surfaces can be modeled as large clusters, as embedded clusters, and as

infinite periodic systems. Each of these strategies has been used in conjunction with

semiempirical MO methods. The most straightforward semiempirical approach employs

clusters of increasing size, taking advantage of the fact that semiempirical calculations

can be extended easily to systems with more than 1000 atoms which facilitates

convergence studies to the bulk limit. Semiempirical work in this field has been reviewed

recently [45].

Given the availability of high-level ab initio and DFT methods, it may seem odd at first

sight that there is one area where state-of-the-art applications involve semiempirical

calculations on small molecules: this is direct reaction dynamics where energies and

gradients are computed on the fly at each time step, which requires many thousands or

even millions of such single-point calculations for proper sampling. The accuracy of the

established semiempirical methods will normally not be sufficient for a dynamical study

of a given reaction, and it is therefore common practice to derive specific reaction

parameters (SRP) for this purpose [70,71]. Semiempirical direct dynamics studies have

addressed, for example, the unimolecular dissociation of formaldehyde in the gas phase

(AM1-SRP) [141], the nucleophilic substitution of methyl bromide by chloride (AM1-

SRP) [142], the lifetime and stereomutation of cyclopropane (AM1-SRP) [143–145], the

collision- and surface-induced dissociation of N-protonated glycine (AM1 þ MM) [146],

and the reactions of the triplet oxygen atom with small alkanes (PM3-SRP and MSINDO)

[147–150].

The final topic in this section are electronically excited states. For vertical excitation

energies, INDO/S has long been the method of choice, and it has been applied to many

large systems including the bacteriochlorophyll b dimer of Rhodopseudomonas viridis

(QM/MM study with 325 QM atoms) [106] and aggregates of bacteriochlorophylls that

occur in light-harvesting complexes of photosynthetic bacteria (QM studies with up to

704 atoms for a model of the hexadecamer) [151]. For the computation of vertical

excitation energies of smaller systems, time-dependent density functional theory

(TDDFT) has become popular in recent years: it is often very successful, but currently

available functionals are also known to fail for certain types of excitation, e.g. for those

involving long-range charge transfer [152,153]. Such charge-transfer valence transitions

do not pose any particular problems for semiempirical CI methods, and photoinduced
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charge separations have indeed been described reasonably well at this level, e.g. in recent

AM1-CI studies on phenothiazine-pyrene dyads [154,155]. Moreover, substantial

problems with TDDFT have been reported [153] in explorations of excited-state

potential energy surfaces of unsaturated hydrocarbons, particularly polyenes, which do

not appear in corresponding semiempirical CI calculations. Given such problems with

TDDFT, semiempirical methods may be a good alternative for investigating the

photochemistry even in medium-sized systems: NDDO-based approaches with

orthogonalization corrections provide a balanced and reasonably accurate description

of ground and excited states [50–52], efficient semiempirical MR-CI approaches have

been developed [85,86] and applied in an OM2 study of butadiene [156], and analytic

gradients [81,86] and algorithms for locating conical interactions [157] have been

implemented at the semiempirical CI level. With all these ingredients available, one may

expect large-scale applications of these methods to the electronically excited states and

the photochemistry of complex systems.

21.6 SUMMARY AND OUTLOOK

Almost 40 years have passed since the introduction of all-valence-electron semiempirical

SCF-MO methods in 1965 [12]. Subsequent developments and parametrizations have led

to general-purpose methods, most notably MNDO, AM1, and PM3, that have served as

some of the most popular tools in computational chemistry over the past decades (see

Sections 21.2 and 21.3). Due to methodological advances and ever improving hardware

performance, ab initio and DFT methods have replaced semiempirical methods in many

applications on small and medium-sized molecules over the years. However,

semiempirical calculations are so much faster than ab initio or DFT calculations that

they have remained useful for applications involving large systems (biomolecules,

nanoparticles), large numbers of compounds (QSPR, QSAR), and large numbers of

calculations (direct dynamics, sampling), where higher-level calculations are still too

costly. There are also some applications on medium-sized systems for which

semiempirical approaches may offer a viable alternative to higher-level calculations,

when the latter are still feasible but suffer from well-known problems (see Section 21.5).

Further developments in semiempirical theory should aim at improving the accuracy

and applicability of semiempirical methods without compromising their computational

efficiency. Such work is in progress (see Section 21.4). Theoretically guided

improvements in the underlying semiempirical models would seem to offer the best

strategy for developing new general-purpose treatments with better overall performance.

Special parametrizations of established semiempirical models are a promising

complementary approach for describing special classes of compounds, reactions, or

properties as accurately as possible. Algorithmic and technical improvements extend the

range of systems that can be studied at the semiempirical level. Finally, semiempirical

methods are valuable components in hybrid approaches (QM/MM or QM/QM).

Experimental chemistry moves towards more complex systems, for example in

biochemistry and nanochemistry. At any given point, there will be chemical problems

that can only be tackled by lower-level electronic structure treatments within a practical
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time frame, and there will be others which are best solved by the synergetic use of several

computational methods ranging from high-level electronic structure theory to classical

force fields and molecular modeling. Being in the middle of this spectrum, the

semiempirical methods of quantum chemistry are expected to remain useful, as in the first

40 years of computational chemistry.
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Abstract

We present in this article a survey of the various approaches to state-specific multi-

reference (SSMR) methods developed in our group, which use both complete and

incomplete model spaces (IMSs). These SSMR methods satisfy the following desirable

criteria: (a) they avoid instabilities due to intruder states in a natural manner; (b) they

guarantee size-extensivity of the computed energy; (c) they ensure additivity of the

energy for non-interacting subsystems when the model spaces are chosen in a separable

manner; and (d) they are manifestly spin-free. For the general case involving open-shell

functions in the model space, our spin-adaptation strategy is to choose them as some

suitable configuration state functions (CSF), and use spin-free unitary generators to

define the cluster operators. An important innovation in our spin-free formulation is the

use of the entire portion f0m of the highest closed-shell component of a model function
fm as the vacuum to define all the excitations on fm in normal order. This simplifies the
expressions enormously. We discuss the allied issues of spin-adaptation in some

detail. The size-extensive formulation in the IMS warrants abandoning the intermediate

normalization convention for the wave operator, and we discuss the related issues in a

concise manner. Although we do discuss the parent SSMR Coupled Cluster (SS-MRCC)

formalism [J. Chem. Phys., 110 (1999) 6171] itself, albeit in a succinct fashion,

q It is our pleasure to dedicate this article to Henry Fritz Schaefer III on the happy occasion of his 60th birthday.

q 2005 Elsevier B.V. All rights reserved.
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our principal thrust here is to explore the efficacy and viability of the various physically

motivated systematic approximations of graded complexity of the SS-MRCC theory. The

wave operator in the SS-MRCC theory utilizes the Jeziorski–Monkhorst Ansatz, which

amounts to the use of a separate exponential cluster operator expðTmÞ for every fm: The
most computationally demanding component of the theory is the rather large number

of cluster amplitudes involving inactive orbitals, distinct for each m. We present an

approximate variant, where the amplitudes of the inactive excitations involving the same

set of inactive orbitals are assigned the same value independent of m. This ‘Anonymous
Parentage for the Inactive excitations’ (API) in SS-MRCC (API-SSMRCC) is expected

to be very effective in drastically reducing the number of amplitudes without undue

sacrifice in accuracy. Starting from the SS-MRCC theory, we will also develop the spin-

free version of various Rayleigh–Schrödinger (RS) based perturbation theories in

both complete model space and IMSs. Several reasonable choices of the one-particle

unperturbed Hamiltonian H0 in the Møller–Plesset (MP) partitioning will be introduced

and discussed. The one-particle operators inH0 in the MP partition are essentially various

forms of diagonal elements of some Fock operator, defined for every model function.

This corresponds to a multi-partitioning strategy, where unperturbed orbital energies

depend on the model function. A special choice is, of course, the widely used state-

averaged variant of the Fock operator, which has also been considered. In the Epstein–

Nesbet (EN) partition, we additionally include all the diagonal direct and exchange

ladders. Analogues of some of the MP partitionings for the spin-free EN partition are

indicated. We also explore the performance of the perturbative variants of the API-

SSMRCC, and establish their efficacy. We discuss the emergence of the CEPA-like

approximants, starting from the SS-MRCC, where the space of excitations induced by the

cluster operators is confined to the first order interactive virtual space, but the exclusion

principle violating terms are included to various degrees. We consider two SS-MRCEPA

schemes, one is basically the linear version of the SS-MRCC (SS-MRCEPA(0)), and

the other is the orbital invariant version, termed as SS-MRCEPA(I). The performance

of the various SS-MRPT and SS-MRCEPA-like methods is illustrated with example

applications on the trapezoidal H4 (H4 model), the PES of the BeH2 complex and the

dissociation curves of the ground states of LiH and BH, using various basis sets.

Properties such as spectroscopic constants, dipole moment functions and polarizability

functions are also studied. The electrical properties are calculated via the Finite-Field

(FF) method. The results establish the SS-MRPT with the EN partition and the

SS-MRCEPA methods as rather accurate viable tools for studying quasi-degeneracy of

varying degrees in a size-extensive and spin-free manner, while bypassing intruders.

22.1 INTRODUCTION

It is now well established by numerous and extensive applications that the single

reference (SR) based many-body methods, viz. many-body perturbation theory (PT) [1],

coupled cluster (CC) theory [2], coupled electron-pair approximations (CEPA) [3], etc.

provide rather accurate descriptions of the energy in and around the equilibrium geometry

of the closed-shell states. In particular, the single reference coupled cluster (SRCC)
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method, with single and double (SD) excitations with the perturbative inclusion of triples

(SR-CCSD(T)) [4] has turned out to be a very good compromise between computational

demand and accuracy. The accuracy of the SR-based PT or CC theory decreases

significantly in the presence of quasi-degeneracy, e.g. in the case of bond-breaking or

avoided crossing in a potential energy surface (PES). The case of weakly avoided

crossings are specially difficult to handle. Another special situation is the case of open-

shell states which are ionic or radicaloid in nature requiring several determinants to have

the proper spin symmetry. This warrants a multi-reference (MR) approach.

Although MR generalization is quite straightforward for the CI case, the MR-CISD [5]

requires large reference space to minimize the size-extensivity error. Such difficulties

can be avoided via the extension of SR-based CC, CEPA and PT to MR-based CC, CEPA

and PT methods. The past two decades have witnessed that the MR generalization of

non-variational methods is not a trivial aspect due to the various theoretical constraints

and the attendant computational complications. Historically the oldest such formulations

use the concept of model space (MS) and effective Hamiltonians ðHeffÞ, generating
simultaneously N eigenvalues from diagonalization of an effective Hamiltonian in an

N-dimensional model space. The effective Hamiltonian approach separates the non-

dynamical correlation effects due to near-degeneracy of the model functions from the

dynamical and weaker correlation effects in an elegant manner.

We should mention here that the historically oldest MR many-body theories using

Heff have been the MR perturbation theories. Successful implementation of all the

traditional multi-reference many-body perturbation theories (MR-MBPT), which were

developed within the Heff framework [6], was mainly confined to calculation of energy

differences of spectroscopic interest, and not to the study of PES.

Prompted by the pre-eminent success of the SRCC method, its generalization to

encompass open-shell and quasi-degenerate cases has been attempted by several authors.

Again, the earlier MR coupled cluster (MRCC) formulations [7–10] also made use of

effective Hamiltonian approach, though they were rather more varied in their scope of

applications. There are two main classes of effective Hamiltonian-based MRCCmethods:

(i) Valence-Universal (VU), a Fock-space approach [7–9,11], which is very useful for

the computation of spectroscopic energies; (ii) State-Universal (SU), a Hilbert-space

approach [10], which has been used for the study of the state energies per se and also

for computing PES over a wide range of nuclear geometries. In this approach, the model

space is chosen in such a way so that it contains all strongly interacting configurations of

interest, and separate cluster operators are introduced for each model space function.

Size-extensivity of the computed energies is maintained by the use of Complete Active

Space (CAS). Just as for the VU coupled cluster approach, a proper choice of the model

space is not always straightforward for the SU coupled cluster approach as well. An

additional complication of the SU coupled cluster formalims is the difficulty of spin-

adaptation for non-singlet states. Nevertheless, since a major emphasis of the MR-based

methods is to study PES, where the relative importance of the dynamical and

non-dynamical effects may change quite strongly over changes in the nuclear geometry,

the SU coupled cluster approach seems to be a more natural choice.

We should mention that there exists a straightforward, though tedious way, to

incorporate the effects of non-dynamical correlations within the SR framework in CC
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method, viz. to identify the virtual orbitals which become quasi-degenerate with the

occupied orbitals, and then to treat the strong effect of the quasi-degenerate functions

with these virtual orbitals via the inclusion of the cluster operators higher than the

two-body operators [12–15] involving those virtual orbitals. Such methods do not

distinguish the dynamical and non-dynamical correlation effects contributions. The

numerical implementation along this line is computationally quite demanding. Some-

times, these methods tend to produce artificial humps in the PES. Of course, the

SR-CCSD(T) performs far worse in the presence of quasi-degeneracy [16]. We should

also mention the reduced CC method where the higher-body cluster operators are

computed by a CASSCF or allied methods, and are used in a SRCC theory to augment for

quasi-degeneracy [17].

For the simple open-shell cases, straightforward CC generalizations starting from

restricted open-shell Hartree–Fock functions (ROHF-based open-shell CC) have been

attempted systematically [18], which, however, lead to spin-broken solutions. Suitable

spin-restriction schemes have also been suggested [19], which, however, do not

completely resolve the problem of having a spin-adapted theory in the case where

genuine MR starting function has to be used, either for symmetry or for energetic reasons.

The pioneering work of Jansen and Schaefer [20] as well as the related unitary group

formulation of Li and Paldus [21] achieve an explicit spin-free formulation starting with

a single configuration state function, but unlike in the case of closed shell, the CC series

does not terminate at the quartic power, essentially due to the non-commuting nature of

the spin-free generators containing both creation and destruction of electrons in the active

orbitals. We will encounter this problem in our own spin-adaptation strategy as well.

Another class of method tries to generate MR states of interest via the action of an

excitation operator on a simple base function, usually of the ground state. The linear

response-based theories based on CC reference functions have been proposed quite

some time ago to achieve this goal, starting from the HF or ROHF ground reference state

[22–25]. An interesting variant to handle non-trivial open-shell states via a spin-flip

operator [26] has revived the interest in the generalization of the CC-based linear

response theory to open-shell states.

It now seems to be generally recognized that the simultaneous calculation of all

the roots generated by an Heff is seriously hampered when some virtual functions come

very close in energy to some high-lying model functions. Owing to the coupling of all

the eigenvalues via theHeff , all the roots become poorly described as a consequence. This

is the notorious intruder problem [27].

It seems that intruders can be avoided almost completely by working in an

incomplete model space (IMS), for a fixed nuclear geometry, where the offending

model functions mixing strongly with intruders can be left out of the model space. As

shown by Mukherjee [28], size-extensive formulation can be obtained by abandoning

the intermediate normalization of the wave operator in favor of a proper size-extensive

normalization. Several applications of this formalism were made successfully [29],

though it does not work that well for entire PES. PES computed via the IMS requires

one to use different IMSs in the different regions of it.

To circumvent the difficulty of the intruders, Malrieu and co-workers [30] proposed,

based on an earlier idea of Kirtman [31], partitioning the model space into a primary
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and a secondary (buffer) space to generate an effective operator, called the ‘intermediate

Hamiltonian’ (IH), where the constraint is to demand that just M roots are genuine

eigenvalues of H, with M being the dimension of the primary space. The rest of the roots

are arbitrary. The various versions of the IH differ in the way the arbitrariness of the

coupling of the secondary space to the virtual one is treated. The initial formulations of

Malrieu and co-workers were matrix-oriented and were not size-extensive. More recently

size-extensive formulations were given in the Fock-space context [32–35]. There have

also been important developments by Hoffmann and co-workers [36].

An ideal MR method should be: (i) accurate, reliable and size-extensive; (ii) general

(i.e. applicable to both ground and excited states of either closed-shell or open-shell

systems); (iii) systematic or well ordered (i.e. enabling a systematic improvement over

the SRCC theory, while reducing to it when the state of interest is strongly dominated

by a single configuration); (iv) complete (i.e. recovering the full CI result when all

clusters are taken into account); and (v) flexible (i.e. enabling the use of different

reference spaces).

As an attractive route towards aspiring to reach most of the goals mentioned above,

it seems that a state-specific (SS) method, starting with a multi-reference function—

taking care of the non-dynamical correlation due to near-degeneracy, and targeting a

specific state of interest via a state-specific wave operator bringing in the dynamical

correlation by a cluster expansion inducing excitation to the virtual functions—would

be a very good candidate. We want to call all such methods generically as state-

specific multi-reference (SSMR) methods. The SSMR methods address the solution of

specific states of interest one at a time and are thus free from the intruder state problem

as long as the target state is well separated from the virtual one. Delineation of a class

of SSMR formalisms, based on the CC approach and the systematic approximations

thereof, along with some numerical applications, is the major concern of this article.

Although, as mentioned earlier, the SS method using an SR starting point with

selective higher rank operators is being studied [12–15], in our opinion, an MR-based

SS approach is more natural and more flexible to tackle the intruders, using rather

low-body cluster operators. Among the many variants of SSMR methods proposed in the

literature, the methods of Malrieu and co-workers [37], Mukherjee and co-workers [38,

39] and Hubač and co-workers [40] have been systematically studied both theoretically

and in several applications. The developments of Mukherjee and co-workers [38,39] and

Hubač and co-workers [40] are both based on the full Jeziorski–Monkhorst (JM) Ansatz

[10] while Malrieu and co-workers [37] use the low order quasi-linearized truncation

schemes of the JM wave operator. The method of Hubač and co-workers is structurally

simpler than Mukherjee and co-workers, but the method is not rigorously size-extensive.

In a later development, Hubač and co-workers [41] have proposed an a posteriori

correction to eliminate inextensivity error, but this entails the danger of intruders. In all

these SSMR many-body methods [37–40], the diagonalization of the effective operator

in the model space generates the energies associated with altered coefficients for

the model space functions, and hence the methods generate relaxed coefficients for the

model space functions. An analysis indicating how a continuous transition from the

state-universal theory of Jeziorski and Monkhorst [10] to the state-specific theories
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of Hubač and co-workers [40] and of Mukherjee and co-workers [38,39] can be

accomplished has recently been done by Pittner [42].

The SSMR Coupled Cluster (SS-MRCC) method using CAS, proposed by Mukherjee

and co-workers [38,39], is manifestly size-extensive, orbital invariant and hence

size-consistent. The SS-MRCC [38,39] formalism is not just a trivial application of

the state-universal MRCC (SU-MRCC) [10] multi-root formalism to one root of interest.

It is altogether a new formalism, with the working equations quite different from that of

the SU-MRCC theory. Since the SS-MRPT theory uses the same Ansatz as in SU-MRCC,

it has more degrees of freedom than is needed to generate one root. This flexibility, in

fact, is an advantage and is exploited to achieve the twin desirable goals: (1) avoiding

intruders, and (2) generating an explicitly size-extensive formalism.

An alternative way to approach the problem is to start out with a fixed MR function,

and develop a perturbation theory on it. This is thus an MRPT of the unrelaxed or

contracted coefficients variety. The SSMR-based perturbation theories based on

contracted description using CAS [43–48] have been widely used as efficient methods

to treat quasi-degeneracy. There are usually two ways in which the virtual functions are

handled: they can be contracted functions themselves or they can be simpler CSFs. Multi-

state versions of the contracted variety has also been suggested [46]. An SS-based CC

formulation of the frozen variety has been developed [38], where a wave operator is used

to generate the exact state by its action on the entire MR function.

There are also hybrid solution strategies like the one suggested by Werner [49], where

the double excitations are chosen as the composite functions as obtained by the first

procedure, while the single excitations are taken as the singly excited determinants or

CSFs with respect to the model CSFs. In this article, we shall also consider similar

strategies, where all the cluster amplitudes for the excitation from the doubly occupied

inactive orbitals to the unoccupied inactive orbitals are computed with respect to the

entire MR starting function.

The various CAS-based perturbative methods can also differ by their choice of

unperturbed Hamiltonian H0, apart from the mode of representing the reference function

relaxed or unrelaxed with respect to the coefficients. The original CASPT2 [43] was

formulated with the generalized Fock operator as the unperturbed Hamiltonian. This and

the related formalisms [43–48] may be viewed as generalizations of MP perturbation

theory to a CAS reference function. To take a better account of the orbital occupancy in

non-singlet cases, a portion of the two-body terms of H has also been added to H0, with

varied degrees of success [47]. Obviously, the most elaborate choice of such H0 would

be to include the full two-body active part of interaction, in addition to the standard

generalized spin-average Fock operator [48]. Dyall [48] considered the entire active

portion ofH inH0 in his development of CASPT2. Almost all the CASPT versions stop at

the second order of energy (CASPT2) (see, however, Werner for a third order CASPT

[49]). Most of the various versions of CASPT2 are not rigorously size-consistent. The

extent of size-consistency error depends on the choice of the virtual functions (CSF or

contracted excited functions), and also on the choice of the unperturbed Hamiltonian. In

order to reduce the artifacts stemming from the lack of relaxation of the coefficients, they

advocate the use of rather large CAS, which may be fraught with intruders (for a critique

along this line, see Ref. [50]). Some recent formulations [50] of effective Hamiltonian
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perturbation theories have used a multi-reference MP approach with a relaxed description

in the traditional effective Hamiltonian framework. Also Heully and Daudey [51]

discussed a partitioning of the Hamiltonian where the size-consistency is imposed as an

external constraint. Surján and co-workers [52] have investigated the MRPT using APSG

(anti-symmetrized product of strongly orthogonal geminal) reference state. A recent

review and analysis of various perturbation theories has been presented by Surján and

Szabados [53]. The earlier CIPSI (Configuration Interaction with Perturbation Selection

Iteratively) method [54] may be viewed as a forerunner of many of the more recent

MR perturbation theories. This method can be viewed as a second order perturbation

correction to CI energies via diagrammatic techniques using multi-configurational zeroth

order wave functions.

The SS-MRCC method of Mukherjee and co-workers [38,39] allows transparent

simplification via truncation of the working equations, leading to various perturbative

methods (called by us as SS-MRPT) [55] of practical utility. Motivated by the success of

the spin-free version of the SS-MRPT for model spaces spanned by only closed-shell

systems, we have very recently formulated an explicitly spin-free SS-MRCC and, as

its approximant, an SS-MRPT for general open-shell systems via cluster operators using

spin-free unitary generators. We will discuss the salient features of the spin-adapted

theory in this chapter, and refer to our forthcoming comprehensive papers [56,57] for the

theoretical details. The important point in this development is the use of the generators

with exchange spectator scattering involving singly occupied active orbitals in the

open-shell model CSFs, which is necessary to span the full spin-space. We will present

the essentials of the spin-adapted versions of both the SS-MRCC and the SS-MRPT in

this article. Another useful approximant we will discuss later is where we ignore more

than doubly excited CSFs from the virtual space, but retain the Exclusion Principle

Violating (EPV) terms to various degrees in the formalism. This will lead to a suite

of SS-MRCEPA-like approximants [58,59]. Applications of both the SS-MRPT and

SS-MRCEPA will be shown. Viability of both the SS-MRPT [38,39,55] and the SS-

MRCEPA [58,59] approximants have already been demonstrated in some preliminary

applications, where the model functions were all closed-shell singlets.

Since the dimension of CAS grows very rapidly with the increase in the number of

active orbitals, implementation of the SS-MRCC becomes prohibitively difficult. Since

we use more cluster amplitudes than are necessary in describing the FCI function, this is

an unwarranted situation. If we recall that the extra degrees of freedom were needed to

ensure avoidance of intruders as well as guaranteeing size-extensivity, it is important to

focus on these two aspects for any attempt to reduce the number of amplitudes. One good,

physically motivated way of doing this is to assume that the cluster amplitudes of all the

excitations involving inactive orbitals only are independent of the model functions fm:
Since inactive excitations are more numerous, such an assumption will lead to drastic

reduction of the number of cluster amplitudes. This would amount to an ‘Anonymous

Parentage for the Inactive excitations’ (API), and we will sketch the derivation of such an

API-SSMRCC, and its perturbative realizations, API-SSMRPT in this article.

Another way to reduce the computational demand would be to work with an

incomplete model (or active) space. Just like in the case of effective Hamiltonian-based

theories, the choice of a complete model space (CMS) in a state-specific formalism
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is mainly dictated by the desire to achieve size-extensivity. An attractive alternative to a

CMS-based formulation is to use some IMS which lead to proper fragmentation for

some limited fragmentation channels. Very recently we have developed a size-extensive

and size-consistent SS-MRCC approach based on an IMS and have also discussed

simplification if the IMS is quasi-complete [60]. Methods such as perturbation theory or

CEPA-like schemes follow naturally as suitable approximants. Just like in the case of

VU- and SU-based IMS [28,61,62] method, intermediate normalization for the wave

operator is abandoned in the formalism and suitable excitations, defined as open and

quasi-open—which excite out of the IMS by their action on at least one of the model

functions—are incorporated in the wave operator. The effective operator, leading to

the energy on diagonalization, is a closed connected operator. This is the analogue of

the hybrid strategy of Werner [49] for the situation using relaxed coefficients.

A second order MRPT for the restricted active space (RAS) and a general active space

was proposed [63]. More recently another theory has been developed [64] using a QCAS

(Quasi-Complete Active Space). These theories, unlike in Ref. [60], are not rigorously

size-extensive.

Another approach for treating the quasi-degeneracy is adopted by the various MR-

based CEPA methods, which have appeared parallely along with the MRCC and MRPT

methods. The earlier developed state-specific MRCEPA methods [37,65–70] avoided

the redundancy problem using non-redundant cluster operators to compute the

dynamical correlation on the zeroth order MR wave function. The MR version of

(SC)2CI method, termed as MR-(SC)2CI [37], can be viewed as the size-extensive

dressing of the MR-CISD method just as the (SC)2CI [71] is considered to be the size-

extensive dressing of the SR-CISD method. Similar to the SR-case, they include all

EPV terms in an exact manner.

Our group has recently suggested a suite of CEPA-like approximants [58,59] to their

earlier formulated SS-MRCC [38,39] formalism based on a CAS, which show promise

in their numerical performance vis-à-vis the parent theory. These theories, generically

called SS-MRCEPA [58,59], were much simpler than the SS-MRCC, yet they captured

most of the essential physics; in particular they bypassed intruders naturally in case

the parent theory also had this property. They were all rigorously size-extensive. They

also showed size-consistency with respect to fragments, but only with respect to localized

orbitals on the fragments. The principal reason for this constraint is due to the lack of

orbital invariance of the associated SS-MRCEPA equations within the subsets of doubly

occupied, active and virtual orbitals defined by the choice of the CAS. This stemmed

from the way EPV terms were treated, viz. by keeping only diagonal terms of a set of

dressed operators in the SS-MRCEPA equations. However, we may mention that the

simplest of the SS-MRCEPA proposed by us, SS-MRCEPA(0), does have the invariance

properties, where the diagonal dressing is totally omitted. We have very recently reported

a specific version of an SS-MRCEPA which displays the orbital invariance explicitly in

addition to the SS-MRCEPA(0) method, while preserving size-extensivity and size-

consistency rigorously [58,59]. The theory does not bring in empirical correction factors,

nor does it require averaging of the pair-correlation terms. It instead relies on natural

and automatic cancellation of the disconnected terms which are non-EPV in nature

by certain counter terms intrinsically present in the parent SS-MRCC equations.
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As a result, we may view the orbital invariant SS-MRCEPA, termed by us as

SS-MRCEPA(I) (I, for invariant), as the optimal approximation to the parent SS-MRCC

method, which includes all the EPV terms exactly and which utilizes only those counter

terms of the equations which eliminate the lack of extensivity of the attendant non-EPV

terms in an orbital invariant manner [59]. In this article, we will present a couple of

invariant SS-MRCEPA methods, viz. SS-MRCEPA(0) and SS-MRCEPA(I), for general

open-shell systems using spin-free unitary generator adapted cluster operators starting

from explicitly spin-free full-blown parent SS-MRCC formalism. For a detailed

discussion of the allied issues pertaining to all the SS-MRCEPA-like methods, we

refer to our recent SS-MRCEPA papers [58,59] and an earlier exposé by Szalay [66].

This article is organized as follows: in Section 22.2.1 we will first describe the

formulation of the spin-free SS-MRCC theory. We will next present the development of

the API-SSMRCCmethod in Section 22.2.2. In Section 22.2.3 we will discuss the aspects

of size-extensivity and consistency of the API-SSMRCC method. We will discuss the

spin-free formulation of SS-MRPT and SS-MRCEPA methods starting from the SS-

MRCC theory in Sections 22.3 and 22.4, respectively. The IMS version of the SS-MRCC

method will be covered in Section 22.5. In Section 22.6, we will present the illustrative

numerical applications, along with discussions. Finally, Section 22.7 will summarize our

presentation.

22.2 THE SS-MRCC FORMALISM

22.2.1 General developments for the complete model space

We will start this section by introducing the basic issues related to the formulation of the

SS-MRCC theory as originally formulated [38,39], and also briefly highlight

the manipulations exploiting the redundancy of the cluster amplitudes which bypass

the intruders and ensure size-extensivity.

In all of our earlier presentations [38,39], we did not address the theoretical aspects

of spin-adaptation of the SS-MRCC equations, since we always worked previously

with model functions which were closed-shell singlets. The spin-adaptation of the

equations in such cases is straightforward and trivial, entirely analogous to the one for

the case of SRCC. In this article, we will discuss the general case where the model

functions are neither necessarily singlets nor single determinants. The model functions

are, in the general formalism, CSFs rather than determinants, in a given spin-coupling

scheme. The detailed nature of the coupling scheme is not important so long as each

CSF is generated with respect to some base CSF by excitation via spin-free unitary

generators.

In the SS-MRCC approach, the exact wave function of a given spin is expressed as:

c ¼
X
m

exp Tm
� �

fmcm ð1Þ

Each model space function {fm} is a CSF and together spans a CAS (equivalently

called CMS).
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Following the customary terminology, we will call ‘inactive holes’ the inactive

occupied orbitals, doubly filled in every model CSF. The ‘inactive particles’ will refer

to all the orbitals unoccupied in every CSF. Orbitals which are occupied in some

(singly or doubly) but unoccupied in others are the ‘active’ orbitals. In our spin-free form,

the labels are for orbitals only, and not for spin orbitals. From the mode of definition,

no active orbital can be doubly occupied in every model CSF. We want to express the

cluster operator Tm, inducing excitations to the virtual functions, in terms of excitations

of minimum excitation rank, and at the same time wish to represent them in a manifestly

spin-free form. To accomplish this, we take as the vacuum—for excitations out of fm—
the largest closed-shell portion of it, f0m: For each such vacuum, we redefine the holes
and particles, respectively, as ones which are doubly occupied and unoccupied in f0m:
The holes are denoted by the labels im, jm;…, etc. and the particle orbitals are denoted as
am, bm;…, etc. The particle orbitals are totally unoccupied in any fm, or are necessarily
active orbitals which are singly occupied in fm:When we want to distinguish these singly

occupied active orbitals, we shall denote them by um, vm, … etc. We note here that the

holes in f0m include not only the doubly occupied inactive orbitals but also doubly

occupied active orbitals of fm:We will often use the terminology ‘active’ and ‘valence’

interchangeably. In most of our discussions, we will often discuss the various terms

generated by the SS-MRCC theory referred to a particular vacuum f0m, and we then drop
the subscript m from the orbital labels when it is clear which vacuum we are dealing with.

The general problem of spin-adaptation using multiple vacuua f0m, depending upon
the model function fm the component of the wave operator expðTmÞ acts upon, is a non-
trivial and rather involved exercise. Here we will consider the simplest yet physically the

most natural truncation scheme in the rank of cluster operators Tm, where each such

operator is truncated at the excitation rank two. For generating the working equations for

the spin-adapted theory in this case, it is useful to classify the various types of excitation

operators leading to various virtual CSFs as:

One-body:

(A) hole! particle (h! p): t
ma
i {E

a
i }

(B) hole! valence (h! v): t
mu
i {E

u
i }

(C) valence! particle (v! p): t
ma
u{E

a
u}

Two-body:

(D) 2h! 2p: t
mab
ij {E

ab
ij }

(E) h,v! 2p: t
mab
iu {E

ab
iu }

(F) 2h! p,v: t
mau
ij {E

au
ij }

(G) 2v! 2p:t
mab
uv{E

ab
uv}

(H) h,v! p,v: t
mav
iu {E

av
iu } and t

mva
iu {E

va
iu }

(I) 2v! p,v: t
mwa
uv {E

wa
uv }

(J) 2h! 2v: t
muv
ij {E

uv
ij }

(K) h,v! 2v: t
mwx
iu {E

wx
iu }

In all the excitations above, the operators E in curly brackets denote the normal

ordering with respect to f0m, and the ‘local’ holes, valence and particles are all defined
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with respect to this vacuum. Let us emphasize at this stage now that the two-body

operators of the type {EXu
Yu} for arbitrary labels X, Y generate the same excitation as the

one-body operator {EX
Y} on fm, as can be easily verified:

{EXu
Yu}fm ¼ {EX

Y}{E
u
u}fm ð2Þ

¼ {EX
Y}fm ð3Þ

since {Eu
u} is the number operator with occupancy 1 for fm for singly occupied active

orbitals. Hence we should include only one of them in our Tm: We choose the strategy

that Tm never will have excitations of the type {EXu
Yu} which we will henceforth term as

excitations with direct spectators u. In contrast, excitations of the type {EuX
Yu }, involving

exchange type of spectator excitations are linearly independent of {EX
Y}, as far as their

respective actions on fm are concerned, and we should keep both such operators in Tm:
Moreover, while considering excitations inducing Y ! X from fm, we will add together
contributions from both the one-body and the two-body excitations {EX

Y} and {E
Xu
Yu} for

all u singly occupied in fm: Although the Ansatz for the wave operator has a superficial
resemblance to the JM Ansatz [10], unlike the JM Ansatz, it is in spin-free form, and also

it has non-commuting operators involving exchange spectators. The detailed algebraic

structure of our spin-free SS-MRCC formalism is thus going to be different from the more

special case involving closed-shell model functions only.

For a function c with a given spin-multiplicity ð2Sþ 1Þ, we shall consider all the CSFs
withMs ¼ ð2Sþ 1Þ, generated from some ‘base’ CSF fR with inactive occupied orbitals

doubly filled, some active orbitals doubly filled, a set ns of active orbitals with up-spin, a

set ns orbitals with down-spin, coupled to a singlet, and another set active orbitals, all

with up-spin such that Ms ¼ ð2Sþ 1Þ: With this generation scheme, every model CSF

can be written as some spin-free excitation operator acting on the base function fR:
Just as in the case of our formulation with the closed-shell model functions, there is a

redundancy in the cluster amplitudes of Tm, in the sense that each virtual CSF xl can be
generated from several model CSFs. We will impose suitable supplementary sufficiency

conditions with the twin objectives of avoiding intruders and of maintaining size-

extensivity.

To derive the spin-adapted SS-MRCC equations in the SD truncation scheme of the

cluster operators, we rewrite the Schrödinger equation for c as follows:

H
X
m

expðTmÞlfmlcm ¼
X
m

expðTmÞ 
Hmlfmlcm ¼ E
X
m

expðTmÞlfmlcm ð4Þ

where 
Hm is the similarity-transformed Hamiltonian expð2TmÞH expðTmÞ: Introducing
the projectors P and Q, respectively, for the model and the virtual spaces, and noting the

resolution of identity I ¼ ðPþ QÞ, we can write the above equation in long hand as:X
m

expðTmÞQ 
Hmfm þ
X
m;n

expðTmÞlfnlkfnl 
Hlfmlcm ¼ E
X
m

expðTmÞðPþ QÞjfmlcm
ð5Þ

Using the same insight gleaned from our earlier SS-MRCC formulation in the spin orbital

basis in terms of determinants, we interchange the dummy arguments in the second term
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on the left-hand side of the above equation, and getX
m

expðTmÞQ 
Hmfm þ
X
m;n

exp Tnlfmlkfml 
Hnlfnlcn ¼ E
X
m

expðTmÞðPþ QÞjfmlcm
ð6Þ

We now equate the Q projections on both sides of the above equation for each m, and
premultiplying with kxllexpð2TmÞ ; l, we get

kxll 
Hmlfmlcm þ
X
n

kxllexpð2TmÞexpðTnÞlfml ~Hmncn ¼ 0 ; l;m ð7Þ

where ~Hmn ¼ kfml 
Hnlfnl. The equations derived above are our principal working

equations for the cluster amplitudes of Tm, inducing single and double excitations out of

each fm to all possible xl: As we have emphasized earlier, for every single excitation of
the type {EX

Y}, with Y – u, we take both the one-body and the two-body excitations {EX
Y}

and {EXu
Yu} that are generated by { 
Hm} and expð2TmÞ expðTnÞ in the above equation. The

equation determining the model space coefficients {cm} and the target state energy is

given by X
n

~Hmncn ¼ Ecm ð8Þ

For computing all the matrix elements, we rewrite H in normal order with respect to the

corresponding f0m as the vacuum.
We have

H ¼ kf0mlHlf0mlþ {F}þ {V} ð9Þ
where

{F} ¼
X
m;n

f XY0 {EX
Y} ð10Þ

with

f XY0 ¼ f XYc þ
X
ud

½2VXud
Yud

2 V
udX
Yud

	 ð11Þ

In the equation above, fc is the core Fock operator, and sum over ud runs over all the

doubly occupied active orbitals of fm: {V} is the two-body portion of H in normal

order with respect to f0m: We do not explicitly indicate here and later which f0m has
been used as the vacuum, since it would be clear from the functions the operators

act upon.

The proof of the size-extensivity of the cluster amplitudes of Tm follows essentially

the same route as had been taken earlier by us in the spin orbital based formulation

with determinants. We briefly recapitulate the steps here, both for the sake of complete-

ness and for setting the scenario for the perturbative and the CEPA developments

to follow.

If the cluster operator Tm is connected, one can easily show that the dressed

Hamiltonian 
Hm and the matrix elements ~Hmn are also connected via multi-commutator

expansion. Hence, the proof of the connectedness of the first term of Eq. (7) is quite
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straightforward. But this is non-trivial for the second term. The term kxllexpð2TmÞ
expðTnÞlfml can be written as: kxllexp{ðTn 2 TmÞ þ 1

2
½Tn; Tm	 þ · · ·}lfml: All the terms

involving commutators ½Tm; Tn	 are non-vanishing when some active orbitals are

occupied in fm and unoccupied in fn and vice versa, and thus must be labelled by orbitals
distinguishing fm and fn: Since ~Hmn is labelled by all the active orbitals distinguishing

fm and fn, its products with the terms involving the multi-commutators have common
active labels and are all connected. The connectivity of the term containing ðTm 2 TnÞ
is rather subtle. Since in the SS-MRCC theory all the model space functions are treated

on the same footing, all being generated from the base function fR in the same manner,

the cluster operators Tn and Tm have the same functional form and consequently the

difference ðTn 2 TmÞ also has common labels with the matrix ~Hmn. As a results of this,

the second term of Eq. (7) is connected as a whole. This aspect is very important while

formulating size-extensive approximate methods, such as SS-MRPT and SS-MRCEPA,

from the parent SS-MRCC theory.

In this article, we will not present any results using the general SS-MRCC formalism

involving generally open-shell CSFs, since we do not have these numbers yet. However,

we will both derive and apply the size-extensive approximants like perturbation theories

and CEPA-like schemes derived therefrom.

22.2.2 The use of anonymous parentage for inactive excitations

in SS-MRCC method: API-SSMRCC theory

Wenowdescribe in a succinctmanner a new theoretical innovation to reduce the number of

cluster amplitudes in a physically sensible way. Since the number of the inactive

excitations from themodelCSFs are numerous, it seems, guidedbyperturbative arguments,

to assume that the magnitudes of the inactive excitations are independent of

the model CSFs fm:
Again, we start with a CAS, but unlike the parent exact formalism, we now impose on

the state lcl, spanning the target space, the following Ansatz:

c ¼ expðTÞ
X
m

expðTmÞlfmlcm ð12Þ

In the Ansatz above, the full cluster operator is split into two parts T and Tm: The cluster
operator T, taken to be independent of m, is restricted to purely inactive excitations of the
type singles [T1: (inactive h! inactive p)] and doubles [T2: (inactive 2h! inactive 2p)]

and the associated projector is denoted by the symbol Q2: The excitations due to the other
cluster operator Tm involve at least inactive (3h 2 3p) type or at least one active orbital

line. The corresponding projector is labeled by Q1: In our formalism, the excitations due
to the cluster operators Tm and T are described by the symbol ex1 and ex2, respectively.

The virtual space is spanned by the sets of ex1 and ex2 type of functions and hence

Q ¼ Q1 þ Q2:
Since the cluster amplitudes for the inactive excitations are assumed to be independent

of the parentage ðfmÞ, we call this version of SS-MRCC theory as using anonymous

parentage for inactive excitations (API-SSMRCC).
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If we substitute the wave function c in the Schrödinger equation, then

H expðTÞ
X
m

expðTmÞlfmlcm ¼ E expðTÞ
X
m

expðTmÞlfmlcm ð13Þ

The coefficients, cm, of the reference space and the required energy of the target ground

state, E, can be determined by the following compactly written expression:X
n

~~Hmncn ¼ Ecm ð14Þ

where

~~Hmn ¼
X
n

kfml 

Hnlfnl



Hn ¼ 
H expðTnÞ

H ¼ expð2TÞH expðTÞ

From Eq. (14), it is clear that to find T one needs to know the converged values of

the cluster amplitudes corresponding to the operators Tm as well as T and of the coeffi-

cients cms.

To generate the working equations for both the cluster operators, Tm and T, we now

proceed in the following manner. Starting from Eq. (13), and using Eq. (15), we have


H
X
m

expðTmÞlfmlcm ¼ E
X
m

expðTmÞlfmlcm
X
m

expðTmÞ 

Hmlfmlcm ¼ E
X
m

expðTmÞlfmlcm
X
m

expðTmÞðPþ QÞ 

Hmlfmlcm ¼ E
X
m

expðTmÞlfmlcm

ð15Þ

Using the expressions for Q and P, we getX
m

expðTmÞ 

Hm exlfmlcm þ
X
mn

expðTmÞlfnlkfnl 

Hmlfmlcm ¼ E
X
m

expðTmÞlfmlcm
ð16Þ

Inspired by the same manipulations as leading to the SS-MRCC equation [38,39] we

interchange the labels m and n in the second term on the left-hand side of Eq. (16):X
m

expðTmÞ 

Hm exlfmlcm þ
X
mn

expðTnÞlfmlkfml 

Hnlfnlcn ¼ E
X
m

expðTmÞlfmlcm
X
m

expðTmÞ 

Hm exlfmlcm þ
X
mn

expðTnÞlfml ~~Hmncn ¼ E
X
m

expðTmÞlfmlcm
ð17Þ

where ex stand for virtual excitations.
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We have already mentioned that ex has two parts: (i) ex1 due to the cluster operator T
m;

(ii) ex2 for cluster operator T. Thus the above equation, Eq. (17) becomes:X
m

expðTmÞ 

Hm ex1
lfmlcm þ

X
m

expðTmÞ 

Hm ex2
lfmlcm þ

X
mn

expðTnÞlfml ~~Hmncn

¼ E
X
m

expðTmÞlfmlcm ð18Þ

Imposition of the sufficiency conditions as that in our SS-MRCC method [38,39] on the

terms in Eq. (18) for each m, yields the following expression:

expðTmÞ 

Hm ex1
lfmlcm þ expðTmÞ 

Hm ex2

lfmlcm þ
X
n

expðTnÞlfml ~~Hmncn

¼ E expðTmÞlfmlcm ð19Þ

Projection onto Q1 expð2TmÞ from the left-hand side of the above equation gives:

Q1


Hm ex1

lfmlcm þ
X
n

Q1{expð2TmÞ expðTnÞ}ex1 lfml ~~Hmncn ¼ 0 ð20Þ

Eq. (20) is our stipulated working equation for the computation of the cluster operator

Tm of our API-MRCCSD theory. The T-amplitudes appear in them, but they are not

explicit, being buried within the dressed matrix elements. The equations above involve

the coefficients cms explicitly, indicating that the cluster amplitudes depend on them, as it

should be in a SS theory.

We now proceed to construct the equations for the T-amplitudes. Projecting Eq. (18)

from the left-hand side onto kc0lYl we get:X
m

kc0lYl expðTmÞ 

Hm ex1
lfmlcm þ

X
m

kc0lYl expðTmÞ 

Hm ex2
lfmlcm

þ
X
mn

kc0lYl expðTnÞlfml ~~Hmncn ¼ E
X
m

kc0lYl expðTmÞlfmlcm ð21Þ

where Yl envelopes (h 2 p) and ð2h � 2pÞ inactive de-excitations. Using the definition of
c0, we have:X

ms

kfslYl expðTmÞ 

Hm ex1
lfmlcmcs þ

X
ms

kfslYl expðTmÞ 

Hm ex2
lfmlcmcs

þ
X
mns

kfslYl expðTnÞlfml ~~Hmncncs ¼ E
X
ms

kfslYl expðTmÞlfmlcmcs ð22Þ

The matrix elements between the two functions fm and fs have been labeled by at

least one active line, when the indices of model space determinants are not identical

(i.e. for m – s) and thus the corresponding ex is purely of ex1 type. The remaining part
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(for m ¼ s) is of the type ex2. Thus, we can write the above expression as follows:X0
ms

kfslYl expðTmÞ 

Hm ex1
lfmlcmcs þ

X0
ms

kfslYl expðTmÞ 

Hm ex2
lfmlcmcs

þ
X0
mns

kfslYl expðTnÞlfml ~~Hmncncs þ
X
m

kfslYl expðTmÞ 

Hm ex1
lfmlc2m

þ
X
m

kfslYl expðTmÞ 

Hm ex2
lfmlc2m þ

X
mn

kfslYl expðTnÞlfml ~~Hmncncm

¼ E
X0

ms

kfslYl expðTmÞlfmlcmcs þ E
X
m

kfslYl expðTmÞlfmlc2m ð23Þ

where the prime over the sum indicates that there is no common index between m and s.
It can be seen from Eq. (23), that the primed terms generate the same expression as

that obtained by taking the Q1 projection of Eq. (19). As we have already mentioned,

the model space in our formalism is complete in nature. The projection manifolds,

Q1 expð2TmÞ andQ1 span the same functional space, since they have the same number of

linearly independent functions. Consequently, solving the cluster operator, Tm deter-

mining equation, Eq. (20) is equivalent to solving the Q1 projection of Eq. (19). It is

rather convenient to prove and maintain the extensivity of the equation in the form of

Eq. (20) than the other one. Projecting with Q1 expð2TmÞ instead of Q1 on the left-hand

side of Eq. (19), we take the advantage of the Baker–Campbell commutator formula

which automatically ensures connectivity of the resulting expansion.

Let us now consider the other terms ðm ¼ sÞ in Eq. (23):X
m

kfmlYl expðTmÞ 

Hm ex1
lfmlc2m þ

X
m

kfmlYl exp Tm 

Hm ex2
lfmlc2m

þ
X
mn

kfmlYl expðTnÞlfml ~~Hmncmcn ¼ E
X
m

kfmlYl expðTmÞlfmlc2m ð24Þ

Using Eq. (14) we get,X
m

kfmlYl expðTmÞ 

Hm ex1
lfmlc2m þ

X
m

kfmlYl expðTmÞ 

Hm ex2
lfmlc2m

þ
X0
mn

kfmlYlðexpðTnÞ2 expðTmÞÞlfml ~~Hmncmcn ¼ 0 ð25Þ

where the prime indicates m – v:
The cluster operators Tm involve at least inactive (3h 2 3p) excitations or excitations

associated with active line(s)—purely ex1 type and kfmlYl contains at most inactive
(2h 2 2p) excitations. Thus the contribution of the first and third terms of Eq. (25) will

be zero. Using the same argument, it can be shown that the expðTmÞ will not appear
in the second term.

Therefore, the above equation becomes:X
m

kfmlYl 

Hm ex2
lfmlc2m ¼ 0 ð26Þ

Chapter 22596



Eq. (26) is our required working equation for the inactive cluster operators T of the type

singles and doubles. This amplitude equation does not contain the renormalization terms,

unlike the Tm determining equations. This is due to the fact that, from the very mode

of derivation, we have considered the T operator to be independent of reference

determinants, fm:
From the principal working equations (14), (20) and (26), it is clear that the set {cm},

{Tm} and T are coupled. Solving these coupled set of equations, we obtain cluster

operators of both types and also converged coefficients from the diagonalization

via Eq. (14). In our theory, the combining coefficients get iteratively updated to their

values with the cluster amplitudes and hence generate the exact state c in relaxed form.
But our formalism also provides an extra advantage, if one wishes that the combining

coefficients be kept at their pre-assigned values during the iteration of the cluster

amplitudes. A typical feature of our formalism in such a scheme is the use of the zeroth

order coefficients cð0Þm to compute the cluster amplitudes and the dressed Hamiltonian, but

allow the coefficients to relax while computing E, since this is obtained via diagonal-

ization. Thus our method is completely flexible in the sense that we can use it to compute

the energy either as an expectation value with respect to the unrelaxed (or frozen)

function or by diagonalization in the relaxed form.

To show explicitly the avoidance of intruders of our API-SSMRCC theory, it is

more convenient to rewrite the leading terms for the amplitudes of the cluster operators

Tm determining equation in the following quasi-linearized form:

kxll 
Hlfmlcm þ ðkxll 
Hlxml2 kfml 
HlfmldlmÞkxmlTmlfmlþ · · ·
h i

cm

þ
X
n

kxllðTn 2 Tm þ · · ·Þlfml ~~Hmncn ¼ 0

; kxll 
Hlfmlcm þ
X
m

ðkxll 
Hlxml2 kfml 
HlfmldlmÞkxmlTmlfmlþ · · ·

" #
cm

2 EkxllTmlfmlcm þ
X
n

kxllTnlfml ~~Hmncn þ · · · ¼ 0 ð27Þ

where we use Q1 ¼
P

llxllkxll
The expression for the amplitudes of the cluster operators Tm from the above equation

can be written as follows:

kxllTmlfml ¼
kxll 
Hlfmlþ

X
n

kxllTnlfml ~~Hðcn=cmÞ þ
X
m

ðkxll 
Hlxmlþ · · ·

ðE2 kxll 
HlxllÞ ð28Þ

The robustness of the energy denominators in the presence of the intruder is quite

manifest in our formalism. The denominator is never small as long as the target state

energy is well separated from the energies of the virtual functions. This situation is

usually observed for the ground state.

For the inactive amplitudes, it becomes convenient to express them in terms of the

MR starting function c0 ¼
P
m fmcm, and the contracted virtual functions kc0lYl:
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As an example, the amplitudes tabij , where the labels all refer to inactive orbitals (holes or

particles), are given by

tabij ¼ kc0lYl 
Hlc0l
½kc0l 
Hlc0l2 kc0lYl 
HY†l lc0l	

ð29Þ

Since the denominators involve the difference of state-energies for the functions c0
and contracted virtual functions kc0lYl, they are separated widely in energy, since the
contracted virtual functions are excited by lifting inactive holes to inactive particles,

which have a gap, in between which the active orbitals appear. Thus the denominators are

again robust. The same is valid for the corresponding single excitations involving

inactive orbitals. Extensivity of our newly developed API-SSMRCC theory will be

discussed in the next section.

22.2.3 Proof of the connectivity of the API-SSMRCC formalism

We can prove the connectedness of the working equations by checking carefully the

connectedness of each term present in the equations. If we assume that H, Tm and T are

connected in nature, we can proceed to prove the connectivity of our working equations

using the following arguments.

To prove the connectivity of the working equation for the cluster operator Tm, we

rewrite Eq. (20) as follows:

Q1


Hm ex1

lfmlþ
X
n

Q1{expð2TmÞ expðTnÞ}ex1 lfml ~~Hmnðcn=cmÞ ¼ 0 ð30Þ

Since c0 is a CAS-type function, the first term and the dressed Hamiltonian ~~Hmn of

the second term of the left-hand side of Eq. (30) are manifestly connected involving H,

T and Tm via commutator expansion, and it is hence enough to show that the third term of

the equation is connected. According to Baker–Campbell formula, the second term of the

above equation can be written as follows:X
n

Q1{expðTnÞ expð2TmÞ}ex1 lfml ~~Hmnðcn=cmÞ

¼
X
n

Q1{expððTn 2 TmÞ þ 1

2
½Tn; Tm	 þ 1

12
½½Tn; Tm	; Tm	

2
1

12
½½Tn; Tm	; Tn	 þ · · ·Þ}ex1 lfml ~~Hmnðcn=cmÞ ð31Þ

Just as for the parent SS-MRCC theory, special attention is needed towards proving the

connectivity of the entire term Ymn ¼ ðTn 2 TmÞ ~~Hmnðcn=cmÞ. The term ~~Hmnðcn=cmÞ is
labeled by all those orbitals that distinguish the reference CSFs fm and fn. If one
considers the two terms Tn ~~Hmnðcn=cmÞ and Tm ~~Hmnðcn=cmÞ separately, it is not easy to
prove their connectivity. To show the connectivity of Ymn, one should consider both the

terms on the same footing. Since the functional structure of Tn and Tm is identical, the

difference would be labeled by those orbitals which distinguish the CSFs fm and fn.
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All other components of Tn and Tm would cancel each other. Thus the terms ðTn 2 TmÞ
and ~~Hmnðcn=cmÞ have common orbital labels and hence Ymn is connected in nature. The
term ½Tn; Tm	 is labeled by the group of orbitals distinguishing fm and fn. Thus the term
½Tn; Tm	 ~~Hmnðcn=cmÞ is connected in the sense of having common orbital indices between
them. This is true for other higher commutators as well. Thus the terms in the working

equation for the cluster operator Tm are connected.

By construction, the matrix elements
P
m kfmlYl 

Hm ex2

lfml in Eq. (26) are connected
entities joining H with exp(T) and expðTmÞ and hence are extensive if cluster operators
are connected. Therefore, the working equation for the inactive cluster amplitude

T, Eq. (26), is also connected in nature. Hence the dressed Hamiltonian, ~~Hmn is also

connected. Thus the energy obtained as an eigenvalue of Eq. (14) is also extensive, for the

reference determinants span a CAS.

In this article, we will not present numerical applications of the full-blown API-

MRCCSD theory, but only of its perturbative approximants.

22.3 EMERGENCE OF STATE-SPECIFIC MULTI-REFERENCE

PERTURBATION THEORY SS-MRPT FROM SS-MRCC THEORY

A size-extensive perturbative (SS-MRPT) formalism starting from SS-MRCC theory

can be generated by a partition of H into H0 (a zeroth order part) and V (a perturbation),

and an order-by-order expansion of Tms. In the many-body problem, especially in

evaluating the electron correlation energy, the most widely used partitionings are MP

and EN. In EN partitioning all diagonal direct and exchange ladders are a part of the H0,

while the Fock operator plays the role of the H0 in the MP scheme. Although such type

of partitioning is straightforward for the SR-case, this is not so for the generalization

within the framework of the MR-case.

For the development of SSMR-based perturbation theory starting from the full-blown

SS-MRCC theory, we rewrite the equations determining the cluster amplitudes, Eq. (7),

in the following quasi-linearized form:

kxllHlfmlcm þ
X
m

kxllHlxml2 kfmlHlfmldlm

{ !
kxmlTmlfml

" #
cm

2
X
n

kxllTmlfml ~Hmn

" #
cn þ

X
n

kxllTnlfml ~Hmn

" #
cn ¼ 0 ; l;m ð32Þ

The first term of the above equation corresponds to the coupling of a virtual function to a

model function, and is akin to the numerator in a simple perturbation theory. The second

term is a commutator of Tm and H, and with H0 approximating H contributes an RS-like

denominator of a traditional effective Hamiltonian-based theory. The third and the fourth

terms together perform two inter-related but distinct functions: (a) to convert the usual

RS-like denominators into one containing the actual state energies, to bypass intruders—

as befitting a state-specific theory, and (b) to supply counter terms guaranteeing

size-extensivity of the theory. The third term, in fact, supplies the term containing
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the state-energy, as shown below, while the fourth term, which couples the different

model functions via the dressed Hamiltonian ~Hmn, containing Tn, is, in conjunction with

the third term, responsible to maintain size-extensivity. As we have mentioned earlier, the

connectedness of the term kxllðTn 2 TmÞlfml ~Hmnðcn=cmÞ has a direct bearing on the struc-
ture of the working equations in any size-extensive perturbative formalism.

Actually the form of working equation of the first order cluster amplitudes and

hence the perturbative scheme depend on the treatment of the four above-mentioned

terms. One can treat all the four terms consistently in the same partitioning scheme.

This approach is rather inflexible, since this necessarily constrains us to use only a very

specific partitioning strategy, viz. the one proposed by Dyall [48]. We follow here a

somewhat hybrid strategy where we treat the first and the second terms strictly by

perturbation theory, while we treat the third and fourth terms on the same footing, but not

in the sense of strict perturbation. Since it is natural to have the unperturbed state-energy

E0 appear in the denominator in the RS version, we approximated ~Hmn in these terms by

Hmv in
P
n kxllTmð1Þlfml ~Hmncn, since this leads to:X

n

kxllTm ð1ÞlfmlHmncn ¼ E0kxllTmð1Þlfmlcm ð33Þ

To treat the term containing kxllTn (1)lfmlon the same footing, it should thus appear

multiplied by Hmn cn in the RS version. Now we can write Eq. (32) as follows:

½kxllHlfml	cm þ
X
m

kxllHlxml2 kfmlHlfmldlm

{ !
kxmlTmlfml

" #
cm

2 ½E0 kxllTmlfml	cm þ
X
n

kxllTnlfmlHmn

" #
cn ¼ 0 ; l;m ð34Þ

As we mentioned above, the partitioning of H affects only the terms kxllHmlfnl and
kxll½Hm; Tm	lfnl: In both MP and EN partitions, H0 is a diagonal operator, and this lends

a rather simple structure. Expanding the first two terms of Eq. (34) in orders of pertur-

bation, and retaining only the terms of the first order, we have

½kxllVmlfml	cm þ ½kxll½H0; Tm	lfnl	cm 2 ½E0kxllTmlfml	cm
þ

X
n

kxllTnlfmlHmn

" #
cn ¼ 0 ; l;m ð35Þ

The actual expression of H0 depends on the type of partitioning, MP or EN.

For actual applications, and to emphasize the organizational aspects of the theory, we

rewrite the working equations, Eq. (34), in the following form:

tlð1Þm ¼ Hlm þPn–m
n kxllTn ð1ÞlfmlHmnðcn=cmÞ

ðE0 2 HmmÞ þ ðH0
mm 2 H0

llÞ
h i ð36Þ

We note that the only coupling between the various Ts are via the sum over n appearing in
the numerator of Eq. (36) above. There is thus no coupling between the various excitation

components in Tms, and the coupling is present with only those Tns which lead to the same
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excitation as by the product of excitation operators for the specific tlð1Þm under

consideration. This leads to a very attractive computational scheme, where we consider

each type of excitation involving a specific set of orbitals, and compute all the

T amplitudes for various m with the same set of orbitals using Eq. (36). The contributions
of all these T amplitudes to the effective pseudo-operator ~H are then computed, and a

fresh set of excitations considered next. Thus, no T amplitudes need to be stored in this

formulation. The computational resources required for our SS-MRPT are almost similar

as that of the MRMP method [45]. It involves a small iterative step implied in Eq. (36) in

contrast to MRMP method. However, this extra step leads to rigorous size-extensivity

nature of our SS-MRPT.

After getting the first order cluster operator, the second order energy E(2), is obtained

by diagonalizing ~Hð2Þ
mn: X

n

~H ð2Þ
mn c

ð2Þ
n ¼ Eð2Þcð2Þm ð37Þ

with ~H ð2Þ
mn ¼ Hmn þ

P
l Hmlt

lð1Þ
n

For the unrelaxed case we take expectation value: Eð2Þ ¼ P
m;n c

0
m
~H ð2Þ
mn c

0
n, where c0m

stands for the frozen coefficients for the reference functions.

Eqs. (36) and (37) are our principal working equations for RS-based SS-MRPT. It is

noteworthy that in the RS-based SS-MRPT formalism the zeroth order coefficients, c0ms

are used to evaluate the cluster operators in Eq. (36), but the coefficients are relaxed

during the computation of E(2), since this is obtained by diagonalization via Eq. (37).

The robustness of the energy denominators in the presence of intruders is quite

manifest in our SS-MRPT formalism. The denominator in Eq. (36) is never small as long

as the unperturbed or the perturbed energy, E0, is well separated from the energies of the

virtual functions. Thus the SS-MRPT is intruder-free, and explicitly size-extensive and

also size-consistent when we use orbitals localized on the separated fragments.

22.3.1 Choice of the zeroth order Hamiltonians

For the MP partitioning, we choose H0 as a one-particle Fock-like operator. In a multi-

partitioning scheme, we have tested quite a few physically motivated choices. They are

described below. In the EN partition, there are additionally diagonal direct and exchange

ladders. For the general situation involving open-shell model functions, we recall that the

set of terms involving the same excitations on a given fm have to be added together, and
this leads to additional ladders in the EN partitioning.

The simplest choice of the Fock operator is the following:

f ijm ¼
X
ij

f ijcore þ
X
u

V
ju
iu 2

1

2
V
uj
iu

� �
Dm

uu

" #
{E

j
i} ð38Þ

where u represents both a doubly occupied and a singly occupied active orbital in the fm,
and the Dms are the densities labelled by the active orbitals. Since our H0 is always

diagonal for MP scheme, then, H0 is: H
m
0 ¼ P

i f
ii
m

#
Ei
i

$
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In this article, we shall introduce another physically appealing Fock operator, which is

defined with respect to f0m, and it includes not only the Fock potential of the doubly
occupied active orbitals included in f0m, but also—via the blocks involving the direct

exchange scattering of the singly occupied active orbitals—takes care of interaction of

electrons in them. This is given by

~f ijm ¼
X
ij

f
ij
0m þ

X
us

V
jus
ius

24 35 E
j
i

n o
ð39Þ

where the normal ordering is with respect to f0m and us represents a singly occupied

active orbital in the fm. f0m is the Fock operator for f0m. With this choice for the Fock

operator, the H0 for MP partitioning is: H
m
0 ¼ P

i
~f iim {E

i
i}:

In addition to the above type of Fock operators, f ijm and ~f ijm, we also consider their

generalized form f ij ¼ P
m f

ij
mc

2
m and ~f ij ¼ P

m
~f ijmc

2
m, respectively. Then the corresponding

H0 is expressed as follows: H
m
0 ¼ P

i f
ii{Ei

i} and H
m
0 ¼ P

i
~f ii{Ei

i}.

For the EN partitioning the corresponding H0 becomes:

H0 ¼ H
m
0 þ

X
½all kinds of diagonal ladders ðdirect and exchangeÞ	 ð40Þ

The additional ladders come in general from two sets of terms. In a given block with

certain excitation structure, we add all diagonal ‘direct and exchange ladders’ on the

diagrams in the block. In addition, for the CSFs with open-shells we also add the higher-

body blocks with direct spectator scattering with singly occupied orbitals, and these

blocks would necessarily include ladders involving the singly occupied active orbitals for

a CSF (these active orbitals are the ones we called active for a vacuum f0m).
For the case of closed-shell single reference functions, the above-mentioned Fock

matrices become identical to the closed-shell Fock matrix, and our general SS-MRPT

then reduces to ordinary second-order perturbation theory, introduced earlier by our

group [55].

As we indicated in our general discussion of the API-SSMRCC theory, the leading

terms for the inactive cluster amplitudes would have energy differences involving

½kc0lHlc0l 2 kc0lYlHYl†lc0l	. In the SS-MRPT using the API approximation, depending
on the partition, the corresponding expressions of H0 will replace H in the corresponding

expressions for the cluster amplitudes for the inactive excitations. Thus, the orbital

energies for the generalized Fock operator ( f) would appear if H0 is defined as f in the

multi-patitioning form for MP, and ~f will appear in place of f if f is used in multi-

partitioning in MP. In case the generalized Fock operator f itself is used as H0, then its

own orbital energies appear in the MP expression. In the EN partition, the situation is

similar, except in so far as the additional ladders on top of the MP denominator have also

to be considered.

22.4 EMERGENCE OF THE SS-MRCEPA(I) METHODS FROM SS-MRCC

The simplest CEPA-like approximation will follow from Eq. (7) if we keep only the linear

terms in the cluster amplitudes. This CEPA has been called by us as the SS-MRCEPA(0).
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Written in long hand, it amounts to:

kxllHlfmlcm þ
X
m

kxllðH 2 HmmÞlxmlt mm cm þ
X
n

kxll Tn 2 Tm
� �

lfmlHmncn ¼ 0

ð41Þ

where the sum over m covers all the SD functions with respect to fm, and Hmm¼
kfmlHlfml. If we start from a CAS-SCF energy E0, with coefficients {cm}

�P
m Hmncn ¼

E0cm
�
, then Eq. (41) can be simplified to:

kxllHlfmlcm þ
X
m

kxll H 2 E0
� �

lxmltmmcm þ
X
n–m

tlmðnÞHmncn ¼ 0 ð42Þ

where tlmðnÞ denotes the amplitude of the specific excitation present in Tn, which excites

to xl by its action on fm. We have also used in the above equation the simplified notation

tlm for tlm
�
m
�
. The second term indicates that tlm will be dominated (in the perturbative

sense) by the ratio kxllHlfml=ðE0 2 HmÞ and will be intruder-free if the CAS energy

E0 is away from the virtual function energies Hll ; kxllHlxll. On the other hand,

an equation containing only the first two terms for determining tlm will have entailed

disconnected non-EPV terms. Concretely speaking, the term 2E0t
l
mcm can be written as:

E0t
l
mcm ¼

X
n

tlmHmncn ð43Þ

If this excitation m! l on fm is also an allowed process on fn by Pauli Exclusion

Principle, then the corresponding excitation involves orbitals which are not among

those distinguishing fm and fn. Such terms are then disconnected. However, for every
such fn where this is true, there is a counter term in tlm

�
n
�
Hmncn, which together leads

to
�
tlm
�
n
�
2 tlm

�
Hmncn for all such fms, and—as explained in Section 22.2.1—since the

difference
�
tlm
�
n
�
2 tlm

�
is labelled by some or all orbitals distinguishing fm and fv,�

tlmðnÞ2 tlm
�
Hmncn is a connected term. Hence, such an approximation, termed as SS-

MRCEPA(0) by us, is the simplest among the CEPA-like approximants to the SS-

MRCC theory which is extensive and also avoids intruders. However, the appearance of

the CAS energy E0, rather than the ground state energy E itself renders it rather

approximate. As we already mentioned, the complete linearity of the SS-MRCEPA(0)

equations in the cluster amplitudes lends the same invariance property to it as in the

MR-CISD. This parallels the situation in the single reference CEPA(0), which also

possesses the invariance. In our earlier papers [58,59], we suggested other schemes

where E appears which, however, did not have the orbital invariance property as that of

the SS-MRCEPA(0).

Recently we have proposed another variant where the state energy E appears in the

approximation, which at the same time retains the orbital invariance [59]. In this

formalism, there is a set of terms that are non-linear in the cluster amplitudes, but they

have a special structure which again leads to the desired orbital-invariance. We approx-

imate 
Hm in kxll 
Hmlfmlcm by all terms which lead to single and double excitations out
of fm. We thus stop at the double commutator for T

m
1 for the single excitations, and at

the single commutator for T
m
2 for the double excitations. These terms are just like
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the corresponding ones in an MR-CISD formalism, and would retain the orbital

invariance. For the so-called coupling term Ymn ~Hmncn, we approximate the first factor by

all terms which can lead to xl from fm, with each xl reached by single or double

excitations from fm. Thus, for single excitations, the first factor is kxll
�
Tn1 2 T

m
1

�
lfml,

while for the double excitations it is kxll
�
1
2
Tn

2

1 þ 1
2
T
m2

1 þ Tn2 2 T
m
2 2 T

m
1 T

n
1

�
lfml. This

factor would then be form-invariant with respect to the rotations of the active orbitals,

since the transformed functions in model and virtual spaces would still be connected by

single and double excitations only. The second factor in the coupling term is ~Hmn, in

which, in our previous formulations [59], we included diagonal parts of the dressed

operator 
Hm. The second factor was thus not invariant with respect to transformation of

orbitals. In the formulation, we drop all such terms, and approximate ~Hmn in the same way

as the first term of Eq. (7). Thus, we approximate ~Hmn as:

~Hmn ¼ kfmlH þ
�
½H; Tn	 þ 1

2
½½H; Tn	; Tn	

�
SDn

lfnl ð44Þ

with { }SDn denoting single and double excitations out of fn. The second factor of the
coupling term is also thus invariant, since it has the structure as the set of model space

projections of an MR-CISD equations. Collecting all the terms, the SS-MRCEPA(I) can

be written as:

kxllHlfmlcm

I

þ kxll
�
½H; Tm	 þ 1

2
½½H; Tm	; Tm	

�
SDm

lfmlcm

II

þ
X
n

kxll
�
ðTn 2 TmÞ þ 1

2
ðTn 2 TmÞ2 þ 1

2
½Tn; Tm	

�
SDm

lfml ~Hmncn ¼ 0

III

ð45Þ

with X
n

~Hmncn ¼ Ecm ð46Þ

Clearly, all the components of III with only T m operator can be compactly written as:

X ¼ kxll
�
2 Tm þ 1

2
Tm

2

�
SDm

lfmlEcm ð47Þ

which has, apart from the EPV terms, all those non-EPV terms which are disconnected.

The non-EPV terms are of the following types: (a) the set which are in the CISD space

relative to the CAS, induced by products of powers of Tm and Tn, acting on fm itself;
(b) disconnected terms outside the CISD space by similar products of operators as in (a).

The interesting aspect of our formalism is that the entire term of III in Eq. (45) above is

a connected quantity, so that the inextensivity thus arising from the term X will all be

eliminated by the counter terms containing at least one Tn. We emphasize again that

the terms I and II are manifestly invariant under the restricted orbital transformation

discussed, while the entire term III is also similarly invariant since it involves a complete
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sum over all the functions fn of the CAS. This approximation is thus the minimal

extension of SS-MRCEPA(0) which uses the dressed Hamiltonian ~Hmn, rather than

the bare Hmn as in SS-MRCEPA(0), and uses a self-correcting set of terms in Ymn ~Hmn

which leaves not only the EPV terms but also cancels the inextensivity in an orbital

invariant manner arising out of the non-EPV terms. It should be noted that the non-EPV

terms outside the CISD space, mentioned in (b) above, generated in the term III of

Eq. (45) are not fully eliminated; rather, their size-inextensive component is eliminated.

This is the minimal expansion into the space outside the MR-CISD space necessary to

preserve orbital invariance. Eq. (45) define our SS-MRCEPA(I) approximant to the

parent SS-MRCC theory. Since Tm and T n are treated on the same footing while

truncating ½expð2TmÞexpðTmÞ	, size-extensivity is rigorously preserved in all our SS-
MRCEPA methods.

We should mention here that, just as in the parent SS-MRCCmethod, the leading terms

in the expression of any cluster amplitude tlm exciting to xl from fm will have in the
denominator a difference of the state energy E itself and the energy of the virtual function

xl. As long as the state energy does not come close to the virtual function energies, the
theory is free from intruders. The analysis follows the same route as was taken to show

avoidance of intruders in the parent SS-MRCC theory [38,39].

Since the SS-MRCEPPA(I) and SS-MRCEPA(0) methods treat all the model func-

tions on the same footing, it is expected to provide a proper description of the PES of

states with varying degrees of quasi-degeneracy among the model functions. They also

would not be plagued by intruders. Moreover, they are completely flexible in the sense

that we can either use them with frozen coefficients c0m, or allow them to relax in a self-

consistent manner. Most of the state-specific MRCEPA formalisms in use do not have

the flexibility to relax the coefficients. In this sense our SS-MRCEPA methods share

the desirable property of having relaxed coefficients as in the effective Hamiltonian-

based multi-reference CEPA theories [72]. We have used both the frozen and the

relaxed versions of the SS-MRCEPA(I) and SS-MRCEPA(0) in our numerical applica-

tions. They also have the additional advantages of the restricted orbital invariance, as

discussed above.

Just as we have discussed—while considering the aspects of spin-adaptation for

the general SS-MRCC case—where the spin-free excitations containing exchange

spectator scatterings of the singly occupied active orbitals of a CSFfm have to be included
in the cluster operators of T m, and the blocks inducing the same scattering by their actions

on fm have to be added together, we will have to do exactly the same thing to generate
the spin-free expressions for both the SS-MRCEPA(0) and the SS-MRCEPA(I). In fact,

as we emphasized already, the SS-MRCEPA methods follow from some low order

truncation of the spin-free versions of the SS-MRCC theory, so all the considerations

discussed for the general SS-MRCC case remain operative and valid for the SS-MRCEPA

case. In our SS-MRCEPAmethods the number of unknowns are dominated by the number

of inactive double excitations, the computation of the redundant cluster amplitudes is

not the computationally dominant step. As a result of this, the computational cost of

the SS-MRCEPA methods is similar to that required for an MR-CISD method.

We now present a size-extensive and size-consistent SS-MRCC approach based

on an IMS.
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22.5 THE SIZE-EXTENSIVE STATE-SPECIFIC MRCC FORMALISM

USING AN IMS

A completely different route to reduce computational labor, yet retaining the rigor of

formulation, is to have an SS-MRCC in an IMS.

Let us have a set of model functions {fm} spanning an IMS, with the projector P.
The complementary functions {fm} span the complement of the IMS, with the projector
R. (P þ R) is the projector to the CMS, Pc. The rest of the functions in the Hilbert

space are the virtual functions, having at least one inactive occupancy (hole or particle),

characterized by the projector Q. ðPc þ QÞ ; I, the entire Hilbert space of a given

N-electron problem in a finite basis.

We impose on the exact function c, the following Ansatz:

c ¼
X
m

expðTmÞfmcm ð48Þ

where the sum runs over all the model functions in IMS spanned by projector P. Tm is

the cluster excitation operator, which produces excitations out of fm. As shown by

Mukherjee [28,61], for deriving a size-extensive formalism using an IMS, one must

define carefully the types of excitations which must be included in the wave operator.

We recapitulate the essentials here, since they are directly relevant to the formalism we

are going to describe.

We define an operator as ‘closed’, if its action on any model function fm [ P produces

only internal excitations within the IMS. An operator is ‘quasi-open’, if there exists at

least one model function which gets excited to the complementary model space R by its

action. Obviously, both closed and quasi-open operators are all labeled by only active

orbitals. An operator is ‘open’, if it involves at least one hole or particle excitation,

leading to excitations to the Q-space by acting on any P-space function. It was shown

by Mukherjee [28] that a size-extensive formulation within the effective Hamiltonians

is possible for an IMS, if the cluster operators are chosen as all possible quasi-open

and open excitations, and demand that the effective Hamiltonian is a closed operator.

Mukhopadhyay et al. [61] developed an analogous Hilbert-space approach using the

same idea. We note that the definition of the quasi-open and closed operators depends

only on the IMS chosen by us, and not on any individual model function.

In our formalism, we choose in every Tm all open and quasi-open operators. For an

arbitrary IMS, a given quasi-open operator, acting on a given model function, may lead to

excitation to some specific model function, but there would be at least one model function

which, when acted upon by this quasi-open operator, would lead to excitations out of the

IMS. A closed operator, by contrast, cannot lead to excitations out of the IMS by its

action on any function in the IMS. Clearly, any pair of model functions fm and fn can be
reached with respect to each other by either a quasi-open or a closed operator, but not

both. This follows from the definition of these operators. For an arbitrary IMS, it is

possible to remain within the IMS if a quasi-open operator acts on a specific model

function. On another model function, it may lead to excitation out of the IMS. The QCMS

(Quasi-Complete Model Space) is a special class of IMS, where we group orbitals into

various subsets, labeled A, B, etc. and form a model space spanned by model functions
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where these subset of orbitals are filled by fixed number of electrons NA, NB, etc. in all

possible manner. Closed operators then do not change number of electrons in any subset

in the QCMS, and quasi-open operators move electrons from one or more subsets to

others, so that occupancies of at least two subsets are different after the excitation. In this

case, the action of a quasi-open operator on any function in the QCMS leads to excitation

to R-space functions.

An important insight in the development of size-extensive formulations in a IMS was

the realization that the ‘intermediate normalization’ convention for the wave operator,

viz. PVP ¼ P, should be abandoned in favor of a more appropriate normalization [28,61].

For the IMS, in general, products of quasi-open operators may lead to internal excita-

tions, or may even be closed, so that if we choose V ¼ P
m expðTmÞlfmlkfml, with

Tm ¼ T
m
op þ T

m
q2op, then powers of T

m
q2op coming from the exponential might lead from

fm to internal excitations to some other model function fn, or it may contain closed
operators. We would have to bear this in mind while developing our formalism, and

would not force PVP ¼ P in our developments.

We now introduce two effective operators. The first is a dressed Hamiltonian operator


Hm ¼ expð2TmÞH expðTmÞ ð49Þ
The second one is an effective ‘closed’ operator W which is defined to produce as one of

its eigenvalues, the desired energy E on diagonalization of its matrix representation in the

IMS spanned by {fm}. The coefficients {fm} come out as the components of its

eigenvector. Thus W, by its very mode of definition, satisfiesX
n

Wmn cn ¼ Ecm ð50Þ

Starting from the Schrödinger equation for c, we have:

Hc ¼ H
X
m

expðTmÞlfmlcm ¼
X
m

expðTmÞ 
Hmlfmlcm

¼ E
X
m

expðTmÞlfmlcm ð51Þ

Using Eq. (50), we have:X
m

expðTmÞ 
Hmlfmlcm ¼
X
mn

expðTmÞlfmlWmncn ð52Þ

We should note at this point that every virtual function lxll and also P or R space

functions fn or 
fn may be reached from several fms, so that there is a redundancy in the
number of cluster operators. We will exploit it, following the same strategy as the one

used for the CMS-based SS-MRCC theory [38,39], to satisfy the twin desirable goals:

(a) to generate a theory free of intruders and (b) to generate rigorous size-extensivity.

We decompose 
Hm into its closed, open and quasi-open components. The open and the

quasi-open components of Eq. (52) would be used in an appropriate manner to generate a

set of sufficiency conditions to define the cluster determining equations. The closed

components will be used to define Wmn.
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We thus rewrite Eq. (52) asX
m

expðTmÞ½ 
Hmop
þ 
Hmq2op

þ 
Hmcl
	lfmlcm

¼
X
m

expðTmÞ½ 
Hmop
þ 
Hmq2op

	lfmlcm þ
X
mn

expðTmÞlfnlkfnl 
Hmcl
lfmlcm

¼
X
mn

expðTmÞlfmlWmncn ð53Þ

Since Pc þ Q ¼ I, we may use a special resolution of identity introduced in Refs. [38,39]

expðTmÞ½Pc þ Q	expð2TmÞ ¼ I ð54Þ
to be used for projection. Also, as shown in Refs. [38,39] to avoid intruders, it is

imperative to interchange the labels m and n in the third term on the middle expression of

Eq. (53). With this interchange, and with the use of Eq. (54) for projection, we get:X
m

expðTmÞ½Pc þ Q	½ 
Hmop
þ 
Hmq2op

	lfmlcm

þ
X
mn

expðTmÞ½Pc þ Q	 expð2TmÞexpðTnÞlfmlkfml 
Hncl lfnlcn

¼
X
mn

expðTmÞ½Pc þ Q	lfmlWmncn ð55Þ

Equating the Q-projection on both sides of Eq. (55) for each fm (note that this is a

sufficiency condition), we have:

Q½ 
Hmop
lfmlcm þ

X
n

{expð2TmÞ expðTnÞ}oplfml ~Hmncn	 ¼ 0 ;m ð56Þ

where we usedQlfml ¼ 0 for the left side of the projection in Eq. (56). We also write ~Hmn

as kfml 
Hnlfnl. Since every term expðTmlxll for each l is linearly independent, we get:

kxll 
Hmop
lfmlcm þ

X
n

kxll{expð2TmÞ expðTnÞ}oplfml ~Hmncn ¼ 0 ; l;m ð57Þ

In Eq. (56) or Eq. (57), no quasi-open or closed operators can project fm on to xl, since
they have no inactive excitations in them, being labeled by active lines only. Hence, they

do not appear in Eq. (56) or Eq. (57) for the Q-projection. Eq. (57) defines all the open

components of Tm, T
m
op, for every m. By an entirely similar reasoning, we project all the

quasi-open components of both sides of Eq. (55) for each m and equate them (as the

sufficiency conditions for defining T
m
q2op):

Pc½ 
Hmq2op
lfmlcm þ

X
n

{expð2TmÞ expðTnÞ}q2oplfml ~Hmncn	 ¼ 0 ð58Þ

Of all the functions spanned by Pc, only a fixed subset of them will be reached by the

action of the quasi-open operators on fm. These functions will span the space of R, and a
subset of P. The rest of the functions, all belonging to P, will be reached by the action of

closed operators on fm, since the action of a quasi-open and a closed operator connecting
a given pair of functions in Pc is mutually exclusive.
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Since Pclfml ; lfml, and there are no quasi-open operators present to excite fm on
the right side of Eq. (55), the right side of the quasi-open projection of Eq. (55) is zero.

We have:

kfll 
Hmq2op
lfmlcm þ

X
n

kfll{expð2Tmq2opÞexpðTnq2opÞ}q2oplfml ~Hmncn

¼ 0 ;l [ R;m [ P ð59Þ
kfll 
Hmq2op

lfmlcm þ
X
n

kfll{expð2Tmq2opÞexpðTnq2opÞ}q2oplfml ~Hmncn

¼ 0 ;l;m [ P ð60Þ
Again, in Eq. (60), not all kfll can be reached from lfml by a quasi-open operator, but
only certain specific ones. These functions are those in the IMS which are unreachable

by closed operators on fm. Clearly, Eq. (60) is non-trivial only for those kfll reached
by quasi-open operators on fm; the rest are trivially zero. The non-trivial set of kfll, for
every m, defines additional quasi-open operators of Tm, besides those given by Eq. (59)
which lead to excitations to the R-space.

Eqs. (57), (59) and (60) are the working equations for the cluster amplitudes. We

should note that they are coupled also to the combining coefficients cms, which are

obtained as the elements of the eigenvector from the diagonalization of W defined in the

IMS, in Eq. (50). This is similar to what we had in the SS-MRCC theory for the CMS [38,

39]. Usually, one may get the coefficients from Eq. (50) in a macro-iteration, and get the

cluster amplitudes in an inner, micro-iteration.

The proof of the connectivity of Tm is somewhat involved, dependent on our proving

the connectedness of certain products of pieces entering the definition of W and the

cluster operators in a mutually consistent manner. We refer to our recent paper [60] for a

concise proof, and to our more comprehensive forthcoming paper [73] for the details.

We now come to the expression of the closed operator W. By equating the closed

projections of the entire Eq. (55), we have:X
mn

expðTmq2opÞP{expð2Tmq2opÞexpðTnq2opÞ}cllfml ~Hmncn

¼
X
mn

expðTmq2opÞPlfmlWmncn ð61Þ

To arrive at a size-extensive expression for W, and at the same time to ensure that our

SS-MRCC theory using an IMS is intruder-free, it is necessary to write explicitly the

projector P, and change the label of the dummy index m on the right side of Eq. (61)

appropriately. We thus haveX
mnl

expðTmq2opÞlfllkfll{expð2Tmq2opÞexpðTnq2opÞ}cllfml ~Hmncn

¼
X
ln

expðTlq2opÞlfllWlncn ð62Þ

To simplify further, we equate terms of both sides of Eq. (62) for each n, pre-multiply
by expð2TnÞ, project with kfsl and take closed projections of the products
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of exponentials thus generated. We then have,X
ml

kfsl{expð2Tnq2opÞexpðTmq2opÞ}cllfllkfll{expð2Tmq2opÞexpðTnq2opÞ}cllfml ~Hmn

¼
X
l

kfsl{expð2Tnq2opÞexpðTlq2opÞ}cllfllWln ð63Þ

which implicitly defines the matrix elements of Wlv. By adducing the same reasoning

as was advanced to show the connectivity of the pieces {expð2TmÞexpðTnÞ} ~Hmn, one may

likewise show that W is a connected closed operator. More explicitly, up to the quartic

power of cluster operators in the closed projection of the wave operator multiplying
~H, the matrix elements of W can be expressed as

Wsn ¼ ~Hsn þ
X
m

kfsl{expð2Tmq2opÞexpðTnq2opÞ}½4	cl lfml ~Hmn

þ
X
lm

kfsl
1

2
Tm

2

q2op 2
1

2
Tl

2

q2op 2 Tnq2opðTmq2op 2 Tlq2opÞ
� �

cl
lfll

� kfll
1

2
Tm

2

q2op þ 1

2
Tn

2

q2op 2 Tmq2opT
n
q2op

� �
cl
lfml ~Hmn ð64Þ

which is a sufficiently accurate explicit expression of W for practical applications. The

quantity {· · ·}½4	cl denotes that up to quartic total powers of the cluster operators were

taken. We note that there are no linear terms from the expression {· · ·}cl since, by

construction, there are no closed projections of a quasi-open cluster operator.

We refer to our two papers [60,73] for more detailed discussions and for the

demonstration of the avoidance of intruders. Here we just emphasize that, to avoid

intruders, it would be necessary to choose the IMS appropriately. The special IMS such

as QCMS, where one usually puts quasi-degenerate orbitals in one class, and the non-

degenerate orbitals in a different class are very appropriate for separability. There are

other desirable simplifications also if we work in the QCMS. For the QCMS, the quasi-

open operators cannot lead to excitations into the QCMS itself. This automatically

separates the contributions of the quasi-open and the closed operators by simply using

the projectors expðTmÞR expð2TmÞ and expðTmÞP expð2TmÞ, respectively. This is quite
convenient for the practical applications. For the QCMS, we thus need to project Eq. (55)

with expðTmÞlfllkfllexpð2TmÞ to get every quasi-open operator present in Tm for each

fm, and project onto expðTmÞP expð2TmÞ to generateW. Eq. (60) are all trivially zero for
a QCMS.

Although the approach described above is presented in its most general form,

using a multiple coupled-cluster Ansatz for the SS-MRCC formalism, suitable approxi-

mants to it such as the state-specific multi-reference perturbation theory (SS-MRPT) or

state-specific multi-reference CEPA (SS-MRCEPA) can be generated by straightforward

approximations. Since the new closed component of the wave operator for IMS appear

first at the quadratic power, it is evident that the expressions we have derived in this

and the earlier papers for the CAS will remain valid if the quadratic powers of Tm are

ignored in the approximants to SS-MRCC for IMS. This implies that all the SS-MRPT
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at second order of energy as well as both the SS-MRCEPA(0) and SS-MRCEPA(I) will

have the same expressions for IMS as for the CAS. This is an important simplification

for these approximants.

The results, described in the following section, test the efficacies of the spin-free

perturbative and CEPA approximants of the SS-MRCC method, along with the API-

SSMRPT versions.

22.6 RESULTS AND DISCUSSION

We present now numerical tests of the performance of the various approximants to

the SS-MRCC formalisms discussed in this article for some prototypical systems.

We classify the applications in different groups, delineated in separate subsections,

each discussing results of a given approximant. We have organized the sequence of the

presentation of our results in such a way that more sophisticated approximants appear

later. This will facilitate our discussions regarding the relative efficacies of the corres-

ponding approximations, as more refined hierarchies are undertaken.

There are several different aspects of the numerical performance of the approximants

to SS-MRCC, which we want to illustrate with our example applications:

(a) Since we as yet do not have the results for the spin-adapted full-blown SS-MRCC,

we are unable at this stage to illustrate the extent to which the various approximants to

it can capture electron correlation in the general situation relative to the SS-MRCC

where open-shell model functions are present. However, in some example applications,

the model functions are all of the closed-shell type, for which the spin-adaptation of

the SS-MRCC is straightforward, and for these situations the SS-MRCC results are also

discussed. However, comparison with the FCI benchmark exact results in a given basis

will always be done to estimate the absolute accuracy of the numbers in a given theory.

(b) We first present the SS-MRPT results for PES with different partitionings, using

both the relaxed and the frozen coefficients, and also under the physically motivated

API approximation. Comparison with the full CI (FCI) results is used to test the efficacy

of the approximations. Spectroscopic constants are also extracted from the PES, and are

compared with the corresponding FCI results.

(c) It so turns out that the various SS-MRPT results do not differ significantly in the

general trends for a given partitioning. We are talking of the trends here based not only

on the sample results we are presenting in this article, but also of a whole lot of different

sets of results obtained for different systems. The EN partitioning performs generally

better in all the cases. It seems then justified to use the simplest of the formalisms, viz.

the averaged Fock operator with the inclusion of diagonal ladders as H0 in the EN

partitioning as the best acceptable compromise between the computational demands and

accuracy, and this we propose to adapt in our future extensive applications.

(d) We test the performance of the approximants for the spin-adapted SS-MRCC,

and for this we show results for both the SS-MRCEPA(0) and SS-MRCEPA(I). Again

comparison with the FCI is used as the yardstick of their efficacy. Spectroscopic constants

are computed from the PES obtained from CEPA methods, and compared with the FCI

counterparts.

Size-consistent state-specific multi-reference methods 611

References pp. 631–633



(e) We have also computed the first and second order molecular properties, viz. the

dipole moment and the polarizability functions as a function of geometry using just

the relaxed version of SS-MRPT(MP) method with two partitions: the Fock operator

in the sense of multi-partitioning as well as the averaged Fock operator and API-

SSMRPT(MP) method.

In Section 22.3.1, we have discussed several variants of SS-MRPT, using Møller–

Plesset (MP) as well as Epstein–Nesbet (EN) partitions, where the denominators for

the EN partition contain additional terms from all the diagonal direct and exchange

ladders. For the multi-partitioning strategy, we use the corresponding H0 for each

model function fm, taking its highest closed-shell portion f0m as the vacuum. As we
have emphasized in Section 22.3, we have two degrees of flexibility in our use of the

SS-MRPT formalisms. We can, e.g. (1) use either the relaxed coefficient or the frozen

coefficient description, and (2) either use the full-blown SS-MRPT, with m-dependent
first order cluster operators for all the excitations or we can use the API, which we

termed as the API-SSMRPT. We have presented results from all these versions of

SS-MRPT in our applications.

As we have mentioned earlier, we are also presenting the results of the size-extensive,

size-consistent and invariant under restricted orbital rotations SS-MRCEPA methods

developed from manifestly spin-free full-blown SS-MRCC method. We will display

the values for both relaxed and frozen versions. In our preliminary applications of the

SS-MRCEPA(I) method in this article as applied to model spaces with open-shell

functions, we have not included the quadratic terms of the cluster operators. For the test

case involving the closed-shell model functions only, we have included the quadratic

operators. A comprehensive account considering the quadratic terms with the open-shell

model functions also will be communicated in due course.

The modifications and the theoretical considerations needed for generating explicitly

spin-free formalisms for open-shell model functions have been described in Section

22.2.1. We indicated that we need to add blocks of excitations which produce the same

excitations by their action on an open-shell fm to get the cluster-determining equations.
We present results for four systems: the model H4, the PES for the perpendicular

insertion of Be to H2, and the PES of the bond-dissociation of LiH and BH molecules. Of

these, the H4 problem and the PES of the BeH2 complex use two active orbitals of

different symmetries, with two active electrons. The two functions where these two active

orbitals are, respectively, doubly occupied span a CAS due to symmetry reasons, and

both the model functions are closed-shell type. Hence the special considerations of

having pseudo-one body operators with spectator excitations involving the singly

occupied active orbitals and adding contributions of blocks inducing the same excitations

are not necessary for these two systems. The PES of LiH and BH molecules, on the other

hand, have two active orbitals of s symmetry, which is conceptually the minimal

requirement for describing the breaking of the single bond, and the model space is three-

dimensional, with an open-shell configuration, viz. (core)s2, (core)sp2 and (core)ssp.
The additional considerations for the open-shell cases described in Section 22.2.1

would be necessary for treating LiH and BH systems. The ground state PES of all the

systems studied shows varying degrees of quasi-degeneracy and would be plagued by

intruders with the change of geometries, and hence are appropriate to test the efficacy of
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the different SS-MRPT and SS-MRCEPA methods. The performance of the various

variants is assessed by comparing our results with the FCI results using the same basis.

In all our applications we have employed the natural orbitals of the CASSCF

calculations of appropriate state. The CASSCF and FCI calculations were performed

using the GAMESS(US) electronic package. In all our calculations, we have employed the

symbol SSMR to represent the results of frozen variant of various SSMR methods.

22.6.1 H4 model

The trapezoidal H4 system, known as H4 model [39,40,74,75], consists of a square

configuration of four H atoms, and the PES describes the energy curve as the two

adjacent H atoms are moved out to trace a trapezoid with the deviation angle f, which
is the difference of the actual obtuse angle and p/2 [75]. The various geometries of the
system are described by f ¼ ap: From the behaviour of the first few CSF energies as a

function of the opening angle, it is found that H4 faces intruders at some points over the

PES (see Fig. 22.1). The second model space function crosses a virtual function around

a ¼ 0.3, and the standard effective Hamiltonian methods face intruder problem around

this geometry. Our SS-MRPT and SS-MRCEPA methods are expected to be free of this

shortcoming, and hence this system is a very good test case to study their potentiality.

We have used the DZP basis [75] and CASSCF natural orbitals for the lowest root of

the (2 £ 2) CAS for computation of the ground state PES at each stage of the

calculation within the framework of the C2v symmetry.

We have plotted in Fig. 22.2, the difference energies (mH) for the SS-MRPT

methods with respect to the FCI values of the PES of the ground state (11A1) of the

H4 model [39,40,74,75]. Two separate graphs are shown. Fig. 22.2a contains results
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Fig. 22.1. Plot of CSF energies of the H4 model.
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with the MP-like partition, while Fig. 22.2b displays the corresponding results with

the EN partition. The various forms of the Fock operators discussed in Section 22.3.1

on perturbation theory are studied. Our particular interest here is to see whether the

SS-MRPT can avoid intruders, and also to discern which partitions work better, and

whether the most drastic perturbative approximant, viz. the API-SSMRPT can capture a

major portion of the dynamical correlation energy despite the approximations made on

the inactive excitations.

There are no significant deviations as compared to the FCI results in the general trend

of the results for any of the choice of the Fock operators in either MP or EN partitions,
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Fig. 22.2. Plot of energy difference ½DEðmHÞ ¼ ðEFCI 2 EmethodÞ	 of the ground state of H4 model using

DZP basis.
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partitions used by us, as is evident from the plots shown in Fig. 22.2a and b. The results

with the EN partition are significantly better. The figures also indicate clearly that our

SS-MRPT methods are devoid of intruders. From the numbers plotted in Fig. 22.2a it is

found that the SS-MRPT(MP) method with fm shows a minimum deviation of the order

of 12.5 mH, a maximum of 16.3 mH, with the average deviation being 14.25 mH in

both relaxed and frozen coefficients schemes. However, a switch over to the generalized

Fock operator scheme reduces the minimum and maximum deviations to approximately

4 and 14 mH, respectively, with the average deviation of 10 mH. Use of the API-

SSMRPT(MP) scheme shows almost identical deviation pattern as is observed for the

scheme with generalized Fock operator. The performances of the SS-MRPT(EN)

and API-SSMRPT(EN) methods are by far the best showing minimum and maximum

deviations of the order of 0.1 and 1.5 mH, respectively, with an average of 0.9 mH.

To highlight the numerical performance of the approximants of the parent SS-MRCC

method, we mention that the average deviation from FCI for SS-MRCC is of the order

of 0.3 mH. This analysis indicates that one can use the same generalized Fock operator

ðPm fmc
2
mÞ in our MRPT calculations for all the model functions, since this saves compu-

tation time as compared with the one using the multi-partitioning strategy. The

performance of the API-SSMRPT for both the partitions is very close to the corres-

ponding results from the full-blown SS-MRPT, although in the former we impose the

physically motivated approximation of equal amplitudes for all the one and two-body

inactive excitations from the MR reference function. Thus the scheme with the API

approximation is computationally quite attractive.

The results with the SS-MRCEPA(0) and SS-MRCEPA(I) were computed by us

earlier in another paper [59]. Here we summarize the deviation of the SS-MRCEPA

results with respect to the FCI values reported earlier [59] to compare the relative

performance of our SS-MRPT methods. The minimum and maximum deviations of

SS-MRCEPA(I) method from FCI are approximately of the order of 0.45 and 0.7 mH,

respectively, along with the average deviation being 0.6 mH whereas the corresponding

values for the deviations in case of CEPA(0) are 0.1 and 0.5 mH, respectively. The

average deviation for the CEPA(0) method is of the order of 0.4 mH. Hence we may

conclude that the relative performance of our SS-MRPT(EN) is pretty close to the

SS-MRCEPA(I) method for the H4 model system.

22.6.2 Insertion of Be into H2: BeH2 model

The ground state PES of the C2v insertion reaction of Be into H2 to form the BeH2
complex over the reaction points defined in Ref. [76] is an important paradigm system

designed to study theories for avoiding intruders [39,46,55,77]. In our calculations, we

used the same basis as the one reported in Ref. [76]. The Be atom approaches the H2
molecule from the direction perpendicular to the bond, and the bond is stretched to

enhance the non-dynamical correlation effect as the distance of approach becomes

shorter. This system poses serious challenge to any theory where both non-dynamical

and dynamical correlations are important in varying degrees along the PES, the active

orbitals cross along the distance of approach, thus necessitating theories which treat
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all model functions on the same footing, and the two active orbitals face intruder

orbitals at the two extreme geometries, viz. the large distance of approach, and short

distance of approach. The qualitative nature of the behavior of the various low-lying

model and virtual functions are displayed in Fig. 22.3, where the CSF energies are

plotted against the Be–H2 distance. State-specific formalism should handle this

situation for the ground state PES.

It is observed from the coefficients of the FCI results that in the regions of the

points: A–C and G–I, the dominant configurations are, respectively, f1 ¼ 1a212a
2
11b

2
2

and f2 ¼ 1a212a
2
13a

2
1. At the transition points, D–F, both configurations are equally

important: a quasi-degenerate reaction region. Hence these two configurations consti-

tuting the CAS are sufficient for an accurate description of reference function of the

ground state PES of the BeH2 system. In our computation, we have used the orbitals of

the CASSCF calculations corresponding to the lowest root of the (2 £ 2) CAS over the

entire reaction points.

Since the two active orbitals belong to different symmetries, the CAS is two-

dimensional and both the model functions are closed. The SS-MRCC theory is trivially

spin-adapted in this case, and the performance of the various SS-MRPT variants can be

assessed with respect to both the FCI results and the SS-MRCC results.

We applied the SS-MRCC theory to the BeH2 problem some years ago, and showed

that it is very effective in generating the PES of the ground state [39], and we present

these results along with the FCI and the corresponding results using the variants of the

SS-MRPT to assess the efficacy of the various partitioning. As we emphasized above,

from the point of view of intruders, the sensitive regions are the large and small

distances of approach of the Be atom. Co-ordinates of the sample points are shown in

Table 22.1. From the point of view of the relative shift of importance of the model

functions, the region around R ¼ 2–3 a.u. (i.e D, E, and F reaction points) is important,

when the two active orbitals cross each other.
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Fig. 22.3. Plot of CSF energies for insertion of Be into H2.
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Around the region D–F, the unperturbed energy of the ‘excited’ orthogonal

complement of the function with the same two model functions come close to that for

the ground state, and the exact extent of splitting of the two states as well as the barrier

height generated due to the weakly avoided crossing become very sensitive to the

accuracy of the formalism used. The full-blown SS-MRCC theory performs very well in

handling both the intruders and in predicting good barrier height [39]. Very recently

Pittner et al. [77] have applied the MRBWCCSD method of Hubâc and co-workers [40]

which is not rigorously size-extensive to study the perpendicular insertion reaction of

Be into H2 to form the BeH2 complex. They observed that the performance of the

MRBWCCSDmethod is promising, although the size-extensive correction of the method

does not necessarily improve the results relative to the FCI values [77].

We have reported our SS-MRPT(MP) and SS-MRPT(EN) energies for the ground

state of the BeH2 system using various schemes as a deviation from the FCI values over

the entire reaction path in Fig. 22.4a and b, respectively. The trend of the results indicate

all the variants do rather well. As has been envisaged earlier with the H4 model, we

observe that the performance of the SS-MRPT(EN) is better than the corresponding

MP partitioning. On an average the deviation in the EN method is of the order of 2 mH,

while that in the MP partition it is approximately 16 mH. The minimum and maximum

deviations for EN partitioning are 0.4 and 7 mH, respectively, whereas for the MP

scheme these values become 8 and 27 mH, respectively. From our earlier results with the

SS-MRCC, we find that the corresponding average deviation for the full-blown SS-

MRCC is of the order of 0.4 mH [59]. We note that, with both the partitions, the API

approximation preserves the accuracy to an extent comparable to the parent full-blown

MRPT methods with the same partitioning, except near the reaction point D. The

deviation is slightly higher at the geometry F for the MP scheme. In all the SS-MRPT and

API-SSMRPT methods, the relaxed values are comparatively better than the

corresponding frozen values with respect to FCI. We again find that the trend of results

in each partition is less sensitive to the actual Fock operator used. Considering the

difficulty of both avoiding intruders and of providing a good potential barrier, the MRPT

with the EN partition performs very well.

Table 22.1 Coordinates (a.u.) of points along the reaction path for the

perpendicular insertion of Be into H2

Reaction points Coordinates for H2(y,R)

A 2.54,0.0

B 2.08,1.0

C 1.62,2.0

D 1.39,2.5

E 1.275,2.75

F 1.16,3.0

G 0.93,3.5

H 0.7,4.0

I 0.7,6.0

Be is located at (0.0,0.0).
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For this system we have already published earlier results with the SS-MRCEPA

methods. For the sake of completeness, we summarize the comparative performance of the

various SS-MRPT methods vis-à-vis the SS-MRCEPAmethods. Similar to the H4 model,

for this system the performance of the SS-MRCEPA(0) with respect to the FCI values is

slightly better than the CEPA(I) counterpart [59]. For example, for the SS-MRCEPA (0)

method, the maximum and minimum deviations are of the order of 0.2 and 1.8 mH,

respectively (except at reaction point F, the deviation is of the order of 4.6 mH) with the

small average deviation of the order 1.5 mH while that for the SS-MRCCEPA (I) method,
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of Ref. [75].
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the deviations are approximately around 0.3 and 3.3 mH with the average deviation

being 2.5 mH. Here we also observed that the performance of the SS-MRPT(EN) is

very similar to the CEPA(I) counterpart of the SS-MRCC method.

22.6.3 LiH molecule

The ground state PES of LiH molecule [78,79] is again a paradigm system in the sense

that (a) the effective Hamiltonian methods would fail to describe the equilibrium region

very well since the doubly excited S states described by the excited roots of the Heff

would be close in energy with some virtual functions, and hence would be intruder-

prone, and (b) a proper spin-adapted state-specific theory is called for since one of the

CSFs is an open-shell singlet. The reference space (CASSCF) includes the following

configurations: f1 ¼ 1s 22s 2, f2 ¼ 1s 23s 2 and f3 ¼ 1s 22s3s: The last CSF is an

open-shell function. We have used the natural CASSCF orbitals of ground state from

the three-dimensional CAS in our calculations. The basis used are the standard 6311Gp,

DZP, and cc-pVTZ [80].

We present the results of the spin-adapted versions of SS-MRPT first. The performance

of the various MRPT methods with the two partitions is assessed via a comparison

with the corresponding FCI values for all the basis sets. To judge the quality of the PES,

we also evaluate the spectroscopic constants.

In Figs. 22.5–22.7 we present the ground state PES generated via various SS-MRPT

methods for LiH using DZP, 6311Gp, and cc-pVDZ basis, respectively. The results of

the SS-MRCEPA methods are depicted in Figs. 22.8–22.10 for the DZP, 6311Gp, and

cc-pVDZ basis sets, respectively.

Since the model space for LiH contains an open-shell CSF, we use two different Fock

operators, viz. fm and ~fm, and their corresponding generalized versions ( f ¼ P
m fmc

2
m

and ~f ¼ P
m fmc

2
m, respectively) in our partitioning strategy. As is evident from

Figs. 22.5–22.7, with all the three basis sets, the SS-MRPT(EN) methods perform

better in comparison to the corresponding MP scheme. In the DZP basis the average

deviation for SS-MRPT(MP) method is approximately 1.2 mH, whereas the same for

the corresponding EN strategy is close to 0.5 mH. In the 6311Gp basis the deviation of

SS-MRPT(EN) on an average from the FCI values is nearly 0.3 mH in contrast to 2.3 mH

for the corresponding MP partition. A switch-over to a larger basis set shows that

the average deviation for the SS-MRPT(EN) remains the same, whereas for the corres-

ponding MP partition the deviation increases slightly. The performance of the API-

SSMRPT is very similar to the parent SS-MRPT for the corresponding partitions as is

evident from Figs. 22.5c, 22.6c and 22.7c where we plotted the results of API-SSMRPT

along with results of SS-MRPT with ~f for the sake of better insight into the relative

performances of API-scheme. Again, as a general trend, we note that the performances

with different Fock operators are pretty close to each other for SS-MRPT methods with

MP and EN partitionings. The results for the relaxed and the frozen coefficient varieties

are also almost identical.

We now discuss the performances of the two SS-MRCEPA methods. Unlike in the

cases where the model functions are closed-shell, we have used only the linear terms
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Fig. 22.5. Plot of energy difference ½DEðmHÞ ¼ ðEFCI 2 EmethodÞ	 of the ground state of LiH molecule using

DZP basis.
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in the direct and coupling terms while using SS-MRCEPA(I). This is still an invariant

formalism, though it is more approximate, and its performance is not expected to be as

good as that for the fully developed SS-MRCEPA(I) for the closed-shell situations.

From Figs. 22.8–22.10 it is clear that the performance of the SS-MRCEPA(0)

method is generally better than the approximate version of the SS-MRCEPA(I) method.

In the former the result of the relaxed scheme is better than the frozen one for all the basis

sets. On the contrary, for the SS-MRCEPA(I) variant, the performance of the relaxed and

frozen schemes are super-imposed on one another. The performance of SS-MRCEPA(0)

is close to the SS-MRPT(EN) method over a wide range of geometry in all the

three basis sets. The deviation from FCI for the SS-MRPT(MP) method is less than
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the SS-MRCEPA(I) method for all the aforesaid basis. However, it should be borne in

mind that the SS-MRCEPA(I) is invariant with respect to the restricted orbital

transformation separately among the hole, active and the particle orbitals. We feel that

the performance of the SS-MRCEPA(I) method, in particular the fully developed variant,

needs to be studied in greater detail in future.

We have also calculated the equilibrium geometry re, harmonic vibrational frequency

ve, anharmonicity constant vexe, rotational constant Be, rovibronic constant ae, and

centrifugal distortion constant 
De. re is expressed in Å and all other quantities are

expressed in cm21.

Table 22.2 contains the spectroscopic constants for LiH in various basis sets with

different SSMRPT methods using EN and MP scheme and SS-MRCEPA methods. The

spectroscopic constants show that the performance of our all type of SS-MRPT methods

as well as their API variants are quite similar and also pretty close to the FCI values.

The values of the spectroscopic constants computed with both the SS-MRCEPA methods

indicate that they also fare pretty well. Although we have not studied the performances

of our SSMR-based CEPA and PT methods up to the basis set saturation limit, for

the sake of completeness of comparison we have also tabulated the corresponding

experimental values. Comparison with experimental data indicates that the values of

the various spectroscopic constants improve with the increase in size of the basis set.

22.6.4 BH molecule

The pronounced multi-reference character of the BH molecule even around the equili-

brium geometry is well known [79,81]. The computation of the ground state PES of

BH thus should be a challenging test-case of an MR method, in particular of the relative

shift of importance of the dynamical and the non-dynamical correlations.
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cc-PVTZ basis.

Chapter 22624



Just as in LiH, the three-dimensional reference space of BH contains one open-

shell CSF, apart from the two closed-shell functions. The reference configurations are:

f1 ¼ [core]3s 2, f 2 ¼ [core]4s 2 and f 3 ¼ [core]3s4s. We use the orbitals obtained

from CASSCF calculation corresponding to the lowest root of the (3 £ 3) CAS reference

function.

We have used the standard DZP basis set [79] for the calculations. We have calculated

both PES and their relative performances have been compared with the standard FCI

results in same basis.

Fig. 22.11a and b depicts the results for the different versions of the SS-MRPT(MP)

and SS-MRPT(EN), respectively. A comparison of the figures clearly points out that

the performance of the SS-MRPT(EN) is far better than the MP counterpart. While the

average deviation from FCI for the former is close to 8 mH, for the latter the same

is approximately 20 mH. Since we find that the performance of SS-MRPT(MP) with

fm and ~fm as Fock operators are almost identical, we depict only the results corresponding

to the former. For the same reason, Fig. 22.11a contains the results with the
P
m fmc

2
m only.

However, the performance of SS-MRPT(MP) using fm is marginally better than the one

with
P
m fmc

2
m for larger separations. The performance of the API schemes resembles

closely the corresponding parent full-blown counterparts.

Table 22.2 Spectroscopic constants of LiH molecule using various basis

Basis Method re ve ve xe Be ae De £ 1023

DZP SS-MRPT(MP) 1.619 1497.04 22.18 7.252 0.158 0.681

SS-MRPT(MP) [
P
m fmcm

2 ] 1.619 1470.90 25.51 7.252 0.188 0.705

API-SSMRPT(MP) 1.619 1478.03 24.45 7.252 0.178 0.698

SS-MRPT(EN) 1.621 1484.65 23.59 7.238 0.170 0.688

API-SSMRPT(EN) 1.621 1468.56 25.79 7.238 0.190 0.703

SS-MRCEPA(0) 1.621 1482.57 23.64 7.238 0.171 0.690

SS-MRCEPA(I) 1.621 1498.96 21.29 7.238 0.150 0.675

FCI 1.619 1505.29 21.06 7.252 0.147 0.673

6311Gp SS-MRPT(MP) 1.630 1453.87 20.78 7.158 0.149 0.694

SS-MRPT(MP) [
P
m fmcm

2 ] 1.630 1442.33 21.53 7.149 0.156 0.702

API-SSMRPT(MP) 1.631 1469.04 18.32 7.149 0.125 0.677

SS-MRPT(EN) 1.672 1388.87 19.30 6.805 0.137 0.653

API-SSMRPT(EN) 1.631 1474.69 17.68 7.149 0.119 0.672

SS-MRCEPA(0) 1.621 1477.55 20.93 7.238 0.149 0.694

SS-MRCEPA(I) 1.621 1467.08 22.16 7.238 0.161 0.705

FCI 1.624 1406.25 28.97 7.215 0.223 0.760

cc-pVTZ SS-MRPT(MP) 1.606 1430.10 29.22 7.372 0.226 0.783

SS-MRPT(MP) [
P
m fmcm

2 ] 1.606 1427.57 31.09 7.372 0.241 0.790

API-SSMRPT(MP) 1.606 1441.44 28.39 7.372 0.218 0.771

SS-MRPT(EN) 1.610 1453.84 24.23 7.334 0.182 0.746

API-SSMRPT(EN) 1.582 1464.56 28.72 7.596 0.223 0.817

SS-MRCEPA(0) 1.604 1459.49 24.39 7.385 0.183 0.756

SS-MRCEPA(I) 1.605 1466.52 22.90 7.382 0.170 0.748

FCI

Experiment

1.601

1.596

1449.02

1405.65

27.77

23.20

7.421

7.513

0.213

0.213

0.778

0.861

re in Å and all other quantities in cm21. Experiment: K.P. Huber and G. Herzberg, Constants of diatomic of molecules, Van

Norstrand, New York, 1979.
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Fig. 22.12 is the graphical representation of the results obtained using the different

versions of SS-MRCEPA. At shorter distances the performance of SS-MRCEPA(0)

and the approximate SS-MRCEPA(I) are very close to one another, whereas, for larger

separations (R $ 7.0 a.u.) the results of CEPA(I) are very close to the FCI as compared

to CEPA(0). At intermediate internuclear distances, the SS-MRCEPA(0) performs

better than the corresponding CEPA(I) approach. Akin to our observation for LiH, the

approximate SS-MRCEPA(I) in the relaxed and frozen contexts show almost identical

behaviour as is evident from Fig. 22.12. At shorter interatomic separations the frozen
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Fig. 22.11. Plot of energy difference ½DEðmHÞ ¼ ðEFCI 2 EmethodÞ	 of the ground state of BH molecule using
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coefficients version of CEPA(0) is marginally better than the relaxed one, however,

at larger distances they merge together.

With the example applications discussed here, it seems to us that it may not be fair

at this stage to conclude definitively about the relative performance of SS-MRCEPA(0)

and SS-MRCEPA(I) methods. At times CEPA(0) performs better than CEPA(I) and

vice versa for the closed-shell case, as we found in more extensive applications, in

the case of systems containing only closed-shell configurations [59]. More exhaustive

calculations, in particular of the fully developed SS-MRCEPA(I), are needed to come to

a definitive conclusion, which is on the way. For the SS-MRPT, we have more extensive

applications, not all published yet, which definitely indicate the generally superior

performance of the EN partitioning.

22.6.5 First and second order electrical property: LiH molecule

To test the quality of the perturbed wave function generated via our SS-MRPT(MP)

method, we study the PES of LiH in the presence of an electric field, to extract the dipole

moment and the polarizability functions [82]. Since the SS-MRPT(MP) is capable of

yielding nearly uniform accuracy of the ground state energies for different nuclear

geometries over the entire PES and recover a reasonably large portion of the pertinent

correlation effects, the SS-MRPT(MP) method is also expected to provide reliable

results for the property functions. The SS-MRPT(MP) method, with the Fock operator

in the multi-partitioning sense as well as its generalized version, has been employed for

the calculation of dipole moment and polarizability surface of the LiH molecule in its

ground state. These calculations were carried out via the FF (Finite-Field) perturbations
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approach [83] using natural CASSCF orbitals for the lowest root of (3 £ 3) CAS in the

presence of the field. The external electric-field strength for each point has been chosen

as equal to (^0.005) a.u. The importance of the appropriate choice of the basis set

functions has also been carefully investigated.

It has been found that the relatively small three-dimensional active space is sufficient

to generate good values of the dipole moment and polarizability surface of the parallel

component over the wide range of geometries of the LiH molecule.

Fig. 22.13a and b represents the dipole and polarizability surfaces, respectively, using

6311Gp basis. The shape of the dipole moment and polarizability functions for the

parallel (azz) component of the polarizability tensor is qualitatively similar to the FCI
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Fig. 22.13. Dipole moment function ðmzÞ of the ground state of LiH molecule using 6311Gp basis.
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curves. It is evident that the deviation from the FCI values is quite small for the dipole

moment in comparison to the polarizability values. The deviation for the polarizability

function is also not substantial.

We have not reported the perpendicular component of the polarizability tensor,

since the process of the computation of the corresponding perpendicular component

clearly shows that other CSFs containing p orbitals should be included for convergent

results, indicating that the three-dimensional CAS space is not a reasonable choice

for computing the perpendicular component of the polarizability and this would require

the reference space of larger dimension. LiH dissociates into the ground states of each

atom, so they go to 2s of Li and 1s of H. The valence orbitals, s and sp, have mixing of
pz orbitals of both Li and H, provided they are taken (they are a must for polarizability)

along the bond axis, and no px or py because of symmetry. This is true for both the zero

field case and when the field is along the z direction. So, when the bond is stretched,

and finally broken, the px and py still do not mix with the active orbitals, and the

orbitals get degenerate, leading essentially to an orthogonal combination of 2s of Li and

1s of H at large distance for the zero field case, and to sp hybrid (p in z directions) on

Li and H in the case of the field in z directions. The situation is quite different when the

field is in the x direction. In that case the active orbitals would have, apart from the

2s and 1s orbitals, the pz orbitals, a mixture with the px orbitals because of charge

polarization in the x direction. When the bond is stretched, the orbitals should lead to

a combination of s and px orbitals in the dissociation limit. This requires the use of

a larger model space with p orbitals as active orbitals, something we have not done

in this calculation.

22.7 SUMMARY AND CONCLUSIONS

In this article we have presented an account of a class of SS-MR theories, which work

in both CMS and IMS. The methods explicitly use spin-free formalisms, and are

potentially capable of handling states which are non-singlets and consisting generally of

spin-adapted CSFs. We have also discussed the emergence of the corresponding

approximants like the spin-free perturbative and CEPA schemes, starting from the

spin-adapted SS-MRCC. The use of the entire portion f0m of the highest closed-shell
component of fm as the vacuum to define all the excitations on fm in normal order is
rather powerful, and offers a simple yet convenient access not only to define the various

excitation operators but also to simplify the resulting working equations in the spin-free

formulation. Although we have presented in this article only the theory of the spin-free

SS-MRCCmethod, we have illustrated the numerical efficacy of its various approximants

by applying them in the systems where not only closed-shell but also open-shell functions

are present in the model space. These systems possess quasi-degeneracy at some points

on the PES and there are potential intruders at some other points. From the above

discussion, we can say that the suite of SS-MRPT and SS-MRCEPA methods performs

very well. Unlike most of the CAS-based perturbative state-specific methods, all of our

SS-MRPT and CEPA counterparts are rigorously size-extensive and intruder-free in
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nature. Hence they are very effective to study the PES over the wide range of geometrical

distortions.

In the perturbative versions, we have discussed and numerically applied two types of

partitioning, viz.MP and EN in the context of perturbation theory. We have explored the

various choices of H0 in the MP-based SS-MRPT method. The performances of the SS-

MRPT(MP) method with various types of Fock operators are very similar. We have

observed that the SS-MRPT(EN) performs much better than the corresponding MP

approach for the systems studied by us in this article.

In the case of CEPA methods, we have considered the orbital invariant versions. The

simplest, the SS-MRCEPA(0), has no EPV terms, while in SS-MRCEPA(I), the full set

of EPV terms are retained. The performance of SS-MRCEAP(0) methods in most of

the cases is better than the SS-MRCEPA(I) version, though the latter has the advantage

of preserving the desired restricted orbital invariance.

On the theoretical front, we have also presented a new approximate version of

SS-MRCC theory, termed as API-SSMRCC method, using API where the inactive

excitations are independent of m, index of the configurations of the starting MR zeroth

order function. There is a drastic reduction of the number of cluster amplitudes in this

approximation. We have demonstrated the efficacies of the API-scheme by numerical

implementation of the perturbative variant of the API-SSMRCC method using both type

of partitionings (MP and EN). The performance of the API-SSMRPT method is quite

good and it is evident from the first set of results that the API-based methods are

computationally cost-effective due to the reduction of the cluster amplitudes without

unduly sacrificing accuracy.

In addition to computation of the PES, we also observed that the SS-MRPT and

SS-MRCEPA methods are also very effective for the calculations of various spectro-

scopic constants. The dipole moment and polarizability are also computed.

We have also presented a recently developed size-extensive and size-consistent

SS-MRCC approach based on a general model space. For this, the intermediate normali-

zation convention of the wave operator has to be abandoned in favor of some appropriate

size-extensive normalization. Suitable operators, defined in Fock space—described as

closed, open and quasi-open—have to be introduced to ensure that the effective operator

furnishing the target energy on diagonalization is a closed operator.

Of course, the most stringent tests for the generality of our SS-MRCC formalism

and its various approximants would be in situations where the orbitals change very

rapidly as a function of minor geometrical distortions, as happens in weakly avoided

crossings. We have shown the effectiveness of our formalisms in one such difficult test

system. More extensive applications of the method are underway and will be reported in

our forthcoming publications.
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Abstract

Since the early 1970s, valence bond (VB) theory has started to enjoy some renaissance of

methodologies and ideas. This chapter describes a new-generation VB paradigm, the so-

called VB diagram model. With just two figures the VB diagram model describes both

barrier formation in a single chemical step and chemical mechanisms. It thereby forms a

basis for a unified system of thought about chemical reactivity. The emergence of new

VB methodologies strengthens the model by providing a quantitative description of VB

diagrams [J. Phys. Chem. 93 (1989) 5661; J. Chem. Soc. Perkin Trans 2 (1992) 1019;

New J. Chem. 20 (1996) 1213; J. Am. Chem. Soc. 112 (1990) 1407; J. Chem. Soc. Chem.

Commun. (1989) 772; Inorg. Chem. 29 (1990) 3047; J. Phys. Chem. 96 (1992) 4346;

J. Phys. Chem. 94 (1990) 4089; J. Phys. Chem. A 105 (2001) 8226; J. Phys. Chem. A 106

(2002) 11361; J. Phys. Chem. A. 108 (2004) 6017; Chem. Eur. J. 9 (2003) 4540]. This

chapter outlines a guide to the qualitative use of the model by discussing a variety of

applications, to radical reactions, reactions of electrophiles and nucleophiles, cycloaddi-

tions, bond activation by transition metal catalysts, new reaction mechanisms,

photochemical reactions, and so on.

23.1 INTRODUCTION

The age of computational quantum chemistry has brought with it a remarkable ability to

produce accurate numbers and reliable chemical trends. This, however, has only

emphasized the ever-growing need for models that can make sense of the numerical and

experimental data, bridge between disciplines, and provide paradigms for the generation

q 2005 Elsevier B.V. All rights reserved.
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of new experimental problems. This model seeking, in chemical reactivity, has resulted

in two traditional schools of thought, one rooted in ‘classical physical organic chemistry’

[1] and the other originated in ‘MO theory’ [2]. The two schools have crystallized their

own unique concepts and defined matching ‘observables’.

The classical discipline of chemical reactivity is based on rate–equilibrium

relationships, and had its genesis in the first half of this century, in the works of

Brønsted, Hammett, Evans, Polanyi, Bell, and the Ingold school. With early valence bond

(VB) ideas about chemical bonding and a good deal of healthy empiricism there have

emerged important concepts on transition state structure and energetics [1], such as; the

Bell–Evans–Polanyi (BEP) principle, the reactivity–selectivity principle, the Leffler–

Hammond postulate, and so on. Another type of rate–equilibrium relationships is the

Marcus equation which has originated from electron transfer chemistry [3] and has been

applied subsequently to a variety of chemical reactions, advancing the concept of an

‘intrinsic barrier’ which is the ‘pure kinetic barrier’ of the reaction in the absence of a

thermodynamic driving force [1,3]. These concepts link experimental rate patterns with

thermodynamic and ‘kinetic’ properties of the reagents, and, as such, provide a fruitful

frame for organizing and predicting reactivity data.

The ‘theoretical school’ of chemical reactivity is based primarily on Molecular Orbital

(MO) theory, [2] and had its genesis in the early work of Hückel followed by those of

Fukui, Woodward and Hoffmann. By using perturbation theoretical ideas and appealing

to the shape and nodal characters of the MOs, highly portable concepts have been

formulated and triggered the development of corresponding experimental methodologies.

More recently, density functional theory [4] has led to the derivation of a set of reactivity

concepts such as absolute electronegativity and hardness–softness, by applying

perturbation theoretic ideas to the connection between the interaction energy and the

electron density. The concepts of the ‘theoretical school’ follow us from our early

exposure to chemistry and provide an important link between experiment and quantum

chemical theory, in its modern post World War II formulation.

Although the two schools seek the very same insights, understanding chemical

reactivity, they still seem different like two pieces disjointed from a big jigsaw puzzle. It

is not apparent, for example, where rate–equilibrium relationships or the Hammond–

Leffler postulate fit in the theoretical MO and DFT concepts, nor can the principle of

orbital symmetry, as such, be traced to anywhere in the underlying conceptual frame of

the classical school. The advent of computational quantum chemistry has served to

vindicate most if not all of the concepts. However, the ability of computational quantum

chemistry techniques to generate accurate reactivity data has not narrowed the chasm,

and in many instances has created more and more data, waiting to be conceptualized and

patterned. A paradigm of chemical reactivity is still needed; a paradigm that creates

bridges, forms a natural interface to computational quantum chemistry, and enables

chemists to make predictions in an effective manner.

There are two fundamental questions that a model of chemical reactivity must answer

as a prerequisite to becoming a paradigm:What is the origin of the barriers? And what are

the factors that control reaction mechanisms? Once a quantum chemical mechanism of

barrier formation is formulated, understanding of reactivity patterns is likely to follow,

and conceptual means will become available for the generation and solution of new

Chapter 23636



chemical problems. “What happens to Molecules as They React? A Valence Bond

Approach to Reactivity” was a title of a 1981 paper [5] that utilized the connection

between MO and VB wave functions to derive a general mechanism for barrier and

transition state formation. This was a timely paradigm in some respects. Because, on the

one hand, MO theory that has served as the main conceptual matrix could not offer a

mechanism of barrier formation, with the exception of ‘forbidden’ reactions [6], and on

the other hand, VB theory which was in principle capable of deriving such a general

mechanism, was considered passé and its knowledge restricted to a handful of experts.

However, the MO–VB relationship was essential to create bridges, and at the same time

to generate a reactivity paradigm which enjoys the qualitative insights of both theories;

these insights are the locality of the bond reorganization—best described by VB

structures, and those of orbital symmetry and nodal features—best described by MO’s.

Hereafter, this is referred to as the VB diagram approach.

One advantage of representing reactions in terms of VB configurations is the unified

insight that it brings to reactivity problems. The centerpiece of the VB diagram model is

the VB correlation diagram that traces the energy of the VB configurations along the

reaction coordinate. The subsequent configuration mixing reveals the cause of the barrier,

the nature of the transition state, and the reasons for occurrence of intermediates.

Furthermore, the diagram allows qualitative and semiquantitative predictions to be made

about a variety of reactivity problems, ranging from barrier heights, stereo- and regio-

selectivities, and mechanistic alternatives. Since its derivation, via the projection of MO-

based wave functions along the reaction coordinate [5], the VB diagram model has been

applied qualitatively [7–14] as well as quantitatively by direct computation of the VB

diagram [15–24]; as such this is a qualitative model with an isomorphic quantitative

analog. The ideas of curve crossing and avoided crossing were used in the early days of

VB theory by London [25], Eyring, Polanyi [26], and Evans [27], who pioneered the

implementation of VB computations as a means of generating potential energy surfaces

G

B

Reaction Coordinate

Φr
Φr

Φp Φp

Φint

R* P*

P

A ..//..B-C A--B--C A-B ..//..C
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∆Ec ∆E≠

(a) (b)

Fig. 23.1. VB diagrams for chemical reactivity: (a) VBSCD showing the mechanism of barrier formation by

avoided crossing of two curves of reactant and product type states. (b) VBCMD showing the formation of a

reaction intermediate by avoided crossing of a third curve. The final adiabatic states for the thermal reaction are

drawn in bold curves (adapted from Ref. [52] with permission of Wiley, q2004).
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and locating transition states. In this respect, the VB diagrams (VBSCD and VBCMD, see

Fig. 23.1) are developments of these ideas into a versatile system of thought that allows

prediction of a variety of reactivity patterns from properties of the reactants and products.

This chapter reviews briefly some key elements of the VB diagram approach. More

details and exhaustive treatments can be found in the various preceding reviews and

monographs of these models [1,7–14,28–34].

23.2 VB DIAGRAMS FOR CHEMICAL REACTIVITY

The representation of the VB diagram focuses on the ‘active bonds’, those that are being

broken or made during the reaction. For a chemist, the assignment of the ‘active bonds’ is

straightforward, since in most chemical reactions the bond reorganization event is

‘localized’ in terms of changes in atomic connectivity. And what makes this focusing

possible also at a theoretical level is the electron pair based formulation of the VB

representation. In fact, an entire range of reactivity phenomena requires only the two

generic diagrams that are schematized in Fig. 23.1. The first is a diagram of two

interacting states, called a VB state correlation diagram (VBSCD), which describes

the formation of a barrier in a single chemical step due to avoided crossing or resonance

mixing of the VB states that describe reactants and products. The second is a three-curve

diagram (or generally a many-curve diagram), called a VB configuration-mixing diagram

(VBCMD), which describes a stepwise mechanism derived from the avoided crossing

and VB mixing of three curves or more. This latter diagram enables one to predict and

describe stepwise mechanisms, which involve the incursion of intermediates. In the case

where the wave function, Fint; in Fig. 23.1b has different spin quantum number than the

two other state curves, one then obtains a two-state reactivity (TSR) [35], where Fint

mediates the transformation from R to P by a spin-forbidden process (characterized by

very weak avoided crossing). In cases where the direct R-to-P transformation has a high

barrier, and if the spin-inversion probability is not low, the crossover toFint offers a low-

energy path that catalyzes the transformation of Fr to Fp:
In what follows we describe VBSCDs and VBCMDs, and outline a brief account of

their practical use.

23.3 VBSCD—THE ORIGINS OF BARRIERS IN CHEMICAL REACTIONS

VBSCDs apply to reactions that can be described as the interplay of two major VB

structures, that of the reactants and that of the products (e.g. Fig. 23.1a). The diagram

displays the ground state energy profile of the reacting species (bold curve), as well as

the energy profile of each VB structure (thin curves) as a function of the reaction

coordinate. Thus, starting from the reactant’s geometry on the left-hand side of

Fig. 23.1a, the VB structure that represents the reactant’s electronic state, R, has the

lowest energy and it merges with the ground state of the system. Then, as one deforms

the molecular species towards the geometry of the products (on the right-hand side of

Fig. 23.1a), the latter VB structure gradually rises in energy and finally reaches an
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excited state Pp that represents the VB structure of the reactants in the products’

geometry. A similar diabatic curve can be traced from P, the VB structure of the

products in its optimal geometry, to Rp, the same VB structure in the reactants’

geometry. Consequently, the two curves cross somewhere in the middle of the

diagram. The crossing is generally avoided, owing to the resonance energy B that

results from the mixing of the two VB structures, and this mixing leads to the adiabatic

ground state. As such, the barrier arises from avoided crossing between two diabatic

curves, which represent the energy profiles of the VB structures of the reactants and

products.

The above description is general and applies to all reactions that involve bond

exchange, redox, or combination thereof. In fact, the excited states Rp and Pp are simply

promoted states that have the same electron-pairing modes as the products and reactants,

respectively. Thus, Fig. 23.1a is a state correlation diagram, and the state-correlation is

defined only by the nature (bonding and atom connectivity properties) of R and P; the

correlation is independent of the trajectory of the reaction and will be valid in any

reaction coordinate.

The VBSCD is a portable tool for making predictions by assessing the magnitudes of

barriers in terms of reactant properties that constitute fundamental parameters of the

diagram in Fig. 23.1a. The first of these parameters is the vertical energy gap G that

separates the ground state of the reactant, R, from the excited state Rp. This parameter,

called the promotion energy of the reaction, can take different expressions, depending

on which reaction is considered, but is always related to easily accessible energy

quantities of the reactants. The promotion energy gauges the height of the crossing

point, DEc; of the diabatic curves in the diagram, relative to the energy of the reactants.
Thus, DEc can be expressed as a fraction f ; smaller than unity, of the gap G (Eq. (1)).

DEc ¼ fG; f , 1 ð1Þ
The f parameter is associated with the curvature of the diabatic curves, large upward

curvatures is associated with large values of f ; and vice versa for small upward curvature.
For example, a curvature of two intersecting parabolas leads to f ¼ 0:25; while that of
two straight-line curves to f ¼ 0:5; and so on [11,14]. The curvature depends on the
descent of Rp and Pp toward the crossing point and on the relative pull of the ground

states, R and P, so that f incorporates various repulsive and attractive interactions of the

individual curves along the reaction coordinate. The remaining parameter, in Fig. 23.1a,

is the resonance energy B arising from the mixing of the two VB structures in the

geometry of the crossing point. The barrier DE– can be given a rigorous expression as a

function of the three physical quantities f ; G and B as in Eq. (2):

DE– ¼ fG2 B ð2Þ
A similar expression can be written for the barrier of the reverse reaction as a function

of the gap at the product side and the corresponding quantity f : One then distinguishes
between the promotion gaps of the reactants and products, Gr and Gp; and the

corresponding f factors, fr and fp; of the curves that emanate from reactants and products.

A general expression for the barrier as a function of the two promotion gaps and

The valence bond diagram approach: a paradigm for chemical reactivity 639

References pp. 665–668



the endo- or exo-thermicity of the reaction can be derived by making some simplifying

algebraic approximations in the derivation of the height of the crossing point from two

general curves [11,13,14]. One such simplified expression [24] is given in Eq. (3), which

retains DErp effects up to first order.

DE– ¼ f0G0 þ 0:5DErp 2 B; f0 ¼ 0:5ðfr þ fpÞ; G0 ¼ 0:5ðGr þ GpÞ ð3Þ
Here the first term is ‘an intrinsic factor’ that is determined by the averaged f and G

quantities, the second term accounts for the effect of the reaction thermodynamics, and

the third term is the resonance energy of the transition state, due to the VB mixing

(avoided crossing).

The barrier expressions, Eqs. (2) and (3), describe the interplay of three effects. The

intrinsic factor f0G0 describes the energy cost due to unpairing of bonding electrons, so

that new bonds can be made, the DErp factor accounts for the rate–equilibrium effect

[13,14], while B involves information about the preferred stereochemistry of the reaction.

23.3.1 Bridges, causes, and causality: a VBSCD perspective

Fig. 23.2 articulates the model via Eq. (2), using four cartoons of intersecting curves,

which outline the impact of the key factors on the barrier. Clearly, the VB diagram

constitutes a unified and general structure–reactivity model that can in principle be

applied to any reaction. Furthermore, Fig. 23.2 and Eq. (3) project the bridges between

the VBSCD and other conceptual tools. Thus, as seen in the framed statements

at the bottom of Fig. 23.2, the VBSCD incorporates rate–equilibrium effects, and

thereby makes a connection to classical physical organic chemistry [1]. In addition,

E

r p r p r p

Gr Gp

2

1

ƒ2 > ƒ1

1
2

DEc DErp

DEc(1) < DEc(2) B1 < B2

intrinsic
factor

excited state
effects

rate-equilibrium
factor

ground state
effects

TS resonance energy
factor

electronic structure and
TS stereochemistry effects

E E

∆E≠ = ƒ0G0 + 0.5 ∆Erp--B

B1 B2

r p

1

2

E G1 G2

G1 > G2

Fig. 23.2. Schematic illustrations of the VBSCD factors and their effects on the variation of the barrier height.
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the VBSCD makes a connection to the Marcus equation [1,3] that analyzes the barrier

in terms of an intrinsic barrier, DE–
0 ; and a thermodynamic attenuation factor, Eq. (4):

DE– ¼ DE–
0 þ 0:5DErp þ ðDErpÞ2=16DE–

0 ð4Þ
The intrinsic barrier in the Marcus equation plays an important role, but is essentially

unknown and has either to be determined by averaging the barriers of pairs of identity

reactions (when the reaction series possesses identity processes), or by assuming that it is

a constant in a series. The VBSCD gives an explicit expression of the intrinsic barrier in

Eq. (5):

DE–
0 ¼ f0G0 2 B ð5Þ

The first term, i.e. f0G0; accounts for the deformation energy cost of undoing the electron
pairing of the ‘active’ pairs in the reactants and newly re-pairing them as in the products.

The second term is the resonance energy of the transition state, i.e. B:
Another bridge in the VBSCD is to orbital symmetry effects [6] and to frontier orbital

theory [36]. The effect of orbital symmetry and frontier orbitals is implicit in the

expression for B: It is the factor B that makes distinction between ‘allowed’ and

‘forbidden’ reactions, and determines the preferred trajectory of the reaction, thereby

forming bridges between the VB diagram and MO-derived concepts of reactivity. This

has been elaborated amply in previous reviews of the field [7,11,13,14,28], and a brief

discussion, by way of an example, is given later.

As may be gleaned from Eq. (3) and Fig. 23.2, reactivity depends on a number of

physical parameters, and is hence a multidimensional ‘space’. One would have hoped

that the key physical parameters are entirely unrelated, so that a correlation with one of

the variables would have had a physical significance. Such a physical significance is

attached in classical physical organic chemistry to the Brønsted parameters, a or b;
which are derived from the correlation of the barrier with the reaction driving force,

DErp [13]. Within the BEP principle, and the Hammond postulate, these Brønsted

parameters signify the ‘location of the transition state’ along the reaction coordinate

between reactants and products [13,37,38]. However, chemistry does not make life so

easy, and usually in any reaction series the parameters change simultaneously and

often have significant interdependence [13,37]. Thus, a correlation of the rate constant

with a given quantity does not necessary establish causality (a cause and effect

relationship).

Fig. 23.3 shows schematically the two different cases. Fig. 23.3a shows an idealized

situation where the only change in a reaction series is caused by stabilizing the product

(see DðDErpÞ); the promotion gap, G, and hence also the intrinsic barrier, are constants

in the series. In such a case, the changes in the height of the crossing point along the series

are controlled only by the change in the reaction driving force, and the Brønsted

parameter can be attached with a meaning of a progress parameter, giving the ‘location’

of the transition state between reactants and products. In such an idealized series, the

barriers will decrease and the transition states will become progressively ‘earlier’ as the

reaction becomes more exothermic. But in such an ideal series the Brønsted parameter

will also change and converge to zero at the limit of the series [1,13,14]. In such a rare
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case, one can establish causality, namely, the change of DErp is the cause of the change in
the barrier and in the structure of the transition states. However, the more common

situation is shown in Fig. 23.3b, where it is shown that the change of DErp; ðDðDErpÞÞ; is
caused by the change of the promotion gap ðDðGÞÞ: In such a case, the Brønsted parameter
does not indicate the progress of the transition state. The correlation of the barriers with

the DErp quantity is simply a correlation with the promotion gap, G; which is the true
cause of the barrier. Thus, it must be recognized that in any event, the meaningful

causality in structure–reactivity correlations is between the barrier and its originating

quantity, the promotion energy, G:
Having clarified the nature of possible structure–reactivity correlations, we can turn to

discuss the application of the VBSCD to chemical reactivity. These can in turn be

quantitative, by means of quantum mechanical calculations, or qualitative whenever one

has knowledge about variations of the quantities in a series of reactions.

23.3.2 Comments on quantitative applications of VBSCDs

A quantitative application of the diagram requires calculations of both the quantities DEc
and B or of the f ; G; and B trio. The following comments may be useful in this sense.

The height of the crossing point incorporates effects of bond deformations (bond

stretching, angular changes, etc.) in the reactants and non-bonded repulsions between

them at the geometry corresponding to the crossing point of the lowest energy, on the

seam of crossing between the two state curves (Fig. 23.1a). This, in turn, can be computed

by means of ab initio calculations, e.g. straightforwardly by use of a VB method

[15,22–24,39]. Among the currently available modern ab initio VB codes [40], the

breathing orbital VB (BOVB) and VB configuration interaction (VBCI) methods have

been specifically devised to provide reliable energetics for diabatic as well as adiabatic

quantities, by including dynamic correlation effects. The BOVB [41] method expresses

the wave function as linear combination of a minimal set of VB structures, precisely as

done during the VBSCD construction. The wave function is determined in the usual

r p

E

r p

ED(DEc)
D(DEc)

D(DErp) D(DErp)

D(G)

D(DEc) = α D(DErp) D(DEc) = D(G) = α D(DErp)

(a) (b)

Fig. 23.3. Schematic illustrations of the effect of changing the relative energy of reactants and products,

DðDErpÞ; in a reaction series: (a) Only DErp changes in the series, G is a constant in the series. (b) DErp changes

as a result of a change of G: Only in part (a) the Brønsted parameter ðaÞ is meaningful as a ‘progress parameter’.
In any event, the cause of the barrier is G:
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variational procedure by optimizing the structural coefficients and the orbitals of the

structures. However, during the orbital optimization, each of the VB structures is allowed

to possess its specific set of orbitals, different from one VB structure to the other. This

improvement relative to classical VB methods allows some dynamic electron correlation

to be taken into account, a necessary condition for an accurate energetic performance.

The VBCI method [42] is similar in spirit to BOVB. It starts from a minimal set of VB

structures, built with a common set of orbitals (obtained by VBSCF [40b]), and improves

the wave function by subsequent configuration interaction, truncated at any desired level,

involving excitations from the fundamental VB structures to virtual orbitals. To preserve

the unambiguous interpretability of the final wave function in terms of VB structures, the

virtual orbitals, generated by use of a projector, are kept strictly localized on the same

atom as the corresponding occupied orbital of the reference fundamental VB structure.

Like BOVB, VBCI also accounts for dynamic electron correlation. Both BOVB and

VBCI method have been shown to provide bonding energies and reaction barriers with an

accuracy comparable to the best MO–CI method, like CCSD(T) [40–43].

Alternatively, the height of the crossing point can be calculated with any MO-based

method, by determining the energy of the reactant wave function at zero iteration (see

Appendix 23A), by constrained optimization of block-localized wavefunctions [44], or

by an energy decomposition scheme of the Morokuma-analysis type [45]. Lastly, the

height of the crossing point can be computed by means of molecular mechanical methods

[46], or related empirical VB calculations [47,48].

Except for VB theory that calculates B explicitly, in all other methods this quantity is

obtained as the difference between the energy of transition state and the computed height

of the crossing point. In a few cases it is possible to use analytical formulas to derive

expressions for the parameters f and B [7,11,23,49].

As we shall see later, it is straightforward to compute the gap factor, G; for any kind of
process, by simply defining the dependence of the nature of the promoted states Rp and Pp

on the reaction type. Thus, in principle, the VBSCD is computable at any desired

accuracy, and a recent application to the identity exchange reaction H þ H2 demonstrates

that one can obtain barriers with experimental quality using VB theory itself [50].

23.3.3 Comments on and some qualitative applications of VBSCDs

The purpose of this section is to teach an effective way for using the diagrams in a

qualitative manner. The simplest way starts with the G parameter, which is the origin of

the barrier, since it serves as a promotion energy needed to undo the electron pairing of

the bonds of the reactants and pair the electrons in the mode required by the products. In

certain families of related reactions the curvatures of the diabatic curves (the parameter f)

and the avoided crossing resonance energy (the parameter B) can be assumed as quasi-

constant quantities, while in other reaction series f and B vary in the same manner asG: In
such cases, the parameter G is the crucial quantity that governs the changes of reaction

barriers in the series: the larger the gapG; the larger the barrier. Let us proceed with a few
applications of this type.
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23.3.3.1 Radical exchange reactions

Fig. 23.4 describes the VB correlation diagram for a reaction which involves cleavage of

a bond A–Y by a radical Xz (X, A, Y ¼ any atom or molecular fragment):

Xz þ A–Y! X–Aþ Yz ð6Þ
As long as A–Y and X–Y are polar-covalent bonds, we can focus on the covalent parts of

the wave function, denoted also as the Heitler–London wave function, called so after the

names of the originators of this wave function [51]. Designating the active orbitals of the

fragments X, A, and Y, respectively, as x; a and y; the wave functions of R is given in

Eq. (7a), without the normalization constant. This equation describes Xz and the A–Y

bond. The wave function for Rp is given in Eq. (7b):

cðRÞ ¼ lxa
yl2 lx
ayl ð7aÞ
cðRpÞ ¼ lx
ayl2 l
xayl ð7bÞ

Since Rp is just the VB image of the product in the geometry of the reactants, this excited

state displays a covalent bond coupling between the infinitely separated fragments X and

A, and an uncoupled fragment Yz in the vicinity of A. It is seen, from Eq. (7b), that the

electrons in a and y; which are not coupled to a singlet, have a dominant triplet

relationship. In one determinant, the right-hand side one in Eq. (7b), they are pure triplet

and in the left-hand side one, they are neither singlet nor triplet, but an average of both

spin-pairing patterns. Using the rules of qualitative VB theory (neglecting overlap in the

normalization constant) [28,52], the energy of Rp relative to the separated X, A, Y

fragments is repulsive by the quantity 2baySay; where b is the resonance integral and S

the overlap between the active orbitals a and y: On the other hand, the energy of R is just
the bonding energy of the A–Y fragment, i.e. 2baySay: Thus the energy gap G for any

radical exchange reaction of the type in Eq. (6) is 23baySay; which is just three quarters

G

X•↑ + (A•–•Y) (X•–•A) + ↑•Y

•YX• (X•↑ A•)(•A ↑•Y)

X ..//..A-Y X-A..//..YX--A--Y
Reaction Coordinate

R P

R* P*

Fig. 23.4. The state correlation in the VBSCD that describes a radical exchange reaction. Avoided crossing as in

Fig. 23.1a will generate the final adiabatic profile. The lines connecting dots signify that the two electrons (dots)

are singlet-paired (adapted from Ref. [52] with permission of Wiley, q2004).
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of the singlet–triplet gap DEST of the A–Y bond [28,52], namely,

G < 0:75DESTðA–YÞ ð8Þ
The state Rp in Eq. (7b) keeps strictly the wavefunction of the product P, and is hence a

quasi-spectroscopic state. Since this Rp has a finite overlap with R, the pair of states, R

and Rp, can be mutually orthogonalized by, for example, a Graham–Schmidt procedure.

Doing so, the excited state Rp becomes a pure spectroscopic state in which the A–Y

moiety is in a triplet state and is coupled to Xz to yield a doublet state. In such an event,

one could simply use, instead of Eq. (8), the gap Gspect in Eq. (9) that is simply the

singlet–triplet energy gap of the A–Y bond:

Gspect ¼ DESTðA–YÞ ð9Þ
Each formulation of the state Rp has its own advantages [45,53,54]: for computational

purposes, the formulation in terms of the quasi spectroscopic state (Eqs. (7b) and (8)) is

exceedingly more convenient, because one can use the variational procedure to calculate

all the diabatic curve straightforwardly [22–24,50]. On the other hand, using a

spectroscopic state (Eq. (9)) appears more elegant in terms of a ‘physical’ state-to-state

correlation. What is essential for the moment is that both formulations use a gap that is

either the singlet-to-triplet excitation of the bond that is broken during the reaction, or the

same quantity scaled by approximately a constant 0.75.

As an application, let us consider a typical class of radical exchange reactions, the

hydrogen abstractions from alkanes. Eq. (10) describes the identity process of hydrogen

abstraction by an alkyl radical:

Rz þ H–R! R–Hþ Rz ð10Þ
Identity reactions proceed without a thermodynamic driving force, and project, therefore,

the role of promotion energy as the origin of the barrier, what we referred to above as the

‘intrinsic factor’ (see Fig. 23.2).

The barriers for a series of radicals have been computed by Yamataka and Nagase

[55a], and were found to increase as the R–H bond energy D increases; the barrier is the

largest for RyCH3 and the smallest for RyC(CH3)3. This relationship seems puzzling,

since at first glance it suggests that only the bond that is broken matters despite the fact

that the transition state has symmetric R· · ·H· · ·R structure, such that the bond that is

made is identical to the one that is broken. The correlation of the barrier has been

interpreted by Pross et al. [55b] using the VBSCD model. The promotion gap G that

originates the barrier (Eqs. (2), (8), and (9)) involves the singlet–triplet excitation of the

R–H bond. Now, according to qualitative VB theory [22,28,49,52], this singlet–triplet

gap is proportional to the bonding energy of the R–H bond, i.e. DEST < 2D: Therefore,
the correlation of the barrier with the bond strength is equivalent to a correlation with the

singlet–triplet promotion energy (Eq. (9)), a correlation that reflects the electronic

reorganization that is required during the reaction. In fact, the barriers calculated by Pross

et al. [55] were shown [23] to fit the barrier equation (Eq. (2)), as follows in Eq. (11):

DE– ¼ 0:3481G2 50 kcal=mol; G ¼ 2DRH ð11Þ
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which indicates that this is a ‘reaction family’ with constant f ¼ 0:3481 and B ¼
50 kcal/mol.

Recently, ab initio VB computations demonstrated that the DEST quantity [23,43] is

the factor that organizes the trends for the barriers for the hydrogen exchange identity

reaction, Rz þ R0H! RH þ zR0 (R ¼ R0), when R varies down the column of the

Periodic Table, i.e. R ¼ CH3, SiH3, GeH3, and PbH3. Thus, in this series, the

barriers decrease down the column since the DEST quantity decreases. In this series

too, the corresponding bond energies correlate usually with the DEST quantity, and

therefore, the barriers correlate with the bond energies. Nevertheless, it must be kept

in mind that the correlation with the bond energy disguises a physically meaningful

correlation with the DEST quantity, the real cause of the barrier.

Reaction series where reactivity obeys the promotion energy gap abound [7,11], and a

few more examples are discussed below.

23.3.3.2 Electrocyclic and transition metal catalyzed bond activation reactions

Once the meaning of the promoted excited state, Rp, is assimilated, one can construct the

VBSCD without doing any calculations, and then proceed to make predictions based on

the variation ofG: Some examples of electrocyclic reactions (which involve breaking and
making of more than one bond) are shown in Figs. 23.5 and 23.6. In Fig. 23.5a we show a

Woodward–Hoffmann ‘forbidden reaction’, while in Fig. 23.5b an ‘allowed’ Diels–

Alder reaction. In Fig. 23.6a and b we show bond activation processes: a carbene (and its

heavier analogs) insertion reaction in a C–H bond and an oxidative addition of d10-PtL2
or d10-PdL2 complexes to a C–X bond; the latter is a key step in catalytic cycle of, e.g.

the Heck reaction and Suzuki coupling [56]. In all the four examples, the promoted state

involves undoing the pairing of the electron pairs of the ground state into triplet pairs, and

coupling the electrons to covalent bonds across the new linkages that will become the

bonds in the product. This description is invariant to the details of the trajectory (reaction

coordinate) or reaction mechanism (concerted or stepwise), since the state correlation is

defined solely by the nature of reactants and products.
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Fig. 23.5. The state correlations in VBSCDs that describe the ‘forbidden’ 2 þ 2 cycloaddition (a), and the

‘allowed’ Diels–Alder reaction (b). Avoided crossing as in Fig. 23.1a will generate the final adiabatic profiles.
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Consider first a series of Woodward–Hoffmann forbidden 2 þ 2 dimerizations, as in

Fig. 23.5a, where the promotion gap is proportional to the sum of the DESTðpppÞ
quantities of the two p-bonds. If reactivity changes are controlled primarily by changes
in the promotion energy gap, G; it is expected that the dimerization barrier will

decrease as the singlet–triplet excitation energies get lower. Indeed, the barrier

decreases from 42.2 kcal/mol for the dimerization of ethylene where
P
DESTðpppÞ is

large (ca. 200 kcal/mol) down to less than 10 kcal/mol for the dimerization of disilene

for which
P
DESTðpppÞ is small (ca. 80 kcal/mol) [11]. A similar trend occurs for

Woodward–Hoffmann allowed reactions (4 þ 2 or 2 þ 2 þ 2), where G is given byP
DESTðpppÞ: Here, there is a high barrier of 62 kcal/mol for the trimerization of

acetylene, where
P
DESTðpppÞ is very large (ca. 297 kcal/mol). The barrier gets

lowered to 22 kcal/mol for the Diels–Alder reaction where
P
DESTðpppÞ is

comparatively much smaller (ca. 173 kcal/mol). Thus, with differences of 120 kcal/

mol in G; an f factor of 0.3 (as quantified recently for radical reaction [22–24]) lowers

the barrier by 40 kcal/mol.

Consider now the bond activation reactions in Fig. 23.6a and b; in both cases, the

insertion into the bond, C–H or C–X, requires singlet–triplet unpairing on the two

reactants. These reactions have been treated extensively by Su et al. [57–59] using the

VBSCD model. In all cases, an excellent correlation was obtained between the computed

barriers of the reaction and the DEST quantity, including the relative reactivity of carbene
and its heavier analogs, and of PtL2 vs. PdL2 [57–59]. A similar treatment led to the same

reactivity patterns for C–F bond activation reactions by trans-Rh(PR3)2X and trans-

Ir(PR3)2X d8-complexes [58].

23.3.3.3 Reactions between nucleophiles and electrophiles

Fig. 23.7 illustrates the VB correlation diagram for a reaction between a nucleophile and

an electrophile, Eq. (12):

X :2 þA–Y! X–Aþ Y :2 ð12Þ

G = DEST(L2M) + DEST(CH)

L2M

L2M

L2M+

+ L2M

C

H

C

H

C

H

C

H
M = C, Si, Ge, Sn,

G = DEST(L2Pt) + DEST(CX)

L2Pt

L2Pt

L2Pt+

+ L2M

C

X

C

X

C

X

C

X

(a) (b)

Fig. 23.6. The state correlations in VBSCDs that describe the insertion of a carbene-type reagent into a C–H

bond (a), and the oxidative addition of a platinum complex into a C–X bond (b). Avoided crossing as in

Fig. 23.1a will generate the final adiabatic profiles.
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The equation represents a typical SN2 reaction where the nucleophile, X:
2, shifts an

electron to the A–Y electrophile, forms a new X–A bond, while the leaving group Y

departs with the negative charge.

Let us now examine the nature of the Rp excited state for this process. In this state, the

fragments A and Y are spatially close together (exactly as in the ground state R) and

separated from X by a long distance. The X fragment, which is neutral in the product P,

must remain so in Rp, and therefore, carries a single active electron. The electron that is

lost from X:2 is located on the A–Y moiety, so that the Rp state is the result of a

charge transfer from the nucleophile to the electrophile, and is depicted as Xz/(A[Y)2,

where the (A[Y)2 species shares 3-electrons in the active orbitals of A and Y. It follows

that the promotion from R to Rp is made of two events: an electron detachment from the

nucleophile, e.g. X:2, and an electron attachment to the electrophile, e.g. A–Y.

The promotion energy G is, therefore, the difference between the vertical ionization

potential of the nucleophile, IpX:; and the vertical electron affinity of the electrophile,
Ap
A–Y; given by Eq. (13)

G ¼ IpX: 2 Ap
A–Y ð13Þ

where the asterisk denotes a vertical quantity with respect to molecular as well as solvent

configurations [13,14,31,60,61]. Precisely symmetric arguments exist for the reverse

reaction, where the promotion gap is given byG ¼ IpY: 2 Ap
A–X: Thus, the mechanism of a

nucleophilic substitution may be viewed as an electron transfer from the nucleophile to

the electrophile, and a coupling of the supplementary electron of the electrophile to the

remaining electron of the nucleophile.

G

X:− + (A•–•Y) (X•–•A) + :Y−

•YX• (A∴Y)− (X∴A)−

X ..//..A-Y X-A..//..YX--A--Y

Reaction Coordinate

R P

R* P*

Fig. 23.7. The state correlation in the VBSCD that describes a nucleophilic substitution reaction (SN2). Avoided

crossing as in Fig. 23.1a will generate the final adiabatic profile (adapted from Ref. [52] with permission of

Wiley, q2004).
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A monograph and many reviews were dedicated to discussion of SN2 reactivity based

on the VBSCD model [1,11,13,14,31]. One key feature that emerged from these

treatments was the insight into variations of f : Thus, whether or not the two odd electrons
in the Rp state are easily accessible to couple to a bond determines the size of the factor f ;

the easier the bond coupling along the reaction coordinate, in Fig. 23.7, the smaller the f

and vice versa (see also Fig. 23.2b). For example, in delocalized nucleophiles (e.g.

acetate, phenyl thiolate, etc.), the active electron is not 100% located on the atom that is

going to be eventually linked to the fragment A in the reaction in Eq. (12). So the diabatic

curve will slowly descend from Rp toward P and one may expect a large f factor. On the

other hand, localized nucleophiles will correspond to smaller f factors. Of course the same

distinction can be made between localized and delocalized electrophiles, leading to the

same prediction regarding the magnitude of f :
In general, all reactions between closed-shell electrophiles and nucleophiles are

describable by the same diagram type [11] with Rp and Pp states, which are vertical

charge transfer states that involve an electron transfer from the nucleophile to the

electrophile, while coupling the single electron on the oxidized nucleophile to that on the

reduced electrophile to form a bond-pair. One of the many examples is the nucleophilic

assisted cleavage of an ester where the rate-determining step [62,63] is the formation of a

tetrahedral intermediate, as depicted in Fig. 23.8.

The promotion energy for the rate-determining step is then, the difference between

the vertical ionization potential of the nucleophile and the electron attachment energy of

the carbonyl group. The latter quantity is a constant for a given ester, and therefore, the

correlation of barriers with the promotion energy becomes a correlation with the

vertical ionization energy of the nucleophiles. Fig. 23.9 shows the correlation for

the nucleophilic cleavage of a specific ester based on the VBSCD analysis of Buncel

et al. [64]. It is seen that the free energies of activation correlate with the vertical

ionization energies of the nucleophile in the reaction solvent. Furthermore, localized

and delocalized nucleophiles generate correlation lines of different slopes. The two

correlation lines obtained for the experimental data in Fig. 23.9 are readily understood

based on Eq. (14)

DG– ¼ f ðIpX: 2 Ap
CyOÞ2 B ð14Þ

+ C O C O
_

X_

_
)*

G = I
X
*

: - Ac
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= O

(X

C O
_

C O

X

X

Fig. 23.8. The ground and vertical charge transfer states, of the reactants, in the VBSCD that describes a

nucleophilic attack on a carbonyl group (adapted from Ref. [11] with permission of Wiley-VCH STM-

Copyright and Licenses).
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as corresponding to different f values, where the localized nucleophiles possess the smaller

f value and hence a smaller slope in comparison with the delocalized nucleophiles. The

dependence of the f factor on delocalization properties of the promoted states in the

diagram has been demonstrated also for radical addition reactions [45,54].

23.3.4 Making stereochemical predictions with the VBSCD model

Making stereochemical predictions is easy using VB wave function based on fragment

orbitals (FOs) rather than atomic orbitals, hence FO–VB configurations [5,11,28].

To illustrate the manner by which this can be practiced, let us take a simple example with

well-known stereochemistry, the nucleophilic substitution reaction, Eq. (12). The

corresponding Rp state is depicted in Fig. 23.10 in its FO–VB formulation, where the

nucleophile appears here in its one-electron reduced form Xz, with a single electron in fX;
while the substrate has an extra electron in its sp

AY orbital. The two single electrons are

coupled into a fX –s
p
AY bond-pair, as indicated by the line connecting these FOs.

The Rp state correlates to product, X–A/:Y2 (A ¼ L3C), since it contains a fX –s
p
AY

bond-pair that becomes the X–A bond, and at the same time the occupancy of the sp
CY

orbital causes the cleavage of the C–Y bond to release the :Y2 anion. Furthermore, the

Rp state contains information about the stereochemical pathway. Since the bond-pair

involves a fX –s
p
AY overlap, due to the nodal properties of the s

p
AY orbital the bond-pair

will be optimized when the Xz is coupled to the substrate in a collinear X–A–Y fashion.

Thus, the steepest descent of the Rp state, and the lowest crossing point will occur along a

backside trajectory of the nucleophile toward the substrate.

Fig. 23.9. A plot of the free energy barriers for nucleophilic cleavage of an ester vs. the vertical ionization

potential of the nucleophile (adapted from Ref. [11] with permission of Wiley-VCH STM-Copyright and

Licenses).
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If we assume that the charge transfer state remains the leading configuration of Rp

near the crossing point, then the matrix element between R and Rp will dominate the size

of the resonance energy B; and will enable making predictions about B: In fact, as argued
before, generally, the other configurations simply optimize the mixing of the two leading

configurations [5,28]. Since these two VB configurations differ by the occupancy of one

spin orbital (fX in R is replaced by sp
AY in R

p) then following the qualitative rules for

matrix elements [11,28], the resonance energy of the transition state (TS) will be

proportional to the overlap of these orbitals, i.e.

B/ kfXlsp
CYl ð15Þ

It follows, therefore, that in a backside trajectory, we obtain both the lowest crossing

point as well as the largest TS resonance energy. Computationally the backside barrier is

smaller by ca. 10–20 kcal/mol compared with a front-side attack [65]. Eq. (15)

constitutes an orbital selection rule for an SN2 reaction. Working out this somewhat

trivial prediction is nevertheless necessary since it constitutes a prototypical example for

deriving orbital selection rules in other reactions, using FO–VB configurations [11].

Thus, the intrinsic bonding features of Rp provide information about the reaction

trajectory, while the kRlRpl overlap provides information about the geometric

dependence of the resonance energy, B; of the TS.
Using this approach, it is possible to derive orbital selection rules for cases that are

ambiguous in qualitative MO theory [11]. For example, for radical cleavage of s-bonds,
using the Rp with a triplet s1sp1 configuration on the substrate leads to the prediction that
the course of the reaction and the resonance interaction in the transition state will be

determined by the product of overlaps between the orbital of the attacking radical, fR;
and the s and sp orbitals of the substrate, namely, kfRlslkfRlspl: This product is
optimized once again in a backside attack, and therefore, one can predict that radical

cleavage of s-bonds will proceed with inversion of configuration. All known

experimental data [66–71] conform to this prediction. Another area where successful

predictions have been made involves nucleophilic attacks on radical cations. Here using

X• (A∴Y)−;A = CL3X:− (A Y);A = CL3

φXφX

σ∗AY

σAY σAY

R-ground state R*-excited state

Fig. 23.10. The ground (R) and charge transfer (Rp) states in the VBSCD of SN2 reactions using the FO–VB

representation. The line connecting the orbitals fX and sAY
p in the Rp state represents a bond-pair that will

become the new X–A bond in the products (adapted from Ref. [52] with permission of Wiley, q2004).
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the corresponding R and Rp states [72], it was predicted that stereoselectivity and

regioselectivity of nucleophilic attack should be controlled by the LUMO of the radical

cation. Both regioselectivity and stereospecificity predictions were verified by

experiment [73,74] and computational means [65].

Finally, using VB–FO representations of R and Rp for an electrocyclic reaction

(Fig. 23.5), the B factor for an electrocylic reaction is simply proportional to the product

of the HOMO–LUMO overlaps for the two reactants [11]. As such, the following

relationship holds for the ‘allowed’ vs. the ‘forbidden’ pathways:

B ð‘allowed’Þ . B ð‘forbidden’Þ ð16Þ
Thus, as we stated above by reference to Fig. 23.2, the resonance energy of the transition

state holds the stereochemical information of the reaction. For a more in depth discussion

the reader may consult the most recent review of the VBSCD model [11].

23.4 VALENCE BOND CONFIGURATION MIXING DIAGRAMS

The VBCMD is an alternative and a complementary diagram to the VBSCD [7,8–11,13,

14], typified by more than two curves as shown above in Fig. 23.1b. A few examples are

discussed below, while a more in-depth description can be found in a recent review [11].

23.4.1 General features of the VBCMD

Fig. 23.1b, above, shows the generic VBCMD that features two fundamental curves,

labeled as Fr and Fp; and an intermediate curve denoted by Fint: In those situations
where the intermediate curve lies higher than the crossing point of the fundamental

curves, the VB mixing will be prone to generate a single transition state that has a mixed

character of the fundamental and intermediate VB structures [13]. However, the diagram

in Fig. 23.1b describes a situation where the intermediate curve, being significantly more

stable than the crossing point of the fundamentals will generate, though not always [16]

an intermediate state in a stepwise mechanism. This intermediate structure provides a

low-energy pathway that mediates the transformation of R to P ðFr !FpÞ: There are two
types of intermediate curves: (i) the intermediate curve is an ionic structure, and (ii) the

intermediate curve is a third state that differs from the R–Rp and P–Pp state curves.

23.4.2 VBCMD with ionic intermediate curves

Any two-state VBSCD can be transformed into a VBCMD where the Heitler–London

(HL) and ionic VB structures are plotted explicitly as independent curves, instead of

being combined into state curves [11]. As a rule, ionic structures, which are the secondary

VB configurations of polar-covalent bonds, lie above the covalent Heitler–London (HL)

structures at the reactant and product geometries, and generally they cross the two HL

structures above their own crossing point. In many cases, the ionic curve is low enough in
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energy in the hypercoordinated geometry near the transition state, so that solvation can

further stabilize the ionic situation and cause it to cross the HL-curves significantly below

their own crossing point; in such an event a stepwise mechanism mediated by an ionic

intermediate will transpire (e.g. SN1 mechanism in the reactants of Eq. (12), etc.). The

following examples serve to illustrate the impact of ionic VB structures on the reactivity

of covalent bonds.

23.4.2.1 Proton transfer processes

The small size of Hþ enables very tight ion-pair geometries with large electrostatic

energies. Consequently, the triple ionic structure X:2Hþ:X2 in a proton transfer process

will usually possess a deep energy minimum [75]. In some instances it may become the

dominant VB structure of the reaction and give rise to ‘low-barrier hydrogen bonds’, a

topic that has been associated with controversies in enzyme catalysis [76]. An analysis of

the case of the (FHF)2 anion, which is a stable symmetric hydrogen bond, can illustrate

the importance of the ionic-covalent crossing in this and analogous cases. It should be

emphasized that most other hydrogen bonded dihalide anions are nearly symmetric and

feature double well minima separated by a tiny barrier for the proton transfer [11,75,77].

Fig. 23.11a depicts the HL and ionic structures for a proton transfer process between

bases, X:2 which have moderate or low stability as anions (e.g. carbanions with

significant pKa). In such a case, the ionic structure lies above the HL state (the mixture of

the two HL structures), and the avoided crossing leads generally to a single transition state

separating the hydrogen bonded clusters. Nevertheless, the ionic structure is seen to have a

deep minimum near the crossing point of the HL curves, and as such the transition state

will be expected to possess a significant triple ion character. As the anion X:2 gets

increasingly more stable, so will the ionic structure descend more and more in energy and

may dominate the region near the transition state. This is seen in Fig. 23.11b that depicts

the computed [11,75,78] VB configurations for the F2 exchange along the reaction

coordinate, at the BOVB/6-31G* level. At the diagram onset, the ionic structure lies

(a) (b)

E

X—H // X− F—H // F− F− // H—F−(F—H—F)−(X—H—X)− X− // H—X

ΦHL(r)
ΦHL(r)

ΦHL(p)
ΦHL(p)

(X H+ X−)
E

92

83

65

24

0.92Å1.14Å0.92Å

[kcal mol−1]

~~

+169

+104

+45

0

−48

ΦI

ΦI

ΦI

(FHF)−

−

Fig. 23.11. VBCMDs, like Fig. 23.1b, for proton transfer between X2 bases: (a) The X2 base is not very stable

(strong base). (b) The X2 base is F2 (adapted from Ref. [11] with permission of Wiley-VCH STM-Copyright

and Licenses).
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above the HL structure by a moderate energy gap of only ca. 24 kcal/mol. However,

at the symmetric F–H–F geometry, the lowest VB curve is the ionic structure that

undergoes 83 kcal/mol of stabilization relative to its onset at the reactant geometry. The

origins of this remarkable stability of the ionic structure is, as already noted, the small size

of Hþ that leads to short F2Hþ distances at the cluster geometry, of (FHF)2, and thereby
to very large electrostatic stabilization. This electrostatic stability along with its low initial

energy makes the ionic structure the dominant configuration at the cluster geometry.

The short H–F distance is associated with yet another outcome and this is the inception

of very large resonance energy due to the mixing of the resonating HL-state (which by

itself is a resonating mixture of the two HL structures) with the ionic structure. This ionic-

covalent resonance energy is seen to be ca. 90 kcal/mol, which contributes a significant

fraction to the bonding in (FHF)2. Thus, the symmetric hydrogen bonded species is

neither fully ionic nor fully covalent, it is virtually a resonating mixture of the two

structures [11].

The question whether or not the symmetric (FHF)2 species will be a minimum on the

adiabatic (bold) curve, is a question of balance between the difference in electrostatic

stabilization and ionic-covalent resonance energies at the cluster geometry relative to the

reactant and product geometries. It is seen, from Fig. 23.11b, that the ionic-covalent

resonance energy is largest at the reactant/product geometries. It follows, therefore, that

the crucial factor why the symmetric (FHF)2 species is so stable, is the electrostatic

stabilization that lowers the ionic structure well below the onset of the HL structures. It is

this difference that causes the final adiabatic state-profile (in bold) to retain the shape of

the ionic curve, and to exhibit a minimum. The relatively small size of the F2 anion is

also important for the electrostatic stabilization, and we may expect that, as the anion

increases in size (e.g. I2) or becomes delocalized (e.g. aspartate, etc.), the intrinsic

stabilization of the ionic structure at the cluster geometry will decrease, and the

symmetric geometry may cease to be a minimum of the energy profile [11,75].

Finally, the impact of the ionic structure is fleshed out by comparison of (FHF)2 with

the corresponding radical species, (FHF)z. Thus, with one electron less, in the (FHF)z

species, the triple ionic structure is replaced by the F2HþzF structures which loses at least

half of the electrostatic stabilization, and therefore, rises above the HL curves. This loss

has a tremendous impact on the reaction profile, and the .40 kcal/mol energy well of

(FHF)2 becomes an (FHF)z transition state ca. 18 kcal/mol [21,79] above the reactants.

For the same reason, it is expected, therefore, that (XHX)z species will generally be

transition states for the hydrogen abstraction process with a barrier significantly larger

than the corresponding proton transfer process via the (XHX)2 species. Experimental

data show that this is indeed the case [80].

23.4.2.2 Nucleophilic substitution on silicon—stable hypercoordinated species

Another demonstration of the role of ionic structures is the nucleophilic substitution on

Si, which proceeds via pentacoordinated intermediates [81,82], in contrast to the situation

in carbon where the pentacoordinated species is a transition state. Recently, Lauvergnat

et al. [83], Shurki et al. [84], Sini et al. [85], and Shaik et al. [86] have performed

BOVB/6-31G* (and a few other basis sets) calculations for a C–X and Si–X bonds

(X ¼ H, F, Cl) and made an interesting observation that the minimum of the ionic curve
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for SiþX2 is significantly shorter than the corresponding minimum for CþX2. By

contrast, the minima of the HL curves for Si–X were found to be longer than the

corresponding C–X minima. Since X is common for the two bonds, these differences

mean that while the covalent radius of Si is longer than that of C, the opposite is true for

the ionic radii; thus the ionic radius of CH3
þ was determined as 0.64 Å, compared with

0.35 Å for SiH3
þ [83]. It was concluded that the origins of these effective ionic sizes is

the charge distribution of the corresponding ions. In CH3
þ and generally in CL3

þ (L, a

ligand) the charge is distributed over the ligands, while the central carbon possesses a

relatively small positive charge [84]. Consequently, the minimum distance of approach

of an anion X2 toward CL3
þ will be relatively long and the electrostatic energy will be

small. In contrast, in SiL3
þ, the charge is localized on Si [84], and consequently the

minimum distance of approach of an X2 anion will be relatively short and the

electrostatic stabilization large. Indeed, the depth of the ionic curve H3Si
þX2 was

found to exceed the depth of H3C
þX2, by .50 kcal/mol [83,84]. In conclusion,

therefore, the silicenium ion L3Si
þ is expected to behave more like the small proton,

whereas the corresponding carbenium ion CL3
þ will be bulky.

Based on these differences, it is possible to represent the VBCMDs for typical

nucleophilic substitution reactions on Si vs. C as shown in Fig. 23.12a and b. In

Fig. 23.12a, the ionic curve is very stable in the pentacoordinated geometry due to the

electrostatic energy of the triple ion structure, much like the case of the (FHF)2 species

discussed before. Consequently, the pentacoordinated silicon species will generally be a

stable entity, which depending on the energy cost, may or may not mediate the exchange

of the anions. By the same analogy, to the (FHF)2 species, the pentacoordinated silicon

species will be neither ionic nor covalent, but rather a resonating mixture of the two

structures with bonding augmented by significant ionic-covalent resonance.

Fig. 23.12b shows the typical situation for the carbon analog where the ionic structure

is slightly higher in energy, relative to the HL-state at the crossing point. The consequent

VB mixing leads to a single step reaction with a pentacoordinated transition state.

Si

L
Si

L L

ΦHL(p)ΦHL(r)

XX

(a)
C

(b)

ΦHL(p)ΦHL(r)

L
C

L L

X__SiL3 / :XX: / L3Si__X

XX

Reaction Coordinate

E

X: / L3C__X X__CL3 / :X

X

X X

X

R P R P

Reaction Coordinate

E

Fig. 23.12. VBCMDs, like in Fig. 23.1b, for nucleophilic displacements on (a) silicon and (b) carbon (adapted

from Ref. [11] with permission of Wiley-VCH STM-Copyright and Licenses).
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In a solvent, we might expect that in some cases the ionic structure will cross slightly

below the HL-state and give rise to a transient triple-ion intermediate species (or will

proceed by the related SN1 mechanisms). A more stable pentacoordinated carbon may be

envisioned if the reaction is conducted in the presence of a charge template that will

stabilize the ionic (X2L3C
þX2) structure well below the crossing point of the HL

structures. However, even in such an event the pentacoordinated species of carbon will be

significantly different than the corresponding silicon species. Thus, the larger size of the

CL3
þ species will lead to smaller ionic-covalent resonance energy compared with the

silicon analog [83]. Consequently, should a pentacoordinated intermediate of carbon

become stable, it will generally be highly ionic. A study of ion-pair SN2 reactions by

Harder et al. [87] shows that the presence of a single Liþ cation or of an XLi2
þ moiety

makes the transition states virtually ionic (but still not as a stable species). One wonders if

a stable pentacoordinated carbon can be stabilized in a charged template.

23.4.3 VBCMD with intermediates nascent from ‘foreign states’

Every reaction system possesses, in addition to the promoted excited states, Rp and Pp,

which are localized in the active bonds, numerous ‘foreign’ excited states which involve

electronic excitations in orbitals and bonds that do not belong to the active bonds [11,13].

Some of these ‘foreign’ states are high in energy, but some which are of low energy can

become accessible along the reaction coordinate. As already stated, mixing of foreign

states provides means by which complex molecules find low-energy pathways for

otherwise difficult transformations. To elucidate this mechanistic feature of the ‘foreign’

states, we have chosen two novel mechanisms in which the ‘foreign’ state plays a cardinal

role. Others can be found in a recent review [11].

23.4.3.1 The SRN2 and SRN2
c mechanisms

Foreign excited states are capable of creating novel reaction mechanisms. A case in

point is the recent proposition of new nucleophilic substitution mechanisms, shown in

Fig. 23.13. These mechanisms were termed SRN2 and SRN2
c, by Zipse as part of

CH2
C
ClH

H
CH2
C

Cl H
H

CH2

C
Cl H

H

C

C

Cl

Cl

+

+

SRN2
c Intermediate

(α)

(β)
+

β

SRN2
c

SRN2

α

Cl−

Cl−

Cl−

−

Fig. 23.13. The SRN2 and SRN2
c mechanisms in the reactions between Cl2 and b-chloroethyl radical. The SRN2

c

mechanism is stepwise and the structure of the intermediate is shown at the bottom of the figure.
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the strategy he conceived of catalyzing rates of classical reactions by the presence of a

radical centre adjacent to the reaction centers [88–90]. As illustrated in Fig. 23.13, for

the identity reactions of b-chloro ethyl radical, these mechanisms involve a Cl2

exchange via attack on either the b or a positions of the radical. It was found by Zipse

[88] that the SRN2 process occurs in a single step reaction with a transition state which is

very similar to the corresponding SN2 transition state for the Cl
2/ethyl chloride reaction.

At the same time, the SRN2 barrier was shown to be lower by ca. 11 kcal/mol in

comparison with the SN2 barrier. Even more intriguing are the findings by Zipse [89],

triggered by application of the VBCMD model, which revealed that the SRN2
c

mechanism proceeds in fact in a stepwise manner via a C2h intermediate which is ca. 3

kcal/mol lower than the transition state of the SRN2 mechanism. Thus, the adjacent

radical center on the one hand, lowers considerably the barriers for the Cl2 exchange

reaction, and on the other, leads to a novel intermediate species.

Fig. 23.14 shows the VBCMDs for the two mechanisms. In both diagrams there exist

two fundamental curves identical to those of the classical SN2 reaction (Fig. 23.7), and a

low-lying intermediate curve in which the C2H4 moiety is p-bonded. According to the

calculations of Zipse [89], the intermediate curve is low lying relative to the fundamental

curves. It is the mixing of this intermediate structure into the fundamental curves that

accounts for the much lower energetic of the SRN2, and SRN2
c mechanisms in comparison

with SN2.

The difference between the SRN2, and SRN2
c mechanisms is rooted in the relationship

between the intermediate structure and the fundamental curves. The placement of the
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Fig. 23.14. VBCMDs, like in Fig. 23.1b, for the SRN2 and SRN2
c mechanisms. Below the VBCMDs we show

the respective triple-ionic configuration (FTI) that affect the height of the crossing point of the reactant and

product curves (adapted from Ref. [11] with permission of Wiley-VCH STM-Copyright and Licenses). The

three electron bonds in the charge transfer states are indicated here by a combination of a line and a dot.
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intermediate curve, in Fig. 23.14, is based on spin and charge density analysis of Zipse

[88,89]. Thus, the crossing point of the fundamental curves is lower for the SRN2

mechanism, because the triple ion structure (FTI), which mixes into the two principal

curves (drawn below the diagram), in Fig. 23.14, can optimize better the electrostatic

interactions in comparison with the correspondingFTI structure of the SRN2
c mechanism

in Fig. 23.14. This effect is enhanced by the somewhat preferred intrinsic stability of the

intermediate structure in the SRN2
c case (smaller repulsion between negative charges).

Consequently, the crossing point of the fundamental curves for the SRN2 mechanism is

lower than the intermediate state as shown in the left-hand diagram in Fig. 23.14, while

the opposite is true for the SRN2
c mechanism, as shown in right-hand diagram. Indeed,

based on the computed [89] C–C distance in the C2H4 moiety, the charge development

on this moiety, and on the spin density development on the chlorine moieties, it is

apparent that the intermediate state character is more dominant in the SRN2
c mechanism.

Thus, SRN2
c is a stepwise mechanism mediated by a low-energy state due to strong

electronic coupling with the accessory radical centre. It appears then, that a radical

centre adjacent to the reaction centre is a novel strategy to generate low energy pathways

via intermediate states [88,90]. Such a process may transpire in damage mechanisms of

DNA bases [91].

23.5 ADDITIONAL APPLICATIONS OF VB DIAGRAMS

23.5.1 VBSCD: A general model for electronic delocalization

TheVBSCD serves as a model for elucidating trends of electronic delocalization in

isoelectronic series. Consider, for example, the following bond exchange process,

between monovalent atoms. The process passes through an X3
z species in which three

electrons are delocalized over three centers. This species may be a transition state or a

stable cluster.

Xz þ X–X! ½Xz
3	! X–Xþ zX ð17Þ

We can imagine a variety of such species, e.g. X ¼ H, F, Cl, Li, Na, Cu, etc. The

question is: when do we expect the X3
z species to be a transition state for the exchange

process, and when will it be a stable cluster, an intermediate en route to exchange? The

answer to this question comes from the VBSCD model, that describes all these process in

a single diagram where G is given by Eq. (8), i.e. G < 0:75DESTðX–XÞ: Thus, as shown
in Fig. 23.15, a very large triplet promotion energy for X ¼ H (250 kcal/mol) results in an

H3
z transition state, while the small promotion energy for X ¼ Li (32 kcal/mol) results in

a stable Li3
z cluster. The VB computations of Maı̂tre et al. [22] in Fig. 23.15 show that, as

the promotion gap drops drastically, the avoided crossing state changes its status from a

transition state for H3
z to a stable cluster for Li3

z . In fact, this transformation in the nature

of the X3
z species was predicted by a semiquantitative application of the VBSCD barrier

expression [23], using experimental DEST and bond energy data.
The spectacular relationship between the nature of the X3

z species and the promotion

energy shows that the VBSCD is in fact a general and successful model for
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the pseudo-Jahn—Teller effect (PJTE). Note that a qualitative application of PJTE

would predict all the X3
z species to be transition state structures that relax to the distorted

Xz· · ·X–X and X–X· · ·zX entities. By contrast, the VBSCD makes a distinction between

strong binders that form transition states and weak binders that form stable bond-

symmetric intermediate clusters. Thus, the VBSCD model is in tune with the general

observation that as one moves in the Periodic Table from strong binders to weak ones

(e.g. metallic) the stable molecular entity changes from a discrete molecule to an extended

delocalized structure.

The variable nature of the X3
z species in the isoelectronic series forms a general model

for electronic delocalization, enabling one to classify the species either as distortive or as

stable. Using the isoelectronic analogy, one might naturally ask about the isoelectronic

p-species in allyl radical; does it behave by itself like H3
z or like Li3

z ? Moreover, the same

transformation displayed for X3
z in Fig. 23.15 can be shown for X3

þ, X3
2, X4 and X6 species

[29]. Likewise one might wonder about the status of the corresponding isoelectronic p-
components in allyl cation, anion, cyclobutadiene or benzene. These questions were

answered in detail elsewhere and the reader is advised to consult a recent review [29].

23.5.2 VBSCD: The twin-state concept and its link to photochemical reactivity

The pioneering work of van Der Lugt and Oosterhoff [92] and Michl [93] highlighted the

importance of avoided crossing regions as decay channels in photochemistry. Köppel and

coworkers [94,95] showed that conical intersections are the most efficient decay

channels, from excited states to ground states. Indeed, Robb and his coworkers [96,97]

have amply demonstrated this role of conical intersections in organic photochemistry

using ab initio calculations that are now routinely performed with the GAUSSIAN package.

Fig. 23.15. Ab initio computations of VBSCDs for the exchange processes, Xz þ X–X! X–X þ zX, for

X ¼ H and Li (adapted with permission from Ref. [22], q1990, American Chemical Society). The reaction

coordinate is 0:5ðn1 2 n2 þ 1Þ; where n1 and n2 are the X–X bond orders in X–X–X. The computations were

based on a VBCI type method with single excitations, using the 6-31G** basis set for H3 and 6-31G for Li3.
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Bernardi et al. [96] have further shown that VB notions can be useful to rationalize the

location of conical intersections.

As was subsequently argued by Shaik and Reddy [30], the VBSCD is a portable model

for discussing the relation between thermal and photochemical reactions and between the

avoided crossing region and a conical intersection. Thus, the avoided crossing region

of the VBSCD leads to the twin-states C– and Cp (Fig. 23.16); the first corresponds to

the resonant state of the VB configurations and the second to the antibonding, i.e.

antiresonant state [11]. Since the extent of this VB mixing depends on geometry, there

should exist in principle, a specific distortion mode that converts the avoided crossing

region into a conical intersection where the twin-states C– and Cp become degenerate,

and thereby enable the excited reaction complex to decay into the ground state surface.

As such, the conical intersection will usually be anchored at three structures [97]; two of

them are the reactant (R) and product (P1) of the thermal reaction, and the third is the

product (P2) generated by the distortion mode that causes the degeneracy of the twin-

states C– and Cp. The new product would, therefore, be characteristic of the distortion

mode that is required to convert the avoided crossing region into a conical intersection. In

those cases where most of the excited species roll down eventually to the Cp funnel, the

major photoproduct would be P2. If, however, there exist other excited state funnels near

the twin-excited state, Cp, other products will be formed, which are characteristic of

these other excited states and can be predicted in a similar manner provided one knows

the identity of these excited states. Our following description is restricted to the analysis

of the twin-excited states.

An instructive, albeit trivial, example is the hydrogen exchange reaction, Ha 2 Hb þ
Hc ! Ha þ Hb 2 Hc where the thermal transition state has a collinear geometry, Ha 2
Hb 2 Hc. In the linear structure, the ground state C

– is the resonating combination of R

and P, and it constitutes the transition state for the thermal reaction, while the twin-

excited state Cp is the corresponding antiresonant combination that forms the

photochemical funnel:

C– ¼ R2 P;

R ¼ la
bcl2 l
abcl; P ¼ lab
cl2 la
bcl ð18Þ

P
1 P2

QR→P1
QY→P2

E E

P1CI

CI

P2

R

R
Ψ≠ Ψ≠

Ψ* Ψ*

(a) (b) (c)

Fig. 23.16. (a)VBSCD showing the twin-states (C– and Cp) formed by avoided crossing along the reaction

coordinate (QR!P1
) of the thermal reaction leading to product P1. (b) Crossover of the twin-states along a

coordinate that stabilizes the twin-excited state and generates to generate a conical intersection (CI) that leads to

product P2. (c) The conical intersection will be anchored in three minima (or more): reactants (R), P1 and P2
(adapted from Ref. [52] with permission of Wiley, q2004).
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Cp ¼ Rþ P ¼ lab
cl2 l
abcl ð19Þ
where the orbitals a, b and c belong to Ha, Hb and Hc, respectively.

It is clear from Eq. (19) thatCp involves a bonding interaction [28,52] between Ha and

Hc and will be lowered by the bending mode that brings Ha and Hc together. Furthermore,

the expression for the avoided crossing interaction B (Eq. (20)), based on qualitative VB

theory [28], shows that this quantity will shrink to zero in an equilateral triangular

B ¼ kRlHeff lPl ¼ 22babSab 2 2bbcSbc þ 4bacSac ð20Þ
structure where the Ha–Hc, Ha–Hb and Hb–Hc interactions are identical. As such, the

equilateral triangle will define a conical intersection with a doubly degenerate state, in

the crossing point of the VBSCD. This D3h structure will relax to the isosceles triangle

with short Ha–Hc distance that will give rise to a ‘new’ product Hb þ Ha2Hc. The

photocyclization of allyl radical to cyclopropyl radical is precisely analogous. The ground

state of allyl is the resonating combination of the two Kekulé structures, while the twin-

excited state,Cp, is their antiresonant combination with the long bond between the allylic

terminals [28]. As such, rotation of the two allylic terminals will lower Cp, raise

the ground state, and establish a conical intersection that will channel the photoexcited

complex to the cyclopropyl radical, and vice versa. This structural dichotomy of the

resonant and antiresonnt states in the VBSCD accounts for the thermal–photochemical

dichotomy as stated in the Woodward–Hoffmann rules [98], and as amply observed.

The photostimulation of SN2 systems such as X2 þ A 2 Y (A ¼ alkyl) is a nice

example for the utility of the VBSCD. This photoreaction was analyzed before, using

the VBSCD model, for predicting the location of conical intersections [30]. Here, the

transition state for the thermal reaction is the collinear [X–A–Y]2 structure, which is the

C–(A0) resonating combination of the two Lewis structures, while the twin-excited state,
Cp(A00), is their antiresonating combination; the symmetry labels refer to Cs symmetry.

This latter excited state is readily written as an A00 symmetry-adapted combination of
Lewis structures, Eq. (21):

Cp ¼ ðlx
xa
yl2 lx
x
aylÞ2 ðly
yx
al2 ly
y
xalÞ ð21Þ
where the orbitals x, a and y belong to the fragments X, A and Y, respectively.

Rearranging Eq. (21) to Eq. (22) reveals that the two terms of the wave function

involve a stabilizing three-electron bonding interaction between X and Y, of the type

(X:2zY$ Xz:Y2):

Cp ¼ ðl
xx
yalþ l
xy
yalÞ þ ðlx
xy
alþ lx
yy
alÞ ð22Þ
As such, the bending mode that brings the X and Y fragments together destabilizes the

[X–A–Y]2 structure and stabilizes the twin-excited state, until they establish a conical

intersection that correlates down to X[Y2 and Rz, as shown in Fig. 23.17. This analysis is

supported by experimental observation that the irradiation of the I2/CH3I cluster at the

charge transfer band leads to I2
2 and CH3

z , while for or I2/CH3Br such excitation

generates IBr2 and CH3
z [99].

The presence of excited state minima above the thermal transition state is well known

[5,92,93,96,100,101]. The VBSCD model merely characterizes this phenomenon using
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a lucid mechanism of avoided crossing of VB structures; the model is portable and

enables one to make systematic predictions. Other important applications of the twin-

states concern the possibility of probing the twin-excited state that lies directly above the

transition state of a thermal reaction. Thus, any chemical reaction will possess a

transition state, C– and a twin-excited state, Cp [5,101]. For some cases, the twin-

excited state should be stable and hence observable; its geometry is approximately

coincident with the thermal transition state and its electronic state symmetry is identical

to the symmetry of the reaction coordinate of the ground state process [102], namely

GðCpÞ ¼ GðQRCÞ ð23Þ
In addition, the twin-excited state should possess a real and greatly increased frequency

of the reaction coordinate mode. Thus, since the twin-pair has coincident geometry, a

spectroscopic characterization of Cp will provide complementary information on the

transition state C– and will enable resolution of the transition state structure.

As a proof of principle, we show in Fig. 23.18 the twin-states characterized by Zilberg

et al. [102] for the semibullvalene rearrangement. It is seen that the geometries of the two

states are similar, and the twin-excited state possesses B2 symmetry, identical to the

symmetry of the reaction coordinate for the thermal process. Furthermore, the transition

state mode, b2, which is imaginary for C
–(A1) becomes real for C

p(B2) [102]. While

offering a proof of principle, these calculations also match some intriguing experimental

findings of Quast et al. [103]. Thus, Quast [103,104] has designed semibullvalene and

barbaralene derivatives in which the barrier for the rearrangement could be lowered

drastically, to a point where it almost vanishes. He and his coworkers [103,104] found that

these molecules exhibit thermochromism without having a chromophore; they are

colorless at low temperatures but highly colored at 380 K. According to Quast,

the thermochromism is a result of the low-energy transition from the transition state (C–)

CI

E
•

+

m

•

(X ∴ X)_

[(X ∴ X)_]*

CH3

X X

CH3

Q (CI Coordinate)

CH3

Ψ*(A'')

Ψ≠(A')

X X

H HH
C

Fig. 23.17. Generation of a conical intersection (CI) by crossing of the twin-states along the bending distortion

mode, in SN2 systems. Symmetry labels refer to the mirror plane m: The products of these processes are the CH3
z

radical and the X2
z2 radical anion (adapted from Ref. [52] with permission of Wiley, q2004).

Chapter 23662



to the twin excited state (Cp), Fig. 23.18. Thus, since the thermal barrier is low, at elevated

temperatures the transition state becomes thermally populated. Since the C––Cp gap is

small, one observes color due to absorption within the visible region. However, at lower

temperatures, the molecules reside at the bottom of the reactant/product wells, where the

gap between the ground and excited state is large and hence, the absorption is in the UV

region and the color is lost. To quote Quast, “thermochromic… semibullvalene allows the

observation of transition states even with one’s naked eye ” [104]. Of course, identifying

appropriate systems where the twin-excited state is observable is required for the eventual

‘observation’ of the transition states of thermal reactions.

Coherent control [105] is a new powerful method that makes use of the availability of

the twin-excited state to control the course of chemical reactions by laser excitation.

Thus, laser excitation from C– to Cp (Fig. 23.16a), using two different and

complementary photons, causes the decay of Cp to occur in a controlled manner either

to the reactant or products. In the case where the reactants and products are two

enantiomers, the twin-excited state is achiral, and the coherent control approach leads to

chiral resolution [105].

In summary, the twin-excited state plays an important role in photochemistry as well as

in thermal chemistry.

23.6 PROSPECTIVE

Valence bond (VB) theory is a new-old theory. Until the mid-1950s, it has dominated

the mental map of chemists. Then it fell into disrepute, the mental map was recharted,

and the wisdom of VB theory has been written over by other theories [52,106–109].

K1 K2

b2 mode

i544 cm−1, ω(1A1)

1642 cm−1, ω(1B2)

Ψ≠(1A1)

Ψ∗(1B2)

twin

Q(b2)

Fig. 23.18. The twin-states along the b2 reaction coordinate for the semibullvalene rearrangement. When the

thermal barrier is not much higher than the zero point levels of the two isomers, the transition state (C–) region

becomes available thermally. Absorption in the transition state region is in the visible, leading to

thermochromism at elevated temperature (adapted with permission from Ref. [29], Copyright 2001, American

Chemical Society).
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In this sense VB theory is old, though in the field of molecular dynamics it never really

ceased to be applied [110,111]. By the early 1970s and onwards, VB theory has started to

enjoy a renaissance, [52,112] in terms of new methodologies [40] and ideas. There is a

new beginning in many respects, and in this sense VB is a new or renewed theory. This

chapter describes a new-generation VB paradigm [5], so-called the VB diagram model

that is summarized by Fig. 23.1a and b, and can form a basis for a wide-ranging system

of thought about chemical reactivity. Applications of the model are discussed in this

chapter, but many more exist in previous and recent reviews of the topic [7,8–14,28,31].

One of the essential features of the model is that it combines lucidity and relative

simplicity with quantum mechanical rigor. Indeed, the emergence of new VB

methodologies [40] strengthens the model by providing a quantitative description of

VB diagrams, as may be deduced from some recent applications [15–24,39,50].

The model lends itself to articulation of new ideas and new applications. Some

potential applications are mentioned above, e.g. the concept of ‘twin-states’ [5,11,102]

and its applications to photochemistry, etc., the concept of catalysis by spin crossover

[35] and its application to bond activation processes, the application to problems of

electron delocalization [29], and so on. Other articulations of the diagram serve to solve

chemical puzzles, such as the recent applications [53] to dissociation of alkoxyradicals, to

the invention of a new mechanism, SRN2
c and its wide range of applications [88–90,113],

to transition metal catalyzed reactions [57–59], to the concept of entangled mechanisms

[11], and so on. The future acceptance of the VB diagram model as a general reactivity

paradigm depends on such articulations.
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APPENDIX 23A: COMPUTING MONO-DETERMINANT VB WAVE

FUNCTIONS WITH STANDARD AB INITIO PROGRAMS

This technique utilizes a possibility that is offered by most ab initio standard programs to

compute the energy of the guess function even if it is made of non-orthogonal orbitals.

The technique orthogonalizes the orbitals without changing the Slater determinant, then

computes the expectation energy by use of Slater’s rules. In the course of the subsequent

optimization of the Hartree–Fock orbitals, this expectation value of the energy appears as

the energy at iteration zero. If the guess determinant is made of localized bonding orbitals

that typify a given VB structure, then the expectation energy of this wavefunction at

iteration zero defines the energy of this VB structure. Practically, the localized bonding

orbitals that are used to construct the guess determinant can be determined by the most
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convenient means. For example, a Kekulé structure of benzene will display a set of three

two-centered p-bonding MOs that can arise from the Hartree–Fock calculation of an

ethylene molecule [114,115]. In a VBSCD calculation, the energy of the crossing point

will be the energy of a guess function made of the orbitals of the reactants, but in the

geometry of the transition state, without further orbital optimization. The zero-iteration

technique has also been used to estimate the energy of spin-alternated determinants

(quasi-classical state) [53,116–118].
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95 H. Köppel, W. Domcke and L.S. Cederbaum, Adv. Chem. Phys., 57 (1984) 59.

96 F. Bernardi, M. Olivucci and M. Robb, Isr. J. Chem., 33 (1993) 265.

97 M.A. Robb, M. Garavelli, M. Olivucci and F. Bernardi, in: K.B. Lipkowitz, D.B. Boyd (Eds.),

Reviews in computational chemistry, Vol. 15, 2000, pp. 87–146.

98 R.B. Woodward and R. Hoffmann, The conservation of orbital symmetry, Verlag Chemie, Weinheim,

1971.

99 D.M. Cyr, G.A. Bishea, M.G. Scranton and M.A. Johnson, J. Chem. Phys., 97 (1992) 5911.

100 W. Gerhartz, R.D. Poshusta and J. Michl, J. Am. Chem. Soc., 99 (1977) 4263.

101 I.B. Bersuker, Nouv. J. Chim., 4 (1980) 139.

102 S. Zilberg, Y. Haas, D. Danovich and S. Shaik, Angew. Chem. Int. Ed., 37 (1998) 1394.

103 H. Quast, K. Knoll, E.-M. Peters, K. Peters and H.G. von Schnering, Chem. Ber., 126 (1993) 1047.

104 H. Quast and M. Seefelder, Angew. Chem. Int. Ed., 38 (1999) 1064.

105 M. Shapiro and P. Brumer, Adv. At. Mol. Opt. Phys., 42 (2000) 287.

106 S.G. Brush, Stud. Hist. Phil. Sci., 30 (1999) 21.

107 S.G. Brush, Stud. Hist. Phil. Sci., 30 (1999) 263.

108 R. Hoffmann, S. Shaik and P.C. Hiberty, Acc. Chem. Res., 36 (2003) 750.

109 S. Shaik and P.C. Hiberty, Helv. Chem. Acta, 86 (2003) 1063.

110 D.G. Truhlar and R.E. Wyatt, Adv. Chem. Phys., 36 (1977) 141.

111 J.N. Murrell, S. Carter, S.C. Farantos, P. Huxley and A.J.C. Varandas, Molecular potential energy

functions, Wiley, New York, 1984.

112 See, for example in: D.L. Cooper (Ed.), Valence bond theory, Elsevier, Amsterdam, 2002.

113 H. Zipse, Acc. Chem. Res., 32 (1999) 571–578.

The valence bond diagram approach: a paradigm for chemical reactivity 667

References pp. 665–668



114 S.S. Shaik, P.C. Hiberty, J.-M. Lefour and G. Ohanessian, J. Am. Chem. Soc., 109 (1987) 363.

115 H. Kollmar, J. Am. Chem. Soc., 101 (1979) 4832.

116 P.C. Hiberty, D. Danovich, A. Shurki and S. Shaik, J. Am. Chem. Soc., 117 (1995) 7760.

117 J.M. Galbraith, E. Blank, S. Shaik and P.C. Hiberty, Chem. Eur. J., 6 (2000) 2425.

118 W. Wu, D. Danovich, A. Shurki and S. Shaik, J. Phys. Chem. A., 104 (2000) 8744.

Chapter 23668



CHAPTER 24

Progress in the development of

exchange-correlation functionals

Gustavo E. Scuseria and Viktor N. Staroverov

Department of Chemistry, Rice University, Houston, Texas 77005, USA

Abstract

This review provides a comprehensive account of the recent progress in constructing

practical exchange-correlation approximations of Kohn–Sham density functional theory.

The emphasis is on the general techniques of density functional design that have been

particularly successful in quantum chemistry. Nearly all density functionals embraced

nowadays by computational chemists are discussed. Persistent misconceptions about

several widely used functionals are clarified.

24.1 INTRODUCTION

The rise of density functional theory (DFT) to the prominence and popularity it enjoys

today was hardly anticipated by computational chemists 40 or even 30 years ago. As

recently as 1983, when DFT was but a footnote in quantum chemistry textbooks, Robert

Parr was writing a review “to alert the physical chemistry community to the promise and

the charm of the density functional theory of electronic structure of atoms and molecules”

[1]. Two decades later, DFT is a household tool for computing everything from atoms to

biopolymers. How did this extraordinary reversal of fortunes come about?

Electronic structure methods that use the electron density as the basic variable trace

their origin to the Thomas–Fermi [2], Thomas–Fermi–Dirac [3], and related models

[4–7] developed in the early years of quantum mechanics. Many similarities with

the present day DFT can be also found in Gáspár’s exchange potential [8] and Slater’s

Xa-methods [9–11]. By the 1960s, these precursors of DFT were fully developed and

used extensively for the calculations of atoms and solids, but their impact on molecular

quantum chemistry remained insignificant. The Thomas–Fermi and Thomas–Fermi–

Dirac models proved to be of little use in chemistry because they can never yield a lower

q 2005 Elsevier B.V. All rights reserved.
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total energy for a molecule than for separated atoms (the ‘no bonding theorem’) [12–14].

The experience of quantum chemists with other DFT prototypes was not so discouraging,

but the accuracy of those approximations could not match the accuracy of the

increasingly sophisticated wave function techniques.

Certain skepticism toward the budding DFT existed also on theoretical grounds. It

seemed improbable that a quantitative theory based solely on the electron density could

be exact for anything other than model systems like the free-electron gas, simply because

the density appears to contain not enough information about electron-electron

interactions. The two-electron reduced density matrix was deemed the simplest

mathematical object necessary to describe a many-electron system with Coulombic

interactions. It was not until 1964 that Hohenberg and Kohn put these doubts to rest by

proving their now famous theorem [15]. The Hohenberg–Kohn paper contains two

fundamental results: (i) the ground-state electron density uniquely determines the

Hamiltonian and, therefore, the ground-state electronic wave function (or a family of

degenerate ground-state wave functions [16]) and all properties of the system; (ii) the

true density functional for the electronic energy assumes its minimum for the correct

ground-state density. These propositions effectively reduce the problem of solving the

many-body Schrödinger equation to the problem of minimizing a density functional. This

idea can be put to work in various ways, of which the approach of Kohn and Sham [17]

has been embraced more often than others.

The challenge of DFT consists in the determination or, rather, approximation of the

unknown energy density functional. Compared to quantum chemists, solid-state

physicists have it easy. The simple formulas derived in the theory of a uniform electron

gas (UEG) work quite well for typical crystals. Not so in chemistry, where the UEG is not

a good approximation for rapidly varying, shell-structured, electron densities. In order to

achieve useful accuracy for molecules, even small ones, much more sophisticated

approximations are required. The absence of such approximations until the mid-1980s

was the single most important reason why DFT conquered chemistry many years after it

took a prominent place in solid-state physics [18]. Once the first successful density

functional approximations for molecules were developed, interest in DFT surged,

prompting the discovery of new fundamental results, stimulating the development of

scores of density functionals, and generating countless applications. To appreciate this

amazing progress, the reader only needs to compare Parr’s 1983 review [1] with its

follow-up published 12 years later [19]. For more details, we recommend many excellent

introductory [20–24] and advanced [25–31] expositions of DFT.

To an uninitiated user of quantum chemistry programs, mathematical expressions of

density functionals may appear esoteric. The analytic form of many functionals is indeed

complicated and nonintuitive, but it often conceals beautifully simple ideas. Lack of

familiarity with these ideas and a ‘black-box’ attitude toward the alphabet soup of density

functional approximations are in part responsible for the wide-spread sentiment that DFT

is effectively an empirical method with no prescription for systematic convergence to the

right answer. We hope to convince the reader here that this view is unfair and that the

development of density functionals can be, in its own way, a rigorous procedure. We will

do so by systematizing and explaining the principal ideas behind modern density

functional approximations. Because the most important developments in DFT relevant
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to chemistry occurred in the last quarter of a century, it is this later period that is primarily

covered here.

Although this review focuses on general principles of density functional design, many

particular approximations will be discussed in detail. It is not our purpose, however, to

present an exhaustive survey of density functionals or to characterize their performance.

Such a task would be nearly impossible at a time when the number of published

functionals continues to grow at an accelerating pace. Nonetheless, all ‘popular’

exchange-correlation functionals for Kohn–Sham DFT (i.e. functionals available in

program packages like GAUSSIAN 03 [32] and enjoying wide use) will be covered. Nor

shall we touch upon indirectly related subjects such as orbital-free kinetic-energy DFT

[33], quantal DFT [34], local-scaling transformation version of DFT [35], and others.

Finally, we realize that this review is biased toward our own work and the work of our

collaborators and hope that the reader will forgive us for any unintended omissions.

24.2 KOHN–SHAM DENSITY FUNCTIONAL THEORY

DFT aspires to predict exactly properties of many-electron systems without recourse to

the wave function, using only the information contained (explicitly or implicitly) in the

ground-state electron density. This section reviews the basic DFT formalism and

introduces fundamental relations that will recur throughout this work.

24.2.1 Motivation for density functional theory

Consider the problem of solving the nonrelativistic, stationary nucleus, Schrödinger

equation

ĤC ¼ EC ð1Þ

involving the N-electron Hamiltonian operator (in atomic units)

Ĥ ¼ 2
1

2

XN
i¼1

72
i þ

XN
i¼1

vðriÞ þ
XN
i,j

1

lri 2 rjl
¼ T̂þ V̂þ V̂ee ð2Þ

where v(ri) is a multiplicative external potential in which the electrons move. For atoms,

molecules, and solids, v(ri) is simply the Coulombic potential of the nuclei with charges

ZA at positions RA,

vðriÞ ¼ 2
Xnuclei
A

ZA

lri 2 RAl
ð3Þ

although DFT is not restricted to potentials of this form. Multiply Eq. (1) from the left by

Cp and integrate each term over the spatial (ri) and spin (si) coordinates not acted upon
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by the operators T̂; V̂; and V̂ee: Assuming that C is normalized, the result is

E ¼ 2
1

2

ð
½72

rrðr; r0Þ	r0¼r drþ
ð
vðrÞrðrÞdrþ

ðð P2ðr1; r2Þ
lr1 2 r2l

dr1 dr2 ð4Þ

where we have introduced the one-electron reduced density matrix r(r,r 0) and the pair
density

P2ðr1; r2Þ ¼ NðN 2 1Þ
2

X
s1…sN

ð
· · ·

ð
lCðr1s1; r2s2; r3s3;…; rNsNÞl2dr3…drN ð5Þ

The density, reduced density matrix, and the pair density are related by

rðr1Þ ¼ rðr1; r1Þ ¼ 2

N 2 1

ð
P2ðr1; r2Þdr2 ð6Þ

The three terms in Eq. (4) represent the kinetic energy of the electrons

T ¼ 2
1

2

ð
½72

rrðr; r0Þ	r0¼rdr ð7Þ

the electron-nuclear attraction

V ¼
ð
vðrÞrðrÞdr ð8Þ

and electron–electron interaction

Vee ¼
ðð P2ðr1; r2Þ

r12
dr1 dr2 ð9Þ

The last term includes the classical Coulomb repulsion and quantum-mechanical

exchange-correlation effects. The separation of the classical and quantum-mechanical

parts can be made explicit by writing the pair density as

P2ðr1; r2Þ ¼ 1

2
rðr1Þ½rðr2Þ þ hxcðr1; r2Þ	 ð10Þ

which effectively defines hxc(r1,r2), the exchange-correlation ðxcÞ hole of an electron at
r1. Using Eq. (10) we can rewrite Eq. (9) as

Vee ¼ J þ EðcÞ
xc ð11Þ

where J is the classical Coulomb repulsion energy

J ¼ 1

2

ðð rðr1Þrðr2Þ
r12

dr1 dr2 ð12Þ

and EðcÞ
xc is the conventional (in wave function-based methods) exchange-correlation

energy

EðcÞ
xc ¼ 1

2

ðð rðr1Þhxcðr1; r2Þ
r12

dr1 dr2 ð13Þ
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Now Eq. (4) becomes

E ¼ T þ V þ J þ EðcÞ
xc ð14Þ

Observe that V and J are explicit functionals of r(r), but T and EðcÞ
xc are not. One might

suppose that T and EðcÞ
xc cannot be determined from r(r) in principle, since they appear to

require the knowledge of the density matrix r(r, r0) and the pair function P2(r1, r2),

respectively. Intuition is wrong here, because the Hohenberg–Kohn theorem [15] asserts

that the ground-state energy of a real many-electron system in a static external potential

v(r) is a unique functional of the density

E½r	 ¼
ð
vðrÞrðrÞdrþ F½r	 ð15Þ

where F [r ] absorbs the kinetic energy and electron–electron interaction terms

F½r	 ¼ T½r	 þ J½r	 þ EðcÞ
xc ½r	 ð16Þ

The Hohenberg–Kohn theorem assures only that the functional F½r	 exists, but the actual
form of F½r	 is unknown (except for the term J½r	Þ and must be approximated. Once the
number of electrons N is fixed, Hamiltonian operators for any two systems differ only by

the external potential v(r). The functional F½r	 is therefore universal.
The partitioning of F½r	 into the three components T, J, and EðcÞ

xc in Eq. (16) is by no

means unique. Different partitioning schemes give rise to different variants of DFT. In

fact, the particular partitioning of Eq. (16), although very natural, is not the one that is

normally used. The most popular variant of DFT is the Kohn–Sham formulation, to

which we now turn our attention.

24.2.2 Kohn–Sham scheme

The idea of the Kohn–Sham method is best understood as follows. Consider a

generalized Hamiltonian of Eq. (2) in which the term V̂ee is scaled by an electron–

electron coupling constant l: We are interested in values of l between 0 and 1. Each

value of l corresponds to a distinct universal functional of the density. In Levy’s

constraint search formulation [36] of the Hohenberg–Kohn principle, this is explicitly

stated as

Fl½r	 ¼ kC min;l
r lT̂þ lV̂eelC min;l

r l ð17Þ
where C min;l

r is the N-electron wave function that minimizes the expectation value of

T̂þ lV̂ee and simultaneously yields the density r(r). For real systems, l ¼ 1, so that

F1½r	 ¼ F½r	 is the universal functional of interest. This is the problem we wish to solve

but cannot.

The value l ¼ 0 corresponds to a system of noninteracting electrons moving in the

external potential v(r). The noninteracting Schrödinger equation is, of course, trivially

solvable. The solution is F0 ¼ C min;0
r ; a single Slater determinant of one-electron wave
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functions (orbitals) fi obtained from the single-particle equations

2
1

2
72 þ vðrÞ

� �
fiðrÞ ¼ e ifiðrÞ ð18Þ

The universal density functional for this noninteracting system is therefore

F0½r	 ¼ Ts½r	 ¼ 2
1

2

XN
i¼1

kfil72lfil ð19Þ

where the density is given by

rðrÞ ¼
XN
i¼1

lfiðrÞl2 ð20Þ

Note that Ts½r	 is written in terms of orbitals, and so is an implicit functional of r(r).
What Kohn and Sham did was to assume that for any real (interacting) system with the

ground-state density r(r) there always exists a noninteracting system with the same

ground-state r(r). Then one can rewrite Eq. (16) as

F½r	 ¼ Ts½r	 þ J½r	 þ Exc½r	 ð21Þ
where Ts [r ] is the kinetic energy of the noninteracting system computed exactly by Eq.

(19), and Exc[r ] is the Kohn–Sham exchange-correlation energy, formally defined as

Exc½r	 ¼ T½r	2 Ts½r	 þ EðcÞ
xc ½r	 ð22Þ

Application of the variational principle, dE=drðrÞ ¼ 0; to the Kohn–Sham functional

E½r	 ¼
ð
rðrÞvðrÞdrþ Ts½r	 þ J½r	 þ Exc½r	 ð23Þ

subject to the orthonormality constraints kfilfjl ¼ dij; yields NHartree-type one-electron
equations

2
1

2
72 þ vðrÞ þ

ð rðr0Þ
lr2 r0l

dr0 þ vxcðrÞ
� �

fiðrÞ ¼ e ifiðrÞ ð24Þ

where fi(r) are Kohn–Sham orbitals, e i are Kohn–Sham orbital energies, and vxc(r) is

the exchange-correlation potential

vxcðrÞ ¼ dExc½r	
drðrÞ ð25Þ

that is, the functional derivative of Exc [r ] with respect to the density. The orbitals fi(r)

form a Slater determinant F min
r ; called the Kohn–Sham wave function.

Eqs. (20), (24), and (25), known as the Kohn–Sham equations, are formally exact and

contain only one unknown term, Exc[r ]. It is Exc that is approximated in Kohn–Sham
DFT, not the conventional exchange-correlation energy EðcÞ

xc : Exact treatment of the
kinetic energy as an orbital-dependent functional is crucial to the practicality of this

scheme because T[r] and Ts[r] are notoriously difficult to approximate as explicit
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functionals of the density [33,37]. One can readily show [20] that Ts # T ; so that by
Eq. (22) Exc $ EðcÞ

xc ; where the equality holds only for one-electron systems. For a

historical account of the developments leading to the announcement of the Hohenberg–

Kohn theorem and the formulation of the Kohn–Sham equations, we refer the reader to a

memoir of Hohenberg et al. [38] and Kohn’s Nobel lecture [39]. For a modern

perspective on DFT fundamentals, we recommend a recent review by Savin et al. [40].

24.3 EXCHANGE AND CORRELATION DENSITY FUNCTIONALS

The problem of finding accurate approximations to Exc[r ] is the biggest challenge of
Kohn–Sham DFT. The better we understand the exact functional, the better

approximations we can design. The following section presents a closer look at the

exchange-correlation functional.

24.3.1 Exchange-correlation energy

The formal definition of the exchange-correlation energy by Eq. (22) is not very helpful

for designing approximate density functionals. Fortunately, there exist more constructive

exact formulas for Exc[r ]. Observe that by the Hellmann–Feynman theorem [41]

›Fl½r	
›l

¼ kC min;l
r lV̂eelC min;l

r l ð26Þ

where Fl[r] is given by Eq. (17). Let us integrate Eq. (26) over l from 0 to 1 keeping the

density r(r) fixed at all l. This procedure is called ‘adiabatic integration’ and its result isð1
0

›Fl½r	
›l

dl ¼ F1½r	2 F0½r	 ¼ Exc½r	 þ J½r	 ð27Þ

where we have used Eqs. (19) and (21) for F1[r ] ; F[r] and F0[r ], respectively.
Combining Eqs. (26) and (27) we obtain the adiabatic connection formula [42–45]1

Exc½r	 ¼ 1

2

ð1
0
kC min;l

r lV̂eelC min;l
r ldl2 J½r	 ¼

ð1
0
El
xc½r	dl ð28Þ

Generalizing the definition of the pair function and exchange-correlation hole in Eq. (10)

to intermediate coupling strengths, we now introduce Pl
2ðr1; r2Þ and hlxcðr1; r2Þ; and use

Eqs. (9)–(11) to rewrite Eq. (28) as

Exc½r	 ¼ 1

2

ð1
0
dl

ðð rðr1Þhlxcðr1; r2Þ
r12

dr1 dr2 ð29Þ

In this equation, r(r1) does not have the subscript l because the electron density is

fixed. Since the integration over l is decoupled from the integration over space

1 The density was held fixed for all l in Refs. [43–45]; it was held fixed only for l ¼ 0 and 1 in Ref. [42].
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coordinates, we can define


hxcðr1; r2Þ ¼
ð1
0
hlxcðr1; r2Þ dl ð30Þ

and rewrite Eq. (29) as

Exc½r	 ¼ 1

2

ðð
rðr1Þ


hxcðr1; r2Þ
r12

dr1 dr2 ð31Þ

Eq. (31) can be regarded as a Kohn–Sham DFT analog of Eq. (13). Let us now make

a change of variables r ¼ r1, u ¼ r2 2 r1 and integrate over the angular coordinates

of u. This gives the spherically-averaged exchange-correlation hole


hxcðr; uÞ ¼ 1

4p

ð2p
0
dfu

ðp

0


hxcðr; rþ uÞ sin uu duu ð32Þ

Using this quantity, Eq. (31) can be written as

Exc½r	 ¼ 1

2

ð
rðrÞ dr

ð1

0
4pu2


hxcðr; uÞ
u

du ð33Þ

This equation serves as the starting point for many density functionals approximations.

In practical Kohn–Sham DFT, the exchange-correlation functional Exc is usually

separated into the exchange and correlation parts,

Exc½r	 ¼ Ex½r	 þ Ec½r	 ð34Þ
The exchange energy is defined by

Ex½r	 ¼ kFmin
r lV̂eelFmin

r l2 J½r	 ð35Þ
where Fmin

r is the Kohn–Sham determinant, while the correlation energy is taken

formally as the difference

Ec½r	 ¼ Exc½r	2 Ex½r	 ¼ kCmin
r lV̂eelCmin

r l2 kFmin
r lV̂eelFmin

r l ð36Þ
whereCmin

r is the exact interacting wave function. The last term in Eq. (36) is nothing but

the integral of Eq. (9) with the pair density P2 derived from Fmin
r : For a single-

determinant wave function like Fmin
r ; the pair density is [46]

P2ðr1; r2Þ ¼ 1

2
rðr1Þrðr2Þ2 1

2
½raðr1; r2Þraðr2; r1Þ þ rbðr1; r2Þrbðr2; r1Þ	 ð37Þ

For spin-compensated systems, substitution of Eq. (37) into Eqs. (9) and (35) yields the

following exact expression for the exchange energy

Eexactx ¼ 2
1

4

ðð lrðr1; r2Þl2
r12

dr1 dr2 ð38Þ
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where r(r1, r2) is the Kohn–Sham one-electron density matrix

rðr1; r2Þ ¼
XN
i¼1

fiðr1Þfp
i ðr2Þ ð39Þ

Eq. (38) looks exactly like the expression for the exchange energy in the Hartree–Fock

(HF) theory, EHFx : It should be emphasized, however, that fi(r) in Eq. (39) are the Kohn–

Sham, not Hartree–Fock, orbitals. The two sets of orbitals are different, because they

arise from solving different equations. Thus, in general Eexactx – EHFx : This distinction is
important and should always be kept in mind, especially because the terms ‘exact

exchange’ and ‘Hartree–Fock exchange’ are often loosely used as synonyms.

The true exchange functional is therefore known exactly. Then why do we need

approximate exchange functionals? The problem with Eq. (38) is that it is not an explicit

functional of the density, so the corresponding exchange potential cannot be readily

evaluated as the functional derivative of Eexactx with respect to r(r). For this purpose, an
indirect procedure, called the optimized effective potential (OEP) method [47–55] can be

used. Another reason for avoiding the exact exchange functional is that in practice it is

very difficult to achieve useful accuracy by combining exact exchange with approximate

correlation functionals.

24.3.2 Ingredients of density functional approximations

In principle, the original Kohn–Sham formalism applies to both spin-compensated

ðra ¼ rbÞ and spin-polarized ðra – rbÞ systems. In the case of spin-polarized systems,
however, the electronic energy is extremely difficult to approximate as a functional of the

total density alone. In practice, one always prefers to describe spin-polarized systems

using spin-density functional theory. Spin-DFT is a generalization of the original

Hohenberg–Kohn principle and Kohn–Sham method to systems in the presence of a

non-zero external magnetic field. It was first discussed in the original Kohn–Sham paper

[17] and elaborated by von Barth and Hedin [56] and by Pant and Rajagopal [57]. In spin-

DFT, the basic variables are the spin-up and spin-down electron densities ra(r) and rb(r),
and the exchange-correlation energy is a functional of both. In the absence of a magnetic

field, spin-DFT gives the same results for spin-polarized systems as the spin-independent

DFT, but still operates with functionals of the type Exc½ra;rb	: This offers a significant
practical advantage because approximate spin-density functionals Exc½ra;rb	 usually
provide a much better description of spin-polarized systems than functionals Exc[r ].
Let us emphasize again that in spin-DFT the exchange-correlation energy Exc is a

functional of raðrÞ and rbðrÞ alone, and, in principle, these are the only ingredients

needed. This appealing picture is gravely complicated by the fact that the dependence of

Exc on ra(r) and rb(r) is highly nonlocal, meaning that: (i) small variations of the

densities may cause large variations of the exchange-correlation potential vxc; (ii) vxc at a

given point r may be very sensitive to changes of the density not only in the vicinity of
r, but also at very distant points r0. Of course, for practical reasons we want approximate
functionals that are explicit and local (or semilocal). To compensate for their locality,
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such functionals must use some other (local or semilocal) ingredients in addition to the

local rs(r). These can be derivatives of rs (r) (semilocal ingredients) and quantities that
are indirectly (nonlocally) determined by the densities. Examples of ingredients of the

latter type include Kohn–Sham orbitals and variables constructed from them, provided

they are gauge-independent and invariant with respect to unitary transformation of the

orbitals.

The most important examples of orbital-dependent ingredients are the Kohn–Sham

reduced density matrix of Eq. (39) and the noninteracting kinetic energy density

tsðrÞ ¼ 1

2

Xocc:
k¼1

l7fksðrÞl2 ð40Þ

The name of the latter derives from the fact that ts (r) integrates to the Kohn–Sham
kinetic energy Ts of Eq. (19) for s-spin electrons, as can be readily verified via integration
by parts. The definition of ts (r) by Eq. (40) is gauge-invariant only in the absence of an
external magnetic field [58]. Furthermore, it is not unique, because any function that

integrates to zero, such as 72rs (r), can be added to ts (r) without changing the value of
Ts. The noninteracting kinetic energy density is not a far-fetched ingredient as may seem

at first sight. It naturally arises in the Taylor series expansion of the Kohn–Sham density

matrix (see Section 24.8.1). Chemical content of the kinetic energy density has been

interpreted by Schmider and Becke [59,60]. The possibility of constructing functionals of

even more complicated variables like t2s ¼ 1
4

Pocc:
k¼1 l72fksðrÞl2; which appear in higher-

order density matrix expansions, has also been considered [61].

Another ingredient whose importance is being increasingly recognized [62–67] is the

paramagnetic current density, defined in atomic units as

jsðrÞ ¼ 2
i

2

Xocc:
k¼1

fp
ksðrÞ7fksðrÞ2 fksðrÞ7fp

ksðrÞ
� � ð41Þ

This quantity arises in current-dependent DFT, an extension of the Hohenberg–Kohn

theory to strong magnetic fields [68–71]. The paramagnetic current density is

nonvanishing only for degenerate states that are described with complex wave functions

(Kohn–Sham determinants in DFT), such as the three configurations of the B atom,

where the unpaired electron can occupy either the 2p1, 2p0, or 2p21 orbital. Such states

have the same energy but different density distributions. All standard functionals in

existence predicts a large artificial separation between the ML ¼ 0 and ML ¼ ^1 levels.

This unphysical splitting can be drastically reduced by including the current density js(r)

into approximate functionals [65–67].

Ingredients other than the density do more than just provide additional degrees of

freedom for designing density functional approximations. They are necessary if we want

an approximation to satisfy exact constraints that are impossible to impose using spin-

densities and their derivatives alone. The type of ingredients of Exc[ra, rb] forms the
basis for Perdew’s ‘Jacob’s ladder’ classification [72] of density functionals. The lower

three rungs of this ladder are, in the ascending order: (i) the local spin-density

approximation (LSDA), which employs only rs ; (ii) the generalized gradient

approximation (GGA), whose ingredients are rs and 7rs; (iii) the meta-GGA, which

Chapter 24678



makes use of ts (or 7
2rs) in addition to the GGA ingredients. The ascent of the ladder

consists in embedding increasingly complex ingredients and exact properties in

Exc[ra,rb] and results, in practice, in better functionals [73].

24.3.3 Analytic properties of exchange-correlation functionals

Although the exact functional Exc[ra,rb] remains an enigma, many of its analytic

properties, ranging from obvious to subtle, are known [74]. For any possible electron

densities, the exchange energy is strictly negative, while the correlation energy is

nonpositive:

Ex , 0; Ec # 0 ð42Þ
Lieb and Oxford [75] showed that the exchange-correlation energy of electrons in

Coulombic systems is bounded also from below

Ex½ra; rb	 $ Exc½ra; rb	 $ CLO

ð
r4=3ðrÞ dr ð43Þ

where 21.44 $ CLO $ 2 1.68 [76].

For one-electron densities r1ðrÞ;Ex must cancel the spurious Coulomb self-repulsion
energy:

Ex½r1; 0	 þ J½r1	 ¼ 0 ð44Þ
while Ec must vanish altogether:

Ec½r1; 0	 ¼ 0 ð45Þ
Eqs. (44) and (45) were stressed in the self-interaction correction scheme of Perdew and

Zunger [77].

For uniform electron densities, Exc½ra; rb	 should reduce to the formulas for the

exchange-correlation energy of a uniform free-electron gas (the LSDA):

Exc½ra; rb	 ¼ ELSDAxc ½ra; rb	; if rsðrÞ ¼ const ð46Þ
A large number of known exact properties of density functionals involve coordinate

scaling transformations of the density. Most of such relations have been derived by Levy

and coworkers [78–84]. The uniform scaling of the density is defined by

rgðrÞ ¼ g3rðgrÞ ð47Þ
The effect of this transformation is to contract or thin the density while preserving

its normalization. Coordinate scaling constraints for exchange and correlation func-

tionals are reviewed by Levy [85]. The most important among these constraints are

the following:

Ex½rg	 ¼ gEx½r	 ð48Þ
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lim
g!1Ec½rg	 . 21 ð49Þ

The exchange functionals appropriate to spin-compensated and to spin-polarized

systems are related to each other by the spin-scaling relation [86]

Ex½ra; rb	 ¼ 1

2
ðEx½2ra	 þ Ex½2rb	Þ ð50Þ

where Ex[r ] ; Ex[r/2, r/2]. The spin-scaling relation effectively defines the resolution of
the exchange energy into two parallel-spin contributions, Ess

x ¼ 1
2
Ex½2rs	; where

s ¼ a, b. Note that Ex has no opposite-spin components. Eq. (50) is respected by all
exchange energy approximations in existence. In the literature, exchange functionals are

often stated in the form Ex[r ] only, while the form Ex[ra,rb] (the one actually used) is
implied through Eq. (50). For the correlation energy, there is no simple spin-scaling

relation similar to Eq. (50).

24.4 STRATEGIES FOR DESIGNING DENSITY FUNCTIONALS

DFT would be the ultimate practical theory if one could derive the exact exchange-

correlation functional in a closed form, as were the Thomas–Fermi kinetic energy and

Dirac exchange energy functionals for the UEG. This appears to be a hopeless task. DFT

would still be almost perfect if, by analogy with wave function methods, we had a

mechanical prescription for the systematic improvement of approximations that

guarantees their convergence to the right answer. In principle, Görling–Levy

perturbation theory [87–89] and ‘ab initio DFT’ [90–92] offer such prescriptions, but

these approaches abandon the idea of a universal density functional and, for all practical

purposes, are hardly different from wave function techniques. In practice, one has to

devise density functional approximations relying on many little bits of information about

the true functional and compensating for lack of mechanical recipes with insight and

ingenuity. As the success of DFT attests, this is a workable plan. We distinguish the

following six approaches to designing density functional approximations.

1. Local density approximations (LDA). This group includes functionals derived in

the analytic theory of a UEG and applied, directly or with empirical modifications, to

nonuniform densities. All LDA functionals have the form

ELDAxc ½r	 ¼
ð
excðrÞdr ð51Þ

where the exchange-correlation energy density exc(r) is a function of r(r) only.
2. Density-gradient expansion (DGE). These are formal analogs of the three-

dimensional Taylor expansion of the exchange-correlation energy in derivatives of the

density:

EDGExc ½r	 ¼
ð
½eð0Þxc ðrÞ þ eð1Þxc ðrÞ7rþ eð2Þxc ðrÞl7rl2 þ…	dr ð52Þ
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Derivation of the coefficients eðkÞxc ðrÞ is very involvedmathematically, and the performance
of such nonempirical functionals is reasonable only for slowly varying densities.

3. Constraint satisfaction. A more successful approach consists in designing

functionals of the form

Exc½r	 ¼
ð
excðr;7r;72r; t;…Þdr ð53Þ

where the integrand is constructed to satisfy chosen exact constraints. The constraints in

question may concern the asymptotic behavior of exc and vxc, upper and lower bounds on

the energy, density scaling transformations, and other properties of the true functional.

A number of approximations of this type are fully nonempirical.

4. Modeling the exchange-correlation hole. Functionals of this type are based on

Eqs. (31) or (38) and form one of the largest and most diverse groups. For example, the

exchange hole may be approximated by a truncated Taylor series expansion in

r;7r;72r; and t: The correlation hole may be derived from an approximate correlated

wave function or modeled after the correlation hole of an analytically solvable problem.

The general analytic form of these functionals is the same as in Eq. (53). Functionals

based on an exchange-correlation hole model may be fully nonempirical or contain fitted

parameters.

5. Empirical fits. Functionals of this type are designed by fitting reasonably chosen

analytic forms of Exc½r	 to experimental values of thermochemical and/or other

properties of atoms and molecules. The analytic form may be borrowed directly from

functionals of any other group or simply postulated without a rigorous derivation. Some

fitted (‘optimized’) functionals are linear combinations of pre-existing functionals. The

general form of such approximations is

Exc½r	 ¼
X
k

Ck

ð
eðkÞxc ðr;7r;72r; t;…; ak; bk;…Þ dr ð54Þ

where Ck; ak; bk;… are adjustable parameters.

6. Mixing exact and approximate exchange. These functionals, termed hybrids, have

the form

Ehybridxc ½r	 ¼
ð
½aeexactx ðrÞ þ beDFTx ðrÞ þ eDFTc ðrÞ	 dr ð55Þ

where the mixing coefficients a and b may be constants or depend on r. In the latter case,

functionals of this form are called ‘local hybrids’ [93].

The majority of density functional approximations in current use fall into one of these

categories. The scheme presented above, however, is neither perfect nor complete. For

example, the LDA for exchange may be viewed as a functional derived from the exact

exchange hole hLDAx ðr; uÞ of a UEG [it is given by Eq. (57)] and placed in group 4.

Functionals of any group may have adjustable parameters, not just optimized functionals.

Exact constraints are often explicitly imposed on density functionals based on an

exchange-correlation hole model, not only on functionals of group 3. The above scheme

does not include several interesting but less common methods such as
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the weighted-density approximation [94–97], the phase-space approach [98,99], Laurent

series expansions in terms of homogeneous functionals [100,101] or moments of the

density [102], and many others. Nevertheless, we believe that the classification of density

functionals by the method of their derivation is instructive. In what follows, we will use it

as a map to navigate the realm of approximate density functionals.

24.5 LOCAL DENSITY APPROXIMATIONS

In a narrow sense, the LDA consists in applying the exact results of the theory of a UEG

to real nonuniform densities. More generally, an LDA is any approximation of the form

ELDAxc ½r	 ¼
ð
rðrÞexcðrÞdr ð56Þ

where exc(r) ¼ ex(r) þ ec(r) is the exchange-correlation energy per particle of the

electron gas, which is a function of the density only.

24.5.1 Local density approximation for exchange

The exchange energy of a UEG can be evaluated analytically by the method of Bloch

[103] or Dirac [3]. Details of both approaches are discussed by Gombás [4], Bethe [104],

Slater [105], and Parr and Yang [20]. The outline of the derivation is as follows. The

Kohn–Sham orbitals for a UEG are plane waves, fk(r) ¼ V21/2eik· r, where V is the

volume of the box. Given the orbitals, one calculates the Kohn–Sham density matrix of

Eq. (39) by replacing the sum over occupied orbitals k with an integral over a sphere

of radius kF ¼ (3p2r)1/3. Then a transformation to relative coordinates r ¼ r1,

u ¼ r2 2 r1 and angle-averaging yield the LDA exchange hole

hLDAx ðr; uÞ ¼ 2
9

2
rðrÞ sinðkFuÞ2 kFu cosðkFuÞ

ðkFuÞ3
� �2

ð57Þ

which determines the exchange energy by Eq. (33). The final result is

ELDAx ¼ 2Cx

ð
r4=3ðrÞdr; where Cx ¼ 3

4

3

p

� �1=3
ð58Þ

Equivalently, the LDA exchange energy per particle is

eLDAx ðrÞ ¼ 2Cxr
1=3 ¼ 2

3

4

3

2p

� �2=3 1
rs

ð59Þ

where rs ¼ (3/4pr)1/3 is the radius of a sphere that contains the charge of one electron.
Eq. (59) was first obtained by Wigner and Seitz [106].

The LDA exchange formula (58) is exact for a UEG but underestimates the exchange

energy of inhomogeneous systems. Generally, LDA is more accurate than the Hartree–

Fock method but falls far short of chemical accuracy (1 kcal/mol).
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The extension of Eq. (58) to spin-polarized systems is called the LSDA. According to

Eq. (50), the LSDA exchange energy is

ELSDAx ½ra; rb	 ¼ 221=3Cx

ð 
r4=3a þ r

4=3
b

�
dr ð60Þ

Although Eq. (60) is all one needs for practical purposes, let us cast it in a different form

(for reasons that will become clear when we discuss the LSDA for correlation).

Introducing the relative spin-polarization

z ¼ ra 2 rb
ra þ rb

ð61Þ

and using ra ¼ 1
2
ð1þ z Þr and rb ¼ 1

2
ð12 z Þr; we rewrite Eq. (60) as

ELSDAx ½ra; rb	 ¼
ð
rexðr; z Þ dr ð62Þ

where

exðr; z Þ ¼ 2
1

2
Cxr

1=3½ð1þ z Þ4=3 þ ð12 z Þ4=3	 ð63Þ

For a spin-compensated (‘paramagnetic’, z ¼ 0) electron gas,

ex ¼ ePx ¼ 2Cxr
1=3 ð64Þ

and for fully polarized (‘ferromagnetic’, z ¼ ^1)

ex ¼ eFx ¼ 221=3Cxr
1=3 ð65Þ

For intermediate spin-polarizations 0 , z , 1; one can write ex(r, z) as an exact

interpolation between the para- and ferromagnetic cases,

exðr; z Þ ¼ ePx ðrÞ þ ½eFx ðrÞ2 ePx ðrÞ	 f ðz Þ ð66Þ
where the interpolating function is readily shown to be

f ðz Þ ¼ 1

2

½ð1þ z Þ4=3 þ ð12 z Þ4=3 2 2	
ð21=3 2 1Þ ð67Þ

Ernzerhof and Scuseria [107] suggested approximating Ex using the LDA functional in

which the actual r(r) is replaced by a fictitious density ~rðrÞ defined by tðrÞ ¼ CF ~r5=3ðrÞ;
where t (r) is the kinetic energy density of the actual nonuniform system. This leads to the

local t-approximation (LTA)

ELTAx ½t	 ¼ Cx

C
4=5
F

ð
t4=5ðrÞ dr ð68Þ

where CF ¼ 10
3
ð3p 2Þ2=3: Eq. (68) can be viewed as an alternative to the conventional

LDA. In numerical tests, the LTA was found to be ‘complementary’ to the LDA.

It predicts more accurately exchange energy contributions to the atomization energies
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in those cases where LDA is in large error, and vice versa. For a UEG, LDA is equivalent

to LTA.

24.5.2 Local density approximation for correlation

Correlation is a much more difficult problem than exchange, so exact analytic forms of

eLDAc ðrÞ are known only for two limiting cases. The first is the high-density (weak

correlation) limit of a spin-compensated UEG

ePc ðrsÞ ¼ AGB ln rs þ Bþ rsðC ln rs þ DÞ; rs p 1 ð69Þ
The constants AGB and B were evaluated by Gell-Mann and Brueckner [108], C and D by

Carr and Maradudin [109]. Specifically, in hartree units (Eh),

AGB ¼ 12 ln 2

p2
< 0:031091 ð70Þ

The second case is the low-density (strong correlation) limit obtained by Nozières and

Pines [110] and Carr [111]

ePc ðrsÞ ¼ 1

2

U0

rs
þ U1

r
3=2
s

þ U2

r2s
þ :::

{ !
; rs q 1 ð71Þ

where Uk are again known constants. Similar formulas exist for e
F
c ðrsÞ:

The exact numerical values of ePc ðrsÞ and eFc ðrsÞ are known, with small statistical

uncertainties, for several intermediate values of rs from Monte Carlo simulations of the

UEG carried out by Ceperley and Alder [112]. Based on these results, several

interpolation formulas for ePc ðrsÞ and eFc ðrsÞ have been devised to connect the high- and
low-density limits [Eqs. (69) and (71)] and simultaneously reproduce the Ceperley–

Alder data for intermediate rs. Three such parametrizations are widely used in quantum-

chemical codes.

Perdew and Zunger [77] (PZ81) suggested the following parametrization of the

Ceperley–Alder data for the spin-compensated and spin-polarized cases

ePZ81;ic ðrsÞ ¼
g

1þ b1r
1=2
s þ b2rs

; if rs $ 1;

A ln rs þ Bþ Crs ln rs þ Drs; if rs , 1;

8><>: ð72Þ

where g, b1, b2, A, B,C, andD are parameters, different for i ¼ P and i ¼ F. In particular,

AP ¼ 2AF ¼ AGB. The PZ81 parametrization has several shortcomings, such as an

artificial discontinuity of second and higher derivatives at rs ¼ 1.

Vosko et al. [113] (VWN) proposed a more accurate but less transparent representation

eVWN;i
c ðxÞ ¼ A ln

x2

XðxÞ þ 2b

Q
tan21

Q

2xþ b

(
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2
bx0
Xðx0Þ ln

ðx2 x0Þ2
XðxÞ þ 2ð2x0 þ bÞ

Q
tan21

Q

2xþ b

" #)
ð73Þ

where x ¼ r
1=2
s ; X(x) ¼ x2 þ bxþ c,Q ¼ (4c 2 b2)1/2, and A, b, c, and x0 are parameters.

For an explanation of this form, see Ref. [113].

The best available analytic representation of the Ceperley–Alder data was devised by

Perdew and Wang [114] (PW92)

ePW92;i
c ðrsÞ ¼ 22Að1þ a1rsÞln 1þ 1

2Aðb1r1=2s þ b2rs þ b3r
3=2
s þ b4r

2
s Þ

" #
ð74Þ

where A, p, a1, b1, b2, b3, and b4 are parameters assuming different values for each
e icðrsÞ: Unlike the VWN form, form (74) properly allows for a nonzero coefficient C in

Eq. (69) and avoids other deficiencies of the PZ81 and VWN parametrizations.

Even with accurate representations of ePc ðrsÞ and eFc ðrsÞ at our disposal, we need a
general formula applicable to spin-polarized systems. Without loss of generality we can

assume that, in analogy with Eq. (62),

ELSDAc ½ra; rb	 ¼
ð
recðrs; z Þdr ð75Þ

where the function ec(rs, z ) is to be determined. Unfortunately, unlike for exchange, there
is no simple exact formula relating ec(rs, z ) to e

P
c ðrsÞ; eFc ðrsÞ; and z. Von Barth and Hedin

[56] proposed using the same interpolation formula for ec(rs, z ) as for ex(r, z ), that is,

eBHc ðrs; z Þ ¼ ePc ðrsÞ þ ½eFc ðrsÞ2 ePc ðrsÞ	 f ðz Þ ð76Þ
where f ðzÞ is given by Eq. (67). In practice, Eq. (76) is not very accurate [45]. Vosko
et al. [113] examined several alternatives to the Barth–Hedin interpolation formula and

recommended the following expression

eVWN
c ðrs; z Þ ¼ ePc ðrsÞ þ acðrsÞ f ðz Þ

f 00ð0Þ
� �

ð12 z 4Þ þ ½eFc ðrsÞ2 ePc ðrsÞ	 f ðz Þz 4 ð77Þ

where ac(rs) is a new function called spin stiffness. The spin stiffness is formally defined

as ac(rs) ¼ [›2ec(rs, z)/›z
2]z¼0 and fitted to the same analytic form as ePc ðrsÞ and eFc ðrsÞ:

The PW92 parametrization of the LDA correlation energy of Eq. (74) combined with

VWN interpolation formula (77) is the most accurate representation of the LSDA

correlation energy functional currently available.2 It is used as part of the PW91

correlation functional implemented in the GAUSSIAN program [32].3 The PZ81

parametrization of e icðrsÞ in combination with the Barth–Hedin interpolation formula
2 In the GAUSSIAN program [32], the keyword LSDA requests the Barth–Hedin interpolation formula in which

ePc ðrsÞ and eFc ðrsÞ have the analytic form of Eq. (73) but employ parameters that were fitted to the correlation

energy of a UEG calculated in the random-phase approximation (RPA).
3 Currently, there is no stand-alone keyword for the PW92 representation of LSDA in the GAUSSIAN program. In

GAUSSIAN 03, one can perform LSDA-PW92 calculations by specifying the combination of keywords SPW91

IOp(3/78 ¼ 0000010000) in the input section.
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(76) is used in the GAUSSIAN implementation of the Perdew 1986 correlation functional

(P86) and as a standalone LDA correlation functional (keyword PL). The VWN

parametrization of e icðrsÞ of Eq. (73) is meant to be used with the VWN interpolation

formula (77).

24.6 DENSITY-GRADIENT EXPANSION

Although the LSDA is exact for a UEG and quite accurate for solids, it is less than

satisfactory for atoms and molecules. The natural step beyond the LDA is a formal

expansion of Exc in gradients of the density. This idea was suggested already by

Hohenberg and Kohn [15]. In general, the DGE of the exchange-correlation energy has

the form of Eq. (52), but the requirement that Exc be invariant under rotations about

r makes the coefficients of 7r and other nonscalar terms vanish, yielding [15]

Exc½r	 ¼
ð
reLDAxc ðrÞdrþ

ð
l7rl2e ð2Þxc ðrÞdrþ ::: ð78Þ

where e ð2Þxc ðrÞ are coefficients of appropriate dimensionality. The 72r term in Eq. (78) has

been eliminated via integration by parts.

It is customary to discuss gradient expansions for exchange in terms of dimensionless

reduced density gradients

x ¼ l7rl
r4=3

; s ¼ x

2ð3p2Þ1=3 ð79Þ

The form of the gradient expansion for Ex is fixed by dimensional analysis:

Ex½r	 ¼ ELDAx ½r	2 bx
ð
r4=3x2drþ… ð80Þ

where bx is the second-order DGE coefficient. Equivalently, Eq. (80) can be written as

Ex½r	 ¼
ð
reLDAx ðrÞ 1þ bx

Cx
x2 þ :::

� �
dr

¼
ð
reLDAx ðrÞ 1þ mxs

2 þ :::
h i

dr ð81Þ

The coefficients of s2 and x2 are related by

mx ¼ ½2ð3p2Þ1=3	2
Cx

bx ð82Þ

Derivation of gradient expansion coefficients is very involved even for the second-order

terms [115–118]. According to Antoniewicz and Kleinman [115], the exact second-order

coefficient in Eq. (81) is

mx ¼ mAK ¼ 10

81
ð83Þ
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which is different from Sham’s result [116]

mx ¼ mS ¼ 7

81
; bS ¼ 0:00166721… ð84Þ

Coefficients of the fourth-order terms in the DGE for the exchange energy for slowly-

varying densities have been obtained only recently [119,120].

The gradient expansion for the correlation energy begins as

Ec½r	 ¼ ELDAc ½r	 þ
ð
CcðrsÞr4=3x2drþ · · ·

¼
ð
r eLDAc ðrÞ þ bcðrÞt2 þ : : :
h i

dr ð85Þ

where

t ¼ 1

4ð3=pÞ1=6
l7rl
r7=6

ð86Þ

The value of the coefficient bc for the high-density limit was obtained analytically by
Ma and Brueckner [121] (in a.u.)

lim
r!1 bc ¼ bMB ¼ 16ð3=pÞ1=3Ccð0Þ < 1:97563=3p2 ¼ 0:0667244::: ð87Þ

An analytic representation of the function Cc(rs) has been given by Rasolt and Geldart

[122]. Observe that Eqs. (81) and (85) correctly reduce to LDA for uniform densities.

The second-order DGE improving upon the LTA of Eq. (68) has been derived by

Ernzerhof and Scuseria [123]

EtDGE
x ½t	 ¼ ELTAx ½t	 þ bES

ð
t4=5

l7tl
t6=5

� �2
dr ð88Þ

where is bES is a nonempirical coefficient. Because bES turns out to be positive, Eq. (88)
can give unphysical positive exchange energies.

The second-order DGE results only in modest improvements over LDA for exchange

energies. Herman et al. [124] found empirically that the optimal value of the second-order

gradient coefficient bx in the second-order DGE approximation is about 2.5 times greater
than the exact value. For correlation, the second-order DGE overestimates the correction

needed to reproduce the exact correlation energy by a factor of 5 and so predicts positive

correlation energies [121]. This implies that density variations in atoms and molecules

are too rapid to be approximated by Eqs. (81) and (85). Because of such problems,

truncated DGEs are not used as practical density functionals. Instead, they are regarded

as the exact forms to which approximate exchange-correlation functionals should reduce

in the limit of slowly varying densities.
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24.7 CONSTRAINT SATISFACTION

Improvement of the second-order density gradient expansion became the focus of many

research efforts in the 1970s and 1980s. Some developers of density functionals

[125–132] saw the root of problems in the wrong analytic behavior of the exchange-

correlation potential of the DGE functional and concentrated on designing semiempirical

gradient corrections with desired analytic properties. Others [133–135] explained

failures of the second-order DGE (divergence of the exchange-correlation potential,

overcorrection of the correlation energy, etc.) by the fact that the exchange-correlation

hole corresponding to the second-order DGE exhibits undamped oscillation at large

u values and thereby severely violates the important normalization constraints and sign

properties of the correct hole. Accordingly, functionals based on explicitly normalized

and properly signed exchange-correlation holes have been proposed. It is not hard to

see that the two approaches are essentially different routes to the same goal: satisfaction

of important exact constraints. As we shall see in this section, the process of identifying

important analytic properties of the exact exchange-correlation functional and

imposing them on approximate constructions is the most reliable strategy of density

functional design.

24.7.1 Corrections on the asymptotic behavior

The second-order density gradient expansion for exchange performs well only in the limit

of small reduced density gradients x. The assumption that x is small may be justified for

an infinite electron gas but not for finite systems, where x diverges in far-out regions. This

can be demonstrated by assuming a spherically symmetric exponential density

r(r) ¼ e2ar,

lim
r!1 x ¼ lim

r!1
l›r=›rl
r4=3

¼ lim
r!1 aear=3 ¼ 1 ð89Þ

The second-order gradient contribution to the energy density, proportional to r4/3x2 [see
Eq. (80)], remains finite but the leading term of the exchange potential vx(r) [see Eq. (25)]

scales like r1/3x2, and so is unbounded at large r. Various modifications of the second-
order DGE have been suggested to eliminate the asymptotic divergence of vx(r). Most of

these functionals fall into the category of GGAs [136]

EGGAx ½r	 ¼
ð
reLDAx ðrÞFxðxÞ dr ¼

ð
reGGAx ðr; xÞdr ð90Þ

in which Fx(x) [or Fx(s)] approximates the exact enhancement factor of Eq. (81).

One of the first successful functionals of this type was proposed in 1986 by

Becke [125]. Its enhancement factor is modeled after that of Eq. (81) and has a damped
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second-order gradient term

FB86x ðsÞ ¼ 1þ bc2ðc1sÞ2
1þ g ðc1sÞ2

ð91Þ

where c1 ¼ 2(6p2)1/3 and c2 ¼ (21/3Cx)
21, while b ¼ 0.0036 and g ¼ 0.004 are

empirical parameters.4 Shortly thereafter, Becke observed [126] that the large-gradient

(s ! 1) limit of Eq. (91) is,s0, whereas the correct limit should be,s2/5. To ensure the

correct behavior both in the low- and high-gradient limits, he proposed the following

modification

FmB86
x ðsÞ ¼ 1þ bc2ðc1sÞ2

½1þ g ðc1sÞ2	4=5
ð92Þ

where b ¼ 0.00375 and g ¼ 0.007 are again optimized parameters.

With an empirical value of b, neither B86 nor mB86 recovers the correct second-order
gradient expansion of Eq. (81). DePristo and Kress [127] explicitly imposed this

constraint by using the formula

FDK87x ðsÞ ¼ 1þ mSs
2 1þ g1ðc1sÞm
1þ g2ðc1sÞ2

ð93Þ

where mS ¼ 7/81 is Sham’s exact second-order coefficient, but g1, g2, and m # 1 are still

adjustable parameters. Note that the large-gradient limit of Eq. (93) is ,sm, which is

correct only if m ¼ 2/5.

It is also known that in a finite many-electron system, the true exchange potential vx(r)

and exchange energy density ex(r) have the following asymptotic behavior [45,137]:

vxðrÞlr!1 ¼ 2
1

r
þ C ð94Þ

where C is a constant that vanishes everywhere except in nodal surfaces of the highest

occupied orbital [138], and

exðrÞlr!1 ¼ 2
rðrÞ
2r

ð95Þ

Although the B86, mB86, and DK87 exchange potentials no longer diverge and, like

energy densities, go to zero in the r ! 1 limit, their asymptotic decay is not of the form

prescribed by Eqs. (94) and (95). Becke [128] argued that the asymptotic limit of ex(r) is

an important constraint and proposed a functional which satisfies Eq. (95) for

exponentially decaying densities

FB88x ðsÞ ¼ 1þ bc2ðc1sÞ2
1þ 6bðc1sÞsinh21ðc1sÞ

ð96Þ

4 The factors c1 ¼ 2(6p2)1/3 and c2 ¼ (21/3Cx)
21 in Eqs. (91)–(93), (96), (99), (101), (110), and (180) arise in

the transition from the Ex½ra; rb	 form of the original definitions, where Fx is written in terms of xs ¼
l7rsl=r

4=3
s ; to the standard form Ex[r], where Fx is written in terms of s only. The transformation is based on

the spin-scaling relation of Eq. (50). Note that c1s ¼ 21/3x.
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where b ¼ 0.0042 is an empirical parameter determined by a least squares fit to exact

Hartree–Fock exchange energies of six noble gas atoms (He through Rn). It is the

function sinh21y ¼ lnðyþ ffiffiffiffiffiffiffiffi
1þ y2

p Þ that does the trick of ensuring the correct behavior of
eB88x (r) at large r. To see this, use the expansion [139]

sinh21 y ¼ lnð2yÞ þ 1

2·2y2
2

1·3

2·4·4y4
þ ···; lyl . 1 ð97Þ

and the large-r form of c1s ¼ 21/3x, where x is given by Eq. (89). The B88 functional

proved very successful and remains one of the most popular approximations for the

exchange energy.

In the early 1990s, Lacks and Gordon (LG) [140] observed that the LDA, B86, mB86,

DK87, and B88 exchange functionals all give a poor description of van der Waals

interactions between rare gas atoms, especially at large internuclear distances. Even at the

energy minima, exchange contributions to the binding energy are in errors exceeding

100%. In an effort to refine the description of low-density, high-gradient regions

responsible for long-range interactions, they considered the form

FLGx ðsÞ ¼ 1þ ðad þ mAKÞs2=bþ a4s
4 þ a6s

6 þ a8s
8 þ a10s

10 þ a12s
12

� �b
1þ ads

2
ð98Þ

where a4; a6; a8; a10; a12; and b are empirical parameters obtained by least squares fitting
to the total exchange energies of the He, Ne, and Cþ atoms and the exchange

contributions to the binding energies of He2 and Ne2. The value of ad was fixed at 10
28.

In more extensive tests, Adamo and Barone [141] found that the combination of the LG

exchange and LYP correlation is not a substantial improvement over BLYP.

In 1997, Filatov and Thiel [142] observed that the correct asymptotic limit of the

exchange energy per density is also obtained with functionals of the general form

FFT97x ðsÞ ¼ 1þ bc2ðc1sÞ2
1þ ð6b=mÞmðc1sÞmsinh21ðc1sÞm
� �1=m ð99Þ

Using m ¼ 2 and allowing the adjustable parameter b to assume different values for spin-
up and spin-down densities, they managed to reduce the mean absolute error (MAE) in

the exchange energy by about one third relative to B88.

Van Leeuwen and Baerends [129] achieved the correct asymptotic behavior of vxc(r)

by modeling the Kohn–Sham exchange-correlation potential directly rather than by

approximating the energy density. Their first model vxc(r) had an analytic form inspired

by the B88 functional [129]. More recent shape-corrected potentials of Baerends and

coworkers [143–147] involve explicit dependence on Kohn–Sham orbitals and satisfy

even more exact constraints, such as invariance with respect to shifting the external

potential by a constant and correct short-range behavior. The advantage of modeling

vxc(r) ¼ vx(r) þ vc(r) is that potentials, unlike energy densities, are uniquely determined

by r(r). Given an exchange potential vx(r), the exchange energy can be evaluated by the
Levy–Perdew formula [78]. More recently, Tozer and Handy [131,132] proposed an

explicit asymptotic correction for conventional exchange-correlation potentials and

obtained encouraging results for sensitive properties. The correct asymptotic behavior
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of the exchange energy density and potential appears to be much less important for

obtaining accurate atomic exchange energies.

What about satisfying constraints (94) and (95) simultaneously? Engel and coworkers

[148] proved that no GGA of the form of Eq. (90) can reproduce the asymptotic limits of

Eqs. (94) and (95) at the same time. Jemmer and Knowles [130] and Filatov and Thiel

[149] attempted to satisfy Eqs. (94) and (95) simultaneously by going beyond the

conventional gradient approximation and introducing the dependence on the Laplacian of

the density:

Ex½r	 ¼
ð
reLDAx ðrÞFxðr; l7rl;72rÞdr ð100Þ

Such functionals suffer, however, from numerical instabilities with respect to small

density changes, which makes it practically impossible to obtain variational solutions of

the Kohn–Sham equations [130]. Neumann and Handy [150] investigated the possibility

of including terms of up to fourth order in 7 and also arrived at decidedly disappointing

conclusions.

Gill [151] disputed the claim that the asymptotic divergence of the exchange potential

is of practical significance and argued in favor of a minimalistic empirical functional with

a readjusted fractional power of the gradient correction

FG96x ðsÞ ¼ 1þ bc2ðc1sÞ3=2 ð101Þ

where b ¼ 1/137 is a parameter whose value was chosen to reproduce the Hartree–Fock

exchange energy of the Ar atom (one also cannot help suspecting a playful reference to

the fine structure constant). The exchange potential corresponding to Eq. (101) again

diverges at large x. Contrary to what one might expect, G96 shows an accuracy on par

with B88 in test calculations of thermochemical molecular properties, a better

performance than of some much more sophisticated functionals.

GGAs based on the local-t approximation of Eq. (68) have been constructed by

Ernzerhof et al. [152]. These workers focused on improving the original LTA of Eq. (68)

and second-order t-DGE of Eq. (88) by imposing several important constraints on the

enhancement factor: (a) the correct homogeneous density limit; (b) negativity of Ex;

(c) correct asymptotic behavior of the exchange energy density [Eq. (95)]. The resulting

t-GGA shows a performance comparable to that of conventional GGA functionals.

Intuitively designed damped gradient corrections have been also used to improve the

LDA for correlation. The first attempt of this kind was made by Ma and Brueckner [121]

in their paper on the exact second-order expansion of Ec[r ], where they also propose the
functional

EMB68c ½r	 ¼
ð
reLDAc ðrÞ 12 bMB

t2

nreLDAc ðrÞ

" #2n

dr ð102Þ

The constant n ¼ 0:32 was fitted to the empirical correlation energies of several atoms.
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24.7.2 Normalization of the exchange-correlation hole

Similar to the partitioning of Exc into exchange and correlation contributions, the

exchange-correlation hole at a coupling strength l can be partitioned as

hlxcðr1; r2Þ ¼ hxðr1; r2Þ þ hlc ðr1; r2Þ ð103Þ
where the exchange hole is defined as the noninteracting limit

hxðr1; r2Þ ; hl¼0xc ðr1; r2Þ ð104Þ
The basic properties of the exact exchange and correlation holes are:

hxðr1; r2Þ # 0;
ð
hxðr1; r2Þdr2 ¼ 21 ð105Þ

ð
hlc ðr1; r2Þdr2 ¼ 0 ð106Þ

Langreth and Perdew [133] and Perdew [135] explained the failure of the second-order

DGE by a gross violation of Eqs. (105) and (106) by the DGE exchange and correlation

holes. Such violations have been traced to spurious large-u behavior of the spherically

averaged hxc(r, u). Perdew showed [135] that by cutting off large-u parts of hxc(r, u) and

positive parts of hx(r, u) one can obtain successful density functional approximations.

The essence of the cut off procedure for exchange in real space is as follows [153–155].

Start with the analytic second-order density gradient expansion for the coupling

constant- and angle-averaged exchange hole, hDGEx ðr; uÞ: Convert the diverging DGE hole
into the normalized GGA hole by applying a sharp cutoff:

hGGAx ðr; uÞ ¼ hDGEx ðr; uÞuðhDGEx Þuðu0ðrÞ2 uÞ ð107Þ
where

uðyÞ ¼
1; if y $ 0;

0; if y , 0:

(
ð108Þ

The first step function in Eq. (107) enforces the negativity constraint. The second

function involves a cutoff radius u0(r) chosen to satisfy the hole normalization constraint

of Eq. (105). The hole of Eq. (108) is substituted into Eq. (33) to give the numerical

enhancement factor Fx(x), which is then fitted to an analytic form.
5 The real-space cut-off

procedure determines only the general features of the functional but not its analytic

representation. The latter may be chosen in different ways depending on which exact

constraints one decides to impose. The first practical exchange functional of this type was

5 Strictly speaking, the cutoff procedure uses the angle- and system-averaged GGA exchange hole [156], i.e., the

hole around an electron averaged over the position of that electron. We omit here technical details for the sake

of clarity.
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derived in 1986 by Perdew and Wang [136]

FPW86
x ðsÞ ¼ 1þ mSs

2

m
þ bs4 þ cs6

{ !m

ð109Þ

in which m ¼ 1/15, mS ¼ 7/81, b ¼ 14, and c ¼ 0.2 are nonempirical parameters.

In 1991, Perdew and Wang [76,155,157] used the same approach to derive a

nonempirical exchange functional whose analytic representation was inspired by the B88

form:

FPW91
x ðsÞ ¼ 1þ bc2ðc1sÞ2 2 ½bc2ðc1sÞ2 2 mAK	e2100s2 2 0:004s4

1þ 6bðc1sÞsinh21ðc1sÞ þ 0:004s4
ð110Þ

where c1 ¼ 2(6p2)1/3, c2 ¼ (21/3Cx)
21,b ¼ 0.0042 (theB88 coefficient), andmAK ¼ 10/81.

The particular form of Eq. (110) was chosen to satisfy a large number of exact

constraints. Although PW91 is modeled after the B88 functional, it does not yield

the correct asymptotic behavior of the exchange energy density, a property abandoned

in favor of more desirable constraints. The function sinh21(c1 s) in Eq.(110) is only a

B88 relic.

The exact DGE for the correlation hole is not known except in the high-density limit,

so away from this limit approximate gradient-corrected models have to be used instead.

Perdew and coworkers [153,158] constructed a real-space model for the spherically-

averaged GGA correlation hole starting from an accurate analytic representation

Acðrs; z; uÞ of the LSDA correlation hole, adding a gradient correction Bcðrs; z; uÞ; and
truncating the sum to satisfy the normalization constraint of Eq. (106)


hGGAc ðrs; z; t; uÞ ¼ f3ðfksÞ2½Acðrs; z; uÞ þ t2Bcðrs; z; uÞ	uðu0 2 uÞ ð111Þ
where ks ¼ (4kF/p)

1/2, t is the reduced gradient of Eq. (86) generalized to spin-polarized

systems

t ¼ l7rl
2fksr

ð112Þ

u0 is the cutoff radius, and

fðzÞ ¼ ð1þ z Þ2=3 þ ð12 z Þ2=3
2

ð113Þ

The hole of Eq. (111) is substituted into Eq. (33) and the integral is evaluated

numerically. The result is written as

EGGAc ½ra; rb	 ¼
ð
reLSDAc ðrs; z Þdrþ

ð
rHðrs; z; tÞdr ð114Þ

where Hðrs; z; tÞ is a numerically defined gradient correction. The last step in this

derivation is to find a suitable analytic representation for Hðrs; z; tÞ: Two different

solutions to this problem have been proposed, leading to the PW91 [76,155,157] and
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PBE [159] correlation functionals. The PW91 gradient correction has the form

HPW91ðrs; z; tÞ ¼ HPW91
0 ðrs; z; tÞ þ H1ðrs; z; tÞ ð115Þ

The H1 term in Eq. (115) is negligible, unless sp 1 [155]. In PBE,

HPBEðrs; z; tÞ ¼ HPBE
0 ðrs; z; tÞ ð116Þ

The analytic representations of HPW91
0 and HPBE

0 have the same form given by

H0ðrs; z; tÞ ¼ gf3ðz Þln 1þ bMB
g

t2
1þ At2

1þ At2 þ A2t4

{ !" #
ð117Þ

where

A ¼ bMB
g

1

e2eLSDAc ðrs;z Þ=gf3 2 1
ð118Þ

The only difference between HPW91
0 and HPBE

0 is in the values of g used in Eqs. (117) and
(118). In PW91,

gPW91 ¼ b2MB
2a

< 0:024734 ð119Þ

where a ¼ 0.09 is a constant chosen to approximate the t4 dependence of the numerical

eGGAc : In PBE,

gPBE ¼ AGB < 0:031091 ð120Þ
which is the exact second-order gradient coefficient of the LDA correlation energy

expansion [see Eq. (70)].

The analytic form of the gradient correction Hðrs; z; tÞ was motivated by the following
three conditions [159]: (1) Hmust reduce to the second-order term in the DGE expansion

for correlation in the slowly-varying limit, H ! bMBf
3t2; (2) if the density changes

infinitely fast (t ! 1), the correlation energy must vanish, that is, H !2eLSDAc ;

(3) under uniform scaling to the high-density limit, H must cancel the logarithmic

singularity of eLDAc to satisfy the uniform scaling constraint of Eq. (49).

The HPBE
0 recovers the first constraint by itself, but HPW91

0 does not. In order to recover

the correct second-order gradient expansion for the correlation energy in the s! 0 limit,

another term is used:

H1ðrs; z; tÞ ¼ n CcðrsÞ2 Ccð0Þ þ 3

7
bS

� �
f3ðz Þt2e2100f4ðzÞðkst=kFÞ2 ð121Þ

where n ¼ 16ð3=pÞ1=3 is the conversion factor from the units of rt2 to r4=3x2.
The numerical GGA based on the model hole of Eq. (111) and the PBE analytic

representation of this functional both satisfy Levy’s uniform scaling constraint for

correlation, but the form EPW91
c ½ra; rb	 does not (the culprit here is the small H1 term).

In molecular calculations, however, these subtle differences never show up, so the PBE

and PW91 correlation functionals are equivalent for most practical purposes.
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24.7.3 Systematic constraint satisfaction

Simply imposing correct asymptotic limits on the second-order density-gradient

expansion (Section 24.7.1) proved to be a very effective strategy for designing exchange

functionals. It is reasonable to assume that the more exact constraints an approximate

density functional satisfies, the more accurate and universal it will be. This idea is behind

many existing density functional approximations.

Langreth and Mehl [134] used the sharp cut-off procedure in momentum space to

eliminate spurious contributions to Ec and an empirical exponential function to damp the

gradient contribution to the energy. The Langreth–Mehl (LM) functional [134,160,161]

has now mostly a historical significance. A few years later, Perdew [162] improved the

LM functional by imposing two additional requirements that it recover the correct

second-order DGE in the slowly varying density limit and reduce in the uniform density

limit to LDA, not to the random-phase approximation (RPA), as the LM functional does.

Perdew’s 1986 correlation functional is

EP86c ra; rb

h i
¼ ELSDAc ra; rb

h i
þ

ð e2Fðr;7rÞ

dðz Þ CcðrsÞ l7rl
2

r4=3
dr ð122Þ

where the function

dðz Þ ¼ 21=3
1þ z

2

� �5=3
þ 12 z

2

� �5=3" #1=2
ð123Þ

interpolates between the spin-compensated and spin-polarized forms [160], while

Fðr;7rÞ ¼ ð9pÞ1=6~f Ccð0Þ
CcðrsÞ

l7rl
r7=6

ð124Þ

with the parameter ~f ¼ 0:11 chosen to fit the exact correlation energy of the neon atom.
Cc(rs) is the gradient coefficient of Eq. (85) in the parametrization by Rasolt and Geldart

[122]. In the original paper, ELSDAc ½ra; rb	 was taken in the PZ81 parametrization of the
Ceperley–Alder data, and this is how P86 is implemented in the GAUSSIAN program. The

P86 correlation functional correctly reduces to LDA for uniform densities, but does not

scale to a constant under the uniform scaling transformation of the density.

Wilson and Levy [163] were the first to explicitly impose the high-density scaling

constraint of Eq. (49) on an approximate correlation functional

EWL
c ½ra; rb	 ¼

ð
r
ðaþ bxÞð12 z2Þ1=2
cþ dðxa þ xbÞ þ rs

dr ð125Þ

where x ¼ l7rl/r4/3, xs ¼ l7rsl=r
4=3
s ; and a, b, c, and d are empirical parameters. Some

prior correlation functionals, such as B88c and LYP (see Section 24.8 below), also

respect Eq. (49) for all densities, although they predate the formal proof of it. More recent

nonempirical functionals described in the rest of this section are purposely constructed to

satisfy Eq. (49) among many other exact constraints. Satisfaction of density scaling
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constraints for the exchange and correlation energies may not be important for ‘usual’

systems, but it becomes crucial for a proper description of high-Z atomic ions [164].

In 1996, Perdew, Burke, and Ernzerhof (PBE) [159] constructed a simple exchange

functional by imposing several energetically significant exact constraints. The

enhancement factor of the PBE exchange functional is similar to that of B86 [Eq. (91)],

FPBEx ðsÞ ¼ 1þ ms2

1þ ms2=k
ð126Þ

Here k ¼ 0.804 is a nonempirical parameter chosen to satisfy the Lieb–Oxford bound in

its local form: Fx(s) # 1.804 for any s. The value of m ¼ bMB(p
2/3) < 0.21951 is

determined from the condition that the second-order gradient term for exchange cancel

that for correlation (i.e. rbMBt
2 ¼ mCxr

4=3s2). This choice, rather than m ¼ mAK ¼ 10
81
;

assures that in the s ! 0 limit the PBE exchange-correlation reduces to LDA for nearly

uniform densities faster than PW91 does. Although Eq. (126) is not based on any

particular hole model, it is numerically very similar to the PW91 exchange functional of

Eq. (110) and, in fact, produces nearly the same results. An empirical adjustment of the

parameter k from 0.804 to 1.245 in the PBE exchange functional has been proposed

[165], but Perdew and coworkers [166] defended the original nonempirical value.

Hammer et al. [167] attempted to reconcile both points of view by suggesting a minor

revision of the analytic form of Eq. (126).

The PW91 and PBE exchange-correlation approximations exhaust the number of exact

constraints that can be practically imposed on GGAs, that is, functionals whose

ingredients are rsðrÞ and 7rsðrÞ: Bringing into play the kinetic energy density ts(r) of
Eq. (40) opens new opportunities (the meta-GGA level). One particular use of ts(r) is
based on the following property:

tWs ðrÞ # tsðrÞ ð127Þ
where

tWs ¼ 1

8

l7rsl
2

rs
ð128Þ

is the von Weizsäcker kinetic energy density.6 In Eq. (127), the strict equality holds only

if rs(r) is represented by a single real Kohn–Sham orbital. Therefore, the quantity

hSCCs ¼ 12
tWs
ts

ð129Þ

vanishes for any one-electron system and is strictly positive in systems with more than

6 Proof. Let us introduce the symbolic vectors f ; ðf1;f2;…;fN Þ and g ; ð7f1;7f2;…;7fN Þ; where the
spin-index s has been suppressed for brevity. By definition

r ¼ lfl2; t ¼ 1

2
lgl2; tW ¼ 1

8

l7rl2

r
¼ 1

8

lgp·f þ fp·gl2

lfl2
#

1

2

lfp·gl2

lfl2

where the strict equality holds only if all fi are real. The result tW # t follows from the Schwarz inequality

lfp·gl2 # lfl2lgl2: Thus, if N ¼ 1 and f1 is real, then lfp·gl2 ¼ lfl2lgl2; and so tW ¼ t.
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one s-spin electron [168,169]. In practical terms, this means that hSCCs can be used as a

multiplicative self-correlation correction (SCC) ensuring that Ec vanishes for any one-

electron density [Eq. (45)]. Satisfaction of this constraint is not possible at the GGA level.

The functionals discussed in the rest of this section all make use of this trick.

Becke’s 1995 correlation functional (B95) [168] was constructed to satisfy the

following set of conditions: (a) the correct uniform density limit; (b) separation of the

correlation energy into parallel-spin and opposite-spin components; (c) zero correlation

energy for one-electron systems; (d) good fit to the atomic correlation energies. These

requirements are met by the following analytic form

EB95c ¼ Eaa
c þ Ebb

c þ Eab
c ð130Þ

where

Ess
c ¼

ð ts 2 tWs
tunifs

eUEGcss ðrsÞ
ð1þ cssx

2
sÞ2

dr ð131Þ

Eab
c ¼

ð eUEGcab ðra; rbÞ
1þ cabðx2a þ x2bÞ

dr ð132Þ

in which t unifs ¼ 3
10
ð6p2Þ2=3r5=3s ; and css ¼ 0:038 and cab ¼ 0:0031 are fitted

parameters. The same-spin correlation energy density of the UEG is simply

eUEGcss ðrsÞ ¼ eLSDAc ðrs; 0Þ ð133Þ
The opposite-spin energy density is freed from self-correlation by the method of Stoll

et al. [170,171]:

eUEGcab ðra; rbÞ ¼ eLSDAc ðra; rbÞ2 eLSDAc ðra; 0Þ2 eLSDAc ðrb; 0Þ ð134Þ
where eLSDAc ðra; rbÞ ¼ reLSDAc ðra; rbÞ is the LSDA correlation energy density.

Krieger, Chen, Iafrate, and Savin (KCIS) [172] revisited the LDA for correlation and

attributed the LDA overestimation of correlation energies for nonuniform densities to the

fact that, unlike an electron gas, finite many-electron systems have a nonzero energy gap

between the Fermi level and the continuum (the gap is equal to the ionization potential

[173]). To improve the LDA description of systems with a finite orbital gap, they made

use of the formula of Rey and Savin [174] for the correlation energy per particle of the

electron gas with an energy gap G,

~e i
c r;7r
� � ¼ e icðr;7rÞ þ ci1ðrÞG

1þ ci2ðrÞGþ ci3ðrÞG2
ð135Þ

where i ¼ P;F; cikðrÞ; are density-dependent coefficients, and e icðr;7rÞ is defined in Ref.
[175]. They also assumed that the local value of the gap G is determined by the density

and its gradient, G ¼ l7rl2/8r2 ¼ tW/r, and used the Barth–Hedin-type interpolation
formula for ~ec; the correlation energy per particle of a spin-polarized electron gas with a
gap. The final expression for the KCIS correlation functional was designed to satisfy

the same three conditions as those respected by the PBE correlation functional, plus
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the requirement that the correlation energy vanish for one-electron densities [Eq. (45)]

EKCISc ½ra; rb	 ¼
ð

r ~ecðra; rb;7ra;7rbÞ2
X
s

tWs
ts

rs ~ecðrs; 0;7rs; 0Þ
" #

dr ð136Þ

Perdew, Kurth, Zupan, and Blaha [176] (PKZB) constructed a t-dependent functional
by preserving and extending the list of constraints satisfied by the PBE exchange-

correlation GGA. The kinetic energy density appears both in the exchange and

correlation components of the PKZB functional. In the exchange part, t is an argument of
the enhancement factor

FPKZBx ¼ 1þ x

1þ x=k
ð137Þ

where x ¼ x ðr;7r; tÞ is a new variable replacing the variable ms2 of PBE. The particular
form of x (not shown here) was chosen to reproduce the fourth-order gradient expansion
of Fx for slowly varying densities. The analytic representation of x contains only one

empirical parameter optimized by minimizing the MAE in the atomization energies of a

20-molecule training set [176].

The PKZB correlation functional combine the ingredients ePBEc and ts,

EPKZBc ½ra; rb	 ¼
ð

rePBEc ðra; rb;7ra;7rbÞ 1þ C

X
s
tWsX

s
ts

{ !224 358<:
2ð1þ CÞ

X
s

{
tWs
ts

!2
rse

PBE
c ðrs; 0;7rs; 0Þ

9=;dr
ð138Þ

where C is a nonempirical constant chosen to reproduce PBE surface correlation energies

of a UEG. Note that PKZB is self-correlation free for one-electron densities.

PKZB is much more accurate than PBE for atomization energies [177] but inferior for

equilibrium bond lengths, vibrational frequencies [177], dissociation energies and,

especially, geometries of hydrogen-bonded complexes [178]. These concerns prompted

Tao, Perdew, Staroverov, and Scuseria (TPSS) [179] to search for additional constraints

to be imposed at the meta-GGA level in order to improve upon PBE and PKZB for all

properties. The principal problem with PKZB turned out to be with the exchange

component. In PBE and PKZB, the enhancement factors are such that the exchange

potentials vxs (r) diverge at the nuclei (see Fig. 1 of Ref. [180]). In the case of PBE, the

divergence of vxs (r) is harmless, but in the case of PKZB it is manifested in overstretched

bond lengths. This problem was addressed in the TPSS approximation by requiring that

vxs (r) be finite at the nucleus whenever t
W
s ¼ ts; a condition that covers compact iso-

orbital densities (i.e. one- and spin-compensated two-electron densities represented by

real Kohn–Sham orbitals). In effect, the new constraint eliminates the divergence for

nearly all realistic many-electron systems, because rs(r) near the nucleus is dominated
by the 1s orbital, so that ts ! tWs : This proved to be the last and key constraint that made
it possible to obtain accurate atomization energies and bond lengths from a nonempirical

meta-GGA [180].
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The TPSS exchange enhancement factor has the same form as in PKZB [Eq. (137)],

but the function x ðr;7r; tÞ in TPSS is much more complicated (which is necessary to
satisfy additional constraints). Aside from producing a finite vxsðrÞ at the nucleus, the
TPSS exchange functional reproduces the fourth-order density gradient expansion [120]

for slowly varying densities and yields the correct exchange energy for ground-state one-

electron hydrogenic densities (for the H atom, Eexactx ¼ 2 5
16
Eh). Improvements in the

correlation part of TPSS are of a technical character [179]:

ETPSSc ½ra; rb	 ¼
ð
re revPKZBc 1þ de revPKZBc

tW
t

� �3" #
dr ð139Þ

Here d is a nonempirical constant and e revPKZBc is the revised PKZB correlation energy per

particle

e revPKZBc ¼ ePBEc ðra; rb;7ra;7rbÞ 1þ Cðz; j Þ tW
t

� �2" #
2 ½1þ Cðz; j Þ	 tW

t

� �2
�
X
s

rs
r
max½ePBEc ðrs; 0;7rs; 0Þ; ePBEc ðra; rb;7ra;7rbÞ	

ð140Þ
In TPSS, C is no longer a constant but a function of the spin polarization z and a variable
j ¼ l7zl/2(3p 2r)1/3. C(z, j ) is designed to make ETPSSxc ½ra; rb	 properly independent of
z in the low-density limit. The max() function in Eq. (140) ensures that e revPKZBc is strictly

negative everywhere, a property that is weakly violated by PKZB. Extensive tests on

molecules, hydrogen-bonded complexes [180], and solids [181] indicate that, property by

property, TPSS overcomes all the shortcomings of PKZB and closely follows or exceeds

in accuracy nearly all other density functionals, including B3LYP.

24.8 MODELING THE EXCHANGE-CORRELATION HOLE

The sharp cutoff procedure introduces spurious kinks into the GGA exchange hole of

Eq. (107), which complicate the derivation of the P86 and PW91 exchange functionals.

In this section, we will consider functionals that are based on smooth analytic hole

models normalized from the outset.

24.8.1 Exchange functionals based on a model hole

Becke and Roussel [182] constructed a model exchange hole starting with the second-

order Taylor expansion of the exact spherically averaged s-spin hole [183]

hssx ðr; uÞ ¼ 2rsðrÞ2 1

6
½72rsðrÞ2 4tsðrÞ þ 4tWs ðrÞ	u2 þ · · · ð141Þ

and fitting it to a generalized analytic form of the exact hydrogenic exchange hole.

The exact normalized hydrogenic 1s density is rHðrÞ ¼ ða3=8pÞe2alrl; where a ¼ 2Z.
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Hence the spherically averaged exchange hole for a hydrogenic atom is

hHx ðr; uÞ ¼ 2
1

4p

ð2p
0
dfu

ðp

0
rHðrþ uÞ sin uuduu

¼ 2
1

4p

ð2p
0
dfu

ðp

0

a3

8p
e2a

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2þu222ru cosuu

p
sin uuduu

¼ 2
a

16pru
½ðalr 2 ulþ 1Þe2alr2ul 2 ðalr þ ulþ 1Þe2alrþul	 ð142Þ

The analytic form of Eq. (142) is sufficiently flexible to parametrize the exact second-

order expansion of the exchange hole for anymany-electron system, if it is generalized as

hBRx ða; b; uÞ ¼ 2
a

16pbu
½ðalb2 ulþ 1Þe2alb2ul 2 ðalbþ ulþ 1Þe2albþul	 ð143Þ

where a and b are positive scalar functions of rs; l7rsl;72rs; and ts; without any
physical significance. The underlying hydrogenic model still ensures that the generalized

hole of Eq. (143) is nonpositive and normalized to21. For a given reference point r, the

values of a(r) and b(r) are obtained by expanding Eq. (143) in a Taylor series to second

order in u and comparing its zeroth- and second-order coefficients with those of Eq. (141).

Then the substitution of Eq. (143) into Eq. (33) yields

EBRx ½ra; rb	 ¼ 2
1

2

X
s¼a;b

ð rsðrÞ
bðrÞ 12 e2abð1þ 1

2
abÞ� �

dr ð144Þ

In contrast to the gradient expansion of the exchange hole of Perdew [135], the BR

functional does not reduce to LSDA in the uniform density limit. To recover this limit

approximately, Becke and Roussel multiplied the term ðts 2 tWs Þ in Eq. (141) by an
adjustment factor of 0.8. At the same time, the BR exchange energy density has the

correct 2r(r)/2r asymptotic behavior in the r ! 1 limit.

Around the same time, Becke [184] proposed a real-space normalized model for

the correlation hole. He started from the observation that, for a given coupling strength

l; the spin-polarized components of the spherically averaged pair densities have well-
defined short-range behavior near the reference point [185]:

P
ss;l
2 ðr; uÞ ¼ AssðrÞ


1þ l

2
u
�
u2 þ · · · ð145Þ

P
ab;l
2 ðr; uÞ ¼ AabðrÞð1þ luÞ þ · · · ð146Þ

where Ass(r) and Aab(r) are certain functions. The pair densities trivially determine the

exchange-correlation hole by Eq. (10). By using Eqs. (10), (103), the Taylor series

expansion for the exchange hole [Eq. (141)], and going through a number of algebraic

manipulations, Becke obtained explicit formulas for h
ss;l
c ðr; uÞ and h

ab;l
c ðr; uÞ:

Substitution of these expressions into the adiabatic connection formula of Eq. (29)
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yields the correlation energy functional

EB88cc ¼ Eaa
c þ Ebb

c þ Eab
c ð147Þ

Ess
c ¼ Css

ð
rsðts 2 tWs Þz4ss 12

2

zss
ln 1þ zss

2

� �� �
dr ð148Þ

Eab
c ¼ Cab

ð
rarbz

2
ab 12

1

zab
ln 1þ zab

 �" #
dr ð149Þ

where zss and zab are the so-called correlation lengths, defined in Ref. [184], while

Css and Cab are adjustable constants.

Performance of the BR and B88c functionals has been studied by Becke [186], as well

as by Neumann and Handy [187]. A comprehensive assessment of these functionals,

completed recently by Izmaylov et al. [188], indicates that the accuracy of BR is

comparable to that of the B88 exchange, while the B88c approximation is less accurate

than LYP, PW91, and similar correlation functionals.

Approximate functionals derived from a model exchange-correlation hole are

relatively few in number. The majority of functionals are not based on any explicit

model hole. The holes corresponding to such functionals are not even known and, if

needed, have to be ‘reverse-engineered’ from the functional itself. Ernzerhof and Perdew

[189] did this to obtain a smooth analytic representation for the angle- and system-

averaged PBE GGA exchange hole. When substituted into Eq. (33), their model gives the

hole-based PBE functional [189]. For practical purposes, the hole-based PBE exchange is

numerically equivalent to the energy-based functional of Eq. (126). Explicit exchange-

correlation holes are of considerable interest on their own. The work on the TPSS hole is

currently in progress [190].

24.8.2 Functionals based on a correlated wave function

The best-known example of approximations of this type is the correlation functional of

Lee, Yang, and Parr (LYP) [191]. LYP is nothing but a DFT adaptation of the orbital-

dependent correlation energy formula of Colle and Salvetti (CS) [192]. The starting point

of the derivation is a correlated wave function of the form

Cðx1; x2;…; xNÞ ¼ CHFðx1; x2;…; xNÞ
Y
i,j

½12 f ðri; rjÞ	 ð150Þ

where CHF is the Hartree–Fock wave function (a single determinant) and f(ri, rj) is a

model two-electron correlation function. Arguing that f(ri, rj) is small for typical positions

of electrons, Colle and Salvetti obtained an approximate formula for the corresponding

electron pair density

PCS2 ðr1; r2Þ ¼ PHF2 ðr1; r2Þ½12 f ðr1; r2Þ	2 ð151Þ

where PHF2 ðr1; r2Þ is the spin-free Hartree–Fock electron pair density of Eq. (37).
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The conventional quantum-mechanical correlation energy is then given by

ECSc ¼
ðð PCS2 ðr1; r2Þ2 PHF2 ðr1; r2Þ

r12
dr1dr2

¼
ðð

PHF2 ðr1; r2Þ f
2ðr1; r2Þ2 2f ðr1; r2Þ

r12
dr1dr2 ð152Þ

By making a series of approximations, Colle and Salvetti then obtained the following

expression in terms of interparticle coordinates R ¼ (r1 þ r2)/2 and u ¼ r1 2 r2

ECSc ¼ 2a
ð
rðRÞ 1þ br28=3ðRÞ½72

uP
HF
2 ðR; uÞ	u¼0 exp½2cr21=3ðRÞ	

1þ dr21=3ðRÞ dR ð153Þ

where the values of the parameters a ¼ 0.04918, b ¼ 0.132, c ¼ 0.2533, and d ¼ 0.349

were determined by fitting to certain exact data relevant to the He atom.

Lee, Yang, and Parr [191] carried out this analysis further by rewriting Eq. (153) in an

equivalent form

ECSc ½r	 ¼ 2a
ð
rðrÞ 1þ br25=3ðrÞ½tHFðrÞ2 2 ~tW ðrÞ	 exp½2cr21=3ðrÞ	

1þ dr21=3ðrÞ dr ð154Þ

where

~tW ¼ 1

8

l7rl2

r
2

1

8
72r ð155Þ

and tHF is the Hartree–Fock kinetic energy density [note also the addition of the

Laplacian term which was not included in the definition of tW in Eq. (127)]. Eq. (154) is

still not a conventional density functional, because it involves dependence on the orbitals

through the tHF term. Lee, Yang, and Parr simplified this expression by replacing

tHF with its second-order gradient expansion

tHF < tunif þ 1

9
~tW þ 1

18
72r ð156Þ

where tunif ¼ 3
10
ð3p2Þ2=3r5=3 is the Thomas–Fermi kinetic energy density of a UEG. The

final expression,

ELYPc ½r	 ¼2a
ð rþbr22=3 CFr

5=322 ~tW þ 1
9 ~tW þ 1

18
72r

 �
expð2cr21=3Þ

1þdr21=3
dr ð157Þ

where CF¼ 3
10
ð3p2Þ2=3; proved to be an excellent approximation to Eq. (153).

The LYP functional as given by Eq. (157) is a meta-GGA, because it depends on the

Laplacian of the density. Miehlich et al. [193] pointed out that 72r(r) can be eliminated
from the LYP formula by partial integration. Their transformed version of LYP,
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reproduced here in the spin-polarized form, is given by [194]

ELYPc ½ra; rb	 ¼ 2a
ð 4

1þ dr21=3
rarb
r

þ 211=3CFbvrarbðr8=3a þ r
8=3
b Þ

"
þLaal7ral2 þ Lab7ra·7rb þ Lbbl7rbl

2
i
dr

ð158Þ

where

Laa ¼ bv
1

9
rarb 12 3d2 ðd2 11Þ ra

r

� �
2 r2b

� �
ð159Þ

Lab ¼ bv
1

9
rarbð472 7dÞ2 4

3
r2

� �
ð160Þ

Lbb is obtained by interchanging subscripts a and b in Eq. (159),

v ¼ e2cr21=3

1þ dr21=3
r211=3; d ¼ cr21=3 þ dr21=3

1þ dr21=3
ð161Þ

and a, b, c, d are the same parameters as in Eq. (153).

Although the LYP functional does not reduce to LSDA for uniform densities (only

about 25% of the true correlation energy of a UEG is recovered [195]), it is an accurate

approximation for atomic correlation energies. The good performance of LYP, however,

appears to be a fluke. In a critical analysis, Singh et al. [196] demonstrated that the Colle–

Salvetti correlation energy formula is seriously flawed. For example, the wave function of

Eq. (150) is not normalized, and the Kohn–Sham correlation potential corresponding to

the Colle–Salvetti formula is grossly inaccurate [197]. Their analysis was continued by

Imamura et al. [198].

The idea of generating density functionals from correlated wave functions continues to

attract attention [199]. Imamura and Scuseria [200] recently derived a correlation

functional starting from a Colle–Salvetti type correlated wave function and using the

transcorrelated method of Boys and Handy [201,202]. Colle–Salvetti-type correlation

functionals that treat parallel-spin and opposite-spin contributions to the

correlation energy separately have been also developed by Tsuneda and Hirao [203],

Tsuneda et al. [204].

24.8.3 Functionals based on a model pair correlation function

The exchange-correlation hole hlxcðr1; r2Þ is closely associated with the pair distribution
function glðr1; r2Þ defined by

Pl
2ðr1; r2Þ ¼ 1

2
rðr1Þrðr2Þglðr1; r2Þ ð162Þ
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where Pl
2 is the pair density at coupling strength l. Comparison with Eq. (10) shows that

hlxcðr1; r2Þ ¼ rðr2Þ½glðr1; r2Þ2 1	 ð163Þ

Note that glðr1; r2Þ is symmetric in its variables, unlike hlxcðr1; r2Þ: At l ¼ 0,

gl ¼ gx þ glc reduces to the exchange-only pair-distribution function gx. This implies

that hx(r1, r2) ¼ r(r2)[gx(r1, r2) 2 1] and hlc (r1, r2) ¼ r (r2)g
l
c(r1, r2). It is easy to establish

that the pair distribution function determines the exchange-correlation energy by a

formula similar to Eq. (31), and that

Ec ¼ 1

2

ð1
0
dl

ðð
rðr1Þrðr2Þ g

l
c ðr1; r2Þ
r12

dr1 dr2 ð164Þ

Although glc ðr1; r2Þ is trivially related to hlc ðr1; r2Þ; it is instructive to treat density

functionals based on glc ðr1; r2Þ as a separate subgroup. The function glc ðr1; r2Þ is either
derived (approximately) from a correlated wave function (the Colle–Salvetti formula can

be viewed in this light) or postulated as a ‘model’.

Proynov, Salahub, and coworkers have developed several correlation functionals

[205–209] starting from a GAUSSIAN model of the spherically-averaged pair distribution

function for opposite-spin electrons

glc;abðR; uÞ ¼ 2e2z2abu
2½F1ðR; lÞ þ F2ðR; lÞ	 ð165Þ

where F1(R, l) and F2(R, l) are certain parametrized functions and zab is the correlation
length. Substitution of glc;ab into Eq. (164), followed by analytic integration over l, yields

Eab
c ¼ 1

2

ð
dR

ð1

0
kraðRþ u=2ÞrbðR2 u=2Þl
gc;abðR; uÞu du; ð166Þ

where k· · ·l indicates averaging over the spherical components of u. In the LAP1 and LAP2
models [206], the opposite-spin contribution to the correlation energy ðEab

c Þ is obtained by
Eq. (166), the Ess

c terms are neglected, and the total correlation energy is approximated as

Ec ¼ 2E
ab
c : The LAP3 model [208] takes into account the parallel spin contributions and

approximates them by the formula essc ¼ ð12 1=NsÞCpess 0
c ; where Ns is the number of

spin-s electrons andCp is an empirical factor. The total correlation energy is then given as
the sum of these components. The spherical average in the LAP1–LAP3 models is

approximated by the first term of the Taylor series expansion about R:

kraðRþ u=2ÞrbðR2 u=2Þl < 4praðRÞrbðRÞ ð167Þ
but in a recent revision [209], called the t1-model, the right-hand side of Eq. (167) is
augmented by a correction term that depends on r, l7rl, and 72r.

24.8.4 Functionals based on a density matrix expansion

The exact exchange energy of a closed-shell system can be obtained from the density

matrix r(r1, r2) by Eq. (38). Replacing r(r1, r2) in this formula by a truncated expansion

Chapter 24704



in r and its gradients is a natural path to an exchange functional. This idea was pioneered
by Negele and Vautherin [210] in the framework of nuclear matter theory and developed

into practical exchange functionals for quantum chemistry by Scuseria and coworkers

[211–214]. Originally, Negele and Vautherin expanded r(r1, r2) in transformed

coordinates R ¼ (r1 þ r2)/2 and u ¼ r1 2 r2. Koehl et al. [211] generalized this

transformation to

R ¼ ar1 þ ð12 aÞr2; u ¼ r1 2 r2 ð168Þ
where 0 # a # 1

2
: After performing the Taylor expansion of r(R, u) around u ¼ 0,

averaging the series over the angular coordinates of u, expanding the result in Bessel
functions jn(u) and Legendre polynomials Pn(R), and truncating the series after the

second-order terms, one obtains [211]

rðR;uÞ¼ 3j1ðkuÞ
ku

rðRÞþ 35j3ðkuÞ
2k3u

a22aþ 1

2

� �
72rðRÞ22tðRÞþ 3

5
k2rðRÞ

� �
ð169Þ

where k is the relative momentum of two electrons. Substitution of this DME into Eq. (38)

gives

EDMEx ½r	¼2p
ð 9

4k2
r2þ 35

12k4
r a22aþ 1

2

� �
72r22tþ 3

5
k2r

� �� �
dr ð170Þ

Note that the choice k ¼ kF, regardless of the value of a, yields the LDA (Dirac) exchange

formula (58) as the first term of EDMEx ½r	: The remaining terms containing 7r, 72r, and
t, naturally arise as corrections to the LDA.
Surprisingly, the nonempirical functional of Eq. (170) with a ¼ 0 (the implicit choice

of Negele and Vautherin) proved to be a worse approximation than LDA, with anMAE of

3.66 Eh for a test set of 32 molecules, compared to 1.79 Eh for LDA. Koehl, Odom, and

Scuseria (KOS) suggested treating a as an adjustable parameter and found that at its

optimal value (a ¼ 0.0000638) the error of Eq. (170) drops to 0.087 Eh, which is only

about twice as large as the error of B88 (MAE ¼ 0.041 Eh). By setting a ¼ 0 and

optimizing the coefficients of the r2 and r terms they found

EKOSx ½r	 ¼
ð A

k2F
r2 þ B

k4F
r

1

2
72r2 2tþ 3

5
k2Fr

� �" #
dr ð171Þ

where A ¼ 27.31275 and B ¼ 25.43182. The MAE of the KOS functional for the same

32-molecule test set is only 0.026 Eh.

Recently, Maximoff and Scuseria [214] worked out the full fourth-order density matrix

expansion (DME4) and proposed a corresponding exchange functional called DME4x. In

test calculations, DME4x produced some of the most accurate atomic and molecular

exchange energies. Developing exchange functionals by incorporating higher orders of

the DME may look like a safe bet, but in practice this approach is wrought with

difficulties. High-order DMEs involve unusual ingredients like 7nr(r) and 7nt(r) with
n . 1, whose presence causes an extreme numerical sensitivity of exchange-correlation

matrix elements and makes self-consistent calculations difficult to converge.
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24.9 EMPIRICAL FITS

A pragmatic approach to developing density functional approximations is to expand the

post-LDA correction in a set of suitably chosen parametrized functions and optimize the

parameters by training the functional to reproduce certain calibration data as accurately

as possible. Of course, fitted parameters appear in many of the previously discussed

functionals, but there they were used only to ‘clean up’ the construction. In this survey,

we call ‘empirical’ or ‘optimized’ only those functionals whose design is avowedly

empirical.

Optimization of empirical parameters is often accompanied by relaxing exact

constraints. As a result, many optimized functionals violate some of the basic analytic

properties, such as the uniform density limit of Eq. (46). For instance, Slater’s Xamethod
[9–11], which is nowadays regarded as an empirical variant of Dirac’s exchange, clearly

does so.

Systematic procedures for optimizing GGA and meta-GGA exchange-correlation

functionals have been developed by Becke [215,216], Adamson et al. [217], Handy and

coworkers [218–221]. In Becke’s method, the total exchange-correlation energy is

written as

Exc ¼
X
s

Es
x þ Eab

c þ
X
s

Ess
c ð172Þ

where the individual energy components have the form

Es
x ¼

ð
eUEGxs ðrsÞFs

x dr ð173Þ

Eab
c ¼

ð
eUEGcab ðra; rbÞFab

c dr ð174Þ

Ess
c ¼

ð
eUEGcss ðrsÞhSCCs Fss

c dr ð175Þ

Here, eUEGxs ðrsÞ ¼ 221=3Cxr
4=3
s ; eUEGc are the correlation energy densities of a UEG given

by Eqs. (133) and (134); F are enhancement factors (functions of rs,7rs and, possibly,
72rs and ts), and hSCCs is the SCC of Eq. (129). Each F is represented by a polynomial

F ¼
Xn
m¼0

cmw
mðrs;7rs;…Þ ð176Þ

where w is a suitably chosen function derived from approximate expressions for gradient

corrections [215]; cm are empirical coefficients determined by least-squares fitting to

training sets of accurate experimental and/or theoretical data. Eqs. (172)–(176) underlie

several empirical functionals, such as Becke’s 1997 (B97) exchange-correlation [215],

Schmider–Becke’s 1998 hybrid GGA (SB98h) [222] and hybrid meta-GGA (t-SB98h)
[223], the GGA of Hamprecht, Cohen, Tozer, and Handy (HCTH) [219], its

various reparametrizations (HCTH/120, HCTH/147 [224], and HCTH/407 [225],

and t-HCTH [226].

Chapter 24706



In 1997, Van Voorhis and Scuseria [212] argued that, since electron densities in

chemistry are not uniform, one may generalize the DME of Eq. (169) by replacing the

fixed k ¼ kF by a variable k
2 ! k2Fwðx; zÞ; where w(x, z) is a function of x ¼ l7rl/r4/3 and

z ¼ 2(t/r5/3 2 CF). Accordingly, they proposed two exchange functionals of the form

FVS97x ðx; zÞ ¼ aþ b1x
2 þ b2z

wðx; zÞ ð177Þ

where w(x, z) ¼ 1 þ a1x
2 þ a2z; and a; b1; b2;a1;a2 are empirical parameters. The

resulting approximations were found to be in a better agreement with the Hartree–Fock

values than most of the other exchange functionals available at the time.

In 1998, Van Voorhis and Scuseria extended this approach [213] to include more terms

FVS98x ðx; zÞ ¼ a

wðx; zÞ þ b1x
2 þ b2z

w2ðx; zÞ þ c1x
4 þ c2x

2zþ c3z
2

w3ðx; zÞ ð178Þ

where a, bi, and ci are empirical parameters. The form of the function w(x, z) ¼
1 þ a(x2 þ z) was chosen to satisfy certain nonuniform scaling relations. Notice that

neither VS97 nor VS98 reduces to the LSDA for uniform densities.

For the VS98 correlation, Van Voorhis and Scuseria [213] assumed the general form of

Eq. (174) and (175) with the Perdew–Wang parametrization [114] of eLSDAc ðra; rbÞ:
Hoping for cancellation of errors, they chose the factors F

ab
c ðx; zÞ and Fss

c ðx; zÞ to have
the same analytic form as the exchange enhancement factor of Eq. (178). The VS98

exchange-correlation functional (also referred to as VSXC, after the keyword in

GAUSSIAN) has 21 empirical parameters (the exchange component, the parallel-, and

opposite-spin correlation components have 7 parameters each), and is the most accurate

functional in existence for atomization energies, surpassing even the hybrid functionals

(see Table 24.2). Also, because the parameters of VS98 were optimized for exchange and

correlation together, neither component is accurate separately. Nevertheless, the analytic

form of Eq. (178) is very flexible, so that a suitable reparametrization of the stand-alone

VS98 exchange functional can produce excellent approximations to the exact exchange

energies [213].

Another approach is to optimize linear combinations of several existing functionals,

Exc ¼
X
k

ckE
ðkÞ
xc ð179Þ

possibly with a focus on a particular property. Internal parameters of individual

functionals EðkÞ
xc may also be subject to reoptimization. This type of approximations is

represented by EDF1 (‘empirical density functional 1’) of Adamson et al. [217], which

was optimized to yield accurate thermochemistry, and EDF2 of Lin, George, and Gill,

optimized to give accurate vibrational frequencies [227].

In search for a functional that would accurately reproduce the Hartree–Fock energies

of first and second-row atoms, Handy and Cohen [228] refined Becke’s 1986

exchange approximation [Eq. (91)] by optimizing the coefficient of the LSDA term

and revising the gradient correction. The enhancement factor of their functional, called
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OPTX, is given by

FOPTXx ðsÞ ¼ a1 þ a2c2
gc1s

1þ gðc1sÞ2
� �2

ð180Þ

where s is the reduced gradient of Eq. (79), a1 ¼ 1.05151, a2 ¼ 1.43169, g ¼ 0.006 are

empirical parameters, and c1 ¼ 2(6p2)1/3 and c2 ¼ (21/3Cx)
21. Tests of the OPTX

functional paired with LYP indicate [229] that the OLYP model is perceptibly more

accurate than BLYP, although not as accurate [180] as meta-GGAs or hybrid functionals

(see also Table 24.2). Several reparametrizations of standard functionals like the B97

GGA and the VS98 meta-GGA have been discussed in Ref. [230].

Xu and Goddard (XG) [231] proposed an exchange functional of the form

FXGx ðsÞ ¼ 1þ a1½FB88x ðsÞ2 1	 þ a2½FPW91
x ðsÞ2 1	 ð181Þ

where the mixing parameters a1 ¼ 0.722 and a2 ¼ 0.347 were determined by least

squares fitting to the total energy of 10 atoms and atomization energies of 38 molecules.

In combination with the LYP correlation, the XG exchange functional is reported to show

superior performance for transition metals, hydrogen- and van der Waals complexes.

Purely empirical functionals often work well, because satisfaction of many secondary

constraints (the uniform, high- and low-density limits, density scaling transformations,

and so on) is not essential for a good performance for usual properties (‘molecules do not

behave like the UEG’). The price for avoiding the hard work of constraint satisfaction is

that optimized functionals may fail badly in situations for which they were not ‘trained’.

24.10 MIXING EXACT AND APPROXIMATE EXCHANGE

Functionals that combine GGAs or meta-GGAs with exact exchange of Eq. (38) are

called hybrids. At present, hybrid functionals outnumber any other group of exchange-

correlation approximations. ‘Hybridization’ has been embraced widely because it greatly

improves performance of ‘pure DFT’ functionals and is easy to implement.

24.10.1 Global hybrids

The idea of mixing density functional approximations with exact (Hartree–Fock-like)

exchange rests on theoretical considerations involving the adiabatic connection formula

[Eq. (28)]. Becke [232] reasoned that, since El¼0
xc ¼ Eexactx and El¼1

xc < ELSDAxc ; the
integral over l in Eq. (28) can be approximated by the mean value theorem:

Exc <
1

2
Eexactx þ ELSDAxc

 �
ð182Þ
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Eq. (182) has been termed the ‘half-and-half ’ theory [232]. The extent and validity of

this approximation were analyzed in detail by Levy et al. [233], as well as Proynov

et al. [207].

Soon thereafter, Becke proposed [234] a more empirical yet much more accurate three-

parameter hybrid model

Exc ¼ a0E
exact
x þ ð12 a0ÞELSDAx þ axDE

GGA
x þ ELSDAc þ acDE

GGA
c ð183Þ

where DEGGAx and DEGGAc are gradient correction parts of the GGA exchange and

correlation functionals, and a0, ax, and ac are adjustable parameters. The original three-

parameter hybrid functional of Becke [234] has the form

EB3PW91
xc ¼ a0E

exact
x þ ð12 a0ÞELSDAx þ axDE

B88
x þ ELSDAðPW92Þ

c þ acDE
PW91
c ð184Þ

where DEB88
x is the beyond-LSDA part of the B88 exchange, ELSDAðPW92Þ

c is the Perdew–

Wang parametrization [114] of the LSDA correlation, DEPW91
c is the gradient correction

of the PW91 correlation [the second term on the right-hand side of Eq. (114)], and a0, ax,

and ac are empirical constants. The optimal values of these constants were determined by

a fit to a series of atomization energies, ionization potentials, and proton affinities to give

a0 ¼ 0.20, ax ¼ 0.72, and ac ¼ 0.81 [234].

Using Eq. (184) as a template, the developers of the GAUSSIAN program [32]

introduced two other well-known three-parameter hybrid functionals, B3LYP and

B3P86. Unfortunately, these two functionals are scantily documented in the literature.

The original paper by Becke [234] contains no mention of either B3LYP or B3P86.

B3LYP debuted very inconspicuously in a paper titled ‘Ab initio calculation of

vibrational absorption and circular dichroism spectra using density functional force

fields’ [235], while B3P86 is defined solely by its implementation in the GAUSSIAN

program. To complicate the matter, the B3LYP functional is coded in GAUSSIAN not

exactly as intended in Ref. [235]. We would like to use this opportunity to clarify several

issues concerning these functionals.

The B3LYP hybrid, as implemented in the GAUSSIAN program, is given by

EB3LYPxc ¼ a0E
exact
x þ ð12 a0ÞELSDAx þ axDE

B88
x þ ð12 acÞEVWN–RPA

c þ acE
LYP
c ð185Þ

where a0, ax, and ac have the same values as in B3PW91. Because the LYP correlation

functional is not of the ‘LSDA þ gradient correction’ form, it cannot be naturally

separated into local and nonlocal parts. This is why the coefficient ac in Eq. (185)

multiplies the entire LYP correlation energy, not the gradient correction for correlation,

as in B3PW91. To avoid double counting, the amount of local correlation is reduced by

ac. It is this VWN term that became the source of confusion. When defining B3LYP,

Stephens et al. [235] had in mind: (a) Eq. (73) with the parameters fitted to the exact

Ceperley–Alder data; (b) the VWN interpolation scheme of Eq. (77). Instead, B3LYP

was implemented: (a) with the parameters of Eq. (73) fitted to reproduce the RPA values

of the correlation energy of the UEG; (b) using the obsolete Barth–Hedin interpolation

formula of Eq. (76). The Barth–Hedin interpolation is ‘form I’ of the VWN paper, not

‘form III’, as is stated in the GAUSSIAN manual and in the literature [236]. The correct

VWN parametrization of the LSDA correlation energy was added to the GAUSSIAN
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program later along with the keyword VWN5 (the parametrization was referred to as

‘form V’ in the VWN paper). The parameters of the intended VWN and the implemented

VWN-RPA forms are listed in Table 24.1. All other terms in Eq. (185) are unambiguous.

Hertwig and Koch [236] compared both variants of B3LYP and found that, luckily, the

‘wrong’ B3LYP is actually more accurate!

The B3P86 hybrid also uses VWN-RPA as the local correlation component

EB3P86xc ¼ a0E
exact
x þ ð12 a0ÞELSDAx þ axDE

B88
x þ EVWN2RPA

c þ acDE
P86
c ð186Þ

where DEP86c is the second term on the right-hand side of Eq. (122), and the coefficients

a0, ax, and ac have the same values as in B3PW91. The original B3PW91 functional was

designed to be exact for a uniform density. In contrast, neither B3LYP nor B3P86 has this

property, because LYP and VWN-RPA energies are not exact for a UEG.

In the wake of the success of B3PW91, Becke also introduced [168] a one-parameter

simplification of Eq.(183),

Exc ¼ a0E
exact
x þ ð12 a0ÞEDFTx þ EDFTc ð187Þ

which proved to be almost as accurate as three-parameter hybrids. Perdew et al. [237]

provided a theoretical justification for one-parameter GGA hybrids and gave a theoretical

estimate of the mixing coefficient suitable for calculations of atomization energies of

typical molecules: a0 ¼ 1/4. A rigorous formal treatment of hybrid schemes was also

given by Görling and Levy [238].

Adamo and Barone [239] empirically readjusted two parameters of the PW91

exchange based on an analysis of the low-density, large-gradient, regions important in

van der Waals systems, and combined their modified functional (mPW91) with the PW91

correlation to form a one-parameter hybrid, namedmPW1PW91. This functional is given

by Eq. (187) with EDFTx ¼ EmPW91
x ;EDFTc ¼ EPW91

c ; and a0 ¼ 0.25.

A one-parameter hybrid version of the PBE exchange-correlation functional, called

here PBEh (other names of the same functional include PBE0 and PBE1PBE) was

introduced by Ernzerhof and Scuseria [240] and extensively studied by Adamo and

Barone [241]. It has the form of Eq. (187) with DFT ¼ PBE and a0 ¼ 0:25:
The hybrid TPSS functional (TPSSh) [180] is also given by Eq. (187) with

DFT ¼ TPSS and the mixing parameter a0 ¼ 0.10, which was determined by minimizing

the MAE in the enthalpies of formation of 223 G3/99 molecules. TPSSh satisfies the same

Table 24.1 Parameters (in Eh) of the VWN and VWN–RPA correlation functionals [113] of Eq. (73).

The value of AGB is given by Eq. (70)

Parameter VWN VWN–RPA

ePc ðrsÞ eFc ðrsÞ 2 ac(rs) ePc ðrsÞ eFc ðrsÞ
A AGB AGB/2 1/6p2 AGB AGB/2

x0 20.10498 20.32500 20.00475840 20.409286 20.743294

b 3.72744 7.06042 1.13107 13.0720 20.1231

c 12.9352 18.0578 13.0045 42.7198 101.578
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exact constraints as the original TPSS. The fact that the value of a0 in TPSSh is smaller

than for a typical GGA hybrid suggests that meta-GGAs are better approximations to the

exact exchange functional than GGAs.

Owing to ease of construction and agreeable performance, empirical hybrid

functionals of the ‘mix-and-optimize’ type have been proliferating in the literature

over the past few years. These are functionals of the form

Exc ¼ Ex þ Ec þ axE
exact
x ð188Þ

where Ex and Ec, are optimized simultaneously with ax, an empirical parameter.

Examples of such hybrids include B97-1 [219], revised in Ref. [230], B97-2 [221], the

Schmider–Becke hybrid GGA (SB98h) [222], t-SB98h [223], the t-HCTH hybrid [226],

and the Boese–Martin functional for kinetics (BMK) [242].

Cohen and Handy [243] presented a hybrid functional similar to B3LYP that is based

on the exchange functional OPTX of Eq. (180). This functional, named O3LYP, is given

by

EO3LYPxc ¼ a0E
exact
x þ b0E

LSDA
x þ axDE

OPTX
x þ ð12 acÞEVWN

c þ acE
LYP
c ð189Þ

where a0 ¼ 0.1161, b0 ¼ 0.9262, ax ¼ 0.8133, and ac ¼ 0.81. Numerical studies show

that O3LYP is overall more accurate than B3LYP for atoms and molecules, although not

by much [229,244–246]. Note also that the fractions of approximate and exact exchange

in Eqs. (188) and (189) no longer add up to 1. This means that the exchange components

of these functionals do not reduce to ELSDAx for uniform densities.

Very recently, Xu and Goddard [231] introduced a B3LYP-style hybrid version of their

‘extended’ GGA functional of Eq. (181). Termed X3LYP, this functional uses

reoptimized parameters in the DEXGx part [a1 ¼ 0.675, a2 ¼ 0.235 in Eq. (181)] and is

given by

EX3LYPxc ¼ a0E
exact
x þ ð12 a0ÞELSDAx þ axDE

XG
x þ ð12 acÞEVWN–RPA

c þ acE
LYP
c ð190Þ

where a0 ¼ 0.218, ax ¼ 0.709, and ac ¼ 0.871 are also reoptimized. The performance of

X3LYP appears to be comparable or better than that of other hybrid functionals [231].

A one-parameter hybrid functional combining the B88 exchange and B95 correlation

has been proposed by Zhao et al. [247]. In another recent work, Zhao et al. [248] initiated

the development of ‘doubly hybrid’ functionals—empirical linear combinations of the

Hartree–Fock, approximate DFT, and ab initio (e.g. MP2) energy terms.

24.10.2 Local hybrids

Although conventional hybrid functionals offer the best accuracy, they suffer from the

same problems that plague GGAs and meta-GGAs, especially the self-interaction error

(SIE). The SIE arises from inexact cancellation of spurious Coulomb self-interaction

energy by approximate exchange. The exact exchange functional is, of course, self-

interaction free. Inclusion of a fraction of exact exchange in global hybrid functionals

alleviates, but does not solve completely, this problem. Adding a self-interaction
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correction [77] to the existing functionals to satisfy the constraint of Eq. (44) is an

interesting method [249], but it is not straightforward to implement and apply.

A different approach to this problem is offered by local hybrid (Lh) [93] or hyper-GGA

[72] scheme, in which the amount of approximate and exact exchange is determined by

the local mixing function

ELhxc ¼
ð
{aðrÞeexactx ðrÞ þ 12 aðrÞ½ 	eDFTx ðrÞ þ eDFTc ðrÞ}dr ð191Þ

where eexactx ðrÞ is the exact exchange energy density. The mixing function a(r) must

assume values between 0 and 1 and reduce to 1 for any one-electron density. This ensures

that the SIE is eliminated in one-electron-like regions which are particularly sensitive to

the SIE. The local hybrid scheme can also be viewed as a generalization of global hybrid

functionals.

The simplest function that fulfills these requirements is due to Becke [169]

aðrÞ ¼ tW ðrÞ
t ðrÞ ð192Þ

Its use in the above local hybrid scheme was first reported by Jaramillo et al. [93]. This

particular choice of a(r) improves equilibrium geometries and binding energies of two-

center, odd-electron symmetric cations such as Hþ
2 ;He

þ
2 ; ðHFÞþ2 (the notorious problem

discussed, for example, in Refs. [250] and [251]), and hydrogen abstraction barriers, but

gives disappointing results for atomization energies [93]. The search for better mixing

functions will certainly continue in the future [72]. It is clear that a local hybrid, if

designed well, cannot be worse than the parent global hybrid.

24.10.3 Screened hybrids

Screened Coulomb interaction techniques find many interesting applications in modern

quantum chemistry. For example, Gill and coworkers [252–256] describe an algorithm

aimed at speeding up the computation of the Coulomb energy based on splitting the

Coulomb operator 1/u (where u ; r12) into short-range (SR) and long-range (LR)

components:

1

u
¼ 12 erfðvuÞ

u|fflfflfflffl{zfflfflfflffl}
SR

þ erfðvuÞ
u|fflffl{zfflffl}
LR

ð193Þ

where erfðvuÞ is the error function and v is an adjustable parameter. Their idea is to

approximate the slowly decaying 1/u operator with the fast-decaying SR term plus

corrections for the LR part. This reduces dramatically the required number of two-

electron integrals. Savin and coworkers [257–260] use Coulomb screening to handle

atomic and molecular near-degeneracy effects by combining multideterminantal wave

functions with density functionals.
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In the context of DFT, the partitioning of 1/u is equivalent to representing Exc as

Exc ¼ ESRxc ðvÞ þ ELRxc ðvÞ ð194Þ
The short-range component of exact exchange is obtained from electron repulsion

integrals calculated with the screened Coulomb potential:

kmnllslSR ¼
ð
dr1

ð
xpmðr1Þxpnðr2Þ 12 erfðvr12Þ

r12
xlðr1Þxsðr2Þdr2 ð195Þ

To evaluate the long-range part of the DFT exchange energy, one inserts the screened

Coulomb potential into Eq. (33) to obtain

EDFT;LRx ðvÞ ¼ 2p
ð
dr

ð1

0
erfðvuÞuhxðr; uÞdu ð196Þ

For example, for the LDA exchange this gives [258,261]

ELDA;LRx ðvÞ ¼ Cx

ð
r4=3

2j

3
2

ffiffi
p

p
erf

1

j

� �
2 3jþ j3 þ ð2j2 j3Þe21=j2

� �
dr ð197Þ

where j ¼ v=kF:
Recently, Heyd et al. [262] used the screening of 1/u to adapt global hybrid functionals

to calculations of periodic systems with small band gaps. Such an adaptation is necessary

because direct evaluation of exact exchange in periodic systems with metallic character is

prohibitively expensive, rendering conventional hybrids utterly impractical for many

solids. Heyd et al. start with rewriting the one-parameter global hybrid functional of Eq.

(187) as

EvDFTh
xc ¼ a Eexact;SRx ðvÞ þ Eexact;LRx ðvÞ

h i
þ ð12 aÞEDFTx þ EDFTc ð198Þ

choose DFT ¼ PBE, and then replace E
exact;LR
x ðvÞ; the slowest-decaying term, by

E
PBE;LR
x ðvÞ:

EvPBEh
xc ¼ a Eexact;SRx ðvÞ þ EPBE;LRx ðvÞ

h i
þ ð12 aÞEPBEx þ EPBEc ð199Þ

Since the explicit PBE exchange hole is known [189], E
PBE;LR
x can be obtained

analytically (for details, see Ref. [262]). For a ¼ 1/4 and v ¼ 0; the vPBEh functional is
equivalent to PBEh, while in the limit v!1 it reduces to the PBE GGA. Extensive tests

[262–264] show that vPBEh is an excellent approximation to the original PBEh

functional and that the computational cost of vPBEh for solids is much closer to that of
PBE than PBEh. A revised version of vPBEh, called HSE [263], gives spectacular results
in calculations of band gaps of semiconductors [264].

Other researchers [265–268] have used Coulomb screening to describe long-range

interactions between atoms and molecules within hybrid DFT. In these methods, the

LR component of exact exchange is kept, yielding the correct tails of the exchange

potential and energy density, while the SR part is approximated by GGA or meta-GGA

functionals. The fraction of exact exchange increases with r12, which is precisely

the opposite of the trend in Eq.(199). The resulting LR-corrected approximations,
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called ‘Coulomb-attenuated hybrids’ [267], show improved performance for polariz-

abilities of long chains, Rydberg excitations, charge transfer, and van der Waals

interactions.

Eq. (196) represents the proper way of screening exchange but, unfortunately, it

requires knowing the explicit expression for the exchange hole. For most exchange

functionals, hx (r, u) is not known. In such cases, the screened DFT exchange energy can

be approximated as

EDFT;LRx ðvÞ <
ð
eLDA;LRx ðr;vÞFDFTx ðr;7r;…Þdr ð200Þ

where e
LDA;LR
x is the exchange energy density in Eq. (197) and Fx is a GGA or meta-GGA

enhancement factor. Although Coulomb screening of a density functional by Eq. (200) is

only an approximation to the exact procedure, it is easy to implement for almost any

exchange functional and has been commonly used in practice [265–268].

24.11 IMPLEMENTATION AND PERFORMANCE

The self-consistent field procedure in Kohn–Sham DFT is very similar to that of the

conventional Hartree–Fock method [269]. The main difference is that the functional

Exc[ r ] and matrix elements of vxc(r) have to be evaluated in Kohn–Sham DFT

numerically, whereas the Hartree–Fock method is entirely analytic. Efficient formulas

for computing matrix elements of nxc(r) in finite basis sets have been developed [270,
271], along with accurate numerical integration grids [272–277] and techniques for real-

space grid integration [278,279].

For an exchange-correlation functional of the form

Exc½r	 ¼
ð
excðr; l7rl;72rÞdr ð201Þ

the exchange-correlation potential is given by the rules of calculus of variations [280]

vxc ;
dExc
dr

¼ ›exc
›r

2 7·
›exc
›7r

� �
þ 72 ›exc

›72r

� �
ð202Þ

If exc also depends on fi or t, then explicit differentiation with respect to r is no longer
possible and the OEP method [47–55] should be used. In practice, the determination of

the OEP is often avoided by departing slightly from the true Kohn–Sham scheme and

minimizing the energy functional with respect to Kohn–Sham orbitals [271], that is, by

assuming

vxcfi ¼ dExc
dfp

i

ð203Þ
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Table 24.2 Mean absolute deviations (MAD) from experiment for standard enthalpies of formation

ðDfH8298Þ; ionization potentials (IP), electron affinities (EA), proton affinities (PA), equilibrium bond

lengths (re), and harmonic vibrational frequencies (ve) computed with approximate functionals using the

6-311þþG(3df,3pd) basis set. The fully nonempirical functionals in this table are HF, LSDA, PW91,

PBE, and TPSS

Method Property/(units of MAD)/Test set (size)

DfH8298
(kcal/mol)

G3 (223)

IP

(eV)

G3/IP (86)

EA

(eV)

G3/EA (58)

PA

(kcal/mol)

G3/PA (8)

re
(Å)

T-96R (96)

ve

(cm21)

T-82F (82)

HF 211.5 1.03 1.10 3.1 0.025a 136.2a

LSDAb 121.4 0.23 0.24 5.9 0.013c 48.9d

Generalized gradient approximations

BLYP 9.5 0.29 0.12 1.6 0.022 55.2

BPW91 9.0 0.24 0.11 1.4 0.017 41.4

BP86 26.3 0.21 0.19 1.3 0.017 45.5

PW91 23.6 0.22 0.14 1.6 0.014 39.8

PBE 22.2 0.24 0.12 1.6 0.016 42.0

HCTH/407 7.2 0.23 0.19 1.9 0.014 39.9

OLYP 5.9 0.29 0.15 1.7 0.018 40.2

Meta-generalized gradient approximations

VS98 3.5 0.23 0.13 1.6 0.013 33.9

BKCIS 7.2 0.22 0.20 1.5 0.019e 45.1e

PKZB 7.0 0.31 0.15 1.8 0.027 51.7

TPSS 5.8 0.24 0.14 1.8 0.014 30.4

BRxB88cf 14.6 0.22 0.14 2.7 0.026 48.7

Hybrid functionals

B3PW91 3.9 0.19 0.14 1.1 0.009 36.2

B3LYP 4.9 0.18 0.12 1.2 0.010 33.5

B3P86 26.1 0.55 0.59 1.0 0.008 37.0

mPW1PW91 4.1 0.19 0.16 1.1 0.010 42.9

PBEh 6.7 0.20 0.17 1.1 0.010 43.6

HSE 6.0 0.22 0.12 1.0 0.009 43.9

O3LYP 3.7 0.22 0.13 1.5 0.012 33.7

B97-1 4.9 0.19 0.11 1.0 0.012 32.5

B97-2 4.7 0.18 0.14 2.2 0.012 40.9

SB98hg 3.9 0.18 0.11 0.9 0.012 33.8

TPSSh 3.9 0.23 0.16 1.8 0.010 26.7

aExcludes Be2 (no binding).
bUsing the Perdew–Wang representation of the LSDA correlation energy [114].
cExcludes Fþ2 and SF (no convergence).
dExcludes Fþ2 (no convergence).
eExcludes C2 (no convergence).
fFrom Ref. [188].
gFit 2c in Table III of Ref. [222]. The GAUSSIAN keyword is B98.
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For functionals having the form of Eq. (201), both approaches are equivalent because

by the chain rule

dExc
dfp

i

¼
ð dExc

drðr0Þ
drðr0Þ
dfp

i ðrÞ
dr0 ¼

ð dExc
drðr0Þ

›r

›fp
i

dðr2 r0Þdr0 ¼ dExc
dr

›r

›fp
i

¼ dExc
dr

fi

ð204Þ

In the general case of orbital-dependent functionals, minimization with respect to orbitals

is only an approximation to the true Kohn–Sham scheme [281–285] (see also Ref. [58]

concerning the gauge invariance problem with conventional t-dependent functionals).
Table 24.2 compares the performance of most density functionals discussed in this

review for selected atomic and molecular properties. The list of molecules comprising

the G3 thermochemical test set is given in Refs. [286] and [287]. The G3/IP, G3/EA, and

G3/PA test sets are described in Ref. [288]. The T-96R and T-82F sets are defined in

Ref. [180]. All other computational details can be found in Ref. [180]. The results in

Table 24.2 show that LSDA is already a great improvement over the Hartree–Fock

method. GGA functionals further increase the accuracy for molecular binding energies,

electron and proton affinities. Meta-GGAs and hybrid functionals generally provide the

most accurate predictions for all properties. Note that the recent nonempirical functionals

are now vying with the best fitted functionals for the top places in the performance

ranking. Systematic numerical studies of density functionals for other properties

regularly appear in the literature [181,194,246,288–293].

24.12 CONCLUSION

Back in the 1960s, hopes for future progress in electronic structure theory were associated

with correlated wave function techniques and the tantalizing possibility of variational

calculations based on the two-electron reduced density matrix [294]. DFT was not on the

quantum chemistry agenda at that time. The progress of wave function techniques has

been remarkable, as documented elsewhere in this volume. In contrast, the density matrix

approach has not yet materialized into a competitive computational method, despite

many persistent efforts [295]. Meanwhile, approximate DFT has become the most widely

used method of quantum chemistry, offering an unprecedented accuracy-to-cost ratio.

A few personal reminiscences of the time when DFT was entering mainstream

quantum chemistry are appropriate here. In March of 1992, while the first author of this

review was actively working on coupled cluster theory, John Pople visited Rice

University to deliver the Franklin Memorial Lecture. The subject of his talk was the

impressive performance of the BLYP functional for thermochemistry, especially as

judged by its low computational cost relative to the G2 theory. Pople was on his way to

the Sanibel Symposium and gave the author a preprint of Ref. [296], which later became

Pople’s first publication on DFT (see also Ref. [297]). Pople credited the lecture by Axel

Becke at the 7th International Congress of Quantum Chemistry in Menton in the Summer

of 1991 as a turning point in his views on DFT. With the help of Peter Gill
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by email correspondence, the author promptly added a numerical quadrature code to his

Hartree–Fock program and was comparing coupled-cluster results to DFT in a matter of

weeks [298].

Impressive as the performance of modern density functionals is, none of the practical

approximations is still suitable for general use. LSDA, GGAs, meta-GGAs, and global

hybrids all systematically underperform or simply fail for several broad classes of

problems such as: left-right correlation, van der Waals interactions, negative ions, orbital

spectra and band structure, open-shell singlet diradicals, etc. Even for thermochemistry

of small molecules, none of the currently available density functionals has yet achieved

an accuracy better than a few kcal/mol. In principle, there is no doubt that DFT can

describe all such systems, provided that accurate Kohn–Sham exchange-correlation

potentials and functionals are used. This has been demonstrated convincingly by

generating the exact vxc(r) via ab initio methods and solving the corresponding Kohn–

Sham equations [52,91,299–304]. Given the formidable complexity of the true

exchange-correlation functional and the magnitude of the reward, development of better

approximations is certain to remain a ‘promising and charming’ subject for years to

come.
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13 N.L. Balàzs, Phys. Rev., 156 (1967) 42.

14 I. Catto and P.L. Lions, Commun. Part. Diff. Eq., 17 (1992) 1051.

15 P. Hohenberg and W. Kohn, Phys. Rev., 136 (1964) B864.

16 W. Kohn, in: F. Bassani, F. Fumi, M.P. Tosi (Eds.), Highlights of condensed-matter theory, North-

Holland, Amsterdam, 1985.

17 W. Kohn and L.J. Sham, Phys. Rev., 140 (1965) A1133.

18 W. Kohn, A.D. Becke and R.G. Parr, J. Phys. Chem., 100 (1996) 12974.

Progress in the development of exchange-correlation functionals 717

References pp. 717–724



19 R.G. Parr and W. Yang, Annu. Rev. Phys. Chem., 46 (1995) 701.

20 R.G. Parr and W. Yang, Density-functional theory of atoms and molecules, Oxford University Press,

New York, 1989.

21 P.M.W. Gill, in: P. von R. Schleyer (Ed.), Encyclopedia of computational chemistry, Wiley, New York,

1998, p. 678.

22 W. Koch and M.C. Holthausen, A chemist’s guide to density functional theory, Wiley-VCH, Weinheim,

2000.

23 J.P. Perdew and S. Kurth, in: C. Fiolhais, F. Nogueira, M. Marques (Eds.), A primer in density functional

theory, Springer, Berlin, 2003.

24 J. Kohanoff and N.I. Gidopoulos, in: S. Wilson (Ed.), Handbook of molecular physics and quantum

chemistry, Molecular electronic structure, Vol. 2, Wiley, Chichester, 2003.

25 J.P. Dahl and J. Avery (Eds.), Local density approximations in quantum chemistry and solid state

physics, Plenum, New York, 1984.

26 R.M. Dreizler and J. da Providência (Eds.), Density functional methods in physics, NATO ASI Series,

Vol. B123, Plenum, New York, 1985.

27 R.M. Dreizler and E.K.U. Gross, Density functional theory, Springer, Berlin, 1990.

28 E.S. Kryachko and E.V. Ludeña, Energy density functional theory of many-electron systems, Kluwer,

Dordrecht, 1990.

29 E.K.U. Gross and R.M. Dreizler (Eds.), Density functional theory, NATO ASI Series, Vol. B337,

Plenum, New York, 1995.

30 J.M. Seminario and P. Politzer (Eds.), Modern density functional theory: A tool for chemistry, Elsevier,

Amsterdam, 1995.

31 J.M. Seminario (Ed.), Recent developments and applications of modern density functional theory,

Elsevier, Amsterdam, 1996.

32 M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R. Cheeseman, J.A. Montgomery,

Jr., T. Vreven, K.N. Kudin, J.C. Burant, J.M.Millam, S.S. Iyengar, J. Tomasi, V. Barone, B.Mennucci,M.

Cossi, G. Scalmani, N. Rega, G.A. Petersson, H. Nakatsuji, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J.

Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, M. Klene, X. Li, J.E. Knox,

H.P. Hratchian, J.B. Cross, C. Adamo, J. Jaramillo, R. Gomperts, R.E. Stratmann, O. Yazyev, A.J. Austin,

R. Cammi, C. Pomelli, J.W. Ochterski, P.Y. Ayala, K. Morokuma, G.A. Voth, P. Salvador,

J.J. Dannenberg, V.G. Zakrzewski, S. Dapprich, A.D. Daniels, M.C. Strain, O. Farkas, D.K. Malick,

A.D. Rabuck, K. Raghavachari, J.B. Foresman, J.V. Ortiz, Q. Cui, A.G. Baboul, S. Clifford, J. Cioslowski,

B.B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R.L. Martin, D.J. Fox, T. Keith, M.A. Al-

Laham, C.Y. Peng, A. Nanayakkara, M. Challacombe, P.M.W. Gill, B. Johnson, W. Chen, M.W. Wong,

C. Gonzalez and J.A. Pople, GAUSSIAN 03, Revision C.2, Gaussian, Inc., Wallingford, CT, 2004.

33 Y.A. Wang and E.A. Carter, in: S.D. Schwartz (Ed.), Theoretical methods in condensed phase chemistry,

Kluwer, Dordrecht, 2000.

34 V. Sahni, Quantal density functional theory, Springer, Berlin, 2004.
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CHAPTER 25

Multiconfigurational quantum chemistry

Björn O. Roos

Department of Theoretical Chemistry, Chemical Center, P.O. Box 124,
S-221 00 Lund, Sweden

Abstract

The chapter gives a brief overview of the multiconfigurational approach in quantum

chemistry. The method has been developed for studies of problems where a single

configuration will not give a qualitatively correct description of the electronic structure.

Examples of such cases are discussed and it is illustrated how a valid wave function may

be constructed. The concept of inactive and active orbitals is introduced and the complete

active space (CAS) wave function is defined. The choice of the active space is a crucial

part of a CASSCF calculation. Without attempting to be complete, we illustrate how this

choice can be made for some typical electron structure problems. The problem of

calculating the dynamic correlation energy is discussed with special emphasis on second-

order perturbation theory (CASPT2). How relativistic effects may be introduced is briefly

discussed. Finally, we work through three-electron structure problems: ozone, the allyl

radical, and the PbF molecule.

25.1 INTRODUCTION

The molecular orbital (MO) is the fundamental quantity in contemporary quantum

chemistry. Almost all of our understanding of “what the electrons are doing in

molecules” is based on the molecular orbital concept. Also, most of the computational

methods used today start by a calculation of the molecular orbitals of the system using

some quantum chemical method.

The molecular orbital describes the “motion” of one electron in the electric field

generated by the nuclei and some average distribution of the other electron. It is in the

simplest model occupied by zero, one, or two electrons. In the case of two electrons

occupying the same orbital, the Pauli principle demands that they have opposite spin.

Such an approach leads to a total wave function for the system, which is an anti-

symmetrized product of molecular spin orbitals (spin orbital ¼ molecular orbital £ a spin

q 2005 Elsevier B.V. All rights reserved.
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function). The Hartree–Fock (HF) method is obtained by applying the variation principle

to the corresponding energy functional.

The concept of electrons moving in orbitals in the mean-field generated by the other

electrons was introduced first for atoms by Hartree in 1928 [1]. A similar model was

actually proposed for molecules already in 1927 by Hund [2]. The approach was

immediately used by Mulliken and others for the interpretation of electronic spectra of

small (diatomic) molecules [3].

The success of the Hartree–Fock method in describing the electronic structure of most

closed-shell molecules has made it natural to analyze the wave function in terms of the

molecular orbitals. The concept is simple and has a close relation to experiment through

Koopmans theorem.

The two fundamental building blocks of Hartree–Fock theory are the molecular orbital

and its occupation number. In closed-shell systems each occupied molecular orbital

carries two electrons, with opposite spin. The occupied orbitals themselves are only

defined as an occupied one-electron subspace of the full space spanned by the

eigenfunctions of the Fock operator. Transformations between them leave the total HF

wave function invariant. Normally the orbitals are obtained in a delocalized form as the

solutions to the HF equations. This formulation is the most relevant one in studies of

spectroscopic properties of the molecule, that is, excitation and ionization. The

invariance property, however, makes a transformation to localized orbitals possible.

Such localized orbitals can be valuable for an analysis of the chemical bonds in the

system.

The concept of the molecular orbital and their occupation is, however, not restricted to

the HF model. It has much wider relevance and is applicable also for more accurate wave

functions. For each wave function we can form the first-order reduced density matrix.

This matrix is Hermitian and can be diagonalized. The basis for this diagonal form of the

density matrix are the Natural Orbitals first introduced in quantum chemistry by Per-Olof

Löwdin [4].

Molecular orbital theory starts with the definition of a set of molecular spin orbitals

(SOs):

fiðr; sÞ ¼ wiðrÞuiðsÞ ð1Þ

where wiðrÞ is a molecular orbital and uiðsÞ is a spin function. Usually, the molecular
orbitals are expanded in a basis set, xp; p ¼ 1;m:

wi ¼
X
p

Cipxp ð2Þ

The dimension of this basis set, m; sets the dimension of the quantum chemical problem.

Normally, the basis functions are centered on the atoms of the molecular system (the

Linear Combination of Atomic Orbitals (LCAO) approximation). Thus, the size is

approximately proportional to the number of atoms in the system.

Having established the basis of one-electron functions, we construct a basis set for

our N-electron wave functions as the set of Slater determinants that we can construct
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from the SOs:

FK ¼ Â{fK1ðx1Þ;fK2ðx2Þ;…;fKNðxNÞ} ð3Þ
where x ¼ r; s and Â is an anti-symmetrizer. The number of such determinants is

K ¼
2m

N

{ !
ð4Þ

The total wave function for the system can be expanded in these determinants:

C ¼
X
K

CKFK ð5Þ

Applying the variation principle we obtain the standard secular equation for the

determination of the expansion coefficients and the energy:X
L

ðHKL 2 EdKLÞCL ¼ 0 ð6Þ

This way to solve the Schrödinger equation has obtained the name Full CI-FCI. It

becomes an exact solution in the limit of a complete basis set. The Full CI wave function

is the “best” solution to the Schrödinger equation that can be obtained with a given basis

set. This is true both for the ground state and for the excited states following the variation

principle and McDonald’s theorem [5]. The above formulation was made in terms of

Slater determinants. It is, however, also possible to construct spin-adapted functions,

which are linear combinations of determinants with a given orbital occupation. We shall

call such functions as Configuration State Functions (CSF).

The Full CI method can, of course, not be used in practical applications. The size of the

secular problem is simply too large. It defines, however, a calibration point to which all

molecular orbital derived method should converge. There exists today a number of FCI

calculations on small molecules with limited basis sets, which can be used to test different

approximations to the FCI wave function.

In this chapter we shall describe how we can obtain wave functions that are of the FCI

type but in a limited orbital space defined as the active orbitals of the system. But before

developing such a model we shall describe how the molecular orbital concept can be

extended to any type of wave functions.

25.2 THE DENSITY MATRIX AND THE NATURAL ORBITALS

For any wave function we can define the first-order reduced density matrix [4] as

r1ðx; x0Þ ¼ N
ð
Cpðx0; x2;…; xNÞC ðx; x2;…; xNÞdx2· · ·dxN ð7Þ

The diagonal elements of this matrix give the probability density for the electrons in a

point r with the spin s: A matrix representation of the density matrix can be obtained by

an expansion in the basis of SOs used to construct the total wave function (orbitals which
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are not occupied in the wave function will not appear in the expansion):

r1ðx; x0Þ ¼
X
i;j

rijfiðxÞfp
j ðx0Þ ð8Þ

The density matrix is Hermitian and we can transform it to a diagonal form by a unitary

transformation of the SOs:

r1ðx; x0Þ ¼
X
i

hisiðxÞsp
i ðx0Þ ð9Þ

The orbitals sp
i ðx0Þ are called the Natural Spin Orbitals (NSOs), and hi are their

occupation numbers. They fulfill the condition

0 # hi # 1 ð10Þ
and measure the probability to find an electron in the corresponding NSO.

A spin-free formulation is usually preferred where the spin has been integrated out of

the above equations. If the Hamiltonian does not contain any spin-dependent terms, we

can always write the density matrix as

r1ðx; x0Þ ¼ raaðr; r 0Þaa0pþ rbbðr; r 0Þbb 0p ð11Þ
The charge density matrix is obtained by integrating over the spin-variable

rqðr; r 0Þ ¼
X
i;j

qijwiðrÞwp
j ðr 0Þ ð12Þ

This matrix is often referred to as the density matrix or the 1-matrix. The diagonal

element gives the probability distribution of the electronic charge in the system. The spin

distribution is expressed in terms of the spin density matrix:

rsðr; r 0Þ ¼ raaðr; r 0Þ2 rbbðr; r 0Þ ð13Þ
which measures the spin-density distribution in the system.

We can diagonalize the 1-matrix by a unitary transformation of the molecular orbitals

and obtain in such a representation:

rqðr; r 0Þ ¼
X
i

hiliðrÞlpi ðr 0Þ ð14Þ

where liðrÞ are the Natural Orbitals (NOs), and hi are the occupation numbers. They

fulfill the condition

0 # hi # 2 ð15Þ
and is a measure of the probability of finding an electron in the corresponding NO

independently of the spin. Such natural orbitals can be defined for any wave function.

They will have the occupation number 2 or 0 for a closed shell Hartree–Fock wave

function, but in the general case all occupation numbers will be smaller than 2. For wave

functions that are well described by HF theory there will be one set of orbitals that have

occupation numbers close to 2, while the others have small occupation numbers. The first
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set of NOs are then characterized as strongly occupied while the others are labeled as

weakly occupied. Open shell systems will have one or more NOs with occupation

numbers close to 1 (or fractions of the degeneracy number for degenerate open shells). As

we shall see below more complicated situation often occur where some occupation

numbers are not close to 2, 1, or 0. These are the cases where multiconfigurational wave

function are needed for a qualitatively correct description of the electronic structure.

The natural orbitals and their occupation numbers are stable with respect to the

approximations we make in our construction of the total wave function. Once we have

established a qualitatively correct description of the electronic structure, further

improvements will not lead to substantial modifications of the NOs with the highest

occupation numbers.

As an example we present in Fig. 25.1 the eight first NOs of the water molecule

(excluding the trivial oxygen 1s orbital). As can be seen in the figure, the first set of four

orbitals has occupation numbers in the range 1.97–1.99. This is typical for a system that

is well described by a single determinant. The other four orbitals describe the most

important effects of electron correlations. One notices that each of these orbitals is closely

linked to one of the strongly occupied orbitals such that the sum of the two occupation

numbers is close to 2. It is a reflection of the fact that electron correlation in a HF stable

system can to a good approximation be described as a sum of pair correlations. Thus, for

example, the 4a1 orbital describes correlation of the electron pair in 3a1, which is mainly

built from an oxygen 2p orbital with some contribution from the hydrogen 1s orbitals.

This type of electron correlation leads to a separation of the electron pair, such that if

one electron is close to the oxygen atom, the other prefers to be further away (and closer

to the hydrogen atom). The correlation is, therefore, often called horizontal (along a

Fig. 25.1. The eight first active orbitals in the water molecule obtained from a CASSCF calculation with these

orbitals active and an ANO basis set of the size: O/4s2p2d, H/3s2p.
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chemical bond). The effect is obtained with an orbital that is antibonding, that is, it has a

node in the bonding region. The separation of the electron pair in a chemical bond is more

clearly seen in the 1b2, 2b2 pair. The orbital 2b1 describes radial correlation in the 2pp
lone-pair of the oxygen atom. The correlating orbital has the shape of a 3p atomic orbital

but it should not be confused with the 3p Rydberg orbital, which is much more diffuse.

Similarly, the 5a1 orbital describes radial correlation in the 2a1 orbital, which is mainly

built from the oxygen 2s atomic orbital.

This type of analysis of the natural orbitals in terms of electron correlation can be

performed for any wave function that is accurate enough to include the appropriate

orbitals. In this chapter we shall describe molecular systems and chemical processes

where the NOs are not trivially partitioned into strongly and weakly occupied and we

shall show that in such cases the HF wave function is not a good starting point. We need

more than one configuration for a qualitatively correct description of the electronic

structure. As a first example we shall consider the simplest of all chemical bonds: the

hydrogen molecule.

25.3 THE HYDROGEN MOLECULE

We shall use the hydrogen molecule to illustrate how the electronic structure changes

during the formation of a chemical bond.

HA———
R

HB

To illustrate the qualitative features we do not need an extended atomic orbital basis set.

It suffices to use the minimal set constructed from the two 1s orbitals: (1sA,1sB). The

molecular orbitals are then given by symmetry

sg ¼ Ngð1sA þ 1sBÞ; su ¼ Nuð1sA 2 1sBÞ ð16Þ
where Ngand Nu are normalization constants that depend on the overlap, S, between the

two AOs. Notice that the form of the molecular orbitals is independent of distance. Only

the normalization constants change.

The closed shell HF electronic configuration for the ground state is obtained by

occupying the bonding sg orbital with two electrons:

F1 ¼ ðsgÞ2 ¼ 1ffiffi
2

p lsga;sgbl ð17Þ

It is possible to separate the spin and space variables and write the function as:

F1 ¼ 1ffiffi
2

p lsga; sgbl ¼ sgð1Þsgð2ÞQ2;0 ð18Þ

where Q2;0 is a singlet spin function for two electrons. We can expand the space part

of the wave function in the AOs and obtain four terms:

F1 ¼ N2
g{1sAð1Þ1sAð2Þ þ 1sBð1Þ1sBð2Þ þ sAð1Þ1sBð2Þ þ sBð1Þ1sAð2Þ} ð19Þ
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The last two terms give the famous Heitler–London (HL) wave function for the hydrogen

molecule that was suggested as early as 1927, only one year after the formulation of the

Schrödinger equation [6]. The above wave function contains also two ionic terms that

correspond to a situation where both electrons reside on one of the atoms. We know that

the HF wave function gives a good representation of the electronic structure at the

equilibrium geometry. Thus, the HL wave function cannot be accurate. The structure of

the HF solution is on the other hand independent of the internuclear distance between the

hydrogen atoms. Thus, we have for large R:

F/F ðHþ HÞ þF ðHþ þ H2Þ ð20Þ

which is clearly wrong and corresponds to an energy 6.7 eV above the true energy. The

HL wave function is correct at large values of R: This is not a satisfactory situation if
we want to describe the full potential. The closed shell HF method will simply not

dissociate the chemical bond properly. It is clear that this will be true for all covalent

bonds.

C. Coulson and I. Fischer Suggested in 1949 [7] a method that solves the problem.

Instead of using the same orbitals, they introduced a parameter, l; that splits the SOs
generated from the sg orbital into two different orbitals (the CF orbitals):

f1 ¼ Nð1sA þ l1sBÞa; f2 ¼ Nðl1sA þ 1sBÞb ð21Þ

This wave function thus uses different orbitals for different spin (DODS). The total

wave function is a determinant with one electron in each of the two SOs. We can

express the SOs in terms of the symmetry adapted orbitals sg and su. The

corresponding wave function will be a linear combination of four determinants. After

some algebra we obtain:

FCF ¼ c21ðsgÞ2 2 c1c2
ffiffi
2

p ðsgsuÞT 2 c22ðsuÞ2 ð22Þ

where: c1 ¼ Nð1þ lÞ=2Ng and c2 ¼ Nð12 lÞ=2Nu. The second term in this wave

function is a linear combination of two determinants corresponding to triplet coupling

of the two orbitals with Ms ¼ 0: This term also has the wrong symmetry (ungerade

instead of gerade). We shall return to this problem later, but for the moment we accept

this wave function and compute the energy as a function of the parameter l: We

introduce a1 ¼ c21; a2 ¼ c22, a1 þ a2 ¼ 1. Then:

EðlÞ ¼ a21E1 þ 2a1a2ðET 2 KguÞ þ a22E2 ð23Þ

where E1 ¼ Eðs 2
g Þ, E2 ¼ Eðs 2

u Þ, ET ¼ EððsgsuÞTÞ; and Kgu ¼ ðsgsulsgsuÞ ¼
ðJAA 2 JABÞ=2ð12 S2Þ, where JAA and JAB are the one- and two-center Coulomb

integrals.

The stationary points (the CF orbitals) are obtained by solving the equation:

dE=dl ¼ 0 ð24Þ
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The stability of the solution is obtained from the second derivative. We obtain after some

algebra

Solution 1, if ðET 2 E1Þ . Kgu:

l ¼ 1ða1 ¼ 1Þ d2E=dl2 . 0 FCF ¼ ðsgÞ2

l ¼ 21ða1 ¼ 0Þ d2E=dl2 , 0 FCF ¼ ðsuÞ2

Solution 2, if ðET 2 E1Þ # Kgu:

l ¼ 1ða1 ¼ 1Þ d2E=dl2 , 0 Unstable

l ¼ 21ða1 ¼ 0Þ d2E=dl2 , 0 Unstable

21 , l , 1ða1 , 1Þ d2E=dl2 $ 0 Stable

Thus, we obtain the closed shell HF wave function as a stable solution when the

excitation energy to the triplet state is larger than the exchange integral Kgu. This is the

situation around equilibrium geometry. The excitation energy will, however, decrease

when the distance increases and finally go to zero at infinite separation. This is not true for

the exchange integral that remains finite and positive for all distances. Thus, at some

distance we pass over to Solution 2 where the only stable solution is for a l value less
than one in magnitude.

For infinite distance we obtain the stable solution l ¼ 0; which corresponds to the
wave function:

FUHF ¼ 1ffiffi
2

p l1sAa; 1sBbl ð25Þ
which we recognize as one term in the HL wave function. It has the correct energy but is

not symmetric.

What have we learned from the above exercise? First of all that in order to obtain a

correct potential curve for the dissociation of a covalent chemical bond with a single

determinant wave function, we have to sacrifice both the spin and space symmetry.

Secondly, we have seen that the closed shell HF wave function is stable around the

equilibrium geometry. Even if we allow different orbitals for different spin, the wave

functionwill converge to a solutionwhere the electrons arrange themselves in closed shells.

This is quite general and occurs for most molecules around their equilibrium geometry.

The Coulson–Fischer wave function for H2 can be considered as the start of the

Unrestricted Hartree–Fock (UHF) approach in quantum chemistry, which is the most

general single determinant method. We shall not proceed further along this line, but

instead ask ourselves if there is a way to correct the situation such that we obtain a wave

function that dissociates correctly while preserving the spin and space symmetry of the

wave function. The CF wave function gives actually a hint. What happens if we simply

skip the trouble-some triplet term in Eq. (22). This gives rise to a wave function that is a

linear combination of two closed shell determinants:

FMC ¼ C1ðsgÞ2 þ C2ðsuÞ2 ð26Þ
where we have introduced two new coefficients C1 and C2 ðC2

1 þ C2
2 ¼ 1Þ: Let us take a

closer look at the second term. If we expand in AOs, we obtain the same expression as in
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Eq. (19) but with a negative sign for the covalent terms. At infinite separation we want

only these terms to survive. We can achieve this if we simply put C2 ¼ 2C1 in Eq. (26).

On the other hand we know thatFMCis dominated by the HF configuration for geometries

close to equilibrium. Thus, by introducing the expansion coefficients as new variational

parameters we can describe the wave function for all distances.

FMC is a qualitatively correct wave function for all internuclear distances. It introduces

horizontal electron correlation by occupying the antibonding orbital su. This orbital
separates the electrons in the pair such the probability to find one on each atom increases.

For large internuclear distances the probability will go to one. We can thus conclude that

The Quantum Chemical Description of a Chemical Bond Involves both the

Bonding and the Antibonding Orbital!

The occupation of the two orbitals is seen in Fig. 25.2. The occupation of the bonding

orbital is close to two around equilibrium. It decreases continuously towards one when

the distance increases. The occupation of the antibonding orbital is the mirror image,

going from a value close to zero to one. This picture will of course be slightly modified

when we include more NOs in the wave function but the general behavior will persist.

We have thus been able to construct a wave function that describes the qualitative

behavior of the electronic structure for all internuclear distances. The price we have paid

is to leave the single configurational description and construct the wave function as a

linear combination of several configurations (determinants) with expansion coefficients

to be determined by the variational principle together with the molecular orbital

coefficients. This is the multiconfigurational approach in quantum chemistry. Before we

end this section let us take a look at a more complex chemical bond, that in the Cr2
molecule.

The Cr atom has the ground state (3d)5 (4s)1, 7S, with six unpaired electrons. Thus, we

can in principle form a sextuple bond between two chromium atoms. This is also what

happens, even if the bond is weak with a bond energy of only 1.53 eV. In order to

1.0

2.0

0.0

Bonding Orbital

Antibonding Orbital

R

Fig. 25.2. The occupation numbers for the sg and su orbitals in the H2 molecule as a function of the internuclear

distance.
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describe the formation of six bonds we need a complex wave function comprising many

hundred CSFs. In Fig. 25.3 we show how the occupation of the NOs varies with the bond

distance for such a wave function. We can see the formation of a bond between the 4s

orbitals starting at rather large distances and slowly progressing when the distance

decreases. The formation of the bonds between the 3d orbitals starts at a considerably

shorter distance and are not fully developed even at equilibrium geometry. The

occupation number of the 3ddg orbital is only about 1.5 electrons at this geometry.

Notice the nice pairing between bonding and antibonding orbitals also in this complex

case. The large difference in distance between 4s and 3d bonding results in a potential

with an inner sharp minimum and a broad plateau at larger distance [8]. The Cr2 molecule

is an example of a system where a single configurational wave function is not valid even

at equilibrium geometry.

25.4 DEGENERACY AND NEAR DEGENERACY

Suppose that two electronic configurations F1 and F2 have same energy and that the

Hamiltonian matrix element them is non-zero and positive. The lowest energy solution is

then

C ¼ 1ffiffi
2

p ðF1 2F2Þ ð27Þ

1.0 Re 2.0 3.0 4.0 5.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

CrCr Distance (A.)

4sσu

4sσg

3dσg

3dσu

3dπu

3dπg

3dδg

3dδu

O
cc
up
at
io
n
N
um
be
r

Fig. 25.3. Variation of the NO occupation numbers for the Cr2 molecule as a function of the internuclear

distance. The vertical line shows the equilibrium bond distance.
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This is exactly the situation we have in the H2 molecule at large distance. If there is an

energy difference but it is small, we obtain the solution

C ¼ C1F1 þ C2F2 ð28Þ
with both coefficients different from zero. This is the situation at intermediate distances

and also the situation for Cr2 at equilibrium but in that case more than two configurations

are involved.

Can we think of more situations of this kind? There are many. Consider, for example, a

chemical reaction:

Aþ B! Cþ D ð29Þ
Suppose that there is an energy barrier for this reaction at some geometry (the transition

state). At this point one or more of the bonds will be weakened (longer bond distance).

We are on a section of the energy surface where antibonding orbitals play a large role in

the wave function and the wave function will be multiconfigurational. A chemical

reaction can either proceed with retention or change of the electronic configuration. In the

first case we say that the reaction is allowed and we expect a low barrier, in the second

case the reaction is said to be forbidden and we normally expect a high barrier. In this

case will the MOs of the reactants be qualitatively different from those of the product. It

we call the configuration for the reactants FI and that for the product FII we shall have

the situation illustrated in Fig. 25.4. The energy, EI corresponding will be low for the

reactants but high for the product and vice versa for EII: At some point the two energy
surface cross and a barrier is generated. The two energies become equal and we obtain the

same situation as in Eq. (27) with total mixing of the two configurations.

R T P

Reaction Coordinate

EI EII

E
ne

rg
y

Fig. 25.4. The energy of the electronic configuration of the reactant (EI) and that of the product (EII) as a

function of the reaction coordinate for a forbidden chemical reaction. The dotted line shows the energy for the

combined two configurational wave function.
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Degeneracy or near degeneracy is common for excited states. The ground state is often

well separated from the excited states of a molecule, at least close to the equilibrium

geometry, while different excited states can be close in energy. When we study

photochemical processes and thus compute energy surfaces at geometries away from

equilibrium we often find crossing energy surfaces with change of dominating electronic

configurations. Such studies must be performed using multiconfigurational wave

functions.

25.4.1 Static and dynamic electron correlation

The correlation energy is usually defined as the difference between the exact eigenvalue

of the Hamiltonian and the Hartree–Fock energy:

Ecorr ¼ Eexact 2 EHF ð30Þ
This definition depends on the possibility to define a unique single configurational

energy. As we have seen above, that might often not be possible if we do not want to fall

back on the unsatisfactory UHF approach. We can as an alternative use the statistical

definition of electron correlation. The electronic motion is uncorrelated if the probability

to find electron one in a small volume element around x1 and electron two around x2 is the

product of the one-electron probability distributions:

r2ðx1; x2Þ ¼ r1ðx1; x1Þr1ðx2; x2Þ ð31Þ
where r2ðx1; x2Þ is the diagonal element of the second order reduced density matrix. We

can express the second order matrix in terms of the first order matrix for a single

determinant wave function (for a more detailed analysis of reduced density matrices, see,

for example, Ref. [4]):

r2ðx1; x2Þ ¼ r1ðx1; x1Þr1ðx2; x2Þ2 r1ðx1; x2Þr1ðx2; x1Þ ð32Þ
We note that this relation is not the same as Eq. (31). The electronic motion is thus

correlated also for the HF wave function. A deeper analysis shows that for electrons with

opposite spin will the second term (the exchange term) disappear when we integrate over

the spin variable. This is not the case for electrons with the same spin (compare the

exchange term in the HF energy expression). The electrons thus create a hole around

themselves were other electrons with the same spin are forbidden. We call this Fermi

correlation. Such a hole is not created for electrons with the opposite spin. There is a finite

probability to find them in the same point in space but the magnitude of the exact wave

function has a minimum for r12 ¼ 0 (r12 being the distance between a pair of electrons).

The derivative of the exact wave function is discontinuous at this point. We call this

behavior a cusp. The wave function has the form

Cðr12Þ / expðr12=2Þ ð33Þ
in the neighborhood of the singularity. The feature is called aCoulomb hole (cf. Fig. 25.5).

The description of this hole is difficult in molecular orbital theory and makes the

correlation energy converge slowly with an increased basis set.
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The above definition of electron correlation makes a generalization to the

multiconfigurational case possible. To explain this, we return to the hydrogen molecule.

We can easily compute the second order density from the two-configurational wave

function (26); it is just the square of the wave functions. We obtain after spin integration:

r2ð1; 2Þ ¼ C2
1s

2
g ð1Þs 2

g ð2Þ þ C2
2s

2
u ð1Þs 2

u ð2Þ þ 2C1C2sgð1Þsgð2Þsuð1Þsuð2Þ ð34Þ
Now, let us assume that both electrons are located close to atom A where the amplitude of

1sB is small. The probability for this is PAA:

PAA ¼ 1sAð1Þ21sAð2Þ2ðC1 þ C2Þ2 ð35Þ
This probability is large when C1 is much larger than C2 (note that C2 has the opposite

sign of C1). This happens close to equilibrium where the HF wave function gives a good

description of the electronic structure. For a large internuclear distance will both

coefficients have the same magnitude and PAA goes ton zero.

The probability to find electron two on atom B can in the same way be written as:

PAB ¼ 1sAð1Þ21sBð2Þ2ðC1 þ C2Þ2 ð36Þ
We notice that this probability will increase when C2 increases in magnitude. The second

configuration thus has the effect of separating the electron pair over a large distance. The

effect is caused by the negative sign between the two atomic orbitals on the su orbital (the
node). This is an example of Static Correlation.

A similar effect can be found in atoms where the ns shell is filled but the np shell is

empty or only partially filled. The symmetry then allows the multiconfigurational wave

function:

C ¼ C1ðnsÞ2ðnpÞx þ C2ðnpÞ2þx ð37Þ
where we have moved two electrons form the ns to the np shell in the second term. The

different nodal structure to the np orbital compared to the ns orbital will separate the

electron pair such that the second electron has an increased probability of being found on

the other side of the atom compared to the first electron. This effect can be large. In the Be

atom it accounts for 95% of the correlation energy of the 2s electron pair.

0 r12

Ψ(r)12

Fig. 25.5. The Coulomb cusp, showing the functional form of the exact wave function,Cðr12Þ; in an area where
the distance between two electrons is small.
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Static correlation is thus used to describe correlation effects which leads to a separation

of an electron pair in space. It originates in the incapability of the HF wave function to

describe such situations (without breaking space and spin symmetry). The remaining

correlation effects are called Dynamic Correlation and describes the situation in the

Coulomb hole when two electron collide. The separation of electron correlation into

static and dynamic is not very precise but is of great practical value. Static correlation

effects may be treated using multiconfigurational wave functions, while other methods

are more suited to treat dynamic correlation, such as: configuration interaction, coupled

cluster, perturbation theory, explicit r12 methods, and even density functional theory. The

combination of multiconfigurational wave functions and such methods to treat dynamic

correlation is an active area of research.

We could of course have given many more examples where it is necessary to use a

multiconfigurational approach to the wave function. A few more will be given at the end

of the chapter, but we now turn to the question of how to construct and evaluate

multiconfigurational wave functions.

25.5 MULTICONFIGURATIONAL WAVE FUNCTIONS

25.5.1 A brief historical expose

The first multiconfigurational (MC) SCF calculation was probably performed by Hartree

and co-workers in 1939 [9]. They realized (as discussed above) that for the 1S state of the

oxygen atom there where two possible configurations, s2p4 and p6, and constructed the

two configurational wave function

C ¼ C1Fðs2p4Þ þ C2Fðp6Þ ð38Þ
The atomic orbitals were determined (numerically) together with the two co-efficients.

Similar MCSCF calculations on atoms and negative ions were simultaneously performed

in Kaunas, Lithuania, by A. Jucys [10]. The possibility was actually suggested already in

1934 in the book by J. Frenkel [11]. Further progress was only made with the advent of

the computer. A.C. Wahl and G. Das developed the Optimized Valence Configuration

(OVC) Approach, which was applied to diatomic and some triatomic molecules [12,13].

An important methodological step forward was the formulation of the Extended

Brillouin’s (BLB) theorem by B. Levy in 1968 [14,15]. This theorem states that for any CI

wave function, which is stationary with respect to orbital rotations, we have:

kC lĤðÊpq 2 ÊqpÞC l ¼ 0 ð39Þ
where Êpq is a spin averaged excitation operator:

Êpq ¼ a†paaqa þ a†pbaqb ð40Þ

The theorem is an extension to the multiconfigurational regime of the Brillouin

theorem, which gives the corresponding condition for an optimized HF wave function.

Chapter 25738



A forerunner to the BLB theorem can actually be found already in Löwdin’s 1955

article [4,16].

The early MCSCF calculations were tedious and often difficult to converge. The

methods used were based on an extension of the HF theory formulated for open shells

by Roothaan in 1960 [17]. An important paradigm change came with the Super-CI

method, which was directly based on the BLB theorem [18]. One of the first modern

formulations of the MCSCF optimization problem was given by J. Hinze in 1973 [19].

He also introduced what may be called an approximate second order (Newton–

Raphson) procedure based on the partitioning: U ¼ 1þ T; where U is the unitary

transformation matrix for the orbitals and T is an anti-Hermitian matrix. This was later

to become U ¼ expðTÞ: The full exponential formulation of the orbital and CI

optimization problem was given by Dalgaard and Jørgensen in 1978 [20]. Variations in

orbitals and CI coefficients were described through unitary rotations expressed as the

exponent of anti-hermitian matrices. They formulated a full second order optimization

procedure (Newton–Raphson, NR), which has since then become the standard. Other

methods (e.g. The Super-CI method) can be considered as approximations to the NR

approach.

25.5.2 The MCSCF wave function

One of the problems that the early applications of the MCSCF method faced was the

construction of the wave function. It was necessary to keep it short in order to make the

calculations feasible. Thus, one had to decide beforehand which where the most

important CSFs to include in the CI expansion. Even if this is quite simple in a molecule

like H2 it quickly becomes ambiguous for larger systems. However, the development of

more efficient techniques to solve large CI problems made another approach possible.

Instead of having to choose individual CSFs, one could choose only the orbitals that were

involved and then make a full CI expansion in this (small) orbital space. In 1976

Ruedenberg introduced the orbital reaction space in which a complete CI expansion was

used (in principle). All orbitals were optimized—the Fully Optimized Reaction Space—

FORS [21].

An important prerequisite for such an approach was the possibility to solve large

CI expansions. A first step was taken with the introduction of the Direct CI method

in 1972 [22]. This method solved the problem of performing large scale SDCI

calculations with a closed shell reference wave function. It was not useful for MCSCF

where a more general approach is needed that allows an arbitrary number of open

shells and all possible spin-couplings. The generalization of the direct CI method to

such cases was made by J. Paldus and I. Shavitt through the Graphical Unitary Group

Approach (GUGA).Two Papers by Shavitt explained how to compute CI coupling

coefficients using GUGA [23,24]. Shavitt’s approach was directly applicable to full

CI calculations. It formed the basis for the development of the Complete Active

Space (CAS) SCF method, which has become the standard for performing MCSCF

calculations [25,26].
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25.5.3 The complete active space SCF method

The CASSCFmethod is best understood if we go back to our examples. We learned that to

compute the potential curve for the H2 molecule we needed two orbitals: the bonding sg
and the antibonding su:We constructed an MC wave function as a linear combination of

the two configurations ðsgÞ2 and ðsuÞ2. They are the only configurations that we can
construct with the two orbitals and two electrons, which have the correct spin and space

symmetry. For the Cr2 molecule we had twelve orbitals and twelve electrons and it

becomes difficult to find the electronic configurations that contribute to the total wave

function for the 1
Pþ
g ground state. So, we do not try. Instead, we tell our CASSCF program

to find all possible CSFs that have the correct spin and space symmetry. The wave function

is expanded in all of them, corresponding to a full CI in the chosen orbital space.

The generalization is obvious. We partition our orbital space into three sub-spaces:

inactive, active, and external. The inactive orbitals are doubly occupied in all CSFs

(like the 1s–3p orbitals in Cr2). The choice of the active orbitals must be based on our

knowledge about the system and the chemical process we are studying. This is not a

trivial task and a CASSCF program can never be treated as a black box. Once we have

chosen the active orbitals, we distribute the active electrons among the active orbitals in

all ways possible for a given total spin and space symmetry. This generates a set of CSFs

in which we expand the wave function:

C ¼
X
n

CnFn; ð41Þ

whereFn are the CSFs. The expansion corresponds to a full CI in the active orbital space.

It can in modern applications contain several million terms. Most softwares use CSFs in

the original wave function but transform to determinants for the solution of the secular

problem because this leads to more efficient code.

CASSCF wave function may be constructed for virtually any type of electronic

structure, closed or open shell, ground or excited state, neutral or ionic, etc. The only

limitation is the size of the active space. The wave function is invariant to orbital

transformations within each subspace, which simplifies optimization andmakes it possible

to construct the same wave function from the natural orbitals, or to use localized orbitals.

In electronic spectroscopy one is often interested in obtaining wave functions and

energies for a set of electronic states of the same symmetry. It might be difficult or even

impossible to make a separate calculation for each state. A compromise, which is often

used with success, is to use the same orbitals for all states of that symmetry. The

optimization is then carried out for the average energy (state average CASSCF).

It is not meaningful to attempt to describe here how the optimization of the wave

function parameters is carried out. We refer instead to the existing literature [27,28].

25.5.4 Choosing the active space

To choose the correct active space for a specific application is not trivial and many times

one has to make several experiments. It is difficult to set up any general rules because
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each chemical problem poses its own problems. There is also a tight connection to the

choice of AO basis, which must be extensive enough to be able to describe the occupied

molecular orbitals properly. The size of the active space is limited. The maximum size in

most softwares is around 15 for the case where the number of orbitals and electrons are

equal. This is the most severe limitation of the CASSCF method and makes it sometimes

difficult or even impossible to carry out a specific study.

During the 25 years that the CASSCFmethod has been used in practical application we

have learned much about the choice of active orbitals. Without attempting to be

complete, we give some examples below.

25.5.4.1 Atoms and atomic ions

This is the simplest case. It is usually sufficient to have the valence orbitals active,

perhaps with added Rydberg type orbitals for studies of excited states. One can normally

leave the ns orbital inactive for main group atoms with more than three np electrons. First

row transition metals are, however, more demanding. It has been shown that in order to be

able to accurately describe the relative correlation effects in atomic states, which differ in

the number of 3d electrons, one needs to use two sets of d-orbitals, 3d and 3d0 where the
second set describes the strong radial correlation effects in the 3d shell [29]. Adding the

4s and 4p orbital one is faced with an active space of 14 orbitals. The importance of

the second 3d orbital decreases for second and, in particular, for third row transition

metals.

Lanthanide atoms and ions need the active space 4f, 5s, and 5p, in all 11 active orbitals

(for some elements also 5d has to be added). It is possible that a double shell effect

obtains also here for atoms with many 4f electrons. Actinides are the most complicated

atoms. The orbitals 5f, 6d, 7s, and 7p have similar energies and are occupied in low lying

electronic states. One should, therefore, ideally use 16 active orbitals. Our experience in

this part of the periodic table is, however, yet rather limited.

25.5.4.2 Small molecules

Diatomic and triatomic systems can often be treated with an active space comprising the

valence orbitals. A recent study of all main group dimers showed that accurate results

were possible with ns and np active (8 orbitals) [30]. We shall, however, give an example

below, the PbF molecule, which illustrates that this rule may sometimes be an

oversimplification. Transition metal compounds are more difficult. One set of nd-orbitals

is enough for the low lying electronic states, but it is necessary to add the (n þ 1)s orbital.

Thus, the minimum active space is 12. It was shown in a recent study of the Cr dimer that

one also had to add orbitals of 4p character to be able to describe the ground state

potential accurately [8]. The situation becomes even more complicated in studies of

many excited states. A recent study of the electronic spectrum of CrH used 16 active

orbitals [31]. One the other hand, only seven active orbitals were needed in a study of the

electronic spectrum of the PbO molecule [32]. Most difficult are molecules containing

actinide atoms. A recent study of the electronic spectrum of UO2 illustrates the problem.

It was here not possible to saturate the active space. This would have needed 18 active

orbitals with 12 electrons, a calculation which is beyond the capacity of the software

available today. Instead, the spectrum was studied using a sequence of active spaces,
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where the choice was guided by the known nature of the most important excited

states [33].

Energy surfaces for chemical reactions involving three main group atoms can be

performed with the 12 valence orbitals active. This will cover all possible reaction

channels. Tetra-atomic molecules would need 12–16 orbitals depending on whether the

ns orbitals have to be included or not. The problem is of course simplified if one or more

of the atoms is hydrogen. Additional active orbitals may be needed for excited states

surfaces where Rydberg states may become important.

25.5.4.3 Electronic spectroscopy for organic molecules

The calculation of excitation energies and transition moments for unsaturated organic

molecules has been one of the more successful applications of multiconfigurational

quantum chemistry since the first application to the benzene molecule in 1992 [34]. Many

hundred molecules have been studied. The CASSCF method allows optimization of

excited state energy surfaces and this has been used to compute vibrationally resolved

electronic spectra [35,36]. The method is used by several research groups for studies of

photochemical reactions, including the localization of conical intersections, etc.

The choice of the active space is non-trivial in most such calculation, in particular if

one is interested in many excited states at energies where Rydberg states become

important. Nine active orbitals are needed to describe the 3s, 3p, and 3d Rydberg states.

In addition a number of valence orbitals of s- and p-type are needed. Thus, the active
space can easily become too large. When the molecule is planar one can use different sets

of Rydberg orbitals for electronic states of S andP type, respectively. It is safest of try to

keep all the valence p-orbitals in the active space. For large aromatic systems this will not
be possible and one then has to experiment to see if it is possible to converge the results

using an increasing number of active orbitals. The number needed depends on how many

excited state one is interested in. Often it is only the low-lying states, and the demands on

the active space is then smaller. In systems with hetero atoms one also needs to add lone-

pair orbitals to the active space. It is clear that it might be difficult or even impossible to

saturate the active space for large aromatic systems.

Discussions of the choice of active orbitals for organic molecules can be found in the

literature [37–39]. One more word about Rydberg states and AO basis sets. Do not

represent Rydberg orbitals by adding diffuse functions to all non-hydrogen atoms in the

molecule. This creates a lot of diffuse functions, which causes convergence problems and

ill defined Rydberg orbitals. Add instead diffuse functions to the charge center of the

positive ion. A recipe how one can produce will defined Rydberg orbitals this way can be

found in Ref. [37]. We give a detailed example below.

25.5.4.4 Transition metal compounds

Multiconfigurational methods have been particularly successful in studies of transition

metal complexes, both for ground state and excited states. This is an area where the

alternative methods are few. Many open shells with varying values of the spin together

with many close lying electronic states (not only singly excited) makes it difficult to use

simple methods like Density Functional Theory, or other methods which assume

a Hartree–Fock like ground states.
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To choose the active space for these compounds is not easy and one sometimes has to

realize that the calculation one was hoping to do cannot be performed with the software

available today. However, there are some rules that can be useful. One is the “10-

orbital/10-electron” rule. As pointed out above one needs two d-type orbitals to represent

a doubly occupied d shell. In a transition metal complex the situation becomes more

complex, but the principle is the same. Here, the second d-type orbital it needed only for

doubly occupied orbitals that do not interact directly with ligand orbitals. If it does, it is

replaced by the corresponding ligand orbital and the addition of one more orbital does not

affect the result. Instead the active orbital describing the interaction with the ligand will

acquire a certain amount of d0-character, how much depends on the covalency of the

metal ligand bond. A general rule is to include in the active space all orbitals, which have

some d-character. A more detailed discussion of the 10/10 active space can be found in

Ref. [39] where a number of specific examples are given. This active space may have to

be supplemented with extra ligand orbitals in studies of excited states of charge transfer

character.

It is helpful to use the formal oxidation number of the ion when deciding about the

active space for a TM complex. Consider as an example the permanganate ion MnO4
2.

The formal oxidation state is Mn7þ with 3d electrons. Thus the active space is to be

chosen as the five 3d-orbitals and five corresponding ligand orbitals. It has, however,

been shown by K. Pierloot that for atoms in a high formal oxidation state, charge transfer

to the metal ion will occur also from orbitals that are not directly interacting with

the metal d-orbitals. For MnO4
2 one therefore needs to include all the oxygen 2p-

orbitals. Thus, in the end we have 17 active orbitals with 24 electrons. More details about

this and similar difficult but interesting cases can be found in Ref.[40]. The same author

has treated a number of transition metal compounds. A discussion of static correlation

effects can be found in Ref. [41] and a review of applications in electronic spectroscopy

in Ref. [42].

25.5.4.5 Lanthanide and actinide chemistry

The experience in this area is still limited. Lanthanide in are characterized by an open 4f

shell. Thus, the seven 4f-orbitals need to be active even if they remain localized and do

not participate in the chemical bonding. In addition, one needs to include some ligand

orbitals in the active space. The specific choice depends on the case and no general rules

can be given. It is clear, however, that the need to include the 4f-orbitals puts more severe

constraints on the number of ligand orbitals that may be used. An extension of the

CASSCF method to allow for singly occupied inactive orbitals would be quite helpful for

such applications.

The situation is similar in actinide compounds but here the 5f-orbitals play a more

active role and contribute to the chemical bond. Most applications have so far been to

systems with a high oxidation state of the actinide ion. A typical case is the uranyl ion,

UO2þ
2 where the uranium ion has a formal charge of þ6. As a result, three strongly

covalent bonds are formed to each of the oxygen atoms. The resulting active space

consists of 12 electrons in 12 orbitals [43]. This active space can also be used when the

uranyl ion forms complexes with other ligands, such as carbonate [44]. Additional active

orbitals are needed for the neutral UO2 molecule [45]. Wahlgren and co-workers have
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studied electron transfer reactions for uranyl (V)-uranyl(VI) complexes in solution [46].

K. Pierloot has studied the electronic spectrum of the uranyl ion and the complex with

chlorine, UO2Cl
22
4 with excellent agreement with experiment. The recipe for choosing

the active space was based on the considerations made above [40].

We shall stop here. Many more examples can be found in the literature. It should be

clear to the reader that the choice of an active space is a non-trivial exercise. At the same

time it is exciting because it teaches us something about the electronic structure and the

important correlation effects in the system we are studying. It is not a black box, but this

has the virtue that we understand more about our system than we would do form a simple

DFT calculation. Many of the examples given above could anyway not have been

handled by this approximate and semi-empirical method.

25.6 DYNAMIC CORRELATION AND THE CASPT2 METHOD

So far, we have only discussed the CASSCF method, but all the examples given above

also included dynamic correlation effects. This is as necessary in the multiconfigurational

approach as it would be if we started from the HF approximation. The CASSCF

calculation will only include the static correlation effects and we need to complement it

with a treatment of the dynamic correlation. How do we do that? In a single

configurational approach, the obvious choices are preferably coupled cluster (CC)

methods, or if the system is too large, second order perturbation theory (MP2), which is

already quite accurate. A practical multiconfigurational CC theory does not exist yet.

A method that has been used with great success since the 1980s is Multi-Reference CI

(MRCI) where the most important of the CSFs of the CAS wave function are used as

reference configuration in a CI expansion that includes all CSFs that can be generated

by single and double replacements of the orbitals in the reference CSFs [47]. The method

is still used thanks to recent technological developments [48]. It becomes, however, time

consuming for systems with many electrons and has also the disadvantage of lacking

size-extensivity, even if this can be approximately corrected for.

Another way to treat the dynamic correlation effects is so use perturbation theory. Such

an approach has the virtue of being size-extensive and ought to be computationally more

efficient than the MRCI approach. Møller–Plesset second order perturbation theory

(MP2) has been used for a long time to treat electron correlation for ground states, where

the reference function is a single determinant. It is known to give accurate results for

structural and other properties of closed shell molecules. Could such an approach work

also for a multiconfigurational reference function like CASSCF? The idea was suggested

soon after the introduction of the CASSCF method [49] but technical difficulties delayed

a full implementation until the late 1980s [50,51].Today it is the most widely used

method to compute dynamic correlation effects for multiconfigurational (CASSCF)

wave functions.

The principle is simple. We compute the second order energy with a CASSCF wave

function as the zeroth order approximation. Having said that, one easily realizes that there

are some problem to be solved that do not occur in MP2. We need to define a zeroth order

Hamiltonian with the CASSCF function as an eigenfunction. It should preferably
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be a one-electron Hamiltonian in order to avoid a too complicated formalism. We need to

define an interacting space of configurations. This is straightforward. They are given as:

ÊpqÊrslCASSCFl ð42Þ
This is an internally contracted configuration space, doubly excited with respect to the

CAS reference function l0l ¼ lCASSCFl. One or two of the four indices p, q, r, smust be
outside the active space. Functions (42) are linear combinations of CSFs and span the

entire configuration space that interacts with the reference function. Labeling the

compound index pqrs as m or n, we can write the first order equation as:X
m

½Hð0Þ
mn 2 E0Smn	Cv ¼ 2V0m ð43Þ

Here, Hð0Þ
mn are matrix elements of a zeroth order Hamiltonian, which is chosen as a one-

electron operator in the spirit of MP2. Smv is an overlap matrix: the excited functions are

not in general orthogonal to each other. Finally, V0m represents the interaction between

the excited function and the CAS reference function. The difference between Eq. (43) and

ordinary MP2 is the more complicated structure of the matrix elements of the zeroth order

Hamiltonian. In MP2 it is a simple sum of orbital energies. Here it is a complex

expression involving matrix elements of a generalized Fock operator, F̂, combined with

up to fourth order density matrices of the CAS wave function. We do not give further

details here but refer to the original papers. The zeroth order Hamiltonian is written as a

sum of projections of F̂ onto the reference function l0l

Ĥ0 ¼ P̂0F̂P̂0 þ P̂SDF̂P̂SD þ P̂XF̂P̂X ð44Þ
where P̂0 projects onto the reference function, P̂SD onto the interacting configurations

space (42), and P̂X onto the remaining configuration space that does not interact with l0l.
F̂ has been chosen as the generalized Fock operator:

F̂ ¼
X
p;q

fpqÊpq ð45Þ

with

fpq ¼ hpq þ
X
r;s

Drs½ðpqlrsÞ2 1

2
ðpqlqsÞ	 ð46Þ

It has the property that fpp ¼ 2IPp when the orbital p is doubly occupied and fpp ¼ 2EAp
when the orbital is empty. The value will be somewhere between these two extremes for

active orbitals. Thus, we have for orbitals with occupation number one: fpp ¼
2 1

2
ðIPp þ EApÞ: This formulation is somewhat unbalanced and will favor systems

with open shells, leading, for example, to somewhat low binding energies [52]. The

problem is that one would like to separate the energy connected with excitation out

from an orbital from that of excitation into the orbital. This cannot be done within a one-

electron formulation of the zeroth order Hamiltonian. K. Dyall has suggested to use a

two-electron operator for the active part [53], but this leads to a too complicated

formalism and also breaks important orbital invariance properties (the result is, for
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example, different if a doubly occupied orbital is labeled inactive or active). Andersson

has suggested to use a shift that stabilizes the active orbitals [54]. This method works well

in cases where excitations from the inactive to the active orbital space are unimportant. A

more general shift technique has recently been suggested by Ghigo and Roos [55]. This

should not be confused with the level shift technique used to remove intruder states.

Perturbation theory like MP2 of CASPT2 should only be used when the perturbation is

small. Orbitals that give rise to large coefficients for the states Eq. (42) should ideally be

included in the active space. Such large coefficients are the result of small energy

differences between the CAS reference state and one or more of the excited functions. We

call these functions intruder states. In cases where the interaction term, V0m; is also small
one can remove the intruder using a level shift technique that does not affect the

contributions for the other states. We shall not show in detail how this is done, but refer

instead to the original papers [56,57]. This method to solve the intruder state problem has

been used successfully in a large number of applications.

The CASPT2 method adds a correlation function to a fixed CAS function. The orbitals

need not be optimized for this specific state. The CASPT2 space includes also singly

excited functions and can thus correct for small errors in the orbitals. The method is often

used with reference functions that have been state average optimized. The fact that the

reference function is fixed can, however, sometimes be a problem, in particular when two

or more electronic states of the same symmetry are close in energy. Such situations are

quite common for excited states. One can then expect the dynamic correlation to affect

also the reference function. We can deal with this problem by extending the method to

include all the electronic states that are close in energy. This is the Multi-State CASPT2

method [58]:

Assume a number of CASSCF wave functions, Ci, I ¼ 1;N; obtained in a state

average calculation. The corresponding (single state) CASPT2 functions are: ji; i ¼ 1;N:
The functionsCi þ xi are used as basis functions in a “variational” calculation where all
terms higher than second order are neglected. The corresponding effective Hamiltonian

has the elements:

ðHeffÞij ¼ dijEi þ kCilĤlxjl ð47Þ

Ei is the CASSCF energy for state i. This Hamiltonian is not symmetric. In practice a

symmetrized matrix is used. This may cause problems if the non-Hermiticity is large and

it is then advisable to extend the active space. A detailed analysis of this and related

problems in photochemical applications has recently been given by M. Merchán and

L. Serrano-Andrés [59].

The multi-state method becomes particularly important when electronic states of

different character are close in energy. One can then expect that the effects of dynamic

correlation is different and large errors in relative energies can occur at the CASSCF level

of theory, which may result in an erratic mixing of the different wave function types in the

reference functions. A typical example is valence-Rydberg mixing the unsaturated

organic molecules. Another is mixed d–d and charge transfer excitations in transition

metal complexes. The multi-state CASPT2 method has been successful in solving

problems in a number of applications.
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25.7 THE RELATIVISTIC REGIME

In the discussion of active spaces we mentioned lanthanides and actinides. These are

heavy atoms and we cannot expect a non-relativistic method to work well for such

cases. The multiconfigurational approach has to be extended to the relativistic regime in

order to be able to treat heavy atom systems. Can this be done without a complete

rethinking? Relativistic quantum chemistry should start from the Dirac equation. Much

work has also been done in recent years to develop a 4-component quantum chemistry.

It can today be made quite accurate, for example, when combined with the coupled-

cluster approach for electron correlation. The problem is, as in the non-relativistic case,

that one needs to start from a single determinant formulation. It is, however, possible to

transform the 4-component Dirac operator to a 2-component form where one

simultaneously analyzes the magnitude of the different terms and keeps only the

most important. Today, the most used such transformation leads to the Douglas–Kroll–

Hess Hamiltonian [60,61]. The DKH Hamiltonian can be divided into a scalar part and

a spin-orbit coupling part. The scalar part includes the mass–velocity term and also

modifies the potential close to the nucleus so that the relativistic weak singularity of the

orbital is removed. The effect on energies is similar to that of the Darwin term, but the

resulting operator is variationally stable. This part of the relativistic corrections can

easily be included in a non-relativistic treatment. Usually, only contributions to the one-

electron Hamiltonian are included. For lighter atoms, the scalar relativistic effects will

be dominating and calculations on, say, first row transition metal compounds, can safely

be performed by adding only this term to the one-electron Hamiltonian used in non-

relativistic quantum chemical methods.

The DKH Hamiltonian has recently been implemented into the CASSCF/CASPT2

version of the multiconfigurational approach [62]. A two-step procedure is used to

account for the relativistic effects

– The scalar part of the DKH Hamiltonian is added to the one-electron integrals. All

scalar relativistic effects are then automatically included at all levels of theory.

Such calculations have to be performed using basis sets that are adapted to such a

Hamiltonian because of the contraction of the core orbitals. A new set of ANO-

type basis sets have, therefore, been constructed, called ANO-RCC. They are

available for all atoms of the periodic table [30,63].

– The treatment of the spin-orbit part of the DKH Hamiltonian is based on the

assumption that the strongest effects of SOC arise from the interaction of

electronic states that are close in energy. For these states we perform independent

CASSCF/CASPT2 calculations. The resulting CASSCF wave functions are then

used as basis functions for the calculation of the spin-orbit coupling. The diagonal

elements of the spin-orbit Hamiltonian can be modified to account for dynamic

correlation effects on the energy by, for example, replacing the CASSCF energies

with CASPT2 or MRCI energies.

The second part of the procedure outlined above depends on the possibility to

compute matrix elements between complex CASSCF wave functions, which is not trivial

because the orbitals of two different CASSCF wave functions are usually not orthogonal.
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A method to deal with this problem was solved by P.-Å. Malmqvist 20 years ago [64,65].

The method has become known as the CASSCF State Interaction (CASSI) method and is

effective also for long CAS-CI expansions. It was recently extended to deal also with the

integrals of the spin–orbit Hamiltonian [66]. The whole approach has been implemented

in the latest version of the MOLCAS quantum chemistry software [67].

A number of studies have been performed on atoms and small molecules, which show

that the approach is capable of describing relativistic effects in molecules containing most

atoms of the periodic system with good accuracy, maybe with one exception: The method

does not take into account that the shape of the spin-orbitals depend on the j quantum

number. For example, the orbitals p1/2 and p3/2 in main group have different radial shape.

This is not accounted for in the present approach. It is particularly important for the fifth

row elements Tl–At. Here the method give larger errors than for any other atom in the

periodic system [30]. Still, the method is capable of giving rather accurate results for

compounds including, at least Tl and Pb atoms [36,62]. We shall give an example later in

the text.

The present method to study heavy element compounds in new and our experience is

so far limited to atoms and some small molecules. It has the virtue that we can now use

the machinery of CASSCF/CASPT2 for the entire periodic system. The method has been

tested for all alkaline, alkaline earth, main group, transition metal atoms and in addition

for some of the lanthanides and actinides. The results are promising. One example: It has

recently been possible to assign the electronic spectrum of the UO2 molecule (more than

150 electronic levels were computed) [33]. A drawback is that for the heaviest elements

one has to include a large number of electronic states in order to fully account for the

effects of spin–orbit coupling.

25.8 THREE EXAMPLES

We shall finish by analyzing the electronic structure of three small molecules that provide

good examples of multiconfigurational effects on the electronic structure. The first is the

ozone molecule. It is a prototype for molecules with unfilled valencies. Most molecules

made up of main group elements have all their valencies filled in the ground electronic

state. The electronic structure is characterized by core orbitals, bonding orbitals, and

lone-pairs, all doubly occupied. Such molecules are well described by a closed shell

single determinant wave function. There is, however, a class of molecules that do no

fulfill these simple structural rules. All valencies cannot be saturated in a natural way.

Instead, there are competing structural possibilities. The ozone molecule is such a case.

Another simple system will be used to illustrate how multiconfigurational methods are

used to describe radicals and at the same time to compute the electronic spectrum of an

organic molecule. It is the allyl radical.

Finally, we give one example of a heavy element compound, where we need to include

relativistic effects. The molecule is PbF and we shall compute the potential for the ground

state and a number of excited states.
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25.8.1 The ozone molecule

Ozone is a triangular molecule with a bond distance of 1.27 Å, and a bond angle of 1178.
This could be compared with the bond distance in the double bonded O2 molecule,

1.21 Å, or to the single bond in HOOH, 1.46 Å. We conclude that partial double bonds

are formed between the end and central oxygen atoms. How can we explain this? One

would expect the ozone molecule to be a bi-radical because the end atoms can only use

one of their free valencies to form a bond with the central atom. But ozone is not a bi-

radical, even if it is quite reactive. The radical structure is quite high in energy and there

are ionic structures that may compete. We show the three most important valence

structures in Fig. 25.6.

We note that the ionic structures result in some double bond character. It is clear that

we cannot easily use this information to build a wave function and we cannot a priori

expect it to be well represented by a single determinant. But we can easily see which

orbitals will be involved. It is the three p-orbitals with four electrons. We can formally

write them as (with the central atom labeled A):

p1ð1b1Þ ¼ c11pA þ C12ðpB þ pCÞ; p2ð1a2Þ ¼ c22ðpB 2 pCÞ;
p3ð2b1Þ ¼ c31pA þ c32ðpB þ pCÞ

The first orbital is bonding between all three atoms, the second is nonbonding, and the

third is antibonding. A single determinant can be formed by occupying the two first

orbitals. This will clearly yield a molecule with strong ionic character. A biradical

character can be introduced by adding a configuration where orbital three is doubly

occupied instead of two:

C ¼ C1ðp1Þ2ðp2Þ2 þ C2ðp1Þ2ðp3Þ2 ð49Þ
We notice the similarity between this wave function and the one we used to explain the

dissociation of a chemical bond. The biradical character was a result of the mixing of two

configurations, one with a bonding and one with an antibonding orbital doubly occupied.

The orbital p3 is bonding between the end atoms, while p2 is antibonding. The situation
here is complicated by the orbital p1, which is also bonding but the principle is the same.
In order to find out how large the effect is, we need to perform a calculation. We shall

make it a little bit more extensive just for the fun of it. We choose as active orbitals all

nine orbitals generated from the oxygen 2p orbitals with 12 active electrons. The

calculations are run in C2n symmetry where the orbital labels are a1 and b2 for the

s-orbitals. The active space is then 3a1, 3b2, 2b1, and 1a2 orbital, which we write as
(3321). We use a basis set of the Atomic Natural Orbital (ANO) type with the contraction

.O O O−O O+ O+

O. O− O

Fig. 25.6. The most important bonding structures for the ozone molecule.
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4s3p2d1f and run a geometry optimization at the CASPT2 level of theory. It is a trivial

calculation. Each energy calculations takes less than a minute on a Pentium 4 laptop.

The resulting bond distance is 1.281(1.272) Å and the bond angle 117.0 (116.8) degrees

(experimental values within parenthesis). The somewhat long bond distance is mainly

due to remaining basis set effects. The CASPT2 method usually gives bond distances that

are accurate to better than 0.01 Å.

The NO occupation numbers are shown in Table 25.1. Note that the third p-orbital, 2b1
has an occupation of 0.26 electrons. The coefficient of the second term in (49) is20.298.

Clearly, this second configuration will increase the biradical nature of the electronic

structure. We can see that also on the Mulliken charge, which increases form 20.11 to

20.09 for each of the end atoms.

Table 25.1 also shows that there is some multiconfigurational nature in the s part of the
electronic structure with occupation numbers as large as 0.06 for two of the antibonding

orbitals. The two orbitals 5a1 and 3b2, which describe the in-plane lone-pairs of the end

oxygens have occupation numbers close to 2.0. The reason is that there are no correlating

orbitals within the valence shell. But we can add two extra valence orbitals to the active

space, which is then extended to (4421). The result of such a calculation is shown in the

second column of Table 25.1. The new orbitals, which are of 3p character, obtain

occupation numbers between 0.01 and 0.02. All the active orbitals are shown in Fig. 25.7.

The first line shows the strongly occupied s-orbitals, the second the corresponding

correlating orbitals. The p-orbitals are shown on the third line.
We conclude from this little exercise that the electronic structure of ozone is clearly

multiconfigurational. It will be difficult to treat it using methods based on a HF reference

function (like CC or DFT).

Let us make one more little exercise. The triangular form of ozone has all valencies

filled but for steric reasons we expect the energy to be high. The electronic structure is

different with six p-electrons instead of four. We optimize the structure of this form

(CASPT2) using the smaller valence orbital generated active space. The computed bond

distance is 1.451 Å, close to the 1.46 Å in HOOH. The NO occupation numbers

Table 25.1 Natural orbital occupation numbers for the ozone molecule with two different active spaces.

The third column shows the occupation numbers for the triangular form with the 3321 active space

Orbital (3321) (4421) Tri. Form

5a1 1.991 1.982 1.901

6a1 1.956 1.954 1.931

7a1 – 0.015 –

8a1 0.063 0.062 0.077

3b2 1.992 1.980 1.901

4b2 1.947 1.945 0.123

5b2 – 0.011 –

6b2 0.052 0.051 0.077

1b1 1.963 1.963 1.999

2b1 0.258 0.230 1.995

1a2 1.780 1.807 1.995

Chapter 25750



are shown in the third column of Table 25.1. We notice the large occupation of the

antibonding orbitals, altogether 0.23 electrons. Clearly, this form of ozone is also highly

multiconfigurational. The triangular form is found to be 35.7 kcal/mol higher in energy

than the open form. Earlier studies have given values around 30 kcal/mol (see, for

example, Ref. [68]).

Next, we make the following exercise. We interpolate along a straight line between the

closed and the open structure and use MS-CASPT2 to compute the energy of two roots,

one with four and one with six p-electrons. This is not the minimum energy path between

the two stationary points, but it is close enough to illustrate the origin of the energy barrier

and the nature of the transition state.

We show the energy surfaces in Fig. 25.8. The energy gap at the transition state is small

(about 4 kcal/mol). The wave function will change character abruptly at the transition

state, from a system four p electrons to one with six. Only a multiconfigurational

treatment can capture this change. A single determinant treatment (e.g. DFT or CC)

would give two crossing potentials.

25.8.2 The allyl radical

As a second example we choose the allyl radical, (CH2)(CH)(CH2). Its electronic

structure is similar to that of ozone, but with only one electron in the 1a2 orbital.

Fig. 25.7. The most important natural orbitals in the ozone molecule. The iso-surface shown is ^0.04.
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The molecule is planar with C2v symmetry, so the electronic ground state is
2A2. The

dominant electronic configuration is (1b1)
2 (1a2). It is not obvious that the electronic

structure should have a multiconfigurational nature, but a calculation using as active the

three p-orbitals with three active electrons shows that the leading configuration has a
weight of only 92%, to be compared with 91% in ozone (see below).

We shall use the allyl radical to illustrate how one can treat planar unsaturated organic

molecules using multiconfigurational methods. Some properties of the ground state will

be studied and, in addition, the electronic spectrum. The system has actually been used as

a example in a course given at the Department of Theoretical Chemistry in Lund called

Quantum Chemistry at Work and a number of students have performed the calculations.

We shall use their results. Some of them were recently published [69].

The basis set used was again of the ANO type with the contraction C(4s3p2d)/H(3s2p).

We shall discuss the addition of Rydberg like functions later. As active space we use the

three p-orbitals with three active electrons. There is no meaning to add s-orbitals to the
active space. The s skeleton in hydrocarbons is nicely described as a closed shell and we
do not expect any appreciable occupation of the antibonding orbitals.

25.8.2.1 The ground state

First we optimize the ground state assuming a planar molecule with C2v symmetry. The

optimization is performed at the CASPT2 level using numerical gradients, which is quite

feasible for an eight atom system.

The results are shown in Table 25.2. We see that there is agreement between theory and

experiment. This is typical for unsaturated hydrocarbons with the p-orbitals active.
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Fig. 25.8. The energy of two states of ozone (one with four and one with six p electrons) along a reactions

coordinate leading from the open ðx ¼ 0:0Þ to the closed form ðx ¼ 1:0Þ: The reaction coordinate is a simple
interpolation between the geometries of the two forms, keeping C2v symmetry.
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We are going to compute the electronic spectrum and it is advised to do this using a

geometry that has been optimized using a good theoretical method instead of an

experimental geometry. In this case the two geometries agree. If they would not, it is

likely that the theoretical result is more accurate.

Another property which is interesting for a radical is the spin-density. We can compute

the spin populations on the carbon atoms using a Mulliken analysis. The CASSCF wave

function is used. The spin-density will come entirely from the p system because we have

used a closed shell for the s electrons.

Electron Paramagnetic Resonance (EPR) can be used to measure the spin-densities in

radicals. It is then assumed that the hyperfine coupling constants for the hydrogen atoms

are proportional to the spin-density of the adjacent carbon atom [70]. Measurements on

the allyl radical [71] give with such an analysis ratio of 20.282 between the spin-

densities of the central and the end carbon atom. The CASSCF value is 0.311. One would

suspect that methods that include spin polarization of the s skeleton would give better

values. The UHF value is, however,20.717. What is the reason for this large difference?

Let us take a closer look at the CAASCF wave function. It contains three terms:

C ¼ 0:96ð1b1Þ2ð1a2Þ2 0:14ð2b1Þ2ð1a2Þ2 0:24ð1b12b1ÞTð1a2Þ ð50Þ

It is the last term in this wave function, which give rise to the spin polarization. The two

b1 orbitals are coupled to a triplet, which is then in turn coupled with the a2 orbital to form

a total doublet. We can write this configuration in terms of Slater determinants as:

ð1b12b1ÞTð1a2Þ ¼ 1ffiffi
3

p ðl1b1a; 2b1b; 1a2alþ l1b1b; 2b1a; 1a2al

þ l1b1a; 2b1a; 1a2blÞ ð51Þ

Such a wave function cannot be described by an UHF determinant, which will assign only

and a spin to the 1a2 orbital. As a result, the spin density on the central atom will be

grossly overestimated. DFT uses the same Slater determinant as UHF and one would not

expect much improvement. The UB3LYP value of the ratio is, however, 20.394, which

is considerably smaller than the UHF value, but still larger than the experimental value.

Neither UHF nor UDFT can fully account for the multiconfigurational nature of

the wave function.

Table 25.2 Equilibrium geometries for the ground and first excited state of the allyl radical C1 is the

central carbon atom (bond distances in Å)

State /C2C1C3 C1–C2 C1–H1 C2–H2 C2–H2

12A2 124.88 1.384 1.081 1.075 1.078

Expt.a 124.08 1.386 1.087 1.082 1.085

12B1 123.18 1.455 1.077 1.074 1.076

aRef. [82].
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25.8.2.2 The electronic spectrum

Let us next try to compute the excited states of the radical at the ground state equilibrium

geometry (the vertical excitation energies). What would we expect to find in such a

calculation? We have three p-orbitals, one doubly and one singly occupied, and one

empty. This generates three singly excited doublet states: 1b1 ! 1a2ð12B1Þ; 1a2 !
2b1ð22B1Þ; and 1b1 ! 2b1ð22A2Þ. The third state is expected to be quite high in energy,
but the other two should appear at lower energies. Simple p-electron theory would

actually predict the two configurations to be degenerate and two states form as a plus and

minus combination, one with low energy and intensity and the other with higher energy

and large intensity. We shall see that this is also what comes out of a CASSCF/MS-

CASPT2 calculation.

With so few valence excited states we expect an electronic spectrum dominated by

Rydberg like transitions. In order to include such states in our calculation, we need to

extend the AO basis set with diffuse functions. To add more basis functions with lower

exponents to each of the atoms is not a recommended procedure. It easily introduces

linear dependencies in the basis set and does not give a good representation of the

Rydberg orbitals. Instead, we do the following. First we do a calculation on the positive

ion. We localize the center of charge. Here, we add a number of primitive Gaussian

functions of s-, p-, and d-type. The method is described in detail in Ref. [37], which also

gives the exponents of the new functions. They are based on the universal Gaussian basis

sets devised by Kaufmann et al. [72]. With these primitives added, we perform a new

calculation on the ground state of the positive ion. To avoid mixing of Rydberg and

valence orbitals, we use a small valence basis set. The lower virtual orbitals can now be

selected as the Rydberg basis functions after projecting out the valence basis set and

spherically averaging the angular momentum components (codes are available, for

example, in the MOLCAS software to perform these tasks automatically).

Here, we select one s-, one set of three p-, and one set of five d-type Rydberg functions

and add them to our valence basis set. They will be added to the active space together

with the three valence p-orbitals. Only Rydberg states originating from excitation for the

1a2 orbital will be included in the calculation. The radical has C2v symmetry, so the

calculation can be split into four, one for each of the symmetries 2A1,
2B1,

2B2, and
2A2. It

is only needed to have the appropriate Rydberg orbitals active in each case. For example,

the states of 2A1 symmetry will correspond to the excitations 1a2 ! 3s, 3pz, 3dz2,

3dx2 2 y2 and only five Rydberg orbitals need to be active. A state average CASSCF

calculation is now performed for the appropriate number of roots, followed by an MS-

CASPT2 calculation in the space of the CASSCF wave functions.

The excitation energies are obtained as the MS-CASPT2 energy difference between

the excited state and the ground state computed with the same active space. The transition

moments have been computed from the CASSCF wave functions. This is usually a

reasonably accurate procedure. If the MS-CASPT2 treatment shows appreciable mixing

between different CASSCF wave functions, we use instead these perturbation mixed

functions (PM-CAS) to compute the transition properties. As we shall see, such a

procedure becomes necessary for the 2B1 states. All calculations were performed using

the MOLCAS quantum chemistry software [67].
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The results are shown in Table 25.3. The two 2B1 valence states are found 3.32 and

6.90 eV above the ground state. Only the first states have been localized experimentally.

This state was studied in more detail. The wave function is the minus combination of the

two configurations shown above. The low intensity is due to cancellation of the transition

moments to the two configurations. The geometry was optimized (at the CASPT2 level)

assuming C2v symmetry. The resulting parameters are given in Table 25.2. The main

difference from the ground state is the longer CC bond, due to the excitation of one

electron from either a nonbonding to an antibonding orbital or from a bonding to a

nonbonding orbital. The calculated “adiabatic” excitation energy is 3.07 eV, a

stabilization of 0.25 eV compared to the vertical energy. The experimental band

maximum at 3.07 is expected somewhere between the adiabatic and vertical energy.

The second state is found at 6.90 eV at the MS-CASPT2 level, but at 6.59 eV at the

CASPT2 level. There is thus a large effect of the multi-state treatment. This is not

atypical for valence states that appear in the Rydberg region of the spectrum. Such a

situation often lead to CASSCF waver functions that are mixtures of valence and

Rydberg states. Two Rydberg states have 2B1 symmetry. They are also affected. The MS-

CASPT2 energies are in better agreement with experiment.

Energies for valence excited states are usually lowered when dynamic electron

correlation effects are included. This is particularly the case when the ionic character of

the electronic structure increases in the excited state. Ionic structures give rise to large

dynamic polarization effects, which reflects the response of the sigma electrons to the

ionicity of the p system. The opposite is true for the Rydberg states, where the effect of

dynamic correlation decrease in the excited states. The excitation energies are thus larger

at the CASPT2 level compared to CASSCF. The reason is obvious. A Rydberg states is

characterized as a diffuse, singly occupied, orbital, which only weakly interacts with the

rest of the molecule. The correlation energy resembles that of the positive ion.

With this, we leave the allyl radical. The electronic spectra of many hundred organic

molecules have today been treated with the method we have exemplified above, including

Table 25.3 Vertical excitation energies for the allyl radical (oscillator strengths within parenthesis)a

State CASSCF CASPT2 MS-CASPT2 Expt.

Valence excited states

12B1 3.70 3.33 3.32(0.0006) 3.07(0.0013)

42B1 7.57 6.59 6.90(0.118) –

Rydberg excited states

12A1 (1a2 ! 3s) 4.47 5.11 5.11(f) 4.97

22A1 (1a2 ! 3pz) 4.94 5.65 5.65(f) –

12B2 (1a2 ! 3px) 5.10 5.65 5.65(0.013) –

22B1 (1a2 ! 3py) 5.37 5.83 5.73(0.11) (5.4–5.9)(0.23)

32B1 (1a2 ! 3dyz ) 6.04 6.55 6.36(0.08) (6.2–6.3)(0.05)

32A1 (1a2 ! 3dx22y2) 5.76 6.51 6.51(f) –

42A1 (1a2 ! 3dz2) 5.82 6.61 6.61(f) –

22B2 (1a2 ! 3dxz) 5.77 6.56 6.56(0.0000) –

22A2 (1a2 ! 3dxy) 5.75 6.60 6.61(0.0000) –

aResults from Ref. [69] where more details can be found.
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neutral molecules, cation and anions, radicals and biradicals [37–39,73]. The method has

also been used to treat transition metal complexes and heavy atom systems, where

relativistic effects become important [74,62].

25.8.3 The PbF molecule

As an example of such a study we pick a small molecule: PbF. Suppose we want to

compute the potentials for the lower electronic states of this molecule, with the

relativistic CASSCF/CASPT2 approach, how do we proceed? Well, it should not be

difficult. Relativistic basis sets (ANO-RCC) are available for Pb and F [30] and we

choose a reasonably extended set: Pb:25s22p16d12f4g/9s8p6d4f3g and F:14s9p4d3f2g/

5s4p3d2f1g. It is of quadruple zeta accuracy.

Now, the active space. Well, that appears to be simple. For main group elements one

needs the ns and np orbitals. Actually, the 2s of fluorine can be left in the inactive space. It

does not contribute to the chemical bond. So, we have seven active orbitals with

4 þ 5 ¼ 9 electrons.

Which electronic states do we include in the calculation? Here starts the more difficult

part. It has been shown [30] that in order to account for the spin-orbit effects in the Pb

atom, one has to include all electronic states of the 6s26p2 configuration, that is, 3P, 1D

and, 1S. The result of such a calculation is shown in Table 25.4. The accuracy is

reasonable but all computed numbers are on the low side. Thus we have not been fully

successful in computing the stabilization of the ground state due to spin–orbit coupling.

This will affect the computed bond energy of the molecule because we can expect the

SOC to be much smaller here, resulting in a too small value of D0. The quenching of the

SOC in the molecule is due to three effects: the change of spin and orbital angular

momentum, the usually larger separation of the excited electronic states from the ground

state and the delocalization of the spin onto other (less heavy) atoms. Table 25.4 also

shows the atomic energies obtained in the molecular calculation at a large internuclear

separation (50 au). We note that they are the same as the calculations on the free atom. It

should also be added that the computed separation between 2P1/2 and
2P3/2 in the fluorine

atom is 0.052 eV to be compared with the experimental value 0.051 eV.

What will be the ground electronic state of the molecule. Fluorine has one open shell

electron and we can, therefore, expect a single bond to be formed between the singly

Table 25.4 The energies of the electronic states of the Pb atom corresponding to the

electronic configuration 6s26p2 (in eV)a

State Calc. 1 Calc. 2 Expt.b

3P (J ¼ 0) 0.00 0.00 0.00
3P (J ¼ 1) 0.83 0.85 0.97
3P (J ¼ 2) 1.20 1.19 1.32
1D (J ¼ 2) 2.37 2.35 2.66
1S (J ¼ 0) 3.53 3.42 3.65

aCalc. 1 has been performed on the free atom, Calc. 2 on PbF at large separation of the two atoms.
bExperimental results from Ref. [83].
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occupied 2ps orbital of F and a 6s, 6ps hybrid of Pb. This leaves the other electron of the
6p2 configuration in a p-orbital and the ground state is 2P which will be split into two

Kramer pairs with V ¼ 1/2 and V ¼ 3/2 by the SOC.

So, in order to account for the effects of SOC at the dissociation limit we need to include

a large number of electronic states. It is left as an exercise to the reader to figure out that if

we combine the above electronic states of Pbwith the 2P state of the F atomwe end upwith

the electronic states: 1 £ 4D; 2 £ 4P; 1 £ 4Sþ; 2 £ 4S2; 1 £ 2F; 3 £ 2D; 6 £ 2P; 4 £ 2Sþ;
3 £ 2S2:The calculations are best run inC2 symmetry because it allows us to average over

the degenerate components of states with Mz – 0: We end up with the following set of

calculations: 5 quartets and 13 doublets in symmetry 1, 4 quartets and 14 doublets in

symmetry 2. So, for each internuclear distance we need to make four calculations where

we state average over the given number of states. All the states are then mixed in the

calculation of the SOC. There is one danger with this type of calculation. One has to check

that the same type of electronic state is obtained for all distances. If this is not the case one

has to change the number of states. Otherwise, the result may be discontinuous potential

curves. Actually, this happens here for the doublets in symmetry 2, but at distances shorter

than equilibrium, so it does not affect the analysis of the spectroscopic constants.

The calculations are straightforward once we have set up the input, which consists of

an integral calculation, four CASSCF/CASPT2 calculations and a final CASSI

calculation for the SOC. It takes about 2 h for each internuclear distance on the Pentium

4 laptop I am writing this chapter on. We write a shell script that loops over 16 chosen

distances, most densely spaced around the equilibrium geometry, and let the computer

work a couple of days. The program MOLCAS-6.0 is used [67].

Having generated all the 23 potential curves we analyze the most important of them, by

solving the ro-vibrational Schrödinger equation numerically using the program VIBROT

in MOLCAS. Let us first take a look at the results obtained without SOC. We find all six

quartet states to be repulsive, as expected because no bond is formed. The 16 doublet

states are shown in Fig. 25.9. We see two bound states. The lowest is the expected 2P
state and the next is a 2Sþ state obtained by moving the odd electron to the nonbonding

6s, 6ps hybrid. The higher states are either repulsive or only weakly bonding. They are

also densely spaced, which makes an assignment of the electronic spectrum in this region

almost impossible.

From these electronic states we generate 45 pairs of levels when we include SOC. It is

impossible to discuss all of them. The seven lowest potentials are shown in Fig. 25.10.

We shall discuss the lower states in a while but let us first take a look at the experimental

data [75]. Huber and Herzberg lists eight levels up to 6.0 eV. The three uppermost are

uncertain and some bands are diffuse. Nevertheless, we have listed the Te values in

Table 25.5 together with the excitation energies computed at an internuclear distance of

3.80 au (2.01 Å), which is close to the equilibrium distance of the ground state, 2.06 Å.

The assignments are from the calculation. They agree with experiment for the three

lowest levels. Only one more experimental level has been assigned. We are comparing

vertical energies with Te values so only a semi-quantitative comparison can be made.

Nevertheless we see a general agreement between computed and experimental energies

with one exception: The fourth state is missing in the calculation. This is according

to Huber and Herzberg a bound 2
Pþ
1=2 level with a short bond distance, 1.98 Å, and a
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Fig. 25.9. Potential curves for 16 doublet states of PbF dissociating to Pb(3P, 1D, 1S) and F(2P). Results without

spin–orbit coupling. The lowest curve is 2P and the next is 2Sþ.
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Fig. 25.10. Potential curves for the seven lowest levels of PbF including spin–orbit coupling. The three lowest

levels are in order 2P1/2,
2P3/2 and

2Sþ
1/2.
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large frequency, 606 cm21. There is no trace if this state in the calculation as can be seen

in Figs. 25.9 and 25.10. We have included all states that dissociate to 6s26p2 Pb plus F, so

this state must dissociate to a higher dissociation limit. The next level for the separated

atoms is Pbþ(2P1/2) þ F2(1S0), which lies 4.01 eV above the ground level. To include

this level, we need to add one more doublet state to our calculation. This is probably not

enough. We may also need to extend the active space because the state is clearly not

included among the states covered with the present active space. A mystery! We shall not

try to resolve it in this little exercise, but leave the problem to the interested reader. It

might be added that a recent large spin–orbit free MRCI calculation finds a 2Sþ state

with a minimum at a short bond distance with a Te of about 5 eV. The minimum does,

however, disappear when spin–orbit coupling is added [76].

Let us now take a closer look at the ground state. Inspection of the wave function

shows that it is dominated by one configuration corresponding to the valence shell

occupation (6s)2(s)2(2pp)4(6pp)1. This is what we expected with a single s bond formed
between Pb and F. The computed spectroscopic constants are presented in Table 25.6. We

notice a slightly too short bond distance and a vibrational frequency that is a little bit too

large. The perfect agreement for the bond energy is obviously fortuitous. We know that

there are errors in the computed SOC energies of the order of 0.1 eV, which should give a

too low bond energy, so there is clearly some cancellation of errors. But the overall

agreement between theory and experiment is acceptable, considering the rather trivial

calculation we have performed. The same is true for the other two low lying levels, 2P3/2

Table 25.5 Calculated energies of the electronic levels of the PbF molecule

computed at an internuclear distance of 3.80 au (2.01 Å) compared to experimental

Te values
a (in eV)

Level Calc. Expt.

2P1/2 0.00 0.00
2P3/2 0.79 1.02
2S1/2

þ 2.59 2.80
2S1/2

þ – 4.42
4S1/2

2 4.74 4.72
4S3/2

þ 5.09 5.43
2D3/2 5.81 5.63
4P1/2 5.81 5.93

aExperimental results from Ref. [75].

Table 25.6 Calculated and experimental (within parentheses) spectroscopic constants

for the three lowest levels of the PbF moleculea

2P1/2
2P3/2

2Sþ
1/2

re (Å) 2.023(2.058) 2.019(2.034) 2.133(2.160)

D0 (eV) 3.61(3.64) – –

we cm
21 540(502) 550(528) 412(395)

Te (eV) – 0.79(1.02) 2.48(2.80)

aExperimental results from Ref. [75].
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and 2Sþ
1/2. Also here is the bond distance too short and the frequencies too high.

Computed Te values are about 0.2 eV too small, an error which is within the limits for the

present method.

With this we leave PbF. The calculations presented have not been exhaustive. We even

missed one electronic state. A more accurate study would need a larger active space and

more electronic states to account also for the Pbþ þ F2 dissociation limit. Calculations

on small molecules are often not as trivial as they seem.

25.9 CONCLUSIONS

We have shown in this chapter how one can construct wave function for electron structure

problems where a single electronic configuration will not give a valid description. The

basic concept is the partitioning of the occupied orbital space into an inactive and an

active part. The choice of the active subspace is a matter of experience combined with

some insight into the electronic structure of the problem under study. A number of

examples were given ranging form the atoms of the periodic table, small molecules,

electron spectroscopy of organic molecules, to transition metal compounds and finally

also lanthanide and actinide chemistry. It has been illustrated that the approach can be

used for compounds containing almost all atoms of the periodic system (the possible

exception being the heaviest main group elements Bi–At). The relativistic formulation of

the method, which becomes necessary for heavy atoms, is based on a partitioning of the

relativistic effects into a scalar part and spin-orbit coupling. Higher order relativistic

effects can be neglected in most chemical applications.

It is clear that the presentation has been biased towards the work of the author himself.

Much of the important development made by other research groups may have been

neglected. Maybe the best way to acknowledge the modern work in multiconfigurational

quantum chemistry is to mention the most important codes: The MOLPRO code contains

a very effective CASSCF code. Dynamic correlation can be treated using CASPT2 and

even CASPT3, or the internally contracted MRCI method [77]. A similar code is

DALTON that reflects much of the important early development by the Aarhus group in

the early 1980s. DALTON has specialized in various electric and magnetic properties

[78]. Another code that should be mentioned is COLUMBUS, which includes the

probably most efficient MRCI code available today [48].

What about the future? The multiconfigurational approach will most likely remain an

important tool in quantum chemistry. For many quantum chemical problems there exists

no real alternative, in particular not for excited states and photochemistry. The method is,

however, not without problems. The fact that it is not a black box, but is rather demanding

on the users chemical and quantum chemical knowledge, is an obstacle for many

potential users. Attempts have been made to make the procedure more automatic but they

have not been very successful. Some codes solve this problem by an oversimplification of

the input, removing the necessary flexibility. It is rarely possible to perform a sensible

CASSCF calculation by only specifying the number of active orbitals and electrons. To

suggest so is simply cheating the user. Thus, there is still a need for improvement

in simplifying the use of the CASSCF method.
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The number of active orbitals that can be used in a CASSCF calculation is limited.

Some problems needs larger active spaces than can be used today. It is then possible to

use a less general way to construct the wave function, for example, the restricted active

space (RAS) SCF method [79]. Such methods can use larger active spaces, but there exist

no corresponding RASPT2 program yet. Such a code would be of great value.

The treatment of dynamic correlation effects is still a problem. The CASPT2 method

has proven to be a very useful tool in many applications, but it has its limitations both in

accuracy and in applicability. It is not possible to extend the method to higher orders

without great difficulty and it is even not clear that such an extension would be meaningful

because we do not know if the perturbation expansion will converge. The MRCI method

can be made very accurate for small molecules but has severe limitations, and the lack

of size-extensivity is a serious obstacle. Multireference cluster expansions are studied

but this approach has not yet been shown to be practical for large-scale applications.

The coupled cluster method can be applied to some simpler multiconfigurational wave

functions using the “spin–flip” method where the reference function is chosen as a closed

shell and the state of interest is treated as an excited state [80].

A tempting possibility is to attempt to combine the CASSCF (or RASSCF) method

with density functional theory. One would then include all long-range (static) correlation

effects into a reference CASSCF wave function, while describing dynamic correlation

effects using a correlation potential. It has been shown that such a method is theoretically

sound and that it is possible to define a universal functional for the dynamic part of the

correlation energy. Several groups are currently attempting to construct such a functional

(see, for example, Ref. [81]).

The examples given in the previous section were all for small molecules. This should

not be misunderstood. The approach is not more restricted in size than other quantum

chemical methods. The limit is not the size of the basis set but rather the size of the active

space. It is possible to develop linear scaling procedures that work well with the

CASSCF/CASPT2 method. It is expected that it will be possible to use multi-

configurational methods to study molecular systems comprising several hundred atoms in

the near future.

25.10 ACKNOWLEDGEMENTS

This work has been supported by a grant from the Swedish Science Research Council, VR

and the Swedish Foundation for Strategic Research (SSF). I am grateful to Professor Per-
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38 B.O. Roos, M.P. Fülscher, P.-Å. Malmqvist, M. Merchán and L. Serrano-Andrés, Understanding Chem.

React., 13 (1995) 357.

39 B.O. Roos, K. Andersson, M.P. Fülscher, P.-Å. Malmqvist, L. Serrano-Andrés, K. Peirloot and
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77 H.-J. Werner, P.J. Knowles, R. Lindh and M. Schütz, et al. Molpro, version 2002.6, a package of ab initio

programs, 2003. see http://www.molpro.net.

78 T. Helgaker, H.J.Aa. Jensen, P. Jrgensen, J. Olsen, K. Ruud, H. gren, A.A. Auer, K.L. Bak, V. Bakken,

O. Christiansen, S Coriani, P. Dahle, E.K. Dalskov, T. Enevoldsen, B. Fernandez, C. Httig, K. Hald,

A. Halkiere, H. Heiberg, H. Hettema, D. Jonsson, S. Kirpekar, R. Kobayashi, H. Koch, K.V. Mikkelsen,

P. Norman, M.J. Packer, T.B. Pedersen, T.A. Ruden, A. Sanchez, T. Saue, S.P.A. Sauer,

Multiconfigurational quantum chemistry 763

References pp. 761–764



B. Schimmelpfennig, K.O. Sylvester-Hvid, P.R. Taylor and O. Vahtras. Dalton, a molecular electronic

structure program, Release 1.2, 2001.

79 J. Olsen, B.O. Ross, P. Jørgensen and H.J.Aa. Jensen, J. Chem. Phys., 89 (1988) 2185–2192.

80 A.I. Krylov, Chem. Phys. Lett., 338 (2001) 375.
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CHAPTER 26

Concepts of perturbation,

orbital interaction, orbital mixing

and orbital occupation

Myung-Hwan Whangbo

Department of Chemistry, North Carolina State University,
Raleigh, NC 27695-8204, USA

Abstract

In understanding structure–property relationships in a variety of molecules and solids,

the concepts of perturbation, orbital interaction, orbital mixing and orbital occupation are

widely employed. Theoretical bases of these qualitative concepts are briefly surveyed.

26.1 INTRODUCTION

An important role of an electronic structure theory is to provide quantitative predictions.

In this role theoretical predictions require developments of efficient programs for

theoretical computations. During the past few decades the scientific community has

witnessed the advent of powerful computers and efficient programs for electronic

structure calculations and dynamic simulations. These theoretical tools are affordable at

modest costs, and the menu-driven operation of these programs is highly user friendly. As

a consequence, even neophytes can now perform theory at many different levels by

running commercially available programs although their command of theory is limited to

the available options of the programs.

Another important role of an electronic structure theory is to provide a conceptual

framework in which to think and organize [1,2]. In this role theoretical predictions need

not be quantitative but should provide a bias toward correct thinking about further

experimental and theoretical studies. When combined with the ideas of symmetry and

overlap, the concepts of perturbation, orbital interaction, orbital mixing and orbital

occupation have been indispensable not only in understanding structure–property

q 2005 Elsevier B.V. All rights reserved.
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relationships in various chemical compounds but also in interpreting results of electronic

structure calculations. These qualitative concepts work at all levels of electronic structure

descriptions from one-electron theory neglecting self-consistent-field (SCF) adjustments

of orbitals to theories including electron correlation and to those including relativistic

effects. In this chapter, we briefly survey the theoretical bases of these concepts.

26.2 ORBITAL INTERACTION ON THE BASIS OF EFFECTIVE

ONE-ELECTRON HAMILTONIAN

26.2.1 Exact relationship between two sets of molecular orbitals [3,4]

Consider a molecular system with a set of atomic orbitals {x1; x2; x3;…; xM}: The
molecular orbitals (MOs) of this system, written as

fi ¼
XM
m¼1

Cmixm ði ¼ 1; 2;…;MÞ ð1Þ

are eigenfunctions of the effective one-electron Hamiltonian Heff ;

Hefffi ¼ eifi ð2Þ
where the eigenvalue ei is the MO energy. For simplicity, we assume that the MOs fi and

the MO energies ei do not depend on the number of electrons in the system, as in the case

of extended Hückel tight binding calculations [5]. (See Section 26.3 for cases when this

constraint is relaxed.) By defining the overlap integrals Smn and the interaction energy

integrals Hmn in terms of the atomic orbitals,

Smnkxmlxnl; Hmn ¼ kxmlHeff lxnl ð3Þ
the matrix representation of Eq. (2) is given by

HC ¼ SCe ð4Þ
where

H ¼

H11 H12 · · · H1M

H21 H22 · · · H2M

· · · · · · · · · · · ·

HM1 HM2 · · · HMM

0BBBBBB@

1CCCCCCA; S ¼

S11 S12 · · · S1M

S21 S22 · · · S2M

· · · · · · · · · · · ·

SM1 SM2 · · · SMM

0BBBBBB@

1CCCCCCA

C ¼

C11 C12 · · · C1M

C21 C22 · · · C2M

· · · · · · · · · · · ·

CM1 CM2 · · · CMM

0BBBBBB@

1CCCCCCA; e ¼

e1 0 · · · 0

0 e2 · · · 0

· · · · · · · · · · · ·

0 0 · · · eM

0BBBBBB@

1CCCCCCA

ð5Þ
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Suppose that another system closely related to the one discussed above is also described

by the same set of atomic orbitals {x1; x2; x3;…; xM}: The MOs of this system may be

written as

f0
i ¼

XM
m¼1

C0
mixm ði ¼ 1; 2;…;MÞ ð6Þ

which satisfy the eigenvalue equation

Hefff0
i ¼ e0i f

0
i ð7Þ

Given the matrices H0, S0, C0 and e0 of this system, the matrix representation of Eq. (7)

becomes

H0C0 ¼ S0C0e0 ð8Þ
For convenience of our discussion, the system described by Eq. (4) may be referred to

as the perturbed system, and that described by Eq. (8) as the unperturbed system. The

MOs of the perturbed system can be expressed in terms of those of the unperturbed

system, i.e.

fi ¼
XM
j¼1

Tjif
0
j ðj ¼ 1; 2;…;MÞ ð9Þ

where the transformation matrix T is expressed as [3]

T ¼ ðC0ÞþS0C ð10Þ
To relate the MO energies of the perturbed system to those of the unperturbed system, we

define the matrices

dH ¼ H2H0; dS ¼ S2 S0 ð11Þ
and evaluate their matrix representations in terms of the MOs of the unperturbed system,

~H ¼ ðC0ÞþdHC; ~S ¼ ðC0ÞþdSC ð12Þ
Then, Eq. (4) is converted to [3]

ðe0 þ ~HÞT ¼ ð1þ ~SÞTe ð13Þ
Eqs. (9) and (13) provide the exact relationships between the perturbed and unperturbed

systems, although they are hardly informative. Useful concepts are obtained on the basis

of approximate relationships between the two systems.

26.2.2 Perturbation analysis and orbital interaction [3,6]

The concept of orbital interaction arises naturally when approximate relationships

between the MOs of the perturbed and unperturbed systems are probed in terms of

perturbation theory. It should be noted that the matrix representation of the perturbation
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is given by Eq. (11) in terms of the atomic orbitals, and by Eq. (12) in terms of the MOs

of the unperturbed system. In general, there are three classes of perturbation (Fig. 26.1)

[6]. In the ‘geometry perturbation’ of a molecule, one compares lower symmetry and

higher symmetry structures, and considers that the lower symmetry structure is

perturbed, and the higher symmetry structure is unperturbed. In the ‘electronegativity

perturbation’, one compares two molecules that differ in one atom, and considers that

the molecule with a more electronegative atom is perturbed, and that with the less

electronegative atom is unperturbed. In the ‘intermolecular perturbation’, one deals with

the formation of a composite molecule from two molecular fragments (or two

molecules), and considers that the composite molecule is perturbed, and the two non-

interacting molecular fragments as a whole are unperturbed.

26.2.2.1 Non-degenerate perturbation

In relating the MOs fi and the MO energies ei of the perturbed system to the MOs f0
i and

the MO energies e0i of the unperturbed system, it is convenient to employ the column

vectors Ci of the MOs fi and the column vectors C0
i of the MOs f0

i ;

Ci ¼

C1i

C2i

· · ·

CMi

0BBBBBB@

1CCCCCCA; C0
i ¼

C0
1i

C0
2i

· · ·

C0
Mi

0BBBBBB@

1CCCCCCA ð14Þ

Fig. 26.1. Three classes of perturbation leading to orbital interactions.
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and define the overlap integrals ~Sij and the interaction integrals ~Hij in terms of the MOs of

the unperturbed systems,

~Sij ¼ ðC0
i ÞþdSC0

j ; ~Hij ¼ ðC0
i ÞþdHC0

j ð15Þ

If there is no degeneracy in the MO energies e0i of the unperturbed system, the non-

degenerate perturbation theory leads to the results,

ei ¼ e0i þ ~Hii þ
X
jð–iÞ

ð ~Hij 2 e0i ~SijÞ2
e0i 2 e0j

ð16Þ

fi ¼ 12
X
jð–iÞ

~Sijtji 2
1

2

X
jð–iÞ

ðtjiÞ2
24 35f0

i þ
X
jð–iÞ

tjif
0
j ð17Þ

where the mixing coefficient tji is given by

tji ¼
~Hji 2 e0i ~Sji

e0i 2 e0j
ð18Þ

26.2.2.2 Degenerate perturbation

If there is degeneracy in the MO energies of the unperturbed system, use of the

degenerate perturbation theory is necessary to obtain the first-order corrected orbitals and

orbital energies that arise from the set of degenerate orbitals. Suppose that some

eigenvalues e0i are degenerate, e.g. e01 ¼ e02 ¼ · · · ¼ e0n: In such a case, the orbitals

constructed as linear combinations of the degenerate MOs f0
i ði ¼ 1; 2;…; nÞ;

f0
i ¼

Xn
n¼1

C0
nif

0
n ði ¼ 1; 2;…; nÞ ð19Þ

are used to solve the eigenvalue equation,

Hefff0
i ¼ e0if

0
i ði ¼ 1; 2;…; nÞ ð20Þ

This leads to the matrix representation,

~H0 ~C0 ¼ ~S0 ~C0e0 ð21Þ
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where

~H0 ¼

~H11
~H12 · · · ~H1n

~H21
~H22 · · · ~H2n

· · · · · · · · · · · ·

~Hn1
~Hn2 · · · ~Hnn

0BBBBBBB@

1CCCCCCCA;
~S0 ¼

~S11 ~S12 · · · ~S1n

~S21 ~S22 · · · ~S2n

· · · · · · · · · · · ·

~Sn1 ~Sn2 · · · ~Snn

0BBBBBBBB@

1CCCCCCCCA

C0 ¼

C0
11 C0

12 · · · C0
1n

C0
21 C0

22 · · · C0
2n

· · · · · · · · · · · ·

C0
n1 C0

n2 · · · C0
nn

0BBBBBB@

1CCCCCCA; e0 ¼

e01 0 · · · 0

0 e02 · · · 0

· · · · · · · · · · · ·

0 0 · · · e0n

0BBBBBB@

1CCCCCCA

ð22Þ

The orbitals f0
i and the orbital energies e0i are first-order corrections. These orbitals can

interact with other unperturbed orbitals f0
j ðj – 1; 2;…; nÞ to give rise to second-order

energy corrections (i.e. those similar to the last term of Eq. (16)).

As an example, consider that e0a ¼ e0b: Then, under the degenerate perturbation, the

orbitals f0
a and f0

b lead to the following new energy levels

e0þ ¼ e0a þ ~Hab

1þ ~Sab
; e02 ¼ e0a 2 ~Hab

12 ~Sab
ð23Þ

and the corresponding orbitals

f0
þ ¼ 1ffiffiffiffiffiffiffiffiffiffiffi

2þ 2~Sab
p ðf0

a þ f0
bÞ f0

þ ¼ 1ffiffiffiffiffiffiffiffiffiffiffi
22 2~Sab

p ðf0
a 2 f0

bÞ ð24Þ

The e0þ level is lower than the e02 level if the overlap ~Sab is positive, and the opposite is

true if ~Sab is negative.

26.2.3 Normal versus counterintuitive orbital interaction [7]

Consider that two orbitalsf0
i and f

0
j with different energies ðe0i , e0j , 0Þ interact to give

rise to two orbitals fi and fj as depicted in Fig. 26.2. Then, the lower lying orbital

fi (i.e. the bonding level) and its energy ei are written as

ei ¼ e0i þ ~Hii þ
ð ~Hij 2 e0i ~SijÞ2

e0i 2 e0j
ð25Þ

fi ¼ ½12 ~Sijtji 2 ðtjiÞ2=2	f0
i þ tjif

0
j ð26Þ

Since the terms ~Sji and tji are small in magnitude compared with 1, the coefficient

½12 ~Sijtji 2 ðtjiÞ2=2	 is positive. Suppose that the phases of the two orbitals f0
i and f

0
j are

chosen such that their overlap ~Sij is positive, and hence the associated interaction energy
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~Hij is negative. Then, f0
j combines in-phase with f0

i if the mixing coefficient tji is

positive, but out of phase if tji is negative. Since ðe0i 2 e0j Þ , 0; Eq. (18) shows that

tji . 0; if ð ~Hji 2 e0i ~SjiÞ , 0

tji , 0; if ð ~Hji 2 e0i ~SjiÞ . 0
ð27Þ

Note that the third term on the right-hand side of Eq. (25) is negative (i.e. energy

lowering) regardless of the sign of ð ~Hji 2 e0i ~SjiÞ; i.e. regardless of whether f0
j combines in

phase or out of phase with f0
i : The case of tji . 0 describes the normal orbital interaction,

and that of tji , 0 the counterintuitive orbital interaction.

To understand the difference between the normal and counterintuitive orbital

interactions, it is necessary to consider an alternative expression of the MO energy ei;
i.e. ei ¼ kfilHeff lfil which, after combining with Eq. (26), leads to the expression

ei ¼ ½12 2~Sijtji 2 ðtjiÞ2	e0i þ ~Hii þ 2tji ~Hji þ ðtjiÞ2e0j ð28Þ
where the terms higher than the second order in ~Sij; tji and ~Hii are neglected. It should be

noted that Eq. (28) is equivalent to Eq. (25), although they look different. The terms of

Eq. (28) whose signs depend on that of tji are 22~Sijtjie
0
i and 2tji ~Hji: Their signs are as

follows:

For tji . 0 : 22~Sijtjiei . 0; 2tji ~Hji , 0

For tji , 0 : 22~Sijtjiei , 0; 2tji ~Hji . 0
ð29Þ

That is, the in-phase orbital mixing in the normal bonding interaction accumulates

electron density between f0
i and f0

j leading to energy lowering by the term 2tji ~Hji; and
depletes electron density from the region of f0

i leading to energy raising by the term

22~Sijtjie
0
i : The out-of-phase orbital mixing in the counterintuitive bonding interaction

depletes electron density between f0
i and f

0
j leading to energy raising by the term 2tji ~Hji;

and accumulates electron density in the region of f0
i leading to energy lowering by the

term 22~Sijtjie
0
i :

Fig. 26.2. Interaction of orbitals f0
i and f0

j with different energies ðe0i , e0j , 0Þ leading to orbitals fi and fj:
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The normal bonding interaction occurs when the energy difference between the two

interacting orbitals is not large ðe0i , e0j Þ: In such a case the extent of orbital contraction is
similar in f0

i and f0
j ; so that it is energetically favorable to accumulate more electron

density in the bonding region between f0
i and f

0
j because the orbitals overlap efficiently.

The counterintuitive bonding interaction occurs when the energy difference between the

two interacting orbitals is very large ðe0i p e0j Þ: In such a case the orbital f0
i is contracted

and the orbital f0
j is diffuse so that it is energetically more preferable to accumulate more

electron density in the contracted region of f0
i (i.e. the lower potential region) because the

contracted and diffuse orbitals do not overlap efficiently [7,8].

26.3 EFFECT OF ELECTRON–ELECTRON REPULSION

Electron–electron repulsion can have a profound effect on the electronic structure of a

system. For a closed-shell system described by one Slater determinant, in which the up-

spin and down-spin electrons of a given MO are restricted to have an identical spatial

function, the effective one-electron Hamiltonian Heff employed in Section 26.2 is given

by the Fock operator [3]. When one Slater determinant is used to describe the electronic

structure of an open-shell system, the up-spin and down-spin electrons are allowed to

have different spatial functions. For a certain open-shell system (e.g. diradical), a proper

description of its electronic structures even on a qualitative level requires the use of a

configuration interaction (CI) wave function [6], i.e. a linear combination of Slater

determinants. In this section, we probe how electron–electron repulsion affects the

concepts of orbital interaction, orbital mixing and orbital occupation by considering a

dimer that is made up of two identical sites with one electron and one orbital per site

(Fig. 26.3).

Fig. 26.3. Interaction between the orbitals x1 and x2 of a dimer with two equivalent sites leading to orbitals

f1 and f2:
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26.3.1 Configuration interaction

The interaction between the two site orbitals x1 and x2 of a dimer leads to two molecular

levels f1 and f2 with energies e1 and e2; respectively (Fig. 26.3). The MOs f1 and f2

represent bonding and antibonding levels, respectively. Three electron configurations of

interest for this dimer are the triplet configuration FT and the singlet configurations F1

and F2 (Fig. 26.4).

When chemical bonding interaction between the spin sites is weak, the orbital energy

difference De between the levels f1 and f2 is small, so that the two electrons of the dimer

are considered as localized. In this case, the two singlet configurationsF1 andF2 become

close in energy, so the CI betweenF1 andF2 becomes strong and the ground singlet state

FS is described by the linear combination [6,9]

FS ¼ d1F1 2 d2F2 ð30Þ

where the mixing coefficients d1 and d2 have the same sign and are similar in magnitude

(e.g. d1 ¼ d2 ¼ 1
ffiffi
2

p
; if De ¼ 0). Using this CI wave function for the singlet state, the

electronic energy difference between the triplet and singlet electronic states, DEe ¼
ET 2 ES; can be calculated under the assumptions that the orbitals f1 and f2 are

determined from SCF calculations for the triplet state, and that these orbitals are linear

combinations of two orthogonal atomic orbitals x01 and x02 (instead of non-orthogonal

orbitals x1 and x2) located at the spin sites 1 and 2, respectively [9].

f1 ¼ 1ffiffi
2

p ðx 0
1 þ x 0

2Þ; f2 ¼ 1ffiffi
2

p ðx 0
1 þ x 0

2Þ; kx 0
1lx 0

2l ¼ 0 ð31Þ

Then the electronic energy difference DEe between the singlet and triplet state is

expressed as

DEe ¼ ES 2 ET < 2K12 2
ðDeÞ2

U11 2 J12
ð32Þ

where K12 is the exchange repulsion integral, and U11 and J12 are the Coulomb

Fig. 26.4. Three electron configurations of a dimer with two equivalent sites and two electrons.
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repulsion integrals, associated with the site orbitals x 0
1 and x 0

2

K12 ¼ k12l21l; U11 ¼ k11l11l; J12 ¼ k12l12l ð33Þ
When there occurs a strong chemical bonding between the two sites of a dimer, the

orbital energy difference De ¼ e2 2 e1 becomes large, which increases the energy

difference DE ¼ E2 2 E1 . 0 between the configurations F2 and F1; where E2 and E1

are the energies of the configurations and F2 and F1; respectively. Thus, using the non-

degenerate perturbation theory, the ground singlet state FS can be written as [6]

FS < F1 2
K12

DE
F2 ð34Þ

Thus, when De is large, the ground singlet state FS is well approximated by F1: In this

case of large De; the singlet state FS is more stable than the triplet state FT; and the two

electrons are regarded as delocalized [10].

26.3.2 States with different orbital occupancy

It is important to consider the effect of electron–electron repulsion on electronic

configurations from the viewpoint of one-electron orbital theory. In the case of large De;
the ground singlet state FS is well approximated by the configuration F1; in which the

orbital f1 is doubly occupied (Fig. 26.4b). This occupancy is energetically favorable in

terms of filling the lower lying bonding level, but unfavorable because the double

occupancy gives rise to on-site repulsion U11 ¼ k11l11l: The triplet configuration FT; in
which the orbitals f1 and f2 are each singly occupied (Fig. 26.4a), avoids the on-site

repulsion at the expense of occupying the bonding and antibonding levels equally. The

singlet state F1 is more stable than the triplet state FT if 2De . U11; and the reverse is

true otherwise [10]

ES 2 ET , 0; if 2De . U11

ES 2 ET . 0; if 2De , U11

ð35Þ

The singlet configuration F1 can be used to refer to the electron-delocalized state.

In the case of small De; the ground singlet state FS is represented by the CI wave

function, Eq. (30). Although the configurations F1 and F2 each consist of doubly

occupied orbitals, their weights in FS are nearly the same when De < 0 so that the

occupancy of the orbitals f1 and f2 orbital is essentially close to unity. In essence,

this situation is similar to that of the triplet state FT in which the orbitals f1 and f2

are each singly occupied. In this sense, the electron configuration FT can be used to

refer to the electron-localized state, regardless of whether the ground state is triplet or

singlet [10].

It is important to recognize the solid-state counterpart of the above observations.

Consider a one-dimensional (1D) chain with one electron and one orbital per site

(Fig. 26.5a). If electron–electron repulsion is neglected, the levels of the bottom half of

the band are each doubly filled, thereby leading to a metallic state (Fig. 26.5b). Non-spin-

polarized electronic band structure calculations predict that a system with a half-filled
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band is always metallic, which is obviously incorrect. By analogy with the dimer example

discussed above, a magnetic insulating state can be represented by a band filling in which

all the band levels are each singly filled with up-spin electrons (Fig. 26.5c) [10]. From the

viewpoint of spin-polarized representation, the latter is equivalent to filling all the up-spin

band levels singly while leaving all the down-spin band levels unoccupied. In spin-

polarized electronic band structure calculations for this formally ferromagnetic insulating

state, the up-spin and down-spin bands become split in energy (Fig. 26.5d) [11]. The

metallic and magnetic insulating states are similar in that they possess a partially filled

band, but they differ in the way the band levels are occupied. Given the bandwidth of the

1D chain as W ; the metallic state is more stable than the magnetic insulating state if

W . U11; while the reverse is true if W , U11 [10,12]

Emetal 2 Einsulator , 0; if W . U11

Emetal 2 Einsulator . 0; if W , U11

ð36Þ

The bandwidth W is equal to 2De: Therefore, the delocalized and localized-electron

states of a dimer are similar in nature to the metallic and magnetic insulating states of a

solid, respectively [10].

26.3.3 Mapping between electronic and spin Hamiltonians [11]

The energy states of the dimer (Fig. 26.3) can be described by a phenomenological spin

Hamiltonian, e.g. the Heisenberg Hamiltonian

Ĥspin ¼ 2JŜ1·Ŝ2 ð37Þ
where Ŝ1 and Ŝ2 are the spin angular momentum operators at the sites 1 and 2,

respectively, and J is the spin exchange parameter. The spin states to consider for this

dimer are the singlet state lSl and the triplet states lTl shown below

lSl ¼ ðl "# l2 l #" lÞ= ffiffi
2

p
; lTl ¼ l "" l; l ## l; ðl "# lþ l #" lÞ= ffiffi

2
p ð38Þ

Fig. 26.5. Metallic and magnetic insulating states of a 1D chain with one electron and one orbital per site: (a)

schematic representation of a 1D chain, (b) metallic state, (c) magnetic insulating state in non-spin-polarized

representation, (d) magnetic insulating state in spin-polarized representation.
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These spin states are eigenfunctions of the spin Hamiltonian Ĥspin such that

E
spin
S ¼ kSlĤspinlSl ¼ 3J=4; E

spin
T ¼ kT lĤspinlTl ¼ 2J=4 ð39Þ

Therefore, the energy difference between the singlet and triplet states is given by

DEspin ¼ E
spin
S 2 E

spin
T ¼ J ð40Þ

Thus, by equating DEspin to the electronic energy difference DEe calculated in Eq. (32),

we obtain

J ¼ DEe < 2K12 2
ðDeÞ2

U11 2 J12
ð41Þ

The above mapping analysis reveals that the spin exchange parameter J consists of two

terms of opposite signs, so it is convenient to write J as

J ¼ JF þ JAF ð42Þ
where the ferromagnetic term JFð. 0Þ and the antiferromagnetic term JAFð, 0Þ are

JF ¼ 2K12 ð43Þ

JAF ¼ 2
ðDeÞ2

U11 2 J12
ð44Þ

Eqs. (42)–(44) provide a basis for discussing spin exchange interactions in terms of

chemical concepts such as symmetry and overlap [9,11,13]. In general, the exchange

integral K12 is very small so that the spin exchange cannot be ferromagnetic (i.e.

J . 0) unless the antiferromagnetic term JAF either vanishes or is very small in

magnitude by symmetry. For various spin exchange paths of a magnetic solid and for

a series of closely related magnetic solids, the ðU11 2 J12Þ term of JAF is nearly

constant and can be considered as the effective on-site repulsion Ueff : Thus, Eq. (44)
is rewritten as

JAF < 2
ðDeÞ2
Ueff

ð45Þ

and the variation of the JAF values is mainly governed by that of the (De)2 values. In

the tight-binding approximation, the orbital energy difference De is related to the

hopping integral b between the spin sites as

De ¼ 2b ¼ 2kx1lHeff lx2l ð46Þ
so that

JAF < 2
4b2

Ueff

ð47Þ

If the orbitalsx1 andx2 at the spin sites 1 and 2 are not orthogonal to each other, the hopping
integral is proportional to the overlap integral S12 between them, i.e. b/2S12; so that
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JAF /2ðDeÞ2 /2ðS12Þ2: For an antiferromagnetic exchange interaction (i.e. J , 0),

the JAF term dominates over the JF term because the latter is very small. Therefore, trends

in antiferromagnetic exchange interactions can be discussed on the basis of the trends in

the corresponding JAF values [11]. The latter can be estimated by calculating the

associated De or b values. Note that JAF is a quantity resulting from electron correlation

(i.e. CI), while b is a one-electron integral with no electron correlation. Nevertheless, it is

interesting that the trends in JAF can be reproduced by those in b:
An alternative mapping between the electronic and spin Hamiltonians can be carried

out by employing broken-symmetry (BS) states [14–16]. The triplet states l "" l and l ## l
of the dimer are referred to as the high spin states lHSl, and the Neél states l "# l and l #" l
as the broken-symmetry states lBSl

lHSl ¼ l "" l; l ## l; lBSl ¼ l "# l; l "" l ð48Þ
where the lBSl states are not an eigenfunction of the spin Hamiltonian Ĥspin: The

expectation values of these states are given by

E
spin
BS ¼ kBSlĤspinlBSl ¼ J=4; E

spin
HS ¼ kHSlĤspinlHSl ¼ 2J=4 ð49Þ

so that

DE0
spin ¼ E

spin
BS 2 E

spin
HS ¼ J=2 ð50Þ

Thus, when the corresponding electronic energy difference DE0
e between the lBSl and

lHSl states is evaluated by appropriate electronic structure calculations, the value of J is

determined by

DE0
e ¼ J=2 ð51Þ

Typically, the DE0
e values are determined on the basis of density functional theory (DFT)

calculations.

26.3.4 Spin polarization

This phenomenon is best illustrated by considering a p radical system (Fig. 26.6a), in

which the C–H bond lies on the nodal plane of the carbon pp orbital that carries some

unpaired spin density. As depicted in Fig. 26.6b, the local electronic structure around the

carbon center can be described in terms of the sCH and sCH
p orbitals (f1 and f3;

respectively) of the C–H bond and the pp orbital ðf2Þ of the carbon atom. To a first

approximation, the up- and down-spin electrons in sCH are regarded to have an identical

spatial function, which leads to no unpaired spin density on the H atom. From the

viewpoint of perturbation theory, this corresponds to the ‘unperturbed’ electronic

structure. However, this picture is not complete, because EPR experiments show the

presence of a small amount of unpaired spin density on the H atom.

The up-spin electrons of the orbitals f1 and f2 stabilize the system by 2K12; where
K12 is the exchange integral between f1 and f2: The down-spin electron of f1 and

the up-spin electron of f2 lead to the Coulomb repulsion J12: Thus, the energy
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of the radical system can be lowered by enhancing K12 and reducing J12: The exchange
integral K12 is the self-repulsion associated with the overlap density f1f2: The f1

orbital is an in-phase combination of C sp2 and H 1s orbitals, while the f3 orbital is an

out-of-phase combination between them (Fig. 26.6b). At the carbon center the pp orbital

is closer to the C sp2 hybrid than to the H 1s orbital so that the overlap density f1f2

(and hence the associated exchange integral K12) is increased by increasing the weight

of C sp2 in the up-spin orbital f1": From the viewpoint of perturbation theory, it is a

perturbation to relax the constraint that f1" and f1# have an identical spatial function.

The spatial function of low-lying orbital f1 can be modified by mixing it with a small

amount of the high-lying orbital f3 (i.e. the orbitals f1 and f3 interact under non-

degenerate perturbation). To increase the weight of C sp2 in the up-spin orbital f1"; f3

should be combined with f1 as

f1" ¼ f1 þ lf3ffiffiffiffiffiffiffiffiffi
1þ l2

p ð52Þ

where l is a small positive mixing coefficient ð0 , lp 1Þ: The Coulomb repulsion J12
is the repulsion between the charge density distributions f1f1 and f2f2: J12 can be

reduced by decreasing the weight of C sp2 in the down-spin orbital f1#; which is

achieved by mixing a small amount of f3 into f1 as

f1# ¼ f1 2 kf3ffiffiffiffiffiffiffiffiffi
1þ k2

p ð53Þ

where k is a small positive mixing coefficient ð0 , kp 1Þ: As a consequence, the

spatial functions of f1" and f1# are modified such (Fig. 26.6c) that the hydrogen atom

has more down-spin density than up-spin density, resulting in a small amount of

unpaired down-spin density on it. Namely, the up-spin electron in the carbon pp orbital

polarizes the distribution of the up- and down-spin electrons in the C–H bond to have

a small net down-spin density on the H atom.

26.3.5 Non-equivalent orbital interactions in an open-shell system [17]

Electronic structures of crystalline solids are mostly calculated on the basis of DFT. In

this approach an open-shell system is described by spin polarized electronic band

structures, in which the up-spin and down-spin bands are allowed to have different orbital

Fig. 26.6. (a) A local environment of an organic p radical system. (b) The C–H sigma bonding orbital f1; the

pp orbital f2; and the sigma antibonding orbital f3 in the absence of spin polarization. (c) The f1" and f1#
orbitals in the presence of spin polarization.
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compositions. The difference between the up-spin and down-spin bands can be quite

substantial in the d-block bands of solids containing high-spin transition metal cations, as

discussed [17] for CaFeO3 in which the high spin Fe4þ (d4) cations in octahedral sites

have the (t2g)
3(eg)

1 configuration. In this section, we discuss why the up-spin and down-

spin levels of an open-shell system have non-equivalent orbital interactions by

considering CaFeO3 as an example.

In the occupied up-spin eg bands of CaFeO3, the Fe 3d and the O 2p orbitals

contribute almost equally, which implies that the Fe 3d and the O 2p levels are nearly

the same for the up-spin bands. In the unoccupied down-spin eg bands of CaFeO3, the

Fe 3d orbital contribution is greater than the O 2p orbital contribution, which implies

that the Fe 3d level lies considerably above the O 2p level for the down-spin bands. In

other words, the Fe–O bonds are more covalent in the up-spin bands than in the down-

spin bands [17].

To account for these observations, it is necessary to examine how orbital

interactions are affected by electron–electron repulsion and in what way the effect

is different for up-spins and down-spins. Consider that the energies of Fe 3d and

O 2p levels in the absence of electron–electron repulsion are given as depicted in

Fig. 26.7a ðe0d , e0pÞ; which shows four singly filled Fe 3d levels and a doubly filled

2p orbital of a ligand O atom. When electron–electron repulsion is taken into

consideration [18–20], the up-spin and down-spin levels of the Fe 3d and O 2p

orbitals are expressed as (Fig. 26.7b)

ep" ¼ e0p þ Upp þ 4Jpd 2 4Kpd

ed" ¼ e0d þ 3Jdd 2 3Kdd þ 2Jpd 2 Kpd

ep# ¼ e0p þ Upp þ 4Jpd

ed# ¼ e0d þ 4Jdd þ 2Jpd 2 Kpd

ð54Þ

where Upp is the on-site Coulomb repulsion for the O 2p orbital, Jdd is the Coulomb

repulsion between two different Fe 3d orbitals, and Jdp is the Coulomb repulsion

between a Fe 3d and the O 2p orbital. Therefore, for the up-spin and down-spin

electrons, the energy gaps between the Fe 3d and the O 2p levels are written as

ed" 2 ep" ¼ ðe0d 2 e0pÞ þ ð23Kdd þ 3KpdÞ þ ð3Jdd 2 Upp 2 2JpdÞ
ed# 2 ep# ¼ ðe0d 2 e0pÞ þ ðJdd 2 KpdÞ þ ð3Jdd 2 Upp 2 2JpdÞ

ð55Þ

Consequently, the energy gap between the Fe 3d and the O 2p levels for down-spin

electrons is larger than that for the up-spin electrons by

ðed# 2 ep#Þ2 ðed" 2 ep"Þ ¼ Jdd þ 3Kdd 2 4Kpd < Udd þ Kdd 2 4Kpd ð56Þ
where Udd is the on-site Coulomb repulsion for two electrons in a metal 3d level and

is approximately related to Jdd and Kdd as Jdd < Udd 2 2Kdd [20]. In general, the

magnitudes of the various Coulomb and exchange integrals are expected to decrease

as Udd . Upp . Jdd . Jdp . Kdd . Kdp: It is clear from Eq. (56) that, due to

electron–electron repulsion, the energy gap between the Fe 3d and the O 2p levels
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becomes larger for the down-spin orbital interactions than for the up-spin orbital

interactions. This explains why, for CaFeO3, the covalency of the Fe–O bond is

greater in the up-spin than in the down-spin bands.

26.3.6 Orbital ordering in magnetic solids

Electron–electron repulsion has an important effect on the arrangement of singly filled

orbitals between adjacent spin sites (i.e. orbital ordering) [11,21–23]. Suppose that the

sites 1 and 2 of a dimer (Fig. 26.3) are represented by the non-orthogonal orbitals x1 and
x2; respectively. If the two sites are equivalent, the energies of the orbitals x1 and x2 are
the same (i.e. e01). The interaction between the two orbitals gives rise to the bonding level

e1 and the antibonding level e2 such that the stabilization of the bonding level is smaller

in magnitude than the destabilization of the antibonding level, i.e. ðe2 2 e01Þ . ðe01 2 e1Þ
(Fig. 26.8a) [6]. As discussed in the previous section, the delocalized state (Fig. 26.8b)

is more stable than the localized state (Fig. 26.8c) ifU11 , 2Dewhereas the reverse is true

Fig. 26.7. Effect of electron–electron repulsion on the energy gap associated with the orbital interaction of a

doubly filled O 2p orbital with partially filled 3d orbitals of Fe4þ (d4) cation. (a) The energy levels of the Fe 3d

and O 2p orbitals in the absence of electron–electron repulsion, and (b) those in the presence of electron–

electron repulsion.
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if U11 . 2De [10]. In the delocalized state, the two-electron two-orbital interaction

stabilizes the system by DE ¼ ð2e1 2 2e01Þ /2S12; which is enhanced by increasing the

overlap [6]. For the localized state, the two-electron two-orbital interaction destabilizes

the system by DE ¼ ðe2 þ e1Þ2 2e01 / ðS12Þ2; which is reduced by decreasing the

overlap [6]. As an example, consider the arrangements of two singly filled p orbitals.

When U11 , 2De; the stabilization is maximum in the parallel arrangement (Fig. 26.9a)

but vanishes in the orthogonal arrangement (Fig. 26.9b). When U11 . 2De; however, the
destabilization is maximum in the parallel arrangement (Fig. 26.9a) and vanishes in the

orthogonal arrangement (Fig. 26.9b). The orbital ordering phenomenon is observed in

magnetic solids of transition metal elements when their magnetic ions have partially

filled degenerate d-block levels. This phenomenon manifests the fact that in electron-

localized states (i.e. U11 . 2De) a net destabilization results from a two-electron two-

orbital interaction, and this destabilization is reduced by decreasing the overlap between

the two orbitals.

Fig. 26.9. Arrangements of two singly filled p orbitals of a dimer: (a) parallel arrangement, (b) perpendicular

arrangement.

Fig. 26.8. Orbital occupations of the electron-delocalized and electron-localized states of a dimer consisting of

one electron and one orbital per site, where the two sites are equivalent: (a) orbital interaction between the two

sites leading to the bonding and antibonding levels of the dimer, (b) orbital occupation of the electron-

delocalized state, (c) orbital occupation of the electron-localized state.
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26.4 SPIN–ORBIT COUPLING AND ORBITAL MIXING

In relativistic theory a wave function has four components, two large components and

two small components. For simplicity, we consider only the two large components of an

atomic p orbital. Due to spin–orbit coupling brought about by the relativistic effect, the

p orbitals of an atom are given by the atomic p1/2 and p3/2 orbitals [24–26]

P1=2ðms ¼ 1=2Þ : fa /
2

ffiffiffiffiffi
1=3

q
pz

2
ffiffiffiffiffi
1=3

q
ðpx þ ipyÞ

2664
3775 ð57Þ

P3=2ðms ¼ 1=2Þ : fb /
ffiffiffiffiffi
2=3

q
pz

2
ffiffiffiffiffi
1=6

q
ðpx þ ipyÞ

2664
3775 ð58Þ

P3=2ðms ¼ 3=2Þ : fc /
ffiffiffiffiffi
1=2

q
ðpx þ ipyÞ
0

24 35 ð59Þ

where the px, py and pz are the p orbitals in the absence of spin–orbit coupling. Suppose a

homonuclear diatomic molecule with the z-axis taken along the internuclear axis. For

simplicity, we consider relativistic wave functions of a dimer resulting only from the p1/2
and p3/2 orbitals. By identifying the two sites of a dimer with the indices 1 and 2, the

‘equal-weight’ linear combinations of the relativistic atomic orbitals fa; fb and fc can be

written as

fað1Þ þ fað2Þ /
2

ffiffiffiffiffi
1=3

q
sp
z

2
ffiffiffiffiffi
1=3

q
ðpx þ ipyÞ

2664
3775 ð60aÞ

fað1Þ2 fað2Þ /
2

ffiffiffiffiffi
1=3

q
sz

2
ffiffiffiffiffi
1=3

q
ðpp

x þ ipp
yÞ

2664
3775 ð60bÞ

fbð1Þ þ fbð2Þ /
ffiffiffiffiffi
2=3

q
sp
z

2
ffiffiffiffiffi
1=6

q
ðpx þ ipyÞ

2664
3775 ð61aÞ

fbð1Þ2 fbð2Þ /
ffiffiffiffiffi
2=3

q
sz

2
ffiffiffiffiffi
1=6

q
ðpp

x þ ipp
yÞ

2664
3775 ð61bÞ

fcð1Þ þ fcð2Þ /
ffiffiffiffiffi
1=2

q
ðpx þ ipyÞ
0

24 35 ð62aÞ

Chapter 26782



fcð1Þ2 fcð2Þ /
ffiffiffiffiffi
1=2

q
ðpp

x þ ipp
yÞ

0

24 35 ð62bÞ

where s and sp represent the sigma-bonding and sigma-antibonding orbitals of the dimer,

respectively, in the absence of spin–orbit coupling. Likewise, p and pp represent the pi-

bonding and pi-antibonding orbitals of the dimer, respectively, in the absence of spin–

orbit coupling. The relativistic orbitals of a dimer such as Bi2
22 calculated by relativistic

DFT calculations are composed of the orbitals listed in Eqs. (60)–(62) [27].

Eqs. (60) and (61) reveal that some relativistic dimer orbitals have the character of both

s and pp orbitals, and others have the character of both sp and p orbitals. Namely, the

spin–orbit coupling brought about by the relativistic effect causes orbital mixing between

the sigma and pi orbitals of a non-relativistic Hamiltonian. It is of interest to see how this

orbital mixing comes about. The orbital angular momentum of a diatomic molecule along

the internuclear axis is designated by l: Namely, l ¼ 0 for s and sp orbitals, and l ¼ 1

for p and pp orbitals. The coupling of the spin angular momentum and the angular

momentum l leads to a net angular momentum denoted by v ¼ ll^ 1=2l for a spin-1/2
electron. Therefore, under spin–orbit coupling, the s and sp ðl ¼ 0Þ levels become

v ¼ 1=2 levels, whereas the p and pp ðl ¼ 1Þ levels split into v ¼ 1=2 and v ¼ 3=2
levels. The levels of an identical v value can interact and hence mix together, if their

symmetry (gerade or ungerade) is the same. Thus, the gerade v ¼ 1=2 levels combine s
and pp orbitals (Eqs. (60b) and (61b)), while the ungerade v ¼ 1=2 levels combine sp

and p orbitals (Eqs. (60a) and (61a)). The s and sp orbitals with v ¼ 1=2 do not mix due

to their difference in symmetry. For the same reason, the p and pp orbitals with v ¼ 3=2
do not mix (Eqs. (62a) and (62b)).

26.5 CONCLUDING REMARKS

As briefly surveyed in this chapter, the concepts of perturbation, orbital interaction,

orbital mixing and orbital occupation work at all levels of electronic structure

descriptions. These qualitative concepts provide a conceptual framework in which to

rationalize experimental/theoretical observations and to generate qualitative predictions

that can be tested by further experimental/theoretical studies.
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CHAPTER 27

G2, G3 and associated quantum

chemical models for accurate

theoretical thermochemistry
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Abstract

We present a brief review of G2 and G3 theories which are composite techniques for

the accurate prediction of experimental thermochemical data for molecules. We discuss

the components of G2 and G3 theories as well as approximate versions such as G2(MP2),

G3(MP2) and G3(MP3). Additional methods such as extended G3 theory (G3X) as

well as scaled G3 theory (G3S) are also discussed. The methods are assessed on the

comprehensive G2/97 and G3/99 test sets of experimental energies (heats of formation,

ionization energies, electron affinities and proton affinities) that we have assembled. The

most accurate method, G3X, has a mean absolute deviation of 0.95 kcal/mol from

experiment for the 376 energies in the G3/99 test set. Some illustrative applications of the

methods to resolve experimental data for other systems are also discussed.

27.1 INTRODUCTION

The last two decades have witnessed enormous progress in the development and

application of ab initio electronic structure techniques. The energies of small molecules

and ions can now be routinely evaluated to an accuracy of better than 1 kcal/mol

(‘chemical accuracy’) and the computation of the energies of larger molecules to a

similar accuracy is increasingly becoming feasible [1–4]. In addition to the enormous

impact from the ever-increasing hardware performance of high-speed computers, two

important areas of theoretical development have contributed to this progress. The first is

the development and implementation of accurate electron correlation methods such as

q 2005 Elsevier B.V. All rights reserved.
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augmented coupled cluster theory [5,6] and the associated computational models [7]. The

second is the understanding of the effects of large basis sets and their convergence

behavior with respect to the inclusion of higher angular momentum functions [8].

Together they have led to several successful approaches for the accurate evaluation of

thermochemical quantities from first principles [9–66].

Even though the demands placed on the theoretical methods are well understood, the

practical realization of chemical accuracy for more than very small molecules is still a

formidable task. This is due to the high scaling of the cost of accurate calculations with

molecular size. For example, it is known that we can achieve high accuracy with coupled

cluster calculations such as CCSDTQ (coupled cluster with single, double, triple, and

quadruple excitations) [13]. However, such a calculation is iterative and scales as the 10th

power of molecular size ð, N10Þ and is not practical, particularly in conjunction with
large basis sets. Somewhat simpler CCSDT calculations [7,12] are still iterative and

scale as , N8 and are also impractical for most systems. The practical success in the

development of thermochemical models came with the development of perturbative

(non-iterative) evaluation of the effects of triple excitations [5,6] (N7 scaling) subse-

quent to an iterative evaluation of the effects of single and double excitations (CCSD

or quadratic configuration interaction, QCISD). The resulting models, denoted as

CCSD(T) [5] and QCISD(T) [6], appear to provide the best compromise between

accuracy and computational feasibility. In particular, the CCSD(T) method has been

successfully used with progressively larger basis sets containing high angular momentum

functions [9–19]. The most commonly used basis sets in this approach belong to the

correlation-consistent family developed by Dunning et al. [8]. After explicit calculations

are carried out to the extent possible (typically up to quintuple zeta basis sets), the results

are then extrapolated to the complete basis set (CBS) limit [14,15] and corrected for some

smaller effects such as core-valence and relativistic effects. Such ab initio methods

without using any parameters have been used successfully for molecules up to the size of

benzene [18]. Examples of this approach include the W1 and W2 models of Martin and

co-workers [16,17]. In addition, higher order effects of electron correlation have been

considered carefully in the recently proposed W3 model [19], which targets kJ/mol

accuracy.

An alternative successful strategy that makes it possible to approach chemical

accuracy for significantly larger molecules involves a composite multilevel approach

typically combined with a small number of empirical parameters. The Gaussian-n series

[20–45] that we have developed exploits this idea to predict thermochemical data for

molecules containing first- and second-row elements. Our objective in these studies was

to develop a general predictive procedure, applicable to any molecular system in an

unambiguous manner, that can reproduce known experimental data to a prescribed

accuracy of ^2 kcal/mol (somewhat less ambitious than ‘chemical accuracy’), and can

be applied with similar accuracy to other species where the experimental data are

unknown or uncertain. In our approach a suite of methods with different levels of

accuracy is used with practical basis sets to attempt to approach the exact result. For

example, high-level correlation calculations (e.g. QCISD(T), CCSD(T)) with moderate-

sized basis sets can be combined with results from lower level calculations (e.g. MP4,

MP2 or even HF) using larger basis sets to approximate the results of more expensive
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calculations. In addition, molecule-independent empirical parameters are used in these

methods to estimate the remaining deficiencies in the calculations. This avoids the use of

very large basis sets containing high angular momentum functions and such an approach

using ‘higher level corrections (HLCs)’ (additive parameters that depend on the number

of paired and unpaired electrons in the system) has been quite successful and the latest

version, Extended Gaussian-3 (G3X) theory [42], achieves an overall accuracy of better

than 1 kcal/mol for the G3/99 test set [37]. Petersson et al. [49–56] have developed a

related series of methods, referred to as CBS methods, for the evaluation of accurate

energies of molecular systems. The central idea in the CBS methods is an extrapolation

procedure to determine the projected second-order (MP2) energy in the limit of a

complete basis set. Several empirical corrections, similar in spirit to the HLC used in the

Gaussian-n series, are added to the resulting energies in the CBS methods to remove

systematic errors in the calculations. Another approach for calculating thermochemical

data that has been proposed is a scaling of the calculated correlation energy using

multiplicative parameters [57–66] determined by fitting to experimental data. This work

has been pioneered by Truhlar and co-workers who have derived a series of methods

using this approach. Finally, hybrid density functionals [67] are being used increasingly

to predict the thermochemistry of molecules with reasonable accuracy [1–4].

In this chapter, we review the elements of G2 and G3 theories and related techniques to

computational thermochemistry. An important part of the development of such quantum

chemical methods is their critical assessment on test sets of accurate experimental data.

Section 27.2 provides a brief description of the comprehensive G3/99 test set [37] of

experimental data that we have collected. Sections 27.3 and 27.4 discuss the components

of G2 and G3 theories as well as the approximate versions such as G2(MP2), G3(MP2)

and G3(MP3) and their performance for the G3/99 test set. Section 27.5 discusses the

G3X method [42] that corrects for some of the deficiencies of G3 theory for larger

molecules. The G3S method [41] that includes multiplicative scale factors is discussed in

Section 27.6 along with other related variants. Extensions of G3 theory to the third-row

elements is discussed in Section 27.7. Finally, a summary is presented in Section 27.9.

27.2 THERMOCHEMICAL TEST SETS

A key to the development and assessment of new composite quantum chemical methods

for predicting accurate thermochemistry is the availability of test sets containing reliable

experimental data. An ideal test set should comprise accurate experimental values of

heats of formation for a wide variety of molecules in many different bonding

environments. It should contain experimental values for molecules with light as well

as heavy elements, main group elements as well as transition metals. However, the

number of molecules having highly accurate heats of formation, within chemical

accuracy (^1 kcal/mol), is small and most of the available data are dominated by

molecules containing the first- and second-row elements. In this review, we restrict most

of our discussion to test sets of molecules of this type.

In our own work, we have assembled three such test sets of good, credible

experimental data to perform such assessments [23,35–37]. The original small molecule

G2, G3 and associated quantum chemical models for accurate theoretical thermochemistry 787

References pp. 810–812



test set (now referred to as G2-1 set) includes the atomization energies for 55 neutral

molecules containing 1–3 heavy atoms (systems such as H2O, C2H4, CO2 and SO2) [23].

While small, it has nevertheless proved to be very useful in deriving parameters needed

for the development of new thermochemical models. In fact, the parameters in the

popular B3LYP density functional [67] were derived by fitting to the molecules in this

test set. The test set was augmented in 1997 to 148 molecules by including medium-sized

molecules containing 3–6 heavy atoms (systems such as C3H6, C4H4O, C6H6, etc.) [35].

We also added other thermodynamic quantities such as ionization energies, electron

affinities and proton affinities to this subset (now referred to as G2-2) [36]. The two

subsets, G2-1 and G2-2, are together referred to as G2/97 and contain 301 test

energies [35,36]. An additional 75 molecules (referred to as G3-3 subset) were added in

1999. The G3-3 subset [37] contains 75 enthalpies of formation for molecules that are, on

average, larger (containing 3–10 heavy atoms). The largest molecule in the G3-3 subset

contains 10 non-hydrogen atoms (e.g. naphthalene or azulene). It also contains some

larger hypervalent molecules such as PF5 or SF6 that provide a challenge for many

theoretical models. The cumulative current test set, referred to as G3/99 [37], contains

376 energies (222 enthalpies of formation, 88 ionization energies, 58 electron affinities

and 8 proton affinities) that are known experimentally [68–71] to an accuracy of better

than ^1 kcal/mol.

The 222 enthalpies of formation included in the G3/99 test set correspond to a wide

variety of molecules in many bonding environments. They are conveniently classified

into subgroups of molecules in order to identify trends within the different groups. They

include 47 non-hydrogen-containing molecules, 38 hydrocarbons, 91 substituted

hydrocarbons, 15 inorganic hydrides and 31 open-shell radicals. Overall, the test set is

dominated by organic molecules, while the number of molecules containing metallic

elements is relatively modest. However, they provide a comprehensive assessment of

new theoretical models in a wide variety of bonding environments.

Additional test sets have been derived by other authors. For example, Cioslowski et al.

[72] have compiled a set of 600 enthalpies of formation for a broad range of molecules up

to the size of C60. This compilation includes many molecules containing Li, Be, B, Na,

Mg and Al where the experimental uncertainties are larger. In addition, it includes many

large molecules such as polycondensed benzenoid hydrocarbons and relatively unstable

molecules such as carbenes and molecules with dative bonds where the inherent

uncertainties are larger. Though significantly more diverse, the presence of significant

experimental uncertainties makes it difficult to evaluate the performance of theoretical

methods in such cases. An alternative procedure may be to use weighting factors in cases

where the paucity of accurate experimental data makes assessment difficult.

Another area where significant work has been done is in the prediction of activation

barriers of chemical reactions. Truhlar and co-workers have assembled a set of 44 barrier

heights [65] for assessment of the performance of theoretical methods for ‘thermo-

chemical kinetics’. Finally, a limited set of thermochemical information has been

collected for molecules containing third-row main group elements and for transition

metal systems [27–29,73,74].

The collection of such a large test set of experimental data is indeed a formidable

challenge. All the experimental values that are included in the G3/99 test set have
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a quoted uncertainty of less than 1 kcal/mol [35–37]. However, a critical evaluation of

the experimental uncertainties for all these species is a daunting task. Cioslowski et al.

[72] have discussed the possible sources of errors in such thermochemical compilations.

It is possible (and perhaps likely) that some of the values included in our G3/99 test set

may turn out to be incorrect. For example, the G2/97 test set originally contained 302

energies, but the enthalpy of formation of COF2 was deleted because a new experimental

upper limit [71] cast doubt on the original value used. While there are a few other cases

where the experimental data may not be as accurate as cited, in our analysis we have

chosen not to throw out experimental data unless there is new experimental evidence that

warrants it. In our opinion, it is important not to use any theoretical input in the collection

of experimental test sets in order to avoid circular arguments and to have an unbiased

assessment process [44]. If the accuracy of theory improves and becomes demonstrably

better than that of experiment, theoretical values may be included in the future to

assemble test sets of molecules for critical assessment.

27.3 G2 THEORY

The Gaussian-n theories are composite techniques in which a sequence of well-defined

ab initio molecular orbital calculations [75] is performed to arrive at a total energy of

a given molecular species. G2 theory [23] was the second-generation model and was

developed to correct significant non-additivity problems of an earlier model (G1 theory)

[21,22]. G2 theory and several approximate versions have been extensively applied to a

variety of problems. The detailed steps involved in G2 theory are described in the

following paragraphs with some editorial comments. The calculations that are needed to

derive the G2 energy are also shown pictorially in Fig. 27.1(a).

(1) An initial equilibrium structure is obtained at the Hartree–Fock (HF) level with the

6-31G(d) basis [75]. Spin-restricted (RHF) theory is used for singlet states and spin-

unrestricted Hartree–Fock theory (UHF) for others. The HF/6-31G(d) equilibrium

structure is used to calculate harmonic frequencies, which are then scaled by a factor of

0.8929 to take account of known deficiencies at this level [76]. These frequencies are

used to evaluate the zero-point energy ðEðZPEÞÞ and thermal effects.
The accuracy of the zero-point energies used in G2 theory has been the subject of some

discussion. While the scale factor used (0.8929) is appropriate for the reproduction of

experimental fundamental frequencies, the optimum scale factor for obtaining accurate

zero-point energies from HF/6-31G(d) harmonic frequencies was determined by Scott

and Radom [77] to be larger (0.9135). This can cause significant errors in the computed

zero-point energies. However, the resulting errors are systematic and it turns out that the

HLC used in G2 theory (vide infra) makes up for any such systematic deficiencies.

Nevertheless, it is desirable to avoid such errors in computational models since they can

make an analysis of the residual deficiencies difficult or impossible. In one of our more

recent thermochemical models, G3X [42], we have used B3LYP/6-31G(2df,p) harmonic

frequencies with a scale factor of 0.9854 that is indeed appropriate for the prediction of

zero-point energies.
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(2) The equilibrium geometry is refined at the MP2(full)/6-31G(d) level, using all

electrons for the calculation of correlation energies. This is the final equilibrium

geometry in the theory and is used for all single-point calculations at higher levels of

theory in step 3. These subsequent calculations include only valence electrons in the

treatment of electron correlation.

Two points should be noted here. First, the use of all electrons in the MP2 optimization

is due to historical reasons in the development of analytical gradient techniques. The

geometry change due to the inclusion of core electrons in the optimization is likely to be

very small. Secondly, the geometry used for the correlation energy calculations

(MP2(full)/6-31G(d)) is different from the geometry used for zero-point energies

(HF/6-31G(d)). While it does not seem to add to the errors significantly, it may be more

G2 MP2 MP4 QCISD (T)

6-311G (d,p) X X X

6-311 + G (d,p) X X

6-311G (2df,p) X X

6-311 + G (3df,2p) X

(a)

G3 MP2 MP4 QCISD (T)

6-31G (d) X X X

6-31 + G (d) X X

6-31G (2df,p) X X

G3Large X (Full)

(b)

G3X HF MP2 MP4 QCISD (T)

6-31G (d) X X X X

6-31 + G (d) X X X

6-31G (2df,p) X X X

G3Large X X (Full)

G3XLarge X

(c)

QCISD (T)/
6-311+G (3df,2p)

HLC:
based on
electron
pairs and
fit to G2

QCISD (T, FULL)/
G3Large

Spin-orbit
for atoms

HLC:
based on
electron
pairs and
unpaired
electrons
and fit to
G2/97 test

Spin-orbit
for atoms

HLC:
based on
electron
pairs and
unpaired
electrons
and fit to
G3/99 test

QCISD (T, FULL)/
G3XLarge

Fig. 27.1. Pictorial representation of the terms that are included in G2, G3 and G3X theories.
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satisfactory to use the same model for both. Indeed, in the G3X model, the same level of

theory (B3LYP/6-31G(2df,p)) is used for both.

(3) A series of single-point energy calculations is carried out at higher levels of theory.

The first higher level calculation is triples-augmented quadratic configuration interaction

with the 6-311G(d,p) basis set, i.e. QCISD(T)/6-311G(d,p).

Several points should be mentioned in this context. First, while we use QCISD(T) in

our basic definition of G2 and G3 theories, analogous methods have been defined where

the CCSD(T) method replaces QCISD(T). Both variations seem to yield very similar

mean absolute deviations in most cases. However, in our most recent work on transition

metal systems [78], it appears that CCSD(T) has a clear advantage over QCISD(T) and

will thus become the preferred method. For the first- and second-row molecules,

however, there is no clear preference. The key point to note is that the accuracy and

predictive capability of these methods comes from the inherent accuracy of QCISD(T) or

CCSD(T). Finally, this is one of the N7 steps in the calculation and is likely to be rate-

limiting if carried out with very large basis sets. Indeed, it is the bottleneck in CCSD(T)

calculations with large correlation-consistent basis sets. In G2 theory, QCISD(T)

calculations are carried out with a polarized valence triple-zeta basis set. This is a very

modest basis set and this makes it possible to carry out G2 calculations on molecules of

the size of naphthalene on small workstations. In our later work on G3 theory, we use

even smaller 6-31G(d) calculations that makes these methods applicable for even larger

molecules.

This energy is then modified by a series of corrections from additional calculations

using larger basis sets. The key assumption in G2 theory is that such contributions can be

derived using cheaper models such as perturbation theory (MP4 or MP2). This will be an

excellent approximation if the behavior of these methods with respect to basis set

increase is parallel to that of QCISD(T) (additivity approximation). Two such corrections

are included in G2 theory at the MP4 level.

(a) A correction for diffuse functions, EðplusÞ:

EðplusÞ ¼ MP4=6-311þ Gðd; pÞ2MP4=6-311Gðd; pÞ ð1Þ

(b) A correction for higher polarization functions on non-hydrogen atoms and p-

functions on hydrogens, Eð2df; pÞ:

Eð2df; pÞ ¼ MP4=6-311Gð2df; pÞ2MP4=6-311Gðd; pÞ ð2Þ

The evaluation of the two independent corrections is based on the assumption that

contributions to larger basis set effects can be evaluated independently. However, careful

analysis shows that there is some linear dependence and this is corrected by the next term

at the MP2 level.

(c) A correction for larger basis set effects and for the non-additivity caused by the

assumption of separate basis set extensions for diffuse functions and higher polarization
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functions, EðDÞ:

EðDÞ ¼ MP2=6-311þ Gð3df; 2pÞ2MP2=6-311Gð2df; pÞ
2MP2=6-311þ Gðd; pÞ þMP2=6-311Gðd; pÞ ð3Þ

Thus 6-311 þ G(3df,2p) is the largest basis set used in G2 theory.

(4) A ‘higher level correction’ ðEðHLCÞÞ is added to take into account the remaining
deficiencies in the energy calculations: the HLC is2Anb 2 Bðna 2 nbÞ where nb and na
are the number of b and a valence electrons, respectively, with na $ nb: The number of
valence electron pairs corresponds to nb: Thus, A is the correction for pairs of valence

electrons in the system and B is the correction for unpaired electrons in the system. For

G2 theory, A ¼ 4:81 mhartrees, B ¼ 0:19 mhartrees. The parameter B was derived to

give the exact energy for H atom and the parameter A was derived to give zero mean

deviation for the 55 molecules in the G2-1 test set.

The use of empirical correction factors in such ab initio models has been discussed

extensively in the literature. However, the parameters in G2 theory are ‘molecule

independent’ in the sense that they do not depend on the constituent atoms in the

molecule. This is in contrast to the standard semiempirical methods (such as AM1) that

have parameters depending on the type of atom and its neighbors. In G2 theory, however,

they only depend on the number of electrons in the molecule. Thus the error in the

energies is assumed to be the same for any electron pair implying some kind of universal

behavior of electron pairs. The slow convergence of the electron correlation energy with

basis set size is now understood to result from the inherent difficulty in describing the

cusp in the interelectronic wavefunction. This is a fundamental property of electron pairs

and may perhaps be captured by universal correction factors as used in G2 theory.

Nevertheless, the presence of such HLC parameters sometimes leads to the labeling of G2

and G3 theories as ‘semiempirical’, though with only two parameters to describe all of

the chemistry we prefer to call our methods ‘slightly empirical’.

(5) Finally, the total energy at 0 K (‘G2 energy’) is obtained by adding all the

individual energy corrections in an additive manner

E0½G2	 ¼ QCISDðTÞ=6-311Gðd; pÞ þ EðplusÞ þ Eð2df; pÞ þ EðDÞ
þ EðHLCÞ þ EðZPEÞ ð4Þ

The final total energy (excluding the HLC and ZPE terms) is effectively at the

QCISD(T)/6-311 þ G(3df,2p) level if the different additivity approximations work well.

The validity of such approximations has been previously investigated for G2 theory on

the G2-1 subset of G2/97 by performing complete QCISD(T)/6-311 þ G(3df,2p)

calculations directly. The additivity approximation works well for most of the energies in

the test set [25].

The MP4/6-311G(2df,p) calculation is the most time-consuming step ðN7Þ and

represents the bottleneck limiting the applicability of G2 theory. A simpler version of G2

theory, denoted as G2(MP2), was developed to avoid the MP4 step and to extend the

applications of G2 theory for larger molecules. In this case, the effect of all large basis set
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extensions is evaluated in a single step at the MP2 level as

EðDMP2Þ ¼ MP2=6-311þ Gð3df; 2pÞ2MP2=6-311Gðd; pÞ ð5Þ

E0½G2ðMP2Þ	 ¼ QCISDðTÞ=6-311Gðd; pÞ þ EðDMP2Þ þ EðHLCÞ þ EðZPEÞ ð6Þ

The only N7 step in a G2(MP2) calculation is QCISD(T)/6-311G(d,p) which now

becomes the bottleneck step.

27.3.1 Assessment of G2 theory

Before performing an assessment of computational models such as G2 theory, well-

defined procedures have to be developed to derive thermodynamic quantities from

theory. The enthalpies of formation for most molecules in the G2/97 and G3/99 test sets

have been measured at 298 K. In order to compare with experiment, the heats of

formation for molecules have to be calculated using a general procedure that is applicable

for any molecular system. In our own work, we follow a systematic procedure described

in detail previously [35]. Briefly, thermal corrections (298 K) are first evaluated using the

calculated (scaled) vibrational frequencies and standard statistical mechanical methods.

The calculated total energies of the given molecule and its constituent atoms are used to

evaluate its atomization energy. This value is then used along with the thermal

corrections and the known experimental enthalpies of formation for the atomic species

to calculate the enthalpy of formation for the molecule (298 K). The electron affinities are

calculated as the difference in total energies at 0 K of the anion and the corresponding

neutral. Likewise, the ionization potentials are calculated as the difference in total

energies at 0 K of the cation and the corresponding neutral. Similarly, the proton affinities

are evaluated using the 0 K energies of the molecule and its protonated analogue.

G2 theory and its approximate version G2(MP2) have been assessed carefully for the

301 energies in the G2/97 test set. The results are summarized in Table 27.1. The overall

mean absolute deviation is 1.50 kcal/mol for G2 and 1.91 kcal/mol for G2(MP2). While

they satisfy the target accuracy of 2 kcal/mol, the errors clearly increase significantly for

the larger molecules. For example, the G2 heats of formation for the molecules in the

G2-1 subset have a mean absolute deviation of 1.21 kcal/mol while the larger molecules

in the G2-2 subset have a deviation of 1.77 kcal/mol (overall 1.56 kcal/mol). The largest

errors at the G2 and G2(MP2) levels are seen for C2F4 (8.2 and 10.1 kcal/mol,

respectively), though the accuracy of its experimental value has been questioned.

The breakdown of the deviations for the different types of molecules is also given in

Table 27.1. It is clearly seen that the largest deviations occur for non-hydrogen species.

Again they get worse for the larger molecules. The non-hydrogen species in the smaller

G2-1 subset have a mean absolute deviation of 1.73 kcal/mol but the corresponding

species in the G2-2 subset have a mean absolute deviation of 3.01 kcal/mol (overall

2.48 kcal/mol). In particular, significant errors are seen in the heats of formation for

compounds containing multiple halogens (3–8 kcal/mol) and for unsaturated ring

compounds (3–4 kcal/mol) [35]. A careful analysis revealed the importance of larger
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basis set effects as well as spin–orbit interactions, particularly for halogenated species.

This led to the development of G3 theory described in the next section.

Several other variants of G2 theory have been proposed. A higher level correlation

treatment was examined using coupled cluster (CCSD(T)) or Brueckner doubles (BD(T))

energies instead of QCISD(T). Referred to as G2(CC) and G2(BD), their performance

was found to be very similar to G2 theory. Other variants include the use of QCISD

geometries instead of the MP2 geometry, and the use of MP2 zero-point energies. Finally,

a completely different approach using isodesmic bond separation reactions has been used

by Raghavachari et al. [30] to evaluate the heats of formation for a test set of 40 molecules

containing H, C, O, and N. In contrast to standard G2 theory where atomization energies

are used along with the experimental heats of formation of the atoms, bond separation

reaction energies are used in this approach along with the experimental heats of formation

of the reference molecules to determine the unknown heats of formation. The

mean absolute deviation for the 40 molecules test set with the isodesmic approach

(0.5 kcal/mol) is an improvement of a factor of three over standard G2 theory (1.5 kcal/

mol). This shows that a significant part of the residual error in G2 theory is systematic and

that the intrinsic errors for similar bonds in different molecules are transferable. Though

such an approach is not generally applicable for all molecules, it may be useful to build

accurate heats of formation for some large molecules.

27.4 G3 THEORY

G3 theory was designed to correct some of the deficiencies of G2 theory for systems such

as halogen-containing molecules, unsaturated hydrocarbons, etc. It also contains

Table 27.1 Summary of mean absolute deviations (kcal/mol) for G2 theories

G2 G2(MP2)

G2/1 test set

Enthalpies of formation (55) 1.21 1.34

Non-hydrogens (14) 1.73 1.85

Hydrocarbons (5) 0.88 0.86

Substituted hydrocarbons (5) 0.95 1.32

Inorganic hydrides (13) 0.99 1.29

Radicals (18) 1.18 1.13

Complete G2/97

Enthalpies of formation (147) 1.56 2.03

Non-hydrogens (34) 2.48 3.31

Hydrocarbons (22) 1.29 1.83

Substituted hydrocarbons (47) 1.48 1.89

Inorganic hydrides (15) 0.95 1.20

Radicals (29) 1.16 1.36

Ionization energies (88) 1.45 1.75

Electron affinities (58) 1.41 1.94

Proton affinities (8) 1.08 1.25

All (301) 1.50 1.91
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important physical effects such as core-valence correlation and spin–orbit contributions

that were not included in G2 theory. G3 theory is computationally less demanding than

G2 theory though it is significantly more accurate. The detailed steps involved in G3

theory are given below. The calculations that are needed to derive the G3 energy are also

shown pictorially in Fig. 27.1(b).

(1) Same as in G2 theory.

(2) Same as in G2 theory.

(3) As in G2 theory, a series of single-point energy calculations is carried out at higher

levels of theory. However, the basis sets used are different and somewhat smaller. The

first higher level calculation is QCISD(T) with the 6-31G(d) basis set, i.e. QCISD(T)/

6-31G(d). Note that this is a smaller double-zeta basis set compared to the triple-zeta set

used in G2 theory. In addition, p-type polarization functions on hydrogen atoms are not

included. This energy is then modified by a series of corrections from additional

calculations.

(a) A correction for diffuse functions, EðplusÞ:
EðplusÞ ¼ MP4=6-31þ GðdÞ2MP4=6-31GðdÞ ð7Þ

(b) A correction for higher polarization functions on non-hydrogen atoms and

p-functions on hydrogens, Eð2df; pÞ:
Eð2df; pÞ ¼ MP4=6-31Gð2df; pÞ2MP4=6-31GðdÞ ð8Þ

(c) A correction for larger basis set effects and for the non-additivity caused by the

assumption of separate basis set extensions for diffuse functions and higher polarization

functions, EðG3LargeÞ:
EðDG3LÞ ¼ MP2ðfullÞ=G3Large2MP2=6-31Gð2df; pÞ

2MP2=6-31þ GðdÞ þMP2=6-31GðdÞ ð9Þ
While steps (7) and (8) are very similar to the corresponding steps in G2 theory, the last

step is somewhat different. The basis set used, denoted as G3Large [32], is significantly

larger than the corresponding basis set used in G2 theory and includes some core

polarization functions as well as multiple sets of valence polarization functions. In

addition, it should be noted that the MP2 calculation in step (9) is carried out at the

MP2(full) level. This is done to take account of core-related correlation contributions to

total energies.

(4) An additional important term not present in G2 theory is now included in G3

theory. Spin–orbit correction, EðSOÞ; is included for atomic species only. The spin–orbit
correction is taken from experiment [79], where available, and accurate theoretical

calculations [80] in other cases. These are particularly important for halide-containing

systems [32]. Molecular spin–orbit corrections are not included in G3 theory.

(5) A ‘higher level correction’ ðEðHLCÞÞ is added to take into account the remaining
deficiencies in the energy calculations. The HLC used in G3 theory is somewhat

different: it is 2Anb 2 Bðna 2 nbÞ for molecules and 2Cnb 2 Dðna 2 nbÞ for atoms
(including atomic ions). The nb and na are the number of b and a valence electrons,

respectively, with na $ nb: The number of valence electron pairs corresponds to nb:
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Thus, A is the correction for pairs of valence electrons in molecules, B the correction for

unpaired electrons in molecules, C the correction for pairs of valence electrons in atoms,

and D the correction for unpaired electrons in atoms. The use of different corrections for

atoms and molecules can be justified, in part, by noting that effects of basis functions with

higher angular momentum are likely to be of more importance in molecules than in

atoms. The A;B;C;D values are chosen to give the smallest average absolute deviation

from experiment for the G2/97 test set. For G3 theory, A ¼ 6:386 mhartrees, B ¼ 2:977
mhartrees, C ¼ 6:219 mhartrees, D ¼ 1:185 mhartrees.
The use of different HLC parameters for atoms and molecules, though it improves the

overall performance relative to G2 theory, causes some problems. For example, a single

bond formation (or breaking) between two atoms (e.g. two F atoms) is treated differently

than that between two molecules (e.g. two methyl radicals). Bond formation between

atoms with many unpaired spins may not be described correctly. While this is not a major

source of problem normally, preliminary work on transition metal systems [78] indicates

that the HLC contribution to the binding energy involving atoms such as Cr may be

unreasonably large. There can also be a significant discontinuity in the HLC correction

that may cause difficulties for weakly bound systems.

(6) Finally, the total energy at 0 K (‘G3 energy’) is obtained by adding all the

individual energy corrections in an additive manner

E0½G3	 ¼ QCISDðTÞ=6-31GðdÞ þ EðplusÞ þ Eð2df; pÞ þ EðDG3LÞ
þ EðSOÞ þ EðHLCÞ þ EðZPEÞ ð10Þ

The final total energy is effectively at the QCISD(T,full)/G3Large level if the different

additivity approximations work well.

The correlation methods in G3 theory are still computationally demanding and it is of

interest to find modifications to reduce the computational requirements. Two

approximate versions of G3 theory have been proposed to make the methods more

applicable. The first is G3(MP3) [33] that eliminates the expensive MP4/6-31G(2df,p)

calculation by evaluating the larger basis set effects at the MP3 level. It also eliminates

the MP4/6-31 þ G(d) calculation

E0ðG3ðMP3ÞÞ ¼ QCISDðTÞ=6-31GðdÞ þ ½MP3=6-31Gð2df; pÞ2MP3=6-31GðdÞ	
þ ½MP2ðfullÞ=G3L2MP2=6-31Gð2df; pÞ	 þ EðSOÞ
þ EðHLCÞ þ EðZPEÞ ð11Þ

The second is G3(MP2) theory [34] that evaluates the larger basis set effects at the

MP2 level, similar to the successful G2(MP2) theory

E0ðG3ðMP2ÞÞ ¼ QCISDðTÞ=6-31GðdÞ þ ½MP2=G3MP2L2MP2=6-31GðdÞ	
þ EðSOÞ þ EðHLCÞ þ EðZPEÞ ð12Þ

In G3(MP2) theory, the MP2(full)/G2Large calculation in G3 is replaced with a frozen

core calculation with the G3MP2Large basis set [34] that does not contain the core

polarization functions in the G2Large basis set.
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27.4.1 Assessment of G3 theory

The performance of G3, G3(MP3) and G3(MP2) theories for the energies in the G2/97

and G3/99 test sets are summarized in Table 27.2. For the 301 energies in the G2/97 test

set, the mean absolute deviation for G3 theory (1.01 kcal/mol) is substantially improved

from G2 theory (1.50 kcal/mol). As mentioned earlier, G3 theory was designed to correct

for some of the deficiencies in G2 theory. The histograms in Fig. 27.2 show the range of

deviations of G2 and G3 theories from experiment for the G2/97 test set. Nearly 88% of

the G3 deviations fall within the range of 22.0 to þ2.0 kcal/mol. This is substantially
better than G2 theory for which about 74% of the deviations fall in this range. In addition

to improving the accuracy, the use of the 6-31G(d) basis set based calculations in G3

theory substantially decreases the computer time as well as the disk space requirements

relative to G2 theory (which uses the larger 6-311G(d,p) basis set based calculations). For

example, the computer time for a G3 calculation on benzene is nearly a factor two faster

than a G2 calculation.

Overall the mean absolute deviations increase slightly for the G3/99 test set compared

to that of the G2/97 test set. The mean absolute deviation of G3 theory increases from

1.01 to 1.07 kcal, G3(MP3) theory increases from 1.21 to 1.27 kcal/mol and G3(MP2)

theory remains at 1.31 kcal/mol. While most types of molecules behave similarly in both

test sets, larger deviations are seen for some of the non-hydrogen species in the expanded

test set. In fact, the mean absolute deviation of 3.24 kcal/mol for the 13 non-hydrogen

species in the G3-3 subset is nearly twice that of the 35 non-hydrogens in the G2/97 set

Table 27.2 Summary of mean absolute deviations (kcal/mol) for G3 theories

G3 G3(MP3) G3(MP2)

G2/97 test set

Enthalpies of formation (147) 0.92 1.19 1.17

Non-hydrogens (34) 1.68 2.09 2.06

Hydrocarbons (22) 0.68 0.86 0.70

Substituted hydrocarbons (47) 0.56 0.78 0.74

Inorganic hydrides (15) 0.87 1.18 1.03

Radicals (29) 0.84 1.05 1.23

All (301)a 1.01 1.21 1.31

Complete G3/99

Enthalpies of formation (222) 1.05 1.29 1.22

Non-hydrogens (47) 2.11 2.74 2.45

Hydrocarbons (38) 0.69 0.77 0.71

Substituted hydrocarbons (91) 0.75 0.86 0.83

Inorganic hydrides (15) 0.87 1.18 1.03

Radicals (31) 0.87 1.06 1.21

Ionization energies (88) 1.14 1.24 1.46

Electron affinities (58) 0.98 1.24 1.46

Proton affinities (8) 1.34 1.25 1.02

All (376)a 1.07 1.27 1.31

aThe mean absolute deviation for the ionization energies, electron affinities and proton affinities in the G2/97 test set are the

same as in G3/99.
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(1.68 kcal/mol). These errors were traced to the deficiencies in the MP2 geometries as

well as basis set deficiencies and eventually led to the development of G3X theory

discussed in the next section.

Other variations of G3 theory have been proposed that use alternate geometries, zero-

point energies or higher order correlation methods. As described earlier, G2 and G3

theories use MP2(full)/6-31G(d) geometries and scaled HF/6-31G(d) frequencies and

zero-point energies. A method using B3LYP/6-31G(d) geometries and scaled B3LYP/

6-31G(d) zero-point energies (0.96) was considered to make it more uniform. Denoted as
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G3//B3LYP [27], its performance was very similar to that of G3 theory though it may be

useful in cases where the MP2 theory is deficient for geometries. Another variation

involves the use of CCSD(T)/6-31G(d) instead of QCISD(T)/6-31G(d) to evaluate the

contribution of higher order correlation effects. The resulting G3(CCSD) method [28]

has an accuracy very similar to that of G3 theory and may be useful in cases where the

QCISD(T) method is not available or deficient.

Apart from these minor variations, two major variations (G3X and G3S) [29,30] have

been proposed to address some of the main deficiencies of G3 theory. These are discussed

in detail in Sections 27.5 and 27.6.

27.5 G3X THEORY

As noted earlier, the G3 mean absolute deviation from experiment (1.07 kcal/mol) found

for the G3/99 test set is slightly larger than the corresponding value of 1.01 kcal/mol

found for the smaller G2/97 test set (Fig. 27.3). However, the larger non-hydrogen

systems in the G3/99 test set have deviations (3.24 kcal/mol) almost twice as large as

those in the smaller G2/97 test set (1.68 kcal/mol). Especially large deviations (G3

theory) occur for SF6 (26.2 kcal/mol), PF5 (27.1 kcal/mol), SO3 (25.1 kcal/mol), P4
(24.2 kcal/mol) and Cl2O2S (24.4 kcal/mol). These are hypervalent molecules except

P4 which is unusually strained. Overall, the G3 deviations for nearly all the non-hydrogen

species are negative indicating underbinding. Part of the source of error for these non-

hydrogen species was identified as resulting from the deficiency of the MP2(full)/

6-31G(d) geometries used for the single-point energies. Use of experimental geometries

in a small subset of non-hydrogens reduced the deviations in those molecules, but they

still remained around 3–4 kcal/mol. The remainder of the error appeared to arise from

basis set deficiencies in such molecules. A family of G3 methods, referred to as G3X (G3

eXtended), has been developed [42] to remedy these problems and improve the accuracy

of the results for larger molecules.
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Three modifications have been included in the G3X method to correct these

deficiencies:

(1) B3LYP/6-31G(2df,p) geometries are used in place of the MP2(full)/6-31G(d)

geometries. These new geometries were found to be significantly improved relative to the

original geometries. For example, the mean absolute deviation from experiment in the

bond lengths for a subset of seven representative molecules (PF3, PF5, P4, PCl5, SO2, SO3
and SF6) decreased from 0.027 Å (MP2(full)/6-31G(d)) to 0.011 Å (B3LYP/

6-31G(2df,p)).

(2) B3LYP/6-31G(2df,p) zero-point energies (scaled by 0.9854) are used in place of

the HF/6-31G(d) zero-point energies (scaled by 0.8929). The scale factor (0.9854) was

derived from fitting the set of zero-point energies compiled by Scott and Radom [77].

This is in contrast to the HF/6-31G(d) scale factor (used in G3 theory) that was more

appropriate for fundamental vibrational frequencies. The procedure used in G3X theory

is clearly more appropriate. Moreover, the use of the same level of theory for both the

geometry and the zero-point energy in G3X is more logical than the use of two different

levels of theory (MP2(full)/6-31G(d) and HF/6-31G(d), respectively) in the original G3

theory. Finally, the small correction suggests that B3LYP/6-31G(2df,p) is accurate for

zero-point energies as well as geometries.

(3) A set of g valence polarization functions [42] is added to the G3Large basis set for

second-row atoms at the Hartree–Fock level. The addition of these extra basis functions

was clearly motivated by the deficiencies noted earlier for several hypervalent molecules

involving second-row elements. Significant improvement in the calculated atomization

energies was found for some representative molecules, particularly those involving a

mixture of first- and second-row elements. For example, the addition of a single g

function to the second-row atoms (Al–Cl) increases the binding in SiF4, PF5 and SF6 by

3.6, 5.1 and 5.5 kcal/mol, respectively, at the Hartree–Fock level. Addition of more

polarization functions (2 g, 2 gh) on the second-row atoms results in substantially smaller

changes in the atomization energies [42]. Thus, a single set of g polarization functions

(seven pure functions) is added to the second-row G3Large basis set at the HF level in

G3X theory. The g exponents for Al–Cl are taken from Dunning’s correlation-consistent

cc-pvqz basis set [8]. No g function was used on Na or Mg. This new basis set is referred

to as G3XLarge. It should be noted that similar basis set deficiencies may occur at

correlated levels also. However, correcting such deficiencies at the correlated level

explicitly is more difficult due to their slow convergence, though the HLC parameters

may offer partial remedy if the resulting errors are systematic. Thus, the effect of g

polarization functions at the HF level is evaluated as

EðDHFÞ ¼ HF=G3XL2 HF=G3L ð13Þ
where G3L ¼ G3Large basis set, G3XL ¼ G3XLarge basis set. The total G3X energy

incorporating all three features is given by the equation

E0ðG3XÞ ¼ QCISDðTÞ=6-31GðdÞ þ EðplusÞ þ Eð2df; pÞ þ EðDG3LÞ
þ EðDHFÞ þ EðSOÞ þ EðHLCÞ þ EðZPEÞ ð14Þ
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Eq. (14) is the same as for G3 theory except for the addition of the EðDHFÞ term. This
term extends the HF/G3L energy, which is part of the MP2(full)/G3L energy, to the

G3XL basis set. The calculations that are needed to derive the G3X energy are also shown

pictorially in Fig. 27.1(c).

The HLC parameters for G3X theory were obtained by fitting to the full G3/99 test set.

Fitting of the HLC parameters to the smaller G2/97 test set gives nearly the same values

for the four parameters indicating that there is little sensitivity to the increase in the data

set size. The G3X method takes about 10–15% more time than G3 due to the B3LYP/

6-31G(2df,p) frequency calculation.

The three new features of G3X theory can also be easily included in the G3(MP3) and

G3(MP2) methods. The resulting methods are referred to as G3X(MP3) and G3X(MP2),

respectively. The G3X(MP3) energy is given by

E0ðG3XðMP3ÞÞ ¼ QCISDðTÞ=6-31GðdÞ þ ½MP3=6-31Gð2df; pÞ2MP3=6-31GðdÞ	
þ ½MP2ðfullÞ=G3L2MP2=6-31Gð2df; pÞ	 þ EðDHFÞ þ EðSOÞ
þ EðHLCÞ þ EðZPEÞ ð15Þ

The G3X(MP2) energy is given by

E0ðG3ðMP2ÞÞ ¼ QCISDðTÞ=6-31GðdÞ þ ½MP2=G3MP2L2MP2=6-31GðdÞ	
þ EðDHFÞ þ EðSOÞ þ EðHLCÞ þ EðZPEÞ ð16Þ

Eqs. (15) and (16) are the same as for G3(MP3) and G3(MP2) theories, except for the

addition of the EðDHFÞ term. The HLC parameters were again obtained by fitting to the

G3/99 test set.

27.5.1 Assessment of G3X theory

G3X theory gives significantly better agreement with experiment for the G3/99 test set of

376 energies (Table 27.3). Overall, the mean absolute deviation from experiment

decreases from 1.07 kcal/mol (G3) to 0.95 kcal/mol (G3X). Thus the mean absolute

deviation in G3X not only beats our target accuracy of 2 kcal/mol but also meets the more

rigorous definition of chemical accuracy (1 kcal/mol). Even more impressively, the mean

absolute deviation for the 222 enthalpies of formation decreases from 1.05 kcal/mol (G3)

to 0.88 kcal/mol (G3X). This is clearly due to the improvement for non-hydrogen

systems where the mean absolute deviation decreases from 2.11 to 1.49 kcal/mol.

Unlike G3 theory, there is very little degradation of G3X theory on going from the

smaller G2/97 to the larger G3/99 test set. The overall mean absolute deviation from

experiment is nearly the same for the largerG3/99 test set (0.95 kcal/mol) as for the smaller

G2/97 test set (0.96 kcal/mol). Similarly, themean absolute deviation from experiment for

enthalpies is nearly the same for the larger G3/99 test set (0.88 kcal/mol) as for the smaller

G2/97 test set (0.86 kcal/mol). This is somewhat surprising sincewe do expect larger errors

in larger molecules. Perhaps it is due to the presence of a relatively large number of

hydrocarbons and substituted hydrocarbons which tend to have smaller deviations overall.
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However, it is important to note that this result is not dependent on the data set that is used to

obtain the HLC parameters since both sets give essentially the same values.

Some examples of the changes on going from G3 to G3X theory for selected non-

hydrogen systems can be seen in Table 27.4. Significant improvements are seen in most

molecules though errors in the range of 2 or 3 kcal/mol still remain in some cases. The

reliability of the G3X method can be epitomized by the fact that only one molecule

(C2F4) has an error of more than 4 kcal/mol in the entire test set and even that

experimental value has been recently called into question.

Summaries of G3X(MP3) and G3X(MP2) mean absolute deviations from experiment

for the G3/99 test set are also given in Table 27.3. The overall mean absolute deviations

for G3X(MP3) and G3X(MP2) for the 376 energies are 1.13 and 1.19 kcal/mol,

respectively. These are improvements over the corresponding values of G3(MP3) and

G3(MP2) for the same set (1.27 and 1.31 kcal/mol, respectively). For enthalpies of

formation the mean absolute deviations decrease from 1.29 to 1.07 kcal/mol (G3X(MP3))

and from 1.22 to 1.05 kcal/mol (G3X(MP2)). As in the case of G3X theory, much of

the improvement in enthalpies is due to non-hydrogen species. The G3X(MP3) and

G3X(MP2) methods save considerable computational time without significant loss

Table 27.3 Summary of mean absolute deviations (kcal/mol) for G3X theories

G3X G3X(MP3) G3X(MP2)

Enthalpies of formation (222) 0.88 1.07 1.05

Non-hydrogens (47) 1.49 2.05 1.75

Hydrocarbons (38) 0.56 0.68 0.76

Substituted hydrocarbons (91) 0.75 0.76 0.78

Inorganic hydrides (15) 0.81 1.12 1.01

Radicals (31) 0.76 0.96 1.17

Ionization energies (88) 1.07 1.16 1.36

Electron affinities (58) 0.98 1.29 1.51

Proton affinities (8) 1.21 1.09 0.79

All (376) 0.95 1.13 1.19

Table 27.4 Deviations from experiment for the calculated enthalpies of formation

of some non-hydrogen systems (experiment—theory, kcal/mol)

Molecule G3 G3X

SO2 23.81 20.73

SO3 25.17 21.54

PF3 24.84 21.85

PF5 27.05 21.80

SF6 26.22 20.47

SiF4 21.12 2.27

SiCl4 0.02 20.63

P4 24.15 22.18

PCl3 23.19 23.30

PCl5 2.40 1.74

POCl3 23.07 22.32

Cl2O2S 24.37 22.55
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in accuracy. The ratio of the cpu times for G3X:G3X(MP3):G3X(MP2) is approximately

5:2:1 for a molecule such as benzene.

27.6 G3S THEORY

G3 theory and the other variants discussed thus far include a HLC term to correct for the

remaining deficiencies in the computed energies. The HLC term in G3 theory consists of

four molecule-independent additive parameters that depend only on the number of paired

and unpaired electrons in the system. While basis set deficiencies are the biggest source

of errors in the computed energies, the HLC parameters can also correct for any other

systematic errors (such as those from zero-point energies or from relativistic effects).

Such an approach will work if such deficiencies are systematic and scale as the number of

electrons. While it may make it difficult to identify the source of systematic errors, this

approach is indeed successful as indicated by the overall mean absolute deviation of

,1 kcal/mol for the G3X method with the large G3/99 test set.

G3 theory was developed to derive the ground state energies of molecules at their

equilibrium geometries. However, a major topic of importance in chemistry is the

investigation of chemical reactions and the study of potential energy surfaces. Thus it is

desirable to extend these methods to investigate structures other than minima on the

potential energy surface. The computation of the component energies in such methods

can be easily performed at any other geometry. However, one of the deficiencies of G3

theory is that the HLC parameters do not depend on the geometry and thus do not vary

on the potential energy surface. This may cause deficiencies for regions near transition

states that contain partially broken bonds. Somewhat surprisingly, a careful study of

activation barriers for chemical reactions [63] has yielded accurate results for G3 theory

though further analysis of the results may be interesting. Even more importantly, G3

theory cannot be used to study potential energy surfaces for reactions where the reactants

and products have a different number of electron pairs.

An alternative approach for calculating accurate thermochemical data is to scale the

calculated correlation energy using multiplicative parameters determined by fitting to the

experimental data. The central idea in all such methods is that in a balanced treatment,

roughly the same percentage of the correlation energy components is obtained for every

system. Pioneering methods using such an approach include the scaling all correlation

(SAC) method of Gordon and Truhlar [57], the parameterized correlation (PCI-X)

method of Siegbahn et al. [58] and the multi-coefficient correlation methods (MCCM) of

Truhlar and co-workers [59–66]. Such methods can be used to yield continuous potential

energy surfaces even for reactions where the reactants and products contain different

numbers of electron pairs. It is also possible to derive analytical gradient techniques for

such methods that may make it easier to investigate potential energy surfaces.

A family of methods, referred to as G3S (G3 Scaled), has been developed [41] where

the additive HLC is replaced by a multiplicative scaling of the different component

energies that comprise the G3 energy. The scale factors have been obtained by fitting to

the G2/97 test set of energies. The use of such a large fitting test set enables a reliable

assessment of the use of such a scaling approach to computational thermochemistry.
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As discussed earlier, the G3 energy is written in terms of corrections (basis set

extensions and correlation energy contributions) to the QCISD(T)/6-31G(d) energy.

Alternatively, the G3 energy can be specified in terms of HF and different correlation

energy components. Denoting E2, E3 and E4 as the second, third, and fourth-order

contributions from perturbation theory, and DQCI as the contributions beyond fourth
order in a QCISD(T) calculation, the G3 energy expression can be expressed as

E0½G3	 ¼ HF=dþ ½HF=G3L2 HF=d	 þ E2=dþ E3=dþ E4=d

þ DQCI=dþ ½E2ðfullÞ=G3L2 E2=d	 þ ½E3=plus2 E3=d	
þ ½E3=2df; p2 E3=d	 þ ½E4=plus2 E4=d	 þ ½E4=2df; p2 E4=d	
þ EðSOÞ þ EðHLCÞ þ EðZPEÞ ð17Þ

where we use the short-hand notation: d ¼ 6-31G(d); plus ¼ 6-31 þ G(d); 2df,p ¼
6-31G(2df,p); G3L ¼ G3Large basis set; E(SO) ¼ spin–orbit correction for atoms only;

E(HLC) ¼ higher level correction and E(ZPE) ¼ zero-point energy correction. In

deriving the scaled methods, the HLC term is set to zero and parameters are introduced

that scale the different terms in this energy expression. A systematic study has been

performed to investigate the performance of different scaled methods as the number of

parameters is increased. In each case, the parameters have been optimized to give the

smallest root mean square deviation from experiment for the energies in the G2/97 test set.

The simplest scaled scheme can be obtained by using a single parameter to scale all the

correlation energy terms in Eq. (17). Such a single-parameter scaling of G3 theory is

similar to the SAC method of Gordon and Truhlar [57] and the PCI-X method of

Siegbahn et al. [58]. Such a method gives a mean absolute deviation of 1.43 kcal/mol for

the energies in the G2/97 test set (compared to 1.01 kcal/mol for G3 theory). On the other

extreme, the addition of scale factors to all the 11 terms in Eq. (17) yields a method with a

mean absolute deviation of only 0.97 kcal/mol. However, most of this improvement is

obtained using only six parameters (mean absolute deviation of 0.99 kcal/mol). Such a

method is referred to as G3S theory.

The G3S energy expression is given in Eq. (18)

E0½G3S	 ¼ HF=dþ SE234½E2=dþ E3=dþ E4=d	 þ SQCI½DQCI=d	
þ SHF0 ½HF=G3L2 HF=d	 þ SE20 ½E2ðfullÞ=G3L2 E2=d	
þ SE30{½E3=plus2 E3=d	 þ ½E3=2df; p2 E3=d	}
þ SE40{½E4=plus2 E4=d	 þ ½E4=2df; p2 E4=d	}
þ EðSOÞ þ EðZPEÞ ð18Þ

The common scale factor SE234 is used for the second, third and fourth-order

perturbation corrections at the 6-31G(d) level, SQCI scales the QCI correction beyond

MP4/6-31G(d) and SHF0; SE20 ; SE30 ; SE40 are the scale factors for the larger basis set
extension terms at those levels. Optimization of all six parameters in Eq. (18) gives a

mean absolute deviation of 0.99 kcal/mol, which is slightly better than the standard G3

theory with the HLC correction (mean absolute deviation of 1.01 kcal/mol). The

optimized values for the parameters in the six-parameter fit are all of reasonable
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magnitude and range from 0.95 to 1.38. The largest scale factor occurs for the basis set

extensions at the third order of perturbation theory. Only one scale factor is less than

unity—the scale factor for the basis set extensions at fourth-order perturbation theory

(0.95). Overall, an accurate version of G3 theory with scaling of energies can clearly be

obtained as also shown by Truhlar and co-workers [61].

In a similar manner, the approximate G3(MP3) method can be modified to use

multiplicative scale factors. The resulting G3S(MP3) energy expression is

E0½G3SðMP3Þ	 ¼ HF=dþ SE234½E2=dþ E3=dþ E4=d	 þ SQCI½DQCI=d	
þ SHF0 ½HF=G3L2 HF=d	 þ SE20 ½E2ðfullÞ=G3L2 E2=d	
þ SE30 ½E3=2df; p2 E3=d	 þ EðSOÞ þ EðZPEÞ ð19Þ

Eq. (19) contains five parameters and yields a mean absolute deviation of 1.16 kcal/mol

for the energies in the G2/97 test set (compared to the corresponding G3(MP3) deviation

of 1.22 kcal/mol).

Finally, the G3(MP2) method can also be modified using multiplicative scale factors.

The resulting G3S(MP2) energy expression is

E0½G3SðMP2Þ	 ¼ SHF½HF=d	 þ SE2½E2=d	 þ SE34½E3=dþ E4=d	
þ SQCI½DQCI=d	 þ SHF0 ½HF=G3MP2L2 HF=d	
þ SE20 ½E2ðFCÞ=G3MP2L2 E2=d	 þ EðSOÞ þ EðZPEÞ ð20Þ

However, the nature of the scaling parameters in this case is somewhat different. In

particular, the addition of scale factors to the HF/d and E2/d terms was found to be

important to yield good results. The resulting six-parameter fit yields a mean absolute

deviation of 1.35 kcal/mol for the G2/97 test set, only slightly larger than the

1.30 kcal/mol for G3(MP2).

A summary of the mean absolute deviations of the G3S, G3S(MP3) and G3S(MP2)

theories is given in Table 27.5 for the entire G3/99 test set. It is of interest to see if the

behavior with the larger test set is similar to that obtained with the fitting set (G2/97).

Overall, the mean absolute deviations increase slightly for the G3/99 test set compared

Table 27.5 Summary of mean absolute deviations (kcal/mol) for G3S theories

G3S G3S(MP3) G3S(MP2)

Complete G3/99

Enthalpies of formation (222) 1.12 1.19 1.29

Non-hydrogens (47) 2.09 2.49 2.37

Hydrocarbons (38) 0.79 0.98 0.86

Substituted hydrocarbons (91) 0.92 0.75 0.99

Inorganic hydrides (15) 0.63 0.79 1.06

Radicals (31) 0.86 0.96 1.17

Ionization energies (88) 1.09 1.27 1.54

Electron affinities (58) 0.90 1.24 1.56

Proton affinities (8) 1.17 1.10 0.74

All (376) 1.08 1.21 1.38
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to the G2/97 test set for all three methods. The mean absolute deviation of G3S theory

increases from 0.99 to 1.08 kcal/mol, G3S(MP3) increases from 1.15 to 1.21 kcal/mol

and G3S(MP2) increases from 1.36 to 1.38 kcal/mol on going from the G2/97 to the G3/

99 test set.

The increase in the mean absolute deviation for all three methods is primarily due to

large deviations in the calculated enthalpies of formation of some of the non-hydrogen

species in the expanded G3/99 test set. This is similar to the results for the G3 methods

based on the HLC per electron pair. The G3S mean absolute deviation of 3.37 kcal/mol

for the 13 non-hydrogen species in the G3-3 subset is more than twice that of the 35 non-

hydrogens in the G2/97 set (1.60 kcal/mol). Similar increases in the mean absolute

deviations occur for the G3S(MP3) and G3S(MP2) theories.

The mean absolute deviation of G3S for the G3-3 subset of larger molecules is

1.43 kcal/mol compared 1.30 kcal/mol for G3. The larger increase for G3S suggests that

the scaling approach based on six parameters may not work as well on molecules outside

the parameterization test set compared to an approach based on the four-parameter HLC.

For example, P4, a molecule with unusual bonding, has a deviation of 10 kcal/mol with

G3S theory. This is perhaps due to the nature of the convergence of the individual

correlation energy components being somewhat different in such cases. Further analysis

of the source of such discrepancies is clearly warranted.

The three new features of G3X theory can also be included in the G3S method. The

resulting method is referred to as G3SX and the energy is given by

E0½G3SX	 ¼ HF=dþ SE234½E2=dþ E3=dþ E4=d	 þ SQCI½DQCI=d	
þ SHF0 ½HF=G3XL2 HF=d	 þ SE20 ½E2ðfullÞ=G3L2 E2=d	
þ SE30{½E3=plus2 E3=d	 þ ½E3=2df; p2 E3=d	}
þ SE40{½E4=plus2 E4=d	 þ ½E4=2df; p2 E4=d	}
þ EðSOÞ þ EðZPEÞ ð21Þ

Eq. (21) is identical to that of the corresponding G3S method, except for the use of the

G3XLarge (G3XL) basis set in the Hartree–Fock term instead of the G3Large basis.

Also, the single-point energies are calculated at the B3LYP/6-31G(2df,p) geometry and

the zero-point energy EðZPEÞ is obtained from scaled B3LYP/6-31G(2df,p) frequencies

(scaled by 0.9854). The scaling parameters were obtained by fitting to the G3/99 test set.

As in the case of G3S, G3SX has six parameters, one for the Hartree–Fock energy

extension and five for the correlation terms. Note that ideally the parameters should be

close to one and should indicate the level of underestimation of that component; however,

the scale factor for the E4 term is 0.66. It is likely that it results from the perturbation

series being oscillatory in some cases and monotonically convergent in other cases. This

may cause problems in some cases (see below). In a similar manner, the methods based

on reduced perturbation orders, G3SX(MP3) and G3SX(MP2), are derived by adding the

three new features to the G3S(MP3) and G3S(MP2) methods, respectively (not shown).

A summary of G3SX mean absolute deviations from experiment for the G3/99 test set

is given in Table 27.6. The mean absolute deviation for G3SX for the 376 energies is

0.95 kcal/mol. This is a substantial improvement over G3S theory, which has a mean
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absolute deviation of 1.08 for the same set of energies. The mean absolute deviation for

enthalpies of formation decreases substantially from 1.12 to 0.88 kcal/mol. The

improvement is due to the non-hydrogen species (2.09 to 1.60 kcal/mol) as well as the

substituted hydrocarbons (0.92 to 0.72 kcal/mol), hydrocarbons (0.79 to 0.64 kcal/mol)

and radicals (0.86 to 0.67 kcal/mol). The overall behavior G3SX is close to that of G3X.

However, consideration of the specific deviations for several non-hydrogens indicates

that G3SX does not do as well as G3X for these systems. The scaling approach is

especially poor for P4, which has an error of 8.8 kcal/mol. This is probably due to the

small scaling factor for the MP4 term. Otherwise, the overall accuracy of G3SX theory,

as assessed on the G3/99 test set, is very similar in terms of the mean absolute deviations

to that attained by G3X theory, suggesting that both additive and multiplicative types of

parameterizations work equally well. All the G3SX methods have the advantage that they

can be used to study potential energy surfaces.

27.7 G3 THEORY FOR THIRD-ROW ELEMENTS

As proposed originally, G2 and G3 theories are applicable only to molecules containing

atoms of the first (Li–F) and second (Na–Cl) rows of the periodic chart. They have now

been extended [27–29] to molecules containing the third-row non-transition elements K,

Ca, Ga–Kr. Basis sets compatible to those used in G3 theory for molecules containing

first- and second-row atoms have also been derived. The G3 mean absolute deviation

from experiment for a set of 47 test energies containing these elements is 0.94 kcal/mol.

This is a substantial improvement over G2 theory for the third row, which has a mean

absolute deviation of 1.43 kcal/mol for the same set [27,28]. G3(MP2) theory for third-

row molecules has a mean absolute deviation from experiment of 1.30 kcal/mol, and is

significantly more accurate than G2(MP2). The G3 method based on third-order

perturbation theory, G3(MP3), has an average absolute deviation of 1.24 kcal/mol. In

addition, these methods have been assessed on a set of molecules containing K and Ca

for which the experimental data are not accurate enough for them to be included in the

test set [29]. Results for this set indicate that G3 theory performs significantly better than

G2 for molecules containing Ca.

Table 27.6 Mean absolute deviations (kcal/mol) from experiment for the G3SX methods

G3SX G3SX(MP3) G3SX(MP2)

Enthalpies of formation (222) 0.88 0.90 1.26

Non-hydrogens (47) 1.60 1.70 2.23

Hydrocarbons (38) 0.64 0.66 0.67

Substituted hydrocarbons (91) 0.72 0.65 1.12

Inorganic hydrides (15) 0.61 0.65 0.98

Radicals (31) 0.67 0.88 1.06

Ionization energies (88) 1.05 1.16 1.38

Electron affinities (58) 1.02 1.32 1.65

Proton affinities (8) 1.23 1.29 0.70

All (376) 0.95 1.04 1.34
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We have also performed preliminary investigations about extending G3 theory to

molecules containing the first-row transition metal elements. We have found some

significant deficiencies that suggest that important modifications to our standard approach

may be needed to reach an accurate model. First, the MP2(full)/6-31G(d) geometries are

deficient for many species and density functional geometries (such as B3LYP geometries

as in the G3X method) offer significant improvement. Secondly, CCSD(T) performs

significantly better than QCISD(T) even for relatively simple diatomic hydrides and is

clearly the method of choice, unlike the first- and second-row molecules where their

behavior was essentially identical. Thirdly, multiple unrestricted Hartree–Fock (UHF)

solutions are obtained in many cases indicating that care should be exercised in arriving

at stable solutions. The stable UHF solution in several such cases has significant spin

contamination that makes the additive approximations using perturbation theory to be

somewhat deficient. Fourthly, the use of different HLC corrections for atoms and

molecules causes unphysically large contribution to the binding energies involving atoms

with many unpaired electrons. The use of simpler HLC parameters (as in G2 theory) or

the use of scaled approaches such as G3S may be more appropriate in such cases. Overall,

despite the observations made above, our explorations show promise in deriving an

accurate model for transition metal systems [78].

27.8 APPLICATIONS

The Gn methods have been used in numerous quantum chemical studies. In a review of

G2 theory [3] published in 1995 we reported a summary of many of the applications of

G2 theory up to that time. Since then there have been many additional calculations

reported using G2 theory as well as the G3 methods. In this section we present several

examples of studies where Gn methods have been used to help resolve experimental

thermochemical data.

The first example involves the adiabatic ionization potential of methoxy radical and

C–H bond dissociation energy of methanol. In 1991 Ruscic and Berkowitz [81] reported

a value of 10.726 eV from photoionization studies that was in sharp disagreement with a

previous photoelectron value of 7.37 eV [82]. The value of Ruscic and Berkowitz was

confirmed in a study reported by Curtiss et al. [83] who found the G2 ionization potential

to be 10.78 eV. This same study [83] also provided theoretical thermodynamic data for

the energies of CH2OH, CH3O and related compounds (CH3OH, CH2OH
þ and H2CO).

The G2 value for the C–H bond dissociation energy of CH3OH of 96.2 kcal/mol was in

disagreement with the experimental value of 92.6 kcal/mol from kinetic measurements

[84]. A subsequent theoretical study [85] concurred with the G2 value. The theoretical

results motivated a photoionization study by Ruscic and Berkowitz [86] who derived a

new value of 94.6 ^ 0.1 kcal/mol for the C–H bond dissociation energy of methanol,

which is within the error limits (^2 kcal/mol) of G2 theory.

Another example is a recent study of proton affinities of a furan, methylphenols and

related anisoles by van Beelen et al. [87]. The proton affinities were determined by ion

cyclotron resonance mass spectroscopy and theoretically by G3(MP2) theory. The

G3(MP2) proton affinity provided support for revision of the proton affinity of furan
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to 194.1 kJ/mol from the recommended literature value of 191.9 kJ/mol. The

experimental study also determined proton affinities for the methylphenols and

methylanisoles. The G3(MP2) calculations were used to confirm the order of basicity

of the phenols and the anisoles.

Law et al. [88] used Gaussian-3 (G3) and Gaussian-3X (G3X) theories to calculate

thermochemical data for chlorine fluorides ClFn, n ¼ 1–7; as well as for their singly
charged cations and anions. The quantities calculated included enthalpies of formation

and bond dissociation energies of all species, as well as ionization energies and electron

affinities of the neutrals. The authors compared the well-established experimental data of

CIF and ClF3 with the G3 and G3X results. They found that the G3X method yielded

more accurate enthalpy values. On the basis of these findings, they used the G3X results

to appraise the widely scattered experimental for various species such as the enthalpy of

formation of ClF. The G3X results were also used for predictions for some missing

experimental thermochemical data of chlorine fluorides and their ions.

The final example involves the dissociative photoionization of CH2Br2 investigated

with photoionization mass spectroscopy by Chiang et al. [89]. An adiabatic ionization

energy of 10.25 eV determined for CH2Br2 agreed with predictions of 10.26 and

10.25 eV with G2 and G3 methods, respectively. The Gn results, along with this new

photoionization study, helped to establish that the ionization energy of CBr in the

literature was inaccurate. The Gn results also confirmed their new experimental value for

the ionization energy of CHBr.

27.9 SUMMARY AND CONCLUDING REMARKS

G2 and G3 theories are general predictive procedures for thermochemical calculations of

molecules containing first- and second-row atoms. They have been extended to molecules

containing third-row non-transition elements also. G3 theory is a significant improve-

ment over G2 theory while also being computationally more efficient. Overall, G3 theory

has a mean absolute deviation of 1.07 kcal/mol from experiment for the comprehensive

collection of 376 energies in the G3/99 test set. This is a slight increase compared to the

corresponding deviation of 1.01 kcal/mol for the 301 energies in the smaller G2/97 test

set. G3 theory does about as well for the larger hydrocarbons and substituted

hydrocarbons in the expanded test set as does for those in the G2/97 test. However, it

does poorly for some of the new and larger non-hydrogen systems in the G3/99 test set

such as SF6 and PF5, which have errors of 6–7 kcal/mol. G3X theory corrects for most of

the deficiencies of G3 theory for larger molecules. It includes better geometries as well as

g polarization functions on second-row atoms to correct for the deficiencies of G3 theory

for hypervalent molecules. G3X theory gives significantly better agreement with

experiment for the G3/99 test set of 376 energies. Overall the mean absolute deviation

from experiment decreases from 1.07 kcal/mol (G3) to 0.95 kcal/mol (G3X). The largest

improvement occurs for non-hydrogens for which the mean absolute deviation from

experiment decreases from 2.11 to 1.49 kcal/mol. G3X has a mean absolute deviation of

0.88 kcal/mol for the 222 enthalpies of formation in the G3/99 test set. G3S theory based

on multiplicative scaling of the energy terms instead of the additive HLC has a mean
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absolute deviation of 1.08 for the G3/99 test set, an increase from 0.99 for the G2/97 test

set. As in the case of G3X theory, the increase is largely due to the new non-hydrogen

species in the test set. However, systems such as the highly strained P4 molecule perform

poorly with the scaled methods. G3S and the related G3SX methods have the advantage

that they can be used to study potential energy surfaces.

While significant progress has been made in the prediction of accurate thermochemical

properties of molecules, much remains to be done in the future. The principal challenge is

the extension of the thermochemical models to heavier elements. The paucity of accurate

experimental data for the heavier elements makes the calibration and assessment of

theoretical models particularly difficult. The first-row transition metals pose a significant

challenge and many modifications of the standard procedures appear necessary to arrive

at a successful and accurate model. The development of model chemistries with better

than kcal/mol accuracy is another important challenge. The W1–W3 models [17–19]

that attempt to reach kJ/mol accuracy are significant milestones in this area, though they

are applicable to only small molecules. Finally, the development of methods and

computational procedures that are applicable to significantly larger molecules is critical

to extend the usefulness of these methods to emerging areas such as the study of novel

materials and biological systems.
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CHAPTER 28

Factors that affect conductance

at the molecular level

Charles W. Bauschlicher Jr. and Alessandra Ricca

Mail Stop 230-3, Center for Nanotechnology, NASA Ames Research Center,
Moffett Field, CA 94035, USA

Abstract

The current flow through molecules is discussed. We report on some recent calculations

of current–voltage ðI –VÞ curves for molecules between two metal surfaces. The change
in the density of states of carbon nanotubes when molecules are allowed to interact with

their sidewalls is also discussed. We speculate on the future of this area.

28.1 INTRODUCTION

Many people would point to Feynman’s 1959 talk “There is room at the bottom” as

the beginning of nanotechnology; however, even in 1990 most people thought of

nanotechnology as science fiction, or maybe even fantasy. However, this view has

changed rapidly as more and more experiments have shown that is it possible to

manipulate and/or measure the properties of one or a few molecules. In fact, now most

scientists expect nanotechnology to make significant changes in the world in the next

20 years.

While there have been impressive experimental accomplishments, working at the

nanoscale is not easy. Many of the experimental techniques cannot be applied to very

small systems and therefore there can be uncertainty in the exact structure that has been

made or what a specific measurement corresponds to. Computational modeling can give a

basic understanding of the chemistry or physics of these nanoscale systems. While these

nanoscale systems might be very small by engineering standards, they may still be very

large on a molecular scale, and therefore computational modeling of these systems can

stretch the current computational techniques to the limit. In this chapter we report on two

areas of computational research in nanotechnology that are related to current flowing

q 2005 Elsevier B.V. All rights reserved.
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through molecules. In the first, we consider our recent work on using molecules as

components in electrical circuits, for the application of computing, and in the second we

consider how gases adsorbed on the side walls of carbon nanotubes (CNTs) affect their

electrical properties, for application as gas sensors. After describing our recent work in

these two areas, we speculate on the future directions of the application of computational

chemistry to nanotechnology.

28.2 MOLECULAR ELECTRONICS

Silicon-based technologies have brought impressive improvements in computer

technologies. The computers that most of us have on our desks, which we use for

manuscript processing and email, are much more powerful than the state-of-the-art

computers of 20 years ago, and cost vs performance of workstations that do many of our

largest calculations makes access to computer power much less of a bottleneck than at

any time in the past. While we can expect silicon-based technologies to continue to

improve, in the long term it seems that either the feature size, variations in doping

concentration, or other problems will eventually be a road block for silicon-based

technologies. Nanoelectronics could provide a way to overcome the limitations of

silicon-based technologies. There has been a tremendous effort to design devices and

wires. Understanding molecular conduction for a wire between two metal contacts is an

important step toward building a molecular device.

Experimentally it is possible to measure the current–voltage ðI –VÞ curves for one (or a
few) molecule(s) between two metal surfaces using several different techniques [1–5].

Stimulated by such experiments, computationalists have developed techniques [6–19] to

compute such I –V curves from first principles. The approach that we use is the self-

consistent, non-equilibrium, Green’s function approach described by Xue, Datta, and

Ratner [15–19]. In this approach, the molecule of interest, X, is placed between two metal

clusters, M1 and M2, forming what we refer to as an extended molecule M1–X–M2.

The extended molecule is treated using density functional theory (DFT). The extended

molecule is connected to the two bulk electrodes using the Green’s function approach. In

our work, the coupling between the bulk contacts and the extended molecule is

determined using a semi-empirical tight-binding approach [20], but we note that other

approaches to couple the molecule and contacts exist [8].

We first consider the example of benzene-1,4-dithiol between two Au(111) surfaces—

see the top half of Fig. 28.1. The bottom part of the figure shows the extended molecule

that is used in our calculations. Since these calculations are quite new, some calibration

calculations [21,22] were performed and are illustrated in Fig. 28.2. Not unexpectedly,

the I –V curves show some dependence on the basis set used. The valence double zeta

(VDZ) is qualitatively correct. Adding polarization functions (VDZP) increases the

current at all biases. Adding diffuse functions to the S (VDZ þ P) increases the current

still further. Replacing the VDZ þ P basis by a valence triple zeta set (VTZ þ P) actually

decreases the current slightly, but the VTZ þ P and VDZ þ P sets are in reasonable

agreement. Increasing the polarization set, to yield the VTZ þ (2df,2p) set, makes a small

increase in the current. The general increase in current with basis set is consistent with
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Fig. 28.1. Benzene-1,4-dithiol between two Au(111) surfaces. The bottom part of the figure shows the extended

molecule using the Green’s function calculation of the I –V curves.

Fig. 28.2. A comparison of the I –V curves obtained using different basis sets and different functionals. The

BPW91 functional is used unless otherwise noted.
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the view that the bottleneck in the current flow is the Au–S interaction; thus as the basis

set is increased, the Au–S interaction is stronger and hence the current is increased.

Clearly the three biggest basis sets are in reasonable agreement. This suggests that this

property does not have any unusual basis set dependences that make the calculation

prohibitively expensive.

Most of the calculations reported in this manuscript use the BPW91 functional;

however, in one set of calculations, the B3LYP functional was used, and the results [21]

obtained using this functional are shown in Fig. 28.2. The BPW91 and B3LYP curves

have a similar shape, but the B3LYP results are smaller by about 25%. While the BPW91

is a pure functional, the B3LYP is a hybrid functional containing some Hartree–Fock

exchange. Considering that the functionals are rather different, this small difference

suggests that the results may not depend too strongly on the choice of the functional.

Since BPW91 tends to overbind molecules to metal atoms and B3LYP tends to underbind

them, the true answer probably lies between them. More studies are required to determine

which functional is better for this class of problem.

Our calibration study [21] suggests that the computed results are not strongly

dependent on the basis set or functional. We have also used 21 atom Au clusters on each

end of the benzene-1,4-dithiol instead of only 6, and while this makes some changes in

the I –V curves, the variation is smaller than the difference between the BPW91 and

B3LYP functionals [23]. Datta and co-workers [8], using the B3PW91 approach in

conjunction with a VZP basis set, but with a different approach for the treatment of the

metal atoms in the extended molecule and their interaction with the contacts, find an I –V

curve that is between our B3LYP and BPW91 curves. From the results so far, it does not

appear that the results are too sensitive to the exact treatment of the metal surface.

Despite the small dependence on the computed I –V curves on the level of theory used,

the computed curves are about two orders of magnitude larger than experiment [24].

Using a perturbative approach to the calculation of I –V curves, we investigated [25] the

sensitivity of the I –V curve to the assumption about the shape of the metal surface,

namely, the break junctions used in experiment [24] are not smooth like the (111) surface

used in most calculations. Several changes in the surface were tried, but the one change

that made a significant reduction in the computed current was bonding the S atom to a

small FCC cluster on top of the (111) surface—see Fig. 28.3. That is, the small FCC

cluster creates a bottleneck that reduces the current; however an order of magnitude

reduction in the computed current still leaves the computed I –V curves an order of

magnitude larger than experiment.

While great progress has been made in computing the I –V curves for benzene-1,4-

dithiol between Au surfaces, the computed results are still not in complete agreement

with experiment, and the origin of the difference is not known. It is possible that despite

the calibration calculations the theory is not as refined as believed. It is also possible that

we have not yet modeled exactly what is measured in experiment or that experiment is

not as accurate as believed. Clearly additional work on this system, probably both theory

and experiment, will be required to completely understand the origin of these differences,

but the work to date suggests that rigorous theoretical methods can compute I –V curves

that are in at least qualitative agreement with experiment.
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One of the more interesting experimental discoveries has been the negative differential

resistance (NDR) found for a conjugated phenylene ethynylene trimer with an NO2 side

group, see molecule IV in Fig. 28.4. Reed et al. [26] have shown, that since this molecule

can have a high or low current flow, it could be used to store data. While these

experiments have demonstrated that such a system can be used to store a bit of data, the

current state of the molecule has a retention time measured in minutes, and therefore, the

data stored will be lost after some relatively short time. NDR has been demonstrated for

other similar molecules, and the data retention time appears to depend on the specific side

groups and their location [27]. It has been suggested [27] that rotation of the benzene

rings about the C2 units can lead to a change in state, and hence a loss of the data. Simple

calculations have shown [28] that the rotational barriers of the anions are consistent with

the observed retention times.

Given the potential use of this class of molecules as molecular memories, we have

studied a series of related molecules. If rotation is in fact the mechanism by which data

is lost, it should be possible to dramatically increase the retention time by using

molecules that do not have internal rotational degrees of freedom with low barriers. It

is also of interest to better understand the NDR mechanism, leading to, perhaps, a

better choice of side groups. Molecules I, II, and III shown in Fig. 28.4, and some

derivatives have been investigated [22,23] to gain insight into the design of molecules

producing NDR.

2,7-Dithiolpyrene, molecule I in Fig. 28.4, cannot rotate, while 4,40-dithiol-
diphenylacetylene (molecule II) has a low barrier for rotation about the central

C2 unit, like molecule IV. An inspection of the HOMO, LUMO, and other nearby orbitals

Fig. 28.3. Two models for benzene-1,4-dithiol on a metal surface. The cluster on the left is used to study

benzene-1,4-dithiol between two Au(111) surfaces, while the cluster on the right is used to model benzene-1,

4-dithiol bonded to two small clusters, which are sitting on top of the Au(111) surface.
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for 4,40-dithiol-diphenylacetylene, shows that the HOMO has a sizeable density on the

S atoms and on the carbon atoms. That is, there is an orbital that connects the two Au

contacts. There are no similar orbitals for 2,7-dithiolpyrene, suggesting that the current-

carrying ability of 2,7-dithiolpyrene will be smaller than that of 4,40-dithiol-
diphenylacetylene. As shown in Fig. 28.5, the computed I –V curves support this view,

but the difference is only about a factor of two for biases less than 2.5 eV.

While the planar 4,40-dithiol-diphenylacetylene can carry more current than the 2,7-
dithiolpyrene it must be remembered that rotation about the C2 central unit will decrease

Fig. 28.4. Conducting molecules: (I) 2,7-dithiolpyrene; (II) 4,40-dithiol-diphenylacetylene; (III) 1-thiol-4-
ethynylphenyl-40-ethynylphenyl-10-benzenethiolate; and (IV) 20-amino-4-ethynylphenyl-40-ethynylphenyl-50-
nitro-10-benzenethiolate.

Fig. 28.5. The I –V curves computed for 2,7-dithiolpyrene and 4,40-dithiol-diphenylacetylene.
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the current for 4,40-dithiol-diphenylacetylene. In Fig. 28.6 we show the I –V curves for

4,40-dithiol-diphenylacetylene as a function of the angle between the two benzene rings.
As expected, the current decreases with the angle, until when the rings are perpendicular,

the current is essentially zero. Thus, there is a potential trade-off between using molecules

like 4,40-dithiol-diphenylacetylene and 2,7-dithiolpyrene, where the higher current-

carrying ability must be balanced against reduction in current with rotation about the

C2, which could mean a balance between current vs data retention time.

One question that arises is how does the NDR work. It has been suggested [29] that the

NDR is related to the formation of the anion of the bridging molecule. If this is true, then

perhaps other side groups, that stabilize anions, might work better than NO2. With this in

mind, we computed [23] the I –V curves of the benzene-1,4-dithiol and the perchloro

derivative and 1-thiol-4-ethynylphenyl-40-ethynylphenyl-10-benzenethiolate (molecule

III in Fig. 28.4) and its perchloro derivative. For the benzene-1,4-dithiol species, its I –V

curve is very similar to that of the perchloro analog. However, for 1-thiol-4-

ethynylphenyl-40-ethynylphenyl-10-benzenethiolate the I –V curve for the perchloro

derivative is less than half of the parent. For the short benzene-1,4-dithiol molecule most

of the current bottleneck comes from the Au–S junction, so changes in the energy levels

of the C6 ring due to substitution are minimal. However, for the larger, three-ring species,

changes in the rings have a larger effect on the I –V curves. This suggests that both the

length and nature of the side group could be important in designing molecules producing

NDR. While this is still a very new area of research, we strongly suspect that

computational approaches will help elucidate the principles that govern the NDR, and

will, therefore, be very helpful in determining the best class of molecules for molecular

memories.

Fig. 28.6. I –V curves for 4,40-dithiol-diphenylacetylene as a function of the angle between the benzene rings.
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28.3 CARBON NANOTUBES AS MOLECULAR SENSORS

Chemical sensors have a wide range of applications in health and environmental sciences.

From a NASA prospective, chemical sensors are important in monitoring the health and

welfare of humans in space and in exploration, e.g. in determining the makeup of the

atmosphere of a distant planet. Ideally, sensors should be accurate, light weight, energy

efficient, and have a fast recovery time. It was therefore of great interest when Kong

et al. [30] found that CNTs might be very sensitive chemical sensors. They observed

changes in the current of a single-walled carbon nanotube (SWCNT) when it was

exposed to NO2 and NH3. This has led to numerous experiments and calculations, but still

a full picture of how the CNTs function as a chemical sensor has not emerged.

Before considering NO2 or NH3, we consider O2 for which more definitive

experiments and calculations have been performed. The extreme oxygen sensitivity of

SWCNT bundles and thin films was first reported by Collins et al. [31]. They showed that

exposure to air or to oxygen greatly modifies the SWCNT’s electrical resistance and

thermoelectric power. To explain this behavior Jhi et al. [32] performed DFT calculations

using the local density approximation (LDA). They showed that O2 binds to SWCNTs

with an adsorption energy of about 0.25 eV and dopes semiconducting tubes with hole

carriers. Same conclusions were obtained by Zhao et el. [33] who also used the LDA

approach. One major drawback of the LDA approach is that it tends to overbind. When

the generalized-gradient approximation (GGA) is used instead of LDA O2 is only bound

by 0.87 kcal/mol with almost no charge transfer [34,35]. The DFT approach does not

account for long-range dispersion interactions and is clearly not suited to describe weakly

bound systems, and correlated methods such as MP2 are required to treat such systems.

We have studied [36] the interaction of O2 with a metallic (9,0) tube using the MP2

approach within the ONIOM scheme [37–39] and have shown that MP2 is indeed more

suited to describe weakly bound systems. O2 weakly physisorbs both inside and outside

with a binding energy of 2 kcal/mol and with almost no charge transfer.

Recent experimental work has begun to question the hypothesis that O2 dopes

SWCNTs. Avouris and co-workers [40,41] have shown that for SWCNT field-effect

transistors (FETs), the main effect of oxygen adsorption is not to dope the bulk of the tube

but to modify the barrier at the metal–semiconductor contacts. Using photoemission

spectroscopy Goldoni et al. [42] have shown that the presence of Na contaminants

is responsible for the high sensitivity of SWCNT bundles to oxygen. Clearly a synergy

between theory and experiment is required to shed light on the sensing mechanism of

SWCNTs.

We have also studied [43] a semiconducting (10,0) SWCNT interacting with O2 using

the ONIOM method of Morokuma and co-workers [37–39] which allows the division

of a molecular system into two or three layers and the treatment of each layer using a

different theoretical method. We use the MP2 method as the high-level treatment and

the Universal Force Field (UFF) [44] as the low-level treatment. We use two different

models, denoted as models A and B, which are shown in Fig. 28.7. In model A the double

bond connecting carbon 1 to carbon 2 and O2 are treated as the high-level system and we

use the 6-311þþG(3df,3pd) basis set to describe it. The rest of the tube is treated as
the low-level system using the UFF force field. Model A is used to study the adsorption
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of O2 on a double bond. In model B we use a six-membered ring (numbered from 1 to 6 in

Fig. 28.7) and O2 as the high-level system and the 6-311 þ G(d,p) to describe it. The rest

of the tube is treated as the low-level system using UFF. Model B is used to model the

adsorption of O2 above a six-membered ring. Transition state geometry optimizations

are performed by computing analytic second derivatives at every point using

the 6-31 þ G(d,p) basis set.

Fig. 28.7. Models used in the ONIOM calculations. For each model, the numbered carbons denote the high-

level atoms and carbon atoms directly connected to them are treated as the hydrogen link atoms in the ONIOM

calculations. Oxygen atoms are not shown in the figure and are considered as high-level atoms. The bonds

shown in bold represent the high-level system and the remaining bonds drawn with dotted lines are just shown to

better locate the high-level system in the nanotube.
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The physisorption of O2 triplet both outside and inside a SWCNT was studied and the

results are summarized in Table 28.1. The most favorable site outside the tube is above a

six-membered ring as shown in Fig. 28.8(b). The oxygen molecule is at 3.13 Å above the

center of the hexagon. The oxygen atoms of O2 are neutral which shows that no charge

transfer occurs from the nanotube to O2. The binding energy of 2.44 kcal/mol is weak.

Table 28.1 Structures (Å) and binding energies (kcal/mol) of O2 triplet physisorbed inside and outside a

(10,0) nanotube obtained using the ONIOM method

Configuration Basis set R(C–O)a R(O–O) Binding energyb

Inside paral. model B 6-311 þ G(d,p) 3.592 1.225 2.48

Outside paral. model B 6-311 þ G(d,p) 3.422 1.225 2.44

Outside paral. model A 6-311þþG(3df,3pd) 3.449 1.218 0.81

aAverage C–O distance.
bComputed without including the zero-point energy.

Fig. 28.8. Most stable configurations for the physisorption of O2 on a (10,0) nanotube: (a) O2 is inside the tube;

(b) O2 is outside the tube.
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Inside the tube the most favorable binding site is also above a six-membered ring with the

O2 molecule almost aligned along the nanotube axis at 3.54 Å above the center of the

hexagon (see Fig. 28.8(a)). The binding energy of 2.48 kcal/mol for O2 inside the tube is

very similar to that for O2 outside the tube. No charge transfer occurs.

We also study the chemisorption of triplet and singlet O2 outside a SWCNT and we

report the results in Table 28.2. The chemisorption of singlet O2 on a double bond is

exothermic by 17.50 kcal/mol relative to the ground-state tube and 3Sg
2 O2 and leads to

the formation of a four-membered ring (see Fig. 28.9(b)). The reaction barrier computed

with respect to the nanotube and singlet O2 is 41 kcal/mol. The chemisorption of

O2 triplet is unfavorable by 16.90 kcal/mol (see Fig. 28.9(a)). Overall the results show

that the physisorption of O2 triplet is weak with no charge transfer occurring. The

chemisorption of O2 singlet is energetically favorable but the reaction barrier is high

and the reaction is unlikely to occur under normal conditions. The chemisorption of O2
triplet is energetically unfavorable.

We have computed [43] the electronic density of states of a bare (10,0) tube and of a

(10,0) tube interacting with O2 at the DFT level using plane-waves and periodic bound

conditions. The plots are shown in Fig. 28.10. The upper plot corresponds to the bare

tube. The band gap is approximately 2 eV, which is somewhat overestimated at this level

of theory [45]. In the presence of O2 a new peak appears at about 0 eV which corresponds

to an unoccupied b orbital of O2. The density of states of the tube is not affected by the

presence of O2 and no new conducting channel is present in the band gap. We can

conclude that the presence of O2 is not going to increase the conductance of the nanotube.

As noted above, the addition of NH3 was reported to have a significant effect on the

current carried by a single SWCNT. Experiments showed [46] that most of the effect was

associated with NH3 interacting with the CNT and not the NH3 interacting with the

contacts. A computational study [47] was performed on NH3 interacting with graphite

and with the side walls of a (9,0) CNT. The calculations were performed at the MP2 level

and basis set superposition error (BSSE) was accounted for. The MP2 results were scaled

based on CCSD(T) calculations for a small model system. The results are summarized in

Table 28.3. The BSSE-corrected binding energy increases with basis set improvement.

For a C6H6 model of graphite, the best value is 2.02 kcal/mol, taken from the aug-cc-

pVTZ basis set. Expanding the C6H6 model of graphite to C24H12 (coronene) increases

the binding energy; compare the results obtained using the 6-31G(2d,p) basis set, 1.13 vs

1.88 kcal/mol. Adding the effect of expanding the graphite model to the C6H6 aug-cc-

pVTZ result yields an estimated binding energy of 2.77 kcal/mol.

Table 28.2 Structure (Å) and binding energy (kcal/mol) of O2 chemisorbed outside a double bond of a

(10,0) nanotube obtained using the ONIOM method

Configuration Basis set Spina R(C–O)b R(O–O) Binding energyc

Paral. model A 6-311þþG(3df,3pd) T 1.407 1.942 216.90

Paral. model A 6-311þþG(3df,3pd) S 1.451 1.496 17.50

aIndicates the multiplicity of the system.
bAverage C–O distance.
cComputed with respect to tube (singlet) þ O2 (triplet). The zero-point energy is not included.
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A sizeable fraction of the binding is electrostatic in origin and it is known [48] that the

quadrupole moments of small hydrocarbons are about twice that of graphite. Using the

computed NH3 dipole and quadrupole moments and the computed quadrupole moments

for benzene and coronene yields electrostatic contributions of 0.33 and 1.08 kcal/mol for

the benzene and coronene systems, respectively. Applying a correction for an

overestimation of the electrostatic bonding yields binding energies of 1.86 and

2.23 kcal/mol for the benzene and coronene models of graphite, respectively. On the

basis of these calculations and on the uncertainty in the calculations and corrections, an

estimate of 2.0 ^ 2.0 kcal/mol was made for the NH3 binding energy to graphite. It is

very difficult to measure [49] the binding energy since the NH3–NH3 interaction is of

Fig. 28.9. Optimized configurations for the chemisorption of O2 on a (10,0) nanotube: (a) triplet conformation

with O2 adsorbed on a double bond located in the center of the tube; (b) singlet conformation with O2 adsorbed

on a double bond located in the center of the tube.
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the same size as the NH3–graphite interaction, but the estimate based on the calculations

is reasonably consistent with previous work.

Using a curved coronene to model a (9,0) CNT, the NH3 binding energy is computed to

be about 0.6 kcal/mol smaller than that of graphite—see Table 28.3. However, we note

that curving the coronene induces a dipole moment and a CNT does not have a dipole

moment. Thus the computed reduction in the binding energy is too large. This problem

could be eliminated by treating a larger model for (9,0) that does not have a dipole

moment, e.g. a ring of carbons or a small capped tube, see Fig. 28.11. Unfortunately

Fig. 28.10. Electronic density of states computed using 4k points and a 0.05 eV Gaussian broadening. The

upper plot is for a bare (10,0) tube and the lower plot is for a (10,0) interacting with O2.
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it is not easy to perform MP2 calculations for species this large, and hence one is

essentially restricted to DFT calculations. In Table 28.4 we report the results of B3LYP

calculations on the ring and tube, as well as on the three models used in the MP2

calculations described above. We first note that the B3LYP results are similar to the MP2,

but there is no quantitative agreement. For example, the NH3 binding energy is larger for

Table 28.3 NH3 binding energy, in kcal/mol, computed using the MP2 level of theory

De De-BSSE Scaleda

Planar C6H6 graphite model

6-31Gp 2.74 0.91 0.76

6-31 þ Gp 3.02 1.08 0.90

6-31G(2d,p) 3.01 1.35 1.13

6-311G(2df,2p) 3.66 1.91 1.59

6-311 þ G(2df,2p) 2.89 2.11 1.76

aug-cc-pVTZ 3.17 2.42 2.02

Planar C24H12 graphite model

6-31Gp 3.26 1.51 1.26

6-31G(2d,p) 4.08 2.25 1.88

Curved C24H12 model perpendicular

6-31Gp 3.60 0.79 0.66

6-31G(2d,p) 4.44 1.45 1.21

aScaled by 0.83, which is computed using the ratio of the BSSE-corrected MP2 binding energy (2.06 kcal/mol) to the

CCSD(T) (1.72 kcal/mol) value for the aug-cc-pVDZ basis set.

Fig. 28.11. Models for a (9,0) carbon nanotube.
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curved coronene than for planar coronene at the B3LYP level, whereas the opposite is

true for the MP2 level. It is perhaps surprising that the ring is so much more bound than

the other systems. An analysis of the ring systems shows that the terminal H atoms result

in a very large quadrupole moment for the ring and hence in a too large binding energy.

The full tube removes both the unphysical dipole moment of the curved coronene and the

very large quadrupole moment of the ring and the binding energy is now very small.

However, the B3LYP does not account for all the bonding as evidenced by the planar

species, where the B3LYP is up to 1 kcal/mol smaller than the MP2. Thus, while the

B3LYP can treat a very large system removing some of the non-physical effects observed

in smaller cluster models, it does not describe the bonding with sufficient accuracy to

yield an accurate binding energy.

The sensor experiments measure the change in current when NH3 is added. It has been

suggested [30] that charge transfer between the NH3 and CNT affects the CNT density of

states to produce the observed change in the current. Our calculations do not support this

view; the maximum charge transfer observed in our calculations is 0.008 electrons, which

is consistent with the weak bonding. We should note, however, that the NH3 dipole and

quadrupole moment can induce some polarization of the charge on the SWCNT. We

therefore consider the change in the band structure with the addition of NH3. A (10,0)

tube is used for this purpose since this is a semiconductor and one expects a larger change

in a semiconductor tube than a conducting tube. In Fig. 28.12 we present the computed

electronic density of states of a bare (10,0) tube and a (10,0) tube with NH3 bound to its

side wall. An inspection of the two plots shows only small peak at approximately

22.1 eV, which is associated with the NH3 molecule. We can conclude that the presence

of NH3 alone does not modify the density of states of the nanotube and should not lead to

a change in the conductance of the nanotube.

28.4 CONCLUSIONS AND OUTLOOK

We have given examples of our recent calculations on two problems in nanotechnology.

The first is in the calculation of I –V curves of molecules between metal surfaces. This is

an area where chemistry and physics meet, and the problem is being solved by merging

typical quantum chemical calculations with Green’s function approaches. We believe

that such methods will become more common in the future as engineering-like

applications reach the molecular size. However, as this application shows, there are still

Table 28.4 NH3 binding energy, in kcal/mol, computed using

the B3LYP/6-31Gp level of theory

Planar C6H6 1.37

Planar C24H12 1.25

Curved C24H12 1.43

Ring 3.54

Full tube (C150) model 0.51
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many remaining questions: for example, how best to interface the description of the bulk

contacts with the molecular system or how to include forces in the calculations so the

geometry can be optimized and frequency computed under bias conditions with a current

flowing. To put this simply, so far only the evaluation of energies and densities has been

implemented in the calculation of current flowing through molecules between two metal

surfaces, but computational chemists have developed many powerful tools, such as the

calculation of analytic first and second derivatives that need to be applied to this problem.

The close collaboration of physicists and chemists will probably be required to bring this

area of nanotechnology to its full potential.

The CNT sensor work shows that current calculations can be used to help answer some

of the existing experimental problems; however, as the NH3 calculations demonstrated,

the size of the problems requires some compromises in the level of theory used. Clearly

the continued improvement in computers will lead to the ability to treat larger systems at

the MP2 level. However, it seems likely that bigger enhancements will come from

Fig. 28.12. Electronic density of states computed using 4k points and a 0.05 eV Gaussian broadening. The

upper plot is for a bare (10,0) tube and the lower plot is for a (10,0) tube interacting with NH3.
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improved ONIOM methods [37–39], where different levels of theory can be more

accurately interfaced together to produce high accuracy for large systems.
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CHAPTER 29

The CH· · ·O hydrogen bond:

a historical account

Steve Scheiner

Department of Chemistry and Biochemistry, Utah State University,
Logan, UT 84322-0300, USA

Abstract

Conventional hydrogen bonds usually contain a pair of electronegative atoms, bridged by

a H atom. The possibility that a C atom might be involved as a proton donor has a long

history of inquiry, going back to the 1930s, and was reinforced by crystal structural

information in the 1950s. However, the issue had not been resolved until very recently,

when advances in experimental and theoretical methods have permitted detailed and

systematic study of putative CH· · ·O H-bonds. The issue had become particularly

intriguing, as infrared spectra had indicated that the C–H stretching frequency of at least

some such CH· · ·O interactions shifts to the blue, instead of to the red which is the normal

shift of almost every H-bond that had ever been investigated. The causes of this

unexpected phenomenon are explored, as are the various other aspects of the interaction,

so that the CH· · ·O interaction can be properly characterized.

29.1 INTRODUCTION

The story of the hydrogen bond goes back to around 1920 [1], or perhaps even earlier [2],

as the concept was in its infancy. As computational chemical techniques were being

developed, it was frequently H-bonded systems to which they were applied as both a test

of the methods, and as a means of probing the underlying nature of this interaction.

Indeed, the very productive interplay between experiment and computational chemistry

has long been a centerpiece of our developing understanding of the hydrogen bond.

This chapter focuses not on the standard H-bond, but rather on its weaker cousin,

wherein CH acts as proton donor, instead of the usual OH or NH. Because of its weaker

nature, the CH· · ·O H-bond offers a particularly stringent test of computational methods,

q 2005 Elsevier B.V. All rights reserved.
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and their ability to make real contributions to the solution of a pressing chemical

problem. Of perhaps greater importance, this sort of H-bond was largely unexpected, and

therefore unrecognized, by the greater chemical community for many years. It hence

serves as a unique forum to showcase the ability of quantum chemistry to address a

current issue, as it is developing, and to in fact contribute to that development.

The chapter first presents a history of the problem, how the CH· · ·O H-bond went from

a nonissue to one of recognized importance. This history also discusses the contributions

made by computational chemistry along the way, at each stage. We then turn our

attention to a unique and surprising property of the CH· · ·O bond (or at least certain of

them) that led some to initially deny its characterization as a H-bond at all, and others to

go so far as to dub it an ‘anti-H-bond’. This property is then analyzed and placed into

proper perspective through the power of modern quantum chemistry. The chapter closes

with a perspective on the paths that future work on this problem is apt to take.

29.2 EARLY THINKING

From its very earliest days, quantum chemistry played an instrumental role in the

development of the theory of hydrogen bonding. Perusal of a number of monographs

might provide the interested reader with a fascinating chronological history of theoretical

ideas, and how they related to contemporary experimental data at each point in time

[3–14]. The early definition of a H-bond paired a proton donor group, typically OH or

NH, with an acceptor that contained a nonbonded electron pair. And indeed, it was

the OH· · ·O, OH· · ·N, and NH· · ·O sorts of H-bonds that dominated most thinking about

H-bonds. Nonetheless, the weaker sorts of H-bonds were not completely ignored: a

smaller number of studies considered the H-bonding abilities of F, Cl, S, and so on.

There was little thought that the C–H group could be a satisfactory substitute for O–H

or N–H as the proton donor, as the similar electronegativity of the C and H atoms is not

conducive to charge buildup on the proton. Nevertheless, the concept of a CH· · ·O

H-bond is far from a new one, but goes back many years. In 1937, Glasstone [15]

rationalized certain observed deviations from ideal behavior in the liquid state via a

C–H· · ·O H-bond between the CH of CHCl3 and the oxygen of ether. Some support was

soon gained for this sort of H-bond in the form of surprisingly high dissociation constants

of o-toluic and n-butyric acids [16]. The issue lay largely fallow for some time until NMR

measurements in 1955 [17] confirmed chloroform’s ability to act as a proton donor.

The development of experimental means of obtaining molecular structures in crystals

opened a new window into this idea. Rather short R(C· · ·O) distances, consistent with a

CH· · ·O H-bond, were noted in dimethyl oxalate [18] and uracil [19] in the mid-1950s.

The 1960s witnessed a larger set of molecular structures, again supportive of the short

C· · ·O contact, and in a geometrical disposition consistent with a H-bond [20–23],

including a number of biological systems [24,25].

At about this same time, Brown and Smith’s [26] measurements of liquid–vapour

equilibrium indicated the presence of a C–H· · ·O bond between the methyl groups of

nitromethane or acetonitrile and the O of acetone. Also in the 1960s, there were a number

of opportunities to investigate this question via spectroscopic inquiry. Allerhand and
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Schleyer’s [27] comprehensive study of infrared spectroscopic data supported the idea of

a CH· · ·O H-bond, and further refined the minimum acidity requirement for the CH

donor. Much of the evidence concerning C–H· · ·O H-bonds that had accumulated prior

to 1974, based on a range of properties including vapor pressure, azeotrope formation,

second virial coefficients, solubility, freezing-point diagrams, enthalpies of mixing,

dipole moments, viscosity, refractive indices, electronic spectroscopy, vibrational

spectra, and NMR, was summarized in a treatise that appeared in that year [28].

29.2.1 1970s: the beginning of quantum chemical study

At this point in time, in the early 1970s, quantum calculations were still making wide use

of semiempirical methods. Ab initio studies were coming into their own, but

computational limitations restricted them for the most part to small basis sets, and

without account for electron correlation. It is now understood that semiempirical

calculations are generally unreliable for treatment of weak interactions such as H-bonds

[29,30]. The situation is exacerbated for weak H-bonds, such as CH· · ·O, and any such

semiempirical data would be of little use. Hartree–Fock minimal basis set calculations

are of some utility for standard H-bonds, at least as far as gross features are concerned.

However, they could not be relied upon for any of the finer details, and would be suspect

when considering H-bonds that are weaker than normal. Another point concerns the use

of electron correlation. This effect is important for quantitative accuracy of standard

H-bonds, but one could hope to achieve some measure of H-bond strength, and likely

compute relative strengths of comparable H-bonds, even without it. However, it is

expected that dispersion, and other correlation-related forces play a disproportionately

larger role in the weaker molecular interactions, such as CH· · ·O bonds. Density

functional theory (DFT) was not a real option at that time. These methods developed

rapidly in the 1990s, and were applied to H-bonds, albeit with mixed success. The failure

of these methods to include dispersion argued against their ability to provide a

trustworthy treatment of weak H-bonds. Taking into account these various factors, most

conceded that any sort of reliable, quantitatively accurate treatment of weak H-bonds

would almost certainly require an ab initio treatment, with a reasonable account of

electron correlation, and using a fairly extended basis set, including diffuse functions.

It is nonetheless interesting to consider some of the earlier computations that bucked

the odds and piloted theoretical investigations of CH· · ·O interactions. A pioneering set of

computations by Morokuma in 1971 [29] considered the CH· · ·O interaction between

formaldehyde and water using an ab initio approach. It what was likely a remarkable

cancellation of errors, in that he applied a minimal Slater basis set with neither correlation

nor counterpoise corrections, nor was there much geometry optimization, he nonetheless

achieved a quite reasonable estimate of 0.6 kcal/mol for the interaction energy. That

same year witnessed the appearance of an attempt to apply a semiempirical approach to

H-bonds in general, and CH· · ·O in particular [31]. The authors’ consideration of CH4 as

a potential proton donor was plagued by the uncertainties of their method, and they were

hence unable to draw any conclusions.
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Kollman and coworkers picked up the ab initio baton shortly thereafter, still at the SCF

level, and with small basis sets. A couple of 1972 papers [32,33] considered HCN as a

proton donor. This strong acid is of course expected to form rather strong H-bonds, but

the calculations further suggested it is weaker than HF, i.e. HCN· · ·HF is more stable than

is HF· · ·HCN. The computations further supported the inability of semiempirical

methods like CNDO/2 to treat these systems reliably. Kollman’s group raised the bar a bit

in 1975, applying a slightly larger 4-31G basis set [34]. Their pairing of the very weak

donor CH4 with NH3 as a base presented what appeared to be a CH· · ·N H-bond, bound

by more than 1 kcal/mol; the much stronger acid CF3H was bound by 7.6 kcal/mol. These

results are now known to be an overestimate of the bonding by a factor of about 2,

reflecting first the exaggeration of electrostatic effects by 4-31G, and also the failure to

remove basis set superposition error. Nonetheless, there were theoretical confirmations of

the potential binding ability of these supposedly weak interactions.

Despite earlier contraindications concerning CNDO/2, Bonchev and Cremaschi [35]

nonetheless carried out calculations of CH· · ·X interactions involving a number of

different donors and acceptors. Perhaps surprisingly, their work did indeed suggest the

presence of a H-bond, even if weak in a number of cases. Impressively, these primitive

computations supported the idea that hybridization of the C atom is important, and that

sp-hybridized carbon forms the strongest H-bonds, then sp2, followed by sp3. The latter

idea was buttressed several years later by ab initio calculations by Vishveshwara [36],

with the minimal STO-3G basis set. This author suggested that substituents play a

role as well, albeit less so than hybridization. This work also predicted that HCN would

be an even stronger proton donor than is HOH, attributing this feature in large measure to

an alignment of dipole moments of the two molecules.

During this decade of the 1970s, experimental work had been progressing as well.

Structural analyses of crystals had suggested the presence of CH· · ·O interactions in

acetic acid chains [37], as well as implicated the involvement of crown ethers in such

bonds [38,39]. Technical developments had facilitated structural information on single

molecules in the gas phase, which had in turn led to finding intramolecular CH· · ·O

contacts in diethers [40]. The evidence for CH· · ·O H-bonds in biomolecules continued

to mount as well, particularly with respect to nucleic acid structures [41–45].

Advances in IR and NMR spectral determinations lent further confirmation to the idea

of a CH· · ·O H-bond [46–48].

29.2.2 1980s: more accurate calculations

The release of the Gaussian-80 ab initio package around 1980 was a revolution of sorts,

permitting much more definitive identifications of minima in potential energy surfaces,

as well as facilitating the incorporation of electron correlation. Many of the ensuing

computations in the 1980s dealt with alkynes like acetylene, and other triply bonded

species such as HCN [49–53]. As an example, a 1983 report [54] assessed the ability of

HCyCH to donate a proton using larger, polarized basis sets, and including correlation.

HF and H2O did not readily form a CH· · ·X interaction, whereas NH3 was apparently just

strong enough of a base so as to form a CH· · ·N bond of surprisingly high strength,
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3.6 kcal/mol; however, this result is likely an overestimate as no counterpoise corrections

were added. The ability of a hydrocarbon like acetylene to act as a proton donor found

experimental support from IR measurements in matrices [55–58] and gas phase

structures [59,60], just as the stronger acid HCN forms such bonds [61,62].

More interesting in some ways were carbon donors that were nominally weaker acids.

Although restricted to a rather small 4-31G basis set, and without correlation, Hobza and

Sandorfy [63] found that the substitution of even one H atom of methane by the

more electronegative Cl might be sufficient to facilitate a CH· · ·O H-bond; this bond

becomes even stronger with higher degrees of substitution. Their contention was

consistent with earlier spectroscopic measurements involving CHCl3 [64] and by low-T

inert gas matrix findings [65]. Additional support followed quickly via a gas-phase

rotational spectrum of CF3H· · ·NH3 [66], crystal structural work [67], and another

spectroscopic indication of a CCl3H· · ·O H-bond [68].

CH activation is not limited to Cl only but applies to other electronegative groups like

NO2 [69–71]. This idea of ‘activation’ of the CH group by neighboring groups found

contemporary support from crystal structures [72–74], including a comprehensive survey

of 113 such systems [75]. Meanwhile, NMR chemical shift measurements were detecting

a rapidly growing number of CH· · ·X interactions in a range of different systems [76–78].

On the biological front, the evidence of CH· · ·O interactions in large biomolecules

accelerated in the 1980s. A survey of 32 neutron diffraction structures of amino acid

crystals [79] yielded convincing evidence for these interactions, most notably involving

the CaH group of amino acids. A genuine structural role was attributed to these

interactions in determining molecular packing and conformation [80], as for example in

the Met-Phe dipeptide [81] where they lead to parallel (vs. antiparallel) b-sheet structure.
Nucleic acids, too, were observed to make use of these interactions [82,83].

29.2.3 1990s: proliferation and diversification

Theoretical investigations of these weak H-bonds greatly intensified in the ensuing years.

Indeed, one can visualize the growing interest in these systems via Fig. 29.1 which

represents the number of papers published each year that addressed some aspect of

CH· · ·X interactions making use of theoretical methods. (This list is not the result of an

exhaustive search but reflects the author’s own compilation of papers of which he is

aware.) One can see a background level of perhaps 3–10 papers annually through the

early 1990s, but this number increased to the 17–24 range at the end of that decade. It

is interesting to observe a rapid acceleration in 2001 and 2002, up to 39 papers in the

latter year.

There was extended consideration of unsubstituted methane as a proton donor

[84–92], but all such interactions were found to be quite weak regardless of the proton

acceptor, unless of course the acceptor is anionic [93,94]. Further confirmation was

established for the notion that the replacement of at least one H atom of CH4 by a halogen

was sufficient to yield an interaction strong enough to be characterized as aH-bond [95,96],

and that the interaction strengthened with a growing number of such replacements

[97–99]. It was reiterated that the CH might be activated by some other neighboring
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electronegative group [100–104], although interpretation of the data was commonly

clouded by the fact that the CH· · ·O component of interest was secondary to a stronger

interaction. This sort of relationship attained a quantitative linear correlation between

acidity, interaction energy, and H-bond length [105,106]. Other studies reaffirmed the

growing strength of the interaction as the hybridization of the C atom was modified [107],

and there were indications that the aryl CH group might act as a proton donor [108,109].

The growing number of crystal determinations facilitated more definitive and

quantitative structural information about these weak interactions. Consideration of a

large group of alkenes and alkynes affirmed a strong tendency for CH· · ·O linearity [110],

and yielded average H-bond lengths of R(C· · ·O) ¼ 3.46 Å for alkynes and 3.64 Å for

alkenes [111,112], ideas that were further supported by a series of matrix studies and

spectroscopic measurements [113–116], as well as the later determination of additional

structures [110]. The latter work and others [117] noted that shorter contacts are associated

with the more acidic donors. Other workers concluded that the nature of the proton

acceptor played less of a role in terms of H-bond geometry than does the donor [118], and

offered support to the suggestion that aryl CH groups can participate in H-bonds as well

[119–126], as can CH groups that appear in other rings such as cyclopropane and

cyclopropene [127], cyclohexane [128], cubyl groups [129], or those in carboranes [130].

Mascal’s [131] statistical analysis of a large number of crystals provided 965 examples of

the CH· · ·N H-bond and led him to conclude that it is a common occurrence. A 1997 paper

summarized some of the findings to that point [132], and concluded that CH· · ·O are

“important as secondary interactions and in many instances even play dominant roles in

determining crystal packing and molecular conformation, in molecular recognition
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Fig. 29.1. Numbers of peer-reviewed papers published in each year, that apply quantum chemical methods to an

inquiry into the issue of CH· · ·X H-bonding.
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processes, in the stabilization of inclusion complexes and in the stability and possibly even

in the activity of biological macromolecules”. Steiner went on to suggest that “a large

volume of quantum chemical calculations is required to obtain a broad picture of

interaction energies under various conditions”.

Meanwhile, the evidence for the presence of these weak H-bonds in biologically

important molecules became progressively more overwhelming. Analysis of the

structures of 590 oxohydrocarbons [133] identified numerous O· · ·H distances less than

2.7 Å, some as short as 2.3 Å. A survey based on neutron diffraction of 32 zwitterionic

amino acids indicated numerous CH· · ·OyC interactions, with r(H· · ·O) between 2.35 and

2.66 Å [8]. Sixteen high-precision neutron diffraction structures of a-amino acids [134]
successfully correlated r(CH) with the H-bond length, and concluded that CaH

participates in short CH· · ·O interactions. CaH· · ·O H-bonds were identified as well in

L-prolyl-L-leucine monohydrate [135] and in the collagen triple helix [136]. These

interactions appear to be widespread in b-sheets as well [137]. Another study of protein
structures solved at the time [138] provided strong evidence that a large percentage of

short CH· · ·OyC contacts are cohesive, and that many of these were connected with the

CaH of peptides, and went so far as to postulate that “CH· · ·O may be ubiquitous

in macromolecular structures”. Nucleic acids were also associated with many such

interactions [139–147] that also played a role in the binding of drugs [148,149]. An

analysis of 26 carbohydrate crystals [150] counted 22% of H atoms that are engaged in

CH· · ·O contacts with r(H· · ·O) , 2.5 Å. Another survey found that 93% of CH groups

are within 3 Å of a nearby O atom, implying the presence of a stabilizing interaction [145].

29.3 A SURPRISING OBSERVATION

Over the years a set of features had come to be accepted as common to H-bonds, a

fingerprint of sorts. Among these standard aspects of a X–H· · ·Y H-bond was the red shift

of the X–H stretching frequency, denoting a weakening of this covalent bond within the

proton donor molecule that arises upon formation of the H-bond. In addition to the shift

toward lower frequencies, this stretching band was typically accompanied by an

intensification and broadening. Nonetheless, even some of the earliest indications of the

ability of the CH group to act as a proton donor also yielded a surprising finding that

the C–H stretching frequency was shifting in the opposite direction, to the blue. Some of

the first such observations [151–154] dealt with aldehydes, but there were a number of

others as well [64,68]. On the other hand, there was little consistency to this trend, as a

number of other CH· · ·O H-bonds seemed to shift in the more traditional, red, direction

[27,47,48,65,155]. There were some attempts to rationalize this contrary behavior.

Forbes, for example, proposed that steric crowding might be the cause [156] as did

Sammes and Harlow [46]. There were on the other hand other observations of a blue shift

that could not be explained on this basis [78]. Nonetheless, the occasional blue shift had

been relegated to categorization as an odd anomaly that appeared from time to time, but

did not warrant a detailed analysis.

It was in the mid-1990s that the continued recurrence of this blue shift became too

pressing to ignore any longer. Adcock and Zhang [128], referring to this contrary
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behavior as the ‘Pinchas Effect’ in deference to the first reference to it [151], mused as to

whether their own observation of a blue shift might be caused by large bends in the

CH· · ·O alignment, or whether some sort of electric field effect might be operative. In

addition, theoretical calculations had begun to demonstrate that the blue shift that occurs

in the C–H stretching frequency [157–159] is connected with a contraction in the

equilibrium bond length, again contrary to the stretch that had been found typical of

conventional H-bonds [91,160–162].

A contemporary paper [163] initiated the process of analyzing for the source of the

contraction. While they did not provide an answer, Giribet et al. began a process of

elimination, offering their belief that the shift could not be attributed to the electric field

of the acceptor molecule. Barnes and coworkers [164] combined their IR measurements

of haloform blue-shifting with semiempirical calculations and proposed the cause might

be a repulsion between the acceptor atom and the halogens, which would enlarge the

relevant angle, and thereby rehybridize the C atom. The ensuing greater s-character in the

C–H bond was thought to strengthen it, causing it to contract and shift its stretch to

higher frequency. Indeed, these early themes, involving electric fields and rehybridiza-

tion, recur later in more modern analyses (vide infra).

The issue of these H-bonds that shifted to the blue gained increasing import around 1998

with the publication of a series of papers by Hobza and coworkers. It was pointed out first

[165] that HCN shifts to the red (and rCH elongates) when donating a proton to thep cloud
of the benzene molecule, whereas both CH4 and CHCl3 shift to the blue and shorten their

CH bond. This group christened the latter set as ‘anti-H-bonds’ due to their supposed

opposite behavior to the red-shifting classical H-bonds. Focusing on the CHCl3
interactions, the blue shift/bond contractionwas at first attributed to dispersion phenomena

[166]. Continued work in this direction led to expansion of the so-called anti-H-bond

concept to nonaromatic systems, as for example the pairing of CHF3 with ethylene oxide

[167]. The authors at this point reversed their earlier claim that the blue shift was dispersion

related, as they observed very similar results even when correlation was ignored. They

instead proposed that the bond compressionmight be due to electrostatic interactions, since

the molecular dipole moment of CHF3 increased when the CH bond was shortened.

A contemporary calculation [168] verified the importance of electrostatics in this complex

but argued that this interaction was indeed a true H-bond based on the topology of the

electron density. This conclusion confirmed Novoa et al. [169] who claimed that even

the weak interaction between CH4 and formaldehyde constitutes a H-bond, based again on

the properties of the electron density and its bond critical points. Similar treatments further

buttressed this conclusion for other donor–acceptor combinations [170,171]. Finally, a

combination of ab initio calculations and statistical analysis of crystal structures [172]

suggested that while the CH· · ·O interaction polarizes its partner proton acceptor molecule

less than would a traditional OH donor, one should nonetheless categorize both as H-bonds.

29.3.1 Status at the end of the 20th century

Thus, it was that after some 60 years from the earliest suggestions of a possible CH· · ·O

H-bond, much had been learned, but there remained some pressing questions. Quite
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a substantial amount of structural data had accumulated from crystal refinements that

were suggestive of H-bond geometries. While much of the earlier structural work had

been concerned with small molecules, similar sorts of geometrical information was

rapidly accumulating for much larger, biological macromolecular systems as well.

However, this structural data, despite its volume, was largely mute as to the question of

whether the CH donor group was truly attracted toward the acceptor. There was always

the possibility that the two groups were commonly forced into proximity to one another

by the myriad of other structural restraints of the system, particularly in the larger, more

complex biological systems. Of course, this idea was certainly becoming increasingly

more remote, given the very large number of such interactions, coupled with the findings

of bimolecular interactions in the gas phase and in inert matrices.

From as far back as the early 1970s, quantum chemistry had begun to contribute to the

question. Although not quantitatively reliable, these early calculations provided more and

progressively stronger indications that the CH donor and O acceptor groups do in fact

attract one another. As time wore on, and calculations became more rigorous, correlations

were developed between the strength of the interaction, the length of the H-bond, and the

acidity of the donor, based on the number of electronegative groups surrounding it. The

calculations also confirmed structural indications that the hybridization of the donor C

atom is an important factor in the strength of the H-bond.

Other, and perhaps equally compelling, evidence for the presence of these weak

H-bonds had come from spectroscopic data, most notably vibrational and NMR. Indeed,

it was the former sort of spectral information that had led to the surprising observation of

the shift of the C–H stretching vibration in a direction opposite to that of O–H and N–H

donors, which had become a virtual trademark of the H-bond. Although dismissed in its

earliest manifestations, the increasing frequency of observations of such blue shifts could

no longer be ignored. This idea gained further import because empirical correlations

had been developed between the degree of red shift on one hand, and H-bond length and

energy on the other [173]; how might blue shifts affect this validity of such correlations?

Ab initio calculations had made some progress on addressing the issue, first by

connecting these blue shifts with a small contraction of the pertinent CH bond length. But

the underlying question as to why these interactions undergo a blue shift remained a

mystery. There had been a number of proposals, including mutual repulsion,

rehybridization, dispersion, and electrostatic phenomena, but these represented unproven

hypotheses. Perhaps more fundamentally, there remained the question as to whether the

CH· · ·O interaction is in fact a genuine H-bond, or represents some intrinsically different

and distinct sort of interaction.

29.4 THE 21ST CENTURY

It was at about this time that our own research group became involved in this issue. We

hoped to first address the question as to whether a CH· · ·O interaction constituted a true

H-bond. In order to accomplish this task, we planned to make use of the quantum

chemical methods that had become progressively more available to researchers in

the years leading up to the end of the 20th century. Calculations had established
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a ‘fingerprint’ of sorts for a H-bond, one that went beyond the sorts of information

available from experiment. In other words, while experimental methods of structure

determination had led to a picture of preferred geometry for a AH· · ·B H-bond, one in

which the u(AH· · ·B) angle tends toward 1808, and the R(A· · ·B) distance is perhaps
2.9 Å, calculations were able to go beyond this single point, and determine how quickly

the stability of the complex is eroded when the geometry deviates from this optimum.

Spectroscopic data had shown how formation of a H-bond might alter the characteristics

of one or two bands in the IR spectrum, but calculations had been able to establish the

effect on a larger group of vibrational bands, and had been able to pinpoint precisely what

atomic displacements each correspond to.

In addition to simply amplifying on experimental observations, quantum chemistry

had been able to consider aspects of a H-bond which were simply unavailable to

experiment. For example, the determination of the actual energetics of H-bonding had

been notoriously difficult to pin down in an in vacuo setting. Quantum calculations were

well suited to evaluate the energetics of this process. From a deeper standpoint, means

had been devised to dissect the binding energy into various components, e.g. electrostatic

attraction and steric repulsion. No less important, quantum calculations had been shown

able to examine the perturbations imposed on the electron cloud of each subunit as the

H-bond is formed.

29.4.1 H-bond: to be or not to be?

In an attempt to determine which aspects of the fingerprint of a conventional H-bond are

satisfied by a CH· · ·O interaction, our group devised a set of complexes that varied in a

systematic manner from extremely weakly bound to others that are comparable to a

traditional H-bond [174]. As proton donors, we considered the set of fluorinated

methanes. CH4 itself is of course a very weak acid, and its interaction with a base is

expected to be only marginally binding. But as each H of methane is changed to F, one by

one, all the way up to CF3H, the acidity increases as does the molecule’s likely ability to

contribute a bridging H to a H-bond. The proton acceptors all contained an oxygen atom,

but this O was considered in both a hydroxyl environment, as in HOH and CH3OH, and as

a carbonyl in H2CO. Altogether, the study encompassed the 12 different complexes

involving each of four different proton donor molecules with three different acceptors. All

results were compared to data computed for the OH· · ·O H-bond in the water dimer, as

the paradigm of classical H-bonding.

Before embarking on a detailed comparison, it was first necessary to establish the level

of theory necessary to achieve reliable results. Table 29.1 illustrates the binding energies

computed for each of the three different proton acceptor molecules with CH4 as proton

donor. The results indicate first that the energetics are fairly insensitive to basis set.

Whether SCF or MP2, the binding energies change very little from one row to the next.

Correlation does appear to be important as the values in the lower section of data are

considerably higher than those in the SCF section. On the other hand, the precise means

of incorporating correlation is much less important, as MP2, MP4, CCSD(T), and QCISD
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all yield similar results. It might be noted finally that the hydroxyl O acceptors are not

quite as strong as the carbonyl O in H2CO, although the differences are not dramatic.

These same trends are in evidence when a common acceptor molecule, H2O, is paired

with a series of progressively stronger proton donors, as may be noted in Table 29.2.

Again, basis set sensitivity is low, both at the SCF and correlated levels. And once more

the precise means of including electron correlation is unimportant. It is noted

parenthetically that DFT computation of the binding energetics provides surprisingly

accurate results, in both Tables 29.1 and 29.2. The ability of fluorosubstitution to enhance

Table 29.1 Binding energies (2DE; in kcal/mol) computed for various acceptor molecules, all with CH4
as proton donor; data corrected by counterpoise procedure

Method Basis set OH2 CH3OH H2CO

SCF 6-31 þ Gp 0.21 0.20 0.15

6-31 þ Gpp 0.21 0.22 0.16

6-31þþGpp 0.21 0.22 0.16

6-311 þ Gpp 0.20 0.22 0.17

aug-cc-pVDZ 0.16 0.16 0.14

MP2 6-31 þ Gp 0.24 0.37 0.35

6-31 þ Gpp 0.29 0.43 0.37

6-31þþGpp 0.30 0.43 0.37

6-311 þ Gpp 0.35 0.50 0.38

aug-cc-pVDZ 0.43 0.63 0.46

CCSD(T) 6-31 þ Gpp 0.29 – 0.35

MP4 6-31 þ Gpp 0.29 0.43 0.37

QCISD 6-31 þ Gpp 0.23 0.34 0.31

B3LYP 6-31 þ Gpp 0.25 0.29 0.13

6-311 þ Gpp 0.26 0.30 0.14

Table 29.2 Binding energies (2DE; in kcal/mol) for various donor molecules, all with OH2 as acceptor;
data corrected by counterpoise procedure

Method Basis set H3CH FH2CH F2HCH HOH

SCF 6-31 þ Gp 0.21 1.40 2.23 4.17

6-31 þ Gpp 0.21 1.14 2.28 4.21

6-31þþGpp 0.21 1.15 2.27 4.20

6-311 þ Gpp 0.20 1.11 2.23 4.10

aug-cc-pVDZ 0.16 0.89 1.85 3.53

MP2 6-31 þ Gp 0.24 1.33 2.57 4.61

6-31 þ Gpp 0.29 1.34 2.53 4.51

6-31þþGpp 0.30 1.34 2.53 4.56

6-311 þ Gpp 0.35 1.28 2.34 4.30

aug-cc-pVDZ 0.43 1.23 2.24 4.11

CCSD(T) 6-31 þ Gpp 0.29 1.32 2.50 4.36

MP4 6-31 þ Gpp 0.29 1.31 2.47 4.34

QCISD 6-31 þ Gpp 0.23 1.26 2.45 4.25

B3LYP 6-31 þ Gpp 0.25 1.32 2.45 4.80

6-311 þ Gpp 0.26 1.28 2.48 4.77
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the proton-donating ability of the donor molecule is obvious in Table 29.2. Each

replacement of a H atom by F increases the binding energy by roughly 1 kcal/mol.

This quantity is rapidly approaching the value for the water dimer, in the final column of

Table 29.2, which is nearly reached when F3CH is bound to water.

Geometry optimizations of each complex revealed a simple correlation between the

strength of each H-bond and its length. That is, each fluorosubstitution leads not only to

an approximate 1 kcal/mol strengthening, but also to a contraction of R(C· · ·O). For

example, at the MP2/6-311 þ Gpp level, the equilibrium values of R(C· · ·O) for H3CH,

FH2CH, and F2HCH are 3.649, 3.511, and 3.379 Å, respectively, amounting to an

approximate contraction of 0.13 Å for each F atom.

There are a number of other facets of a H-bond that are amenable to computation as

well. For example, it is typically observed that formation of a H-bond leads to the transfer

of a certain amount of electron density from the proton acceptor molecule to the donor.

The first row of Table 29.3 illustrates the progressive increase of this quantity, from 4 me

for H3CH· · ·OH2, up to 11 me for F3CH· · ·OH2, rapidly approaching the value of 13 me

for the water dimer. (Charges were computed by a natural bond orbital analysis

[175,176], uncorrected for basis set superposition error.) Associated with this transfer of

electron density is an enhancement of the dipole moment of the complex. The second

row of Table 29.3 lists the increase in dipole moment (along the CH· · ·O axis), as

compared to the moment that would result from simple vector addition of the two isolated

monomers. Reading across from left to right, one can again see the steady progression

of increasing values as each H is replaced by F, approaching the value in HOH· · ·OH2.

Another typical feature of conventional H-bonds is the loss of electron density from the

bridging H nucleus, making this hydrogen more positively charged. The third row of

Table 29.3 reports the magnitude of this charge loss, varying between 23 and 32 me

for the four CH· · ·O H-bonds. This property is somewhat larger than in the conventional

H-bond of the water dimer, where the charge loss on the bridging hydrogen is 19 me. The

proton donor and acceptor atoms (C and O, respectively) both undergo increases in

electron density upon H-bond formation, resulting in greater negative charge. The next

two rows of Table 29.3 document these enhanced charges, and once more obey the same

Table 29.3 Electronic propertiesa of different donor molecules when engaged in H-bond with OH2 as an

acceptor

H3CH FH2CH F2HCH F3CH HOH

Charge transfer (me) 4 6 8 11 13

Dmz
b (D) 0.217 0.277 0.336 0.405 0.409

DqH (me) 23 26 29 32 19

DqC (me) 27 29 213 220 224

DqO (me) 22 25 29 212 218

DsH
c (ppm) 21.12 21.15 21.18 – 22.60

aNatural population analysis [175,176].
bDipole moment of complex, along XH· · ·O axis, relative to vector sum of two unperturbed monomers, in same orientation as

in complex.
cIsotropic NMR shift, at MP2/GIAO level.
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trends of increasing magnitude with each progressive F-substitution, approaching the

water dimer case. In summary, the electron density shifts in the CH· · ·O systems all show

progressive increases that parallel the acidity of the donor, and approach what is observed

in the traditional H-bond of the water dimer.

The final row of Table 29.3 lists the change in the isotropic NMR chemical shift

calculated for the bridging proton as a result of H-bond formation [177]. The values for

all CH· · ·O H-bonds are negative, consistent with the same sign for the OH· · ·O bond,

another indicator of the similarity between these different interactions.

It is commonly accepted that the H-bond is composed largely of electrostatic

interactions, with smaller contributions from factors that involve redistribution of

electrons within the subunits, such as polarization. One way of assessing this assertion is

via an energy decomposition schemewhich is possible via quantum chemistry. There are a

number of means of performing such a decomposition; one of the oldest and most reliable

schemes was derived by Morokuma and coworkers [178,179]. The electrostatic (ES) and

exchange repulsion (EX) result from the interactions of the ‘frozen’ charge clouds of the

two subunits, prior to any redistribution that results from amutual interaction. Polarization

(POL) and charge transfer (CT) energies are a consequence of the subsequent electronic

redistribution, which allows density to move from one section of the complex to another.

The latter terms are computed at the SCF level; correlation contributions can be gathered

into a CORR term which includes dispersion as its largest segment.

The various contributions are collected in Table 29.4 where it may be noted that the

negative signs of ES, POL, CT, and CORR all represent attractive interactions. It is the

exchange energy, with its positive sign, which keeps the two molecules from collapsing

together any further. Note that these sign patterns are common to all systems in Table 29.4,

whether CH· · ·O or OH· · ·O. As observed repeatedly above, one sees again the same

progressivemagnification of each term as theH atoms ofmethane are changed one by one to

F. And again the strengthening of the CH· · ·O bond leads ultimately to values quantitatively

similar to those observed in the conventional OH· · ·O bond of the water dimer.

29.4.2 Underlying reasons for blue shift

Up to this point, all properties of the CH· · ·O bonds have been similar to those computed

for OH· · ·O, even if smaller in magnitude for these weaker bonds. We now turn to a set of

Table 29.4 Morokuma decomposition contributions to binding energies of different donor molecules

when engaged in H-bond with OH2 as an acceptor

H3CH FH2CH F2HCH F3CH HOH

ES 20.42 21.96 23.83 27.06 27.58

EX 0.38 1.17 2.06 4.14 4.24

POL 20.13 20.24 20.36 20.69 20.71

CT 20.11 20.32 20.53 20.97 20.93

CORR 20.08 20.20 20.25 20.25 20.30
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properties which violate this principle. The first row of Table 29.5 illustrates that the CH

bonds of the proton donors contract when engaged in a H-bond with the water molecule.

This behavior contrasts with the elongation of the OH bond of a water donor. Associated

with these changes are the shifts to higher (lower) frequency of the stretching vibrations

of the corresponding CH (OH) bonds. Moreover, as indicated in the last row of

Table 29.5, the intensities of the former CH bonds are reduced ðI=I0 , 1Þ while that of
OH is magnified. We are thus confronted with a set of properties, all related to the XH

bond of the donor molecule, where the behavior of the CH· · ·O bond seems contrary to

that of the conventional H-bond. It was indeed this ‘antisocial’ behavior that spurred

some to classify this system as an ‘anti-H-bond’, so it behooves us to study it in some

detail, particularly as all the other features of this sort of system fall so nicely into line

with traditional H-bonds.

Our group’s first attempt [174] to examine the underlying reasons for this contrary

behavior made use once more of the Morokuma energy partitioning protocol. The

CH· · ·O system of F2HCH· · ·OH2 was compared directly with HOH· · ·OH2. For each

system, the effect of stretching the bridging H a small distance from its equilibrium

position, along the XH· · ·O line was computed. The results are presented in Table 29.6

where some strong similarities are readily apparent. For either system, the electrostatic

terms are negative, indicating that this component favors the stretching of the H atom

away from the donor atom, whether C or O. Likewise, the polarization, charge transfer

and correlation energies, all tend to push the H away from the donor atom in both

systems, albeit not as strongly as does ES. Working in the opposite direction, the

exchange energy disfavors this stretching motion in CH· · ·O and OH· · ·O, as indicated by

the positive signs for EX in Table 29.6, as does the MIX term (which ‘mixes’ together all

contributions not neatly categorized as ES, EX, POL, or CT in the Morokuma scheme).

So the behavior of the CH· · ·O bond is identical to that of the OH· · ·O interaction in

terms of the tendencies of each and every component. Why then does the CH bond

contract whereas OH elongates upon formation of these bonds? The answer rests in the

quantitative aspects of each component. For example, the ES term is three times greater

for the OH· · ·O system, while the exchange term which works in opposition is less than

twice as large. In summary, when all terms are added together, the total force (last row of

Table 29.6) is negative for HOH· · ·OH2 but positive for F2HCH· · ·OH2. It is for this

reason that the former system tends to stretch its OH bond whereas the CH bond in the

latter contracts. In other words, the fact that the CH bond contracts while the OH bond

elongates does not represent any fundamental difference between the two types of

interactions, but reflects merely the far less profound result that the forces pushing toward

Table 29.5 Changes in properties of CH(OH) bond of proton donor molecules when engaged in H-bond

with OH2 as an acceptor

H3CH FH2CH F2HCH F3CH HOH

DrXH (mÅ) 20.5 21.7 22.7 22.3 þ5.2
DnXH (cm

21) 10 22 26 42 231

I=I0 0.07 0.09 0.16 0.70 1.89
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contraction in one case are slightly larger than the elongation forces, while the opposite is

true in the other case.

Our work thus found that the CH· · ·O H-bond fits the classical fingerprint of

conventional H-bonds in a large number of ways. The energetics of the interaction,

and their trends as the proton donor is rendered more acidic, are quite classical, as are

the behavior of the intermolecular separation, and the shifts of electron density that

accompany formation of the bond, not only on a molecular level, but with respect to

individual atoms. The NMR chemical shifts of the bridging H are similar for CH· · ·O and

OH· · ·O, as are the magnitudes of the individual components to the total interaction

energy. These relationships were confirmed by a contemporary paper [170] that extended

the list of similarities between CH· · ·O and conventional H-bonds to computed electron

densities at key locations in the complexes. Where the two sorts of interactions differ is in

the question of whether the covalent XH bond contracts or elongates when the H-bond

occurs, with accompanying changes in stretching frequency and intensity. However,

the calculations indicated this distinction does not reflect any profound differences, but

results merely from certain quantitative differences that result in tipping the already

delicate balance from one direction to the other.

The similarity between CH· · ·O and OH· · ·O H-bonds is further reinforced when one

recognizes that it is only a subset of CH· · ·O bonds that shift to the blue. It had long been

recognized that sp-hybridized alkynic CH bonds, as in HCN or HCCH, shift to the red, as

do conventional H-bonds [55–57,114]. Most of the CH· · ·O systems that were noted to

shift to the blue tended to contain sp3-hybridized carbon. These patterns were reproduced

by calculations [107,171,180–183]. Our own contribution was to first verify this

distinction between sp and sp3 systems, and then to study relations between the magnitude

of the shift (either red or blue) and other properties such as H-bond energetics,

intermolecular separation, and NMR spectral shifts [184]. We also considered the inter-

mediate sp2 situation, and found that such CH· · ·O bonds undergo a very small change in

either the C–H bond length, or its stretching frequency.What changes are observed can be

in either direction, but again, are quite small. In conclusion, one can make the following

predictions about the CH· · ·O bonds: alkynes will shift to the red, alkanes to the blue,

and alkenes will undergo very little shift. This conclusion has been verified by other

calculations [185–191].

Table 29.6 Changes in Morokuma decomposition terms (kcal/mol) when

bridging proton is stretched 0.01 Å away from equilibrium position toward

proton acceptor

F2HCH· · ·OH2 HOH· · ·OH2

ES 20.07 20.20

EX þ0.13 þ0.22
POL 20.01 20.03

CT 20.03 20.07

MIX þ0.01 þ0.02
CORR 20.02 20.02

Total þ0.01 20.08
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29.4.3 Other approaches—similar findings

Our group’s analysis based upon energy decomposition was of course not the only means

of assessing the underlying reason for the differing direction of shift of the XH vibrational

frequency. Concurrent with a study which found grounds to assert that the direction of

shift has at least part of its origin in electrostatic effects [192], another set of computations

[193] arrived at a related conclusion. More precisely, Masunov et al. were able to

reproduce contractions or elongations of CH bonds that occur in certain molecules when

they act as proton donors in a complex, simply by placing each molecule in an external

electric field, even in the absence of the acceptor molecule. This work was admittedly

limited to only three CH donors but was nonetheless intriguing in that it was suggestive

that the direction of shift was an intrinsic property of the donor molecule, in and of itself,

independent of the precise nature of the acceptor molecule. A second important

conclusion had to do with a limit on CH bond contraction. It was predicted that the

contraction of the CH bond in an alkane like methane was limited; this trend was

predicted to reverse itself beyond a certain field strength, such that the CH bond would

begin to elongate.

The attribution of the stretching or shortening of the CH bond to the intrinsic properties

of the donor molecule itself confirmed our own earlier contention [174] that, opposite to

the behavior of most proton donor molecules where the dipole moment is enhanced when

the OH bond is elongated, the dipole of alkane donors tends to increase when the CH

bond is shortened. This trend is consistent with the observed CH bond contraction in that

the resulting increased dipole moment can then interact more strongly with the field

generated by the acceptor molecule. This same idea was further developed by

Hermansson [194] who associated the direction of spectroscopic shift with the sign of

dm=drXH: This author went further and discussed the exchange overlap effects. The

analysis supported the earlier contention by Masunov et al. [193] that blue-shifting

molecules will in fact shift to the red in the presence of a sufficiently strong electric field,

which might be generated by an anionic proton acceptor.

Pejov and Hermansson [195] later delved somewhat more deeply and attributed the

blue shifts of the CF3H proton donor, and its negative value of dm=drCH; to the

exchange repulsion segment of the total interaction energy, claiming that the other terms

in the Morokuma decomposition, i.e. electrostatic and polarization effects, tend toward

red shifts. This result is in consonance with our earlier decomposition analysis which

indicated that it is only the exchange energy (along with MIX) which pulls the bridging H

atom toward the donor atom, with the other components tending toward a longer X–H

bond, and hence toward a red shift (see Table 29.6).

Very similar conclusions were drawn by Qian and Krimm [196,197] who deduced

that the direction of shift of the CH vibration in formic acid dimers was due entirely to the

response of the donor molecule to an external electric field via its dipole derivative

dm=dE (they considered both the permanent and induced dipole derivatives). They were

also able to derive the behavior of the band intensities from these same first principles.

These authors showed that these conclusions were not limited to highly idealized uniform

electric fields: extension to nonuniform electric fields, including also exchange repulsion,

led to similar conclusions. The ability of an external electric field to substitute for the full
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proton acceptor molecule was further buttressed by a combination of experimental and

theoretical work by Delanoye et al. [198,199] who successfully reproduced the direction

of shift in a number of fluorochloromethanes. These authors went so far as to reproduce

trends in intensity via the electric field. To be fair, however, not all calculations concur

on the importance of the electric field. A study of formaldehyde dimers [200] concluded

that this field plays an unimportant role in CH bond contraction.

Li et al. [201] later arrived at a nearly identical conclusion as did we earlier, that both

blue and red-shifting H-bonds are governed by the same interactions, and that their

different directions of shift lie only in the proportions of each. Their work provided a

caution to others who might wish to study such interactions via semiempirical

approaches, since AM1 and PM3 did not predict blue shifts at all; a similar caveat

applies to minimal basis sets like STO-3G. This set of computations expanded the range

of interactions that are predicted to shift to the blue beyond just CH· · ·X, incorporating

certain cases of NH· · ·O, SiH· · ·O, NH· · ·F, PH· · ·N, and PH· · ·O. In terms of identifying

the ‘culprit’, their calculations confirmed our own findings that electron correlation and

its related phenomena, such as dispersion, are not responsible for the direction of shift,

nor is it a result of charge transfer phenomena or HOMO–LUMO interactions. They

ruled out a direct correlation between the magnitude of the frequency shift and the

amount of charge transferred from one molecule to the other. The electron density

redistributions in the full complexes are essentially indistinguishable from those resulting

from placement of a simple dipole in the vicinity of the donor molecule, although the

authors did caution that the direction of shift is not solely the province of electrostatic

interactions. Their calculations supported the idea that the direction of frequency shift is

largely determined by the nature of the proton donor, not the acceptor molecule,

confirming other work.

Adopting an alternative perspective on the situation, Alabugin et al. [202,203]

analyzed the complexes in terms of two competing effects. On one hand, the transfer of

density from a lone pair of the proton acceptor molecule to the sp antibonding orbital of

the CH bond (nY . sCH
p ), characterized as a hyperconjugation effect, weakens the CH

bond, acting to lengthen it. Factors which rehybridize the C orbital responsible for CH

bonding via an increase in its s-character tend to strengthen and shorten this bond. Like

most of the other means of addressing the problem, this analysis too yielded the similar

conclusion that the direction of shift is a result of a delicate balance between competing

effects, and these authors likewise concluded that “there is no fundamental difference

between classic and improper H-bonding” [202].

29.4.4 Another interpretation

In contrast to the view enunciated above, that red and blue-shifting systems are

fundamentally rather similar, an alternative interpretation had been evolving, particularly

amongst a group of researchers in Prague. A series of papers [204–209] opined that there

is a physically important difference as follows. In either sort of H-bond, there is a certain

amount of electron density that is transferred from the proton acceptor molecule to the

donor. In conventional H-bonds of the OH· · ·O variety, the bulk of this density appears in
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the sp antibonding orbital of the O–H bond, accounting for its weakening and

lengthening. In the so-called ‘improper blue-shifting’ H-bonds that might be typified by

CF3H as proton donor, this density bypasses the C–H region of the donor, and makes its

way to the lone pairs of the peripheral F atoms. This increased lone pair density

supposedly causes a stretch of the C–F bonds, which in turn forces the C–H bond to

contract, and thereby shifts its frequency to the blue.

These ideas were, however, based largely upon partitioning the total electron density

into localized orbitals, viz. natural bond orbitals. The changes in population used to

justify their conclusions were fairly small, and potentially questionable, particularly since

different means of localizing the total electron density leave different sort of ‘tails’, which

have implications for numerical data. Indeed, a set of calculations by Kryachko and

Zeegers-Huyskens [210] noted a situation where a CH bond was shortened, but at

the same time the sCH
p population rose, an apparent contradiction to the principles laid out

by the Prague group. More importantly, these same authors later stressed that the

sCH
p population increases for all H-bonds, blue-shifting as well as red [211], so cannot be

used as a discriminator. This contradiction was reinforced by Kolandaivel and Nirmala

[212] who showed that contraction of the CH bond can take place despite the buildup of

additional charge in the sCH
p orbital. This same work, involving both red and blue-shifting

H-bonds, observed that the presumed buildup of charge on the peripheral sections of the

proton donor molecule is not a general phenomenon at all, but occurs only in certain

cases. Another study of natural bond orbitals [213] identified an important complicating

factor, in that density can be dumped into the sCH
p orbital not only from the other

molecule, but can arise also from internal shifts wholly within the proton donor molecule.

These two sources of density can compete with one another, rendering this sort of

interpretation oversimplistic.

In an effort to clarify this situation, our group performed a set of calculations designed

to answer some simple questions [214]. While consideration of small changes in certain

sorts of localized molecular orbitals might lend qualified support for one interpretation or

another, it is far less ambiguous to consider the total electron density, with no partitioning

into particular orbitals. Are shifts of the total density distinct and characteristic for red

and blue-shifting H-bonds? Fig. 29.2a illustrates the shifts of electron density undergone

by the water dimer as a result of the two molecules coming together to form the H-bonded

complex. Blue regions designate buildups of density, and depletions are signified in red.

Some principal features of this diagram are the loss of density around the bridging H atom

and the gain in the area to the left of the proton-accepting O atom. Importantly, the area

around the covalent O–H bond, to the left of the bridging hydrogen, is blue, consistent

with a buildup of density.

Turning next to a CH· · ·O interaction, Fig. 29.2b illustrates the density shifts in the

HCyCH· · ·OH2 complex. Like the traditional OH· · ·O H-bond in the water dimer, the

CH· · ·O bond involving this sp-hybridized alkyne also shifts to the red. It is hence not

surprising that the patterns in Fig. 29.2b look very similar to those in Fig. 29.2a: both

manifest the characteristic red region around the bridging H, the X–H covalent bonding

region is distinctly blue, as is the area to the left of the proton-accepting O atom. All of

these same patterns are common as well to the H3CH· · ·OH2 system depicted in

Fig. 29.2c. It is important to stress, however, that this complex, with its sp3-hybridized C,
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shifts to the blue, not to the red. The similarities in the density shifting patterns in the

three sections of Fig. 29.2 therefore belie the notion that red and blue-shifting H-bonds

are characterized by different types of density shifts.

It had been argued by the Prague group that the density shift differences are related to

the presence of electronegative F atoms on the proton-donating molecule. The requisite

replacements of the peripheral H atoms by F, leading to the FCyCH· · ·OH2 and

Fig. 29.2. Shifts of electron density occurring in (a) water dimer, (b) HCyCH· · ·OH2, and (c) H3CH· · ·OH2, as a

result of formation of the complex. Blue regions denote gain and red regions represent loss. Contour illustrated

corresponds to change by 0.0005 au.
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F3CH· · ·OH2 complexes, are represented by the density shifting patterns in Fig. 29.3a,b,

respectively. Despite these substitutions, the patterns are little changed: loss is observed

around the bridging proton, and gain in both the C–H bond and the region to the left of

the O atom. The diagrams also undercut the proposal that a great deal of density builds up

on the F atoms. There is little to distinguish the buildup on these atoms in Fig. 29.3 as

compared to the original H atoms in Fig. 29.2. Nor is there any evidence that what charge

buildup there is on these F atoms occurs on their lone pairs.

Another aspect of the argument for a fundamentally different blue-shifting bond

contended that the peripheral C–F bonds are stretched by the formation of the H-bond.

While a consideration of geometry changes confirmed such stretches in blue-shifting

H-bonds, these same stretches were observed in red-shifting H-bonds as well, and of

similar magnitudes [214], again arguing against any fundamental difference. In addition,

whereas the elongations of the C–F bonds had been claimed as the root cause of the C–H

bond contraction, our calculations demonstrated the converse as well. That is, a

contraction of the C–H bond length results in elongation of the C–F bond lengths. One

hence cannot argue that one is the cause and the other the effect.

Fig. 29.3. Shifts of electron density occurring in (a) FCyCH· · ·OH2, and (b) F3CH· · ·OH2, as a result of

formation of the complex. Blue regions denote gain and red regions represent loss. Contour illustrated

corresponds to change by 0.0005 au.
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29.5 FUTURE PERSPECTIVES

Why is all of this important? Given the fact that these CH· · ·O interactions tend to be

rather weak, why should we be concerned with them at all? In addition to provoking our

curiosity as scientists about their fundamental nature, and about expanding the limits on

what we call H-bonds, these interactions may be of intense importance in biology.

The 21st century has thoroughly erased any real doubts that CH· · ·O interactions are a

common component of biological systems. As some recent examples, a crystal survey of

125 helix–helix interfaces in 11 membrane proteins found that CH· · ·O contacts favor

parallel right-handed packing of helices [215], supported by later conclusions that

CH· · ·O bonds help to register a-helices and b-strands [216]. These interactions also play
a role in b-turns and sheets in proteins, and novel chain reversal motifs [217–223].
Aravinda et al. [224] go so far as to claim these bonds are not only an important part of the

Schellman motif (an unusual chain reversal at the C-terminus), but that they can also

determine the direction of chain folding. This group believes there is “firm evidence in

support of the emerging view that CH· · ·O interactions may contribute significantly in

energetic terms in determining folded structures”. Jiang and Lai [225] estimated that

these bonds contribute ,17% of the total interaction energy at protein–protein

interfaces, as high as 50% in certain cases and that they are indispensable to forming a

bifurcated H-bond motif between b-strands. These authors maintained that empirical
force fields must be adjusted, as minimization without account of CH· · ·O bonds leads to

error in CyO distances. In addition to structural contributions, NMR evidence points to

CH· · ·O interactions as a part of enzymatic activity [226–228].

These bonds are thought to perhaps provide a driving force for ligand selectivity [229]

as well. Researchers have found what they believe to be compelling evidence for the

existence of CH· · ·O bonds in protein–ligand interactions [229]. Based on crystal data for

200 liganded kinase structures, Pierce et al. [230], suggest that the impact of these

CH· · ·O bonds could be ‘tremendous’ to the field of ligand design; Klaholz and Moras

[229] believe that “CH· · ·O H-bonds may turn out to be the driving force for the

introduction of ligand selectivity”. A crystal study of photosystem I [231] found

numerous CH· · ·O interactions, indeed more than conventional H-bonds, leading Loll

et al. to conjecture that the former play a prominent role in association and orientation,

and that they add stability and increase the rigidity of the system.

Quantum chemistry has begun to delve more deeply into biological aspects of these

weak H-bonds in recent years. Calculations have gone beyond the simplest models and

considered the CH· · ·O bonds that might occur in more realistic biological systems.

Computations of the CH· · ·O bonds of nucleic acid bases [192,232–237] led to estimates

that were surprisingly high at the time. Model interpeptide CH· · ·O interaction energies

fell into the 2–4 kcal/mol range [238–240]. Our own work has suggested that, in

particular, the CH· · ·O interaction involving the CaH of amino acids amounts to some

2.5 kcal/mol in the gas phase, roughly 40% of a conventional H-bond [241]. The H-bonds

that involve the CH donors of aromatic residues run the range of 1–1.3 kcal/mol for Phe

and Tyr, to 2–2.5 kcal/mol for His and Trp [242]. While each such H-bond is clearly

weaker than its traditional OH· · ·O or NH· · ·O counterparts, there are a great number of

CH· · ·O H-bonds which can be present in biological systems such as proteins and nucleic
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acids. In that sense, these individually weaker interactions can collectively play a major

role in our understanding of macromolecular structure. Moreover, the calculations

are providing experimentalists with signposts that would signal the presence of a CH· · ·O

H-bond in a system under study, e.g. NMR or IR shifts.

There are likely two (not mutually exclusive) paths that future quantum chemical

calculations will take to probe this issue more deeply. On one hand, continuing

developments in computer software and hardware will permit quantitatively meaningful

calculations of larger and increasingly more realistic models of biological systems, e.g.

larger ‘pieces’ of the proteins. A second approach will be the transfer of these systems

from an in vacuo environment, to more realistic surroundings, which might include

solvent and/or other segments of the protein. The incorporation of dynamics and

statistical mechanics into the mix would add another very interesting layer of

information. In any case, it seems certain that the next few years will witness a more

thorough and painstaking study of these weak H-bonds, and permit an incorporation of

their effects into our current understanding of biomolecular structure and function.
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200 A. Kovács, A. Szabó, D. Nemcsok and I. Hargittai, J. Phys. Chem. A, 106 (2002) 5671.

201 X. Li, L. Liu and H.B. Schlegel, J. Am. Chem. Soc., 124 (2002) 9639.

202 I.V. Alabugin, M. Manoharan, S. Peabody and F. Weinhold, J. Am. Chem. Soc., 125 (2003) 5973.

203 I.V. Alabugin, M. Manoharan and F.A. Weinhold, J. Phys. Chem. A, 108 (2004) 4720.

204 B. Reimann, K. Buchhold, S. Vaupel, B. Brutschy, Z. Havlas, V. Spirko and P. Hobza, J. Phys. Chem. A,

105 (2001) 5560.

205 P. Hobza and Z. Havlas, Chem. Rev., 100 (2000) 4253.

206 B. van der Veken, W.A. Herrebout, R. Szostak, D.N. Shchepkin, Z. Havlas and P. Hobza, J. Am. Chem.

Soc., 123 (2001) 12290.

207 P. Hobza, Phys. Chem. Chem. Phys., 3 (2001) 2555.

208 P. Hobza, Int. J. Quantum Chem., 90 (2002) 1071.

209 P. Hobza and Z. Havlas, Theor. Chem. Acc., 108 (2002) 325.

210 E.S. Kryachko and T. Zeegers-Huyskens, J. Phys. Chem. A, 105 (2001) 7118.

211 E.S. Kryachko and T. Zeegers-Huyskens, J. Phys. Chem. A, 106 (2002) 6832.

212 P. Kolandaivel and V. Nirmala, J. Mol. Struct., 694 (2004) 33.

213 G.L. Sosa, N.M. Peruchena, R.H. Contreras and E.A. Castro, J. Mol. Struct. (THEOCHEM), 577 (2002)

219.

214 S. Scheiner and T. Kar, J. Phys. Chem. A, 106 (2002) 1784.

215 A. Senes, I. Ubarretxena-Belandia and D.M. Engelman, Proc. Natl Acad. Sci. USA, 98 (2001) 9056.

216 S.K. Singh, M.M. Babu and P. Balaram, Proteins Struct. Funct. Genet., 51 (2003) 167.

217 A.K. Thakur and R. Kishore, Biopolymers, 53 (2000) 447.

218 G.G. Fabiola,V.Bobde,L.Damodharan,V. Pattabhi andS.Durani, J. Biomol. Struct.Dyn., 18 (2001) 579.

219 P.W. Baures, A.M. Beatty, M. Dhanasekaran, B.A. Helfrich, W. Perez-Segarra and J. Desper, J. Am.

Chem. Soc., 124 (2002) 11315.

Chapter 29856



220 E.Y. Cheung, E.E. McCabe, K.D.M. Harris, R.L. Johnston, E. Tedesco, K.M.P. Raja and P. Balaram,

Angew. Chem. Int. Ed., 41 (2002) 494.

221 M.M. Babu, S.K. Singh and P. Balaram, J. Mol. Biol., 322 (2002) 871.

222 K.M. Lee, H.-C. Chang, J.-C. Jiang, J.C.C. Chen, H.-E. Kao, S.H. Lin and I.J.B. Lin, J. Am. Chem. Soc.,

125 (2003) 12358.

223 F. Cordier, M. Barfield and S. Grzesiek, J. Am. Chem. Soc., 125 (2003) 15750.

224 S. Aravinda, N. Shamala, A. Bandyopadhyay and P. Balaram, J. Am. Chem. Soc., 125 (2003) 15065.

225 L. Jiang and L. Lai, J. Biol. Chem., 277 (2002) 37732.

226 E.L. Ash, J.L. Sudmeier, R.M. Day, M. Vincent, E.V. Torchilin, K.C. Haddad, E.M. Bradshaw,

D.G. Sanford and W.W. Bachovchin, Proc. Natl Acad. Sci. USA, 97 (2000) 10371.

227 W.W. Bachovchin, Magn. Reson. Chem., 39 (2001) S199.

228 C.A. Olson, Z. Shi and N.R. Kallenbach, J. Am. Chem. Soc., 123 (2001) 6451.

229 B.P. Klaholz and D. Moras, Structure, 10 (2002) 1197.

230 A.C. Pierce, K.L. Sandretto and G.W. Bemis, Proteins Struct. Funct. Genet., 49 (2002) 567.

231 B. Loll, G. Raszewski, W. Saenger and J. Biesiadka, J. Mol. Biol., 328 (2003) 737.

232 M. Kratochvil, O. Engkvist, J. Sponer, P. Jungwirth and P. Hobza, J. Phys. Chem. A, 102 (1998) 6921.

233 P. Hobza and J. Sponer, Chem. Rev., 99 (1999) 3247.

234 D. Barsky, E.T. Kool and M.E. Colvin, J. Biomol. Struct. Dyn., 16 (1999) 1119.

235 P. Hobza, J. Sponer, E. Cubero, M. Orozco and F.J. Luque, J. Phys. Chem. B, 104 (2000) 6286.

236 N.G. Fidanza, F.D. Suvire, G.L. Sosa, R.M. Lobayan, R.D. Enriz and N.M. Peruchena, J. Mol. Struct.

(THEOCHEM), 543 (2001) 185.

237 G. Louit, A. Hocquet and M. Ghomi, Phys. Chem. Chem. Phys., 4 (2002) 3843.

238 R. Vargas, J. Garza, D.A. Dixon and B.P. Hay, J. Am. Chem. Soc., 122 (2000) 4750.

239 R. Vargas, J. Garza, R.A. Friesner, H. Stern, B.P. Hay and D.A. Dixon, J. Phys. Chem. A, 105 (2001)

4963.

240 R. Vargas, J. Garza, B.P. Hay and D.A. Dixon, J. Phys. Chem. A, 106 (2002) 3213.

241 S. Scheiner, T. Kar and Y. Gu, J. Biol. Chem., 276 (2001) 9832.

242 S. Scheiner, T. Kar and J. Pattanayak, J. Am. Chem. Soc., 124 (2002) 13257.

The CH· · ·O hydrogen bond: a historical account 857

References pp. 852–857



CHAPTER 30

Ab initio and DFT calculations on the

Cope rearrangement, a reaction with a

chameleonic transition state

Weston Thatcher Borden

Department of Chemistry, University of Washington, PO Box 351700,
Seattle, WA 98195-1700, USA

Abstract

The contribution of two diradical extremes to the transition structure (TS) for the Cope

rearrangement results in the energy of this structure being calculated to be rather

insensitive to changes in the interallylic bond lengths in it. The variability of the TS with

different ab initio methods made calculating its geometry challenging, and inclusion of

dynamic electron correlation proved essential for obtaining an unbiased potential energy

surface. The variability of the geometry of the TS with radical stabilizing substituents

was shown by B3LYP calculations to be responsible for the cooperative and competitive

effects of phenyl substituents on the rates of Cope rearrangements, which have been

found experimentally. A simple mathematical model, which embodies the chameleonic

nature of the TS and the strong effect of substituents on its geometry, has been developed

and shown to predict quite well the phenyl substituent effects that have been revealed by

these experiments.

30.1 INTRODUCTION

Many experiments and calculations have been performed in order to elucidate the nature

of the transition structure (TS) for the Cope rearrangement [1]. This chapter is devoted to

a review of these studies. Emphasis is placed on how ab initio and density functional

calculations have contributed to the current understanding of the mechanism for this

reaction and the effects of substituents on it.

Three possible chair-like TSs for the degenerate chair Cope rearrangement of

1,5-hexadiene are depicted in Fig. 30.1. If C–C bond breaking were to lag far behind

q 2005 Elsevier B.V. All rights reserved.
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C–C bond making, the TS would resemble cyclohexane-1,4-diyl (A). On the other hand,

if C–C bond breaking were to precede C–C bond making, the TS would resemble two

allyl radicals (C). Finally, if C–C bond breaking and C–C bond making were to occur

synchronously, the six cyclically delocalized electrons in structure Bwould render the TS

‘aromatic’ [2]. The Cope rearrangement is, indeed, a thermally allowed, pericyclic

reaction [3], but the degree of bond making and bond breaking in TS for this reaction has

been hotly debated [1].

A correlation diagram shows that the filled MOs in two weakly interacting allyl

radicals and in cyclohexane-1,4-diyl are correlated with each other [4]. Therefore, these

two structures may both be regarded as resonance contributors to the TS for the Cope

rearrangement. From this fact it is possible to make two qualitative predictions.

The first is that the chair TS for the Cope rearrangement of 1,5-hexadiene should

resemble more closely the lower energy of the two diradical extremes, A and C. The

second prediction is that to the extent structures A and C contribute to the Cope TS,

radical stabilizing substituents should be capable of lowering the energy of the TS,

relative to the reactants, and thus accelerating the Cope rearrangement. Substituents at C2

and C5 of 1,5-hexadiene should stabilize structure A in Fig. 30.1, and substituents placed

at C1, C3, C4, and C6 should stabilize structure C.

The second prediction raises a question. Are the relative contributions ofA andC to the

Cope TS fixed, or do their relative contributions vary with the number of radical

stabilizing substituents and the carbons to which they are attached? ProfessorWilliam von

Eggers Doering, who has arguably contributed more than any other experimentalist to the

understanding of the Cope rearrangement, has formulated this question succinctly in

terms of two adjectives that he invented. Is the Cope TS ‘centauric’ or ‘chameleonic’ [5]?

If, like the contributions of man and horse to the mythical centaur, the relative

contributions of structures A and C to the Cope TS are fixed, then Doering would

describe the TS as ‘centauric’. However, if, in the same way that a chameleon changes

A

B

C

R

Fig. 30.1. Schematic depiction of the bonding in the transition structure (TS) for the chair Cope rearrangement,

showing the diradical resonance contributors (A and C) and the aromatic representation (B). R is the interallylic

distance.
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color with its environment, the contributions of structuresA andC to the Cope TS change

with the number and placement of radical stabilizing substituents, then Doering would

call the TS ‘chameleonic’.

30.2 INFORMATION FROM EXPERIMENTS ABOUT THE COPE TS

By combining the heat of formation of cyclohexane with the then-current value of a

secondary C–H bond dissociation enthalpy (BDE), in 1971 Doering obtained an

estimated heat of formation for cyclohexane-1,4-diyl (A) [6]. The heat of formation of

this fictional diradical, in which the two radical centers interact neither through bonds nor

through space, was estimated by Doering to be far lower than that of two allyl radicals

(C). Indeed, the 1971 value for the estimated heat of formation of diradical A was

only slightly higher than that of the TS for the Cope rearrangement (Fig. 30.2) that

equilibrates 1,5-hexadiene-1,1-d2 (1) with 1,5-hexadiene-3,3-d2 (4) [6].

Subsequent upward revision of the accepted value for the BDE of a secondary C–H

bond increased the estimated heat of formation of diradical A [7], and the currently

accepted value for the BDE of a secondary C–H bond [8] places A about 11 kcal/mol

above the Cope TS. The heat of formation of two allyl radicals [9] puts C 26 kcal/mol

higher than the Cope TS.

Experimental confirmation of the prediction that the Cope TS resembles A much more

than C came from an unlikely source—M.J.S. Dewar, a chemist much better known for

his contributions to the development of methodology for semiempirical electronic

structure calculations, than for his experimental research. Nevertheless, the first

experimental evidence that the Cope TS really does resemble structure A more than

structure C was published by Dewar and Wade [10].

The Cope rearrangement of 2-phenyl-1,5-hexadiene-1,1-d2 (2) to 2-phenyl-1,5-

hexadiene-3,3-d2 (5) has no thermodynamic driving force; whereas the Cope

rearrangement of 3-phenyl-1,5-hexadiene (3) to 1-phenyl-1,5-hexadiene (6) does.

However, the kinetic studies by Dewar and Wade [10] found the former reaction to be

faster than the latter by a factor of four at 190 8C. The larger effect of a C2 than a C3
radical-stabilizing phenyl substituent on the rate of the Cope rearrangement indicates

CH
CR2 CH2

CH2 CH

CR2 CH2

H2C

R' R'

R" R"

1, R = D, R' = R" = H

2, R = D, R' = Ph, R" = H

3, R = R' = H, R" = Ph

4, R = D, R' = R" = H

5, R = D, R' = Ph, R" = H

6, R = R' = H, R" = Ph

Fig. 30.2. Two Cope rearrangements (1 ! 4 and 2 ! 5) that are, except for the deuterium labels, degenerate

and one Cope rearrangement (3 ! 6) that is non-degenerate.
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that, as expected, the lower energy diradical (A) contributes to the Cope TS more than the

higher energy diradical (C) does.

The question of whether the Cope TS is centauric or chameleonic was first addressed

by the now-classic experiments, performed by Gajewski and Conrad [11]. They found

that the size of the secondary H/D kinetic isotope effects for bond making and bond

breaking in the Cope rearrangement depends on the carbons to which radical stabilizing

substituents are attached. This finding is consistent with the balance between bond

making in structure A of Fig. 30.1 and bond breaking in structure C being substituent

dependent, and this variability means that the TS is chameleonic.

30.3 MINDO/3, AM1, AND CASSCF CALCULATIONS ON THE COPE TS

On the basis of MINDO/3 calculations, Dewar argued for a non-concerted mechanism for

the parent Cope rearrangement, involving formation of cyclohexane-1,4-diyl (A) as an

intermediate [12]. Several years later, Dewar published another paper in which he boldly

claimed that multi-bond reactions, such as the Cope rearrangement, cannot, in general,

involve synchronous bond making and bond breaking [13].

Testing Dewar’s claims, by performing unbiased ab initio calculations on the Cope

rearrangement, proved to be challenging. For example, an RHF calculation on the Cope

rearrangement is not unbiased, because, with a wave function that consists of a single

configuration, only the ‘aromatic’ TS (B) can be adequately described. To be unbiased, a

calculation must also be capable of describing both of the diradical extremes,

cyclohexane-1,4-diyl (A) and two weakly interacting allyl radicals (C).

Although both of these diradical extremes have the same dominant electronic

configuration as the ‘aromatic’ TS [4], a proper wave function for each of these diradical

extremes requires a different ‘second’ configuration. Therefore, at least a three-

configuration wave function is demanded for an unbiased study of the Cope

rearrangement. Even better is a (6/6)CASSCF wave function in which three virtual

orbitals are used to correlate the six electrons in the three bonding orbitals (two pi and one

sigma) that are ‘active’ in this reaction.

It now seems hard to believe that, 20 years ago, (6/6)CASSCF/3-21G calculations were

beyond the capabilities of the computers available to most computational chemists.

Nevertheless, in the first ab initio study of the Cope rearrangement, published in 1984,

(6/6)CASSCF/3-21G calculations could not actually be performed; they could only be

simulated [14]. Smaller MCSCF calculations were employed to obtain a partially

optimized set of orbitals. Then those orbitals were used to carry out full CI calculations

for the 52 configurations that comprise the complete (6/6) active space at the C2h

stationary point for the chair Cope rearrangement of 1,5-hexadiene.

The simulated (6/6)CASSCF calculations were performed at several partially

optimized C2h geometries. The calculations found that the Cope TS has an interallylic

separation of R ¼ 2:062 �A; which is close to that of R ¼ 2:023 �A for the fully optimized

RHF/3-21G TS. Thus, the simulated (6/6)CASSCF/3-21G calculations found that bond

making and bond breaking occur synchronously in the Cope rearrangement via an

‘aromatic’ TS (B).
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The obvious shortcomings of these simulated CASSCF calculations were not lost on

Michael Dewar, who in the 1980s had taken upon himself the role of bête noire of

computational chemists who did ab initio electronic structure calculations. Dewar

criticized the simulated CASSCF calculations in a paper that described his own AM1

study of the Cope rearrangement [15]. These AM1 calculations found a much shallower

well for cyclohexane-1,4-diyl (C) than Dewar’s MINDO/3 calculations had, and Dewar

even conceded that this intermediate might even turn out to be the TS for a concerted

Cope rearrangement. However, the interallylic distance in this C2h species was only

R ¼ 1:646 �A; indicating that the Cope rearrangement was highly asynchronous, with
bond formation preceding bond breaking.

Subsequent AM1 calculations by Dewar actually did find a synchronous TS, which he

had initially missed; but the energy of this TS was higher than that of the C2h species with

R ¼ 1:646 �A [16]. The AM1 potential energy surface (PES) for the chair Cope

rearrangement supported Dewar’s early hypothesis that there are two discrete types of

reaction pathways by which the Cope rearrangement can occur [10a]. The lower energy

pathway passes though a TS that leads to formation of a cyclohexane-1,4-diyl

intermediate (A), and the higher involves a TS in which bond making and bond breaking

occur synchronously (B).

In response to Dewar’s criticisms [15] of the simulated (6/6)CASSCF calculations

[14], in 1988 Morokuma published the results of genuine (6/6)CASSCF/3-21G

calculations on the chair and boat Cope rearrangements [17]. The calculations predicted

R ¼ 2:086 �A for the chair TS, and the computed activation enthalpy was only about

4 kcal/mol higher than Doering’s experimental value of DH‡ ¼ 33:5 kcal=mol [6]. Based
on these results, a review article, published that year proclaimed, “Ab initio calculations

and experimental evidence both indicate that multi-bond reactions not only can be

synchronous but often are…” [1b].

This apparent victory of ab initio over semiempirical calculations was short lived. It

was snatched from the ab initio computational chemists and given back to Michael

Dewar by none other than Ernest Davidson, who had hithertofore been regarded by the

ab initio community as one of its most stalwart defenders against the onslaughts of the

semiempirical barbarians.

In 1991, Dupuis et al. [18] revisited the Cope rearrangement with (6/6)CASSCF/

6-31Gp calculations. Their (6/6)CASSCF/6-31Gp PES showed two C2h stationary

points—one the TS for a concerted Cope rearrangement, with R ¼ 2:189 �A; and the other
an intermediate in a highly asynchronous reaction, with R ¼ 1:641 �A: The latter C2h

stationary point was calculated to be 1.9 kcal/mol lower in energy than the former. Thus,

the results of Davidson’s then ‘state-of-the-art’ ab initio calculations actually validated

Dewar’s AM1 results [15,16]!

30.4 INCLUSION OF DYNAMIC ELECTRON CORRELATION

However, there still remained some hope that ab initio calculations on the Cope

rearrangement might provide a different PES than AM1. The (6,6)CASSCF/6-31Gp value
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of DH‡ was higher than the experimental value [6] by .12 kcal/mol [18]. Therefore, it

was possible that the (6,6)CASSCF/6-31Gp PES was also grossly incorrect.

In order to go beyond the (6/6)CASSCF level, while maintaining the ability of a

(6/6)CASSCF wave function to describe the two possible diradical extremes for the Cope

TS, CASPT2 calculations proved ideal. This method, which had been developed by Roos

and co-workers [19], applies multi-reference, second-order perturbation theory to

CASSCF wave functions; and in 1993 CASPT2 had become available in the MOLCAS

suite of ab initio calculations from the Roos group [20].

Therefore, the Cope rearrangement was revisited again, but this time with inclusion of

electron correlation at the CASPT2 level of theory [21]. The (6/6)CASPT2/6-31Gp value

of DH‡ was within 3 kcal/mol of Doering’s experimental value [6], and use of larger basis

sets reduced this difference to ca. 1 kcal/mol. In addition, with all the basis sets tested,

only one C2h stationary point was found, and it proved to be the CASPT2 TS for the chair

Cope rearrangement.

Because the Cope PES is very flat along a C2h cut [18,21], the size of R in the TS is

highly dependent on the type of calculation performed. Thus, increasing the size of the

basis set from 6-31Gp to 6-311G(2d,2p) increases R by 0.14 Å, from R ¼ 1:745 �A to

R ¼ 1:885 �A: Subsequent B3LYP calculations [22,23] have given values of R that are

0.08 Å larger than the CASPT2/6-311G(2d,2p) value.

Both the CASPT2 and B3LYP interallylic bond lengths in the TS indicate that bond

making and bond breaking occur synchronously in the Cope rearrangement of

unsubstituted 1,5-hexadiene. In addition, Jiao and Schleyer’s [23] NICS calculations

have found that the B3LYP TS has a large, induced, diamagnetic ring current. Hence, by

this magnetic criterion the Cope TS really is aromatic.

Subsequently, Kozlowski et al. [24] also revisited the Cope rearrangement with

inclusion of dynamic correlation between the ‘active’ and ‘inactive’ electrons. However,

they used Davidson’s own version of multi-reference, second-order perturbation theory

[25], which allows the coefficients of the configurations in the CASSCF wave function to

be recalculated after inclusion of dynamic electron correlation. Kozlowski et al. found

that the addition of dynamic correlation to the (6/6)CASSCF wave function for the Cope

TS causes the weight of the RHF configuration to increase at the expense of the pair

configurations that are necessary to describe the two diradical extremes in Fig. 30.1.

Thus, without the inclusion of dynamic electron correlation in the wave function, (6/6)

CASSCF overestimates the diradical character of the C2h wave function [24].

As pointed out in a 1996 review of the importance of dynamic electron correlation [1e],

in general, addition of correlation between the ‘active’ and ‘inactive’ electrons stabilizes

the ionic terms in the CASSCF wave functions for the ‘active’ electrons. Not only in the

Cope TS, but also in the TSs for other Woodward–Hoffmann-allowed, pericyclic

reactions [3], the ionic terms in the RHF configuration benefit from this type of

stabilization. Consequently, with the inclusion of dynamic electron correlation, the

weight of the RHF configuration in the wave function for the TS increases and the energy

of the TS is lowered, relative to that of the reactants and products. It is for this reason that

calculations which include dynamic electron correlation usually give much lower

activation enthalpies for allowed pericyclic reactions than either RHF or CASSCF

calculations do [1e,21].
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Subsequently, Stavoverov and Davidson [26] computed the number, n; of ‘effectively
unpaired electrons’ in multi-configurational wave functions for the chair Cope

rearrangement at different C2h geometries. In a single configuration, RHF wave function

there are no effectively unpaired electrons (i.e. n ¼ 0); but in the multi-configurational

wave functions for the chair Cope TS Stavoverov and Davidson found that n is large at

both very small and very large values of the interallylic distance ðRÞ: However, at the
B3LYP/6-31Gp Cope TS geometry (R ¼ 1:965 �AÞ; Stavoverov and Davidson found that
n is small, because at this geometry the RHF configuration dominates the wave function.

The results of this study again call attention to the chameleonic nature of the C2h wave

function for the Cope rearrangement. At small values of R the CASSCF wave function is

essentially that for cyclohexane-1,4-diyl (structure A in Fig. 30.1); whereas, at large

values of R the CASSCF wave function approaches that for two allyl radicals (structure

C). The variable contributions of structures A and C to the wave function as a function of

R is what makes the change in the energy of the (6/6)CASSCF wave function so small

(ca. 2 kcal/mol) over a range of R values that span .0.5 Å [18,21].

30.5 SUBSTITUENT EFFECTS ON THE COPE REARRANGEMENT

Not only do the relative contributions of structures A and C to the C2h wave function for

the Cope rearrangement change with the interallylic distance, R; their relative

contributions also change with the number and placement of radical stabilizing

substituents, such as cyano and phenyl. Since the relative contributions of structures A
andC and the optimal value of R in the Cope TS are functionally related, the value of R in

the TS is also highly substituent dependent.

The variations of the secondary H/D kinetic isotope effects with substituents, found by

Gajewski and Conrad [11], provide indirect experimental evidence for the connection

between the number and placement of radical stabilizing substituents and the TS

geometry. Direct computational evidence comes from the calculated dependence of R in

the Cope TS on the number and placement of cyano [27] and phenyl [28] groups.

This dependence is illustrated for phenyl substituents by the calculated values of R in

Table 30.1 [28].

The experimental activation enthalpies in Table 30.1 show that the effects of phenyl

substituents on DH‡ for Cope rearrangement can be either cooperative or competitive.

For example, a single phenyl substituent at C2 of 1,5-hexadiene lowers DH‡ for Cope

rearrangement by 4.2 kcal/mol, but a second phenyl group, attached to C5, provides an

additional 8.0 kcal/mol lowering of the barrier height. Clearly, there is a strong

cooperative effect between phenyl substituents at C2 and C5, both of which stabilize

structure A in Fig. 30.1.

The experimental values of DH‡ in Table 30.1 show that phenyl groups at C1, C3, C4,

and C6, which stabilize structure C, also give rise to a strongly cooperative substituent

effect. When a pair of phenyl groups is attached to C1 and C3 of 1,5-hexadiene, the

barrier to the Cope rearrangement is decreased by 3.0 kcal/mol from that for the

unsubstituted molecule. If the phenyl substituent effects on the Cope rearrangement were

additive, augmentation of a pair of phenyl substituents at C1 and C3 by another pair at C4
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and C6 would be anticipated to lower DH‡ by another 3.0 kcal/mol. However, the

measured effect of the additional pair of phenyl groups is three times larger, lowering

DH‡ for Cope rearrangement by an additional 9.2 kcal/mol. As in the case of phenyl

substituents at C2 and C5, the effect of phenyl substituents at C1, C3, C4, and C6 is

obviously cooperative.

In contrast to the cooperative substituent effects described above, placement of phenyl

groups at C1, C3, and C5 of 1,5-hexadiene results in a competitive substituent effect. By

stabilizing structure A, a single phenyl group at C2/C5 lowers DH‡ by 4.2 kcal/mol; and,

by stabilizing structure C, phenyl groups at C1 and C3 lower DH‡ by 3.0 kcal/mol.

However, the simultaneous presence of phenyl groups at C1, C3, and C5 lowers DH‡ by

5.7 kcal/mol, 1.5 kcal/mol less than the 7.2 kcal/mol expected on the basis of substituent

effect additivity. Clearly, positioning the phenyl substituents, so that they simultaneously

stabilize both structures A and C, results in a small negative deviation from substituent

effect additivity.

Table 30.1 shows that B3LYP/6-31Gp calculations give activation enthalpies for the

Cope rearrangements of phenyl-substituted 1,5-pentadienes that are in very good

agreement with experiment. This agreement gives credibility to the predicted variation

with substitution of the interallylic distance, R; in the Cope TS. The dependence of R on
the number and placement of phenyl substituents is responsible for the cooperative and

competitive phenyl substituent effects that have been both observed in and calculated for

the Cope rearrangement [28].

Consider, for example, the effect of the pair of phenyl substituents in the TS for Cope

rearrangement of 1,3-diphenyl-1,5-hexadiene. The calculated interallylic distance in this

Table 30.1 Calculated and experimental activation enthalpies (kcal/mol) for the Cope rearrangements

of phenyl substituted 1,5-hexadienes and the calculated interallylic distance, R (Å), in each TS and

intermediate

Substituents Methoda DH‡ (calc.) DH‡ (exp.) Rb

None B3LYP 33.2 33.5 ^ 0.5c 1.965

2-Phenyl B3LYP 30.4 1.837, 1.821

2-Phenyl UB3LYP 30.3 1.777, 1.700

2-Phenyl UB3LYP 29.4d 29.3 ^ 1.6e 1.599

1,3-Diphenyl B3LYP 30.2 30.5 ^ 0.2f 2.218

2,5-Diphenyl B3LYP 25.1 1.794, 1.680

2,5-Diphenyl UB3LYP 24.8 1.839, 1.667

2,5-Diphenyl UB3LYP 21.3d 21.3 ^ 0.3e,g 1.576

1,3,5-Triphenyl B3LYP 29.2 27.8 ^ 0.2f 2.113, 2.106

1,3,4,6-Tetraphenyl B3LYP 19.1 21.3 ^ 0.1h 2.649

aThe 6-31Gp basis set was used for all of the calculations in this table.
bLength of the forming bond and the breaking bond, respectively. Just one bond length is given for those species having a

plane of symmetry.
cRef. [6].
dEnthalpy, relative to the reactant, of the diradicaloid intermediate.
eRef. [10].
fRef. [5].
gRef. [29].
hRef. [30].
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TS is R ¼ 2:218 �A; which is 0.253 Å longer than the value calculated for the TS for Cope

rearrangement of unsubstituted 1,5-hexadiene ðR0 ¼ 1:965 �AÞ: The larger value of R in

the 1,3-diphenyl-1,5-hexadiene Cope TS increases the contribution of structure C in

Fig. 30.1 to the TS wave function, thus allowing the phenyl substituents at C1 and C3 to

provide more stabilization for this wave function at R ¼ 2:218 �A than at R0 ¼ 1:965 �A:
On addition of a second pair of phenyl substituents at C4 and C6, the interallylic

distance further lengthens so that the contribution of structure C to the TS wave function

is further enhanced. The ability of the second pair of phenyl substituents to increase the

optimal value of R from R ¼ 2:218 �A to R ¼ 2:649 �A allows each of the phenyl

substituents in 1,3,4,6-tetraphenyl-1,5-hexadiene to provide more stabilization for the

Cope TS than the pair of phenyl substituents in 1,3-diphenyl-1,5-hexadiene. This

cooperative effect of the four phenyl groups in 1,3,4,6-tetraphenyl-1,5-hexadiene lowers

DH‡ for Cope rearrangement by, not twice, but by four times as much as the pair of

phenyl substituents in 1,3-diphenyl-1,5-hexadiene.

The optimal value of R in the TS for Cope rearrangement of a substituted 1,5-

hexadiene can be viewed as a compromise between maximizing the stabilizing effect of

the substituent(s) (DEsubst) on structure A or structure C in the TS and minimizing the

energetic cost (DEdist) of distorting the interallylic bond lengths from the value of R0 ¼
1:965 �A for the Cope rearrangement of unsubstituted 1,5-hexadiene [30]. DEdist can be
easily calculated, since it is just the increase in the energy of the TS for the Cope

rearrangement of unsubstituted 1,5-hexadiene on going from R0 ¼ 1:965 �A to the value

of R in the TS for the Cope rearrangement of a substituted 1,5-hexadiene.

DEsubst cannot be computed directly. However, it can be obtained by calculating DEdist
and the net stabilization energy ðDER

stabÞ that results from allowing the symmetrical chair

geometry of the substituted diene to distort from R0 ¼ 1:965 �A to the optimal value of R

in the TS for its Cope rearrangement. Since DER
stab ¼ DEdist þ DEsubst; calculating DE

R
stab

and DEdist allows DEsubst to be obtained from the relationship, DEsubst ¼ DER
stab 2 DEdist:

The calculated values of DER
stab; DEdist, and DEsubst are given in Table 30.2 for the Cope

rearrangements of 2-phenyl, 1,3- and 2,5-diphenyl-, 1,3,5-triphenyl-, and 1,3,4,6-

tetraphenyl-1,5-hexadiene. Also given is DE0stab; the stabilization energy provided by the
phenyl substituents at R0 ¼ 1:965 �A: DEstab

0 is calculated as the difference between the

energies of the symmetrical chair geometry of a substituted 1,5-hexadiene at R0 ¼
1:965 �A and at the equilibrium geometry of the diene, minus the difference between the

energies of unsubstituted 1,5-hexadiene at the TS for its Cope rearrangement and at its

equilibrium geometry.

When DE0stab is added to DE
R
stab; their sum gives, DEtotal—the total amount by which the

substituents make the energy difference between the TS and the reactant in the Cope

rearrangement of a substituted 1,5-hexadiene smaller than the size of this energy

difference in the Cope rearrangement of an unsubstituted 1,5-hexadiene. Because the

values of DEtotal in Table 30.2 are uncorrected for differences in zero-point energies or
integrated heat capacities, the values of DEtotal in Table 30.2 are similar to but not exactly
the same as the differences between the DH‡ values in Table 30.1.

A number of observations can be made from inspection of Table 30.2. First, at R0; the
interallylic bond length in the TS for the parent Cope rearrangement, a phenyl group at

C2 provides 1.7 kcal/mol of stabilization, which is slightly more than twice that provided
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by a pair of phenyl groups at C1 and C3. The larger stabilization provided by a single C2

phenyl group supports the conjecture, based on the relative enthalpies of the two diradical

extremes in Fig. 30.1, that the TS for the Cope rearrangement of unsubstituted 1,5-

hexadiene resembles cyclohexane-1,4-diyl (A) more than two allyl radicals (C).

The values of DEstab
0 for 2,5-diphenyl, 1,3,5-triphenyl, and 1,3,4,6-tetraphenyl

substituents are each close to being the sum of the appropriate DEstab
0 values for 2-

phenyl and 1,3-diphenyl substituents. It is noteworthy that the DEstab
0 values for 2-phenyl-

and 1,3-diphenyl-1,5-hexadiene are, respectively, only about one-third to one-quarter of

DEtotal; the total lowering of the Cope TS energy, relative to the energy of the reactants.
The fact that substituents provide a comparatively small amount of stabilization at

R0 ¼ 1:965 �A was first found for cyano rather than for phenyl substituents [27]. This

finding is consistent with the results of Stavoverov and Davidson. They used local spin

analysis to show that not only does the TS for the parent Cope rearrangement have little

diradical character [26] but also that, at the geometry of this TS, radical stabilizing

substituents do little to enhance the diradical character of the wave function [31].

Another observation, which can be made from the results in Table 30.2, is that at the

optimal values of R for the intermediate in the Cope rearrangement of 2-phenyl-1,5-

hexadiene and for the TSs in the Cope rearrangements of 1,3-diphenyl-, and 1,3,4,6-

tetraphenyl-1,5-hexadiene, DEsubst < 22DEdist: Therefore, since DER
stab ¼ DEdist þ

DEsubst; it is also true that DER
stab < DEsubst=2 < 2DEdist: This finding—that at the

optimal value of R the magnitude of DEsubst is approximately twice the size of DEdist—
can be shown to be a consequence of the fact that the leading term in DEdist is quadratic in
R2 R0; whereas, the leading term in DEsubst must be linear in R2 R0 [32].

When a second phenyl group is added to C5 of 2-phenyl-1,5-hexadiene, the increase in

the magnitude of DEsubst in the TS is about a factor of two; but when a second pair of
phenyls is added to C4 and C6 of 1,3-diphenyl-1,5-hexadiene, the increase is about a

factor of six. The reason for this difference is that the intermediates in the Cope

rearrangements of 2-phenyl- and 2,5-diphenyl-1,5-hexadiene have UB3LYP values of R

Table 30.2 Dissection of the effects of phenyl substituents on lowering the energy of the TS for the chair

Cope rearrangement of 1,5-hexadiene. Energies (kcal/mol) were obtained from B3LYP/6-31Gp

calculations at different interallylic distances (R) in the manner described in the text

Substituents R (Å) DEdist DEsubst DEstab
R DEstab

0 DEtotal

2-Phenyla 1.599 3.3 26.2 22.9 21.7 24.6

2-Phenylb 2.210 0.7 1.4 2.1 21.7 0.4

2,5-Diphenyla 1.576 3.7 212.9 29.2 23.7 212.9

1,3-Diphenyl 2.218 2.0 24.0 22.0 20.7 22.7

1,3-Diphenylb 2.110 0.7 22.4 21.7 20.7 22.4

1,3,5-Triphenyl 2.110 0.7 21.1 20.4 22.8 23.2

1,3,4,6-Tetraphenyl 2.649 12.0 223.7 211.7 21.4 213.1

1,3,4,6-Tetraphenylc 2.218 2.0 29.3 27.3 21.4 28.7

aValues are from UB3LYP calculations.
bCalculations performed at the same interallylic bond distance, R; as in the TS for Cope rearrangement of 1,3,5-diphenyl-1,5-

pentadiene.
cCalculations performed at the same interallylic bond distance, R; as in the TS for Cope rearrangement of 1,3-diphenyl-1,5-

pentadiene.
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that differ by only 0.023 Å. In contrast, when a second pair of phenyl groups is added at

C4 and C6 of 1,3-diphenyl-1,5-hexadiene, the value of R in the TS increases by 0.431 Å.

This large increase in R; accompanying addition of a second pair of phenyl substituents,
results in a very large increase in the magnitude of DEsubst:
In the 1-phenylcyclohexane-1,4-diyl diradical intermediate, formed in the Cope

rearrangement of 2-phenyl-1,5-hexadiene, the UB3LYP/6-31Gp value of R ¼ 1:599 �A

approaches that of a standard C–C single bond; so addition of a second phenyl

substituent at C4 of the diradical (C5 of the diene) has only a small effect on further

decreasing R: Because addition of a second phenyl group to C4 of 1-phenyl-cyclohexane-
1,4-diyl leaves the value of R in this intermediate largely unchanged, the effect of the

second phenyl group is approximately just to double the value of DEsubst:
The fact that R is nearly the same in 1,4-diphenylcyclohexane-1,4-diyl as in

the diradical that lacks the second phenyl substituent has another consequence—the

approximate doubling of DEsubst upon adding the second phenyl group occurs without

the significant increase in DEdist; so DER
stab increases in magnitude by approximately

DEsubst: In contrast, for addition of the first phenyl substituent, DEdist < 2DEsubst=2;
so DER

stab ¼ DEdist þ DEsubst < DEsubst=2: Therefore, addition of a second phenyl group
to C4 of the diradical increases the magnitude of DER

stab by approximately twice as much

as addition of the first phenyl group does. Put colloquially, the second phenyl group

gets for free the DEsubst < 26:2 kcal=mol for which the first phenyl group has to pay
DEdist ¼ 3:3 kcal=mol:
When a second pair of phenyl groups is added to C4 and C6 of 1,3-diphenyl-1,5-

hexadiene at the value of R ¼ 2:218 �A in the TS for Cope rearrangement of the

disubstituted diene, Table 30.1 shows that DEsubst increases in magnitude by 5.3 kcal/

mol. This increase in magnitude is a little more than the factor of 2 that is expected for

doubling the number of phenyl substituents at a fixed value of R: It seems likely that the
1.3 kcal/mol of extra stabilization comes from a reduction in the steric repulsion between

the pairs of phenyl groups at C1 and C6 and C3 and C4 upon increasing R from R0 ¼
1:965 �A in the TS for the parent Cope rearrangement to R ¼ 2:218 �A in the TS for Cope

rearrangement of 1,3-diphenyl-1,5-hexadiene.

Upon increasing the interallylic distance from R ¼ 2:218 �A to R ¼ 2:649 �A; the
optimal value of R in the TS for Cope rearrangement of 1,3,4,6-tetraphenyl-1,5-

hexadiene, the magnitude of DEsubst increases by 14.4 kcal/mol. However, on stretching

the interallylic bonds by this additional 0.431 Å, DEdist increases by 10.0 kcal/mol. Thus,

the net change in the magnitude of DEstab
R is only 4.4 kcal/mol. Therefore, of the

9.7 kcal/mol increase in the magnitude of DEstab
R that results from adding a pair of phenyl

groups to C4 and C6 of the TS for Cope rearrangement of 1,3-diphenyl-1,5-hexadiene,

55% comes from the two additional phenyl groups increasing the magnitude of DEsubst at

R ¼ 2:218 �A; and 45% comes from the increase in the size of the difference between

DEsubst and DEdist when R increases from 2.218 to 2.649 Å.

As the discussion above demonstrates, the cooperative substituent effects, which have

been both observed in and computed for the Cope rearrangements of 2,5-diphenyl- and

1,3,4,6-tetraphenyl-1,5-hexadiene, can be understood on the basis of the dependence of

the size of DEstab
R on R: The competitive substituent effect, both observed in and
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computed for the Cope rearrangement of 1,3,5-triphenyl-1,5-hexadiene, can similarly be

understood.

Table 30.2 shows that at R ¼ 1:599 �A the C2 phenyl group in 2-phenyl-1,5-hexadiene

provides a net stabilization of DER
stab ¼ 22:9 kcal=mol; and at R ¼ 2:218 �A the C1 and

C3 phenyl groups in 1,3-diphenyl-1,5-pentadiene provide a net stabilization of DER
stab ¼

22:0 kcal=mol: However, the TS for Cope rearrangement of 1,3,5-triphenyl-1,5-

pentadiene occurs with interallylic bond lengths of about R ¼ 2:110 �A (Table 30.1).

At this TS geometry, neither the phenyl groups at C1 and C3 nor the phenyl group C5

provides as much stabilization as these phenyl groups furnish in the TSs for the Cope

rearrangements of, respectively, 1,3-diphenyl-1,5-pentadiene at R ¼ 2:218 �A and

2-phenyl-1,5-hexadiene at R ¼ 1:599 �A:
Table 30.2 reveals that at an average value of R ¼ 2:110 �A the C2 phenyl group in 2-

phenyl-1,5-hexadiene provides a net TS stabilization energy that is 5.0 kcal/mol smaller

in magnitude than at R ¼ 1:599 �A: At R ¼ 2:110 �A the C1 and C3 phenyl groups in 1,3-

diphenyl-1,5-pentadiene provide a net TS stabilization energy that is 0.3 kcal/mol smaller

in magnitude than at R ¼ 2:218 �A: Thus, based on strict additivity, one might expect the
three phenyl groups in 1,3,5-triphenyl-1,5-pentadiene would provide 5.3 kcal/mol less

net TS stabilization than the total amount they furnish in the Cope rearrangements of 1,3-

diphenyl-1,5-pentadiene and 2-phenyl-1,5-hexadiene. In fact, Table 30.2 shows that

DEstab
R for Cope rearrangement 1,3,5-triphenyl-1,5-pentadiene actually is 4.5 kcal/mol

smaller in magnitude than the sum of the DEstab
R values for the Cope rearrangements of

2-phenyl-1,5-pentadiene and 1,3-diphenyl-1,5-pentadiene.

Therefore, the competitive substituent effect, both predicted and found for the Cope

rearrangement of 1,3,5-triphenyl-1,5-hexadiene, is a consequence of the fact the value of

R in the TS is a compromise between the value of R ¼ 1:599 �A; at which the phenyl
group at C5 can provide optimal stabilization for the contribution of structure A, and the

value of R ¼ 2:218 �A; at which the phenyl groups at C1 and C3 provide optimal

stabilization for the contribution of structure C. At the compromise value of R ¼ 2:110 �A

the three phenyl groups in 1,3,5-triphenyl-1,5-hexadiene are calculated to provide

4.5 kcal/mol less TS stabilization than the total amount they furnish in the Cope

rearrangements of 2-phenyl-1,5-hexadiene at R ¼ 1:599 �A and in 1,3-diphenyl-1,5-

hexadiene at R ¼ 2:218 �A:

30.6 SUMMARY

The ability of diradicals A and C in Fig. 30.1 to contribute to the electronic structure of

the C2h species in the Cope rearrangement makes it possible to lengthen or shorten the

interallylic bonds in the chair TS without significantly affecting the energy. The

pathological flatness of the PES with respect to changes in this coordinate is largely

responsible for the large variations in the optimal value of R in the TS that are found with

changes in computational methodology and/or basis set. Put another way, the

chameleonic nature of the Cope TS results in its TS geometry responding to the biases

built into different types of calculations by changing the value of R in the TS.
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Given the insensitivity of the energy of the C2h geometry to changes in R; the values of
R ¼ 1:885 �A; obtained by (6/6)CASPT2/6-311G (2d,2p) calculations [21], and R ¼
1:965 �A; found by B3LYP/6-31Gp calculations [22,23] are in reasonable agreement.

Both are on the short side of the range of C–C bond lengths commonly computed for

the TSs in concerted pericyclic reactions [1b–d]. The reason for the slightly shorter

than usual bond lengths in the Cope TS is almost certainly that cyclohexane-1,4-diyl (A)

[6,7,27] is considerably lower in enthalpy than two allyl radicals (C) [9]. Therefore,

the electronic structure of the TS resembles A more than C.

This conjecture is supported by the calculated values of DEstab
0 in Table 30.2. Phenyl

groups at C2 and C5 of 1,5-hexadiene, which stabilize structure A; provide twice as much

stabilization per phenyl at R0 ¼ 1:965 �A as each pair of phenyl substituents at C1, C3,

C4, and C6, which stabilize structure C.

However, really large phenyl stabilization energies come, not at R0 ¼ 1:965 �A; where
the TS is best described by structure B in Fig. 30.1, but at values of R at which the TS has

a larger contribution from either structure A or C. Small values of R enhance the

contribution of diradical A, and large values of R enhance the contribution of diradical C.

Thus, as shown in Tables 30.1 and 30.2, phenyl groups at C2 and C5 of 1,5-hexadiene

favor a small value of R in the Cope TS, and phenyl substituents at C1, C3, C4, and C6

favor a large value of R in the TS.

The ability of radical stabilizing substituents to have a large effect on R in the TS

geometry is what makes the Cope TS chameleonic; and the chameleonic nature of the TS

is responsible for the cooperative and competitive phenyl substituent effects that have

been both calculated [27,28] and observed [5,29,30]. Multiple phenyl substituents,

attached where they either all stabilize structure A or all stabilize structure C, distort the

TS geometry toward one of these two diradical extremes, thus enhancing the ability of all

the substituents to stabilize the TS. In contrast, when one set of substituents stabilizes one

of these resonance structures and another substituent stabilizes the other, the result is a

compromise TS geometry, with a value of R that is optimal for neither set of substituents.

The calculations of the geometry of the TS for the Cope rearrangement of 1,5-

hexadiene, at levels of ab initio theory that were unbiased and which included dynamic

electron correlation [21,24], established that bond making and bond breaking occur

synchronously in the TS. The ability of DFT calculations, particularly B3LYP/6-31Gp, to

compute not only activation enthalpies [22,23] but also kinetic isotope effects [22] that

are in very good agreement with those that have been measured [6,11], gave further

credibility to a value of R < 1:9–2:0 �A for the interallylic distance in the TS for the Cope

rearrangement of unsubstituted 1,5-hexadiene. In fact, even without the (6/6)CASPT2

calculations [21], the B3LYP calculations might have settled the controversy about the

value of R in and the nature of the TS for the parent Cope rearrangement.

The combination of relatively high accuracy and low cost of B3LYP/6-31Gp

calculations made possible the computational investigation of the cooperative and

competitive substituent effects in the Cope rearrangements of phenyl-substituted 1,5-

hexadienes. The B3LYP calculations established that the geometry of the TS in the Cope

rearrangement depends on the number and placement of radical-stabilizing substituents,

i.e. that the Cope TS is chameleonic [27,28].
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Abstract

Very little is known either experimentally or theoretically concerning the mechanism

of formation of fullerenes and carbon nanotubes (CNTs). We present an analysis of our

recent fully quantum chemical high-temperature molecular dynamics simulations for

(a) self-assembly capping processes of open-ended single-walled CNT models of

different diameter, chirality, and lengths, and (b) self-assembly formation of fullerene

molecules from ensembles of C2 without imposing a designed reaction pathway.

Density functional tight binding is used to compute the quantum chemical potential

energy surfaces in direct trajectory calculations, and its accuracy is estimated in

benchmark calculations. Capping of open-ended CNTs is observed to be a rapid

process at temperatures of 2000 and 3000 K involving long-lived “wobbling C2” and

longer chains, typically within 14 ps simulation time. The self-assembly formation

mechanism of fullerenes from ensembles of randomly oriented C2 molecules was

discovered by periodically adding batches of more C2 molecules to the simulations,

modeling an open environment. Three distinct steps of fullerene formation can be

identified: nucleation of polycyclic structures by entangled polyyne chains, growth by

ring condensation of attached chains, and cage closure. In this “size-up” roadmap,

giant fullerenes Cn with n . 120 appear to be the dominant species, and a subsequent

“size-down” roadmap leading to smaller fullerene cages by C2 elimination is suggested

based on prolonged heating of these large carbon cages. The combined two-stage

“size-up/size-down” mechanism explains readily the abundance of buckminsterfuller-

ene C60 in experiment as well as the distribution of larger fullerenes obtained by

typical combustion processes.

q 2005 Elsevier B.V. All rights reserved.
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31.1 INTRODUCTION

Today carbon nanostructures are the most intensively researched species in the context of

molecular engineering on the nanometer scale, with the widest range of promising

applications in materials science, molecular electronics, and molecular machinery. The

elementary building blocks of carbon-based nanotechnology are all members of the third

allotrope form of carbon, namely fullerenes and single- (SWNT) and multi-walled

(MWNT) carbon nanotubes (CNTs). From these 0- (fullerene) and 1D (CNT) units it is

hoped that 2D and 3D structures can be readily engineered with atomic precision to create

any kind of desirable material or objects on the nanoscale, either in a “top-down” or

“bottom-up” approach or a combination thereof, thereby extending the range of

traditional chemistry to true molecular manufacturing. It is generally believed that self-

assembly processes [1] are the most likely successful candidates for the bottom-up

approach; the more traditional top-down approach of positional assembly is certainly

more cumbersome for large-scale manufacturing processes [2]. However, at present it

remains unclear what the nature of these self-assembly mechanisms should be, and how

one could facilitate them in practical applications.

Remarkably, almost 20 years after the discovery of C60 buckminsterfullerene, it is

still a much debated topic as to how fullerene molecules with their remarkable

structural order are formed under the extremely chaotic high-energy conditions of

carbon arc, laser ablation, or fuel rich, low-pressure aromatic hydrocarbon/oxygen

combustion processes. Due to the large number of different carbon clusters present

under the conditions of all of these synthetic methods, and the difficulty in tracking

down single molecules in front of this background, spectroscopic methods have been

of little value to follow formation mechanism pathways experimentally. Yet, it is a

vital prerequisite to understand these reaction mechanism pathways in more detail to

control self-assembly processes required for carbon nanostructure bottom-up-based

molecular engineering. Several hypothetical models of fullerene formation have been

described in the literature, some of which seemingly are more plausible than others.

The most basic and prominent ones for fullerene formation mechanisms are, in

chronological order, the “nautilus model” [3,4], the “party line” mechanism [5], the

“pentagon road” [6–8], the “fullerene road” [9], the “ring-stacking” mechanism [10],

and the “ring fusion spiral zipper” mechanism [11–13]. All of them, however, are

more or less guesswork and share the assumption of an underlying principal of

structural order, in a sense that such order is achieved either by combination of well-

defined molecular “building blocks” like macrocyclic carbon rings or by collapse of a

highly organized precursor structure.

Theoretical approaches, developed over the past 40 years of quantum chemistry, have

recently become very helpful tools for developing an atomic-level understanding of the

processes involved in high-temperature carbon chemistry. Interestingly, a combination of

two theoretical approaches developed at opposite ends of this time-scale has proven to be

extremely fruitful for such studies, namely the relatively new quantum chemical

molecular dynamics (QM/MD) approach [14], using improved versions of early-day

Extended Hückel electronic structure method [15–17] for the calculation of potential
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energy surfaces (PESs) on the fly in direct trajectories calculations. We have successfully

used QM/MD simulations based on the density functional tight binding (DFTB) method

[18–20] in our previous work to simulate the capping of open-ended CNTs [21,22], as

well as the formation processes leading to fullerene molecules from randomly oriented

ensembles of C2 molecules [23,24]. Key to understanding high-temperature small-

fragment carbon chemistry is the inclusion of non-equilibrium conditions in QM/MD

simulations. Ergodic creation of order in dynamical, non-equilibrium systems appears to

be inherent to many natural phenomena [25], and it seems quite logical to take into

account the open environment in the study of fullerene and CNT formation processes in

QM/MD simulations. Theoretical MD and quantum chemical studies following

equilibrium pathways and investigating relative stabilities of fullerene precursor

structures have been carried out before, as described in Section 31.2, but no definitive

conclusion on fullerene or CNT formation mechanisms has been reached from these

studies. Theoretical studies described in the literature by other groups suffer frequently

from the choice of poor to very poor potential energy functions, and none of those studies

considered the constantly changing, dynamic environment of high-temperature systems

far from chemical equilibrium.

31.2 PREVIOUS THEORETICAL INVESTIGATIONS TOWARD

FULLERENE FORMATION MECHANISMS

In the light of the experimental difficulties to identify pathways for fullerene formation

processes, numerous quantum chemical electronic structure calculations on purely

hypothetical intermediates of these proposed fullerene formation mechanisms have been

performed in the past [26–29]. Moreover, Mishra et al. attempted to locate transition

state structures connecting intermediate structures and describing entire pathways for the

formation of C28 fullerene through their “circumscribing ring-stacking” mechanism at the

semi-empirical AM1 [30] level of theory, starting from small monocyclic carbon rings

such as C9 and C13 [31]. We performed similar studies and found in accordance with

Mishra et al. that due to the requirement of forcing the growing carbon cluster out of

planarity, a significant energy barrier has to be overcome (see Fig. 31.1), before “3D-

aromaticity” lowers the energy and makes the entire process exothermic. However, it is

more than questionable whether an orderly growth process along a single or a few

reaction pathways with well-defined transition states and intermediate structures could

take place under the high-temperature non-equilibrium conditions characteristic for

fullerene formation. The large amount of kinetic energy available under the experimental

conditions allows carbon clusters to climb upward on hills on the PES rather than to cling

to a specific minimum energy reaction pathway.

To address this problem, Monte Carlo simulations [32] and MD studies [33–37] have

been carried out before, all of them using reactive empirical bond-order (REBO)

Tersoff-type [38,39] interatomic carbon–carbon potentials developed originally for

studying the vapor deposition of diamond [40,41]. Unlike traditional molecular

mechanics force fields, the REBO potential allows for the formation and dissociation of

covalent chemical bonds by determination of next neighbors and on-the-fly switching
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bond functions. However, it has been criticized that the REBO potential is only

successful in describing intramolecular interactions in carbon and hydrocarbon

materials and that it lacks a mechanism for treating intermolecular interactions [42],

which is a severe flaw for the description of a hot mixture of small carbon fragments.

Even more seriously, REBO-type molecular force fields do not take into account p-

conjugational effects, since REBO was designed to only describe the formation and

breaking of carbon–carbon s-bonds. However, aromaticity and p-conjugational

stabilization are important features of carbon nanochemistry, and therefore we felt

that straightforward QM/MD simulation (without imposing physically unrealistic

spherical potentials such as used, e.g. in Ref. [43]) is a more appropriate computational

tool for the theoretical investigation of carbon nanostructure formation mechanisms. So

far, none of the published tight binding MD calculations on carbon nanosystems [44]

except for ours have addressed the formation mechanism issue of fullerenes in a

physically reasonable manner, including the very recent study of dynamic pathway

models for the formation of C60 by Lee et al. [45]. Moreover, the potential energy

functions employed in these studies are inferior to semi-empirical quantum chemical
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Fig. 31.1. AM1 reaction path for an assumed formation pathway of C28 fullerene following the approach of

Mishra et al. [31].
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methods like AM1 and PM3 [46] and even far more inferior to the DFTB method

employed by us in our CNT capping [21,22] and fullerene formation studies [23,24].

31.3 COMPUTATIONAL METHODOLOGY

The DFTB method is the central method employed in our direct trajectory QM/MD

calculations. All DFTB calculations are carried out with the program package developed

by Frauenheim, Seifert, and Elstner [18–20]. DFTB is an approximate density functional

theory method based on the tight binding approach, and utilizes an optimized minimal

LCAO Slater-type all-valence basis set in combination with a two-center approximation

for Hamiltonian matrix elements. DFTB yields excellent agreement with far more costly

B3LYP/6-31G(d) energetics in the comparison of relative energetics and geometries

Table 31.1 Relative energies of C28 isomers in eV and corresponding linear regression coefficient R2

for correlation between B3LYP/6-31G(d), and DFTB, B3LYP/6-31G, AM1, and PM3 methods.

All energetics are obtained using individually optimized molecular structures at respective levels

B3LYP/6-31G(d) DFTB B3LYP/6-31G AM1 PM3

buckyD2 0.00 0.00 0.00 0.00 0.00

Ring 3.32 8.10 0.78 27.69 22.15

c24-6 3.17 3.56 1.99 0.43 1.77

2 þ 2r14 5.08 9.66 2.90 23.34 0.91

2 þ 2r16 6.01 10.25 3.87 23.37 0.90

c20-6o 5.41 5.52 4.34 3.42 4.23

c20-6m 5.57 5.62 4.48 3.43 4.24

2 þ 4 7.97 10.28 6.00 0.10 3.60

Central7 5.86 6.07 4.84 2.86 4.08

8 þ 8 7.43 9.43 5.31 23.24 0.79

4 þ 4 9.91 14.27 8.52 1.52 4.97

R2 0.7566 0.9238 0.0322 0.3640

bucky D2 ring C24-6 2+2r14 2+2r16

C20-6o C20-6m Central7 8+8 4+4 2+4

Structures of C28 used in the benchmark calculations present in Table 31.1.
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of isomers of C28 [21], delivering at the same time superior accuracy over similarly

inexpensive AM1 and PM3 semi-empirical methods [47]. In fact, single point B3LYP/

6-31G(d) energies at DFTB optimized geometries showed a linear correlation coefficient

R2 of close to 1.0, while R2 at, respectively, optimized geometries is still impressive with

0.7566 [21]. These benchmarks indicate that DFTB is highly suitable for quantum

chemical MD studies of carbon clusters, as was also found before by other groups

[48–53]. For details on these benchmark calculations, see Table 31.1. In particular, AM1

and PM3 predict the C28 fullerene structure buckyD2 to be higher in energy than the C28
macrocycle, which is not acceptable for the study of fullerene formation mechanisms as

carried out, e.g. by Mishra et al. [31].

Direct DFTB MD trajectories were run by calculating energy and the analytical energy

gradient on the fly with a velocity Verlet integrator, using 1.209 fs (equals 50 a.u.) as the

time step Dt. This time-step, larger than what is often used, is adopted since the system
contains no light hydrogen atoms. We have shown that the error introduced by our choice

of Dt amounts only to a few kcal/mol, which is a negligible amount at temperatures of

1000 K and higher [21]. Temperature is kept constant by scaling of atomic velocities in

two ways. For one, scaling is regularly performed after 12 fs, and additional random

scaling is performed with a probability of 10%, thereby the overall probability of scaling

velocities is 20% for the entire length of the simulations.1 Initial velocities are assigned

randomly. All calculations were carried out with periodic boundary conditions to

maintain constant densities.

31.4 SELF-ASSEMBLY CAPPING PROCESS OF OPEN-ENDED

CARBON NANOTUBES

The studies described here are presented in detail in Refs. [21,22], and we will only focus

on their most important aspects for self-assembly processes in the context of CNT

capping. We chose to run QM/MD trajectories starting with open-ended CNTs of

different chirality and lengths at various temperatures. In total, we ran more than 70

trajectories, most of them for at least 12 ps. The low-temperature 1000 K regime was

found to be non-reactive and the high-temperature regime above 4000 K led to immediate

fragmentation. Therefore we mainly used target temperatures between 2000 and

4000 K. Three different types of (n,m) nanotubes were chosen with about the same

diameter d: armchair (5,5), d ¼ 6.88 Å, chiral (7,3), d ¼ 7.15 Å, and zigzag (9,0),

d ¼ 7.06 Å. In addition a (10,5) nanotube with a much larger diameter of d ¼ 10.5 Å was

studied. Three different tube lengths: 7.5, 10, and 20 Å were adopted for each species. An

important finding is that the diameter of the (10,5) nanotube appears to be too large

to allow its openings to be closed within 12 ps, regardless of the tube length. Table 1 of

Ref. [22] summarizes or results for 2000, 3000, and 4000 K for (5,5), (7,3), and (9,0) open

nanotubes. Fig. 31.2 displays a typical DFTB QM/MD trajectory of a (5,5) 7.5 Å

1 We have also tested scaling of temperature at a lower rate (5%) and found that a scaling probability of 20%

does not artificially speed up the dynamics simulation.
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open-ended armchair tube at 3000 K, forming a fullerene molecule by capping of both

ends within 14 ps.

Since only one or a few trajectories were run for each case, we make no claims on the

statistical validity of the findings. However, we were able to extract important dynamic

events common to many of these trajectories. The most striking finding of the present

study is that many trajectories at 3000 and 4000 K closed both ends and formed fullerene

structures within 14 ps. The key dynamical feature is an interplay between wobbling C2
fragments, which are formed at the ends of the tube and occasionally catch neighboring

hexagons to form pentagons, and creation, migration and isomerization of pentagons.

This finding is in noticeable agreement with the observations of Car and co-workers in

their computationally much more expensive CPMD studies on similar systems [54].

Trajectories run at 4000 K, compared to 3000 K, show higher C2 formation activities and

tend to close faster, accompanied with loss of C1 to C3 fragments. Trajectories at 2000 K

also formed wobbling C2 units at lower rate but did not close at either end; longer

simulation times are required in this temperature regime for capping of the open-ended

tubes. Chiral tubes like (7,3) show a greater tendency to develop even longer polyyne

chain defects at the open-ends, in particular at those defects where the open ends

resemble a stair case, but especially at higher temperatures, wobbling C4 units are also

developed in the case of the (5,5) armchair tubes [21]. At about 3000 K, armchair tubes

Fig. 31.2. DFTB QM/MD simulation of a (5,5) open-ended SWNT of 7.5 Å length at 3000 K. Wobbling C2
units are the predominant structural feature of this type of system, not at all appearing in comparable REBO type

simulations (see Fig. 31.3).
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typically develop only wobbling C2 units from the breaking of cisoid rim-bonds, but very

rapidly. (9,9) zigzag chains are somewhat different, as wobbling C2 units only develop

after Stone–Wales rearrangements have introduced heptagon/pentagon pairs at the

openings, heptagons being more prone to develop such carbon chain fragments due to

their greater flexibility. Once they have been created, these long-lived wobbling carbon

chains occasionally make contact with defect structures (other wobbling C2 units or 10-

membered macrocycles created from adjacent five- and seven-membered rings) on the

opposite site of the opening, leading eventually to rapid tube closure within typically

14 ps. We noted that once a structural defect like “wobbling C2 unit” creation occurs, p-

delocalization in that region of the opening is decreased, and more bonds are likely to

break in its vicinity, leading to a high concentration of wobbling C2 units in that area. At

final stages of tube closure, [2 þ 4] cycloaddition “zipper” type reactions occur when the

opening size has been reduced and only consists of 12-membered rings.

These studies already indicate that linear, sp-hybridized carbon chains are favorable

species under high-temperature conditions, due to their high entropy factors and their

remarkable C–C bond strengths, while maintaining enough flexibility to move around

considerably, especially at high temperatures. They are essential species in the self-

assembly capping mechanism of nanotubes, forming easily new bonds with other chains

or defects, and subsequently lead to restructured graphene sheets, which include

Fig. 31.3. REBOMD of a (5,5) open-ended SWNT of 7.5 Å length at 3000 K. Structural transformations occur

mainly in the center of the tube, almost never at the edges. No wobbling C2 units are observed at all.
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pentagons and hexagons in approximately 2:1 ratio, leading to the formation of curved

graphite spheres.

Remarkably, none of these reactions could be observed when similar trajectories were

run using the REBO potential (see Fig. 31.3); instead, unreasonable transformation in the

center parts of the tubes were observed, which prolonged the tube closing processes

substantially into the nanosecond regime. Obviously, quantum mechanical hybridization

and delocalization effects play a synergetic effect in carbon chemistry that cannot be

included without full electronic structure calculations.

31.5 SELF-ASSEMBLY OF FULLERENE MOLECULES FROM
ENSEMBLES OF RANDOMLY ORIENTED C2 MOLECULES

Under experimental conditions of fullerene formation, a constant flow of carbon material

is certainly present during the microsecond long process, forcing initially formed carbon

clusters constantly out of thermodynamic equilibrium. We chose to model such an open

environment [23,24] by adding more C2 units to a trajectory once an equilibrium state is

reached where no apparent structural reorganizations take place. For a schematic diagram

of the exact schedule for C2 additions in our previous simulations (Fig. 31.4). We ran

about 130 such trajectories for up to 160 ps. Snapshots for two of these trajectories are

shown in Figs. 31.5 and 31.6, where giant fullerenes emerge after approximately 140 ps.

At initial stages, long linear sp-hybridized carbon chains entangle and form initial

clusters of condensed “small” rings (which we call nucleus), which can attain lifetimes

long enough at around 2000 K temperature to form bonds with neighboring carbon

atoms of attached chains to form larger condensed ring systems by the ring-collapse

60 C2s
in 30

cubic box
0.7g /cm

6ps

2000K
add 10 more C2

6ps

2000K
add 10 more C2

add 10 more C2add 10 more C2

6ps

2000K

6ps

2000K

6ps

2000K
add 10 more C2

add 10 more C2

6ps

3000K

10-48ps

3000K

ÒS2Ó to ÒS5Ó

2000K preferred for earlier stage

Fig. 31.4. Schematic diagram for QM/MD trajectories starting from ensembles of randomly oriented C2
molecules leading to fullerene formation in a self-assembly mechanism under periodic addition of 10 C2’s along

the trajectory. Temperature is increased at the final stage to accelerate cage closure.

High-temperature quantum chemical molecular dynamics simulations 883

References pp. 887–889



mechanism. We call this initial event “nucleation”, which is the first step in fullerene

formation. We found that the possibility for ring destruction is greatly reduced once

two to three rings are forming a condensed ring system. At temperatures of 2000 K and

higher, the energetic difference between pentagons and hexagons does not matter very

much, and we found that both species are readily created with a ratio of about 1:2,

respectively, similar as in the case of self-assembled nanotube caps. While the growing

condensed ring system gains energy non-linearly by growing p-delocalization in the
ring condensation step (the second step in fullerene formation), the embedded pentagons

force the growing slab to adapt a uniform curvature. At the same time, attached polyyne

chains are growing by catching additional Cn molecules from the carbon mixture of the

environment, and retain thereby their flexibility to bend so much that ring condensation

between slab border atoms and the nearest chain neighbor atoms can continue to proceed.

The result is typically a basket-shaped carbon cluster with several long linear carbon

chains attached to its opening, and these chains are able to reach over to the other ends,

forcing the system to eventually close to a fullerene cage. This is the third and last step of

fullerene formation. The energy profile associated with this mechanism is constantly

downhill, because catching high-energetic small carbon fragment molecules and forming

bonds to attach them at the attached carbon chains releases constantly energy. The entire

process appears to be a fascinating interplay between growing stabilization of an

expanding p-conjugated, polyaromatic system and the dynamics of the polyyne chains

attached to it.

Fig. 31.5. S2 trajectory from Ref. [23], starting from 60 C2 units with 0.09 g/cm
3 initial carbon density, leading

to a C184 giant fullerene.
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We found that the gradual addition of C2 is essential for the formation of a significantly

curved carbon cluster, and that entanglement of carbon chains at initial stages is crucial

for two reasons: (a) formation of a nucleus of polycyclic structures, and (b) formation of a

3D-scaffold along which ring-condensation growth can occur subsequently. We found

that if one starts simulations with the final number of C2 molecules of our successful

trajectories from the beginning without adding more C2 molecules subsequently, only

very few linear chains grow very long, as opposed to many shorter chains created by the

subsequent addition of C2 molecules. The ultra-long carbon chains created by the “all-at-

once” approach are likely to lead eventually to large graphene sheets with lesser

curvature than when starting from more but shorter polyyne chains, due to the lack of

initial entanglement.

We have shown that our QM/MD isokinetic trajectories, although not representing

statistical ensembles, are valid exploratory investigations into the dynamics of carbon

clusters at high temperature, capable of detecting key features in the formation

mechanisms of carbon nanostructures. However, in Ref. [23], our QM/MD simulations

led only to the formation of so-called “giant fullerenes”, namely C146, C184, and C208 by

self-assembly from ensembles of C2 molecules. We, therefore, call this stage of fullerene

formation the size-up roadmap. Starting at higher carbon densities reduced the size of

resulting fullerenes [24] down to C72, but somewhat surprisingly, neither C60 nor C70, the

most important and abundant representative of fullerenes, were found in our simulations.

Fig. 31.6. S3 trajectory from Ref. [23], starting from 60 C2 units with 0.09 g/cm
3 initial carbon density, leading

to a C146 giant fullerene.
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Moreover, the product distribution among higher fullerenes C72–C100 is in thermo-

dynamic equilibrium [55], but so far we have been unable to obtain such a product

distribution. Of course, one may not expect from running over a hundred trajectories to

obtain the correct product distribution, but at least we should have been able to see

indicators for the preference of small fullerenes over large ones. Yet, our trajectories so

far never led to the self-assembly of C60 or C70 directly, indicating that perhaps giant

fullerenes are formed first following the size-up roadmap, followed by “fall off”

of attached polyyne chains and subsequent shrinking caused by expelling C2 units, which

is an energetically feasible process [56] and has been observed and described

experimentally by Smalley and co-workers [57]. We call this second stage of fullerene

formation size-down roadmap. We have preliminary theoretical results on the rate at

which C2 units are expelled in what we termed “pop-out” processes from giant fullerenes

under prolonged heating at 3000 K, and our estimate is currently 0.5 C2 per picosecond

(see Fig. 31.7) [24]. C2 loss is expected to slow down when the size of the cage becomes

smaller, until more rigid cages like C60 are reached, which are kinetically extraordinarily

stable. These smaller fullerene molecules become then “trapped” and their quantity

increases, enriching the fraction of smaller fullerenes as the main reaction product.

Additionally, we expect that heptagon, fused pentagon, and four-membered ring

defects will eventually give way to the regular structures of isolated pentagon rule (IPR)

fullerenes. The pathways from eight-membered ring defect fullerenes down to IPR

fullerenes has already been described in the literature using a generalized Stone–Wales

(GSW) approach [58], and Maruyama and Yamaguchi found formation of perfectly

Ih-symmetric C60 in their simulated annealing simulations using the REBO semiclassical

Fig. 31.7. Snapshots of trajectory S3 from Ref. [24]. Roman number below each snapshot is the time t in

picosecond. Red circles indicate locations of “fall-off ” or “pop-out” processes.
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molecular mechanics method [37]. The combined two-stage mechanism consisting of

size-up, followed by size-down, explains the abundance of buckminsterfullerene C60 in

experiment as well as the distribution of larger fullerenes obtained by typical combustion

processes. We are currently continuing nanosecond long QM/MD simulations along

these lines.

31.6 CONCLUSIONS

In performing QM/MD high-temperature simulations for the capping process of open-

ended CNTs, we learned about the importance of polyyne chains for structural

rearrangements of the carbon network, and their amazing abilities to introduce curvature

into graphene sheets by making use of their abundance at high temperatures, high C–C

bond strengths, long lifetimes, and flexibility. Their structural and dynamic importance

already suggests that at initial stages of fullerene formation, the party line mechanism is

most likely to dominate. The concept of “self-assembly” in fullerene formation emerges

somewhat surprisingly but naturally as a consequence of our non-equilibrium dynamics,

and we found that fullerenes might in fact represent “frozen” dissipative dynamic carbon

structures commonly found in non-linear dynamic systems [25], trapped by rapid cooling

thanks to their kinetic stability. A size-up roadmap has been described by which fullerene

molecules are formed from random ensembles of small carbon fragments in QM/MD

simulations when periodically batches of C2 units are added. Three steps are clearly

identified which are required for fullerene formation: (1) nucleation; (2) ring

condensation growth; and (3) cage closure. Depending on the density, different sizes

and formation times are observed, but so far all trajectories lead to fullerene cages larger

than C60. In a size-down roadmap, these giant fullerenes are exposed to prolonged heating

at 3000 K, and “pop-out” events are observed, consistent with experimental observations.

The combined two-stage size-up/size-down mechanism provides a natural explanation

for the dominant appearance of kinetically stable C60 as final fate of giant fullerenes, and

the existence of larger fullerenes in experiment.
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Abstract

Fullerenes and metallofullerenes were for the first time observed in the gas phase about

20 years ago and then prepared in crystalline form about 15 years ago. An enormous

amount of observed and computed data has been obtained during the period. The chapter

surveys various computational aspects of fullerene science including rich isomerism and

the enthalpy–entropy interplay both of which represent essential features of fullerene and

metallofullerene formations.

32.1 INTRODUCTION

Fullerenes—or cage compounds built exclusively from carbon atoms—and their metal-

containing derivatives, metallofullerenes, were first observed in the gas phase by Kroto

et al. [1,2] less than 20 years ago and prepared in crystalline form by Krätschmer et al. [3]

less than 15 years ago. Still, an enormous amount of observed and computed data has

been obtained during this time (see, e.g. recent surveys on fullerenes [4–8] and

endohedral metallofullerenes [9,10]). In addition to spheroidal fullerene cages, fullerene

science also deals with other objects like elongated cylindrical bodies known as

nanotubes, prepared by Iijima [11] soon after mastering the fullerene synthesis,

nanocones [12] or peapods [13]. All the species exhibit a substantial application

potential, especially for molecular electronics [14].

Fullerenes and metallofullerenes have attracted a considerable interest from

experiment [15] as well as computations and theory [16,17]. Their experimental

characterization is mostly based [18–20] on 13C NMR spectroscopy and more recently

q 2005 Elsevier B.V. All rights reserved.
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also on 3He NMR spectroscopy. Fullerenes are commonly defined as polyhedral cages

containing only carbon atoms arranged into five- and six-membered rings. Quasi-

fullerenes [21] are cages containing other types of cycles, too, like (topological) squares

and heptagons.

The very early history [22–26] of carbon clusters starts with a mass-spectrometric

observation of clusters up to C15 by Hahn and his co-workers [27] 60 years ago. In the

1950s and 1960s, experiments [28–30] could expand up to C33. At this stage, initial

simple computations had also been performed on small carbon clusters by Pitzer and

Clementi [31,32], Hoffmann [33] and others [34,35]. Moreover, various qualitative

estimations for larger carbon cages including C60 were presented [36–40].

At the time of the C60 discovery [1], computations could support fullerene [16,17] and

metallofullerene [41] research with increasingly reliable data. It is of historic interest

that the four IR bands computationally predicted [42–47] for C60 were used [48] in

the analysis of the carbon-arc C60 synthesis. Fullerene research [49,50] has indeed

been characterized by a close theory–experiment cooperation and application of large-

scale computations [51,52]. Although numerous surveys are available [53–80], the

sole computations of fullerenes and metallofullerenes are reviewed relatively rarely

[16,17,41,81–90].

Structural elucidations for the known higher fullerenes Cn [19,91–93] have been based

on the so-called isolated pentagon rule (IPR), which claims [94,95] that especially stable

fullerenes should have all pentagons surrounded just by hexagons. Connectivity patterns

for such cages can be generated by various topological schemes [96–99] and in fact the

cages can be quite numerous. Beyond n ¼ 76 isomerism of the IPR structures should

generally play a role in observations. Several such mixtures of empty fullerene isomers

have indeed been computed and an agreement with experiments found: C76 [100–110],

C78 [111–114], C80 [115–119], C82 [120–125], C84 [126–132], C86 [91,133–136], C88
[91,134–136], C90 [91,137,138], C92 [139], C94 [140] and C96 [141], while there is still

only a computational prediction [142] for C98. A similar isomeric interplay has also been

described for smaller fullerene systems like [143–146] C32 or C36. Various

metallofullerenes can coexist [41] in several isomeric forms as well, e.g. Ca@C72
[147–150], Mg@C72 [151,152], Ca@C74 [147,149,153,154], Ca@C82 [155–161],

La@C82 [162–166], Tm@C82 [167], Ti2@C80 [168], Sc2@C84 [169], Ti2@C84 [170]

or Sc2@C76 [171]. Still other interesting isomeric sets can be created [172–176] by

derivatives of fullerenes or nanotubes.

Although the inter-isomeric separation energies are important, they alone cannot

predict the relative stabilities of the isomers. Owing to very high temperatures, entropy

contributions can even over-compensate the enthalpy terms. Hence, the enthalpy–

entropy interplay represents an essential feature of fullerenes and metallofullerenes.

32.2 RELATIVE STABILITIES OF ISOMERS

The present quantum-chemical calculations of fullerenes deal with the optimized

geometries [177–181] obtained at semiempirical, ab initio Hartree–Fock Self-

Consistent Field (HF SCF) or density functional theory (DFT) level while ab initio
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correlated treatments are very rare. The most common semiempirical methods used in

fullerene research are [182–185] MNDO, AM1, PM3 and SAM1 implemented in the

MOPAC and AMPAC programs [186–188]. Various ab initio procedures are mostly

applied using GAUSSIAN [189,190] and SPARTAN [191] program packages. Stability of the

SCF wave function [192,193] can be an issue for some fullerenic structures. The

geometry optimizations are frequently followed by harmonic vibrational analysis to

check the nature of stationary points found and also to construct vibrational partition

functions. Vibrational frequency scaling would be relevant for the spectral simulations

though it is not important for the high-temperature partition functions [194].

The geometry optimizations will end with a set of m isomeric structures. Their relative

concentrations can be expressed as their mole fractions, wi; using the isomeric partition
functions qi: In terms of qi and the ground-state energy changes DH

o
0;i the mole fractions

are given [195–197]:

wi ¼
qi exp½2DHo

0;i=ðRTÞ	Xm
j¼1

qj exp½2DHo
0;j=ðRTÞ	

ð1Þ

where R stands for the gas constant and T for the absolute temperature. Eq. (1) is an exact

formula that can be directly derived [198] from the standard Gibbs energies of the

isomers, supposing the conditions of the inter-isomeric thermodynamic equilibrium.

Although the partition functions are to be constructed within the rigid-rotor and

harmonic-oscillator (RRHO) approximation, Eq. (1) itself is essentially exact. The

partition functions qi reflect the rotational, vibrational, electronic, symmetry and chirality

[199] features of the individual isomers.

If the partition functions are neglected and the vibrational zero-point energy is

extracted from DHo
0;i; the relative potential energies DEr;i remain, giving the simple

Boltzmann factors:

w0
i ¼

exp½2DEor;i=ðRTÞ	Xm
j¼1

exp½2DEor;j=ðRTÞ	
ð2Þ

entirely based only on the potential energy terms with no reference to entropy

contributions. However, the simple Boltzmann factors can never cross with a temperature

change.

32.3 ENERGETICS AND THERMODYNAMICS OF CARBON CLUSTERS

The conventional fullerenes are understood [21,97] as cages built from three-coordinated

(sp2) carbon atoms arranged into two types of rings, pentagons and hexagons. As any

other polyhedra, fullerenes have to obey Euler’s polyhedral theorem [200,201] (more

precisely, the theorem for convex polyhedra):

V þ F ¼ E þ 2 ð3Þ
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where V denotes the number of vertexes (atoms), F the number of faces (rings) and E the

number of edges (bonds), e.g. for C60: V ¼ 60; F ¼ 32; E ¼ 90: As only pentagons and
hexagons are allowed, their numbers, n5 and n6; give the total count of faces:

F ¼ n5 þ n6 ð4Þ
As all atoms are three-coordinated, it must hold for the number of edges:

E ¼ 3V

2
ð5Þ

as each bond is accounted twice. One can also count the edges through rings:

E ¼ 5n5 þ 6n6
2

ð6Þ

Combining Eqs. (5) and (6) yields

V ¼ 5n5 þ 6n6
3

ð7Þ

Eq. (5) can be placed in Euler’s theorem:

V þ F ¼ 3V

2
þ 2 ð8Þ

and combination with Eqs. (7) and (4) gives

n5 þ n6 ¼ 5n5 þ 6n6
6

þ 2 ð9Þ

which can immediately be reduced to:

n5 ¼ 12 ð10Þ
In other words, in any conventional fullerene Cn the number of five-membered rings must

be equal to 12. The number of six-membered rings is variable; however, Eq. (7) gives a

relationship to the number of carbon atoms:

n6 ¼ n2 20

2
ð11Þ

According to Eq. (11), the smallest possible fullerene has the stoichiometry C20 (12

pentagons, no hexagons). Among all possible fullerenes, a special position is given to the

IPR cages [94,95] (that have all the pentagons surrounded just by hexagons) as the

arrangements should be especially stable. In other words, there are no pentagon–

pentagon junctions in the IPR fullerenes. As there are always 12 pentagons, then the

smallest cage that could be of the IPR type should have 12 £ 5 carbon atoms. Indeed, 60

carbon atoms can create an IPR cage (which geometrically is a truncated icosahedron),

and the structure is the well-known buckminsterfullerene C60.

Already the MINDO/2 computations [34,202] of small carbon clusters Cn pointed out a

simple, smooth dependency of the relative heats of formation DHo
f;298=n on the number of

carbons n: Later on, the curve was extended into the fullerene domain [51,86,203–206]
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and it was still a smoothly decreasing dependency. Xu and Scuseria [206] could find such

behavior even with carbon clusters up to C8640.

There is a simple way to rationalize the finding. Let us limit our reasoning to the IPR

fullerenes. Then, we deal with two types of bonds, frequently called as the 5/6 (between

pentagons and hexagons) and 6/6 bonds (shared by two hexagons). Let us suppose

moreover that those two types of bonds can be represented [207] by some uniform

dissociation energies, H5=6 and H6=6: In a general IPR fullerene Cn we have always sixty

5/6 bonds, while the number of the 6/6 bonds is variable, ð3n=2Þ2 60: Now, we can
readily write for the atomization heat of the considered Cn:

DHat ¼ 60H5=6 þ 3n

2
2 60

� �
H6=6 ð12Þ

The atomization and formation heats for carbon aggregates are linked by the heat of

vaporization of carbon, DHo
vap:

DHo
f

n
¼ 2

DHat

n
þ DHo

vap ð13Þ

or simply in terms of the bond energies:

DHo
f

n
¼ 2

3

2
H6=6 þ DHo

vap þ 60

n
ðH6=6 2 H5=6Þ ð14Þ

This functional dependency can formally be expressed by:

DHo
f

n
¼ Aþ B

n
ð15Þ

where B is a positive constant and A a relatively small number. Hence, Eq. (15) is indeed

a smoothly decreasing curve. From such a curve, one cannot see a particular stability of

C60 or C70. Just the opposite—it might suggest a straightforward rule that the stability

would increase with the dimension which is, however, not observed.

In its most general form, the fullerene synthesis could be treated as a complex kinetic

scheme described by a huge number of kinetic differential equations. The equilibrium

composition comes as the limiting case for infinite time. If we treat the problem from a

thermodynamic point of view, we should realize that the conventional standard pressure

of 1 atm is considerably different from the actual fullerene synthesis conditions. We

should expect lower cluster pressures in the carbon-arc synthesis. The actual entropy

and Gibbs free energy change with pressure as can be demonstrated [208–212] on the C60
and C70 cases based on computed or observed [213] data. For example, the equilibrium

constant K60=70 for an interconversion between the two clusters, expressed in partial

pressures p; offers a deeper insight into the problem [208–212]:

K60=70 ¼ p
6=7
70

p60
¼ ð12 x60Þ6=7

x60
P21=7 ð16Þ
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where P stands for the total pressure of the two clusters and x60 is the mole fraction

of buckminsterfullerene. At higher pressures, C70 is more populated than C60, but

at the conditions of a saturated carbon vapor (simulated simply as a mixture of seven

cluster at present) the stability order is reversed in favor of C60 so that an agreement

with experiment is obtained. Although the isomeric stability problem is much better

understood [198,214–216] at present than the relative stabilities of non-isomeric

carbon clusters, there are some interesting results available for the non-isomeric

situation also. The numerical simulations [208–212] pointed out a temperature

increase of the clustering degree under the saturation conditions. This somewhat

surprising result can in fact be easily rationalized [217]. While the equilibrium

constants for cluster formation decrease with temperature, the saturated pressure

increases. It is just the competition between these two terms which decides the final

temperature behavior. The finding actually has a more general validity as it was also

reported for other vapors [218–221].

32.4 SMALL CARBON CLUSTERS

The relative stabilities of small carbon clusters can be treated in a similar way as those of

fullerenes and thus they represent a useful model system. They have been studied by both

theoretical [222–240] and experimental [241–264] techniques. Raghavachari and

Binkley [223] concluded that linear isomers exist for both even- and odd-numbered

species (the even clusters being in the triplet electronic state) while planar cyclic isomers

exist for the even species. Ion chromatography observations by von Helden et al. [261,

263,264] showed that starting from about n ¼ 7 cyclic rings always exist in addition to

the linear forms. Consequently, C7 was computed [236,265] at the MP2/6-31G
p level and

found to be about 2 kcal/mol above the linear form. A non-planar cyclic structure was

found for C8 [237] and C9 [266] at the same level so that an inversion is possible [237,

267]. The non-planar C8 cycle was, however, not found in the coupled-cluster

computations by Martin and Taylor [240]. The MP2/6-31Gp calculations are also

available [268–270] for C10, C11, C12 and C13. Overall [271], the computations agree

with the findings of ion chromatography [261,263,264]. C11 should be the first species for

which the cyclic structure becomes dominant. Switch from cyclic to polyhedral species is

expected [272] around n ¼ 45:
The linear and cyclic (rhombic, bicyclic) C4 isomers were frequently computed. The

cyclic vs. linear difference varied considerably; however, newer estimates [273–277]

suggest only a small separation between the linear and cyclic forms. Then, the entropy

contributions can lead to one dominant species at higher temperatures [245,278–280],

namely the linear isomer in agreement with ion chromatography [261].

Role of entropy is also important for C6. Raghavachari et al. [222] found the cyclic

ground state for C6. Still, the linear isomer is computed [214,240,281] to form more than

95% of the equilibrium mixture at high temperatures in agreement with ion

chromatography [261] (cf. Refs. [282,283]).
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32.5 GENERATION OF CAGES

Exhaustive topological enumerations and generations of fullerene cages represent a

crucial step, systematically studied by Fowler et al. [96,97,284–302] and other groups as

well [95,98,99,303–331]. Several concepts are useful in the treatments, e.g. Goldberg

polyhedra [286], leapfrog transformation [296], topological duals [306], Stone–Wales

transformation [304]. Stone and Wales [304] introduced processes for ring rearrange-

ments in fullerene cages. The topological concept can further be generalized [332] by

inclusion of other types of rings. The kinetic processes can physically be realized

[333–335] by means of catalysis or autocatalysis. The Stone–Wales transformation can

in any case be applied as a formal topological structure generator [132,143,296].

A versatile enumeration technique for fullerene cages was developed by Fowler and

Manolopoulos [96,97,308]. They represent fullerenes by a ring spiral as fullerenes can be

peeled like an orange—each face, after the first, borders its immediate predecessor, so a

single continuous spiral is created. Some exceptional cases are, however, possible [302]

like a tetrahedral fullerene with 380 atoms.

In the spiral algorithm, the bonding topology is reconstructed from the sequence of rings

in the spiral. Thus, all possible Cn fullerene graphs can be generated by considering all the

ways in which 12 pentagons and ððn=2Þ2 10Þ hexagons can be combined into a spiral:

Sn ¼
n

2
þ 2

� �
!

12!
n

2
2 10

� �
!

ð17Þ

A uniqueness test is based on the eigenvalues of the adjacency matrix.

It was found [308–313] that, e.g. the number of C60 isomers is 1812. Odd-numbered

cages are usually not considered in the enumerations though they are known [314,336,

337]. Among all the possible isomers, the IPR structures are particularly important

species. The second smallest IPR fullerene after C60 is C70. It is still a unique structure

like those for n ¼ 72 and 74. For any higher carbon atom content, we already deal with

IPR isomers, e.g. [96,97], for n ¼ 76; 78, 80, 82, 84, 86, 88 and 90 there are 2, 5, 7, 9, 24,
19, 35 and 46 IPR structures, respectively.

Other enumeration algorithms were developed [98,99,132,309,310,320]. There are also

interesting applications of Pólya’s enumeration theorem [198,338]. The theoremwas, e.g.,

applied [321,324,330,331] to enumerations of isomers for various substituted fullerenes.

32.6 SMALLER FULLERENES

Although fullerene science is focused at n ¼ 60 and above, smaller fullerenes have also

been studied. von Helden et al. [261,272] observed gas-phase fullerene-like structures

around C30 (5% for C32, 1% for C30). Even the smallest fullerene C20 is now available

[339–342] (for its computations, see, e.g. Refs. [216,343–346]). C36 fullerene was also

isolated [347], computed [144,145,348,349] and linked to narrow nanotubes [350–353].
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An interesting illustrative example is supplied with computations [143] of C32. There

are just six conventional C32 cages built from pentagons and hexagons [348]. As no IPR

structures are possible for C32, a pentagon/pentagon junction will always be present.

Their number can be reduced by introduction of four-membered and/or seven-membered

rings. Euler’s network closure requirement reads then:

2n4 þ n5 2 n7 ¼ 12 ð18Þ
where ni is the number of rings with i vertices. An exhaustive generation [143] of all C32
cages built from four-, five-, six- and/or seven-membered rings with a limitation, 2n4 þ
n7 # 4; gives 199 cages. All the 199 structures were computed [143] and a D4d structure

with two four-membered rings (and no heptagons) was found as the ground state. Among

five structures lowest in energy, only two are conventional fullerenes, the other cages

contain at least one square. However, the entropy contributions reverse [143] the stability

order. The structure lowest in energy is the most populated species till a temperature of

about 2500 K. Beyond that point it is surpassed by a conventional fullerene. At still

higher temperatures, another quasi-fullerene becomes a leading isomer. An interesting

enthalpy–entropy interplay was also computed [144–146] for C36.

32.7 HIGHER FULLERENES

Studies of isomerism of the IPR cages from C76 till C98 are available [100–142]. In fact,

C72 is the last member among higher fullerenes [19,92] C60–C96 that has not been

isolated in condensed phase. C74 has also been counted as a ‘missing fullerene’, however,

some access to C74 is already possible [354,355]. A low solubility [356] in conventional

solvents may be one reason for the difficulties. Hence, as C72 could only be recorded in

gas phase [357,358], its structure is not known. Nevertheless, its computations can still

serve as an interesting illustrative example. C72 can also act as a host cage for some

metallofullerenes [41,147,148] like Ca@C72 or La2@C72.

There is just one IPR-satisfying structure for C72, namely with D6d symmetry [97]. It

was, however, pointed out in conjunction with the Ca@C72 computations [148] that a non-

IPR (i.e. IPR-violating) structure with one pentagon–pentagon junction is by a few kcal/

mol lower in energy than the IPR cage. Moreover, it was demonstrated [359] on the Si60
case that the IPR/non-IPR stability order can be reversed by the entropy factor. Hence, the

C72 system was investigated at semiempirical [360] and DFT levels [361]. At the DFT

level, the geometry optimizations were carried out [361] using the B3LYP/3-21G

treatment. In the optimized B3LYP/3-21G geometries the harmonic vibrational analysis

was carried out and also the B3LYP/6-31Gp separation energies were evaluated. The

electronic excitation energies were evaluated by means of the ZINDO method [362,363].

The following structures were considered [361]: the IPR cage (a), two non-IPR cages

[148] with one pentagon–pentagon junction (b) and (c), a structure [148] with one

heptagon (d), a cage [149] with two heptagons (e) and two structures [356] each with two

pentagon–pentagon junctions (f) and (g). Fig. 32.1 presents the B3LYP/3-21G optimized

structures of the seven C72 isomers. The (c) structure of C2v symmetry with just

one pentagon/pentagon fusion represents the lowest energy isomer, being followed
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by the IPR structure (a). The other structure with just one pentagon–pentagon junction,

(b) isomer of C2 symmetry, comes as the third lowest species. The B3LYP/6-31G
p//

B3LYP/3-21G relative energies are 0.0, 11.3, 18.4, 31.1, 34.9, 35.5 and 43.7 kcal/mol for

the (c), (a), (b), (e), (g), (d) and (f) structures, respectively.

Fig. 32.1. B3LYP/3-21G optimized structures of C72 isomers: (a) IPR, (b) 5/5 pair, (c) 5/5 pair, (d) seven-

membered ring, (e) two seven-membered rings, (f) two 5/5 pairs, (g) two 5/5 pairs. (Reproduced from Ref. [361]

with permission of Elsevier BV.)
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Fig. 32.2 presents the DFT computed temperature development of the relative

concentrations of the seven C72 isomers in a high-temperature region. The lowest energy

structure (c) is the most populated species at any temperature. On the other hand, the IPR

structure (a) is always negligible. Its elimination cannot be ascribed only to the potential

energy. In fact, several structures higher in potential energy than the (a) isomer are more

populated at high temperatures. This is in particular true for the (b) structure with one

pentagon–pentagon junction and the (e) structure with two heptagons (the (e) cage
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Fig. 32.2. Relative concentrations of the C72 isomers based on the B3LYP/6-31Gp energetics and the

B3LYP/3-21G and ZINDO entropy. (Reproduced from Ref. [361] with permission of Elsevier BV.)
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is located in the B3LYP/6-31Gp scale about 20 kcal/mol above the (a) isomer). Clearly

enough, the IPR structure is suppressed not only by its energy but also by its unfavorable

entropy term (especially by the vibrational entropy).

The C74 case is, however, different. Recently, Shinohara and co-workers [355]

recorded electronic spectrum of C74 anion and suggested that the cage could have D3h

symmetry (i.e. the only one available IPR structure [97]). This interesting finding

prompted DFT calculations [364] that treated a set of six isomers, five of them being non-

IPR species. The computational evaluation, however, shows that the IPR structure

prevails at any relevant temperature in agreement with the experimental finding [355].

32.8 ENDOHEDRAL METALLOFULLERENES

The combined quantum-chemical and statistical-mechanical stability computations have

been applied to a few metallofullerenes also, especially to Ca@C72, Ca@C74, Ca@C82 or

La@C82. Ca@C72 was isolated [147] though its observed structure is not yet available. It

follows from its very first computations [148,149] that there are four isomers especially

low in potential energy (though C72 has only one [97] IPR structure). The endohedral

Ca@C72 species created by putting Ca inside the sole IPR cage has been labeled [148] by

(a). The other three Ca@C72 isomers considered in Ref. [148] are related to two non-IPR

C72 cages (b) and (c), and to a C72 structure with one heptagon (d)—see Fig. 32.3.

The extended computations [150] started from the four optimized structures [148]

derived using ab initio HF treatment with a combined basis set: 3-21G basis for C atoms

and a dz basis set [365] with the effective core potential (ECP) on Ca (for the sake of

simplicity, the treatment is coded by HF/3-21G , dz). The structures [148] were

reoptimized at the B3LYP/3-21G , dz level. The B3LYP/6-31G , dz//B3LYP/3-

21G , dz relative energies for the (b), (c), (d) and (a) structures are 0.0, 0.8, 18.9 and

35.3 kcal/mol, respectively. In the optimized B3LYP/3-21G , dz geometries the

harmonic vibrational analysis was carried out with the analytical force-constant matrix.

In the same geometries single-point energy calculations were also performed at the

B3LYP/6-31Gp level. The electronic excitation energies were evaluated by means of

time-dependent DFT response theory [366] at the B3LYP/3-21G , dz level.

Fig. 32.4 presents [150] the temperature development of the relative concentrations of

the four Ca@C72 isomers in a high-temperature region. At very low temperatures (not

shown in Fig. 32.4) the structure lowest in the DHo
0;i scale must be prevailing. However,

already at a temperature of 226 K (though such a low temperature is of no importance for

the fullerene synthesis) the relative concentrations of the (c) and (b) structures are

interchanged and beyond the point the (b) structure is always somewhat more populated.

Even more interesting is the behavior of the IPR-satisfying (a) structure. As the structure

is the highest in the potential energy, it must be the least populated species at low

temperatures. However, later on the entropy contributions (low symmetry, some lower

vibrational frequencies and some lower electronic excitation energies) elevate the (a)

isomer into the status of a minor isomer that could also be observed. On the other

hand, the (d) isomer has the least chances to be detected. Interestingly enough,
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the concentration order at high temperatures for Ca@C72 is quite similar to that

previously computed [151] for Mg@C72.

In contrast to Ca@C72, Ca@C74 was not only isolated [147] but its structure was also

determined [153]. According to the 13C NMR spectra recorded by Achiba and co-workers

[153], Ca@C74 exhibits D3h symmetry of its cage. There is only one IPR structure

possible [97] for the empty C74 and the sole C74 IPR cage has D3h symmetry. A set of

altogether six Ca@C74 isomers was subjected to the stability computations [154]. It turns

out, in agreement with the experiment, that the encapsulate with the IPR cage has not

only favorable enthalpy but also entropy term and thus all the remaining isomers can act

as minor species at best.

The third illustrative system, Ca@C82, exhibits the richest isomerism among the

Ca endohedrals [147,155,157,366–369]. Shinohara and co-workers [155] isolated four

isomers of Ca@C82 and labeled the isomers (I), (II), (III) and (IV). Dennis and Shinohara

concluded [158,370] from the 13C NMR spectra of Ca@C82 (III) its symmetry as C2: The
ultraviolet photoelectron spectra measured by Hino et al. [159] support the finding; a

similarity with Tm@C82 (II) was also noted [167]. Very recently, Achiba and co-workers

(a) (b)

(c) (d)

Fig. 32.3. B3LYP/3-21G , dz optimized structures of Ca@C72 isomers: (a) IPR, (b) 5/5 pair, (c) 5/5 pair,

(d) seven-membered ring. (Reproduced from Ref. [150] with permission of Elsevier BV.)

Chapter 32902



[160] measured the 13C NMR spectra of all the four isomers and assigned the symmetry

for the isomers (I), (II), (III) and (IV) as Cs; C3v; C2 and C2v; respectively.
The Ca@C82 structure–energetics relationships were also computed [156] and a

qualitative agreement with the experiment found [41]. The computations were performed

at the HF and DFT levels and in both cases the C2v structure was the lowest isomer in the

potential energy. There were still three other low energy species—Cs; C2; and C3v: The
combined stability computations are also available [161] for the full set of nine isomers

[156] of Ca@C82.

The nine C82 IPR cages [97] produce nine Ca@C82 endohedrals. Fig. 32.5 presents

their structures optimized [161] at the B3LYP/3-21G , dz level. It has turned out that in

five cases the original HF structures after the DFT reoptimizations within the same

symmetry lead to saddle points with imaginary vibrational frequencies, not to the

required local energy minima. When the five saddle points are relaxed and reoptimized,

the following local minima are obtained: C3v ðbÞ! Cs; C2v ! Cs; C2 ðaÞ! C1;
C2 ðbÞ! C1; Cs ðbÞ! C1:
Fig. 32.6 presents the temperature development [161] of the relative concentrations of

the nine Ca@C82 isomers in a wide temperature region. The enthalpy part of the Gibbs

energy is taken from the B3LYP/6-31Gp//B3LYP/3-21G , dz calculations, the entropy
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Fig. 32.4. Relative concentrations of the Ca@C72 isomers based on the B3LYP/6-31G
p energetics and the

B3LYP/3-21G , dz entropy. (Reproduced from Ref. [150] with permission of Elsevier BV.)
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part is evaluated at the B3LYP/3-21G , dz level. At very low temperatures the structure

lowest in the DHo
0;i scale must be prevailing. However, at a temperature of 1700 K the

relative concentrations of the C2v ! Cs; and Cs; (c) structures are interchanged and

beyond the point the Cs (c) structure is always somewhat more populated. The Cs (c)

isomer and also C2 (c) exhibit a temperature maximum. Then, there are still two

other structures with significant populations at high temperatures: C3v ðbÞ! Cs and

Cs ðbÞ! C1: Although the former species is a bit more populated, their concentrations
are rather close. In contrast to the five species with significant populations at least in some

temperature regions, the remaining four isomers are computed to be negligible at any

temperature. The C3v (a) structure is remarkable as it is lower in potential energy than

C3v ðbÞ! Cs; however, it is actually suppressed by entropy. The observed yields [160] of
the isomers were nearly equal except for the considerably less-produced C3v species

(though the HPLC chromatograms [155] could indicate somewhat larger production

differences). Fig. 32.6 is in reasonable agreement with the qualitative population

C3v(a) C3v(b) C2v

C2(a) C2(b) C2(c)

Cs(a) Cs(b) Cs(c)

Fig. 32.5. B3LYP/3-21G , dz optimized structures of Ca@C82 isomers. (Reproduced from Ref. [161] with

permission of American Institute of Physics.)
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information in a relatively wide temperature interval. However, the fifth isomer also

pointed out by the computations, Cs ðbÞ! C1; has not been observed. The fifth species
could be hidden in a chromatographic fraction as a minor component.

The last illustrative example deals with La@C82, i.e. an electronic open-shell system.

The La@C82metallofullerene is one of the very first endohedrals that wasmacroscopically

produced [371]. Recently, structures of two of its isomers were clarified [163,164] using
13C NMR spectra of their monoanions generated electrochemically. The major isomer

[163] was thus assigned C2v symmetry and the minor species [164] Cs: The C2v structure

was moreover confirmed by anX-ray powder diffraction study [372]. The findings stand in

contrast toCa@C82with four known isomers. Computations at ab initioHFandDFT levels

pointed out [121,162,373] just three IPR cages with a sufficiently low energy after La atom

encapsulation: C2v; C3v (b) and Cs (c). The fourth lowest La endohedral species, C2 (a), is

actually already rather high in energy to be significant in experiment.

A partial agreement with experiment can be reached [374] for temperatures

roughly from 1000 to 1300 K. However, the agreement can be further improved by

Fig. 32.6. Relative concentrations of the Ca@C82 isomers based on the B3LYP/6-31G
p energetics and the

B3LYP/3-21G , dz entropy. (Reproduced from Ref. [161] with permission of American Institute of Physics.)
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an alternative approach to description of the encapsulate motions. One can expect

that if the encapsulate is relatively free to move within the cage then, at sufficiently

high temperatures, its behavior in different cages will bring about the same

contribution to the partition functions. The contributions would then cancel out in

Eq. (1). This simplification can be called free, fluctuating or floating encapsulate

model (FEM). In the FEM model, in addition to the removal of the three lowest

vibrational frequencies, the symmetries of the cages should be treated as the highest

possible, considering the averaging effect of the large amplitude motions of the

encapsulate. Fig. 32.7 shows the results for the La@C82 isomeric system evaluated

within the FEM approach. A good agreement with the observed facts [163,164] is

reached in the treatment.

There is still another aspect to be considered. The fullerene and metallofullerene

production is not always close to the inter-isomeric equilibrium. This factor may

be pertinent to the La@C82 case. Lian et al. [375] reported a Ni-catalyzed production of

La@C82 with a considerably variable isomeric ratio, indicating a possible kinetic

control.
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Fig. 32.7. Relative concentrations [364] of the La@C82 isomers derived within the FEM approach.
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32.9 CONCLUDING REMARKS

This survey shows the ongoing productive interaction between theory and experiment in

fullerene research that allows for a deeper insight into the observed facts. For fullerenes

and metallofullerenes the mutual interaction is indeed essential, given the complexity

of the systems. The considerable thermal effects on the relative isomeric populations

revealed by the quantum-chemical and statistical-mechanical computations result from

a complex interplay between rotational, vibrational, electronic, potential energy terms,

chirality factors, etc. Such effects would never be seen if only energetics is considered

and entropy neglected. The treatment is, however, built upon the presumption of the

inter-isomeric thermodynamic equilibrium. We do not know yet to which degree this

presumption is satisfied in reality though there a few indications that the equilibrium is

not necessarily always established. We can only acknowledge that the thermodynamic

equilibrium treatment has already produced a reasonable computation–observation

agreement for the isomeric systems from C76 till C96, with no serious failure, and also

for a few first metallofullerenes. This relatively large tested set supports the belief in a

still wider applicability of the equilibrium treatment. There are also other aspects of the

combined treatment that should further be studied—especially anharmonicity of

vibrations, motions of encapsulates in cages and reliability of inter-isomeric energetics.

The non-IPR structures have not been sufficiently explored yet. Heterofullerenes,

like cages based on boron nitride, should also attract more attention. Once the

thermodynamic treatment is completely exposed, the interest will gradually shift

towards complex kinetic schemes and to fullerene sets with variable stoichiometry. The

steadily growing family of fullerene and metallofullerene cages will further attract

interest of more applied branches of nanoscience and nanotechnology [376], including

quantum computing [377] and superconductivity [378]. Further developments are ahead

for the cages, the first public exposure [379] of which (namely in Konstanz just 15 years

ago) W. Krätschmer1 commented with a modest: “Fullerene molecules must belong to a

very frequently overlooked molecular species”.
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149 S. Nagase, K. Kobayashi and T. Akasaka, J. Mol. Struct. (THEOCHEM), 462 (1999) 97.

150 Z. Slanina, K. Kobayashi and S. Nagase, Chem. Phys. Lett., 372 (2003) 810.

151 Z. Slanina, X. Zhao, X. Grabuleda, M. Ozawa, F. Uhlı́k, P.M. Ivanov, K. Kobayashi and S. Nagase,

J. Mol. Graph. Mod., 19 (2001) 252.

152 Z. Slanina, F. Uhlı́k, L. Adamowicz, K. Kobayashi and S. Nagase, Int. J. Quantum Chem., 96 (2004).

153 T. Kodama, R. Fujii, Y. Miyake, S. Suzuki, H. Nishikawa, I. Ikemoto, K. Kikuchi and Y. Achiba,

Fullerenes, in: D.M. Guldi, P.V. Kamat, F. D’Souza (Eds.), Fullerenes and nanotubes: The building

blocks of next generation nanodevices, Vol. 13, The Electrochemical Society, Pennington, NJ, 2003,

p. 548.

154 Z. Slanina, K. Kobayashi and S. Nagase, Chem. Phys., 301 (2004) 153.

Computational chemistry of isomeric fullerenes and endofullerenes 911

References pp. 908–917



155 Z.D. Xu, T. Nakane and H. Shinohara, J. Am. Chem. Soc., 118 (1996) 11309.

156 K. Kobayashi and S. Nagase, Chem. Phys. Lett., 274 (1997) 226.

157 T. Kimura, T. Sugai and H. Shinohara, Int. J. Mass Spectrom., 188 (1999) 225.

158 T.J.S. Dennis and H. Shinohara, Appl. Phys. A, 66 (1998) 243.

159 S. Hino, K. Umishita, K. Iwasaki, M. Aoki, K. Kobayashi, S. Nagase, T.J.S. Dennis, T. Nakane and

H. Shinohara, Chem. Phys. Lett., 337 (2001) 65.

160 T. Kodama, R. Fujii, Y. Miyake, K. Sakaguchi, H. Nishikawa, I. Ikemoto, K. Kikuchi and Y. Achiba,

Chem. Phys. Lett., 377 (2003) 197.

161 Z. Slanina, K. Kobayashi and S. Nagase, J. Chem. Phys., 120 (2004) 3397.

162 K. Kobayashi and S. Nagase, Chem. Phys. Lett., 282 (1998) 325.

163 T. Akasaka, T. Wakahara, S. Nagase, K. Kobayashi, M. Waelchli, K. Yamamoto, M. Kondo,

S. Shirakura, S. Okubo, Y. Maeda, T. Kato, M. Kako, Y. Nakadaira, R. Nagahata, X. Gao, E. van

Caemelbecke and K.M. Kadish, J. Am. Chem. Soc., 122 (2000) 9316.

164 T. Akasaka, T. Wakahara, S. Nagase, K. Kobayashi, M. Waelchli, K. Yamamoto, M. Kondo,

S. Shirakura, Y. Maeda, T. Kato, M. Kako, Y. Nakadaira, X. Gao, E. van Caemelbecke and K.M. Kadish,

J. Phys. Chem. B, 105 (2001) 2971.

165 T. Wakahara, S. Okubo, M. Kondo, Y. Maeda, T. Akasaka, M. Waelchli, M. Kako, K. Kobayashi,

S. Nagase, T. Kato, K. Yamamoto, X. Gao, E. van Caemelbecke and K.M. Kadish, Chem. Phys. Lett.,

360 (2002) 235.

166 K. Kobayashi and S. Nagase, Mol. Phys., 101 (2003) 249.

167 T. Kodama, N. Ozawa, Y. Miyake, K. Sakaguchi, H. Nishikawa, I. Ikemoto, K. Kikuchi and Y. Achiba,

J. Am. Chem. Soc., 124 (2002) 1452.

168 B. Cao, M. Hasegawa, K. Okada, T. Tomiyama, T. Okazaki, K. Suenaga and H. Shinohara, J. Am. Chem.

Soc., 123 (2001) 9679.

169 S. Nagase and K. Kobayashi, Chem. Phys. Lett., 276 (1997) 55.

170 B. Cao, K. Suenaga, T. Okazaki and H. Shinohara, J. Phys. Chem. B, 106 (2002) 9295.

171 C.R. Wang, P. Georgi, L. Dunsch, T. Kai, T. Tomiyama and H. Shinohara, Curr. Appl. Phys., 2 (2002)

141.

172 Y.K. Kwon, D. Tomanek and S. Iijima, Phys. Rev. Lett., 82 (1999) 1470.

173 Z. Slanina, K. Kobayashi and S. Nagase, Chem. Phys. Lett., 382 (2003) 211.

174 Z. Slanina and F. Uhlı́k, Chem. Phys. Lett., 374 (2003) 100.

175 Z. Slanina, F. Uhlı́k and L. Adamowicz, Fullerene Nanotubes Carbon Nanostruct., 11 (2003) 219.

176 E. Dietel, A. Hirsch, B. Pietzak, M. Waiblinger, K. Lips, A. Weidinger, A. Gruss and K.P. Dinse, J. Am.

Chem. Soc., 121 (1999) 2432.

177 T. Clark, A handbook of computational chemistry, A practical guide to chemical structure and energy

calculations, Wiley, New York, NY, 1985.

178 D.B. Boyd, Rev. Comput. Chem., 1 (1990) 321.

179 J.J.P. Stewart, Rev. Comput. Chem., 1 (1990) 45.

180 M.C. Zerner, Rev. Comput. Chem., 2 (1991) 313.

181 W.J. Hehre, L. Radom, P.R. von Schleyer and J.A. Pople, Ab initio molecular orbital theory, Wiley,

New York, NY, 1986.

182 M.J.S. Dewar and W. Thiel, J. Am. Chem. Soc., 99 (1997) 4899.

183 M.J.S. Dewar, E.G. Zoebisch, E.F. Healy and J.J.P. Stewart, J. Am. Chem. Soc., 107 (1985) 3902.

184 J.J.P. Stewart, J. Comput. Chem., 10 (1989) 209.

185 M.J.S. Dewar, C. Jie and J. Yu, Tetrahedron, 49 (1993) 5003.

186 J.J.P. Stewart, MOPAC 5.0, QCPE 455, Indiana University, IN, 1990.

187 J.J.P. Stewart, MOPAC 2002, Fujitsu Ltd, Tokyo, Japan, 1999.

188 AMPAC 6.0, Semichem, Shavnee, KS, 1997.

189 M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R. Cheeseman, V.G. Zakrzewski,

J.A. Montgomery, Jr., R.E. Stratmann, J.C. Burant, S. Dapprich, J.M. Millam, A.D. Daniels, K.N. Kudin,

M.C. Strain, O. Farkas, J. Tomasi, V. Barone, M. Cossi, R. Cammi, B. Mennucci, C. Pomelli, C. Adamo,

S. Clifford, J. Ochterski, G.A. Petersson, P.Y. Ayala, Q. Cui, K. Morokuma, D.K. Malick, A.D. Rabuck,

K. Raghavachari, J.B. Foresman, J. Cioslowski, J.V. Ortiz, B.B. Stefanov, G. Liu, A. Liashenko,

Chapter 32912



P. Piskorz, I. Komaromi, R. Gomperts, R.L. Martin, D.J. Fox, T. Keith, M.A. Al-Laham, C.Y. Peng,

A. Nanayakkara, C. Gonzalez, M. Challacombe, P.M.W. Gill, B. Johnson, W. Chen, M.W. Wong,

J.L. Andres, C. Gonzalez, M. Head-Gordon, E.S. Replogle and J.A. Pople, Gaussian 98,

Revision A.11.1, Gaussian, Inc., Pittsburgh, PA, 1998.

190 M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R. Cheeseman, J.A. Montgomery,

Jr., T. Vreven, K.N. Kudin, J.C. Burant, J.M. Millam, S.S. Iyengar, J. Tomasi, V. Barone, B. Mennucci,

M. Cossi, G. Scalmani, N. Rega, G.A. Petersson, H. Nakatsuji, M. Hada, M. Ehara, K. Toyota, R. Fukuda,

J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, M. Klene, X. Li, J.E. Knox,

H.P. Hratchian, J.B. Cross, C. Adamo, J. Jaramillo, R. Gomperts, R.E. Stratmann, O. Yazyev, A.J. Austin,

R. Cammi, C. Pomelli, J.W. Ochterski, P.Y. Ayala, K. Morokuma, G.A. Voth, P. Salvador,

J.J. Dannenberg, V.G. Zakrzewski, S. Dapprich, A.D. Daniels, M.C. Strain, O. Farkas, D.K. Malick,

A.D. Rabuck, K. Raghavachari, J.B. Foresman, J.V. Ortiz, Q. Cui, A.G. Baboul, S. Clifford,

J. Cioslowski, B.B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R.L. Martin, D.J. Fox,

T. Keith, M.A. Al-Laham, C.Y. Peng, A. Nanayakkara, M. Challacombe, P.M.W. Gill, B. Johnson,

W. Chen, M.W. Wong, C. Gonzalez and J.A. Pople, Gaussian 03, Revision B.02, Gaussian, Inc.,

Pittsburgh, PA, 2003.

191 W.J. Hehre, L.D. Burke and A.J. Schusterman, Spartan, Wavefunction, Inc., Irvine, CA, 1993.
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200 H.S.M. Coxeter, Regular polytopes, Macmillan, New York, NY, 1963.

201 H.S.M. Coxeter, Introduction to geometry, Wiley, New York, NY, 1969.

202 Z. Slanina, Chem. Intell., 4, 2 (1998) 52.

203 R.F. Curl, Philos. Trans. R. Soc. Lond. A, 343 (1993) 19.

204 G.E. Scuseria, Unpublished results, 1993.

205 M.-L. Sun, Z. Slanina and S.-L. Lee, Chem. Phys. Lett., 233 (1995) 279.

206 C.H. Xu and G.E. Scuseria, Chem. Phys. Lett., 262 (1996) 219.

207 Z. Slanina and E. Ōsawa, Fullerene Sci. Technol., 5 (1997) 167.
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225 V. Parasuk and J. Almlöf, J. Chem. Phys., 91 (1989) 1137.

Computational chemistry of isomeric fullerenes and endofullerenes 913

References pp. 908–917



226 C. Liang and H.F. Schaefer, III, J. Chem. Phys., 93 (1990) 8844.

227 J.M.L. Martin, J.P. François and R. Gijbels, J. Chem. Phys., 93 (1990) 8850.

228 J. Kurtz and L. Adamowicz, Astrophys. J., 370 (1991) 784.

229 J.M.L. Martin, J.P. François and R. Gijbels, J. Chem. Phys., 94 (1991) 3753.

230 J.M.L. Martin, J.P. François and R. Gijbels, J. Comput. Chem., 12 (1991) 52.

231 D.W. Ewing, Z. Phys. D, 19 (1991) 419.
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On the importance of many-body forces

in clusters and condensed phase
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Abstract

The interaction energies of clusters of molecules can be decomposed into pair

contributions and pairwise-nonadditive contributions. The emphasis of this chapter is on

the latter components. Both the historical and current investigations are reviewed.

The physical mechanisms responsible for the existence of the many-body forces are

described using symmetry-adapted perturbation theory of intermolecular interactions.

The role of nonadditive effects in several specific trimers, including some open-shell

trimers, is discussed. These effects are also discussed for the condensed phases of argon

and water.

33.1 INTRODUCTION

Aggregates of molecules (or closed-shell atoms)—which can range from clusters to

molecular condensed phase—are bound by forces of electromagnetic origin that are

much weaker than the forces acting within molecules. The former are often called van der

Waals forces or interactions. All the properties of systems bound by van der Waals forces

can, at least in principle, be predicted by solving the Schrödinger equation for the motion

of nuclei on the potential energy surface of a given system. Such surfaces can be obtained

from solutions of the clamped-nuclei electronic Schrödinger equation. This model does

involve some approximations, as certain physical effects such as nonadiabatic couplings

of electronic and nuclear motions or relativistic contributions are neglected. However, for

systems containing more than a couple of atoms, these effects would typically contribute

much below numerical uncertainties of the model resulting from the use of finite basis

sets and approximate methods of solving both the electronic and nuclear Schrödinger

equations. Several properties of condensed phase can be described reasonably well
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by using the classical rather than quantum equations for nuclear motion, a significant

further simplification.

Obviously, accuracy of predictions for clusters and condensed phase depends critically

on the accuracy of the potential energy surface used. Although solutions of quantum or

classical equations for the motion of nuclei are far from trivial, it turns out that

uncertainties resulting from various approximations included in these solutions are

usually smaller than those originating from inaccuracies of the potentials. In fact, up to

recently, properties of only a very few condensed-phase systems have been accurately

predicted based on first-principle potentials, i.e. potentials obtained from solutions of

the clamped-nuclei electronic Schrödinger equation. Therefore, a common practice in

physics, chemistry, and biophysics/biochemistry has been to use empirical potentials.

These potentials are usually fairly simple functions of interatomic distances with

parameters adjusted to reproduce experimental results. Although a lot of effort has been

invested in fitting such potentials, there is no assurance that any of them resembles the

true potential. In fact, we now know that in some cases deviations can be large. Some

exceptions to this rule are the potentials fitted to spectroscopic data.

Electronic structure calculations have recently become capable to provide interaction

potentials for medium-size dimers that can be used to predict properties of such dimers

with accuracy approaching, and in a few favorable cases even surpassing, experimental

accuracies [1–4]. The dimer (pair) potentials are the basic building blocks of potential

surfaces for larger clusters represented in the form of many-body expansions. Such

expansions decompose each surface into intramonomer contributions, i.e. the potentials

within single molecules (monomers), the pair potentials, and the so-called nonadditive

potentials. Since derivatives of potential energy surfaces define forces, one may

alternatively use the term ‘force fields’ equivalently with ‘potentials’.

This chapter will be devoted to analysis of many-body potentials in clusters and

condensed phase with emphasis on elucidating the physical origins of interactions. It

appears that the only reasonable physical interpretation of many-body interactions

comes from perturbation theory that treats separated monomers as the zeroth-order

approximation [2,4]. In such theory, it is possible to split the interaction energy into

several contributions that can be related to distinct physical mechanisms, such as the

electrostatic, induction (sometimes called polarization), dispersion, and exchange

interactions. To describe the latter interactions, one has to include in this theory some

symmetry projectors, leading to the name symmetry-adapted perturbation theory

(SAPT). For pair interactions, the shapes of potential energy surfaces are resulting

from a balancing act between induction and dispersion forces which are always

attractive, exchange forces which are always repulsive, and the electrostatic forces

which can be of either sign but for polar molecules provide large attractive

contributions in the regions of potential minima. The nonadditive forces, i.e. those

beyond pair interactions (precise definitions will be given below) are much less

uniform in their behavior. In particular, the pair potentials for each fixed mutual

orientation of monomers have in most regions of configuration space the well-known

shape, starting from small negative values at large intermonomer separations R; slowly
increasing the depth as R decreases until a minimum is reached, and then rapidly

becoming positive and very large upon a further decrease of R: This behavior does not
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apply at all to nonadditive forces which at a given point can be of either the same, or

opposite sign as the sum of pair interactions. Also the physical components of

nonadditive forces are, understandably, different from pair interactions. In particular,

the electrostatic interactions are completely pair additive, i.e. do not give any

nonadditive effects. Similarly, there is no nonadditive contribution from the dispersion

energy in the second order of perturbation theory. Such a contribution appears only in

the third order and is usually almost negligible (a notable exception are rare-gas

clusters). The induction and exchange effects do give nonadditive contributions

appearing in the same orders as in the case of additive interactions (i.e. the second and

the first order, respectively), but both contributions can be of either sign. The

nonadditive exchange forces are important for all systems. For polar systems these

forces determine, together with the induction ones, the total nonadditive effect rather

completely. For less polar systems, the nonadditive dispersion interactions may have

to be taken into account.

The empirical intermolecular force fields are in most cases built of terms that are in a

close correspondence with the interaction energy components described above. One may

say that such force fields are simplest possible implementations of the SAPT approach.

The functional forms used are based on SAPT analysis of the asymptotic behavior of the

components. The electrostatic interactions are usually approximated by interactions of

fractional charges located on atoms in each monomer. In simplest cases, the induction

effects are not included explicitly but some more sophisticated force fields use the

classical polarization model. The dispersion forces are accounted for by linear

combinations of 1=R6ab terms where Rab are interatomic distances and the exchange

forces by either exponential or 1=R12ab terms.

33.2 DEFINITIONS

Consider the potential energy surface for a system consisting of N molecules. Such a

surface will be denoted by EtotðQ1;…;QNÞ; where Qi ¼ ðRi;vi; jiÞ stands for the set of
all coordinates needed to specify the spatial position Ri; orientation vi; and the internal
geometry ji of the ith monomer. EtotðQ1;…;QNÞ is defined as an eigenvalue of the

clamped-nuclei electronic Hamiltonian for a given configuration of nuclei. In most

applications, the total potential is conventionally separated into the sum of internal

energies EiðjiÞ of the monomers and the interaction energy EintðQ1;…;QNÞ :

EtotðQ1;…;QNÞ ¼ EintðQ1;…;QNÞ þ
X
i

EiðjiÞ ð1Þ

The physical insight into the nature of an N-body interaction potential is facilitated by

expressing it in the form of the many-body expansion, i.e. as a sum of terms involving

interactions of 2,3,… monomers at a time

Eint ¼ Eint½2;N	 þ Eint½3;N	 þ · · ·þ Eint½N;N	 ð2Þ

On the importance of many-body forces in clusters and condensed phase 921

References pp. 958–962



where Eint½K;N	 is the K-body contribution to the N-mer energy. The contributions

Eint½K;N	 can be written as the following sums
Eint½2;N	 ¼

X
i,j

EintðQi;QjÞ½2; 2	 ð3Þ

Eint½3;N	 ¼
X

i,j,k

EintðQi;Qj;QkÞ½3; 3	 ð4Þ

etc. The two-body or pairwise-additive interaction energies Eint½2; 2	 are simply the

dimer interaction energies, i.e. are defined by Eq. (1) for N ¼ 2: The sum of all pair

interactions, Eint½2;N	; is the (pairwise) additive component of the interaction energy of
an N-mer. The higher body terms in Eq. (2) are called the (pairwise-) nonadditive

contributions to the N-mer interaction energy and are defined recursively. The sum of all

these contributions ðK . 2Þ constitutes the (pairwise-) nonadditive component of the
interaction energy of an N-mer.

The three-body contribution to a trimer interaction energy, Eint½3; 3	; is the difference
between the total interaction energy of a given trimer and the sum of all pair interaction

energies within this trimer. This definition allows determination of the three-body

contributions EintðQi;Qj;QkÞ½3; 3	 for each of the trimers within an N-mer. For the

general case, each K-body contribution EintðQi1
;Qi2

;…;QiK
Þ½K;K	 is formally defined

as the difference between the interaction energy of a given K-member cluster (with

monomers placed at fixed positions and orientations Qi1
;Qi2

;…;QiK
) and this part of

the K-mer interaction energy which can be built from all 2,3,…, ðK 2 1Þ-body
contributions.

In fact, the K-body contribution to the N-mer energy can be expressed directly in terms

of the total energies of all subclusters containing up to K monomers [5]

Eint½K;N	 ¼
XK
I¼1

ð21ÞK2I
N 2 I

K 2 I

{ !
Stot½I;N	 ð5Þ

where Stot½I;N	 is the sum of the total energies of all I-monomer subclusters of the whole

N-mer, e.g.

Stot½3;N	 ¼
X

i,j,k

EtotðQi;Qj;QkÞ ð6Þ

when I ¼ 3:A somewhat similar equation expressing Eint½K;N	 in terms of Stot½K;N	 and
all I-body components Eint½I;N	 for I , K

Eint½K;N	 ¼ Stot½K;N	2
XK21
I¼1

N 2 I

K 2 I

{ !
Eint½I;N	 ð7Þ

where Eint½1;N	 ; Stot½1;N	; has been given by Kaplan et al. [6,7]. The recipe of Eq. (5)
or (7) can be applied to compute Eint½K;N	 within the supermolecular [1] approach,
however, the number of calculations that need to be performed increases rapidly with

N and is equal to 7 already for trimers (assuming that counterpoise corrected [8] approach

is used). Another problem with using Eq. (5) or (7) is a substantial loss of significant
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figures resulting from the performed subtractions. In contrast, in the perturbative

approach discussed in Section 33.4, this contribution can be obtained directly, without the

knowledge of interaction energies of clusters containing less than K monomers. The

perturbation theory approach shows that the Eint½K;K	 contributions with differentK have
different physical interpretation (i.e. appear due to physically different mechanisms of

intermolecular interactions).

Obviously, the many-body expansion of the interaction energy can be defined only

when the quantum states of all subsystems can be unambiguously specified. For strongly

interacting systems, such as metals or chemically bound molecules, this condition is not

fulfilled and the suitability of the many-body expansion can be questioned. In most

applications of Eq. (2), the number of molecules N will be fixed and therefore the index

N in ½K;N	 will be omitted from now on.

The complete interaction potential EintðQ1;…;QNÞ depends on internal geometries of
all molecular monomers [9]. However, in most physical applications, the dependence of

EintðQ1;…;QNÞ on the intramonomer coordinates j1;…; jN can be neglected and the

resulting intermolecular potentials are referred to as rigid-monomer potentials. Such

potentials depend on a much smaller number of coordinates and therefore are

significantly easier to calculate and apply. For example, for the water trimer, the

complete potential is 21-dimensional, whereas the rigid-monomer potential is ‘only’ 12-

dimensional. Further discussions in this chapter will be limited to rigid-monomer

potentials. For issues connected with calculations of flexible-monomer potentials, see

Refs. [9–11]. The main use of flexible-monomer potentials could be to predict spectral

shifts of intramolecular vibrations due to intermolecular interactions. Such shifts are very

often studied experimentally. Theoretical predictions of the shifts have been mainly

based on calculations of harmonic constants, which is a reasonable approximation in this

case since the intramolecular vibrations are highly harmonic.

33.3 HISTORICAL PERSPECTIVE

One may say that investigations of nonadditive interactions started in 1943 with the

famous papers by Axilrod and Teller [12] and by Muto [13]. The authors of these two

papers independently derived the leading asymptotic term (the so-called ‘triple dipole’ or

ATM term) of the three-body dispersion energy for atoms. This term was found to make

an important contribution to the cohesion energies of rare-gas crystals. It is interesting to

remark that, as we know now, the success of the ATM term in reproducing the measured

values of these energies is due to quite a complete cancellation of the other nonadditive

components which are of the same order of magnitude as the ATM term (see Refs. [14,

15] and Section 33.9.2). Other than the dispersion types of nonadditive forces have

achieved much less attention. It appears that the exchange nonadditivity was investigated

for the first time by Rosen [16] in 1953 and by Shostak [17] in 1955 for the helium trimer.

The activities intensified in the early 1960s and in particular the work of Jansen [18] on

rare-gas trimers became well known. The number of papers on nonadditive forces

increased gradually in the 1970s and 1980s. The first review devoted exclusively to the

subject of nonadditive interactions was probably that by Meath and Aziz [19] in 1984.
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Later reviews were written by Meath and Koulis [20], Elrod and Saykally [21], and

by Szczesniak and Chalasinski [22]. Some of the monographs on the intermolecular

forces contain chapters on many-body interactions [23–25]. Spectroscopic measure-

ments for trimers and larger cluster started in the late 1980s and provided very precise

data on such systems [21,26–28], from which information about three-body effects could

potentially be extracted. Theoretical calculations enabling such extractions have been

possible for simplest of the experimentally investigated systems such as Rg2–HX (where

Rg and X denote rare-gas and halogen atoms, respectively) [29,30] and for systems as

large as the water trimer (with some degrees of freedom frozen) [31]. In the late 1990s,

computational power became sufficient to obtain some complete three-body potentials

[32,33]. At the same time, the first empirical trimer potentials fitted to spectroscopic data

were developed by Ernesti and Hutson [29,30]. Finally, recently it was possible to

develop a three-body potential for the water [34]. Some of this work will be discussed in

more detail later on.

Until very recently, the subject of nonadditive forces was almost synonymous with the

field of rare gases (see Ref. [35] for a recent review of this field). The reason was not that

these forces are particularly large or important for rare gases compared to other systems,

but the availability of rather accurate empirical two-body potentials derived by fitting

mainly gas-phase properties of the gases. Then, one could find out the values of many-

body effects by comparing measured values for condensed phases of rare gases (since

these effects are appreciable only in the condensed phase) with the theoretical predictions

based on two-body potentials. The apparent reasonably good representation of the three-

body nonadditivity by the triple-dipole [12,13] approximation to the dispersion energy

gave generally sensible predictions for the values inferred from experiments. However, in

the 1980s, the field went through a period of intensive disputes when some researchers

realized that the first-order exchange effects cancel most of the contributions to the

cohesion energies produced by the ATM term [19,36]. Indeed, one has to include several

more complicated nonadditive components to ‘again’ bring theory to agreement with

experiment [14]. The importance of many-body effects for condensed phase of rare gases

depends strongly on the property investigated. A concise discussion of these issues has

been given in the review by Huber et al. [37]. It has been found [38] that while the

structure, transport properties, heat capacities, compressibilities, and sound velocities are

determined essentially by the two-body potentials, the nonadditive forces significantly

influence the internal energies [14] and pressures [39]. Some of the effects of many-body

forces can lead even to qualitative differences in observed properties. For example, pair

potentials predict that heavier rare gases crystallize in hcp lattice whereas the inclusion of

three-body effects favors the fcc lattice [14], in agreement with measurements. More

recently it has been found that these forces are also very essential for predictions of

vapor–liquid equilibria parameters [15,40–42].

For systems more complex than rare-gas atoms, little has been known about many-

body effects until very recently. This led Ernesti and Hutson [29] to state that for systems

containing molecules, there are no reliable models of nonadditive forces. In fact, for

these systems, the prerequisite of knowing a sufficiently accurate pair potential has been

difficult to achieve. The simplest nonatomic systems of interest from the point of view

of condensed-phase many-body effects are diatomic molecules. The four-dimensional
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rigid-monomer potentials for dimers consisting of diatomics can now be computed in

a reliable way. However, only a few accurate potentials for homogeneous dimers of this

type are known. Among them are the potentials for (HF)2 obtained by Klopper et al. [43]

(this potential, in fact, accounts for the flexibility of monomers and is therefore

six-dimensional), for (H2)2) by Diep and Johnson [44], and for (CO)2 by Vissers et al. [45].

The largest group of dimers for which accurate potentials are known are atom–diatom

complexes.With the rigid-monomer approximation, these potentials are two-dimensional.

However, such potentials are not yet helpful for studying the nonadditive effects in the

bulkmixtures since accurate diatom–diatompotentials would also be needed.On the other

hand, trimers of the form Rg2-diatom, for which atom–diatom pair potentials are needed,

can be studied in molecular beams and the investigation of such clusters has become

one of the more fruitful subjects in the field of nonadditive forces in the last decade.

There is only one dimer involving two polyatomic monomers for which six-

dimensional rigid-monomer potentials accurate enough to enable studies of nonadditive

effects are available, the water dimer. Water has been the most often investigated system

due to its general importance and the fact that the nonadditive contributions to the

interaction energy are exceptionally large for this system, as large as about 15% of pair

contributions [46]. Investigations of the interactions between two water molecules date

back to 1970s when rotational spectroscopy measurements determined the structure of

this system. This structure [47] agrees very well with results of modern ab initio

calculations [48]. Since late 1980s, numerous measurements of the infrared spectra of the

water dimer have been published. These spectra, in particular in the far-infrared region

(see Refs. [49–51] for recent examples), provided a very detailed characterization of the

system. The spectroscopic data were then used to fit an empirical water dimer potential

[52,53]. One should mention that fits to spectroscopic data for systems as large as the

water dimer have become possible only recently, since only in the late 1990s the six-

dimensional calculations of quantum dynamics were done for the first time [31,

54–56]. Water dimer has been also one of the systems most investigated by

ab initio calculations [48,57–63].

The leading nonadditive term in the many-body expansion of a potential is the three-

body interaction. Similarly like dimers, trimers (and larger clusters) can be selectively

studied by molecular beam spectroscopy. A number of such trimers have been the

subjects of investigations. Among them are the Rg2-diatom trimers mentioned above,

with the most extensive data available for Ar2–HF [64]. Both empirical [29,30] and

ab initio [33] nonadditive potentials have been obtained for this system. A large number

of spectral data are available also for the water trimer [65,66]. An accurate three-body

potential for water has recently been developed [34].

It has been long recognized that pairwise-nonadditive forces are critical for describing

bulk materials. As one can already see from the discussion above, determinations of

trimer nonadditive forces are at the current edge of research capabilities. Thus, for

condensed phase (and for clusters larger than trimers), first-principle predictions can be

reliable only if four- and higher body interactions are relatively unimportant. The three-

body effects are in most cases from about 10 to 100 times smaller in magnitude than the

two body effects, as it will be discussed below. Thus, if this rate of convergence of

the many-body expansion continues, the four-body and higher effects should give
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contributions negligible at the levels of accuracy that one is currently interested in.

However, the convergence beyond K ¼ 3 may not be that fast as the step from K ¼ 2

to K ¼ 3 suggests. This subject will be discussed in more detail later on.

Despite the question of the importance of the higher than three-body effects, first-

principle simulations of bulk have been pursued by many research groups. The best-

known work is probably that of Clementi, Corongiu, and collaborators [67] on water.

Recently, the number of such simulations has been increasing rapidly, see for example

work by Huber and collaborators [37,68,69]. Several first-principle simulations have

recently been performed based on SAPT potentials [15,46,70,71].

Another type of first-principle simulations are those performed using the Car–

Parrinello molecular dynamics (CPMD) method [72]. In CPMD the total interaction

potential is computed for the whole cluster ‘on the fly’, without using many-body

expansions. This can be done using only the simplest electronic structure methods such as

the density functional theory (DFT). The interaction energy is computed for each step in

molecular dynamics simulations, although in practice this is done completely only in the

first step, later the electron density is propagated. Some CPMD ‘on-the-fly’ simulations

for water have been rather successful in predicting properties of the liquid [73]. However,

recent work shows [74] that a part of this success originates from choosing a variant of the

DFT method which happens to work well for water. Other variants of DFT may predict

the properties of water poorly [74] and it is not possible to decide a priori which of the

variants to choose. In fact, for the ammonia dimer, none of the known functionals seems

to be able to give results that would agree with experiment and the authors of Ref. [75]

had to optimize an ammonia-specific functional.

Although there have been a fairly large number of first-principle simulations of

condensed phase published to date, this number is completely dwarfed by simulations

based on empirical potentials. The popular empirical pair potentials for water [76–78]

have been used in many (thousands) research projects. The empirical potentials are

usually fitted in simulations for liquids to reproduce measured properties of this phase.

Thus, these potentials mimic the nonadditive effects by distortions of two-body potentials

[79]. Since there is no rigorous way that such a transformation can be performed, one may

say that the successful applications of empirical potentials happen ‘for wrong reasons’. In

fact, such potentials typically fail beyond the range of thermophysical parameter space

that was used in the fitting process. The effective pair potentials are also not able to

predict some measured properties even within the range, for example, the second virial

coefficients. It is in fact not possible to simultaneously fit such potentials to the virial

coefficients and to typical bulk properties that depend on the pair-nonadditive effects.

One solution of this problem is to use polarizable empirical potentials. Such potentials

have to a lesser extent the effective character due to the explicit modeling of the

nonadditive induction energy. Thus, the pairwise-additive component is less biased by

efforts to mimic nonadditive forces. The polarizable empirical potentials can be made to

reproduce dimer properties. Thus, virial coefficients can be used in the fits. Even if this is

not the case, as for example for the polarizable point-charge (PPC) potential of Svishchev

et al. [80], the computed virial coefficients are much better than obtained with

the empirical pair potentials, but still significantly less accurate than those predicted

by SAPT ab initio potentials [48,63,81].
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33.4 PERTURBATION THEORY OF INTERMOLECULAR INTERACTIONS

As mentioned before, interactions between molecules are much weaker than the chemical

bonds inside molecules. Thus, van der Waals interactions can naturally be described

in terms of a perturbation theory treating isolated monomers as the zeroth-order

approximation. Each monomer is perturbed due to the electric fields of the partners. The

simplest type of perturbative approach that can be applied is the standard Rayleigh–

Schrödinger perturbation theory, which in the context of intermolecular interactions is

often called the polarization theory. The major problem with this method is that the

resulting wave functions of the N-mer do not fulfill the Pauli’s exclusion principle, i.e.

are not antisymmetric upon exchange of electrons between different monomers. This

problem can be overcome in the simplest way by applying explicit antisymmetrization

operators to the wave functions of polarization theory. This leads to the SAPT method.

For pair interactions, SAPT is now a mature and routinely used method. Reviews of

SAPT can be found in Refs. [2,4,82,83] and a general purpose computer program can be

downloaded from the web [84]. More recently, SAPT of three-body interactions has been

developed [85–88]. The computer programs realizing this theory are also available on

the SAPT web site [84], although these are not yet as robust and mature as the two-body

programs. One should mention here that Tachikawa and Iguchi [89] developed some

nonadditive SAPT corrections including the exchange terms, initially only in the S2

approximation (i.e. including only the terms proportional to the square of the overlap

integrals) which is not satisfactory for trimers, but later work by Tachikawa et al. [90]

accounted also for the S3 terms.

The perturbation theory describing nonadditive effects is a relatively straightforward

extension of the SAPT approach for pair interactions except that each additional

monomer increases the complexity of the resulting expressions. In the SAPT expansion

of the interaction energy for an N-mer, the total Hamiltonian of the N-mer is parti-

tioned as

H ¼ F þ V þW ð8Þ
where F ¼ FA þ FB þ FC þ · · · is the sum of the Fock operators for all monomers,

V ¼ VAB þ VBC þ VAC þ · · · is the sum of all binary intermolecular interaction

operators VXY; and W ¼ WA þWB þWC þ · · · is the sum of the intramolecular

correlation operators (Møller–Plesset fluctuation potentials) for all monomers. The

latter operators are defined as WX ¼ HX 2 FX; where HX is the complete Hamiltonian

for monomer X. This partitioning of the total Hamiltonian allows the interaction energy

to be written as a double perturbation expansion in V and W : The latter expansion is
analogous to that used in the standard many-body perturbation theory and coupled-

cluster methods [91,92]. The K-body interaction energy defined before can now be

written as

Eint½K	 ¼
X

i¼1; j¼0
ðEðijÞ

pol½K	 þ E
ðijÞ
exch½K	Þ ð9Þ

where subscripts ‘pol(exch)’ denote the polarization (exchange) energy components.

The former components result from the application of the polarization perturbation

On the importance of many-body forces in clusters and condensed phase 927

References pp. 958–962



theory, whereas the latter from the action of the antisymmetrization operators. The

exchange energy components are formally defined as the differences between the SAPT

and polarization energy contribution, but are derived and computed as separate terms.

The superscripts i and j in Eq. (9) refer to the order with respect to the intermolecular

interaction V and the intramolecular correlation operator W ; respectively. We will also

consider the interaction energy components which fully include intramonomer

correlation effects

EðiÞ
polðexchÞ½K	 ¼

X1
j¼0

E
ðijÞ
polðexchÞ½K	 ð10Þ

Very recently, a new and very efficient version of SAPT has been developed using

the DFT description of monomers [93,94]. This method, which will be denoted by

SAPT(DFT), has not yet been applied to three-body interactions, but such an

application will be straightforward. The use of SAPT(DFT) not only results in a very

significant reduction of the needed computational resources, but often gives more

accurate interaction energies than does SAPT. There are two reasons for the latter. First,

SAPT(DFT) converges much faster in basis set size than does SAPT. This feature

together with the computational efficiency enables calculations of results nearly

saturated in the basis set size. Second, the truncation of the SAPT expansion in W leads

to the neglect of a part intramonomer correlation effects. In contrast, SAPT(DFT) is

formally of infinite order in W :

33.5 OVERVIEW OF PAIR CONTRIBUTIONS

Before we proceed to the discussion of nonadditive effects, a short overview of pair

interactions is needed to provide a proper reference. Numerical experience has shown

that for most purposes it is sufficient to restrict the expansion (9) for K ¼ 2 to the

components up to the second order in V : Such a truncated expansion can be written in
terms of the well-known electrostatic, induction, dispersion, and exchange contri-

butions:

Eint½2	 ¼E ð1Þ
elst½2	þEð1Þ

exch½2	þEð2Þ
ind½2	þEð2Þ

disp½2	þEð2Þ
exch–ind½2	þEð2Þ

exch–disp½2	þ · · · ð11Þ

These components provide a clear physical picture of the two-body interactions. As an

example let us analyze the components for the water dimer. The physical interpretation

of the energy for this dimer has been the subject of great interest as it advances our

understanding of hydrogen bond [57,95–97]. Table 33.1 shows various contributions on

a cut through the potential energy surface passing near the global minimum. The

subscripts ‘resp’ appearing in some terms listed in Table 33.1 indicate that this

contribution was computed with orbital relaxation effects [98,99]. The correction

Eð1Þ
exchðCCSDÞ was computed with the monomer wave functions correlated at the

coupled-cluster level with single and double excitations [100]. The term dEHFint;resp
collects contributions beyond the second order in V to the supermolecular Hartree–Fock
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interaction energy EHFint [101,102]:

dEHFint;resp½2	 ¼EHFint ½2	2Eð10Þ
elst ½2	2Eð10Þ

exch½2	2Eð20Þ
ind;resp½2	2Eð20Þ

exch–ind;resp½2	 ð12Þ
In the asymptotic region, i.e. for large intermonomer separations R; the interaction

energy is well described by the polarization terms alone. Moreover, at such distances

one can make an additional approximation and represent the operator V in terms of its

multipole expansion containing terms inversely proportional to powers of R: As
R increases, the interaction energy will eventually be well represented by just the term

with the lowest power of 1=R: For polar dimers such as water, the lowest power equal to
three is coming from the electrostatic interactions and the water dimer potential

Table 33.1 Components of the SAPT interaction energy of the water dimer for four intermolecular

separations R; computed in the [5s3p3d2f1g1h/3s3p1d1f ] basis taken from Ref. [103], containing the

3s2p1d1f set of midbond functions. The angular coordinates are close to those of the global minimum

configuration. All energies in kcal/mol

Component R ¼ 2.3 Å R ¼ 2.5 Å R ¼ 3.0 Å R ¼ 3.6 Å

E(10)elst [2] 231.422 219.779 27.217 23.058

Eelst,resp
(12) [2] 20.262 20.158 0.097 0.145

Eelst,resp
(13) [2] 0.390 0.336 0.116 0.012

Eelst
(1) [2] 231.294 219.601 27.005 22.901

Eind,resp
(20) [2] 230.059 213.615 22.180 20.346

tE(22)ind [2] 23.751 21.849 20.322 20.043

Eind
(2)[2] 233.810 215.464 22.502 20.389

Edisp
(20)[2] 211.201 26.910 22.142 20.587

Edisp
(21)[2] 0.910 0.377 0.025 20.003

Edisp
(22)[2] 21.810 21.165 20.412 20.129

Edisp
(2) [2] 212.100 27.698 22.529 20.719

Eexch
(10) [2] 62.605 31.081 5.160 0.573

E(1)exch(CCSD)[2]–E
(10)
exch[2] 4.858 3.278 0.917 0.153

Eexch
(1) [2] 67.463 34.359 6.077 0.726

E(20)exch– ind,resp[2] 19.300 8.631 1.088 0.091

tE(22)exch– ind[2] 2.408 1.172 0.161 0.011

E(20)exch–disp[2] 2.806 1.635 0.358 0.050

dHFint,resp[2] 27.269 24.074 20.696 20.080

E(2)exch[2] þ dHFint,resp[2] 17.245 7.363 0.910 0.072

Eint[2] 7.506 21.040 25.049 23.210
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is completely dominated at very large R by the classical interaction of the permanent

dipole moments of water molecules. Already at R¼ 3:6 �A; the electrostatic component
constitutes 90% of the interaction energy (cf. Table 33.1). As R approaches the

minimum configuration, the induction and dispersion energies enter the picture. For

water, these terms happen to be of nearly equal magnitude. At the minimum, their sum

is only slightly smaller than the electrostatic contribution. As R decreases further, the

exponentially increasing exchange components begin to quench the attractive

interactions originating from the polarization components. At the minimum distance,

the exchange component is about 40% larger in magnitude than the total interaction

energy and therefore it cancels more than a half of the attractive effect. For shorter

separations, due to the faster growth of the exchange energy, the value of the potential

starts to increase with the decrease of R; i.e. the potential enters the repulsive region. At
R¼ 2:5 �A; the interaction energy is still negative but the exchange contribution is about
as large as the sum of the attractive components. For still smaller separations the

exchange repulsion prevails and the interaction energy becomes positive, increasing

very fast with the decrease of R: Thus, this region is often called the potential ‘wall’.
Another possible decomposition of the interaction energy is into the Hartree–Fock

and correlation effects. This decomposition can be considered for practical reasons, as

calculations at the Hartree–Fock level are much less expensive than the calculations of

the terms including electron correlation. For the water dimer near the minimum

(column R ¼ 3:0 �A in Table 33.1), the Hartree–Fock interaction energy of 23.85 kcal/

mol provides a reasonable, but far from accurate approximation to the interaction

energy. The total electron correlation contribution near the minimum is 21.20 kcal/

mol or 24% of interaction energy. The largest correlation effect comes from the

dispersion energy equal to 22.53 kcal/mol. This attractive component is partly

quenched by the intramolecular correlation correction to the first-order exchange

energy equal to 0.92 kcal/mol. The intramonomer correlation correction to the

electrostatic energy is also positive but much smaller, as it amounts to only 0.21 kcal/

mol. Another correlation component, the exchange–dispersion energy, contributes

0.36 kcal/mol. The overall correlation correction to the induction and exchange–

induction energy is 20.16 kcal/mol. These results are in very good agreement with the

ones of Ref. [103], computed in the same basis set but for slightly different geometry

than the one used in Table 33.1.

33.6 PERTURBATION THEORY OF NONADDITIVE FORCES

Theoretical analysis and numerical calculations show that a given correction appearing in

Eq. (9) in the case of pair interactions ðK ¼ 2Þ and nonadditive three-body interactions
ðK ¼ 3Þ may be of completely different importance for the total interaction energy. First
of all, some contributions that are usually large for dimers are exactly equal to zero in the

expansion of the nonadditive energy. In particular, the electrostatic interactions and the

dispersion interactions in the second order are in this category. Furthermore, for a

reasonable description of the nonadditive interactions, one has to include terms up to
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the third order in V:

Eint½3	 ¼ Eð1Þ
exch½3	 þ Eð2Þ

ind½3	 þ Eð2Þ
exch– ind½3	 þ Eð2Þ

exch–disp½3	 þ Eð3Þ
disp½3	

þ Eð3Þ
ind–disp½3	 þ Eð3Þ

ind½3	 þ · · · ð13Þ
For polar systems, the Hartree–Fock three-body contribution, EHFint ½3	; may give a

reasonable approximation of the total nonadditive effect. This quantity can be

decomposed as

EHFint ½3	 ¼ Eð10Þ
exch½3	 þ Eð20Þ

ind ½3	 þ Eð20Þ
exch– ind½3	 þ dEHFint ½3	 ð14Þ

where dEHFint ½3	 contains mostly Eð30Þ
ind ½3	 and its exchange counterpart.

As discussed in Section 33.3, the first nonvanishing nonadditive dispersion component,

the dispersion energy of the third order in V ; has probably been by far the most studied
nonadditive contribution. This component provides a very significant contribution to the

nonadditive energy of nonpolar and weakly polar species. It has been extensively

investigated for rare gases, in particular when approximated by the leading term in its

large R asymptotic expansion, i.e. the ATM term [12,13]. In its complete (nonexpanded)

form, including the effect of the charge overlap, the third-order dispersion nonadditivity

is given by the following formula [85]

Eð3Þ
disp½3	 ¼ 2kFð1Þ

disp;ABF
C
0 lVBCFð1Þ

disp;ACF
B
0 lþ · · · ð15Þ

In this equation, Fð1Þ
disp;XY denotes the two-body dispersion function [2] of dimer XY and

FX
0 is the exact unperturbed wave function of monomer X. Notice that we use here the

notation introduced in Eq. (10), i.e. we consider interactions of exact (fully correlated)

monomers. The dots in Eq. (15) and in the remaining equations in this section denote two

further terms obtained by cyclic permutations of A, B, and C.

The other very often considered nonadditive component is the induction energy. This

component in its asymptotic form is the basis of the ‘polarizable’ empirical potentials

described in Section 33.3. For strongly polar systems, the second- and third-order

nonadditive induction terms can indeed be expected to provide the largest nonadditive

contribution except for small intermonomer separations [46] and to constitute the major

part of the Hartree–Fock nonadditive contribution. The second-order terms have a very

simple physical interpretation: a multipole on system A induces multipole moments on

B and C which interact with the permanent multipoles on C and B, respectively (see a

more extensive discussion below). The second-order induction nonadditivity can be

written as [85,86]

Eð2Þ
ind½3	 ¼ 2kFB

0 lVB
AlFð1Þ

ind;BˆClþ · · · ð16Þ
The operator VY

X represents here the electrostatic potential generated by the unperturbed

monomer X and depends on electron coordinates of monomer Y

VY
X ¼

X
i[Y

vXðriÞ ð17Þ
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were

vXðrÞ ¼
ð 1

lr2 r0l
rXðr0Þdr0 ð18Þ

is determined in terms of rX; the unperturbed charge distribution (including the nuclear
charges) of monomer X. The two-body induction function of, for example, monomer A in

the field of monomer B, Fð1Þ
ind;AˆB; is defined by equation

ðHA 2 EAÞFð1Þ
ind;AˆB ¼ ðkFA

0 lVA
B lFA

0 l2VA
B ÞFA

0 ð19Þ
where EA is the ground-state energy of the exact Hamiltonian of monomer A.

The nonadditive exchange components have been investigated much less often than

the dispersion and induction nonadditive energies. This is simply due to the fact that the

exchange components are much more difficult to compute than the dispersion and

induction ones, particularly if the latter are considered in the multipole approximation.

From the importance point of view, the exchange nonadditive term should never be

neglected, except for large intermonomer separations. This is not surprising in view of the

fact that the exchange nonadditivity is the only component that gives a contribution

already in the first order in V: It often is the largest nonadditive term near the minimum

configuration. Fortunately, the importance of the exchange nonadditivity for bulk

properties is somewhat smaller than might be expected from these statements, since a

significant fraction of the total nonadditive effect originates from trimers with larger than

equilibrium separations, for which the exchange nonadditivity is small due to the

exponential decay [15,46].

Each exchange correction, both pair additive and nonadditive, can be expanded into

powers of the overlap integrals S: The S2 component of the first-order exchange

nonadditivity can be written in the following form [85]

Eð1Þ
exch½3	ðS2Þ ¼ 2kF0lðVBC 2 kVBClÞðPAB þPACÞF0lþ · · · ð20Þ

where PXY is the sum of all transpositions of electrons between monomers X and Y and

F0 ¼ FA
0F

B
0F

C
0 : The expression for Eð1Þ

exch½3	ðS3Þ can be obtained from Eq. (20) by

replacing the operator PAB þPAC by 2PABC where PABC is the sum of cyclic

permutations exchanging three electrons among monomers A, B and C. The exchange

nonadditive contribution in the second order can be split into the exchange–induction

and exchange–dispersion energies. The definitions and the explicit working expressions

(in terms of one- and two-electron integrals) for these contributions—obtained with the

neglect of intramonomer electron correlation—have been given in literature [85,86].

In practical calculations, one has to expand the nonadditive terms discussed above in

powers of intramolecular correlation operator W : Such an expansion was developed in
Ref. [85]. The currently programmed nonadditive corrections are Eð10Þ

exch½3	; Eð20Þ
ind ½3	;

Eð20Þ
exch– ind½3	; Eð30Þ

ind ½3	; Eð30Þ
disp½3	; Eð31Þ

disp½3	; Eð40Þ
disp½3	; Eð30Þ

ind–disp½3	; and Eð20Þ
exch–disp½3	 [85]. More

recently the effects of intramonomer correlation on the first-order exchange nonadditivity

were taken into account by including the corrections Eð11Þ
exch½3	 and Eð12Þ

exch½3	 [87,88].
Examples of applications of these theoretical developments will be discussed in

Sections 33.7 and 33.11.2.
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33.7 COMPARISON OF NONADDITIVE EFFECTS FOR SELECTED

SYSTEMS

It has been already alluded in several places that the importance of various nonadditive

components varies dramatically from system to system. In this section, we will

analyze these trends on a few examples. The particularly important case of water will be

additionally discussed in Section 33.11.2. The knowledge of relative importance of

nonadditive components of interaction energy is needed to decide which terms from

the expansion (2) have to be included for a given system. For example, the dispersion

nonadditivity is completely dwarfed by the induction effects in the case of water, whereas

it is the leading term for rare gases. Some predictions for the polarization components

can be made from the knowledge of the multipole moments and polarizabilities of

monomers. However, qualitative predictions seem near to impossible for the exchange

terms. Therefore, in practice, the only way for predicting trends must be based on

ab initio calculations. For some systems an empirical approach—greatly helped by

whatever theoretical information can be gathered and included in potential fits to

spectroscopic data—can also provide useful information about the size of nonadditive

effects [29,30].

We will now examine the major nonadditive components of interaction energy for four

different near-equilibrium trimers. These components are displayed in Fig. 33.1. The first

observation that can be made is that the ratio of the three-body component to the sum of

two-body interactions changes dramatically from system to system: from 0.4% for He3 to

16% for the water trimer. The total nonadditive contribution can also be of either sign,

even for similar systems like rare gas trimers, cf. He3 vs. Ar3. The increased role of

nonadditive terms is clearly correlated with the polarity of a system: the more polar a

system is, the larger are the relative contributions of nonadditive terms with respect to

two-body terms.

The relative importance of the various components of nonadditive interaction energies

appearing in Eq. (13) also vary dramatically between different trimers. Notice that since

only the largest components are shown for a given trimer (plus all non-negligible first and

second-order components), the set of components displayed in Fig. 33.1 is not always the

same. For rare gas trimers, the nonadditive contribution is dominated by the first-order

exchange and third-order dispersion energies, although for Ar3 the exchange–dispersion

contribution is quite large. This contribution is critical for predicting the correct crystal

structure of argon [14]. For Ar2–HF, all these components are still important but a very

significant role is played also by the induction and exchange–induction nonadditive

contributions. Although these components cancel nearly exactly in the second order, the

slightly smaller third-order components (not shown in Fig. 33.1) add up and together

make an important contribution. The situation changes completely in the water trimer.

The dispersion contributions are dwarfed by the very significant induction effects. Even

the third-order induction nonadditivity, a major part of dEHFint ½3	; is very important.

Fig. 33.1 shows also that the first-order exchange nonadditivity is important for all

systems.

Table 33.2 presents numerical values of the three-body interaction components for the

water trimer. The decomposition is presented for various stationary points on the trimer
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potential surface. The configurations [34] are as follows: uud: global minimum (a cyclic

hydrogen-bonded structure), bif: the bifurcated structure, ada and dad: two quasi-linear

structures where ‘a’ stands for acceptor and ‘d’ for donor. The terms displayed in the

upper part of Table 33.2, corresponding to the Hartree–Fock level of theory, show

several interesting characteristics. As discussed above, the first-order nonadditive

exchange energy can be decomposed into terms resulting from different types of electron

exchanges: the contributions from single exchanges of a pair of electrons, given by Eq.

(20), as well as from the cyclic permutations involving three electrons at a time, which

can be obtained from Eq. (20) as described in Section 33.6. The resulting contributions

differ by the powers of S and can be quadratic (single exchanges), cubic (three-electron

cycles), quartic (double exchanges), etc. in S:All these terms are listed in Table 33.2. One
can see that for the water trimer at cyclic configurations the quadratic and cubic terms

Fig. 33.1. Comparison of the relative importance of various three-body interactions. The bars show the

percentage contribution of a given three-body component to the magnitude of the total three-body interaction

energy except for the last bar which shows percentage ratio of the three-body to two-body contribution. The data

are from Ref. [87] for He3, Ref. [32] for Ar3, Ref. [33] for Ar2–HF, and Ref. [34] for the water trimer.
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dominate. Moreover, for all the configurations where the exchange nonadditive terms

are important, like in the equilibrium uud trimer, the S3 terms give by far the largest

contribution. For large trimers, the S3 contribution increases in importance due to its

slower decay (see Section 33.8). In the equilibrium configuration, the overall first-order

nonadditive exchange energy contributes as much as 18% to the total nonadditive effect

computed at the Hartree–Fock level.

Although the first-order exchange energy is quite large, Table 33.2 shows that for all

cyclic configurations the negative second-order induction energy provides the largest

contribution. The third-order induction energy, included in dEHFint ½3	; is of comparable
size. One should point out that for the noncyclic trimers ada and dad, the situation is quite

different. First, the induction contribution is positive and the effects contained in dEHFint ½3	
are even larger than the second-order one. The nonadditivity of exchange interactions is

almost negligible for these trimers.

The lower part of Table 33.2 shows the SAPT correlation contributions to the three-

body energy of the water trimer. These contributions include the electron correlation

effects at the level approximately comparable to the supermolecular many-body

Table 33.2 SAPT decomposition of ab initio three-body interaction energies (in kcal/mol) for various

stationary points on the fitted water trimer potential surface of Ref. [34]. All calculations in trimer-

centered [5s3p2d1f/3s2p] basic set of Ref. [63] (without bond functions)

uud bif ada dad

Two-body (SAPT-5s) 213.197 211.595 29.101 28.909

E(10)exch[3](S
2) 20.047 20.006 0.034 20.078

E(10)exch[3](S
3) 20.317 20.225 0.005 0.006

E(10)exch[3](S
4) 20.007 0.000 20.011 20.010

Eexch
(10) [3] 20.371 20.231 0.027 20.082

Eind
(20)[3] 20.960 20.752 0.186 0.143

E(20)exch– ind[3] 20.063 20.027 0.011 20.064

Eind
(30)[3]a 20.312 20.219 0.055 0.099

dEHFint [3] 20.676 20.444 0.197 0.189

SCF three-body (EHFint [3]) 22.070 21.454 0.421 0.186

Total (SAPT-5s þ Eint
HF[3]) 215.267 213.048 28.681 28.723

E(20)exch–disp[3] 0.093 0.074 0.007 0.008

E(30)ind–disp[3] 0.015 0.002 20.022 0.029

Edisp
(30)[3] 0.052 0.046 20.003 20.002

Edisp
(31)[3] 0.005 0.005 20.001 20.001

Edisp
(40)[3] 20.057 20.046 20.005 20.007

Total correlation (SAPT) 0.108 0.081 20.024 0.027

Eint
CCSD(T)[3]–EHFint [3] 0.057 0.066 20.010 0.040

aThis correction is included in dEHFint ½3	:
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perturbation theory at the fourth order (MBPT4). Among these contributions,

Eð20Þ
exch–disp½3	 dominates for the cyclic and bifurcated configurations, providing a

repulsive effect larger in magnitude than Eð20Þ
exch– ind½3	 and the first-order S2 exchange

corrections. About a factor of two smaller are the dispersion components Eð30Þ
disp½3	 and

Eð40Þ
disp½3	; which are of opposite signs and cancel one another almost exactly. For the

remaining two structures, the correction Eð30Þ
ind–disp½3	 is the largest among the correlation

effects. As shown by the analysis performed in Ref. [33] for the Ar2–HF trimer, some

correlation corrections, especially Eð30Þ
ind–disp½3	 and Eð40Þ

disp½3	; are strongly quenched by

their exchange counterparts, not yet implemented in the SAPT code. Therefore, the sum

of all the correlation corrections from Table 33.2 is generally somewhat different from

the total correlation effect computed in the same basis at the coupled cluster level of

theory with single, double, and noniterative triple excitations [CCSD(T)] using the

supermolecular approach. It should be noted that the correlation effect typically

constitutes only a few percent of the total three-body nonadditive interaction and

reaches the largest relative value of 18% only for the dad configuration, where this

interaction is anyway small. In any case, the correlation component of the three-body

nonadditivity does not exceed 0.5% of the total trimer energy (including the two-body

component).

The results of Table 33.2 suggest that, as expected, the bulk of nonadditive interactions

in the water trimer is reproduced quite well already at the SCF level of theory. This

observation is further quantified in Fig. 33.2, where the three-body energies computed at

the SCF and CCSD(T) levels are compared for ten trimers with maximum O–O

separations less than 5 Å extracted from a snapshot of a Monte Carlo (MC) simulation

of liquid water at ambient conditions. Typically, trimers for which the nonadditive
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Fig. 33.2. Comparison of the SCF, CCSD(T), and PBE three-body interaction energies for trimers extracted

from an MC simulation of liquid water.

Chapter 33936



interaction is attractive are characterized by a quasi-cyclic arrangement of hydrogen

bonds, i.e. one of the molecules acts as both a donor and an acceptor. Other types of

trimers, with one molecule acting as a double donor or double acceptor, as well as trimers

with deficit of hydrogen bonds, tend to experience repulsive nonadditive interactions.

One can see that for all trimers considered, the SCF nonadditivities are very close to the

ones computed at the CCSD(T) level. Fig. 33.2 also shows the three-body energies

obtained using the DFT with the PBE exchange-correlation potential, as employed in a

recent Car–Parrinello study of liquid water [104]. While in the case of trimers with

attractive three-body interactions the agreement between the PBE and CCSD(T) results is

quite good, the former method seems to significantly overestimate the repulsive

nonadditive effects. While our CCSD(T) results are not completely saturated with respect

to the basis set, it is rather unlikely that an increase in basis quality would produce

CCSD(T) energies systematically higher than the SCF ones. This suggests that the three-

body energies computed at the SCF level are more accurate than the PBE results. Since

the distortion of the PBE three-body potential observed in Fig. 33.2 favors tetrahedral

arrangement of molecules, in a simulation it may lead to an overstructured liquid. Such an

effect has indeed been observed in Car–Parrinello simulations of water at ambient

conditions [105].

As mentioned in Section 33.2, the many-body expansion cannot be expected to work

for metals. One reason is that most atoms forming metals have open-shell ground states

of symmetry other than S; therefore it is difficult to determine quantum states of the

subsystems needed in the definition of the expansion, cf. Section 33.10. The second

reason is that the complete delocalization of the conduction electrons results in the

electronic structure of a metal that is very far from that of monomers. The first problem

does not occur for alkaline-earth metals or for high-spin alkali-metal clusters, and the

many-body expansion can be defined for such clusters. However, this expansion appears

to be very slowly convergent [106–108]. For some specific information about the spin-

polarized sodium trimer, see Section 33.10.2.

33.8 PHYSICAL INTERPRETATION OF NONADDITIVE COMPONENTS

As already stated, perturbation theory approach allows the individual components of

a K-body contribution to the interaction energy to be given a physical interpretation. Such

a physical interpretation is important for several reasons. First, it allows one to better

understand the mechanisms of nonadditive forces. Second, it relates components to

monomer properties. Third, it makes possible to propose analytic forms of fitting

functions which are the most appropriate for a given type of interactions.

Fig. 33.3 illustrates the physical interpretation of the three-body components important

for the water trimer. Let us start from the first-order nonadditive exchange energy.

The first term in the expansion of this energy into powers of S is the quadratic term,

resulting from single exchanges of a pair of electrons and therefore denoted in

the literature as the ‘SE’ term [3]. Such exchanges can involve only two water molecules

at a time, and lead to deformations of the wave function of each dimer within

the trimer. This effect can be described in the first approximation as leading to
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the creation of a quadrupole and higher multipole moments on a given dimer, as shown

in Fig. 33.3. These moments interact with multipole moments of a third monomer, giving

a nonadditive contribution. This contribution has an interesting property that it decays

exponentially in one of the intermonomer separations and as an inverse power of the two

other separations (due to the interaction of the exchange multipoles with the permanent

multipoles), a rather atypical feature for an exchange component.

The next term in the expansion of Eð1Þ
exch½3	; proportional to S3; results from a pure

exchange interaction: a triple of electrons is cyclically permuted among the monomers A,

B, and C, see Fig. 33.3. This process is realized if, e.g. two electrons are exchanged

between monomers A and B and then the electron originally from monomer A is

exchanged with an electron from monomer C. In the terminology used by Chalasinski,

Szczesniak, and co-workers [3,109,110], the S3 term is referred to as the ‘triple exchange’

(TE) term.

The most important component of the water trimer nonadditive energy is the induction

interaction of the second order in V : Its simple mechanism is shown in Fig. 33.3:

a permanent multipole moment on monomer A induces multipole moments on monomer

B which in turn interact with the permanent multipole moments of monomer C. Higher

orders involve interactions between induced moments. The nonadditive induction

energy is in general the most important nonadditive component for hydrogen-bonded

systems. As already mentioned, it is the only term used—and only in the asymptotic

approximation, i.e. neglecting charge-overlap effects—in the polarizable empirical

potentials.

The interpretation of the third-order nonadditive induction contribution is somewhat

more involved and will be discussed in the following subsection.

The dispersion energy is a pure quantum effect, more difficult to interpret than those

terms for which one can apply classical concepts. In general terms, the dispersion

energy is due to the correlation of the electronic motions in different monomers. Using

the time-dependent point of view, one can loosely say that instantaneous multipole

moments in monomer X—created by fluctuations of electronic density—induce
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Fig. 33.3. Physical interpretation of major components of three-body interaction energy for water.
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multipole moments in monomer Y, which interact with the original moments of

monomer X. The moments in X and Y are correlated by the instantaneous induction

process. Always favorable alignment of the instantaneous and induced moments leads

to a lowering of energy for second-order pair interactions. The instantaneous induction

is in the first approximation a linear response process and it is closely related to

the dynamic polarizabilities of monomers. In fact, both the dispersion energy and the

dynamic polarizabilities can be expressed via the frequency-dependent density

susceptibility functions which describe the linear response of the density of an atom

or molecule to a time-dependent external perturbation [111]. The leading nonadditive

component of the dispersion interaction, a quantity of the third order in the inter-

molecular potential, is identified as consisting of terms containing correlations between

electrons of all three monomers [85]. This effect can be visualized as resulting from

interactions of the dispersion-deformed wave functions of the subsystem AB with those

of subsystem AC via the potential VBC (cf. Eq. (C17) in Ref. [85]).

33.8.1 Third-order induction energy

The third-order nonadditive induction energy is given by Eqs. (C14) and (C18) in

Ref. [85]. These equations lead to a simple physical interpretation of the particular

components of this energy which, however, seems to disagree with the interpretation

proposed by Piecuch [112,113]. We shall show below that both interpretations are

possible, i.e. the same terms may be viewed as resulting from several different

mechanisms. This correspondence is in general related to two ways of expressing the

third-order energy corrections via the second-order perturbed functions or exclusively

via the first-order perturbed functions.

To see the equivalence, one has to associate asymptotic expansions with the expres-

sions given by Eqs. (C14) and (C18) in Ref. [85]. To this end, let us write the asymptotic

expansion of the interaction potential in the form [4,25]

VAB ¼
X
l1;l2

X
k1;k2

Q̂A
l1k1

Q̂B
l2k2

TABl1k1;l2k2 ð21Þ

where Q̂X
lk is the spherical multipole moment operator of monomer X in monomer-fixed

coordinate system and T denotes the interaction function dependent on the vector

R describing the relative position of the monomers and on two sets of Euler angles

describing the orientation of monomers. Precise definitions of both quantities can be

found in the monograph by Stone [25]. In what follows, the sums of this type will also be

written with all the subscripts suppressed. Eq. (19) for the first-order induction function

can be written in the following alternative form

C ð1Þ
ind;AˆB ¼ 2RA0V

A
BF

A
0 ð22Þ
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where RA0 is the reduced resolvent of HA 2 EA: The expansion of V
A
B in the asymptotic

series gives

C ð1Þ
ind;AˆB < 2RA0 Q̂

A
l1k1

FA
0 Q

B
l2k2

TABl1k1;l2k2 ð23Þ
where QX

lk ¼ kFX
0 lQ̂X

lklFX
0 l denote the permanent multipole moments of monomer X and

the summation over repeated indices is implied.

To analyze the nonadditive induction energy in more detail, one has to introduce a

notation where orders in each of the operators constituting V: VAB; VBC; and VAC; are
explicitly shown, rather than the overall order in V as it was done in Eq. (9). Thus, each

correction can now be written as Eði1;i2;i3;jÞ with the consecutive ik referring to the

operators VAB; VBC; and VAC; respectively. The overall order in V is i ¼ i1 þ i2 þ i3:With

these definitions, let us analyze the expression for Eð111;0Þ
ind given by Eq. (C18) in Ref. [85].

Since we neglect here the expansion inW ; we will drop the last superscript in the spirit of
the definition of Eq. (10). All the terms in the equation for Eð111Þ

ind are equivalent and can be

represented by

I1 ¼ kFA
0C

ð1Þ
ind;BˆClVABlC

ð1Þ
ind;AˆCF

B
0 l ð24Þ

Expansion of the operators and of the induction functions gives

I1 < kFA
0 lQ̂A

l0
1
k0
1
RA0 Q̂

A
l1k1

FA
0 lQ

C
l3k3

TACl1k1;l3k3

� kFB
0 lQ̂B

l0
2
k0
2
RB0 Q̂

B
l2k2

FB
0 l

pQC
l0
3
k0
3
TBCl2k2;l

0
3
k0
3
TABl0

1
k0
1
;l0
2
k 0
2

ð25Þ
Since kFA

0 lQ̂A
l0
1
k 0
1
RA0 Q̂

A
l1k1

FA
0 l ¼ aAl0

1
k 0
1
;l1k1

is the polarizability of A, we can interpret the first

line of this equation as the multipole moments induced on A by the field due to the

permanent multipole moments of C. With an analogous interpretation of the second line,

we see that I1 represents mutual interaction of the multipole moments on A and on B

induced by the electric field of C. This mechanism is illustrated by diagram (f) in Fig. 33.4.

Eq. (25) can, however, be also interpreted in an alternative way. Notice that the

polarizabilities are pure monomer properties. Let us interpret the first line of Eq. (25)

as above, but then multiply the induced moments on A by TABl0
1
k 0
1
;l0
2
k 0
2
: This product

represents the field on B due to the presence of the induced moments on A. This field

coupled with the polarizability aBl0
2
k 0
2
;l2k2

creates a set of induced multipole moments on

B. These moments now interact with the permanent moments on C. This interpretation

is the same as the one given by Piecuch [112] for the same component (IIEð3Þind
Q;aaQ

in Piecuch’s notation). This alternative interpretation of I1 is shown as diagram (g) in

Fig. 33.4 (except that the roles of A and B are interchanged). Notice that this inter-

pretation appears more naturally if the third-order induction energy is expressed via the

second-order induction function (cf. Eqs. (115)–(117) in Ref. [85]).

Consider now Eð210Þ
ind ; Eq. (C14) in Ref. [85]. The first term is (the fourth integral is also

of the same form)

J1 < kC ð1Þ
ind;AˆBF

B
0 lVABlFA

0 C
ð1Þ
ind;BˆCl ¼ ðaApQBTABÞðaBQCTBCÞTAB ð26Þ

in a short-hand notation. The terms in parentheses are multipole moments on A and

B induced by fields due to permanent moments of B and C, respectively. These induced
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moments interact with each other, as it is illustrated in diagram (c) of Fig. 33.4. This term

can also be interpreted in two other ways. The induced moments on B can be coupled

with the polarizability of A to induce a moment on A. These moments then interact with

permanent moments on B, as shown in Fig. 33.4(d). One more possible interpretation is

that of Fig. 33.4(e). The two alternative interpretations were proposed by Piecuch [112]

who denoted those terms by IEð3Þind
Q;aaQ:

The second term in Eq. (C14) of Ref. [85] is

J2 ¼ kFA
0 C

ð1Þ
ind;BˆAlVABlF

A
0 C

ð1Þ
ind;BˆCl

< QA
l0
1
k 0
1
TABl0

1
k 0
1
;l0
2
k 0
2
QA

l1k1
TABl1k1;l2k2kF

B
0 lQ̂B

l2k2
RB0 Q̂

B
l0
2
k 0
2
RB0 Q̂

B
l00
2
k00
2
lFB

0 lQ
C
l3k3

TBCl00
2
k00
2
;l3k3

ð27Þ

The integral displayed above is the hyperpolarizability bl2k2;l
0
2
k 0
2
;l00
2
k00
2
: After multiplying by

the terms representing fields due to the permanent moments on A and C, it gives the

hyperpolarizability induced multipole moments on B. These moments then interact with

the permanent moments of A as shown in Fig. 33.4(a). Alternatively, if the

hyperpolarizability is multiplied by the square of the field on A, the resulting induced

moments interact with permanent moments on C (see Fig. 33.4(b)). The latter

interpretation is more natural for the third integral in Eq. (C14) of Ref. [85]. Piecuch

interpreted these terms in the same way and denoted them as Eð3Þind
Q;bQQ: The interpretation

presented in this subsection can also be carried out at the level of the self-consistent field

A

B permanent multipole moment

A C

B

(b)C

Field due to unperturbed charge
distribution

moment induced by the above
field

field due to induced multipole
moments

(a) moment induced by the above
field

hyperpolarizability induced
moment

BB

A

B

A C
(c)

A C

B

(f)

C
(d) A C(e)

A C

B

(g)

Fig. 33.4. Physical interpretation of third-order nonadditive induction energy.
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(Hartree–Fock) theory provided that all multipole moments and polarizabilities are

replaced by their (coupled) Hartree–Fock counterparts [114].

33.9 CASE STUDIES OF NONADDITIVE EFFECTS IN CLUSTERS

In this section, a few systems for which some knowledge about nonadditive effects is

available will be discussed. The water clusters will be studied separately in subsequent

sections. The number of systems considered here is actually a large fraction of all systems

for which a sufficiently reliable information about nonadditive effects is available. The

most studied systems are Rg3 and Rg2–HX, where X is a halogen atom. As mentioned,

the latter systems are not necessarily relevant from the point of view of modeling the

condensed phase, but are well suited for spectroscopic investigations providing stringent

limits on the theoretical results.

33.9.1 Helium trimer

The only bound state of the helium dimer is known to be very diffuse, the average R is

size of about 50 Å [115,116]. The ground state of the trimer is much more compact

(about 6.5 Å [117]), however, the so-called Efimov excited states [118] are over 100 Å in

size [119]. The latter states are very sensitive to the depth of the two-body potential and

changes of this depth of the order of 1% may decide about their number [119]. Although

the nonadditive energy in helium trimer is of comparable magnitude, numerous

investigations of Efimov states (see Refs. [119,120]) usually neglected the nonadditive

potential.

The unique properties of helium at low temperatures result in a continuous interest in

this system. The three-body nonadditive interactions are small for helium (cf. Fig. 33.1),

but become important for condensed helium at high pressures. Simulations of such

conditions performed in Ref. [121] used the Bruch–McGee three-body nonadditive

potential [122]. Later several other nonadditive potentials became available for He3
[123–125]. Recently, Moroni et al. [126] (see also Ref. [127]) applied the SAPT two-

body potential [115,116] and the three-body potential of Cohen and Murrell [125] to

predict properties of solid and liquid helium. Excellent agreement with experiment in

most regions has been obtained in the latter work. In fact, the only discrepancy with

experiment has been attributed by Moroni et al. [126] to an improper choice of the

reference energy in the experimental equation of state. However, as shown in Ref. [87],

the nonadditive potential used by these authors is a poor approximation to the true

potential. The use of inappropriate three-body potentials may also be responsible for the

deterioration of the agreement with experiment upon inclusion of three-body effects

observed by Chang and Boninsegni [128].

The many-body SAPT approach was used in Ref. [87] to compute the nonadditive

interactions in the helium trimer. The computed points were fitted by a global potential

function. The SAPT potential agrees well with accurate literature calculations at selected
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points on the surface [129,130] but disagrees significantly with a previous helium trimer

potential [125].

33.9.2 Argon trimer and condensed phase

Argon properties have probably been investigated more than those of any other rare gas.

This is partly due to the fact that argon is the largest rare-gas atom for which accurate

calculations are still possible and at the same time the nonadditive effects are larger for

argon than for lighter atoms (cf. Fig. 33.1). At the present, the helium and argon three-

body potentials are known better than those for other trimers. The most accurate argon

trimer potential to date was developed in Ref. [32] using the three-body SAPT approach.

The nonadditive part of the interaction energy was computed at more than 30

configurations. An analytic potential was then fitted to the computed values. This was the

first ab initio potential for the argon trimer (in fact, for any trimer) that would include

nonadditive components (all very important for argon) such as the exchange–dispersion

energy, third-order dispersion energy with overlap, and several others. Therefore, this

potential allowed an insight into physical origins of the three-body forces in trimers of

heavier rare gas atoms. As already mentioned, this issue has been the subject of heated

literature discussions in the past (for reviews, see Refs. [19–21]). In particular, the work

of Ref. [32] confirms that the first-order exchange nonadditive energy [131–134] is large

and cancels a significant part of the ATM contribution to the dispersion energy, as it was

pointed out by Meath and Aziz [19] in 1984. This cancellation takes place for most

configurations near the minimum of the trimer, although eventually for large trimers the

ATM term will be larger in magnitude due to its slower decay. However, several other

terms, not considered before, are similar in importance to these two terms (in particular,

at the minimum, EHFint ½3	 and Eð20Þ
exch–disp½3	 are of the same order of magnitude as Eð3Þ

disp½3	).
Ref. [32] has shown that due to a startling and quite complete cancellation among several

of these terms, the total nonadditive interaction energy is fairly well approximated by the

third-order dispersion energy at the minimum and for larger separations. This finding

rationalizes the success of the ATM term in predicting most of the properties of the

condensed phases of argon, although it points out to its somewhat fortuitous character. Of

course, the fact that asymptotically the ATM term becomes dominant and that large

trimers do make a significant contribution to the cohesion energy explains the part of the

success which is not fortuitous. At the intermolecular separations in Ar3 smaller than the

minimum, the cancellations do not take place and the nonadditivity of the Hartree–Fock

interaction energy, EHFint ½3	; dominates the total nonadditive potential. This component is
in turn dominated by the first-order exchange nonadditive energy Eð10Þ

exch½3	:
The nonadditive SAPT components have been compared in Ref. [32] order by order

with results from supermolecular MBPT4 and CCSD(T) calculations. The agreement

between individual MBPTn nonadditive contributions and the sum of the corresponding

SAPT terms varied depending on the order of perturbation theory and on the

configuration of the trimer. However, the total nonadditive interaction energies computed

by the two methods agreed very well. Typically, the differences between the two

approaches amounted to only a few percent (except for obvious and unavoidable larger
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differences near the points where the value of the total nonadditive energy crosses zero).

It has been estimated in Ref. [32] that the total error of the nonadditive potential is of the

order of 10%.

Argon trimer has an interesting property that some spectral transitions that would have

been forbidden if only two-body interactions were present are allowed due to three-body

forces, as pointed out by Suhm and Nesbitt [26]. Investigations performed by Cooper et al.

[135], who calculated the bound rovibrational state energies of the argon trimer, suggest

that information about nonadditive three-body effects should be extractable from the

ground state rotational constants or from Raman spectra of the argon trimer if

these quantities were measured. However, this has not been done so far. The rovibrational

states of Ar3 are also difficult to compute, despite the small dimensionality of the

problem [136].

The availability of the new three-body nonadditive potential made it possible to

investigate the structure of the argon crystal at a much increased level of accuracy

compared to that possible earlier and resolve an outstanding problem, often called the

rare-gas crystal structure ‘paradox’. The cohesion energy of the argon crystal computed

[14] using the nonadditive potential from Ref. [32] and the two-body potential of Aziz

[137] was in very good agreement, within 0.3%, with experiment [138]. The estimated

10% error in the trimer nonadditive potential translates into 0.7% error in the cohesion

energy. The inaccuracies in the two-body potential and the neglected four- and higher

body effects are expected to give uncertainties of a similar size. Calculations were

performed both for the fcc and hcp lattices, allowing a resolution of the paradox

mentioned above, consisting in an inability of theory to agree with experiment on the

lattice structure of argon. All reasonable two-body potentials applied over the years

predicted the hcp structure to be more stable. The addition of the ATM term did make the

energy difference between the hcp and fcc structures smaller, but the former lattice

remained lower in energy. The study of Ref. [14] has shown that one has to include the

nonadditive exchange components of the first and second order to make the fcc crystal

more stable. Also, the complete dispersion energy (not utilizing the multipole expansion)

was used, rather than the ATM term alone. In this way, the correct crystal structure has

been predicted, the goal which eluded theory for 50 years. The role of the three-body

interactions in the crystal was shown to be significantly amplified compared to the argon

trimer: the addition of the three-body effects changes the interaction energy in the trimer

by only 1%, whereas the analogous change of the crystal cohesion energy is as large as

7%. This amplification results from an interesting balance of two competing effects. On

one hand, there should be an increase of the relative role of three-body forces due to the

fact that there are many more triples than pairs in a crystal. On the other hand, for larger

trimers, the relative importance of nonadditive forces gets smaller since these forces

decay faster than the two-body terms. Thus, one may expect the amplification factor to be

strongly system dependent.

The knowledge of the three-body potential allows calculations of the third virial

coefficient for a substance, an experimentally accessible property that depends only on

two- and three-body potentials. The classical third virial coefficient of argon has been

computed in Ref. [139] for temperatures between 113.15 and 1223.15 K using the

ab initio three-body potential of Ref. [32]. The results agree with the virial coefficients
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extracted directly from experimental data to within about 5% for temperatures between

220 and 420 K, theory almost touching the experimental error bars. For lower

temperatures the discrepancies become larger, but results from different experiments

are also significantly apart. The calculated values agreed very well with those of Dymond

and Alder [140] determined by fitting experimental data with theoretical constraints.

However, the disagreement for low T with the data of Gilgen et al. [141] was somewhat

worrisome. Later it turned out that the experimental values in Ref. [141] have been

incorrect (too large for low T) due to the evaluation procedure applied to extract them

from the rPT data. The new, corrected coefficients [142] are in much better agreement
with the theoretical values extending the range of agreement down to 170 K. The

equation of state obtained using the computed second and third virial coefficients

reproduced experimental PV data over a wide range of pressure.

Liquid argon is a benchmark system in thermal physics. The ability of theory to predict

thermophysical properties of this system from first principles may be important for

calibration of experimental techniques. MC simulations of liquid, gas, and liquid–vapor

equilibria of argon have been performed in Ref. [15]. The complete ab initio three-body

nonadditive potential of Ref. [32]—including the short-range contributions—has been

used for the first time in such type of simulations. The two-body potential used was the

empirical potential of Aziz [137], so that the simulations were not completely first

principle. However, Aziz’s potential could now be substituted by an ab initio potential

from Ref. [143], so close to the former potential that the results of the simulation should

not change in any appreciable way. The simulations of Ref. [15] have achieved very good

overall agreement with experiment for phase equilibrium parameters and pV data of pure

phases. Importance of various three-body interaction components has been assessed and

their relationship to the liquid structure has been investigated. Although the short-range

contributions to the nonadditive potential are quite large, cancellations occurring between

these and other components at the interatomic distances typical for the liquid make the

total three-body nonadditive effect very similar to that given by the ATM potential.

Performance of the three-term virial equation of state [139] was assessed based on the

results of simulations.

Some specific properties where the nonadditive effects could possibly play a much

larger role than usual are defects [144] and surface phenomena in rare gas crystals. In the

case of defects, Losee and Simmons [145] pointed out already in 1967 that vacancies may

provide important information about many-body contributions since the number of pairs,

triples, etc. of atoms differ between the perfect lattice and the lattice containing

vacancies. However, it is difficult to obtain precise information about these effects since

estimates of the entropic terms are uncertain. Guarini et al. [146] have studied liquid

krypton by neutron scattering. These authors have found that in order to explain

experimental findings in some regions of scattering parameters, apparently related to

surface scattering, one had to assume that the many-body interactions contribute as much

as 40% to the scattering. This estimate, if confirmed, would be an extreme case of the

importance of the many-body effects in the condensed phase of rare gases. As mentioned

above, for the argon crystal the nonadditive effects are responsible for about 7% of the

cohesion energy. For the krypton crystal, the contribution of nonadditive effects can be

estimated by subtracting from the experimental cohesion energy of 11,192 ^ 17 J/mol
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(Ref. [138]) the theoretical energy computed using a pair potential only, equal to

12,186 J/mol (Ref. [147]). The obtained value of 8.8%, although slightly larger than for

argon, is very much smaller than the value inferred in Ref. [146].

33.9.3 Ar–Ar–HF trimer

The Ar2HF trimer has been the subject of a number of experimental investigations [64]

starting from 1987. Recently, the spectra of this trimer have been measured in superfluid

helium nanodroplets [148]. Ernesti and Hutson [29,30] constructed a model nonadditive

potential for Ar2HF using asymptotic information as well as results of Hartree–Fock

calculations. This potential was applied, together with the best available two-body

empirical potentials, to compute rovibrational levels and rotational constants of the

complex. By calculating spectra using only the pair potentials, Ernesti and Hutson

showed that the differences between the computed and the experimental spectra are too

large to be attributed to inaccuracies of the additive potentials and therefore must be due

to three-body nonadditive effects. The authors then examined the effects of various

nonadditive contributions and concluded that the S2 exchange term, modeled by the

exchange quadrupole [149], was the dominant nonadditive component. Notice that

Ernesti and Hutson did not fit their nonadditive model to the spectra. They have

constructed the asymptotic terms from monomer properties and fitted the exchange terms

to the Hartee–Fock calculations. Although for the majority of data known from

experiments the inclusion of the nonadditive potential improved agreement with

experiment, for some quantities the improvement was small.

The dynamical calculations performed by Ernesti and Hutson were restricted to the

rotational quantum number J ¼ 0: Recently, Kozin et al. [150] developed a method

enabling predictions for higher J levels. These authors used the potential from Ref. [30].

The rotational constants could now be computed from differences between the J ¼ 1 and

J ¼ 0 levels, leading to an improved agreement with experiment.

The work of Ernesti and Hutson was followed by ab initio calculations using the

nonadditive SAPT method [33,151]. These calculations, performed at a large number of

configurations, have shown that the nonadditive effects in this system are dominated for

most geometries by the Hartree–Fock contribution. All the first- and second-order

components, as well as the leading higher order one are depicted in Fig. 33.1 for the

equilibrium configuration of the trimer. For this configuration, EHFint ½3	 constitutes 86% of

the total nonadditive energy. The third-order nonadditive dispersion effect is for most

configurations a factor of three or so smaller in magnitude. The other types of interactions

play a still smaller role. However, to obtain a quantitatively correct potential, it is

essential to include the exchange–dispersion and the (quenched) induction–dispersion

nonadditive effects. The Hartree–Fock nonadditive contribution was shown to be very

well approximated by the sum of the first-order nonadditive exchange term and the third-

order induction and exchange–induction terms. The second-order nonadditive induction

component vanishes exponentially for Ar2HF and is nearly canceled by its exchange

counterpart (see Fig. 33.1). In contrast, the third-order induction and exchange–induction

terms (not shown in Fig. 33.1) are both positive and together make an important
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contribution. The third-order induction term consists mainly of the component

representing the electrostatic interaction of the dipoles and higher multipoles induced

on the argon atoms by the electrostatic field of the HF molecule (cf. Fig. 33.4(f)). Both the

exchange and induction components are highly anisotropic. The overall contribution of

the nonadditive component to the total interaction energy of the trimer is largest at the

equilibrium configuration (HF on the C2 axis of Ar2 with H pointing towards argons)

where this contribution constitutes 3.5% of the additive part. For this geometry and for

most of other configurations that were studied, the nonadditive energy is positive, i.e. it

destabilizes the complex.

The total nonadditive energies from the work of Ernesti and Hutson [29,30] and

Lotrich et al. [33] agree reasonably well. This agreement is due to the dominant role of

the Hartree–Fock nonadditive energy and to the fact that the next largest contribution,

from the dispersion energy, is well approximated by the asymptotic formula used by

Ernesti and Hutson. However, the individual components of the Hartree–Fock

nonadditive energy obtained by Ernesti and Hutson are significantly different from

those predicted by SAPT. In particular, Ernesti and Hutson completely neglected the

important exchange terms proportional to S3:
The three-body potential developed by Ernesti and Hutson [30] for Ar2HF was

successfully used by Hutson et al. [152] in calculations for larger ArnHF clusters. In

another simulation of such clusters, the three-body dispersion nonadditivity was shown to

directly affect the vibrational red-shifts for large n [153].

33.9.4 (H2O)2 HCl trimer

The weakly bound (H2O)2 HCl trimer, whose properties were predicted first by electronic

structure calculations [154,155], was observed by Kisiel et al. [156] using high-resolution

rotational spectroscopy. Subsequently, Milet et al. [157,158] employed SAPT to compute

a number of points on the trimer potential energy surface and to interpret the nature of

three-body interactions in this cluster. They found that the three-body energy amounts

to about 13–20% of the pairwise contribution. The nonadditive induction energy plays

a dominant role, but it is substantially quenched by the first- and higher-order exchange

nonadditive terms. The convergence of SAPT for this system was tested by a comparison

with the results of supermolecular CCSD(T) calculations. It was found that the deviation

of the SAPT interaction energies from the CCSD(T) values was only of the order of 3%.

The structural predictions (i.e. the minimum geometry) obtained from SAPT calculations

agreed well with the microwave measurements [156]. To aid interpretation of future

experiments on (H2O)2HCl, Struniewicz et al. [159] developed a two-dimensional SAPT

potential energy surface describing flipping motions in the trimer and predicted the

trimer’s vibration-rotation-tunneling (VRT) levels and the line strengths of the far-

infrared transitions. In a similar investigation based on a CCSD(T) surface, Wormer et al.

[160] identified the effect of three-body forces on the transition frequencies and tunneling

splittings and found it to be important. It should be noted that, although the four-body

effects in the (H2O)3HCl cluster were found to be small [161], the many-body expansion
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for larger clusters of this type has a limited utility because of the protolytic dissociation of

HCl solvated by more than three water molecules [155,162].

33.10 THREE-BODY EFFECTS IN OPEN-SHELL CLUSTERS

Nonadditive effects in open-shell clusters have been investigated only recently and

relatively little information is available on their importance and physical origin. From the

theoretical point of view, open-shell systems are more difficult to study since the

conventional, size-consistent computational tools of the theory of intermolecular forces,

like the Møller–Plesset perturbation theory, coupled cluster theory, or SAPT, are less

suitable or less developed for applications to open-shell systems than to closed-shell

ones. Moreover, there are many types of qualitatively different open-shell states,

exhibiting different behavior and requiring different theoretical treatments.

33.10.1 Ar2NO
2(3S2) trimer

Open-shell clusters of a relatively simple electronic structure arise when an open-shell

molecule without orbital degeneracy is solvated by closed-shell atoms. An example of a

system of this class is the Ar2NO
2(3S2) trimer studied recently by Jakowski et al. [163].

The knowledge of the two- and three-body components of the interaction energy in this

system is relevant for an understanding of the photoelectron studies of the solvation of

NO2 by argon atoms [164]. Using the unrestricted Møller–Plesset perturbation theory

through the fourth order, Jakowski et al. [163] have found that the influence of the three-

body nonadditivity on the structure of the Ar2NO
2 trimer is negligible. The nonadditive

effect destabilizes, however, the complex reducing its dissociation energy (predicted to

be equal to 1260 cm21) by about 2%. The three-body interactions play larger role in the

tetramer Ar3NO
2, where they influence the energetic ordering of two lowest energy

structures and contribute about 7% to the binding energy determined in Ref. [163] by the

rigid body diffusion Monte Carlo (RBDMC) method [165,166]. It is expected [163] that

for still larger clusters the three-body potential will play an even more important

(destabilizing) role, but it was not included thus far in the RBDMC simulations for such

clusters [163].

33.10.2 High-spin sodium trimer

The nonadditive effects are much more important if more than one monomer is in an

open-shell state. For example, it has been found both experimentally [107] and

theoretically [108,167] that the three-body force plays a critical role in stabilizing the

sodium trimer in the spin-polarized 4A0
2 state. Similar, although gradually less and less

pronounced stabilization effect has been predicted [108] for heavier high-spin alkali-

metal trimers, whereas for the lithium trimer the three-body effect has been found to be

really dramatic—the complete potential is at least four times more attractive than
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the pairwise additive one [108]. The very strong three-body effect in the lithium trimer,

amounting to about 15 kcal/mol, should probably be interpreted as being of a chemical

rather than of the van der Waals nature, and is not expected that it can be well understood

in terms of the SAPT interaction energy components discussed in Sections 33.6 and 33.8.

A detailed physical analysis of the three-body interaction in the sodium trimer was

recently carried out by Jakowski et al. [168]. This analysis shows that in the van der

Waals well region the three-body effect is dominated by the first-order exchange term

E ð1Þ
exch½3	; i.e. it originates from the Pauli exclusion principle imposed on the unperturbed

monomers. This means that a serious net reduction of the exchange repulsion is caused by

the very presence of the third monomer, without any contribution from the polarization or

exchange–polarization effect. At the minimum distance of 4.8 Å, about 94% of the total

nonadditivity is due to this effect. Only at larger distances, the repulsive ATM (triple-

dipole) nonadditivity, correctly accounted for at the third order of the Møller–Plesset

theory [1], dominates the total three-body effect. The three-body induction effects are of

secondary importance for all distances. Among the components of E ð1Þ
exch½3	 discussed in

Section 33.8, the TE S3 terms dominate. However, the S2 SE terms are always significant

and cannot be neglected. The angular dependence of the S2 and S3 terms is very different

and the specific balance of these terms determines the sign of E ð1Þ
exch½3	 for different

configuration of the trimer. It may be noted here that also for the simplest high-spin

trimer—the quartet state of H3—the first-order exchange energy is attractive for the

equilateral configurations and dominates the total three-body effect [168,169] (except for

the large distances), the S3 contribution being larger than the S2 terms. The overall

importance of the nonadditive component is, however, much smaller for H3 than for high-

spin metallic clusters.

33.10.3 Ar2O
2 ionic trimer—the case of orbital degeneracy

When the solvated chromophore exhibits an orbital degeneracy, the quantum states of the

two-body subsystems of the trimer are not clearly defined and a fundamental difficulty

arises when one tries to perform the many-body expansion of the interaction energy. This

problem appears, for example, in the case the Ar2OH(X
2P) trimer [170], high-spin Na2B

trimer (with the boron atom in the 2P state) [168] or the Ar2O
2 trimer (with the oxygen

ion in the 2P state). The latter system, treated in considerable detail in Ref. [171], is

important for the modeling of the structure and energetics of ArnO
2 clusters studied by

Bowen and co-workers [172,173] using the photoelectron spectroscopy. The linear

structure of the trimer, postulated by Arnold et al. [172], was confirmed by Roszak et al.

[174] in ab initio calculations, but no two- and three-body potentials were extracted in

that work.

The trimer Ar2O
2 includes as a subunit an open-shell dimer ArO2, which in isolation

can be in either a S or a doubly degenerate P state. These states differ by the orientation

(specified by the angle u) of the singly occupied oxygen 2p orbital, which is parallel to the
dimer axis ðu ¼ 0Þ for theS state and perpendicular ðu ¼ p=2Þ for theP state. For a trimer

of an arbitrary geometry, the p orbital is usually oriented at an angle different than zero or

p=2: One can easily see that for the isosceles triangle configuration (the C2v point group)
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characterized by the angle g between the vectors pointing from the O2 ion to the Ar

atoms, the angle u equals g/2 for the A1 state, p=22 g=2 for the B2 state, and p=2 for the
B1 state. In the first two cases, the 2p orbital is in the trimer plane and in the third case it is

perpendicular to this plane. Thus, only for the B1 state, the two-body part of the trimer

energy can be constructed from the potential VP(R) of the P state of ArO2. Since VP(R)

and the potential VS(R) for the S state of ArO2 are very different, it matters which of

these pair potentials is used as the two-body part of trimer’s A1 and B2 potential energy

surfaces. One could think of using the arithmetic average V0(R) of the VP(R) and VS(R)

potentials but, as shown by Jakowski et al. [168,171], a much smaller three-body effect is

obtained if a suitable u-dependent two-body potential is used. Such a potential, dependent
on the orientation of the singly occupied 2p orbital, can be obtained by the simplest

sensible trigonometric interpolation between the P and S potentials:

VðR; uÞ ¼ VPðRÞ þ ½VSðRÞ2 VPðRÞ	cos2u ð28Þ
For the isosceles triangle, the pairwise contribution to the potential originating from a

single O2· · ·Ar interaction becomes then [168,175]

VA1
ðR; gÞ ¼ VSðRÞcos2 g

2
þ VPðRÞsin2 g

2
ð29Þ

VB2 ðR; gÞ ¼ VSðRÞsin2 g
2
þ VPðRÞcos2 g

2
ð30Þ

The total pairwise contribution is twice as large as in the two equations above, so the total

interaction potentials for the A1, B1, and B2 states can be written in the form:

E
A1

int ðR; gÞ ¼ 2V0ðRÞ þ VAr–ArðR sin g
2
Þ þ DVðRÞcos gþ E

A1

3BðR; gÞ ð31Þ

E
B1
intðR; gÞ ¼ 2V0ðRÞ þ VAr–ArðR sin g

2
Þ2 DVðRÞ þ E

B1
3BðR; gÞ ð32Þ

E
B2
intðR; gÞ ¼ 2V0ðRÞ þ VAr–ArðR sin g

2
Þ2 DVðRÞcos gþ E

B2
3BðR; gÞ ð33Þ

where VAr–Ar(r) is the pair potential for argon, DV(R) is the difference potential DVðRÞ ¼
VSðRÞ2 VPðRÞ; while E

A1

3BðR; gÞ; EB13BðR; gÞ; and E
B2
3BðR; gÞ are the so-called ‘genuine

three-body contributions’, defined essentially through Eqs. (31)–(33). The terms

DVðRÞcos g; 2DVðRÞ; and 2DVðRÞcos g; expressed through the conventional S and

P pair potentials of ArO2, but dependent, in general, on the position of the third atom via

the angle g; are referred to as the ‘orientational nonadditivity’ [168,171]. It should be
noted that mixing of different diatomic states to define an effective two-body potential

has been used earlier by Aquilanti et al. [176], by Danilychev and Apkarian [177], and by

Naumkin and Knowles [175]. Jakowski et al. [171] have found that the orientational

nonadditivity is usually much larger than the genuine one and that it can be viewed as

responsible for the collinear structure of the Ar2O
2 trimer. The small genuine

nonadditivity is of similar nature as in the analogous closed-shell complexes like,

e.g. Ar2Cl
2. It is repulsive at the intermediate and long range and favors the collinear

structure of the complex. Jakowski et al. [171] have also found that the differences

between the genuine three-body terms in the A1, B1, and B2 potentials are of secondary
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importance and can be neglected in cluster simulations [178]. It should be noted that in

their simulations, Jakowski et al. [178] included also the spin–orbit coupling in the two-

body potential, which turned out to be important only for small clusters. The three-body

contribution to the cluster energy resulting from the inclusion of the spin–orbit

interaction has apparently not been considered in the literature so far.

The genuine nonadditivity can be interpreted using the open-shell SAPT approach of

Cybulski [179]. It has been found to be dominated by the induction component at large

distances, with the exchange contribution increasing its significance at a shorter

range [171]. It should be mentioned that for larger clusters the genuine nonadditivity can

be more important than for trimers and can reach as much 30% of the total interaction

energy in the cluster [178].

For arbitrary triangles (the Cs point group), the angle u is not uniquely defined, but can
be obtained by an analysis of the wave function in a way similar to that used to construct

the diabatic states from the adiabatic ones [180,181]. It should also be noted that for

arbitrary trimer configurations, the resulting two A0 states are coupled nonadiabatically.
This coupling can be viewed as a pure three-body effect.

33.11 WATER CLUSTERS AND CONDENSED PHASE

33.11.1 Two-body potentials for water

As already mentioned, the prerequisite for investigations of nonadditive effects is the

knowledge of an accurate pair potential for a given system. Therefore, in this section, we

will briefly discuss the water dimer potentials before starting an extensive discussion of

the water trimer potentials in Section 33.11.2 and simulations of liquid water in Section

33.11.3.

The number of potentials developed for the water dimer is probably larger than for any

other system. However, most of these potentials are ‘effective’ pair potentials fitted in

simulations of liquid water or ice such that the results of these simulations match bulk

measurements for the investigated systems. Thus, these potentials are of no help in

investigations of nonadditive effects. There was a number of ab initio potentials for water

published, the best known are those by Clementi and coworkers [67,182]. More recently

the ASP potentials of Millot et al. [183] have been very popular. However, only in the last

few years it has become possible to develop interaction potentials accurate enough for

investigations of nonadditive effects.

Several accurate potentials for the water dimer have been developed by the present

authors and collaborators using the regular SAPT approach [48,63] and its DFT-based

version [81]. The most extensively tested potential, dubbed SAPT-5s for the five

symmetry-distinct sites used in the fit, was based on about 2500 ab initio grid points—a

much larger number of points than in any previous work on this dimer. The calculations

employed a medium-size, interaction-optimized spdf-symmetry basis set with bond

functions. By comparisons to the most elaborate single-point calculations [184],

the SAPT interaction energies have been estimated to be accurate to about 0.3 kcal/mol

or 5% with respect to basis set and theory level extensions. Recent SAPT calculations
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[81] in very large basis sets generally confirmed this estimate, but have shown that the

deviations are not uniform, ranging from less than 0.1 to about 0.5 kcal/mol in different

regions of potential energy surface. Nevertheless, the stationary points on the surface and

the barriers to proton tunneling are recovered by SAPT-5s quite accurately, as found

earlier by van Duijneveldt-van de Rijdt et al. [185]. The SAPT-5s potential allowed

to resolve some controversies related to the equilibrium structure of the water dimer.

For example, the average value of 1=R2O–O—obtained from the two lowest energy

rovibrational water dimer wave functions computed using the SAPT-5s potential—has

been combined with the value of k1=R2O–Ol inferred from experiments [47] to obtain a

new empirical estimate of the equilibrium O–O separation equal to 5.50 ^ 0.01 bohr

[48], significantly shorter than the previously accepted value, but in a very good

agreement with high-level ab initio calculations of Klopper et al. [184]. The zero-point

energy computed from SAPT-5s was subtracted from the depth of the potential from Ref.

[184] to give a new prediction of the dissociation energy D0 equal to 1165 ^ 54 cm21

[48], close to but significantly more accurate than the best empirical value [186]. The

SAPT-5s potential of Ref. [48] and the earlier SAPT-pp potential from Ref. [63] were

used to predict the second virial coefficient for water and reproduced the experimental

data with discrepancies of the same order of magnitude as estimated errors of

measurements. The agreement with experiment was further improved by the recent

SAPT(DFT) potential for the water dimer [81].

The most stringent tests of the accuracy of the SAPT potentials [48,63] came from

comparisons of the spectra calculated using these potentials with the experimental ones.

The majority of measured transitions [49,50,187,188] among the vibrational ground-state

manifold were predicted to within about 0.01 cm21 [31,56] and the agreement with

experiment for vibrational excitations was also very good [189]. The latter agreement

allowed reassignment of some spectral lines. One of the few exceptions, where SAPT-5s

predictions were somewhat less accurate, was the sum of acceptor splittings (a single

experimental number). This sum was used together with the SAPT computed interactions

energies to tune the SAPT-5s potential. The tuned potential, denoted by SAPT-5st,

reproduced this value to 0.06 cm21 and at the same time did not lose the high accuracy of

SAPT-5s for other transitions.

The spectral results computed from the SAPT-5s potential could be compared to

those produced by the VRT(ASP-W) potential of Fellers et al. [52], which was fitted

to the dimer spectra. In general, SAPT-5s, SAPT-5st, and VRT(ASP-W) agree with

experiment equally well, except for the sum of acceptor splittings in the case of SAPT-

5s. However, when the VRT(ASP-W) potential was used together with a three-body

nonadditive SAPT potential to calculate the spectra of the water trimer (see below),

the predictions from VRT(ASP-W) were significantly worse than those given by the

SAPT-5s plus a three-body potential. Also, a recent paper by Keutsch et al. [51] has

found that SAPT-5st reproduces the complete set of the vibrational ground-state

properties of the water dimer very well, whereas the refined versions of the empirical

potential, VRT(ASP-W)III [53] and VRT(MCY-5f) [190], show larger discrepancies.

Thus, among published potentials SAPT-5s/st provides the best current characterization

of the water dimer interaction.
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33.11.2 Three-body potentials for water

Attempts to represent the three-body interactions for water in terms of an analytic

function fitted to ab initio results date back to the work of Clementi and Corongiu [191]

and Niesar et al. [67]. These authors used about 200 three-body energies computed at the

Hartree–Fock level and fitted them to parametrize a simple polarization model in which

induced dipoles were generated on each molecule by the electrostatic field of other

molecules. Thus, the induction effects were distorted in order to describe the exchange

effects. The three-body potentials obtained in this way and their many-body polarization

extensions have been used in simulations of liquid water. We know now that the two-

body potentials used in that work were insufficiently accurate for a meaningful evaluation

of the role of three-body effects.

The more recent ASP potentials of Millot et al. [183] and their counterparts fitted to

the experimental dimer spectra, VRT(ASP-W) [52] and VRT(ASP-W)III [53], have been

utilized in diffusion Monte Carlo (DMC) simulation of water clusters of different sizes

[192,193]. The three- and higher body effects were described by a polarization model

only, similarly as in empirical polarizable potentials. While polarization models are quite

efficient in describing the nonadditive induction in the asymptotic regime, they fail to

properly model the short-range nonadditivities, which are definitely non-negligible in

smaller trimers.

Free from this deficiency is the three-body potential obtained recently by Mas et al.

[34], based on ab initio calculations using the three-body version of SAPT developed in

Ref. [85]. The ab initio three-body energies computed at 7533 trimer geometries were

fitted to a 12-dimensional analytic form motivated by the physical interpretation of

various SAPT corrections. The nonadditive exchange components proportional to the

second power of the overlap integrals S are represented using an exchange-quadrupole

model and a flexible expansion in products of Legendre polynomials and exponential

factors is used to model the short-range terms of the S3 type. The long-range nonadditive

induction effects are accounted for up to the third order by a damped one-center

polarization model. The physical content and flexibility of such a functional form allowed

for a very small root mean square error, only 0.07 kcal/mol. With the substantial effort

devoted to proper modeling of the short-range nonadditive effects, the three-body SAPT

potential of Ref. [34] is significantly more sophisticated than any other published

potential of this type. The three-body fit, combined with the SAPT-5s pair potential,

yielded characteristic structures and energies of water trimer in very good agreement with

other accurate calculations [194–196]. The nonadditive effects were found to affect

mostly intermolecular distances in the minimum energy structures, while the influence of

these effects on the orientations of monomers was smaller. However, the barriers on the

trimer potential surface turned out to be quite sensitive to the presence of nonadditive

effects. For example, the barrier uud–upd for flipping of a nonbonded hydrogen is 50%

higher on the nonadditive surface than the corresponding barrier on the pairwise-additive

surface (u, d, and p refer to up, down, and planar free-hydrogen positions, respectively).

The three-body potential computed earlier on a grid of 568 geometries, at the same

level as the data used in the fit discussed above, was utilized in Ref. [31] in a three-

dimensional calculation of the vibrational spectrum of the water trimer. Here again,
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the SAPT-5s representation of the pair interaction was adopted. In this calculation, the

centers of mass of the three molecules together with the bonding hydrogen atoms were

forming a symmetric rigid planar frame, while the free hydrogens were allowed to

undergo flipping motion. The resulting spectrum of the trimer agreed with experiment

very well. Recently, the combination of SAPT-5s and the three-body potential of Ref.

[34] has been used in DMC simulations of water clusters [193]. For clusters larger than

the trimer, the four- and higher many-body induction effects were taken into account by

means of the polarization model inherent in the VRT(ASP-W)III [53] potential. Good

agreement with experiment was obtained for the ground-state structures and rotational

constants for all clusters through the pentamer.

33.11.3 Simulations of liquid water

MC simulations of liquid water, incorporating the SAPT-5s pair potential and the three-

body potential described above, were carried out in Ref. [46] with 512 molecules in the

canonical ensemble at ambient temperature and density. These simulations will be

referred to as the SAPT-5s þ 3B simulations. In addition, the four-body and higher

nonadditive terms were included via a one-center polarization model (SAPT-5s þ NB).

The effect of the nonadditive forces on the hydrogen-bonded structure of liquid water is

reflected in the shape of radial distribution functions, shown in Fig. 33.5. If the interaction

potential was represented by the two-body SAPT-5s term only, these functions were

very far from the measured ones. In particular, the first peak of the O–H function was

strongly suppressed, which corresponds to one hydrogen bond per molecule less than

observed experimentally. The first peak of the O–O function was shifted far to the right

with respect to its experimental position, and integrating this function over the first

coordination shell shows that this shell contained as many as 10 molecules. When three-

body effects were added to the SAPT-5s pair potential, the structure became significantly

closer to experiment. In particular, it was found that (in contrast to an isolated trimer)

the three-body effects result in a reorientation of water molecules leading to significantly

increased number of hydrogen bonds, 3.34 compared to the experimental estimate of

3.58. The H–H and O–H pair distribution functions were found to be in very good

agreement with the experimental functions of Soper [197]. Also the O–O function agreed

well in the region of first peak. However, the agreement in the regions of the first

minimum and the second maximum was still rather poor, indicating that the simulated

liquid structure lacked the signatures of the experimentally observed tetrahedral

coordination. The addition of higher nonadditive terms in SAPT-5s þ NB simulation

brought virtually no change to the radial distribution functions, suggesting that the

structural properties may be already saturated at the 2 þ 3-body level.

The recent development of the SAPT(DFT) pair potential [81] and preliminary

simulations for the liquid with this potential allowed to shed some new light on the issues

discussed above. Comparison of SAPT(DFT) with SAPT-5s showed that the accuracy of

the latter potential was somewhat uneven in different regions of configuration space [81].

In particular, the depth of SAPT-5s for the hydrogen-bonded configurations was

underestimated compared to the depth in other regions. As it turned out, such details
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of the pair potential have a direct effect on how much the nonadditive forces affect

the calculated liquid structure. The radial distribution functions obtained with the

SAPT(DFT) potential combined with different representations of nonadditivities are

presented in Fig. 33.6. Comparing these functions to those of Fig. 33.5, one can see that

SAPT(DFT) and SAPT-5s give very similar structures when used without nonadditive

terms. Addition of the three-body potential [curves denoted by SAPT(DFT) þ 3B]

results in the O–H and H–H functions with peak and minima positions agreeing with

experiment better that those from the analogous SAPT-5s simulation, but no significant

differences in shapes of the curves can be observed. These functions seem to be well

saturated at the three-body level, as the addition of higher nonadditive terms [curves

denoted by SAPT(DFT) þ NB] does not bring much change. The situation is more

interesting in the case of the O–O function. While the SAPT(DFT) þ 3B simulations still

lead to an insufficiently structured liquid, the inclusion of nonadditivities beyond three-

body appears to induce a qualitative change. Although the depth of the first minimum

and the height of the second maximum on the SAPT(DFT) þ NB curve are still somewhat

too small compared to the experiment, both these features appear in right locations, and

integration of the O–O function over the first coordination shell gives the value of 4.4,

indicating a local tetrahedral structure. A recent work by Allesch et al. [198] has shown

that the lifting of the monomer rigidity approximation leads to an increase of the
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amplitude of the O–O function. If this increase is added to the SAPT(DFT) þ NB values,

the agreement with experiment becomes near prefect.

One of the problems investigated in Ref. [46] was the performance of the simple one-

center polarization model, without any short-range nonadditive terms, in representing the

many-body interactions. In this model, the full three-body SAPT potential was replaced

by the classical three-body induction interactions in the form of the polarization model

applied to trimers and limited to the third order (or two iterations). Alternatively, the total

nonadditive polarization energy of the whole system could be obtained by iteratively

solving the equations for induced molecular dipoles and subtracting the analogous two-

body induction energies (as the two-body induction is already included in the pair

potential used). In simulations with the SAPT-5s pair potential, both variants of the

polarization model led to liquid structure and energetics very similar to those obtained in

the SAPT-5s þ 3B simulation, i.e. at the three-body level. These conclusions do not carry

over to the case of SAPT(DFT) representing the two-body interactions. While the first

variant leads, somewhat surprisingly, to an agreement with the SAPT(DFT) þ NB

structure, the fully iterated variant generates too much structure in the O–O function.

The MC simulations of Ref. [46] as well as the recent ones, performed with the

SAPT(DFT) pair potential [81], show a profound effect of nonadditive interactions
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on the energetics of liquid water. If these effects are neglected, the average potential

energy of the liquid in ambient conditions is equal to28.8 and29.1 kcal/mol for SAPT-

5s and SAPT(DFT), respectively, which can be compared to the experimental value of

29.92 kcal/mol. As expected, the SAPT(DFT) potential—generally deeper than SAPT-

5s—provides more attraction in the liquid. Augmenting SAPT-5s and SAPT(DFT) pair

potentials with many-body interactions (in the form of the three-body potential plus the

rest of many-body effects from polarization model) lowers the average energies to

210.76 and 211.9 kcal/mol, respectively. While comparing these values to experiment

one should bear in mind that those are results of classical MC simulations and the

agreement would improve upon adding the appropriate quantum correction. According to

various literature estimates [199,200], the value of such correction may range from 0.7 to

1.5 kcal/mol.

The simulations of Ref. [46] indicated that three-body effects contribute 21.54 kcal/

mol or 14.5% to the internal energy of water, whereas four- and higher body effects

contribute 20.15 kcal/mol (1.4%). These contributions change to 22.3 kcal/mol (19%)

and 20.2 kcal/mol (2%), respectively, if SAPT(DFT) pair potential is used instead of

SAPT-5s. Although the contribution of the effects beyond three body (calculated as an

ensemble average) is still quite small, the presence of such effects causes significant

rearrangements in the two- and three-body energies compared to the SAPT(DFT) þ 3B

simulation. The three-body contribution becomes about 0.2 kcal/mol more attractive and

the two-body contribution becomes about 0.1 kcal/mol more repulsive, an effect which

was not observed in simulations of Ref. [46]. Clearly, the distribution of energy over

various terms of the many-body expansion is quite sensitive to details of the pair

potential, similarly as in the case of liquid structure.

Although the contribution of higher than three-body interactions was obtained from a

relatively simple polarization model, the magnitude of this contribution is consistent

with the results of ab initio calculations for small water clusters. Tetramers and

pentamers have been investigated in Refs. [201,202], where it was found that the

four-body effects contribute between 21.2 and 3.6% of the total interaction energy. The

five-body contribution in pentamers was practically negligible, between 20.11 and

0.25%. Since nonadditive effects in water saturate faster than pair interactions with the

increase of the basis set, the percentage contributions quoted above would become even

smaller if a larger than double-zeta basis sets were used in the calculations. The study of

water hexamers by Pedulla et al. [203] using basis sets of up to quadruple-zeta quality

revealed that also for these clusters the sum of the many-body effects beyond three-

body does not exceed 4%.

Numerical experience accumulated so far indicates that the structure and energetics

of liquid water are determined by a complex balance between various components of

the interaction potential with nonadditive interactions playing a major role. This balance

is certainly affected by thermodynamic conditions. Therefore, one cannot expect the

empirical ‘effective’ pair potentials, in which the nonadditive effects are included by

distorting the pair interactions, to provide a universal model of water capable of correct

predictions outside of the range of conditions which determined the potential

parameters.
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86 R. Moszyński, P.E.S. Wormer, B. Jeziorski and A. van der Avoird, J. Chem. Phys., 103 (1955) 8058,

E: 107 (1997) 672.

87 V.F. Lotrich and K. Szalewicz, J. Chem. Phys., 112 (2000) 112.
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CHAPTER 34

Clusters to functional molecules,
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Department of Chemistry, Division of Molecular and Life Sciences,
Pohang University of Science and Technology, San-31, Hyojadong,

Namgu, Pohang 790-784, South Korea

Abstract

Since theoretical investigations of gas-phase clusters have enabled the evaluation of

assembling structures with detailed insight of intermolecular interactions and the

understanding of their intrinsic molecular properties, this information has helped predict

novel nanomaterials. We have focused our attention on designing functional molecular

systems, nanomaterials, and nanodevices toward the experimental realization. In this

review, we show how insights obtained from theoretical investigations of various cluster

systems (ranging from simple water clusters to p-system-containing complexes) have
enabled us to predict structures and properties of novel functional molecular systems like

endo/exohedral fullerenes, nanotori, nonlinear optical materials, ionophores/receptors,

polypeptides, enzymes, organic nanotubes, nanowires, electronic and nanomechanical

molecular devices. Interestingly, most of these theoretically predicted systems have been

experimentally realized.

34.1 INTRODUCTION

The demand for novel nanomaterials and nanodevices cuts across almost every sector of

world high-tech industries. The immense potential of nanodevices in the fields of

communication, information storage, materials, and biological sciences has heightened

the quest for novel functional nanomaterials. Conventional methods of designing novel

nanomaterials involve tedious experimentation with poor success rates. On the other
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hand, one of the most attractive and challenging features of contemporary research in

science is the ability to rationally design and fabricate novel functional nanomaterials.

Essential to the success of this strategy is to have a detailed knowledge of the relationship

between structure and properties of the designed nanomaterials. As one of the important

missions of computational research in chemistry, computational chemistry has helped

design and invent novel molecular systems possessing desired specific properties toward

realization [1–4]. It should be emphasized that the success of design strategies based on

computational techniques is highly interlinked to the dramatic advances in evaluating and

analysing interaction forces and molecular properties in computational chemistry in the

last four decades.

The essence of computational design of new materials is how atoms and molecules are

assembled to dictate interesting properties. The goal of this work can also be seen in light

of John Maddox’s 1988 Nature editorial (Nature, 335 (1988) 201) wherein he indicated

that “One of the continuing scandals in the physical sciences is that it remains in general

impossible to predict the structure of even the simplest crystalline solids from a

knowledge of their chemical composition”. In computational terms, this involves the

evaluation of properties of systems having thousands of atoms. Despite the spectacular

advances in computational methods, the sizes of systems which can be handled using

conventional computational methods is still of the order of a few thousands of atoms.

When the properties of the system under consideration are dominated by quantum effects,

the system size shrinks to a few hundred atoms. In this context, atomic and molecular

clusters are useful model systems, because they bridge the gap between atom and bulk-

like behaviour. However, what is much more important is that small-size clusters show

quantum effects which are essential for novel nanodevices.

Clusters are self-assembled structures comprised of a number of monomers under the

given condition. Apart from aiding the development of novel materials, clusters are very

useful for understanding the intrinsic and fundamental nature of molecular recognition

and self-assembling phenomena [5–8]. This is amply illustrated in a number of

publications on a wide variety of atomic and molecular clusters, ranging from H-bonded

clusters [9–12], p-system-containing clusters [8,13–16], and metal clusters [17–20].
These investigations not only provide pertinent information useful for nanomaterial

design but also highlight some of the important similarities and differences in their

physical characteristics. These characteristics include structures, magnitudes of both

attractive and repulsive interaction energies, vibrational frequencies, and charge

redistributions. Additionally one also obtains an insight into the contributions of

cooperative and competitive forces, both of which govern self-assembly and molecular

recognition [21].

Given the ability of nanochemistry to provide functional materials of practical

utility in the near future, the elaborative quantum-chemical calculations of clusters

are of significant value because interesting individual molecules or small clusters can be

developed as viable functional materials and devices. The prediction of properties of

nanomaterials, from a nanoscopic determination of the properties of individual atoms,

molecules, or clusters, is based on molecular interactions (with ion/atom/molecule/

electron/photon) and the resulting molecular structures (clustering/aggregation by

self-assembly and self-synthesis process). In this context, we have carried out detailed
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theoretical investigations of the properties of a large number of cluster systems, ranging

from simple water clusters to large p-systems. As an effective design strategy requires a
thorough understanding of various interaction forces and mechanisms, we have

theoretically characterized novel interaction forces.We have employed various theoretical

methods ranging from traditional ab initio theory, density functional theory (DFT), tight-

binding theory, Monte Carlo to molecular dynamics (MD) simulations. In the course of

these investigations, we have been successful in elucidating the properties of a diverse

range of novel molecular systems. These include molecular clusters (water clusters,

solvated cations/anions/electrons/chemicals/biomolecules, and inorganic/metal clusters),

endo/exohedral fullerenes/nanotori, nonlinear optical materials, ionophores/receptors,

polypeptides/membranes, enzymes, organic nanotubes, metal nanowires, photo/electro-

nanodevices, and nanomechanical molecular devices.

The success of our design strategy is validated by our experimental characterization of

novel ionophores, organic nanotubes, and molecular flippers as well as other

experimental demonstration by other groups. For example, we have designed receptors

with high affinity and selectivity for specific cations (acetylcholine, NH4
þ) or anions (F2,

Cl2, H2PO4
2, CH3COO

2, ATP, GDP) which are biologically important. The designed

quantum nanostructures have been synthesized, the predicted photo-electronic devices

would be useful for computer memory with nonlinear optical switch phenomena, and the

designed nanomechanical molecular devices and molecular vehicles/tweezers would be a

stepping stone for the design of practical systems for drug delivery and nanosurgery.

In the course of this review, we elaborate on the theoretical accomplishments which

eventually led to the de novo design of these novel functional molecular systems. We

illustrate how computational strategies based on our understanding of intermolecular

interactions and cluster formation aid the design of novel nanomaterials and molecular

devices. Although there are many studies on computational material science, most of

them are different from our aims because their views have centred on simple prediction of

cluster properties (though interesting results), understanding of known nanomaterials,

and analysing of new experimental results; otherwise, the predictions are often too

hypothetical beyond experimental realization at the present status. In this regard,

instead of reviewing other groups’ work, the present mini-review will centre on our

aim at designing novel functional molecules, nanomaterials, and nanodevices, toward

experimental realization. It should be emphasized here that the highlight of our

work is that these designed nanomaterials have been experimentally characterized, and

are found to be very novel because of the utilization of novel interactions and subtle

difference between competing interactions, with their structures and properties very close

to the theoretical predictions.

The review is organized as follows. After this introduction, the theoretical background

with a short description for various existing computational methods employed for the

design of functional nanomaterials is given in Section 34.2. The salient features of our

work on aqueous, metallic, and weakly bound clusters are described in Section 34.3. We

highlight our work on the design and experimental realization of novel ionophores,

receptors, sensors, and enzymes in Section 34.4. Our work on nanomaterials and

molecular devices are highlighted in Sections 34.5 and 34.6. Finally, concluding remarks

are given in Section 34.7.

Clusters to functional molecules, nanomaterials, and molecular devices 965

References pp. 989–993



34.2 THEORETICAL BACKGROUND

Before we proceed any further, it is useful to briefly highlight various theoretical

methodologies employed to obtain the results discussed in this review. The large variation

in the nature and sizes of the systems imply that awide variety of theoretical strategies have

to be employed to obtain the results. In general, computational calculations of large

systems can be carried out using semi-empirical or empirical methods. This is the norm in

simulations of large biological systems. However, in systems dominated by quantum

effects, it is imperative that one has to employ quantum-chemical ab initio methods, to

obtain a reasonable and realistic description of the systems.

Quantum-chemical ab initio calculations of large systems can generally be carried

out using a judicious combination of supermolecular (SM) and perturbational methods

[22,23]. While the former method is often employed to obtain total interaction energies,

perturbational methods yield the magnitudes of the various repulsive and attractive

energy terms constituting the total interaction energy. As a result, perturbational methods

provide important information on the factors responsible for cluster or complex

formation. A major difference between the SM and perturbational methods is that in the

former, the interaction energy is evaluated as the difference of the energy of the complex

and the energy of the isolated monomers, while the interaction energy is obtained as a

sum of the individual electrostatic, exchange, dispersion, and induction energies, in

the latter.

Given the subtle effects of structure on various calculated properties, it is desirable that

inferences are made on the geometry-optimized structures of the clusters or complexes

under investigation. This also facilitates the evaluation of the vibrational frequencies,

because one can readily compare the calculated numbers with the experimentally

observed frequencies or shifts. As a consequence, one can readily test the efficacy of the

theoretical method employed in the calculations.

SM calculations are broadly based on either the (i) Hartree–Fock method; (ii) Post-

Hartree–Fock methods like the Møller–Plesset level of theory (MP), configuration

interaction (CI), complete active space self-consistent field (CASSCF), coupled cluster

singles and doubles (CCSD); or (iii) methods based on DFT [24–27]. Since the inclusion

of electron correlation is vital to obtain an accurate description of nearly all the calculated

properties, it is desirable that SM calculations are carried out at either the second-order

Møller–Plesset (MP2) or the coupled cluster with single, double, and perturbative triple

substitutions (CCSD(T)) levels using basis sets composed of both diffuse and polarization

functions.

However, with an increase in the size of the system, it is impossible to carry out the

calculations at the levels of theory employed in investigations of smaller systems. In such

cases, DFT methods have been widely employed in a large number of studies because of

the relatively smaller computational resources needed to describe very large systems.

Though DFT calculations are effective in description of systems dominated by hydrogen

bonding interactions, care should be taken in using them in systems dominated by weak

intermolecular complexes. This is because of the inability of most of the current density

functionals to describe dispersion energies.
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Beyond a certain system size, even DFT methods using conventional basis sets become

computationally very intensive. In such situations, one has to take recourse to the use of

solid-state physics methods like the pseudopotential plane wave or tight-binding

methods [28,29]. As the systems become larger, Monte Carlo (MC) simulations and

molecular dynamics simulations based on effective pair potentials (including two-body to

multi-body interactions) are carried out.

One of the most important approaches in theoretical design strategy is to utilize novel

intermolecular interactions. These interactions can be found from the theoretical

investigation of various atomic and molecular clusters. We investigate the electrostatic

interactions, induction, dispersion, and exchange repulsions. We particularly utilize the

subtle difference between competing interactions among various types of interactions such

as hydrogen bonding (normal, weak, strong, short strong H-bonds (SSHBs), or charged or

ionicH-bonds,p–H-bonds, etc.), ionic interactions, interactions involvingp-systems (p–
p interactions, p–H interactions, cation–p interactions, anion–p interactions), metallic

interactions, and interactions involving quantum species (electron binding/releasing or

charge transfer related to molecule–electron/hole interactions, photo-excitation related to

molecule–photon interactions) [1,2,21]. The competing interactions and the cooperative

interactions for the given systems are related to nanorecognition, and the quest of

nanorecognition is essential for nanomaterial design [21].

34.3 CLUSTERS

Investigations of clusters have been a pervading theme of research being carried out in

computational chemistry for the last several years. In early years,most of the computational

effort was expended in the evaluation of the interaction energies of a small number

of structures of these clusters. However, the vast number of structures feasible for even

small-sized clusters implies that one has to carry out an elaborate conformational search

to obtain reliable values, which could be compared to the available experimental data.

This has been one of the persistent themes of research being carried out in our group

over the last several years. Though several other research groups in the world have been

working on similar themes, we have been one of the few groups which have carried out a

systematic evaluation of structures for several classes of clusters, viz., H-bonded clusters,

p-system-containing clusters, and metal clusters. This enabled us to obtain detailed

information on the similarities and differences of several classes of clusters. Additionally,

we have also probed the nature of intermolecular interactions prevailing in these clusters

by an evaluation of the magnitudes of various attractive and repulsive components of the

interaction energies. This, together with information on the magnitudes of the many-body

interaction energies, was useful in obtaining reasonable inferences on the factors

dictating cluster formation.

34.3.1 Aqueous clusters

Aqueous clusters have been widely investigated because of their ability to provide a

microscopic understanding of the properties of water and their ability to yield molecular
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level details of solvation. In particular, a greater understanding of the nonadditive

interactions can be obtained because one can incrementally increase the number of water

molecules solvating a solute. As a result, molecular level details can be distinguished

from dielectric effects. This not only helps understand the properties of biologically

important ions and molecules in their natural environments, but is also very useful in the

de novo design of ionophores and receptors.

In one of the earliest works carried out by the leading author, a large number of initial

structures were randomly generated for small-sized water clusters, and their energies

were evaluated using a Monte Carlo annealing technique [30]. Interestingly this

investigation, which also pioneered the use of two-body, three-body, and four-body

interaction energies, was successful in identifying the lowest-energy structures of

noncyclic water hexamer to octamer, which were experimentally confirmed about a

decade after the prediction [31–34]. It is useful to mention in this context that the lowest-

lying energy structures of the water hexamer was also confirmed later from a detailed

theoretical investigation of about 800 topologically different conformers (which can be

categorized into 39 distinctive types of structures) [35–38]. This investigation was

greatly facilitated with the use of an in-house graphics program (POSMOL) [39,40]. An

excellent agreement of the calculated –OH stretch vibrational spectra, tunnelling

splitting, and rotational constants of these predicted structures with the experimental data

indicates that these structures are indeed being observed in experiments. Our extensive

calculations show that with an increase in the size of the water cluster, there is a gradual

structural transition from linear one-dimensional (1D; dimer) to two-dimensional

(2D; trimer to the pentamer), to three-dimensional (3D; hexamer and above) structures

(Fig. 34.1).

One of our important contributions in the field of aqueous clusters has been to provide

quantitative estimates of the effects of anharmonicity on zero point vibrational energies

(ZPVE) and thermodynamic energies at finite temperatures [41]. For the water dimer,

MP2/[13s8p4d2f/8s4p2d] calculations yielded values of enthalpy (DH ¼ 23:19 kcal/
mol), free energy (DG ¼ 3:39 kcal/mol), and entropy (DS ¼ 217:7 cal/mol/K) at 373 K,
which are well within the experimental bounds (DH ¼ 23:59^ 0:5 kcal/mol,

Fig. 34.1. Calculated minimum energy structures of the neutral water cluster structures. More details on these

structures can be obtained from Refs. [43,48].

Chapter 34968



DG ¼ 3:34 kcal/mol, DS ¼ 218:59^ 1:3 cal/mol/K) [42]. However, it is difficult to
carry out similar calculations on large water clusters.

Our calculations indicate that the lowest-energy structures of the water tetramer,

pentamer, and octamer have compact shapes and are energetically more stable when

compared to the water dimer, hexamer, and heptamer [43]. The structure of the water

hexamer is very interesting because of the coexistence of five isoenergetic conformations.

This is because the hexamer heralds the transition from 2D to 3D structures. Calculations

carried out using very large basis sets indicate that the cage conformer has the lowest

energy followed by the book, prism, cyclic, and bag conformers [36]. It has been shown

experimentally that the cage conformer is observed at near 0 K [31,32]. The nearly

isoenergetic conformer, book structure, was recently observed [44]. In addition, the

slightly higher energy conformer of cyclic structure was also observed in Ar matrix [45].

In terms of many-body interactions, the total interaction energy of the water hexamer

is made up of 75–90% contributions from two-body interactions. While three-body

interactions contribute the remaining 10–25% energy, the contribution of higher order

contributions is very small [37]. It should be noted that planar structures have large three-

body contributions, which should be taken into account before generating effective two-

body water potentials.

A fact which emerges from the structures of the neutral water clusters is that the

individual water monomers are linked by different kinds of H-bonds: single proton

acceptor (‘a’), double acceptor (‘aa’), single donor (‘d’), single donor–single acceptor

(‘da’), single donor–double acceptor (‘daa’), double donor (‘dd’), double donor–single

acceptor (‘dda’), and double donor–double acceptor (‘ddaa’). The vibrational frequency

shifts are found to be strongly dependent on the number of donors, and much less

dependent on the number of acceptors (Fig. 34.2). In the low-lying energy conformers of

these small water clusters ðn ¼ 1–11Þ; ‘ddaa’ water molecules, which are characteristic
of bulk water, are not observed [43,46,47]. However, in the water dodecamer, four of the

water molecules are of the ‘ddaa’ type [48].

It is useful to mention that the major distinction between small water clusters and bulk

water is the presence of free or dangling hydrogens in the former. Thus, the spectra of

these small water clusters are quite different from those of bulk water. However, as the

size of the water cluster increases, one can expect that the spectral characteristics of

larger water clusters would be quite similar to that of bulk water. Interestingly the H-bond

types appear as signatures in the O–H vibrational spectra, and hence can provide detailed

information on the structure of water clusters. It can be seen from Figs. 34.1 and 34.2 that

the fingerprints of the hydrogen bonding networks of the water cluster structures can be

observed in the calculated –OH stretch vibrational spectra. These fingerprints which are

based on the frequency shifts can distinguish proton-donating and proton-accepting water

molecules.

Generally, single H-donor water molecules (‘da’ or ‘daa’) have strong H-bond

interactions in neutral water clusters. The red shifts of O–H stretch frequencies

monotonically increase up to the hexamer ring structure because of the increased H-bond

strength by the decreased bond angle strain. However, this H-bond strength is saturated at

the hexamer, and so the heptamer and octamer ring conformers have similar red shifts.

The cyclic pentamer cluster exhibits a red shift of,540 cm21, with respect to ‘da’ water,
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while the hexamer-Cage and heptamer-Prism conformers exhibit red shifts of ,670 and

760 cm21, with respect to the ‘daa’-type water. The large shifts are due to the strong

polarization effect by the relayed H-bonds.

In addition to the red shifts observed in case of the –OH stretching modes, the HOH

bending modes of the neutral water clusters display characteristic blue shifts with respect

to that of the pure water monomer. Thus a transition from ‘da’ to ‘dda’ type leads to an

increase in the blue shifts, with the ‘dda’ waters in the hexamer and heptamer cages and

cubic D2d conformers exhibiting the largest shifts (,120 cm21) for the bending modes.

The order of red shifts of OH stretching frequencies with respect to the average value

of n3 and n1 of the water molecule in the water dimer to dodecamer is ‘da’ðn3Þ ,
‘daa’ðn3Þ , ‘dda’(n3Þ , ‘ddaa’(n3Þ , ‘ddaa’(n1Þ <, ‘dda’(n1Þ , ‘da’(n1Þ , ‘daa’(n1).
The IR intensities of double proton donor-type waters (‘dda’ and ‘ddaa’) in asymmetric

OH stretching modes ðn3Þ are strong, while the intensities of single donor-type waters

Fig. 34.2. Frequency shifts of the different types of O–H stretching modes predicted at both the B3LYP and

MP2 levels for the lowest-energy conformers of the water clusters ðn ¼ 1–12Þ: (Reproduced with permission
from American Institute of Physics [43,48].)
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(‘da’ and ‘daa’) are strong in symmetric OH stretching modes ðn1Þ: The order of red shifts
of bending frequencies with respect to that of monomer is ‘ddaa’ . ‘dda’ . ‘daa’< ‘da’.

In the cases of undecamer and dodecamer, the ranges of 2Dn3 and 2Dn1 of ‘ddaa’ type
are 209–299 and 245–496 cm21, respectively, and that of Dn2 of ‘ddaa’ type is

93–135 cm21. The values of 2Dn3 and 2Dn1 of ‘dda’ type are 66–242 and

181–436 cm21, respectively, and that of Dn2 of ‘dda’ type is 46–138 cm
21 [43,48].

With this background, it is useful to examine how the structures and properties of these

neutral water clusters are modulated in the presence of cations, anions, electrons, and p-

systems. Most theoretical investigations seem to indicate that cationic water clusters are

better described than the corresponding anionic water clusters. This contrasting

behaviour is due to the widely different nature of interactions prevailing in these

systems. The interaction between water molecules and cations is dominated by ion–

dipole interactions. Consequently the hydrogens of the water molecule are oriented away

from the ion, and so the water–water H-bonding around the cation is rather suppressed

unless the cation (such as Csþ) has large ionic radius. In addition, the involvement of the
oxygen lone pairs in the interaction with the cation also tends to suppress the formation of

inter-water H-bonding. As a result, most of the cationic water clusters, if the ionic size is

small, tend to be somewhat symmetrically hydrated (Fig. 34.3) [12,49–56]. However,

as the size of the cation increases (like in Rbþ and Csþ), inter-water H-bonding becomes
very important.

The interaction of anions with water clusters is much more complicated because the

electron clouds of the anion are very diffuse. This can be noted from the ionic radii of the

halide anions (F2 ¼ 1.36 Å; Cl2 ¼ 1.81 Å; Br2 ¼ 1.95 Å; I2 ¼ 2.16 Å) as compared to

those of the alkali cations (Liþ ¼ 0.60 Å; Naþ ¼ 0.95 Å; Kþ ¼ 1.33 Å; Csþ ¼ 1.69 Å).

Wn

1+0(C2v)1+0(C2v) 1+0(Cs)1+0(Cs)Monomer

2+0(C1)2+0(C2)CsCLinear2+0(D2d)2+0(D2d)

3+0(C3)3+0(C3)L3Cyclic3+0(D3)3+0(D3)

4+0(C4)4+0(C1)R4fCyclic4+0(S4)3+1(C2)

4+1(R4A)4+1(L3DA)5PyfCyclic4+1(C2)5+0(C2)

4+2(C2) 4+2(D2d) Cage 6Pyf 4+2(Bf)4+2(R4AA)

n=1

n=2

n=3

n=4

n=5

n=6

K+Wn Na+Wn e−Wn F −Wn Cl−Wn (Br−, I−)

IW6(4+2(Bf))

Fig. 34.3. Calculated lowest-energy structures of M·(H2O)1–6 (M ¼ Kþ, Naþ, e2, F2, Cl2, Br2, I2) at 0 K.
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Since anions interact with hydrogens of water and each water molecule has two

hydrogens, there can be strong repulsions between hydrogens, as the hydrogens point

toward the anion. Therefore, anion–water dipole interaction is suppressed, and the inter-

water H-bonding interactions around the anion become important. More importantly, the

excess electron in an anion needs a large empty space around the anion in which the

excess electron can be stabilized by reducing its kinetic energy due to the uncertainty

principle. Therefore, while internally bound compact spherical structures of hydrated

anions are not stable, a surface-bound nonspherical structure with a large vacant space on

the opposite site of the dipole direction tends to be much more stable, as can be seen from

the anion water cluster structures in Fig. 34.3 [57–69].

Thus, cation water clusters favour internal structures in contrast to the surface

structures favoured by anionic water clusters. This critical difference in the structural

preferences of hydrated cation and anion clusters provides important cues for the design

of cation- and anion-specific ionophores and receptors. Indeed, we note that most cation

receptors have spherical structures, while almost all anion receptors do not have compact

spherical structures but have a vacant space around the anion binding site without full

coordination (which might be exceptional for the F2 ion with strong electronegativity for

which the excess electron is strongly bound to F2 due to its small ion radius). However,

as the temperature increases, the hydration structure tends to be more spherical due to

entropy effects.

In light of some recent experimental work, it is useful to discuss one of the salient

observations of our calculations on e2-water clusters. Apart from the issue of the

internal vs. surface solvation, one of the enduring enigmas of small e2-water clusters

is the geometry of the water molecules in the vicinity of the excess electron. We

were the first to propose that the excess electron binds in the vicinity of a water

molecule which accepts two hydrogen bonds from adjacent molecules but does not

itself donate any hydrogen bonds to the hydrogen bonding network [67,69].

Interestingly, this prediction of ours was confirmed by some elegant experiments

carried out very recently [70].

In the above discussion, we only elaborated on the structures and properties of

these water clusters, when only a single cation or anion is present. However, from

both the chemical and biological points of view, it is interesting to examine the

modulation of the structures of these water clusters, when both cations and anions are

simultaneously present in the system. One of the classic cases which can be

discussed in this context is the dissociation of acids [71,72] and bases [73,74]. In the

case of hydrogen halides, we have shown that in the presence of four water

molecules, the dissociated states of hydrogen chloride, bromide, and iodide are more

stable than the corresponding undissociated forms, while an undissociated hydrogen

fluoride is more stable than the dissociated form even when it is hydrated by six water

molecules (Fig. 34.4) [71].

The structures of aqueous clusters formed by the interaction of a cation, an electron, or

an anion, with various sizes of water clusters bear no structural resemblance to the parent

neutral water clusters because of the dominance of electrostatic interactions. However,

things are very different in the case of interactions involving p-systems with varying sizes
of water clusters. This is because of the fact that the interactions existing between
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the water molecules in these clusters are much stronger than the p or s type of

interactions which exist between the water clusters and the p-systems. As a result, there

are little changes in the gross structural features of the water clusters in the neutral state

and in their complexed states with the p-systems. This feature can particularly be noted

in the work of Dykstra and Zwier [75] on benzene–water clusters and our work on

the structure and vibrational spectra of the p-(H2O)1–6 and p-(CH3OH)1 (p ¼ benzene,

toluene, fluorobenzene, chlorobenzene, p-difluorobenzene, anisole) systems [76–83],

wherein the experimental infrared spectra were reproduced by theoretical calculations.

Similar observations were made in the case of benzene–(H2O)6 and benzene–(H2O)8,

wherein a cage water hexamer and a cubic water octamer interact with the p-system

[33,84].

Given the scope of this review, we desist from a detailed discussion of the energetics

and vibrational spectra of the solvated aqueous clusters. However, the study of solvation

phenomena can be extended to the hydration phenomena of biologically important

chemical systems using Monte Carlo and molecular dynamics simulations [85–94].

More information on aqueous clusters can be obtained from our extensive work on these

systems cited above.

Fig. 34.4. Lowest-energy structures of hydrated hydrogen halides. (Reproduced with permission from

American Institute of Physics [71].)
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34.3.2 Metallic clusters

Unlike aqueous clusters with predominating electrostatic interaction, the interactions

in metallic clusters can be classified as either continuous transitions or metallic

[95,96]. In the former interaction, there is a continuous shift from one type of bonding to

another type as function of a chemical or physical variable. These types of bondings

include covalent, ionic, metallic, and van der Waals interactions. Thus, the accuracy of

the results on metallic clusters to a large extent depends on the ability of the theoretical

method to describe several types of interactions. In the case of the clusters of higher

transition metals, the theoretical method should also be able to describe relativistic effects

accurately.

Noble metal clusters are of interest because they serve as prototypical models of

nanoelectrodes, nanowires, etc. Until very recently, most studies of noble metal clusters

were focussed on the pure metallic species. However, in light of recent observations

which indicate that these mixed clusters exhibit unique electronic, magnetic, optical, and

mechanical properties, it is useful to compare their properties with the corresponding

pure metallic clusters. One of the offshoots of such a comparison is that it allows one to

obtain a microscopic understanding of alloying.

Theoretical studies of varying sizes of neutral and anionic gold (Au) and silver (Ag)

clusters indicate that they exhibit an even–odd oscillation in their stability and electronic

properties (Fig. 34.5) [17]. Thus, clusters which have an even number of atoms tend to be

more stable in the neutral state, while those having an odd number of atoms tend to be

more stable in the anionic state. Since the 6s orbital energy of Au is almost as low as 5d

orbitals, the strong s–d hybridization in Au favours 1D and 2D structures in the case of

the gold clusters.

This structural preference, due to the relativistic effects, explains the ductility of

small gold clusters. In sharp contrast, silver clusters exhibit a strong preference to exist

as 3D structures with spherical coordination because the valence orbitals are

predominantly of the s-type. This preference can be noted for clusters larger than the

hexamer. A similar argument can also be employed to explain the lower coordination

number of the Au atom in the gold clusters as compared to the Ag atom in the silver

clusters. This preference in coordination reflects itself in the location of the Au and Ag

atoms in the corresponding binary clusters of gold and silver, with the Au atoms being

located on the boundary, while Ag atoms are generally located on the inner side.

In the anionic systems of both pure and mixed clusters, there is marked tendency to

adopt lower dimensional conformations as compared to the corresponding neutral

clusters. However, it should be noted that in the mixed clusters, the conformational

preferences is strongly correlated to the percentage of Au and Ag atoms in the cluster.

Thus, small Au clusters tend to exist as 1D or 2D structures, which is in contrast to the 3D

structures for the Ag clusters. Given the higher energy of the Ag 5s as compared to the Au

6s orbital, charge transfer from the Au to Ag atom is noted in the mixed clusters. This

together with the predilection for the Au atom to be located on the boundary indicates

that the core of the mixed clusters is positively charged, and the surface, negatively

charged. The marked ease for the formation of the mixed gold–silver clusters and, as
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a consequence, their alloys is due to the significant electrostatic stabilization accruing

from the charge transfer from the Au to the Ag atom.

In order to obtain more insight into the role of dimensionality, these theoretical

investigations of small clusters were extended to nanowires, thin films, and the bulk

systems [97]. The 1D and 2D structures, which are obtained in isolated and small gold

clusters, are no longer preferred in the bulk. Thus, in low-dimensional structures of gold,

Fig. 34.5. Lowest-energy structures of neutral and anionic (M)n (M ¼ Au, Ag) clusters. (Reproduced with

permission from American Chemical Society [17].)
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there is a strong sharpening of the d bands, which vastly enhances the corresponding

density of states and raises the band edges. Given the technological need for 1D and 2D

structures, we note that one can obtain lower dimensional structures by modulating the

charge transfer in gold alloy nanowires by injecting s electrons into the gold wire without

distorting its band structure [98]. The s band of the alloying metal should therefore

possess energy levels similar to the 6s orbital of gold. Of all the s band metals, beryllium,

magnesium, zinc, cadmium, and mercury have their valence energy levels closest to that

of the 6s orbital of gold, and hence can form alloys with gold. Indeed, density functional

calculations carried out on free-standing infinite monoatomic gold wires alloyed with

both magnesium and zinc indicate that in sharp contrast to pure gold nanowires, the 1D

and 2D structures of both gold–magnesium and gold–zinc alloys exhibit distinct minima

in the plots of the cohesive energy, indicating that both forms are energetically

accessible. We note that both zinc 4s and magnesium 3s bands display p character near

the Fermi energy. This sp hybridization, which is absent in pure gold nanowires, favours

a linear structure in the case of these alloyed nanowires.

Our group has also investigated the 1D, 2D, and 3D systems of most transition

metals [99]. Only Fe, Co, and Ni show the ferromagnetism in the bulk, while many atoms

in 2D show ferromagnetism. In particular, in 1D all the transition metals except for Ir

are predicted to be ferromagnetic. Indeed, our results are in agreement with the recent

experimental observation that 1D systems of Co, Pd, and Pt are ferromagnetic [100].

34.3.3 Weakly bound clusters

Unlike both aqueous and metallic clusters, clusters containing p-systems are relatively
weak. Indeed the weakness of these interactions was responsible for doubts about

their existence and relevance in chemical and biological systems for a very long time.

Extensive work in our laboratory over the last several years, however, indicates that the

magnitude of this interaction depends both on the nature of the p-system and that of the

countermolecule with which it is interacting. Thus, when the countermolecule is a metal

cation, electrostatic and induction energies dominate the interaction energy [101–103].

Dispersion interactions dominate when the countermolecule is either a rare gas atom or a

nonpolar molecule (gas dimers, hydrocarbons) [104]. A combination of electrostatic and

dispersion interactions govern the interaction energy, when the countermolecule is polar

(water or methanol clusters, Lewis acids) [76,77,82,105–107]. Unlike most other

clusters, the magnitude of repulsive interactions plays a critical role in governing the

observed geometry of the cluster [104]. The presence of electron-donating substituents on

the p-system leads to complexes with enhanced interaction energies, when compared to

benzene. This enhancement is due to an increase in both dispersion and electrostatic

interactions. On the other hand, the geometries of complexes formed with aromatic rings

having electron-withdrawing substituents are extremely dependent on the characteristics

of the interaction energy. Thus, when the interaction energy is dominated by dispersion

interactions, a p type of complex is formed. When electrostatic energies dominate the

interaction energy, a s type of complex involving the electron-withdrawing substituent is
formed. When the countermolecule is a water or methanol cluster, the size of the cluster
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also influences the nature of the interaction with the p-system, resulting in a crucial
influence on the nature of the resulting structure (s or p).
In the context of nanomaterial design, cation–p interactions [101–103,108,109] are

important interactions involving p-systems. Since the interactions involving cations and
p-systems are mediated through the negatively charged p-electron cloud, early

investigations were of the opinion that purely electrostatic considerations could explain

the observed trends of their interaction energies. However, it was soon realized that a

purely electrostatic model could not explain the exceptionally high interaction energies

observed in the case of the ethene systems. Thus, the most recent experimental estimates

of the enthalpies of binding ðDH0Þ of Naþ to ethene and benzene are 210.7 ^ 1.0 and

221.5 ^ 1.0 kcal/mol, respectively. Even after accounting for geometrical consider-

ations, the general impression would be that the enthalpy of binding of Naþ to benzene is
three times that to ethene, because benzene has three times the number of p-electrons.
The issue is more complicated when one compares the interaction energy of the benzene-

Naþ and pyrrole-Naþ complexes. Though both of them have equal number of p-
electrons, the cation–p interaction in the latter is stronger than in the former. It therefore

becomes apparent that one has to take into account the differential electron density

distributions of these p-systems to explain the trends in interactions. In one of the early
works on this subject, it was shown that dispersion energies play an important role in the

interaction of organic cations with benzene [101].

A detailed theoretical investigation of the cation–p interaction involving both metallic
and organic cations indicated that both electrostatic and induction energies are major

contributors to cation–p interactions involving alkali metal cations [103]. The

interaction between the highest occupied molecular orbital (HOMO) of the p-system
and the empty s orbital of the metal cation is responsible for the large induction energy.

Consequently, systems exhibiting an enhanced overlap of the constituting molecular

orbitals (MO) would exhibit larger induction and hence larger interaction energies. A

smaller cation can approach much closer to the p-system because of the reduced

exchange-repulsion. However, in the case of the interaction of these p-systems with
transition metal cations like Agþ, a closer approach of the small-sized Agþ cation

(1.26 Å) leads to a large increase in the repulsive energies [17]. The higher repulsive

energies are to a large extent compensated by the higher charge density and the presence

of d electrons, which leads to large interaction energies. One also notes that the nature of

the p-system has only a small effect on the magnitude of interaction energy.

The magnitudes of the electrostatic and induction energies in the case of the organic

cation complexes of these p-systems are much smaller than those observed in case of the
p–alkali metal cation complexes, and hence the contribution of dispersion energies

becomes vital. The inclusion of electron correlation in calculations involving p-systems
and organic cations is important, because the inductive energies described by the p–sp

interaction (where p is the HOMO of the p-system and sp is the LUMO of the organic

cation) are magnified [101]. This magnification of the induction energies upon inclusion

of electron correlation is due to the depletion in the electron density from the centres of

the bonds and a concurrent increase in the shells around the atomic nuclei. Consequently

the organic cation can have a closer approach to the p-system and as a result both

induction and dispersion energies are magnified.
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Since we have already talked about cation–water interactions, it is useful to

compare their characteristics with the cation–p interaction. The distinguishing factor

between interactions of cations with water and p-systems is the magnitude of the

electrostatic energy, with it being dominant in case of the former (Fig. 34.6). This

marked difference can be attributed to the difference in the nature of the donor, with

the donor lone pair of the water oxygen atom being more localized than the diffuse

electron cloud of the p-system. This leads to a larger electrostatic contribution and a
much smaller induction contribution in the case of the water complexes. The repulsive

energies are higher in the case of water complexes because the cation encounters

another atom in contrast to a bond in ethene or the centre of the aromatic ring (no

atoms or bonds).

In the context of nanomaterial design, these findings are significant because a greater

electrostatic contribution implies that the magnitudes of the interaction energies are more

susceptible to the dielectric of the environment. It was also shown in the course of our

studies that the nearly similar interaction energies of benzene with the ammonium and

potassium cations result from a balance of dispersion and induction energies because

the electrostatic and exchange energies are nearly similar and hence cancel out. However,

the ammonium cation complexes exhibit a larger contribution of dispersion energies

Fig. 34.6. Comparison of cation–p and cation–water interactions. Notice the distinct differences in the various

interaction energy components as a result of changes in the nature of the cation and the p-system.
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[101–103]. In a subsequent section, we show how suitable receptors specific for the

ammonium cation could be designed by enhancing the contribution of the dispersion

energies.

In our recent work, we have also investigated the interactions of anions with electron-

deficient p-systems. Except for the greater relevance of dispersion energies, the anion–p
interactions are in many respects similar to the cation–p interactions [110].

Apart from a few experimental reports detailing the interaction of Lewis acids with p-
systems in the context of donor–acceptor complexes and electrophilic aromatic

substitution reactions, little was known about either the magnitudes or the exact nature

of their interaction. However, in the course of our extensive investigations, it was found

that the halides of aluminium, boron, and hydrogen form fairly strong noncovalent

complexes with both benzene and ethene [16,105–107]. The magnitude of the interaction

depends on the nature of the Lewis acid, with the benzene complexes of aluminium

halides exhibiting interaction energies (8 , 15 kcal/mol), which are significantly larger

than the corresponding complexes of the boron halides (3 , 6 kcal/mol). As far as our

knowledge goes, the interaction energies exhibited by the aluminium halide complexes of

benzene are the highest for a neutral (uncharged species) binding to it. Recent works by

Olah and Seddon highlight the importance of our proposed p–Lewis acid interactions in
understanding the nature of catalysts and ionic liquids [111,112].

Complexes exhibiting the p–H interaction are of interest because they are the

prototypes of a typical hydrogen bond in aromatic compounds [8,113,114]. Apart from

their biological and chemical relevance, an investigation of these interactions offers the

best opportunity to highlight the distinct differences between olefinic and aromatic p–H
interactions [16]. Our studies of the p–H interaction were done by carrying our

theoretical investigations of the complexes of the first-row hydrides with ethene and

benzene [16]. Most of these differences stem from the widely differing electron density

profiles of ethene and benzene. Thus, in the benzene complexes, the hydride aims at the

midpoint of the ring (where there are no nuclei or bonds), but in ethene, at the midpoint of

the double bond. As we progress from CH4 to HF, the increase in the repulsive exchange

energies is more pronounced in the ethene than in the benzene complexes. This leads to a

smaller variation in the intermolecular distances in the benzene complexes. Conse-

quently, the magnitude of the dispersion energies is nearly independent of the nature of

the hydride, because the magnitude of the dispersion energies is nearly proportional to the

number of electrons participating in the interaction and the intermolecular distance.

Similar to what is observed in the cation–p complexes, one also notes an increase in

the magnitude of the induction energies of the hydride complexes of both ethene and

benzene upon inclusion of electron correlation.

The p–p interactions are one of the most intriguing noncovalent interactions, in the

sense that the negatively charged and diffuse electron clouds of the p-systems exhibit an
attractive interaction [113–119]. This interaction is predominated by dispersion

interactions, when the p-systems possess nearly similar electron densities. However,

when one of the systems is electron-rich (benzene) and the other electron-deficient

(hexafluorobenzene), the resulting complexes are bound by induction interactions with

the negative charge being transferred from benzene to hexafluorobenzene [120,121]. The

acetylene dimer is one of the simplest systems exhibiting a p–p interaction [122,123].
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Though a parallel displaced conformer, which involves a stacking of the two acetylene

p-systems exhibiting a p–p interaction, the most stable conformer is a T-shaped

structure, which involves the interaction of hydrogen of acetylene with the p-system of

the other [122]. In the case of the ethene dimer, the most stable structure has a D2d

symmetry, which involves the formation of a quadruple hydrogen bond [124]. The

interaction of two benzene rings (benzene dimer) has been widely investigated both

experimentally and theoretically. The experimental estimates of the interaction energy is

of the order of ,2 kcal/mol, which indicates that the attraction is appreciable and

significantly influences the interaction of phenyl rings in solution or other environments,

in addition to other factors such as solvophobic effects [116–119,125]. The interaction is

predominated by dispersion interactions and as in the case of the acetylene dimer, the

benzene dimer can manifest itself in any one of the structural forms: stacked, T-shaped,

or parallel-displaced. The available evidence seems to indicate that the T-shaped

and parallel-displaced conformations are most stable [116–119]. However, it should be

noted that the isolated benzene dimer is highly fluxional and can coexist in any of

the three structural forms. In a subsequent section, we take advantage of the fact that the

interconversion between different conformers or the orientations of two interacting

p-systems can be exquisitely controlled [113]. In order to have maximum control on

this interconversion, we use the electrochemically and photochemically active p-systems
(quinone and hydroquinone) [126,127].

While we have investigated several other interactions involving p-systems, we believe
that they have little relevance in our subsequent discussion on nanomaterial design.

Mention should, however, be made of the interaction of paramagnetic atoms with

p-systems, which is discussed in our account of A@C60 (A: N, P, As, O, or S) [128].

34.4 IONOPHORES, RECEPTORS, AND CHEMICAL SENSORS

A lot of interest has been evinced in the design and synthesis of receptors capable of

binding anionic or cationic guests because of their potential applications in

environmental and biological processes. Unlike nanoclusters and nanowires, the

theoretical challenge in these systems is to describe the affinity and selectivity of an

organic system towards a charged or neutral species. The situation is complicated

because the affinity and selectivity have to be displayed in the presence of a number of

competing factors like counterions, solvents, etc. We begin the discussion of our work on

ionophore/receptor design with one of the seemingly intractable problems of

contemporary biochemistry: the selective recognition of the ammonium cation (NH4
þ).

Much of the problem is due to the nearly equivalent sizes of NH4
þ and the potassium

cation (Kþ). The first step in the receptor design was that high selectivity for NH4
þ could

be achieved with cation–p interactions, if the receptors have an optimal space to capture

NH4
þ and exhibit strong interactions towards NH4

þ. However, the ionic radius of Kþ is

nearly similar to that of NH4
þ, so spatial differentiation is not useful. On the other hand,

the difference in coordination numbers can be utilized. Kþ favours a coordination number
of six, while NH4

þ favours only four. Furthermore, one also has to take into account

the directional H-bonds involving NH4
þ cations, to describe the higher selectivity for
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NH4
þ over Kþ. Our initial calculations indicated that a benzene-based tripodal system

with imidazoline arms (Fig. 34.7a) possessed vacant sites for the interaction with only

one solvent molecule, while the Kþ ion has three vacant sites for three solvent molecules.
In order to maximize the affinity and selectivity of these receptors for NH4

þ, it becomes
important to maximize the p-electron density of the receptor. Indeed, receptors with
enhanced p-electron density by trimethylated phenyl ring with the strong proton-

withdrawing subunits exhibit much higher affinities and selectivities [129].

Given this background, an extended concept has been applied to the receptor design for

a biologically important molecule, acetylcholine [130]. The receptor should have higher

affinity and selectivity for acetylcholine over NH4
þ. This requires enhanced dispersion

interactions and diminished ionic interactions, which is met by replacing the imidazole

arms of the NH4
þ receptors with pyrrole (Fig. 34.7b). These theoretical inferences were

confirmed by experiments.

Interactions involving anions are very different from those of cations. Since anions are

more polarizable and hence more susceptible to polar solvents than cations, it becomes

important to take into account solvent effects. Based on molecular dynamics simulations

combined with ab initio calculations, highly selective anion ionophores have been

designed [131,132]. Enhanced dipole moments (Fig. 34.7c) were employed by attaching

a strategically placed electron-withdrawing group. This approach would also aid the

design of novel functional molecular systems and biologically important chemosensors.

Utilizing the CHþ·X2H-bonds, fluorescent photoinduced electron transfer chemosensors

for the recognition of H2PO4
2 have also been designed and synthesized (Fig. 34.7d) [133,

134]. In addition, we have also been successful in designing cyclopeptides as amphi-

ionophores [135,136]. Recently, we have extended this concept to design receptors

specific for the biologically important phosphates (ATP and GTP) (Fig. 34.8) [137].

It would be appealing to explore the possibility of p-based materials being used as
ionophores [138–140]. Belt-shaped carbocyclic conjugated systems (annulenes,

Fig. 34.7. Receptors for NH4
þ (a), acetylcholine (b), Cl2 (c), H2PO4

2 (d), and structures of collarenes

(e), cyclacenes (f), beltenes (g), and Rbþ-complexed [8]beltene (h).
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beltenes, cyclacenes, and collarenes) are closely related to other carbon-based systems

containing curved surfaces. These include fullerenes and carbon nanotubes. The ion

binding characteristics of these carbon materials have been unravelled through ab initio

calculations, Monte Carlo simulations, and molecular dynamics simulations of collarenes

(benzene rings linked by methylene linkages), cyclacenes (comprised of only benzene

rings), and beltenes (ethene groups linked by methylene linkages) and of their complexes

with various cations (alkali, alkaline earth metal, and organic cations) in both gas and

aqueous phases (Fig. 34.7e). Additionally, suitable substituents could also enhance

their binding affinities and selectivities. In particular, the designed molecules could

be modified to be soluble in polar solvents by adding hydrophilic groups on the edges of

the molecules.

Till very recently, the role of intermolecular interactions in catalytic mechanisms of

enzymes has never been discussed. In the course of our work on ionophores and

receptors, we realized that the catalytic mechanism of some enzymatic reactions, which

involve charged H-bonds, could also be explained using theoretical methods. Towards

this end, we have investigated the catalytic mechanism of one of the most proficient

enzymes, Ketosteroid Isomerase (KSI). Our calculations reveal that in addition to

preorganization, SSHB, charge buffering/dissipation plays a very important role in the

mechanism of the enzyme (Fig. 34.9) [141–144]. Charge buffering/dissipation is crucial

Fig. 34.8. Computed geometries of 1-GTP and 1-ATP complexes. (Reproduced with permission from

American Chemical Society [137].)
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Fig. 34.9. Catalytic role in stabilizing the transition state via an amphoteric role through the short strong H-bond

along with preorganized structure of and charge buffering by (or dissipation to) catalytic residues. (Reproduced

with permission from American Chemical Society [141].)
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because it lowers the transition barrier, by dissipating a portion of the excess electronic

charge build-up around the transition state to the catalytic residues. This is mostly

mediated by the SSHB [145,146].

34.5 NANOMATERIALS

Since the discovery of fullerenes and carbon nanotubes, a lot of effort has gone into

the discovery of other interesting allotropes of carbon with unusual structural

characteristics and novel physical properties. Towards this end, the geometries, electronic

structures, and energetics of small carbon nanotoriwere investigated employing both tight-

binding and semi-empirical quantum-chemical methods [147].

It should be mentioned here that the very large size of these carbon-based materials

precludes the use of high-level quantum methods. One has to therefore take

recourse to the use of semi-empirical or tight-binding methods. As can be seen from

Fig. 34.10, the structures and electronic properties of smallest nanotori exhibit interest-

ing metal, semiconductor, and insulator characteristics depending on nanotube building

blocks.

An interesting offshoot in the context of carbon-based nanomaterials is the role of

external perturbations in modulating their physical and chemical characteristics. These

perturbations can include cations or neutral atoms. In this context, we examined the

magnetic properties of exohedral fullerenes of alkali metal fullerides (AxC60, A ¼ Na, K,

Rb, Cs) [148–150] and the spin properties of endohedral fullerenes (A@C60, A ¼ N, P,

As, O, S) [128,151] (Fig. 34.11). The most interesting aspect of the experimental

C120

C480

C540C324

C480

C590(D5h) C630(D7h)

C768

D5d

lll(D6h)

lV(D6h)

lV'

Fig. 34.10. Optimized structures of various types of carbon nanotori and their stability compared with graphene,

fullerenes, and nanotubes. (Reproduced with permission from American Physical Society [147].)
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investigation of endohedral fullerenes was the fact that the encapsulated nitrogen, which

possesses three unpaired electrons and is paramagnetic in nature, is totally inert within

C60. Our calculations, however, indicated that the interaction observed in the case of

N@C60 is predominantly dispersive in nature. These systems are interesting because

endohedral fullerenes containing paramagnetic atoms could be utilitized to design the

quantum computers [128].

There are several advantages of using hydrogen bonds to design nanomaterials [126,

127,152–156], and in particular nanotubes, because these nanotubes have potential

applications as artificial biological channels, drug delivery systems, nanochemical

reactors, etc. One of the spectacular aspects of a recent report on the self-assembly of

an organic nanotube from nontubular units of calix-4-hydroquinone (CHQ) was that

the theoretical design preceded the actual experimental synthesis and investigation of

the X-ray structure. Apart from highlighting the robustness of the theoretical

approach, this study also provided several insights into the mechanism of self-assembly

of CHQ nanotubes.

In the absence of water, for each CHQ monomer, the number of dangling H atoms is 4,

while in the presence of water, these dangling H atoms of CHQs form chains HQ–

(water–HQ–HQ–)nwater. Although the strength of 1D short H-bonding interaction

(,10 kcal/mol) is similar or slightly stronger than the strength of the p–p stacking

interaction, the assembling along the 1D short H-bonds relay should be much more

favourable because the number of H-bonds is three times the number of p–p stacks.

Indeed, in experiments with water, CHQs are assembled to form long tubular structures

with four infinitely long SSHB arrays.

The CHQ tubes assemble to form long tubular structures in the presence of water,

which in turn form bundles with intertubular p–p stacking interactions (Fig. 34.11),

resulting in crystals with well-ordered 2D arrays of pores. The structures of these pores

were utilized for the synthesis of encapsulated nanowires [154], which would be

described in the next section. A needle-like nanotube bundle exhibits the infinitely long

1D H-bonding network between hydroxyl groups of CHQs and water molecules and well-

ordered intertubular p–p stacking pairs (Fig. 34.12) [126,127]. The geometries of the

calculated p–p stacks are very close to the p–p stacks in the X-ray structure [127].

Fig. 34.11. Ground triplet (d_D2h) and excited singlet (s_C2h) states of (C60)2
22 with two views (for the alkali

cation doped exohedral fullerenes), and spin-containing endohedral fullerenes [128,148].
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As was mentioned earlier, CHQ nanotube arrays can be utilized in promising templates

for nanosynthesis. Redox reaction of the nanotube in the presence of silver nitrate leads to

the formation of silver nanowire arrays in the pores (pore size of 8 £ 8 Å2) of the CHQ

nanotube. The wires exist as uniformly oriented 3D arrays of ultrahigh density. The

driving force for the formation of these nanowires is the free energy gain due to the

reduction–oxidation process [154,155]. It was experimentally observed that the resulting

nanowire is comprised of four dumbbells, each of which contains two silver atoms,

superimposed on one another, and crisscrossed in their length.

The theoretical characterization of the reduced form of the CHQ nanotube was

carried out using plane-wave pseudopotential methods [156]. Our calculations indicated

that upon reduction with silver nitrate, the CHQ nanotubes get transformed to the

corresponding calix[4]quinone-hydroquinone (CQHQ) nanotubes, whose band gaps of

0.3 eV indicate that they are semiconducting in nature. The gross structural feature

of CQHQ nanotubes is similar to that of CHQ nanotubes, with well-ordered H-bond

arrays and intertubular p–p stacking pairs. In the CQHQ nanotubes, there are only

two infinitely long 1D H-bond arrays per nanotube because two hydroxyl groups are

transformed to the corresponding reduced forms. Simultaneously, silver cations get

transformed to metallic silver. Upon reduction of the CHQ nanotubes, the silver atoms

Fig. 34.12. Calix[4]hydroquinone nanotubes: structure, longitudinal one-dimensional H-bond relay vs.

intertubular p–p stacking, the HREM image of a single nanotube, and the water-accessible surface of the

tubes. Each tube has four pillar frames of short H-bonds, and the pore size is 8 £ 8 Å2. The unit cell is drawn by

the dashed lines. (Reproduced with permission from American Chemical Society [126,127].)
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are located within the reduced CQHQ nanotube (Fig. 34.13). In the case of 2/2 nanowire,

the predicted cohesive energy is 2.4 eV, which is 0.9 eV smaller than the bulk value. The

encapsulation of a silver nanowire within the CQHQ nanotube leads to several additional

states in the band gap region, which are similar to that of an isolated silver nanowire.

In this case two s channels cross the Fermi energy level, which indicates the existence of

quantum conductance.

We had talked about harnessing the interaction of photons, electrons, protons, or

charged species with molecular systems in the design of new nanodevices [157–160].

While photochemical and electrochemical switching devices have been extensively

investigated, most of the photochemical switching devices are limited to the linear

regime. However, it would be of interest to use nonlinear optical properties for an

efficient memory device. In investigations of the interaction of photons with matter, it is

essential that the employed theoretical method should be capable of characterizing both

open-shells and excited states. The theoretical investigations of 1,2-bis-(3-thienyl)-

ethene derivatives indicate that after photoswitching, the resulting p-conjugated closed

forms exhibit highly nonlinear optical properties [161,162]. The substitution of suitable

donors and acceptors on certain strategic positions of these ethene derivatives, however,

makes the closed form optically nonlinearly active and the resulting molecular system

behaves as an efficient nonlinear optical switch. It should be noted that the above

discussion on nonlinear optical devices involves the breaking and formation of bonds. It

is interesting to explore the possibility of devices, which rely entirely on conformational

or enantiomeric changes.

Fig. 34.13. Top and side views of a silver nanowire inside a calix[4]quinone-hydroquinone (CQHQ) nanotubes

(right figures), and the band structures of an isolated silver nanowire (left—first on the left figure), a silver

nanowire encapsulated in a CQHQ nanotube (second), a CQHQ nanotube (third), and a calix[4]hydroquinone

(CHQ) nanotube (last). (Reproduced with permission from American Physical Society [156].)
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Peptides are well-known biological systems, whose conformational characteristics are

well understood. To date, the conventional wisdom was that a polypeptide can exist only

as right-handed helix. However, calculations reveal the feasibility of a left-handed helix

[163]. Most of these calculations on these peptide systems were carried out using

molecular dynamics simulations based on empirical potentials. The calculations indicate

that the diameter of the left-handed helix is larger than the conventional right-handed

helix. The left-handed helix is stabilized when the terminal residues are charged, because

the dipole moments of carbonyl groups for the former are aligned opposite to those of the

latter. Thus, a molecular dynamics simulation of a poly-alanine peptide capped with

neutral amino and methyl groups (CH3–(Ala)n–NH2) under neutral terminal charge

conditions yielded a right-handed a-helix pattern, in about ,1.8 ns. However, when the

terminals are charged (NH3
þ–(Ala)30–COO

2), a left-handed l-helix is formed in about
,4.0 ns. During the formation of the left-handed l-helix, helix nucleation first occurs
at the terminal sites (in particular, near the N-terminus in the case of the left-handed

l-helix) and it promotes the propagation of the helix pattern along the segment. It should
be noted that in both the molecular dynamics simulations, only the terminal composition

is different. Therefore, the handedness of the final conformation is related to the terminal

charge conditions. The propagation of the helix pattern along the segment clearly shows

that sequential local interactions determine the nascent folding patterns of the protein.

The initial folding in the left-handed l-helix arises from the electrostatic interactions

of the positively charged NH3
þ group with the adjacent carbonyl dipole moiety, followed

by the dipole–dipole interactions between two adjacent carbonyl moieties. These results

were further confirmed with more accurate calculations using a density functional

approach. The preceding discussion implies that a transition between left-handed and

right-handed helix motifs can be triggered by the presence of charged species near the

end of the helix terminals. Such a possibility holds immense promise in the development

of novel chiral switches and in the control of the protein folding/unfolding.

34.6 MOLECULAR DEVICES

Up to now, our discussion was only centred on static systems. However, the quest for

nanodevices implies that one has to induce motion in a system using external or internal

means. The external means could include changes in pH, radiation, etc. We discuss one

such device (a molecular flipper), which has been designed, synthesized, and

characterized [164]. The flipping/flapping motion, in the case of designed device, is

due to the changes of edge-to-face and face-to-face aromatic interactions [165]. It is

interesting to note that this conformational change can be electrochemically controlled by

reduction/oxidation of the quinone moiety in the molecular system.

The strategy for the design of nanodevices is to harness the subtle changes in the p-
electron densities of a quinonemoiety as a result of changes in the electronic environment.

Quinones are particularly suited for this endeavour because their electronic characteristics

can be electrochemically or photochemically controlled. Based on a theoretical

investigation of the conformational characteristics of p-benzoquinone–benzene
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complexes, we found that the energy difference between the stacked and edge-to-face

conformations of cyclophane molecules is substantial.

Thus, if one could subtly control the conformational characteristics of 2,11-

dithio[4,4]metametaquinocyclophane (MQC) (stacked conformer is 7 kcal/mol more

stable than the edge-to-faced conformer) and 2,11-dithio[4,4]metametahydroquinocy-

clophane (MHQC) (edge-to-face is 9 kcal/mol more stable than the edge-to-face

conformer) by electrochemical and/or photochemical means, we can have a very

interesting model of a potential molecular device.

The cyclic voltammograms of MQC exhibits two clear reversible redox reactions

(Fig. 34.14). In aprotic media, quinones exhibit two reduction peaks separated by 0.7 V,

which corresponds to the formation of a radical anion species and a dianion species of

quinones, respectively. This is in agreement with the reduction characteristics of MQC.

Two well-separated reduced states of MQC are formed in the aprotic solvent of

acetonitrile upon reduction. Therefore, the electronic states of MQC and MHQC can be

easily transformed into each other by simple electrochemical control of the redox

reaction, which results in large conformational flapping motions due to a preference for

the stable conformation caused by the change in the electronic state of the quinonemoiety.

Thus, a cyclophane system composed of quinone and benzene rings exhibits a flapping

motion involving squeezing and thrusting motions in the presence of solvent molecules

by electrochemical redox process. This case illustrates a promising pathway of

harnessing the differences in the relative magnitudes of different kinds of intermolecular

interactions to design a nanomechanical device. The large flapping/flipping motion from

the edge-to-face and stacked conformations and vice versa is a first step toward a

propelling molecular vessel or a molecular flipper that can be electrochemically or

photochemically controlled. It could be applied to design molecular hinges, molecular

Fig. 34.14. Cyclic voltammogram of MHQC (left)/MQC (right) (1 mM) in acetonitrile with tetrabutylammo-

nium dihydrogen phosphate (0.1 M) at 25 8C (scan rate 100 mV/s). (Reproduced with permission from

American Chemical Society [164].)
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switches, and eventually to design mobile nanomechanical devices for drug delivery and

nanosurgery.

34.7 CONCLUDING REMARKS

In the course of this review, we have presented cogent reasons for carrying out high-level

theoretical investigations of clusters. Apart from providing a detailed knowledge of

intermolecular interaction forces including novel molecular interactions, such studies

have proven to be very useful in the de novo design of functional nanomaterials and

nanodevices which can be realized experimentally. Additionally, one can also understand

the controlled assembly phenomena of novel functional molecular systems. Therefore, in

order to describe subtle differences in competing interaction forces and cooperative

interaction forces for nanomaterial design, the accurate description of interaction forces

including new type of interactions and the systematic comparison of these forces would

emerge as one of the utmost important subjects in the recent computational quantum

chemistry. In the context of nanomaterial design, we have illustrated it using several

experimentally realized examples of our work on nanowires/nanotubes, ionophores/re-

ceptors/sensors, electron/proton/molecular tweezers, molecular vehicles, etc. that

theoretical design provides important cues in the search for novel molecules and

materials. We expect that some of the ideas, which emerge from this work, could be

useful in the search for molecular nanoelectronic/mechanical devices, quantum

computing devices, biomolecular sensors, and nanosurgery. Though the idea of using

theoretical methods as a tool for nanomaterial design is still in its infancy, the advance of

fast computers and extremely powerful programs would dramatically increase its pace in

the near future. Finally, we believe that the present work on microscopic interactions

would also help obtain an enhanced understanding of important chemical and biological

processes in the macroscopic world.
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95 P. Pyykkö, Chem. Rev., 97 (1997) 597.

96 M. Laing, Educ. Chem., (1993) 160.

97 T. Nautiyal, S.J. Youn and K.S. Kim, Phys. Rev. B, 68 (2003) 033407.

98 W.-T. Geng and K.S. Kim, Phys. Rev. B, 67 (2003) 233403.

99 T. Nautiyal, T.H. Rho and K.S. Kim, Phys. Rev. B, 69 (2004) 193404.

100 V. Rodrigues, J. Bettini, P.C. Silva and D. Ugarte, Phys. Rev. Lett., 91 (2003) 096801.

101 K.S. Kim, J.Y. Lee, S.J. Lee, T.-K. Ha and D.H. Kim, J. Am. Chem. Soc., 116 (1994) 7399.

102 J.Y. Lee, S.J. Lee, H.S. Choi, S.J. Cho, K.S. Kim and T.-K. Ha, Chem. Phys. Lett., 232 (1995) 67.

103 D. Kim, S. Hu, P. Tarakeshwar, K.S. Kim and J.M. Lisy, J. Phys. Chem. A, 107 (2003) 1128.

104 P. Tarakeshwar, K.S. Kim, E. Kraka and D. Cremer, J. Chem. Phys., 115 (2001) 6018.

105 P. Tarakeshwar, J.Y. Lee and K.S. Kim, J. Phys. Chem. A, 102 (1998) 2253.

106 P. Tarakeshwar, S.J. Lee, J.Y. Lee and K.S. Kim, J. Phys. Chem. B, 103 (1999) 184.

107 P. Tarakeshwar and K.S. Kim, J. Phys. Chem. A, 103 (1999) 9116.

108 R.A. Kumpf and D.A. Dougherty, Science, 261 (1993) 1708.

109 J.C. Ma and D.A. Dougherty, Chem. Rev., 97 (1997) 1303.

110 D. Kim, P. Tarakeshwar and K.S. Kim, J. Phys. Chem. A, 108 (2004) 1250.

111 G.A. Olah, B. Torok, J.P. Joschek, I. Bucsi, P.M. Esteves, G. Rasul and G.K. Suryaprakash, J. Am.

Chem. Soc., 124 (2002) 11379.

112 M.J. Earle and K.R. Seddon, Pure Appl. Chem., 72 (2000) 1391.

113 B.H. Hong, J.Y. Lee, S.J. Cho, S. Yun and K.S. Kim, J. Org. Chem., 64 (1999) 5661.

114 T. Ren, Y. Jin, K.S. Kim and D.H. Kim, J. Biomol. Struct. Dyn., 15 (1997) 401.

115 S.H. Gellman, Chem. Rev., 97 (1997) 1231.

116 S. Tsuzuki, T. Uchimaru and K. Tanabe, Chem. Phys. Lett., 287 (1998) 202.

117 M.O. Sinnokrot, E.F. Valeev and C.D. Sherrill, J. Am. Chem. Soc., 124 (2002) 10887.

118 H. Krause, B. Ernstberger and H.J. Neusser, Chem. Phys. Lett., 184 (1991) 411.

119 P. Hobza, H.L. Selzle and E.W. Schlag, J. Am. Chem. Phys., 116 (1994) 3500.

120 M.I. Cabaço, Y. Danten, M. Besnard, Y. Guissani and B. Guillot, J. Phys. Chem. B, 102 (1998) 10712.

121 A.P. West, Jr., S. Mecozzi and D.A. Dougherty, J. Phys. Org. Chem., 10 (1997) 347.

122 A. Karpfen, J. Phys. Chem. A, 103 (1999) 11431.

123 B.H. Cardelino, C.E. Moore, D.O. Frazier, D.G. Musaev and K. Morokuma, Int. J. Quantum Chem., 66

(1998) 189.

124 M.C. Chan, P.A. Block and R.E. Miller, J. Chem. Phys., 102 (1995) 3993.

125 J.R. Grover, E.A. Walters and E.T. Hui, J. Phys. Chem., 91 (1987) 3233.

126 B.H. Hong, J.Y. Lee, C.-W. Lee, J.C. Kim and K.S. Kim, J. Am. Chem. Soc., 123 (2001) 10748.

127 K.S. Kim, S.B. Suh, J.C. Kim, B.H. Hong, E.C. Lee, S. Yun, P. Tarakeshwar, J.Y. Lee, Y. Kim, H. Ihm,

H.G. Kim, J.W. Lee, J.K. Kim, H.M. Lee, D. Kim, C. Cui, S.J. Youn, H.Y. Chung, H.S. Choi, C.-W. Lee,

S.J. Cho, S. Jeong and J.-H. Cho, J. Am. Chem. Soc., 124 (2002) 14268.

128 J.M. Park, P. Tarakeshwar, K.S. Kim and T. Clark, J. Chem. Phys., 116 (2002) 10684.

129 K.S. Oh, C.-W. Lee, H.S. Choi, S.J. Lee and K.S. Kim, Org. Lett., 2 (2000) 2679.

130 S. Yun, Y.-O. Kim, D. Kim, H.G. Kim, H. lhm, J.K. Kim, C.-W. Lee, W.J. Lee, J. Yoon, K.S. Oh, J.

Yoon, S.-M. Park and K.S. Kim, Org. Lett., 5 (2003) 471.

131 H. Ihm, S. Yun, H.G. Kim, J.K. Kim and K.S. Kim, Org. Lett., 4 (2002) 2897.

132 S. Yun, H. lhm, H.G. Kim, C.-W. Lee, B. Indrajit, K.S. Oh, Y.J. Gong, J.W. Lee, J. Yoon, H.C. Lee and

K.S. Kim, J. Org. Chem., 68 (2003) 2467.

133 S.K. Kim, N.J. Singh, S.J. Kim, H.G. Kim, J.K. Kim, J.W. Lee, K.S. Kim and J. Yoon, Org. Lett., 5

(2003) 2083.

134 J. Yoon, S.K. Kim, N.J. Singh, J.W. Lee, Y.J. Yang, K. Chellappan and K.S. Kim, J. Org. Chem., 69

(2004) 581.

135 S.B. Suh, C. Cui, H.S. Son, J.S. U, Y. Won and K.S. Kim, J. Phys. Chem., 106 (2002) 2061.

136 K.S. Kim, C. Cui and S.J. Cho, J. Phys. Chem. B, 102 (1998) 461.

Chapter 34992



137 J.Y. Kwon, N.J. Singh, H.N. Kim, S.K. Kim, K.S. Kim and J. Yoon, J. Am. Chem. Soc., 126 (2004) 8892.

138 H.S. Choi, S.B. Suh, S.J. Cho and K.S. Kim, Proc. Natl Acad. Sci. USA, 95 (1998) 12094.

139 H.S. Choi, D. Kim, P. Tarakeshwar, S.B. Suh and K.S. Kim, J. Org. Chem., 67 (2002) 1848.

140 H.S. Choi and K.S. Kim, Angew. Chem. Int. Ed., 38 (1999) 2256.

141 K.S. Kim, D. Kim, J.Y. Lee, P. Tarakeshwar and K.S. Oh, Biochemistry, 41 (2002) 5300.

142 K.S. Kim, K.S. Oh and J.Y. Lee, Proc. Natl Acad. Sci. USA, 97 (2000) 6373.

143 K.S. Oh, S.-S. Cha, D.-H. Kim, H.-S. Cho, N.-C. Ha, G. Choi, J.Y. Lee, P. Tarakeshwar, H.S. Son,

K.Y. Choi, B.-H. Oh and K.S. Kim, Biochemistry, 39 (2000) 13891.

144 H.-S. Cho, N.-C. Ha, G. Choi, H.-J. Kim, D. Lee, K.S. Oh, K.S. Kim, W. Lee, K.Y. Choi and B.-H. Oh,

J. Biol. Chem., 274 (1999) 32863.

145 W.W. Cleland and M.M. Krevoy, Science, 264 (1994) 1887.

146 P.A. Frey, Science, 269 (1995) 104.

147 D.-H. Oh, J.M. Park and K.S. Kim, Phys. Rev. B., 62 (2000) 1600.

148 K.S. Kim, J.M. Park, J. Kim, S.B. Suh, P. Tarakeshwar, K.H. Lee and S.S. Park, Phys. Rev. Lett., 84

(2000) 2425.
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CHAPTER 35

Monte Carlo simulations of the finite

temperature properties of (H2O)6

R.A. Christie and K.D. Jordan

Department of Chemistry and Center for Materials and Molecular Simulations,
University of Pittsburgh, Pittsburgh, PA 15215, USA

Abstract

The thermodynamic behavior of the (H2O)6 cluster has been the subject of several

theoretical studies employing model potentials. This article reviews the earlier work and

presents new results on the finite temperature properties of the (H2O)6 cluster calculated

using a 2 þ 3-body MP2-level intermolecular potential in a canonical Monte Carlo

simulation at T ¼ 220 K: Book and ring configurations are found to dominate the

sampled configurations. The finite histogram method of Ferrenberg and Swendsen

[Phys. Rev. Lett., 61 (1988) 2635] is used to calculate the energy and energy fluctuations

over a range of temperatures. The resulting heat capacity curve displays a broad peak near

T ¼ 135 K:

35.1 INTRODUCTION

Water clusters have been studied extensively both experimentally and theoretically over

the past two decades. Among the issues that have been addressed are the geometrical

structures of the low-energy isomers [1–19], the role of cooperative effects in the

bonding [20–26], the sensitivity of the vibrational and rotational spectra on the H-

bonding arrangements [27–36], the dynamics of isomer interconversion [37–39], and the

finite temperature behavior of the clusters [39–47].

The water hexamer is one of the most thoroughly studied water clusters. Nevertheless,

while it is well established that the smaller (H2O)3–5 clusters have cyclic global

minimum structures, and that (H2O)7 and larger clusters have three-dimensional fused-

ring global minima [13,31,33,34,48,49], the situation regarding (H2O)6 has taken much

longer to sort out.

q 2005 Elsevier B.V. All rights reserved.
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During the late 1980s and early 1990s several groups investigated theoretically the

low-lying isomers of (H2O)6 as characterized by model potentials. In particular, Kim et al.

[2] used the MCY potential [50] both by itself as well as augmented with 3- and 4-body

interactions [51,52], Belford and Campbell [53] used the Campbell–Mezei water model

[54], Schröder [55] employed the QPEN/B2 [56] potential, Dykstra and coworkers

[57,58] carried out calculations with the MCY, MMC [59,60] and TIP4p [61] models, and

Vegiri and Farantos [44] investigated (H2O)6 using the CKL potential [62]. One of the

most thorough studies of the energy landscape of the water hexamer was carried out by

Tsai and Jordan [12] using an eigenmode-following algorithm with the TIP4p model

potential. The energy disconnectivity diagram of (H2O)6 was first plotted by Wales et al.

[63] for the rigid TIP4P and ASP-W4 [6,25] potentials, and by Burnham and Xantheas

[64] for the flexible TTM2-F potential [65]. The topology of the H-bonding network of

the low-lying isomers of (H2O)6 was studied by Tissandier et al. [66].

The energy ordering of the low-energy isomers of (H2O)6 varies from one model

potential to another, clearly indicating the limitations of the water models available at

the time these studies were carried out. Depending on the model potential employed the

cage (A, Fig. 35.1), prism (C, Fig. 35.1), open-book (D, Fig. 35.1) and ring isomers

(B, Fig. 35.1) have all been predicted to be the global minimum. Pedulla et al. [26] have

compared the relative energies of the various isomers calculated with several model

potentials and MP2-level electronic structure calculations.

Kim et al. [2] were apparently the first to apply ab initio methods to (H2O)6, carrying

out SCF optimizations of the hexamer as early as 1988. However, as it became possible to

carry out MP2 calculations with suitable flexible basis sets on water clusters, it became

clear that inclusion of electron correlation effects is crucial for describing the bonding in

these species [5,11,12,20,23,67,68]. The first MP2 level calculations on (H2O)6 were by

Tsai and Jordan [12]. Subsequently, Kim and coworkers [69,70], Xantheas et al. [71],

Fig. 35.1. Four low-lying isomer types of (H2O)6; the cage (A), ring (B), prism (C) and book (D) isomers.
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Pedulla et al. [26], Kryachko [72], and Losada and Leutwyler [73] have characterized the

low-energy isomers of (H2O)6 at the MP2 level and employing large, flexible basis sets.

There have also been several other ab initio studies of the hexamer [74,75]. In addition,

the role of vibrational zero-point energy has been investigated in both the harmonic

[12,13,73] and anharmonic approximations [22,76–78]. These calculations reveal that

the cage, book and ring isomers are of comparable energy, with the most stable prism-like

isomer being a few tenths of a kcal/mol less stable. Over the past few years the cage

[76,79], book [80,81] and ring [82,83] structures have all been observed experimentally.

The thermodynamic properties of (H2O)6 have also long been of interest, with Monte

Carlo and molecular dynamics simulations having been carried out using several different

model potentials [44,45,47,84]. Although some of these studies concluded that (H2O)6
undergoes a melting transition (e.g. Ref. [44]), others (e.g. Ref. [47]) concluded that this

system does not display a clear-cut melting transition. Obviously the sensitivity of the

relative energies of the various isomeric forms of (H2O)6 on the model potential

employed implies that none of the finite temperature simulations can be considered as

definitive. While the simulations on (H2O)6 are unclear as to whether this species

undergoes a melting transition, the consensus is that the slightly larger (H2O)8 cluster

does undergo a relatively sharp transformation between ‘solid-like’ and ‘liquid-like’

phases [39–47]. Although more sophisticated water models have been introduced

recently [64,85], these have yet to be applied to finite temperature simulations of water

clusters.

To date, theoretical studies of the thermodynamic behavior of water clusters have

been limited to model potentials [41–45,47,84], although there have been studies that

examined the temperature dependence of selected isomers [67,73] and others that have

used DFT-based MD simulations to optimize structures and to calculate vibrational

spectra [7]. In the absence of either experimental or ab initio data on the thermo-

dynamic properties of small water clusters, it is difficult to assess the reliability of the

simulations carried out with various model potentials. Although simulations of the

thermodynamic properties of small water clusters are feasible with DFT methods, it

has been found that DFT calculations with commonly employed functionals such as

Becke3LYP [86,87] incorrectly order various isomers of small water clusters [88]. This

appears to be due to the inability of current density functionals to describe long-range

dispersion interactions [89,90]. For this reason, it is preferable that finite temperature

simulations of water clusters be carried out using an appropriate wavefunction-based

electronic structure method.

The MP2 method has been found to accurately describe the energetics of water

clusters, providing that sufficiently flexible atomic basis sets are employed [5,11,20,

67,68]. However, while MP2 calculations are feasible for clusters containing up to 30

or so water molecules, the steep (O(N5)) computational scaling of conventional MP2

calculations with system size precludes their use in carrying out Monte Carlo or

molecular dynamics simulations of water clusters containing six or more monomers.

It is known from studies using model potentials that even for a cluster as small as

(H2O)6, Monte Carlo simulations at temperatures between 50 and 200 K (the range

typically considered to examine the issue of cluster melting) need to be carried out for on

the order of 106 moves to achieve convergence. Such simulations at the MP2 level would

Monte Carlo simulations of the finite temperature properties of (H2O)6 997
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take on the order of 1 year of CPU time (although this could be reduced to a few weeks or

even days of wall clock time with an efficient parallel MP2 code and enough CPUs). For

larger clusters, even longer simulation runs would be required and it would also be

necessary to employ an algorithm such as parallel tempering [91] to achieve

convergence, particularly at low temperatures. The parallel tempering algorithm requires

the use of a grid of temperatures, further increasing the costs of the calculations. For these

reasons, simulations of the thermodynamic properties of water clusters the size of the

hexamer or larger using traditional MP2 methods would be a computationally daunting

task even on parallel computers. A significant reduction in the CPU time could be

achieved by use of localized second-order Møller–Plesset perturbation theory (LMP2

[92–95]) or resolvent of the identity second-order Møller–Plesset perturbation theory

(RIMP2 [96,97]) methods, but there would still be the bottleneck introduced by the

Hartree–Fock (HF) portion of the calculations. Although there are linear scaling HF

codes [98], they have not been combined with fast MP2 methods such as LMP2 or

RIMP2.

These considerations have led us to consider an alternative approach based on a n-body

decomposition procedure for carrying out Monte Carlo simulations on small water

clusters with MP2-level energies. The n-body decomposition procedure is described in

the following section. This is followed by application to a Monte Carlo simulation of the

study of the (H2O)6 cluster. As noted above, model potential simulations have predicted

the (H2O)6 cluster to exist in a wide range of hydrogen bonding topologies, making this a

good system for testing the n-body decomposition procedure.

35.2 METHODOLOGY

In the n-body decomposition procedure, the total binding energy is written as

E ¼ Eð1Þ þ Eð2Þ þ Eð3Þ þ · · ·þ EðnÞ ð1Þ
where E(i) denotes the ‘ith’ body contribution to the interaction energy and the various

energy terms depend on the appropriate nuclear coordinates. E(1) is simply the relaxation

energy, which reflects the change in the energies of the monomers due to the geometrical

distortions that occur when they are incorporated in the cluster. E(2) is the 2-body

interaction energy which can be obtained by performing calculations on all dimer pairs

and E(3) is the 3-body energy obtained by performing calculations on all possible trimers

in the cluster, etc.

A significant body of work has shown that, for water clusters, the many-body effects

are dominated by the 3-body terms, i.e. that

E < Eð1Þ þ Eð2Þ þ Eð3Þ ð2Þ
provides a good approximation to the total binding energy of a water cluster [21,23]. This

suggests a strategy of basing an MP2-level Monte Carlo simulation procedure in Eq. (2).

Truncated n-body approaches have been used in water model potentials (most notably,

the NCC [99,100] and SAPT [101–103] potentials), however we are unaware of this
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approach having been employed in conjunction with ab initio Monte Carlo simulations.

For simplicity, in the remainder of this work we will assume that the monomers are kept

rigid (i.e. Eð1Þ ¼ 0 in Eq. (2)).

For a cluster containing N molecules, the evaluation of the E(2) contributions requires

NðN 2 1Þ=2 separate dimer calculations and E(3) requires NðN 2 1ÞðN 2 2Þ=6 separate
trimer calculations. In the absence of other computational savings, the n-body

decomposition procedure truncated at the E(3) term, would not offer an advantage over

supermolecule LMP2 calculations with a code such as Jaguar [104] where both the HF

and LMP2 steps are carried out using pseudospectral algorithms.

Thus far, we have focused on the cost of performing a single total energy calculation.

In Monte Carlo simulations in which each step in the simulation involves a displacement

(translation or rotation) of a single molecule, one needs only to compute the contributions

to E(2) and E(3) involving the monomer that was moved. In this case, the number of terms

that need to be evaluated is of the order ðN 2 1Þ and ðN 2 1ÞðN 2 2Þ=2; for Eð2Þ and Eð3Þ;
respectively. As a result, the truncated 2 þ 3-body approach provides a significant

computational savings compared to that required with the more conventional super-

molecule approach for carrying out MP2-level Monte Carlo simulations of cluster

systems.

There are several additional opportunities for computational savings in the 2 þ 3-body

Monte Carlo simulation procedure. These include: (i) use of the LMP2 or RIMP2

methods for calculating the correlated energies, (ii) use of different levels of theory for

the 2- and 3-body interaction energies, and (iii) use of different approaches for treating

short-range and long-range interactions. In the present study, the first two of these cost-

saving features were adopted. Namely, the 2-body energies were calculated using Saebø

and Pulay’s [92–95] implementation of the LMP2 method, and the Hartree–Fock

method was used to calculate the 3-body interactions. Compared with the standard MP2

approach, LMP2 has the advantages of lower computational cost and reduced basis set

superposition error (BSSE [105]) in the correlation energy. The adoption of the HF

method for calculating the 3-body interaction energies was motivated by the observation

that electron correlations play only a small role in describing such interactions in

H-bonded clusters [16,26,103]. No attempt was made in this study to exploit the use of a

less computationally demanding method for the long-range 2- or 3-body energies. The

various 2- and 3-body interactions were farmed out to multiple CPUs on a Beowulf

cluster. Care was taken in dividing up the various interaction terms to ensure that the

CPUs were efficiently used.

The simulations were carried out with the 6-31þG(d) basis set [106–108] as well
as with a more flexible mixed cc-pVDZ [109]/aug-cc-pVDZ [110] (for H/O atoms,

respectively) basis set, hereafter referred to as apVDZ. The electronic structure

calculationswere carried out using theMOLPROprogrampackage (version 2002.3) [111].

The Monte Carlo simulations were carried out in the canonical ensemble and at

temperatures of T ¼ 100 and 220 K with the 6-31 þ G(d) basis set and at T ¼ 220 K for

the larger apVDZ basis set. A constraining sphere with a radius of r ¼ 5.5 Å was

employed to prevent evaporative events during the simulation. Each simulation was

carried out for 1.1 £ 105 Monte Carlo moves, with the first 1 £ 104 moves being for

equilibration and the last 105 moves being employed in the averaging. Based upon earlier

Monte Carlo simulations of the finite temperature properties of (H2O)6 999

References pp. 1006–1009



work with model potentials, it is known that the (H2O)6 system is relatively easy to

equilibriate, especially at a temperature as high as T ¼ 220 K: Nonetheless, it would be
desirable to carry out longer simulations (e.g. for 106 Monte Carlo moves) to ensure

better convergence. This was not done because of the limitations of the Beowulf cluster

available for the calculations (1 GHz Pentium III CPUs), and because the primary

purpose of this study is to demonstrate the feasibility of 2 þ 3-body MP2-level

simulations on (H2O)n clusters rather than to do definitive calculations.

The average interaction energies kEl, kE(2)l and kE(3)l and their fluctuations (in the form
of dimensionless heat capacities) were calculated. The constant volume, configurational

heat capacity was calculated from the standard expression


CV ¼ CV=kB ¼ s2ðEÞ
ðkBTÞ2

¼ kE2l2 kEl2

ðkBTÞ2
ð3Þ

In a similar manner, the 2- and 3-body components to the total heat capacity, were

calculated as


Cð2Þ
V ¼ Cð2Þ

V =kB ¼ kEð2ÞðEð2Þ þ Eð3ÞÞl2 kEð2ÞlkEð2Þ þ Eð3Þl
ðkBTÞ2

ð4Þ

and


Cð3Þ
V ¼ Cð3Þ

V =kB ¼ kEð3ÞðEð2Þ þ Eð3ÞÞl2 kEð3ÞlkEð2Þ þ Eð3Þl
ðkBTÞ2

ð5Þ

where these equations were obtained by differentiating kE(2)l and kE(3)l with respect to T:
To provide insight into the interdependence of Eð2Þ and Eð3Þ; the covariance

cð2Þ;ð3Þ ¼ kdEð2ÞdEð3Þl
s ðEð2ÞÞsðEð3ÞÞ ð6Þ

where dEð2Þ ¼ Eð2Þ 2 kEð2Þl; dEð3Þ ¼ Eð3Þ 2 kEð3Þl; sðEð2ÞÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kðEð2ÞÞ2l2 kEð2Þl2

q
; and

sðEð3ÞÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kðEð3ÞÞ2l2 kEð3Þl2

q
; were calculated. In a similar fashion, the covariance

between the HF 2-body and LMP2 2-body energy components was calculated from

cHF;LMP2 ¼ kdEð2Þ
HFdE

ð2Þl
s ðEð2Þ

HFÞs ðEð2ÞÞ ð7Þ

The single histogram method of Ferrenberg and Swendsen [112] was used to estimate the

average energies over a range of temperatures. In this approach, configurations saved

from a simulation at a temperature T were used to calculate the energy at other

temperatures T 0 using

kEðb0Þl ¼

X
v

EvðbÞexp{2 ðb0 2 bÞEv}X
v

exp{2 ðb0 2 bÞEv}
ð8Þ
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where the sums are over all configurations sampled in the simulation at T; and b ¼ 1=kT
and b0 ¼ 1=kT 0:

35.3 RESULTS

35.3.1 Energetics of (H2O)6; basis set and thermal effects

Table 35.1 presents the energies from the 2 þ 3-body LMP2 simulation of (H2O)6 carried

out at 220 K. The average binding energy from the simulation is 231.39 kcal/mol. Of

this, the average 2-body binding energy is 226.98 kcal/mol, 222.25 kcal/mol of which

is recovered at the HF level. The average 3-body energy is 24.41 kcal/mol, which

accounts for about 14.0% of the total average binding energy and which is close to the

percentage contribution of 3-body interactions to the binding in bulk liquid water at

298 K, where the 3-body contribution has been estimated to be 14.5% of the net cohesive

energy [113].

The 3-body terms are even more important for the energy fluctuations than for the

total interaction energy, accounting for over 32% of the total energy fluctuations in

the T ¼ 220 K MP2/apVDZ simulation. lcð2Þ;ð3Þl ¼ 0:08; which indicates that there is
little statistical correlation between the 2- and 3-body energies of (H2O)6 at T ¼ 220 K:
s2ðEð2ÞÞ is nearly the same for the Hartree–Fock and LMP2 energies. Also, lcLMP2;HFl ¼
0:89; which implies that (not surprisingly) there is a strong correlation between the HF
and LMP2 2-body energies.

35.3.2 Error analysis of the truncated n-body approximation for E

In order to evaluate the accuracy of the truncated 2 þ 3-body approach employed in this

study, supermolecule LMP2 calculations with the mixed cc-pVDZ/aug-cc-pVDZ basis

set were carried out on 200 structures selected from the apVDZ simulation trajectory.

A comparison of the energies from the two methods is presented in Fig. 35.2, from which

it is seen that the errors in the total energies due to the use of the 2 þ 3-body approach are

relatively small. The average absolute error is calculated to be 0.22 kcal/mol, which is

less than 0.7% of the total interaction energy. The largest error in the 2 þ 3-body energy

Table 35.1 Energy and energy fluctuations of (H2O)6 from mixed cc-pVDZ/aug-cc-

pVDZ LMP2 Monte Carlo simulation at T ¼ 220 K

Property HF LMP2

kE(2)l (kcal/mol) 222.25 226.98

kE(3)l (kcal/mol) 24.41 24.41a

kEl (kcal/mol) 226.66 231.39

s2(E(2)) (kcal/mol)2 2.86 2.70

s2(E(2)) (kcal/mol)2 1.28 –

s2(E) (kcal/mol)2 3.52 3.98

aThe 3-body contributions were calculated only at the HF level of theory.
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for an individual structure is 0.64 kcal/mol. As indicated by Fig. 35.2, in the vast majority

(97%) of structures, the truncated n-body approach slightly underestimates, in

magnitude, the full 6-body binding energy.

35.3.3 Inherent structures

To gain further insight into the nature of the (H2O)6 cluster at T ¼ 220 K; every 100th
configuration from the simulation using the apVDZ basis set was saved and subsequently

optimized to its inherent structure using the flexible water model potential of Ren and

Ponder [85]. Ring-based isomers (B from Fig. 35.1, 65.5%) are found to be the dominant

inherent structure. Book-based isomers (D from Fig. 35.1, 24.7%), prism-based (C from

Fig. 35.1, 4.5%), and cage-based (A from Fig. 35.1, 3.3%) isomers also have significant

population. The remaining inherent structures (,2.0%) consist of isomers with one or

more rings (but distinct from the isomers A–D). This distribution of inherent structures is

similar to that found from Monte Carlo simulations [47] at T ¼ 220 K and using the

TIP4p water model.

35.3.4 Radial distribution function

Fig. 35.3 reports the oxygen–oxygen partial radial distribution function, gOO(r),

determined from the three 2 þ 3-body MP2 simulations of (H2O)6. The maximum in the

first peak in gOO(r) obtained from the T ¼ 220 K simulation with the apVDZ basis set
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Structure number
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Fig. 35.2. Error analysis of the 2 þ 3-body approximation to E: The binding energies of 200 structures selected

from the LMP2/apVDZ Monte Carlo simulation trajectory at T ¼ 220 K were calculated using supermolecule

LMP2 calculations (which also recover the n ¼ 4–6 body interactions).
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occurs at r ¼ 2:82 �A; which is close to that (2.8 Å) observed experimentally for liquid
water [114] under ambient conditions.

The value of gOO(r) for the first peak in Fig. 35.3, 6.4, is appreciably higher than that

(<2.8) determined experimentally [114] or calculated for bulk water [113]. This

difference is a consequence of the normalization of gOO(r) for an ideal gas of the same

density. The gOO(r) curve for (H2O)6 also displays a second peak centered near 4.40 Å in

the T ¼ 220 K simulations and near 3.95 Å in the T ¼ 100 K simulations.

35.3.5 Temperature dependence of the energy and heat capacity of (H2O)6

Plots of the temperature dependence of the total binding energy and of the 2- and 3-body

contributions obtained from the histogram procedure are presented in Fig. 35.4. The total

binding energy varies from 237.69 kcal/mol at T ¼ 25 K to 229.41 kcal/mol at T ¼
270 K; with there being an inflection point near 130 K. Both E(2) and E(3) decrease in

magnitude with increasing temperature, with the result being that their sum decreases

more rapidly than does E(2) alone. The shape of the E(2) curve calculated at the MP2 level

is nearly identical to that calculated at the Hartree–Fock level, with the former being

lower by about 5 kcal/mol. This is surprising given the contribution of dispersion

interactions to the MP2 energies. The 3-body contribution ranges from 19.8% of the total

interaction energy at T ¼ 25 K; to 12.9% at T ¼ 270 K:
The calculated (dimensionless) heat capacity curve is presented in Fig. 35.5. The total

heat capacity, 
CV increases from 0.22 at T ¼ 25 K to a maximum of 24.35 near T ¼
135 K; and then decreases slowly between T ¼ 135 and 270 K. In addition, 
CV also has

0 1 2 3 4 5 6 7 8
Roo (Angstroms)

0

2

4

6

8

g(
R

oo
)

aPVDZ at T=220 K
6-31+G(d) at T=220 K
6-31+G(d) at T=100 K

Fig. 35.3. The oxygen–oxygen partial radial distribution functions, gOO(r), from Monte Carlo simulations

using the apVDZ (at T ¼ 220 K) and 6-31 þ G(d) (at T ¼ 100 and 220 K) basis sets.
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Fig. 35.4. Finite temperature behavior of the binding energy components of the LMP2/apVDZ Monte Carlo

simulation at T ¼ 220 K: To facilitate comparison with the total energy, the 2-body, 3-body and HF 2-body

energy components were shifted by constant values of 5.0, 27.0 and 10.0 kcal/mol, respectively.
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Fig. 35.5. Finite temperature behavior of the components of the dimensionless, configurational constant volume

heat capacity (from Eqs. (3)–(5) from the LMP2/apVDZ simulation at T ¼ 220 K).

Chapter 351004



a shoulder near T ¼ 65 K: The temperature dependence of 
CV for (H2O)6, calculated by

using the histogram procedure and the 2 þ 3-body LMP2 simulations, is close to that

obtained from J-walk Monte Carlo simulations [45] of (H2O)6 using the TIP4p [61] and

NCC [99,100] model potentials.

The 2-body component to the heat capacity, 
Cð2Þ
V ; has a minimum at T ¼ 65 K; close to

the temperature of the shoulder in the 
CV curve. The shoulder, in fact, arises from the 3-

body contribution to 
CV which is calculated to have maxima near T ¼ 60 and 120 K. For

temperatures between 30 and 110 K, the 3-body contribution to the energy fluctuations

actually exceeds the 2-body contributions.

The temperature dependencies of cHF,LMP2 and c(2),(3) deduced from the histogram

analysis are reported in Fig. 35.6. cHF,LMP2 shows little variation in temperature, ranging

from 0.88 to 0.98. On the other hand, c(2),(3) is relatively flat between T ¼ 25 and 70 K

and grows rapidly from about 20.90 to 0.22, as T increases from 70 to 270 K.

35.4 CONCLUSIONS

The water hexamer has been studied extensively experimentally and theoretically.

Although there have been several calculations on the dependence of various properties of

(H2O)6 as a function of temperature, the results have proven to be quite sensitive to the

model potential employed. In this study, a new approach was adopted in which the finite

temperature properties of the hexamer were studied using an ab initio potential.

A 2 þ 3-body MP2-level procedure was used to characterize the (H2O)6 cluster at

T ¼ 220 K: These results were used in a histogram procedure to predict the potential
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Fig. 35.6. Covariance function c(2),(3) for the 2- and 3-body energies, and cLMP2,HF for the HF and LMP2 2-body

energies.
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energy and heat capacity of the cluster over a range of temperatures. At T ¼ 220 K; the
3-body contributions are found to account for 14% of the total interaction energy, whereas

the 3-body contribution to the total fluctuations is 32%. Comparison of the 2 þ 3-body

energies with full supermolecule LMP2 energies for a subset of sampled structures reveals

that the average discrepancy between the two sets of energies is only 0.22 kcal/mol.

At T ¼ 220 K; book and ring structures are predicted to account for over 90% of the

configurations sampled in the simulation. This preponderance of ring and book isomers at

T ¼ 220 K is consistent with the results of previous model potential simulations [47]. The

2-body component of the interaction energy varies by over 8 kcal/mol from T ¼ 25 to

270 K, while the 3-body component varies by about 3 kcal/mol over the same

temperature range.

The percentage contribution of the 3-body component to the total potential energy

varies from 20% at T ¼ 25 K to 13% at T ¼ 270 K: There is a weak maximum in the 
CV

vs. T curve at T ¼ 135 K: The functional behavior of 
CV is of a similar form to that

obtained from previous simulations employing the NCC and TIP4P water potentials [45].

Based on earlier model potential studies [47], this maximum is due to the transformation

from cage and prism structures to the ring and open-book structures.

The 2 þ 3-body LMP2/apVDZ simulations reported in this study required about 3

weeks on eight 1.0 GHz CPUs of a Beowulf computer cluster. By use of current, high-end

CPUs and by running over 16–32 CPUs, 2 þ 3-body MP2-level simulations for as many

as 106 Metropolis moves would be feasible for clusters as large as (H2O)10. To extend the

simulations to appreciably larger clusters requires the introduction of additional

approximations, e.g. using a cut-off for calculation of 3-body interactions. The simplest

approach for reducing the computational cost of the calculation of the 3-body interactions

is to skip the evaluation of structures in which the distance of one of the monomers from

the other two in a trimer exceeds a threshold distance. It is also possible to implement a

scheme in which the 3-body interactions are divided into three classes: (1) the short-range

interactions, treated via ab initio electronic structure theory, (2) intermediate range

interactions, treated using a classical polarization model, and (3) long-range interactions,

which are neglected. With these strategies the 2 þ 3-body LMP2 procedure could be used

to carry out Monte Carlo simulations on clusters as large as (H2O)20, at least if the

temperature is high enough that quasi-ergodicity is not a serious problem. Extension to

still larger clusters would be possible by adoption of approximate procedures for

estimating the 2-body interactions between distant monomers.
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20 O. Mó, M. Yánez and J. Elguero, J. Chem. Phys., 97 (1992) 6628.

21 S.S. Xantheas, J. Chem. Phys., 100 (1994) 7523.

22 J.K. Gregory and D.C. Clary, J. Phys. Chem., 100 (1996) 18014.

23 J.M. Pedulla, F.D. Vila and K.D. Jordan, J. Chem. Phys., 105 (1996) 11091.

24 M. Masella and J.P. Flament, J. Chem. Phys., 107 (1997) 9105.

25 C. Millot, J.C. Soetens, M.T.M.C. Costa, M.P. Hodges and A.J. Stone, J. Phys. Chem. A, 102 (1998) 754.

26 J.M. Pedulla, K. Kim and K.D. Jordan, Chem. Phys. Lett., 291 (1998) 78.

27 T.R. Dyke and J.S. Muenter, J. Chem. Phys., 57 (1972) 5011.

28 T.R. Dyke and J.S. Muenter, J. Chem. Phys., 60 (1974) 2929.

29 T.R. Dyke, K.M. Mack and J.S. Muenter, J. Chem. Phys., 66 (1977) 498.

30 J.A. Odutola and T.R. Dyke, J. Chem. Phys., 72 (1980) 5062.

31 N. Pugliano and R.J. Saykally, Science, 257 (1992) 1937.

32 N. Pugliano, J.D. Cruzan, J.G. Loeser and R.J. Saykally, J. Chem. Phys., 98 (1993) 6600.

33 R.N. Pribble and T.S. Zwier, Science, 265 (1994) 75.

34 J.D. Cruzan, L.B. Braly, K. Liu, M.G. Brown, J.G. Loeser and R.J. Saykally, Science, 271 (1996) 59.

35 J.D. Cruzan, L.B. Braly, K. Liu, M.G. Brown, J.G. Loeser and R.J. Saykally, J. Phys. Chem. A, 101

(1997) 9022.

36 M.R. Viant, J.D. Cruzan, D.D. Lucas, M.G. Brown, K. Liu and R.J. Saykally, J. Phys. Chem. A, 101

(1997) 9032.

37 T. Walsh and D. Wales, J. Chem. Soc. Faraday Trans., 92 (1996) 2505.

38 D.J. Wales, Dynamics and rearrangements of water clusters, in: J. Bowman, Z. Bacic (Eds.), Advances in

molecular vibrations and collision dynamics, JAI Press, Stamford, CT, 1998, p. 365.

39 D. Laria, J. Rodriguez, C. Dellago and D. Chandler, J. Phys. Chem. A, 105 (2001) 2646.

40 C.W. David, J. Chem. Phys., 73 (1980) 5395.

41 C.J. Tsai and K.D. Jordan, J. Chem. Phys., 95 (1991) 3850.

42 C.J. Tsai and K.D. Jordan, J. Chem. Phys., 99 (1993) 6957.

43 D.J. Wales and I. Ohmine, J. Chem. Phys., 98 (1993) 7245.

44 S. Vegiri and S.C. Farantos, J. Chem. Phys., 98 (1993) 4059.

45 J.M. Pedulla and K.D. Jordan, Chem. Phys., 239 (1998) 593.

46 P. Nigra, M. Carignano and S. Kais, J. Chem. Phys., 115 (2001) 2621.

47 A. Tharrington and K.D. Jordan, J. Phys. Chem. A, 107 (2003) 7380.

48 K. Liu, J.D. Cruzan and R.J. Saykally, Science, 271 (1996) 929.

49 R.J. Saykally and G.A. Blake, Science, 259 (1993) 1937.

50 O. Matsuoka, E. Clementi and M. Yoshimine, J. Chem. Phys., 64 (1976) 1351.

51 E. Clementi and G. Corongiu, Int. J. Quantum Chem., S10 (1983) 31.

52 J. Detrich, G. Corongiu and E. Clementi, Chem. Phys. Lett., 112 (1984) 426.

Monte Carlo simulations of the finite temperature properties of (H2O)6 1007

References pp. 1006–1009



53 D.E. Belford and E.S. Campbell, J. Chem. Phys., 86 (1987) 7013.

54 E. Campbell and M. Mezei, J. Chem. Phys., 67 (1977) 2338.
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CHAPTER 36

Computational quantum chemistry on

polymer chains: aspects of the last

half century

Jean-Marie André

FUNDP, Laboratoire de Chimie Théorique Appliquée, 61,
rue de Bruxelles, 5000 Namur, Belgium

Abstract

Some aspects of computational quantum chemistry applied to the analysis of the

electronic structure of polymers are reviewed in connection with the timely trends

observed in their electrical and optical properties. The paper is organized as follows: after

an introduction (Section 36.1), the basic theory of the quantum chemical methodologies

as applied to periodic chains is summarized (Section 36.2). Several fields of applications

are then presented: photoelectron spectra (Section 36.3), conducting and semi-

conducting conjugated polymers (Section 36.4), linear and non-linear optical properties

(Section 36.5) and the role of charge transfer in organic chains (Section 36.6). Possible

developments for the near future are also sketched.

Cultivate science: there is no safer path for man than that which

wise men have always chosen

Ludwig van Beethoven [1]

When we consider what others have done better than ourselves,

we come to hate our own lives

Vincent Van Gogh [2]

Does not maturity consist, perhaps, in allowing others to exist?

Liv Ullmann [3]

36.1 INTRODUCTION

Since the first pioneering theoretical works on LCAO techniques in polymer quantum

chemistry were written by Ladik and André in the 1960s [4–9] this field has rapidly
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developed. Periodic systems are computationally easier to deal with than aperiodic ones

since the translational symmetry can be fully exploited in order to reduce to manageable

dimensions the formidable task of computing electronic states of an extended system.

Ab initio programs for polymers are available and are currently applied by several

groups such as Erlangen [10], Vienna [11], Budapest [12], Torino [13], Kingston [14,15]

and Namur [16,17]. The actual versions of these programs are available on the sites

mentioned in the references:

GAUSSIAN03 [18]

ADF [19]

CRYSTAL [20]

PLH [21] with Sun’s MP2 part [22]

POLYMER [23]

DJPOL [24]

However, due to different computational strategies, these programs do not rigorously

produce the same numbers, even for polymers studied using the same basis sets and

within exactly the same geometrical conformations. This is a result of different cut-off

procedures for the integrals and originates mainly from an internal structure, which is, in

all cases, a logical extension of molecular programs. It is interesting to note that all

polymer packages use standard ‘molecular’ strategies taken from the IBMOL, KGNMOL,

GAUSSIAN or other series.

Furthermore, it is important to realize that sophisticated ab initio methods, which are

already time consuming for medium- and large-sized molecules, become very onerous

when applied to polymers of chemical or biological interest. In this sense, double-zeta or

polarization LCAO techniques have only routinely been used in latter years since the

development of efficient ab initio programs for polymers which require much shorter

computing times than was previously the case. Traditionally, this has been achieved by

implementing into a general system the new fast techniques for evaluating integrals on a

Gaussian basis, through the explicit use of helical symmetry and thanks to efficient

methods of computing long-range electrostatic effects. This has resulted in a general

methodology that is more ‘polymer-minded’ than ‘molecule-minded’.

36.2 ELECTRONIC STRUCTURE OF POLYMERS:

METHODOLOGY (1965–TILL DATE)

Pioneering quantum mechanical calculations [25] were made on significant polymers

such as polyethylene or polyacetylene chains in the late 1960s with the development of

the first ab initio programs such as POLYMOL [26].

The standard theory in molecules and polymers is based on the Hartree–Fock theory.

In this model, a single electron moves in the field of the nuclei and in the mean Coulomb

and exchange field of all the other electrons. A set of molecular orbitals (MOs) is

obtained to describe the occupied and unoccupied one-electron wave functions. In

molecular quantum chemistry, the molecular orbitals are drawn as single levels, which

are at most doubly occupied by a pair of electrons of opposite spin. On the other hand,
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the solid-state physicist takes advantage of the translation symmetry of the lattice and

uses the concept of Brillouin zones introduced by Bloch in 1928 [27]. In this theory, the

so-called Bloch functions (molecular orbitals for an infinite 1D chain) are eigenfunctions

of a translation operator. Bloch’s theorem is a direct consequence of the periodicity of the

electron density:

rðrþ jaÞ ¼ rðrÞ

where a is the length of the polymer unit cell in direct space. Bloch’s theorem states the

phase relation of the orbitals at periodically related points:

fnðrþ jaÞ ¼ eikjafnðrÞ

Given that the argument of an exponential is a pure number, a is a length and j is a pure

number (the counter index of a given unit cell), k must have the dimensions of an inverse

length. Thus, the orbitals and their associated energies are functions of that k:

1n ¼ 1nðkÞ

and can be plotted with respect to k. The representation of the corresponding dispersion

curves as a function of k is called an energy band (Fig. 36.1).

Fig. 36.1. Representation of a polyethylene polymer chain (a) polyethylene polymer chain (b) polyethylene

CH2–CH2 unit cell (c) polyethylene CH2 half unit cell.
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Standard theorems of solid-state physics demonstrate that those energy bands are

periodic in the 1D-reciprocal space:

1nðkÞ ¼ 1nðk þ lgÞ
where g is the reciprocal translation unit length ð¼ 2p=aÞ: Due to the periodicity of the
energy bands in k-space the full k-energy dependence is reduced to a single unit cell of the

reciprocal space. The search is simplified if we use a symmetrized part of the reciprocal

space with respect to k ¼ 0; the so-called first Brillouin zone ranging from 2p=a to
þp=a: Due to further symmetries, the reciprocal space must be only explored from k ¼ 0

to þp=a (half the first Brillouin zone) (Fig. 36.2).

Fig. 36.2. Representation of a model two-band structure (a) periodic band structure (b) band structure in the first

Brillouin zone (c) band structure in half the first Brillouin zone.

Chapter 361014



From a conceptual point of view, it appears that polymer quantum chemistry is an ideal

field for cooperation between condensed matter physicists and molecular quantum

chemists. There exists a common interpretation in the discussions concerning orbital

energies, orbital symmetry, and gross charges by chemists and solid-state physicists.

These physicists use terms less familiar to the chemist, such as first Brillouin zone,

dependence of ‘wave function’ with respect to wave vector k (the one-electron wave

function is called an ‘orbital’ by the chemist), Fermi surfaces, Fermi contours, and

density of states (DOS).

However, it is important to note that polymer quantum chemistry is not a 1D, solid-

state physical science. In strictly 1D physics, the systems are periodic in 1D and have 1D

wave functions. In polymer quantum chemistry, the systems and their wave functions are

3D but periodic only in 1D. Usual theorems of 1D physics are consequently no longer

valid [28]. A typical example is that of extrema of the energy bands, which should only

occur at the center and the edges of the Brillouin zone in a strictly 1D system. For

polymers, even in simple cases like the linear zigzag polyethylene chain, some extrema

of the energy bands are encountered at arbitrary positions in the first Brillouin zone that

are not points of high symmetry (Fig. 36.3).

Turning to actual applications, the numerical procedure combines the equations of the

methods of molecular quantum chemistry and of solid-state physics. In molecular

quantum chemistry, a molecular orbital is expanded in terms of basis functions. Secular

systems of equations and determinants are solved. Their eigenvalues are the orbital

energies. Charges and bond orders (projections of the density matrices onto the limited

basis used) are calculated from the LCAO coefficients. In polymer quantum chemistry,

we take into account the lattice periodicity; the orbitals, the systems of equations and the

determinants are no longer real but have imaginary components. This introduces lattice

sums that require to be evaluated using appropriate procedures. The key problem is to

obtain the matrix elements over the basis functions. Fortunately, these matrix elements

roughly exponentially decrease with the distance between the orbital centers and force

the natural convergence properties of the lattice sums. This is true for overlap-like and

kinetic electrostatic integrals, and for combinations of nuclei- and electron–electron

electrostatic integrals. The behavior of exchange integrals is more complex.

The methods are classified as self-consistent and non-self-consistent. In the self-

consistent methods, the effect of electron–electron interactions is explicitly taken into

account. In ab initiomethods, as soon as the geometry and the basis functions are defined

all necessary integrals are explicitly evaluated. It has been proven that long-range effects

become highly significant as soon as the unit cell contains permanent dipoles. Multipole

expansion must, therefore, be used in order to obtain a satisfactory balance of the

Fig. 36.3. 3D spatial configuration of the 1D-periodic polyethylene chain.
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electrostatic interactions. Less sophisticated ab initio methods are available and produce

results of good quality in much less computer time. The use of semi-empirical techniques

like Extended Hückel or CNDO has sometimes been advocated. In these cases, reliable

results are obtained with little attention to the parameterization procedure. Initial sketches

of the conjugated bands are easily obtained from simple Hückel calculations. Those

techniques that endeavor to simulate the ab initio results are also of particular interest.

For polymeric band structures, good results have also been obtained with simple model

potential techniques [29] (the so-called Valence Effective Hamiltonian, VEH, technique

which has been popularized by a series of calculations by Brédas in his Mons, Tucson and

Atlanta groups). In this procedure, the Hartree–Fock operator is approximated by a sum

of atomic potentials that are, in general, anisotropic projectors determined on model

molecules.

The practice of polymer computations is rather standard. The Fock and overlap

matrices are computed at a given level of approximation (semi-empirical or ab initio

[30]). The calculation is made in direct space. The k-dependent matrices are diagonalized

and, if necessary, a self-consistent procedure is used. The output consists of the energy

bands and of the form of the molecular orbitals of the polymer. An interactive graphical

communication can be initiated for plotting the standard electronic properties, such as

band structures, bandwidths and DOS. It can also be used for ordering the energy bands,

simulating electron spectra and electron densities, calculating electron indexes as charges

and bond orders, and determining conformations or other properties. Automatic programs

taking into account the effects of long-range interactions are fully implemented and

described in the literature [31]. The methodology of band structure calculations is

described in detail in a few summer school proceedings [32] and monographs [33].

36.3 BAND STRUCTURE CALCULATIONS AND PHOTOELECTRON

SPECTRA

Since the beginning of the 1970s, quantum mechanical methods have increasingly been

applied to polymers. One of several reasons for this is the improvement of experimental

techniques for investigating the electronic properties of polymers, such as photoelectron

spectroscopy (PS) and, especially, X-ray induced photoelectron spectroscopy (XPS),

sometimes known as ESCA. The development of the latter has been mainly due to the

efforts of Kai Siegbahn (Nobel prize in 1981) in Uppsala. In polymer chemistry, two

pioneering papers were published in 1972. They refer to the experimental ESCA analysis

of the core levels of fluoropolyethylenes [34] and of the valence band of polyethylene

[35]. Theoretical interpretations rapidly followed to support the analysis of the ESCA

core levels [36]. The theoretical analysis of ESCA valence spectra has been less direct.

The ESCA spectrum and a semi-empirical band structure of polyethylene devised by

Wood et al. are sketched in Fig. 36.4. It shows that band structure is not directly

measurable and that transformations have to be applied such that calculated data is in a

form readily comparable to experiments.

In the author’s opinion, band structure plots do not offer the best representation of

valence band properties, particularly in those systems where a large number of bands lie
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in a narrow energetic region, as is the case for polymers. For this reason we have

implemented and systematized a three-step procedure [37] that leads to a theoretical

simulation of an XPS valence spectrum of a regular polymer as illustrated in Fig. 36.5. In

its presently simplified form, this procedure (a) corresponds to the calculation of the DOS

histograms, (b) takes into account cross-section effects, and (c) uses convolution for

simulating experimental resolution. In Fig. 36.5, this procedure has been applied to the

test case of the FSGO valence bands of an all-trans polyethylene chain [38]. The positions

of both theoretical and experimental peaks tally to a surprising degree and both fine

structures are directly comparable. From the bond order analysis of the theoretical

calculations, the four highest bands can be labeled as contributing to the C–H bonds

while the two lowest bands correspond to the C–C bonds. Fig. 36.5 is also of fundamental

interest since it states the existence of an experimental basis for the concept of electron

bands in polymers.

Fig. 36.4. Sketch of the theoretical band structure and experimental density of states of polyethylene.

(After M.H. Wood, M. Barber, I.H. Hillier and J.M. Thomas, J. Chem. Phys., 56 (1972) 1788, reproduced with

permission).

Fig. 36.5. FSGO theoretical simulation of the valence photoelectron spectrum of polyethylene.
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This was expertly demonstrated by Angle Resolved UPS (ARUPS) experiments [39] at

the beginning of the 1990s, as illustrated in Fig. 36.6. A natural continuation of this work

was to study the effects of structural perturbations such as conformational changes on the

valence bands of stereoisomers. To illustrate this approach, a computer experiment has

been conducted in the case of polyethylene [40]. A vibrational analysis [41] of crystalline

samples suggests the possibility of four conformations of polyethylene: trans (T), gauche

(G), trans–gauche (TG) and trans–gauche–trans–gauche (TGTG0). The theoretical

calculations reveal major differences in the shape of the densities of states of those four

conformers of polyethylene, as illustrated in Fig. 36.7.

Fig. 36.6. Experimental ARUPS band structure of polyethylene.

(After N. Ueno, K. Seki, H. Fujimoto, T. Kuramochi, K. Sigita and H. Inokuchi, Phys. Rev. B, 41 (1990) 1176,

reproduced with permission).
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The conformational changes do affect the C–C bands. Their bottom energy values are

almost constant while a modification takes place at the top of the bands giving rise to

important changes in the bandwidths. Furthermore, an energy gap appears in the C–C

band for which there are successive trans–gauche conformations (TG and TGTG0). The T
and G forms are easily distinguished by their fine structure. Unfortunately, the

corresponding samples are not available and this computer experiment only supports the

presumption that conformational effects could be experimentally observable using

photoelectron spectroscopy measurements of valence bands. This is an incentive to

investigate a real case and prove the existence of observable conformational effects on

the valence electronic DOS. A tentative interpretation of the experimental

ESCA spectrum of isotactic polypropylene has been reported [42], assuming a fully

extended zigzag chain conformation in the calculation. No satisfactory agreement as

to the peak structure was obtained. The problem has been reinvestigated by explicitly

considering the DOS of polypropylene in its actual isoclined 2 £ 3/1 helical form. As a

consequence, the correct structure appears in the theoretical spectrum as illustrated

in Fig. 36.8. The conformational effects have also been studied in the case of syndiotactic

polypropylenes [43], which exist in a zigzag and in a two-order helical form.

These few examples demonstrate the mutual enrichment that has been gained from a

close interrelation between theory and experiment in the field of photoelectron

spectroscopy.

Fig. 36.7. Four conformations of polyethylene (from top to bottom: T, G, TG and TGTG0) and their simulated
VEH photoelectron spectra.
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36.4 BAND STRUCTURE CALCULATIONS AND (SEMI)CONDUCTING

PROPERTIES (1978–TILL DATE)

The discovery in the late 1970s that doped organic polymers display high electrical

conductivity generated a substantial renewed research interest in the electronic structure

of conjugated chains among physicists and chemists alike [44]. On the one hand, the

design of new materials combining the processability, lightweight, and durability of

plastics with the electrical conductivity of metals is a driving force in the development of

conducting polymers. On the other hand, doped organic polymers constitute a new and

fascinating area of condensed-matter physics in which non-linear phenomena play an

important role. A number of polymers with doped derivatives possessing conductivities

greater than 1 S cm21 have been reported. They include conjugated systems such as

polyacetylene, polyparaphenylene, polythiophene and polypyrrole. The doping process

can be performed chemically or electrochemically and involves exposure of the polymer

to electron donors (such as alkali metals) or acceptors (such as I2 or AsF5). Although

doped polymers display phenomena in some ways similar to conventional doped

inorganic semiconductors, their basic physics is very different. One fundamental

difference is that these polymers are organic materials. Therefore, it is expected that

charge-transfer processes (or electron excitation) will result in significant local

modifications (relaxations) of both geometries and electronic structures (strong

electron–phonon coupling). In such systems, the electrical conductivity can increase

Fig. 36.8. Theoretical (VEH) and experimental (when available) spectra of isotactic zigzag and helical

polypropylene.
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upon doping by several orders of magnitude to reach a metallic-like regime. When

MacDiarmid, Heeger and Shirakawa prepared the first polyacetylene doped with iodine

in the second half of the 1970s [45], they obtained a conductivity of around 200 S cm21.

Naarman and his group at BASF have synthesized a doped polyacetylene with a

conductivity of the order of, or larger than, that of copper at room temperature [46]

(6.105 S cm21).

The standard idea about electrical conductivity is that a metal should have a zero

energy gap. If a gap exists, depending on its size, a semi-conducting or insulating state is

observed. In the case of organic polymers, the existence or non-existence of energy gaps

was related very early on to the concept of bond alternation by the pioneering work done

by Kuhn [47] in the late 1940s.

Kuhn has shown that in the series of polymethine dyes, the bond lengths between all

the carbon atoms are equal due to a resonance balance between equivalent extreme

forms:

sN– ðCHyCHÞn –CHyNþr$ sNþ ¼ CH– ðCHyCHÞn –Nr
All carbon–carbon bonds in the skeleton have 50% double bond character. This fact

was later confirmed by X-ray diffraction studies. A simple free-electron model

calculation shows that there is no energy gap between the valence and conduction

bands and that the limit of the first UV–visible transition for an infinite chain is zero.

Thus a simple free-electron model correctly reproduces the first UV transition with a

metallic extrapolation for the infinite system. Conversely, in the polyene series,

CH2yCH–(CHyCH)n–CHyCH2, he had to disturb the constant potential using a

sinusoidal potential in order to cover the experimental trends. The role of the sinusoidal

potential is to take into account the structural bond alternation between bond lengths of

single- and double-bond character. When applied to the infinite system, in this type of

disturbed free-electron model or Hückel-type theory, a non-zero energy gap is obtained

(about 1.90 eV in Kuhn’s calculation), as illustrated in Fig. 36.9.

From that work, it became clear that the metallic character of the infinite chain heavily

depended on geometrical parameters; an alternating chain being semi-conductive,

Fig. 36.9. Sketch of the UV transition energies in polymethine dyes and in polyenes.
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a regular one being possibly metallic. An energy gap opens up in the band structure if

alternating bond interactions are present. This forbidden gap is also related to Peierls

distortion: a 1D metallic chain is unstable and tends to distort in order to become semi-

conducting or insulating and decreases its total energy (this behavior is similar to a Jahn–

Teller distortion). In a first approximation, the presence of high conductivity could,

therefore, mean some equalization of the bonds: upon doping, the charge transfer process

would perturb the electronic distribution and make the chains more regular. This idea that

modification of orbital occupancy strongly perturbs the electronic density and the

geometrical parameters is not new. It was, for example, already formulated by Pullman

and Daudel [48] some time around 1946 in the completely different field of chemical

reactivity. In their elegant paper, these authors show by a simple summarized Hückel

calculation that a local excitation of a polyene molecule (butadiene in their calculation),

leads to a rearrangement of the electronic density and constrains the molecule in a

geometry ideally suited for cyclization into cyclobutene. The equalization of bonds in

p-conjugated chains under the effect of charge transfer or of electronic excitation

HOMO ! LUMO is easily explained by the topology of molecular orbitals since the

LUMO has nodes at intermediate sites with respect to those of the HOMO. Thus, simple

bonds exhibit a larger double character while double bonds become more simple.

The fact that doping does indeed largely perturb the geometry of 1D chains has been

confirmed by several computer experiments on isolated chains of equidistant hydrogen

atoms [49] and on a more realistic model of polyacetylene [50]. In both cases, the doping

is shown to have the same effect, i.e. the amount of bond alternation is calculated to be

drastically reduced: bond lengths of 1.41 and 1.43 Å versus 1.33 and 1.48 Å for the

double and single bonds, respectively (already in minimal basis sets calculations).

It is essential to note that, in these calculations, the energy gap is never fully removed

and that other mechanisms must be involved in order to explain the high electrical

conductivity. Pople and Walmsley [51] introduced implicitly but unconsciously the idea

of solitons in polyacetylene in a classical and important paper in 1962. The neutral soliton

is a radical misfit which exists in the middle of a long polyene chain containing an odd

number of conjugated carbons, and which consists of several successive bonds of similar

lengths near which the unpaired electron is localized, as illustrated in Fig. 36.10.

It is clear from Fig. 36.10 that the neutral radical defect localized at the center of the

molecule separates the chain into two alternating regions of the same energy per unit cell,

i.e. (a) on the left, a phase (phase A) where the double bonds are ‘up’ oriented when

looking from left to right and (b) on the right, a phase (phase B) where the double bonds

are ‘down’ oriented. The middle, ‘regular’ defect should have a less stable energy since

Fig. 36.10. Sketch of a neutral soliton defect.
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it corresponds to a phase in which the bonds are more equal. Thus, such a defect delimits

polyacetylene regions that present different phases, and due to the strong electron–

phonon coupling produces a geometrical distortion of the regular lattice. In this way Dr
describes the bond length difference between right- and left-oriented bonds. Thus, an

important result is that the motion in going from left (phase A) to right (phase B) is

controlled by a double-well potential as illustrated in Fig. 36.11.

From simple mathematical analysis, the double-well potential is represented by a

fourth-order polynomial with opposite signs between the quadratic and the fourth terms

as, in a dimensionless form

V ¼ aðDrÞ4 þ bðDrÞ2 þ c/ ðDrÞ4 2 ðDrÞ2

and that corresponds to a cubic dimensionless force for the motion

F ¼ 2
›V

›ðDrÞ / ðDrÞ3 2 ðDrÞ

That form will be important for the formulation of the Su, Schrieffer and Heeger (SSH)

theory as we will show later. Note that the neutral radical defect has a non-zero spin that

is experimentally detected by ESR measurements. Charged solitons are defects that may

be generated by the reduction or the oxidation of the chain, i.e. the monoanions or

monocations created, respectively, have no spin as illustrated in the following formulae

and in Fig. 36.12 for an oxidative doping such as

½CH	n þ 3x

2
I2 ! ½CH	xþn þ xI23

Fig. 36.11. Double-well potential controlling the motion in a polyacetylene chain and sketch of the two phases

A and B.
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or a reductive doping such as

½CH	n þ xNa! ½CH	x2n þ xNaþ

As far back as in 1962, Pople and Walmsley suggested that such a defect could be

mobile and thus, if charged, could be responsible for a high electrical conductivity

without spin. This idea has been largely developed in the SSH theory [52] which has

established the connection between the topological electronic defect and the related

moving geometrical distortion. The technique they used corresponds to a Hückel or tight

binding method with the lattice motions taken into account. In practice, they solved the

dimensionless equation of motion submitted to the force mentioned above and

corresponding to the double-well potential

›2u

›t2
2

›2u

›x2
¼ u3 2 u

The soliton misfit is no longer localized on a single carbon site but delocalized on a

given domain whose length is estimated by comparison with experimental data as shown

in Fig. 36.13.

This equation is the so-called f4-equation, the first analysis of which was provided in

the first half of the 19th century by Scott-Russel [53] together with pictorial comments: “I

was observing the motion of a boat which was rapidly drawn along a narrow channel by a

pair of horses, when the boat suddenly stopped—not so the mass of water in the channel

which it had put in motion; it accumulated round the prow of the vessel in a state of

violent agitation, then suddenly leaving it behind, rolled forward with great velocity,

assuming the form of a large solitary elevation, a rounded, smooth and well-defined heap

of water, which continued its course along the channel apparently without change of form

or diminution of speed. I followed it on horseback, and overtook it still rolling on at a rate

of some eight or nine miles an hour preserving its original figure some thirty feet long and

a foot to a foot and half in height. Its height gradually diminished, and after a chase of one

or two miles I lost it in the windings of the channel. Such, in the month of August 1834

was my first chance interview with that singular and beautiful phenomenon…”.

Fig. 36.12. Charged solitons without spin produced from oxidative or reductive doping.

Fig. 36.13. Top: Pople and Walmsley misfit, bottom: Su, Schrieffer and Heeger soliton defect.
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The solution is solitonic waves, i.e. waves that do not spread or disperse like normal

waves but instead retain their shape and size as shown in Fig. 36.14.

It is striking to note that bond-length equalization occurs in the middle of a soliton. The

soliton can, therefore, be viewed as a kind of metallic island on an otherwise semi-

conducting alternating chain in agreement with Kuhn’s original ideas, presented above.

An important part of André and Brédas’s work during the 1980s was to analyze and

extend the soliton, polaron and bipolaron models to a number of cases [54]: polypyrrole,

polyparaphenylene, polyanilines, polythiophenes, etc. More details on the theory of

conducting polymers can be found in specialized monographs [55].

As an introduction to Section 36.5, let us note that solitons, polarons and bipolarons are

excitations of major importance which are inherently nonlinear and thus will favor

nonlinear responses in the presence of external fields. Also, it must be realized that the

quasi one-dimensionality of the polymer chains allows them to easily undergo structural

distortions that result in a significant lowering of the first electronic excitation. Thus, in a

perturbation scheme, the linear and nonlinear polarizabilities must be significantly

enhanced, since they are inversely proportional to the energy of the electronic excitation.

Since 1983, these facts have drawn our attention to the field of polarization of polymeric

materials, which is described in detail in Section 36.5.

36.5 BAND STRUCTURE CALCULATIONS AND NON-LINEAR OPTICAL

PROPERTIES

Based on arguments such as those developed in Section 36.4, the organic solid state has

recently gained much interest in the field of nonlinear optics. The advantages of organics

over inorganics are the occurrence of much greater effects due to higher optical damage

thresholds; electronic effects inducing quasi-instantaneous responses; and ultra-fast

signal processing. The excellent mechanical and molding properties of organic polymers

Fig. 36.14. Top: solitonic waves keep their size and shape, bottom: normal waves spread and disperse.
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combined with the virtually unlimited potential of organic synthesis have generated many

studies and the development of a new physics.

The polarization ~P in an external field ~E is related to the polarizability and the

refraction index by

~P ¼ N aþ m2

3kBT

{ !
~E

aðvÞ ¼ 3M10
rN

� �
n2ðvÞ2 1

n2ðvÞ þ 2

{ !
The expansion series of the macroscopic polarization ~P and of the microscopically

equivalent dipole moment is expressed by the (macroscopic) susceptibilities and the

(microscopic) polarizability and hyperpolarizabilities:

~P ¼ ~P0 þ xð1Þ·~Eþ xð2Þ : ~E~Eþ xð3Þ..
.
~E~E~Eþ · · ·

~m ¼ ~m0 þ ya·~Eþ 1
2
yb
~
: ~E~Eþ 1

6
ygy..
.
~E~E~Eþ · · ·

Depending on whether the external field is static or not, one obtains a variety of

phenomena, such as Degenerate Four Wave Mixing (DFWM ¼ 2v;v;2v;v), Electric
Field Induced Second Harmonic Generation (EFISH or ESHG ¼ 22v;v;v; 0), the
Electro-Optical Kerr Effect (EOKE ¼ 2v;v; 0; 0) or Third Harmonic Generation

(THG ¼ 3v;v;v;v), among others. For example, the effect of a second harmonic

generation (SHG) is easily understood using the following simplified proof:

P ¼ P0 þ xð1ÞE0 sinðvtÞ þ xð2Þ½E0 sinðvtÞ	2 þ · · ·

¼ xð1ÞE0 sinðvtÞ þ xð2ÞE20 sin
2ðvtÞ þ · · ·

¼ xð1ÞE0 sinðvtÞ þ 1

2
xð2ÞE20½12 cosð2vtÞ	 þ · · ·

where one recognizes a direct component ð1=2xð2ÞE20Þ; the fundamental component

ðxð1ÞE0 sinðvtÞÞ and the SHG component ð1=2xð2ÞE20 cosð2vtÞÞ: This type of procedure
can be extended to the cubic, quadratic and larger terms.

In quantummechanical terms, the interaction Hamiltonian associated with a perturbing

external field is approximated by the multipole expansion

H1 ¼ 2ð ~m·~Eþ ~m £ ~Hþ yQ·~7~Eþ · · ·Þ
from which, in the approximations traditionally used, only the electric dipolar

contributions are retained. In particular, an external static electric field modifies the

total energy of the system as follows:

Eð~EÞ ¼ E~E¼0 2 ~m·~E , 2 ~m ¼ ›Eð~EÞ
›~E

{ !
As a consequence, the linear polarizability can be viewed as the linear response of

the dipole moment to the electric field or as the opposite of the second field derivatives
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of the energy. Similarly, the first hyperpolarizability is the second derivative of the dipole

moment or minus the third derivative of the energy with respect to the electric field.

The significance of polyenes (polyacetylenes) in NLO experiments is historically

based on FE calculations [56] (which, due to the intrinsic delocalizability of free

electrons, produce artificially strong superlinear dependence in N, with the number of

double bonds in conjugated systems of the type: a < N3 and g < N3) and on pioneering

Hückel calculations made by Davies [57], Risser [58], Hameka [59], and Flytzanis [60].

In the 1980s and in the early 1990s, the majority of calculations were made based on a

static electrical field. All of those approaches have now been generalized to create

dynamic processes [61]. A detailed review of many of the technical aspects can be found

in the review paper [62].

There are different ways to address the properties, and in particular the

(hyper)polarizabilities, of stereoregular conjugated polymers. Indeed, due to electron

delocalization, the longitudinal component of a and g of polyacetylene chains grows

supralinearly with the chain length until a linear regime is attained. The response per unit

cell increases for smaller chains and then saturates towards an asymptotic ‘polymeric’

value. These trends are represented in Fig. 36.15. The polymer asymptotic limit should

grow when the system exhibits increased geometrical regularity (reduced bond

alternation, i.e. metallic situation). In most cases, procedures are needed which directly

compute the asymptotic values. This problem is not a trivial one. When a static external

electric field is applied along the periodicity axis of the polymer, the potential becomes

non-periodic. Bloch’s theorem is no longer applicable and the single-electron wave

functions cannot be represented in the form of crystalline orbitals. For example, in the

simple case of the free electron in a 1D box with an external electric field, the solutions of

the Schrödinger equation are given as combinations of the first- and second-species Airy

functions and do not show any periodic character [63]. Consequently, the transformation

of dipole integrals from molecular limited systems to infinite periodic polymers is not a

trivial matter and is detailed, for example, in Ref. [62]. Such procedures have been

developed in our laboratory since 1990. They are also reviewed in Ref. [62].

An example of a result that can be obtained is given below. It concerns the comparative

calculation of the static polarizability per unit cell of polyethylene and polysilane chains

Fig. 36.15. Left: models of polyethylene chains of increasing size, right: sketch of the evolution of an electronic

property with chain size.
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illustrated in Fig. 36.16. As expected, the more highly polarizable polysilane chain leads

to a slower asymptotic convergence.

One of the undeniable advantages of polymer calculation is that one can identify the

contribution of each electronic band. As an illustration, the results for polyacetylene are

given in Fig. 36.17.

The total electronic polarizability per unit cell (obtained by a RPA/3-21G

approximation) is found to be 217.1 a.u. In the theoretical estimation, the contribution

of the last occupied p-band is 181.1 a.u., or in other words 83% of the total electronic

polarizability. The experimental determination is 203 a.u. [64]. Note that the theoretical

calculation does not include correlation and vibrational contributions.

Fig. 36.16. Comparative polarizabilities (in a.u., RHF/3-21G calculation) per unit cell of polyethylene

H(–CH2–CH2–)nH and of polysilane H(–SiH2–SiH2–)nH.

Fig. 36.17. Electronic band polarizability per unit cell of polyacetylene H(–CHyCH–)nH–energies in eV,

polarizability contributions in a.u.
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Today interest in nonlinear polarizabilities is of prime importance. These systems

require delicate engineering to create a perfect balance between the various factors

involved. In order to maximize a property linked to the first hyperpolarizability b, and
more precisely b related to the size of the compound, electron delocalization and

asymmetry have to be efficiently combined. Indeed, on the one hand it is known that

the (hyper)polarizabilities of organic systems are enhanced by the presence of mobile

p-electrons, a problem already addressed in the search for organic conducting polymers.

Polyacetylene skeletons are thus excellent candidates. On the other hand, the first

hyperpolarizability b is strictly zero for centrosymmetric molecules, as it corresponds to
an odd term in the dipole moment Taylor expansion. A second factor is thus an intrinsic

asymmetry as discovered in the pioneering work of Zyss et al. [65] on para-nitroaniline

(pNA) and the related compounds, 2-methyl-4-nitroaniline (MNA) and 3-methyl-4-

nitropyridine-1-oxide (POM). The combination of the two has led to the suggestion of

push–pull polyenes [66]. In these systems, electron-acceptor/donor groups are added at

the extremities of a symmetric delocalizable segment. Thus the end groups provide the

asymmetry to the mobile electrons of a conjugated bridge. It is clear that as the size of the

system increases, the centrosymmetry becomes important and annihilates the dissym-

metric end effects as illustrated in Fig. 36.18. Thus, the most efficient asymmetry/

delocalization combination is usually difficult to achieve due to the antagonism of the two

factors: the delocalization increases as the asymmetry decreases and vice versa. Once a

strong push–pull pair has been selected, the only way to increase b/N is to use longer

conjugated segments. Nevertheless, for a large N, the end groups no longer interact with

each other as outlined in Fig. 36.18. As a result, the first hyperpolarizability b becomes

constant and b=N decreases sharply. Consequently, the b=N versus N curve presents a

maximum.

An alternative way of obtaining high b=N has been recently investigated by Jacquemin

et al. [67]. He has focused on AB systems ½– ðAyB– Þn	 in which each unit contains
p-electrons and is asymmetric. Different AB compounds have been studied. An old

Fig. 36.18. Scheme of interactions of end groups in push–pull polyenes of increasing size.
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model of this type already studied in the 1960s for its potential characteristics of semi-

conductivity [68] is polymethineimine (PMI), represented in Fig. 36.19. As shown, an

intrinsic asymmetry is characteristic of the unit cell.

For smaller sizes of the polymer chain, the asymmetry of the two different end groups

(CH2 on one end of the chain and NH on the other end) adds to the intrinsic asymmetry of

the –CHyN unit cell. However, if the two bonds CHyN and N–CH would be strictly

regular, the intrinsic asymmetric character of the chain would disappear as the size of the

chain increases, as indicated in Fig. 36.20.

In a model based on such conditions, such as a Hückel calculation made with

equivalent bond lengths, the b curve would exhibit a maximum and tend asymptotically

to zero as obtained in Fig. 36.21.

In reality, the CHyN and N–CH bonds are not equivalent and the calculated behavior

is reproduced in Fig. 36.22.

Other interesting systems such as polysilacetylenes [69], polyphosphinoboranes, and

polyphosphazene-based materials [70] are currently being investigated.

The importance of the effect of vibrations on (hyper)polarizabilities has also become

increasingly apparent since the mid-1990s. It is clear that vibrational effects are at

crossroads between electronic and geometric effects and are also a manifestation of the

electron–phonon interaction, which has already been shown to be of prime importance in

estimating conducting and semi-conducting properties.

Indeed, in addition to the electronic contribution toa;b, and g; a vibrational counterpart
ðav; bv; and gvÞ also exists which involves nuclear relaxation ðar; br; and g r Þ and
curvature contributions ðac;bc; and gcÞ::The former originates from field-induced nuclear

relaxation effects, whereas the latter arises from the field-dependence of the vibrational

energy [71] as illustrated in Fig. 36.23.

Indeed, in the Born–Oppenheimer approximation, the effects can be interpreted at a

first-order level of approximation referred to as the double harmonic approximation.

Fig. 36.19. Polymethine chain.

Fig. 36.20. Asymmetric behavior of end groups and tendency toward centrosymmetry in large PMI chains.
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A simple rule for the harmonic oscillator is that a perturbation with a linear potential

in the stretching coordinates will not change the oscillation frequency or the energy

spacing between the states. A linear potential term leaves the force constant

unchanged but it will, however, change the equilibrium point and the energy of the

potential minimum. In practice, vibrational effects are not trivial due to the close

connections between nuclei and electrons. It is obvious that an external electrical field

has interaction with charged particles and thus induces reorganizations of the density

(positions) of these particles leading to both electronic polarizability and vibrational

polarizability.

Nowadays, the relative importance of the vibrational response in linear and non-

linear processes is clear but does depend on the optical frequencies concerned.

The results obtained for polyacetylene chains in the static limit are sketched in

Fig. 36.24.

The vibrational contribution to the polarizability of polyacetylene amounts to 10%

of its electronic counterpart and mainly originates from low-frequency transverse

acoustic modes (TAMs) [73]. It tends towards zero in the optical regime. The nature of

the frequency dispersion, therefore, constitutes a major difference between electronic

and vibrational (hyper)polarizability contributions. The response time is also different:

the electronic processes are faster and their response time is of the order of 1 fs,

whereas vibrational phenomena are slower and have response times ranging between

10 and 100 fs as a function of the associated vibrational normal mode frequency.

Fig. 36.21. Hückel b=N hyperpolarizability (in arbitrary units) of a PMI chain with equivalent bonds.

Fig. 36.22. Diagram of the ab initio a=N polarizability and of the b=N hyperpolarizability of a PMI real chain

(data in a.u.)
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Recent investigations summarized in Fig. 36.25 have also demonstrated that the

importance of the ratio varies markedly with both chemical nature and optical

process [74].

The vibrational contribution to the second hyperpolarizability of polyacetylene is

mainly supported by the Raman intensity-related term. Its importance varies according to

the optical process: 0.5% for EFISHG, 45% for EOKE, 87% for DFWM and 129% for the

static second hyperpolarizability.

This new field of vibrational linear and non-linear optics has also recently and rather

unexpectedly generated a renewed and significant interest in calculations and

interpretations of IR, Raman and Hyper-Raman experiments [75].

Fig. 36.24. Relative importance of electronic and vibrational effects in polyacetylene chains [72]—data in a.u.

Fig. 36.23. Illustration of nuclear curvature and relaxation vibrational effects.
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36.6 BAND STRUCTURE CALCULATIONS AND ELECTRON TRANSFER

MARCUS THEORY

On the one hand, there is a clear need for this section in the light of the advanced

information released by the Nobel committee for the 2000 Nobel Prize in Chemistry on

conductive polymers, which is extensively discussed in Section 36.4. Indeed, this

information contains a full section entitled ‘molecular electron transfer theory’ [76].

On the other hand, it is striking to note that transition state theory has been applied

extensively in quantum chemistry ever since the computational facilities needed for this

were made available, while Marcus Electron Transfer (ET) theory has only been used

systematically since the last decade.

We believe that there are two basic reasons for this situation. Firstly, the Marcus theory

has only been experimentally validated since the beginning of the 1980s. Secondly, the

advent of organic material science and, in particular, the development of Organic

Electroluminescent Diodes (OLED’s) has given significant impetus to the development

of quantum chemical calculations related to electron and energy transfer in and between

molecules.

Excellent reviews on the theory of ET are available in the literature. Among them, the

Nobel lecture of Marcus [77], the 1996 reviews of Barbara et al. [78] and of Balzani et al.

[79], both the 1999 Jortner and Bixon issues of Advances in Chemical Physics [80], and

the 2000 monograph of May and Kühn [81] are worthy of note.

In this section, we summarize the Marcus theory in its classical formulation. We would

like to draw the reader’s attention to aspects that are not generally presented in the

literature and that, in our opinion, are valuable to note. We show by a few examples how

Marcus’ ideas can be successfully applied to the elucidation of practical problems in

conducting, semi-conducting, photo- and electro-luminescent systems.

Fig. 36.25. Relative importance of electronic and vibrational contributions for various third-order non-linear

optical effects.
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ET processes are common in chemistry. In redox processes, for example, the oxidation

of a molecule means the removal of electrons while reduction means the addition of

electrons. In other terms, an electron jumps from the donor (D), which is oxidized, to the

acceptor (A), which is reduced

Dþ A! Dþ þ A2

In a self-exchange reaction, an electron leaps between two identical molecules

A2 þ A! Aþ A2

In the case of conjugated conducting polymers, which were previously mentioned, the

ET theory applies since the conductivity is not a simple band type conductivity but,

depending on the doping level, merely an intrachain and/or interchain motion of charged

soliton-like or polaron-like defects. We can sketch this motion as indicated in Fig. 36.26.

This shows nothing more than an electron transfer in the sense advocated by Marcus.

In the case of polyparaphenylene, the next example illustrates the Nobel information

already mentioned (Fig. 36.27).

Let us note that the first reaction corresponds to a self-exchange reaction where the

reagent and the products have the same stability, whereas in the second example, the

products are better stabilized by delocalization effects.

The history of ET processes goes back to Arrhenius, 1903 Nobel Prize winner in

Chemistry, who established that salts in aqueous solutions exist as positive and negative

ions and not as neutral molecules. For example, trivalent Co ions oxidize bivalent Cr ions

and form bivalent Co ions and trivalent Cr ions:

Co3þ þ Cr2þ ! Co2þ þ Cr3þ

A few years later, Werner, 1913 Nobel Prize winner in Chemistry, postulated that

metal ions in solution are surrounded by a fixed number of neighboring negative ions or

neutral molecules, arranged in a certain way, e.g. at the corners of an octahedron if there

are six of them:

½Co3þðNH3Þ5Cl2	2þþ½Cr2þðH2OÞ6	2þ!½Co2þðNH3Þ5ðH2OÞ	2þþ½Cr3þCl2ðH2OÞ5	2þ

The first systematic studies of ET reactions between the oxidation states of Pb212(II)

and Pb212(IV) were performed in 1920 by (von) Hevesy and Zechmeister. They used

Fig. 36.26. Self-exchange charge transfer in biphenyl oligomers.

Fig. 36.27. ET exchange in polyparaphenylene units.
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a new method of chemical research using natural radioactive elements as tracers.

The post-war advent of the isotopic radioactive tracer technique was the driving force

behind many experimental studies. The study of the self-exchange reaction

Fe3þpþFe2þ!Fe2þpþFe3þ

provoked initial surprise since it turned out to be a very slow reaction occurring over a

period of hours. This was an unexpected result since no chemical bond is broken. The

electron is a very light particle compared to the nucleus, and only one electron changes

place. Thus the changes are insignificant and should not give rise to any large energy

barrier. Note here that the advantage of studying self-exchange reactions such as the

previously mentioned one is that the driving force of the reaction (i.e. the standard free

energy of reaction DG0) is equal to zero. Thus, one of the factors, which usually

influences the rate of a chemical reaction in a major way, namely, the relative

thermodynamic stability of the reactants and products, is eliminated. Note, however, that

such cases are of no interest for chemiluminescence which requires energy differences

between the partners involved.

A further surprise came from the study of ET ‘cross-section’ reactions like

Fe2þ þ Ce4þ ! Fe3þ þ Ce3þ

where the reactants and the products do not have the same stability. Very different rates of

reaction were observed. The differences spanned 15 orders of magnitude, from very slow

reactions like

CoðNH3Þ2þ6 þ CoðNH3Þ3þ6 ð1026 M21 s21Þ
to very fast ones

MeL2þ3 þMeL3þ3 ð106 2 107 M21 s21Þ
where the ligand L stands for bipyridine or 1–10 phenanthroline and the metal Me ¼ Fe,

Ru, Os. Libby was the first to propose a theoretical model for the interpretation of the

large variety of rate constants observed. In the simplest self-exchange ET processes—the

transfer of an electron between two molecules—no chemical bonds are broken.

However, since the nuclei do not have time to move during the rapid electron jump the

new species are formed in the solvent molecules, which is the wrong kind of

environment. It was Marcus who cleverly remarked that were such a reaction scheme to

occur in the dark, the energy would not be conserved. Since the ions would be formed in

an incorrect high-energy environment, the only way such a non-energy-conserving event

could happen would be by the absorption of light provoking a ‘vertical’ transition, and

this could not take place in the dark. In light of this, Marcus proposed that, by their

thermal fluctuations, the solvent molecules change their positions in the immediate

vicinity of the ions, thus increasing the energy in the molecular system. The electron can

only jump between two states that have the same energy, and this condition is only

satisfied by increasing the energy for both molecules. A summary of these opposing

viewpoints is provided in Fig. 36.28.
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Thermal fluctuations from the original equilibrium ensemble of configurations are thus

needed prior to the electron transfer. They are followed by a relaxation to the equilibrium

ensemble for the products, after electron transfer. Marcus’s theory states that the potential

energy VR of the entire system—reactants plus solvent—is a function of the many

hundreds of relevant coordinates of the system. The latter include, among others, the

position and orientation of the individual solvent molecules and the vibrational

coordinates of the reactants. After the electron transfer, the reacting molecules have

the ionic charges appropriate to the reaction products, and so the relevant potential energy

function VP is that for the products plus solvent. Ignoring entropy changes, the free

energies become energies or potential energies.

These two potential energy surfaces will intersect if the electronic coupling that leads

to electron transfer is neglected. This intersection then constitutes, in Marcus’s

approximation, the transition state of the reaction. Due to the effect of the previously

neglected electronic coupling and to the coupling of electronic and nuclear motion near

Fig. 36.28. (a) Libby’s hypothesis: the electron transfer is anterior to the solvent reorganization, the energy

required is l. (b) Marcus’s hypothesis: the solvent reorganization is anterior to the electron transfer, the energy

required is l=4.
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the intersection surface, an electron transfer can occur at the crossing of the two curves in

Fig. 36.29. This view has the enormous advantage that it satisfies two basic principles of

quantum mechanics: firstly, the Franck Condon Principle is satisfied, since the transfer

between the two curves occurs at fixed positions and momenta of atoms; secondly, the

principle of conservation of energy is also fulfilled.

Note also that, in Marcus’s original idea, the parabolas represent free energy plots

during the ET reaction. It is, therefore, correct to assume that they represent energy plots

if working at 0 K. In this sense, they are legitimate as single-coordinate plots with respect

to the degree of progression of a chemical reaction. They should not be confused with

potential energy plots that are at most a profile of the complicated VR and VP in

N-dimensional space.

With these assumptions, the original Marcus theory gives a simple mathematical

formula for calculating the energy change along the reaction profile, as well as the size of

the energy barrier. It also introduces the important concept of reorganization energy l:The
origin of the latter concept lies in the fact that, although no bonds are broken during

the reaction, there are still small changes in structurewhen electrons are added or removed.

Fig. 36.28. (continued )
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The lengths of the chemical bonds are altered and the molecules of the solvent are

reoriented. Such structural changes require reorganization energy. The meaning of l can
also be interpreted as follows: initially the electron is with the donor and the vibrational

coordinate has the value q ¼ qR: Then a sudden change of the electronic state occurs. In
order to reorganize the vibrational coordinate (nuclear configuration) to the new

equilibrium value q ¼ qP; the energy l has to be removed from the system. Therefore,

this energy is usually called reorganization energy. If the ET reaction proceeds in a solvent,

the change of the electronic charge density in the DA complex is accompanied by a

rearrangement of the solvent polarization field. Thus, the name polarization energy is also

common for l: Note that the definition of l

l ¼ 1
2
f ðqR 2 qPÞ2

has the important conceptual consequence that l increases in parallel to the separation
distance ðqP 2 qRÞ between the reactants and the products and with the force constant f :
Other cases that we have studied, such as soliton or polaron transport models, concern the

transport of composite defects consisting of an electronic charge and of its associated

lattice polarization, and are thus related to electron–phonon coupling. We refer to our

systematic studies of bipolaron defects in conjugated polymers to provide examples of

quantum mechanical studies of these reorganization effects [82].

The free energy barrier is obtained as

DG# ¼ GRðqcÞ2 GRðqRÞ ¼ VRðqcÞ2 VRðqRÞ ¼ 1

2
f ðqc 2 qRÞ2 ¼ 1

4l
ðlþ DG0Þ2

The classical Marcus theory is thus of paramount importance since it defines the free

energy barrier in terms of two quantities only: the free energy of reaction DG0 and

the reorganization energy l: Consequently, when obeying Marcus’s law, ET processes

Fig. 36.29. General plot of (free) energies of the reactant and product states with respect to the degree of

advancement of the ET reaction.
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are activated by temperature according to a Boltzmann-dependent activation process:

k/ exp 2
Ea
RT

� �
The plot of the mobilities with respect to the inverse of temperature produces a U-like

curve separating the domain of band regimes (low temperature) from that of hopping

between molecules controlled by Marcus’s activation energy between molecules (high

temperature). The mobility decreases with temperature in the band regime domain while

it is activated in the hopping regime. This dependence was recently publicized by the

measurements of electron and hole mobilities in polyacenes [83].

Quantum chemistry is also of paramount importance to estimation of the

reorganization energy. In the case of polyacenes, an estimation of the relaxation energy

has been obtained by computing the energy difference of the cation states of the

oligoacenes between the neutral and cation geometries [84]. It was found that the

theoretical and experimental estimates agree well and are remarkably small (theoretically

from 0.069 eV for anthracene to 0.049 eV for pentacene, experimentally from

0.071 ^ 0.002 eV for anthracene to 0.061 ^ 0.002 eV for pentacene). This observation

is clearly important in the rationalization of the exceptionally high mobilities observed in

organic systems. According to the previous remark, it is also understood that the

reorganization energies will be greater for smaller molecules (e.g. anthracene) than for

larger ones (e.g. pentacene), where the electronic structures containing more electrons are

less perturbed by the transfer of a single charge.

The final important aspect of Marcus’s theory that we would like to mention is the

curious square dependence of the activation energy with respect to the free energy of

reaction:

DG# ¼ 1

4l
ðlþ DG0Þ2

A first statement of fact is that this formula a posteriori confirms Marcus’s view of ET

reactions as opposed to Libby’s understanding. Indeed (see Fig. 36.28), in self-exchange

reactions ðDG0 ¼ 0Þ; Libby’s mechanism would require an activation energy of l; while
in Marcus’s scheme, the leap of the electron via the crossing point of the parabolas only

requires the energy l=4:
Another important point is that the actual value of the activation energy is determined

by the balance between the value of the reorganization energy and that of the free energy

of reaction. If lDG0l , l; DG# decreases and k increases with a growing driving force.

This is an expected trend in chemical reactions, observed in Bronsted plots of acid or base

catalyzed reactions or in the Tafel plots of electrochemical reactions. If lDG0l ¼ l; DG#

is equal to zero; the liberated energy is equal to the reorganization energy and the theory

predicts a very fast barrier-free reaction, i.e. an activation-free case observed

experimentally when the rate becomes independent of temperature.

The most surprising fact applies to largely exothermic reactions when lDG0l . l:
The square in Marcus’s expression of the activation energy completely neutralizes the

large driving force of the reaction. The activation energy increases with the exothermicity

of the reaction. The reaction is slower the greater the amount of energy liberated,
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a behavior as unexpected as were a ball to roll more slowly down a slope the steeper it

was. Chemists have long found this remarkable counterintuitive result difficult to accept.

That is perhaps the main reason why Marcus’s theory has not been broadly exploited in

quantum chemical calculations. It was only experimentally confirmed in the 1980s [85].

Due to its anomalous character, this domain has been called the ‘inverted’ region.

An indirect consequence of the considerable interest in Marcus’s theory is that, as

brilliantly suggested by Marcus himself in 1965, the inverted region is responsible for

most chemiluminescent effects. Indeed, as shown in Fig. 36.30, when the VR and VP
curves intersect with a high activation barrier DG# because of the inverted region effect,

there may be an electron transfer to a more easily accessible VPp curve. In this case, one of

the products is electronically excited and intersects the VR curve in the normal region

with a low activation barrier.

Organic Light-Emitting Diodes (OLED) and Polymer Light-Emitting Diodes (PLED)

based on the mechanism foreseen by Marcus have been realized in practice. PLEDs are

successively formed from an Al, Mg or Ca cathode, an organic conductive polymer and

an ITO (Indium, Tin, Oxide) anode, as schematically illustrated in Fig. 36.31.

The electrons are generated at the cathode, transmitted by an electron transport layer

(Alq3, tris-8-hydroxyquinoline) Al and recombine with holes generated at the transparent

ITO anode by emitting light. The organic polymers are derivatives of polyparaphenylene

vinylene or polyfluorene containing organic fluorescent material emitting in the three

main colors ((RGB synthesis): Red (e.g. nile dye), Green (e.g. coumarin), Blue (e.g.

perylene dye)). Information on the progress of OLEDs and PLEDs is regularly found

in general literature such as Chemical and Engineering news [86] or on specialized

sites [87].

In an interview for the 2000 Nobel Prize, Alan MacDiarmid concluded: “Research on

conductive polymers has also fueled the rapid development of molecular electronics.

Fig. 36.30. Crossing of ground state reactants and products in Marcus’s inverted region allowing transition from

the ground state of the reactants to the excited state of products and photoluminescence to the ground state of the

products.
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In the future scientists may be able to produce transistors and other electronic

components consisting of individual molecules, dramatically increasing the speed and

reducing the size of computers: a computer corresponding to the laptops we now carry

around suddenly fits inside a wristwatch”.

To conclude this section, it is important to note that, in its classical form, Marcus’s

theory only implies two parameters: the activation energy to the free energy of the

reaction and the reorganization energy. It does not explicitly depend on the importance of

the energetic coupling between the initial (reactant) and final (product) state. This effect

is explored in the semi-classical Marcus theory [88] and will not be detailed here.

36.7 CONCLUSIONS

This paper presents research work carried out during the last 50 years. It deals with the

theoretical understanding of the structure of macromolecules employing the methods of

quantum chemical physics, a field which is today known as ‘quantum chemistry of

polymers’. It summarizes the formulation of a theoretical approach as well as the

applications relevant to contemporary technology: work (a) on photoelectron spectra in

the early 1970s, (b) on highly conducting polymers, from the latte 1970s, (c) on

systems of interest in nonlinear optics since 1983, with a strong emphasis to original

methods for large polymer chains since 1990 including since 1995 the too rarely

studied vibrational effects, (d) on charge and energy transfers in conjugated polymers

since 2001.

The main conclusion is that the success of this field is due to a close interconnection

between analytical and computational approaches. The paper has clearly demonstrated

that we need to take into account electron–phonon interactions. In other terms, there

exists a timely need to include translational, rotational, vibrational contributions and

non-adiabatic approaches in our models. Then the road will be open to complete

non-equilibrium interpretations of the electronic properties of macromolecules [89].

Fig. 36.31. General overview of the energy levels of an OLED.
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29 J.M. André, L.A. Burke, J. Delhalle, G. Nicolas and Ph. Durand, Int. J. Quantum Chem., S13 (1979) 283;
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82 J.L. Brédas, B. Thémans and J.M. André, Phys. Rev. B, 26 (1982) 6000; J.L. Brédas, B. Thémans and
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R.R. Chance, Phys. Rev. B, 29 (1984) 6761.

83 J.H. Schön, C. Kloc and B. Batlogg, Phys. Rev. Lett., 86 (2001) 3843, However the following retraction

has been published in Phys. Rev. Lett., 89 (28) 28 (December 31, 2002): Universal Crossover from Band

to Hopping Conduction in Mol. Org. Semicond. [Phys. Rev. Lett. 86 (2001) 3843], Jan Hendrik Schön,

Christian Kloc, and Bertram Batlogg (Received 18 December 2002; published 27 December 2002) DOI:

10.1103/PhysRevLett.89.289902 PACS numbers: 72.80.Le, 71.382k, 72.20.Fr, 99.10þg. On 25

September 2002, Bell Laboratories, Lucent Technologies, announced the findings of an independent

committee it formed to investigate the validity of certain research reported from 1998 to 2002 by teams of

Bell Labs and other scientists. In its report [1], the committee concludes that ‘based on the preponderance

of the evidence, Hendrik Schön committed scientific misconduct as defined by the falsification or

fabrication of data, such that the research is not accurately represented in the research record.’ The above-

mentioned manuscript was not reviewed by the committee and therefore did not appear in their report.

Nevertheless, all of the authors of the Letter with the exception of J.H. Schön have agreed to a complete

retraction of the paper. [1] http://dx.doi.org/10.1103/APS.Reports.Lucent

84 H. Gruhn, D.A. da Silva Filho, T.G. Bill, M. Malagoli, V. Coropceanu, A. Kahn and J.L. Brédas, J. Am.

Chem. Soc., 124 (2002) 7918.

85 G.L. Gloss and J.R. Miller, Science, 240 (1988) 440.

86 see, for example in 2003 and 2004: C&N, p. 10, July 7, 2003; C&EN, p. 13, December 15, 2003; C&EN,

p. 9, February 2, 2004; C&EN, p. 12, March 15, 2004; C&EN, p. 9, May 3, 2003.

87 http://www.universaldisplay.com; http://www.uniax.com; http://www.kodak.com/go/oled; http://www.

cdtltd.co.uk
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CHAPTER 37

Forty years of ab initio calculations

on intermolecular forces

Paul E.S. Wormer and Ad van der Avoird

Institute of Theoretical Chemistry, IMM, University of Nijmegen,
Toernooiveld 1, 6525 ED Nijmegen, The Netherlands

Abstract

This review sketches the development of methods for the computation of intermolecular

forces; emphasis is placed on dispersion forces. The last 40 years, which saw the birth,

growth, and maturation of ab initio methods, are reviewed.

37.1 INTRODUCTION

Intermolecular forces, sometimes called non-covalent interactions, are caused by

Coulomb interactions between the electrons and nuclei of the molecules. Several

contributions may be distinguished: electrostatic, induction, dispersion, exchange that

originate from different mechanisms by which the Coulomb interactions can lead to

either repulsive or attractive forces between the molecules. This review deals with the

ab initio calculation of complete intermolecular potential surfaces, or force fields, but we

focus on dispersion forces since it turned out that this (relatively weak, but important)

contribution took longest to understand and still is the most problematic in computations.

Dispersion forces are the only attractive forces that play a role in the interaction between

closed-shell (1S) atoms. We will see how the understanding of these forces developed,

from complete puzzlement about their origin, to a situation in which accurate quantitative

predictions are possible.

The subfield of quantum chemistry concerned with the computation of intermolecular

forces has always depended very much on computer technology, not unlike most of the

other subfields. Because of this strong influence, we will divide the following history

along the lines of hardware development. The first attempt of an ab initio calculation

on the interaction between two closed-shell atoms was made in 1961. Rather than let

q 2005 Elsevier B.V. All rights reserved.
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the story begin there, we will first review briefly the precomputer era of the theory of

intermolecular forces. Then the infancy of computers and computational quantum

chemistry will be reviewed, followed by the era dominated by mainframes. We will end

with the present democratic times in which every household has at its disposal the power

of a 1980 supercomputer and ordinary research groups possess farms of powerful

computers.

37.2 PREHISTORY: BEFORE COMPUTERS

When on the 10th of July 1908 Kamerling Onnes and his coworkers saw the meniscus of

liquid helium in their apparatus [1], it was proved to them that two helium atoms attract

each other—so that a liquid can be formed—but also that they repel each other—so that

the liquid does not implode. Of course, this is what they had known all along, because

their work was guided by the van der Waals law of corresponding states, which gave them

a fair idea of the temperature and pressure at which the liquefaction of helium would take

place. In deriving his law van der Waals (1873) had to assume the existence of attractive

and repulsive forces.

Until the advent of quantum mechanics it was an enigma why two S-state atoms would

repel or attract each other. Shortly after the introduction of the Schrödinger equation in

1926, Wang [2] solved this equation perturbatively for two ground-state hydrogen atoms

at large interatomic distance R: Approximating the electronic interaction by a Taylor
series in 1/R he found an attractive potential with a leading term 2C6=R

6: A few years

later Eisenschitz and London (E&L) [3] systematized this work by introducing a

perturbation formalism in which the Pauli principle is consistently included. They

showed that the intermolecular antisymmetrization of the electronic wave function

(electron exchange), which is required by the Pauli principle, can give rise to repulsion.

This is why the intermolecular repulsion is often referred to as exchange (or Pauli)

repulsion.

Considering distances long enough that intermolecular differential overlap and

exchange can be neglected (the so-called long-range regime), Wang and E&L showed

that the same dipole matrix elements that give rise to transitions in the monomer spectrum

appear in the equations for the interaction. E&L pointed out that these transition dipole

moments are closely related to the oscillator strengths arising in the classical theory of the

dispersion of light (associated with the names of Drude and Lorentz) and in the quantum

mechanical dispersion theory of Kramers and Heisenberg. Oscillator strengths, being

simply proportional to squares of transition moments, are known experimentally,

enabling E&L to give reasonable estimates of C6: In 1930 London [4] published another
paper in which he coined the name ‘dispersion effect’ for the attraction between S state

atoms, which is why it is common today to refer to these attractive long-range forces as

‘London’ or ‘dispersion forces’.

Apropos of nomenclature: the forces between closed-shell molecules (exchange

repulsion, electrostatics, induction, and dispersion) are nowadays usually referred to as

van derWaals forces. A stable cluster consisting of closed-shell molecules bound by these
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forces is called a van der Waals molecule. This terminology was introduced in the early

1970s (see Refs. [5–9]).

After the pioneering quantum mechanical work not much new ground was broken until

computers and software had matured enough to try fresh attacks. In the meantime the

study of intermolecular forces was mainly pursued by thermodynamicists who fitted

model potentials, often of the Lennard–Jones form [10]: 4e½ðs=RÞ12 2 ðs=RÞ6	, to
quantities like second virial coefficients, viscosity and diffusion coefficients, etc. Much of

this work is described in the authoritative monograph of Hirschfelder et al. [11] who,

incidentally, also gave a good account of the relationship of Drude’s classical work to that

of London.

37.3 ANTIQUITY: THE SIXTIES

Around 1960 the computer began to enter quantum chemistry. This was the beginning of

a very optimistic era; expectations of the new tool were tremendous. All over the western

world quantum chemists were appointed in the belief that many of the problems in

chemistry could be solved by computation within a decade or so. However, computers

and ab initiomethods were not received with this great enthusiasm by everyone. Coulson

[12] one of the outstanding quantum chemists of his day, stated in his after-dinner speech

of the June 1959 Conference on Molecular QuantumMechanics in Boulder, Colorado: “It

is in no small measure due to the success of these [Coulson here refers to ab initio ]

programs that quantum chemistry is in its present predicament.”

37.3.1 Supermolecular methods

At the same 1959 Boulder conference Ransil, working in the Chicago Laboratory of

Molecular Structure and Spectra, one of the leading quantum chemistry groups of the

time, announced a research program [13] on the computation of properties of diatomic

molecules. With the benefit of hindsight one can say that his program was overambitious

and far too optimistic, because he intended to use self-consistent field (SCF) methods

with atomic orbital (AO) minimum basis sets, albeit of Slater type. The fourth paper [14]

of this research program was devoted to He2. Here Ransil considered the dispersion-

bound dimer as a molecule amenable to ordinary molecular computational methods.

Nowadays this method is referred to as a ‘supermolecule’ approach. Ransil writes in his

abstract that “remarkable good agreement with the available experimental data is

obtained for distances greater than 1.5 Å”. We now know that his van der Waals

minimum was spurious and solely due to the so-called basis set superposition error

(BSSE). This BSSE is the lowering of the energy of monomer A, caused by the distance

dependent improvement of the basis by the approaching AOs on B, and vice versa: the

basis of B is improved by basis functions on A. How much the difficulties of ab initio

calculations on intermolecular forces were still underestimated is witnessed by another

paper on He2, also originating from the Chicago group. Phillipson [15] attributing the

deviation of the energy for R , 1.5 Å to correlation effects, introduces configuration
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interaction (CI) including 10–64 configurations, but still uses a minimum basis set and

does not correct for the BSSE.

Six years later Kestner [16] published a paper, containing SCF-MO results on He2, in

which he stresses the importance of the choice of AO basis sets, even for systems as small

as He2. Using large basis sets he finds completely repulsive curves by the SCF method.

According to Kestner in 1968: “it is generally believed, but nobody has proved, that this

should be the case for two closed-shell atoms”. This statement exhibits the great advance

made in understanding ab initio results in the early 1960s. Since Kestner used the

Chicago computer codes and thanks Chicago staff members (Roothaan, Ransil, Cade, and

Wahl) for guidance and support, it is clear that the Chicago work on programming

ab initio codes for diatomics was instrumental in gaining this understanding, in contrast

to Coulson’s doubts.

A correction of the BSSE appearing in supermolecular calculations was proposed by

Boys and Bernardi [17] in 1970. A similar correction was already applied somewhat

earlier by Jansen and Ros [18]. At present, 35 years later, the ‘counterpoise’ procedure of

Boys and Bernardi is still regularly applied, although—especially for smaller systems—

we now can afford AO basis sets that are so large that the SCF counterpoise correction is

essentially zero. In correlated supermolecular methods the counterpoise correction is

usually still needed. In essence, Boys and Bernardi proposed to perform all calculations

(energy of monomer A and B and energy of dimer A–B) in the same dimer basis set by

the same computational method. Although the sum of the monomer energies, which

serves as zero point, becomes distance dependent, vast experience has shown [19–22]

that this procedure yields the most reliable (basis set independent) results.

As stated above, it was already known in 1968 (and confirmed by calculation) that the

SCF method applied to He2 gives a purely repulsive interaction. Recall that by Löwdin’s

definition [23] the SCF energy serves as the zero of electron correlation, or in other

words, the SCF method does not give any correlation. Sinanoğlu [24] was the first to

observe that interatomic sp pair correlation yields London R26 dispersion. By the

converse of this finding it seems plausible that without interatomic correlation dispersion

effects are not accounted for. Since these effects contribute so significantly to the

attraction of S-state atoms, one may conjecture that for non-polar systems there is no

binding without inclusion of interatomic correlation. And indeed, we will show this

below. As a matter of fact, Pauli repulsion is now usually taken for granted and attention

is focused usually on the explanation of observed minima in intermolecular potentials.

The fact that interatomic pair correlation gives dispersion was semi-quantitatively

confirmed in a calculation [25] on He2. This Kestner–Sinanoğlu work on He2 gave a well

depth of 4.32 K ¼ 3.00 cm21, which is about 2.5 times lower than the presently accepted

value. The discrepancy is due to an inadequate AO basis.

Sinanoğlu’s method was later improved [26] by adaptation of the pair functions to the

spin-operator S2. The He2 potential was recomputed [27] by this method with the use of a

much larger AO basis. This paper, and a simultaneous paper published in the same issue

of Phys. Rev. Lett. by Bertoncini and Wahl [28] describing MCSCF calculations, are the

first that report within one consistent supermolecule formalism a complete van der Waals

curve that shows a physically meaningful well. In Ref. [27] the depth of this well is

De ¼ 12:0 K at the equilibrium distance Re ¼ 2:96 �A and in Ref. [28] De ¼ 11:4 K
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at Re ¼ 2:99 �A: The presently accepted values [29,30] are De ¼ 11:008^ 0:008 K and

Re ¼ 5:6 bohr ¼ 2:963 �A: The choice of configurations in the MCSCF calculation was
inspired by the London long-range theory.

So, while the 1960s started with the belief that SCF could give a complete potential

curve for closed-shell atoms, at the end of the decade it was known that the inclusion of

interatomic correlation is essential for obtaining the dispersion attraction. The new

decade saw the light with the two papers just mentioned [29,28] proving this

quantitatively.

37.3.2 Perturbation methods

Independent of the work on coding ab initio programs, other workers in the 1960s carried

further the torch of London. In the first place, methods were improved to compute better

long-range C6 coefficients and the corresponding higher coefficients C8; C10; etc. in the
expansion of the interaction energy 2

P1
n¼6 CnR

2n:
On the other hand, people took a closer look at the symmetrized perturbation theory of

Eisenschitz and London, which in principle can give a full potential energy surface

(PES), not just the long range of it.

A variety of techniques has been employed for the estimation of dispersion

coefficients. Good reviews are those by Dalgarno and Davison [31] and Dalgarno [32].

The semi-empirical methods based on oscillator strengths fs were refined by using sum

rules for Cauchy moments. A Cauchy moment S(k) is defined by the following sum over

monomer states cs with energies Es

SðkÞ ¼
X
s.0

fsðEs 2 E0Þk

where the oscillator strength fs is given as a squared matrix element of the dipole

operator m

fs ¼ 2

3
ðEs 2 E0Þ

X
i¼x;y;z

kc0lmilcslkcslmilc0l

The even Cauchy moments arise in the expansion of a frequency-dependent polarizability

aðvÞ

aðvÞ ¼
X
s.0

fs

ðEs 2 E0Þ2 2 v2
¼

X1
k¼0

Sð22k2 2Þv2k ð1Þ

The coefficient C6 in the long-range interaction energy between two molecules A and B is

given in terms of the oscillator strengths fAs and f Bs by

C6 ¼ 3

2

X
ss0

fAs f
B
s0

ðEAs 2 EA0 ÞðEBs0 2 EB0 ÞðEAs 2 EA0 þ EB
s0 2 EB0 Þ
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One can factorize the denominator of this expression by invoking the identity (DX . 0 is

an excitation energy on X):

1

DADBðDA þ DBÞ ¼ 2

p

ð1

0

1

D2A þ v2

{ !
1

D2B þ v2

{ !
dv ð2Þ

Casimir and Polder [33] have shown that this identity, which can be proved easily by

contour integration, can be used to express the long-range coefficient C6 in terms of

frequency-dependent monomer polarizabilities

C6 ¼ 3

p

ð1

0
aAðivÞaBðivÞdv

Many values of fs are known empirically; their reliability can be checked by the sum

rules: Sð22Þ ¼ að0Þ; Sð0Þ ¼ N (number of electrons) and Sð21Þ ¼ 2
3
kc0lm·mlc0l:

Effectively summing the power series in Eq. (1) by means of different Padé

approximants makes it possible to give upper and lower bounds on the C6 values. Much

work in the 1960s was done on calculating such bounds (see Ref. [34] for more on this).

The 1960s also saw the first ab initio calculations of a(v) by the time-dependent

uncoupled Hartree–Fock (TDUHF) method [35] and by the time-dependent coupled

Hartree–Fock (TDCHF) method [36].

Intermolecular electron exchange does not play a role in the long range, since all

integrals that would arise by intermolecular antisymmetrization vanish by virtue of

vanishing intermolecular differential overlap. However, for shorter distances where this

overlap may not be neglected, the electrons on the monomers can no longer be

distinguished and the wave functions must be antisymmetric under permutations of all

electrons. As we saw earlier, Eisenschitz and London considered this problem as early as

1930 and it was revived in the late 1960s by Murrell et al. [37], Hirschfelder and Silbey

[38], Hirschfelder [39,40], van der Avoird [41–44], Murrell and Shaw [45], and Musher

and Amos [46].

From the Pauli principle follows that the projected function AABF0, rather than F0;
should be considered as the correct zeroth-order wave function in the perturbation theory

of intermolecular interactions. HereAAB is the usual intermolecular antisymmetrization

operator and F0 ¼ F A
0F

B
0 is (the lowest) eigenfunction of H

ð0Þ ; HA þ HB; the sum of

monomer Hamiltonians. We assume here that F0 is antisymmetric under monomer

permutations, i.e. AXF0 ¼ F0 for X ¼ A, B. Unfortunately, since intermolecular

permutations do not commute with Hð0Þ; ½AAB;H
ð0Þ	 – 0; it follows that AABF0 is not

an eigenfunction of Hð0Þ: This has the consequence that conventional Rayleigh–

Schrödinger (RS) perturbation theory is not applicable for those intermolecular distances

where the effect of AAB is non-negligible. The RS perturbation treatment must be

adapted to permutation symmetry. The workers just quoted proposed procedures to

achieve this symmetrization. From a practical point of view their theories can be divided

into two categories [47]: first project withAAB then perturb (‘strong symmetry forcing’),

or perturb first and project later (‘weak symmetry forcing’). In strong symmetry forcing

the symmetry operators enter the perturbation equations, significantly complicating their

solution. In weak symmetry forcing the perturbed wave functions are obtained by minor
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modifications of RS perturbation theory: the operatorAAB only enters overlap terms and

perturbation energies.

Although symmetry-adapted perturbation theories were well studied in the second half

of the 1960s, numerical applications were scarce and restricted to H2
þ andH2. See Ref. [48]

for a review of the exchange perturbation theories up to the beginning of the 1970s.

37.4 THE MIDDLE AGES: ERA OF MAINFRAMES

Around 1970 every self-respecting university possessed a mainframe computer (in the

majority of cases an IBM 360, sometimes a CDC 6600). This was usually placed in a

stronghold well defended by brave knights (the computer center staff). A scientist who

wanted access to the machine had to master a strange and difficult tongue (job control

language) and to cross swords with computer personnel to conquer CPU cycles, RAM,

tapes, and disk space. This medieval state of affairs lasted until workstations arrived at the

end of the 1980s.

The development of ab initio methods, such as speeding up the computation of

Gaussian integrals, improving convergence of SCF procedures, and theory and

programming of correlation methods was vigorously pursued on mainframes. Electron

correlation can be included by CI or by coupled cluster (CC) methods. Especially the

work on the development of CC methods proved later to be significant for the study of

intermolecular forces, because the CC method, in contrast to the CI method, is size

extensive. Size extensivity in the thermodynamic sense of this word (energy linear in

amount of substance) implies that in the limit of zero density the energy of a system of

molecules converges to the sum of energies of the individual molecules. Much work on

the coupled cluster doubles (CCD) method (a supermolecule correlation method) was

performed in the 1960s and 1970s by Paldus and Čı́žek and their coworkers [49–51] and

from the late 1970s onward by Bartlett and coworkers [52,53], who added single

excitations to the method. Also Pople [54] recognized the importance of the CC method

at a rather early stage.1

However, in the 1970s the supermolecule correlation methods—and the computers on

which they ran—were not yet powerful enough to have much significance in the field of

intermolecular forces, except for small systems like He2. It was already known that dimer

SCF gives a fair description of electrostatic interactions (dipole–dipole, dipole–quadrupole,

etc.), of induction forces (dipole-induced-dipole, etc.), and also of Pauli repulsion, but not of

dispersion. So, for systems where dispersion was expected to be dominant, other paths than

SCF supermolecule computations had to be followed. A well-known procedure was separate

computation of SCF and perturbative dispersion (without exchange effects) and to add the

two.Dispersion is known to be affected by exchange and so for shorter distance the dispersion

has to be damped [55–57].When themultipole-expanded form of the dispersion is used, this

damping must also correct for the divergent character of the multipole series. Instead of

computing converged dimer SCF energies, one often stopped the SCF procedure after the

first cycle. This makes sense when the start orbital set is the direct sum of the sets of

1 See Chapter 6 in this book for more on the development of the CC method.
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occupied MOs of the monomers. In that case the first SCF cycle gives the expectation value

NkAABF
A
0F

B
0 lHA þ HB þ VABlAABF

A
0F

B
0 l; where N is the corresponding normal-

ization constant and the intermolecular interaction operator VAB ¼ H 2 HA 2 HB contains

the Coulomb interactions between the electrons and nuclei of different molecules. This

expectation value accounts for exchange repulsion and electrostatic interaction, albeit

without any intramolecular corrrelation. Induction effects are obtained by cycling the dimer

SCF, but because this cycling introduces BSSE and the counterpoise correction was deemed

fairly expensive, as it requires three calculations for each geometry of the dimer, the neglect

of induction was either accepted, or induction was added later in the multipole expanded

form.

37.4.1 Unexpanded dispersion

Dispersion energy can be computed without invoking the multipole expansion. This was

done in the 1970s by, among others, Kochanski [58,59], Jeziorski and van Hemert [60],

and by van Duijneveldt and coworkers [61]. It is natural to assume that the

supermolecular second-order Møller–Plesset (MP) [62] energy EABMP2 also accounts for

dispersion energy. And, indeed, in their study on the connection between MP energies

and the perturbation theory of intermolecular forces Chałasiński and Szczȩśniak [63]

showed that for large R the supermolecule second-order (MP2) energy becomes equal to

a sum of two monomer MP2 energies plus an uncoupled HF dispersion term. They

showed further that for two monomers possessing permanent multipoles the long-range

MP2 energy also contains a correlation contribution to the electrostatic energy. In

Appendix 37.A we provide a short alternative derivation of the asymptotic (large R) limit

of EABMP2 for the special case of two S-state atoms. Fig. 37.1 gives a diagrammatic

representation of the connection between dispersion and MP2 energy. The diagrams in

Fig. 37.1. Goldstone diagrams depicting the large-R behavior of EABMP2: See text for definition of orbital labels.

Particle orbitals run upward, hole orbitals downward. Each dashed line represents a two-electron integral.

Closed lines are summed over. The first row shows Coulomb and the second row exchange interactions.

Diagrams in the first row have h ¼ 2 (two hole lines) l ¼ 2 (two loops); diagrams in the second row have h ¼ 2

and l ¼ 1: The overall factor is ð21Þlþh2lw where 2l is from spin integration. All diagrams, except the one with

the bar in the middle, have weightw ¼ 1=2 (because of a vertical symmetry plane). An imaginary horizontal line

in each diagram gives the energy denominator. The diagrams in the first three columns give the MP2 energy of

A–B, A, and B, respectively. The fourth column gives the London dispersion energy. In the large R limit

integrals containing differential overlap between A and B vanish.
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this figure are similar to those of Ref. [64], which was the first work to apply many-body

diagrammatic techniques to symmetry-adapted perturbation theory (SAPT). Note that the

dispersion energy and the Coulombic part of the supermolecule energy EABMP2 are

represented by diagrams that are topologically the same, so that diagrammatically their

relationship seems obvious. It is tacitly assumed, however, that for large R the dimer

orbital energies are equal to monomer orbital energies. This fact, which holds for S-state

systems, is proved explicitly in Appendix 37A. The appendix gives the following

equation for the unexpanded dispersion energy,

Edisp ¼ 4
X
r;r;s;s

lkrð1Þsð2Þlr2112 lrð1Þsð2Þll2
er þ es 2 e r 2 e s

ð3Þ

where r is an occupied (‘hole’) and r a virtual (‘particle’) spatial orbital on A. The

definition of s and s on B is analogous. The denominator contains the corresponding

orbital energy differences. This equation can also be extracted from the fourth diagram in

the first row of Fig. 37.1 by application of the diagrammatic rules.

In the mid-1970s valence bond studies [65,66] on He2 and (C2H4)2 were performed.

This work was based on valence bond structures (configurations) that account for most of

the important dispersion effects. The VB structures were constructed from pure monomer

MOs, which are orthogonal on each monomer but have intermolecular overlap. The

exact, unexpanded, Hamiltonian was used and a secular problem was solved. Because of

the non-orthogonality of the orbitals, the main drawback of the VB method is that only a

relatively small subset of the electrons can participate in the binding, while the majority

of electrons reside in closed shells. The all-electron VB work [65] on He2 brought to light

very clearly the considerable size of BSSEs, not only in VB results, but also in full CI

results. Until that time BSSE was mainly discussed at the SCF level.

Two ab initio methods, which were well known and much discussed in the 1970s and

1980s, were the pair natural orbital CI (PNO-CI) method and the coupled electron pair

approximation (CEPA) method. They were proposed by Meyer [67] in 1973 and 2 years

later improved by Ahlrichs et al. [68]. In 1983, Burton and Senff [69] applied the method

of Ahlrichs et al. to an analysis of the anisotropy of (H2)2 interaction near the minimum in

the van der Waals interaction energy.

In Eq. (3) we find orbital energy differences in the denominator. This is due to the fact

that we took the Fock operator as the zeroth-order operator, as did Møller and Plesset [62]

in 1934. An alternative zeroth-order operator is due to Epstein [70] saved from oblivion

by Nesbet [71]. This operator can be written as [72]

Hð0Þ ¼
X
I

lIlkIlHlIlkIl

where lIl is an excited Slater determinant consisting of localized HF orbitals.

A simplification, compatible with Eq. (3), is obtained by restricting the summation to

determinants that are singly excited on each of the monomers. Working out the energy

denominators k0lHl0l2 kIlHlIl we find orbital energy differences, as in Eq. (3), but

shifted by a few additional Coulomb and exchange integrals.
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The pros and cons of Møller–Plesset versus Epstein–Nesbet (EN) partitioning were of

some interest all through the 1970s. Especially the French school [58,59,73–75] strongly

preferred EN over MP partitioning, although later French work [72] criticizes the use of

EN partitioning with delocalized orbitals. See Kelly [76] for a proof that EN partitioning

gives an (infinite) number of diagonal ladder diagrams in addition the diagrams

accounted for by the MP partitioning. Today EN partitioning is rarely applied, mainly for

pragmatic reasons, because most standard ab initio packages only have the MP option.

37.4.2 Multipole-expanded dispersion

Before 1970 the multipole expansion (by which we mean the expansion in powers of 1/R)

of the interaction operator VAB was usually truncated after the R23 dipole–dipole term,

so that the only dispersion interaction term was 2C6R
26: Around 1970 it became clear

that this approximation was not sufficient and that more terms were needed. However, the

straightforward application of the Taylor expansion, and its natural formulation in terms

of Cartesian tensors [77], soon becomes cumbersome. Nineteenth century potential

theory [78,79] came to the rescue. In this theory the multipole series is rephrased in terms

of associated Legendre functions, which enables a closed form of it. Multipole operators

are defined as

QlX
m ¼

X
j[X

ZjS
lX
m ð~rXjÞ2

XNX
i¼1

SlXm ð~rXiÞ with X ¼ A;B

where ~rXj and ~rXi are the coordinates of the nuclei j;with charges Zj; and the electrons i of
molecule X with respect to a frame with its origin on the nuclear center of mass of X. The

function Slmð~rÞ ; rlCl
mðr̂Þ is a regular solid harmonic; Cl

mðr̂Þ is a Racah normalized

spherical harmonic.

The intermolecular interaction operator is

VAB ¼ 2
XNA
i¼1

X
b[B

Zb

rib
2

XNB
j¼1

X
a[A

Za
rja

þ
XNA
i¼1

XNB
j¼1

1

rij
þ

X
a[A
b[B

ZaZb

rab
ð4Þ

Introducing the notation ~rPQ for a vector pointing from P to Q we substitute into Eq. (4)

~rib ¼ 2~rAi þ ~RAB þ ~rBb

~rja ¼ 2~rBj 2 ~RAB þ ~rAa

~rij ¼ 2~rAi þ ~RAB þ ~rBj

~rab ¼ 2~rAa þ ~RAB þ ~rBb

where A and B are the nuclear centers of mass of the respective monomers. Upon using

the expansions given in Eqs. (A4) and (A5) of Appendix 37A, we get the multipole
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expansion

VAB ¼
X
lAlBm

ð21ÞlBþm
2lA þ 2lB

2lB

{ !1=2
Y lAþlB

2m ð~RÞ½QlA^QlB	lAþlBm

where ~R ¼ ~RAB and we recall from the appendix that Y lAþlB
2m ð~RÞ is proportional to

R2ðlAþlBþ1Þ:
When we substitute this expansion into the RS second-order expression, we get a

numerator that contains two Clebsch–Gordan coupled products of transition matrix

elements on A and B. They are of the type

½kF A
0 lQlA lF A

n l^kF B
0 lQlB lF B

n0 l	lAþlBm

This coupling is not convenient. As will become clear below it is better to first couple the

transition moments on each center. The dispersion energy becomes a sum of which the

summand can be expressed with the use of Eq. (2) as a Casimir–Polder integralð1

0
a
ðlAl0AÞLA
MA

ðivÞaðlBl0BÞLB
MB

ðivÞdv

over a product of irreducible frequency-dependent polarizabilities. The latter are given by

a
ðlXl0XÞLX
MX

ðivÞ ;
X
n.0

2ðEXn 2 EX0 Þ
ðEXn 2 EX0 Þ2 þ v2

h
kF X

0 lQlX lF X
n l^kF X

n lQl0X lF A
0 l
iLX
MX

The recoupling of the transition moments requires a 9j-symbol (see Refs. [80–82]). Later

the same recoupling was performed in Ref. [83]. These references give the expression

without introduction of the Casimir–Polder integral. See Refs. [84–88] for the recoupled

expression containing the Casimir–Polder integral. We have now a closed form of all the

terms in the multipole expansion of the dispersion energy. This energy can be computed

once the irreducible monomer polarizabilities aLA ðivÞ and aLB ðivÞ are known.

Unfortunately, this series does not converge; in fact it is divergent and ‘therefore we

may be able to do something with it’ [O. Heaviside (1899), as quoted in Ref. [89]].

However, the series is asymptotic [90–92] in the sense of Poincaré.

A very similar equation holds for the multipole-expanded induction energy. The

difference is that the polarizabilities are static, so that there is no Casimir–Polder integral,

and that one of the irreducible polarizabilities is replaced by a Clebsch–Gordan coupled

product of permanent multipole moments.

The problem of computing dispersion energies is reduced to the computation of

polarizabilities for a sufficient number of frequencies, so that the Casimir–Polder integral

can be obtained by numerical quadrature [93]. An alternative to this quadrature is the

substitution of the product of the polarizabilities by a sum over Hartree–Fock orbitals

[94,95] or a sum over effective (pseudo) states of the monomers [85,96]. The pseudo

states can be obtained from time-dependent coupled Hartree–Fock calculations [85,

96–98], or from CI calculations [99]. The CI calculations of Ref. [99] were at the single

and double excitation level. They gave very good results for the frequency-dependent

polarizabilities of He and H2—where SDCI is equivalent to full CI—and very poor
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results for N2, O2 and the neon atom. The failure of the SDCI method for the response

properties of more than two-electron systems was shown to be caused by unlinked

clusters [100]. Addition of triply excited states removes the most important unlinked

clusters and was shown for Ne2 to improve the results considerably [100].

Doran [101] was the first to apply Goldstone diagrammatic techniques to the

computation of frequency-dependent polarizabilities and dispersion coefficients. He

applied his method to Ne2 and heavier noble gases, but owing to an inadequate basis, got

results of fairly poor quality. Later Wormer and coworkers [87,93,102] derived and

programmed all polarizability diagrams through second order of intramolecular

correlation, so that dispersion (by definition second order in VAB) is completely

correlated to second order on each monomer. Their programs are in practice hardly

limited by the rank of the multipoles: up to l ¼ 63 can be computed.

37.4.3 Applications

At the beginning of the 1980s quantum chemical methods and computer hardware had

developed to a stage that the computation of properties depending on PESs of systems

larger than two atoms could be contemplated. Examples are thermodynamic properties,

such as virial coefficients [11,103] and moments of collision-induced infrared spectral

densities [104,105]. The computation of spectroscopic properties of van der Waals

molecules came into reach [106–111] and also of molecular crystals [112].

Intramonomer vibrations have in general a much higher energy than intermolecular

vibrations, i.e. the intramolecular motions are much ‘faster’ than the intermolecular

motions, so that an adiabatic separation of the two motions is reasonable. In practice this

means that we can consider the monomers to be frozen in their vibrationally averaged

geometry and that it is a good approximation to consider the interaction energy as a

function (referred to as PES) of the relative coordinates of the rigid monomers. Examples

of intermolecular coordinates are the well-known Jacobi coordinates R; u for an atom–
diatom system, while for a system consisting of two rigid diatoms R (the distance

between the respective mass centers), uA and uB (the colatitude angles of the diatomics)
and f (the dihedral angle) are very common.

An early computation of a full (i.e. depending on all intermolecular coordinates) PES

of two diatomics is the work by Berns and van der Avoird [113] on (N2)2. Their approach

is in essence the one sketched above: one-cycle SCF to account for first-order exchange

and electrostatics (including charge overlap effects) plus multipole-expanded dispersion.

The dispersion coefficients were taken from Ref. [114].

At that time this was a formidable calculation. It was performed on an IBM 370/158,

which was not a supercomputer, but nevertheless a respectable mainframe. A basis of 144

Gaussian type orbitals (GTOs) was used; for restart purposes integrals were stored on

tape, requiring two tapes of 170 Mb for one point on the PES. About 150 points were

computed, so that 300 tapes were needed. A tape reel had a diameter of 10.5 in. and,

including its case, was about 1 in. wide, so that a rack of about 7.5 m long and 30 £ 30 cm

wide had to be used to store the 50 Gb of information. One point on the surface took

2.5–3.5 h CPU time and since the whole university—from sociology to solid state
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physics—used the same mainframe for time sharing during the day, at most one point per

night could be done. The computational part of the project, therefore, took about half a

year.

Two fits of the PES were made: one in terms of products of spherical harmonics

(coupled to a rotational invariant) and one as an atom–atom potential

DEAB ¼
X
a[A

X
b[B

qaqb
rab

2
Cab

r6ab
þ Aabe

2Babrab

" #

This potential was subsequently used in self-consistent phonon lattice dynamics

calculations [115] for a and g nitrogen crystals. And although the potential—and its

fit—were crude by present day standards, lattice constants, cohesion energy and

frequencies of translational phonon modes agreed well with experimental values. The

frequencies of the librational modes were less well reproduced, but this turned out to be a

shortcoming of the self-consistent phonon method. When, later [116,117], a method was

developed to deal properly with the large amplitude librational motions, also the

librational frequencies agreed well with experiment.

Ten years later van der Pol et al. [118] published similar calculations of the CO–CO

interaction potential, also performed on a mainframe (NAS 9160). The GTO basis was of

dimension 148; 315 points on the PES were computed. One point took 30 min CPU time

so that there was no need to save integrals. The dispersion, computed in the multipole

expansion at the MP2 level of intramonomer correlation [87], was damped by the Tang–

Toennies [57] damp function. Notice, parenthetically, that the decrease in computer time

from the calculations on (N2)2 to (CO)2, a decade apart, was certainly not revolutionary.

Judging by these calculations the speed of mainframes improved less than an order

of magnitude; Moores law [119] (doubling of speed every 18 months) predicts two orders

of magnitude. The (CO)2 potential of van der Pol was applied [120] to the computation of

properties of solid CO and gave good agreement with experimental values. A later

application [121] to the rotation–vibration spectrum of the dimer showed, however, that

the potential was not of spectroscopic accuracy.

37.5 MODERN TIMES: REVOLUTION AND DEMOCRACY

Around 1990 the advent of workstations initiated a revolution in scientific computing.

Until that time batch processing was the norm for longer running jobs. The user estimated

an upper limit for the CPU time that his/her computation would take, submitted the job,

prayed that it contained no trivial errors causing an immediate crash, and then settled

down to wait until there was room on the central computer to run the computation. When

the workstations arrived, which had the computational speed of mainframes and were

cheap enough that research groups could afford one or more, the mode of operation was

revolutionized. In the first place, jobs went into execution immediately, so that the user

had the chance to weed out trivial errors instantaneously. In the second place, there was

no longer a need to chop the calculations into chunks of a few hours CPU time.
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An example of a calculation, performed on an IBM RS/6000-320 workstation, is the

study of the collisions of argon and NH3 by van der Sanden et al. [122] with the use of an

ab initio calculated Ar–NH3 potential [123]. The program Hibridon [124] was used to

compute the elastic and rotationally inelastic scattering cross sections and the probability

that the collisions with Ar invert the ammonia umbrella. A single (one collisional energy)

coupled channel calculation on para NH3 colliding with argon took 241 CPU hours and

was finished in about 2 weeks. On a mainframe this would have been a matter of months.

The increase of computer power made it possible not only to employ the most refined

ab initio methods in the computation of potentials, but also to solve the nuclear motion

problem sufficiently often to tune the ab initio potentials to the experimental results. This

was the Leitmotif of the past decade: compute the best possible PES, fit it, solve the

appropriate nuclear motion Schrödinger equation for the corresponding van der Waals

complex, and compare with experiment. The remaining discrepancies between theory

and experiment may be removed by scaling one or more of the parameters in the

analytical fit of the potential surface. This procedure has helped in disentangling

complicated spectra, for instance the n3 (asymmetric stretch) spectrum of CH4 in

interaction with the argon atom [125,126] and the n4 (asymmetric bend) spectrum of the

same system [127,128]. At the same time, this provided an assessment of the quality of

the ab initio Ar–CH4 potential. An ab initio calculated water pair potential [129] was

tested and improved [130,131] by the calculation of vibrational–rotational-tunneling

spectra of the water dimer and comparison with experimental high-resolution spectra

[132,133]. Again, the calculated energy levels and transition intensities [134] could be

used to assign the bands in the measured spectrum to specific intermolecular vibrations.

For the computation of the interaction between two closed-shell monomers there are at

present two excellent computational methods, both implemented in black box programs.

The first is based on SAPT [135] and the second is the supermolecule CCSD method

[136,137] with triply excited terms added in a non-iterative fashion.

37.5.1 The SAPT method

The SAPT method was mainly developed by workers in the Warsaw quantum chemistry

group. Jeziorski and his former supervisor Kolos [47,138], believing in the prospects of

SAPT, continued and extended the work of Refs. [37,40–46,48]; later Szalewicz [139]

joined forces in this development. These workers came to the conclusion that

symmetrized Rayleigh–Schrödinger theory (weak symmetry forcing—see above) was

the most viable of the different variants of SAPT.

We saw earlier that a very simple form of the dispersion energy is obtained from

frequency-dependent polarizabilities at the so-called uncoupled Hartree–Fock level. The

sum over states appearing in second order RS perturbation theory is simply a sum over

(occupied and virtual) orbitals. A first improvement of this simple model is obtained by

including apparent correlation [140], i.e. by using frequency-dependent polarizabilities

obtained from the TDCHF method [36,141]. This method was initially proposed in the

context of the multipole expansion, but could be generalized [142–146] to charge

density susceptibility functions (or polarization propagators), which avoids the use
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of the multipole expansion. It is possible to graft intramonomer correlation corrections

onto TDCHF theory, but this is not the road taken by the Warsaw group. Instead they

worked top down, from an exact formulation to (approximate) equations in terms of one-

and two-electron integrals that are coded in the SAPT program.

We now present the basic philosophy of symmetrized RSPT as implemented in the

SAPT program [135], see for more details Refs. [88,147]. Referring to Eq. (4) for the

definition of VAB; we rewrite the Schrödinger equation ðHð0Þ þ VABÞCpol ¼ ECpol:
Projection with the eigenfunction C ð0Þ

pol of H
(0) with eigenvalue E(0) gives the following

exact expression for the interaction energy

E2 Eð0Þ ; Epol ¼
kC ð0Þ

pollV
ABlCpoll

kC ð0Þ
pollCpoll

The subscript pol (polarization [40]) indicates that no intermolecular antisymmetry has

been introduced, or, in other words, that Cpol is expanded in products of monomer wave

functions. See Ref. [88] about the convergence characteristics of this expansion. The

convergence to a state satisfying the Pauli principle is greatly improved by introducing

the intermolecular antisymmetrizer AAB. Hence we define, in the spirit of weak

symmetry forcing, the energy expression

ESRS ;
kC ð0Þ

pol lV
ABlAABCpoll

kC ð0Þ
pol lAABCpoll

ð5Þ

If we introduce the intramonomer correlation WA; cf. Eq. (A1), multiplied by the
perturbation parameter m; the Schrödinger equation for monomer A becomes

HAðmÞF AðmÞ ¼ ðFA þ mWAÞF AðmÞ ¼ EAðmÞF AðmÞ
Clearly,F A(0) is the Hartree–Fock function of monomer A with energy EA(0) (a sum of

orbital energies) and F AðmÞ can be developed in a power series in m: Analogously we
assume for monomer B a power expansion in n: Multiplying VAB with the perturbation
parameter l;wemay expand the eigenfunction ofH ¼ FA þ FB þ mWA þ nWB þ lVAB

Cpolðl;m; nÞ ¼
X1

i;j;k¼0
limjn kC ijk

pol

Here the subscript pol indicates thatCpolðl;m; nÞ is obtained from PT equations that do not

contain intermolecular exchange. Observing that Cpol ; Cpolð1; 1; 1Þ; and

Cð0Þ
pol ; Cpolð0; 1; 1Þ, we may analytically continue Eq. (5) by substitutingCpolð1; 1; 1Þ!

Cpolðl;m; nÞ andCpolð0; 1; 1Þ!Cpolð0;m; nÞ into this equation. The resulting expression
of ESRS is a function of l;m and n:After expanding also the denominator in powers of l;m
and n; followed by collecting the powers of l; m and n arising from numerator and

denominator, ESRS gets the form

ESRSðl;m; nÞ ¼
X1

i;j;k¼0
limjn kEijk

SRS ð6Þ
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Obviously, the exact antisymmetrized interaction is equal to ESRSð1; 1; 1Þ: This is the basis
of SRS theory—a weak-symmetry-forcing variant of SAPT.

Exchange effects have a clear operational definition in SAPT, because Epol can be

expanded in the same RSPT manner, leading to terms E
ijk
pol: The difference E

ijk
SRS 2 E

ijk
pol is

the exchange contribution to the (i, j, k) term. The terms linear in l are electrostatic terms
and those quadratic in l can be divided in induction and dispersion terms (including their
exchange corrections).

As we stated above, SAPT is formulated in a ‘top down’ manner. Eq. (6) then forms the

top; going down to workable equations, one is forced to introduce a multitude of

approximations. In practice, i is restricted to the values 1 and 2: interactions of first and

second order in VAB: Different truncation levels for jþ k are applied, depending on the

importance of the term (and the degree of complexity of the formula). Working out the

equations to the level of one- and two-electron integrals is a far from trivial job. This has

been done in a long series of papers that use techniques from coupled cluster theory and

many-body PT; see Refs. [147,148] for references to this work and a concise summary of

the formulas resulting from it.

Some of the earliest potentials computed by the SRS variant of SAPT were for Ar–H2
[149] and for He–HF [150,151]. An application of the latter potential in a calculation of

differential scattering cross sections [152] and comparison with experiment shows that

this potential is very accurate, also in the repulsive region. Some other SAPT results are

for Ar–HF [153], Ne–HCN [154], CO2 dimer [155], and for the water dimer [129,156].

The accuracy of the water pair potential was tested [130,131] by a calculation of the

various tunneling splittings caused by hydrogen bond rearrangement processes in the

water dimer and comparison with high resolution spectroscopic data [132,133]. Other

complexes studied are He–CO [157,158], and Ne–CO [159]. The pair potentials of He–

CO and Ne–CO were applied in calculations of the rotationally resolved infrared spectra

of these complexes measured in Refs. [160,161]. They were employed [162–165] in

theoretical and experimental studies of the state-to-state rotationally inelastic He–CO

and Ne–CO collision cross sections and rate constants. It was reaffirmed that both

potentials are accurate, especially the one for He–CO.

Small organic molecules in interaction with noble gases were studied in Refs. [166]

(He–C2H2), [167] (Ne–C2H2), [125] (Ar–CH4), and [168] (He–CO2). For He–C2H2,

Ne–C2H2, and Ar–CH4 the SAPT potentials were applied [126,166,167] in ab initio

calculations of the infrared spectra of these complexes. A typical feature of all these

potentials for weakly interacting systems is that their shape is determined by a subtle

balance between the geometry dependence of the repulsive short-range interactions and

that of the long-range forces, which mostly are attractive. All these results demonstrate

that the pair potentials from ab initio SAPT calculations are accurate. Another, more

global, comparison with experiment, confirming this finding, was made by computations

of the (mixed) second virial coefficients of most of these dimers over a wide range of

temperatures [169].

An extension of SAPT that includes also third-order interactions [170–174] permits

the explicit calculation and analysis of three-body interactions. For details about this

development and a survey of its applications we refer to Chapter 33 in this book on many-

body interactions written by Szalewicz, Bukowski, and Jeziorski.
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37.5.2 The coupled cluster method

Above we referred to the development of the CC method by Čı́žek and Paldus [49–51].

The CC method may be viewed as a consistent summation to infinite order of certain type

of linked correlation (MBPT, MP) diagrams. Thus, there is a clear relationship between

many-body perturbation theory [based on the MP operator of Eq. (A1) in Appendix 37A]

and coupled cluster theory. Both are supermolecule methods that give size-extensive

energies.

Around 1980 MP calculations at second-order of perturbation (MP2) came within

computational reach, while around 1990 third- (MP3) and fourth-order (MP4)

calculations became feasible. For some time MP4 calculations were widely applied to

weakly bound complexes, but soon it was discovered that a full MP4 computation

(including terms that include sums over triply excited states) is hardly cheaper than a

CCSD(T) computation. Since the latter is in general more reliable, MP4 lately lost much

ground to the CCSD(T) method.

We can be very brief about the CC method since the chapters by Paldus and others in

this book give in-depth treatments of it. As is well known, the exact N-electron wave

function C is written as

lCl ¼ eT1þT2þ· · ·þTN lF 0l ð7Þ

where F 0 is a closed-shell Hartree–Fock reference function. In most applications

T3; T4;… are neglected and only T1 ¼ tiaE
a
i and T2 ¼ t

ij
abE

ab
ij (summation convention is

used here) are included. Here Ea
i and E

ab
ij are orbital replacement operators, where orbital

i and j are occupied in F 0 and a, b refer to virtual orbitals. The cluster amplitudes t
i
a and

t
ij
ab are obtained from the solution of equations that are quadratic in the t

ij
ab and fourth order

in tia: For the closed-shell (spin singlet) case the projection of the CC equation on doubly
excited states (the CCD method) yields coupled equations of dimension KðK þ 1Þ=2
where K is the product of the number nocc of occupied and the number nvir of virtual

orbitals.

Naively one could expect that the solution of these equations scales as OðK4Þ: For if
one linearizes the equations according to the Newton–Raphson method, a set of OðK2Þ
linear equations must be repeatedly solved, which takes OðK4Þ operations per solution.
Fortunately, the scaling is not that bad. In the first place the sums in the equations do not

run over all four orbital labels of tabij simultaneously, but at most over two. In the second

place a quasi-Newton method, in which the linear equations are approximated by a

partially diagonal form, usually converges well. See for more details about the

computational aspects of the CCSD method the recent book by Helgaker et al. [175]. This

book also shows that the exponential ansatz, Eq. (7), leads in the long range to a

factorization of the wave function and a corresponding decomposition of the dimer

energy into a sum of monomer energies.

In total [176], the solution of the CCSD equation scales as n2occn
4
virNit; where Nit is the

number of quasi-Newton iterations needed. Once the amplitudes tai and tabij have been

solved, they can be used to compute additional perturbation terms that include triply
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excited states [177] [a non-iterative O(n7) process], which are not accounted for in the

CCSD method; their inclusion is indicated by (T) in CCSD(T).

We will end this section by mentioning a dozen or so illustrative examples of modern

supermolecule calculations on dispersion-bound complexes. Of course, it is hopeless to

strive for completeness, almost daily new calculations are published, and hence the

following list of references is far from exhaustive.

As stated above, around 1990 many workers used the MP4 method, see, for instance,

Ref. [178] for the potential of CH4–H2O, Ref. [179] for MP4 applications to CO2–Ar,

and Ref. [180] for argon in interaction with Cl2 and ClF. Later the MP4 and CCSD(T)

methods were compared, in calculations on Ar–H2 and Ar–HCl [181], on N2–HF [182],

and for CO–CO [183].

A few examples of recent CCSD(T) computations on intermolecular potentials are by

Cybulski and coworkers, who computed potentials of the noble gas dimers He2, Ne2, Ar2,

He–Ne, He–Ar, and Ne–Ar (Ref. [184]) and Ne–Kr, Ar–Kr, and Kr2 (Ref. [185]).

Further they considered HCN in interaction with He, Ne, Ar, Kr [186], and Ar–CO [187].

Computational and experimental studies of intermolecular states and forces in the

benzene–He complex were reported in Ref. [188]. A thorough CCSD(T) study on

benzene–Ar is by Koch et al. [189] and on Ne–HCl by Fernández and coworkers [190].

37.5.3 Latest developments

Lately two completely different topics in the field of intermolecular forces have drawn

attention and are now actively being studied. In the first place there is the possible

application of density functional theory (DFT) to van der Waals molecules. The second

topic concerns van der Waals molecules of which the electronic state of one or more of

the monomers is spatially degenerate.

DFT in the standard Kohn–Sham (KS) formulation has its limitations in application to

dispersion forces. Standard local and gradient-corrected functionals are not appropriate

for the description of dispersion, which is inherently a non-local correlation effect [there

is no such thing as a dispersion potential Vdispð~rÞ]. Despite the search for functionals
capable of describing London forces (cf. Ref. [191] and references therein), there still is

no generally applied solution in the framework of KS-DFT. However, via a detour DFT

can play an important role. Earlier we discussed an approach for obtaining non-expanded

dispersion by the Casimir–Polder integration of a product of two polarization

propagators. This approach can easily and seamlessly be interwoven with DFT [192,

193], because DFT is known to give accurate response properties, provided functionals

with correct asymptotics are used [194–197]. Complete intermolecular interaction

potentials can be obtained from the so-called DFT-SAPT method that substitutes KS

orbitals and exchange-correlation kernels into the SAPT expressions for the interaction

energies with j ¼ k ¼ 0; cf. Eqs. (5) and (6). The evaluation of these expressions is

computationally much cheaper than the inclusion of monomer correlation effects by

calculation of the SAPT terms with jþ k . 0:
In Ref. [193] various non-hybrid and hybrid exchange-correlation potentials and

suitable adiabatic local density approximations for the exchange-correlation kernel were
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compared for the dimers He2, Ne2, Ar2, NeAr, NeHF, ArHF, (H2)2, (HF)2, and (H2O)2.

This comparison showed that the effects of intramonomer electron correlation on the

dispersion energy are most accurately reproduced with an asymptotically corrected [197]

version of the exchange-correlation potential of Perdew et al. [198]. In Ref. [199] the

importance of asymptotically correct exchange-correlation potentials in DFT-SAPT was

emphasized particularly. In Ref. [192] dispersion energies of He, Ne, and H2O dimers

were obtained by the DFT-SAPT approach to within 3% or better.

Earlier we also discussed the uncoupled HF approach to dispersion, where the sum

over states is performed at the orbital level. Of course, this approach can also be applied

with KS orbitals. However, Heßelmann and Jansen [193] found that the uncoupled sum-

over-states approximation yields unacceptable errors. These are mainly due to neglect of

the Coulomb and exchange-correlation kernels and are not substantially improved

through an asymptotic correction of the exchange-correlation potential.

The DFT-SAPT approach has been very recently applied [200] to the notoriously

difficult case of the CO dimer. Earlier computations [183] of the (CO)2 PES by means of

MP4 and CCSD(T) methods encountered some unexpected complications. It was shown

that high-order correlation effects are important and that both CCSD(T) and CCSDT

formally do not have a correct asymptotic (large R) behavior. Later [201,202] it was

pointed out that on top of this problem also very large basis sets are needed for an

accurate description of the CO–CO PES. Notwithstanding this problem, a full four-

dimensional PES (rigid monomers) was computed in Ref. [203] by the CCSD(T) method

as a springboard for further refining. The potential was fitted in terms of analytic

functions, and the fitted potential was used to compute the lowest rovibrational states of

the dimer. It gave semi-quantitative agreement with the experimental infrared and

millimeter wave spectra of McKellar, Winnewisser and coworkers [204–210].

Application of a fit of the recent DFT-SAPT potential [200] gave rovibrational results

that differed somewhat from the CCSD(T) data, and were also in semi-quantitative

agreement with the measured spectra. It was decided to combine the two potentials,

CCSD(T) and DFT-SAPT, and it was shown that a weighted average of the DFT-SAPT

(30%) and the CCSD(T) potential (70%) gives results that are in very good agreement

with experimental data, for both (12CO)2 and (
13CO)2.

The second topic of recent interest—dimers that dissociate into a degenerate open-

shell monomer and a non-degenerate closed-shell monomer or into two open-shell

monomers—has two intrinsic difficulties that are both due to spatial degeneracy. The

dimer is an open-shell system in such cases and it has multiple PESs that become

degenerate for large intermolecular separations and in many cases also for other

geometries. In the first place, it is fair to say that at present there are no generally

applicable size-extensive electronic structure methods for open-shell, spatially

degenerate, systems. From a theoretical point of view, the complete active space

multi-configuration SCF (CASSCF) method [211] is probably the most satisfactory, as it

handles electron spin correctly and is size extensive. However, the active spaces that can

be handled in practice are too small to give a reliable account of dynamic correlation

effects like dispersion. The CASSCF method has been extended to CAS perturbation

theory (CASPT) in order to include dynamical correlation effects [212–217]. The

CASPT approach is almost size extensive when the CASSCF reference function
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is dominated by a single determinant. However, for reference wave functions in which

several determinants have large weights, as is the case for spatially degenerate open-

shells, size extensivity is broken [175].

An alternative electron-correlation method is the multi-reference configuration

interaction (MRCI) method. This method is plagued by unlinked diagrams, the presence

of which break the size extensivity of the MRCI energy. Often MRCI results are

corrected by a simple formula introduced 30 years ago by Langhoff and Davidson [218],

who derived it by inspection of a CI wave function consisting of all double excitations

(DCI) from a single Slater determinant. One can look upon this ‘Davidson correction’ as

an approximate formula for the unlinked diagram that enters the DCI energy.

Paldus, elsewhere in this book, discusses that there is as yet no generally applicable,

open-shell, size-extensive, coupled cluster method, and the same holds for open-shell

SAPT methods. Therefore, for the computation of potentials of open-shell van der Waals

molecules one has the choice between CASSCF followed by a Davidson-corrected MRCI

calculation of the interaction energy, or the single reference, high spin, method

RCCSD(T). When the ground state of the open-shell monomer is indeed a high spin state,

then RCCSD(T) is the method of choice. With regard to the latter method we recall that a

major difficulty in open-shell systems is the adaptation of the wave function to the total

spin operator S2; for the CCSD method a partial spin adaptation was published by

Knowles et al. [219,220] who refer to their method as ‘partially spin restricted’. When

non-iterative triple corrections [221] are included, the spin restricted CCSD(T) method,

RCCSD(T), is obtained.

Even when free monomers are in degenerate states, the RCCSD(T) method is often

employed, because for most points on the PES the symmetry is lowered to Abelian

symmetry, so that degeneracies are lifted and RCCSD(T) is formally applicable. But it

can be applied only to the lowest state of a given symmetry, while one needs to know also

the potential surfaces of the higher dimer states that become asymptotically degenerate

with the ground state. Moreover, it is clear that the method fails for points on the PES that

have symmetry higher than Abelian and states that belong to more-dimensional

representations of the non-Abelian point group.

The second problem that often occurs in open-shell van der Waals molecules is the

breakdown of the Born–Oppenheimer (BO) approximation. As is well known, the

BO approximation can be trusted when the PESs are well separated in energy.

However, when certain points on the PES are degenerate this condition is not fulfilled,

not in the degenerate points themselves, but also not in nearby points. This breakdown

of the BO approximation can be shown as follows. Let us write R for the collection

of nuclear coordinates and r for the electron coordinates. Indicating electronic and

nuclear interactions by subscripts e and n, respectively, the Schrödinger equation takes

the form

ðTn þ Te þ Vnn þ Vne þ VeeÞCðR; rÞ ¼ ECðR; rÞ

where the kinetic energy terms Tn and Te have the usual form. In particular

Tn ¼
P
a P

a
nP

a
n=ð2MaÞ with the nuclear momentum Pan ¼ 2i›=›Ra: The wave function
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is expanded in eigenfunctions xkðr;RÞ of He ; Te þ Vee þ Vne

CðR; rÞ ¼
X
k

xkðr;RÞfkðRÞ

with kxk0 ðr;RÞlxkðr;RÞlðrÞ ¼ dk0k and where the subscript (r) indicates that the integration
is over electronic coordinates only. By definition

kxk0 ðr;RÞlHelxkðr;RÞlðrÞ ¼ ðHeðRÞÞk 0k ¼ dk 0kEkðRÞ

and we assume that xkðr;RÞ is real (invariant under time reversal).
After multiplication by xk0 ðr;RÞ and integration over r the Schrödinger equation is

turned into a set of coupled equations depending on nuclear coordinates only

½HnðRÞ þHeðRÞ	fðRÞ ¼ EfðRÞ

where the column vector fðRÞ has elements fkðRÞ: The matrix HeðRÞ is diagonal and

ðHnðRÞÞk 0k ¼ kxk 0 ðr;RÞlTnlxkðr;RÞlðrÞ þ dk0kVnn

Suppressing the coordinates in the notation, we can write the matrix elements of Tn as

kxk0 lTnlxklðrÞ ¼ dk 0kTn þ
X
a

1

Ma

kxk0 lðPanxkÞlðrÞPan þ kxk 0 lðTnxkÞlðrÞ ð8Þ

The diagonal ðk 0 ¼ kÞ matrix elements kxklðPanxkÞlðrÞ of the operator Pan vanish, because
this operator is Hermitian and odd with respect to time reversal. The off-diagonal matrix

elements satisfy

kxk 0 lðPanxkÞlðrÞ ¼
kxk 0 l½Pan ;He	lxklðrÞ
EkðRÞ2 Ek 0 ðRÞ

We see that whenever two surfaces come close, EkðRÞ < Ek 0 ðRÞ; the nuclear momentum
coupling term is no longer negligible. Conversely, if all surfaces are well separated, all

off-diagonal terms can be neglected and hence the whole matrix of Pan is effectively zero.

The third term on the right-hand side of Eq. (8) can be written as the matrix of Pan squared

and, accordingly, is then negligible also. Only the first (diagonal) kinetic energy term in

Eq. (8) survives and a diagonal, uncoupled, set of nuclear motion equations results. These

are the normal second-step of the BO approximation equations.

Let us, for the sake of argument, assume now that only two surfaces 1 and 2 approach

each other and that all other surfaces are well separated; the argument is easily

generalized to more surfaces. We then have to solve a set of two coupled nuclear

Schrödinger equations with non-negligible coupling element kx1ðr;RÞlTnlx2ðr;RÞlðrÞ:
Define two new orthonormal states by a rotation of x1 and x2 (for clarity reasons we
suppress the coordinates)

ðw1;w2Þ ¼ ðx1; x2ÞRðgÞ ð9Þ
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where RðgðRÞÞ is a 2 £ 2 rotation matrix and g(R) is the ‘diabatic angle’. Transformation
of the matrix of nuclear momentum kxk0 lðPanxkÞlðrÞ for k0; k ¼ 1; 2 gives

kwklðPanwkÞlðrÞ ¼ 0 for k ¼ 1; 2;

i.e. the diagonal matrix elements remain zero, and

kw2lðPanw1ÞlðrÞ ¼ ðPang ðRÞÞ2 kx2lðPanx1ÞlðrÞ
We search for a g(R), such that to a good approximation

ðPang ðRÞÞ2 kx2lðPanx1ÞlðrÞ < 0 ð10Þ
i.e. w1 and w2 diagonalize the 2 £ 2 matrix of the nuclear momentum. By the definition of

Smith [222] w1 and w2 are diabatic states. Smith was the first to define this concept.

(Earlier the term ‘diabatic’ was used somewhat loosely by Lichten [223]). The nuclear

motion problem takes the following ‘generalized Born–Oppenheimer’ form

Tn þ Vnn þ E1ðRÞ þ E2ðRÞ
2

0

0 Tn þ Vnn þ E1ðRÞ þ E2ðRÞ
2

0BBB@
1CCCAfðRÞ

þ E2ðRÞ2 E1ðRÞ
2

cos 2g sin 2g

sin 2g 2cos 2g

{ !
fðRÞ

¼ EfðRÞ ð11Þ
The surfaces E1(R) and E2(R) are BO energies obtained from electronic structure

calculations and Tn is the first term of Eq. (8). The (transformed) third term in this

equation is neglected. The determination of g(R) is the remaining problem before a

solution of Eq. (11) can be attempted.

Several methods for the determination of g(R) have been proposed [224,225]. One is
the direct computation of the non-adiabatic coupling matrix element kx1lðPanx2ÞlðrÞ by
finite difference techniques, which gives the derivative of g (cf. Eq. (10)). Another is by
supposing that the diabatic states w1 and w2 are states of the free monomers and by using
Eq. (9) backwards. This is obviously only possible when the adiabatic states xk and xk0 are
(almost) pure linear combinations of the two monomer states. This approximation can be

made at the orbital level or at the N-electron level (or at both levels simultaneously). Also

mixing matrix elements of molecular properties over adiabatic states may be used.

We will end this section by mentioning some recent representative calculations on van

der Waals molecules consisting of a closed- and open-shell monomer. The simplest

closed-shell monomer is of course the ground state helium atom. Its interaction with

NO(X2P) [226], CO(a3P) [227,228], CaH(2Sþ) [229], and NH(X3S2) [230] was studied

recently. In the case of the He–CO(3P) complex the potential was applied in computing
the spectrum of the bound complex [227] and in photodissociation processes [228]. The

He–CaH(2Sþ) interaction was employed in the study of collisions at cold and ultracold
temperatures [231], and the He–NH(X3S2) potential was used in calculations on low
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temperature collisions in the presence of a magnetic field [232]. Further work is on

Cl(2P)–HCl [233] and its bound states [234]. Finally, we refer to the work on the diabatic

intermolecular potential and bound states of the H2–F(
2P) complex [235].

APPENDIX 37A: RELATIONSHIP BETWEEN DISPERSION AND EAB
MP2

Often dispersion energy is described as the interaction between mutually induced dipoles,

one on each atom. One can see this as a ‘correlation’ between two dipoles. It is not

obvious how this ‘correlation’ is related to Löwdin’s ‘beyond-Hartree–Fock-correlation’

[23]. In this appendix it is shown how the latter correlation and dispersion are

interrelated. Earlier this connection was shown [63] in a somewhat different manner.

The MP2 energy, the simplest correlation correction, is obtained from RS perturbation

theory with the perturbation

W ; H 2 F 2 kF 0lH 2 FlF 0l ðA1Þ
where the Slater determinant F 0 is the lowest eigenfunction of the Fock operator F ¼PN

k¼1 f ðkÞ with eigenvalue 2
PN=2

i¼1 e i: The Fock operator serves as the unperturbed

(zeroth-order) operator. Since the first order MP energy kF 0lW lF0l is obviously zero, the
lowest order MP energy appears in second order. We write the MP2 energy formula for a

supermolecule A–B with closed-shell monomers A and B. After application of the

Slater–Condon rules for the simplification of N-electron matrix elements and integrating

out spin, it becomes

EABMP2 ¼
X
i;j;a;b

kfið1Þfjð2Þlr2112 lfað1Þfbð2Þl

£ 2kfað1Þfbð2Þlr2112 lfið1Þfjð2Þl2 kfað1Þfbð2Þlr2112 lfjð1Þfið2Þl
e i þ e j 2 ea 2 eb

ðA2Þ

where fi and fj are occupied and fa and fb are virtual orbitals of the dimer A–B. We

consider the limit of this expression for R large enough that the differential overlap

between wave functions of A and B can be neglected. We recall that we can localize SCF

orbitals and write lrl and lrl for the occupied and virtual spatial orbitals localized on
A and lsl and lsl for the occupied and virtual orbital localized on B. These orbitals are
expressed in the dimer basis. The Fock operator is invariant under unitary localization of

the {fi}; i.e.

XðNAþNBÞ=2

i¼1
fið2Þ
D ��� 22P12

r12
fið2Þ
��� E

¼
XNA=2
r¼1

rð2Þ
D ��� 22P12

r12
rð2Þ
��� E

þ
XNB=2
s¼1

s ð2Þ
D ��� 22P12

r12
s ð2Þ
��� E

In general, the Fock operator is no longer diagonal when the orbitals {fi} are localized,

but we will show below that we can still use its eigenvalues, i.e. the dimer orbital energies

e i; which under specific conditions applicable here, become equal to the orbital energies
of monomers A and B.
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Let us consider two S-state atoms and the action of the dimer Fock operator on, for

instance, lr(1)l

fABð1Þlrð1Þl ¼ 2
1

2
72 2

ZA
rA1

þ
X
r

rð2Þ 22 P12
r12

���� ����rð2Þ� �24 35lrð1Þl
þ 2

ZB
rB1

þ
X
s

sð2Þ 22 P12
r12

���� ����sð2Þ� �" #
lrð1Þl ðA3Þ

Because of zero differential overlap the P12 contribution can be dropped in the second

term of Eq. (A3). The terms that remain in the second expression between large square

brackets cancel each other. This is because the electronic charge distribution Qð~rB2Þ ;
2
P
s lsð2Þl2 is spherically symmetric and screens completely the nucleus of B.
We will prove this intuitive statement and to that end we need the following two

expansions, dating back to the 19th century [78,79] (see for a modern version,

e.g. Appendix VI of Ref. [236]). Together they give the multipole expansion of 1/r12 (for

R . r)

1

l~R2 ~rl
¼

X1
l¼0

Xl
m¼2l

ð21ÞmY l
2mð~RÞSlmð~rÞ ðA4Þ

Slmð~r1 2 ~r2Þ ¼
Xl
L¼0

ð21ÞL
2l

2L

{ !1=2
½Sl2Lð~r1Þ^SLð~r2Þ	lm ðA5Þ

Here Y l
mð~RÞ ; Rl21Cl

mðR̂Þ is an irregular solid harmonic function and Slmð~rÞ ; rlCl
mðr̂Þ is

a regular solid harmonic function. The function Cl
mðr̂Þ is a spherical harmonic function

normalized to 4p=ð2lþ 1Þ (Racah normalization). The expression between square

brackets in Eq. (A5) is a Clebsch–Gordan coupled product. We write ~r12 ¼
2~rA1 þ ~RAB þ ~rB2; and find, assuming that l~RABl . l~rB2 2 ~rA1l

2
ZB
rB1

þ 2
X
s

s ð2Þh j 1
r12

sð2Þj i

¼ 2
ZB
rB1

þ 2
X
L;l;m

ð21ÞLþm
2l

2L

{ !1=2
Y l

2mð~RABÞ
X
s

½Sl2Lð~rA1Þ^kslSLð~rB2Þlsl	lm ðA6Þ

The expression kSLMl ; 2
P
s kslSLMð~rB2Þlsl is the Hartree–Fock expectation value of the

(L, M) multipole moment of the S-state atom B. When the charge distribution Qð~rB2Þ is
spherical symmetric around B kSLMl ¼ NBdL0dM0: Eq. (A6) becomes under this condition

2
ZB
rB1

þ NB
X
l;m

ð21ÞmY l
2mð~RABÞSlmð~rA1Þ ¼ 2

ZB
rB1

þ NB
rB1

The simplification of this result follows from Eq. (A4). Since for neutral atoms NB ¼ ZB
the second term of Eq. (A3) indeed vanishes. It follows that the dimer Fock operator,

when it acts on orbital lrl localized on monomer A, is equivalent to the atomic
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Fock operator of A

fABlrl ¼ fAlrl ðA7Þ
Under the conditions of our derivation, i.e. S-state atoms A and B with vanishing

differential overlap, we can show that the localized orbitals lrl and lsl are identical (apart
from mixing possibly degenerate orbitals) to the orbitals obtained by solving the

monomer Hartree–Fock equations (in the dimer basis)

fAlrl ¼ erlrl and f Blsl ¼ eslsl

These Fock equations yield solutions for A and B with corresponding charge distributions

that are spherically symmetric around A and B, respectively [i.e. the solutions span irreps

of SO(3)]. Hence the spherical symmetry of S-state atom A is not disturbed by the

presence of S-state atom B and vice versa, so that Eq. (A7) holds. Expand the solution of

A in dimer MOs lkl

lrl ¼
X
k

lklUkr with fABlkl ¼ eklkl

Then

erlrl ¼ er
X
k

lklUkr ¼ fABlrl ¼
X
k

eklklUkr

so that

erUkr ¼ ekUkr

If er – ek it follows that Ukr ¼ 0; so that, in general, lrl is a linear combination of
degenerate dimer orbitals lkl with orbital energy ek ¼ er: If there is no degeneracy, then
lrl is identical to lkl:
The same argument may be applied to the other localized dimer orbitals lrl; lsl and lsl:

In other words, we can solve the monomer HF equations in the dimer basis and get the

same orbital energies as from the solution of the dimer HF equations.

When we now replace the sums over the canonical orbitals by sums over localized

orbitals and the dimer orbital energies by monomer orbital energies in Eq. (A2), we

obtain

lim
R!1E

AB
MP2 ¼ EAMP2 þ EBMP2 þ 4

X
r;r;s;s

lkrð1Þsð2Þlr2112 lrð1Þsð2Þll2
er þ es 2 e r 2 e s

See Fig. 37.1 for a diagrammatic representation of this limit. The third term on the right-

hand side is the non-expanded ‘Hartree–Fock’ expression [59] for dispersion.

Incidentally, this equation shows that the MP2 method is size extensive. That is, when

the distance RAB between A and B is so large that the interaction term vanishes, the dimer

MP2 energy becomes the sum of the monomer MP2 energies. Although this statement

sounds obvious, it is not. The singles and doubles configuration interaction method forms

a counter example.
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The equivalence between the interaction energy from dimer MP2 calculations and the

simple expression for the dispersion interaction does not hold when the interacting

systems are molecules or non-S-state atoms. The second term of Eq. (A3) does not vanish

in that case, because of non-vanishing multipole moments contributing to the expansion

in Eq. (A6). Even for large distances R; where all differential overlap between A and B

vanishes and the dimer orbitals can be localized, these orbitals are not equal to the

unperturbed monomer orbitals. This is due to the polarization of each monomer, induced

by the multipole moments of the other monomer. This gives long-range electrostatic and

induction interactions, which thus are accounted for by the supermolecule HF method.

Conversely, for spherically symmetric systems the HF method does not give any

interaction at distances where differential overlap is negligible.
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physics, Academic Press, New York, 1970, pp. 41–97.

35 M. Karplus and H.J. Kolker, J. Chem. Phys., 41 (1966) 3955.

36 A. Dalgarno and G.A. Victor, Proc. Roy. Soc. (London), A291 (1966) 291.
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226 J. Kłos, G. Chałasiński, M.T. Berry, R. Bukowski and S.M. Cybulski, J. Chem. Phys., 112 (2000) 2195.

227 W.B. Zeimen, G.C. Groenenboom and A. van der Avoird, J. Chem. Phys., 119 (2003) 131.

228 W.B. Zeimen, G.C. Groenenboom and A. van der Avoird, J. Chem. Phys., 119 (2003) 141.

229 G.C. Groenenboom and N. Balakrishnan, J. Chem. Phys., 118 (2003) 7380.

230 H. Cybulski, R.V. Krems, H.R. Sadeghpour, A. Dalgarno, J. Kłos, G.C. Groenenboom, A. van der
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Abstract

Advances in density functional theory and its applications over the past four decades are

reviewed from the perspective of developers of the methodology and codes embodied in

the deMon software.

38.1 INTRODUCTION. FROM THE 1920s TO THE 1960s

One can consider that applied DFT goes back to the early 1930s when Dirac [1] and

Wigner and Seitz [2,3] treated the problem of the exchange potential in the Thomas–

Fermi atom [4–7], arriving at the expression for local exchange, proportional to the 1/3

power of the density. A few years later, Slater [8] proposed a model of spherically

symmetric atomic potentials embedded in a region of constant potential expanded in

plane waves, which was later called the augmented plane wave (APW) method for the

calculation of energy bands in solids.

After the long gap generated by World War II, a new route to applications was opened

by Slater’s 1951 paper [9], which introduced the idea of approximating the complicated

non-local Hartree–Fock exchange operator by an average local potential. Slater’s

derivation, which represents a generalization and extension of Wigner and Seitz, defined

the properties of the exchange charge density associated with an electron and used the

free-electron-gas model to approximate the exchange potential in terms of the local

electron density.

q 2005 Elsevier B.V. All rights reserved.
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The magnitude of Slater’s exchange term in the Hamiltonian was questioned three

years later by Gaspar [10] who, through a different derivation, obtained the same r1=3

form, but with a factor of 2/3. This new value was confirmed later by Kohn and Sham.

The factor under debate, then named a, was used later on as an atom-dependent

parameter [11] in the so-called Xa methodologies. The first among these was derived

from the original muffin-tin approximation of Slater [8] and generalized by Johnson [12,

13] to treat molecular clusters. The multiple scattering-Xa (MS-Xa) method, also known
as the Xa-Scattered Wave (Xa-SW) method is thus based on the local Hartree–Fock–

Slater (HFS) approximation, with eigensolutions obtained using the multiple-scattering

approximation. This was an important step as it represented one of the first attempts to

adapt a method of theoretical solid-state physics to the study of molecular systems.

From a more technical point of view the casting of the Hartree–Fock equations into

eigenvalue equations, the so-called Roothan–Hall equations [14,15], was of fundamental

importance for the future development of quantum chemical codes. The well-defined

structure of the mathematical problem allowed the use of early computational facilities.

Moreover, quantum chemistry codes could benefit directly from the fast growing

experience in the implementation of linear algebra methods. Boys introduced Gaussian

type orbital (GTO) functions for the calculation of molecular integrals [16]. With these

functions a general strategy for the calculation of molecular integrals could be developed.

In terms of GTO functions, all integrals for the Hartree–Fock energy calculation can

either be solved analytically or reduced to the incomplete gamma function. Thus, with the

introduction of GTOs the task of solving complicated multi-center molecular integrals

was reformulated into the problem of solving huge numbers of one-center Gaussian

integrals. This represented a considerable simplification and opened the door to more

systematic approaches. Soon it was realized that recurrence relations can be of great help

to treat the huge number of integrals efficiently. However, many years were still to come

before the first general integral algorithms for GTOs appeared on the scene. Over the

years the linear combination of Gaussian type orbitals (LCGTO) approximation became a

standard for ab initio Hartree–Fock methods.

On the other hand, modern density functional theory (DFT) started with the famous

1964 paper by Hohenberg and Kohn [17], followed by the method of implementation by

Kohn and Sham (KS) [18]. With these contributions, a new conceptual way of

approaching the many-body problem was opened. On the basis of a formally rigorous

theory, the electron density of any system was recognized as containing all the necessary

information to describe its ground state. In addition, the idea of mapping the exact density

of an interacting system to that of a non-interacting model, which is more easily solved,

provided an alternative to the conventional wave function approach. At this moment, the

so-called statistical methods like Thomas–Fermi, Thomas–Fermi–Dirac, etc. and the

KS method merged to open the new avenue of DFT. Thus, 1964 marks the introduction of

one of the most important concepts in KS theory: the exchange-correlation energy

functional, an unknown and universal quantity which contains all the information about

an electronic system. It is also worth mentioning that immediately after the presentation

of the HK theorems, several extensions appeared in the literature, like the finite

temperature extension of Mermin [19], that opened the door to the DFT description

of inhomogeneous fluids in classical statistical mechanics [20]. In relation to the basis
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sets mentioned in the previous paragraph, for first-principles DFT methods, the form of

the exchange-correlation potential resulted in integrals that could not be solved

analytically. Therefore, a much larger variety of basis functions was introduced in DFT

methods than in Hartree–Fock methods.

Thus, the 1960s was a very fruitful decade, with new concepts developed through the

HFS and KS approaches. Even if the first KS calculations, within the local density

approximation (LDA), appeared in this decade [21], it is only in the 1970s that the

systematic development of local correlation functionals as well as applications to a

growing number and variety of systems appeared.

38.2 THE 1970s

Even though both Hohenberg–Kohn and Kohn–Sham papers have been subsequently

recognized as extremely important for Chemistry, that recognition came late in the

community of theoretical chemists. Meanwhile, the MS-Xamethod received much more
attention. For example, in 1970, Johnson and Smith addressed polyatomic molecules

such as perchlorate and sulphate ions for the first time [13]. A landmark application of

MS-Xa was the first investigation by Johnson and Smith of the electronic structure of a

coordination compound, namely the permanganate ion [22]. The interest in the MS-Xa
method for calculating the electronic structure of transition metal complexes increased

rapidly and realistic results were soon obtained [23–25].

This was the starting point for a large range of MS-Xa applications, including valence
band and ESCA photoemission spectra of molecules [26–28], photoelectron spectra

[29–32], chemisorption and catalysis [24,33,34], geometrical and electronic structures of

metal clusters [35–37], metal dimers [38–40], inorganic species [41–46], and the

inclusion of relativistic corrections [47,48] for heavy elements. Further ambitious

investigations were devoted to the study of biosystems such as the ferrodoxin active site

[49] or porphine systems [50]. Finally, in the late 1970s Karplus and Case developed a

general formalism and performed the first one-electron property calculations using the

MS-Xa method [51]. Their contributions also constituted a basis for numerous further

publications of molecular properties such as hyperfine tensors [52].

Despite its great success in describing one-electron properties of molecules and solids,

the MS-Xa method was unreliable in the description of geometries, mainly due to the

muffin-tin approximation. The main contribution to further progress was the introduction

of LCAO functions, based on GTOs [53,54] or Slater type orbitals (STOs) [55]. Since

then, methodological developments have been possible, allowing the computation of

properties for large systems both Xa (HFS) and, later, DFT-based methods (for a review
of the use of GTOs with Xa or DFT models, see Ref. [56]). Charge density fitting,

introduced first by Baerends et al. [55] in the discrete variational method (DVM) [57],

allows one to reduce the N4 problem to N3, without losing accuracy. Sambe and Felton

[54] proposed to fit the exchange potential also using an entire set of auxiliary functions,

in addition to the charge density fitting. The contribution made by Dunlap et al. [58] in

improving the fitting procedure yielded more accurate total energies using finite basis

sets. In this approach, which has been used in all versions of the DFT program deMon,
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which has been developed in our groups, the self-interaction error of the Coulomb energy

from the density and an auxiliary function density is variationally minimized. The

variational nature of the fit ensures that only second order errors enter the energy

expression. Moreover, the approximate energy expression remains variational. There-

fore, analytic derivatives can be accurately calculated within this approach. Originally

introduced within the Xamethod, this approximation was taken over by many LCGTO–
DFT implementations. Many years later, the variational fitting was recast into the so-

called resolution of the identity by Almlöf and co-workers [59]. Based on this work the

variational fitting has today entered the Hartree–Fock-based methods, too. It is still a

very active research field. These technical aspects originally developed in LCAO-Xa
methods have been of great benefit for the later development of DFT codes.

It is interesting to note that, for many years, Xa was presented as an independent self-
contained method, and it is only in 1977 that the review of Connolly [26] proposed that it

should be viewed as an approximation to the ‘exact’ DFT.

In this decade, the formal development of DFT was also an active area of research. One

relevant work was the spin DFT extension of von Barth and Hedin, who also presented a

local functional [60]. An important contribution to chemistry in this decade came from

the Gordon and Kim approach to treat molecular interactions [61]. It was surprising, as

well as encouraging, that this non-variational theory where the kinetic and exchange-

correlation energy contributions were described by local density functionals provided

results that were very acceptable and computationally affordable. It was almost

immediately recognized that the HK universal energy functional was not free of formal

difficulties. The most significant was the v-representability problem that was solved by

Levy with his constrained-search approach [62]. As it was mentioned before, the roots of

DFT à la HK are in condensed matter physics; thus, it is not surprising that many of the

important contributions in the early 1970s came from this branch of Physics, such as the

presentation by Gunnarsson and Lundqvist of the adiabatic connection method for

obtaining the exchange-correlation energy functional of the KS method [63]. Parallel to

these developments in Solid-State Physics, the problem of evaluating the correlation

contribution to the energy was a very active field of research in Theoretical Chemistry.

Among the many works in this topic, the modelling of the second order radial distribution

by Colle and Salvetti deserves a special mention [64]. This work inspired several

researchers to propose new exchange-correlation energy functionals. The wave-vector

analysis of the exchange-correlation hole paved the way to the development of several

functionals [65]. Several local correlation functionals were proposed in the framework of

the KS equations for applications to solids [66,67]. Initiated by a calculation on H2 in

1976 [68], there has been a series of impressive Kohn–Sham–type density functional

calculations on molecules performed by Gunnarsson, Harris and Jones [69–75]. These

results showed that the KS-LDA method was able to describe molecular bonding

reasonably well, in contrast to the well-known non-bonding effects in the Thomas–Fermi

theory. The following decade brought improved descriptions of the exchange-correlation

energy functional [76,77] and, consequently, better results.

It is also pertinent to look a little bit outside the main stream of DFT development

and to review other developments in this period that were important for the development

of deMon. At the beginning of the 1970s non-linear optimization methods were already
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thoroughly investigated in applied mathematics. The broader availability of microcom-

puters inspired interest in numerical studies of such methods. As a result, iterative

optimization algorithms with considerably improved numerical stability were developed.

For future versions of deMon, and most other quantum chemistry programs, the

development of numerically stable quasi-Newton methods [78] was very important. The

most popular second derivative update, named after its authors BFGS [79–83], was

published in 1970. Most modern geometry optimizers in quantum chemical programs

rely on the BFGS update in order to avoid the explicit calculation of second derivatives

for the geometry optimization. At the same time, and most likely motivated by similar

reasons, Lebedev developed a two-dimensional Gauss-type quadrature scheme (Gauss–

Markov) for the unit sphere [84–88]. These grids exactly integrate real spherical

harmonics up to a maximum degree that is used to characterize them. Today, Lebedev

grids, as they are named now, are used in most DFT programs for the numerical

integration of the exchange-correlation energy and potential.

Also in the same time period, one sees the development of the first systematic

molecular integral algorithms for LCGTO approximations [89,90]. For the future deMon

development the introduction of Hermite–Gaussian functions as basis functions [91,92]

is certainly important, too. These early works inspired us much later to use atom-centered

Hermite–Gaussian functions for the expansion of the auxiliary density. This results in

short and, therefore, very efficient integral recurrence relations for the three-center

Coulomb integrals [93]. In the new version of deMon, Hermite–Gaussian functions are

also used for the expansion of the Cartesian Gaussian orbital basis. This part of our

integral algorithm is closely related to the original formulation of McMurchie and

Davidson [90]. However, a much earlier transformation to Cartesian Gaussian functions

is used. A good overview of the early systematic integral algorithms for Gaussian type

functions is provided by the 1983 review by Saunders [94].

38.3 THE 1980s

At the beginning of this decade, the Xa methods, i.e. without explicit correlation, were

still used in Chemistry. MS-Xa was used for the study of large systems, in particular for
magnetic properties [95–101], and LCAO-Xa (also called HFS) for electronic structure
investigations of small metallic systems [102–106]. A big improvement was reached

when the correlation energies of the spin-paired and spin-polarized uniform electron gas,

calculated accurately by Ceperley and Alder [76], were incorporated in the LDA

correlation functionals.

By the early 1980s, the first reviews on DFT appeared [107–110], underlining its great

potential for applications to atoms and molecules. Also the first publications about

analytic gradients for the Kohn–Sham method appeared in the literature [111,112]. This

clearly moved the Kohn–Sham method into the computational chemistry arena. Still it

took almost a decade more before stable geometry optimization with analytic gradients

[113] was available within the framework of the Kohn–Sham method.

During this decade, electronic structure calculations of metal dimers [114–117],

clusters [118–123] and organometallics [124–128] led perhaps to the largest success and
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progress beyond the traditional ab initio methods, over a broad range of molecular

studies. For the first time, the delicate balance between exchange and correlation effects

was proved to be responsible for previous failures in the quantitative treatments of

metal–metal bonds [114]. From this period, incorporation of explicit correlation in the

KS equations became more and more the standard. Despite the overestimation of binding

energies, LCAO-LSD calculations were able to provide good geometries, even for

metal–metal bonds [115], reasonable ionization potentials [129] and UV spectra

[130–132].

Hence, LCAO-LSD studies followed naturally the pioneering LCAO-Xa results for a

very large variety of molecular applications, including sufficiently large metallic systems

and taking into account, when necessary, relativistic and/or spin orbit corrections [133,

134]. Incorporation of model core potentials in LCGTO–LSD [135–137] allowed larger

metallic systems to be handled (including eventually relativistic effects in an

approximate, but very inexpensive, way) and thus further work was possible on

chemisorption models on metallic surfaces [138–141].

The 1980s also witnessed a continuous development of new exchange and correlation

functionals, incorporating the effects of the non-locality of the density. Indeed, quite

soon, it was recognized that the local exchange energy term was introducing a substantial

error in the total energy. The so-called generalized gradient approximation (GGA) model

of Perdew and Wang [142] initiated a long series of gradient corrected functionals, which

led to much more accurate energetic properties. The introduction in this later work of the

enhancement function that measures the deviations from the electron gas behavior

deserves special mention. Plots of these enhancement functions with respect to the

exchange dimensionless scale length, allowed a classification of the exchange energy

functionals into three categories. First, those that did not fulfill the Lieb–Oxford bound,

like Becke [143], second, those that approached this bound asymptotically, like the

family later introduced by Perdew et al. [144], and finally, those that either go to zero or

to a value smaller than the Lieb–Oxford bound for large density gradients. To this latter

class belongs one of the most commonly used exchange functional in deMon, Perdew86

[142]. The implementation in deMon of this energy functionals uses a cut off for large

gradients that makes this functional different from the original one [145].

At the end of the 1970s and the beginning of the 1980s attempts to go beyond the LDA

were made through the gradient expansion approximation (GEA). The divergence of the

functional derivative of the exchange-correlation energy functional was a serious

problem. It was necessary to wait until the GGA made its appearance to have an

exchange-correlation functional that was really incorporating the inhomogeneities of the

electron density. The real-space analysis of the exchange-correlation hole [146] provided

working functionals that satisfy many known conditions. Along this line it is important to

note that the functional developed by Perdew et al. [147], that is commonly known as

PW91, is the GGA functional that satisfies the most conditions. A very important step in

our understanding of the exchange-correlation contribution to the energy was made with

the series of works published mainly by the New Orleans school, led by Levy and

Perdew. In a series of very important papers, these authors presented rigorous scaling

and virial conditions that the exact exchange and correlation energy functionals have to
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satisfy [148–151]. The discovery of these conditions was used in the development of new

functionals.

The view at the end of the 1980s was very optimistic. The formation energies reported

by Becke with his functional and his basis-set-free program, NuMol, showed that the

GGAs were in reality capable of providing results with chemical accuracy. It is

commonly said that it was these results that turned the heads of many theoretical chemists

to DFT. In the mean time, the North Carolina team, led by Robert Parr made many

important contributions to the application of DFT to chemical problems. He focused his

attention on using DFT to justify and explain the origin of many chemical concepts,

opening what is now sometimes misleadingly called conceptual DFT. Parr’s group also

contributed to the practical use of DFT in chemistry with the development of the

correlation functional known as LYP that used an analysis of the radial distribution

function together with the local thermodynamics approach to model the pair distribution

function. To the surprise of some people, and the delight of others, the combination of the

GGA from Becke for the exchange and LYP for the correlation, that produces the very

well known BLYP method, provided atomization energies that were in very good

agreement with the experimental values. The first implementations of the GGA were not

self-consistent. The SCF was done within the local approximation and then,

perturbatively, the gradient corrections were incorporated to the total energy. In the

early 1990s full self-consistency was implemented in several codes, deMon amongst

them [145]. The results obtained with the GGAs were certainly encouraging. The

achievement of chemical accuracy together with the low computational cost compared

with conventional wave function methods that produce the same thermodynamic

accuracy was a strong motivation to establish the limits of applicability of these

methodologies. Actually, quantitative comparisons will appear in the next decades, after

Becke’s proposals of the ‘half-and-half’[152] and the B3LYP hybrid schemes [153].

Finally, in 1985, the technique introduced by Car and Parrinello [154] to minimize

simultaneously the electronic and nuclear coordinates, together with the use of a plane

wave basis, has been at the origin of the explosion of applications in material sciences in

the next decades.

Important developments for the LCGTO–DFT methods using auxiliary functions for

the fitting of the Coulomb potential during the 1980s were the introduction of (Cartesian)

auxiliary function sets with shared exponents [155,136]. With this technique, the

computational effort for the calculation of the three-center Coulomb integrals was

considerably reduced [156]. In the now increasing number of calculations with LCGTO–

DFT type methods using auxiliary functions, self-consistent field (SCF) convergence

problems frequently appeared [157]. It took some time before it was realized that the

variational fitting of the Coulomb potential not only reduces the scaling of the integral

calculation but also influences the SCF procedure.

The 1980s also saw an impressive revival of integral algorithm development for the

LCGTO approximation. It was initialized by the work of Obara and Saika in 1986 [158].

In fact, the first deMon and DGAUSS versions had explicit integral routines for different

shell combinations based on the Obara–Saika algorithm. Even though these routines

were quite fast, they were later substituted by recurrence relations in order to allow higher

Applied density functional theory and the deMon codes 1964–2004 1085

References pp. 1092–1097



angular momentum basis and auxiliary functions. The early deMon versions were

restricted to d type orbitals and auxiliary functions only.

Another important technical contribution to the development of LCGTO–DFT

programs was the introduction of the so-called fuzzy Voronoi polyhedra for the

calculation of atomic weights in the numerical integration by Becke [159]. Due to its

complicated form, the exchange-correlation potential integrals cannot be solved

analytically. Therefore, numerical integration schemes are necessary. This was a large

technical drawback for early LCGTO–DFT implementations. The numerical integration

scheme of Becke solved this problem in a way that was easy to implement. Based on this

scheme, very efficient numerical integrators were developed within a decade. Today, the

numerical integration of the exchange-correlation potential is a minor problem in

LCGTO–DFT codes. Nevertheless, the accuracy of this integration is still a matter of

discussion [160,161].

An important technical development for the geometry optimization and transition state

search was the investigation of the Levenberg–Marquard algorithm [162,163] by

Banerjee et al. [164]. In this work the authors proposed theoretically well-founded step

size selections for quasi-Newton methods, a problem particularly important for the

transition state search. The algorithm was recast by Baker [165] substituting the quadratic

Taylor series expansion by a Pade expansion. The resulting algorithm has entered the

literature as (partitioned) rational function optimization (P)-RFO. It is the basic algorithm

for the step selection in the geometry optimization and transition state search in the

current version of deMon. It has proven very stable, even for large scale optimizations

involving hundreds of atoms.

The intense efforts of the DFT community during the 1980s, both in numerical and

methodological improvements allowed the development of more sophisticated programs,

which, in some cases, became available in the early 1990s.

38.4 THE 1990s

The first DFT codes appearing in 1990 were DMOL [166,167] and deMon [168,169],

followed by DGAUSS [170–172] in 1991, ADF [173,174] and Gaussian [175] in 1992.

The deMon code was originally published as a new LCGTO–MCP code, based on the

same solution of the KS equations as in previous work [54,56], incorporating MCPs,

[135–137], as well as a new algorithm for geometry optimization. This algorithm, called

hybrid, adopted the Car–Parrinello approach of minimizing simultaneously the orbitals

and the nuclear coordinates, but adding a few SCF iterations at each geometry to keep the

system close to the Born–Oppenheimer surface. It turned out that this approach was not

competitive to the traditional quasi-Newton optimizer that was also included in deMon.

As already mentioned, the first version of deMon had explicit integral routines for the

three-center Coulomb integrals. The geometry optimization worked already with analytic

gradients introduced by Fournier et al. [113]. Local and gradient corrected functionals

were available. Shortly after its appearance, the original deMon code was substantially

modified for commercialization by BIOSYM Technologies. The beta release of this

version appeared in 1993. It inspired the deMon-KS1 [176] series of programs developed
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in Montreal until 1997. In combination with DFT-optimized basis sets and auxiliary

functions [177] this deMon version was used for a large number of applications on small

systems with up to 20 atoms. It also served as a basis for the implementation of property

calculations within the Kohn–Sham method, including the calculation of NMR shielding

tensors and spin–spin coupling constants [178–184], EPR parameters [185–187], nuc-

lear quadrupole coupling constants [188], simulation of photoelectron [189–192], IR,

andRaman spectra [193–195], and the calculation ofmolecular polarizabilities [196,197].

For visualization, interfaces to MOLDEN [198], MOLEKEL [199], and VU [200] were

implemented. The topological analysis of molecular fields, primarily the molecular

electrostatic potential and the density, was also realized with this deMon version [201].

At the same time, the original deMon version was further developed in Montpellier and

in Stockholm. Larger independent developments included the implementation of the

orbital symmetry analysis and the calculation of X-ray spectra [202,203]. Both of these

developments were first independent from the Montreal version. In 1997, they merged to

the deMon-KS3 [176,202–204] series of programs. The improved implementation in

deMon-KS3 allowed calculations of systems with roughly 50 atoms. This version

allowed, already in the early 1990s, the study of a broad range of properties. Applications

of DFT in various domains of chemistry were thus performed, with particular interests in

NMR and EPR properties of bioorganic molecules [205,206], materials [183], transition

metal compounds [207–210], transition metal clusters, naked or interacting with small

molecules [138,139,141,211–227], Mössbauer [228], and ZEKE [229] spectroscopies,

optical properties with TD–DFT [192,230–232], and reactivity [233,234].

In the exchange-correlation functional development arena in this decade it is worth

mentioning the detailed analysis of the relation between the exchange functional and the

kinetic energy functional that was presented by Roy Gordon [235,236].

Since the 1970s it was very well known that the LSDA or GEA energy functionals did

not contain the van der Waals contribution. The underbinding of the local and gradient

corrected energy functionals when applied to the description of rare gas interactions was

well known. But, their behavior in other weak bonding situations was unknown. Thus,

establishing the limits of applicability was a very important issue. In the first half of the

1990s deMon was used to test these functionals in the description of hydrogen bonding

[237] and charge transfer complexes [238,239]. In the first case, two intermolecular and

two intramolecular hydrogen-bonded systems were tested, including the basis set

superposition error using the counterpoise method. LDA was found to be seriously

deficient, and the non-local corrections provided an encouraging improvement. For the

charge transfer complexes the set of electron donor–acceptor systems, formed from

ethylene or ammonia interacting with a halogen molecule (C2H4…X2, NH3…X2; X ¼ F,

Cl, Br, and I) were tested. Similar to the hydrogen-bonded systems, it was found that the

LDA provides a strong overestimation of the intermolecular interaction. The GGA

moved the results in the right direction but not nearly enough; large errors remain. Hybrid

functionals were tested, and it was found that the parameters related to the intermolecular

interaction for the so-called half-and-half potential are in very good agreement with those

obtained through second-order Moller–Plesset calculations and with available

experimental data. Interestingly, the widely used and well-known three-parameter

B3LYP functional does not perform well; the hybrid methods are not a panacea.
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These contributions showed that DFT has to be used with caution when the system under

study has important weak inter or intra molecular bonds. During this decade it became

clear that it was necessary to go beyond the GGA. In deMon this was done with the LAP

[240–244] and t functionals [245] in which the correlation functional was derived from

an explicit integration over the coupling constant in the adiabatic connection approach.

Independent of the deMon development, the AllChem project [246] was started in

Hannover in 1995. The main aims of this project were the development of recursive

integral routines for the three-center Coulomb integrals [156,93], a stable and efficient

numerical integrator for the exchange-correlation potential [247] and an improvement in

the SCF convergence behavior of LCGTO–DFT programs using the variational

approximation of the Coulomb potential. The recursive integral algorithm developed for

AllChem was based on the PRISM algorithm of Pople and co-workers [248,249] and took

into account the special structure of the auxiliary function sets used in deMon. For the

calculation of the incomplete gamma function an algorithm that ensures close to machine

precision (16 decimals) was implemented [250]. The main focus in the development of

AllChem was numerical stability in order to avoid noise in the SCF procedure. This was

believed to be one of the main reasons for the SCF convergence problems of previous

deMon versions. With the same aim an adaptive numerical integrator for the exchange-

correlation potential was developed. It was motivated by the work of Perez–Jorda

et al. [251]. However, the radial integration was excluded from the adaptive grid

construction. This was the key to success in obtaining an efficient and reliable adaptive

numerical integrator. Very recently, the adaptive radial integration has again attracted

attention [252,253]. The abscissas and weights of the Lebedev grids were recalculated

using quadruple precision [250]. The stability of this integrator was extensively tested in

numerically sensitive hyperpolarizability calculations [254,255]. In this calculation, it

was shown that the adaptive grid automatically adapts to basis sets. For the generated

number of grid points this effect can be large. The adaptive grid has also been used for the

geometry optimization and frequency analysis. For these calculations, weight derivatives

[256] are implemented in deMon. However, our experience has shown that these

derivatives are only important if very small adaptive grids are generated. This is different

from recent studies with fixed grids [161]. Because very small adaptive grids are not

reliable, weight derivatives are not used in the standard setting for the numerical

integration in deMon. Nevertheless, they can be activated by a grid keyword option.

Despite these efforts to improve the numerical stability of the LCGTO–DFT

implementation, only little improvement was seen in the SCF convergence behavior. A

major breakthrough for the solution of this problem was the recasting of the SCF

procedure into a MinMax problem if the variational fitting of the Coulomb potential is

used [257]. Based on this approach efficient convergence accelerators were developed

and implemented, first in AllChem and later in new deMon versions. To improve the SCF

convergence, a GTO-based DFT tight-binding approach [258] has been implemented in

deMon for the generation of start densities. The advantage of this start density generator

is that it adapts to the basis set and does not involve any parameterization. Therefore, it

can be used for all elements of the periodic table. Very recently, it has been extended

for the use of effective core potentials.
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38.5 THE 2000s

In March 2000, the first deMon Developers meeting was held in Ottawa. At this meeting

the deMon and AllChem developers agreed to merge their codes in order to keep a Tower

of Babel from propagating. As a result, the new code deMon2K couples the deMon

functionality with the stable and efficient integral and SCF part from AllChem. Besides

the merging of the two codes the new deMon version possesses improved integral

recurrence relations [93], also for effective core potential and model core potential

integrals, as well as an improved numerical integration scheme [259]. The main

difference to the adaptive integrator of AllChem is the grid generating function. In

AllChem the diagonal elements of the overlap matrix were used as the grid generating

function. Because the convergence of the numerical integration is directly related to the

absolute value of the corresponding quantity this approach ensured the convergence of

the full overlap matrix and, therefore, the convergence of the numerical integration of the

electron density. From the experiences with this approach we learned that the reliable

numerical integration of the electron density is not sufficient for the reliable numerical

integration of the exchange-correlation potential matrix. Therefore, in deMon2K the

diagonal elements of the exchange-correlation potential matrix are used as the grid

generating function. Because a density is needed for the calculation of these elements, the

adaptive grid is generated twice in deMon2K. First, it is generated with the start density

and after the convergence of this SCF the grid is rebuilt using the converged SCF density.

With this grid the energy is then converged again. This usually takes only three or four

SCF cycles. Because the grid generation is very fast this step does not slow down the

overall performance of the program.

Besides the implementation of a new grid generating function, the adaptive grid in

deMon2K also works with a new cell function that can be screened for large molecules. It

has been noticed in the literature [260] that the calculation of the cell function according

to Becke [159] scales cubically with respect to the number of atoms. Already for systems

with a few hundred atoms this step can become dominant in the calculation. By

introducing a cell function that can be screened, this problem is avoided. This also opens

the door for a direct grid generation step that would avoid the use of a grid tape. Work in

this direction is currently under way in our laboratory.

Due to the introduction of Hermite–Gaussian auxiliary functions, asymptotic

expansion for the three-center Coulomb integrals could be derived [93]. With this

expansion the calculation of the three-center Coulomb integrals scales nearly linearly. By

using the approximated density for the calculation of the exchange-correlation energy

and potential [261] a very fast construction of the Kohn–Sham matrix is obtained.

Therefore, for systems with more than 3000 basis functions, the linear algebra part of the

program becomes dominant. In combination with the MinMax SCF procedure, molecules

with several thousand basis functions can be routinely calculated. For the optimization of

these systems delocalized internal coordinates [262–264] have been implemented in the

new deMon2K version. The optimization of systems with several hundred atoms is now

feasible. In fact, the previous time bottleneck has now been shifted to a memory

bottleneck. In Fig. 38.1 the requested RAM size for some benchmark systems is depicted.

As this figure shows, a system with 5000–6000 basis functions can still be calculated
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on a 32-bit architecture because the RAM request is less than 2 GB. For larger systems,

like the depicted double unit cell of the ZSM-5 zeolite in the upper right corner, a 64-bit

architecture is required. This system possesses around 11,000 basis functions and more

than 700 atoms.

The improved performance of the new deMon2K version is also very useful for Born–

Oppenheimer molecular dynamics (BOMD) simulations. This technique was already

introduced into deMon-KS1 in the 1990s [265–268]. However, due to the computational

limitations of this early deMon version only small systems could be treated. With the new

deMon version BOMD simulations may be performed for systems with 50–100 atoms

over several picoseconds [269]. With the incorporation of a QM/MM embedding scheme

[270,271] the first step towards multi-scale modeling has been performed in deMon2K.

The improved numerical stability of the new deMon2K version also opened the

possibility for accurate harmonic Franck–Condon factor calculations. Based on the

combination of such calculations with experimental data from pulsed-field ionization

zero-electron-kinetic energy (PFI-ZEKE) photoelectron spectroscopy, the ground state

structure of V3 could be determined [272]. Very recently, this work has been extended to

the simulation of vibrationally resolved negative ion photoelectron spectra [273]. In both

works the use of newly developed basis sets for gradient corrected functionals was the

key to success for the ground state structure determination. These basis sets have now

been developed for all 3d transition metal elements. With the simulation of vibrationally

resolved photoelectron spectra of small transition metal clusters reliable structure and

Fig. 38.1. Core memory allocation of deMon for SCF calculations with 1000 up to more than 11,000 basis

functions.
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electronic state predictions become possible. This work nicely demonstrates how closely

applied DFT and experiment can come together.

38.6 RÉSUMÉ

In this review we tried to follow the development of applied DFT over the last 40 years

from the perspective of those involved in developing the deMon suite of LCGTO–DFT

programs and their underlying methodologies. Modern DFT programs are based on the

fundamental work of Hohenberg and Kohn that provides a solid theoretical foundation.

However, many technical developments originally proposed within the Xa methodology
have found their way into these programs, too. With the introduction of LCGTO DFT

programs, a bridge between the Hartree–Fock and DFT worlds was built. Both worlds

have profited considerably from each other. This process is still under way.

The application of DFT methods in chemistry was for a long time, exotic. The Xa
method occupied this space for some years. The situation changed rapidly with the

introduction of LCAO DFT methods. The possibility of structure optimization brought

these methods into mainstream computational chemistry. The late 1980s and early 1990s

saw the consolidation of DFT methods in Chemistry. Today, they serve as standard tools

for most computational chemists.

The development of deMon also demonstrates how different areas impact each other.

The wide availability of more and more powerful microcomputers also triggers

continuous software development. This is also true for scientific software development.

The deMon Developers come from diverse backgrounds and from all parts of the world.

They have come together in a loose cooperative consortium that, in our view, represents a

situation where the whole is very much greater than the sum of its parts. While the present

authors are responsible for errors or omissions in this small review, the credit for the

advances is shared with a much wider group cited in the references here and elsewhere.

We predict a bright and rich future not only for this group, but for applied DFT in general.
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263 Ö. Farkas and H.B. Schlegel, J. Chem. Phys., 111 (1999) 10806.
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Abstract

This chapter gives a brief review of the SAC–CI (Symmetry-Adapted Cluster–

Configuration Interaction) method applied to molecular spectroscopy. The SAC–CI

method was proposed in 1978 as an accurate electronic-structure theory for the ground,

excited, ionized, electron-attached, and high-spin states of atoms and molecules. Since

then, it has been successfully applied to various chemistries including more than 150

molecules and established to be a useful method for studying chemistry and physics

involving various electronic states. The topics covered in this review are electronic

excitation spectra, ionization spectra, collision-induced absorption processes, photo-

chemical reactions, inner-shell ionizations, equilibrium geometries of excited states, and

ESR hyperfine splitting constants of radicals. The applied systems are organic and

inorganic compounds, van der Waals complexes, transition metal complexes, phthalo-

cyanines, and the bacterial photosynthetic reaction center. These results show the

reliability and applicability of the SAC–CI method for studying molecular spectroscopy.

39.1 INTRODUCTION

Electronic excitation and ionization spectra have been widely used in various fields of

molecular sciences and technologies. These spectroscopies provide useful information

about the electronic structures of molecules. The electronic spectrum is sometimes

called as molecular finger print and used for identification of molecules. The electronic-

structure theory is necessary to understand and identify the electronic states involved
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in the spectra. Without the help of the reliable theories, it is sometimes very difficult to

analyze and understand complex spectra of molecules.

Theoretical studies of the molecular excited states were extensively advanced by

Buenker and Peyerimhoff [1,2] from the end of 1960s. Many pioneering works were done

by their multireference-configuration interaction (MR-CI) method. A different approach

for describing excited and ionized states was proposed by one of the present authors in

1978 as SAC–CI (Symmetry Adapted Cluster–Configuration Interaction) method [3–5]

based on the SAC description of the ground state [6,7]. Fig. 39.1 shows an overview of

the current SAC–CI program. The SAC–CI method is based on the cluster expansion

approach and is an accurate electronic-structure theory for ground, excited, ionized and

electron-attached states of molecules. This method has been developed mainly by the

Nakatsuji laboratory, both in theories and algorithms, and has been successfully applied

to various chemical phenomena involving more than 150 molecules. The energy gradient

method has also implemented and therefore, we can calculate the energy gradient (force)

acting on nuclei for all of these electronic states. We can study molecular structures and

chemical reaction dynamics involving these different electronic states.

The SAC–CI method has been applied to a wide variety of chemistry; electronic

excitation spectroscopy of valence, Rydberg and inner-core states, ionization (photo-

electron) spectroscopy in outer-valence, inner-valence and core regions, molecular

spectroscopies including multi-electron processes, molecular structure and spectroscopic

constants in the excited states, electronic structures of adsorbates, catalytic reactions and

surface sciences, photochemical reaction dynamics, biological photochemistry and

electron transfer, atmospheric chemistry, molecular interactions, and ESR hyperfine

splitting constants [8,9]. The size of the applied system ranges from small atoms and

molecules to biologically important systems composed of more than hundred atoms.

Through these applications, the SAC–CI method has been established to be a reliable

method for studying the electronic structure of atoms and molecules in their ground,

excited, ionized and electron-attached states.

SAC/SAC-CI program
Accurate correlation theory for ground and excited states

(H. Nakatsuji, 1978)
SAC singlet closed-shell state (ground state)

singlet excited states
triplet ground & excited states
ionized states (doublet ground & excited states)
electron-attached states

(doublet ground & excited states)
quartet to septet ground & excited states

SAC-CI

Energy Gradient (Force acting on nuclei)
Dynamics involving ground and excited states

Subject: Chemistry and Physics involving these states

Fig. 39.1. Overview of the current SAC–CI program system.

Chapter 391100



Historically, the SAC–CI method was published in 1978 as a theory for calculating

the wave functions of excited states, ionized states and electron-attached states. Since

then, the SAC–CI method has been applied to the calculations of the excited and ionized

states of various molecules and has been established as a reliable useful theory. In the

calculations of properties with the coupled-cluster (CC) method, Monkhorst [10] gave a

linear response formulation of the excitation energy from a consideration of the poles

of the dynamic polarizability, a property of the ground state, but the wave functions

of the excited states were not explicitly formulated. Mukherjee [11] gave a more

extensive formulation of the coupled cluster linear response theory (CC-LRT). Hirao

derived the CC-LRT equation starting from the SAC–CI theory [12]. The applications of

the CC-LRT theories were not done before Koch, Jorgensen and others reformulated it

and applied to some molecular systems [13,14]. The equation of motion coupled cluster

(EOM-CC) method published around 1989 [15,16] was essentially equivalent to the

SAC–CI method: the basic theories were identical and the differences were only in

the way of approximations in actual calculations. Thus, the SAC–CI theory gives the

identical numerical results with the CC-LRT and EOM-CC theories when the same

approximations are done [17].

Recently, the time-dependent density functional theory (TD-DFT) [18,19] has been

developed based on the DFT [20–22]. Although the TDDFT has been successfully

applied to many systems, it is also generally recognized that there are serious problems

in describing van der Waals interactions [23,24], Rydberg states[25,26] and charge-

transfer excitations[27]. These problems originate from the semi-empirical nature of the

functionals and there is no way to improve the results when the method turns out to be

inappropriate. In this sense, DFT/TDDFT is not an exact theory. On the other hand,

the SAC/SAC–CI theoretical framework is exact, and there is a unique way to make

the results converge to the full-CI limit. Therefore, the underlying physics of the

approximations, such as the truncation of the excitation operators at some level, is very

clear: if it does not work, one can simply improve the results by including higher-order

excitation operators, as we do for example in the SAC–CI general-R formalism.

Recently, our research group has collaborated with Gaussian Inc. for incorporating our

SAC–CI program system into the Gaussian program package. In Gaussian98 [28], the

ab initiomethods for the excited stateswere limited to the CI singles andCASSCF, although

thereweremany reliablemethods for describing the ground-state electronic structures. In the

spring of 2003, the SAC–CI program systemwas incorporated into theGaussian03 program

package [29] and distributed worldwide. With this program, we can calculate the electronic

structures and energy gradients of the ground and excited states of singlet to septet spin

multiplicities of both one-electron and multi-electron excitation natures.

In this review, we explain the SAC–CI applications to molecular spectroscopy

with some examples. In Section 2, we briefly explain the theoretical and computational

aspects of the SAC–CI method. Then, we show some SAC–CI applications to

molecular spectroscopy; the excitation and ionization spectra of p-conjugated organic
molecules (Section 3), collision-induced absorption spectra of van der Waals complex

(Section 4), excitation spectra and NMR chemical shifts of transition metal complexes

(Section 5), photofragmentation reaction of Ni(CO)4 (Section 6), absorption spectrum

of free-base phthalocyanine (FBPc) and bacterial photosynthetic reaction center
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(Section 7), inner-shell ionization spectra (Section 8), geometries of the molecular

excited states (Section 9), and ESR hyperfine splitting constants (Section 10).

39.2 SAC–CI METHOD

In this section, we briefly explain the SAC–CI theory and its computational algorithms.

For detailed descriptions, we refer to the original papers [3–7] and the earlier review

articles [8,9].

The SAC theory [6,7] is based on the cluster expansion approach. The excitation

operators included are spin-symmetry and space-symmetry adapted. Therefore, the SAC

method calculates a pure spin state and is free from the spin-contamination

problem that may appear in the CC method [30,31]. The SAC method is size-

consistent, which means the method can be applicable to large systems. When we apply

the variational principle to the SAC wave function, we obtain the variational SAC

equation, which is just the generalized-Brillouin theorem. This theorem implies the

following important possibility. Based on the SAC wave function, we can define a set of

basis functions for describing the excited states; this basis function satisfies

orthogonality and Hamiltonian orthogonality to the ground state SAC wave function.

Therefore, the excited state wave function can be expanded by a linear combination of

these basis functions, which is the SAC–CI theory [3–5]. It is evident that the SAC–CI

wave function satisfies the orthogonality and Hamiltonian-orthogonality to the ground

state. Because of this theoretical foundation, the SAC–CI method performs quite well

for both ground and excited states, which is confirmed by comparing the SAC–CI

results with the full-CI ones [32] and also by applying to numerous examples [8,9].

Another important property of the SAC–CI method is that we can study various

electronic states in the same accuracy. This property is very difficult to realize with the

independent theories for the ground and excited states.

The SAC and SAC–CI theories are the exact theories and the excitation operators R

can be included up to the exact limit. For the practical calculations, there are two

standards with respect to the R-operators. For calculating one-electron excitation and

ionization processes, it is sufficient to include singles and doubles linked excitation

operators in the SAC and SAC–CI wave functions (SAC–CI SD-R methods). On the

other hand, for describing many-electron processes like shake-up ionizations, we include

general excitation operators in the SAC–CI linked operators, which is the general-R

method [33–36]. This approach has been successfully applied to the valence ionization

spectra with satellites, molecular structure of multi-electron processes, and the excited

states of open-shell systems [17]. Further, the R-operators of the SAC–CI wave function

can be defined for arbitrary spin-multiplicity. In the original papers [3–5], the SAC–CI

method was performed for singlet, triplet, cation doublet, and anion doublet states. Later,

the high-spin states up to septet spin multiplicity were implemented [37].

In many aspects of molecular chemistry and physics, the energy gradient of the

potential energy surface (the force acting on the nucleus) is a very useful quantity.

We formulated the analytical energy gradients of the SAC–CI method, not only for the

SD-R method [38,39] but also for the general-R method [40,41] and not only for
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ground, excited, ionized and electron-attached states of singlet to triplet multiplicities

but also for high-spin multiplicities of up to septet spin-multiplicities [42]. With these

developments, the SAC–CI method can be applicable to the calculations of molecular

geometries and reaction dynamics in the excited states of various spin multiplicity and

the high-energy states.

The computational program code of the SAC–CI method was first completed in 1978

[4,5] and published in 1985 (SAC85) [43]. Our targets of interest have been chemically

or physically interesting molecules that were often large for the SAC–CI method if no

approximation was adopted in the computations. Actually, in the SAC–CI program,

the perturbation-selection algorithm for the double-excitation operators was adopted to

apply the method to larger systems [44]. The linked doubles operators can be effectively

selected in the SAC and SAC–CI wave functions by evaluating the second-order

perturbation energy to the reference states. This method reduces the number of doubles

without losing much accuracy. Owing to these advantages, the SAC–CI method has been

successfully applied to larger systems such as porphyrin systems. In the Gaussian03

program, we prepared three levels of energy thresholds: LevelOne, LevelTwo, and

LevelThree. LevelThree (default) uses (1 £ 1026 au, 1 £ 1027 au) for (ground, excited)

states. LevelTwo and LevelOne are defined as (5 £ 1026 au, 5 £ 1027 au) and (1 £ 1025

au, 1 £ 1026 au), respectively. LevelThree calculation is most accurate of the three and

used in the default condition. Calculations with the lower levels are more approximate,

but computationally easier to apply the SAC–CI method to larger systems. We generally

observed that the relative energies among the excited states were rather insensitive

among these three threshold sets.

When we calculate potential energy surface, the perturbation selection causes a

problem: the perturbation selection at different coordinate space may lead to a small

discontinuity of the potential and its gradient. To perform geometry optimizations with

this perturbation selection of operators, we developed the GSUM method [45] and the

Minimum Orbital-Deformation (MOD) method [46,47]. The GSUM method takes a

group sum of the selected operators within the manifold of the geometries under

investigation. First, we select several representative points in the nuclear configuration

space which covers the potential energy surface under consideration. At each geometry,

the ordinary perturbation selection is performed to determine the linked and unlinked

operators [44]. Next, the Group SUM (GSUM) of the selected operators is taken for all

the geometries and used in the SAC/SAC–CI calculations to calculate the potential

energy and the related properties within the energy surface first designed. This method is

useful to study the potential energy curves and the related properties of many electronic

states in a wide range of configuration space [45].

The perturbation selection breaks the invariance of the SAC/SAC–CI energies on the

unitary transformation of orbitals among the occupied and/or unoccupied manifolds.

This is the source of the discontinuity in the potential energy surface, if the external

perturbation induces a large (sudden) mixing of orbitals within the occupied and

unoccupied orbitals. Suppose a deformation of benzene from the D6h geometry to less

symmetric one, the degenerate set of orbitals in occupied or unoccupied manifold

makes a sudden (discontinuous) deformation of MOs (see Ref. [44] for some details].

The MOD method [46] can solve this problem that may occur in the optimization
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process with respect to the external parameters. This method minimizes the deformation

of the MOs induced by the perturbation at the neighborhood of the geometry under

consideration. The perturbation dependence of the unitary transformation among MOs

is attributed to Tx; the anti-symmetric part of the CPHF coefficients [46]. Therefore, it is
required that the matrix elements between any real occupied [unoccupied] MOs Tx

ij½Tx
ab	

vanish.

Tx
ij ¼ Ux

ij 2 Ux
ji ¼ 0 ð1Þ

The matrix Ux is the so-called CPHF coefficients at the given geometry x and satisfies

Ux ¼ CTS
dC

dx
; or

dC

dx
¼ CUx ð2Þ

The matrices C and S denote the MO coefficient and overlap, respectively. Next, we

introduce ‘displaced’ overlap matrix defined by

Mx0 ¼ Cx0TSx0C ð3Þ
where x0 denotes the reference geometry. During the geometry optimization, we assume

that the coordinate x is restricted within the neighborhood of the reference coordinate

and the Taylor series of the MO coefficient C converges well to the first-order in the

nuclear displacement, x2 x0: This would lead to an approximate equation

Mx0 ¼ 1þ ðx2 x0ÞUx ð4Þ
Inserting Eq.(4) to Eq.(1) yields

0 ¼ Tx ¼ Ux 2 ðUxÞT ¼ ðx2 x0Þ21ðMx0 2 ðMx0 ÞT Þ ð5Þ
Hence, a condition

ðMx0 2 ðMx0 ÞT Þ ¼ 0 ð6Þ
diminishes the unphysical orbital rotations. The MO ci satisfying Eq. (6) is obtained by
the orthogonal transformations of the canonical MOs { ~ci} as

cj ¼
X
i

~ciW
x0
ij ð7Þ

where the transformation Wx0 leading to a MOD is given by

Wx0 ¼ {ð ~Mx0 ÞT ~Mx0}2ð1=2Þð ~Mx0 ÞT ð8Þ
and

~Mx0 ¼ ðCx0ÞTSx0 ~C ð9Þ
where ~C stands for the orbital coefficient matrix for the canonical MOs. The displaced

overlap matrix ~Mx0 is asymmetric and the transformation (8) rotates the canonical

orbitals ~ci so as to make one-to-one correspondence to the reference MOs.
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The expression of the energy gradient can be written in a general form as

›Ecorr
›a

¼
X
pq

gpqF
a
pq þ

X
pq;rs

Gpq;rsðpqlrsÞa 2
X
pq

XpqS
a
pq þ

X
p.q

ðXpq 2 XqpÞTapq ð10Þ

where gpq and Gpq;rs are one and two electron reduced density matrices, respectively.
The Fapq; ðpqlrsÞa; and Sapq are the skeleton Fock, two-electron, and overlap derivative

integrals, respectively. The indices p; q; r; s denote the atomic orbitals. Eq. (10) explicitly
includes the anti-symmetric part of the CPHF coefficient Tapq: This entity can be obtained
from the coupled-perturbed (CP)-MOD equations [47].

›

›a
ðMx0 2 ðMx0 ÞT Þ ¼ 0 ð11Þ

which is the first-order derivative of Eq. (6).

Combining the perturbation selection, MOD and GSUM methods, the SAC/SAC–CI

geometry optimization becomes efficient and applicable to moderately large molecules.

These methods have been incorporated in the SAC–CI code connected with the

Gaussian suit of programs [29]. The functions of the current SAC–CI program system

are overviewed in Fig. 39.1. We also refer to the SAC–CI guide for the detailed

explanation of the theory, program, performance, and applications [48].

Before closing this section, the extensions of the SAC/SAC–CI method to the

quasi-degenerate and multi-reference cases are described. The first such proposal was

made in 1985 as the MR–SAC method, in which the reference function was extended

from the Hartee–Fock single-determinant to a general CI type wave function [34].

Further, based on the consideration on the nature of electron correlations in quasi-

degenerate situations, a generalization of the exponential operator was made; i.e.

EXP and EXP, etc. beside the standard exp operator, and the general exponentially

generated wave functions were proposed [35]. The EGCI (Exponentially Generated

CI)/Excited (Ex)-EGCI method was applied to the potential surface of some small

molecules in the ground and excited states and compared with the full-CI results [36].

This method was also applied to the high-spin multiplicities [49]. The exponential-

type operator used in the EGCI method is size-consistent, and efficiently generates

the higher-order excitation operators. Therefore, this operator was also used in

generating higher-order excitation operators in the SAC–CI general-R method [33].

The MEG (Mixed Exponentially Generated) and EX (Excited)-MEG methods were

proposed as the generalization of the SAC–CI method to the multi-reference

formalism [50]. The method uses the EGCI wave function for the reference functions.

The MEG/EX-MEG method was examined for the potential energy curves of the

ground and excited states of several small molecules including multiple bond and was

shown to be accurate for the quasi-degenerate system by comparing with the full-CI

results [50]. Recently, the MEG/EX-MEG method was applied to the excited and

ionized states of ozone, in which the calculated spectra well reproduced the

experimental observations.
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39.3 EXCITED AND IONIZED STATES OF p-CONJUGATED
ORGANIC COMPOUNDS

The SAC–CI method can be applicable to various kinds of molecular spectroscopy;

excitation, ionization and electron-attached states in high accuracy. First, we overview

the excitation [51–53] and ionization spectra [51,54] of five-membered ring compounds,

furan and thiophene. For these spectra, pioneering theoretical spectroscopy was

performed by the SAC–CI method [51] and has been followed by many theoretical

works [52,53,55–58]. Comparisons of our old and new calculations show the importance

of using the sufficiently flexible basis sets with valence and Rydberg functions as well as

the reliable theory for the accurate descriptions of these spectra. We also explain the

spectroscopy of p-benzoquinone ( p-BQ), its anion radical [59], and aniline [60].

39.3.1 Excitation and ionization spectra of furan and thiophene

The electronic spectra of the five-membered ring compounds have been intensively

studied by the experimental and theoretical works. These molecules are fundamental

units in many important biological systems. Furthermore, their excitation spectra are

benchmark examples for theoretical studies of molecular excited states [51,55–58]. For

furan and thiophene, various types of excitation spectra were measured: the vacuum

ultraviolet (VUV) spectrum, electron energy-loss (EEL) spectrum and magnetic circular

dichroism (MCD) spectrum. The SAC–CI method offered consistent interpretations of

these electronic spectra [51–53].

For furan, the underlying interesting complexities have been demonstrated in calcu-

lating the excited states; (i) strong valence-Rydberg mixing is essential, (ii) electron

correlations are crucial and (iii) s electron correlation occurs for some excitations.

Though various high-level electron correlation theories were applied to the excitation

spectra of furan, there were inconsistencies in the assignments. The SAC–CI calcula-

tion with the extensive basis sets clarified the details of these spectra [52]. Theoretical

spectrum [52] together with the VUV spectrum [61] are shown in Fig. 39.2. The first

band system occurs in the region of 5.5–7.0 eV. The 11B2 state was computed at

6.40 eV for this peak. This state is characterized as the p-pp excitation mixed with

the Rydberg transitions, which is also seen in the second moment of this state , r2 .
¼ 93 au in comparison with the ground state , r2 .¼ 65 au. The largest intensity in

the VUV spectrum occurs from 7.2 to 8.4 eV. The SAC–CI method calculated the 61A1
state at 8.34 eV with the large oscillator strength of 0.48. This state also has the

valence-Rydberg mixing character. For the band III at 8.7 eV, 91B2 state was calculated

at 9.08 eV with large second moment 130 au, which clearly shows that this state

has significant diffuse character. In the excited states furan, two series (1a2 and 2b1) of

low-lying Rydberg states and the valence p–pp excited states strongly influence to

each other.

For thiophene, very interesting changes occur in both ground and excited states by a

replacement of oxygen with sulfur. The SAC–CI [53] and VUV [62] spectra of thiophene

are compared in Fig. 39.2. The first VUV band, historically denoted as bands A and B, is
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located in the energy region of 5–6.5 eV. The MCD spectrum shows two peaks at 5.27

and 5.64 eV. Correspondingly, the 21A1 and 11B2 states are calculated at 5.41 and

5.72 eV. The second moments of these states, 85 and 86 au, in comparison with that of

the ground state, 82 au, show that these excited states are p–pp valence excitations. The

second VUV band (band C) exists in the region of 6.5–7.7 eV and the band maximum is

at around 7.05 eV. The SAC–CI calculation gives the 51A1 and 4
1B2 states at 7.32 eV

and 7.40 eV, respectively, for this band. The fine structure in 7.7–8.8 eV was suggested

by the calculations to represent the Rydberg excitations. Most of them were identified as

two Rydberg series converging to the ionized states 1a2
21 (8.87 eV) and 3b1

21 (9.52 eV).

Accurate investigation of the valence ionization spectra is important subject to

elucidate the electronic structure of molecules. Ionization spectra of five-membered

aromatic compounds have also been intensively studied. The high-resolution synchrotron

radiation photoelectron spectra (SRPES) of furan and thiophene were measured and

analyzed with asymmetry parameter up to about 40 eV [63,64]. The electron momentum

spectroscopy (EMS) was also applied to furan up to 30–40 eV [65]. The ionization

spectra of these molecules were also studied by several theoretical methods. However,

there were some controversial assignments even for the outer-valence region, in

particular for the peak position of 1b1(p1) state and the inner-valence spectra have not
been theoretically reproduced.

The SAC–CI general-R method is useful for investigating the satellite spectrum of

molecules; it describes the multi-electron process very accurately. The SAC–CI

spectrum [54] of furan is shown with the SRPES spectrum [64] in Fig. 39.3. The SAC–CI

method reproduces the spectrum very accurately in both peak positions and intensities. In

the outer-valence region, some congested main peaks exist and the theory gives accurate

assignments for them. In particular, the p1 state was calculated to split into two peaks at

VUV
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Fig. 39.2. VUV [61,62] and SAC–CI excitation spectra [52,53] of furan and thiophene.
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14.03 and 15.84 eV by the interaction with the two-electron process, 1a2(p)
223b1(p

p).

This agrees with the experimental observation [65], in which two peaks were suggested at

13.6 and 15.6 eV. The effect of electron correlations of furan is remarkable in higher

outer-valence region of 18–20 eV and many split peaks appear. In the inner-valence

region, the breakdown of the orbital picture is prominent and the intensities due to the 3b2
and 5a1 orbitals are distributed to many shake-up states.

The valence ionization spectrum of thiophene was also studied up to about 30 eV

[54]. One of the important features should be a satellite peak observed at 15.66 eV by

the He I PES and Penning ionization electron spectroscopy [66]. Accordingly, shake-up

states of b1 symmetry were calculated in the outer-valence region with the considerable

intensity at 14.78 and 16.19 eV: these states were characterized as 1a2(p)
224b1(p

p) and

3b1(p)
224b1(p

p). In the higher outer-valence region of 17–19 eV, three main peaks

were calculated and some shake-up states with small intensities were obtained around

it, which shows the electron correlations are not so significant in comparison with

furan. The characteristic spectrum in the inner-valence region is also well reproduced in

the SAC–CI calculation. A prominent peak was observed at 22.1 eV by the SRPES

[63] and the strong peak characterized as the ionization from the 4b2 orbital was also

obtained by the SAC–CI calculation. This feature is different from the satellite peaks of

furan and pyrrole in this region.

39.3.2 p-Benzoquinone and its anion radical

Quinones work as the electron-acceptor in chemical and biological systems. Ubiquinone

is seen in the photosynthetic reaction center in the photosynthetic bacteria and the

Fig. 39.3. Photoelectron [64] and SAC–CI ionization spectra [54] of furan and thiophene.
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photosystem II in the green plants [67]. Among the quinones, p-benzoquinone ( p-BQ) is

well known as a key compound, and there are many experimental and theoretical studies

focused on the electronic structure of this molecule. However, for the ionization

spectrum, it was difficult to make a definitive assignment, especially in the high energy

region, due to the lack of the fine agreement between the theoretical and experimental

results [68–70]. In addition, the anion radical of p-BQ has several optically forbidden

excited states below the lowest allowed state [71]. Since these states lie in a narrow

energy range, a highly accurate calculation is necessary to give a reliable assignment.

The SAC–CI calculations were performed for the excited and ionized states of p-BQ

in the neutral and anion states [59]. In Fig. 39.4, the SAC–CI ionization spectrum of

p-BQ is compared with the experiment. The calculated ionization spectrum shows

good agreement with the experimental spectrum and the reliable assignments were

given for the ionization peaks up to ca: 20 eV. For the lowest-four peaks, our result
supported the previous assignments given by MR–CISD [69] and EOM–CCSD [72]

studies: ng
2, nu

þ, pu
þ, and pg

þ in increasing order of energy. For the higher ionized

states, the SAC–CI study gave new assignments [59], which were different from those

of the previous calculations.

Fig. 39.4. SAC–CI ionization spectrum [59] of p-benzoquinone compared with the experimental spectrum

observed by Åsbrink et al. [68].
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The excited states of the p-BQ anion radical were also studied [59]. In Fig. 39.5, the

energy levels of the ground and excited states are shown. We compared the energy levels

for the two geometries: equilibrium structures of anion and neutral species. The ground

state of the anion radical is 2B2 g state. The adiabatic electron affinity was calculated to be

1.96 eV in comparison with the experimental values, 1.86 [71], 1.89 [73], and 1.99 eV

[74]. The lowest allowed excitation of p-BQ anion radical was assigned to 12Au
(pg

2p
SOMO2pu

2p shape resonance) state. It seemed that the previous assignment of

the lowest allowed transition to the 2B3u state [75] was due to the exchange of the
2Au and

2B3u states by the hydrogen bonds with water solvent, which was supported by the

SAC–CI calculations for p-benzosemiquinone ( p-BQH) radical [59]. There are dipole

forbidden excited states below the first allowed state [71]. Two forbidden n-pp
SOMO

transitions, 2B3g and
2B2u states, were calculated below the lowest peak (2Au) in the anion

geometry. In the neutral geometry, however, these transitions were calculated to be less

stable than the 2Au state. There are two states observed above the
2Au state. They are

assigned to 2B3u states (p
þ
u 2 p2p

g SOMO and pg
2p

SOMO2pu
þp): the order of these states

Fig. 39.5. Geometry dependence of the excited states of the p-benzoquinone anion radical calculated by the

SAC–CI method [59]. The energy origin is the singlet ground state at the neutral geometry. [S] and [F] represent

shape and Feshbach resonance states, respectively.
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depends on the geometries, i.e. pg
2p

SOMO2pu
þp (Feshbach resonance) was lower in the

anion geometry, whereas pþ
u 2 p2p

g SOMO (shape resonance) was lower in the neutral

geometry. This ordering was shown to be explained by the effect of geometry on

the orbitals.

39.3.3 Aniline: Effect of the amino-group conformation to

the excitation spectrum

Aniline is one of the important monosubstituted benzenes. The electronic interaction

between the NH2- and benzene ring causes the new bands in the absorption spectrum.

Some of the new bands include charge-transfer (CT) character between the benzene ring

and the substituent [60]. There was controversy in the literature on the character of

the low-lying excited states [76–80]. The significant problem was that the previous

calculations used a planar conformation, although the amino group is pyramidal in the

equilibrium geometry [60]. Actually, the conformation of the amino group plays a key

role in the character of the excited states. These CT states can be related to the twisted

intramolecular CT (TICT) states which are extensively studied in N, N-dimethylami-

nobenzonitrile (DMABN). The SAC–CI calculations were performed for aniline having

typical three conformations of the amino group, in order to investigate how the con-

formation of the amino group affects the character of the excited states [60]. The SAC–

CI ionization potentials were also compared with the previous experiments and the

OVGF (Outer Valence Green’s function) [81] calculations.

In Fig. 39.6, the SAC–CI excitation spectra of two different conformations are

compared with the experimental spectrum. In the spectrum of equilibrium form, five

peaks (I–V) were assigned to 11A00 (,1B2), 3
1A0 (,1A1), 4

1A00 (,1B2), 6
1A0 (,1A1),

and 71A00 (,1B2) states [60], respectively, with the average error of 0.14 eV.

These states are characterized as p–pp excited states. The 11A00 state (Peak I) was

characterized as the charge-resonance (CR) state, and the 31A0 (Peak II) and 61A0

(Peak IV) states were the local excitation (LE) within the benzene ring. Based on the

Mulliken charges and the dipole moments, the 41A00 (Peak III) and 71A00 (Peak V) states
have back CT (BCT) character from the ring to amino group. With the planar geometry

which was adopted in the previous studies, the resultant spectrum was similar to that of

the pyramidal equilibrium structure. However, the geometry greatly affects the amount

of charge-transfer. For example, the Peak II was assigned to a mixed state of the

CT þ LE characters. This implies that the assumption of planar conformation may

cause incorrect assignments, in particular for the CT character. Change in the CT

character was explained in terms of mixing of p and s natures in the pyramidal

structure. Such s–p interactions are, however, forbidden in the planar structure.

The CT character of the excited states is significantly affected by the rotation of the

amino group. Fig. 39.6(c) shows the excitation spectrum in the twisted form. The amino

group was rotated by 908. Both spectral shape and nature of the excited states

were largely altered by twisting. The 21A00 and 41A00 states have explicit CT character

(NH2– to C6H5–), while 5
1A0 –81A0 states BCT character. This indicates that aniline can

have TICT states as in DMABN.
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39.4 COLLISION-INDUCED ABSORPTION SPECTRA OF CsXe SYSTEM

The dipole forbidden transitions, S–S and S–D transitions of alkali atoms, are induced

by the collisions with the rare gas atoms [82]. This phenomenon is called collision-

induced absorption. The position and the profile of the collision-induced absorption

sensitively reflect the interatomic potentials of the ground and excited states of the alkali-

noble gas system and the (induced) transition moments between them. The SAC–CI

method elucidated the detailed mechanism of the collision-induced absorption spectra of

CsRg (Rg ¼ Ne, Ar, Kr, Xe) system [83,84].

For calculating the reduced absorption coefficients directly observed in the spectra, the

quasi-static approximation [85] was used. From this approximation, the collision-induced

absorption spectra are determined by the following three quantities, (1) excitation

energies, (2) Boltzmann distribution of the ground state and (3) induced transition

moments as the functions of the internuclear distance.

The SAC–CI potential curves of the 6S, 6P, 5D and 7S states of CsXe are shown

in Fig. 39.7. The 6pS and 5dS states are the excitations from the non-bonding MO

Fig. 39.6. Excitation spectra of aniline; (a) Experimental spectrum in the gas phase, (b) SAC–CI spectrum in

the pyramidal structure (equilibrium structure), and (c) SAC–CI spectrum in the twisted form [60].
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to the weakly anti-bonding MOs, so that the potential curves become repulsive. The

5dS state has a characteristic hump at 4.6 Å, which is caused by the avoided crossing

with the 7sS state, and the 6pS state has a shoulder at 5.0 Å. The 6pP, 5dP, and 5dD
states have shallow minima in their potential curves. The ion core of the Cs atom

polarizes the electron density of the rare gas atom, which is responsible for the

attractive force.

The induced transition dipole moments by the SAC–CI method are shown in

Fig. 39.8 as a function of the internuclear distance. These induced moments are mainly

due to the intra-atomic orbital mixing of the p-component of the Cs atom, caused by a

reduction of the spatial symmetry of the system. The 6sS–5dS transition moment is

induced at larger internuclear distances than that of 6sS–7sS. The magnitude of the
transition moment is reversed between the 5dS and 7sS states at the avoided crossing

point.

The calculated collision-induced absorption spectra associated with the 5D line are

shown in Fig. 39.9(a) with the experimental one. The experimental peak in the blue side

of this transition was attributed to the 6sS! 5dS transition of the collision complex. In

the theoretical spectrum, R denotes, in the classical picture, the internuclear distance of

the collision complex at which the absorption occurs. The steep cusp exists in both

experimental and theoretical spectra and is due to the extremum in the excitation energy

Fig. 39.7. Potential energy curves of the 6s, 6p, 5d and 7s states of the CsXe system without spin-orbit coupling

[84].
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dependence on R. From the R-values in the theoretical spectrum and the potential

curves, we see that this extremum is due to the hump of the 5dS potential lying between

4.5 and 5.0 Å. Namely, the cusp in the spectrum is assigned as being due to the hump

of the 5dS potential. Both experimental and theoretical spectra have shoulders on the

right-hand side of the cusp. From the theoretical spectra, we see that this shoulder is due

to the absorptions in the region of R ¼ 5–6 Å. The absorption band observed in the red

side of the 6S–5D transition of Cs is due to the 6sS! 5dP transition of the collision

complex. This transition was calculated to have smaller intensity than the 6sS! 5dS
transition, in agreement with the experiment.

Fig. 39.9(b) shows the collision-induced absorption spectra owing to the 6sS! 7sS
transition of the collision complex. The 6S–7S atomic line was calculated at 607 nm

in comparison with 540 nm of the experimental spectrum. The induced absorption

peak separated by about 30 nm in the experimental spectrum was reproduced in

the theoretical one separated by 23 nm. This peak is due to the potential minimum of

the 7sS state. The vibrational structure of the experimental spectrum indicates an

existence of the attractive well in the excited state, which certainly exists in the

potential curve shown in Fig. 39.7.

It was shown that the spectral peaks, shoulders and shapes reflect the detailed characters

of the CsXe collision complex. Having such an understanding of the absorption spectra,

we can increase the insight about the nature of the collision dynamics and the formed

complexes.

Fig. 39.8. Transition dipole moments for the 6sS! 5dS, S, 6sS! 5dP, and 6sS! 7sS excitations of the

CsXe system [84].
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39.5 TRANSITION METAL COMPLEXES

39.5.1 CrO2Cl2

Chromyl chloride (CrO2Cl2) has been intensively studied because of its strong and

specific ability to oxidize various organic compounds [86]. Its absorption spectrum has

also been the subject of various experimental investigations [87]. Fig. 39.10 shows the

comparison between the experimental [87] and SAC–CI spectra [88] of chromyl chloride

CrO2Cl2. The right-hand side is the spectrum in the lower-energy region and the left-hand

side is for higher energy region. The overall feature of the experimental spectrum is well

Fig. 39.9. Reduced absorption coefficients for the (a) 5d and (b) 7s states of CsXe. The experimental spectrum is

due to Moe et al. [82], and the SAC–CI theoretical spectrum is from ours [84].

SAC–CI method applied to molecular spectroscopy 1115

References pp. 1137–1141



reproduced by the SAC–CI spectrum. Since this molecule is C2v, there are many dipole

allowed peaks in comparison with those of Td or Oh symmetric molecules. Partially, for

this reason the observed peaks are composed of many transitions.

The excitation spectrum is classified into three energy regions with respect to the

excitation character. Lower energy excited states below ,5 eV are characterized as

transitions from the non-bonding ligand MOs to the anti-bonding Cr-ligand MOs, while

the higher energy excited states above,7 eV are characterized as the transitions from the

bonding Cr þ ligand MOs to the anti-bonding Cr 2 ligand MOs. In the medium energy

region of ,6 eV, a strong mixing between these two types of transitions occurs and the

spectrum becomes rather complicated.

For this molecule, few theoretical studies [87,89] have been applied to the relatively

low excited states. Fig. 39.11 shows a comparison of the theoretical results for the

excitation spectrum of CrO2Cl2 with the experimental spectrum. Among the theoretical

spectra, the SAC–CI result agrees well with the experimental spectrum and the quanti-

tative assignments are possible in the whole energy region.

39.5.2 Tetraoxo complexes: CrO4
22, MoO4

22, MnO4
22, TcO4

22, RuO4
22 and OsO4

22

Four coordinated oxo-metal complexes are important as oxidizing agent. Their visible

and ultraviolet spectra have been reported in 1960s [90]. Some complexes show interest-

ing photochemistry as observed for MnO4
22 [91]. Systematic SAC–CI studies on the

electronic spectra of the tetraoxo metal complexes, CrO4
22 [92], MoO4

22 [93], MnO4
22

[94], TcO4
22 [95], RuO4

22 [96] and OsO4
22 [96] were reported.

Fig. 39.12 summarizes the SAC–CI spectra for the lowest three excited states of six

tetraoxo complexes. The SAC–CI calculations were the first applications that successfully

reproduced the experimental absorption spectra of the transition metal complexes.

The singly excited CI (SECI) [97] and Xa [98] calculations often gave even qualitatively

Fig. 39.10. SAC–CI theoretical excitation spectrum of CrO2Cl2 [88] compared with the experimental

absorption spectrum [87].
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Fig. 39.12. The lowest three excited states of the tetraoxo transition metal complexes. The dotted lines show the

correspondence of the excited states among the complexes.

Fig. 39.11. Summary of the ab initio calculations of the excitation energies of CrO2Cl2; (a) Jasinski et al. [87]

(b) Miller et al. [89], and (c) SAC–CI [88].

SAC–CI method applied to molecular spectroscopy 1117

References pp. 1137–1141



wrong assignments. The averaged deviation of the SAC–CI excitation energies from

the experiment was 0.24 eV. These results were rather accurate considering that these

calculations were performed in the early 1990s. The largest error was found in the case of

RuO4
22 and OsO4

22, in which the effective core potential (ECP) was used.

The color of the metal complexes reflects the excitation energy of the first optically

allowed 11T2 state. Only MnO4
2 has the dipole allowed transition in the visible region

(1.6–2.9 eV). Except for MoO4
22, the lowest allowed 11T2 state was assigned to the

excitation from 1t2 orbital to 2e orbital. The 1t2 and 2e orbitals are characterized as

the lone-pair orbital of oxygen, O(p), and the anti-bonding interaction between the metal

d- and oxygen p-orbitals, M(d)–O(p), respectively. On the other hand, in MoO4
22, the

main configuration of this state is 1t2 ! 3t2, in which the 3t2 orbital originates from Mo

s- and p-orbitals. In Fig. 39.12, we can see that the excitation energy of the 1T2 state

characterized as 1t2 ! 2e decreases as the central metal atom is replaced to the upper-

right-hand side in the periodic table. This tendency is explained by the structure of the

complexes; the bond distance between the metal and the oxygen ligands [92].

39.5.3 Excited states and 95Mo NMR chemical shift of

MoO42nSn
22(n 5 0–4) and MoSe4

22

A systematic measurement of the electronic spectra was reported for the molybdenum

complexes, MoO42nSn
22(n ¼ 0–4) and MoSe4

22[99]. The change in the ligand environ-

ment causes a variety of the spectral feature, due to the difference in the nature of metal

(M)–ligand (L) bonding. For the six molybdenum complexes studied [93], the SAC–CI

calculations gave new reliable assignments. All of the observed peaks except for the peak

at 5.99 eV of MoS4
22 are due to the electron transfer excitations from the L to M or from

L to the (M–L)p (anti-bonding). The electronic spectrum of MoO4
22 is much different

from those of MoS4
22 and MoSe4

22, since the M–L bonds of MoO4
22 are stronger and

more ionic than those ofMoS4
22 andMoSe4

22. As the number of the soft ligands (S and Se)

increases, the excitation energies of L! (M–L)p transitions decreases, since the M–L

bonds become weaker. In the MoO3S
22, MoO2S2

22 and MoOS3
22, the observed bands

consist of many dipole allowed peaks because of the splitting of the excited states due to

the symmetry lowering from Td to C3v and C2v.

In the study of the electronic spectra of Mo compounds, we concentrate on the dipole

allowed transitions. However, the magnetically allowed states, which are not necessarily

to be optically allowed, play very important role in the chemical shift [100]. In the case

of the 95Mo NMR chemical shifts of MoO42nSn
22(n ¼ 0–4) and MoSe4

22[101], the

paramagnetic term spara was dominant and is expressed in the perturbation form as,

sparaMtu ¼ 2
e2

4m2c2

X
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where l0l and lnl denote the ground and the excited states, respectively, Ljt is the

angular momentum operator of the j-th electron in t direction, and the subscript M

denotes the nucleus under consideration. The summation is taken over all the excited

states. As seen in Eq.(12), only the magnetically allowed transition to the excited state

lnl contributes to the chemical shift. The SAC–CI excitation energy was compared with
the NMR chemical shift of MoO42nSn

22(n ¼ 0–4) and MoSe4
22 [100]. In Fig. 39.13, the

relationship between the inverse of the lowest magnetically allowed d–dp excitation

energies and the chemical shifts was shown. The experimental values [102] were used

for the chemical shifts. The 4ds! 4dpp transitions belong to the magnetically allowed

transition. There is a nice linear relationship between the chemical shift d and the

inverse of the DE. This result indicates that the origin of the Mo chemical shift is

attributed to the variations in the excitation energy of the magnetically allowed d–dp

transition, namely,

d ¼ Að1=DEref 2 1=DEÞ ¼ aþ b=DE ð13Þ

Although a linear relationship with the lowest optically allowed transition was

sometimes discussed in the literature [103], the optically allowed states are not

necessarily magnetically allowed. We have shown that the relationship between the

inverse of the lowest optically allowed transition energy and the chemical shift showed

worse linearity [100].

Fig. 39.13. Relationship between the inverse of the lowest magnetically allowed d–dp excitation energies DE

and the chemical shifts [100]. The chemical shifts are the experimental values reported by Gheller et al. [102]

and the excitation energies are obtained by the SAC–CI method [93].
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39.6 PHOTOCHEMISTRY OF TRANSITION METAL COMPLEX, Ni(CO)4

Transition metal carbonyl is important in laser chemistry as sources of metal atoms or

as precursors for chemical vapor deposition (CVD) [104]. Ni(CO)4 shows a typical

photofragmentation reaction initiated by the XeCl laser (308 nm, 4.03 eV), and the

knowledge on the mechanism is valuable for the design and control of the laser-induced

CVD. The SAC–CI method was applied to the excitation spectrum and the potential

energy curves relevant to the photofragmentation reaction [105].

In Fig. 39.14, the SAC–CI theoretical spectrum is compared to the experimental one.

The calculated excitation energies and the oscillator strengths showed a good agreement

with the experimental absorption spectrum. On the other hand, the SECI calculation

could not reproduce the experimental spectrum particularly in the energy region higher

than 5.2 eV (,240 nm) as shown in Fig. 39.14. All the observed peaks were assigned to

the excitations to the dipole allowed T2 states. The strong third peak was assigned to the

3T2 and 4T2 states. The main configurations for the 1T2 and 2T2 states are the excitations,

9t2 ! 12t2 and 9t2 ! 4e, respectively, and both are assigned to Ni 3d! [Ni–CO] pp:
Invisible low-lying states 1E and 1T1 states exist below the 1T2 state and both are

Fig. 39.14. Comparison between experimental and theoretical absorption spectra of Ni(CO)4 [105].
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characterized as 9t2 ! 12t2. These invisible states play important roles in the photo-

fragmentation reaction.

The mechanism of the photofragmentation reaction and the luminescence is

illustrated in Fig. 39.15. First, Ni(CO)4 is excited to the allowed 1T2 state by the

308 nm laser. The geometry of the complex is distorted along the repulsive potential of

the 2A1 state. The excited complex in the 2A1 state makes an internal conversion to

the lowest excited state 1E, as the Kasha’s rule implies. In this 1E state, the [Ni(CO)3–

CO]p is further distorted, partially by the Jahn–Teller effect, and fragmented into the

1B1 excited state of Ni(CO)3 and the ground state of CO. The excited Ni(CO)3 has the

bonding potential curve for the Ni–CO bond, so that further CO dissociation does not

occur in this process. Then, the complex is de-excited to the ground state by the radiative

decay. The calculated emission energy 1.54 eV agree well with the experimental lumi-

nescence energy, 1.7–2.0 eV.

39.7 PORPHYRINS AND RELATED COMPOUNDS

In this section, we briefly review the SAC–CI applications to the excited states of

porphyrin compounds: FBPc [106] and bacterial photosynthetic reaction center of

Rhodopseudomonas viridis [107]. Phthalocyanine is a famous chromophore that has a

large absorbance in the visible region of the spectrum. By systematically comparing

Fig. 39.15. Overall energy diagram and the pathway for the photofragmentation reaction of Ni(CO)4 [105].
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with the excited states of FB porphin (FBP) and FB tetrazaporphin (FBTAP),

the electronic mechanism how phthalocyanine shows such a strong absorption was

explained [106]. The SAC–CI method was also applied to the excited states and

electron transfers of a bacterial photosynthetic reaction center of Rhodopseudomonas

viridis [107–109]. The absorption spectrum of the reaction center was successfully

assigned [107,109], and the enigmatic unidirectionality of the electron transfer

mechanism was analyzed by using the SAC–CI wave functions [108]. The TD–DFT

method is often applied to the excited states of these large molecular systems because

of its low computational cost. However, it should be noticed that the TD–DFT method

is not as reliable as the SAC–CI method. The TD–DFT assignment for the excited

states of some porphyrins is sometimes problematic; for example, the oscillator strength

of B band of free-base porphin (FBP) was calculated to be very small, while that

of N band was extraordinary large [110]. This strange behavior depends on the

functional used. There is no simple way to achieve a convergent limit. For the reliable

theoretical spectroscopy, it is important to calculate both energy and oscillator strength

accurately.

39.7.1 Excited states of free-base phthalocyanine

FBPc, the well-known pigment, has much larger Q-band absorption than FBP. FBPc

has tetraza-substitution at the four meso-positions and the butadiene units are attached

to the four pyrrole rings. Therefore, free-base tetrazaporphin (FBTAP) is the structure

intermediate between FBPc and FBP. In Fig. 39.16, the experimental and SAC–CI

spectra of FBPc [106] are compared. The SAC–CI calculations successfully reproduced

the experimental spectrum, which realized the detailed assignment and interpretation of

the electronic mechanism for the strong absorption in FBPc.

As seen in Fig. 39.17, the orbital energy levels of FBTAP and FBPc change from

those of FBP especially in the HOMO and next-HOMO levels. Since 2p level of nitrogen

atom is relatively low, next-HOMO levels are stabilized in FBTAP and FBPc. Therefore,

near degeneracy in the main configuration of Q-bands is somehow relaxed, which results

in incomplete cancellation of transition moment, as schematically shown in Fig. 39.17.

In FBPc, orbital-specific interaction with the butadiene unit raises HOMO level. Conse-

quently, the weight of the two main configurations becomes more unbalanced. Therefore,

FBPc shows the strongest absorption of the three compounds in the visible region of

the spectrum.

Generally, in the porphyrin compounds, such breakdown of the quasi-degeneracy of

the two main configurations causes an increase in the intensities of the Q bands due

to incomplete cancellation of the two contributions to the transition dipole moment. This

can be a general strategy for designing pigment. Tetraza substitution in meso position

and tetrabenzo substitution in the pyrrole rings changed the HOMO and next-HOMO

levels. On the other hand, relaxing the degeneracy of LUMO and next-LUMO levels also

can be the subject of molecular design. Newly designed pigment using such a strategy

also has a possibility for the new useful pigment.
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Fig. 39.17. Orbital energy levels and main configurations of the 11B3u states (Qx band) of FBP, FBTAP, and

FBPc [106]. Value in the parenthesis is transition dipole moment of the configuration. The net transition dipole

moment is also shown at the bottom of the figure.

Fig. 39.16. Excitation spectra of free-base phthalocyanine; (a) Experimental spectrum in a gas phase [146] and

(b) SAC–CI theoretical spectrum [106].
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39.7.2 Bacterial photosynthetic reaction center

Developments in structural biology have realized the detailed analysis of biological

systems in molecular level. Increasing amount of the interesting biological-molecular

structures is available in the electronic database as represented by the Protein Data Bank.

Therefore, in addition to the various experimental studies, theoretical investigation can

play an important role for interpreting the bio-chemical/physical phenomena. Actually,

increasing numbers of theoreticians have contributed to elucidate the mechanism of

bio-chemical reactions.

Fig. 39.18. Absorption and linear dichroism spectra of the PSRC; (a) SAC–CI theoretical excitation spectrum

[107], (b) Experimental absorption and linear dichroism spectra [111], and (c) SAC–CI theoretical linear

dichroism spectrum [107].
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There are totally 11 chromophores in the bacterial photosynthetic reaction center

(PSRC) of Rhodopseudomonas (Rps.) virids. Since the excitation process of the reaction

center is the primary event of the photo-induced electron transfer in the reaction center,

the detailed analysis of the absorption spectrum is one of the key steps for the under-

standing of photochemistry of the system. The chromophores included in the PSRC are

bacteriochlorophyll b dimer (special pair, P), bacteriochlorophyll b in L- and M-branches

(BL and BM), bacteriopheophytin b in L- and M-branches (HL and HM), menaquinone

(MQ), ubiquinone (UQ) and four different hemes, c-552, c-554, c-556, and c-559 in

c-type cytochrome subunit.

The chromophores were calculated within the environment of protein and waters

which were dealt with by the point-charge electrostatic model [107]. The calculation was

performed for each chromophore and the total theoretical spectrum was obtained by

summing up those of chromophores. In Fig. 39.18, the calculated excitation and linear-

dichroism spectra of the reaction center are compared with the experimental ones. The

experimental absorption spectrum [111] has very complex structure having 14 peaks

within the energy range of 1.5 eV. The SAC–CI calculations gave about 25 states in

this energy region. We have assigned successfully all the peaks in the experimental

spectrum in the energy range from 1.2 to 2.5 eV. The average discrepancy between the

calculated and experimental excitation energies was 0.13 eV. The assignment was

performed by comparing the SAC–CI theoretical spectrum with the experimental one in

excitation energy, oscillator strength, linear dichroism data (angle of transition moment),

and other experimental information available. Almost all the peaks were red shifted due

to the effect of proteins.

Using the SAC–CI wave functions of the chromophores, the mechanism and the

unidirectionality of the electron transfer in the PSRC of Rps. Viridis was analyzed by

calculating the electronic factor in the rate constant: the enigmatic unidirectionality was

clearly explained from the electronic origin [108].

39.8 INNER-SHELL IONIZATION SPECTROSCOPY

Core-electron ionization spectra contain the information not only about inner-core

electrons but also about valence electrons and chemical bonds. Extensive experimental

studies have measured the core-electron binding energies (CEBE) of numerous molecules

[112,113] and the recent development of X-ray photoelectron spectroscopy (XPS) has

enabled the detailed analysis of the satellites accompanied by the inner-shell ionization.

The SAC–CI method is useful to study both the main and satellite peaks in the

core-ionization spectra as well as valence-ionization spectra. In this section, we explain

the SAC–CI applications to the CEBE [114], inner-shell satellite spectrum [114,115] and

vibrational spectrum of inner-shell ionization [116].

39.8.1 Core-electron binding energy

The SAC–CI method was systematically applied to the CEBE of C, N, O and F atoms

of 22 molecules [114]. For calculating the CEBE, the R-operators up to triples are
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necessary for describing orbital relaxations as well as electron correlations. In Fig. 39.19,

we show a comparison between the theoretical and experimental values for the C1s

ionizations of 13 molecules. The SAC–CI method reproduces the CEBE of these

molecules quite accurately. In general, the CEBE shifts to higher energy, when

the adjacent atom is electron withdrawing. This feature is correctly reproduced and the

average absolute deviation from the experiment is 0.09 eV for these molecules.

39.8.2 Inner-shell satellite spectrum

Shake-up satellites appearing in the inner-shell photoelectron spectra are challenging

spectroscopic subject. Theoretically, a proper description of the satellite spectra is

possible only with accurate theoretical methods, since the spectra reflect complex

electron-correlation and orbital-reorganization effects; shake-up satellites are described

by the multi-electron process. Experimentally, weak intensities of the inner-shell photo-

electron satellites make high-resolution XPS observation difficult. Therefore, intensive

cooperative investigations are necessary for elucidating fine details of the satellite

spectra. In this section, we show the cooperative study by the SAC–CI and XPS on

the inner-shell satellite spectrum of formaldehyde [115]. Formaldehyde has both valence

and Rydberg excitations accompanying the inner-shell ionization, and therefore its

satellite spectrum becomes complex.

Fig. 39.20 shows the observed XPS and the SAC–CI general-R spectra for the C1s

satellites of H2CO. The general-R method finely reproduces the details of the

experimental spectra, namely, both peak positions and relative intensities, and enables

the quantitative assignments for the seven satellite bands 1–7. The shake-up transitions

are mainly attributed to the valence excitations such as p–pp; n–sp; and s–sp accom-

panying the inner-shell ionization. The Rydberg excitations are minor and they contribute
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Fig. 39.19. C1s CEBEs: SAC–CI [114] vs. experiments [113].
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to the spectrum only in the high-energy region. Three-electron processes such as 1s21

n22 2 pp2 and 1s21p22 2 pp2 were also predicted in the low-energy region.

39.8.3 Vibrational spectrum of inner-shell ionization

The geometrical relaxation caused by the inner-shell ionization is not small, though

the ionized electron does not significantly contribute to the chemical bonding.

Fig. 39.20. C1s photoelectron satellite spectrum of formaldehyde [115].

Fig. 39.21. Photoelectron vibrational spectrum of O1s for H2O. Solid line is the XPS spectrum and dashed line

is the SAC–CI spectrum [116]. Theoretical Franck–Condon factors are given by the vertical lines.
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This geometrical relaxation appears in the vibrational spectrum of the inner-shell

ionization. The vibrational spectrum of the O1s ionized state of H2O was studied by the

SAC–CI method [116]. The three-dimensional potential energy surfaces of the ground

and O1s core-ionized states were calculated and the vibrational spectrum was simulated

from them. In Fig. 39.21, the photoelectron spectrum of O1s of water excited at 590 eV is

compared with the theoretical spectrum. The vibrational structure can be attributed

mostly to the bending mode of the core-ionized molecule. Actually, the geometry

relaxation was calculated to be remarkably large for the HOH angle u; Du ¼ 13.58, but,
insignificant for r, Dr ¼ 0.007 Å. In this way, the SAC–CI method can calculate the

accurate potential energy surface, and hence can perform the precise analysis for the

vibrational spectra of the ionized or excited states.

39.9 GEOMETRIES OF MOLECULAR EXCITED STATES

The analytical energy gradients of the SAC–CI method are useful to investigate the

geometries, vibrations, chemical reactions, energy relaxation processes and dynamics

of molecules in their ground and excited states. In particular, it is generally rather difficult

to obtain this information for the excited states by the experimental techniques alone. The

SAC–CI method has been applied to the geometry and spectroscopic constants of many

molecular systems. In this section, we present the results for malonaldehyde using the

localized molecular orbitals (LMOs) [47] and applications to multi-electron processes by

the general-R method [40].

39.9.1 Malonaldehyde

The SAC–CI method formally scales as O(N6), where N is the number of basis functions.

This scaling property means that the computational requirement rapidly increases with the

size of the system. Therefore, the SAC–CI program adopted the perturbation selection

method. With this method, the scaling property can be relaxed by the suitable selections

of the excitation operator. In this case, LMOs are a rational choice for the reference

orbitals. However, the selection may cause the discontinuity in the potential energy

surface. This problem can be solved by the MOD method [46,47], as introduced in

the Section 2.

Table 39.1 summarizes the optimized structures and adiabatic excitation energies of the

ground and excited states of malonaldehyde. The structure of malonaldehyde with the

specifications of atoms is shown in Fig. 39.22. The Pipek–Mezey localization [117] was

used for obtaining the reference orbitals. The perturbation selection effectively reduces the

dimension of the excitation operators without losing the accuracy of the result. The

number of the excitation operators is reduced to 5% in comparison with the conventional

CCSD method. However, the average deviations of the structure parameters remain only

within 0.009 Å in the bond-length and 0.58 in the angles. The calculated geometries and
adiabatic excitation energy agree well with the experimental values [118,119], showing

that the SAC–CImethodwith theMOD approachworks effectively. In the local approach,
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singularity can appear in the derivatives with respect to external parameter, since the

localizations are not guaranteed to be smooth functions of the parameters and hence lead

to the discontinuity of the potential energy surface. TheMODmethod would be one of the

solutions and is expected to be applicable to other post Hartree–Fock methodologies.

39.9.2 Multi-electron processes; C2 and CO
1

The SAC–CI analytical energy gradient was extended to the general-R method [33,40]

and the high-spin multiplicities [37,42]. Formulations and implementations were recently

Table 39.1 Spectroscopic constants of ground and excited states of malonaldehyde [47]

Structure

parameters

Ground state Excited state

SACa CCSD Exptl.c SAC–CI a Exptl.d

lb 1027 No selection 1028

Dimensions 60,811 1,186,569 46,225

(%) 5 100 5

C(2)yO(1) (Å) 1.233 1.240 1.234 1.344

C(3)–C(2) (Å) 1.471 1.455 1.454 1.434

C(4)yC(3) (Å) 1.363 1.365 1.348 1.369

O(5)–C(4) (Å) 1.339 1.337 1.320 1.367

H(6)–O(5) (Å) 0.971 0.982 0.969 0.958

Average deviation (Å) 0.009 Å 0

O(1)yC(2)–C(3) (8) 123.6 123.4 123.0 122.6

C(2)–C(3)yC(4) (8) 120.8 120.4 119.4 127.4

C(3)yC(4)–O(5) (8) 125.7 125.2 124.5 127.9

C(4)–O(5)–H(6) (8) 107.4 106.7 106.3 111.0

Average deviation (8) 0.58 0

Adiabatic excitation

energy (eV)

3.39 3.504

aLocalized MOs were used for the reference orbitals. The perturbation selection was carried out for selecting the double-

excitation operators.
bEnergy threshold for the perturbation selection.
cRef. [118].
dRef. [119].
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Fig. 39.22. Structure of malonaldehyde with the specification of atoms [47].
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summarized with some numerical applications [41]. The general-R method is quanti-

tatively applicable to the various electronic states described by the multi-electron

processes. It is also useful for investigating the excited states of open-shell systems, since

they are often described by the two-electron process from the closed-shell SAC state.

First, we show the applications to the ground and excited states of C2 and CO
þ.

The spectroscopic constants in the various excited states of C2 have been determined

by experiment [120] and some of them are described by the two-electron processes.

Table 39.2 summarizes re and Te for nine singlet and triplet excited states of C2,

Table 39.2 Excitation levels, equilibrium internuclear distances (re), adiabatic excitation energies (Te)

and main configurations for the singlet and triplet states of C2

State Method Excitation

level

re (Å) Te (eV) Main configurationsa

(lCl . 0.3)

X1Sg
þ General-R 0 1.268 –

CCSD(T)b 1.245 –

MRCIc 1.248 –

Exptl.d 1.243 –

a3Pu General-R 1 1.307 0.094 0.93(1pu
213sg)

CCSD(T)b 1.311 0.104

MRCIc 1.318 0.081

Exptl.d 1.312 0.089

b3Sg
2 General-R 2 1.366 0.842 0.95(1pu

223sg
2)

CCSD(T)b 1.370 0.809

MRCIc 1.374 0.911

Exptl.d 1.369 0.798

A1Pu General-R 1 1.317 0.993 0.97(1pu
213sg)

Exptl.d 1.318 1.040

c3Su
þ General-R 1 1.200 1.037 0.92(2su

213sg)
Exptl.d 1.23 1.650

d3Pg General-R 2 1.262 2.362 0.89(1pu
212su

213sg
2)

Exptl.d 1.266 2.482

C1Pg General-R 2 1.250 4.181 0.90(1pu
212su

213sg
2)

Exptl.d 1.255 4.248

e3Pg General-R 2 1.543 4.997 0.83(1pu
221pg3sg)

2 0.42(1pu
212su

213sg
2)

þ 0.39(1pu
221pg3sg)

Exptl.d 1.535 5.058

D1Su
þ General-R 1 1.243 5.342 0.84(2su

213sg)
Exptl.d 1.238 5.361

g3Dg General-R 2 1.355 9.130 0.64(1pu
212su

211pg3sg)
2 0.63(1pu

212su
211pg3sg)

þ 0.31(1pu
221pg

2)

Exptl.d 1.358 9.073

RMSe 0.009 0.058

aHartree–Fock configuration for the ground state is (core)4(2sg)
2(2su)

2(1pu)
4.

bRef. [122].
cRef. [121].
dRef. [120].
eRoot mean square (RMS) is the difference between experimental and theoretical values.
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calculated by the general-R method in comparison with the experimental [120] and other

theoretical values [121,122]. Since the ground state of C2 has quasi-degenerate character,

the general-R method was used for the calculation of the ground state. The C1Pg, b
3S2

g ,

d3Pg, e
3Pg and g

3Dg states are described by the two-electron excitations from the ground

state, while other states are described by the one-electron excitations. The agreements

of the general-R results with the experimental values are satisfactory regardless of

the excitation level of each state: the discrepancies of the general-R results from the

experimental values were 0.009 Å and 0.058 eV for re and Te, respectively. The a
3Pu and

b3S2
g states were also studied by the multi-reference CI [121] and CCSD(T) [122]

methods in agreement with experiment.

Table 39.3 summarizes re and Te for the doublet states of CO
þ by the SD-R and

general-R methods in comparison with the experiments [120,123]. For D2P and 32Sþ

states, there are no experimental values of re. The X
2Sþ, A2P and B2Sþ states of COþ are

characterized by the one-electron process, while the C2D;D2P and 32Sþ states are

represented by the two-electron processes, which correspond to the satellite states

observed in the valence ionization spectrum of CO. For the C2D and 32Sþ states, the

general-R method gives good results for both re and Te in comparison with experiment:

Table 39.3 Excitation levels, equilibrium internuclear distances (re), adiabatic excitation energies (Te)

and main configurations for the doublet states of COþ

State Method Excitation

level

re (Å) Te (eV) Main configurationsa

(lCl . 0.3)

X2Sþ SD-R 1 1.115 – 0.97(5s21)
General-R 1 1.115 – 0.95(5s21)
Exptl.b 1.115 –

A2P SD-R 1 1.249 2.382 0.96(1p21)

General-R 1 1.237 2.557 0.93(1p21)

Exptl.b 1.244 2.571

B2Sþ SD-R 1 1.155 5.594 0.93(4s21)
General-R 1 1.162 5.646 0.86(4s21)
Exptl.b 1.169 5.688

C2D SD-R 2 1.300 11.22 0.71(1p212p5s21) 2 0.71(1p212p5s21)
General-R 2 1.333 8.004 0.71(1p212p5s21) 2 0.71(1p212p5s21)
Exptl.b 1.340 7.812

D2P SD-R 2 1.248 12.28 0.84(5s222p) 2 0.35(4s212p1p21)

General-R 2 1.249 8.885 0.82(5s222p) 2 0.37(4s212p1p21)

2 0.30(5s223p)
Exptl.b – 8.087

Exptl.c – 8.407

32Sþ SD-R 2 1.270 11.88 0.24(4s21) 2 0.70(5s212p1p21)

2 0.70(5s212p1p21)

General-R 2 1.270 9.140 0.41(4s21) 2 0.65(5s212p1p21)

2 0.65(5s212p1p21)

Exptl.b – 9.074

Exptl.c – 9.011

aHartree–Fock configuration for the ground state is (core)4 (3s)2(4s)2 (1p)4 (5s)2.
bRef. [120].
cRef. [123].
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the deviations from the experimental values are within 0.007 Å and 0.19 eV for re and Te,

respectively.

39.9.3 Acetylene and CNC

The general-R method was also applied to the ground and excited states of polyatomic

molecules; acetylene and CNC. Some of the excited states of these molecules are

described by the two-electron process. The DZP basis sets were used for acetylene and

the DZP basis sets augmented with s- and p-type Rydberg functions (zs ¼ 0.023,

zp ¼ 0.021 for C and zs ¼ 0.028, zp ¼ 0.025 for N) were used for CNC: these Rydberg

functions are important for Te of CNC. The general-Rmethod including R-operators up to

triples was performed.

The ground and lowest singlet excited (A1Au) states have been extensively studied

both experimentally and theoretically. Recent theoretical calculation has investigated

the trans-bent structure in the A1Au state using EOM–CCSD method with DZP

and VDZ2P basis sets and well reproduced the experimental structure. The EOM–

CCSD method is essentially identical to the SAC–CI SD-R method. In 1992, the trans-

bent structure in the C0Ag state was spectroscopically measured by Lundberg et al.

[124]. The A1Au state is described by the one-electron process, while the C
0Ag state is

described two-electron process. Therefore, we are interested in the spectroscopic

constants of these excited states especially for the C0Ag state. The results are shown in
Table 39.4. The SAC method well reproduced the experimental geometries [125]. For

the A1Au state [126], both SD-R and general-R methods gave the results of the same

quality. On the other hand, for the C0Ag state, the general-R method drastically

improves the results of the SD-R method, especially for Te. The optimized geometries

are in excellent agreement with experimental values; the deviations are within 0.02 Å

and 0.038. The A1Au and C0Ag states are described as (1au
214ag) and (1au

224ag
2),

respectively, in which 1au orbital corresponds to valence 1pu orbital for the linear

Table 39.4 Spectroscopic constants of ground and excited states of acetylene [41]

State Method Excitation

level

RCH
(Å)

RCC
(Å)

uCCH
(degree)

Te
(eV)

X 1Ag SAC – 1.068 1.219 180 –

(linear) Exptl.a 1.063 1.203 180 –

A 1Au SD-R 1 1.098 1.377 122.6 5.485

(trans) General-R 1 1.097 1.385 121.7 5.329

Exptl.b 1.097 1.375 122.5 5.232

C0 1Ag SD-R 2 1.105 1.634 103.8 10.098

(trans) General-R 2 1.111 1.643 103.0 7.844

Exptl.c 1.14 1.65 103 7.723

aRef. [125].
bRef. [126].
cRef. [124].
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structure. Thus, trans-bent structures become stable in these excited states by the single

or double excitation from the 1pu orbital.
The open-shell molecule CNC was also studied by the general-R method; the excited

states are described by the two-electron processes from the closed-shell SAC state. In

Table 39.5, the SAC–CI SD-R and general-R results of re and Te are compared with the

experiment [127] and with CASPT2 results [128]. The ground state is described by the

one-electron process, while the other two excited states, A2Du and B
2Sþ

u ; are represented
by the two-electron process. For re, both SD-R and general-R methods gave excellent

results for the ground and excited states: the deviations from the experiment were within

0.009 Å. For Te, the general-R method drastically improves the results of the SD-R

method. The effect of including triples in the R-operators is as large as 3.4–3.5 eV. The

adiabatic excitation energies calculated by the general-R method agree well with the

experiment; Te were slightly underestimated by 0.086 and 0.017 eV for A2Du and B
2Sþ

u ;
respectively. The CASPT2 method underestimated these values by 0.34 and 0.31 eV,

though the basis sets were different [128].

39.10 HYPERFINE SPLITTING CONSTANTS

Fermi contact hyperfine splitting constants (HFSCs) give the important information of

the molecular electronic structure of radicals. They are proportional to the spin

densities at the nuclei of an open-shell molecule and are observed by the electron-spin

resonance (ESR) and microwave spectroscopy. Since this is a very local property,

Table 39.5 Excitation levels, equilibrium internuclear distances (RCN), adiabatic excitation energies (Te)

and main configurations for the doublet ground and excited states of CNC

State Method Excitation

level

RCN
(Å)

Te
(eV)

Main configurationsa

(lCl . 0.3)

X2Pg SD-R 1 1.256 – 0.97(1pu)
General-R 1 1.251 – 0.92(1pu)
CASPT2b 1.253 –

Exptl.c 1.245 –

A2Du SD-R 2 1.257 7.197 0.65(3su
211pg

2) þ 0.65(3su
211pg

2)

General-R 2 1.255 3.675 0.65(3su
211pg

2) þ 0.65(3su
211pg

2)

CASPT2b 1.257 3.425

Exptl.c 1.249 3.761

B2Su
þ SD-R 2 1.262 7.694 0.65(3su

211pg
2) þ 0.65(3su

211pg
2)

General-R 2 1.260 4.298 0.65(3su
211pg

2) þ 0.65(3su
211pg

2)

CASPT2b 1.259 4.001

Exptl.c 1.259 4.315

aThe electronic configuration and the excitation level relative to the closed shell CNCþ, namely, (core)6(3sg)
2(2su)

2

(1pu)
4(4sg)

2(3su)
2.

bMolecular geometries are optimized by CASSCF/6s4p2d2f (Ref. [128]).
cRef. [127]
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ab initio calculations of the HFSCs are more difficult than the other electronic

properties such as dipole moments, polarizabilities, etc. It has been clarified that the

following factors are important for the adequate descriptions of the HFSCs: (i) spin-

polarization correction [129–132], (ii) electron-correlation correction [133–140], (iii)

cusp condition at the nuclei [141].

The SAC–CI method is very effective for describing both (i) spin-polarization and

(ii) electron correlation corrections [136,140]. For calculating the HFSCs, we have to be

careful about perturbation selection [44], since the energy and spin density are very

different properties. In the SAC–CI method, we can avoid the perturbation selection,

since the sizes of the matrices to be diagonalized are small without selection, in contrast

to ordinary CI methods. The perturbation selection method taking into account of the

HFSCs is also possible [142].

For the cusp condition, we proposed the method [141] using the Slater-type orbitals

(STOs) by the STO–GTO expansion method [143,144]. Following Kato [145], the exact

Table 39.6 Hyperfine splitting constants (HFSCs) calculated

with STO basis (in Gauss) [141].

Molecule Nucleus SAC–CI Exptl.a

H2 H 327.4 333.7

H2O
þ O 226.2 (2)29.7

H 224.1 (2)26.1

CH3 C 25.6 28.7

H 229.6 224.7

CH3CH2 Cb 212.1 213.6

Hb 24.5 26.9

Ca 24 29.5

Ha 225.9 224.5

CH3NH C 212.3

Hb 29.6 34

N 7.8 13

Ha 221.2 (2)22

CH3O C 213.7 215.6

H 39.4 43.7

O 218.3

CH3OCH3
þ C 28.5

H 39.8 43

O 223.9

H2CO
þ C 229.8 238.8

H 119.4 132.7

O 219.9

CH2CH Cb 21.1 28.6

Htrans 51.4 68.5

Hcis 34.1 34.2

Ca 102.2 107.6

Ha 12.1 13.3

HCO C 119 131

H 119 127

O 216.3

aThe sign (2 ) is based on the theoretical result.
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density r should satisfy the following equation at the position {RA} of the nucleus A:

lim
r!RA

d

dr
InrðrÞ

� �
¼ 22ZA ð14Þ

where ZA is the nuclear charge. The wave function calculated with Gaussian-type orbitals

(GTOs) does not satisfy this condition. The method of using the STOs as a basis set is

therefore desirable, since they have cusps at the position of the nuclei. By using the

STO–GTO expansion method[143,144], we can do such STO calculations using

conventional GTO programs in enough accuracy for the integrals necessary for the SCF

and SAC–CI calculations. The HFSCs and the cusp values are calculated with the

original STO basis functions [141].

The results of this method applied to the HFSCs of some radicals [141] are shown

in Table 39.6. Fig. 39.23 shows the correlation between the theoretical results and the

experimental values. Generally speaking, the agreement between theory and experiment

is fairly good, considering that the HFSC’s is the relatively difficult properties to be

calculated. The averaged discrepancies are 3.6, 8.2, 5.2 and 2.3G for proton, carbon,

nitrogen and oxygen, respectively. From Fig. 39.23, we see that the theoretical values

tend to be smaller in absolute value than the experimental values.

The convergence of the calculated HFSCs with respect to the order of R-operators

was also examined [142]. In Fig. 39.24, the HFSCs calculated by the SAC–CI SD-R and

general-R methods are compared with the full-CI values. The calculations are due to the

double-zeta basis sets because of the limitation of the full-CI calculations. The SAC–CI

values almost converge to the full-CI values when the R-operators are included up to

Fig. 39.23. Comparison between experimental and theoretical values [141] of the HFSCs for hydrogen (W),

carbon (D), nitrogen (A), and oxygen ( £ ) nuclei of the doublet radicals. The region of small HFSCs is enlarged

in the figure.
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triples. The SD-R method is also accurate for these values, since the electronic states of

these radicals are described by one-electron processes.

39.11 SUMMARY

The SAC–CI method was proposed in 1978 as an accurate electronic-structure theory

for the ground, excited, ionized and electron-attached states of atoms and molecules.

The method has been successfully applied to various photochemistry involving more

than 150 molecules and established to be a useful method for studying chemistry and

physics involving various electronic states. In this article, we gave a brief overview of

our SAC–CI applications to the molecular spectroscopy.

The theoretical and computational backgrounds were briefly explained. The SAC–CI

program system, now released through Gaussian03, can calculate the ground, excited,

ionized and electron-attached states of the singlet to septet spin multiplicities. The

program can include the higher order excitation operator up to 6-ple excitations. There-

fore, Gaussian users can study the various kinds of electronic states with the SAC–CI

program system.

The SAC–CI method calculates the excitation and ionization spectra which are

comparable in accuracy to the experimental spectra. The applications reviewed in this

-50
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Fig. 39.24. HFSC calculated by the SAC–CI SD-R, SDT-R, and full-CI method [142].

Chapter 391136



article are the excitation and/or ionization spectra of furan, thiophene, p-benzoquinone,

aniline, phthalocyanine and bacteriochlorophylls in the photosynthetic reaction center.

The SAC–CI study on the collision-induced absorption spectra clarifies the mechanism

of the transient absorption which is optically forbidden in the isolated atoms. The SAC–

CI method was also shown to be applicable to the inner-shell spectroscopies.

Various kinds of the theoretical spectroscopies for the transition metal complexes were

also reviewed. For the excitation spectrum of CrO2Cl2, the SAC–CI method simulated

accurate spectrum. For tetraoxo metal complexes, the systematic studies explained the

spectral differences when the central metal was substituted. In the analysis of the NMR

chemical shift, not only the optically allowed states but also the magnetically allowed

states are important. In the molybdenum complexes, the inverse of the d–dp excitation

energy is proportional to the experimental 95MO chemical shift. The photofragmentation

reaction of Ni(CO)4 was also studied and the reaction mechanism was clarified.

In the SAC–CI program, the analytical energy gradient is available for all the

electronic states calculated by the program. Therefore, the program can calculate the

force acting on the nuclei and the equilibrium geometry of all kinds of electronic states.

We reviewed the results for the ground and excited states of malonaldehyde, acetylene

and some small molecules. This first example showed that the combined use of LMOs

and the perturbation selection effectively reduces the computational cost without losing

the accuracy. In acetylene, the geometry of the low-lying two-electron excited states was

computed by the SAC–CI general-R method. The calculated structure parameters and

adiabatic excitation energy agree well with the experimental values, showing that the

SAC–CI method is useful for the studies of the molecular structures and reaction

dynamics in the excited states.

The SAC–CI method is also useful for studying the ESR hyperfine splitting constants

which characterize the electronic structure of radicals. It was shown that the STO–GTO

expansion method is useful for calculating the HFSCs of radicals with the conventional

GTO program: the HFSCs are calculated with the STO basis set which satisfies the cusp

condition at nuclei.
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CHAPTER 40

Forty years of Fenske–Hall

molecular orbital theory

Charles Edwin Webster and Michael B. Hall

Department of Chemistry, Texas A&M University, College Station, TX 77843, USA

Abstract

In this contribution, we revisit the so-called ‘Fenske–Hall’ molecular orbital (MO)

method, an approximate self-consistent-field (SCF) ab initio method that contains no

empirical parameters, which began almost 40 years ago in the research group of Richard

F. Fenske. We demonstrate for transition metal complexes that the non-empirical

Fenske–Hall (FH) approach provides qualitative results that are quite similar to the more

rigorous treatment given by density functional theory (DFT) and are quite different from

Hartree–Fock–Roothaan (HFR) calculations which have no electron correlation. For

example, the highest occupied molecular orbital of ferrocene is metal based for both DFT

and FH while it is ligand (cyclopentadienyl) based for HFR. In the doublet (S ¼ 1/2)

cluster, Cp2Ni2(m-S)2(MnCO)3, the unpaired electron is delocalized over the complex in
agreement with the DFT and FH results, but localized on Mn in the HFR calculation. A

brief description of the theory of FH calculations is used to rationalize the origin of its

similarity to DFT.

40.1 INTRODUCTION

This special issue celebrating 40 years of computational chemistry seems an appropriate

venue to revisit the so-called ‘Fenske–Hall’ molecular orbital (MO) method. This

approximate molecular orbital theory had its origins almost exactly 40 years ago when

Richard F. Fenske joined the Department of Chemistry at the University of Wisconsin,

Madison. Thus, the method might be more properly called the ‘Fenske’ method or the

Fenske, Radtke, Caulton, DeKock, Hall method as the early development [1] involved

many students in addition to one of the authors above (MBH). The name ‘Fenske–Hall’

was generated not by the first papers on the development of the method, but by the last

paper on its theoretical development [2]. The method is still in use today and has

q 2005 Elsevier B.V. All rights reserved.
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remained essentially unchanged for the past 30 years. However, important extensions

have been made in adding elements containing f electrons [3] and extending the method

to solid-state band-structure calculations [4].

The method is an approximate self-consistent-field (SCF) ab initio method, as it

contains no empirical parameters. All of the SCF matrix elements depend entirely on the

geometry and basis set, which must be orthonormal atomic orbitals. Originally, the

impetus for its development was to mimic Hartree–Fock–Roothaan [5] (HFR)

calculations especially for large transition metal complexes where full HFR calculations

were still impossible (40 years ago). However, as we will show here, the method may be

better described as an approximate Kohn–Sham (KS) density functional theory (DFT)

[6]. Early hints that Fenske–Hall (FH) calculations had some advantage over full HFR

calculations came from comparisons of the FH molecular orbital energies with the

experimental ionization energies from gas-phase ultraviolet photoelectron spectroscopy

[2,7,8], where the order of MOs paralleled the order of states from the PES better for FH

calculations than for HFR calculations. In other words, Koopmans’ theorem [9] seemed

to work better for Fenske–Hall than for HFR calculations.

40.2 ILLUSTRATIVE EXAMPLE

Before describing the Fenske–Hall method itself, we will examine an example of the

behavior described above. Our example will be ferrocene (h5-C5H5)2Fe, whose
qualitative molecular orbital diagram is shown in Scheme 40.1. The principal bonding

Scheme 40.1.
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interactions occur between the p orbitals of the C5H5 (Cp) ring and the 3d, 4s, and 4p

orbital of the Fe. The formal oxidation states are usually assigned such that the Cp

ring is the 6p-electron anion, Cp2, and the iron is the 6 d-electron dication, Fe2þ. The
p orbitals of a single Cp2 transform in D5h point group as the a002 (the low-lying

symmetric linear combination), the e001 (the doubly degenerate, highest occupied

molecular orbital, HOMO) and the e002 (the doubly degenerate, lowest unoccupied

molecular orbital, LUMO). Two of these rings then ‘sandwich’ the Fe between them

in forming the D5h ferrocene structure. Thus, the p orbitals of two Cp2 rings form

symmetric and antisymmetric combinations (with respect to the molecular plane

through the Fe atom). The two lowest lying p combinations, a01 and a002, are stabilized
by a 3dz2 þ 4s combination and the 4pz orbital of Fe, respectively. The Cp

2 HOMOs

form the e001 and the e01, which are strongly and weakly stabilized by the 3dxz(3dyz) and
4px(4py), respectively. Finally, the Fe 3dxy(3dx22y2) pair are stabilized by the Cp

LUMO combination of e02 symmetry. These interactions leave the 3dz2 2 4s

combination as the non-bonding HOMO of ferrocene.

Fenske–Hall calculations and most qualitative descriptions correspond to this MO

description [10]. Table 40.1 and Scheme 40.2 compare the experimental ionization

energies for ferrocene [11] with theoretical determinations [12] based on Koopmans’

theorem for DFT(B3LYP/6-31G), DFT(BVP86/6-31G), FH, and HFR/6-31G. In

terms of the absolute ionization energies (IE), the DFT calculations are much closer

to the experimental values and have the correct order for the first two ion states

(lowest IEs) [13]. Both B3LYP and BVP86 produce the same orbital ordering and

very similar orbital plots (not shown). Except for these two close lying, mainly metal

orbitals, the Fenske–Hall results show the same order for the orbitals as the DFT

results. The absolute energies from the Fenske–Hall calculations are closer to the

HFR results.

However, the HFR results have very different order to the MOs than either DFT or

FH, which are rather similar in order. Because of the very non-local nature of the

Hartree–Fock exchange and compact 3d orbitals, which produces large exchange

integrals for the 3d electrons, the Fe orbitals lie lower in energy than the more diffuse

Cp2 MOs. Thus, the incorporation of exact exchange (Fermi correlation) and the

neglect of true electron correlation (Coulomb correlation) in the HFR calculations

result in more ionic bonding and less mixing between the Fe and Cp orbitals. These

differences can be seen in the orbital plots shown in Fig. 40.1, especially in the plots of

Table 40.1 Vertical ionization energy (eV) [11] and orbital energies (eV) from various methods

Region [11] PES (eV) [11] B3LYP BVP86 FH HFR

LUMO 0.01 21.33 21.29 4.19

A0 6.86 HOMO 25.23 23.99 29.00 29.31

7.21 26.18 24.26 210.28 29.33

A00 8.77 26.76 26.10 213.32 211.63

9.28 27.28 26.63 214.37 213.53

B 12.2 29.78 28.84 218.37 214.06

13.3 210.25 29.13 218.52 214.20
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the e02, which shows this metal combination to be stabilized by in-phase mixing with
the LUMOs of the Cp’s in the DFT and FH MOs, but to be destabilized by out-of-

phase mixing with low-lying s Cp orbitals in the HFR MO.

At the time of its development no thought was given to the idea that FH might be an

approximation to DFT, as HFR theory seemed to be the ‘holy grail’. However, now it

is apparent that the FH method produces MOs and orbital energy orderings that seem

to be more like those from DFT than those from HFR. Some of this observed similarity

is built into the FH method as we will illustrate below.

40.3 THEORY

Here, we will not provide a detailed derivation of the Fenske–Hall theory beginning

from the HFR equations as the reader may refer to the original reference [2]. Instead,

we will provide a conceptual derivation that will allow us more freedom to comment

on its relationship with DFT.

The FH method assumes that the Fock/Kohn Sham (KS) operator can be written as

F ¼ 2
1

2
72 þ

X
A

VA ð1Þ

i.e. the electron’s kinetic energy plus a potential due to the nuclei and all the other

electrons on each atom in the system. Thus, the FH method must be able to partition

the electron density and assign it to individual atomic centers. Traditionally, FH did this

through the Mulliken populations analysis [14], but one could use some other

procedure.

Scheme 40.2.
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For a diagonal matrix element, orbital a on center A

Faa ¼ kalFlal ¼ ah j2 1

2
72 þ VA aj i þ

X
B–A

kalVBlal ð2Þ

The first term is the atomic orbital (AO) energy for a: This AO energy, 1a; represents the
kinetic energy, nuclear attraction, coulomb repulsion, and exchange term for the electron

in AO a on center A, and

1a ¼ ah j2 1

2
72 þ VA aj i ¼ ah j2 1

2
72 2

ZA
rA

þ Vco þ Vex aj i ð3Þ

Fig. 40.1. A comparison of the DFT-B3LYP/6-31G (left), FH (center), and HFR/6-31G (right) e001 (LUMO), e02
(HOMO), a01, e01, e001, a002 calculated orbitals of ferrocene. The orbital plots from DFT-BVP86/6-31G (not shown)

are virtually identical to the DFT-B3LYP/6-31G orbital plots.
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The kinetic energy and nuclear attraction are calculated exactly for the AO a, while the

coulomb term is

kalVcolal ¼
X
a0ðAÞ

Pa0gða0; aÞ ð4Þ

where a0 runs over other AOs (or subshell) on center A, Pa0 is the Mulliken population of
the AO (or subshell), and gða0; aÞ is the state averaged electron repulsion integral for each
atomic subshell [15]. Since many metal–ligand bonds are relatively weak compared to

the strong covalent bonds in first-row main group molecules, it was believed important

that these AO energies were correct for a single free atom. Thus, the exchange term

instead of being weighted by a Mulliken population, as it is in typical zero differential

overlap (ZDO) procedures, was taken to represent the complete removal of one-electron

(removal of all self-exchange)

kalVexlal ¼ 2gða; aÞ ð5Þ
Clearly this exchange term is quite different from the HFR situation, in which the

exchange integrals contain multicenter terms and are weighted by the density matrix

Fig. 40.1. (continued ).
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terms. Furthermore, because a full (unweighted by the density) exchange integral is

subtracted, the FH term and HFR diagonal term will have similar coulomb and exchange

only when the Mulliken population of AO a ðPaÞ is 2.0. In other words, FH exchange has

local character, like DFT, and in most cases somewhat more exchange than HFR. The

exact exchange in HFR theory leads to molecular orbitals that are less covalently mixed

between the metal and ligands because more ionic bonds have larger exchange, especially

for first-transition row metals [16]. Both FH and DFT have more mixing in the metal–

ligand bonding MOs, as shown above for ferrocene.

The two-center term in these diagonal matrix elements contains the nuclear attraction

and electron repulsion for all the other atoms in the systems. In FH these were both set to

the point-charge classical limit. Thus,

kalVBlal ¼ 2qB
RAB

ð6Þ

where qB is the Mulliken charge on atom B. This approximation is similar to that used in

other approximate MO schemes, where the 1=RAB term is often replaced with a reduced

integral, gAB; especially in many ZDO schemes.

Fig. 40.1. (continued ).
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For the two-center off-diagonal matrix elements, a kinetic energy operator is added to

and subtracted from Eq. (1) so that

Fab ¼ ah j2 1

2
72þVA bj iþ ah j2 1

2
72þVB bj i2 ah j2 1

2
72 bj iþ

X
C–A;B

kalVClbl ð7Þ

Then, it is assumed that each AO is an eigenfunction (1) of the kinetic energy and

potential term for that center [17] and the Mulliken and point charge approximation are

applied to the three-center potential terms. In the Fenske–Hall calculation, the two-center

kinetic energy is calculated for the given basis set and subtracted as shown in Eq. (8)

Fab ¼ Sab1aþ Sab1b2 ah j2 1

2
72 bj iþ 1

2
Sab

X
C–A;B

2qB
RAC

þ 2qC
RBC

� �
ð8Þ

Because the Mulliken approximation is less accurate for the kinetic energy, i.e.

ah j2 1

2
72 bj i–

�
Sab a2

1

2
72

���� ����a� �
þ b2

1

2
72

���� ����b� �� � ��
2 ð9Þ

the eigenvalue approximation used above convolutes the kinetic and potential energy in

an odd way, again reminiscent of DFT. One-center off-diagonal terms are set to zero.

Although FH does not have any explicit or implicit operator corresponding to the

correlation functional of DFT, for molecules FH has excess exchange energy, which to

some degree mimics the missing correlation functional. This excess exchange energy

arises from the fact that FH subtracts a full one-center coulomb integral to account for

removal of self-exchange, while for HFR theory the magnitude of self-exchange in a

delocalized MO is less because it is weighted by the density and contains multi-center

exchange integrals. The result of this excess exchange can be seen in the orbital energies

of the p system of the Cp ring, which are stabilized more than those in the HFR

calculation. However, FH does not have the variational freedom to contract the AOs in

response to this excess exchange. Furthermore, because FH treats the exchange

somewhat like a simple exchange correlation functional, such as Xa [18], the virtual

orbitals in FH see the potential due to , ðn2 1Þ electrons rather than n electrons as in
HFR theory. Thus, like DFT calculations, the HOMO–LUMO gap for a given compound

is smaller in FH than that in HFR calculations.

40.4 TRANSITION METAL CLUSTERS

As the system becomes larger one might expect to see larger deviations between Fenske–

Hall and DFT results. However, as we will illustrate here the results are surprisingly

similar. Fenske–Hall almost always has the same HOMO and the same LUMO as DFT.

In the following two subsections, we will describe the bonding description derived from

Fenske–Hall calculations and then for one complex compare the FH results with those

produced by both HFR and DFT (B3LYP) calculations and for the other complex

compare to results of DFT (B3LYP) calculations.
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The electronic structure of Cp2Ni2(m-S)2(MnCO)3 (S ¼ 1/2 ground state) has been

described by Fenske–Hall calculations [19]. Here, we will describe those results first and

then compare them with DFT and HFR calculations. The MO diagram shown in Scheme

40.3 was obtained by using a suitable combination of the requisite atomic and fragment

orbitals described below. The left-hand side of Scheme 40.3 shows the molecular orbital

structure of the two principal transition metal fragments, Mn(CO)3 and CpNi. As

expected for pseudo-octahedral fragments, the MO splittings show three low-lying

occupied orbitals from the pseudo-octahedral ‘t2g’ set and two higher lying orbitals from

the ‘eg’ set, which contain three electrons for CpNi and one electron for Mn(CO)3. The

next lowest-lying orbital for each fragment has a1 symmetry. The right hand of Scheme

40.3 shows the combination of two CpNi fragments with two bridging sulfurs to form the

Cp2Ni2(m-S)2 fragment, followed by the attachment of Mn(CO)3. The key frontier

orbitals of the Cp2Ni2(m-S)2 fragment are pictured in Scheme 40.4; these representations

Scheme 40.3. The MO diagram for Cp2Ni2(m-S)2(MnCO)3 for its experimentally determined geometry.
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are schematics of the principal orbital character as derived from 3D visualizations of the

MOs. In forming the Cp2Ni2(m-S)2 fragment, the principal bonding interactions occur
between the CpNi 2a1 and 2e1 orbitals and S 3p orbitals. The ‘t2g’ orbitals (1e2 and 1a1)

and CpNi bonding orbitals (1e1) of the CpNi fragment remain occupied and essentially

non-bonding in Cp2Ni2(m3-S)2 and the cluster, but they complicate the MO diagram

because they occupy the same energy region as the cluster bonding pairs. The 17a0, 15a00,
and 16a00 Cp2Ni2S2 fragment orbitals correspond to the higher lying occupied

combinations of these ‘t2g’ like orbitals and are essentially non-bonding with respect

to the cluster. The four Ni–S bonding orbitals in the Ni2S2 ‘plane’ are 17a
00 [composed of

(CpNi)2 2e1, 1a1 and S 3p], 18a
00 [(CpNi)2 2a1, 1e2 and S 3p], 20a0 [(CpNi)2 2a1, 1a1, and S

3p], and 21a0 [(CpNi)2 2e1 and S 3p]. The remaining Cp2Ni2S2 fragment orbitals, 19a0

[composed of (CpNi)2 2e1 and S 3p], 22a
0 [(CpNi)2 1e2 and S 3p], 19a00 [(CpNi)2 2e1], and

23a0 [(CpNi)2 2e1 and S 3p], are mainly perpendicular to the Ni2S2 ‘plane’.
As shown in Scheme 40.3, combining the frontier orbitals of Cp2Ni2(m-S)2 with the

frontier orbitals of Mn(CO)3 (shown in Scheme 40.4) generates 11 high-lying orbitals for

Cp2Ni2(m-S)2(MnCO)3; for clarity, the non-bonding ‘t2g’ orbitals of the Cp2Ni2S2 in this
energy region are not shown. Seven of these final orbitals (26a0, 22a00, 25a00, 28a0, 29a0,
30a0, and 31a0) are used for cluster bonding. Three of the seven cluster bonding orbitals,
22a00 (17a00 Cp2Ni2S2 fragment orbital), 29a0 (20a0 Cp2Ni2S2 fragment orbital), and 30a0

(21a0 Cp2Ni2S2 fragment orbital), primarily contribute to cluster bonding by providing
interactions between the two CpNi and two S fragments. The four remaining of these

seven cluster bonding orbitals, 26a0 [composed of 19a0 Cp2Ni2S2 and 2a1 Mn(CO)3

Scheme 40.4. Diagrams of frontier orbitals of Cp2Ni2(m-S)2 and Mn(CO)3.

Chapter 401152



fragment orbitals], 25a00 [18a00 Cp2Ni2S2 and 2e Mn(CO)3], 28a0 [22a0 Cp2Ni2S2 and 2e
Mn(CO)3], and 31a

0 [23a0 Cp2Ni2S2 and 1e Mn(CO)3], contribute to cluster bonding
between the Cp2Ni2(m-S)2 and Mn(CO)3 fragments. The principal Mn–Ni bonding arises

from molecular orbital 25a00 and 31a0 shown in Fig. 40.2. It is somewhat unexpected that
one of the ‘t2g’ pairs of theMn(CO)3 fragment enters into cluster bonding, as it does inMO

31a0, by donating electron density to the empty Cp2Ni2S2 23a0 orbital because standard
skeletal electron pair counting usually does not count ‘t2g’ electron pairs from theMn(CO)3
fragment as contributors [19]. Three of the four remaining orbitals (26a00, 32a0, and 27a00)
are essentially non-bonding with respect to the Cp2Ni2(m-S)2 and Mn(CO)3 fragment

interactions. There is a small contribution to cluster bonding from donation of electrons

from the 19a00 to one of the ‘eg’ orbital of theMn(CO)3 fragment in forming the cluster MO
27a00. The remaining orbital, 33a0, is the singly occupied MO (shown in Fig. 40.3) and has

antibonding character with respect to the Mn–Ni interactions, but bonding character

between the Mn and the two S. The percent Mn character derived for the singly occupied

Fig. 40.2. The two MOs containing the principal Mn–Ni bonding of Cp2Ni2(m-S)2(MnCO)3 from FHMO

calculations: (a) is 25a00; (b) is 31a0.
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HOMO is approximately 20% for the FH calculation, which is in reasonable agreement

with the value derived from EPR measurements (approximately 13%) [20].

One can see from the comparison of the B3LYP, FH, and HFR frontier regions

(Figs. 40.4 and 40.5) that the calculated B3LYP and FH orbitals are quite similar, but

both are very unlike the HFR orbitals. The low symmetry of this complex ðCsÞ allows for
a great deal of mixing for these closely spaced orbitals (spanning only approximately

2 kcal mol21) and accounts for the minor differences between the B3LYP and FH frontier

Fig. 40.3. The FH singly-occupied HOMO 33a0 of Cp2Ni2(m-S)2(MnCO)3.

Fig. 40.4. A comparison of the DFT-B3LYP/6-31G (left), FH (center), and HFR (right) LUMO, HOMO, and

HOMO-1 of Cp2Ni2(m-S)2(MnCO)3.
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Fig. 40.5. A comparison of the DFT-B3LYP/6-31G (left), FH (center), and HFR (right) HOMO-2 to HOMO-8

of Cp2Ni2(m-S)2(MnCO)3.
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ordering. The B3LYP and FH LUMO, HOMO, and HOMO-1 are quite similar and are in

the same ordering, but the ordering of the deeper orbitals differ slightly. However, there

are still many closely corresponding orbitals: B3LYP HOMO-2 and FH HOMO-3;

B3LYP HOMO-4 and FH HOMO-2; B3LYP HOMO-5 and FH HOMO-5; and B3LYP

HOMO-6 and FH HOMO-7. The remaining differences can be accounted for by the

mixing mentioned above.

The B3LYP and FH singly occupied HOMOs are delocalized across the complex and

have very similar percentages of Mn character, and the B3LYP and FH LUMO are

similar except for slightly less Mn character in the B3LYP LUMO. However, HFR

calculations provide frontier orbitals that are very heavily Cp and S based with very

little metal character. The Mulliken atomic spin density for B3LYP gives the unpaired

electron on Mn at about 7% (FH 20%, exp. 13%, see above); but the Mulliken atomic

spin density for the HFR calculation provides a very different picture: the excess spin is

very localized on the Mn, approximately 100%. The HFR orbital (shown in Fig. 40.6)

that contains this Mn character is not in the frontier region, but 25 orbitals below the

HOMO, and is lower in energy than the HOMO (by approximately 7.3 eV) [21]. The

ground state HFR wavefunction (a doublet, one unpaired electron) also has a large

amount of spin contamination, while the ground state B3LYP wavefunction (again, a

doublet) has very little spin contamination. For the HFR wavefunction, the value of S2

ðS2 ¼ n=2ððn=2Þ þ 1ÞÞ where n ¼ number of unpaired electrons, S2 ¼ 0.75 for the pure

doublet (S ¼ 1/2) state is 2.75 and 5.04 before annihilation of the quartet and after

annihilation of the quartet, respectively, while for the B3LYP wavefunction it is 0.809

and 0.752 before annihilation of the quartet and after annihilation of the quartet,

respectively. Therefore, higher spins (such as the sextet) are strongly contaminating the

HFR ground state, but not the B3LYP wavefunction (FH produces a restricted result

without any spin contamination).

Fig. 40.6. The HFR/6-31G orbital of Cp2Ni2(m-S)2(MnCO)3 that contains the unpaired electron which from

HFR is mostly localized on the Mn.

Chapter 401156



Here, we will describe the FH results of the Ru3(CO)12[Pd(PR3)] cluster [22] first and

then compare those with DFT calculations. One can easily envision how this cluster can

be assembled from three Ru(CO)4 units and three Pd(PR3) units, but one wonders how

this is accomplished in an orbital sense and why the dimer of trimers is distorted to a C3-

like structure rather than having a higher symmetry D3-like structure. The bridging CO

was assigned to Ru because its s-donor orbital was directed more toward Ru than Pd. The
key low-lying orbitals are shown diagrammatically in Scheme 40.5. The Ru(CO)4
appears most like a trigonal bipyramid with a missing ligand. As this neutral fragment

would have a d8 configuration, the HOMO is the dxz, the d orbital that would have been

stabilized by the missing CO in the fully ligated Ru(CO)5 molecule (see Scheme 40.5).

The LUMO is the ‘sp2’ hybrid that would have been destabilized by accepting the fifth

COs lone pair (see Scheme 40.5). The last orbital of importance on the Ru(CO)4 fragment

is the low-lying pp orbital on the distorted CO (LUMO þ 1). This distortion (a Ru–C–O

angle of ,1408 rather than 1808) arises from the clockwise (or counter clockwise)

twisting of each Ru(CO)4 unit to place one CO closer to each Pd. The distortion lowers

the energy of this LUMO þ 1 orbital because it is now less effective in back bonding to

the Ru. We will return to the origin of this twisting and subsequent distortion later after

describing the bonding in the structure as found. The key orbitals of the Pd(PR3) fragment

Scheme 40.5.
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Fig. 40.7. Fragment molecular orbitals that produce the three-center/two-electron bonds (one of three by

symmetry), which constitute the principal metal-to-metal bonding interactions of Ru3(CO)12[Pd(PR3)].

Fig. 40.8. Pd(PR3) fragment HOMO that donates electron density to the LUMO þ 1 of the Ru(CO)4 fragment,

primarily pp orbital of the semibridging CO.
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are somewhat simpler (see Scheme 40.5). The HOMO is the z2; the d orbital pointing
away from the only ligand in this d10 fragment, while the LUMO is the ‘sp’ hybrid

pointing in the same direction.

When three Ru(CO)4 and three Pd(PR3) fragments assemble into the cluster, the

principal metal–metal bonding arises from the HOMO of one Ru donating electron

density into both the LUMO of the Pd opposite the bridging CO and the LUMO of the

Ru on the other side. Three of these three-center, two-electron bonds constitute the

principal metal-to-metal bonding molecular orbitals, one of these interactions is shown in

Fig. 40.7, which shows the actual fragmentMOs from fragment Fenske–Hall calculations

(these are the same fragment orbitals shown diagrammatically in Scheme 40.5, here, they

are shown in their correct relationship to each other). An important secondary interaction

is shown in Fig. 40.8, where the HOMO of the Pd(PR3) fragment (in particular the ‘donut’

Scheme 40.6.
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of the dz2) donates electron density to the LUMO þ 1 of the Ru(CO)4, the p
p orbital of the

semibridging CO.

Now, one may wonder why the Ru(CO)4 distorts such that the secondary interaction

described above is unsymmetrical. In a more symmetrical structure the COs on both sides

of the Ru could accept electron density from the Pd HOMO. So the distortion most likely

has another origin, i.e. the bent Ru–C–O structure and the subsequent ‘one-side’ Pd to

CO(Ru) back bonding is a response to the distortion not the driving force.

The driving force for the distortion arises from a second-order Jahn–Teller (JT) effect

[23], because in a high-symmetry point group, such as D3h or C3v; the irreducible

representations of symmetry-adapted linear combinations of the Ru(CO)4 HOMOs have

an incomplete correspondence to irreducible representations of the symmetry adapted

LUMOs of the neighboring fragments. Thus, the Ru(CO)4 twists to reduce the symmetry

and maximize its interaction with its neighbors. A complete analysis of the second-order

JT effect is illustrated in Scheme 40.6. For the purpose of this analysis, the molecular

electronic structure will be represented simply by two triangular metal clusters one with

three Ru fragments and one larger triangle, rotated 608, with three Pd fragments. For the

main metal-to-metal bonding there are three donor orbitals on the Ru (RuHOMO) and six

acceptor orbitals, three on Ru (RuLUMO) and three on Pd (PdLUMO). In the highest

possible local symmetry, D3h; the Ru3
LUMO and Pd3

LUMO orbitals transform as a01 and e0, as
shown in Scheme 40.6a. These two sets of LUMOs interact with each other (as shown by

the orbital interaction diagram in Scheme 40.6a) to form in-phase, lower lying

combinations and out-of-phase higher lying combinations.

Thus, one now has a set of strong acceptor orbitals involving all six metal atoms that

transform as a01, a01p, and e0 (the Ru3Pd3LUMO orbitals shown in Scheme 40.6a). The primary

Fig. 40.9. HOMO of the Ru3(CO)12[Pd(PR3)] cluster.
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metal-to-metal bonding occurs when these Ru3Pd
LUMO
3 orbitals accept electron density

from the RuHOMO3 orbitals, the symmetry-adapted linear combinations of the latter

orbitals are shown interacting with the Ru3Pd
LUMO
3 set in Scheme 40.6b. However, since

the RuHOMO3 set transforms as a02 and e0, not a01 and e0, there is a symmetry mismatch and in
D3h or C3v (a2, a1, and e) point groups. Thus, all three pairs of electrons from the RuHOMO3

Fig. 40.10. A comparison of the DFT-B3LYP/BS2 (left) and FH (right) LUMO to HOMO-4 of Ru3(CO)12
[Pd(PR3)]3.
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Fig. 40.10. (continued ).
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set cannot be used for bonding in a high symmetry situation. This dilemma is illustrated in

the orbital interaction diagram in Scheme 40.6b, which shows a suitable bondingRu3Pd
INT
3

interaction for the e0 arising from the e0 of the RuHOMO3 donating to the e0 of the Ru3PdLUMO3 :
However, in this high symmetry both the occupied RuHOMO3 a02 and the unoccupied

Ru3Pd
LUMO
3 a01 and a01p must remain non-bonding as the energy diagram shows and as is

illustrated in the linear combination a01 þ a02 þ a01p, where one can see that the a02
combination has zero overlap by symmetrywith a01 and a01p. The dilemma can be resolved by
twisting the Ru(CO)4 so that the symmetry drops to C3 point group and the a

0
1 and a

0
2 both

become a symmetry in Ru3Pd
FINAL
3 and their mutual interaction will stabilize the occupied

combination as shown in Scheme 40.6c; the HOMO for Ru3Pd
FINAL
3 is shown in Fig. 40.9.

One can see from the comparison of the frontier B3LYP and FH orbitals (Fig. 40.10)

that the calculated orbitals are quite similar. Comparing the two sets of orbitals at the

same contour levels, the LUMOs are similar, but there is more Pd character in the FH

orbital. For the HOMO, the B3LYP orbital has less (Ru)3 overlap than the FH orbital, and

the FH orbital has virtually no Pd character. The two sets of e orbitals have similarities,

but the Pd character is less consistent between the two calculations (because these two

orbitals are mixing slightly with each other). The non-degenerate HOMO-3 is again quite

similar for the two calculations. We also know from DFT geometry optimizations of this

complex that the observed reduction in symmetry is from intramolecular forces

(presumably those described in Scheme 40.6c) and not from crystal packing. The higher

symmetry C3v species is slightly higher in energy (,1 kcal mol21) than the C3 geometry,

and the approximate D3h species is even higher in energy because optimal overlap is

reduced since all of the equatorial atoms must be in the same plane.

40.5 CONCLUSIONS

We have shown through several examples that the non-empirical Fenske–Hall approach

provides qualitative results that are quite similar to the more rigorous treatment given by

DFT for transition metal complexes, both for single transition metal complexes as well as

for larger cluster complexes.
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Abstract

Recent developments in advanced quantum chemistry and quantum chemistry interfaced

with model potentials are discussed, with the primary focus on new implementations in

the GAMESS electronic structure suite of programs. Applications to solvent effects and

surface science are discussed.

41.1 INTRODUCTION

The past decade has seen an extraordinary growth in novel new electronic structure

methods and creative implementations of these methods. Concurrently, there have been

important advances in ‘middleware’, software that enables the implementation of efficient

electronic structure algorithms. Combinedwith continuing improvements in computer and

interconnect hardware, these advances have extended both the accuracy of computations

and the sizes of molecular systems to which such methods may be applied.

The great majority of the new computational chemistry algorithms have found their

way into one or more broadly distributed electronic structure packages. Since this work

focuses on new features of the GAMESS (General Atomic and Molecular Electronic

Structure System [1]) suite of codes, it is important at the outset to recognize the many

other packages that offer both similar and complementary features. These include ACES

[2], CADPAC [3], DALTON [4], GAMESS-UK [5], HYPERCHEM [6], JAGUAR [7], MOLCAS [8],

MOLPRO [9], NWCHEM [10], PQS [11], PSI3 [12], Q-CHEM [13], SPARTAN [14], TURBOMOLE

[15], and UT-CHEM [16]. Some [1,3,4,10] of these packages are distributed at no cost to

all, or to academic users, while others are commercial packages, but all are generally

available to users without restriction or constraint. Indeed, the developers of these codes

frequently collaborate to share features, a practice that clearly benefits all of their users.

q 2005 Elsevier B.V. All rights reserved.
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The remainder of this chapter is organized as follows. In Section 41.2, recently

developed and implemented methods in quantum mechanics (QM) are discussed. New

scalable methods for correlated wavefunctions are presented in Section 41.3, and several

approaches for interfacing quantum mechanics with molecular mechanics (MM) are

considered in Section 41.4. Conclusions and projections into the future are provided in

Section 41.5.

41.2 QM METHODS

41.2.1 Variational methods

The simplest variational methods are Hartree–Fock (HF) and density functional theory

(DFT), both of which are available in GAMESS. In principle, DFT is an exact, ab initio

method, but in practice, since one does not know the exact density, it has become a very

successful semi-empirical method, with several parameters that are fitted either to

experiment or to simple models like the non-interacting homogeneous electron gas. DFT

has been implemented in GAMESS using both the traditional grid-based approach and a

grid-free method, due originally to Almlof [17a] and extended by Glaesemann and

Gordon [17b], that employs the resolution of the identity (RI) to facilitate formulating

DFT in algebraic form. Several of the most commonly used functionals are available in

GAMESS, including B3LYP and BLYP.

In the 1950s, Löwdin [18] showed that a wavefunction that includes all possible

excitations from the reference wavefunction (usually the electronic ground state) is the

exact wavefunction for the given atomic basis. Therefore, this level of theory, commonly

called full configuration interaction (full CI), is the benchmark against which all

advanced QM methods that include electron correlation may be measured. Indeed any

level of CI, perturbation theory, or coupled cluster theory can be extracted from a full CI

wavefunction and compared with the exact result. It is therefore very useful to develop

and implement a full CI method that can be applied to as large an array of atomic and

molecular species as possible. Such a full CI code based on a determinant, rather than a

configuration, expansion has been developed by Ivanic and Ruedenberg [19] and

implemented into GAMESS.

A special case of full CI is the complete active space self-consistent field (CASSCF)

or fully optimized reaction space (FORS) approach in which one defines an active space

of orbitals and corresponding electrons that are appropriate for a chemical process of

interest [20]. The FORS wavefunction is then obtained as a linear combination of all

possible electronic excitations (configurations) from the occupied to the unoccupied

(virtual) orbitals in the active space, so a FORS wavefunction is a full CI within the

specified active space. Since a full CI provides the exact wavefunction for a given atomic

basis, there is no need to re-optimize the component molecular orbitals. On the other

hand, a FORS wavefunction generally corresponds to an incomplete CI, in the sense that

only a subset of configuration (or determinant) space is included. Therefore, one also

optimizes the molecular orbital coefficients to self-consistency. The calculation of a full

CI wavefunction is extremely computationally demanding, scaling exponentially with
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the number of atomic basis functions. Its use is therefore currently limited to either very

small molecules with extended basis sets or molecules of modest size with modest basis

sets. Therefore, even though new algorithms and computer hardware are expanding the

range of applicability of full CI wavefunction, the FORS/CASSCF multi-configurational

self-consistent-field (MCSCF) method is very powerful for a variety of applications. The

method is especially important when one encounters near degeneracies. There are a great

many phenomena in chemistry and related fields in which near degeneracies occur.

Examples include:

– crossings or near-crossings of potential energy surfaces, in which non-adiabatic

interactions become important;

– diradicals, such as those that occur during bond-breaking processes and near

transition states in chemical reactions;

– atomic and molecular species that have multiple close-lying electronic states, such

as unsaturated transition metal compounds and high-energy metastable

compounds.

Because of the associated resource (e.g. memory and disk) requirements for MCSCF

calculations, the size of the active space is effectively limited to approximately 16 active

electrons in 16 active orbitals. This seems somewhat limiting at first thought, since such

an (16,16) active space is only slightly larger than a full valence active space for a

molecule like ethane. However, in many chemical processes that involve large molecules

only a small number of electron pairs are changing in any significant manner. So, MCSCF

methods can frequently be applied to rather large problems, as long as the active space

remains tractable. In recent years, FORS calculations have been applied to such complex

species as 7-azaindole (7AI) [21], 7-AI interacting with water in ground and excited

electronic states [22], the 7-AI dimer [23], large clusters that simulate the Si (100)

surface, including up to five dimers (Si33H28) [24], and the oxidation and etching reaction

mechanisms of these silicon clusters [25]. Such large applications are made possible, in

part, by a suite of MCSCF algorithms in GAMESS that render the iterative process more

effective and efficient. These methods range from very simple first-order methods that

have small resource requirements and require more iterations to highly resource-

demanding full Newton–Raphson methods that are rapidly convergent but considerably

more resource-demanding. A compromise method employs an approximate second-order

iterative (SOSCF [26]) procedure that is the default convergence option in GAMESS.

Even with efficient algorithms, MCSCF calculations eventually run out of steam as

the size of the required active space increases. In order to expand the sizes of active

spaces that can be included in a molecular calculation, Ivanic has developed and

implemented into GAMESS the occupation restricted multiple active spaces (ORMAS)

method [27]. In the spirit of methods like restricted active space SCF [28] (RASSCF)

and quasi CAS (QCAS) [29], ORMAS divides the desired active space into multiple

active subspaces that are chemically separable, thereby expanding the effective size of

the orbitals and electrons in an active space. The advantage of the ORMAS approach is

the complete flexibility in the number of active spaces and the manner in which they are

defined. Fig. 41.1 illustrates the efficiency of the ORMAS method on an important

biological compound, oxo(Mn)Salen [27]. It is clear from this figure that subdividing
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the full CASSCF (12,11) active space six subspaces results in errors of the order of only

1–3 mh in the total energy and 2 kcal/mol in the dissociation energy for different

electronic spin states. This is extraordinary, given the fact that ORMAS requires two

orders of magnitude fewer determinants than the full CASSCF!

Since, as noted above, a full CI provides the exact wavefunction for a given atomic

basis, it is useful to expand the size of molecules for which a full CI wavefunction is

accessible. Because of the large resource demands for full CI calculations, it is therefore

important to devise ways in which one can approach the accuracy of a full CI

wavefunction with a significantly reduced effort. The Ruedenberg group has devised two

approaches that achieve this goal, both of which have been implemented in GAMESS. In

the first, Ruedenberg, Ivanic and Bytautas have used the full CI code and a systematic

analysis of single, double, triple,… excitations to develop a general method for

eliminating the ‘deadwood’ from the full CI wavefunction [30]. Making use of localized

MCSCF orbitals (LMOs), they have shown for several test cases that roughly 90% of the

configurations in a full CI list can be eliminated while retaining millihartree accuracy.

Fig. 41.2 illustrates the effectiveness of this approach by comparing the model energies

vs. the known CCSD(T) correlation energies for 38 small to moderate size molecules,

with a mean absolute deviation of less than 3 mh. The error in relative energies, for

example for chemical reactions, is likely to be much less.

The use of localized orbitals leads to the recognition that interactions that are further

from each other than vicinal (three bonds) can be safely ignored in a correlation

Mn

O

OO

NN

Cl
Rπ1 Rπ2

CASSCF Active space = 12 electrons in 11 orbitals:

(Rπ1, Rπ1*, Rπ2, Rπ2*, 3xMn-O, 3xMn-O*, d[Mn])
Predicts spontaneous dissociation of O when going from S=0 (d2) to S=1 (d1π*1) transition.

ORMAS Same active space as CASSCF, divided into 6 groups. Also predicts spontaneous dissociation when going from
S=0 to S=1.

No. of Dets (S = 0) (S = 1) Mn(Salen) (S = 2)

CAS-SCF 63,504 152,460 784
ORMAS 2,424 8,836 168
Differences in energy,
E(ORMAS) – E(CASSCF)

(S = 0) (S = 1) (S = 2)
∆E (millihartree) 1.5 1.6 3.5
Dissociation energies (kcal/mol):
oxoMn(salen) → Mn(salen) + O

(S = 0) (S = 1)
CAS-SCF −33.4 −31.5
ORMAS −31.4 −29.6

Fig. 41.1. Test of ORMAS method on oxoMn(Salen) complex.
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calculation. The extension of a general CI method such as that developed by the

Ruedenberg group to a general MCSCF method in which the molecular orbital

coefficients, as well as the CI coefficients, is non-trivial, but it has been accomplished

and implemented into GAMESS in collaboration with the Ruedenberg group [31]. It is

important to recognize that there are clear advantages and some disadvantages to the

general MCSCF approach. The obvious advantage is the dramatic reduction in

computation time that one attains by eliminating most of the configurations. What one

gives up in this approach is the built-in size-consistency that is guaranteed by the

complete active space approach. Until the method has been extensively tested, it is not

clear how serious a matter this is. Indeed, it is possible that eliminating essentially

non-contributing configurations has only a small effect on size-consistency. Similarly,

it is not clear how the MCSCF convergence will be affected when a complete active

space is not used, but one suspects that the use of less than a FORS active space will lead

to deterioration of the MCSCF convergence.

An alternative approach to achieving full CI at a reduced computational cost has been

developed by Bytautas and Ruedenberg [32]. This method is built upon a careful analysis

of single, double, triple, … excitations, and the observation of nearly linear relationships

between lower and higher excitations. These linear relationships allow one to use

extrapolation techniques to very accurately predict the energies due to higher excitations

without performing the actual calculations. The impact of this method is that one can

predict the full CI energy for a given atomic basis to submillihartree accuracy. Combined

with an extrapolation to the complete basis set limit, this method is capable of predicting

Fig. 41.2. Model vs. CCSD(T) correlation energies for 38 molecules from H2 to C6H6 (Mean absolute

deviation ¼ 2.85 mh).
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bond energies to within chemical (1 kcal/mol) accuracy. The method has already been

applied to the first row homonuclear diatomics [32].

In general, an MCSCF calculation is based on a compact active space and provides the

correct zeroth-order wavefunction for a chemical process, such as bond dissociation or a

more complex chemical reaction. In this sense, the MCSCF wavefunction may be thought

of as a replacement for Hartree–Fock (HF) when a single electron configuration cannot

provide a qualitatively correct description of a process of interest. That is, an MCSCF

calculation accounts only for ‘non-dynamic’ correlation. To obtain accurate energies,

and sometimes accurate molecular structures, one must add dynamic correlation, just as

one must add dynamic correlation to a HF wavefunction when accurate structures and

energies are desired. Several methods are available in GAMESS for recovering dynamic

correlation on top of MCSCF wavefunctions. These include multi-reference (MR)

configuration interaction (MRCI) and multi-reference second-order perturbation theory

(MRPT2). The MRCI wavefunctions can include either single or single and double

excitations out of the active space, referred to as first and second-order CI, respectively.

These methods may be applied to both FORS and ORMAS wavefunctions. The version

of MRPT2 in GAMESS is that developed by Hirao, Nakano and co-workers. When only

one electronic state is included in the calculation, the method is referred to as MRMP2

[33]. For multiple state calculations, the appropriate method is second-order quasi-

degenerate perturbation theory (MCQDPT2 [34]). A multi-reference perturbation theory

that is built upon ORMAS wavefunctions is in progress. Whereas both FORS and full CI

wavefunctions are size consistent and size extensive, none of these multi-reference

methods for recovering dynamic correlation have this property. Interestingly, it appears

that both the choice of the unperturbed Hamiltonian H0 and the manner in which the

excitations are included (configuration state functions (CSF) vs. internally contracted

configurations (ICC)) impacts how close to size consistency a particular MRPT method

is. The ICC approach appears to provide a much more nearly size consistent result than

does the choice of CSF [35]. The MRMP2 and MCQDPT2 methods in GAMESS are based

on CSFs.

41.2.2 Many-body methods

All of the methods discussed above are based on a multi-reference (MR) approach to

obtaining wavefunctions and properties. Such MR approaches are often necessary,

because many chemical problems involve species with considerable configurational

mixing due the existence of near degeneracies (diradical character). However, the amount

of diradical character in a chemical system can span a very broad range, from essentially

zero (e.g. HOMO occupancy ,2, LUMO occupancy ,0) to fully diradical (HOMO

occupancy ,1, LUMO occupancy ,1). As one approaches fully diradical character,

all single reference methods break down, but they do not break down at the same rate as

one approaches this limit. In particular, there is considerable evidence that coupled

cluster (CC) methods, particularly those like CCSD(T) that incorporate a triples

correction, can overcome the deficiency of a single reference wavefunction for problems

with non-trivial diradical character. This has been demonstrated, for example, by
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examining the N2 dissociation curves for MP2 and CCSD(T) vs. various MR methods

[36]. The breakdown in the CCSD(T) calculation appears much later in the dissociation

process than does the MP2 breakdown. Recent developments by Piecuch et al. [37] are

particularly exciting, since they extend this breakdown even further out in the

dissociation curve. Termed re-normalized and completely re-normalized methods (e.g.

R-CCSD(T) and CR-CCSD(T)), these methods are designed to account for an increasing

amount of diradical character. Although they do eventually break down at large distances

for multiple bonds, they are clearly more robust for intermediate cases. The full suite of

closed shell CC, R-CC and CR-CC methods are now available in GAMESS. Since the

coupled cluster methods are not fully variational, one must use the relaxed density [38]

that requires the gradient of the wavefuction (non-Hellman–Feynman term) to evaluate

molecular properties such as the dipole moment and electrostatic potential. The

formulation of the relaxed density is very similar to that of the energy gradient, so the

evaluation of properties is considerably more complex for non-variational methods than it

is for variational methods. The Piecuch group has completed the derivation and coding of

the relaxed density and associated properties for the coupled cluster and renormalized

coupled cluster methods [39]. These new features will be in a new GAMESS release shortly.

Even though single reference second-order perturbation theory (MP2) cannot describe

bond breaking very well, this level of theory is still the most efficient ab initio approach

that includes electron correlation [40]. For closed shells, the restricted MP2 energy is the

standard choice, while for open shells there are two possible choices, unrestricted and

restricted MP2. Unrestricted methods (UMP2) have the advantage that the orbitals and

orbital energies are well defined, but these methods are generally not spin correct. It is

common to encounter modest ‘spin contamination’, in which the spin expectation value

differs from the correct value by 0.05–0.1. However, during bond breaking processes,

this deviation can become very large, so that the identity of the spin state is effectively

lost. The orbitals and orbital energies in restricted open shell Hartree–Fock are not

uniquely defined. Consequently, there are several ways in which restricted open shell

MP2 can be formulated. The most popular of these methods, referred to as RMP2 was

independently developed by Bartlett and co-workers [41] and Pople, Handy and co-

workers [42]. This method is spin correct only through second order in the energy.

A more complex and more rigorously spin correct method, called Z-averaged

perturbation theory (ZAPT2), was developed by Lee and Jayatilaka [43]. Both methods

are available in GAMESS, while the default is ZAPT2.

41.2.3 Excited states, non-adiabatic and relativistic methods

The simplest approach to the calculation of excited electronic states is to perform a

singles configuration interaction (CIS) calculation. While the accuracy of CIS is limited,

especially if an excited state of interest has significant contributions from doubly excited

configurations, such as charge transfer states, it is a computationally efficient method that

can frequently provide at least useful qualitative trends correctly. The new CIS code

in GAMESS (developed by Webb [44]) provides energies and analytic gradients, so one

can predict excited state geometries, determine transition states, and follow reaction
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paths at this level of theory with approximately the computational cost of Hartree–Fock.

At the other end of the computational complexity spectrum, one can use the full CI option

to obtain energies and wavefunctions for both ground and excited states. While this level

of theory provides the exact wavefunction for the atomic basis used, it is generally limited

to atoms and small molecules. For this reason, the Bytautas–Ruedenberg method for

extrapolating to the full CI solution is very exciting, since the computational complexity

is reduced by several orders of magnitude. As noted in Section 41.2.1, this method is

capable of predicting ground state dissociation energies of diatomic molecules to within

chemical accuracy. The ability of this method to predict full potential energy curves and

surfaces is currently under investigation, and the ability of this method to treat excited

states with equivalent accuracy is promising.

There are several choices for excited state calculations that are intermediate in

accuracy and computational complexity between singles CI and full CI. These include the

MCSCF, multi-reference CI (called first order or second order CI in GAMESS) and second

order multi-reference perturbation theory methods discussed above. Excited states may

be analyzed for each of these methods simply by requesting multiple roots. The most

recent excited state method to be implemented in GAMESS is the suite of equations-of-

motion (EOM) coupled cluster methods that have been developed by Piecuch and co-

workers [37a,45]. EOM-CCSD and EOM-CCSD(T) and their completely renormalized

analogs (using the method of moments to obtain triples corrections) are available. The

EOMmethods are usually initiated by performing a CI singles (CIS) calculation to obtain

the starting wavefunction. This can be somewhat limiting if the state(s) of interest have

significant contributions from two-electron excitations. Using a full singles þ doubles CI

(CISD) would be prohibitively expensive in most cases. The EOM-CC implementation in

GAMESS permits an alternative approach called CISd, in which a subset of double

excitations is added to the CIS wavefunction. The choice of which double excitations to

include is flexible, but the most sensible approach is to treat the choice of doubles in a

manner that is similar to choosing an MCSCF active space. That is, one would choose

that subset of orbitals that are most likely to be involved in the excited state(s) of interest.

While the electronic ground state is usually, although not always, well separated from

excited electronic states, there are frequently multiple excited states within a small

energy gap. When electronic states come close to, or cross, each other, the adiabatic

assumption can break down. Non-adiabatic effects can be manifested in either spin-orbit

coupling (a fundamentally relativistic effect) or derivative (sometimes called vibronic)

coupling. The former phenomenon arises from the interactions of orbital angular

momentum and the magnetic moment due to spin, while the latter derives from a

breakdown in the Born–Oppenheimer approximation according to which one ignores the

changes in the electronic wavefunction that are induced by nuclear motion. Several

methods for dealing with spin-orbit coupling have been implemented in GAMESS, while

derivative coupling codes are planned for the near future.

The array of methods in GAMESS for treating spin-orbit coupling effects has

recently been the subject of two reviews [46,47]. These methods include the full Breit–

Pauli spin-orbit operator and approximations to it, primarily developed by Koseki and

Fedorov. All of the methods require a multi-reference wavefunction as a starting

point. This can be MCSCF, first or second order CI, or MRPT2. The simplest method is a
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semi-empirical Breit–Pauli implementation, in which the most time-consuming two-

electron part of the spin-orbit operator is neglected. This approximation is made viable by

replacing the nuclear charge Z in the one-electron operator is replaced by an effective

nuclear charge Zeff that is fitted to atomic spectra. This method has been parametrized for

virtually the entire periodic table, for both all electron and effective core potential basis

sets, and then applied to a number of interesting problems [48]. Of course, the accuracy of

this semi-empirical approach is inherently limited. For greater accuracy, one can use the

full Breit–Pauli approach in which both one- and two-electron operators are included. An

interesting and effective compromise is the partial two-electron (P2E) method [49], in

which only the core-valence two-electron term is included. This method is accurate

because the core-valence term is themost important one, and it is computationally efficient

because this term can be reformulated to resemble an effective one-electron interaction.

Scalar relativistic effects (e.g. mass–velocity and Darwin-type effects) can be

incorporated into a calculation in two ways. One of these is simply to employ effective

core potentials (ECPs), since the core potentials are obtained from calculations that

include scalar relativistic terms [50]. This may not be adequate for the heavier elements.

Scalar relativity can be variationally treated by the Douglas–Kroll (DK) [51] method, in

which the full four-component relativistic ansatz is reduced to a single component

equation. In GAMESS, the DK method is available through third order and may be used

with any available type of wavefunction.

41.2.4 Properties related to nuclear energy derivatives

Analytic energy derivatives are as important as the energies themselves. One needs first

derivatives for geometry optimizations, reaction path following, dynamics simulations,

and (if analytic second derivatives are not available) second derivatives via finite

differencing. Second derivatives are necessary for the computation of vibrational

frequencies and, subsequently, thermodynamic properties via the appropriate partition

functions.

Analytic first derivatives (gradients) are available in GAMESS for open and closed shell

Hartree–Fock, open and closed shell DFT, generalized valence bond (GVB), MCSCF

and ORMAS, CIS, and MP2 for closed and (unrestricted) open shells. Analytic second

derivatives (Hessians) are available for open and closed shell HF, GVB and MCSCF

wavefunctions. One can also calculate Hessians using numerical finite differencing of

analytic gradients using any method for which analytic gradients are available. Fully

numerical first and second derivative codes have very recently been implemented, so one

can optimize molecular geometries with any level of theory. Fully numerical derivatives

are inherently less efficient than analytic derivatives, however, the numerical derivatives

are more amenable to very efficient coarse-grained parallel computing.

The most common method for determining vibrational frequencies is the normal mode

analysis, based on the harmonic force constant matrix of energy second derivatives

(Hessians). Of course, vibrations are not truly harmonic, and the anharmonicity generally

increases as the frequency of the vibration (steepness of the potential) decreases. That is,

the more anharmonic a motion is, the less applicable is the traditional approach to
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determining vibrational frequencies. In such cases, one can use the vibrational self-

consistent field (VSCF) method to obtain anharmonic frequencies [52–54]. This method

uses energies and gradients along a given normal mode direction to obtain the

anharmonic cubic and quartic terms. In analogy with electronic structure theory, the

VSCF method can be augmented by a CI or perturbation theory, in order to obtain

improved vibrational frequencies. The VSCF and related methods in GAMESS have been

developed by Chaban, Matsunaga, and Taketsugu.

Energy derivatives are essential for the computation of dynamics properties. There are

several dynamics-related methods available in GAMESS. The intrinsic reaction coordinate

(IRC) or minimum energy path (MEP) follows the infinitely damped path from a first-

order saddle point (transition state) to the minima connected to that transition state. In

addition to providing an analysis of the process by which a chemical reaction occurs (e.g.

evolution of geometric structure and wavefunction), the IRC is a common starting point

for the study of dynamics. Example are variational transition state theory (VTST [55])

and the modified Shepard interpolation method developed by Collins and co-workers

[56]. Indeed, interfaces are maintained between GAMESS and the VTST codes (GAMESS-

PLUS) [57] and between GAMESS and the Collins Grow code (GAMESS–Grow) [58].

The GAMESS–Grow interface, in particular, benefits greatly from the availability of

analytic energy derivatives. Since Grow builds global potential energy surfaces and

GAMESS has multi-state capability via its multi-reference methods, this interface can

build multiple potential energy surfaces, a precursor for the dynamical analysis of such

phenomena as conical intersections.

In addition to the IRC functionality, GAMESS also has a direct dynamics capability, the

dynamic reaction path, DRC [59]. The DRC allows one to perform dynamics ‘on-the-fly’,

by performing classical trajectories at any level of theory for which analytic gradients are

available. One can, for example, put an amount of energy equal to n quanta into any

vibrational mode(s), in order to model mode specific chemistry.

The gradient extremal is another trajectory, available in GAMESS, defined as that curve

for which the nuclear gradient vector is an eigenvector of the nuclear Hessian [60].

Gradient extremals may lead from minima to any of the following: dissociation products,

minima, transition states, or higher order saddle points (stationary points); or united atom

collisions. For small numbers of atoms, tracing all gradient extremals may lead to a

global understanding of all relevant parts of the potential energy surface [61].

41.2.5 Other properties

Although the generation of wavefunctions and corresponding potential energy surfaces

is the primary use for quantum chemistry, other molecular properties are also of interest.

In addition to the set of electrostatic properties and localized orbitals described earlier,

GAMESS now contains a number of other useful properties or analysis procedures.

Analytic computation of IR intensities [62] and numerical computation of Raman

intensities [63] for the harmonic vibrational spectra have been programmed. The analytic

computation [64] of closed shell static or frequency-dependent polarizabilities is

possible, and numerical computation [65] of the static polarizabilities of most
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wavefunctions can be performed. A program to explore solvent effects on NMR shifts has

been developed [66].

Analysis of molecular wavefunctions is less directly tied to experiment but is of

considerable interest to chemists looking for trends or explanations. Atomic charges are of

considerable interest to force field developers, and a procedure for fitting them to the

computed electrostatic potential and total molecular dipole and quadrupole is available

[67]. The localized orbital programs have been extended to include a detailed orbital

analysis of energy contributions, called the Localized Charge Distribution, available for

closed shell SCF and MP2 wavefunctions [68]. As part of the effective fragment potential

(EFP) solvent project (see below), the Stone distributed multipole analysis (DMA) [69]

and the Kitaura–Morokuma or Stevens–Fink dimer energy analysis [70] have been

added, and generalized to any number of weakly interacting monomers.

41.3 SCALABLE ELECTRONIC STRUCTURE THEORY

One approach to grow the size of a chemical system that can be realistically treated by the

most sophisticated electronic structure methods is to devise new methods that are

inherently more efficient, as discussed in the previous section. Another, complementary

approach is to devise algorithms in such a manner that the calculations are scalable; that

is, the computationally most demanding tasks may be distributed among whatever

processors are available. Often referred to as parallel programming, this approach is

relatively straightforward for low-level methods like Hartree–Fock and DFT energies

and gradients using a replicated data (RD) algorithm, in which the necessary data is either

replicated on each available processor (e.g. density and Fock matrices) or recomputed on

the fly each iteration (e.g. ‘direct’ calculation of the two-electron integrals). However, the

design of scalable algorithms becomes increasingly complicated for the more

sophisticated, correlated methods. The disadvantage of the RD approach is that although

a calculation proceeds more rapidly than it would on a single processor, the feasible size

of a chemical system is limited by the amount of memory and disk on the smallest node.

Therefore, the RD approach is sensible when only two-dimensional matrices are

involved, but becomes much less viable for correlated methods for which the four-

dimensional electron repulsion integrals must be manipulated (i.e. transformed between

the AO and MO basis).

A major advance in the manner in which QM (especially correlated QM) calculations

may be performed on parallel computers was provided by the development at PNNL of

the global array (GA) tools [71], a one-sided message passing library that facilitates the

distribution of large sets of data across all available nodes. The development of

the distributed data interface (DDI) [72] in GAMESS, initially led by Fletcher

and more recently by Olson, benefited considerably from the prior development of GA

technology. DDI performs best when it can take advantage of the SHMEM library,

especially on Cray or SGI systems, but it has also been very successful on IBM computers

running under LAPI and clusters of UNIX and Linux computers. The point-to-point

messages required for the implementation of DDI on such hardware are carried by TCP/

IP socket messages or, sometimes, an MPI-1 library. In a related development, DDI now
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makes optimal use of the processors in an SMP box by avoiding message passing

between CPUs in a given node [73], by using System Vmemory regions accessible by all

processes within a multiprocessor node.

The initial implementation of DDI was for closed shell MP2 energies and gradients

[74]. This has been extremely successful. As long as the size of the system of interest is

increased as the number of CPUs is increased, the method scales almost linearly up

through 512 T3E processors [75]. For species with unpaired electrons, the implemen-

tation of restricted open-shell energies is equally efficient, and the UMP2 energy and

gradient code [76] scales as well as the closed shell analog. Restricted open-shell

gradients using the ZAPT ansatz have been derived [43d], and the coding of both

sequential and parallel codes is in progress. DDI has also been used to develop a

distributed parallel MR second-order perturbation method in collaboration with the

Koseki group [77]. It appears that the parallel MRMP2 method currently scales well up to

about 32 processors. Of course, the most demanding many-body method in GAMESS is the

set of coupled cluster methods. The coupled cluster codes in GAMESS are currently

sequential, but the development of parallel coupled cluster methods is in progress.

Since MCSCF is an important starting point for so many chemical problems, it is very

important to develop parallel MCSCF methods as well. The initial attempt at this was a

RD approach which scaled well only to ,4–8 processors [78]. Very recently, a DD

parallel MCSCF algorithm has been developed using the full Newton–Raphson

convergence algorithm [79]. This DD MCSCF method addresses the integral

transformation and orbital rotation steps, but not the CI coefficient optimization, which

is discussed below. Initial tests suggest that this algorithm will scale well up to ,32–64

processors, a major advance over the RD algorithm. Particularly exciting is the very

recent implementation of a parallel MCSCF analytic Hessian code [80]. Analytic

derivatives are generally preferable to numerical finite differencing schemes, and this is

especially so for MCSCF wavefunctions. The reason for this is that numerical schemes

usually decrease the molecular symmetry upon some subset of the coordinate

displacements. Even for high-symmetry species, some displacements reduce the

symmetry all the way down to C1: So, for example, if one is interested in an excited
state that belongs to an irreducible representation that is different from that of the ground

state (say, 1B2 vs.
1A1 in C2v symmetry), both states will become

1A in C1 symmetry.

Because of this, one will frequently encounter root flipping during a numerical Hessian

calculation, such that the 1B2 state flips to the
1A1 state when the symmetry is reduced to

C1: This is avoided if the Hessian calculation is done analytically. The implementation of
an analytic Hessian code is also an important step in the development of a derivative

(i.e. vibronic) coupling code that is in progress. Derivative coupling plays an important

role in the chemistry and physics of excited states, since the crossing of potential energy

surfaces and the associated conical intersections are common phenomena in

photochemistry, photophysics and photobiology. Since excited state calculations can

be very computationally intensive, especially for molecules that are important in

biochemistry, the availability of an MCSCF Hessian code that scales well with the

number of processors is also important. The scalability of the MCSCF analytic Hessian

code in GAMESS, developed by Dudley, is illustrated in Fig. 41.3 for H2C4O, using a 10

electrons in nine orbitals active space.
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As noted in Section 41.1, the ultimate wavefunction for a given basis is the full CI

wavefunction, so it is important to extend the sizes of chemical species that can be

realistically approached using full CI. Equally important is the recognition that a full CI

within a specified set of orbitals and corresponding electrons is just a FORS/CASSCF

wavefunction. So, the development of a scalable Full CI method serves a dual purpose.

Both RD and DD full CI codes have been developed and implemented into GAMESS by

Gan [81]. The algorithm uses a CI driven approach, in which communication is

controlled by a string-driven method. The success of the DD/FCI method is especially

encouraging, as is illustrated in Fig. 41.4. This figure demonstrates a test on a cluster

of 64-bit IBM Power 3II dual processor computers running AIX. The illustrated problems

are CH3OH (14,14) and H2O2 (14,15), where the numbers in parentheses signify

the number of electrons and orbitals, respectively. These problems include,11,800,000

and 40,400,000 determinants, respectively, and the scalability through 32 processors is

excellent. Similar performance is observed on Linux clusters up through the 16

processors that were available for testing.

One can think of the parallel methods discussed above as fine-grained parallelism, in

that each subtask in a single energy or energy þ gradient evaluation is individually

distributed among available processors. There are also problems for which a very coarse-

grained approach is appropriate. Examples are the computation of numerical derivatives

(e.g. gradients and Hessians) for which each displaced geometry is separate from

the others, and all displacements may be identified at the beginning of the calculation.

Other examples are multiple Monte Carlo simulations and multiple classical trajectories,

since the associated energy and gradient evaluations are independent of one another.

A development underway in GAMESS is the GDDI (generalized DDI) method which

makes use of the concept of groups and subgroups (in a computational science sense)

to make use of both fine-grained and coarse-grained parallelism [82]. For example, if one
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Advances in electronic structure theory: GAMESS a decade later 1179

References pp. 1185–1189



wishes to perform a CCSD(T) fully numerical Hessian, one can distribute the large

number of CCSD(T) energy evaluations among all available nodes. At the same time, if

each node is a multi-processor (e.g. SMP) computer, each CCSD(T) energy calculation

can itself, in principle be distributed among the processors on its node.

Of course parallel algorithms are only one way in which one can improve the

scalability of a particular method. Two other approaches that have recently been

implemented into GAMESS are linear scaling methods for HF and DFT [83] and the

fragment molecular orbital (FMO) method [84]. Linear scaling methods are based on the

premise that the further away atoms are from each other, the more their mutual

interactions become similar to classical electrostatic interactions that can be accounted

for by multipolar expansions. The key is to be able to devise a procedure in which

the linear scaling interaction is turned on when it is appropriate. Among the leaders in this

field have been Head-Gordon [85], Scuseria [86], and others [87]. The algorithm in

GAMESS, developed by Choi, follows the lead of Wilhite and Head-Gordon [85], but

implements an optimization scheme that determines the optimal parameters in a self-

consistent manner, depending on the desired accuracy. The latter is an input parameter, so

that one can design the accuracy to fit the application. The linear scaling method in

GAMESS is also scalable in the parallel sense, with nearly linear scaling with the number

of processors up to at least 16 nodes [83b].

The basic idea of the FMOmethod is to take advantage of the observation that exchange

interactions and self-consistency inmolecular calculations are generally local phenomena.

This is even more true for extended systems, such as clusters, crystals and polymers. This

locality permits one to treat interactions between remote parts of a system by purely

Coulombic operators, ignoring exchange interactions. One can therefore perform the usual

quantum calculations on separate units (fragments) in the near field regions, while

fragment–fragment interactions are reduced to Coulombic interactions. In practice,
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one divides the system of interest into fragments and performs n-mer calculations of these

fragments in the Coulomb field of the other fragments. There are no empirical parameters,

and the only approximation is the fragmentation itself. So, in this sense, there are common

features with the linear scaling method discussed in the previous paragraph. The

fragmentation scheme introduces little error as long as the fragments are chosen in a

physically sensible manner. The most important impact on accuracy is the size of the

fragments. The FMOmethod has been enabled by Fedorov for SCF [84b], DFT [84c], and

MP2 [84d] methods at present. Parallelization of the FMO method is implemented by

assigning each monomer, dimer, or trimer computation to a subgroup of the full processor

set [84a].

41.4 QM/MM METHODS

Even with the most clever and efficient methods and scalable algorithms, as the size of the

system of interest grows, sooner or later the available compute power is not up to the task

if one uses fully QM methods, especially correlated ones. Two important areas of

research that fall into this category are solvent effects (more generally liquid behavior)

and surface science. An effective alternative to fully QM methods is the combination of

QMwith molecular mechanics (MM) methodology. MM is a term that generally suggests

that one is using classical techniques with no wavefunction; such methods vary broadly in

sophistication. Two types of MM methods that are very different in their level of

sophistication are discussed here.

41.4.1 Discrete solvent approaches

The approach taken in GAMESS to study solvation is a multi-layer one in which the

innermost layer consists of the solute plus some number of solvent molecules that one

feels must be treated with explicit QM. Examples of the latter are water molecules that act

as conduits in H-transfer reactions. The second layer consists of a sophisticated potential,

the EFP that is derived from rigorous QM [88]. The outermost layer is represented by a

reliable continuum method to represent the bulk liquid. In its original EFP1/HF version,

this method described solvent molecules (i.e. water) by three terms that are added to the

QM (i.e. HF) Hamiltonian. The first term represents the Coulomb interactions by a

distributed multipole analysis (DMA) expanded through octopoles. The entire Coulomb

term is multiplied by a distance-dependent cutoff to account for overlapping charge

distributions. The second, induction, term accounts for the polarization of charge

densities in a self-consistent manner using localized molecular orbitals (LMOs). The

third term is fitted to the remainder of the HF water dimer potential, determined from 192

points on the dimer surface, after subtracting the Coulomb and induction contributions.

This remainder represents exchange repulsion and (implicitly) charge transfer. This

EFP1/HF method has been very successful for problems that are well described by the

HF method, but it is limited in two respects. First, HF includes no electron correlation

which invades all of the terms mentioned above and introduces entirely new interactions,
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most notably dispersion. Second, the process of fitting to obtain the exchange repulsion/

charge transfer term is not something one wants to do for every solvent or liquid

of interest.

The first of these limitations has been partially addressed by reformulating the EFP1

approach with DFT, using the popular B3LYP functional [89]. Denoted EFP1/DFT, this

method, developed by Adamovic, includes some correlation, although not long-range

dispersion, and therefore produces much better binding energies, for example, in water

clusters. So, this approach only partially accounts for the correlation problem. Likewise,

an MP2 EFP1 analog has been developed by Song in a similar manner, except that the

dispersion contribution is fitted in a separate term using the usual Cn/R
n expansion [90].

So far, only the fragment–fragment interaction has been coded, while the fragment–QM

interaction is in progress. So far, the EFP1/MP2 method looks very promising: a

molecular dynamics simulation using this method maps almost exactly onto the

experimental g(OO), g(OH) and g(HH) spectra, whereas the EFP1/HF method does very

poorly and EFP1/DFT not nearly as well as EFP1/MP2 [91]. A parallel code has also been

developed by Netzloff for all of the EFP1 methods. The scaling is very good as long as a

sufficient number of fragments is included in the calculation.

All of the EFP1 methods involve fitting the repulsive and dispersion terms, so it is

difficult to extend the method to other species, such as solvents that may be of interest

to organic or inorganic chemists. In this sense, it is desirable to derive the exchange

repulsion, dispersion, and charge transfer from ‘first principles’ instead of employing

fitting procedures. This has been accomplished for the exchange repulsion by

expanding this interaction as a power series in the intermolecular overlap. This is not a

new idea, but combining this approach with highly transferable LMOs to calculate

these integrals and the related intermolecular kinetic energy integrals has been very

successful for a wide variety of solvents [88]. The exchange repulsion calculated by

this method maps the exact HF intermolecular exchange typically to within 0.5 kcal/

mol. More recently, the dispersion interaction has been derived by Adamovic, again

from first principles, based on the frequency-dependent polarizabilities in the imaginary

frequency range obtained from the time-dependent Hartree–Fock method [92]. In

keeping with the other terms in the interaction energy, the dispersion is obtained in a

distributed manner, by summing over individual interactions between LMOs located on

the two interacting fragments to obtain the final C6 terms. Combined with an estimate

of the C8 term, this provides an accurate evaluation of the dispersion energy. An

important feature of this new EFP2 implementation is that one can generate an

effective fragment for any species, simply by performing a single ‘MAKEFP’ run to

generate all of the pieces for a given fragment. Indeed, performing calculations on

mixed species (e.g. methanol–water) is just as simple, because no parameter fits are

required. At this time, EFP2 is primarily an EFP only method, since not all of the

QM–EFP interactions have been developed, but these terms are in progress. In

addition, the EFP2 method has been extended by Jensen and co-workers [93] to the

treatment of intramolecular covalent interactions, in addition to intermolecular

interactions. This is accomplished by interfacing a ‘buffer region’ constructed from

frozen localized orbitals that connects the QM part of the molecule with the EFP part.

This allows one to study very large molecules (e.g. proteins and polymers) by treating
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the ‘action region’ with quantum mechanics and the remainder of the system with EFP.

This is similar to traditional QM/MM methods, except that the EFP provides a much

more sophisticated classical potential that captures most of the physics.

Although the cost of an EFP calculation is several orders of magnitude smaller than

that of a corresponding QM (e.g. HF, DFT, MP2) calculation, the cost can rise

considerably if one incorporates a large number of solvent molecules. This cost reflects

not only the inherent cost of a single energy þ gradient calculation, but also the fact

that the number of arrangements of solvent or liquid molecules expands rapidly with the

number of molecules. To put this in context, a molecular dynamics run to predict bulk

properties of some species should include at least 64 molecules, and 256–512

molecules are considered to be more realistic. As another example, the process of

finding a global minimum for some reacting system that consists of a QM ‘solute’ and

some number of solvent molecules requires a Monte Carlo or similar calculation that

frequently requires tens of thousands of energy evaluations, plus geometry

optimizations at a subset of these points. Both Monte Carlo/simulated annealing [94]

and molecular dynamics [95] codes have been implemented in GAMESS, combined with

the EFP methods. To make such calculations more feasible for several hundred

fragments, each term in the EFP method has been made scalable by Netzloff [96]. As

for any other application, the scalability relies on the size of the problem: the larger the

system, the more effective in the parallel code. There are two scalability considerations

with the EFP code. One is the inherent scaling of the EFP code itself. The other is the

composite scalability of a QM þ EFP calculation. For small numbers of water

molecules, the pure EFP calculation does not scale very well, since the time

requirements are very small. However, the scalability of up to 16 processors improves

dramatically as the number of EFPs increases [96]. When a QM molecule is present, the

inherent QM scalability [1] plus the greater CPU demands of the QM part cause the

scalability to improve for even relatively small numbers of solvent molecules.

41.4.2 Surface chemistry

For surface chemistry, a more traditional QM/MM approach, SIMOMM [97] (surface

integrated molecular orbital molecular mechanics), has been developed and imple-

mented in GAMESS. SIMOMM is an embedded cluster approach in which the QM part of

the system is embedded into a much larger MM cluster to represent the bulk. Any level

of QM theory in GAMESS can be used for the QM part, while the TINKER [98] code is

used for the MM part. The interface between the QM and MM parts is represented by

link atoms that appear in the QM part (typically as hydrogens, although this is not a

requirement) and in the MM part as the actual surface atoms of interest. Gradients for

both the QM and MM methods are generally available, so full geometry optimizations

are both feasible and recommended. The method has been most extensively applied to

problems that involve the Si(100) surface, including addition of organic molecules to the

surface [99], etching [25], and diffusion of metal atoms along the surface [100]. More

recently, it has been applied to the growth of diamond [101] and silicon carbide [102]

surfaces.
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41.4.3 Continuum solvent methods

As noted above, solvent effects may be modeled in GAMESS as discrete solvent molecules

using the EFP model. Continuum solution models are also useful, in that these remove

the solvent structural problem completely (no need to sample many solvent minima

structures). The most sophisticated continuum solvent model in GAMESS is the

Polarizable Continuum Model (PCM) of Tomasi and Persico, which models the

molecule as a space-filling surface surrounded by continuum [103]. PCM permits

the computation of the effect of solvation on the energy [104], nuclear gradients [105],

and even frequency-dependent polarizibilities [106]. The present PCM implementation

has been greatly extended by the Jensen group, to use the conductor-like PCM model

[107], and to treat all SCF wavefunctions from RHF to MCSCF and their DFT

counterparts. The numerical solution of the Poisson equation to obtain apparent surface

charges has been made possible for large systems by using an iterative linear equation

solver [108]. Numerically stable nuclear gradients have been obtained by using an ‘area

scaling’ tessellation [109] that deals with surface elements that are too close to each other

by rescaling their sizes, permitting the study of solute geometry optimization. The PCM

computations just described are enabled for parallel computation [108], and they have

been interfaced with the EFP [110].

Two other approaches are used less often. The original SCRF spherical cavity model

[111] is less preferable than the space filling cavity used in the PCM code. The COSMO

model has been implemented in GAMESS to describe the electrostatic interactions between

the solute and the continuum, for RHF and its corresponding MP2 [112].

41.5 SUMMARY AND PROGNOSIS

The focus of this chapter has been on the new developments in electronic structure

theory during the past decade. These developments include new methods in quantum

mechanics, including approaches for extrapolating to the full CI and complete basis

set limits, novel methods for CASSCF calculations, new coupled cluster techniques,

methods for evaluating non-adiabatic and relativistic interactions, new approaches for

distributed parallel computing, and QM/MM methods for describing solvent effects and

surface science. It is useful to note in this regard that GAMESS is a general purpose suite

of electronic structure and QM/MM methods (including open- and closed-shell Hartree–

Fock which has been essentially ignored here) that can be run on virtually any computer,

cluster, massively parallel system, or for that matter a desktop Mac or PC. Indeed,

GAMESS is used at many universities as an educational tool, making use of its graphical

back end MacMolPlt [113]. GAMESS and MacMolPlt can be downloaded at no cost from

www.msg.ameslab.gov, with only a simple license required. A great many people from

essentially every region of the world have contributed to the development of GAMESS.

This is due in no small measure to the philosophy that has stood us in good stead for more

than two decades: science is to be shared openly and freely, and the development of

computer codes should be driven by the science that the community wishes to
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accomplish. This approach to disseminating GAMESS will continue into the foreseeable

future.

It is anticipated that several new features will be implemented into GAMESS in the near

future. These include:

– Restricted open shell second-order perturbation theory (ZAPT2) analytic gradients

– Properties and gradients for the closed shell coupled cluster methods that are

already in GAMESS

– Parallel coupled cluster methods

– Derivative coupling at the MCSCF level of theory

– Determinant based multi-reference perturbation theory

– Model core potentials with the correct nodal behavior

– Interfaces between MP2, CIS, MRMP2, CCSD(T), and EOM-CCSD(T) codes

with EFP, in order to facilitate the study of solvent effects on correlated systems

and in excited electronic states

– Molecular dynamics capability for both EFP1 and EFP2

– An interface between EFP and MM codes

As always, additional code developments will be driven by the interests of our many

colleagues who contribute to GAMESS and by the chemistry that we and our many users

wish to study.
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CHAPTER 42

How and why coupled-cluster theory

became the pre-eminent method

in an ab initio quantum chemistry

Rodney J. Bartlett

Quantum Theory Project Departments of Chemistry and Physics,
University of Florida, Gainesville, FL 32611, USA

Abstract

The correlation problem has been a focal point of quantum chemistry for more than the 40

years covered by this volume. Today, coupled-cluster methods typically offer its best

numerical solution for molecules of & 20 atoms in terms of rigor and systematic

convergence to the right answer. Coupled-cluster (CC) theory is not variational, but,

more importantly, it is size-extensive making energy differences meaningful and

applications to extended systems like polymers and solids possible. CC introduces higher

excitations much more effectively and at less expense than analogous configuration

interaction methods. As a non-variational method, analytical gradients in CC theory

require new developments compared to other methods. These new developments

emphasize the role of the CC functional that underlies the CC theory for energies, forces,

density matrices, and properties of ground and equation-of-motion (EOM-CC) excited

states. The latter also permits facile applications for single, doubly, etc. ionized and

electron-attached states. The evolution of the critical ideas that lead to coupled-cluster

theory and its extensive applications in chemistry are enumerated, in an objective, but

personal, first-hand account.

42.1 INTRODUCTION

In this book reviewing 40 years of quantum chemistry, I thought it would be interesting to

present my personal view on the critical ideas and developments that enabled coupled-

cluster (CC) theory to evolve into the reference method for the electronic structure theory

of molecules, lying in between the smallest and largest systems. Beyond establishing that
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fact—which I would argue most recognize today—there are lessons in its development

that will repeat themselves with the other methods we have, or will likely develop; over

the next 40 years. Furthermore, even in CC theory we have many new developments just

being explored, and others soon to be presented, that will further greatly enhance the

scope of its applications. In the interest of some brevity, I will limit myself to single

reference CC methods for ground states and EOM-CC excited states and associated

properties. I discuss various multi-reference CC methods elsewhere [1], and I would have

little new to add to that. I will also not dwell upon numerical results, as there are better

places for documenting that information. See the reviews [2–5], the papers in the special

benchmark issue [6] and the extensive survey of comparative numerical results as a

function of correlation and basis set presented in the book by Helgaker et al. [7].

An introduction to the theory with many numerical illustrations is presented in the

tutorial [8].

42.2 ORIGINS: expðT2Þl0l

The development starts with Rayleigh–Schrödinger perturbation theory (RSPT) where

the wavefunction and the energy can be written conveniently as

C ¼ F0 þ
X1
k¼1

C k ð1Þ

C k ¼ ½ðE0 2 H0Þ21QðV 2 E1Þ	klF0l2
Xk
l¼2

ElðE0 2 H0Þ21QlC k2ll ð2Þ

E ¼ kF0lV lC l ¼ E0 þ
X1
k¼1

E k ð3Þ

Ek ¼ kF0lVlC k21l ð4Þ
assuming intermediate normalization, kF0lC l ¼ 1, Q ¼ 12 lF0lkF0l, and keeps the

resolvent from being singular. If we somewhat naively look at this expression for the

energies in RSPT, we see a possible problem. We know the energy has to be an extensive

property, E ¼ NEunit ¼ NðE0 þ E1 þ E2 þ · · ·Þunit so for a non-interacting set of

molecules, for any energy beyond first order, we have a potentially non-vanishing

contribution of El to Ek from the renormalization terms. This suggests that we might have

terms in the energy that would scale as N2, N3 and higher; but this cannot be since each

energy order must be extensive itself. For a finite system, this fact might be hidden in the

numerical results, but in the infinite limit this cannot be the case. Also in any finite order,

it should not be. Brueckner recognized this of necessity for the square well interaction

potentials then being considered in nuclei, where he would get a sum of infinities. So he

showed that through fourth order, such terms from the renormalization terms in RSPT

had to cancel with other terms from the lead part of the perturbed wavefunction [9].

Goldstone [10] extended this observation by proving this was true to all orders of RSPT

using diagrammatic techniques. (A less naive development necessarily pays attention to
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the N dependence of just the conjoint (EPV) terms which have an index in common that

remain, and the disjoint ones that cancel, as discussed in our book [11]), but this would

still lead us to the same place after substantial algebra).

Hence, Brueckner–Goldstone many-body perturbation theory (MBPT) makes it

possible to write RSPT in the form,

C ¼ F0 þ
X1
k¼1

½R0H	klF0lL ð5Þ

E ¼ kF0lHlC l ¼
X1
k¼0

kF0lH½R0H	klF0lL ð6Þ

where the L indicates a restriction to linked diagrams, and R0 is the resolvent operator

from above. F0 is some independent particle reference function, like Hartree–Fock, or

Kohn–Sham DFT, or a Brueckner determinant, etc. There is no restriction on this choice,

but, of course, it is simpler if the orbitals composing the determinant and all excitations

from it are eigenfunctions of a one-article operator. Then H0 ¼
P

i h
effðiÞ, with

heffð1Þwp ¼ 1pwp, the associated one-particle effective Hamiltonian that corresponds to
the reference independent particle determinant. Usually this will be a Hermitian operator,

but in some cases like Brueckner, that might not be the case. That, too, is not really a

problem [12].

MBPT is a dramatic improvement over RSPT. By simply realizing that all the

renormalization terms disappear with a proper counting of the lead terms, we have a

number of benefits:

I MBPT is size-extensive [13], guaranteeing proper scaling with the number of

particles or units in the system.

II MBPT is applicable to polymers, solids, the electron gas, and nuclei.

III MBPT eliminates the large (unlinked diagram) errors in molecular calculations

that beset CI methods, while greatly reducing the level of computational

complexity for a given accuracy.

IV MBPT has the same simple perturbative structure as Brillouin–Wigner

perturbation theory, as subject to linked diagrams, C k ¼ ðR0HÞklF0lL,
Ek ¼ kF0lHlC k21lL, E2kþ1 ¼ kC klV 2 E1lC klL, and E2k ¼ kC klE0 2 H0lC klL:

So what is wrong with it? In this form it is still perturbative, implicitly assuming that

the correlation perturbation is relatively small. For many problems we want more

flexiblity than offered by perturbation theory. This leads to non-perturbative approaches

where various categories of terms in MBPT are summed to all orders. One such method

would be to make denominator shifts, so a denominator in perturbation theory like

1i 2 1a could be replaced by 1i 2 1a 2 kaillail: By adding the anti-symmetrized

integral, we have ð1i 2 1a 2 kaillailÞ21 ¼ ð1i 2 1aÞ21 þ kaillailð1i 2 1aÞ22 þ
kaillailð1i 2 1aÞ23 þ · · ·; where we would sum all orders of new terms that depend

upon kaillail, by the simple expedient of shifting its value by the two-electron integral
when summing over the indices, a,i, as we evaluate E2, E3; etc. Such denominator shifts

were extensively used in MBPT by Kelly [14], for example; see also Ref. [15].

How and why coupled-cluster theory became the pre-eminent method 1193

References pp. 1216–1221



However, a far more pervasive way to remove the perturbative nature of MBPT is

offered by coupled-cluster theory, and this takes us to its origin. The usual expression for

the linked diagram theorem in the time-dependent development is as a logarithm.

Inverting the procedure, Hubbard [16] seems to have been the first to recognize that the

linked diagram wavefunction above can be most conveniently written as

C ¼ expðT̂ ÞlF0l ð7Þ
where the operator, expðT̂), would sum all the linked diagram units that constitute the

wavefunction. Consequently, the energy must be

E ¼ kF0lH expðT̂ ÞlF0l ð8Þ
For those familiar with wave-reaction operator perturbation theory [17] expðT̂ Þ
is a realization of the wave-operator, V;C ¼ VF0: As expðT̂ Þ ¼ 1þ T̂þ T̂ 2=2þ
T̂ 3=3!þ · · · we have the linked wavefunction separated into connected terms, T̂, and

disconnected ones, like all the products of T̂s.

The next step was taken by Coester and Kümmel [18,19] who proposed using this

ansatz, then called expðŜÞ, as a way to develop wavefunctions for nuclei. Though

proposing the ansatz, they did not provide any equations for its determination until after

that was done by Ĉı́ẑek, and which arises from a somewhat different route.

That route toward CC theory built upon the work of Sinanoglu [20,21] and Nesbet [22].

These authors conceived of electron correlation as being mostly pair-like. Obviously,

most of the electron correlation in molecules had to arise from electrons of opposite spin

in the same spatial orbital. So a logical way to address electron correlation was to attempt

to account for such interactions, first. This suggests an independent electron pair

approximation (IEPA). One way to see this is from Nesbet’s formula, which gives the

correlation energy from simply projecting the Schroedinger equation, as

Ecorr ¼ kF0lHlCFCIl ¼
X

kF0lHlF ab
ij lC

ab
ij ¼

X
i,j;a,b

kijllablCab
ij ð9Þ

whereF0 is the HF determinant. Via the Brillouin theorem there are no single excitations

contributing to the energy. This is manifestly ‘pairlike’ in that if the CI coefficients for

double excitations were known, we could resolve the correlation energy into ‘pair’

correlations. Of course, Cab
ij depends upon all other excitations including singles, triples,

etc. However, the pair correlations that arise from double excitations are the most

important terms as they account for the second and third orders of the correlation

perturbation theory.

An alternative route toward such a theory is offered byMBPT.We know that MBPT(2)

with a HF reference gives

E2 ¼
X

i,j;a,b

lkijllabll2=ð1i þ 1j 2 1a 2 1bÞ ¼
X
i,j

1ij ð10Þ

a sum of pair energies. Since these quantities are not invariant to orbital rotations, their

individual values might not mean too much, but their sum is well defined. Here, we could

also add some denominator shifts, like kabllabl, kijllijl and kaillail, kbillbil, kajllajl,
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kbjllbjl to try to achieve some improved approximations, while raising further issues with
lack of invariance to orbital rotations. If all the above are included in a shift, this is often

called Epstein–Nesbet perturbation theory [23], since in CI-based perturbation theory

that shifted denominator is kF0lHlF0l2 kF ab
ij lHlF ab

ij l:Once we go to MBPT(3), we also
would have terms that depend upon the triad, i, j, k of occupied orbitals, so we are forced

to extract ‘pairlike’ expressions from summing over k, for example. Since such third-

order terms also contribute to Cab
ij , we have the same situation in CI. Sinanoglu used such

perturbative expressions to develop kinds of variational equations for independent pair

interactions [20,21].

The next critical step was taken by Jiri Ĉı́ẑek [24,25], who recognized the limitations

of IEPAs and introduced coupled-pair many-electron theory (CPMET). Today we call

this coupled-cluster doubles (CCD) as T ¼ T2 [13,26]. These coupled-pairs properly

include all the non-pair interactions while retaining a pair-like correlation structure. They

also alleviate the failure of IEPAs and later, variants like coupled-electron pair theory

(CEPA) [27,28], that are beset with a failure to be invariant to orbital transformations.

CEPA, however, was an attempt to gain some of the advantages of CC theory within a CI

computational structure, and still arises in various contexts today [29–31]. As CCD is

properly invariant to any transformation among just the occupied or unoccupied space,

localization transformations, e.g. change nothing in the CCD solutions for the energy and

density matrices.

The CCD wavefunction,

CCCD ¼ expðT2ÞlF0l ð11Þ

CCCD ¼ 1þ T2 þ 1

2
T22 þ 1

3!
T32 þ · · ·

� �
lF0l ð12Þ

introduces all double excitations, then products of double excitations as part of the CI

quadruple, hextuple, octuple, etc., excitations until the excitation level exceeds the

number of electrons in the system. However, even though the exponential is not truncated

(an essential feature of CC methods) its projection naturally terminates. Hence,

projection onto the reference function provides the energy

ECCD ¼ kF0lH expðT2ÞlF0l ¼ kF0lHT2lF0l ð13Þ
and projection only on the double excitations provides the CCD equations,

0 ¼ kF ab
ij lðH 2 ECCDÞ expðT2ÞlF0l ð14Þ

Since H has only one and two-electron terms, the CCD equations have to naturally

truncate after T22 : From a CI perspective…

1

2
T22 l0l ¼ 1

4

X
i,j,k,l;a,b;c,d

F abcd
ijkl ðtabij tcdkl þ 17 permutationsÞ

[32,33] so these are quadruple excitations, of which there would be , n4N4 if we

persisted in using CI technology; but as their coefficients are composed of products of

double excitation amplitudes, the CC equations lead, instead, to only, n2N2 amplitudes
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(coefficients) and a , n2N4 computational procedure (a quadruple CI would require a

, n4N6 computational step!). Also, since

1

4

X
klcd

kabij lHlabcdijkl ltabij t
cd
kl ¼ 1

4

X
klcd

kklllcdltcdkl

{ !
tabij ¼ ECCDt

ab
ij ,

the energy is eliminated from the CC equations from the beginningmaking the results for

the energy and the wavefunction consist of only ‘linked’ diagrams and to be ‘size-

extensive’ [13]. In CI these unlinked terms would be the numerically largest part of the

quadruple excitations, so their elimination immediately gets us much closer to the right

answer. Physically, what are being included are the simultaneous two-particle

interactions rather than the ‘true’ four-particle interactions, which would be introduced

by T4: The former would logically be expected to be the most significant for a

Hamiltonian that only has two particle operators, and it does account for all terms through

the fourth order of perturbation theory. T4 arises in fifth order.

The iterative solution of the CCD equations gives

ECCD ¼ E0 þ E1 þ E2 þ E3 þ E 4ðDQÞ þ · · · ð15Þ
showing that the method provides an infinite-order summation of many linked diagrams

in MBPT; all through third order (HF reference), and those that arise from disconnected

T2 terms that in CI language would be part of quadruples (all through fourth order),

hextuples, etc. The introduction of this form of wavefunction dramatically changed

quantum chemistry.

In Ĉı́ẑek’s original paper [24], which derives from an even earlier dissertation, he

reports results for semi-empirical Hamiltonians like PPP, but also even a partly ab initio

result for N2: However, his use of second-quantized based, diagrammatic techniques to
derive the CC equations was unfamiliar to most quantum chemists (see [34]), likely

delaying the appreciation of the CC method, although for simple cases like CCD,

conventional Slater rule matrix evaluation can be applied [35] Also, explicit rules for

diagrams were given and could have been used to derive more complicated CC equations.

The next significant contribution was a paper by Paldus, Ĉı́ẑek, and Shavitt [36]. These

authors reported CCD results for a minimum Slater basis set BH3 molecule, and

compared them to full CI. Although the very small basis (there were only 91 distinct

integrals without D3h symmetry!) could hardly be said to provide a realistic assessment of

electron correlation, the comparison to full CI was unambiguous. Equally important, for

the first time some numerical consideration was made of other clusters in CC theory, such

as T3 as part of an extended (ECPMET) method, and due to the quasi-degeneracy one

might expect in BH3, T3 might be a bit larger. Again diagrammatic methods were used in

the derivations.

At the same time as the prior paper [36], we [37–41] were writing several papers about

the application of MBPT to molecules. Although Kelly had attempted some one-center

applications to water, e.g. where he could use his atomic-based MBPT methods; without

having basis functions on every atom in the molecule, this form of MBPT could not be

realistically applied to molecules. Hence, we combined MBPT with standard techniques

for molecular integrals and SCF calculations to overcome this limitation. At the time we
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were focused on MBPT and did not know the detailed connection with coupled-cluster

theory, but we were using the same type of diagrammatic derivations as in CC theory.

In two papers [42,43] we talk about an infinite-order sum of double excitations diagrams,

D-MBPT(1), and in the latter even introduce an operator (diagram) that sums these terms
to all orders, but did not realize that that was linearized, LCCD, until soon thereafter.

Hence, we had LCCD programmed, and only lacked the contribution from T22 to realize

CCD. LCCD is also known as CEPA(0) [27,28]. LCCD is related to CID, differing by

neglecting the residual effects of ðT2Þ2 after the unlinked diagram cancellation.

A year or so after our initial MBPT studies, Pople’s group joined in this MBPT effort,

but chose to call their approach Møller–Plesset (MP) perturbation theory [44,45], and

they scruptulously avoided any use of second-quantization or diagrammatic techniques in

its implementation. This was much preferred by some! In 1978 we [13] and Pople et al.

[46] had independently evaluated the quadruple excitation terms in fourth-order MBPT.

John and I met on the eve of the American Conference for Theoretical Chemistry to

compare results, and fortunately for our talks, had the same values! At this point, having

T22 in our equations, we reported in back-to-back papers in the Proceedings of the ACTC

[13,46] the general purpose implementation of CCD and explored it for a few problems.

This also offered the first general purpose (as opposed to the few full CIs), numerical

measure of quadruple excitations in correlated methods.

42.3 HIGHER EXCITATIONS IN CC THEORY: expðT1 1 T2 1 T3 1 · · ·Þl0l

CC theory is inherently better than an equivalent level of CI because it eliminates

unlinked diagrams and as a consequence, is size-extensive [13]. It is also inherently better

than an equivalent level of MBPT because it is not limited to finite-orders, or potential

difficulties encountered in the convergence of perturbation theory. It is well known,

e.g. that ordinary MP perturbation theory does not converge for the electron gas, and this

has also been emphasized recently for molecules [47], though resummations (including

CC theory) work fine [48]. But, the operable word is ‘equivalent level’. For CI, that meant

at least single and double excitations, and frequently some more, perhaps even from

a multi-reference space. MBPT had been done with single excitations in fourth-order

SDQ-MBPT(4) in the above two papers [13,46].

Adding the single excitations from T1 introduces the CCSD wavefunction,

CCCSD ¼ expðT1 þ T2ÞlF0l ¼ expðT1Þ expðT2ÞlF0l ð16Þ
This, of course, means we have all CI single excitations, plus the products of single and

double excitations like T1T2lF0l, which in CI language introduce some triple excitation
effects ðĈ3 ¼ T3 þ T1T2 þ T31=3!Þ, as well as additional quadruple excitations like
1
2
T21T2lF0l and 1

4!
T41 lF0l:With a HF reference, single excitations will not contribute to

the energy until fourth order, so, generally, their numerical effect is not going to be all

that important. However, if we want to use a non-HF reference function—which will

become very important in giving CC theory its wide range of applicability—then effects

of single excitations arise in first order, just like double excitations. Furthermore, for

non-HF cases, these single-excitation terms can be very large. A second problem was
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the treatment of one-electron properties (or density matrices in general), where we

know that single excitations are essential to a correct description. A third element that is

also quite significant, is that any single determinant lF0l ¼ expðT1ÞlQ0l, where Q0 is

another single determinant [49–51]. So unlike CI methods, CC theory at the CCSD

level and beyond, has some capacity to generate its own orbitals that are appropriate to

the problem from any starting set. The orbitals so generated can be extracted from the

CCSD solution by analysis of T1, a posteriori. So CCSD and beyond are insensitive to

occupied and virtual rotations, besides being invariant to occupied–occupied and

virtual–virtual rotations.

To make such situations accessible, CCSD had to be developed. Initially, this looked

formidable as CCD required only nine diagrams in its equations, but CCSD required 45

(see Ref. [52] for an interesting anecdote). George Purvis and I derived the CCSD

equations and implemented them in 1982 [53] for closed and UHF open-shells from our

many-body viewpoint, which is vastly easier than attempting to derive all equations

from Slater’s rules for determinantal matrix elements! George Purvis used his

KOMMUTE program to check our diagram generation. We also had the advantage of

the many-body approach providing natural intermediates, although our first set was

hardly the best [53]. Now, it is clear that all CC equations can be reduced to an effective

linearized form for CCSDTQ [54] and beyond, using intermediates based upon

expð2TÞH expðTÞ ¼ 
H:
A partial alternative to CCSD that provides an analogous singles effect within a

different computational strategy was to rotate the orbitals to define Brueckner orbitals

that have the property that T1 ¼ 0: This was the route of Dykstra [55]. Making T1 ¼ 0 via

orbital rotation only requires four of the 45 2 9 ¼ 36 diagrams in CCSD to actually be

evaluated, making it simpler in that respect than CCSD, but it requires repeated orbital

iterations and transformations until convergence is reached.

Later closed shell CCSD programs were written by my Slovakian collaborators [56] in

1985, and then by Schaefer’s group [57], after Andy Scheiner spent some time with us to

learn how we did it. The third was a program of Lee and Rice [58], then in Handy’s group.

Now several groups were doing CC theory.

The next critical element in the development of CC theory was to incorporate the

connected triple excitations, T3: Since even CCD puts in the dominant quadruple

excitation effects, and CCSD some of the disconnected triple excitations effects, the

only term left in fourth-order MBPT comes from T3, and the triples will be much more

important to CC theory than to CI, since CIs unlinked diagrams have a very large role

that can only be alleviated by putting in quadruple excitations (see Fig. 42.1). Triples

had been explored in the ECPMET discussed above. Kvasnicka et al., Pople et al.,

Guest and Wilson, Urban et al., and ourselves had included triples in fourth-order

MBPT ¼ MP4 [59–64], but no attempt had been made to introduce them into general

purpose CC methods. In 1984 we wrote a paper detailing the triple excitation equations

in CC theory and reported results for CCSDT-1 [65], which meant the lead contribution

of triples was included on top of CCSD. This also made it possible to treat triple

excitations ‘on-the-fly’ in the sense that we never required storage of the , n3N3 T3
amplitudes.
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When we solved the iterative equations for CCSDT-1 it became evident that the first

iterative approximation to triples,

tabc½2	ijk ¼ ð1i þ 1j þ 1k 2 1a 2 1b 2 1cÞ21

� 1

2

X
d

Pða=bclk=ijÞtadij kbclldkl2 1

2

X
l

Pði=jklc=abÞtadil klclljkl
{ !

was a good one. {ðPða=bclk=ijÞ ¼ 12 Pab 2 Pac 2 Pki 2 Pkj þ PabPki þ PacPki þ
PabPkj þ PacPkj} [65], and from its connection with MBPT(4), it suggested that we

introduce a non-iterative approximation for triples which would save significantly on the

two, iterative,, n3N4 , n7 steps. This approximation was nothing more than evaluating

E½T	
4 ¼ P

ltabc½2	ijk l2ð1i þ 1j þ 1k 2 1a 2 1b 2 1cÞ [66]. This provides an energy correct

through fourth order in MBPT and a wavefunction correct through second order when

using a HF reference function. We called the method CCSD þ T(CCSD) to emphasize

that the triples were obtained from converged CCSD amplitudes. More commonly

today, the designation CCSD [T] is used. We of course, had the effects of singles in our

CCSDT-1 program, so could have easily added their effect, including the first (fifth-order

contribution) of singles to this equation, but did not do so because the method was only

meant to be a correct fourth-order approximation, and selecting one of many fifth-order

terms did not seem to be relevant at the time [67] (see also [68]).

Instead, that step was left to Pople, Head-Gordon, and Raghavachari [69,70] who, by

virtue of looking at the problem from the viewpoint of what they called ‘quadratic CI’,

meant to be a simplified CC method (but see [71,72]) considered that like in CISD, if the

doubles were there, the singles should be too. This added the numerically small, but

Fig. 42.1. Comparison of CI, MBPT, and CC results with full CI. Results based on DZP basis for BH, HF, and

H2O at Re 1.5Re, 2.0Re.
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significant term EðSÞ
5 ¼ P

i;a t
a½2	p
i ta½3	i ð1i 2 1aÞ, where ta½3	i ¼ 1

4

P
kklllcdltacd½2	ikl and ta½2	i ¼

1
2

�P
j;c;d kajllcdltcd½1	ij 2

P
k;j;d kkjllidltad½1	kj

�
which together with E½T	

4 defines CCSD(T).

(On average, CCSD is 7.33 mH from full CI for BH, HF, H2O, and SiH2 at Re, 1:5Re, and

2:0Re in a DZP basis; while CCSD [T]’s error is 1.57 mH and CCSD(T)’s 1.19 mH. So

the extra term is ,0.4 mH (,0.6%) of the total correction). The main reason for its

significance is that it works contrary to E½T	
4 which can overshoot in difficult cases. Using

amplitudes from our CCSD program [53] (QCISD has few of the 45 diagrams of CCSD)

and a former student of mine, Gary Trucks, this term was evaluated along with E½T	
4 by

Raghavachari et al. [70]. John Watts and I had done the same thing, but while we looked

at potential energy curves where there were no significant differences between CCSD [T]

and CCSD(T), they, instead, looked at the vibrational frequencies of O3, a problem we

had previously identified as a failure of CCSD [T] [73], where CCSD(T) was much better.

Today, CCSD(T) is often considered to offer the best, widely applicable approximation in

quantum chemistry [74] for molecular problems near equilibrium. For bond breaking,

the iterative CCSDT-1 is better, reflecting the advantages of infinite-order versus finite-

order perturbative approximations. It is also interesting, that later studies of ozone’s

frequencies, using larger basis sets, quadruple excitations, and multi-reference methods,

actually show that those obtained from CCSD(T) are not very good [1], but they were

better than what we had at the time, which spurred the applications of CCSD(T).

The final word on CCSD(T) was its generalization to non-HF reference functions [75].

This required adding non-HF diagrams and making a semi-canonical transformation of

the orbitals. Despite its finite-order perturbative character, in this way we formulated the

problem to be invariant to occupied–occupied and virtual–virtual transformations, just

like CC theory itself is. This makes it possible to use ROHF, (quasi) QRHF, Brueckner,

Kohn–Sham, or natural orbitals, or in fact nearly any reference function and to have

analytical gradients for any of these in ACES II [76]. Several numerical results have been

presented [75]. One potentially improved fourth-order approximation to the generalized

CCSD(T) is the L-based functional analogue, CCSD(T)L (see Section 41.4 on the CC

functional) which has been suggested [77,78], looks encouraging, and deserves detailed

assessment.

The full CCSDT was first presented in 1987 [79], before CCSD(T). There is a very

small numerical mistake in this paper, caused by the “real” world intervening in the

affairs of scientists. Jozef Noga came from Czechoslovakia to work with me for several

short visits. The visits were short because ‘iron-curtain politics’ did not allow him to be

out of Czechoslovakia except for brief periods (the same was true for my Polish

collaborators.). In those days, it was not unusual for us to work virtually all night to finish

things. Jozef had written a CCSDT program (99 diagrams) in a tour-de-force during one

of those short visits, and we were putting the finishing touches on it the morning his plane

was scheduled to leave. At that time of night, Jozef thought he saw a previously

overlooked simplification in his program, which had already been proven to be

numerically correct by the several independent checks we can make by evaluating

diagrams in different ways, checking extensivity, etc. To gain the speed, however, he

made the simplification at the last minute, and we reported results after this change

instead of before, which introduced a slight error. With the help of Gus Scuseria and
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Fritz Schaefer, who wrote an independent CCSDT program later [80], this was corrected.

The open-shell version of CCSDT was written by Watts [81].

Armed with CCSDT, an, n8 method, we naturally pursued CCSDTQ ( job security?),

and Stan Kucharski wrote the first CCSDTQ program [54]. Now we are up to 180

diagrams and an , n10 procedure. The convergence of the CC series to full CI is

impressive. See Figure 42.1 comparing CC, MBPT, and single reference CI for the old,

tried and true full CI examples we used over the years as reference values [82–84].

Problems like bond breaking, multiple important configurations like in ozone, multi-

open-shell systems, etc, would appear to require at least some additional excitations in a

reference space to obtain a correct description. This is the usual multi-reference

argument. At the same time, if we are close enough to the full CI, we know that any single

reference function will do. At least at the CCSDTQ level, having quadruple excitations

out of a single reference would seem to be largely equivalent to double excitations out of

a second, doubly excited reference function [85]. However, the , n10 dependence is

forbidding. Various non-iterative inclusions of quadruples have been considered [86], but

the one I like best is what we call ‘factorized’ quadruple amplitudes, Qf [87]. It has its

origin in recognizing that in the fifth-order MBPT energy, we can use the factorization

theorem to simplify the expression to one that only requires an , n6 evaluation of T4
contributions. Unlike the energy, we cannot do the same for the T4 amplitudes, but in

some of those all night sessions from the past when working on our expectation value

(XCC [86,88]) method, Kucharski and I found that we could ‘force’ the factorization in

the amplitudes, too, with only a very small error in the final results [87,89]. When we do

this we simply modify the T2 equations by a single term,
1
2
kabij lT†½1	2 HT22=2lF0l, where T

½1	
2

indicates its first-order value. This gives us the remarkable result that we introduce the

most significant part of T4 without even having to consider the T4 equation! Adding in the

T3 equation, this term becomes 1
2
kabij lT†½1	2 HðT22=2þ T3lF0l making its computational

dependence , n7: We have studied CCSDT(Qf) and related approximations like

CCSD(TQf) which is only , n7 like CCSD(T), but the dependence on the virtuals is

, n5, instead of the , N4 of CCSD(T).

Gwaltney and Head-Gordon introduced CCSD(2) which uses the Qf approximation

above for the quadruples, and, in fact, is equivalent to that of Hirata et al. [48], except the

latter authors used the full Q approximation and Gwaltney and Head-Gordon separate

left- and right-hand orbital equations that arise from the non-Hermitian operator

structure, familiar for excited states from EOM-CC. A comparison of several possible

iterative and non-iterative approximations for simple potential curves that include T4
have been presented [90], including attempts at renormalization [91]. Additional non-

iterative corrections through fifth [77] and sixth order [92] have been investigated

numerically.

Besides some numerical investigation of higher order clusters accomplished by

exploiting a full CI program [93] we continued to push the general purpose single

reference CC theory through to pentuples, CCSDTQP [94], plus some approximations to

it. Already at the quadruple excitation level we recognized that if we hoped to get the

(harmonic) vibrational frequency of N2 correct to ,1 cm21 would require pentuple

excitations [89], so we added them [95]. The role of pentuples has since been verified by

others [96].
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The work of Kállay and Surjan [97] and Olsen [98] along with that of Hirata [99], is

indicative of a very important development in CC theory. These scientists used

automated implementations and Hirata actually got a computer to write efficient, error-

free CC programs routinely. The tensor contraction engine approach of Hirata [99],

creates CC and MBPT programs for ground, and EOM-CC programs for excited states

routinely, and in parallel, building upon the structure of NWChem [100]. Kállay and

Gauss use automated, string-based evaluations [101], but have also added analytical

gradients to their programs, while not yet focusing on its parallel implementation. These

developments are a testament to the place that CC theory has assumed. It is viewed as the

best, rigorous, predictive tool available to quantum chemists, that is applicable to the

largest number of problems for & 20 atoms. Hence, automatic generation of these very

complicated programs was warranted. These developments, of course, remove any need

for extending the sequence of methods CCSD, CCSD(T), CCSDT, CCSDT(Qf),

CCSDTQ, CCSDTQP, etc. that involved so much work over about 25 years [3]. But

given the paradigm of converging results that has been established in the field—

MBPT(2) , CCD , CCSD , CCSD(T) , CCSDT(Qf) , CCSDTQ , CCSDTQP ,
Full CI—coupled to sequences of converging basis sets; automatic program

implementation for using these methods should enable their extensive application for

years to come.

And what about the future of CC theory? With these developments, much more effort

can be devoted to multi-reference CC, Fock space CC, XCC, UCC, variational CC,

methods like those discussed below for large molecules, and perhaps the ultimate current

method, R12-CC [102]—where besides the correlation problem, we have the best current

solution to the basis set problem—or a wealth of other methods that do not fit into the

basic structure of the CC functional, discussed next, as that is the basis for the automated

generation.

42.4 ANALYTICAL GRADIENTS AND THE CC FUNCTIONAL:

E5 k0lð11LÞ 
Hl0l; Ek 5 k0lð11LÞ 
Hkl0l:

If there is one essential lesson in the development of CC theory, it is that no quantum

chemical method can survive for long without an associated capability for analytical

gradients ðF ¼ dEðRÞ=dRÞ: Chemistry means atoms and molecules interacting, forming,
and breaking bonds. By obtaining the forces on the atoms we can determine molecular

structure, vibrational spectra, and transition states. The large number of degrees of

freedom (,3N), for N atoms, means that without exceptional symmetry, few polyatomic

molecules can be studied without an analytical gradient method, and as we break bonds,

even high-symmetry buys little. Hence, the importance of analytical force evaluation,

while simultaneously solving the Schroedinger equation—and in about the same amount

of time—can hardly be overestimated. It was not known how to do this for CC theory

until 1984 [103,104].

Forces seem to be superficially simple since the Hellman–Feynman theorem tells us

that for some atomic displacement, dXk,

dEðRÞ=dXkl0kClC l ¼ kClð›Ĥ=›XkÞl0lC l
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and this is true provided our quantum chemical calculations use a complete AO,MO, and

configuration basis set. But, of course, in practice we use finite atomic basis sets attached

to atoms and truncate our configuration basis. This means we have to also include the

non-vanishing contributions from the non-Hellman–Feynman (NHF) terms

kdC=dXklĤ2 ElC lþ kClĤ2 EldC=dXkl

To do so, we would need a knowledge of the first-order perturbed wavefunction with

respect to all atomic displacements. However, there are ,3N such perturbed

wavefunctions for a molecule with N atoms. Does this mean we have to do ,3N

calculations in addition to the energy to search a PES? Not necessarily.

Using the chain rule, we can rewrite the NHF expression in terms of the variation of the

energy functional dE{C} as,

dðdEÞ=dXk ¼ d=dXk½kdClĤ2 ElC lþ kClĤ2 EldC l	

¼ 2d=dXk½ð›dE=›xðRÞÞdxðRÞ þ ð›dE=›cÞdcþ ð›dE=›CÞdC	
Hence, if we are to make dE ¼ 0, we can avoid these terms. But to do so we have to have

E optimum with respect to the location of the atomic basis functions, xðRÞ; the MO
coefficients, cðRÞ; and the CI coefficients, CðRÞ: The first cannot be satisfied unless the
atomic orbital basis set is ‘floated’ off the atomic centers to an optimum location [105],

while the second requires optimum MO coefficients, and the third optimum CI

coefficients. In practice, we will introduce atomic orbital derivatives explicitly, so the

AOs can follow their atoms. Now focusing only on the MO and CI coefficients, in SCF

we have optimumMOs and no CI term. In MCSCF, both terms would vanish, while in CI,

the MO derivatives would remain, but the CI coefficients contribution would vanish. In

the non-variational coupled-cluster theory, neither will vanish and this means that CC

theory forces us into some new considerations for analytical forces.

When either of these quantities are not optimum, we potentially still need to consider

,3N such perturbed wavefunctions. Adding in the AO derivatives we replace dH=dXk by

HðkÞ with EðkÞ the energy derivative. Looking at the form of the NHF terms, from

perturbation theory we know the first-order wavefunction has to satisfy the

inhomogeneous equation,

ðE0 2 H0ÞdC=dXk ¼ ðHðkÞ 2 EðkÞÞC ð0Þ

where the C ð0Þ ¼ Cð0Þ, the wavefunction at the starting geometry. Subject to the usual
intermediate normalization, we can rewrite this equation as

dC=dXk ¼ R0ðHðkÞ 2 EðkÞÞCð0Þ ¼ R0H
ðkÞC ð0Þ

in terms of the resolvent operator, R0 ¼ ðE0 2 H0Þ21Q: With minor manipulations, we

can also write R0 ¼ lhlkhlE0 2 H0lhl21khl ¼ lhlR0khl where we have chosen to replace
Q by its representation (‘inner projection’ [17]) in terms of functions orthogonal to the

reference function, C ¼ C ð0Þ: In this resolvent form, it is easy to see that

kdC=dXklĤ2 ElC lþ kClĤ2 EldC=dXkl ¼ 2kClĤR0HðkÞlC l
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Consequently, if we introduce the auxiliary vector, L ¼ kClĤlhlR0, this then gives us

2LkhlHðkÞlC l for the NHF terms.
Note what has been accomplished. In this form, L is independent of the perturbation

operator so we now compute one L and use it for all degrees of freedom, leaving only

the khlHðkÞlC l term to be evaluated for each degree of freedom, which can then be

dotted into L.
This procedure is a manifestation of the interchange theorem familiar from double

perturbation theory [106,107] to emphasize that one could choose to do a calculation of a

quantity like kClVR0W lC l by evaluating R0W lC l or ðR0V lC l† first, depending upon
which operator lent itself to the greatest simplification. In the particular case of analytical

gradients with,3N degrees of freedom, this is a major, indeed, essential, simplification.

(For the MO relaxation part of the problem, the same interchange theorem simplifies

the coupled-perturbed Hartree–Fock solutions as would occur with CI gradients where

the CI coefficients, themselves, are optimum [108]). But our concern was the use of the

interchange theorem for the correlation problem [103] as the cluster amplitudes do not

come from a variational solution.

With the above, we can now move to CC theory where the energy is

ECC ¼ kF0lĤlCCCl ¼ kF0lĤ expðTÞlF0l ¼ kF0lexpð2TÞĤ expðTÞlF0l ¼ kF0l 
HlF0l:

In order to keep track of all terms simply, it is much more convenient to consider our

derivative Hamiltonian to be written in second quantization, Hk ¼ P
p;q kplhlqlkp†qþ

1
4

P
p;q;r;s kpqllrslkp†q†sr ensuring that by virtue of the total derivative of the matrix

elements, Hk will properly include all appropriate AO and MO derivative terms. (To

make the small distinction from the general, first-quantized approach above, we use k

instead of (k) in superscript.) Then straightforward differentiation gives

Ek
CC ¼ kF0l 
H klF0lþ kF0l½ 
H; T k	lF0l

where 
Hk ¼ expð2TÞdHk=dXk expðTÞ, while the dT=dXk ¼ Tk is in the second term.

Since in CC theory the first-order perturbed wavefunction is dC=dXk ¼
dT=dXkexpðTÞlF0l ¼ TkCCC , we know from the CC amplitude equations that

khl 
Hk þ ½ 
H; Tk	lF0l ¼ 0 ð17Þ
Liberal use of the resolution of the identity 1 ¼ Pþ Q, where Q 
HP ¼ 0 are the CC

equations, and QTkP is the only non-vanishing part of the perturbed T operator [3] then

gives

khlTklF0l ¼ khlðECC 2 
HÞlhl21khl 
HklF0l ð18Þ
Applying the interchange theorem just as we did above, now leads us to

Ek
CC ¼ kF0l 
H klF0lþ kF0l 
HlhlR0khl 
H klF0l

Finally, choosing to define L ¼ kF0l 
HlhlR0, we have

Ek
CC ¼ kF0l 
H klF0lþL 
Hk ð19Þ
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Though guided to this formby simply askingwhat the energy derivative is inCC theory,we

can reverse the process (that is use the ‘integral Hellman–Feynman theorem’) and observe

that we can obtain this result by introducing the fundamental CC functional [3,103,104,

109] from the beginning. In operator form,

ECC ¼ kF0lð1þLÞ 
HlF0l

This is an important quantity. Our first development of it followed the above, derivative

argument [103,104,109]. This simplymeanswe use first-order perturbation theorywith the

CC reference as the unperturbed problem to get the first-order energy correction—the

gradient. It was also suggested from a different field as a generalization of CC theory [110,

111], but in chemistry we consider energies and their derivatives (properties) to be

synonymous as above [111]. Finally, it can also be deduced as a consequence of a

Lagrangian multiplier constraint [112].

Regardless, the role of this functional in CC theory is paramount. Varying

dL ¼ ›=›lab…ij… , we obtain

Q 
HP ¼ 0 ð20Þ
the usual CC equations, while varying w.r.t dT ¼ ›=›tab…ij… we obtain the L equations,

PLQ 
HQþ P 
HQ2 ECCPLQ ¼ 0 ð21Þ
P½L; 
H	Qþ P 
HQþ P 
HQLQ ¼ 0 ð22Þ

The second form uses the commutator to formally eliminate the energy. Before we do

that, though, it is apparent that the L equations are CI-like, as they are energy dependent

and are linear. They also retain disconnected terms in their expressions [11,109], since

unlike T, L is not composed of solely connected terms.

Because these two stationary conditions are satisfied, the CC functional—unlike the

CC energy itself—is stationary. Hence, knowing both T andL, we can immediately write
all energy derivatives simply from a generalized Hellman–Feynman formula [109],

Ek
CC ¼ kF0lð1þLÞ 
HklF0l ð23Þ

This also allows us to define the CC ‘response’ and ‘relaxed’ generalizations of the usual

density matrices [109] making property evaluation in CC theory routine. In particular, we

now have for gradients

Ek
CC ¼

X
p;q

Dpq hkpq þ
X
m

k pmllqmlk
{ !

þ Gpqrsk pqllrslk þ
X
pq

IpqS
k
pq ð24Þ

where we used the ‘relaxed’ density matrix Dpq defined elsewhere [109,113] and

discussed below. The derivative integrals are the AO integrals rotated into the MO basis.

The Ipq is also defined elsewhere [109,113]. For ordinary properties, we have the

‘response’ density matrices

gpq ¼ k0lð1þLÞexpð2TÞp†q expðTÞl0l ð25Þ
Gpqrs ¼ k0lð1þLÞexpð2TÞp†q†sr expðTÞl0l ð26Þ
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The difference in gpq and Dpq is the incorporation of orbital relaxation for the reference

determinant, so that the results for a dipole moment computed with the ‘relaxed’ density

matrix gives precisely the same results as if it were done by differentiating the CC energy

in a finite-field calculation,

~mel ¼
X
pq

Dpqk pl~rlql ð27Þ

In other words, the HF orbitals are relaxed to accommodate the dipole perturbation, and

then the CC calculation of the energy carries this orbital change into the correlation

problem. By doing all this analytically, we can incorporate the expressions for the orbital

relaxation effect prior to specifying the actual operator, leaving that to be added as hkpq in

Eq. (24) above.

The generalization of the interchange theorem [103] to the correlation problem is

what makes CC analytical gradient theory viable, and, indeed, routine today. Also, the

introduction of the response and the relaxed density matrices provides the non-

variational CC generalizations of density matrix theory that makes it almost as easy to

evaluate a property as with a normal expectation value. They are actually more

general, since they apply to any energy expression whether or not it derives from a

wavefunction! This is essential, e.g. for CCSD(T). The difference is that we require a

solution for both T and L if we want to use untruncated expressions for properties, as

is absolutely necessary to define proper critical points. It is certainly true that

~mel ¼ k0lexpðT†Þ~r expðTÞl0l=k0lexpðT†ÞexpðTÞl0l ð28Þ
¼ k0l½expðT†Þ~r expðTÞ	Cl0l ð29Þ

where the second-form observes that the denominator can be removed in all orders by

insisting that the numerator be limited to just connected terms [24,25]. But this form

will never terminate. The first form will terminate in the numerator and in the

denominator when T exceeds the number of electrons in the system, but not once the

denominator is divided into the numerator. Short of that, we have to force some

truncation. For CCSD based on HF, this form will be correct through second-order

perturbation theory, while CCSDT-1 is correct through third order, for example [114].

Hence, quite reasonable approximations for ordinary (non-gradient) expectation values

can be obtained without solving the L equations.

Such expressions for the energy and associated amplitudes have been considered in the

expectation value [88] and unitary CC variants [115]. In fact, UCC is stationary [115],

meaning that its solutions do not require use of the interchange theorem for the

correlation part of the problem, but would still do so for the MO variation.

Today, analytical gradients for CC methods have been accomplished for CCD [116],

and by using the above relaxed density formulation, closed-shell CCSD [117] and

CCSDT-1 [118]. Also for CCSD(T) [119,120]. General, open-shell, symmetry-specific

CCSD [113], and CCSD(T) have been presented and are widely used in the ACES II

program system [121,122]. Now analytical derivatives for the full CCSDT are available

[123]. Kállay, Gauss, and Szalay have now added the gradients for higher levels of CC

with their automated procedures [124].
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Gradients have also been implemented for EOM-CC excited and ionized states

[125,126] discussed in Section 41.5, and the spin-flip EOM-CC variant [127].

Gradients provide structures and their numerical second derivatives characterize

critical points while providing vibrational frequencies. However, there are still great

advantages if the second derivatives can be determined analytically, too. This unique

development was accomplished by Gauss and Stanton [128], who implemented

analytical Hessians for CC methods from CCSD to CCSD(T) and the full CCSDT.

Open-shell (UHF) second derivatives for CC methods were presented by Szalay et al.

[129]. Now this has been done automatically for even higher levels of theory with Kállay

and Gauss’ automated approach [130].

42.5 EXCITED STATES: 
HRk 5 Rkvk

A natural way to introduce equations for excited states into a quantum chemical approach

is to consider stimulating the molecule by a time-varying electric field to which the

molecule can respond by excitation, and derive solutions from the time-dependent

Schroedinger equation. Analysis then leads to equations for the excitation energies and

properties of the excited state eigensolutions like transition moments. In particular, such

an approach, after a Fourier transformation from time to frequency, will yield the

dynamic polarizability whose spectral expansion is

aðvÞ ¼
X
k

{lkC0lrlCkll
2½1=ðvþ E0 2 EkÞ þ 1=ðE0 2 Ek 2 vÞ	}

When v ¼ Ek 2 E0 ¼ vk, we obtain the excitation energy and the residue of the dynamic

polarizability at the pole is the dipole strength. Hence, by using the coupled-cluster

approach to obtain a solution of the time-dependent Schroedinger equation, one can

immediately obtain equations that will yield excitation energies and associated

properties. When this is done for Hartree–Fock theory, we make the transition to

time-dependent HF(TDHF), and we derive the TDHF, or random-phase approximation

(RPA) for excitation energies and associated properties. We can do exactly the same

thing by insisting upon a CC solution of the time-dependent Schroedinger equation. This

important step was taken by Monkhorst [131] to define a coupled-cluster linear response

(CCLR) approach. Other pertinent papers from this time include those of Mukherjee et al.

[132] and those by Nakatsuji and Hirao [50,133]. The latter were developing hybrid CI

and CC methods for excited states (SAC-CI), that are similar to CCLR and EOM-CC, but

they are not equivalent.

In the same volume of the Sanibel proceedings as the Monkhorst paper was an attempt

at a different, time-independent approach to excited states in CC theory by Harris [134],

that used the equation-of-motion (EOM) formalism of D.J. Rowe [135] (see also [136,

137]). Harris’ approach did not lead to viable equations because he proposed to write an

excited state as an exponential,Ck ¼ expðŜÞexpðT̂ Þl0l, where like T̂, Ŝ was an excitation
operator, which just redefines T̂: (For some special cases such an operator can be used
[138], to obtain excited states, but see also the general solutions of the non-linear

equations of CC theory [139].) However, the EOM development simply uses a linear
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operator instead of expðŜÞ [140–144], and it provides exactly the same eigenvalues (not
all properties) as the time-dependent linear response CC approach. It also ties directly to

the gradient method, to the CC functional, and provides an alternative route to higher

order properties, as discussed below. That is, the resolvent in Eq. (18) corresponds to the

matrix for EOM-CC eigenstates. It also offers an alternative, and quite appealing,

mathematical structure; that extends the time-dependent approach and suggests different,

highly useful, approximations that differ from CCLR. Hence, EOM-CC offers an

independent, unified treatment of a wealth of different phenomena.

The EOMphilosophy is very simple, remarkedly flexible, and transparent in a few lines.

Simply consider two stationary state Schroedinger solutions,

HCk ¼ EkCk ð30Þ
HC0 ¼ E0C0 ð31Þ

and make the ansatz

Ck ¼ VkC0 ð32Þ
where Vk is an operator that creates the kth state from the reference (not necessarily

ground) state, C0: Then, after multiplication from the left by Vk; we can subtract the

reference state solution from that for the kth state, to obtain

½H;Vk	C0 ¼ vkVkC0 ð33Þ
vk ¼ Ek 2 E0: That is called the EOM from its analogy with the Heisenberg equation of

motion, that relates a commutator to a time-derivative. We immediately gain the benefit

that the excitation energy itself is the eigenvalue, rather than having to compute the

difference between two large numbers. Conceptually, the EOM approach attempts to

cancel the common elements in the two wavefunctions, focusing on the essential

differences. Finally, from the viewpoint of the second-quantized operators involved in the

commutator, the resultant operator is of lower rank, making it easier to evaluate it

accurately than the two operators separately [145].

Hence, we can introduce a lC0l ¼ expðTÞl0l and a suitable form for Vk and we have a

set of equations for a CC approach to excited states. The primary constraint on Vk is that

it be able to provide the exact result in the limit. Hence, if we choose a CI-like operator,

Vk ¼ r0 þ
X
a;i

rai a
†iþ

X
a,b;i,j

rabij a
†ib†jþ · · · ð34Þ

which means a constant plus all single, double, triple, etc., excitations, with coefficients to

be determined. Then, obviously, this operator will generate the full CI solution for the

kth state, even when working on a single determinant reference. For this choice of Vk,

the distinction between working on expðTÞl0l and just l0l, is unimportant because

½T ,Vk	 ¼ 0: Such a linear operator is the most convenient choice to make in EOM-CC
(though not the only one, as a combination of excitation and de-excitation operators could

be used, for example). It ties directly to our property approach discussed above, and

assumes a very convenient mathematical form. In particular, writing the commutator as
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a connected expression, EOM-CC becomes

½expð2TÞH expðTÞR̂k	Cl0l ¼ vkR̂kl0l ð35Þ


HRk ¼ Rkvk ð36Þ
where the eigenvector is written as Rk (not to be confused with the resolvent)

to emphasize that it is a right-hand eigenvector to a non-Hermitian matrix,

H ¼ khexpð2TÞH expðTÞlhl: h represents the selection of excitations, like single and

double excitations in k. In other words, this is a CI problem for excited states built upon a

CC ground state. Because of its non-Hermitian character, 
H also has a left-hand

eigenvector, Lk

H ¼ Lkvk, with the same eigenvalue, but 
H and L do not have to be

connected. We choose the normalization that k0lL̂kR̂ll0l ¼ dkl [143]. In fact, the very
existence of the stationary-state eigenvectors is what distinguishes the EOM-CC

approach from CCLR, which like most time-dependent approaches does not have

eigenvectors per se. For energies either eigenvector will suffice, but for properties you

need both. EOM-CC provides the excited state one-matrix as g k
pq ¼ k0lL̂kexpð2TÞp†q �

expðTÞR̂kl0l:
The beautiful connection between the ground state problem and the excited state one

becomes apparent when we realize that in the CC functional, L0 ¼ 1þ L and R0 ¼ 1, as

the first pair of eigenfunctions to 
H: Then, just as above, we have the elements of the
ground state density matrix as k0lL̂0expð2TÞp†q expðTÞl0l: We also have the resolution

of the identity, 1 ¼ P
k lRklkLkl: As long as Vk is a linear operator, the equations are well

defined. It would be nice if we could use an exponential operator to vest excited states

with the same flexibility as CC does for ground states, but doing it in a straightforward

way like Vk ¼ expðŜÞ leads to a non-determinable set of equations. More general

exponential ansatz are possible from the Fock space multi-reference CC method of

Mukeherjee et al. [146], that are closely related to EOM-CC [147].

Logically, we use the same set of single and double excitations in h and T, and that

defines EOM-CCSD. However, from the EOM viewpoint, that is not really necessary as

we have two potentially different approximations. This issue has been studied

numerically [148]. From the time-dependent, linear response viewpoint [112,131],

the ground state and the excited states which pertain to its response are tied together via

the differentiation of the ground state, which requires that the choice of excitations be the

same for both; that is the standard choice.

A few years ago we extended EOM-CCSD to the full EOM-CCSDT method and made

some fairly large basis set (,90 function) calculations, based upon the full triple

excitation. CCSDT ground state, and the inclusion of all triple excitations in h [149]. At

the same time others [150] reported a study of H8. These authors also looked at simple

potential energy curves with EOM-CCSDT and its active orbital modification, EOM-

CCSDT [151,152]. Now, by virtue of their automated procedures, [153] EOM-CC can be

taken to any level. Hirata has similarly done EOM-CCSDTQ [154], and Kállay EOM-

CCSDTQP.

For the very flexible EOM structure, we can equally well consider the operator, Vk, to

correspond to a change in particle number. That is, instead of just exciting an electron by
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promotion of an occupied orbital into an unoccupied one, we can equally well take

the electron all the way out by assuming the excitation into orbital a is actually into the

continuum. Since the continuum orbital will have no overlap with any of the square

integrable bound state orbitals left, the net result is that the operator a†i! i†, will

annihilate an electron from the orbital fi, so we are describing an ionized state, i.e.

IP-EOM-CC. In this case our h consists of all determinants that correspond to one less

ðn2 1Þ electrons. Similarly, we can take an electron from the continuum and add it to the

molecule, causing a†i! i† which corresponds to a state that has an extra electron, i.e. an

electron-attached state, i.e. EA-EOM-CC. h consists of all determinants that correspond

to nþ 1 electrons. Obviously, by construction we have a seamless transition in EOM-CC

from a Rydberg series of electronic excitations to the ionized states that occur at the

continuum. We also have as other solutions of the IP-EOM-CC problem the shake-up

states, where ionization is accompanied by excitation. Obvious generalizations to double

ionization and double electron attachment have been made [155]. In the interest

of efficient numerical implementation, it is important that for proper, fully factorized

EOM-CC applications, that we write separate programs for the IP and EA sectors

[156,157] rather than simply taking the electronic-excitation (EE-EOM-CC) program and

forcing the continuum argument above in its implementation, although that will provide

the right answers [158].

EOM-CC makes many multi-reference problems accessible, since it is multi-reference

for the target state. Since we are diagonalizing a matrix, all determinants in the eigenstate

have, whatever weight they require, instead of having to grow to the appropriate value

through some basically perturbative means, as in the single reference CC theory. For

example, an open-shell singlet excited state is no problem for EOM-CC, since its

eigenstate will contain the two equally weighted determinants automatically, just as

would CI. However, if the molecule had an open-shell singlet ground state, the EOM-CC

recourse would be to have another excited state that could be obtained from single-

reference CC theory, and then use EOM-CC to de-excite to the ground state.

Alternatively, to treat an open-shell singlet with a single-determinant reference it

would be difficult to get the determinants to be properly weighted, when one determinant

would be the reference and the other, part of the orthogonal complement. Its

coefficient would very slowly grow to that value depending upon the procedure for

solving the non-linear CC equations. Most general procedures are based upon some

accelerated Jacobi iterations which are like perturbation theory, but for a case like this the

perturbation is not small, causing convergence difficulties; and recommending that a two-

determinant (multi-reference) CC approach be used instead [159–161].

Regarding symmetry, if the reference CC state is for a closed shell, all EOM states

derived from it are spin-eigenstates. If the reference CC state is for a high-spin

situation, then we might use either a UHF, ROHF, or QRHF reference, and the

resultant CC solution would be very close to a spin eigenfunction, though it is not one.

In a clever approach, Szalay and Gauss obtain spin eigenfunctions for the EOM target

state with such an open-shell reference [162] by simultaneously considering the CC

equations for Ŝ2:
Krylov and her co-workers have taken the de-excitation EOM to its logical conclusion

in what they call their spin-ip (SF-EOM-CC) method. EOM-CC readily lends itself
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to treating high-spin open shells with ROHF, UHF, or other references, as illustrated

for O2 [142]. Hence, it is straightforward to obtain a high-spin single reference solution

and then excite and de-excite to lower spin and higher spin states as required [163].

De-exciting to lower spin states is particularly attractive for studies of complicated

radicals. Their method does not yield spin-eigenfunctions, but they would be close.

A large number of numerical results now exist for EOM-CC. A few general comments

can be made without trying to be too quantitative. It is apparent that EOM-CCSD does

very well for excited states dominated by single excitations, being particularly accurate

for Rydberg excitations if the basis set is adequate. Its errors are slightly worse

for valence-excited states, and can be entirely wrong for states dominated by

double excitations. The obvious explanation is that double excitations provide most of

the essential correlation effects for states dominated by singles, so EOM-CCSD is good

for such states; but when a state is dominated by doubles, we need at least triple

excitations. Then in finer detail, we also see that various approximations to triples

like EOM-CCSDT-1, EOM-CCSDT-3 [164], CC3 [165], etc., that improve upon the

results for singly excited states, still fail compared to the full CCSDT for dominate

doubly excited ones. Now, we even know what happens for some EOM-CCSDTQ results

[148,154].

As one would expect, if we describe ionization potentials with IP-EOM-CCSD,

we will have similar behavior. We should do quite well for most principal ionizations

where the eigenstate is dominated by single excitations, meaning linear combinations of

i†l0l determinants, with i†a†jl0l playing most of the correlation and relaxation role; but
when the latter ‘shake-up’ is dominant, then we would logically need i†a†jb†kll0 in our
space to do as well for the shake-up eigenvalues. The latter requires IP-EOM-CCSDT

[156], and the complementary EA-EOM-CCSDT method [157] and higher [166]

Just as we required analytical gradients for ground state CC results, one can obtain

analytical gradients for EOM-CC excited states, too. This important development was

made by Stanton and Gauss [125], offering the first analytical gradient capability for

excited states beyond MCSCF and some CIs. With this tool, and its extensions to

second-derivatives [167], realistic non-adiabatic spectral simulations have been

obtained [168], making it possible to actually argue spectroscopy with the spectro-

scopists; rather than focus only on idealized vertical excitation energies or vertical,

principal ionization potentials. This represents the culmination of much work based on

CC theory directed toward spectroscopy; and is a major accomplishment for the field

[169,170].

For second-order properties derived from the perturbation, Oð1Þ, we have a particularly
attractive method that uses the EOM eigenvectors to represent the perturbed

wavefunctions. Since the right- and left-hand eigenvectors form a complete set, we

know we can write the perturbed wavefunctions in the form,

lC1l ¼
X
k¼1

R̂kl0lcð1Þk ð37Þ

kC1l ¼
X
k¼1

k0lL̂kdð1Þk ð38Þ
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This makes the second-order energy,

E2 ¼ k0lð1þLÞðexpð2TÞO1expðTÞ2 E1ÞlC1l ð39Þ
¼ k0lL0ð 
O1 2 E1ÞR0ð 
O1 2 E1Þl0l ð40Þ
¼

X
k¼1

k0lL0ð 
O1 2 E1ÞlRklkLklð 
O1 2 E1Þl0l=vk ð41Þ

¼ k0lð1þLÞð 
O1 2 E1ÞlhlC1 ð42Þ
The critical element is that the resolvent operator, R0 ¼ lRlkLlECC 2 
HlRl21kLl )

lhlkhlECC 2 
Hlhl21khl, showing that it arises from the EOM-CC 
H eigenfunctions in the

configuration space lhl: Furthermore, we solve the linear equation C1 ¼ ðE012 
HÞ 
O1 to

avoid matrix inversion [144].

Perera et al. have made extensive use of this expression in calculations of NMR

coupling constants [171,172], as well as for static and dynamic polarizabilities and with

Rozycko, hyperpolarizabilities [173,174]. In the treatment of higher order properties,

distinctions between EOM-CC and CCLR appear. These have been discussed [174,175],

where the point is made that we do not have one completely satisfactory treatment of

higher order properties, but two alternative approximations with different characteristics.

The EOM-CC approach which uses the (formally) complete set of eigenfunctions for

expanding all perturbed wavefunctions as above, leads to the usual sum-over-state

expressions, though evaluated as in closed form above, has proven itself in many such

studies [171,173]. (The differences with CCLR derive from the degree of completeness

which is only guaranteed in the untruncated CC limit.)

The use of EOM-CC as a ‘target state’ method, rather than one for spectroscopy, as in

the gradient work above, also leads us to alternative approaches for ‘multi-reference’

problems as in the open-shell singlet case, but for more difficult examples. One

illustration is the treatment of the ground state of ozone, with its well-known multi-

configuration structure. In essence, we would like to treat ozone with a reference space of

four determinants, a2, b2, a
b and b
a:
The last two only contribute for unsy mmetric geometries. A straightforward multi-

reference application would include them all. In single reference CC, we would only have

the option to use one as the reference, with all others being part of the orthogonal

complement, making it necessary for their coefficients to grow into appropriate values

through the solution of the CC equations; and sometimes this is difficult because higher

connected cluster operators than those included might be essential. In double ionization

potential (DIP-EOM-CC), we can choose to solve for the CC solution for the hypothetical

O3
22 anion, with its reference determinant a2b2 and then use the operators

{i†j†,i†j†b†k,…} to produce doubly ionized states, a0b2, a2b0, a1 
b1, b1 
a1: In this way,
we treat the quasi-degenerate a and b orbitals equivalently in the target state, as their

configurations can assume any value for their respective coefficients, yet we retain,

operationally, the convenient single reference structure of CC calculations with its

unambiguous ease of application. Lacking an easily applied multi-reference CC theory,

this is often a preferable route to the solution to a problem. Its success depends, also, on

the insensitivity of CCSD and beyond to orbital rotations. Here, we are using O3
22
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orbitals, which you might expect to be far away from those for ozone, itself. If our method

has the invariance of full CI, that is not an issue, but in its truncated form, it will not

necessarily achieve the same degree of orbital insensitivity as for ground state CC,

primarily because the target states are from CI, rather than exponential type [176]. This

can affect the accuracy of some approximations [177].

I alluded to the fact that it would be nice to have an exponential ansatz for the target

states in EOM-CC, rather than a linear one. This can be done by introducing the Fock

space multi-reference method originally developed by Lindgren [178] and Mukeherjee

[146]. This necessitates the introduction of a valence universal wave-operator that

requires a hierarchical solution using the ground state (0,0) solution, then the ionized

sector (0,1) and electron attached, (1,0) ones, and then the excited states from the (1,1)

sector, etc. For the ionized and electron-attached states, there is no difference for

principal ionization potentials and their electron affinities than in the corresponding (IP

and EA) EOM-CC methods, since the exponential operator in that case degenerates to a

linear one. However, for excited states there are a few differences in the two

approximations. Comparisons of FS-CCSDT and EOM-CCSDT are presented elsewhere

[179]. Only the Fock space approach results in a fully size-extensive, linked diagram

structure, as CCLR or EOM-CC depend upon a CI approximation for the excited state,

and that cannot be fully linked. However, it will have the size-intensive [165] property

for excited states of AB that can be decomposed to those for Aþ B: But only the Fock
space and STEOM-CC method, discussed below, has the property of going smoothly to

Aþ þ B2 [180–182].

The similarity transformed EOM, STEOM-CC [183], approaches the problem

somewhat differently, but it also provides an exponential ansatz for excited states,

namely Ck ¼ expðŜÞ expðT̂Þl0l, where expðŜÞ has a different meaning than before. The
method decouples the contributions of higher cluster operators from the lower ones, by

using the results for the (1,0) and (0,1) results to define the second similarity

transformation, Ŝ, leaving the excited states to be obtained now from a problem of the

dimension of a CI singles (CIS) calculation. This method is a kind of exact CIS for the

excited states of molecules, at least those dominated by single excitations. It is very

attractive for large-scale application as in our work for free-base porphine [184,185].

Extensions by Nooijen and Lotrich have been made for doubly excited states [186].

Though the numerical results will not usually be dramatically different between

SAC-CI and EOM-CC, when the former’s approximations are made very carefully—as

they share similar low-order perturbation approximations—the methods differ dramati-

cally in formal ways and in their computational implementations [187].

42.6 DEVELOPMENTS FOR LARGE MOLECULES AND POLYMERS

As discussed above, the wide applicability and predictive nature of CC methods have

established a plateau in the field and led to automated program generation for the standard

sequence of approximations of CC and EOM-CC methods. This alleviates any need for

further development of the basic CC functional structure, at least for molecules treated in

a conventional way. However, one profitable route for further development is to focus on
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the other elements in CC calculations; like localization techniques and removing basis set

redundancy to attack the highly non-linear scaling (., n6) of the standard CC methods.

The work of Schütz and Werner [189,190] in the first category has had some notable

successes. These authors have demonstrated linear scaling at the CC level, while

reporting largely CCSD and CCSD(T) results with .1000 basis functions. The basic

structure derives from that of Saebo and Pulay [191], who identify beforehand regions of

a large molecule that suit a localized description, and then enforce this by working in a

projected AO basis set instead of the usual virtual MO space, with localized MOs for the

occupied orbitals. However, much of the benefit depends upon using MBPT(2) for

weakly interacting electron pairs, only using CC theory for the relatively small

remainder. Also the need for a global reference calculation, often the rate-determining

step since MBPT(2) is now so fast in their approach, forces the use of fairly small basis

sets. This approach is typical of ‘threshold’-based methods where pre-analysis is

essential, but with care, can be done successfully and even provide reasonable analytical

forces despite the innate discontinuities of the PES due to the thresholds, which is often a

failing of such methods.

The alternative of exclusively using the AO basis operationally in CC calculations, as

the most local basis possible (avoiding any kind of local MO description for the occupied

orbitals), has also been considered [192,193], but has not yet been shown to pay

dividends. In fact, unpublished work on polymers [194,195] suggests that AO methods

actually do not compare very well with the standard delocal, Bloch periodic symmetry

treatment. By the way CCSD has now been applied with periodic symmetry to simple

polymers at the CCSD level [196,197].

Our contribution to the linear scaling effort [51,206] has focused on what we call the

natural linear scaling CC (NLSCC) method which goes back to local bond–orbital ideas

of Malrieu et al. [199,200], and was considered in an ab initio CC long ago [201,202]. It

also has similarities to Yang’s Divide and Conquer approach [203,204]. NLSCC differs

from the above in several ways: (1) It never requires a global solution for the large

molecule as do Shuetz and Werner, e.g. but only that for the components constituting the

large molecule. (2) It exclusively works in a localized, orthogonal MO basis, using the

natural localized MOs of Weinhold [205]. This means the rate determining steps are

, n2N4 for CCSD, just like normal CCSD, while if we use the AO basis completely, we

have to contend with, ðnþ NÞ6, or for just the virtual space,, n2ðnþ NÞ4: The greater
sparseness of the AO basis has to offset the poorer scaling to offer competitive results. (3)

The integrals and the CC amplitudes tend to fall off as r23 using NLMOs, which is

sufficient to fragment the large molecule into overlapping, local units for application.

These are molecular units whose bonds are terminated by hydrogens, plus a boundary

neighborhood. (4) There is exceptional transferability of CC amplitudes so that a C–C

bond looks pretty much the same in terms of its associated correlated amplitudes

regardless of what it is bonded to. In other words, we see much of the well-known

transferability in chemistry in NLSCC.

In an earlier version of this approach, we exploited the transferability to provide results

for the correlation energy and density matrix of diamond, without any treatment for the

extended system [198]. Unlike most of the other attempts at linear scaling, which tend to

only really be realized in small basis sets, the rate determining step in the CC calculation
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is for the largest ‘molecular’ unit, so one can use as large a basis for each such unit as

molecular CC approaches will allow. (5) The method can describe bond-breaking and

delocalization as long as they are contained within one of the computational units, and if

the long-range forces are still small enough by virtue of the r23 fall off. We would not do

graphite! (6) There is no need to use periodic boundary conditions making amorphous

materials, and ‘real’ as opposed to idealized polymers, accessible. A recent paper

compares the NLSCC approach to that of Schuetz and Werner for their polyglycine

example [206]. There is still work to be done on forces, dispersion, and long-range effects

to develop a truly adequate approach.

The other development that, I believe, will pay considerable dividends in CC theory is

to pay more attention to removing the linear dependency in our quantum chemical

descriptions. We all know that the underlying Gaussian bases we use in quantum

chemistry offer a great approximation for a lot of things, but they also carry along much

excess baggage. Linear dependency at the HF-SCF level is well known, but it also exists

in the two-electron integral matrix [207], and in turn, in the CC amplitudes. One

manifestation is the observed fact that simply replacing the HF-SCF virtual space by a

better chosen set related to it by a rectangular transformation that reduces its dimension,

can be done at little cost in the final, correlated result, if the chosen rectangular

transformation is a good one! Many such attempts have been made over the years,

primarily for CI methods, where natural-orbital iterations have been extensively used

[208]. We proposed an optimized virtual orbital space (OVOS) method once upon a time

[209], using the MBPT(2) Hylleraas functional to provide optimum second-order energy

for a given transformation, and it worked very well. Many other attempts by others are

reviewed in that paper. But even simpler than OVOS is the well-known use of frozen

natural orbitals in this context [210], which provided the initial guess for OVOS, and was

almost as good. If we can reduce the dimension of the virtual space by 50%, we gain at

least,24 in a CC calculation. We are doing this currently with great success for energies

and analytical gradients [211]. This gain bypasses any need for a localized treatment of

the underlying problem, but combining the two might offer further advantages.

More sophisticated approaches that have the same primary advantage of offering a

seamless treatment of large molecules in large basis sets solely based upon doing

reasonable mathematics, and without exploiting an a priori localized structure, are built

either upon the singular value decomposition approach [212,213] or the Cholesky

decomposition [207,214]. The former applies to any matrix, while the latter requires a

positive-definite one. In the first case, we can replace the matrix by an expansion in

vectors weighted by their singular values, which measures their importance. Then we can

make a contraction of the usual MO-indexed amplitudes, tab…ij… by a contracted set, tYX , as

determined, in principle, by their singular values. (In practice, we have to obtain the

weight factors from some simpler, related problem like MBPT(2).) Now the effective

dimension of the CC problem is greatly reduced, again dramatically diminishing the high

scaling of the unmodified calculation. We call this compressed coupled-cluster.

Impressive results have also been obtained by the Cholesky route [214]. Canonizing

these techniques into widely used programs, including those that are automatically

generated, is an important step toward the future, wide-ranging applications of these

highly accurate CC methods.
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36 J. Paldus, J. Ĉı́ẑek and I. Shavitt, Phys. Rev. A, 5 (1972) 50.

37 R.J. Bartlett and D.M. Silver, Phys. Rev. A, 10 (1974) 1927.

38 R.J. Bartlett and D.M. Silver, Chem. Phys. Lett., 29 (1974) 199.

39 R.J. Bartlett and D.M. Silver, Int. J. Quantum Chem. Symp., 8 (1974) 271.

40 D.M. Silver and R.J. Bartlett, Phys. Rev., A13 (1976) 1.

41 R.J. Bartlett and D.M. Silver, J. Chem. Phys., 62 (1975) 3258.

42 R.J. Bartlett, D.M. Silver, in: J.-L. Calais, O. Goscinski, J. Linderberg and Y. Öhrn (Eds.), Quantum
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nanotechnology.

After receiving a B.A. degree from

Harvard in 1964, Wes Borden spent a

year on a Fulbright Fellowship, studying

theoretical chemistry with H.C. Longuet-

Higgins in the other Cambridge. Professor

Borden completed his Ph.D. degree at

Harvard in 1968, under the direction of

E.J. Corey, and then served 5 years on the

Harvard Faculty, before moving to the

University of Washington. There he began

to collaborate with Ernest Davidson, from

whom Professor Borden learned that

ab initio calculations provided a powerful

tool for understanding chemistry. After 31

years at UW, in 2004 Professor Borden

accepted a Welch Chair of Chemistry at

the University of North Texas.

Charles W. Bauschlicher, Jr.

Weston Thatcher Borden
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Joel Bowman received his Ph.D. in chem-

istry from Caltech in 1975 working under

the direction of Aron Kuppermann. After

rising through the academic ranks at

Illinois Institute of Technology, he moved

to Emory University in 1986 and became

Samuel Candler Dobbs Professor in 1990.

He has been a Visiting Professor at the

University of Chicago and Yale University,

a JILA Fellow and is a Fellow of the

American Physical Society. He is currently

serving his second term as Chair of the

Chemistry department at Emory. He helped

establish the Cherry L. Emerson Center for

Scientific Computation at Emory and was

its first acting director in 1991. Currently,

most of his group’s computational chem-

istry research is done on “Multinode” a

100-cpu Beowulf cluster.

Brina (Beth) Brauer received her M.S.

degree under the supervision of K.J.

Kaufmann, and Ph.D. under the super-

vision of G.B. Schuster, from the Univer-

sity of Illinois at Urbana-Champaign. Her

graduate work primarily focused on

measurement of intersystem-crossing and

reaction rates of aryl-containing carbenes.

She moved to Israel 9 years ago and

became interested in spectroscopic calcu-

lations of biological molecules while

working in the laboratory of M.S. de

Vries. She has been working in the group

of R.B. Gerber for the past 3 years.

Joel M. Bowman

B. Brauer
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Robert Bukowski received his Ph.D. in

chemistry in 1996 at the University of

Warsaw, Poland, where he worked with

Bogumil Jeziorski. In 1997 he joined the

group of Krzysztof Szalewicz at the

University of Delaware. His research

focuses on the theory of intermolecular

interactions and its applications in con-

densed phase simulations.

Petr Cársky received his Ph.D. in chem-

istry in 1968 working at Czechoslovak

Academy of Sciences under the super-

vision of Rudolf Zahradnı́k. Except for a

single year (in 1989) he had a position at

the J. Heyrovský Institute of Physical

Chemistry (Academy of Sciences), where

he is now Director of the institute. The

beginning of his career falls into the era of

semiempirical calculations but since the

early 1970s he has been active in the field

of ab initio computational chemistry.

Robert Bukowski

Petr Cársky
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Stuart Carter received his Ph.D. in theor-

etical chemistry in 1966, working under the

direction of J.N. Murrell at the Universities

of Sheffield and Sussex. After leaving

academia to work as a computer program-

mer with International Computers Ltd, he

returned to continue his research in 1976,

working again with J.N. Murrell, and also

with I.M. Mills at Reading. In 1981, he

started a collaboration on rovibrational

variational theory with N.C. Handy at

Cambridge, which continues to this day.

He has had other positions in the meantime,

most notably with P. Rosmus in Frankfurt,

W. Meyer in Kaiserslautern, R.J. Buenker

inWuppertal and P. Palmieri in Bologna. In

1996, he started a collaboration with

J.M. Bowman at Emory, and it is this

work that has resulted in the development

of the variational code ‘Multimode’.

Galina Chaban came to the field of compu-

tational chemistry in 1983 while being a

student at the Moscow Institute of Fine

Chemical Technology, Russia. She per-

formed her first studies under the guidance

ofDrNinaKlimenko. Then she continued as

a research scientist at the Institute of New

Chemical Problems in the research group of

Professor Oleg Charkin. After immigrating

to the USA in 1992, she performed her

graduate studies in the group of Professor

Mark Gordon at Iowa State University and

received her Ph.D. in 1997. In 1998–2000,

she worked as a postdoctoral researcher at

the Hebrew University of Jerusalem and at

the University of California Irvine with

Professor Benny Gerber. At the present

time, she holds a position of Computational

Chemist at the NASA Ames Research

Center.

Stuart Carter

G.M. Chaban
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Sudip Chattopadhyay received his M.Sc.

degree in chemistry in 1993 from the

University of Burdwan, India. He is a gold-

medallist in both his graduate and post-

graduate examinations for topping the merit

lists. In1995he joined thegroupofProfessor

Debashis Mukherjee and received his Ph.D.

degree in 2001 for his work on molecular

electronic structure theory. He joined the

faculty of the Department of Chemistry,

Bengal Engineering and ScienceUniversity,

India in 2004. His research interest includes

the development of many-body electronic

structure theories and their application to

problems of broad chemical interest.

Richard A. Christie was born in 1975 in

Aberdeen, Scotland. He graduated with a

first class B.Sc. (Honors) degree in chem-

istry in 1997 from the Robert Gordon

University (Aberdeen, Scotland). In 2004

he earned his Ph.D. in chemistry at the

University of Pittsburgh under the gui-

dance of Kenneth D. Jordan. His research

has focused on theoretical studies of

hydrogen-bonded clusters.

Sudip Chattopadhyay

R.A. Christie
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Giovanni Ciccotti received his Laurea in

Physics in 1967 from the University of

Roma “La Sapienza”. In 1971 he joined the

Science Faculty of the University of Lecce,

in 1973 that of Camerino and in 1977

moved back to the Science Faculty of the

University of Roma “La Sapienza”, at first

as Associate Professor and since 1990 as

Professor of “Structure of Matter”. His

activity in Molecular Dynamics started in

Paris, while at CECAM (Centre Europeen

de Calcul Atomique et Moleculaire) in

1974 and his first paper in MD was in

1975. In 1999 he won the Berni J. Alder

CECAM prize and from 2004 he is Fellow

of IOP. His first publication, in 1969, was a

theoretical paper on elementary particles.

Enrico Clementi received his doctoral

degree in chemistry in 1956 from the

University of Pavia, Italy. After postdoc-

toral experiences with Nobel Giulio Natta,

Mikael Kasha, Kennet S. Pitzer and Nobel

Robert S. Mulliken, since 1961 he directed

and performed pioneering research at the

IBM Research Division (San Jose, Cali-

fornia), the Istituto Donegani (Novara,

Italy), the IBM Data System Division

(Poughkeepsie and Kingston, NY), the

Centro Ricerche e Sviluppo Studi Super-

iori Sardegna (Cagliari, Italy) and the

University L. Pasteur (Strasbourg, France).

His work on development, programming

and applications on the atomic structure of

atoms and molecules, with and without

relativistic correction, on correlation

energy, on Monte Carlo and Molecular

Dynamics for biological systems, on

micro-dynamics of liquid flows and on

architecture, both hardware and system

software, for an experimental parallel

computer, is documented in about 450

papers and several books.

Giovanni Ciccotti

Enrico Clementi
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Larry Curtiss received his Ph.D. in physi-

cal chemistry in 1973 from Carnegie-

Mellon University working with Professor

John A. Pople. He then spent 2 years as a

Battelle Institute Fellow at Battelle Mem-

orial Institute. In 1976 he joined Argonne

National Laboratory where he is currently

a Senior Scientist in the Chemistry and

Materials Science Divisions. His research

interests have included methods develop-

ment and applications of quantum chemi-

cal methods to a wide range of problems

including hydrogen bonding, catalysis and

properties of solid-state materials. He

received the University of Chicago Dis-

tinguished Performance Award in 1995

and was selected as an AAAS Fellow in

1997. He is the author of over 260 papers

and is an ISI highly cited chemist for

1981–1999.

Sanghamitra Das received her M.Sc.

degree in physics in 2001 from the Calcutta

University, India. In 2002, she joined the

group of Debashis Mukherjee as a Ph.D.

student.

Larry A. Curtiss

Sanghamitra Das
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Erik Deumens’ work in computational

chemistry has focused on two projects:

the development of a theory for the

description of the dynamics of electrons

and nuclei in molecular reactions as fully

coupled degrees of freedom, and the

implementation of this theory in computer

software. The second project is the build-

ing of infrastructure for computation at

QTP (Quantum Theory Project, Gaines-

ville, FL), including building clusters,

software libraries and courses.

Clifford Dykstra received his Ph.D. in

chemistry in 1976 working under the

direction of H.F. Schaefer at the University

of California at Berkeley. He then joined

the faculty of the University of Illinois at

Urbana-Champaign, becoming Professor

of Chemistry in 1988. Two years later, he

moved to the chemistry department at

Indiana University-Purdue University

Indianapolis (IUPUI) where he is now

Chancellor’s Professor of Chemistry. His

first attempt at computational work in

chemistry was in 1972 on an IBM 1800.

His first TACC publication, an electronic

structure CI calculation with Schaefer,

appeared in 1975.

Erik Deumens

Clifford E. Dykstra
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Masahiro Ehara received his Ph.D. (engin-

eering) in 1993 under the direction of

Professor H. Nakatsuji at Kyoto Univer-

sity. He then joined the Institute for

Fundamental Chemistry and Department

of Theoretical Chemistry of Heidelberg

University as a postdoctoral fellow. In

1995, he moved to Nakatsuji’s group at the

Department of Synthetic Chemistry and

Biological Chemistry in Kyoto University.

Marcus Elstner studied physics in Munich

and Berlin. He received his Ph.D. in

physics in 1998 under the direction of

Sandor Suhai from the German Cancer

Research Center in Heidelberg and Tho-

mas Frauenheim (University of Pader-

born). He moved to Paderborn University

after a postdoctoral fellowship with

E. Kaxiras (Department of Physics) at

Harvard from 1999 to 2000. Since Decem-

ber 2002 he is an Assistant Professor

(Junior professor) in the Department of

Physics at Paderborn University.

M. Ehara

Marcus Elstner
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Gernot Frenking studied chemistry at the

Universities of Aachen, Kyoto and Berlin

where he received his Ph.D. in 1979. After

obtaining his Habilitation in Theoretical

Organic Chemistry in 1984 he moved to

the United States where he spent 1 year as a

visiting scientist in the group of Professor

Henry F. Schaefer III at the University of

California at Berkeley. He then worked as a

Research Scientist at SRI International in

Menlo Park, CA. In 1989 he returned to

Germany and became an Associate Pro-

fessor (C3) for Computational Chemistry at

the Philipps-Universität Marburg. In 1998

he was appointed Full Professor (C4) for

Theoretical Chemistry. The focus of his

research interests has always been the

diversity of molecular structures and the

understanding of the nature of the chemical

bonding which comes from the analysis of

quantum chemical calculations. This motiv-

ation is beautifully expressed in the famous

statement of Charles Coulson: “Give us

insight not numbers”

Bruce Garrett received a Ph.D. in chemistry

in 1977 from the University of California,

Berkeley with W.H. Miller. He was a

postdoctoral research specialist at the Uni-

versity of Minnesota with D.G. Truhlar

(1977–1979) before joining the scientific

staff at Battelle Columbus Laboratories. He

co-founded Chemical Dynamics Corpor-

ation, a contract research organization,

where he conducted basic research from

1980 to 1989. He is currently Laboratory

FellowandAssociateDirector forMolecular

Interactions&Transformation in theChemi-

cal Sciences Division at Pacific Northwest

National Laboratory.His first computational

studies in1972 involvedkineticMonteCarlo

simulations with D.L. Bunker as an Under-

graduate Research Assistant at the Univer-

sity of California, Irvine, and resulted in his

first TACC publication in 1974.

Gernot Frenking

Bruce C. Garrett
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Robert Benny Gerber obtained his B.Sc. in

chemistry from the Hebrew University of

Jerusalem in 1965. He did his doctoral

research with C.A. Coulson at Oxford

University in 1968, and was a Postdoctoral

Research Fellow with Martin Karplus at

Harvard University. Since 1976 he has

been on the faculty of the Hebrew

University of Jerusalem, where he holds

the Saerre K. and Louis P. Fiedler Chair in

Chemistry. Since 1990 he is also Professor

of Chemistry at the University of Califor-

nia at Irvine. Gerber’s current research

interests include: vibrational spectroscopy

calculations for large molecules; new

molecules of the noble gas elements and

their formation dynamics; photochemical

reactions in low-temperature matrices and

clusters; and dynamics of atmospherically

important processes.

Born and raised in the New York City area,

Mark Gordon received his B.S., Ph.D. and

postdoctoral education at Rensselaer Poly-

technic Institute, Carnegie-Mellon Univer-

sity (with J.A. Pople) and Iowa State

University (with K. Ruedenberg). At

North Dakota State University, he rose to

Distinguished Professor and Department

Chair. At Iowa State University, he is

Distinguished Professor and Director of

the Applied Mathematical Sciences Pro-

gram in the Ames Laboratory USDOE. He

has been the Chair of the Theoretical

Chemistry Subdivision of the American

Chemical Society, and the Secretary-

Treasurer of its Physical Chemistry Div-

ision. He is a Fellow of the American

Physical Society, a Fulbright Senior Scho-

lar and was recently elected to the

International Academy of Quantum Mol-

ecular Science.

R.B. Gerber

Mark S. Gordon
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Annick Goursot received her Ph.D. in

physical chemistry in 1972 at the Univer-

sity of Marseille, France. After a 2-year

postdoc at the University of Montreal, she

spent 10 years in the School of Chemistry

of Mulhouse. In 1985, she joined the

School of Chemistry of Montpellier,

where she initiated computational chem-

istry calculations for functional materials.

Professor Hall was born in Pennsylvania

and graduated from Juniata College with a

B.S. degree in chemistry in 1966. After

completing his Ph.D. degree with Richard

Fenske at the University of Wisconsin in

1971, he accepted an AEI fellowship to

study ab initio quantum chemistry with Ian

Hillier at the University of Manchester

(UK). He joined the faculty of Texas A&M

University in 1975, rose through the ranks

and served as Head of the Department

from 1986 to 1994. He currently directs the

Laboratory for Molecular Simulation and

serves as Executive Associate Dean for the

College of Science. In 2004 he was named

Davidson Professor of Science. His

research interests are primarily directed

toward understanding chemical structures

and reactions through the application of

state-of-the-art quantum calculations.

A. Goursot

Michael B. Hall
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Nicholas Handy’s complete academic

career has been at the University of Cam-

bridge, from undergraduate (1960) to Pro-

fessor and Fellow of the Royal Society

(1990). He started research with S.F. Boys,

and he has made a number of contributions

in quantum chemistry (gradient theory,

Møller–Plesset theory, full configuration

interaction), in density functional theory

(including its promotion and the develop-

ment of new exchange-correlation func-

tionals), and in theoretical spectroscopy (in

particular the variational approach for

rovibrational energy levels and consequent

spectra). He is a Fellow of St Catharine’s

College, Cambridge, where he teaches

mathematics.

Encai Hao received his Ph.D. at Jilin

University in China, and then did post-

doctoral studies at Emory University (with

Tim Lian) and at Northwestern University

(with Joe Hupp and George Schatz). He is

currently working at Nanofilm, Inc.

Nicholas C. Handy

Encai Hao
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Upendra Harbola is currently a Postdoc-

toral Fellow in University of California at

Irvine. He received his M.Sc. in 1996 from

Kumaon University (India) and his Ph.D.

in 2003 from Jawaharlal Nehru University

(India) where he worked with Professor

Shankar P. Das on glass transition

phenomena in binary liquids. Presently

his research interests include the develop-

ment of theoretical tools to study the

equilibrium and non-equilibrium response

functions for optical and transport proper-

ties of many electron systems.

Bill Hase received his Ph.D. in chemistry

in 1970, working in the research area of

experimental physical chemistry under the

direction of John W. Simons at New

Mexico State University. His research

included studies of the methylene sing-

let–triplet energy gap and of the unim-

olecular decomposition of vibrationally

excited alkane and alkylsilane molecules

prepared by chemical activation. His

career as a computational chemist began

during his postdoctoral work with Don

Bunker at the University of California,

Irvine. In 1973 he joined the Chemistry

Department at Wayne State University,

where he remained until 2004, when he

assumed the Robert A. Welch Chair in

Chemistry at Texas Tech University. He

remembers that his first computational

chemistry classical trajectory computer

program was written in assembly language

and run on a PDP-10.

Upendra Harbola

William L. Hase
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Jun-ya Hasegawa received his Ph.D.

(engineering) in 1998 under the direction

of Professor H. Nakatsuji at Kyoto Uni-

versity. He then joined the Department of

Theoretical Chemistry of Lund University

as a postdoctor. In 1999, he moved back to

Nakatsuji’s group at Department of Syn-

thetic Chemistry and Biological Chemistry

in Kyoto University.

Philippe C. Hiberty studied theory at the

University of Paris-Sud with W.J. Hehre,

completed his Ph.D. under the supervision

of L. Salem, and got a research position

at the CNRS. In 1979 he started his post-

doctoral research with J.I. Brauman at

Stanford University and then with H.F.

Schaefer III at Berkeley. He went back to

Orsay to join the Laboratoire de Chimie

Théorique, where he developed a research

program based on valence bond theory. He

became Directeur de Recherche in 1986,

and in addition, he now teaches Quantum

Chemistry at the Ecole Polytechnique in

Palaiseau. His research interests are,

among others, in the application of quan-

tum chemistry and valence bond theory to

fundamental concepts of organic chemistry

J. Hasegawa

Philippe C. Hiberty
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Kimihiko Hirao obtained his Ph.D. in 1974

from Kyoto University. He held a post-

doctoral position at the University of

Alberta (Professor Sigeru Huzinaga) in

1974–1975 and worked with Professor

Roy McWeeny at Sheffield University in

1978–1979. He became Professor at

Nagoya University in 1988 and moved to

The University of Tokyo in 1993. He is the

author of more than 250 scientific articles

in theoretical chemistry.

Hrant P. Hratchian holds a degree from

Eastern Michigan University where he

completed honors research work with

M.C. Milletti. Currently, he is a Graduate

Student at Wayne State University under

the direction of H.B. Schlegel. His

research interests include the development

of new methods for reaction path follow-

ing, transition state optimization and the

application of electronic structure theory to

organometallic and inorganic chemistry.

Ivan Hubac obtained his Ph.D. in 1971

(applied mathematics) from University of

Waterloo, Canada. His supervisors were

Professors J. Koutecky, J. Cizek and

J. Paldus. After his return to Czechoslova-

kia from Canada in 1971 he worked at the

Department of Mathematics, Chemical

faculty, Slovak Technical University, Bra-

tislava. At present he works as Professor of

Physics at Faculty of Mathematics, Physics

and Informatics, Comenius University,

Bratislava, Slovakia. His first quantum

chemistry paper appeared in 1967.

Kimihiko Hirao

Hrant P. Hratchian

Ivan Hubac
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Dr Stephan Irle obtained his Ph.D. from the

University of Vienna in Austria 1997

under the supervision of Professor Hans

Lischka. He then joined the group of

Professor Keiji Morokuma in Atlanta as a

postdoctoral research associate for 1 year.

In 1998 he accepted the faculty-equivalent

position of Associate Scientist and Sys-

tems Manager at the Cherry L. Emerson

Center for Scientific Computation.

Bogumil Jeziorski received his M.S.

degree in chemistry from the University

of Warsaw in 1969. He conducted his

graduate work also in Warsaw under the

supervision of W. Kolos. After a post-

doctoral position at the University of Utah,

he was a research associate at the Univer-

sity of Florida and a Visiting Professor at

the University of Waterloo, University of

Delaware and University of Nijmegen.

Since 1990 he has been a Professor of

Chemistry at the University of Warsaw.

His research has been mainly on the

coupled-cluster theory of electronic corre-

lation and on the perturbation theory of

intermolecular forces. His other research

interests include chemical effects in

nuclear beta decay, theory of muonic

molecules and relativistic and radiative

effects in molecules.

Stephan Irle

Bogumil Jeziorski
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Ken Jordan received his Ph.D. in physical

chemistry in 1974 under the direction of

Bob Silbey at MIT. He then joined the

Department of Engineering and Applied

Science, Yale University, as a J.W. Gibbs

Instructor, being promoted to Assistant

Professor in 1976. In 1978 Professor

Jordan moved to the Chemistry Depart-

ment at the University of Pittsburgh where

he is now Professor and Director of the

Center for Molecular and Materials Simu-

lations. His interest in the application of

computers to chemical problems stems

from his graduate student days. Professor

Jordan’s recent research has focused on the

properties of hydrogen-bonded clusters,

modeling chemical reactions on surfaces,

electron-induced chemistry and the devel-

opment of new methods for Monte Carlo

simulations.

Raymond Kapral carried out his doctoral

studies on molecular quantum mechanics

at Princeton University and received his

Ph.D. in 1967. He pursued his postdoctoral

work at the Massachusetts Institute of

Technology where his interests switched

to non-equilibrium statistical mechanics.

He then took a faculty position at the

University of Toronto in 1969 where he is

currently Professor of Chemistry. He is a

Fellow of the Royal Society of Canada and

received the Palladium Medal of the

Chemical Institute of Canada in 2003.

European collaborations have not only

provided an opportunity to mix quantum

and classical mechanics but also to mix

science with good food and wine.

K.D. Jordan

Raymond Kapral
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Kwang S. Kim was born in Seoul in 1950.

He obtained his Ph.D. degree in chemistry

from the University of California in

Berkeley, where his mentor was Professor

Henry F. Schaefer III. After spending a few

years as an IBM postdoctoral fellow with

Professor Enrico Clementi and as a

Research Assistant Professor at Rutgers

University, he joined the Pohang Univer-

sity of Science and Technology in Pohang,

Korea. He is currently a Professor, and the

Director of the National Creative Research

Initiative Center for Superfunctional

Materials. His research interests include

investigations of intermolecular inter-

actions, clusters, molecular recognition,

nanomaterials and molecular devices. He

was a recipient of the Korea Science Prize

in the year 2004.

Andreas M. Köster was born in Steinhude,

Germany, in 1964. He earned his Ph.D.

degree in theoretical chemistry with Pro-

fessor Karl Jug at the Universtät Hannover

in 1992 with a work about chemical

reactivity. A short research stay after the

Ph.D. with Professor Roman Nalewajski in

Krakow, Poland, introduced him to density

functional theory. At the beginning of

1993 he started his postdoctoral research

with Dennis Salahub in Montréal. Since

then he has been involved in the technical

implementation and development of the

density functional code deMon. In 1995,

he returned to Germany to start a Habilita-

tion, and built a new density functional

method with auxiliary functions. In 1999,

he moved to CINVESTAV in Mexico to

take up a titular Professor position in

Theoretical Chemistry.

Kwang S. Kim

M. Köster
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Han Myoung Lee was born in 1969, in

Iksan, Korea. After obtaining his under-

graduate, master’s and Ph. D. degrees from

WonKwang University, he joined Pro-

fessor Kim’s group in Pohang in 1997.

During his stay in Pohang, he had been

involved in detailed theoretical investi-

gations of aqueous and metal clusters. He

has also worked on nanoclusters and

nanoelectronic/nanophotonic devices. He

is currently a Research Assistant Professor

at the Center for Superfunctional Materials

and a Visiting Scientist at the Pacific

Northwest National Laboratory in Rich-

mond, U.S.A.

Matthias Lein received his Ph.D. in

chemistry in 2004 under the supervision

of Gernot Frenking at the Fachbereich

Chemie der Universität Marburg in

Germany. He currently works as a Mars-

den Postdoctoral Research Fellow with

Peter Schwerdtfeger at Massey University

in Auckland, New Zealand.

Han Myoung Lee

Matthias Lein

Biographical sketches of contributors 1243



Uttam Sinha Mahapatra received his M.Sc.

degree in physics in 1992 from the

University of Kalyani, India and Ph.D.

degree in 2000 for his work on molecular

electronic structure with Debashis

Mukherjee. In 2001, he joined Lorenz

Cederbaum’s group at the Theoretische

Chemie, University of Heidelberg,

Germany with a fellowship of the Alex-

ander von Humboldt Foundation. Pre-

sently, he is a faculty of the Department

of Physics, Darjeeling Government Col-

lege, India. His research interests include

development of theories of structure and

dynamics of atomic and molecular relati-

vistic and non-relativistic many, body

theories and their application to chemically

interesting systems and study of weak

interactions in atoms.

J. Andrew McCammon holds the Joseph E.

Mayer Chair of Theoretical Chemistry at

the University of California, San Diego

(UCSD), and is an Investigator of the

Howard Hughes Medical Institute. He

received his Ph.D. in chemical physics in

1976 from Harvard University, where he

worked with John Deutch on biological

applications of statistical mechanics and

hydrodynamics. In 1976–1978, he was a

Research Fellow at Harvard, where he

developed the computer simulation

approach to protein dynamics in collabor-

ation with Martin Karplus. He was an

Assistant Professor and then M.D. Ander-

son Professor (1981–1994) at the Univer-

sity of Houston before moving to UCSD.

He recalls with pleasure the first views of

atomic dynamics in a protein molecule,

generated slowly on a pen plotter during

his postdoctoral work.

Uttam Sinha Mahapatra

J. Andrew McCammon
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Yifat Miller received her M.Sc. in chem-

istry in 2002 working under the super-

vision of Professor R.B. Gerber at the

Hebrew University of Jerusalem, Israel,

and is currently a Ph.D. student in the same

group. Her fields of research are:

vibrational spectroscopy and reaction

dynamics of atmospherically relevant mol-

ecules.

Keiji Morokuma received his Ph.D. in

chemistry in 1963 working under the

direction of Kenichi Fukui at Kyoto

University. After postdoctoral work with

Martin Karplus at Columbia and Harvard,

he joined the faculty of the University of

Rochester in 1967. In 1977, he moved to

the Institute for Molecular Science at

Okazaki, Japan to head the theoretical

department and computer center. In 1993

he joined the faculty of Emory University,

Atlanta, GA, where he is currently William

Henry Emerson Professor and Director of

Cherry L. Emerson Center for Scientific

Computation. He is presently President of

the International Academy of Quantum

Molecular Science.

Y. Miller

Keiji Morokuma
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Shaul Mukamel, the Chancellor Professor

of Chemistry at the University of Califor-

nia, Irvine, received his Ph.D. in 1976 from

Tel Aviv University, followed by post-

doctoral appointments at MIT and the

University of California at Berkeley and

faculty positions at Rice Univeristy, the

Weizmann Institute and at the University

of Rochester. He has been the recipient of

the Sloan, Dreyfus, Guggenheim, Alexan-

der von Humboldt Senior Scientist and the

Lippincott awards. He is a Fellow of

American Physical Society and of the

Optical Society of America. His research

interests in theoretical chemical physics

and biophysics include: developing a

Liouville-space quasiparticle approach to

femtosecond spectroscopy and to many,

body theory of electronic and vibrational

excitations of molecules, molecular aggre-

gates, nanostructures and semiconductors;

designing optical and infrared pulse

sequences for probing structure and fold-

ing dynamics of proteins by multidimen-

sional coherent spectroscopies, non-linear

X-ray and single molecule spectroscopy;

photon statistics; electron transfer and

energy funelling in photosynthetic com-

plexes and dendrimers. He is the author of

the textbook, Principles of Nonlinear

Optical Spectroscopy (Oxford University

Press), 1995.

Shaul Mukamel
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Debashis Mukherjee is a Professor of

Physical Chemistry and the Director of

the Indian Association for the Cultivation

of Science, Calcutta, India. He has been

one of the earliest developers of a class of

multi-reference coupled cluster theories

and also of the coupled cluster based linear

response theory. Other contributions by

him are in the resolution of the size-

extensivity problem for multi-reference

theories using an incomplete model space

and in the size-extensive intermediate

Hamiltonian formalism. His research inter-

ests focus on the development and appli-

cations of non-relativistic and relativistic

theories of many-body molecular elec-

tronic structure and theoretical spec-

troscopy, quantum many-body dynamics

and statistical field theory of many-body

systems. He is a member of the Inter-

national Academy of the Quantum Mol-

ecular Science, a Fellow of the Third

World Academy of Science, the Indian

National Science Academy and the Indian

Academy of Sciences. He is the recipient

of the Shantiswarup Bhatnagar Prize of the

Council of Scientific and Industrial

Research of the Government of India.

Debashis Mukherjee
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Shigeru Nagase received his Ph.D. degree

in chemistry in 1975 under the direction of

Professor T. Fueno from Osaka University

in Japan. After he did postdoctoral work at

the University of Rochester (Professor K.

Morokuma) and at the Ohio State Univer-

sity (Professor C. W. Kern), he joined the

faculty of Yokohama National University

as Associate Professor in 1980, and he

became Professor in 1991. In 1995 he

moved to Tokyo Metropolitan University.

Since April 2001, he has been a Professor

of Theoretical Chemistry at the Institute

for Molecular Science. His current inter-

ests include the theoretical and compu-

tational studies of large molecular systems.

Takahito Nakajima received his Ph.D. in

chemistry in 1997 working under the

direction of Hiroshi Nakatsuji at Kyoto

University. He then joined the Department

of Applied Chemistry at the University of

Tokyo in 1999. He is an Associate

Professor at the Department of Applied

Chemistry, the University of Tokyo. He is

also a researcher of PRESTO, Japan

Science and Technology Corporation

(JST). His current research interests

include the developments of the relativistic

molecular theory and the quantum chemi-

cal approach towards large-scale calcu-

lations.

Shigeru Nagase

Takahito Nakajima
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Haruyuki Nakano received his Ph.D. in

chemistry in 1993 working under the

direction of Professor Shigeki Kato at

Kyoto University. He then joined the

faculty of the University of Tokyo. In

2003, he moved to Kyushu University at

Fukuoka, where he is now Professor of

Theoretical Chemistry.

Hiroshi Nakatsuji received his Ph.D.

(Engineering) in 1971 at Kyoto University.

Since 1990, he has been a Professor at

Department of Synthetic Chemistry and

Biological Chemistry in Kyoto University.

He is a member of International Academy

of Quantum Molecular Science. He is also

a Director of Fukui Institute for Funda-

mental Chemistry of Kyoto University.

Yngve Öhrn earned his Doctor of Philos-

ophy degree in 1966 working in the

Quantum Chemistry Group at Uppsala

University, Sweden under the direction of

Per-Olov Löwin. The numerical work at

that time was attempted on an ALWAC III

E computer. The same year he joined the

faculty of the Departments of Chemistry

and Physics at the University of Florida,

where he has been since then as a Member

and Director (1983–1998) of the QTP, an

Institute for Theory and Computation in

Molecular and Materials Sciences.

Haruyuki Nakano

H. Nakatsuji

Yngve Öhrn
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Massimo Olivucci, Ph.D., is Professor of

Organic Chemistry at the University of

Sienna, Italy. He took his Ph.D. in 1989

with F. Bernardi and from 1989 to 1991 he

carried out research work with M.A. Robb

at King’s College London. As documented

by over 130 research papers his research

focuses on the investigation of the photo-

chemistry of organic and biological chro-

mophores using computational tools. In

1999 he was awarded the Premio Nazio-

nale “FEDERCHIMICA”. He was one of

the finalists of the 2001 edition of the EU

Descartes Prize and in 2004, he was

awarded the “Premio alla Ricerca” of the

Organic Chemistry Division of the Italian

Chemical Society.

Dola Pahari received her M.Sc. degree in

chemistry in 2000 from the Indian Institute

of Technology, Kanpur, India. She is doing

Ph.D. on the development and applications

of molecular electronic structure theory

under the supervision of Debashis Mukher-

jee. She is interested in developing spin-

adapted state-specific many-body theories.

Massimo Olivucci

Dola Pahari
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Josef (Joe) Paldus defended his M.Sc.

Thesis in 1958 at the Charles University

in Prague, supervised by V. Hanus and

J. Koutecky, and the latter also supervised

his Ph.D. Thesis, defended in 1961 at the

Czechoslovak Academy of Sciences. He

did his postdoctoral studies with D.A.

Ramsay at the National Research Council

in Ottawa. After emigrating to Canada in

1968 he joined the Department of Applied

Mathematics of the University of Waterloo

and later also its Chemistry Department

and Guelph-Waterloo Center for Graduate

Work in Chemistry. Since his obligatory

retirement in 2001 he continues his

research as a Distinguished Professor

Emeritus. He became a Fellow of the

Royal Society of Canada in 1983, a

Member of the International Academy of

Quantum Molecular Sciences a year later

and, most recently, a Fellow of the Fields

Institute for Research in Mathematical

Sciences.

Jiri Pittner was born in 1968 in Plzen,

Czech Republic. He received his master’s

degree in physical chemistry in 1991 from

the Charles University Prague and his

Ph.D. in chemistry in 1996 from the

Humboldt University Berlin under the

direction of V. Bonacic-Koutecky. In

1997 he joined the J. Heyrovsky Institute

of Physical Chemistry (Academy of

Sciences of the Czech Republic).

Josef Paldus

Jiri Pittner
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Professor Rabitz’s research interests lie at

the interface of chemistry, physics and

engineering, with principal areas of focus

including molecular dynamics, biophysical

chemistry, chemical kinetics and optical

interactions with matter. An overriding

theme throughout his research is the

emphasis on molecular scale systems

analysis. Professor Rabitz has over 635

publications in the general area of chemi-

cal physics. He has been pursuing research

in the control of quantum systems since

1986.

Krishnan Raghavachari received his Ph.D.

in 1981 from Carnegie-Mellon University

working with Professor John A. Pople on

the development and applications of elec-

tron correlation techniques in Compu-

tational Quantum Chemistry. He then

joined Bell Laboratories in Murray Hill,

New Jersey, as a Research Scientist. He

received the Distinguished Researcher

award at Bell Laboratories in 1987. He

joined Indiana University as a Professor of

Chemistry in 2002. His work covers a

broad spectrum of problems ranging from

chemical bonding in small clusters to

computational investigations of semicon-

ductor and nanoscale materials. He is the

author of over 250 papers in Chemistry,

Physics and Materials Science. He was

elected as a Fellow of the American

Physical Society in 2001. He is among

the 50 most cited authors in chemistry in

the comprehensive period from 1981 to

1997.

Herschel Rabitz

Krishnan Raghavachari
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Alessandra Ricca received her Ph.D. in

chemistry in 1993 from the University of

Geneva, Switzerland. Alessandra was a

postdoctoral fellow at NASA Ames

Research Center with Charles Bauschli-

cher and a postdoctoral fellow at Stanford

University with Charles Musgrave. In

1998 she joined the Computational Chem-

istry group at NASA Ames Research

Center as a Research Scientist and she is

now member of the Computational Nano-

technology group at NASA Ames. Her

research interests included transition metal

chemistry, spectroscopy, medicinal chem-

istry, thermochemistry and astrochemistry.

Her research efforts are currently devoted

to nanotechnology.

Björn O. Roos received his Ph.D. in

theoretical physics in 1968 at the Univer-

sity of Stockholm. He became Professor of

Theoretical Chemistry at the University of

Lund in 1983 and formally retired in June

2002. He is, however, still active as a

project leader of the MOLCAS group. He

is a member of the Royal Swedish

Academy of Sciences and served as a

member of the Nobel Committee for

chemistry 1986–2000. Roos research has

specialized around the description of

electron correlation in molecular systems.

He has published more than 300 scientific

articles. Also, since 1989 Roos has been

the leader of the European Summer school

in Quantum Chemistry (ESQC).

Alessandra Ricca

Björn O. Roos
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Dennis Salahub grew up, more or less, in

Edmonton, Alberta, Canada. Serafin Fraga

was his third-year quantum chemistry

professor and that got it started. Fraga

suggested Camille Sandorfy at the U de

Montreal for grad studies — a superb

suggestion — for starting to learn about

science, and the world. A few postdocs, 23

years at the UdeM, three at NRC (Director

General of the Steacie Institute for Mol-

ecular Sciences) in Ottawa, and the last

two at the University of Calgary (Vice-

President, Research & International),

etc. — the common threads? the joy of

science, theoretical chemistry, DFT and its

applications, the deMon Developers, etc.

George Schatz received his Ph.D. in

chemistry in 1976 working for Aron

Kuppermann at Caltech. He was a postdoc

with John Ross at MIT 1975–6, and

moved to Northwestern University in

1976, where he is now Morrison Professor

of Chemistry. He has worked both in gas

phase and materials theory, including

dynamics calculations, electronic structure

studies and classical electrodynamics.

D.R. Salahub

George C. Schatz
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Steve Scheiner received his Ph.D. in 1976,

using theoretical methods to dissect the

factors that influence enzyme activity,

under the direction of William Lipscomb

at Harvard University. He then spent 2

years at Ohio State University as a

Weizmann Fellow with William Kern,

considering ways in which hydrogen

bonds influence biomolecular structure

and function. He joined the faculty of

Southern Illinois University, Carbondale in

1978, where his research focused on H-

bonds and proton transfers. He moved to

Utah State University in 2000. He reluc-

tantly admits that he recalls all too vividly

punching what seemed like thousands of

computer cards for his early calculations.

Reinhard Schinke received his Ph.D. in

physics in 1976 at the University of

Kaiserslautern, Germany, working in the

field of molecular collision theory. In

1980, after 1 year at the IBM research

laboratory in San Jose, California, as a

postdoc, he entered the department of

molecular interactions at the Max-Planck

Institute for Fluid Dynamics in Goettingen

where he has remained since. His research

switched from collisions to the area of

photodissociation and more recently to

unimolecular reactions. Currently he

studies the recombination of ozone with

particular emphasis on a dynamical expla-

nation of the pronounced isotope effect,

which has been observed both in the

atmosphere and in the laboratory.

Throughout his scientific career, he has

tried to understand experimental obser-

vations on the basis of accurate potential

energy surfaces and exact dynamics cal-

culations.

Steve Scheiner

Reinhard Schinke
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H. Bernhard Schlegel received degrees

from the University of Waterloo and

Queen’s University, Canada (Ph.D., 1979,

with S. Wolfe). After postdoctoral studies

at Princeton University with K. Mislow

and L.C. Allen and at Carnegie-Mellon

with J.A. Pople, he joined the Merck,

Sharp, and Dohme Research Labs. Since

1980, he has been Professor of Chemistry

at Wayne State University. His current

research interests include the development

of methods for exploring potential energy

surfaces for chemical reactions and apply-

ing computational quantum chemistry to

the study of problems in physical, organic,

inorganic and materials chemistry.

Mike Schmidt received his Ph.D. under the

direction of Klaus Ruedenberg from Iowa

State University in 1982. He joined Mark

Gordon’s group directly after graduate

school, and has been involved in develop-

ments for the GAMESS program ever since.

Since 1992 he has been employed by the

Department of Chemistry at Iowa State

University, except for a year’s appoint-

ment at Tokyo Metropolitan University.

His research interests are MCSCF wave-

functions and their properties, and main

group inorganic chemistry.

H. Bernhard Schlegel

Michael W. Schmidt
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Gustavo Scuseria received his Ph.D. in

physics in 1983 working under the direc-

tion of Ruben H. Contreras at the Univer-

sity of Buenos Aires. He came to the

University of California at Berkeley for

postdoctoral work with Fritz Schaefer. In

1989, he joined the chemistry department

at Rice University where he is now the

Robert A. Welch Professor of Chemistry.

He recalls compiling his first FORTRAN

programs from boxes of cards on IBM

360 machines and the joyful advent of the

VM/CMS operating system supporting 2

MB of virtual memory back in the early

1970s, while still a student. His first TACC

publication on vibrational corrections to

calculated nuclear spin—spin coupling

constants appeared in 1979.

Sason Shaik received his Ph.D., with

Nicholaos D. Epiotis, from the University

of Washington. He spent a post doctoral

year with Roald Hoffmann at Cornell. In

1980 he started his first academic position

at Ben-Gurion University. In 1992 he

moved to the Hebrew University, where

he is currently the Director of the Lise

Meitner Center for Computational Quan-

tum Chemistry. His research interests are

in the use of quantum chemistry, and in

particular of valence bond theory, to

develop paradigms which can pattern

data and lead to the generation of new

problems. He still recalls the strong sense

of creativity while doing the research

described in Ref. [5] of his chapter.

He started his P450 research in 1998, and

has been fascinated ever since!

Gustavo E. Scuseria

Sason Shaik
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Jack Simons earned his Ph.D. in theoretical

chemistry at the University of Wisconsin,

Madison in 1970, working with John

Harriman as an NSF Fellow. He held an

NSF Postdoctoral Fellowship at MIT from

1970 to 1971, working with John Deutch.

After that, he joined the faculty at the

University of Utah in 1971 where he was

appointed to the Henry Eyring Chair in

1989. He has published 300 papers, many

dealing with negative ions, and three

textbooks on theoretical chemistry, and

he supports a web page (http://simons.hec.

utah.edu) on this subject. Jack and his wife,

Peg, are avid backpackers and skiers who

enjoy living in Utah.

Adalgisa Sinicropi received her degree in

chemistry (Laurea in Chimica) cum Laude

at the University of Siena in 1999. She

received her Ph.D. in chemistry in 2002

submitting a thesis entitled “The Mechan-

ism of Light Energy Wastage and Exploi-

tation in 1n,p* Chromophores”. Within

her research project she collaborates inten-

sively with M. Olivucci on the application

of high-level quantum chemical methods

to the mechanistic investigation of photo-

chemical reactions and the study of

different aspects of the stereochemistry of

organic photoreactions. She has gained

extensive experience in computational

chemistry that she is now applying to the

study of photobiological systems.

Jack Simons

Adalgisa Sinicropi
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Zdenek Slanina, native of Bohemia,

received his M.A. degree from Charles

University of Prague and his Ph.D. degree

from the former Czechoslovak Academy

of Sciences. Since the demise of the

Academy, he has been sailing the suddenly

accessible high seas, researching and

teaching abroad at institutions like Max-

Planck Institute for Chemistry, University

of Arizona, National Chung-Cheng Uni-

versity, Toyohashi University of Technol-

ogy and others, pursuing both cluster

science and Pacific-rim cultures.

Viktor Staroverov received his under-

graduate education in Minsk, Belarus. In

1997, he completed an M.S. program in

chemistry at Brock University under the

direction of Stuart M. Rothstein. He

received his Ph.D. in chemistry in 2001

from Indiana University working under the

supervision of Ernest R. Davidson. In the

same year, he joined Gustavo Scuseria’s

research group at Rice University as a

postdoctoral fellow. While in college, he

was on track to become a synthetic organic

chemist, but found his true calling in

theory and computation after several

encounters with theoretical chemistry.

The earliest of these formative experiences

was a course project on isomer enumer-

ation.

Zdenek Slanina

Viktor N. Staroverov
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Krzysztof Szalewicz received his M.S. and

Ph.D. degrees in chemistry from the

University of Warsaw in 1973 and 1977,

respectively, under the supervision of

Wlodzimierz Kolos. He held various

permanent and visiting positions at the

University of Warsaw, University of Flor-

ida, University of Cologne and University

of Uppsala. In 1988 he came to the

University of Delaware where he is now

a Professor of Physics and Chemistry. He

was a Visiting Fellow at JILA, Harvard,

and Princeton and is a Fellow of the APS.

His first computational work included

feeding paper tapes with Algol codes into

a GIER computer. His research interests

have been in many-body theory of elec-

tronic structure including the use of

explicitly correlated bases, in perturbation

theory of intermolecular forces, simu-

lations of condensed phase, chemical

effects in beta decay and properties of

exotic molecules (containing muons, anti-

protons, etc.).

P. Tarakeshwar was born in Kharagpur,

India. After obtaining his Ph.D. in 1994

from the Indian Institute of Technology in

Kanpur, he worked as a Scientist in drug

design in a pharmaceutical industry in

India. In 1997, he joined Professor Kim’s

group in Pohang wherein his research was

focused on computational investigations of

intermolecular interactions, molecular

clusters containing p systems and nano-

material design. He is currently working as

an Assistant Professor in Computational

Sciences at the Korea Institute for

Advanced Study in Seoul.

Krzysztof Szalewicz

P. Tarakeshwar
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Ajit Thakkar, born in Poona, India in 1950,

left home at 17 to explore the West. A

circuitous route led him to Queen’s

University in Kingston, Ontario. A sum-

mer job programming calculations of virial

coefficients and transport cross-sections

using FORTRAN IV, dreadful JCL, and

punched cards on an IBM 360/50 drew

him to computational chemistry. In 1976,

he completed a Ph.D. in theoretical

chemistry guided by Vedene Smith and

influenced by Robert Parr. His faculty

career began at the University of Waterloo

and, since 1984, continued at the idyllic

Fredericton campus of the University of

New Brunswick. He is now a University

Research Professor, and author of more

than 200 articles on molecular properties,

electron densities and intermolecular

forces.

Walter Thiel received his Ph.D. degree in

1973 at the University of Marburg. He

spent two postdoctoral years with M.J.S.

Dewar at the University of Texas at Austin

and then returned to Marburg for his

Habilitation. He was Professor at the

University of Wuppertal from 1983 to

1992, Visiting Professor at the University

of California at Berkeley in 1987, and Full

Professor of Chemistry at the University of

Zurich from 1992 to 1999. He is now

Director at the Max-Planck-Institut fuer

Kohlenforschung in Muelheim an der

Ruhr. Since 2001 he is affiliated with the

University of Duesseldorf as an Honorary

Professor. He received the Heisenberg

Fellowship in 1982, the Alfried-Krupp

Award in 1988 and the WATOC Schroe-

dinger Medal in 2002.

Ajit J. Thakkar

Walter Thiel
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Donald G. Truhlar was born in Chicago in

1944. He received a B.A. in chemistry

from St Mary’s College of Minnesota and a

Ph.D. in chemistry from Caltech. He

joined the faculty of the University of

Minnesota in 1969, and currently he is

Lloyd H. Reyerson Professor of Chemistry

and Director of Minnesota Supercomput-

ing Institute. His research interests include

theoretical and computational chemical

dynamics, chemical structure, statistical

mechanics, biochemistry, chemical phy-

sics, scientific computation and

nanoscience. His honors include an Alfred

P. Sloan Fellowship, APS and AAAS

Fellowship, an NSF Creativity Award,

the George Taylor/Institute of Technology

Alumni Society Distinguished Service

Award, the ACS Award for Computers in

Chemical and Pharmaceutical Research,

the Minnesota Award and the NAS Award

for Scientific Reviewing.

Takao Tsuneda has developed exchange-

correlation functionals and correction

schemes of density functional theory for

calculations of large-scale molecules. He

studied under Professor K. Hirao’s super-

vision at the University of Tokyo, and

received his Ph.D. in 1997. After the

postdoctoral research, he worked as Assist-

ant Professor since 1999. Recently, he took

up his new post, Associate Professor, at the

University of Tokyo in June, 2004.

Donald G. Truhlar

Takao Tsuneda
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Ad van der Avoird studied chemical

engineering at the Technical University

in Eindhoven, The Netherlands, from 1959

to 1964. From 1964 to 1967 he worked at

the Battelle Institute in Geneva, Switzer-

land, and from 1967 to 1971 at the

Unilever Research Laboratory in Vlaardin-

gen, where in 1968 he became Head of the

Molecular Physics section. In 1968 he

obtained his Ph.D. degree at the Technical

University in Eindhoven and in the same

year he became Part-time Professor at the

University of Nijmegen. In 1971 he

became Full Professor of Theoretical

Chemistry in Nijmegen. Since 1979 he is

a member of the Netherlands Royal

Academy of Arts and Sciences (KNAW)

and since 1997 a member of the Inter-

national Academy of Quantum Molecular

Science.

Alberto Vela was born in Mexico City. He

received his B.E. in the Faculty of

Chemistry-UNAM. He obtained his Ph.D.

in science in 1988 in the Department of

Chemistry at UAM-Iztapalapa under the

supervision of J.L. Gazquez. In 1993 he

was a Visiting Researcher, for almost 2

years, in Professor Dennis R. Salahub’s

group where he started his journey with the

program deMon. From 1983 to 1997 he

was Full Professor of the Department of

Chemistry at UAM-I where he participated

in the creation of the Theoretical Physical

Chemistry group. After 14 years in UAM

he moved to Cinvestav where he started

the Theoretical Chemistry group in 1997.

In this later institution he is Full Professor

of the Department of Chemistry.

Ad van der Avoird

A. Vela

Biographical sketches of contributors 1263



Jacques Weber received a Ph.D. in physics

(1969) from the University of Geneva

(Switzerland). He was then a Research

Fellow at the Quantum Theory Project of

the University of Florida (Gainesville, FL)

and at the IBM Research Laboratory (San

Jose, CA). In 1976, he came back as a

Lecturer to the Chemistry Department of

the University of Geneva. He was

appointed Full Professor of Computational

Chemistry in 1989, occupying the first

chair of that type created in Switzerland.

His long experience in computational

chemistry extends from the use of a card

puncher for a CNDO program code to the

development of methodologies and large-

scale applications in density functional

theory.

Charles Edwin Webster was born in

Florida and graduated from the University

of West Florida with a B.S. degree in

chemistry/biochemistry in 1995. He

received his Ph.D. in chemistry in 1999

at the University of Florida where he

worked with Russell S. Drago, Michael

C. Zerner, Michael J. Scott and C. Russell

Bowers. He then joined Michael B. Hall’s

research group at Texas A&M University

and is currently an Assistant Research

Scientist. His research focuses on using

theoretical and computational chemistry to

research and answer questions in a variety

of areas, including biological enzyme

catalysis, catalytic and stoichiometric

mechanisms of bond activation and func-

tionalization of organic molecules by

organometallic transition metal com-

plexes, and the elucidation of structure

and bonding of various compounds of

interest.

J. Weber

Charles Edwin Webster
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M.-H. Whangbo received his Ph.D. in

chemistry in 1974 working under the

direction of V. H. Smith, Jr. and S. Wolfe

at Queen’s University, Canada. After

postdoctoral studies with S. Wolfe at

Queen’s University and R. Hoffmann at

Cornell University, he joined the faculty of

North Carolina State University in 1978.

Throughout his scientific career, he has

explored qualitative structure–property

relationships in discrete molecules,

extended solids and surfaces on the basis

of formal theory developments and elec-

tronic structure calculations.

Paul E.S. Wormer was born in Amsterdam,

The Netherlands. He studied chemical

engineering at the Technical University

in Delft, where he got his masters degree

(cum laude). He got a Ph.D. degree (cum

laude) at the University of Nijmegen in

theoretical chemistry (supervisor A. van

der Avoird). Currently he is Associate

Professor at the Radboud University (Nij-

megen, The Netherlands). Several times he

has been Visiting Research Professor at the

University of Waterloo (Canada) where he

collaborated with J. Paldus. P.E.S. Wormer

is the (co)author of ca. 150 peer-reviewed

research papers.

Myung-Hwan Whangbo

Paul E.S. Wormer
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LinLin Zhao did her undergraduate work at

Sichuan University in China, and is now a

Graduate Student at Northwestern Univer-

sity working with Professor George

Schatz. Her work has included studies of

electrodynamics and quantum chemistry,

including the use of electronic structure

theory to calculate optical properties of

molecules in the presence of metal clus-

ters.

Guishan Zheng received his Master’s

Degree in polymer science and physics in

2001 working under the direction of

Professor Xue Gi in Nanjing University,

China. After that, he joined Professor Keiji

Morokuma’s group in Emory University in

2001 as a Ph.D. student. Currently, his

research interest is mainly in nanoscale

chemistry and the development of density

functional based tight binding method.

Shengli Zou received B.S. and M.S.

degrees in physical chemistry from Shan-

dong University in China and a Ph.D.

degree in physical chemistry from Emory

University (with Professor Joel M. Bow-

man) in 2003. He has been a postdoctoral

fellow in Professor George C. Schatz’s lab

at Northwestern University since Decem-

ber 2002. His research interests include the

optical properties of nanoparticles and

nanoparticle arrays and their applications

in biological sensing. He is also interested

in the self-assembly of biomolecules.

LinLin Zhao

Guishan Zheng

Shengli Zou

Biographical sketches of contributors1266



Index

absorption bands 48–9

absorption spectrum 1111–16, 1120–3

ACES/ACES2 467, 474, 1167, 1200, 1206

acetaldehyde 414

acetylene 308–9, 347–54, 499, 1132–3

ACGTO–DFT 1088

acidity 833, 836, 839–40, 843

actinides 743–4

activated rate processes 430–1

activation

barriers 788, 803, 1040

energy 72–5, 80–4, 465, 863, 1039–41

enthalpy 477–8, 864–7, 871

active orbitals 513–19, 582–93, 601–6,

729–30, 740–50

active space 740–4

see also complete active space

ADF 1086

adiabatic

approximation 17, 74

connection 377–8, 530, 675

excitation energy 1130–1

ionization 808

potentials 74, 808

reaction theory 68, 74, 120

adsorbates 49, 56, 59, 78, 1100

adsorption 49, 821

AIDS 44–5

alkali fullerides 983–7

alkali metal clusters 315–16, 319–20, 748,

937, 948–9

alkanes 54, 575, 645, 845–6

alkenes 347–54, 836–7

alkyl radicals 645–6

alkylidenes 342

alkylidynes 342

alkynes 347–54, 836–7

all-valence-electron methods 576

AllChem project 1088, 1089

allowed reactions 646–7, 652, 735, 860, 864,

894

allyl radicals 748, 751–6, 860–1

alternant molecular orbitals (AMO) 120, 129

aluminum 314–22, 332–42, 401–2

AM1 166, 416, 791, 847

Cope rearrangements 862–3

isomeric fullerenes 893

quantum chemical molecular dynamics

877–80

semiempirical quantum-chemistry 561–2,

566–70, 573–6

AMBER 275–6, 278, 280, 283, 286

amino acids 179, 285, 835, 837, 851

amino group conformation 1108–9

2’-amino-4-ethynylphenyl-4’-ethynylphenyl-

5’-nitro-1’-benzenethiolate 818–19

ammonia 216–17

anharmonic vibrational spectroscopy 173,

187

CH· · ·O hydrogen bond 834–5, 837

energy decomposition 311–13

molecular conductance 820, 823–9

molecular system simulation 101–2

polyatomic molecule vibrations 259–60

ammonium cations 980–1

AMO see alternant molecular orbitals

1267



AMPAC program 893

analytes 53

analytic derivatives 200, 570–1, 1082, 1178,

1206

analytical energy derivatives 132–40,

198–203, 214, 1175–6, 1203–5

analytical gradients 1176, 1185, 1191,

1200–8, 1211–15

Angle Resolved UPS (ARUPS) 1018

ANHAR 253

anharmonicity 78–9, 81–2

coupling 135, 171, 186–7

oscillators 135

perturbation theory 168–73

scaling factors 167

vibrational frequencies 178, 181, 183–4, 187

vibrational spectroscopy 165–90

vibrational wavefunctions 170, 174

aniline 1025, 1029, 1106, 1111–12, 1137

anions 460, 971–6, 980–1, 1106–11

anisole proton affinities 808–9

anisotropy 53–4

annealing 886, 968, 1183

annihilation operators 123, 375, 391, 448–9,

453–5

Anonymous Parentage for the Inactive (API)

excitations 582, 587, 593–9, 611–12,

614–30

anti-H-bonds 832, 838, 844

antibonding

CH· · ·O hydrogen bond 847–8

electron-electron repulsion 773–83

energy decomposition 323–5, 336

multiconfigurational quantum chemistry

730–5, 749–55

antiferromagnetic spin exchange 776–7

antimony 302, 360–6

antisymmetrization 298–9, 927–8, 1048–52,

1061–2

API see Anonymous Parentage for the Inactive

approximate exchange functionals 681–2,

708–14

APW see augmented plane waves

aqueous clusters 967–73

argon

crystals 933, 944–5

fluids 433–4

liquid-vapor equilibria 945

trimers 932–7, 943–51

argon-hydrogen 932–7, 946–7, 1062

argon-hydrogen fluoride trimers 932–7,

946–7

argon-nitric oxide trimers 948

argon-oxide trimers 948–51

aromaticity 878–9, 979

arsenic 360–6

artificial intelligence 107

ARUPS see Angle Resolved UPS

asymptotic

approximation 938

corrections 530–1, 688–91

expansion 491–2, 931, 939, 1089

series 940
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coupled-clusters 130, 1204, 1206

DFT 507, 669–717

electrons 5, 118, 124, 730, 736–8, 1134

energy

density-gradient expansions 687

molecular system simulations 94–9,

106–7

multiconfigurational quantum chemistry

736–8

scaling 803–7

G3 theory 795–6

holes see exchange-correlation holes

lengths 701, 704

local density approximations 684–6

potentials 501, 703, 714–15, 761

see also exchange-correlation

wavefunctions 701–3, 1168

corresponding states law 1048

Coulomb

forces 427–8

holes 99, 736, 738

integrals 1089

interactions 78, 493, 563, 712–14, 1047,

1054, 1181

plasmas 135

repulsion 779–80

screening 712–14

terms 1148

Coulombic Hamiltonian 12–17

Coulombic systems 679

Coulson–Fischer (CF) orbitals 731–3

counterintuitive orbitals 770–2

counterions 280–2

counterpoise method 534, 833–41, 922, 1087

corrections 833–5, 932, 1050, 1054

coupled electron pair approximation (CEPA)

ab initio quantum chemistry 1195–7

size-consistent state-specificity 582–3,

587–9, 592–3, 602–5, 610–15,

618–30

coupled-cluster doubles (CCD)

ab initio quantum chemistry 1195–202,

1206

intermolecular forces 1053, 1063

theory 119, 125–34, 1195–202, 1206

coupled-cluster linear response theory

(CC-LRT) 1101, 1207, 1212

coupled-clusters (CC)

amplitudes 1063

Brillouin-Wigner perturbation 472–6

equations of motion methods 456–60

internal 138
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size-consistent state-specificity 586–605

theory 125–39, 1214–15

ansatz 174–5, 468–9, 472, 1063, 1194,

1209, 1213

Brillouin–Wigner perturbation 465–79,

1193

expansion 124, 131–3, 466–8, 585, 1100–2

extended 135

externally corrected 137, 468–9

functionals 1205–7

G2 and G3 theories 786–7, 791, 794

GAMESS 1172–3

intermolecular forces 1063–4

linear 125, 1197

many-body perturbation 119–20, 122–8,

133, 1193–7

multi-reference 135–9, 465–79

state specific 581–631

state universal 468, 474, 585–6

state-selective 137

valence universal 136, 1213

origins 115–40

quantum chemistry 1191–216

SAC–CI method 1101

single-reference 466–77, 582, 602–3, 1192,

1201–2, 1210–12

size-consistent state-specificity 581–631

theory 115–40, 1191–216

coupled-pair many-electron theory (CPMET)

131–2, 1195

coupled-perturbed (CP)-MOD equations 1105

coupling constants 129–37, 509, 673, 753,

1087–8, 1212

coupling matrix elements 241–2

covalent bonds 293–366, 525–9, 644–6,

652–3, 731, 837

covariance functions 1000, 1005

Cp2Ni2 1143, 1151–6

CPHF coefficients 1104

CPMET see coupled-pair many-electron

theory

CR-CCSD(T) 134, 1173

R-CCSD(T) 1066

creation operators 30, 123, 375, 391, 446–9,

453–5

critical phenomena 135, 427

cross sections 36–7

crossing point heights 642–3

crossing resonance energy 643

crystal-vapor interfaces 78

crystals 78

argon 933, 944–5

cohesion energy 943–5, 1059

rare-gas 923–4, 944–6

vacancies 945–6

CSF see configuration state functions

CT see charge transfer

current, density 387–9, 678

current-voltage (I–V) curves 813–19, 827–8,

1111

curve crossing 637

curvilinear coordinates 76

cusps 736–7, 1134–6

CVPT see Canonical Van Vleck Perturbation

Theory

CVT rate constants 74–5

cyclic configurations 934–5

cyclic polyenes theory 130

cycloadditions 271, 635, 646–7, 882

cyclobutadiene 478, 659

cyclobutane 271

cyclohexane-1,4-diyl 212, 860–9

cyclophane systems 988–9

DALTON package 760

damped gradient corrections 690–1

damping constants 60

Datacraft 6024 minicomputers 4

Davidson correction 1066

DC see Dirac–Coulomb

DCB see Dirac–Coulomb–Breit

DCD see Dewar–Chatt–Duncanson

DDA see discrete dipole approximation

DDI see distributed data interface

defect transport 1038

degeneracy

anharmonic vibrational spectroscopy

179–80

chair Cope rearrangements 859–61

molecular system simulations 98–9, 101

multiconfigurational quantum chemistry

734–8

multireference coupled-clusters 465

open-shell monomers 1065–6

perturbation 179–80, 769–70

SAC–CI method 1105

degrees of freedom 14–17, 37–8, 196–7,

1202–7
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deMon codes 1079–92

denitrogenation 273–4

density

difference 298–9, 497

functional approximation 677–9

Laplacians 702–3

momentum 487–93

number density 484, 490–1, 495

reciprocity 495–6

shifts 847–50

density functional theory (DFT)

ab initio methods 507–8, 529–40

anharmonic vibrational spectroscopy 182

B3LYP 530–40, 1085, 1087

carbon nanostructure self-assembly 879–82

conceptual 1085, 1146

constrained-search 1082

conventional correction schemes 529–32

Cope rearrangements 859–72

correction schemes 507–8, 529–40

deMon codes 1079–92

design strategies 680–2

designing functional molecular systems

966–7

exchange-correlation 669–717

Fenske–Hall molecular orbitals 1143–7,

1150–1, 1161–3

force fields 182

GAMESS 1168

intermolecular forces 1064–5

isomeric fullerenes 900

Jacob’s ladder 678

local-scaling transformation 671

long-range corrections 529, 532–40

molecular system simulations 95–103,

108–9

momentum density 501–2

motivation for 671–3

open-ended single-walled carbon nanotubes

880–2

orbital-dependent 531, 674, 678, 716

orbital-free 502, 671

photobiology 272

potential energy surfaces 197–8

pyridine–copper tetramer 61–3

quantal 671

quantum mechanics/molecular dynamics

434

spin-polarized 677–9, 1083, 1134

symmetry-adapted perturbation 928, 952,

954–7, 1064–5

tight-binding 814, 875–9, 1088–9

water hexamers 997

see also Kohn–Sham DFT

density gradient expansions (DGE) 680–1,

686–8, 692–3, 695–9

second-order coefficient 686

density matrices

equations of motion 448

exchange-correlation holes 704–5

expansions 678, 704–5

Kohn–Sham 501, 677–8, 682

momentum 487–9

natural orbitals 727–30

non-equilibrium Green Functions 376–7

one-electron 494, 677

reduced 487–9, 670–2, 678, 716, 726–8,

736

density of states (DOS) 397–409, 460, 820–9,

1016

derivatives see individual entries

design equations 151

designing functional molecular systems

963–89

clusters 963–80

flippers 965, 987–9

ionophores 965, 980–3

nanomaterials 963–7, 983–7

nanotubes 963–7, 983–7

receptors 965, 980–3

sensors 965, 980–3

desolvation 41

deterministic canonical ensembles 429

deterministic functions 29–32

Dewar–Chatt–Duncanson (DCD) model

326, 333

DFT see density functional theory

DGAUSS 1085, 1086

DGE see density gradient expansions

DHF see Dirac–Hartree–Fock

diabatic curves 639, 643–5, 649

diabatic states 1068

diagrams

Brandow 123

connected 121–2, 473–5

disconnected 121–2, 473–5

exclusion-principle-violating 130, 366, 582,

587, 603, 927, 949
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Feynman-like 121, 124, 433–4

Goldstone 122–7, 1054, 1058

Hugenholtz 122–3

ladder 124–5

linked 121–2, 1066, 1193–8, 1213

resulting 123, 127

ring 124–5

unlinked 121–2, 1066, 1193–8

vacuum 121–2

valence bonds 223–4, 635–65

diastatine 552

diatomic molecules

active space selection 741–2

bonding 296–302

energy decomposition 296–302

first-row 118

many-body forces 924–5

time-dependent molecular theory 17

diazomethyl radical 273

dibromoethane 809

dicarbon 1129–32

dielectric constants 50–1, 53–5, 58–9

dielectric environments 47, 978

Diels–Alder allowed reactions 229, 240–1,

646–7

different orbitals for different spin (DOD) 731

diffuse functions 791–2, 795, 814

diffusion Monte Carlo (DMC) simulations

172–3, 262–3, 948, 953–4

Diffusion Quantum Monte Carlo (DQMC)

algorithms 175–6

difluormethane 841–5

difluoromethylene singlet-triplet splitting

513–14

dihalogen bonding 303–5

dihydrogen bonding 296, 297–302, 357–60

dimension formula 118

Paldus–Weyl 118

dimers

CH· · ·O hydrogen bonds 846–7

four-component relativistic molecular

theory 547

intermolecular forces 1065–6

long-range corrections 534, 536–40

many-body forces 925, 928–30

metal nanoparticles 58–9

dimethyl oxalate 832

dinitrogen 83, 293–303, 305–6, 308–9,

458–60

diphenyl substituent effects 865–70

dipnicogen bonding 297, 302–5

dipole moments 930

anharmonic infrared intensities 178

cesium xenon systems 1113–14

coupled-cluster functionals 1205–6

intermolecular forces 1048

lithium-hydrogen molecules 628–9

dipoles 971–2, 987

CH· · ·O hydrogen bonds 846–7

discrete approximations 47, 50, 60

electrodynamics 51–2, 59–61

many-body forces 923–4, 947–9, 953

molecular system simulations 95–6

polymer chains 1015, 1027

resonance 51–2

triple terms 923–4

Dirac equations 541

Dirac transformations 486

Dirac–Coulomb (DC) Hamiltonian 541–2

Dirac–Coulomb–Breit (DCB) Hamiltonian

541–2

Dirac–Hartree–Fock (DHF) method 542–3

Dirac–Kohn–Sham (DKS) method 542–3

diradicals 860–72

direct configuration interaction 739

direct dynamic simulations 415–19

direct inversions 203, 207–9

direct nonadiabatic dynamics 9–39

direct reaction dynamics 559, 575

Direct Simulation Monte Carlo (DSMC)

method 436

disconnected diagrams 121–2, 473–5

discrete dipole approximations (DDA)

47, 50, 60

dispersion

coefficients 1051

energy 921–47, 1054–69, 1182

interactions 820, 921, 930, 976–81, 1003,

1056

intermolecular forces 1047–72

many-body forces 920–4, 931–2

non-additive interaction energy 938–9

second-order Møller–Plesset energy

1069–72

Dissipative Particle Dynamics (DPD) 436–7

dissipative structures 887

dissociation

constants 8327
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energies 193, 467, 552, 808–9

enthalpy 861

hydrogen bonds 612–13, 619–27

intermolecular forces 1065–6

unimolecular reaction rates 403–5, 517–18

distributed data interface (DDI) 1177–9

distributed multipole analysis (DMA) 1181

2,11-dithio[4,4]metametahydroquinocyclo-

phane (MHQC) 988

2,11-dithio[4,4]metametaquinocyclophane

(MQC) 988

4,4’-dithioldiphenylacetylene 817–19

2,7-dithiolpyrene 817–19

dividing surfaces 68–72, 75–6, 80–3

diyl complexes 332–42, 358

DK see Douglas–Kroll

DKS see Dirac–Kohn–Sham

DMA see distributed multipole analysis

DMC see diffusion Monte Carlo

DMOL 1086

DNA 102–7, 269, 477, 574, 658

DOD see different orbitals for different spin

donor-acceptors 311–14, 979

doping processes 1020–5

double donor 937, 969

double precision 5

double-well potentials 1023–5

double-zeta methods 1012

doublet stability 130

doublets, state 345–7, 645, 757–9, 1100–3,

1131–5

Douglas–Kroll (DK) method 549–53

Douglas–Kroll–Hess Hamiltonians 747–8

DPD see Dissipative Particle Dynamics

DQMC see Diffusion Quantum Monte Carlo

drug delivery 865, 984, 989

drug design 574

drug discovery 41, 44–5

DSMC see Direct Simulation Monte Carlo

dyes 1021

dynamic correlation 117–18, 725, 736–8,

744–6, 863–5

dynamic depolarization 51

dynamic electron correlation 643, 736–8, 755,

863–5, 871, 971

dynamic polarizability 755, 939, 1101, 1207,

1212

dynamic reaction paths 237–8

dynamic rendering 37–8

dynamical, time-dependent molecular theory

9–39

dynamical variables 32, 34

Dyson equations 373–82, 388–9, 393–4,

500–1

Dyson orbitals 493–500

DZP basis sets 625

E-CCM see extended coupled-cluster method

EA see electron affinity

EBK see Einstein–Brillouim–Keller

EDA see energy decomposition analysis

effective core potentials 61, 563, 569, 901,

1088–9

effective elastic band theory 225–6

effective fragment potential 1177, 1181–4

effective Hamiltonians 583, 584, 746, 766–72

effective radius 51–2, 57

EFISH see Electric Field Induced Second

Harmonic Generation

EGCI see Exponentially Generated CI

eigenmode-following algorithm 996

Einstein–Brillouim–Keller (EBK)

quantization 408

elastic band theory 224–6

Electric Field Induced Second Harmonic

Generation (EFISH) 1026

electric fields 1026–7, 1207

CH· · ·O hydrogen bond 838, 846–7

lasers 150–1

local 55–9

size-consistent state-specificity 627–8

electrochemical switching 986

electrocyclic reactions 292, 646–7, 652

electrodynamics 47–64

electromagnetic fields 47–64

electron affinity (EA)

coupled-clusters 1211

equations of motion 443–61, 1211

G2 and G3 theories 793–4, 797, 801–2,

805–7

valence bond diagrams 648–9

electron cloud perturbations 840

electron correlation 5, 118, 124, 730, 736–8,

1134

dynamic 643, 736–8, 755, 863–5, 871, 971

effects 118, 500, 565, 755, 935–6, 996–7

energy 599, 792

intramolecular 927–32, 1058
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intramonomer 928, 932–3, 1059–61

many electron 118, 124

nondynamic 273, 508, 736–8

static 273, 508, 736–8

electron deficient p-system clusters 979

electron delocalization 664, 774, 781, 1027,

1029

electron density 842–3, 847–50

electron gas 120, 124–8

electron lattice models 135

electron lone pair 335

electron momentum

density 487–502

spectroscopy 493, 1107

electron nuclear dynamics (END) 32–7

electron operators 378–84, 389–92

electron paramagnetic resonance (EPR) 753

electron repulsion integrals 544–5

electron-localized states 774, 781

electron-spin resonance (ESR) 1099–100,

1102, 1133–6

electronegativity 768, 831–9, 849

electronic band structure 774–9

non-spin-polarized 774–5

spin-polarized 774–5, 777–9

electronic degrees of freedom 14–17, 37–8,

196–7

electronic delocalization 658–9

electronic energy 11–12, 565–6

electronic excitation 509, 575–6, 1099–100

electronic Hamiltonian mapping 775–7

electronic polarizability 573, 1028–9, 1031

electronic properties 842–3, 1026–33

electronic reorganization 645

electronic Schrödinger equation 15–17

electronic self energy 391–2

electronic spectroscopy 740–3, 748, 751–6,

833

electronic state energy 756–7

electronic state potentials 748, 756–60

electronically excited states 559, 571, 575–6,

1040

electrons

aqueous clusters 972–3

conduction electrons 48–53, 937

electron-electron repulsion 772–81

mean free paths 51–3

multiconfigurational quantum chemistry

725, 730, 736–8

transfer 373–95, 1033–41

transport 373–95, 1033–41

tunneling 373–95

electrophiles 647–50, 979

electrostatic interactions

attraction 291, 293–4, 1048

bonding 329, 336, 340, 350, 363, 824

CH· · ·O hydrogen bonds 840, 843–4

effects 281, 834, 846

energy 653–5, 930, 976–8, 1054

energy decomposition 291–367

forces 298, 356, 920

intermolecular forces 1053–4

many-body forces 920, 931

embedded clusters 78

empirical

correction factors 792

fits 681, 706–8

potentials 176, 188–9, 434, 921, 926–31,

945–6

EN see Epstein–Nesbet

END see electron nuclear dynamics

endohedrals 901–7, 983–7

energetics

carbon clusters 893–6

many-body forces 919–58

neutral water clusters 968–9

polymer chains 1013–42

water hexamers 996–7, 1000–5

energy

bands 1013–42, 1079

barriers 1037–9

derivatives 1175–6

diastatine 552

difference plots 619–27

energy decomposition analysis (EDA)

291–367

main-group compound bonding 291,

294–326

transition metal bonding 291, 294–5,

326–66

fluctuations 995, 1001, 1005

G2 and G3 theories 785–810

gaps 643–6, 648–9, 1013–42

Gaussian wave packets 28–9

landscapes 996

partitioning 291, 295

quantum virial theorem 292–3

storage 283–5
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three-body interactions 922–38, 944–5,

948–51

enhancement factors 61–3, 698–9

ensemble, canonical 70, 397–429, 954, 999

ensemble-averaged VTST 82–3

enthalpy

of activation 477–8, 864–7, 871

aqueous clusters 968–9

bond dissociation 861

endohedral metallofullerenes 903–6

entropy interplay 891–2, 898

of formation 788–9, 793–4, 797, 802,

805–9

entropy 891–2, 896, 898, 968–9

enzyme catalytic mechanisms 982–3

EOM see equations of motion

EOM-CC see equations of motion coupled

clusters

EPR see electron paramagnetic resonance

Epstein–Nesbet (EN)

partition 582, 600–2, 612, 615, 625–7

perturbation 1195

EPV see exclusion-principle-violation

equations of motion coupled clusters

(EOM-CC) 455–7, 518–20, 1109,

1127

ab initio quantum chemistry 1191–2, 1202,

1207–13

acetylene 1132–3

GAMESS 1174

SAC–CI method 1101

theory 134

equations of motion (EOM)

electron affinity 443–61

ionization potentials 443–61

metastable anion states 457–60

Møller–Plesser approximations 450–3

non-equilibrium Green Functions 379–82

equilibrium

constants 41, 895–6

equilibrium-solvation paths (ESP) 80

geometry 752–6, 789–90, 798–9,

1099–100, 1128–33

internuclear distances 1130–1

equilibrium properties 433

error analysis 1001–2

ES see Euler stabilization

ESCA see X-ray induced photoelectron

spectroscopy

ESHG see Electric Field Induced Second

Harmonic Generation

ESP see equilibrium-solvation paths

ESR see electron-spin resonance

ethane 305

ethyl radical dissociation 403–5

ethylene 309, 347–54, 536–8

1-thiol-4-ethynylphenyl-4’-ethynylphenyl-1’-

benzenethiolate 817–19

2’-amino-4-ethynylphenyl-4’-ethynylphenyl-

5’-nitro-1’-benzenethiolate 818, 819

Euler angles 26

Euler integration 232–4

Euler stabilization (ES) 233–4

Euler–Lagrange equations 32

evolving width Gaussian wave packets 25–9

Ewald summation 428

Ex-EGCI see Excited Exponentially Generated

CI

Ex-MEG see Excited Mixed Exponentially

Generated

exact exchange functionals 530–1, 637,

669–717, 1145–9

exchange

energy 682–4, 686–7

exact exchange 530–1, 637, 669–717,

1145–9

functionals

approximate 681, 708–14

DFT 529–40, 669–717

energy decomposition 296

Fenske–Hall molecular orbitals 1148–9

long-range corrections 529–40

holes 672, 681, 692–4, 699–705

hydrogenic atoms 700

LDA 694, 705, 713

PBE 699–701

Taylor expansion 699–705

TPSS 699–701

interactions 920, 932

non-additivity 921–32

potentials 501, 669, 689–91, 698, 713, 1079

repulsion 291–367, 534, 565–7, 773, 840,

843, 844

three-body interactions 922–38

two-body interactions 922–36

exchange-correlation

analytic properties 679–80

approximate exchange 681, 708–14
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constraint satisfaction 681, 688–99

conventional 534, 674, 690

density-gradient expansions 680–1, 686–8,

692–3

development progress 669–717

empirical fits 681, 706–8

energy 675–7, 1082

exact exchange 681, 708–14

functionals 669–717

generalized gradient approximation 706,

708–16

Hartree–Fock 707–8, 714, 715

Hohenberg–Kohn principle 670, 673, 677

holes 672, 681, 692–4, 699–705

normalization 692–4

spherically averaged 700

hybrid exchange 681, 708–14

implementation 714–16

kinetic energy density 677–9, 683–4,

696–7

Kohn–Sham DFT 669–717

LDA 680, 682–6, 697–8

LSDA 678–9, 683, 685, 715–16

many-body forces 920, 932

meta GGA 678, 681, 708–16

mixing exchange functionals 681, 708–14

performance 714–16

potentials 553, 674, 677, 714–17, 1064–5,

1081, 1086–9

asymptotic behavior 688–93, 700–3

Van Leeuwen-Baerends model 690

spin-polarizations 678–9, 683–5

excitation

dipolar 51

energy

allyl radicals 752–6

formaldehyde 518–21

long-range corrections 534–8

multiconfigurational quantum chemistry

742

operators 584

spectra 1101, 1106–12, 1115–19

Excited Exponentially Generated CI

(Ex-EGCI) 1105

Excited Mixed Exponentially Generated

(Ex-MEG) 1105

excited states

coupled-clusters 1192–202, 1207–13

equilibrium geometries 1099–100, 1102,

1128–33

free-base phthalocyanine 1101, 1122–3

GAMESS 1173–5

multi-electron processes 1130–1

SAC–CI method 1099–102, 1105–12,

1115–19, 1122–3, 1128–33

exclusion-principle-violation (EPV) 130, 366,

582–7, 603–5, 927, 949

exit-channel dynamics 417–19

exohedral fullerenes 983–7

exponential ansatz 472, 1063, 1209, 1213

exponential cluster expansion 124–8

Exponentially Generated CI (EGCI) 1105

Extended Brillouin’s (BLB) theorem 738–9

extended coupled-cluster method (E-CCM)

135

extended CPMET 131

extended Douglas–Kroll transformations

550–3

extended Hückel tight binding 766

extended Koopmans’ theorem 454, 461

extended molecules 814–16

external orbitals 513

externally corrected coupled-cluster methods

468–9

extinction spectra 47–54

fast multipole method 546, 728

FC see Franck–Condon

FCI see full configuration interaction

FDTD see finite difference time domains

FEM see floating encapsulate model

Fenske–Hall molecular orbitals 1143–63

Fermi contact hyperfine splitting constants

1099–100, 1133–6

Fermi energy 49, 59, 976, 986

Fermi operators 394–5

Fermi superoperators 378

Fermi vacuum 468

ferrocene 360–6, 1143–6

ferromagnetic spin exchange 776–7

FETs 820

Feynman diagrams 121, 124

Feynman path integrals 433–4

FHF species 653–4

field operators 22, 25, 30–1

field-effect transistors (FETs) 820
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fine-grained parallelism 1179

finite difference time domains (FDTD) 47, 50,

61

finite dimension standard valence bond theory

117

finite histograms 995

finite size effects 53

finite temperature

properties 995–1006

string method 431

first-order electrical properties 627–9

first-order reaction path following 232–4

first-order reduced density matrices 487–9,

502, 726, 727

first-principles calculation 165–90

first-principles simulations 923–6

first-row diatomic molecules 118

Fischer-type complexes 342–7

fitting functions 937

five-membered rings 1106–8

flexible molecules 429

flexible-monomer potentials 923

flippers 965, 987–9

floating encapsulate model (FEM) 906

fluid dynamics 78–83, 105–8, 426–8, 436

fluorescence 47, 49, 269–70, 274, 276–9

fluorine

energy decomposition 303–7, 354–7

hydrogen exchange 526–9

lead monofluoride 748, 756–60

molecular system simulations 95

multireference coupled-clusters 467, 472–3

unimolecular reaction rates 417–19

FMO see fragment molecular orbital

FO see fragment orbitals

Fock evaluations 241

Fock matrices 565, 1016

Fock operators 586, 601–2, 615, 745

Fock orbitals 511

Fock space 469

forbidden reactions 517, 637, 641, 646–7, 652,

735

force fields 180–3, 223, 709, 877–8, 920–1

forces

coupled-clusters 1202–7

induction 920–2, 931–2, 938–42, 1053–4

intermolecular 919–58, 1047–72

see also many-body forces

foreign state intermediates 656–8

form factors 483–4, 488–9, 493–5

formaldehyde

CH· · ·O hydrogen bonds 833–4, 840–1,

844–5

inner-shell satellite spectra 1126–7

unimolecular reactions 412, 517–18

valence excitation energies 518–21

formic acid dimers 846–7

formyl radicals 401, 402

FORS see fully optimized reaction space

FORTRAN 2, 3

four-body effects 947–8, 957

four-component relativistic molecular theory

542–7

Fourier transforms 488–9, 494

Fourier–Hankel method 493

fragment molecular orbital (FMO) 1180–1

fragment orbitals (FO) 650–2

Franck–Condon (FC) factor 1090

Franck–Condon (FC) points 270–2

free energy

of activation 80

aqueous clusters 968–9

barriers 1038–9

of complexation 41–5

non-covalent binding affinity 41–5

free-base phthalocyanine 1101, 1122–3

free-base tetrazaporphin 1122–3

freezing-point diagrams 833

frequency shifting 831, 837–9, 843–50,

969–71

frequency-dependent polarizability 60–3,

1051, 1057–61, 1182–4

frontier orbitals 292, 311, 329, 641, 1151–3,

1156

FSGO valence bands 1017

full configuration interaction (FCI) 611,

614–15, 727, 1168–72, 1174

fullerenes 875–87, 897

endohedral 983–7

energetics 893–6

formation 877–9

giant 875, 883–7

isomer relative stability 892–3, 896

metallofullerenes 891–2, 901–7

self-assembly 875–87

thermodynamics 893–6

fully optimized reaction space (FORS) 739,

1168–9
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functional molecular system design 963–89

furan 808–9, 1106–8

G2 theory 785–94, 808

G3 theory 785–9, 794–810

G3S theory 803–7

G3X theory 799–803

gallium bonding 314–22, 332–42

GAMESS see General Atomic and Molecular

Electronic Structure System

gas-phase 68–77, 492–3, 897–8

gauge invariance 716

gauge-including atomic orbitals (GIAO) 570

Gaussian

exchange-correlation 671, 685–6

functions 754, 1083

G2 and G3 theories 785–810

GAUSSIAN package 4, 659, 671, 685–6

Gaussian type orbitals (GTO) 1058–9,

1080, 1081

Gaussian80 ab initio package 834

local density approximations 685–6

program package 834, 1101

spinors 543–4

valence bond diagrams 659

wave packets 21–9

GDIIS 203, 207–9

GEA see gradient expansion approximation

Gellman-law expressions 377–8

General Atomic and Molecular Electronic

Structure System (GAMESS)

electronic structure 1167–85

pyridine–copper tetramer 61–3

quantum mechanics 1167–77

quantum mechanics/molecular mechanics

1181–4

scalable electronic structure theory 1168,

1177–81

general model space (GMC) 138–9, 630

general-multiconfiguration space SCF

(GMC-SCF) 516–23

general-R method 920–1, 929–30, 942,

1128–33

generalized ensembles 428

generalized Fock operator 586, 602, 615,

745

generalized gradient approximation (GGA)

asymptotic corrections 691

correlation wave functions 702–3

DFT 529

DFT deMon codes 1084, 1085, 1087

empirical fits 706

exchange-correlation 681, 691, 694, 702–3,

706, 708–16

formation energies 1085

Kohn–Sham DFT 678

long-range corrections 533

meta 678, 681, 708–16

mixing exchange functionals 681,

708–14

systematic constraint satisfaction 696–7

generalized Langevin equation 81

germanium bonding 310, 314–22, 342–7

GF see Greens function

GFP see green fluorescent proteins

GGA see generalized gradient approximation

giant fullerenes 883–7

GIAO see gauge-including atomic orbitals

Gibbs energy/free energy 893, 895, 903

global hybrid exchange functionals 708–11,

713

glycine energy conformers 181–2

glycine-water complexes 184–5

GMC see general model space

GMC-SCF see general-multiconfiguration

space SCF

gold 47–64, 347–54, 547, 814–19, 974–6

Goldberg polyhedra 897

Goldstone diagrams 121–7, 1054–6, 1058

gradient expansion approximation (GEA)

680–1, 686–8, 692–3, 1084, 1087

gradients

analytical gradients 1202–7

conjugate density matrices 572

coupled-cluster theory 132–40

potential energy surfaces 198–200

reduced gradient 681, 708–14

graphical control/analysis 6

graphical representations 104–5

Graphical Unitary Group Approach (GUGA)

739

graphite interaction 823–7

green fluorescent proteins (GFP) 269–70,

274, 276–9

Greens function (GF) 373–95, 453–4

grid generating functions 1089

grid methods 175

Grote–Hynes theory 81–2

Index1284



ground state

allyl radicals 752–3

G3S theory 803

hydrogen fluoride 95–6

lead monofluoride 748, 756–60

momentum 494–5

photobiology 270–2

pyridine–copper tetramer 60–3

group sum selected operators (GSUM) 1103,

1105

group-13 diyl complexes 332–42

group-14 nonpolar bonding 310

growing string approach 227

GSUM see group sum selected operators

GTO see Gaussian type orbitals

GUGA see Graphical Unitary Group Approach

H4 model 612–15

hafnium bonding 326–32

half sandwich complexes 320–1

half-and-half hybrids 709, 1085, 1087

halogens 794

Hamiltonian encoding technique 160

Hamiltonians

ab initio vibration SCF 177

condensed phase reactions 79

effective 583, 584, 746, 766–72

Heisenberg 775–7

Hubbard 129

minimal electron nuclear dynamics 33

models 129, 411

multireference coupled-clusters 471–2

non-equilibrium current-carrying states

382–4

non-Hermitian 136, 457, 746, 1209

non-relativistic 783

Pariser–Parr–Pople 129, 560

photonic reagent control 151–2, 157

polyatomic molecules 252–6, 260–5

relativistic 548–9, 783

semiempirical 120

size-consistent state-specificity 583, 592,

601–2

spin 135, 775–7

spin-free 123

time-dependent molecular theory 12–17

transformed 591

two-component relativistic theory 548,

550–3

unimolecular reaction rates 405

Watson 171, 252

zeroth-order 601–2, 745–6

Hamilton’s equations 29

hard sphere interactions 427

hardware development 105–8

harmonic

approximations 74, 252–4

frequency 552

oscillators 22–9, 165–6, 252–3, 893,

1026, 1031

Hartree–Fock (HF)

argon-hydrogen fluoride trimers

946–7

average potential 106

coupled-cluster theory 106–7, 117–18,

129–30

eigenvalue functions 1080

electron nuclear dynamics 36

energy 104, 707–8, 931, 946–7, 1000

exchange-correlation 707–8, 714, 715

G2 theory 789

GAMESS 1168, 1172, 1180–1

generalized 101, 120

interaction energy 931, 946–7

many-body forces 931, 946–7

molecular system simulations 95–104,

109–11

momentum 496–7

multiconfigurational quantum chemistry

726, 730–1

orbitals 1206

polymer chains 1012–13

restricted 109–11, 789, 864–5

semiempirical quantum-chemistry 563

stability 129–30

unrestricted 109–11, 732–3, 789

water hexamers 1000

wave functions 730–1

Hartree–Fock–Roothan (HFR) calculations

1144–7, 1149–51, 1154–5

Hartree–Fock–Slater (HFS) approximation

1080

heat

capacity 995, 1000, 1003–6

of formation 793–4, 861, 894–5

of reaction 477–8

of vaporization 895

Heck reaction 646
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Heisenberg

Green Functions 378–82, 385–7

Hamiltonians 775–7

Heitler–London (HL) functions 90–2,

109–11, 116–17, 644, 652–3, 731–2

helices 851

helium 1051, 1062, 1068–9

superfluid 946

trimers 932–7, 942–3

helium-hydrogen fluoride 1062

Hellman–Feynman theorem 199–200, 675,

1202–3, 1205

Hermite–Gaussian auxiliary functions 1089

Hessians

anharmonic vibrational spectroscopy 166

coupled-cluster theory 132–40

GAMESS 1178

minimization 215–17

momentum 498–9

potential energy surfaces 198–200, 215–17,

219–20, 230, 240

reaction paths 240

transition states 219–20, 230

heterofullerenes 907

heteroleptic diyl complexes 332–42

hexacarbonyl bonding 327–9

1,5-hexadiene 859–61, 867–8

hexafluorides 322–6

HF see Hartree–Fock

HFR see Hartree–Fock–Roothan

HFS see Hartree–Fock–Slater

high-density scaling 695–6

high-level programming languages 2

high-resolution rotational spectroscopy 947

high-spin (HS) states 777, 948–9

high-temperature

carbon chemistry 876

quantum chemical molecular dynamics

875–87

small fragment chemistry 877

higher level corrections (HLC) 787, 791–2,

795–804

higher-order integrators 236–7

highest occupied molecular orbitals (HOMO)

977, 1150, 1154–63, 1172–3

Hilbert space 375–82, 385–9, 469–70, 583

Hinshelwood–Lindemann model 400

HIV protease 44–5

HL see Heitler–London

HLC see higher level corrections

Hohenberg–Kohn principle 670, 673, 677,

1081

holes

Coulomb holes 99, 736

exchange 672, 681, 692–4, 699–705, 713

holonomic constraints 429, 430

HOMO see highest occupied molecular

orbitals

homoleptic diyl complexes 332–42

hopping integral 776–7

host–guest complexes 41

hot spots 56

HS see high-spin

Hubbard Hamiltonian 129

Hubbard–Lieb model 135

Hückel-type semiempirical quantum-

chemistry 560

Hudson Valley 105–8

Hugenholtz diagrams 122–3

hybrid functionals 530–2, 708–14, 715–17

Coulomb-attenuated 714

global 711–13, 717

half-and-half 709, 1085, 1087

local 681, 712

screened 533, 713

hybrid methods 226–7, 572–3

hybridization 540, 834–9, 883, 974–6

hydration 973

hydrides 357–60, 401–2, 1068–9

hydrocarbons 794

hydrocarboxyl radicals 187–8

hydrodynamic flows 436

hydrogen

abstraction 645–6

atoms 77–8, 485–6, 494–5, 954

bonded clusters 171, 182–5

bonded complexes 185, 698–9

bonding 78, 567–9, 937–8, 966–80, 984,

998

bulk water 969

energy decomposition 296–302, 305–14,

342–7, 354–60

exchange 526–9, 660–1

ground-state momentum 494–5

hydrogen-carbon bond lengths 406–7

hydrogen-chloride 947–8

hydrogen-fluoride 95–6

hydrogen-peroxide 342–7
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hyperfine splitting constants 1135

molecules 77, 116, 478, 730–4, 737

multiconfigurational quantum chemistry

730–4

see also CH· · ·O hydrogen bonds

hydroperoxy radicals 401, 402

p-hydroxybenzilideneimidazolone 274,

276–7

Hyleraas correlation 93

hyper-Rayleigh scattering 49

hyperconjugation 307, 847

hypercoordinated species 653–4

hyperfine splitting constants 1099–100, 1102,

1133–6

hyperpolarizability 941–2, 1026–33, 1212

hypochlorous acid 405–6, 411–13

I–V see current-voltage

IBM

card 2–3

computers 1177–8

Kingston 91, 104–8

molecular package (IBMOL) 100–2, 106,

1012

Poughkeepsie 104–5

Research Laboratory 97–8

San Jose 97–105

IBMOL 100–2, 106, 1012

IEPA see independent electron pair

approximation

IET see inelastic electron tunneling

IM see intermediate Hamiltonians

imidogen helium interaction 1068–9

IMK see Ishida, Morokuma and Komornicki

importance sampling 428

improper blue-shifting 848

impulse approximation 491–3

IMS see incomplete model space

inactive excitations 593–9

inactive orbitals 725

incomplete model space (IMS) 137–8, 469,

473–6, 581–9, 605–11

independent electron pair approximation

(IEPA) 1194–5

independent-particle models (IPM) 117–18

indium 314–22, 332–42

INDO see intermediate neglect of diatomic

differential overlap

induced-fit effects 45

induction 920–2, 931–2, 1053–4

dispersion 928, 946–7, 967, 1047

energy 926, 930–1, 935, 938–42, 977, 1057

interaction 938, 956, 979–80, 1072

inelastic electron tunneling (IET) 373–4

infrared (IR)

intensity 178, 181–5, 1176–7

spectroscopy 189, 263, 831–3, 1062

inherent structures 1002

inner-core states 1100, 1125–8

inner-shell

ionization 1099–100, 1102, 1125–8

satellite spectra 1125, 1126–7

instability 129, 208

instantaneous interaction energy 291–3

integral approximations 560–70

CNDO 560–3, 568, 834, 1016

INDO 560–3, 567, 569

NNDO 560–3, 565–7, 569–70

ZDO 1148

integrals see individual types

intensive energy 445, 455, 461

inter-isomeric equilibrium 906

inter-isomeric separation energy 892

interaction energy 291–367, 766, 919–58,

1000–1

interallylic distances 860, 863, 865–7, 869, 871

interatomic pair correlation 1051

interchange theorem 1204, 1206

intermediate Hamiltonians (IM) 585

intermediate neglect of diatomic differential

overlap (INDO) 560–3, 567, 569

intermediate normalization 138, 475, 510, 581,

607

intermolecular forces/interactions 919–58,

982–3, 1047–72

intermolecular perturbation 768

intermonomer separations 920–1, 929–30,

1128–33

internal coordinates 201–2, 213–15, 228–9

internally folded density 489

interpolation 220–4

intramolecular correlation 927–32, 1058

intramolecular dynamics 416–17

Intramolecular Vibration Energy

Redistribution (IVR) 167–8

intramonomer correlation 928, 932–3,

1059–61

intrinsic barriers 641–2
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intrinsic non-Rice–Ramsperger–Kassel–

Marcus kinetics 403–5, 408, 417–19

intrinsic reaction coordinates (IRC) 417–19

intruders

coupled-cluster theory 136–7, 139, 472–6

multireference methods 472–6, 584, 597–8,

608

size-consistent state-specificity 584, 597–8,

608

inversion symmetries 490

iodine 303–5, 526–9

ionic

bonding 293

intermediate curves 652–6

structures 526–7, 652–6, 749

ionization energy 1145–6

ionization potentials (IP)

coupled-clusters 1211

equations of motion 443–61, 1211

G2 and G3 theories 793–4, 797, 802, 805–9

valence bond diagrams 649–50

ionization spectra 1099–102, 1106–12,

1125–8

ionophores 965, 980–3

ions, active space 741

IP see ionization potentials

IPM see independent-particle models

IPR see isolated pentagon rule

IR see infrared

IRC see intrinsic reaction coordinates

iridium bonding 326–32

iron 332–42, 347–54, 779–80, 1035

irreducible representation 21, 27, 32, 295,

319–24, 1160

Ishida, Morokuma and Komornicki (IMK)

algorithms 233–4

isoelectronic cations 494

isoelectronic species bonding 296–302

isolated pentagon rule (IPR) 892, 894–5,

898–9, 901–3, 905

isomer relative stability 892–3

isomeric endofullerenes 891–907

isomeric fullerenes 891–907

isomers

book 1006

cages 875, 883–7, 891–907, 969–73,

996–7, 1006

prism 969, 996–7, 1002, 1006

ring 996–7

isotope effects 67, 77, 574, 862, 865, 871

iterative subspaces 203, 207–9

IVE efficiency 419

IVR see Intramolecular Vibration Energy

Redistribution

Jacobian factor 43

Jacob’s ladder 678

Jahn–Teller effect 659, 1020–1, 1160

jellium 59

Jeziorski–Monkhorst ansatz 469, 472–5, 582,

585–6

Jordon transformations 486

Keldysh Green functions 385–7

Keldysh loops 373–82

Ketosteroid Isomerase (KSI) 982–3

kinetic balance 543–4

kinetic control 906–7

kinetic effects 865

kinetic energy 13–16, 677–9, 683–4, 696–7

density 531, 678, 683, 696–8, 702

kinetic isotope effects 67, 77, 574, 862, 865,

871

Kohn–Sham

density matrices 501, 677–8, 682

DFT 669–717, 1064, 1081, 1083

equations 529, 674–5, 691

exchange-correlation 674–5

methods 542–3, 673–5, 677, 1083, 1087

operators 1146

orbitals 501–2, 674–8, 682, 690, 696–8,

714

static isotropic polarizability 540

theorem 540

wave functions 674

KOMMUTE 1198

Koopmans’ theorem 144–5, 450, 454, 493,

726

extended 454, 461

Kramers theory 81, 100, 757, 1048

krypton crystals 945–6

Kubo formulas 431–2

La@C82 892, 901, 905–6

laboratory of molecular structure and spectra

(LMSS), Chicago 92–5

ladder diagrams 124–5

Lagrange multipliers 133, 429
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Lagrangians 18–19, 32–4, 210–12

Langevin equations

generalized 81

model 435–6

Langreth–Mehl (LM) functionals 695

lanthanides 741, 743–4

lanthanum 892, 901, 905–6

Laplacian of the density 702–3

large molecule anharmonic vibrational

spectroscopy 165–90

lasers 149–62

lattice Boltzmann method 436

lattice gauge theory 135

lattice quantum field theories 135

lattice-gas automation 436

LCAO see linear combination of atomic

orbitals

LCGTO see linear combination of Gaussian

type orbitals

LDA see local density approximation

lead

bonding 310, 314–22, 342–7

fluoride 725, 741, 747–8, 756–60

oxide 741–2

leapfrog transformation 897

Lebedev grids 1083, 1088

LEDs 1033, 1040–1

Lee–Yang–Parr correlation functional (LYP)

539, 715–16, 1085, 1165

see also B3LYP

Leffler–Hammond postulate 636

Lennard–Jones fluids 427

Lennard–Jones parameters 433–4

Levenberg–Marquard algorithm 1086

Lewis acids/bases 979

Libby’s hypothesis 1035–6

Lie groups 21, 23, 25, 27–9, 32

Lieb–Oxford bounds 1084

ligand binding 44

ligand selectivity 851

light-emitting diodes (LEDs) 1033, 1040–1

linear combination of atomic orbitals

(LCAO)

coupled-cluster theory 117

DFT deMon codes 1081, 1083–4, 1091

polymer chains 1011–12, 1015

linear combination of Gaussian type orbitals

(LCGTO) 1083–6

linear polyenes 129

linear response theory 431

linear scaling 571–2, 574, 1180–1, 1214–15

linear synchronous transit (LST) 221–3

linked cluster theorem 122

linked diagrams 121–2, 1066, 1193–8, 1213

Liouville equation 435

Liouville space pathways (LSP) 373–82,

385–9, 393–4

Lipkin–Meshkov–Glick model 135

Lippmann–Schwinger equation 470–1

liquid argon 946

liquid helium meniscus 1048

liquid-vapour equilibrium 832–3

liquid water 104, 427–8, 936–7, 954–8,

1001–3

lithium bonding 305–7, 314–22

lithium-hydrogen 612–13, 619–24, 627–9

lithium trimers 948–9

LM see Langreth–Mehl

LMO see localized molecular orbitals

LMP2 see localized second-order

Møller–Plesset perturbation

LMSS see laboratory of molecular structure

and spectra

local [tau] approximation (LTA) 683–4, 698

local density approximation (LDA)

asymptotic corrections 690

DFT 530, 1081, 1083–4, 1087

DFT deMon codes 1081, 1083–4, 1087

exchange-correlation 680, 682–6, 697–8

intermolecular forces 1064–5

long-range corrections 529

Perdew–Wang scheme 685, 693, 707, 709,

715, 1084

Perdew–Zunger scheme 531, 679, 684

systematic constraint satisfaction 697–8

Vosko–Wilk–Nusair 530, 684–5

local electric fields 55–9

local hybrids 711–12

local spin-density approximations (LSDA)

Barth–Hedin scheme 677, 685, 697–8,

709–10, 1082

DFT 678, 679, 1084

empirical fits 707

exchange-correlation 678–9, 683, 685,

715–16

hybrid exchange functionals 709

Kohn–Sham DFT 678, 679

Vosko–Wilk–Nusair 530, 684–5
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localized molecular orbitals (LMO)

GAMESS 1170–1, 1181

malonaldehyde 1128–9

semiempirical quantum-chemistry 572

valence bonds 523

localized orbitals 523, 726, 1071, 1170–1,

1176–7

localized second-order Møller–Plesset pertur-

bation (LMP2) 998–1006

localized surface plasmon resonance (LSPR)

51, 54, 60

London forces 1048

lone pairs 517

aqueous clusters 971

CH· · ·O hydrogen bonds 848–50

energy decomposition 299–303, 313–14

Fenske–Hall molecular orbitals 1157

multiconfigurational quantum chemistry

748

long time tail 427

long-range corrections/interactions 529,

532–40, 713–14

low-energy isomers 996

LSDA see local spin-density approximations

LSP see Liouville space pathways

LSPR see localized surface plasmon resonance

LST see linear synchronous transit

LTA see local tau approximation

luminescent jellyfish 269–70, 274, 276–9

LUMO

energy decomposition 311, 313–14, 329

Fenske–Hall molecular orbitals 1150,

1157–8

GAMESS 1172–3

weakly bound clusters 97

LYP see Lee–Yang–Parr correlation

functional

magnesium 314–22, 499

magnetism 47–64, 776–7, 780–1, 983–7

insulating states 775

main frame computers 1053–9

main-group compounds 291, 294–326

malonaldehyde 1128–9

adiabatic excitation energies 1128–9

optimized structures 1128–9

manganese 1143, 1151–6

manganese tetraoxide 1116–18

manganese-nickel interactions 1153–4

many-body decomposition 998–9

many-body expansions, convergence 920–6,

937, 947–9, 957

many-body forces 919–58

GAMESS 1172–3

trimers 922–3, 932–42, 943–57

water 925, 928–42, 947–8, 951–7

many-body perturbation theory (MBPT)

119–28, 133, 508–23, 1172–3,

1193–7

many-electron Hamiltonian 550–3

Marcus Electron Transfer theory 1033–41

Marcus equations 636, 641

Markov chain 428

mass polarization 13

matrices

charge density 728

conjugate density 572

coupling elements 241–2

Fock 565, 1016

polymer chains 1016

reduced density 672, 677–9, 727–30

response density 1205–6

see also density matrices

matrix element integration 263–4

Matsububara imaginary time 374–5

maximum overlap orbitals 129

Maxwell’s equations/theory 48, 51

MBPT see many-body perturbation theory

MC see Monte Carlo

MC QDPT see multi-configuration quasi-

degenerate perturbation theory

MCSCF see multi-configurational self-con-

sistent fields

MD see molecular dynamics

mean absolute deviations 793–4, 797–807

mean field methods 434

medicinal chemistry 574

MEG see mixed exponentially generated

melting transition 997

memory 5–6

MEP see minimum energy paths

mesoscopic dynamics 435–7

meta generalized gradient approximation 678,

681, 708–16

metal arene complex bonding 360–6

metal nanoparticles 47–64

metal surfaces 813–29

metallacyclic compounds 347–8
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metallic clusters 774–5, 974–6

metallic state 774–6

metallocenes 314–22, 360–6

metallofullerenes 891–2, 901–7

metals, polymer chains 1034–5

metastable anions 457–60

methane (CH4) 258–60, 835–6, 840–5

methanimine 101–2

methanol 182–4, 261–2, 808, 840–1

method of moments coupled-clusters 469

methoxy radical dissociation energy 808

methyl alcohols 417–19

methyl diazenyl diradical 273

methyl fluoride 841–844–5

methyl–carbonyl bonds 155

N-methylactamide (NMA) 182–3

methylene amidogen 257–8

methylene bonding 342–7

methylene singlet-triplet splitting 513–14

methylidynes 360–6

methylphenol proton affinities 808–9

N-methylthioacetamide (NMTAA) 287

Metropolis Monte Carlo simulations 426, 428,

1006

MHQC see 2,11-dithio[4,4]metametaquino-

cyclophane

midbond functions 929

Mie theory 51

Mile-Stoning 431

MINDO 893, 894–5

MINDO/3 calculations 862–3

minicomputers 4–6

minima, potential energy surfaces 195–218

minimal electron nuclear dynamics 32–7

minimum energy paths (MEP) 71–6, 219,

230–41, 270–2

minimum orbital deformation (MOD) 1103–5,

1128–9

mixed exponentially generated (MEG) 1105

mixing exchange functionals 681, 708–14

MM see molecular mechanics; MULTIMODE

MMP see multiple multipole method

MNDO 561–70

MO see molecular orbitals

MOD see minimum orbital deformation

mode transitions 186–7

model core potentials 1084, 1089, 1185

model holes 699–701

model pair correlation functions 703–4

model space 583–630

complete 136–8, 471–8, 582, 587–93,

606–10, 629

general 138–9, 630

incomplete 137–8, 469, 473–6, 581–9,

605–11

Modern Techniques in Computational Chem-

istry (MOTECC) 106

MOLCAS software 754, 757

MOLDEN 1087

molecular currents 373–95

molecular devices 269, 285, 374, 814, 963–89

molecular dynamics (MD) 425–38, 875–87

ab initio methods 434

carbon nanostructure self-assembly 875–87

classical 428–32

coarse grained dynamics 435–7

controls 149–62

fullerene formation 877

mesoscopic dynamics 435–7

non-covalent binding affinity 44–5

photonic reagent control 149–62

quantum mechanics 432–5, 875–87

simulations 104–5, 875–87, 1090

molecular electronics 813–29

molecular excited state geometries 1099–100,

1102, 1128–33

molecular flippers 965, 987–9

molecular Hamiltonians 12–17

molecular integral algorithms 1083

molecular junctions 373–95

molecular mechanics (MM) 197–8, 223–4,

1181–4

molecular orbitals (MO)

correlation diagrams 315–17, 323, 361–4,

366

coupled-cluster theory 117

exact relationships 766–7

fragment 1180–1

highest occupied 977, 1150, 1154–63,

1172–3

molecular system simulations 90–2

multiconfigurational quantum chemistry

725–6, 727–30

orbital interaction 766–72

polymer chains 1012–13

self-consistent fields 560–2, 570–1, 576,

1143, 1144

semiempirical quantum-chemistry 560–2
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valence bonds 636, 643

weakly bound clusters 977

see also localized molecular orbitals

molecular recognition 41–2, 836, 964

molecular sensors 820–7, 828–9

molecular spectroscopy 1099–137

molecular structure and spectra 92–5

molecular system simulations 89–111

molecular theory, dynamical, time-dependent

9–39

molecular wires 374, 382–4

molecule-electromagnetic field interactions

47–64

molecule-lead self energies 389–92

molecule–metal systems 60–3

MOLEKEL 1087

Møller–Plesset (MP)

Brillouin-Wigner perturbation 470

equations of motion 450–3

G2 and G3 theories 785–7, 790–9, 801–3,

805–9

partitions 600, 602, 612, 625, 627

Møller–Plesset second-order perturbation

theory (MP2) 744, 820, 825–6, 997,

1172–3

Møller–Plesset third-order perturbation theory

(MP3) 785, 796–7, 801–3, 805–7,

1063

MOLPRO software 760

molybdenum bonding 347–60

molybdenum tetraoxide 1116–19

moments 469, 1058–9

see also dipole moments

momentum 483–502

density 487–93, 499–502

space wave functions 484–6, 495–6

mono-determinant valence bond wave

functions 664–5

mono-hydrated hydroxide ions 262–3

monosubstituted benzenes 1108–9

monovalent atom bond exchange 658–9

Monte Carlo (MC) simulations 995–1006

ab initio 999

diffusion 172–3, 262–3, 948, 953

direct simulation method 436

fullerene formation 877

Metropolis 426, 428, 1006

molecular dynamics 425–6, 428, 430, 433

molecular systems 104–5

umbrella sampling 430, 574

water 953–7, 995–1006

MoO4-nSn
2- (n=0-4) 1115–19

MOPAC 893

Morokuma decomposition/partitioning 843,

844–5

MoSeO4
2- 1115–19

MOTECC see Modern Techniques in Compu-

tational Chemistry

MP see Møller–Plesset

MP2 see Møller–Plesset second-order pertur-

bation theory

MP3 see Møller–Plesset third-order perturba-

tion theory

MQC see 2,11-dithio[4,4]metametaquino-

cyclophane

MR see multi-reference

MR CC see multi-reference coupled-clusters

MR-CI see multi-reference-configuration

interaction

MRMP see multi-reference Møller–Plesset

perturbation

MS-Xa see multiple scattering-Xa
MT see multi-dimensional tunneling

Müller–Brown surfaces 239

Mulliken populations 1148–9

multi-configuration quasi-degenerate pertur-

bation theory (MC QDPT) 508–23

multi-configuration-based approximations

454–5, 1066

multi-configurational quantum chemistry

725–61

active orbitals 725, 727, 729–30, 740–4

CASPT2 725, 744–8, 754–7, 761

CASSCF 725, 729–30, 739–48, 754–7,

760–1

degeneracy 734–8

dynamic correlation 744–6

hydrogen molecules 730–4

multiconfigurational wave functions

738–44

near degeneracy 734–8

relativistic regimes/effects 747–8, 756–60

second-order perturbation 744–6

wave functions 738–44

multi-configurational self-consistent fields

(MCSCF)

electronic structure 508, 1169–72, 1178,

1184
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GAMESS 1169–72, 1178, 1184

intermolecular forces 1051–2

molecular system simulations 95–103,

109–11

wave functions 738–9

multi-dimensional tunneling (MT) 68, 82–3

approximation 74–5, 82

large-curvature tunneling 74–5

optimization 74–6, 82–3

reaction path curvature 74

small-curvature tunneling 74

multi-electron processes 1128–32

multi-particle collision model 436

multi-reference coupled-clusters (MR CC)

135–9, 465–79

multi-reference Møller–Plesset perturbation

(MRMP) 508–23

multi-reference (MR)

equation-of-motion 1210

GAMESS 1172, 1174

perturbation 508–23

SAC–CI method 1100, 1105

second-order perturbation 1172

size-consistent state-specificity 581–631

multi-reference-configuration interaction

(MR-CI)

coupled-clusters 118–19

GAMESS 1172, 1174

intermolecular forces 1066

momentum density 500–1

SAC–CI method 1100

multi-state CASPT2 746

MULTIMODE (MM) 251, 254–63

multiple bonds 303, 305, 308–10, 1105,

1173

multiple multipole method (MMP) 50

multiple nonpolar bonding 308–9

multiple scattering-Xa (MS-Xa) method 1080,

1081–83

multiple time step integrators 430

multiplicative scaling 803–7

multipole expansion 929, 944, 1015, 1053–61,

1070

multipole moments 133, 931–3, 938–42,

1057, 1070–2

dipoles 930, 1113–14

induced 931, 938, 940–1

permanent 931, 938, 940, 1057

quadrupole 824

N-electron systems 29–32

N-methylthioacetamide (NMTAA) 287

n-mode coupling 255–60

nanodevice design 963–7, 983–7

nanomaterials 963–7, 978–9, 983–7

nanoparticles 47–64, 574–5

nanotechnology 813–29

nanotubes 820–9, 875–87, 963–7, 983–7

natural bond orbitals 842, 848

natural linear scaling CC (NLSCC) 1214

natural orbitals (NO) 726–30, 733–4,

749–51

coupled-cluster theory 118–19

equations of motion 454

Navier-Stokes equations 89, 436–7

n-body decomposition 998–9

near degeneracy 98–9, 101, 734–8

near-equilibrium trimers 932–7

NEB see nudged elastic band

Neél states 777

negative differential resistance 817

NEGF see non-equilibrium Green Functions

neglect of diatomic differential overlap

(NNDO) 560–3, 565–7, 569–70

neighbor lists 427

NEMD see non-equilibrium molecular

dynamics

Nesbet’s formula 1194, 1195

neutral radical/soliton effect 1022–3

neutral water clusters 968–9

neutron diffraction 835, 837

Newton methods 203–7

nickel 332–42, 1143, 1151–6

nickel tetracarbonyl, (Ni(CO)4) 340–1,

1099–101, 1120–1, 1137

nitric acid 186–7

nitrile-water complexes 184–5

nitrogen

energy decomposition 296, 297–309,

311–14, 360–6

equations of motion 458–9

helium interaction 1068–9

hyperfine splitting constants 1135

momentum density 499–500

nitrogen dioxide 410, 412, 414, 820

nitrogen–copper distances 61–3

nitrosyl hydride 401, 402

NLSCC see natural linear scaling CC

NMA see N-methylactamide
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NMR see nuclear magnetic resonance

NMTAA see N-methylthioacetamide

NNDO see neglect of diatomic differential

overlap

NO see natural orbitals

Nobel Prize in Chemistry 1033–4

noble gases 1062

noble metal clusters 974

non-additivity 791–2, 795, 919–58

forces 920–6, 930–3, 937–8, 944, 954–5

potentials 920–1, 925, 942–6

non-adiabatic coupling 9–16, 36–7, 919

non-adiabatic methods/theory 9–39, 1173–5

non-canonical transformations 429

non-covalent binding/bonding affinity 41–5

non-covalent interactions see intermolecular

forces

non-degenerate perturbation 768–9

non-equilibrium dynamics 887

non-equilibrium Green Functions (NEGF)

373–95

non-equilibrium molecular dynamics (NEMD)

432

non-equilibrium solvation 81–2

non-equivalent orbital interactions 778–80

non-Hermitian Hamiltonians 136, 457, 746,

1209

non-IPR 898–901, 907

non-linear excitations 1025–33

non-linear optics 47–9, 963–5, 986, 1025–33

non-local DFT levels 296

non-Newtonian equations 429

non-polar bonding 305–10

non-Rice–Ramsperger–Kassel–Marcus

(non-RRKM) kinetics 400–20

normal coordinates 252

normal modes 251–2, 264–5

normal versus counterintuitive orbital inter-

action 770–2

normalization 692–4

Bloch 136

intermediate 138, 475, 510, 581, 607

nuclear curvature 1030, 1032

nuclear degrees of freedom 14–17

nuclear energy derivatives 1175–6

nuclear magnetic resonance (NMR) 902–3,

905, 1212

chemical shifts 570–4, 843–5, 1101,

1115–20

transition metal complexes 1101–2,

1115–20

nuclear matter 124, 125–8, 135

nucleic acids 104, 574, 834–7, 851

nucleophiles 647–50, 654–7, 661

nudged elastic band (NEB) theory 226

number density 484, 490–1, 495

number operator 591

numerical integration 93, 232–4, 415, 714,

1083–9

numerical performance 611–29

numerical stability 1088

NuMol 1085

O–H stretch frequencies 969–71

occupation numbers 726–9, 733–4, 750–1

occupation restricted multiple active spaces

(ORMAS) 1169

octahedral complexes 322, 329

octal row bonding 305–7

OLEDs 1033, 1040–1

oligopeptide 286–7

OM1, OM2 & OM3 semiempirical methods

567

OMT see optimized multidimensional

tunneling

one-dimensional reciprocal space 1014

one-electron

Hamiltonians 766–72

momentum density 487–8, 490

theory 774–5

ONIOM method 820–3, 829

open-ended single-walled carbon nanotubes

875–7, 880–7

open-shell systems

anharmonic vibrational spectroscopy

187–8

clusters 948–51

intermolecular forces 1065–6, 1068–9

non-equivalent orbitals 778–80

size-consistent state-specificity 584

three-body interaction energies 948–51

operators

forms 1205–7

rank 448–9

see also individual operators

optical properties 1025–33

extinction 47, 49–50–4

hyper-Rayleigh scattering 49
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non-linear 47–9, 963–5, 986, 1025–33

scattering 47–54, 60, 77, 491–3, 500

surface enhanced Raman spectroscopy 49,

59–63

optimal control 151–60

optimized effective potential 677

optimized multidimensional tunneling (OMT)

74–5, 83

Optimized Valence Configuration (OVC) 738

optimized virtual orbital space (OVOS) 1215

orbital degeneracy 948–51

orbital expansion coefficients 101

orbital interaction

concepts 765–74, 778–80

counterintuitive 770–2

effective Hamiltonians 766–72

electron-electron repulsion 772–4, 778–80

energy decomposition 291–367

kinetic energy density 677–9

non-equivalent 778–80

normal 770–2

perturbation 767–70

reduced density matrices 677–9

two-electron two orbital 781

orbital invariance 582, 586–9, 603–5, 630,

741–2

orbital mixing 765–6, 772, 782–3

orbital occupation 765–6, 772, 774–5

orbital ordering 780–1

orbital relaxation 298, 332, 928, 1126, 1206

orbital selection rules 651–2

orbital symmetry 641

orbitals

active 725, 727, 729–30, 740–4

atomic 117–18, 458, 749–50, 1147–8

Brueckner 794

Dyson 493–500

external 513

fragment 650–2, 1180–1

inactive 725

localized 523, 726, 1071, 1170–1, 1176–7

maximum overlap 129

natural bond 842, 848

orthogonal 524

Slater 93, 95, 296, 1081

see also molecular orbitals; natural orbitals

ordinary differential equations 232

Organic Electroluminescent Diodes (OLEDs)

1033, 1040–1

organic molecules 742, 748, 751–6

organic nanotubes 965

ORMAS see occupation restricted multiple

active spaces

orthogonal orbitals 524

orthogonalization corrections 566–7

oscillators

field operators 25

harmonic 22–9, 165–6, 252–3, 893, 1031

strengths 534–7, 755, 1048, 1106–7,

1120–2

osmium 326–32, 347–54, 1116–18

OVC see Optimized Valence Configuration

overlap integrals 117, 766–9, 776–7

many-body forces 927, 932, 953

molecular systems simulations 93

semiempirical quantum-chemistry 563–6

overlap matrices 1016

overtones 186–7

OVOS see optimized virtual orbital space

oxidative addition reactions 646–7

oxohydrocarbons 837

oxygen

energy decomposition 305–7

hyperfine splitting constants 1135

multireference coupled clusters 471–2

oxygen–oxygen partial RDF 1002–3

sensors 820–5

see also CH· · ·O hydrogen bonds

ozone, O2 748, 749–51

p bonds 300–14, 324–6, 336–45, 356, 647,

657

p space 484–6, 487–8, 495–6

p-based materials 981–2
p-body decomposition 998–1002
p-conjugated organic molecules 1101–2,

1106–12

p-conjugational stabilization 878–9
p-electron densities 987–9
p-electron semiempirical quantum-chemistry

560

p-p interactions 979–80

p-radicals 777–8

p-system clusters 976–80

PA see proton affinity

pair density 672

short-range behavior 700

spherically averaged 700
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pair distribution functions 672, 703–4

pair natural orbital methods 1055

pair-wise coupling 180

Pairwise Distance Directed Gaussians (PDDG)

568–9

pairwise-additivity 919–58

interactions 171, 176, 919–58

potentials 920, 924–6, 946, 950–7, 1060–2

Paldus–Weyl dimension formula 118

palladium 332–42, 1157–63

parallel computing 1177–80

architectures 5, 103

parameterization 559, 563–76, 684–6, 695–7,

707–10

general-purpose 559, 568–9, 576

special-purpose 559, 569–70, 576

Pariser–Parr–Pople (PPP) method 129, 560

parity violation 135

particles

cubes 51–2, 56–7

cylinder 51–2, 56–7

molecular dynamics 436–7

oblate 51–3

particle mesh method 428

prisms 51–2, 56–8, 969–70, 996–7

prolate 51–2

pyramid 51–2, 305, 311, 1111–12

shape/size effects 47–59

spherical 48–53, 56–9

spheroids 51–3, 170

tetrahedron 52–7

triangles 50, 52–3, 58

truncated tetrahedron 55–6

partitioning 291, 295

partition functions 70–9, 433, 893, 906

anharmonicity 73, 78–9, 1175

internal coordinates 73, 76

Partly Separable VSCF (PS-VSCF) 179–80

path optimization 224–7

Pauli repulsion 291–367, 840, 843, 844,

1053–4

PCM see Polarizable Continuum Models

PDDG see Pairwise Distance Directed

Gaussians

peapods 891

peer-reviewed papers 835–6

Peierls distortion 1022

pentagon junctions 894, 898–900

pentamers 954, 957, 968–9

peptides 987

peptidomimetic polycyclic structures 285–7

Perdew–Wang scheme 685, 693, 707, 709,

715, 1084

Perdew–Zunger scheme 531, 679, 684

Perdew’s Jacob’s ladder 678

performance, size-consistent state-specificity

611–29

pericyclic reactions 270, 860, 864, 871

periodic band structures 1014

perturbation

degeneracy 179–80, 769–70

electronegativity 768

geometry 768

intermolecular forces/interactions 768,

927–8, 1051–3

non-degenerate 768–9

selection 587, 1103–5, 1128–34, 1137

perturbation theory (PT)

ab initio vibration SCF 177

anharmonic vibrational spectroscopy

168–9, 179–80

Brillouin–Wigner 465–79

CH· · ·O hydrogen bonds 840

concepts 765–70

coupled-cluster theory 119–22, 137–8

many-body perturbation 119–28, 133,

508–23, 1172–3, 1193–7

multi-reference 465–79, 508–23

non-equilibrium Green Functions 381–2

nonadditive forces 930–2

orbital interaction 767–70

polyatomic molecules 252–4

polymer chains 1022

Rayleigh–Schrödinger 510–11, 1052–3,

1061–2, 1192–3

size-consistent state-specificity 587, 599–

602, 617–18, 625–7

time-dependent 120–1

time-independent 120–1, 124

see also Møller–Plesset

PES see potential energy surfaces

PFI-ZEKE see pulsed-field ionization

zero-electron-kinetic energy

phase space 405–8

phenyl substituent effects 865–70

phenyl-1,5-hexadiene 861–2, 865–70

phenyl–carbonyl bonds 155

1-phenylcyclohexane-1,4-diyl diradicals 869
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phonon operators 378–84, 389–92

phosphane complex bonding 354–7

phosphine bonding 357–60

phosphinidene bonding 332–42

phosphorus 302, 311–14, 357–66

photoactive proteins 269–88

photobiology 269–88

ab initio quantum chemistry 272–6

Aequorea victoria 269–70, 274, 276–9

biomimetic molecular switches 285–7

bovine visual pigments 269, 276–7,

279–85

green fluorescent proteins 269–70, 274,

276–9

luminescent jellyfish 269–70, 274, 276–9

quantum chemistry 272–6

Rhodopsin 269, 276–7, 279–85

photochemistry 269–88

cycloaddition 271–2

funnels 270–1, 660

nickel tetracarbonyl 1099–101, 1120–1

pericyclic reactions 270

reaction paths 274–5

reactivity 659–63

SAC–CI method 1099–101, 1120–1

switching/switches 285–6, 986

valence bond diagrams 659–63

photoelectron spectra 1016–20, 1107–8

photoexcitation 270, 281, 661

photofragmentation reactions 1101, 1120–1

photoisomerization path 277, 282–4

photon energy

exploitation 270, 276–7

wastage 269–70, 274, 276–9

photonic reagents 149–62

photoproducts 270–2, 660

photoprotection/photostability 269

photoreceptors 285

photorhodopsin, photoRh 282–3

phthalocyaninines 1099, 1121–5

physisorption 822–3

Pinchas effect 838

pion-nucleon systems 135

Pipek–Mezey localization 1128

planar unsaturated organic molecules

752–6

plasmon

excitation 49–64

frequencies 49–64

lineshape 52–3

localized surface plasmon resonance

51, 54, 60

oscillations 48–9

resonance 49–64

platinum bonding 332–42

PLEDs 1040–1

PM3 methods

carbon nanostructure self-assembly

879–80

CH· · ·O hydrogen bonds 847

isomeric fullerenes 893

MNDO semiempirical quantum-chemistry

566–76

semiempirical methods 559, 561

unimolecular reaction rates 416

vibrational spectroscopy 166, 179

PMF see potential of mean force

Poincaré surfaces 405–6

Poisson brackets 20

Poisson–Boltzmann equation 44

polarizability

coupled-clusters 133, 1212

dynamic 755, 939, 1101, 1207, 1212

electronic 573, 1028–9, 1031

frequency-dependent 60–1, 1051, 1057–61,

1176, 1182–4

intermolecular forces 1060–2

lithium-hydrogen molecules 628–9

long-range corrections 540

pyridine–copper tetramer 60–3

vibrational 1031

zero frequency 61

Polarizable Continuum Models (PCM)

1184

polarizable potentials 926, 953

polarization

CH· · ·O hydrogen bonds 843, 844

functions 791–2, 795, 800–1, 814

many-body forces 920, 926, 931, 940–2,

956

model 921, 953–7, 1006

molecular Hamiltonians 13

multipole expanded dispersion 1057–8

non-additive interaction energy 940–2

polymer chains 1026–33, 1038

spin-polarization 678–9, 683–5, 777–8,

1134

water 956
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polarons 1025

polyacenes 1039

polyacetylenes 1022–3, 1027–32

polyanilines 1025

Pólya’s enumeration theorem 897

polyatomic molecules 165–90, 251–65

polyatomic monomers 925

polyenes 37, 129–30, 576, 1021, 1039

polyethene chains 1027–8

polyethylene 1013, 1015–20

polyhedr Voronoi 1086

polyhedra 893, 896–7

polymer chains 1011–42

conduction 1020–5

electron transfer 1033–41

electronic properties 1026–33

energy bands/gaps 1013–42

non-linear excitations 1025–33

non-linear optics 1025–33

photoelectron spectra 1016–20

semiconduction 1020–5

polymer coupled-clusters 1213–15

Polymer Light-Emitting Diodes (PLEDs)

1040–1

polymethime chains 1030–2

polymethine dyes 1021

polymethineimine 1030

POLYMODE 253, 254–5

POLYMOL 1012

polynomial expansions 168–9

polyparaphenylenes 1020, 1025, 1034,

1040

polypeptides 285, 963, 965, 987

polyphosphazenes 1030

polyphosphinoboranes 1030

polypropylenes 1019–20

polypyrrole 1020, 1025

polysilacetylenes 1030

polysilane chains 1027–8

polythiophene 1020, 1025

“pop-out” processes 886, 887

Pople and Walmsley misfit 1024

porphyrins 1101, 1121–5

positron annihilation 493

POSMOL 968

post-Hartree–Fock approaches 118, 128,

966

post-transition state dynamics 416–17

potassium 314–22, 980–1

potential energy

coupled-clusters 118–19, 135–6

curves 414–17, 467, 534, 1103–5, 1113,

1120

fullerene formation 878–9

Hartree–Fock functions 109–11

time-dependent molecular theory 16

potential energy surfaces (PES)

anharmonic vibrational spectroscopy 165,

166

beryllium insertion 612, 615–19

boron-hydrogen bond-dissociation 612–13,

624–7

Cope rearrangements 863–5

coupled-cluster theory 118–19, 133, 135–6

electron transfer 1033–41

G3S theory 803

intermolecular forces 1058

lithium-hydrogen 612–13, 619–24, 627–9

many-body perturbation 509

minima 195–218

polyatomic molecules 261–2

reaction pathways 195–202, 230–43

SAC–CI method 1103

size-consistent state-specificity 611, 612–29

time-dependent molecular theory 11–39

transition states 195–202, 218–30

unimolecular reaction rates 409–13

variational transition state theory 67, 80

potential of mean force (PMF) 80

potentials

ab initio 104, 167–8, 173–89, 195–243,

951

curves 118–19, 135–6, 748, 756–60

empirical 176, 188–9, 434, 921, 926–31,

945–6

fitting 174

functions 433–4

n-mode representation 255–60

pairwise-additivity 920, 924–6, 946,

950–7, 1060–2

polynomial expansions 168–9

quartic force fields 180

representations 175–6, 255–60

triple dipoles 923–4

Powell-symmetric-Broyden (PSB) update 220

PPP see Pariser–Parr–Pople

predictor-corrector reaction paths 235–6,

242–3
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pressure 412–13, 833, 896

product wave functions 15–17

projected frequencies 241–2

projected functions 1052–3

projection operations 472

promotion energy 639, 643, 649–50

promotion gaps 639–48, 658

propagation, Gaussian wave packets 28–9

propagators 120, 430, 443, 453–4, 470–1,

1060–4

protein–ligand interactions 851

proteins 42–5, 104–7, 431

green fluorescent 269–70, 274, 276–9

proton affinity (PA) 794, 797, 802, 805–9

proton donors 831–9

proton transfer 653–4

protonated Schiff bases 274–6, 279, 286

protonation states 44

PS see pseudospectral

PS-VSCF see Partly Separable VSCF

PSB see Powell-symmetric-Broyden

pseudospectral (PS) approach 545–7

PT see perturbation theory

pulse shaper 149–62

pulsed-field ionization zero-electron-kinetic

energy (PFI-ZEKE) 1090–1

punch cards 2–3

push–pull polyene pairs 1029

pyramid particles 51–2, 305, 311, 1111–12

pyridine–copper tetramers 60–3

Q projections 591–8, 607–8

QCAS see quasi-complete active space

QCASSCF see quasi-complete active space

self-consistent fields

QCI see quadratic configuration interaction

QCPE see Quantum Chemistry Program

Exchange

QDPT see quasi-degenerate perturbation

theory

QET see quasi-equilibrium theory

QFF see quartic force fields

QM see quantum mechanics

QM/MM see quantum mechanics/molecular

mechanics

QST see quadratic synchronous transit

quadratic configuration interaction (QCI)

786–7, 791–6, 799–801, 804, 1200

quadratic synchronous transit (QST) 222

quadrupole moments 824, 827

Quantum Chemistry Program Exchange

(QCPE) 3–4

quantum classical Liouville equation 435

quantum coherence 159–60

quantum control mechanism 156–62

quantum dynamic time-dependency 11–12

quantum field theory 120–1, 125–6

lattice 135

quantum fluid mechanics 135

quantum mechanics/molecular mechanics

(QM/MM)

GAMESS 1181–4

minimization 203, 209–10

photobiology 275–6, 286

potential energy surfaces 198, 203, 209–10

semiempirical quantum-chemistry 572–4,

576

quantum phenomena controls 149–62

quantum Rice–Ramsperger–Kassel–Marcus

kinetics 413–15

quantum spin 135

quantum vibrational motion of polyatomic

molecules 251–65

quantum virial theorem 292–3

quartic force fields (QFF) 180

quasi-classical electrostatic interaction

291–367

quasi-complete active space (QCAS) 588, 610

quasi-complete active space self-consistent

fields (QCASSCF) 514–18

quasi-degeneracy 465, 508–23, 588–9

quasi-degenerate perturbation theory (QDPT)

508–23

quasi-equilibrium theory (QET) 398–420

quasi-fullerenes 898

quasi-Newton methods 204, 206–7

quinone moiety 987–9

quinones 1108–11

r space 486–8, 494–6

R-CCSD(T) 1066

radial distribution functions 1002–3

radicals 187–8, 644–6, 654, 748, 751–6

Raman

reflection 63

spectra/intensity 47, 49, 55–64, 944, 1087,

1176–7

random-phase approximation (RPA) 695, 1207
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randomly oriented carbon molecules 883–7

rank

operators 585

reduction 449

rare-gas clusters 921, 924, 945–6

rare-gas crystals 923–4, 944–6

rare–gas molecules 185–6

RAS see restricted active space

rate constants 68, 74–5, 79, 82–3

rate-equilibrium relationships 636, 640–2

rational function optimization (RFO) 205–6

Rayleigh–Schrödinger perturbation theory

(RSPT) 510–11, 1052–3, 1061–2,

1192–3

RCCSD 1066

reaction

coordinates 75–6, 80–3, 431

paths 79, 195–202, 230–43, 260–5

see also individual reactions

reaction path Hamiltonians (RPH) 230–1, 239,

241, 260–4, 265

reaction-diffusion dynamics 436

reactive empirical bond-orders (REBO)

877–8, 882–3, 886–7

reactive trajectories 69–72

real time non-equilibrium Green Functions

373–95

REBO see reactive empirical bond-orders

receptors 965, 980–3

reciprocal form factor 489, 493–5

red shift 831, 837–9, 843–50, 969–71

reduced absorption coefficients 1112–15

reduced density matrices 487–9, 502, 672,

677–9, 726, 727–30

reduced gradient following (RGF) 221

reduced resolvent 940

redundant internal coordinates 213–15, 228–9

reference states 30–2

reference wavefunctions 514–17

refractive index 52–5, 833

rehybridization 838–9, 847

relative free energy 42–3

relative stability 892–3, 896

relativistic

corrections 106

Hamiltonians 548, 550–3

methods 1173–5

molecular theory 507, 540–53

regimes/effects 747–8, 756–60

relativistic scheme by eliminating small

components (RESC) 548–9

relaxation energy 1039

reorganization energy 1038, 1039

repulsion 291–367, 840–4, 1053–4

Coulomb 779–80

effects 773–4

integrals 544–5

RESC see relativistic scheme by eliminating

small components

resolution of the identity 24, 32, 1082, 1168,

1204–9

resolvent identity 475

resonance

energy 409–13, 652

integrals 129–30, 294, 566–7, 644, 651

states 409–13

theory 117

widths 409–13

response density matrices 1205–6

response functions 133, 374, 445, 455–8

restricted active space (RAS) 588, 761

restricted Hartree–Fock (RHF) 109–11, 789,

864–5

resulting diagrams 123, 127

RFO see rational function optimization

RGF see reduced gradient following

Rh see Rhodopsin

rhenium bonding 326–32

RHF see restricted Hartree–Fock

Rhodopseudomonas viridis 575–6, 1121,

1124–5

Rhodopsin (Rh) 269, 276–7, 279–85

Rice–Ramsperger–Kassel–Marcus (RRKM)

theories 397–420

ridge following methods 223

rigid environments 78

rigid-monomers 1058, 1065

approximation 925

potentials 923–5

rigid-rotor and harmonic-oscillator (RRHO)

approximation 893

RIMP2 999

ring diagrams 124–5

Ritz variational principle 118, 125

Roothan–Hall equations 1080

rotational constants 552

rotational spectroscopy 172, 265, 835, 925,

947, 995
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rovibrational states/levels 37–8, 409, 627,

944–6, 952, 1065

RPA see random-phase approximation

RPH see reaction path Hamiltonians

RRHO see rigid-rotor and harmonic-oscillator

RRKM see Rice–Ramsperger–Kassel–Mar-

cus

RSPT see Rayleigh–Schrödinger perturbation

theory

rubidium bonding 314–22

Runge–Kutta second-order methods 234

ruthenium 347–54, 1116–18, 1157–63

Rydberg excitations 714, 1107, 1126, 1211

Rydberg states 534, 742, 1100

SAC see scaling all correlation

SAC–CI see Symmetry-Adapted Cluster–

Configuration Interaction

saddle methods 79, 226–7

SAM1 893

sandwich compounds 320–1, 360–6

SAPT see symmetry-adapted perturbation

theory

satellite spectra 1107–8, 1125–7

saturated pressure 896

SBKJC basis sets 61, 62

scaling

anharmonic vibrational spectroscopy

176–7

electronic structure theory 1168, 1177–81

exchange-correlation 679–80

scale factors 803–7

scaled quantum mechanics (SCM) 167

scaling all correlation (SAC) 803–4

systematic constraint satisfaction 695–6

scanning tunneling microscopy (STM)

373–4

scattering 470–1, 1080–3

optical 47–54, 60, 77, 491–3, 500

SCC see self-correlation correction

SCF see self-consistent fields

SCF MO see self-consistent field molecular

orbitals

Schellman motif 851

Schrock-type complexes 342–7

Schrödinger eigenvalues 11, 15

Schrödinger equation 15–17, 117, 196–7,

443–6, 483–5

SCM see scaled quantum mechanics (SCM)

screened hybrids 712–14

seam minimization 210–12

second harmonic generation (SHG) 1026

second order DGE 687–8, 692–3

second order electrical properties 627–9

second order perturbation theory (CASPT2)

518–20, 1065, 1133

Cope rearrangements 864–5, 871

Møller–Plesset (MP2) 744, 820, 825–6,

997, 1172–3

multiconfigurational quantum chemistry

725, 744–8, 754–6, 757, 760–1

photobiology 273–6, 278, 280–3, 286–7

size-consistent state-specificity 586–7

second order reaction path following 234–6

second virial coefficients 833, 926, 952, 1049,

1062

selenium 1118–19

self-consistent field molecular orbitals (SCF

MO) 93, 560–2, 570–1, 576, 1051

self-consistent fields (SCF)

convergence 572, 1085–6, 1088–9, 1171

coupled-clusters 117

DFT deMon codes 1085, 1088

Fenske–Hall molecular orbitals 1143–4

GAMESS 1169–72, 1178

intermolecular forces 1051, 1053–4

molecular system simulations 95–103,

109–11

polymer chains 1015–16

semiempirical quantum-chemistry 560–2,

570–1, 576

vibrational 167, 169–72, 174–85,

252–63

self-correlation correction (SCC) 697

self-energies 381–2, 383–4, 389–92

self-exchange charge transfer 1034–5

self-interaction correction (SIC) 531

self-interaction energy 531, 636, 711

self-interaction error 711, 1082

semibullvalene 662–3

semiclassical methods 173

semiconduction 1020–5

semiempirical techniques 559–77

applications 573–6

CNDO 61, 560–3, 568, 834, 1016

INDO 560–3, 567, 569

MINDO 893, 894–5

MINDO/3 calculations 862–3
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MNDO 561–70

OM1, OM2 & OM3 567

polymer chains 1016

SINDO1 561, 569, 575

see also AM1; PM3 methods

sensors 49, 53–4, 965, 980–3

SERS see surface enhanced Raman spectra

SHAKE algorithm 429–30

shake-up effects 134, 1108, 1126, 1210–11

shaped ultra-fast laser pulses 149–62

shell-model 118, 128, 587, 591, 601,

611–12

SHG see second harmonic generation

shock compression 435

SIC see self-interaction correction

sidewall current flow 813

sigma bonding 778, 783

silicon 654–6

silicon bonding 310, 314–22, 342–7

silicon-containing carbon clusters 521–3

silver 47–64, 347–54, 974–6

SIMOMM 1183

simulated annealing 886–7, 1183

simulations

1930–1960 90–2

carbon nanostructure self-assembly

875–87

DFT 95–103, 108–9

fluid dynamics 105–8

Hartree–Fock 93, 95–104, 106, 109–11

large molecular systems 89–111

MCSCF 95–103, 109–11

self-consistent fields 93, 95–103, 109–11

statistical simulations 105–8

SINDO1 561, 569, 575

single bonds 305–8, 310, 612, 749, 756

single nonpolar bonds 305–7

single reference coupled-clusters (SR CC)

466–8, 474, 582–3

single-reference many-body perturbation

theory (SR-MBPT) 509

single-walled carbon nanotubes (SWCNT)

820–3, 875–87

singlet instability 129–30

singlet states 344–5, 376, 773–5, 789

singlet-triplet splitting 513–14

size extensivity 472–6, 1191

iterative corrections 473, 1201

a posteriori correction 469, 476–9, 585

size-consistent state-specific multi-reference

(SSMR) methods 581–631

API excitations 582, 587, 593–9, 611–12,

614–15, 617

CAS 583, 586–93, 603, 616

CEPA-like approximations 588–9, 602–5,

612–13, 618–24, 626–7

CMS 587–8, 589–93, 607

Epstein–Nesbet partition 582, 600–2, 612,

615, 625, 627

incomplete model space 581, 584, 606–11

Møller–Plesset partitions 600, 602, 612,

625, 627

performance 611–29

perturbation 587, 599–602, 617–18, 625–7

results 611–29

size-up/size-down mechanisms 875, 887

Slater-type orbitals (STO) 93, 95, 296, 1081

Slater’s exchange term 1079–80

SM see stabilization methods; super-

molecular

smoothed particle hydrodynamics (SPH) 437

SN2 reaction 412, 648, 651, 656–7

SO see spin-orbitals

SOC 757

sodium bonding 314–22

sodium trimers 948–9

solid–fluid phase transition 426

solid-state optoelectronics 135

solid-state reactions theory 77–83

solitons 1022–5

solvated ions 104–5

solvation 42–4, 81–2, 104–5, 973

equilibrium 80–1

nonequilibrium 81–2

separable equilibrium 80

solvents 77–82, 980–3, 1035–9

GAMESS 1181–5

molecular dynamics development 429–35

non-covalent binding affinity 41–4

plasmon lineshape 52–3

SOS see sum-over-states

space wave functions 484–6, 495–6

space-symmetry broken Hartree–Fock

instabilities 130

SPARTAN 893, 1167

spawning methods 435

species identification 185–6

specific reaction parameters 416, 570, 574–5

Index1302



spectral shifts 845, 923

spectroscopic constants 624, 625, 759

spectroscopy

absorption spectra 1101, 1111–16, 1120–5

anharmonic vibrational 165–90

electronic 742, 748, 751–6

excitation spectrum 1099, 1100–2, 1106–7,

1111–12, 1116, 1120–4

infrared spectra 189, 263, 831–3, 1062

momentum density determination 493

Raman spectra 47, 59–64, 944, 1087,

1176–7

rotational spectroscopy 172, 835, 925, 947,

995

satellite 1107–8, 1125–7

time domain/resolved 189, 282–4

variational transition state theory 77

vibrational 165–90, 1125–8

X-ray photoelectron 1016–20, 1125

SPH see smoothed particle hydrodynamics

spherical particles 48–53, 56–9

spheroid particles 51–3, 170

spin

algebras 123

endohedral fullerenes 983–7

momentum density 489

multiplicity 137, 533, 591, 1101–5, 1129

spin-adaptation 581, 590–2, 605, 619

spin-compensation 684–5

spin-density 728, 753

spin-dependence 123

spin-DFT 677–8, 1082

spin-exchange 776–7

spin-flop EOMCC method 469

spin-functions 1210–11

spin-Hamiltonian mapping 775–7

spin–orbit

corrections 795

coupling 758, 782–3, 1174–5

effect 552, 756

interactions 794, 951

spin-orbitals (SO) 29–32, 726, 728, 731,

758

spin-pairing 644

spin-polarization 678–9, 683–5, 777–8,

1134

spin-scaling 680, 689

spinors 543–4

spiral algorithm 897

spontaneous density fluctuations 374–5,

376–7

SR CC see single reference coupled-clusters

SR-MBPT see single-reference many-body

perturbation theory

SRN
2 mechanism 656–8

SRN2
c mechanism 656–8

SRPES see synchrotron radiation photo-

electron spectra

SS see state-selective/specific

SSH see Su, Schrieffer and Heeger

SSMR see size-consistent state-specific

multi-reference

stability groups 27

stabilization methods (SM) 458–9

standard free energy of complexation

41–5

state correlation diagrams see valence bond

state correlation

state universal (SU) methods 136–9, 583

state-averaged CASSCF 512

state-selective/specific (SS) methods 137

state-specificity 137, 411, 581–631

state–state processes 36–7

static electron correlation 736–8

static polarizability 540, 1027–33

stationary states 9–16, 20, 432, 1208–9

statistical correlation 1001

statistical mechanics 398, 425–32, 793, 901,

1081

statistical simulations 105–8

step-wise mechanisms 413, 475, 638, 646,

652–3, 656–8

stereo conjugated polymers 1027

stereochemical predictions 650–2

steric repulsion 840, 843, 844

STM see scanning tunneling microscopy

STO see Slater-type orbitals

stochastic rotation 428, 436

Stokes frequency 56

Stone–Wales transformation 882, 886,

897

stretching frequencies 831, 837–9, 843–50,

969–71

string methods 224, 227, 431

strontium bonding 314–22

SU see state universal

Su, Schrieffer and Heeger (SSH) theory

1023–4
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substituent effects 865–71

competitive 866, 869–71

cooperative 865–9

Cope rearrangement 865–70

phenyl 859, 865–6, 871

sulfur 322–6, 1118–19

sum-over-states (SOS) 61, 1212

superconductivity 907

superfluid helium 946

supermolecular (SM) methods 966–7,

1049–56, 1069–72

superoperators 373–95

supramolecular structures 41, 1042

surfaces

chemistry 1167, 1183

hopping 434–5

intersections 210–12

selection rules 61

semiempirical quantum-chemistry 575

surface enhanced Raman spectra (SERS)

49, 55–63

surrounding medium effects 52–3

Suzuki coupling 646

SWCNT see single-walled carbon nanotubes

switching/switches, photochemistry 285–6,

986

symmetrized perturbation theory 1051

symmetry dilemma 120, 129–30

Symmetry-Adapted Cluster–Configuration

Interaction (SAC–CI) 1099–137

analytical energy gradients 1102, 1128–9,

1137

bacterial photosynthetic reaction centers

1099, 1101, 1124–5

collision-induced absorption 1099–101,

1112–15

equilibrium geometries 1099–100, 1102,

1128–33

excited states 1099–102, 1105–12,

1115–19, 1122–3, 1128–33

general-R method 920–1, 929–30, 942,

1128, 1129–33

hyperfine splitting constants 1099–100,

1102, 1133–6

ionization spectra 1099–102, 1106–12,

1125–8

method 1102–6

photochemical reactions 1099–101,

1120–1, 1124–5

porphyrins 1101, 1121–5

potential curves 1103–5, 1113, 1120

SD-R method 1102–3, 1132–6

spectra 1107–8, 1112–16, 1122, 1127

transition metals 1099, 1101, 1115–19,

1120–1

van der Waals complexes 1099, 1101,

1112–15

symmetry-adapted perturbation theory (SAPT)

DFT 928, 954–7, 1064–5

intermolecular forces 1060–5

many-body forces 919–58

SAPT-5s 935, 951–7

synchrotron radiation photoelectron spectra

(SRPES) 1107–8

systematic constraint satisfaction 695–9

tantalum bonding 326–32

tau-dependent functionals 698

Taylor series 234

TD-DFT see time-dependent density

functional theory

TDCHF 1060–1

TDHF see time-dependent Hartree–Fock

TDVP 24

temperature dependence 135, 412–13, 1003–4

tetrahedra 52–7, 649, 897, 937, 954–5

tetramethylenethane 476

tetraoxo-metal complexes 1116–18

tetraphenyl substituent effects 865–70

thallium bonding 314–22, 332–42

thermal unimolecular dissociation 398

thermochemistry 785–810

thermodynamics

aqueous clusters 968–9

behavior 995–7

carbon clusters 893–6

cycle analysis 42–3

driving forces 861–2

equilibrium 883, 886, 893, 907

intermolecular forces 1058–9

non-covalent binding affinity 42–3

water hexamers 997, 1001

THG see third harmonic generation

1-thiol-4-ethynylphenyl-4’-ethynylphenyl-1’-

benzenethiolate 817–9

thiophene 1106–8

third harmonic generation (THG) 1026

third row elements 807–8
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third-order induction 938, 939–42

third-order integrators 236–7

third-order non-linear optical effects 1032–3

Thomas–Fermi model 669, 680, 702, 717,

1080–2

Thomas–Fermi–Dirac model 669, 1080

Thouless determinant 33

three-body

forces 943–8

interaction energy 922–38, 944–5, 948–51

potentials 953–4, 957

tight binding

deMon DFT 1088

high-temperature quantum chemistry

875–9

molecular conductance 814

nanomaterials 983

one-electron Hamiltonian 766, 776

polymer chains 1024

time evolution 24, 25–9

time-dependent density functional theory

(TD-DFT) 274–5, 530–2, 534–7,

1101

time-dependent Hartree–Fock (TDHF)

methods 1052, 1207

time-dependent molecular theory 9–39

coherent states 21–32

Coulombic Hamiltonian 12–17

determinantal coherent states 29–32

direct nonadiabatic dynamics 9–39

dynamic rendering 37–8

electron nuclear dynamics 32–7

Gaussian wave packets 21–9

Hamiltonians 12–17

minimal electron nuclear dynamics 32–7

potential energy surfaces 11–39

quantum mechanics 18–21

time-dependent variational principle 18–21

time-dependent perturbations 120–1

time-dependent Schrödinger equation 10–11

time-dependent variational principle 18–21

time-domain experiments 189, 282–4, 399

time-independent perturbation 120–1, 124

time-independent Schrödinger equation 196–7

time-resolved spectroscopy 282–4

time’s direction 128

tin bonding 310, 314–22, 342–7

TIP4P water potentials 996, 1002, 1005–6

titanium: sapphire lasers 153

toluene 155

topography 497–8

transition metals

active space selection 741–3

catalysed bond activation 646–7

chemical bonds 291, 294–5, 326–66

designing functional molecular systems 976

dimers 534, 538–40

excitation spectra 1101, 1115–19

Fenske–Hall molecular orbitals 1143, 1144,

1150–63

NMR chemical shifts 1101, 1115–19

orbital ordering 781

photofragmentation 1101, 1120–1

SAC–CI method 1099, 1101, 1115–19,

1120–1

transition probability 157–8

transition states (TS)

assumption 68–72, 76–7, 80–1

barrier heights 517–18

Cope rearrangements 859–72

dividing surfaces 67–81

fundamental dynamical 68, 70, 80–1

hydrogen exchange 527–9

photobiology 270

potential energy surfaces 195–202, 218–30

unimolecular reaction rates 413–14

variational 67–84

transition structures 272, 478, 517

aromatic 860, 862, 864

centauric 860–2

chameleonic 859–60

Cope rearrangement 860–71

stabilization 870

transmission coefficients 82–3

transport

defects 1038

many-body forces 924

molecular dynamics 431–4

molecular wires 374

properties 431, 434, 924

rigid environments 78

solitons 37, 1038

tri-ruthenium dodecacarbonyl 1157–63

triatomic molecules 397–420, 741–2

tricarbonyl-manganate 1143, 1151–6

trideuterium oxide 259–60, 262–3

trimers 922–3, 932–42, 943–57

trimethylamine 101–2
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triphenyl substituent effects 865–70

triple dipole terms 923–4

triplet states

electron-electron repulsion 774–7

energy decomposition 345, 363

molecular spectroscopy 1130

multiconfigurational quantum chemistry

732–3

perturbation 476

photobiology 287

valence bonds 645

TRM see trust radius method

Trotter factorization 430

truncated tetrahedron particles 55–9

trust radius method (TRM) 205–6

TS see transition states

Tully’s fewest stitches algorithm 434–5

tumor cell lines 477

tungsten 322–32, 342–60

tunneling

electrons 373–95

multi-dimensional 68, 74–5, 82–3

splittings 259–63, 968, 1062

variational transition states 68, 74–5, 82–3

vibration-rotation 947–8, 952, 953–4

twin excitation/transition states 659–63

two-body

cluster expansions 469

interaction energies 932–7

potentials 951–2

two-component relativistic molecular theory

548–53

ubiquinones 1108–9

UEG see uniform electron gas

UFF see Universal Force Fields

UGA see unitary group approach

UHF see unrestricted Hartree–Fock

umbrella sampling 430–1

unexpanded dispersion 1054–6

unfilled vacancy molecules 748, 749–51

uniform electron gas (UEG) 670, 679, 682,

684

uniform scaling 679–80

unimolecular dissociation 403–5, 517–18

unimolecular rate constant 400

unimolecular reaction rates 397–420

direct dynamic simulations 415–19

lifetime distribution 400–3

resonance states 409–13

steps 413–15

unitary group approach (UGA) 126

Universal Force Fields (UFF) 820

unlinked diagrams 121–2, 1066, 1193–8

unrestricted Hartree–Fock (UHF) 109–11,

732–3, 789

unsaturated hydrocarbons 794

unsaturated organic molecules 752–6

unsubstituted methane 835–6

updating schemes 204–5, 208–9, 215,

219–20

uracil 832

uranium oxide 741–2

v-representability problems 1082

vacuum

diagrams 121–2

Fermi 468

state 30

valence bond configuration interaction (VBCI)

642–3

valence bond configuration mixing diagrams

(VBCMD) 637–8, 652–8

valence bond state correlation diagrams

(VBSCD)

applications 642–52

chemical reactivity 637–52

electronic delocalization 658–9

photochemical reactivity 659–63

twin-state concept 659–63

valence bonds (VB) 635–65

CAS 523–9

coupled-cluster theory 117

diagrams 223–4, 635–65

molecular system simulations 91, 101

structures 523, 527–9, 637–43, 652–4,

662–4, 1055

transition states 223–4

wave functions 664–5

valence double zeta (VDZ) 814, 816, 999,

1001

Valence Effective Hamiltonian (VEH) 1016

valence excitation energies 518–21, 755

valence excited state energy 755

valence ionization spectra 1107–8, 1125

valence polarization functions 800–1

valence properties, polymer chains 1016–17

valence states 1100
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valence-Rydberg mixing 746, 1106

valence-universal (VU) methods 136–7, 583

van der Waals

bonding 533–4

clusters 176, 185

collision-induced absorption 1101, 1112–14

complexes 1099, 1101, 1112–15

forces 919, 927–8, 1048

interactions 109, 690, 714, 927, 974

law 1048

molecules 1048, 1064–72

van Vleck perturbation 169, 509, 512

vapor pressure 833

variational principle 12, 18, 32

ab initio vibrational spectroscopy 175

exchange-correlation 674

molecular spectroscopy 1102

multiconfigurational quantum chemistry

733

Ritz 118, 125

variational theory (VT) 137–8, 252–4

variational transition state theory (VTST)

67–84

canonical 69–74, 81–3

condensed phase reactions 77–83

free energy of activation 72, 80–3

gas phase reactions 68–77

quantized dynamical bottlenecks 77, 90

quantized generalized transition state 73–4

rate constants 67–74, 77–83

reaction paths 230–1, 239, 241

solid-state reactions 77–83

thermodynamic formulation 72, 80

variable reaction coordinates 76

VAX 11/780 minicomputer 5

VB see valence bonds

VBCI see valence bond configuration

interaction

VBCMD see valence bond configuration
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VBSCD see valence bond state correlation

diagrams

VCI see vibrational configuration interaction

VDZ see valence double zeta

vector computing architectures 5

VEH see Valence Effective Hamiltonian

velocity 237, 427

verifications, transition states 230

Verlet algorithm 226, 427

vertical charge transfer 649–50

vertical electron affinity 443–4, 648–9

vertical excitation energy 754–6

vertical ionization potentials 443–4, 649–50

vertices 121–3, 128, 898

interaction vertices 122–3, 128

supervertices 123

vibration

polyatomic molecules 251–65

polymer chains 1018–19, 1030–3

vibration-rotation-tunneling (VRT) 947–8,

952, 953–4

vibrational analysis 251–2

vibrational configuration interaction (VCI)

254–63

vibrational energy levels 413–14

vibrational frequencies 72–3, 1175–7

vibrational generalized transition state

partition 72–3

vibrational methods

diffusion quantum Monte Carlo 172–3

grid methods 172

harmonic approximation 167–75, 182,

186–7, 252–4, 1030
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zero frequency polarizability 61

zero-electron-kinetic energy (ZEKE)

1090–1

zero-momentum Hessians 498
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