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PREFACE 

It is undoubtedly true that much of the progress in the 
quant~m theory of matter is due to the remarkable success of 
the independent particle model (IPM)--especially in describing 
ground states. However, the accurate experimental results of 
the last 10 years or so, on a variety of spectroscopic phenomena 
and chemical processes which involve the Excited State, and the 
related failure of the IPM to reproduce accurately--in many cases, 
even qualitatively--the observed data, have sent to theorists 
a clear message: There is need to create and/or apply general 
and useful approaches to the many-electron problem of the excited 
state which go beyond the IPM, treat electron correlation and 
relativity and explain or predict all relevant physical or 
chemical information with consistent accuracy. 

This book contains articles devoted mainly to some of the 
most important new developments in Quantum Chemistry concerning 
the theoretical foundations and the computational implementation 
of many-body approaches to the quantitative and detailed under
standing of the electronic excited states of atoms, molecules 
and solids. Furthermore, it contains experimental and pheno
menological articles on Photoelectron and Auger spectroscopy, 
Lifetime measurements and Organic Photochemistry. 

In combination or individually, these articles constitute 
a good description of some current theoretical and experimental 
work on the electronic structure and spectroscopy of atoms, 
molecules, polymers, surfaces, metal oxides and amorphous solids. 
The theoretical models which are reviewed and employed are based 
on: Configuration Interaction (CI), Green's function and Polari
zation Propagator techniques, the Relativistic and Non-Relativistic 
Restricted and Unrestricted Hartree-Fock methods, the Coherent 
Potential and Random Phase Approximations, Many-Body Perturbation 
Theory, Cluster expansions of the wave-function, CI in the con
tinuum and the Complex Coordinate Rotation Method. 

When it comes to applications of these advanced theories, 
it becomes clear from the reading of the articles that much 
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progress is underway in the study of small systems. For example, 
it is indeed impressive to see the accuracy and efficiency with 
which several theoretical and experimental approaches produce 
numbers on valence electron excitation and ionization energies 
and transition probabilities, core electron binding energies or 
lifetimes of excited states in a variety of atoms and small mole
cules. Such accuracy was impossible until very recently. Large 
and extended systems are of course more difficult to treat quanti
tatively. There, with few exceptions, the nature and role of the 
excited state is still "terra incognita", although theory has 
made considerable advances, especially in the qualitative formu
lation of the problems and in the formal foundations. 

The articles are based on the lectures which were given 
during the NATO Advanced Study Institute (ASI) on "The Electronic 
structure and properties of the excited states of atoms, mole
cules and solids" held on the island of Kos, Greece, June 4-18, 
1978. These lectures were addressed to European and American 
graduate students and active researchers in the fields of Electro
nic Spectroscopy, Organic and Inorganic Chemistry, Physical and 
Quantum Chemistry and Solid State Physics. The particular blend 
of up-to-date reviews and original contributions present in these 
articles should prove educationally and scientifically valuable 
to a similar but broader audience. 

We close by sincerely thanking the lecturers for their 
contributions which made the ASI and this book realities. 

Special thanks also go to the NATO Scientific Affairs Divi
sion, Brussels, for the financial assistance and !o Professors 
Ladik, Linderberg, von Niessen, Peyerimhoff, and Ohrn for their 
encouragement and advice throughout the period of preparation 
and organization of the ASI. 

Athens, August 1978 

C.A. Nicolaides 
D.R. Beck 

Editors 



'EOTW O~ KaTa TOV op()OV AOrOV Kai KaTa ToveiKoTa 

TO /l€V Tile; 1Tvpa/liOoc; OTepeov 'Yeyovoe; elOoe; 1Tvpoe; 
OTOtxeWV Kat 01T€p/la. TO O€ oem-epov KaTa 'Y€veatV 
e'i1TW/leV a€poe;, TO O€ TpiTOV uoaToe; 1TaVm OVV o~ mum 
oei oLavoeio()at O/ltKpa oVrwe;, we; Ka()' €V EKaOTov /lev 
TOU 'Y€vove; € KaOTOV 0 tiL O/ltKpOT'T]m ovoev opW/leVOV v1>' 
flW::JV, ~vva()pOW()€VTWV oe 1TOAAWV Tove; o'YKove; aVTWV 
opcw()at. Kat o~ Kat TO TWV avaA0'YtWV 1Tep{ Te TO. 1TAi7fJ'T] 
Kat Tae; Kw~Oete; Kat Tae; clAAae; OVVa/l€te;, 1TavTaxil TOV 
()eov, 01T'T]1Tep fI Tile; ava'YK'T]e; €KOUOa 1Tew()eioa Te 1>vmc; 
v1TeiKe, mVT'T] 1TaVT'T] Ot' aKpt~eiae; a1TOTeAeo()ewwv U1T' 

cWTOU ~vV7JP/loo()at mum avO. AOrOV. 

TIMAIOL 

Thus, in accordance with the right account and 
the probable, that solid which has taken the form of a 
pyramid shall be the element and seed of fire; the second 
in order of generation we shall affirm to be air, and the 
third water. Now one must conceive all these to be so 
small that none of them, when taken singly each in its 
several kind, is seen by us, but when many are collected 
together their masses are seen. And, moreover, as regards 
the numerical proportions which govern their masses 
and motions and their other qualities, we must conceive 
that God realized these everywhere with exactness, in 
so far as the nature of Necessity submitted voluntarily 
or under persuasion, and thus ordered all in harmonious 
proportion. 

TIMAEUS 
PLATO 



EXPERIMENTAL STUDIES OF ATOMIC AND MOLECULAR LIFETIMES 

ABSTRACT 

Indrek Martinson 

Department of Physics, University of Lund, 
S-223 62 Lund, Sweden. 

A review is given of measurements of atomic and molecular 
lifetimes and transition probabilities. Emphasis is placed on 
comparatively new methods such as laser spectroscopy, high-reso
lution electron excitation and beam-foil spectroscopy. The app
lications of the results to problems in astrophysics and plasma 
physics are discussed. 

1. INTRODUCTION 

Excited levels in atoms and molecules decay spontaneously 
to lower states, usuolly by emitting electric dipole (E 1) 
radiation. The decay follows the exponential law 

( 1 ) 

where Na(O) is the initial population of the level a and Na(t) 
that at the time t. The lifetime Ta (or mean life) of the level 
is. the time after which the population has decreased to lie = 37% 
of its initial value. Excited states in neutral atoms have typi
cal lifetimes of 10-8 s while much shorter values can be found in 
highly ionized atoms. In neutral lithium, Li I, the levels 2p 2p 
and 3p 2p have lifetimes of 27.3 and 216 ns, respectively. For 
lithium-like silicon, Si XII, the corresponding values are 1.04 
and 0.0022 ns (Lindgard and Nielsen, 1977). Lifetimes in the 
10-8 s range are not unusual for simple molecules but here also 
much longer values, several ~s, can be found. 

Atomic and molecular lifetimes (and transition probabilities) 
are fundamental quantities for which justification of measurement is 

Cleanthes A. Nicolaides and Donald R. Beck (eds.), Excited States in Quantum Chemistry, 1-34. 
All Rights Reserved. Copyright © 1978 by D. Reidel Publishing Company, Dordrecht, Holland. 



2 INDREK MARTINSON 

scarcely necessary (Crossley, 1969). Experimental results provide 
useful tests of various quantum-mechanical calculations of atomic 
and molecular structure. There are also several applications. In 
laser physics the conditions for population inversion depend 
critically on lifetimes for excited levels. Astrophysical studies 
of the abundances of chemical elements in the sun, stars and 
interstellar medium require knowledge about the lifetimes for the 
observed transitions. Research in plasma physics to achieve ther
monuclear fusion is presently hampered by plasma impurities, such 
as metal ions. Here, also, knowledge about lifetimes is necessary 
for determining the metal concentrations. 

Several methods have been developed in recent years for 
accurate measurement of atomic and molecular transition probabi
lities. Not all these techniques and results can be covered here, 
more detailed discussions will be found in several review ar
ticles, e.g. by Foster (1964), Wiese (1968), Corney (1969), 
Erman (1975, 1977), Lehmann (1975) and Imhof and Read (1977). We 
also recommend a recent monograph by Corney (1977). 

2. RELATIONSHIPS 

We assume that the level a decays spontaneously to a lower 
level b, by emitting a photon of energy 1'lw = nCfA and angular 
momentum L (Fig. 1). 

A 

0' - - ~ -, , 
, Cascade , , 

Atom 

V" 

B 

V' 
2---

01---
0---7= 

2--

b 1 ---=I 

0---

Molecule 

Figure 1. Examples of atomic (AJ and molecular (BJ 
decays. 



EXPERIMENTAL STUDIES OF ATOMIC AND MOLECULAR LIFETIMES 

According to the quantum theory of radiation the tr~nsition pro
bability for this process, Aab,is proportional to w L+l 
l<bIQla>1 where Q is the appropriate (electric or magnetic mul
tipole) operator. In the elec!,ic dipole (E 1) approximation the 
transition probability Aab (s ) can be expressed as 

4 e2w3 2 
Aab = 1 nc3 l<bIErjla>1 (2) 

Frequently also the absorption oscillator strength or f-value 
(dimensionless quantity) is used. The numerical relation is 

2 f = 1.499>. . Aab . ga/gb (3) 

Here>. is the photon wavelength (in cm) and ga and gb are the 
statistical weights of the levels involved. 

If the excited level a only decays to one final level b 
the lifetime Ta is the inverse of the transition probability. 
If several final states are possible (Fig. lA) the relation 

-1 <;>A (4) Ta = '"' ab 
b 

must be used. A lifetime measurement now yields the sum of tran
sition probabilities and additional information (relative inten
sities or branching ratios) is frequently needed. 

Similar relations hold in the molecular case (Fig lB). In 
the expression for the lifetime for an electronic transition a 
summation must be made over possible vibrational and rotational 
final states. The probability Av' v" for a transition between 
levels with vibrational quantum nUMoers Vi and v" is usually 
expressed as 

(5) 

Here q is the Franck Condon factor and R the electronic 
transition moment, similar to the matrix el~ment in the atomic 
case. In the formula for the lifetime of an electronic state a 
and vibrational and rotation quantum numbers Vi and JI (Fig. lB) 
the summation must include all possible final states, i.e. 

vlJI -1 VIV"JIJ" 
(Ta ) = E E Aab (6) 

v" J" 

3 
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3. CLASSICAL METHODS 

About 60 years ago Wien (1919) measured intensity decays 
for spectral lines, using canal rays. His value for the 6p 3Pl 

level in Hg I, T = 98 ns , agrees with data obtained much later. 
In the 1920's and 1930's a number experiments were carried out, 
based on spectral line intensity studies or optical excitation 
of atoms with resonance radiation. A review of the early work is 
given by Mitchell and Zemansky (1934). 

Several of the classical methods are still in use although 
much refined and improved. To this category belong three methods 
for direct determination of f-values, measurements of emission, 
absorption and anomalous dispersion, respectively. All these 
methods are thoroughly described by Foster (1964), Wiese (1968) 
and Huber (1977). 

The emission method is based on determination of spectral 
line intensities lab from a plasma light source. The transition 
probabilities Aab are obtained from the relation 

\ 

(7 ) 

where Na is the number of particles in the excited state a and 
w the solid angle. If the temperature of the plasma is known and 
there exists local thermodynamic equilibrium (LTE), Na can be 
calculated from Boltzmann formulae. It is difficult to calculate 
Nq and therefore the emission method is often limited to deter
mlnation of relative f-values. Absolute values can still be ob
tained if the data are normalized to an accurately known value, 
for example from a careful lifetime measurement. In the early 
work rather simple arcs and photographic detection were used. 
Modern emission measurements utilize efficient wall-stabilized 
arcs or shock tubes as well as photoelectric detection. Good 
examples of such work are found in papers by Garz and Kock (1969), 
Richter and Wulff (1970), Bridges and Wiese (1970) and Wolnik et 
al. (1970), all of which deal with iron-group elements. The f
values have typical uncertainties of ±20%. 

In absorption measurements light from a continuous source, 
such as a tungsten lamp (or sometimes a shock tube)is sent 
through a thin layer of gas The absorption lines are studied 
spectroscopically and transition probabilities are deduced from 
the equivalent widths. Using a shock tube Huber and Tobey (1968) 
measured f-va1ues for many Fe I lines. Accurate results for 
strong lines in Cr I were recently obtained by Bieniewski (1976). 
Also in absorption experiments the number density N must be known 
and this requires very reliable vapor-pressure data? An interes
ting development consists of crossing an atomic beam (in which 
the density of atoms can be measured with a microbalance) with 
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the continuum light (Bell and Tubbs 1970, Bell and Lyzenga, 1976). 
The f-values so obtained in Sc I, Ti I and Fe I have uncertain
ties below 10%. 

The method of anomalous refraction (hook method) is based 
on determination of the refractive index n of a gas in the vici
nity of a spectral line of wavelength Ao' The following relation 
is valid 

A 3 
o n - 1 = C • Nb • f I""=T o 

(8) 

where C is a constant, Nb the number of gas atoms in the ground 
state and A the variable wavelength. A two-beam interferometer 

5 

is used in such experiments. Light from a continuous source pas
ses through the gas under study while a reference beam goes 
through a compensating tube. Both beams are focussed on a spectro
graph slit. The spectrum shows interference fringes, interrupted 
by characteristic hooks, the separations of the latter giving f
values (Penkin, 1964). In recent years Huber and collaborators 
have made accurate measurements using this method (Huber, 1977). 

In contrast to most lifetime methods, these classical methods 
give directly transition probabilities, or f-values. As the re
sult of recent developments the data are now quite accurate. It 
is also important that weak spectral lines can be studied with 
these methods. In astrophysical applications f-values for weak 
lines are frequently needed, as well as f-values for very many 
lines in a given spectrum. A large part of f-value studies using 
these classical methods have indeed been motivated by needs in 
astrophysics. 

4. OPTICAL EXCITATION EXPERIMENTS 

A direct way of populating excited states in atoms or mole
cules is to irradiate a gas with resonance radiation. For life
time measurements the excitation should be pulsed or sinusoidally 
modulated. In the former case the decay of the fluorescence light 
is measured whereas the phase shift between the excitation and 
the fluorescence is determined in modulation studies. In the work 
of Kibble et al. (1967) light from a sodium lamp went via a Kerr 
cell into Na vapour. The time between excitation and decay of the 
3p 2p level was measured with delayed coincidence methods, rou
tinely used in nuclear physics experiments. An accurate value of 
T = 16.4±0.4 ns was obtained. 

The development of lasers has enabled a very fast progress 
in optical excitation of atoms and molecules. In most experiments 
a pulsed nitrogen laser and a dye cellareused. Typical pulse 
lengths are 2 -10 ns and using various dye cells the spectral 
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region 3600 A - 9000 A can be covered (Haroche, 1976). With fre
quency doubling it is possible to extend the region to close to 
2000 A. The repetition frequencies are of the order of several 
hundred Hz. Using this method Figger et al. (1974), Siomos et al. 
(1975), Heldt et al. (1975) have obtained accurate lifetimes in 
Fe I and Ni I. For the y 3FR in Ni I a lifetime of 16.2±0.4 ns 
was thus reported. Optical excitation is relatively easily app
lied to resonance levels which combine with the ground state. 
However, it is also possible to reach other levels using step
wise excitation. Siomos et al. (1975) thus excited a relatively 
high-lying level in Fe I with two accurately tuned dye lasers. 
Even three-step excitation has been successfully applied e.g. 
by Cooke et al. (1978). 

The merits of laser methods include high intensity, tunabi
lity and selectivity. No level besides that under study is exci
ted, there is thus no cascading into the level (cf. Fig. lA where 
a cascade level is indicated) and the decay follows the 
simple exponential relation (Eq.l). The selectivity and tunabili
ty are particularly valuable when complex atoms or molecules with 
many close-lying states are studied. The accuracy can be limited 
by non-linearities in the detection system, and - because of the 
relatively slow repetition rates - data-taking times can be 
quite long. To overcome this difficulty Gustavsson et al. (1977) 
have recently designed a new method for laser excitation. A con
tinuous-wave dye laser is used in their work (Ar+ laser together 
with a dye cell)and the pulses are obtained with an acoustb
optical modulator or a dentist's air turbine drill. A typical 
decay curve, for a level in Yb I, is shown in Fig. 2. 

counts 

3000 

2000 

1000 

Y b -I 686p 3.,. 
5556 A 

"-880 n8 

3000 4000 nl 

Figure. 2. Decay curves for the 6s6p 3Pl level in Yb I, 
obtained with the method of Gustavsson et al. 
(1977); (Svanberg, 1978). 
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Pulsed dye lasers play an important role also in molecular 
studies. Sakurai et al. (1971) measured lifetimes for a large num
ber of vibrionic states in Br2 and 12, Molecular lifetimes may 
give quantitative information about non-radiative decay modes. 
The lifetime La of a molecular level can be expressed in the 
fo 11 owi ng way 

-1 
La = (Ar + Anr) (9) 

were Ar is the probability for radiative decay and Anr is due to 
possible non-radiative processes, e.g. predissociation. Such 
effects can be observed from line broadenings or intensity varia
tions in molecular wavelength spectra - but lifetime measurements 
are much more sensitive indicators. Lehmann and collaborators 
(Vigue et al., 1975, Broyer et al., 1975, Lehmann 1977) made 
dptailed studies of predissociation processes in several molecu
les, e.g. Se2, Br2 and 12, A nitrogen-pumped dye laser which gave 
3 ns pulses was used in their work. In 12 the B 3n state was sys
tematically studied and lifetimes (with 3-5% uncertainties) were 
determined for a large number of vibrational (v') and rotational 
( J i) 1 eve 1 s . 

A B 

1/t 

, 
V =9 V~ 10 

V': 11 

V':12 

V':13 
2 

6 v 
O~----~------~-. 

J'(J +1) 2000 cm-l Ev 10000 

7 

Figure 3. Lifetimes for vibrational levels of the B 3n 
state in I2 (A) and oscillat'ions~ due to hyper
fine effects~ for the radiative decay probabi
lity (B). From Lehmann (1977). 

Results are shown in Fig. 3A where the inverse of the life
time for the vibrational states v' = 9 -13 is plotted versus 
J'(J' +1). In most cases linear relations are found, the so
called gyroscopic predissociation rate being proportional to 
Ji(J' +1). By extrapolating the lifetime data to JI =0 the 
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authors obtained values for the radiative decay rate Ar . This 
factor was found to vary strongly with Vi (Fig. 3B) indicating 
that there are additional predissociation effects. Direct measu
rements further showed that the ortho states (with total nuclear 
spin 1= 1,3,5) and para states (I = 0,2,4) have markedly different 
lifetimes, due to hyperfine predissociation. In this case the two 
predissociation rates are of the order of 106 S-1, comparable to 
the radiative decay rate. Even lower predissociation rates can 
be determined from circular polarization of fluorescence light 
(Lehmann, 1977). 

With modern lasers very short pulses, in the ps range, can 
be obtained. These have been used in measurements of radiative 
and non-radiative decay times for a number of complex molecules 
(Greenhow and Schmidt, 1974). 

Atomic and molecular studies using lasers form a dynamic, 
rapidly developing field. For details the papers quoted above 
and the review by Walther (1976) should be consulted. 

It is difficult to perform time-resolved studies with laser 
excitation below 3000 A. Here, however, a powerful new method is 
found in synchrotron radiation (Codling, 1973). If an electron 
storage ring is used, a pulsed light source is available which 
can reach very short wavelengths. With 4 GeV electron energy the 
continuous photon wavelength distribution peaks close to 1 A 
(12 keY). Despite the continuous photon spectrum it is rather 
easy to obtain selective excitation, e.g. by using a grating 
monochromator as a predisperser before exciting the atoms under 
study. Using the Stanford Synchrotron facility Matthias et a1. 
(1977) made the first atomic and molecular lifetime measurements 
with synchrotron radiation. The short beam pulses (0.4 ns) and 
the repetition rate (780 ns) are very favorable for lifetime 
studies. In the first work, decay times for excited levels in 
Kr I and Xe I with only 2 - 3% uncertainties were obtained. A1 so 
excimers such as Xe2~ were studied. (The ground states of nob1e
gas molecules are repulsive while bound excited states exist). A 
result is shown in Fig. 4 where the ~adiative decay of a high 
vibrational level belonging to the On state of Xe2~ is shown 
(Matthias, 1978), Note the excellent counting statistics and 
clean single-exponential decay. 

A couple of methods using modulated optical excitation have 
been used, e.g. the phase-shift technique. Here the excitation 
has a time-dependence of exp(iwt) (where w is the modulation 
frequency) and therefore also the fluorescence radiation 
varies sinusoidally with the same frequency but a phase shift ~ 
due to the finite lifetime T of the excited level. The following 
relation gives the lifetime 

~ = arctan (WT) ( 1 0) 
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Figure 4. 

5 nsec 

450 

Xenon 20 Torr 
1470 ~ 

T= 1.60 nsec 
(±J%J 

,,' ... 

6s [312] J 

... :, .... :,.:.:: .. :.: .:: .~.: :':' .. :':> ,:.". 

Channel number 

Lifetime measurement using synchrotron radia
tion (Matthias, 1978). The Or+ state of xe2r 
was selectively excited and the decay curve, 
a single exponential, gives the lifetime with 
1% uncertainty. 

The modulation can be achieved in several ways, e.g. with a 
rotating diffraction grating, Kerr cell or an acousto-optica1 
modulator (Imhof and Read, 1977). Examples of such lifetime mea
surements can be found in the papers Link (1966) and Cunningham 
and Link (1967). In the latter work a substantial number of ele
ments were studied and lifetimes (with about 5% uncertainties) 
were given for excited levels in e.g. Ga, In, Pb and Bi. 

5. EXCITATION WITH ELECTRONS 

The electronic excitation methods are largely similar to the 
optical ones. With electrons the selection rules are much less 
rigid and many more atomic and molecular levels can be populated. 
As in photon experiments both pulsed and sinusoidally modulated 
excitation can be used. 

The first modern measurements of this kind was carried out 
by Heron et al. (1956) who studied lifetimes in neutral helium. 
A typical experimental arrangement is shown in Fig. 5. The gas 
atoms are excited with a pulsed beam of electrons, typically of 
20-50 eV energy. The electron pulse starts the time-to-pu1se 
height converter. The photons from the excited gas are 

9 
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EXCITATION 
CHAMBER 

MONOCHROMATOR 

INDREK MARTINSON 

PHO TO
MULTIP LIER 

Figure 5. Experimental setup for lifetime measurements 
using pulsed electron excitation (Klose~ 
1967). 

spectroscopically analyzed and counted with a photomultiplier. 
The amplified pulse then stops the TPC and the results are stored 
in a multichannel analyzer (MCA) . The time-distribution of pulses 
is exponential. However, electron excitation is usually not as 
selective as photon excitation, instead several levels can be po
pulated simultaneously. The decay curves therefore often show a 
more complex character, due to cascading. The decaying level is 
now fed from higher levels and the decay curve must be carefully 
decomposed into several exponentials. Good counting statistics 
are necessary while the lifetimes for the levels involved should 
not be too close to each other. The cascading can be eliminated 
with threshold excitation. In a study of the 2p 5 3p levels in Ne 1-
- which lie 18.3-18.9 eV above the 2p6 ground state - Bennett 
and Kindlmann (1966) selected electron energies very close to 
these values. Single - exponential decay curves (no cascading) 
were obtained but the method is very difficult. The counting ra
tes are very low, because of low excitation cross sections. Most 
investigators therefore use higher energies and correct for cas
cades in data analyses. Important results of this kind can be 
found in papers by Klose (1967. 1968. 1971) who measured lifetimes 
in e.g. Ar and Fe to a few per cent accuracy. More recently also 
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a lifetime in U I was determined in this way. For the 27887 cm- 1 

level Klose (1975) obtained the value T=7.3±1.1 ns. Lifetimes 
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in U I are relevant for studies of isotope separation with lasers. 
The pulsed electron technique has also applied to ions (Jimenez 
et al., 1974) as well as molecules and molecular ions. In the 
latter work, by Mohlmann and de Heer (19772 lifetimes for vibrio
nic states in e.g. H2 0+, H2 S+, HC1+ and CO and other species, 
usually in the ~s range, were determined with 10% uncertainties. 

In measuring so long lifetimes in molecular ions there ari
se interesting effects due to repulsion of the excited ions. 
These can leave the viewing volume before the decay takes place 
and the result is a very misleading distorsion of the experimental 
decay curves. For example, Mohlmann and de Heer (1977) found that 
decay times for certain vibrionic level in the important H2 0+ 
radical can be off by a factor of 10 from the correct values if 
this electrostatic repulsion is not corrected for. A thorough 
survey of such problems is also given by Curtis and Erman (1977). 

An important development in electron excitation work consists 
of using 5 -10 keY electrons (Erman, 1975) instead of the pre
viously common 30 - 50 eV ones. With high-energy electrons much 
more favorable beam currents, tens of rnA, can be routinely used 
and the spectral resolution - particularly important in molecular 
work - can be improved from typically several A to below 0.1 A. 
Another improvement of lifetime measurements is that the electron 
beam is swept with an oscillator of a very well determined fre
quency. This gives an excellent duty cycle and greatly increases 
the counting rates in lifetime experiments. The setup is shown in 
Fig. 6. By using keY electrons one can also produce highly ioni
zed atoms (Erman and Berry, 1971) but the method has been mainly 
applied to molecules as well as neutral and singly ionized atoms. 

Thanks to the high resolution not only vibrational but also 
rotational lifetimes in molecules can be measured individually. 
Examples of molecular decay curves are shown in Fig. 7. 

The predissociation effects in molecules, discussed above, 
can also be efficiently studied with this electron-excitation 
method. As an example we show the data for the B 2I state in CH 
(Fig. 8). A large number of rotational lifetimes for the vibra
tional states v' = 0 and v' = 1 are measured and drastic changes 
in T are found when the rotational number exceeds a certain 
value. This is due to predissociation caused by penetration 
through the potential barrier and it leads to very accurate de
terminations of dissociation energies. For example, in the CH 
lifetime work (Brzozowski et al. 1976) a value of 3.465±0.012 eV 
was obtained, about 30 times as accurate as that found in optical 
emission spectroscopy. 
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Setup for lifetime measurements using high
energy electrons (Erman~1975). The electrons 
excite a gas and the light is observed spectro
scopically. The electron beam is further swept 
with an oscillator and the lifetimes are ob
tained with delayed coincidence technique. 
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Figure 7. Examples of decay curves~ for the OH molecule 
with the high-energy electron excitation method 
(Erman, 1978). 
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Figure 8. Predissociation in the CH molecule. (Brzozowski 
et al.,1976). Lifetimes for the v'=O and v'=1 
sequences of the B 2L state show a slight 
increase with rotational quantum number before 
the predissociation sets in, such studies give 
very accurate dissociation energies. 

Such predissociation effects have been observed in a large 
number of molecules (Erman, 1977). The lifetimes also give im
portant information about molecular configuration as well as iso
tope effects. 

Cascading can generally not be avoided in this work with keV 
electrons. In most molecules the effects are not serious, however, 
because higher-lying states often decay be predissociation. Mo
lecular decay curves are in most cases single exponentials. 

The photon and electron excitation methods may both be 
affected by trapping of resonance radiation (Heron et al., 1956). 
This radiation, from excited atoms, is absorbed by atoms in their 
ground state and the observable effect is a systematic, pressure
dependent lengthening of the measured lifetime. In practice such 
studies are carried out at various target gas pressures p and 
the correct 1 ifetime is obtained by extrapolation to p = O. 

The phase-shift method works quite well with electronic 
excitation. Compared to the optical counterpart the number of 
available levels is much higher but cascading is the price which 
must be paid for this improvement. 

The phase-shift results must be calibrated using a lifetime 
which is very accurately known. To obtain satisfactory accuracy 
the measurements should also be carried out at several frequen-
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cies w. One of the important advantages of the phase-shift method 
with electrons is that very short lifetimes (below 1 ns) can be 
measured. It is quite difficult to reach such lifetimes with 
pulsed excitation. 

Both atomic and molecular lifetimes have been studied with 
the electronic phase-shift technique. For example, interesting 
data for atoms and ions such as 0 I (Lawrence, 1970), Si II - IV 
(Curtis and Smith, 1974) and iron-group elements (Assousa and 
Smith, 1972, Marek, 1974) can be found in the literature. In the 
Si study lifetimes ranging from 0.11 to 220 ns were measured. 
Several astrophysically important molecules, e.g. CH+ (Brooks and 
Smith, 1974, 1975) and Si 0 (Elander and Smith, 1973) have also 
been investigated in this way. The quoted uncertainties are 
usually below 10%. 

6. LEVEL-CROSSING AND RESONANCE EXPERIMENTS 

The methods dealt with in this section also use electron or 
photon excitation but there are marked differences from the expe
riments described earlier. 

The zero-field level crossing or Hanle-effect technique 
(Hanle, 1924) belongs to the most accurate methods for measuring 
atomic and molecular lifetimes. The principle is illustrated i.n 
Fig. 9 

z 

y 

Detector 

source 

Figure 9. Schematic figure of zero-field level-crossing 
measurements. 
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Atoms in a resonance cell are excited with polarized reso
nance rediation from a lamp. The fluorescence follows the usual 
dipole pattern damped by the exponential decay. In a constant 
external magnetic field B the dipoles process with the Larmor 
frequency wL and the time dependance of the fluorescence radi
ation is 

(11 ) 

where wL = g ~B·B/h. If a continuous excitation is maintained 
while B vari~s the intensity pattern is an inverted Lorentzian, 
with a half-width of 

( 12) 

For details about the method see the article by de Zafra and 
Kirk (1967). Example of Han1e curves are given in Fig.10. 

-40 -30 -20 -10 10 20 3D 40 
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15 

Figure 10. Hanle curves for levels in Pb I (Garpman et 
al.~1971). The narrower curve is for the 2663 
A line (gJ=-1.494~ T=5.85 ns) and the broader 
one for the 2802 A line (gr-l.126, F6.08 
ns) . 

These are from a study of lifetimes in Pb I (Garpman et a1., 
1971), determined with uncertainties as low as a few per cent. 
The Hanle method can be applied to atoms with complicated 
electron structure where theoretical f-values may be very un
certain. Hilborn and de Zafra (1973) obtained accurate f-values 
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for strong transitions in Fe I and also the complex spectrum of 
Tm I has been studied in this way (Handrich et a1., 1969). 

For an example of Han1e-effect studies of molecules we 
refer to the paper by Broyer et a1. (1975 a) in which level life
times in 12 were investigated. The accuracy seems to be somewhat 
lower than that obtained by the same authors with laser excita
tion. 

To avoid errors in Han1e measurements, due to coherence 
narrowing, the gas pressure in the cell must be so low that 
scattering processes can be neglected. Several authors therefore 
combine Han1e-effect measurements with an atomic beam device. 

Optical double resonance (Brosse1 and Bitter, 1952), mostly 
used for determinations of atomic fine- and hyperfine-structure, 
can also give atomic f-va1ues. The atoms are excited with opti
cal resonance radiation while transitions between magnetic sub
levels of the excited state are induced with resonant radiofre
quency (rf) fields. The advantage of this method - compared to 
the Han1e technique - is that lifetimes can be determined without 
knowledge of Lande gJ factors. A representative example of the 
method is the study of Wagner and Otten (1969), who measured the 
natural width of a Fe I spectral line. A beam of Fe atoms was 
excited with light from a Fe hollow cathode and rf-induced tran
sitions between Zeeman sublevels were observed in a weak exter
nal magnetic field. This measurement yielded a natural 1inewidth 
of 5.35±O.14 MHz for the observed line at 3719.9 A from which 
a lifetime of 59.5±1.6 ns was deduced for the z 5Fg level of 
Fe I. (The relation between natural width ~v and 11fetime T, 
~V·T = lin was used). 

More information about optical resonance methods can be 
found in the reviews by Bucka (1969) and zu Put1itz (1969). 

7. ACCELERATOR-BASED METHODS 

Beginning with the work of Kay (1963) and Bashkin (1964) 
heavy ion accelerators play an important role in atomic physics. 
With the most frequently used method, beam-foil spectroscopy 
(BFS), lifetimes in neutral as well as highly ionized atoms can 
be determined. 

The experimental arrangement for BFS is shown in Fig. 11. 

Positive ions from a particle accelerator are directed through 
a thin foil, usually of carbon. When emerging from the foil the 
fast ions are often in excited states which decay in vacuum. The 
light so emitted is analyzed spectroscopically. The decay rates 
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Figure 11. A survey of BFS experiments. Ions from the 
accelerator are sent through a foil and the 
radiation is analysed with an optical spectro
meter3 X-ray-detector or electron spectrometer. 
Lifetimes are measured by studying spectral 
line intensities for different values of Xl 
the distance from the foil. 

of the observed spectral lines are measured as the function of 
the distance x from the foil. Using a simple modification of 
Eq.(l) the lifetimes are obtained according to 

1(x) = 1(0) exp(-x/VT) (13 ) 

where 1(x) and 1(0) are the counting rates and v is the velocity 
of ions after the foil. The ions have high velocities, for examp
le 12C ions of 6 MeV have a velocity v = 9.8 mmlns (vic = 3.3%), 
and 0.1 ns therefore corresponds to a distance which can be mea
sured eas ily. 

The lifetime range in BFS experiments is approximately 10-12 _ 

10- 6 s. An example of a very short lifetime is' shown in Fig. 12. 
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Figure 12. Measurement of a very short lifetime in C V 
(Knystautas and Vrouin~1976). The prompt de
cay gives T = 1.2 ps which represents the 
1s2p Ip lifetime. A longer value~ 28 ps~ is 
ascribed to the 1s3d IV level. Theoretical 
lifetimes are shown in parentheses. 

Here we observe a mUlti-exponential behavior, showing the pre
sence of cascading. Such decay curves are very typical in BFS. 
The cascading can be taken into account by fitting the curves to 
several exponentials, there are also more sophisticated methods, 
such as the so-called ANDC analysis. (Curtis et al., 1971). A 
thorough review of analytical techniques, applicable to many 
kinds of lifetime measurements is given by Curtis (1976). 

The BFS method for lifetime measurements has several unique 
properties. Practically any element can be accelerated with 
modern ion accelerators, e.g. Van de Graaff generators, linear 
accelerators, cyclotrons, isotope separators etc. A large number 
of ionization degrees is available, there are already data for 
systems such as Ar XVIII, Fe XXIV, and Kr XXXV. Photons in the 
range l-lOOOOA can be studied. The non-selective excitation 
makes a large number of excited states available. Examples of 
decay curves for highly ionized Fe are shown in Fig. 13. 
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Figure 13. Decay curves for levels in highly ionized Fe 
(Dietrich et al.,1976J. The curves (aJ and 
(bJ are for the first excited level in Li
like Fe XXIV. The 2P3/2 decay is shortened 
because of relativistic effects. The curve 
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(cJ is for the intercombination line 2S2 l S0 -
2s2p 3P 1 in Fe XXIII. 

Atomic f-values show systematic trends and regularities, e.g. 
in isoelectronic sequences (Wiese and Weiss, 1968). If the f
values for a given transition are displayed versus liZ (Z being 
the nuclear charge) smooth curves are frequently found. Beam-
foil studies have provided much material for such analyses. Examp
les of the data are shown in Fig.14and15. The f-values for the 
2s 2S - 2p 2p doublet in the L i I sequence have been determined 
from Li I to Fe XXIV. The experimental BFS data for the high Z 
end (from measurements in Oak Ridge and Berkeley) are shown to
gether with theoretical values (Martin and Wiese, 1976). Note 
that the relativistic effects are substantial for the S1/2 - P3/2 
branch in Fe XXIV. In the B I sequence the 2s2p2 2D term inter
acts with the 2s2nd 2D series (n = 3,4,5 ... ), particularly for low 
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z. The f-values for the 2s22p 2p - 2s2p2 20 transition (Fig. 15) 
are very sensitive indicators of this perturbation. It is worth 
noting that single-configurational Hartree-Fock calculations for 
B I give a 2s22p 2p - 2s2 p2 20 f-value that is off by a factor 
of 10. However, there is very good agreement between BFS data and 
theoretical calculations (Weiss, 1969, Nicolaides, 1973, Oankwort 
and Trefftz, 1978) which take into account electron correlation 
effects. 

Many additional isoelectronic sequences have been studied 
in this way, see e.g. Wiese (1976). 

Typical uncertainties in BFS 1 ifetime data are 5 - 10%. If 
heavy ions are used the errors increase, mainly because the velo
city after the foil is less well defined. Much higher precision 
can be achieved in light elements, in He I the 3p Ip lifetime 
has thus been determined to 0.26% (Astner et al., 1976). 

The spectral resolution in BFS experiments is typically 
2 - 3 A in the visible range, inferior to that of laser or high
energy electron work discussed above. In complex spectra line 
blending causes problems in beam-foil measurements. 

Several methods have been developed to increase the accu
racy in lifetime experiments with fast ions. These include a) 
excitation of the beam by laser light b) alignment transfer stu
dies c) ion-solid interaction. 

The principle of the beam-laser method, introduced by Andra 
et al. (1973) is shown in Fig. 16. The ions from the accelerator 
are selectively excited with monochromatic laser light. In the 
first experiments an Ar+ laser was used to excite Ba+ ion from 
an ion accelerator. Careful measurements (Andra 1976) later 
yielded T = 6.312±0.016 ns for the 6p 2P3/.2 level in Ba II, one 
of the most accurately determined atomic lifetimes. Also tunable 
dye lasers by which many levels can be reached have been used 
(Harde, 1976). An interesting example is the La II 
study of Arnesen et al.(1977). In this experiment La+ ions from 
an isotope separator were excited from their ground state a 3F 
into y 3Fo the decay of which into the metastable level a 30 was 
measured. The excitation and detection thus occurred at different 
wavelengths and this fact eliminated stray-light problems which 
can hamper beam-laser experiments. 

The beam-foil interaction often results in a non-statistical 
population of magnetic sublevels (alignment). It can be shown 
(Dufay, 1973) that the alignment is not transferred by cascading 
and this circumstance can be exploited for obtaining simpler de
cay curves (Berry et al., 1972). 
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Figure 14. Oscillator strengths for the 2s-2p transitions 
in the Li I sequence. The experimental data 
are from Dietrich et al. (1978) and Pegg (1978). 
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Figure 15. Osci llator strengths for the 2p 2 P - 2p2 2 D 
transitions in the B I sequence. The experi
mental data are from Martinson and Gaupp 
(1974) and Pegg (1978). 
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Figure 16. Excitation 
of fast ions with laser 
light. The ions are se
lectively excited from 
their ground state. 
A comparison is shown of 
the decay of the 3p 2p 
level in Na I J measured 
with beam-foil and beam
laser (Harde J 1976). 

Another, related method combines Hanle-effect measurements 
with fast beam techniques. Poulsen et al. (1975) have used .' 
this technique to determine lifetimes in Be I and Be II. Compared 
to conventional Hanle methods this "beam-Hanle" approach is easily 
extended to levels in ions. 

Lifetimes can also be measured if the foil is replaced by a 
thick solid target. As a result of sputtering processes the tar
get atoms frequently leave the solid in excited states (McCracken 
1975). By pulsing the incoming beam and performing a coincidence 
experiment it is possible to measure lifetimes for excited states 
in sputtered atoms (Ramanujam, 1977). The cascades are reduced 
because low-lying excited states are preferentially populated in 
sputtered, excited atoms. 

Molecular lifetimes cannot be measured with the beam-foil 
method because molecules are dissociated in the foil. However, if 
the foil is replaced by a gas cell molecular ions can be excited 
and lifetimes can be determined by time-of flight techniques 
(Poulizac and Druetta, 1969, Head, 1971). It is also possible to 
pulse the beam from the accelerator and measure molecular life
times with the delayed-coincidence method. In this way Dotchin 
et al. (1973) obtained lifetimes. for levels in N2 +, N2 , CO+ and 
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CO with quoted accuracies as low as 1%. 

8. COINCIDENCE TECHNIQUES 

We have already mentioned coincidence experiments, in con
nection with electron or photon excitation. In this section coin
cidences between two atomic processes are discussed. These experi
ments can be divided into photon-photon and electron-photon coin
cidence measurements. The photon-photon method is based on ideas 
from nuclear physics where y - y delayed coincidences are used 
for half-life determinations (Fossan and Warburton, 1974). In 
the atomic case a target gas is excited with electrons. The col
lision region is viewed with two interference filters which trans
mit wavelengths Al and A2 in a cascade transition (Fig. 17). 
For example, in a lifetime measurement for the 2p 2p level in Li I, 
one of the filters should transmit the 2s 2S - 2p 2p transition 
(6708 A) while the other accepts the 2p 2p - 3d 20 line (6104 A). 
The respective signals go to photo-multipliers and - after amQ1i
fication and discrimination to a time-to-pu1se-height converter 
and a multichannel analyzer. The start pulse is given by a photon 
from the higher-lying transition and the time-distribution of the 
lower transitions is measured. The results are free from cascade 
effects, the decay curve thus being a single exponential. However, 
like in all coincidence measurements the counting rates are quite 

Fi Iter Fi Iter 

PM 2 ~ 0 ~ PM 1 

AI A2 Source AI 

2 1:2 

A2 

Figure 17. Simplified setup for photon-photon coinci
dence measurements. Two photons in a cascade 
are detected with photomultipliers. After amp
lification and discrimination (not shown) the 
pulses are fed into a time-to-pulse-height con
verter and a multichannel analyzer. A single
exponential decay curve for the level 2 is 
obtained. 
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low. Good examples of such work is found in Camhy-Val et al. 
(1975) and King et al. (1976). In the latter experiment a life
time in Ar II measured to within 1.5%. A variation of this 
method consists in measuring electron-phonton coincidences. Here 
the atoms are excited with electrons of accurately known energy. 
Coincidences are measured between inelastically scattered elect
rons of a predetermined energy loss (this defines the atomic 
level that was excited) and photons from the same level. This 
method, introduced by Imhof and Read (1969) has been applied to 
both atoms and molecules (Smith et al., 1975). 

9. FORBIDDEN TRANSITIONS 

When the selection rules for electric dipole (E 1) transi
tions are not fulfilled other types of decays usually occure. 
Examples of such forbidden transitions in hydrogen- and helium
like systems are given in Fig. 18. The 2s 2S 1/2 level in hydro
gen-like atoms decays by two-photon emission. These photons 
have a continuous energy distribution, their sum being equal to 
the ls - 2s energy separation. This decay has a probability of 
8.23 • Z6 (S-1). Using the BFS method Marrus and Schmieder (1972) 
measured the 2s 2S 1 /2 lifetime in Ar XVII, obtaining the value 

a b 

2s 2S 
1/2 

0 
El E1 

E1 
E1 

1s 2s 
1/2 0 

Figure 18. Forbidden decays in hydrogen-like (aJ and he
lium-like (b) atoms and ions. The 2s 2S and 
2s 1S levels decay by two-photon processes, 
and 2s 3S decays with magnetic dipole ration
tion. The 2p 3p levels combine with 2s 3S al
lowed transitions while 2p 3P1 and 2p 3P2 

also decay to the ground state, with spin-for
bidden Eland M 2 transitions, respectively. 



EXPERIMENTAL STUDIES OF ATOMIC AND MOLECULAR LIFETIMES 25 

3.54±0.25 ns, in excellent agreement with the theoretical pre
diction 3.46 ns (Klarsfeld, 1969). To reach this very high charge 
state the Ar ions were accelerated to 400 MeV in the Berkeley 
heavy ion accelerator, HILAC. For hydrogen-like 0 and F the 
2s 2S 1 /2 lifetime was later measured by Cocke et al. (1974) who 
used the BFS method at somewhat lower energies. 

In helium-like systems the 2s lSo level also decays by two
photon emission. Using a time-of-flight technique Van Dyck et al. 
(1971) measured this lifetime in He I, obtaining 19.7±1.0 ms, in 
excellent agreement with the theoretical value 19.5 ms (Drake et 
al., 1969). The experimental method consisted in detecting the 
number of He-atoms in the metastable 2s lSo level as a function 
of the distance from the excitation region. The 2p 3p term decays 
to 2s 3S with allowed transitions. For the 2p 3P2 level there is 
another decay mode, with magnetic quadrupole (M 2) radiation to 
the ground state (Fig. 18). This latter process is strongly Z
dependent and competes with the allowed decay in Ar XVII. The 
2s 3S 1 level de-excites by magnetic dipole (M 1) transitions, the
se have been observed in the solar corona (Gabriel and Jordan, 
1969). This radiation has also been detected in laboratory experi
ments, (Marrus and Schmieder, 1972, Gould et al., 1974, Cocke et 
al., 1973). In these BFS experiments, the 2s 3S 1 lifetime was 
measured in He-like S, Cl, Ar, Ti, V and Fe. More recently Gould 
and Marrus (1976) also observed this decay in He-like Kr XXXV. 
using 700 MeV ions from the Berkeley Super-HILAC. They obtained 
a value of T = 0.11±0.02 ns. which agrees with theoretical pre
dictions. 

10. APPLICATIONS OF ATOMIC AND MOLECULAR LIFETIME DATA 

Optical spectroscopy, measurements of spectral-line wave
lengths is one of the simplest methods for identifying chemical 
elements. When the concentrations or abundances of elements in a 
light source (e.g. the sun) are determined the wavelength infor
mation must be complemented with knowledge about the corresponding 
f-values. 

The abundances of the chemical elements in the sun. stars 
and interstellar medium are of considerable interest because they 
contain information about the creation of the solar system and the 
stars, various pathways of nucleosynthesis and physical processes 
such an convection, diffusion or mass loss etc. (Biemont and 
Grevesse, 1977). In the solar and stellar spectra a large number 
of spectral lines are observed. From the measured equivalent 
widths the abundances (relative to hydrogen) are derived if the 
f-values are known. About 70 chemical elements have been identi
fied in the sun, as can be seen from Fig. 19 ., from Engvold (1977). 
The abundances are normalized by defining log NH = 12.00 where 
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Figure 19. The chemical composition of the sun. About 70 
elements have been identified in the solar 
spectra but the abundances are often very 
uncertain. (Engvold~ 1977). 

NH is the number of hydrogen atoms. In several cases the abundan
ces are highly uncertain because the f-values are only approxi
mately known. 

Note that Li, Be, and B have very low abundances, these ele
ments are destroyed by proton reactions. The iron-group elements 
have presented very interesting problems. About 10 years ago it 
was found that the Fe abundance (relative to H) seemed to be 
about 10 times higher in the solar corona and chromosphere (log 
NFe = 7.66) than in the solar photosphere (log NFe =6.51). No 
good explanation was given for this discrepancy but the problem 
was solved when Garz and Kock (1969), Huber and Tobey (1968) and 
Whaling et al. (1969), using different techniques, found that the 
previously used f-values for Fe I had been erroneous. With correct 
data the photospheric abundance was increased to log NFe = 7.5, 
a value that also agrees with abundance in meteorites. Improved 
f-values for other 3d-elements have had similar, although slightly 
less drastic consequences (Smith, 1973, Biemont and Grevesse, 
1977, Huber, 1977)for the solar abundances. 

Fig.19 shows that several rare-earth elements have been ob
served in the sun. The abundances are often very uncertain, be
cause the f-values are poorly known. The observed lines usually 
belong to singly-ionized atoms. Several beam-foil studies have 
appeared in later years, e.g. Curtis et al. (1973), Andresen and 
S~rensen (1974), Lage and Whaling (1976) which give f-values for 



EXPERIMENTAL STUDIES OF ATOMIC AND MOLECULAR LIFETIMES 27 

the lines observed in the solar spectrum. It is also worth noting 
that certain stars, of the Am, Ap and Ba type show very high abun
dences of rare earth elements. 

Molecular transitions can also be used for abundance deter
mination. Curtis et al., (1976) used the method of high-energy, 
high-frequency electron excitation to determine f-values in the 
spectrum of Cz, from which a solar carbon abundance could be de
rived. 

One of the most serious problems in fusion research with 
magnetically confined high-temperature plasmas (e.g. Tokamaks) is 
caused by plasma impurities, e.g. highly ionized metal atoms. 
These are introduced into the plasma when H-ions interact with 
the surrounding wall. The electromagnetic readiation from the im
purity atoms may significantly contribute to the energy loss and 
cooling of the plasma (Drawin, 1978). It is therefore vital to 
determine and reduce the impurity concentrations. For this purpose 
atomic f-values are needed for many strong transitions in highly 
ionized metal atoms, e.g. Fe, Cr, Ni, Mo, and W. Of particular 
interest are systems with one or two valence electrons, the Li, 
Be, Na, Mg, Cu, and Zn isoelectronic sequences which emit strong 
characteristic lines. Many lifetime studies with BFS have recently 
been motivated by such demands in plasma physics. 

Lifetimes for levels in noble gas ions, Ne II, Ar II, Ar III, 
Kr II, Kr III and Xe II are finally of importance in laser physics. 
There are many cases in these spectra where a higher level has a 
much longer lifetime than the lower level with which it combines. 
This fact increases the laser gain and is vital for achieving 
population inversion. Detailed information of atomic transitions 
of laser interest can be found in the review article by Davis and 
King (1975). 

Although we have discussed many aspects of atomic and molecu
lar lifetime studies, several important areas have been omitted, 
e.g. inner-shell excited states (Sellin, 1976), highly-excited 
(Rydberg) levels (Kleppner, 1977) and lifetimes of vacancy states 
(Nordgren et al., 1976) and a few other topics. 
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EXCITATION ENERGIES AND TRANSITION MOMENTS FROM THE POLARIZATION 
PROPAGATOR 

Jan Linderberg 

Department of Chemistry, Aarhus University, Aarhus, 
Denmark. 

DELIMITING THE SCOPE OF THE PRESENTATION. 

These lectures will be concerned with the principles behind 
an algebraic, equation of motion approach to the determination 
of the polarization propagator. This term is here taken in a 
general sense to encompass a set of two-time Green's functions, 
such as used by Yngve Ohrn and the present author in our text
book [1]. There will not be time to present the arguments lead
ing to the appearance of the polarization propagator as the 
natural quantity for the examination of transition moments and 
excitation energies, and the concerned reader may find a detailed 
approach in terms of photon scattering in Chapter 12 of 
Reference [1]. 

The formalism in these notes follows in certain respects a 
previous analysis [2,3]. Only certain limited approximations 
will be treated but the presentation should hopefully provide 
a guide to the recent literature on higher order approximations 
[4]. 

Results from calculations by the Aarhus group will be used as 
illustrations of the theory. 

PROPAGATORS, SPECTRAL REPRESENTATIONS, AND MO}lliNTS EXPANSIONS. 

Polarization is, in classical dielectric theory, a measure of 
the dipole moment density. Its divergence is identified with 
the negative of the density of so-called apparent charges: 
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A microscopic theory is developed directly in terms of the charge 
density operator q(r) and no explicit reference is made to the 
polarization, except that it often is convenient to consider 
the fluctuation operator q(r)-<q(r» as the primary dynamic entity 
to be studied. The polarization propagator describes how a distur
bance, which couples with the charge density, influences the 
system under consideration and gives a measure of the induced 
charge density. 

Linear response theory [5] yields the result that the induced 
charge density is determined from the two-time retarded Green's 
function 

«q(~t) ; q(~'t'»> = (i/h)8(t-t')<[q(~t),q(~'t')]> (2) 

with the Fourier integral representation 

«q(~) ; q(~'»>E = 

Jd(t-t')«q(~t);q(~'t'»> eiE(t-t')/h 

This function is analytical in the upper half of the complex 
E-plane, and is, according to Kramers and Kronig, uniquely 
defined in terms of its spectral density function 

(3) 

(4) 

We will only consider cases where the average value formation 
in Eq. (2) refers to a molecular electronic ground state in the 
Born-Oppenheimer picture and involves the electronic charge 
density operator. A rather elementary calculation leads then to 
the explicit form 

Ln[<olq(~) In><nlq(~') 10> O(E-En+EO) 

-<olq(~') In><nlq(~) 10> O(E-EO+En)] (5) 

in terms of eigenstates In> and eigenvalues E of the hamiltonian. 
We see that if we can determine J(r,r';E) it gontains the 
information needed for the calculation of transition moments 
and energies. 

The charge density operator is a one electron operator and is 
thus, in second ~uantization, a linear combination of the elemen
tary operators a a defined for an orthonormal spin orbital basis 
{u }. It is conv~nient to use hermitian operators and we define 

s 
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b = ~ 
rs I (6) 

The determination of the spectral density function (4) is then 
referred to the calculation of a set of similar quantities, 

J(rs,r's';E) = 1m «b ; b , ,» In. rs r s E (7) 

It is at this point we will start to make some assumptions that 
will allow a direct calculation of an approximate spectral 
density function. 

We will consider the zeroth and first moments of the functions 
(7). They are obtained from the sum rules 

f J(rs,r's';E)dE = <[b ,b, I]> = S '" (8) rs r s - rS,r s 

fJ(rs,r's';E)EdE = <[[b ,H],b, I]> = A ", (9) rs r s rS,r s 

which follow from Eq. (5). The matrices S and A can be calculated 
from a knowledge of the ground state. Both are hermitian and A 
is positive semi-definite and they may be brought to a simulta
neously diagonal form by means of a linear transformation. Since 
A is real and S purely imaginary, one finds that a set of 

operators may be defined in conjugate pairs, 

such that 

and 

L: Q* b rs m,rs rs 

t 
<[~,~,]> 

<[~,Qm' ]> 

o " mm 

<[~ ~,]> = 0, 

t <[[0 ,H],Q I]> = W 0 "W> 0, 
1n m mmm m 

The transformation expressed by Eqs. (10) and (11) may be 

(10) 

(11) 

(12) 

(13) 

(14) 

(15) 
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singular in that there may exist linear combinations of the 
operators b which commute with the hamiltonian, that is constants 
of the moti6R, or which have the ground state as eigenstate. Such 
operators will correspond to zero eigenvalues of A and Sand 
may be eliminated without loss of generality [2]. 
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The canonical form of the moments of the spectral density 
functions becomes interesting if we assume that the function, 

J (E) = 1m «0 ;Qt» In 
m 1n m E 

may be represented by the "one state approximation" 

J (E) = o(E-W ), 
m m 

which exhibits the same first two moments. This implies that 
the annihilator condition holds, 

~\O> = 0, 

and that 

\m> = ~\O>, 

(16) 

(17) 

(18) 

(19 ) 

is an approximate eigenstate of the hamiltonian with energy 
eigenvalue E +W • That is,the manifold of states, {to>, Im>\ 
m = 1,2, ••• }~ dTagonalize the hamiltonian within their subspace 
of the total state space. 

The procedure outlined above can then be summarized as follows: 
In order to achieve a partial diagonalization of the hamiltonian 
H for a given system, we introduce a set of operators, {b }, 
and construct the matrices S and A from some assumptionr~bout 
ground state expectation values (generally in the form of density 
matrice~). Diagonalization of the matrices gives excitation oper
ators ~ and deexcitation operators ~. The ground state should 
have the property that it is annihilated by the Q IS. When this 
is the case we have a set of excitation energies,~ , and 
transition moments may be calculated from the form m 

(20) 

Calculations according to this program have been carried out in 
various degrees of sophistication and the molecular applications 
by the Cal tech group with McKoy and by J¢rgensen, Oddershede, 
Elander and Beebe at Aarhus have shown that accurate results 
may be obtained at lower cost than by methods based on the method 
of superposition of configurations in many cases [4]. 

The iterative ground state determination from the annihilator 
condition (18) is a critical point in the procedure and no 
accurate self-consistent results have been obtained so far. Most 
applications have been satisfied with the one step procedure to 
use the Hartree-Fock state to generate the matrices and to dis
regard the conditions (18), but recently [2,3] we have shown 
that a self-consistent solution implies a particular form for the 
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ground state when the operator set consists of the one electron 
operators of Eq. (6). The more general case where the operator 
set also includes so-called two-particle, two-hole operators 
still awaits a definitive solution. The schemes of this nature 
derive from the random phase approximation and carry names 
derived thereof or the linearized time-dependent Hartree-Fock 
method. The equation of motion method is also a term used in this 
context, but since all dynamical features of a system must derive 
from an equation of motion this name is less appropriate. 

THE SECULAR PROBLEM. 

Two features of the diagonalization problem will be considered 
in this section. Firstly we examine the form of the separation 
theorem which applies and secondly we draw some conclusions 
concerning symmetry blocking of the matrices. 

The real symmetric matrix A may be brought to diagonal form by 
means of an orthogonal matrix () and the simultaneous transforma
tion of the purely imaginary hermitian matrix 5 by () leaves it 
purely imaginary and hermitian: 

A ~ AI = ()t A()= diagonal, ()t5() = 51 . (21) 

Vanishing diagonal elements in A' correspond to vanishing rows 
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and columns in 51, and we assume from now on that the operator 
giving rise to these zeroes are eliminated from the treatment 
since they can have no matrix elements connecting the ground state 
to other states. It is thus admissible to form the dynamical 
matrix 

-1 _1 
1\= (AI) 251 (AI) 2 (22) 

which also is hermitian, purely imaginary and exhibits eigen
values in pairs of opposite sign and with conjugate eigenvectors. 
This is the result quoted above. 

Most applications of random phase approximation like schemes 
employ operator sets {b } where the two indices refer to one 
occupied and one unoccu~red spin orbital in a reference Hartree
Fock state. The dimension of the set is limited by the capacity 
of the computer, the investigator, or the sponsor. We may con
clude that an increase in the dimension of the set will lead to 
an increase in the width of the spectrum of the matrix 1\[2] and 
that consequently the smallest excitation energy WI will be mo
notoneously decreasing as a function of the operator basis dimen
sion. If the matrices are calculated from approximate represen
tations for the ground state there is no guarantee that WI is an 
upper bound to the first excitation energy. A ground state 
approximation which satisfies the annihilator condition (18) and 
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has the energy expectation value <H> ensures, however, that 
<H> + WI is an upper bound for the first excited state. 

A partial diagonalization of the matrices A and 5 into blocks 
along the diagonal may be accomplished by means of irreducible 
tensor operators as a basis rather than the simple b IS. An 
effective procedure requires that the ground state tf~nsforms 
as a one dimensional irreducible representation under the 
operations of the appropriate group, or the use of an ensemble 
average over the degenerate states. Tensor operators are defined 
so that they transform according to the formula, 

R bj R-l = L bj Dj (R) m m' m' m'm ' (23) 

where R is an element of the group and Dj , (R) is an element of 
the representative of R in the j'th irre~u~ible representation. 
We can then perform the following calculation: 

<[[b j H] bk ]> = M<[RbjR-l H RbkR-l ]> 
m' 'n m' , n (24) 

. k . k 
= L , ,<[[bJ"H],b I]> MDJ , (R)D , (R), mn m n mm nn 

where M denotes the operation of taking the invariant mean over 
the group. The right hand side equals zero unless k is the contra
gradient representation to j [6]. Accordingly we have that the 
excitation operators can be classified in terms of the irreduc
ible representations of the group and the symmetry labels of the 
excited states are then simply deduced from the one dimensional 
representation of the ground state. The case of a degenerate 
ground state requires a more extended analysis [7]. 

EXAMPLES 

An area where the propagator calculations have shown their utility 
is in the determination of radiative lifetimes for excited states. 
Oddershede and his collaborators [4,8] have prese~ted accurate 
results for some excited states of the SiO and CH systems and 
a summary of their results is presented in Table 1. 

Knowledge of excitation energies for a range of nuclear displace
ment offers a possibility for the determination of potential 
energy surfaces for a set of states in relation to one known 
surface. These calculations show, as presented by Oddershede [4], 
errors of 2-16% in the spectroscopic constants. The least accurate 
values are those referring to the anharmonic behaviour. 

The spectral density function (4) determines the frequency de
pendent polarizability aCE/h) for an electronic system. Goscinski 
has shown [9] that accurate estimates of the long range London 
dispersion interaction between molecules may be obtained from a 
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Table 1: Comparison between calculated and measured radiative 
lifetimes, (nsec). 

system state ,(nsec) 

calc. experiment 

He 2p(lp) 0.591 0.557±0.015a 

Be 2p(lp) 1.83 1.85±0 .07b 

CH+ A1II(v'=0{ 598d 630±50e 

A1II(v'=2)c 845d 850±70e 

SiO A1II(v'=0)c 3l.6f 9.6±1.0g 

A1II(v'=3)c 32.7 f 9.6±1.0g 

aBurger, J.M., and Lurio, A. (1971). Phys.Rev.A 3, 64. 

bMartinson, I., Gaupp, A., and Curtis, L.J. (197~). J.Phys.B: 
Atom.Molec.Phys. 2, L463. 

cv ' is the vibrational quantum number of the AlII state. 
d Elander, N., Oddershede, J., and Beebe, N.H.F. (1977J. J.Chem. 
Phys. &&.' 2344. 

e Erman, P. (1977). Astrophys.J. 213, L89. 
f --
Oddershede, J., and Elander, N. (1976). J.Chem.Phys. 65, 3495. 

gSmith, W.H., and Liszt, H.S. (1972). J.Quant.Spectrosc.Radiat. 
Transfer ~, 505. 

Reprinted with permission from J. Oddershede: Polarization Prop
agator Calculations. Aarhus 1968. 

few of the moments of its spectral density function. The approx
imate moments obtained from random phase type calculations yield 
expressions which may give useful estimates of the London term 
[10]. The magnitude of the Faraday effect is dependent on the 
Verdet constant, which is proportional to Eda/dE. J~rgensen and 
collaborators have found the proportionality to be excellent for 
their calculated polarizability and the observed Verdet constant 
[11] in a calculation for the carbon monoxide molecule. 

A general feature of the calculations within the random phase 
approximation framework is the apparent difficulty of obtaining 
accurate results for spin dependent features. It often happens 
that the regular random phase approximation with exchange or, 
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equivalently, the linearized time-dependent Hartree-Fock method 
exhibits instabilities [12] and these are generally most prominent 
in the triplet operator matrix problem. Improved versions of the 
procedure are then required, particularly with regard to the 
annihilator condition. The instability is present whenever an 
estimate of the matrix A has negative eigenvalues. There exists 
then a hermitian operator B, such that 

<[[B,H],B]><O, (25) 

and thus we may conclude that the normalized state Ix> = eixBIO>, 
x real, has a lower energy expectation value than 10> for some 
x different from zero. The reference state is then an insufficient 
approximation to the ground state. The need for a higher approx
imation is evident here, but is also present in many other cases 
which give unreasonably small excitation energies to triplet lev
els. One manifestation of the difficulties with triplets is the 
error encountered in the determination of nuclear spin-spin cou
pling constants [13]. 

The cost of these propagator calculations compare favorably, as 
pointed above, with those invoking alternative methods. Timing 
data for three calculations are given in Table 2 • 

• 
Table 2: Timing data for propagator calculations at RECAU, Aarhus 
on a CDC 6400 installation. Compiled from J. Oddershede: Propa
gator Calculations. Aarhus 1978 with permission. 

Hartree-Fock part Integral transformation Propagator 

integrals total "old" present matrix secular 

CH+ l897s 2349s 1059ls l780s 2457s 276s 
45 STO 28% 34% 26% 36% 4% 

He 277s 520s 9867s 2067s 233s 40s 
48 STO 10% 18% 72% 8% 1.5% 

SiO 2055s 2762s 7968s l780s 4358s 502s 
45 STO 22% 29% 19% 47% 5% 

We see that even at a rather high level of approximation, includ
ing two-particle, two-hole corrections, one spends less than half 
the cost on the propagator part of the calculation. The fraction 
appears even less when the "old" integral transformation routine 
based on the Yoshimine algorithm [14] is employed. The presently 
used method, which is based on a Cho1esky decomposition [15], 
brings the integral transformation into the same range of effort 
as the other parts. 
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EPILOGUE. 

I have allowed myself to concentrate this eXpOSItIon on work done 
at Aarhus, but it is clear that the fruitful collaboration with 
the groups at Gainesville, Florida, Salt Lake City, Utah, Evan
ston, Illinois, Waterloo, Ontario, and Uppsala, Sweden has stim
ulated the development greatly. The experience gained with propa
gators has supported the contention that they are a resource for 
theoretical development in chemistry [1] and that they are partic
ularly adequate for the discussion of excitation phenomena. Lec
tures at this institute by Ohrn and von Niessen will further 
examplify the theoretical unification and powerful computational 
tools provided by propagators. 

It is a great pleasure to thank professor C.A. Nicolaides for the 
invitation to lecture at the Advanced Study Institute. 
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MRD-CI METHOD 

Robert J o Buenker 
Lehrstuhl fUr Theoretische Chemie 
Gesamthochschule Wuppertal, 56 Wuppertal 1, 
W. Germany 
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I. INTRODUCTION 

The configuration interaction method is gene
rally acknowledged to be a quite useful means of 
obtaining correlated wavefunctions and energies 
for the electronic states of atoms and molecules. 
The theory behind this approach is very straight
forward but in applying it to practical problems 
of chemical interest certain computational problems 
arise, particularly if it is desired to extend the 
calculations to the limit of a full CI in a large AO 
basis. In essence all the CI method involves is the 
formation of a matrix representation of the non-re-

.lativistic electronic Hamiltonian (within the frame
work of the Born-Oppenheimer Approximation [1J), 
followed by solution of the associated secular 
equation (diagonalization). 

If a basis consisting of a complete (ortho
normalized) set of the eigenfunctions of the elec
tronic Hamiltonian (Hel) is employed for this pur
pose it is clear that such a matrix representation 
would be diagonal by virtue of the Schrodinger equa
tion. Use of any other basis for the same linear 
space leads to a generally non-diagonal Hel matrix 
but upon applying the diagonalization procedure in 
this case it follows that the same eigenvalues and 
characteristic vector spaces must result as before 
(both for discrete and continuous solutions). For 
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practical computations one simply limits the number 
of n-electron basis functions and hopes that such a 
simplification will not produce errors of undesirable 
magnitude relative to the corresponding exact re
sults. 

The manner in which the configuration space 
is restricted (truncated) is thus clearly of para
mount importance in designing CI calculations and 
must be done with three goals in mind: a) to keep the 
level of accuracy of the computations as high as 
possible, b) to put a minimal number of restrictions 
on their range of applicability and c) to nonethe
less allow for the design of a theoretical treatment 
which is economically feasible for molecular sys
tems of reasonable size. These objectives are ob
viously closely interrelated and hence under the 
circumstances it is difficult to come up with a 
truly optimal design for a general CI treatment, 
but in what follows a method will be described [2-4] 
which has been tested over a period of the last four 
years and which appears to satisfy the three criteria 
of accuracy, general applicability, and computational 
simplicity to a good degree. The present work will be 
concerned almost entirely with examining the design 
of this CI procedure from a theoretical point of 
view, but in three subsequent papers by the authors 
at this Institute a more general survey of the actual 
results of such calculations will be undertaken. 

II. DETAILS OF THE MRD-CI PROCEDURE 

The basic idea in CI calculations is to start 
out with a fixed AO basis and to form from such one
electron functions (or some transformed set thereof) 
Slater determinants of spin orbitals (products of 
spatial orbitals with a or S spin~ i.e. the n-elec
tron basis functions needed for the Hel matrix re
presentation. Because of the antisymmetry of the 
electronic wavefunctions no spin orbital may appear 
more than once in a given product function, so it 
is easy to show th~~ for m (spatial) AO's and n elec
trons a total of ('WI) distinct Slater determinants 
can be formed, corresponding to the full CI space 
in this AO basis. It is also not difficult to see 
that the eigenvalues and characteristic vector spa
ces for such a full CI are invariant to a transfor
mation of the one-electron baSiS, e.g. from AO's 
to MO's or natural orbitals. 
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Since only a subset of the full CI space can 
be handled in practice, in which case the choice 
of the one-electron basis becomes a factor in deter
mining the results of the calculations, the first 
of a series of decisions connected with the design 
of CI methods must be dealt with. Upon noting that 
a single covalent VB configuration (structure) gives 
a better description of the H2 ground state than 
does a single determinant using (orthonormal) MO's, 
one might conclude that it is simply best to use the 
AO's directly in forming the n electron basis. This 
procedure has the advantage that electron repulsion 
integrals over AO's can be used directly in the 
computation of Hel matrix elements but it also has 
a very critical disadvantage, namely that the re
sulting determinantal species are themselves not 
mutually orthonormal; as a result the calculation of 
the ReI matrix in a VB formulation is still very 
complicated. By choosing an orthonormal one-electron 
basis (MO's or NO's) the latter problem is greatly 
alleviated as is well-known I5J, but only at the 
expence of carrying out a four-index integral 
transformation and of having to deal with gene-
rally larger sets of determinantal functions than 
in a non-orthogonal approach. Experience indicates 
that the speed with which the Hel matrix can be con
structed is such an important factor in this type 
of treatment that the advantage of the orthonormal 
one-electron basB functions in this regard are de
cisive, and it is for this reason that the great 
majority of CI calculations being done at the present 
time employ such basis sets. Such considerations na
turally do not rule out the possibility that a 
competitive VB-CI method using unrestrictively 
non-orthogonal orbitals may yet be developed, but 
they do give an accurate indication of the relative 
importance of the difficulties encountered jn the two 
approaches in practical applications. 

Having opted for the choice of an orthonormal 
basis it is very important to be able to deal with a 
large number of configurations in a rapid manner. 
Since the direct solution of secular equations of 
order (~) is out of the question for even moderately 
large systems when reasonably flexible AO bases are 
employed, it is useful to note that for most types 
of electronic states a single-configuration (SCF 
or Hartree-Fock) wavefunction is already capable 
of giving a reliable description of the energy and 
properties of a given system. The problem with using 
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this type of wavefunction is that it does not provide 
for a balanced representation for all states of in
terest and for a suitably broad range of nuclear 
geometries, but at least it offers a good starting 
point for carrying out CI calculations. Since the 
determinantal functions are orthonormal it also 
follows that Bel matrix elements vanish between 
species which differ by more than a double spin or
bital substitution, and as a result it is natural to 
expect that the most important secondary configura
tions in a CI expansion for a given state should 
differ from the corresponding SCF species by at most 
a double excitation. Taken together these observa
tions suggest that use of a CI space which contains 
the SCF configuration and all species related to it 
by a single or double orbital substitution is an 
effective means of introducing correlation into elec
tronic wavefunctions. 

Since the number of doublY2excited2configura
tions is roughly proportional to n .(2m-n) it is 
possible to carry out such double-excitation CI treat
ments for fairly large basis sets and numbers of 
electrons but it is unfortunately not difficult to 
find situations in which such a theoretical treatment 
constitutes a rather poor approximation. The problem 
is that indirect interactions can take place because 
a more highly excited configuration has a non-zero 
Hel matrix element with one of the singly or doubly 
substituted species which in turn undergoes a strong 
direct interaction with the SCF or leading term in 
the CI expansion. To account for such effects it is 
necessary to bring more highly excited configurations 
into the CI space, but it is very impractical to deal 
with entire classes of such excitations. Thus while 
the order of the double-excitation space varies as 
roughly the fourth power of V-mn, the number of triple 
and quadruple excitations varies as the sixth and 
eighth power of this quantity respectively. 

This difficulty forces what may be called the 
second major decision in designing such calculations, 
namely how to safely restrict the excitation classes 
included in the CI space. Since the problem gets 
quickly out of hand by adding whole excitation 
classes another solution must be found, but once 
the reasons for the importance of configurations 
with such a high degree of excitation are recog
nized there is reason to believe that all that is 
really needed is to include species of this type 
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which undergo a strong indirect interaction with 
the leading term because of the presence of key 
secondary configurations in the CI state of in
terest. This analysis suggests a more controlled 
approach for including more highly excited species, 
namely to add all singly and doubly substituted 
configurations relative to a series of the most im
portant terms appearing in the CI expansions of 
each of the desired eigenfunctions. For p such re
ference configurationS the dimensio~ of the corres
ponding CI space would vary as p.n (2m - n)2, i.e. 
fourth order in '{mn'. 

In practice one hopes to keep p as small as 
possible but this eventuality is generally ensured 
by constructing the determinantal functions from 
the SCF MO's of some representative state. If se
condary configurations are quite important an NO 
transformation may prove useful in reducing the size 
of the reference or generating set but further dis
cussion of this point will be reserved until later 
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when more detailed computational procedures are out
lined. For now the main point is that by systematically 
increasing the size of the reference set one can 
build toward the full CI in a controlled manner and 
furthermore by simultaneously improving the AO basis 
the true solutions of the Schrodinger equation can be 
approached as closely as desired thereby. Whether the 
latter point is of practical significance needs to be 
discussed in terms of actual calculations. In any 
event in view of the definition of this type of theore
tical treatment it is appropriate to refer to it as 
the multi-reference double-excitation CI (MRD-CI) 
method*. 

*Other alternatives that should be mentioned in
volve the use of a large reference set and only 
the singly excited configurations related thereto 
[9], or else a single reference species, all singly 
and doubly excited configurations and a restricted 
number of triple and quadruple substitutions (de
termined by narrowing the list of orbitals which 
can be occupied in the more highly excited confi
gurations) [10J. 

The difficulty remains, however, that even 
after truncating the full CI space in this way the 
number of configurations remaining is still quite 
large, typically in the 10000-50000 range for re-
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latively simple problems and easily up to 500000 
if AO basis sets containing 70 - 100 functions are 
employed with several reference configurations and 
a moderately large number of correlated electrons 
(15 - 25). Since present-day methods [6-8J for the 
solutions of secular equations of general consti
tution are conveniently applied for orders up to 
5000 - 10000 it is obvious that additional simpli
fications have to be made. One means of doing this 
is to artificially restrict the magnitudes of p, 
m and n in designing such a CI treatment, but before 
relying on this eventuality entirely it is well to 
consider whether the entire MRD-CI space needs to 
be treated explicitly via a large secular equation 
to achieve the main objectives sought in the cal
culations. 

The possibility of considering only a selected 
subset of some generated space thus represents the 
third major decision which must be made in the or
ganization of CI methods. For the present purposes 
it is best to side-step this issue by noting that 
it is simply more general to employ a configuration 
selection, since obviously a null selection can be 
achieved with such methods as well by simply setting 
some threshold value equal to zero or by circumventing 
the routine entirely. 

Once the idea of making a configuration 
selection is accepted, there is then the obvious 
question of how to go about ordering the configurations 
in an effective way. A number of variations on this 
theme are available in the literature but to simplify 
matters it is helpful to categorize them according 
to whether they involve comparison of secular equa
tion results with and without test configurations 
[2,11J or some form of perturbation theory [12] on 
the one hand, and on the other whether an individu
alized [2,12J or a group selection technique [11] is 
employed thereby. Since the evaluation of the rela
tive importance of the configurations depends on 
how the selection is carried out it is necessary 
to consider what criteria are important in judging 
the various possibilities. Before turning to this 
point, however, an additional aspect of the calcu
lations should be considered, namely whether one 
should be satisfied with results for selected MRD-CI 
spaces even when such procedures are employed. 
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Since a selection method generally assigns an 
estimated energy-lowering capability ~Ei to each 
test configuration it is natural to ask to what 
extent the sum over such quantities for all unse
lected species at a given threshold value T appro
ximates the true energy lowering which would result 
from abandoning the selection entirely. In practice 
it is found [2,3J that the family of curves defined 
by E(T) + ALi ~Ei(T), where A is a simple linear 
parameter, has useful properties, for example. Since 
by definition the sum term in such expressions va
nishes for all finite values of A, it follows that 
all such curves converge to the same value at T = O. 
As a result an energy extrapolation scheme can be 
employed whenever a selection is carried out, whereby 
the accuracy thereof depends almost exclusively on 
the magnitude of the smallest threshold value con
sidered; in other words, the less drastic the selec
tion the more accurate the prediction of the eigen
value at the limit for the entire MRD-CI spage; a 
recently completed example for the ethylene (TI,TI*) 
state demonstrates this point quite well (Table 1). 
Furthermore it is found that property results for the 
individualized type of selection scheme used in this 
work are quite stable with respect to lowering of the 
threshold value [4]. Basically when an energy extra
polation is carried out one finds that the choice of 
the associated selection scheme is far less critical 
than might otherwise have been thought; for the most 
part such considerations have little more effect than 
to produce a different ideal value of the parameter 
which gives the most nearly constant curve in the 
family of E(T) + ALi" ~Ei species. From this point of 
view it can be conc uded that the selection should 
simply be done in a systematic fashion and as rapid
ly as possible. 

In conclusion in answer to the five questions 
raised in the foregoing discussion an MRD-CI method 
with an individualized configuration selection 
scheme and an associated energy extrapolation proce
dure has been devised. In the last analysis it is 
probably true that it can never really be proven 
that one choice of CI techniques is truly optimal 
but at the same time it should not be concluded 
therefrom that a method cannot be found which has 
clear advantages over any other procedure with the 
same function. In trying to explore the various possi
bilities as well as any other type of quantum mecha
nical treatment it is well to keep in mind all three 
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of the key objectives in such calculations of economy 
(timing), accuracy and generality. In what follows 
these points will be discussed in this order, with 
primary emphasis on the question of timing since this 
factor ultimately determines to what extent the CI 
method can be applied, i.e. how large an AO basis can 
be conveniently employed, as well as how many reference 
configurations and how small a threshold value can 
effectively be used in a given situation. Since a 
full CI in a nearly complete AO basis must closely 
approach the results obtainable at the Schrodinger 
equation limit, such timing considerations ultimately 
playa decisive role in determing how satisfactorily 
the other two goals cited above can be achieved in 
practical computations. 

III. TIMING OF THE MRD-CI CALCULATIONS 

To carry out the type of CI treatment out
lined above the following computation steps are 
necessary: 

1 ) 

2) 

Calculation of one- and two-electron integrals 
over AO's; 

Transformation of the AO integrals over symmetry 
orbitals* (done for each AO integral case); 

*In the present work only Abelian symmetry orbitals 
are used with coefficients of + 1 but there is also 
the possibility of carrying out a subsequent trans
formation from these simple species to any desired 
set of full point group symmetry orbitals. 

3) 

4) 

5) 

Calculation of SCF MO's for both closed-
and open-shell configurations (most con
veniently carried out using the results 
of step 2, i.e. with symmetry; 

Transformation of the symmetry orbital inte
grals to a basis of SCF MO's (or a set of 
natural orbitals; see step 8 below); 

Generation of the MRD-CI space and selection of 
configurations (calculation of 6Ei for ran
domly ordered sets of test species); 
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6) Construction of the Hel matrix for a selected 
portion of the MRD-CI space (for some minimal 
threshold value Tmin); 

7) Diagonalization of the above matrix 
desired roots at a series of values 
Tmin and energy extra~olation using 
suIts and the Li~Ei(T) counterparts 
step 5; 

for the 
of T~ 
these re
from 

8) Construction of the CI first-order density 
matrix and diagonalization to obtain natural 
orbitals for use in step 4. 

In addition if properties associated with the re
sulting MRD-CI wavefunctions are desired two other 
steps are required: 

9) Calculation of state properties using the 
density matrices of step 8; 

10) Calculation of transition density matrices 
for various pairs of states for use in compu
ting oscillator strength values. 

The AO integrals are generated in our CI 
package by using the IBMOL Vb program of Popkie and 
Clementi, while all other routines have been de
veloped at the University of Bonn by the authors and 
coworkers*. Many details concerning the timing of 

*The special diagonalization routines have been 
written by W. Butscher and E. Kammer [8] and the 
overall testing of the program system has been done 
in close collaboration with S. Shih. 

these routines may be found in a recent paper [4] and 
only a short summary of these results will be given 
in the present work. 

The CI part of the procedure begins with step 
5 and there it has been found that symbolic gene
ration of the MRD-CI space proceeds at the rate of 
2000 - 10000 SAF's (symmetry-adapted functions) per 
CPU sec with an IBM 370/168 single processor system; 
the large variation is due to the fact that more 
checking for duplicate configurations needs to be 
made if there are many reference species. The corres
ponding selection procedure requires the calculation 
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of MN Hel matrix elements, where M is the number of 
reference SAF's and N is the number of generated 
SAF's. In practice roughly 3000 such quantities can 
be calculated in a CPU sec (including the time for 
secular equation solutions as overhead), or about 
200000 per CPU min (the rate is 500000/min on a CDC 
7600 machine). As a result it is possible to handle 
MRD-CI spaces of dimension 500000 with several re
ference species in 5-10 CPU min on the IBM 370/168; 
furthermore very little 10 processing is required 

55 

for this part of the calculations. The manner in 
which the reference configurations are choosen for 
generating the MRD-CI space is clearly of importance 
in this discussion but this choice is most convenient
ly made on the basis of the results for larger secu
lar equations. 

The next step then involves calculating the 
Hel matrix for a selected portion of the generated 
space; this procedure generally requires more 10 
processing but this is still by no means a dominant 
feature of the calculations. The CPU times for this 
step run typically as: 1 min for order 1000, 5-6 min 
for order 4000 and 24 min for the largest case yet 
attempted (order 11896; see Table 1). Diagonalization 
times for the latter case were 4 CPU min/root and 
in general are less than what is needed for the 
matrix element generation. Overall the total time 
fZr.7 the CI procedure is found to increase as about 
n 3, where n is the number of s21ected SAF's, i.e. 
considerably less sharply than n • The total CI 
times are also observed to vary as roughly m5/2 
for an increase of basis set size of from 40 to 72 
AO's. 

To choose the reference configuration set the 
simplest procedure is to run a single-reference 
CI for a high selection threshold value (50 - 100 
~hartree) with parent SCF MO's ( or at least some 
closely related set). Secondary configurations 
which show up with large expansion coefficient 
(typically ~ 0.05) are then added to the original 
reference set. If the new configurations are dominant, 
i.e. the SCF description is poor, it is advisable 
to go a step further and generate NO's for the state 
in question through diagonalization of its associated 
first-order density matrix (step 8 above [14,15]). 
Even for the order 11896 case discussed earlier 
such a procedure takes only 3.5 CPU min per density 
matrix and for order 1000 species the time reduces 
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Table 2 Timing results for sample calculations for planar C2H4 
in a basis containing 84 contracted functions. Times re
fer to an IBM 370/168 single processor system. 

Computational Procedure Remarks Timing 

AO Integral Generation IBMOL Vb 28 min 45 s 
Symmetry Transformation Needed only once 20 min 20 s 
SCFCalculation Closed-shell 2 min 38 s 

Ground State 
(20 i tera ti ons) 

SCF calculation ~pen-shell 3 min 2 s 
(1f,~) State 

(23 iterations) 
MO Transformation Needed for each 4 min 34 s 

set of MO I S or 
NOls 

Small CI Case Generation of 2 min 20 s 
(Excited States) Configurations 
7 reference-3 root (183873 SAF1s) 
tre~tment, Tmin= 1.0x Configuration 
10- hartree, Selection 7 min 15 s 
1(1f.~) SCF MO·s 

H 1 Matrix 
C8nstruction 

47 s 

(1143 SAF·s) 
Diagonalization 57 s 
(Three Roots) 
First-order Den- 25 s 
sity Matrix Con-
struction (Three 
Cases) + NO gene-
ration 

Small Ground State Generation of 29 s 
CI Case Configurations 

(39904 SAF1s) 
3 reference-l root treat- Configuration 52 s 
ment, Tmin = lxl0-3 hart- Selection 
ree, 1(1f,1f l ) NO·s from 
above Hel Matrix 34 s 

Construction 
(672 SAF1s) 
Diagonalization 17 s 
(One Root) 
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Large Cl Case Generation of 2 min 20 5 

(Exc ited S ta tes ) Configurations 
7 reference-3 root 5 (183873 SAF's) 
treatment Tmin = 3x10-
hartree, l(n.TIlt) NO's from 
above Configuration 7 min 15 5 

Selection 
H 1 Matrix 4 min 13 5 
cOnstruction 
(3675 SAF's) 

Diagonalization 3 min 55 5 
(Three Roots) 

First-order Den- 1 min 45 5 
sity Matrix Con-
struction (Three 
Cases) 
Properties Calcu- 18 5 
lation (11 opera-
tors) 
Transition Moment 1 min 50 5 
Calculation 
(Three Cases) 

Large Cl Case Generation of 1 min 20 5 
(Excited State) Configurations 
6 reference-1 root (167168 SAF I 5) 
treatment Configuration 5 min 42 5 

Selection 
Hel Matrix 9 min 43 5 
Construction 
(4968 SAF's) 
Diagonalization 3 min 9 5 
(One Root) 
First-order 53 5 
Density Matrix 
Construction 
(One Case) 
Properties Cal- 18 5 
culation 
(11 Operators) 
Transition Mo- 56 5 
ment Calcula-
tion (One Case) 
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to about 10 CPU sec (an order 1720 case require 20 
CPU sec, for example). The normal procedure is then 
to run a second calculation with a larger reference 
set for a suitably small Tmin value and to use NO's 
if they are called for. In principle one must allow 
for the possibility of additional macroiterations of 
this type but in practice none is usually needed. 
One-electron property calculations can be carried 
out very rapidly once the first-order density matrix 
is at hand and the corresponding transition moment 
results are obtained with similar expenditures of 
CPU time (step 10). 

The speed with which the pre-CI steps can be 
done depends to a fair degree on the amount of symme
try present in Hel. For N2 and a basis of 72 functions 
[16] the AO integral generation requires 12.5 CPU 
min on the 370/168, while the symmetry transformation 
takes only half as long (5.7 min); subsequent MO 
or NO transformations then use only 2 CPU min. For 
86 AO's and the same system 10 CPU min are needed for 
the symmetry transformation, while for planar ethy
lene and m = 84 the time increases to 20.2 min. By 
lowering the symmetry one generally notes a decrease 
in the symmetry transformation times but an increase 
in the corresponding MO transformation time. As long 
as there is a moderate amount of symmetry at hand, 
basis sets of 100 AO's can thus be conveniently 
handled in the CI treatment with these programs o 

Finally a summary of timing results for a complete 
run for the 84 function ethylene basis is given in 
Table 2 for further consideration. 

IV. ACCURACY AND GENERALITY 

The timing results discussed above allow a 
large amount of flexibility in choosing the level 
of theoretical treatment to be employed. For high 
accuracy large reference sets are called for as well 
as high-quality AO basis sets. For small systems 
such as He2+ [17] or HeH? t18]it has been possible to 
to obtain 95 % of the to~al correlation energy with 
this method and to generate very accurate potential 
surfaces for these systems. In the case of BH it 
has been found that for the same AO basis the MRD-CI 
method (85 CPU sec) obtains an energy of -25.2273 
hartree (T = 0.5 ~hartree, five reference species) 
compared to -25.22153 hartree for PNO-CI [4,191. The 
corresponding extrapolated energy is -25.2275 hartree 
for the MRD-CI compared to a CEPA (non-variational) 
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estimate of -25.2259 hartree [19]. Similar results 
for N2 calculations have also been obtained [4,20J. 

Another indication of the accuracy of the 
MRD-CI method is the fact that when relatively large 
reference sets are used it is found that the extra
polated energy results do not vary strongly with the 
choice of MO's or NO's in the calculations, as one 
would expect to be the case once, the full CI limit is 
closely approached. In the long run , however , the best 
test of accuracy is made by comparing the calculated 
results with experiment but this topic will be taken 
up in detail in the authors' following contributions 
in this Institute. 

As for the generality of the method one again 
expects that as the full CI limit is approached 
for a reasonably flexible basis that no restrictions 
of this nature should be present. One of the severest 
tests which can be put forward for this point is 
the calculation of the dissociation energy of the 
N2 ground state, with the SCF or Hartree-Fock value 
tnereof showing an error of nearly 5 eV. Even with 
a relatively large basis (72 AO's) containing two 
separate d functions on nitrogen it is found that an 
error of 0.6 eV remains in this Do value once MRD-CI 
calculations are carried out [21], but at least 
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a large percentage of'the correlation error is re
moved thereby. The extrapolation scheme is very im
portant in achieving this result, however, as is seen 
by the fact that for relatively low T values (10 
~hartree) the multiplets for the various asymptotes 
of the ground state dissociation (at R = 20 ao) are 
separated by as much as 2.0 eV, whereas after extra
polation the true physical situation of essentially 
equal energies for all such species is closely approxi
mated. Similarly clear examples for the need of going 
beyond the results of truncated CI calculations can 
be found in the treatment of the vertical spectrum 
of ozone [22], for which errors in transition ener
gies of more than 1.0 eV are obtained at conventional 
T values if no extrapolation is effected. 

In the remaining lectures by the authors many 
more concrete examples will be discussed which indi
cate that the theoretical method outlined above is 
in fact applicable to all types of electronic states, 
including inner-shell and shake-up excited species, 
regardless of multiplicity, net charge or nature 
of the geometrical conformation. To conclude this 
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paper, however, it is perhaps well to mention that 
independent evidence for the overall reliability 
of the. MRD-CI procedure can be obtained by observing 
how stable its results are relative to further ex
pansion of the AO basis and reference configuration 
sets, as well as upon lowering the magnitude of the 
selection threshold. Whenever tests of this sort 
have been carried out, especially by the time that 
DZP AO basis sets have been employed, it has invari
ably been found that a high degree of stability is 
characteristic of this theoretical method. Further
more the fact that results obtained at this level are 
quite generally in very good agreement with the 
corresponding experimental data, as will be demon
strated in the following papers, bodes well for 
the future of this type of CI calculation. 
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I. INTRODUCTION 

The calculation of electronic wavefunctions 
is an important objective in quantum chemistry but it 
is evident that if even this could be accomplished 
without any approximation it would still not be suffi
cient to explain many types of molecular structure 
phenomena observed experimentally. In the spectra 
of molecular systems, for example, the intensity 
associated with a given electronic transition is 
often spread over a wide range of wavelength and in 
this instance the most that one can hope to obtain 
from a calculation of the electronic energy for the 
participating states at a single geometry is the 
approximate location of an absorption (or emission) 
maximum found therein. To go beyond the simple cal
culation of vertical spectra it is clearly necessary 
to introduce at least vibrational motion into the 
theoretical treatment and this objective is most 
easily accomplished using the Born-Oppenheimer Method 
[1J, or, as it is more commonly referred to among 
spectroscopists, the Franck-Condon Approximation [1J. 
In this paper a short review of this theoretical 
procedure will be given and results of some ab initio 
calculations of this type will be discussed. 

63 

Cleanrhes A. Nicolaides and Donald R. Beck (eds.), Excited States in Quantum Chemistry, 63-77. 
All Rights Reserved. Copyright © 1978 by D. Reidel Publishing Company, Dordrecht, Holland. 



64 ROBERT J. BUENKER ET AL. 

II. CALCULATION OF VIBRATIONAL WAVEFUNCTIONS 

The basic formulation of the Born-Oppenheimer 
is well-known and will only be briefly reviewed in 
this work. In essence the total molecular (or global) 
Hamiltonian can be divided into two parts. One is the 
familiar electronic Hamiltonian Hel, containing elec
tronic kinetic energy and all nuclear and electronic 
attraction and repulsion terms, while the other is 
simply the nuclear kinetic energy ~uc: 

(1) H = Hel + ~uc· 

If one neglects the fact that the electronic wavefunc
tions (eigenfunctions of He~) are dependent on the 
choice of nuclear conformatlon it is possible to 
solve the corresponding Schrodinger equation by a 
simple separation of variables, with approximate 
eigenfunctions written as products of electronic 
wavefunctions and functions of the nuclear coordinates 
only. It is important to note that this approximation 
is equivalent to saying that all derivatives of the 
electronic wavefunctions relative to the nuclear 
coordinates (i.e. coming from the Hn1c term) are of 
vanishing magnitude. In reality such-an assumption is 
generally·quite far from the truth; in fact, if it 
were the case no vibrational calculations would be 
possible at all, as will be discussed below. In justi
fying this procedure they simply noted the obvious, namel 
that such nuclear derivatives are always multiplied 
with reciprocal nuclear masses, and since electronic 
masses are several thousand times smaller than those 
of protons and neutrons, it is nevertheless a good 
idea to neglect such terms under normal circumstan-
ces. 

Having made this approximation it is clear 
that the problem is separable into two simpler types 
of Schrodinger equations, one involving exactly the 
same Hel operator as discussed in connection with 
the CI treatment, and the other having the form>in 
the simplest case of a diatomic molecule, of: 

1 d 2 
(-E l(R) + - dR2 )1/i (R) =-E (R) e 2~ v v 

In the latter expression R is the bond distance, Ee~R) 
is the eigenvalue of Hel obtained by pointwise solu
tion of the electronic Schrodinger equation,~ is the 
reduced mass and 1/1 and E are the vibrational eigen-v v 
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function and eigenvalue (usually referenced to the 
electronic energy potential minimum)*. 

*Analogous rotational and translational equations can 
also be derived in this manner, with the simplifying 
feature that the electronic energy is constant with 
respect to these nuclear variables. 

The method of solution used in this work for 
the vibrational equations is very similar to that 
described earlier for the purely electronic motion. 
A fixed basis of vibrational functions is assumed 
(usually Hermite polynomials or Fourier series) and 
a matrix representation of the vibrational potential 
and kinetic energy operator is formed; for this pur
pose a polynomial fit of Eel(R)is usually obtained. 
The desired approximate eigenvalues and eigenvectors 
are then obtained by diagonalization, exactly as in 
the CI method. More details of this procedure may 
be found in an earlier paper by the authors [3]. When 
more than one vibrational coordinate is present the 
simplest approach is to assume that there is effec
tively no coupling between such modes; this assump
tion reduces the vibrational problem to a series of 
one-dimensional Schrodinger equations, whereby the 
total vibronic wavefunction is then taken to be a 
product of a given electronic eigenfunction with 
appropriate vibrational functions of each coordinate: 

~(r;Rl···R ) = ~ 1(r;R1 ,R2···R )x~ (Rl)·~ (R2)···~ (R) , q e q Vl V2 Vq q 

where v1 . •••• Vq are the corresponding vibrational 
quantum numbers. If cross terms in the potential 
and kinetic energy expressions are not neglected the 
procedure must be somewhat more complicated but as 
long as the number of vibrational coordinates is not 
very large practical methods are available for impro
ving the theoretical treatment in this manner [4] . 

To calculate properties for such vibronic 
functions it is only necessary to evaluate matrix 
elements involving appropriate operators; in the 
case of transition probabilities two different vibro
nic species are needed for each vibrational transi
tion in the band system, using the expression: 
<-;'> I I '" II II =S~ l'(r;R1···R )x~' (Rl)···~' (R )x e vl ... vq e v1 ... vq e q Vl Vq q 
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x~~ 1"(r;R1 ... R )X~" (R1 ) ... ~" (R ) dT ldT ... dT 
e q Vl Vq q e Vl Vq 
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To evaluate these integrals it is convenient to first 
integrate over electronic coordinates and obtain what 
is conventionally referred to as the electronic tran
sition moment Re'e" as a function of all desired vi
brational coordinates: 
+ (R R) --5'¥ l' (r;R1···R )?¥ 1"(r;R1 ···R )dT 1 . 
R '" 1... e q e q e e e q 

Subsequent integration of the product of this func
tion (which is usually expressed as a polynomial fit 
in terms of the vibrational coordinates) with approp
riate combinations of ground and excited vibrational 
wavefunctions then gives the desired vibronic tran
sition moment results. The corresponding intensity 
or oscillator strength distribution for the entire 
electronic band system is then obtained using the 
relationship: 

f = 1/ <r> /2·lIE 
e'v'e"v" 3 e'v'e"v" 

with all quantities expressed in atomic units (liE 
is the corresponding vibronic transition energy) 0 As 
long as the underlying assumptions of the Franck-Con
don Approximation remain valid and suitably accurate 
electronic,vibrational functions are employed in the 
integral evaluations, such a procedure should be ca
pable of delivering a very detailed prediction of the 
appearance of band systems*, observed in molecular 

*At least those which are not spin-forbidden or are 
only quadrupole-allowed. 

spectra. 

III. EXAMPLES OF CALCULTATIONS FOR INTENSITY DISTRI
BUTIONS 

Beginning with a study of the ethylene spec
trum in 1972 [3] a number of calculations of the 
type outlined above have been carried out by the 
authors and coworkers and the results of these in
vestigations will now be discussed in some detail. 
A more thorough discussion of such findings can be 
found in the original literature in each instanceo 

Ao Oxygen 

The first example to be considered is the O2 
Schumann-Runge band system and neighboring transi
tions [5Jo Potential curves have been generated for 
the ground and various excited states of this system 
using a moderately large AO basis and the CI method 
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discussed in the first lecture in this series; and 
from these data it is apparent that several strongly 
avoided crossings occur in the 9-10 eV region of 
this spectrum as a result of th3 mixin§ of various 
valence states, including the B LU- TIu TIg3 species 
known to be the upper state in the Schumann-Runge 
transition, and certain4Rydberg states of like symme
try (such as the 3 LU- TIU TIg3pTIu component) 0 When such 
potential crossings occur it is necessary to scruti
nize the assumptions underlying the vibrational treat
ment discussed above, but since the3ca~culated mini
mal splitting of the two adiabatic LU curves is 
quite large (about 1 eV) there is good reason to 
expect that this aspect of the calculations is quite 
satisfactory. After taking account of the avoided 
crossing (Fig. 1 of Ref. [5]) and calculating the 
associated vibrational energies and eigenfunctions 
it is3found that the vibrational frequencies_of the 
two LU- states are quite different (758 cm 1 for 
the lower and 2970 cm-1 for the upper). The first 
value is in satisfactory agreement with the well
known experimental frequency of the Schumann-Runge 
bands (709 cm-1) and the location of the correspon
ding 0-0 transition also agreed quite well with 
the measured spectrum (6.07 eV calc. vs. 6.12 eV 
exptl.). 

The much higher frequency for the second 
3zu- state was not known, however, although the cal
culations of Yoshimine et ale [7J had recently led to 
much the same result. Since the ground state frequency 
of 02 is onl~ about half as large (1580 cm-1 exptl. 
vs. 1621 cm- calc.) the high excited state value 
was at first received with a certain amount of skep
ticism; in one of the more colorful formulations 
of this viewpoint it was argued that such a result 
was extremely unlikely since it would be equivalent 
to attributing triple bond character to an 02 exci
ted state. Nonetheless when the intensity distri
bution was calculated in the manner described3above 
three strong vibrational transitions to the 2 LU-
upper state were predicted at 9093, 10.29 and 10.63 
eV*, which coincided almost exactly with measured 

*Qualitatively similar results were also reported 
by Yoshimine et ale [7J. 

(and previously unassigned) absorption peaks at 
9.96, 10.28 and 10.57 eV respectively (known in the 
literature as longest band, second band and third 
band). Furthermore the calculated intensities for 
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these features agreed acceptably well with the measured 
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oscillator strengths of Huebner et ale [8J, particu
larly in the case of the two strongest species. 

The intensity distribution calculated for 
the vibrational transitions to the B3L Q- state also 
agreed quite well with experiment,whereby in this 
case it is shown to be quite important to evaluate 
the transition moment explicitly as a function of 
internuclear distance rather than assume constancy 
for this quantity for all geometrical conformations; 
this situation is easily understandable in the pre
sent case since a strong interaction between a valence 
and a Rydberg state is involved thereby and the in
tensities of transitions to these two types of states 
are quite different. In addition another of other 
weak vibrational transitions to upper 3nu were found 
in the calculations which also appear to fit in quite 
well with other unassigned features in the 02 spec
trum. Hence altogether it appears that the aD initio 
calculations give a quite accurate description of the 
spectrum in question and are able to explain a number 
of experimental observations thereof which hitherto 
had not been understood. 

B. HSO and SOH 

The first triatomic molecule to be discussed 
in the HSO system, which was first identified as 
a product of the reaction between 03 and H2S [9]. 
An emission spectrum was obtained in the latter 
experiments and considerable vibrational structure 
was observed. The first two electronic states of 
such a 13-valence-electron system are well known 
to be the 2A" and 2A' components of a 2n linear 
species and from the location of the measured spec
trum it was assumed that a transition between these 
states was involved. 

To study this question further potential 
curves for the two stretching and the.2f.HSO bending 
vibrations in both electronic states were carried 
out, in this case with SCF calculations [10]. Vi
brational energies and wavefunctions were calculated 
under the assumption of no coupling among the various 
modes and in addition it was simply decided to com
pute the intensity distribution without taking account 
of the variation of the electronic transition moment 
with nuclear geometry. The calculated 0-0 transition 
energy is 1.56 eV in this treatment compared to the 
corresponding measured result of 1.778 eV [9J. The 
emission spectrum measured by Becker et al. indicates 
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that the v"3 = 1 and v"3 = 2 transitions in the SO 
stretching mode from v'3 = 0 are the most intense of 
this type while the strongest SH stretching and 1= HSO 
bending species occur from v'i = 0 to vIti = 0 in both 
instances. These findin~s are mirrored quite well in 
the calculated results (Table 6 of Ref. [10]) and on 
this basis there seems little doubt that the previous 
experimental identification of the emitting system 
as HSO is correct. 
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In addition analogous calculations were carried 
out for the SOH isomer [11] to determine whether a 
similar spectral distribution is to be expected in 
this case. Instead, however, it was found that the 
To value for this system is much smaller than for 
HSO (0.57 eV) and furthermore that a notably less 
diffuse s~ectrum is probable for SOH (see Table 4 of 
Ref. [11]). Nonetheless the CI calculations indicate 
that SOH is more stable than HSO by some 12 kcal/mole 
and so the strong indication is that the thermody
namically less preferred system is the first to have 
been synthesized in the laboratory. 

C. Methylene and its negative ion 

For some time now one of the most actively 
pursued objectives in molecular spectroscopy has been 
to determine the triplet-singlet splitting between 
the lowest two states of methylene [12J. For a time 
the question appeared largely settled as photochemi
cal measurements gradually converged to a value of 
9-10 kcal/mole for this quantity while ab initio 
calculations started out at much higher values be
fore 1970 but in more recent times came out rather 
uniformly with a result in the 11 - 13 kcal/mole 
range. The discussion took an abrupt turn in 1976, 
however, when new electron detachment measurements 
for the CH2- ion [13J were3inttrpreted in a convin
cing manner in terms of a B1- A1 CH2 0-0 splitting 
of 19.5 kcal/mole, in signiflcant disagreement with 
both previous experiments and also with the best 
calculations (judged on a purely technical basis)as 
yet reported. 

These new dat~ sugge~ted very strongly that 
the To value for the A1 4-- B1 ionization of CH -
is 1.05 eV, for which a very strong energy loss 2 
peak (G) is observed in the etectron detachment spec
trum. Since both the 2B1 and A1 states are expected 
to have nearly equal bond angles and distances it is 
expected that only a single strong vibration transi
tion should be observed for this electronic system 
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and that is exacgly what is found. The geometry of 
the more stable B1 CH2 state is significantly diffe
rent, however, and thus one expects to see a progres
sion of lines (in the bending frequency) in its 
spectrum, again as found [13]. The origin of this 
spectrum was claimed to correspond to a weak peak 
(A) corresponding to an energy loss of only 0.20 eV, 
however, which by substraction led3to a value of 
0.85 eV or 19.5 kcal/mole for the B1-1A1 To value 
of methylene itself. Because a very detalled inten
sity distribution for the electron detachment process 
was now available it was of interest to calculate 
the corresponding results using the ab initio methods 
outlined above and this work was carried out in
dependently by Harding et ale [4] and by the authors 
and coworkers [15J. 

The resulting theoretical data agreed quite 
well with one another and in both cases the rather 
surprising conclusion was drawn that neither of the 
previous experimental assignments for the 0-0 A1-3B1 
transition of CH2 is correcto Instead a value of 0.50 
eV was indicated in the calculations, some 0035 eV 
below the electron detachment result and some 0014 eV 
above that assumed on the basis of the most recent 
photochemical data [16]. On1the20ther hand there was 
general agreement that the A1- B1 electron affinity 
of 1.05 eV is quite accurate; in the authors' own 
work, for example, a direct EA value of 0081 eV is 
obtained, which from experience with analogous cal
culations for C and C- should be 0.20 eV too low, 
i.e. after making a straightforward correction for a 
similar error in the CH2-CH2- calculations one 
arrives at a value of 1.01 eV, only 0.04 eV be-
low what is observed. 

Furthermore clear possibilities for reconcil
ing the disagreement between the two types of experi
mental results for the 3B1-1A1 0-0 splitting were 
readily available from the new calculations, namely 
that the true 0-0 peak had not been seen in the photo
chemical work (the discrepancy here is equal to one 
quantum of the bending frequency in the upper 1A1 
state or roughly 0.15 eV) but instead only the 1 A-- 0 
counterpart calculated at 0.36 eV, and that the 
electron deta1hment2measurements had1found2either 
two hot band A1 d- B1 or cold band A1 A- A1 tran
sitions at low kinetic energy loss and instead the 
true 0-0 peak of interest was the C species of 
Zittel et al., corresponding to a splitting of 0.50 
eVe Under the circumstances it would be premature 
to say that the calculations have settled this ques-
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tion entirely but at least it is clear that the two 
experimental interpretations are in conflict with 
one another in this instance and that the theoretical 
predictions for the corresponding intensity distri
bution are very consistent with what is actually 
measured in the experimental studies. 

D. HCN and DCN 
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1he HCN molecule is well-known to be linear 
in its ( L+) ground state and to possess a number of 
low-lying (TI,TI*) states. In 1953 Herzberg and Innes 
reported a detailed spectrum for this system as well 
as DCN in the 1700 - 2000 AO region which appears 
certain to involve transitions between these two types 
of states. On the basis of this work these authors 
concluded that two distinct transitions were involved 
there in, which they referred to as the a. - X and 
8 +- X band systems. A controversy has also developed 
over the assignment of these transitions, however, 
with Herzberg and Innes concluding on the basis of a 
rotational analysis of the spectrum that the a. and 8 
upper states are both bent A" species and theoretical 
calculations [18 19J indicating that they are 
instead 1A" and 1f states respectively. The problem 
is that only one A" (TI,TI*) species pos~esses a bent 
geometry, namely that correlating with L- for the 
linear molecule. 

Recent MRD-CI 9alculations lead1to intensity 
distributions for the A" - 1 L+ and 2 AI - 1L + 
transitions which are in very good agreement with 
the measured absorption pattern, although a reassign
ment of the original bending progressions [17] is 
necessary to obtain consistency between experiment 
and theory in this case. Furthermore the observed 
predissociative behavior of these transitions is 
also explained on the basis of these calculations. 
Nonetheless consideration of the rotational manifold 
in both the a-X and 8 - X systems have led Herzberg 
and Innes to conclude that no AI state can be involved 
in either case, even though it is extremely unlikely 
that more than one bent iA" HCN state exists in the 
spectral region in question. The matter is thus open 
to further investigation, with an explicit treatment 
of the rotational intensity distribution in the (TI,TI*) 
transitions of HCN and DCN having been undertakeno 
A recent suggestion based on semiempirical calcula
tions l20] that in fact one of the two upper states 
is a 3A" species also needs to be considered in this re
gard, but the fact that both band systems have been 
seen in UV absorption studies certainly would need to 
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be reconciled quantitatively with an assignment in 1 
terms of such a spin-forbidden transition from the E+ 
ground state. 

E. N2H2 and N2D2 

The methods employed above are easilyextend
able to systems with more than three atoms, particu
larly as long as one continues to assume that there 
is no coupling between the various vibrational modes. 
The first example of this type to be discussed is 
the 1(n,n*) transition in N2H2 and N2D2. An attempt 
to predict the vertical transition energy for this 
system with MRD-CI calculations [21J was somewhat 
unsettling because the value obtained was some 0.6 
eV below the location of the most intense transition 
observed for the corresponding band system by Back, 
~illis and Ramsay (BWR) [22]. Since the ground and 

(n,n*) state possess very similar characteristics 
it was expected that an error of at most 0.2 eV in 
the vertical electronic energy could be expected, 
in agreement with the experience obtained with this 
CI method in numerous other examples. As a result 
Vasudevan et ale speculated that the measured ab
sorption maximum did not correspond to a vertical 
transition and suggested a different assignment for 
the vibrational structure than that given by BWR. 

In order to test this hypothesis potential 
curves were calculated for each of the six yibrational 
coordinates of N2H2 in both the ground and (n,n*) 
excited states, and vibrational wavefunctions, ener
gies and corresponding vibronic intensities were de
termined from these results [23J. It was clear from 
these investigations that the earlier speculation of 
Vasudevan et ale for the expected non-verticality 
was incorrect, but nevertheless a closer analysis of 
the calculated intensity distribution showed a great 
similarity to the measured data. The main qualita
tive point which came out of the calculations was that 
the formally dipole-forbidden transition in the 
trans-equilibrium conformation becomes vibronically 
allowed through the NH antisymmetric stret~hing vi
bration \>5' 1. e 0 it was found that IRe '~" J increased 
fairly qU1ckly from zero once a vibrat10n of this 
type was executed. Under these circumstances the 
strongest vibrational transition involving the NH 
antisymmetric coordinate is 1 - 0 and not 0 -'- 0, 
even though the latter corresponds much more closely 
to a strictly vertical t~an~ition. Because the \>5' . 
excited state frequency 1S 1n the order of 0.4 eV 1t 
was clear that this observation reduced the apparent 



VIBRATIONAL WAVE FUNCTIONS AND ENERGIES USING MRD-CI TECHNIQUES 

discrepancy from the previously assumed value of 
0.6 eV to somewhere in the 0.2 eV range, in agree
ment with the earlier experience with the MRD-CI 
method. 
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Nevertheless difficulties remained in trying 
to match up the calculated and measured intensity 
distributions since the observed ~HNN bending progres
sions were notably longer from maximum to tail than 
was, indicated in the computations. It was noted, how
ever, that by making a change of three quanta in the 
previous experimental assignment that a very good 
correlation between calculation and experiment was 
forthcoming, except that in a few instances this ad
justment seemingly forced the invoking of negative 
values for the bending quantum numbero On the other 
hand a still closer look at the calculated results 
showed that another explanation for such extraneous 
transitions was readily available, namely as being 
induced by a different antisymmetric mode, namely the 
v4 torsion species. Since the v4' and v5' frequencies 
are quite different, this meant a one-to-one corres
pondance should exist between certain vibrational 
transitions which are separared by the difference 
(v4' - v5') or some 2900 cm- • Because of the fact 
that the quantity 4v2'- v3' was also equal to around 
2900 cm-1 it was clear that it would be very diffi
cult to tell whether the spectrum consists of two 
parts, induced by v4 and v5 respectively, or whether 
there were only one inducing mode, as implied in the 
original BWR interpretation. In other words the calcu
lations did appear to be consistent with the experi
mental findings but is was difficult to be certain if 
this agreement did simply come about by accidento 

Because of the near equality of the frequency 
combinations mentioned above, however, it was clear 
that certain doubling phenomena were to be expected 
in the experimental spectra if the two-inducing-mode 
interpretation were correct, but not if only one 
mode was responsible. This observation led to a re
examination of the experimental data by BWR to test 
the various possibilities and the result was that 
line doubling was found in numerous instances in the 
spectral region predicted by the calculations [24J. 
As a result there is now strong evidence that the 
theoretical vibrational treatment does give a very 
accurate description of the band system in question 
without having made any assumptions of a semi-empi
rical nature. 
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F. Photoionization of Ethane 

As a final example of this type of calcu
lation the photoionization spectrum of ethane will 
be discussed (25]. Over the years there has been a 
controversy about the order of the IP's in ethane 
and similarly over the assignment of its PES. Be
cause there are 18 vibrational coordinates in this 
instance no attempt was made to calculate potential 
curves for all such species in the ground and various 
ionic states; instead emphasis was placed on those 
vibrations which are expected to be excited upon 
ionizationl, i.e. for which the equilibrium values for 
such quantities are thought to be significantly diffe
rent before and after ionization. The latter (quali
tative) information can be obtained to a satisfac
tory degree from the Mulliken-Walsh Model for mole
culargeometry [26]. 

The procedures employed are others wholly simi
lar to those discussed above, with the exception that 
the transition moments (or photoionization cross-sec
tions) are assumed to be independent of changes in 
nuclear geometry. The subject is fairly complicated 
but a detailed discussion of the calculated results 
may be found in the original reference [25J. What was 
found is that the regular structure with a 0-8 tr~si
tion observed at 11.56 eV [27] is due to the E - B 
ionization, with progressions in both the CC st¥etcfiing 
(v,) and4HCH bending (v11) vibrations coinciding very 
closely in the1spectrum (average exptl. spacing of 
about 1170 cm- [27]). In some ways such an assignment 
is surprising because the calcu*ations show clearly 
~hat the lowest energy for C2H6 is obtained for the 

A1g state but for a much larger CC bond length than 
for the neutral ground state; the latter fact causes 
the ionization spectrum for this system_to be too dif
fuse to be assigned to a nearly 1200 c~ ~rogression 
[281, however, and so the alternative Eg-ZBg assignment 
seems quite reasonable, espec~ally since very good 
agreement is again found between the calculated and 
measured intensity distributions. 

The fact that the other component of the 2E 
state has the same symmet2y in a distorted C2h nucl~ar 
conformation as does the A1g counterpart complicates 
the interpretation of this spectrum beyond 12.6 eV, 
however. The problem is that in the high-symmetry 
arrangements their two potential curves can cross 
but for slightly distorted geometries they undergo 
a sharply avoided crossing. As a result the usual 
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Franck-Condon Approximation of complete separability 
of nuclear and electronic motion is no longer accept
able and a more thorough treatment of the non-adia
batic coupling needs to be carried out. Nevertheless 
the fact that the vibrational structure becomes very 
irregular in the region where such sharply avoided 
crossings are predicted to occur is at least a good 
qualitative indication that the electronic (CI) cal
cUlations are accurate to within the usual error 
limits of a few tenths of an eV in this case as well. 

In conclusion there is a great deal of evi-
dence that the results of MRD-CI calculations with 
reasonably large AO basis sets can be used to give 
quite accurate predictions of the vibrational struc-
ture in general electronic transitions. There are 
still some unresolved questions about the interpre
tations of certain of the calculated spectra but it 
does not appear that simply by enlarging the basis 
sets or improving the CI treatments that the calcu-
lated results will change to any great degree. Cer
tainly one objective in the future is to go beyond the 
Born-OppenheimerApproximation in making such predictions 
and work in this direction is already in progress. 
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CI CALCULATIONS OF VERTICAL EXCITATION ENERGIES AND 
OSCILLATOR STRENGTHS FOR RYDBERG AND VALENCE STATES OF 
MOLECULES 
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R.J. Buenker 
Lehrstuhl fUr Theoretische Chemie 
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INTRODUCTION 

Procedures for the calculation of transition 
energies in molecules should be designed in such a 
manner that they can treat states of any multiplicity 
and characteristics, i.e. valence-shell or Rydberg 
states (or a mixture thereof) or those corresponding to 
inner-shell excitations, for example. Furthermore such 
methods should be applicable equally well to the study 
of valence-shell or inner-shell ionization as well as 
to the calculation of shake-up states. The MRD-CI 
method is in principle capable of performing according 
to such requirements. 

The treatment of Rydberg states requires in
clusion of the respective long-range functions in 
the AO basis set employed in order to represent the 
expanded charge density of the upper orbital in such 
states. These orbitals can thereby be placed at the 
nuclear centers or in the "midpoint" of the molecule 
Q,2J, whereby the latter location is conceptually more 
appealing (united-atom character of the orbital) and 
has sometimes computational advantages (reducing the number 
of AO's); orbital exponents (for gaussian functions) 
for the lowest members of the Rydberg series have been 
optimized in various instances 0,2, 3J and are found to 
be relatively insensitive to the specific molecular 
environment. (The same exponents are adequate, to 
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describe equivalent Rydberg series in C2H2 l4], C2H4 [?J 
and C4H6 [5J, for example). 

The success of the calculation of transition 
energies depends on the extent to which differences 
in correlation energy between the two states involved 
in the transition are accounted for in the treatment 
employed. A major factor thereby is again the AO basis 
set (since the MRD-CI can be designed to closely 
approach the limit of a full CI) and present-day rou
tine calculations make generally use of a double zeta 
(DZ) basis augmented by various polarization functions 
in the form of nuclear-centered d functions and/or bond 
functions. A broader discussion of this AO basis set 
question can be found in a recent review l6J. At the 
same time it is also obvious that it is not always 
required to correlate ~ the electrons if energy 
differences between states are to be calculated; in 
particular it is common usage to keep the 1s-shell (and 
in second-row atoms the K andL shell) doubly occupied 
in such investigations. This is of course not possible 
if inner-shell excitations are studied; such calcula
tions require correlation of all electrons and thus 
lead to somewhat larger CI spaces than necessary for 
the investigation of outer-shell phenomena. 

Finally in the calculation of ionization 
energies by CI methods it is more difficult to account 
for the proper balance of the correlation energy diffe
rence between the two states (neutral molecule and the 
ion) than in excitation processes, simply because in 
one system only n electrons are to be correlated where
as there are (n+1) in the other; in addition the con
traction in the MO's upon ionization (especially in 
inner-shell ionization) plays a role. This observation, 
however, does not exclude the application of CI methods 
to the calculation of ionization potentials (indeed 
they seem to yield for all practical purposes the 
same results as the corresponding Green's function 
treatments once the same AO basis is employed [7]), 
it simply suggests that larger AO basis sets including 
more polarization functions must be employed to obtain 
equivalent accuracy as in the calculation of transition 
energies. 

In the following sections a variety of ex
amples will be presented in order to show in line with 
the above discussion the applicability of the MRD-CI 
method to the calculation of electronic transition 
and ionization energies in polyatomic molecules. In 
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addition to the electronic energy difference ~Ee bet
ween various states intensities will also be ca~cu
lated in numerous instances. They are obtained in form 
of the oscillator strength f, evaluated in the so
called dipole and velocity form of the operator: 

(1) f(~) = 2/3 I <l}!' Irll}!">1 ~.~Ee and 
(2) f(V) = 2/3 <l}!' ~ l}!" /~Ee' 

II. SPECTRA OF SATURATED SYSTEMS 

The first excited states in simple saturated 
molecules such as water, hydrogen sulfide, ethane 
and propane have essentially Rydberg character and 
can be described quite often by a single dominant 
term in the CI expansion. 

A. Water 

The vertical transition energies ~Ee 
(determined as difference between the electronic 
energy of ground and respective excited state at the 
ground state equilibrium geometry) to various states of 
H20 obtained by MRD-CI calculations are compared with 
the corresponding experimental quantities in Table 1; 
the AO basis set employed consists of 24 contracted 
gaussians [8 J . 

It is obvious from the table that discrepan
cies between calculated ~Ee values and experimental 
transition energies are in every instance smaller than 
0.2 eV, which is a typical error limit experienced in 
many other MRD-CI studies of molecular transition ener
gies employing an AO basis of DZ quality including some 
polarization functions. It should also be mentioned 
that at the time the results of calculations were pub
lished the experimental value given for 3B1 was 7.2 eV; 
only the more recent electron impact measurement 191 
brings the experimental and the prior predicted theo
retical value of 6.9 eV in very good accord. The 
characterization of the upper states in the transi
tions is in terms of (the dominant) Rydberg MO's al
though the wavefunction expansion show (especially for 
the 3s) also some hydrogen admixture. It is furthermore 
obvious from the calculations that the 4.5 eV feature 
observed in a number of experimental studies D oj 
does not correspond to a vertical electronic H20 
transition. Finally it is seen that the calculated 
IP's underestimate the corresponding measured values 
by a relative large margin in this treatment. Both 
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Table 1 Comparison of calculated and experimental 
energies (in eV) in H20a). 

State present Experimenta 1 
MRD-CI Ref. 19] 

~:l}ground state 0.0 0.0 
6.90 7.0 (7.2) 1 1 b1 ~ 3s -B1 7.30 A 7.4 

3A } 9.04 8.9 1 2 b1 --+ 3py 
9.20 9.1 A2 

3A 1 9.01 9.3 1 1 3a1 ---+ 3s .... 
Al 9.80 B 9.7 

3A 1 9.65 9.81 1 1 b1 -~ 3px .... 
Al 10.32 D 10.16 (000) 

38 1 9.84 9.98 1 1 b1 ---+ 3pz ,., 
B1 9.90 C 10.01 (000) 

38 ) 10.99 11.1 1 2 3a1 --+ 3py 
11.21 (11.46) B2 

~B1) 3a1 ---+ 3px 
11.68 

B1 11.72 (11. 77) 
3 11.53 Al 3a1 --+ 3pz 
2B1 b1 --+ 00 12.12 (12.61) 
2 14.06 (14.7) Al 3a1 --+ 00 

a) Notation: pz possesses aI- py possesses b2 and px 
transforms like b1 symmetry. 

trans iti on 
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the magnitude as well as the sign of the deviation 
(the ion with n electrons is represented somewhat 
"better" compared to the X1A1 ground state molecule 
with n+1 electrons) is expected from the discussion 
given in the Introduction. Furthermore there is always 
some uncertainty whether the two values (vertical 
electronic energy difference in the theoretical treat
ment and experimental IP) can strictly be compared with 
one another. 

Oscillator strengths for the various transi-
tions in H20 are contained in Table 2. There is re
latively good agreement between corresponding fer) and 
f(v) values, and it is also seen that the calculated 
data represent the measured quantities quite satis
factorily. It is furthermore interesting that there are 
relatively little deviations when the wavefunction 
corresponding to the large threshold of T = 100 whart
ree is employed for evaluation of the f value instead 
of the more appropriate expansion at T = 20 w hartree • 

In summary then it can be said that the MRD-CI 
calculations at the present level (as well as CI cal
culations of various other groups on this molecule ~ 1]) 
give a quite satisfactory description for the gross 
features of the H20 spectrum. 

B. Hydrogen Sulfide 

Similarly reliable results as for H20 are obtained 
from an equivalent treatment of hydrogen sulfide n2J. 
In this case transitions into valence-like sulfur 
3d MO's are also found (at quite low energy) in addi
tion to the various Rydberg series of s, p and d 
character (lowest member 4s, 4p and 4d) originating 
from the 5a1 and 2b1 valence MO's; the latter series 
are wholly analogous to those in H20. In fact, the 
first broad feature between 40000 and 60000 cm-1 in the 
H2S spectrum U3J which has been explained under the 
assumption of a predissociation mechanism D4J in
volving two or more states [13J is predict1d by the 
MRD-CI work to or~gtnate from the Rydberg B~(2b1' 4s) 
and valence-like ' A2(2b1,3dxz) states which both 
possess the same symmetry upon execution of an 
asymmetric stretching vibration and are hence capable 
of interaction. The maximum in absorption for this 
first broad band is found to coincide almost exactly 
~ith the calculated vertical transition energy of the 

B1(2b1,4s) state, and the calculated oscillator 
strength of 0.06 is also in good agreement with the 
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Table 2 Oscillator strengths for various electronic transitions 
in water obtained from MRD-CI treatments truncated at a 
selection threshold of T = 20 ~h and T = 100 ~h respec
tively 

T = 100 hlh I = 20 ~h 
State f(r) f(V) f(r) f(V) Experimental 

A 1B 0.0604 0.0765 0.0592 0.0779 0.044a) 1 
0.060 + 0.006b) 
0.052 c) 

B 21A 0.0742e) 0.0722 e) 0.0689 0.0680 0.05a) 
.... 1 1 
C 2 B 0.0133 0.0079 0.0120 0.0083 d) 
.... 1 1 
D 3 A 0.0141 0.0165 0.0130 0.0150 d) 1 

31B 0.0001 0.0002 0.0002 0.0002 
1 1 

0.0035 0.0057 0.0036 0.0071 B2 

a) K. Watanabe and M. Zelikoff, J. Opt. Soc. Am. 43(1953)753. 
b) E.N. Lassettre and A. Skerbele, J. Chern. Phys. 60(1974)2464. 
c) A.J. Harrison, B.J. Cederholm and M.A. Terwilliger, J. Chern. 

Phys. 30(1959)30 . ... 
d) Observed ratio D / C estimated to be 1.2 according to b), 

the value of the present work is 1.084 (using f(r)). 
e) If all contributions with I cic j I <10-4 are neglected, f(r) = 

0.0714, f(V) = 0.0708. 
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value of 0.04 estimated from experiment for this 
quantity 0 

Furthermore the effect of adhering to a core 
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of diverse closed shells in the entire MRD-CI expansion 
can be seen quite clearly from Table 3. The total 
ground state energy is lowered by as much as 0.0908 
hartree (2.47 eV) if only one orbital is kept doubly 
occupied in constructing the configurations instead of 
both the sulfur K and L shells; nevertheless1energy 
differences between x1A1 and the first four B1 states 
differ only by as little as 0.02 eV upon the same 
change in the theoretical treatment. Since the number 
of configurations to be processed has increased thereby 
from 1477 (core = j) to 5737 (core = 5) in the ~round 
state and from 9503 to a total of 44841 in the B1 
states such a procedure which also correlates the 2s 
and 2p electrons of sulfur is certainly not necessary 
if emphasis is placed only on attainment of transition 
energies. Finally it should be pointed out that a 
similar CI study has been .~erformed independently by 
another research group [15J and the results agree 
remarkably well with those discussed here, empha
sizing the fact that present day theoretical CI 
calculations have reached the point at which they 
can be employed to give quite reliable information 
complementary to experiments. 

C. Ethane and Propane 

The third example in this section deals with 
ethane and propane~ details can be found in the ori
ginal references [!6,17J. 

In ethane the two highest-lying occupied MO's 
3a1 and 1e are al- most isoenergetic and hence the 
varTous RydBerg series with the same upper MO origi
nating from these two valence-shell lower species also 
lie very close in energy. Indeed it is seen from Table 
4 that a total of five allowed transitions falls in the 
small energy region between 9.86 and 10.0 eVe The cal
culated total f value is 0.288 (f(~) is evaluated in 
the ground state MO basis but if the excited state MO 
basis is used throughout f(r) = O.280}and compares 
quite well with the intensity for the first broad 
ethane band estimated to possess an oscillator strength 
of approximately 0.3. 

It is also seen from Table 4 that the of ten
heard statement (based on arguments that the corre-
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Table 3 Comparison of calculated vertical energy differences ~Ee 
between the H2S ground state and various excited states 
employing a core of one and 5 MO·s respectively. 

core:: 1 ~ (ls)2 /\ 2 2 6 core = 5 = (ls) (2s) (2p) 
State ~Ee (eV) ~Ee (eV) 

Ground 0.0 0.0 
State (-398.8894 hartree) (-398.7986 hartree) 
118 6.21 6.22 1 
218 7.76 7.78 1 
318 10.98 10.96 1 
418 12.23 12.22 1 
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Table 4 Calculated vertical excitation energies (in eV) and 
oscillator strengths f for C2H6 

State Excitation Polari- f(r) SCF MRO-CI 
zation 

1A 
19 

Ground State 0.0 0.0 

3E 
9 

leg ---4 3s 9.29 9.01 
3 A1g 3a1g ~ 3s 8.69 9.05 

1E 1e 
9 9 

-3s 0.0 9.38 9.16 

21A 
19 3a1g ..-.... 3s 0.0 9.21 

3E 1e -43po 10.01 9.85 u 9 
3 A2u 3a1g --t 3po 9.34 9.73 

1E 1e -3po (x,y) 0.056 10.08 9.91 u 9 
1A 

2u 3a1g ~ 3po z 0.144 9.44 9.86 

23E 1e ~ 3pTI 9.88 u 9 
23A " 9.77 2u 
3A " 9.97 1u 
21E " u (x,y) 0.002 9.99 

21p; " z 0.020 9.99 2u 
1 A1u " 0.0 10.04 

33E 
u 3a1g --t 3pTI 9.53 9.97 

31E " (x,y) u 0.058 9.50 10.00 
2 A1g 3a 1g -+00 11. 72 12.22 

2E 1e --t 00 12.34 12.25 
9 9 
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lation energy is always larger for closed-shell ground 
than for open-shell excited states) that SCF transition 
energies always underestimate the true ~E values is 
incorrect; indeed the opposite situation holds for all 
the ethane states of Table 4 depopulating the 1eg MO. 
This constitutes one (of many) examples in which the 
correlation energy of the excited state is larger than 
that of the closed-shell ground state. 

The assignment of the ethane IP's has long been 
a matter of controversy: Koopmans' th20rem yi2lds 
essentially the same ene2gy for both Eg and A1g ions, 
the SCF procedure finds A1g to be more stable wfiile 
the MRD-CI calculations ~ 6 J give essentially equal 
stability to both species (at the ethane ground state 
equilibrium geometry). Since the experimental PES shows 
a distinct structure with various peaks it is not 
sufficient to only investigate the vertical IP; instead 
a treatment which takes into acCOUnt the various geo
metrical perturbations associated with ionization is 
called for in this case in order to obtain a reliable 
relationship between the theoretical C2H6+ electronic 
structure and the measured PES, and such a treatment 
will be dealt with in the subsequent lecture. 

Finally, in one respect the situation in propane 
is quite analogous to that calculated in ethane: in 
this molecule there are three (highest occupied) orbi
tals which are of very nearly equal stability namely 
6a1, 4b2 and 2b1 , and hence the low-energy spectrum of 
propane is calculated to consist of a variety of 
closely overlapping Rydberg transitions originating 
from these orbitals [:l7J. There is one difference how
ever: while in ethane the first Rydberg members to 
which transitions are allowed by the dipole selection 
rules are of 3p symmetry, excitations to the lower 3s 
Rydberg MO in propane is dipole allowed for all three 
series. 

Before concluding this section a remark on 
Rydberg states of positive ions seems in order. While 
the term values for Rydberg s, p and d series in neu
tral molecules are fairly constant from one molecule to 
another (roughl¥ 19000 cm-1 for 3p and 13000 cm-1 for 
3d, for example), those for positive ions are expected 
to be considerably larger since the outer electron 
moves effectively in a field of two positive charges 
rather than one. Acco2ding to this simple model R is 
then replaced by Zeff .R = 4R in the Rydberg for~ula 
and a similar change must be made for the effectlve 
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charge in the radial+part of the wavefunction. In fact 
calculations on C2Hh show that optimized Rydb~rg func
tions are considera~ly more contracted in C2H6 than 
in ethane itself and predi9t term values in C~fth 
of approximately 68000 cm- and 54000 cm-~ Tor 
3s and 3p respectively, i.e 2.5 to 3 times larger than 
in neutral molecules. 

III. MOLECULES WITH LOW-LYING RYDBERG AND VALENCE STATES 

The vertical electronic spectrum of a large 
number of molecules which possess relatively low-
lying unoccupied valence-shell MO's has been stu-
died by the MRD-CI treatment (or similar CI tech
niques). Examples are formaldehyde, thioformalde-
hyde, acetone, thioacetone, ethylene, butadiene, ben
zene, pyrrole, a large number of triatomic species 
(like 03, N02, CO2-, C3),_various molecules of the type 
ABH or AHn (NH3 , CH2 , CH2 , NH2' HOCI, H02' HN2 , HC2 , 
HF2 , HS2, HCO, HCN, HSO, HSiN, HCS, HCO+, HCS+ with the 
isomers HCIO, HOC etc.) as well as several diatomic 
molecules (C2 , 02, N2). For the larger species only the 
vertical spectrum has generally been obtained while 
sections of the various potential curves have been 
calculated for the molecules with fewer degrees of 
vibrational freedom. In the present context only a few 
examples will be treated. 

A. Ozone 

Experimentally the ozone spectrum between 2 
and 5 eV is well-characterized by the weak Chappuis 
(2.1 eV), Huggins (3.5 - 4.2 eV) and the strong and 
broad Hartley bands (max. 4.86 eV). Various peaks 
at lower energy are observed in the electron impact 
spectrum D9J and numerous features at higher energies, 
all of which are unassigned, are also known [?OJ. The 
recent MRD-CI calculations [2'!] separate the ozone 
transitions in essentially three groups: 
a) transitions in the 1 to 5 eV area arise predo
minantly from excitations out of the energetically 
neighboring 1a2' 4b2 and 6a1 MOls into the unoccupied 
2b1 species 
b) transitions in the energy range to follow (up to 8 
eV) result from double-excitations from the three 
orbitals just mentioned into the 2b1 MO 
c) higher energy transitions (> 8 eV) involve Rydberg 
states (the lowest singlet state 4b2 ~ 3s is calculated 
at 9.21 eV) as well as excitations into an antibonding 

d'< type orbital. 
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Again the agreement between the measured 
absorption maximum and the calculated1 vertical /:::,. E 
values is very good: 1.95 eV for the B1 (6a ,2b~)e 
Chappuis band (2.1 eV exptl.), 3.60 eV for the Huggins 
band (exptl. 3.~ eV) which is pr2dicted2to arise from 
essentially 4b2 -4 fb12 and 6a1 ~ 2b1 configurations, 
and 4.97 eV for the B2(1a2, 2b1 ) Hartley transition 
(exptl. maximum 4.86 ev). The energy extrapolation 
procedure is especially important for the treatment of 
rhis1latter state, since the energy difference for the 
B2- A1 states at a selection threshold of T = 30 ~h, 

(raw secular equation result) for example, is 6.7 eV, 
i.e. 1.7 eV higher than the value obtained by the use 
of the extrapolation procedure. This result points 
out very clearly the danger in neglecting the large 
number of weakly interacting configurations in the 
CI entirely • Hence the main difference between the 
present work and another CI study f?2J which finds the 
Hartley band considerably higher in energy (between 5.6 
and 6.09 eV depending on AO basis) seems to lie in the 
CI truncation in the latter study. It is also interesting 
that upon asymmetric distortion both the Huggins and 
Hartley states will have the same spatial symmetry 
giving rise to interaction which seems to play an 
important role in the ozone photolysis. 

The broad maximum in the 7.18 eV area is ~re
dicted to arise predominantly from 4b2 1 a2 ~ 2b1 
excitations (calculated f =20.14 x 10-2, /:::"Ee = 7.26 eV) 
although th3 4b2' 6a1~2b1 (calc. /:::"E2= 6.~72eV and f2 
= 0 2 x 10- ) and a combination of 4b2 ---+ 2b1 and 6a ---t 

2b ~ (calc. /:::"Ee = 7.34, f = 0.5 x 10-5 ) might also add 
to1the intensity. The strong intensity feature around 
9.3f eV is prerticted to arise from 4b2~3s (f = 0.3 x 
10:2), 6a1;~s.~f = 0.1 x 10-1) and 6a1-4o* (f = 0.24 x 
10 ) trans1tlons. 

Among technical details [21J it should be 
mentioned that in all calculations a core of 3 orbi-
tals is held doubly occupied corresponding to the 
oxygen inner shells; the AO basis (37 functions) is of 
DZ quality with s bond polarization and Rydberg func
tions. The results for the Hartley band, for example, 
are practically identical (deviation 0.02 eV) if 
oxygen-centered d polarization functions (a = 0.8) are 
employed instead of bond polarization functi9ns, although 
the total energy of both ground and excited B2 states 
is lowered by as much as 4.8 eV upon this change in 
the theoretical trratment. Similarly small differences 
in the calculated B2-1A1 transition energy are found 
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upon increasing the core by 2 or 3 to a total of 5 or 6 
shells held always doubly occupied. The number of 
SAF's is generally in the order of 30000 to 175000 in 
the present work and the number of reference species 
between 1 and 8 while selection is carried out for up 
to three roots; NO's are employed for most valence like 
states while MO's are used for many of the Rydberg 
species. 

B. Acetone 

A comparison between the experimental acetone 
spectrum ~3J and the respective calculated data is 
best seen from Fig. 1 ; details are again found in the 

10 

4 

2. 

lBl ( ..... 01') 
'8, (r,ll) =.-:...----- 0.000. 
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,,,, I ( .. ,1ft) ,I .. ,. 
Ql (", '.lr), 0. OOS" 
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\ R. (11,11") - - - ---

Fig. 1 Comparison of the experimental electron loss 
spectrum and the calculated energy levels. 
The numbers in the center of the figure are 
calculated oscillator strengths. 



92 S. D. PEYERIMHOFF AND R. J. BUENKER 

Table 5 Several technical details of the MRD-CI calculations 

State 

1 
AI' 

3 A2, 

3 A!, 

3 82, 

1 B2, 

2 82, 

of acetone. Given are for various states the orders of 
the full MRD-CI space to which extrapolation is carried 
out and the orders of the secular equations which have 
actually been solved. 

Ground State 

(n, 'lTlt) 

(n, 3pb1) 
('IT, 3pb2) 

~ ('IT,'IT ) 

(n, 3pb2) 

(n, 3,) J 
(n, 3pcr) 
(n, 3dcr) 

(n, 3s) ] (n, 3pcr) 
(n, 3dcr) 

(n,oo) 

Secular Equation Size 
generated solved 

43004 

201275 
171457 
139223 

209537 
76049 

108960 

64248 

59446 

1569 

2736 
2659 
2294 

2438 
2722 

4286 

4433 

4678 
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original reference ~4]. The electron loss spectrum 
shows a weak feature in the 4 eV area in which the 
calculations pregict the dipole-forbidden A (n,n*) 
transition. The B band clearly corresponds ~o the first 
Rydberg transition with a calculated f value of 0.02; 
the calculations assign the C state to two dipole-allowed 
Rydberg transitions with considerably smaller f val~es. 
The calculations would further assign the observed D 
band to a Rydberg 3d and 4s species whereby some in
tensity is underlying from the higher-energy (n,n*) state 
(not shown in the figure). The vibrational struc-
ture seen in the electron loss spectrum can of course 
not be obtained in a theoretical treatment in which 
only vertical energy differences are sought. 

Some technical details of the acetone MRD-CI 
treatment are found in Table 5 and demonstrate the 
importance of the selection and extrapolation proce
dure: while configuration spaces are routinely in the 
100000 to 200000 range, the secular equations actually 
solved for acetone are below 5000 in each case (a 
core of 7 orbitals is chosen thereby). 

C. Thiocompounds 

A comparative study of acetone has been under
taken with the sulfur-containing compound [25J. While 
relatively little experimental information is avail
able on thioacetone, however, measurements have been 
published on thioformaldehyde quite recently ~6] and 
it is seen from Table 6 that the data obtained by CI 
calculations a number of years earlier [27J constitute 
an excellent prediction of the actual H2CS transition 
ener~ies. The only discrepancy in this comparison is 
the (n,n*) state which is at present a matter of 
further experimental investigation [28J. It is also 
interesting that apparently the emission spectrum 
for this band is quite different from that in ab
sorption, a finding which is a strong indication that 
large geometrical changes occur upon (n ,n*)excita
tion; in turn this fact suggests also that the vertical 
~Ee value does not necessarily coincide with the 
measured absorption maximum. 

D. Butadiene 

Butadiene is one of the molecules which has 
been under intense investigation by experimentalists 
and theoreticians for many years. There has always 
been agreement on the location of the first triplet 
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Table 6 Comparison of theoretically predicted vertical tran
sition energies in H2CS with the recently observed 
data (values in eV). 

t.Ee (vertical) 
State Excitation theoretical observed 

prediction [p] peak 

1A 
1 Ground State 0.00 0.00 

3A n --+"IT 
It 1.84 1.80a) 1 

1A 
1 n ---to "IT 

It 2.17 2.03a) 

1A 
1 "IT ---4 "ITlt 7.92 5. 72b) 

1B 
2 n ---4' 4s 5.83 5.83b) 

1A 
1 n --t 4py 6.62 6.59 

a) R.H. Judge and G.W. King, Can. J. Phys. 53(1975)1927. 
b) Ref. [26]. 
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Table 7 Calculated vertical transition energies (in eV) to 
various low-lying states of trans-butadiene and 
comparison with existing experimental results. 
Corresponding oscillator strengths are also given. 

State Excitation all-va 1 ence 
... 

f(r) Experimental b) 
electron 
MRO-CI 

1A 
g ground state 0.0 X 0.0 

3B 
u X2 -4 x3 3.31 a 3.22c~,3.2d) 

3.3 e 
3A [Xl -4 x3 4.92 b e) c) 

9 x2 -40 x4 
4.8d),4.93 
4.9 

1B x2 ~3s 6.20 B 6.22 
1 9 

Au x2 --t 3pa 6.53 0.0002 probably not ob-
served 

1B x2 -4' 3p7f 6.67 0.07 C 6.657, series (3), u n = 3 
21A x2 --t 3pa 6.72 0.05 u 
21A valence mix- 7.02 E or F 7.06, series (2), 

9 ture n = 3 
21B x2 ~ 3da 7.29 7.328, series (4), 

9 n = 3 
31A x2 -t 3d7f 7.53 {7.481, series ( 1) , 
41Ag x2 -t 3d8 (7.78) n = 3 
n1Bg x2 -t x3 7.67 0.99 A 5.71-6.29a ) u 
21B It x2 -+ 4p7f 7.96 u 0.09 G 7.857, series (3), 

n = 40r 8.002, 
2B x2 -+ 00 8.68 

ries (2). n=4 
9 9.08 

a) The theoretical work suggests that the intensity maximum 
of this 1B1~. (7f,7f!t) state does not correspond to a vertical 
transition L33J. 

b) Values for the Rydberg states are taken from Ref. [311. 
c) O.A. Mosher, W.M. Flicker and A. Kuppermann, J. Chern. Phys. 

59(1973)6502. 
d) J.H. Moore, J. Phys. Chern. 76(1972)1130. 
e) H.H. Brongersma, Ph. D. thesis, Leyden (1968). 

se-
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in this system, Whereas the discrepancy on the loca
tion of the second such state has only been resolved 
after the experimental transition energy was reeva
luated. A number of Rydberg states have also been 
predicted by early CI calculations l29,30J and have 
quite recently been studied in detail by various 
experimental procedures [31, 32J • 

A summary of the data obtained from the best 
present all-valence electron CI calculation on this 
system is given in Table 7 in comparison with experi
ment. A cursory glance at the data again points out the 
good performance of the calculations; a detailed dis
cussion is found in ref. f33J. There is one important 
unresolved discrepancy between measurements and cal
culations in the butadiene spectrum, namely the strong 
and broad 1Bu (n,n*) transition; since calculations in
dicate that geometrical changes in the nuclear frame
work as well as interaction with a close-lying (in the 
perturbed geometry) Rydberg state play an im~ortant 
role in the entire description of the upper B state, 
it is clear that calculation of the vertical 6~e value 
is not sufficient to represent the major features of 
this transition. 

IV. IONIZATION POTENTIALS 

At various points in the present paper ioniza
tion potentials have been calculated routinely together 
with excitation energies of the various molecules 
discussed. A more systematic MRD-CI study has been 
undertaken for the first five IP's of ethylene r 7J in 
order to compare with the equivalent results of the 
Green's function approach which has been very 
successful in obtaining molecular IP's. In particular 
the two AO basis sets (DZ plus d polarization func
tions) employed in the Green's function study by v. 
Niessen et al. [)4J are chosen and the resultg are 
collected in Table 8. 

It is seen that for all practical purposes 
both treatments (CI and Green's function approach) 
perform equally well and furthermore, that the cal
culated IP's are closer to the corresponding experi
mental quantities, (especially n ionization) if the AO 
basis with the less contracted polarization species (a 
= 0.3 instead of a = 0.8) is employed. This finding has 
been attributed [?4J to a better description of ~ 
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Table 8 Comparison of ionization potentials (in eV) for various 
states of ethylene obtained from the MRD-CI method and 
the Green's function approach (MBPT). 

IlIa) (ad=0.8) 1 Experi- ) Basis Basis IV (ad=0.3)1 

Full-Cl b) : MBPT 
ment c 

Ion MRD-CI Full-Clb) MBPT MRD-CI 
I 

2 I 
10.33 10.46 1 10.45 10.51 B3u 10.26 10.36 10.24 I 

I 

2 B39 12.93 
I 

12.98 12.98 I 12.97 13.01 I 
1 13 .04 12.85 

2A 1 
114.77 14.66 14.48 14.55 14.59 I 14.58 14.66 g I 2 15.79 15.80 16.03 1 15.85 15.88 116.10 15.87 B2u , 
I 2 19.12 18.98 19.47 19.17 19.04 ,19.45 19.23j B1u 

19.10 

a) The two AO basis sets denoted by III and IV in the original 
work l34J are employed; they differ only in the exponent of 
the d polarization function. 

b) Estimated full CI limit of the AO ~asis evaluated from the 
MRD-CI treatment: as ~E = (1 - LCo ) x (EMRD-CI - Eref). 
whereby the sum runs over all reference species. 

c) As quoted in Ref. [34J. 

correlation effects but the CI study clearly points out 
l7]that the ionic state is described somewhat less 
satisfactorily with respect to a total correlation 
in this basis (Table 9) , thereby increasing the energy 
difference between ionic and ground state to the 
desired magnitude. Further CI calculations on ethylene 
show that basis sets with a large number of polariza
tiontype functions are required for a truly unbiased 
calculation of vertical ionization potentials [7J. 
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Table 9 Correlation energy accounted for (as the difference 
between corresponding SCF and CI calculations) in the 
various C2H4 states. a) 

Basis III (ad=0.8) Basis IV (ad=0.3) 
State MRD-CI full CI MRD-CI full CI 

estimate estimate 

1A 
g 0.28476 0.30549 0.26167 0.28128 

2B 
3u (1T ) 0.23729 0.25435 0.21138 0.22645 

2B 
3g 0.29274 0.31171 0.26510 0.28345 

2A 
g 0.27941 0.29777 0.25327 0.26977 

2B 
2u 0.31726 0.33747 0.29139 0.30968 

2 B1u 0.34472 0.37078 0.31961 0.34408 

a) The SCF energy for the C2H4 ground state is -78.04326 hart-
ree in basis III and -78.03120 hartree for basis IV. 

V. INNER-SHELL PHENOMENA 

The MRD-CI package can also be successfully 
employed for the calculations of inner-shell excita
tion processes and corresponding shake-up states; 
examples treated so far are N2 , ethylene and acety
len. The computations are thereby carried out in a 
delocalized framework so that gerade and ungerade 
states can be distinguished; configuration spaces 
up to order 300000 are considered. 

In the most flexible AO basis studied (69 AO's) 
for N2 the MRD-CI treatment yields a value for the 1s 
IP of 410.01 eV which is in very good agreement with 
the corresponding experimental value of 409.9 eV; 
transformation to NO's is thereby found to be bene
fiCial, and inclusion of quite contracted p and d type 
functions (a(p) = 15, a(d) = 2.0) in the AO basis are 
found to be important. It should be pointed out that 
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the SCF energy for the nitrogen molecule (1 0 g )-1 
ion in the same basis is as large as 419.77 eVe 

Transition energies to core-valence excited 
states are uniformly overestimated in this study [35] 
but the relative location of such states is predicted 
very satisfactorily (Table 10). The energy difference 
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Table 10 Transition energies ~E (in eV) relative to the N2 
ground state for varioDs core-valence excited 
states obtained from an MRD-CI treatment ~5J and 
comparison with corresponding'experimental quanti
ties. 

Excitation Relative excitation 
State ~E e exptl. calc. exptl . 

X 1E + 
9 

0.0 0.0 

1II (1o -4 7f ) 
u u 9 402.23 400.84 0.0 0.0 

1 Eu+ (1o u --... 3s) 407.05 405.59 4.82 4.75 

1IIu(10 9 -4 408.11 406.50J 5.88 5.66 
3p7fu) 406.72 5.88 

1IIg(10g -+7fg} 402.01 x400 -0.22 

betw~en the 10 g21 ion and its lowest shake-up state 
(10U 1)7f ---; 7f L + is calculated to be 9.39 eV ver-
sus 9.3 ~ ex~eri~entally, pointing out again that 
the CI procedure is a very powerful tool for the 
study of molecular excitation and ionization pheno
mena '. of quite general characteristics. 

VI. MIXED VALENCE-RYDBERG STATES 

In various instances the calculations have 
detected interaction between Rydberg and valence-
shell states. Examples include various states in N2 and 
02, the V state of ethylene, states in butadiene and 
acetone as well as dissociative states in ammonia. 
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Since the amount of mixed character is very much 
dependent on the nuclear conformation of the molecule, 
such mixed states will be treated together with the 
discussion on vibrational features and on photochemical 
decomposition. 

VI I. SUMMARY 

The present lecture has attempted to show by 
a number of examples that the electronic energy 
difference ~Ee between various electronic states 
of molecules as well as the (electronic) oscillator 
strengths obtained ,from MRD-CI calculations can gene
rally be quite satisfactorily related to corresponding 
experimental data, i.e. to transition energies or 
ionization potentials. It is clear however, that this 
correspondence does not hold if vibrational effects are 
of considerable importance. This will be the case 
if potential surfaces of ground and excited states 
are quite different in shape, for example, or if the 
electronic transition moment depends strongly on geo
metrical parameters so that the Franck-Condon approx
imation is not a valid description for the 
process under discussion; the latter situation will 
often derive from interaction of various (upper) states 
or from geometrical distortions which change the 
symmetry of the nuclear framework. In all such cases it 
is important to calculate a representative portion of 
the entire potential energy surface for the electronic 
states involved together with vibrational wavefunctions 
and energy levels; this procedure is of course always 
necessary for the prediction of any vibrational pro
gression in the spectrum, and this subject will be 
taken up in a further lecture. 
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THEORY OF THE ELECTRONIC STRUCTURE OF EXCITED STATES IN SMALL 
SYSTEMS WITH NUMERICAL APPLICATIONS TO ATOMIC STATES 

ABSTRACT 

DONALD R. BECK and CLEANTHES A. NICOLAIDES 

Theoretical Chemistry Institute 
National Hellenic Research Foundation 
Vas. Constantinou 48, Athens 501/1, Greece 

In this lecture we discuss an approach to the understanding 
and efficient calculation of electron correlation of valence or 
inner hole excited states in atoms and small molecules. We start 
with the formal subs hell cluster expansion of the wave-function 
and we analyze the various correlation effects which appear in 
the wave-function whose form is dictated by first order pertur
bation theory. I.e. only single and pair symmetry adapted cor
relation functions are considered. This analysis allows: 1) The 
formal decoupling, to a good approximation, of the sUbshell cor
relation vectors into groups and their economic computation from 
small Variational Configuration-Interaction (VCI) procedures. 
2) The systematic optimization of the different for each group 
virtual one-electron functions--expressed in terms of STO's or 
GTO's--by minimizing the corresponding to each group energy func
tional. 3) The consequent determination of compact but accur-
ate total wave-functions from basis sets which contain the Hartree
Fock and only a few more virtual orbitals. 4) The recognition 
and isolation of important for electronic spectroscopy and chemi
cal bonding correlation effects from those which contribute mainly 
to total energies. 5) The recognition of the importance of triple 
and quadruple correlation effects for certain inner hole excited 
states, even in small systems. We present previously unpublished 
numerical results on a) the position of the H- 2p2 3p metastable 
state whose study supports our suggestion that variationally op
timized (VO) one-electron basis sets are competitive with rij 
dependent basis sets in terms of fast convergence. b) The position 
of the H-- 2p3 4so state which is found to be unbound. c) The 
pair correlations of C Hhere reasonably accurate calculations 
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indicate that VO-GTO virtuals are reasonably competitive with 
VO-STO virtuals. This suggests that the size of current mole
cular calculations using Gaussians can be reduced considerably 
at no expense of accuracy. d) The effect of electron correlation 
on the term structure of Ni III, of current importance in solid 
state physics. 

I. INTRODUCTION 

In this article we discuss some aspects of the electronic 
structure of excited states of atoms and molecules and a compu
tational methodology for the calculation of their wave-functions 
and energies. 

In the zeroth order description, excited states are usually 
open shell systems. Exceptions may be states where flec~roPs1 
are missing completely from an inner shell, e.g. Ne+ 1s 2p' S. 
In general, open shell excited states have multi-determinantal 
zeroth order configurational descriptions. Furthermore, as one 
goes up in energy for a fixed Born-Oppenheimer (BO) geometry, 
or as one reaches the dissociation region, the density of states 
per energy interval increases, near degeneracies become more 
pronounced and often affect the zeroth order description consi
derably. A manifestation of such degeneracies is the occasional 
heavy valence-Rydberg mixing. 

Our emphasis will be on the economic and consistent genera
tion of compact, well correlated wave functions for small systems. 
Such functions render the physically interesting features of the 
electronic structure distinctly transparent, allow the recogni
tion of important, property dependent correlation effects by 
inspection and are possible to handle easily for the calculation 
of other properties and phenomena such as polarizabilities and 
electron-molecule scattering. Furthermore, small atomic basis 
sets containing information about correlation at the atomic 
level can prove extremely useful as starting points for rigorous 
studies of the molecular and solid state. 

The approach to be discussed below is based on notions of 
a cluster expansion of the exact N-electron wave-function, analy
sis of the important excited state correlation effects and the 
calculation of one - and two - electron correlation functions 
via Variational Configuration-Interaction (VCI) procedures which 
employ Slater or Gaussian type orbitals. We argue that, by 
systematically and consistently decoupling portions of the total 
wave-function and by optimizing variationally in small CI the 
virtual orbitals describing the specific correlation effects of 
each portion before the total wave-function is put together, the 
magnitude of computation is reduced considerably without signi~ 
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ficant loss of accuracy. This approach yields nonorthonormal 
Hartree-Fock and virtual functions which result in the well
known computational problem of "nonorthonormality" which is more 
complicated but straight-forward to solve if the wave-functions 
are small. 
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The numerical examples are taken fr~m4the realm of atoms. 
Thus we have considered: 1) The H-- 2p SO state, whose energy 
position is of importance to the formal spectral theory of the 
Schrodinger opera!or ~s3well as to recent experimental observa
tions. 2) The H 2p P state, where our results indicate that, 
in general, energy optimized single particle expansions of pair 
correlations can compare well, in terms of accuracy,compactness 
and convergence, with r .. dependent basis set~, usually thought 
to be much more effecti~~. 3) The Ni III 3d term structure 
which is of much inte3est in transition metal oxide solid state 
physics. 4) The CI P ground state where the correlation func
tions are expanded in terms of variationally optimized Gaussians. 

II. SIMPLE CLASSIFICATION OF GROUND AND EXCITED STATES IN TERMS 
OF THEIR SHELL STRUCTURE 

Before proceeding with the theory and calculation of ex
cited state wave-functions, we outline certain of their gross 
features in terms of the shell model. 

As is well known, the commonly accepted zeroth order re
presentation of atomic and molecular states is based on a single 
configurational assignment obtained from the aufbau principle. 
For ground states, this principle works well in most cases 
yielding reasonably good representations of the wave-function. 
Exceptions can be found in near degeneracy cases, in large atoms 
where the hydrogenic filling model breaks down and in molecules 
with small singlet-triplet separations or far from the equili
brium distance. 

Excited states can be classified roughly as follows: 

a) Low lying Unperturbed Rydberg Configurations: For low 
energy spectroscopic measurements, such states behave essentially 
like pseudo one-electron systems modified by core polarization. 
The perturbation due to other Rydberg low lying configurations 
of the same orbital structure is negligible, due to nearly zero 
off-diagonal matrix elements. For atoms, the wave-functions of 
these states are easily computed within the spherically symmetric 
Independent Particle Model (IPM). For molecules, their recog
nition is based on spectroscopic considerations and on large 
values of the matrix element <r2>. Their computation can be 
carried out satisfactorily at the LCAO-Self Consistent Field 
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(SCF) level, provided the atomic basis set contains Rydberg
like (i.e. diffuse) orbitals. Of course, if properties other 
than low energy excitation energies and intensities are desired 
(e.g. hyperfine structure), an IPM description may turn out to 
be insufficient. 

b) Unperturbed Valence Configurations: These are cases 
where, due to symmetry, there is no mixing with other low lying 
excited valence or Rydberg configurations. These are2usuallS 5 
states with maximum spin multiplicity (e.g. Carbon Is 2s 2p S°). 
Here, the Hartree-Fock SCF function constitutes a good global 
description of the exact wave-function. 

c) Perturbed Rydberg States: These are cases where m1x1ng 
with a different Rydberg series and/or, more important, with a 
nearby valence configuration of the same symmetry, results in 
an overall mixed N-electron wave-function with different charac
teristics from the original Rydberg functions. Therefore, pro
perties sensitive to the character of the wave-function, such as 
dipole or transition moments, can be obtained reasonably accurate
ly only after a many-electron treatment of such states. 

d) Perturbed Valence States: These are cases which arise 
from the same type of situations as those described in (c). The 
single configuration Hartree-Fock (HF) description is not suffi
cient. Furthermore, if separate SCF calculations are carried 
out for the valence and Rydberg configurations, the resulting 
orbitals exhibit serious nonorthonormality (NON) effects which 
complicate the computational aspects of a many-body treatment. 

e) ~ Hole Rydberg ~ Valence States: These states 
usually lie in the continuum. They are created during collisions 
of atoms or molecules with high energy photons, electrons or 
other atoms. Depending on the mixing with nearby bound or 
scattering configurations and the degree of hole localization, 
the zeroth order HF description mayor may not be a good repre
sentation. 

The above shell-structure classification leads to the notion 
of a species dependent zeroth order wave-function in a physically 
motivated many-body theory which allows a much faster convergence 
to the desired answer for a particular property. For example, 
if one is aware of a near degeracy or otherwise important mixing 
(e.g. hydrogenic mixing in the alkaline earths or molecular con
figurations dictated by the correct dissociation), he can easily 
define and obtain the zeroth order vector accordingly from a 
trivial CI, rather than allow a standard, single configuration 
based many-body algorithm to introduce the important correction 
to the single configuration as a correlation effect. 
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III. ELECTRON CORRELATION IN EXCITED STATES 

Electron correlation (EC) is defined as the difference be
tween the Hartree-Fock (HF) approximation and the exact nonrela
tivistic solution. With this definition, EC is often more impor
tant and, at the same time, more difficult to compute in excited 
states than in ground states. Thus, accurate information about 
excited states requires, in most cases, the application of many
body theories. Apart from the straight-forward, big computa
tions which use standard algorithms, it is desirable to have 
theoretical treatments which address themselves to the task of 
analyzing the mathematical structure of the wave-function of 
classes of states and of producing quantitative and interpretive 
results on physical phenomena with a minimum amount of effort. 
Such treatments may also decrease the chances of systematic er
rors. The analysis and computational approaches presented below 
are in this spirit. 

A. The Fermi-Sea (FS) Zeroth-Order Vector 

Suppose we have a complete set of one electron functions, 
f Cj) ? J~' and we examine a nonrelativistic N-electron system. 

We aiv1de them as follows: 

Cj)1,Cj)2' .. ·Cj)N; Cj)Ntl' ... Cj)k/ Cj)v' Cj)v+1'''' 

"---~F . S /~b' I ~l b' I (1) erm1- ea sp1n-or 1ta s v1rtua or 1ta s 

The first N spin-orbitals constitute the functions which repre
sent the single configuration, shell model description of the 
state of interest. They are assumed calculable in the restricted 
HF approximation. The remaining Cj)N+1, •.. ,Cj)k functions complete 
the Fermi-Sea (FS) of this state. These functions, although 
unoccupied in the single configurational approximation, are very 
important in determining the optimum zeroth order description 
of the wave-function. They form configurations which, in the HF 
approximation, either have diagonal matrix elements close (in a 
relative sense) to the energy of the single configuration, ~HF' 
or have large off-diagonal matrix elements with ~HF' The FS 
configurations have relatively large coefficients and hence their 
importance for an optimum description of the zeroth order vector. 
We shall call the set of orbitals out of which the zeroth order 
vector configurations are constructed, the Fermi Sea [1,2]. 
These orbitals can be established for each state separately using 
criteria such as: a) ,filling of shells as revealed by optical 
spectra, b) photoabsorption experiments where vacant orbitals 
near the occupied ones play an important role in the interpreta
tion of the observed spectra, c) approximate HF calculations of 
of atomic or molecular orbital energies for a few configurations 
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(suspected of ) having nearly the same energies, d) in atoms 
and diatomlcs, near-degeneracies suggested by the exact solutions 
of Hand H , which usually represent two-electron replacements 
but big of~-diagonal matrix elements (these are always included), 
e) trial and error c~lculations with a priori fixed coefficient 
size thresholds [3,4J, f) formation of configurations which 
assure the correct molecular dissociation. 

In table 1 we give a few samples of atomic and molecular 
states, their single configuration representation and the corres
ponding Fermi-Seas. We take three states from Be to show the 
dependence of the Fermi-Sea on the symmetry of the state, es
pecially in systems of high symmetry-such as the atoms. 

In conclusion, we abandon the single-configurational des
cription of the zeroth order state and instead we choose the 
Fermi-Sea vector, ~FS' whose configurations consist of H-F or
bitals, in practice computed from separate H-F calculations on 
each FS configuration. For atoms.this is feasible and inexpen
sive using numerical functions [7 J. For molecules it is more 
difficult, especially for states with many open-shells raj. We 
note that once a list of FS orbitals is created from different 
configurations, a reasonable choice of radial functions should 
then be made to minimize non-orthonormality (N0N) effects which 
must be taken into account. We shall return to the choice of 
the FS orbitals later. 

Thinking about atomic and molecular states in terms of 
Fermi-Seas rather than the standard single configuration, allows 
not only a different computational procedure but also, and most 
important, a physical interpretation and prediction of pheno
mena such as photoabsorption and satellite peaks [9,10], the 
sharp increase of the dipole polarizability from N~ to Ar and 
the related chemical reactivity, shape resonances [l1J, general 
bonding properties etc. 

B. The Subshell Cluster Expansion of the Wave-Function 

Having constructed the single configuration HF function, ~HF' 
we may start replacing the occupied subshells with unoccupied 
ones from the Fermi-Sea or from the virtual space. The result
ing configurations can be made by direct diagonalization spin
eigenfunctions transforming irreducibly und~ t~e molecular group. 
For nonrelativisitc atoms we diagonalize L ,S (see section 
VIII). If we perform all the permutations with all possible 
replacements of occupied with unoccupied subshells and group the 
resulting symmetrized configurations according to whether they 
contain single, pair, triple, ••• , N-tuple, subshell replace
ments (excitations), we obtain for an arbitrary open shell state 



S
ta

n
d

ar
d

 
A

d
d

it
io

n
a
l 

FS
 

C
o

n
fi

g
u

ra
ti

o
n

 
o

rb
it

a
ls

 

B
e 

1
s2

 
2

s2
 1

S
 

2p
 

1
s2

 
2p

2 
3 p

 

1
s2

 
2p

2 
1D

 
2

s,
 

3d
 

B+
 

1
s2

 
2p

2 
1D

 

AX
' +

 K
L 

38
 

3p
6 

25
 

3
d

, 
4

s 

2 
4 

4 
1 

+
 

F2
 

c
o

re
 

30
 

1
~
 

1
~
 

E
 

30
 

g 
u 

g 
g 

u 

(s
e
e
 r

e
f,

 
5

) 
2 

3 
3 

3 
-

30
 

02
 
c
o

re
 

30
 

1
~
 

1
~
 

E
 

g 
u 

g 
u 

u 

(s
e
e
 r

e
f.

 
6

) 

T
ab

le
 1

 

FS
 

z
e
ro

th
 o

rd
e
r 

c
o

n
fi

g
u

ra
ti

o
n

s 

1
s2

 
21

32
, 

1
s2

 
2p

2 

1
s2

 
2p

2 
2

2
2

 
1

s 
2

p
, 

1
s 

2
s3

d
 

18
2 

2p
2 

C
ri

te
ri

a
. 

o
ff

-d
ia

g
o

n
a
l 

m
a
tr

ix
 

el
em

en
t 

n
ea

r-
d

eg
en

er
ac

y
 

o
ff

-d
ia

g
o

n
a
l 

6
2

4
 

KL
 

(3
8

 
3p

 
,3

8
 

3p
 

3
d

, 
n

e
a
r-

d
e
g

e
n

e
ra

c
y

 
38

2 
3p

4 
4

8
, 

3
s 

3p
4 

3d
2

, 
3

s 
3p

4 
48

2
) 

o
ff

-d
ia

g
o

n
a
l 

2
4

4
4

4
 

2 
c
o

re
 

(3
0

 
1
~
 
1
~
,
 
1
~
 

1
~
 

3
0

, 
n

e
a
r-

d
e
g

e
n

e
ra

c
y

 
2 

2 
g 

4 
u 

2 
g 

2 
u 

4 
g 

2 
u 

2 
30

 
1
~
 

1
~
 

3
0

, 
30

 
1
~
 

1
~
 

3
0

)
 

o
ff

-d
ia

g
o

n
a
l 

g 
u 

g 
u 

g 
u 

g 
u 

2
3

3
4

2
 

c
o

re
 

(3
0

 
1
~
 
1
~
,
 

30
 1

~
 

1
~
 

3
0

)
 n

e
a
r-

d
e
g

e
n

e
ra

c
y

 
g 

u 
g 

g 
u 

g 
u 

o
ff

-d
ia

g
o

n
a
l 

;j
 

t'=
l 

t'=
l r t"
l q ::c
 

o z ;=; ~
 

::c
 

c ~ ::c
 

t'=
l o "T
l ~ n ::J
 

t'!
l 

1::
1 g t'!
l 

on
 Z
 

on
 

r;;:
: >
 

r r on
 

-<
 

on
 ..., t'!
l 

r;;:
: 

on
 ::: 



112 DONALD R. BECK AND CLEANTHES A. NICOLAIDES 

the exact form of the nonrelativistic wave-function as a sub
shell cluster expansion: 

+ 

(2) 

with 

(3) 

E(r1 ) is a single electron correlati£~ function which, coupled 
to the CN-~) configuration ~ , yields the overall cor-
rect symmetry. rr(r1 ,r2 ) is a symmetry adapted subs hell pair 
correlation function, T(r1 ,r2,r3) is a symmetry adapted sub
shell triple correlation function and so on. 

Formal expansions such as that represented by expression (1) 
have appeared in both statistical (partition functions) and 
quantum (wave-functions) mechanics of many particle systems and 
have formed the foundations for systematic analyses and approxi
mations to the many-body problem [12-21]. In quantum chemistry, 
they were developed and applied in terms of spin-orbitals. 
However, since most methods start with the restricted HF approxi
mation where the radial functions correspond to subshells as 
assigned by the configuration and not to spin-orbitals, it appears 
at least as useful to work with a many-body theory expressed in 
terms of subshells which symmetrized are to form configurations 
and correlation vectors. 

A2 ~ simple example consider the "classic" case, the Be 
1s2 2s S state. Eq. l becomes: 

where we have absorbed the coefficients into the correlation 
functions. 

In the following sections we analyze eq. (2) in the case of 
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excited states and demonstrate how one can implement the calcu
lation of the one-and two-electron correlation functions using 
variational procedures and one electron basis sets. 

C. The First Order Form of the Wave-Function 
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If the exact wave-function of eq. (2) were known, the exact 
nonrelativistic energy E would be obtained in terms of the first 
three terms only. This follows from the fact that the N-electron 
Hamiltonian is a one-and two-electron operator and the following 
manipulations: 

E - <IJI I HI IJI> IJI = ~ + X 
<IJI/IJI> 

(4 ) 

(IJI \IJI > = 1 + <X I X) (5 ) 

= < ~ I H I 'l') + E (X I X> E 

1 + <X I X) 
(6 ) 

= <~ IH I ~> + (~I H I a1~-1L(r1) + a2~-2II(r1,r2» (7) 

= EHF + ECorr (8) 

We note that the same formula holds for approximate CI calcula
tions (and therefore approx~mate a1 , a2, L(r1 ) and II(r1 ,r2)) 
where, for a finite set of configurations ~ , n=O, ... ,S, with 

n 

'l' - L S c ~ , 
CI - n=O n n (9) 

after diagonalization: 
c 

ECI = <~ IHI ~ )+ L S1...E.<~ I HI~ > o 0 n= con (10) 
o 

Equation (7) says that the exact energy depends on the co
efficients a1 and a 2 and the single and pair correlation func
tions. Of course, these can be obtained exactly only after a 
complete solution of the Schrodinger equation. However, first 
order perturbation theory, which truncates the cluster expansion 
at the pair correlation level, suggests a form of the first 
order wave-function (which yields the total energy up to third 
order) which coincides with that of the portion of the exact 
function surviving the matrix element<~ /HI 'l') of eq. 7. Thus, 
we could write for the form of a trial function: 

(11 ) 
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where.al, a2,E'(r1 ) and rr'(r1~r2) are to be compu~ed ~ithin a 
certa1n scheme, equal to, equ1valent to or approx1mat1ng total CI 
within this restricted Hilbert space. Such calculations [e.g. 
22-33,2] on ground states suggest that for small systems the 
form (11) yields very good approximations to the exact function 
and correlation energy (about 10%-20% error). Therefore, ~I 
appears to be decoupled very well from the higher order terms 
(triple, quadruple clusters) at least in small, ground state 
systems so that a theoretical treatment of the electronic 
structure of few electron systems based on the form of ~, 
seems justified. On the other hand, from arguments whict we give 
below, it appears that higher order clusters will prove impor
tant in certain highly excited states even for small systems and 
therefore for answers of chemical accuracy ( .05 eV-.1 eV) they 
should be considered explicitly. 

D. Comments 

1. Although the form of the exact cluster expansion always 
remains the same, its exact contents depend on the choice of 
the zeroth order function, ~, the reference state. In most cases 
this is a single configuration from which all single and double 
subshell excitations are taken. However,~ can be a Fermi-Sea, 
multiconfigurational reference state built from a common set of 
basis functions. Such is the case of the CI model developed and 
employed by Buenker and Peyerimhof [4,35J. In this case, the 
size of t~e calculation increases considerably - and so does the 
accuracy [4,35J - since it includes excitations which would be 
termed triples or quadruples in the case of the single configu
rational reference state. 

2. The importance, or lack of it, of each of the cluster 
functions in eq. 2, assumed to be calculable exactly, depends on 
the choice of the zeroth order, initially occupied subshells. 
Thus, for a closed shell system, the first order function of the 
Rayleigh-Schrodinger [25J perturbation theory, which yields the 
energy to third order, equals the sum of the first order pair 
functions, each one calculated separately [17,30,31,36]. If ~ 
is the HF function, the total energy of a small closed shell 
system is approximated well by the sum of the corresponding pair 
energies. If, however, ~ is, say, a hydrogenic vector (for an 
atom) pair correlations are not sufficient and more weight is 
put on single, triple and higher excitations which correct for 
the non-oP~imjl IPM choice. This effect has also been found in 
molecules l36. Similar observations can be made for HF canoni
cal vs. localized molecular orbitals (LMO) [24J where physical 
intuition suggests that in many cases the LMO's will help mini
mize pair-pair interaction corrections to a calculation based 
on pair energies only. 



THE ELECTRONIC STRUCTURE OF EXCITED STATES IN SMALL SYSTEMS 1lS 

We now come to a description of the ~ and II cluster func
tions for excited states and analyze briefly their physical sig
nificance before we go into the computational aspects of the 
theory. 

E. Single Subs hell Corpelation Functions ~(r1) 

Each one electron function ~ can be expanded formally in 
terms of FS and virtual orbitals. Thus, 

= 

with 

~ b q> 
n v 

(12) 

(13 ) 

Subshell single excitations are much more important for proper
ties than for total energies. Even though a Brillouin type 
theorem for symmetry preserving sin~le subs hell excitations in 
open shells may occasionally work r 38] their mixing with certain 
subshell pair correlations makes them more important than first 
order theory implie~, e~peciall~ f02 FS2ho~e filling replace
ments (e.g. for H20 (1a1 2a1 1b2 3a1 1b1 ) A1 , 3a1~~FS= 2a1 ). 

In the usual language of spin-orbital excitations and de
terminants, certain types of single subs hell correlations are 
equivalen~ t02spi~-~rbital pair excitations. For example, take 
Carbon 1s 2s 2p P. Excitation of the HF 2s orbital to a ~ 
of d symmetry, (call it Vd ), yields the correlation vector v 

[ 2 2 2 2 2S+1 ®V 2D]3p h' h ' 1 'd' 2 2 1s s P L d w 1C 1S a mu t1 eterm1nantal L ,S 
eigenfunction, The core configuration can have 4p,2p or 2D 
symmetries. When we excite in terms of spin-orbitals we have 
the following situation: For the ground state, 

3 
PHF = (K 2sa 2pB 2~o a2V1 a). 

2 tion of D symmetry, 

For, say, the core configura-

2 
DHF = (K 2sa2p1a2p1~)· Therefore, the single orbital excita-

tion 2s -+ V d yields a correlation vector corresponding to 
pair excitation (2s~2po a)-+(2p1~vd a). This type of spin-

orbital pair correlation has been cali~d "semi-internal" [19.1 and 
has been computed to different degrees of accuracy for several 
atoms and molecules [39-43J. This equivalence of certain single 
subs hell excitations with spin-orbital pair correlations which 
are known to be important, underlines the significance of E(r1 ) 
especially when symmetry allows excitation to a vacant FS orb1tal 
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F. Pair Subs hell Correlation Functions, TI(r1 ,r2 ) 

The pair function TI(r1 ,r2 ) can also be expanded formally as 
a sum of symmetrized subshell products: 

= E a I n> 1m'> n,m n,m r 1 T2 (14 ) 

with 

o (15) 

The sum can be divided into three meaningful parts: One is the 
part with no Fermi-Sea subshells, i.e. both electrons occupy 
virtual subshells, and the others with one or two FS subshells 
and one or no virtual subshells. The total pair function can 
then be divided into three orthogonal parts: 

TI = bTIFS _V + (16) 

TI FS constitutes the larger part of Fermi-Sea correlations 
whose spectroscopic and chemical importance has already been 
mentioned. 

ITFS- Y represents Rydberg and continuum configurations which 
may lie aoove or above and below the ~HF configuration. This 
is seen immediately if the virtual V is expanded in terms of 
spectroscopic orbitals. The significance of TIrs-v is then great 
in that it gives rise to correlation vectors wlth real spectro
scopic significance. Since they usually lie close to ~HF' these 
vectors mix heavily with it causing serious deviations from the 
rPM description and affectin& proportionally the intensities of 
observed spectra [e.g. 44-47J. Furthermore, if ~HF is a highly 
excited state embedded in the continuum of the corresponding ion, 
TIF -V for a particular pair of valence electrons represents a 
we1l-known physical phenomenon, the Auger effect or autoioniza
tion. 

The spin-orbital:' counterpart of TIFS -V is the "semi-internal" 
correlation of ref. 19. However, there is no equivalence since, 
due to symmetry, TIFS- V gives rise to correlation vectors cor
responding to three (or more) spin-orbital excitations not in
cluded in the original work, [19,40], while, as we saw, a part of 
the spin-orbital "semi-internal" correlation is included in our 
subs hell single correlation. Furthermore, the notion of the 
Fermi-Sea is more general anq. complete than that of the "Hartree-
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Fock sea" [19,40,41] on which the classification of refs. 19,40 
are based. 

ITv is important for energy reasons. It contains the addi
tive contributions of an infinity of high energy wave-packets 
and only rarely of a doubly excited spectroscopic configura
tion. Depending on the symmetry of the state, ITV correlation 
vectors contribute 50%-90% of the total correlatlon energy in 
small systems. However, since their diagonal matrix elements 
are far from EHF and their off-diagonal with ¢HF are small, 
their effect on the total wave-function in terms of magnitude 
of their coefficients is small and often negligible for calcula
tion of various expectation values [1]. (For certain one-body 
properties (e.g. hfs, valence-Rydberg transition probabilities), 
bi-virtual correlation can playa significant indirect role--by 
affecting the symmetry preserving single excitations.) Further
more, they often seem to playa secondary role in bonding in the 
sense that they affect the total energy by an approximately 
constant amount independent of geometry. This is so because, 
roughly speaking, bonding implies electron reorganization from 
the atomic to the molecular and solid state. This reorganiza-
tion requires virtual transitions to low lying states, something 
that the bi-virtual correlation ITV does not represent. This 
property of ITV might allow their neglect when there is interest 
only in the shape of a potential energy surface (from which 
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energy differences can be deduced) but not in the absolute minima. 
However, for diatomic excited state surfaces with avoided cros
sings caused by valence-Rydberg interaction, the bivirtual cor
relation is different for each type. Therefore if accurate in
formation about the exact properties of the wave-functions at 
the crossing is required,ITV must be considered. In atoms, this 
additional correlation can be taken into account by a semiempirieal 
effective Hamiltonian approach which shifts the energy of the 
valence state with respect to the Rydberg series and yields cor
rect mixing coefficients, provided the zeroth order functions 
are represented by true SCF HF solutions [2,45J. 

The calculation of pair correlations by traditional CI 
methods has been known to be slowly convergent requiring an over
whelming number of configurations and fixed virtual orbitals. 
This is due to the difficulty in calculating accurately IT • In 
fact it has been repeatedly stated that only 1' •• dependen¥ basis 
sets can hope to handle ITV efficiently. Our w6tk of the past 
few years suggests that even a few virtual orbitals--Gaussians 
or STO's--can yield good convergence provided they have been 
optimized by minimizing the total energy. We shall return to 
this point in section IX. 
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IV. TRIPI,E (T) AND QUADRUPLE (K) CORRELATION FUNCTIONS IN HIGHLY 
EXCITED STATES: ENERGY CRITERION 

By now, it is fairly well established that for ground states 
of small systems, single and pair correlations computed to all 
orders (i.e. total CI) suffice to obtain about 80%-90% of the 
correlation energy. Higher order clusters become important with 
increasing number of electrons and dominate in extended systems 
[48-52]. Quadruples could also be relatively more important if 
their unlinked pairs represent Fermi-Sea correlations. This 
can be deduced from the work of ref.-28 and implies that in 
molecules the dissociation region is less well described by a 
wave-function of the form ~1 based on a single configuration 
reference function. 

The importance of higher order clusters in excited states 
has not been studied yet. The argument of the number of elec
trons holds here as well of course. However, it appears that 
orbital clusters such as triple and quadruple will prove impor
tant for certain highly excited states even for small systems. 
These are states with holes in the HF configuration (section II, 
category 5). The reason is that triple and quadruple rearrange
ments are here favored energetically much more than in ground 
states where the energy denominators in the perturbation ex
pansion become very large when exciting simultaneously three or 
four electrons. Now, the filling of the lower lying hole or 
two holes by valence electrons is a "source of energy" for the 
other electrons which are virtually excited to unfilled higher 
lying orbitals of the Fermi-Sea or of the virtual space. For 
example, consider the decoupling of the triple and quadruple 
cluster functions into their unlinked terms; 

T~L x II t ... (17a) 

K~(L x T) t (II x II) t (17b) 

Take (17a). If the orbital excitation of L is such that it fills 
an inner hole, particularly if it is of different symmetry, 
(e.g. (AOs) d...".s, (MOs) 1t~C_o), and if II is relatively impor
tant (e.g. near-degeneracy pair correlation), the triple cluster 
function will be important since the corresponding term in the 
perturbation expansion will have a large denominator as well as 
numerator (relatively speaking). Similar arguments hold for K as 
well as for higher clusters provided the energy gain by filling 
inner vacancies is large enough to compensate for the virtual 
excitation of the outer electrons. 

As an example, consider the inner hole state 

Art 1s2 2s 2p6 3s2 3p6 2S. The triple cluster T=[2sxII(r1 ,r2)], 



THE ELECTRONIC STRUCTURE OF EXCITED STATES IN SMALL SYSTEMS 

representing correlation in the 3p6 shell, will give rise 
[ 2 2 6 2 3 28+1 to the correlation vector (is 2s 2p 3s 3p) ~IT(rl,r2) 

28'+lL,J2s which may have a diagonal energy close to the hole 
state thus contributing in a non-negligible way. 
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We note that a separation of T similar to that of IT (eq. 16) 
is also meaningful and straightforward, with similar observations 
applying to it. 

Although we don't have numerical proof of the importance of 
higher clusters in excited states of small systems, this can be 
inferred from the observed physical counterpart of the triple 
cluster, the double Auger effect [53J where two, instead of one 
electrons are ejecte-d-.-- --

We note that in assessing the importance of higher order 
clusters, one must also define the observable of interest. Thus, 
although for total energies these effects may be small, for 
energy differences, e.g. one electron binding energies, they will 
be more crucial. An analogous situation occurs with. the calcu
lation of electron affinities of first row atoms [28.1. 

In conclusion, the above heuristic considerations suggest 
that apart from the ordinary criterion of the number of electrons 
(i.e. proximity to the electron gas situation) there is also 
an energy criterion which applies to excited states: the higher 
the energy of the excited, inner hole state, the greater the 
possibility for multielectron reorganization and hence for multi
electron correlations. 

V. RECOGNITION OF CERTAIN IMPORTANT CORRELATION EFFECTS BY 
INSPECTION 

The value of knowing, before doing any calculations, when 
correlation and/or which types of correlation play an important 
role is considerable. It enables the experimentalist to anti
cipate the magnitude of the gross deviations from the independent 
particle model without large scale computations; and it enables 
the theorist to determine whether an expensive calculation of X 
(eq. 2) is really necessary and also, given the frequently occur
ring limitations due to expense and computer size, to determine 
for which problem X can be treated approximately and still yield 
accurate answers. 

The decoupling of the cluster expansion into the form of ~ 
(eq. 11) and subsequently of L(r1) (eq. 12) and IT(r1 ,r2) (eq. it), 
allows the recognition of the importance of certain correlation 
effects which affect the wave-function and therefore properties 
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such as photoabsorption spectra. These effects can be easily 
seen in terms of orbital replacements. The most common ones are: 

1) Fermi-Sea configurations (see discussion in III A) 

O2 ,3L- >: (30'2 111;4 2 2 2 4 30'2 4 111;2 ) ego ill , 30' in: 111;, 11T 
g g u g g u g u u g 

liD) (KL 
2 

KL 3d2 3d) Mg 3p , , KL 3s 

2) Hole-Filling pair correlations (Occur in photoelectron 
spectroscopy): These are of the TIFS- V type (eq. 16) for HF 
configurations with an inner hole. The virtual orbital V is a 
sum of Rydberg and continuum orbitals. 

ego 0213L~>: (30'~ 111;~ 111;:~30'~ 111;~ 111;gDlfu) 

B /2S> : Os2 2s 2p2~ ls2 2s2 ns) 

3) Symmetric Exchange of Orbital Symmetry: These are the most 
important of the TIES and TIFS- V type pair correlations. They 
occur both in the Q1Screte and the continuous spectrum provided 
the quantum numbers or energies are close. (See also our ac
companying paper "Theory of One Electron Binding Energies" for 
additional discussion of these effects.) 

2 ego p ~sd 
2 

d ~pf 
,t~ 

n: 0'~n:0'1'¢ 

Examples: 

a. Binding energy of the 3s electron in K. The energy shift 
due to 3p2~3s 3d FS correlationis 6.6 eV 12r:-

b. Fluorine ls22s 2p6 2S Autoionizing State. The energy 
shift of the HF energy due to the surrounding continuum is domi
nated by the interaction 2p2~ 2s E:d which is 3.3 eV [54]. Here, 
E:d are continuum HF orbitals calculated in the HF ionic core 

of F+ ls2 2s2 2p4 lD [54]. 

c. Double Electron Photoionization. 

ego 

The CI in the continuum will be most important for the channels 
representing the mixing E:PE: 'p ~E:SE: 'd. 
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d. Ethylene l(n,n*) state ~. 22 3Lu state~. In 
both of these excited states, the mixing crn* ~ cr*n is suggested 
by the authors [55,56] as being important - in agreement with 
the symmetry exchange idea of this classification. 

e. Rb++ photoelectron spectroscopy satellites ~. The 
inner hole 4s 4p~ 2S state of Rb III is found [57J to mix 

much more heavily with 4s 2 4p4 4d 2S than with 4s2 4p4 5s, in 
agreement with the rule p2~sd. This mixing shows up in the 
emission spectrum as a satellite peak. 

More examples from atomic theory can be found in ref. [lJ. 
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These were based on our previous computational work on excited 
states of the second and third row [e.g. ref. 41 p. 545, 42] 
and an analysis of various HF R\( integrals and of the then avail
able literature. 

The importance of some of these effects in atoms has also 
been noted by other groups working in the field of photoelectron 
spectroscopy [e.g. 58-60J. 

VI. THE CALCULATION OF ~i' APPLICATION TO ATOMS 

We now turn to the problem of how to calculate ~i accurately 
and efficiently. No doubt, f~~ small systems the surest approach 
from the point of view of acc~_acy would be to carry out as large 
a CI as possible - provided a large computer and computer budget 
is available. However, we have already argued for an alterna
tive approach which is more economical, equally accurate, physi
cally instructive and completely general and feasible for large 
N systems. It is outlined below. 

A. The Restricted Hartree-Fock Function, ~HF 

Most many-body theories start with a HF zeroth order func
tion. This usually applies to the ground state. The excited 
states are then obtained through the particular algorithm used. 
For diagrammatic perturbation theory and Green's functions methods 
now employed, excited state information relies upon a calculation 
based on a single basis set having as reference a single state. 
For straight forward CI, excited state configurations are built 
from orbitals also corresponding to a single reference state. 
This practice is not without danger of serious errors. For 
example, Nitzsche and Davidson [60J have recently pointed out 
the inadequacy of using ground state or triplet nn* orbitals to 
describe the singlet nn* state of amides. In atoms, such defi
ciencies of a single HF set to describe more than one state are 
also existent. For example, the alkaline earths singlet and 
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triplet (nsnp) 3,lpo first excited states are represented by 
quite different HF orbitals. The same often holds for HF orbi
tals of valence and Rydberg configurations of the same symmetry. 

The theory which we present in this lecture is state specific. 
This means that the zeroth order function is radially optimized 
for each state and for each geometry separately. This allows 
consistent and systematic treatment of electron correlation in 
excited states. (In this way, EC also becomes state specific). 

From the computational point of view, there are two distinct 
HF methods: The numerical one, originated with Hartree and ex
tensively analyzed and computerized by Froese-Fischer [7], and 
the analytic one first introduced and developed by Roothaan and 
his school [61J. The numerical approach solves the Hartree-
Fock integrodifferential equations directly. The analytic approach 
transforms these equations into a matrix eigenvalue equation 
using as basis sets STO's or GTO's. 

Both methods have been a~lied to very many atomic states 
and a few diatomic molecules L62J. For polyatomic molecules 
only the analytic method is feasible at present. The numerical 
HF is more efficient because the integrations are done numerically 
and has the advantage that it can be made to converge to the 
correct excited state with relative ease by fixing the nodal 
structure of the desired root. It is also more accurate in 
general, especially for large atoms or for diatomic molecules 
[62] . 

The analytic HF constitutes, of course, the backbone of 
molecular LCAO-MO studies. Nevertheless, there are still pro
blems with excited confi~urations of many-open shells which re
quire special treatment Le.g. SJ as well as with convergence to 
the correct root in molecular excited states having lower states 
of the same symmetry. On the other hand, the analytic method 
can also allow the user more control over the computational 
process, often making evaluation of certain highly excited 
(autoionizing) states easier, at least in atoms. Su~h functions 
have been obtained for e~ample for the states He- 2s 2p 2po, 
Li Is 2p2 2D etc. [44,63]. We note that analytic functions of 
autoionizing states at the H-F level are required in a recently 
developed many-body theory of resonances using the complex co
ordinate rotation method [11,64,65J. 

In general, the situation regarding applicability of state 
specific SCF HF procedures to arbitrary excited states and avail
~bility of related computer programs is satisfactory for atoms 
L601 wbile sig~ificant progress has recently been made for mole
cules LS,66,67J. We note that if accurate correlation studies 
are to become "easy" in the future, computer costs of the SCF 
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calculations should not exceed~ 1/4 of the total cost. Thus, 
a development such as that of McCullough's on diatomics L62] is 
indeed encouraging. 

B. The Fermi-Sea Wave-Function, ¢FS 
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The ¢ function is a linear combination of a few (two to 
four) zero~~ order configurations which mix heavily (see section 
III A). In the ideal case, this function should be calculated 
by the Multi-Configurational HF (MCHF) method which optimizes 
both the radial functions and the mixing coefficients. Again, 
this method can be numerical [71, 32J or analytic[S,68]. We 
follow the practice of obtaining separate HF functions for each 
Fermi-Sea configuration which are then used together with othBr 
correlation vectors to be derived below, to diagonalize small CI 
matrices. This approach is cheaper and more stable. From some 
test cases on Be and C we have found that there is very little 
difference between the two procedures. The NON difficulties 
which arise with our method are accounted for explicitly since 
the size of the CI within the FS is very small (2x2-4x4). We 
note that in molecules, the FS configurations should be radially 
optimized for different geometries of interest so that each 
configuration represents the best diabatic state for each geo
metry. 

C. The Cluster Functions, ~ and IT 

The expansions 12 and 14 together with perturbation-varia
tion theory, are the guidelines for the computational scheme which 
we follow for the calculation of ~ and IT. There are three basic 
steps in the theory: 

a) Decouple (formally) ~FS' ~ , ITFS ' ITFS-~ from IT. This 
implies a decoupling of the (roughly) low lying states"vfrom 
the roughly high lying "states"(IT ) in the sense that the radial 
characteristics of these correlatIon functions are assumed es
sentially unchanged by the interaction of (bfS'~V,ITFS,ITrS-v) 
with ITV' We compute the two parts separately by varlatlonally 
optimizing non-linear parameters of one electron functions. (See 
below. ) 

b) Decouple the total IT into separate symmetry adapted 
pairs and optimize variationaYly their radial functions from 
small iterative 2x2 CI, Le. ¢HF +¢-;ITv' The notion of a "pair 
at a time" approach was first sugges¥ed by Sinanoglu [17,23] 
after he showed that, to first order, the correlation vector X 
for closed shell systems is rigorously decoupled into pai~s. 
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c) Having obtained the radial characteristics of the cluster 
functions in this way, we form the total CI matrix of the total 
function ~1 and diagonalize once, without any further optimiza
tion, to ontain the correct (within the model) coefficients of 
the cluster expansion. 

D. Radial Optimization of the Virtual Orbitals in Excited States 

In the usual CI calculations, the virtual functions are 
computed in one of the following ways: 

1) Use the unoccupied orbitals of LCAO-MO SCF calculation 
on a ground state to construct excited state configurations and 
correlation vectors. The common belief that one-electron func
tion basis set CI is slowly convergent has its foundation in this 
type of calculation. The Improved Virtual Orbital (IVO) method 
of Hunt and Goddard [691 which used a VN-1 potential to create 
virtuals, is indeed an improvement when only one STO per sym
metry is necessary. However, it will probably be much less 
successful if more than one STO of the same symmetry are required. 
This is because of the following: In atomic terms, (r) is 
proportional to n2/Z* where n is the principal quantum number 
and Z* is the effective nuclear charge. Since the potential 
essentially fixes Z'~, <r) increases with n quickly in large inter
vals. Hence the radials become diffuse rapidly as n increases 
and don't contribute to electron correlation efficiently. This 
is a characteristic of any VN-m potential! 

2) Use of Natural Orbital techniques [70J. The main com
putational procedures are those of Bender and Davidson [701-
called the Iterative Natural Orbital (INO) technique--and of 
Edmiston and Krauss [71J called the Pseudo-Natural Orbital (PNO) 
(see also ref. 30). Both methods are based on the diagonaliza
tion of the first order density matrix of a function built with 
canonical HF orbitals. In the INO this is done iteratively in 
order to improve the energy while in the PNO one pair is first 
obtained from an ordinary CI, and then transformed to a NO pair 
which is then used for all the other excitations. NO techniques 
are becoming more or less standard practice because of their 
significant improvement in convergence upon the calculation of 
type 1. The number of NO per pair is between four and ten. 
However, in spite of their relative success,INO procedures may 
still need improvement regarding convergence, especially when 
describing correlation in the bond region. 

3) In our work, the virtual orbitals are spectroscopic, i.e. 
state specific, as well as simple STO's and GTO's whose non-linear 
exponents are optimized variationally by minimizing the relevant 
energy functionals. Since we have already mentioned the calcu-
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lation of ~FS (i.e. the calculation of Lrs and ITF ) we proceed 
with the calculation of the cluster functlons LV' nFS -V and ITV' 

a) The ~FS-V and ~V functions: The ITrs -v are parametrized 
and calculated according to the type of state and its position 
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in the spectrum. To see what this means, let us consider a formal 
expansion of a particular ITFS-V in terms of symmetrized orbitals: 

IT FS- V = Lan \FS)ln) + Sd£ a£ I F8)1£) (18) 

I FS) represents the FS orbital, which is a fixed HF orbital, and 
In) , / £) are Rydberg and continuum orbitals in terms of which 

the virtual orbital V is expanded. The actual choice of V depends 
on the energy position of the state under consideration: 

1) The state is the lowest of its symmetry. In this case, all 
the single and pair excitations yield correlation vectors which 
push the HF energy down from above. The virtual can then be 
expanded in terms of one, two, or three STO's or GTO's (depending 
on the compactness of the system), and then optimized variation
ally by iteratively minimizing the CI energy of eq. 10 ~1 the 
diagonalized matrix containing the configurations ~HF'~HFLFS 

-1 -2 -2 , " 
~ LV' ¢HFITrS and ~HF IT rs-v as a functlon of the nonllnear para-
meters or the STO's or GTO s. The same goes for the virtual 
orbitals of LV' Due to first order theory symmetry restrictions, 
the virtual orbitals of LV and ITrs -v have only a few fixed 
symmetries and thus this type of lterative variational CI is 
small (around 5-30 on the average) and relatively inexpensive, 
especially when experience with a few states is gained. 

2) The state is not the lowest of its symmetry. In this case, 
depending on the type of the excited state, ITrs-v (not Lv)' 
together with Lrs and ITrs ' can give rise to conflgurations and 
correlation vectors lying below the state of interest. Examples: 

) Al+ KL 3d2 ID ~ 3' ~-1 = KL 3 3d ID h' h l'S a ; L..FS = S, 1. e. HF 0FS s w lC 

+ 2 2 2 1 2, -2 2 2 1 
below. b) B Is p S; IT FS = (2s ), l.e. ~Hr ITrs= Is 2s S. 

222 I ~ c) B Is 2s 2p S; I1FS -V = L an '28) nSf' The first five HF ns 

222 represent the configurations Is 2s ns S which are below the 
2 2 2 1 0 valence state Is 2s 2p s. d) He 2s 2p P ; ITFS -V = 

L a /ls)lnp> + 5d£ a /ls)/cp>. This state not only has all 
n £ 

the Rydberg configurations 11s)Jnp) I po below it, but also is 
embedded in the continuum /ls>/ £p) into which it decays-- i.e. 

He 2s 2p I pO is autoionizing. These cases are handled in the 
following way: The Rydberg and continuum states surrounding the 
configuration of interest are computed separately and are included 
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explicitly in the expansions of LFS and ITrs -v ' Since, for atoms, 
the matrices are small, the NON problem whlch ensues is solved 
exactly (see section VII). The remaining of the expansion of 
IT FS- V' which represents states above the state of interest, is 
parametrized with STO's or GTO's which are optimized, as before, 
variationally. 

Comments: 1) Due to symmetry restrictions, the virtuals 
in ITrs- v can only have a finite number of orbital symmetries 
(ev~3~e ,where R is the highest FS symmetry). max max 

2) In optimizing ITrs -v for large systems, one can decouple 
it from LV' LF and optimlze the non-linear exponents in LV and 
IT FS- V separately. Numerical experience [42] suggests that this 
decoupling and separate optimization determines fairly accurately 
at what values of the non-linear parameters,J, the minimum total 
energy occurs, although the true minimum is obtained from a 
total CI where the 1 ,being already accurate, are adjusted 
only slightly or even kept fixed. 

3) The repeated decoupling procedures result in a series 
of small problems none of which requires simultaneous optimiza
tion of more than 3-4 parameters. For example, a 5000 determi
nant, spin-orbital based wave-function corresponding to Lr,Lv' 
IT FS ' ITrs-v' was decoupled [42Jso that no virtual section had 
more than 200 dets. in the second row (Na-Ar). Molecular de
coupling procedures similar in spirit to comment 2 have been 
used by Das and Wahl [SJ and Guberman [5]. 

b) The!V functions. Symmetry adapted Pair energies. 
One of the first calculations on a large part of IT and their 
energies in excited states, was done on three elec~ron autoion
izing states [63] in the spirit of the Silverstone-Sinanoglu 
classification [19J. The calculation was approximate in the 
sense that the ITV were composed of the virtual functions from the 
ITFS-V calculation and just a single diagonalization was carried 
out. The results [63,44] were reasonably accurate. 

For an arbitrary N-electron atom, one must have a consistent 
and efficient procedure for calculating these subshell pairs. 
This can be accomplished as follows (similar procedures for 
molecular ground states are described in [30]). 

Taking into account symmetry considerations, it can be 
shown reg. 40] that the ~ivirtual symmetry adapted energy in 
first order has the form: 

EVV ' = Lk ck2 Lk <k LS L T2 E(na€anb~b;SL) + 
a b ' kakb;SL 



THE ELECTRONIC STRUCTURE or EXCITED STATES IN SMALL SYSTEMS 127 

(19) 

where k , kb are the spin-oEb~tals belonging to the determinant 
~k' of ~he subshell naea , n e which have been replaced. The 
second sum arises from two determinants ~k and ~LA which differ 
in only two spin-orbitals (k ,k of ~k and f , ~ of ~ ) which 
have their N-2 common spin-o~bit~lS allgned p~odu~ing t~e phase 
factor (-l)mkL . These may arise from either the same or differ
ent configurations (if ~ is multi-configurational), although for 
simplicity we will now restrict ~ to be single configurational. 
The £ are the bi-virtual pair energies. 

The factor T.. is that which linearly combines two elec-
tron determinantsl~~rt with a common ML and Ms) such that two 
electron symmetry eigenstates (S,L) are formed. In ref. 40 
no explicit formula for T was given because the few results on 
m n f" b . d b b' s p con 19uratlons were 0 talne on a case y case aSlS. 

It turns out that T is well known [72J, i.e. 
b ' ea+n + M +M (28+1)(2L+1) = (-1) ~ L 8 N 

x 

(20) 

where N=2 if the subshells (a and b) are equivalent, and is 1 
otherwise. The ( ) are 3j symbols. 

We evaluate equation (19) explicitly for two general cases: 

(i) Let a be a closed subs hell and b be an arbitrary (open 
or closed) subshell. The second term in (19) vanishes because 
k , kB' £, fg must all belong to the open subshells. In 
t~e flrstUsurvlving term, the sum over k becomes: a 

L a 
m 

+1/2 +ea 2 
=-1/2 Lma=_~a and as only T depends on these quantities 

s 
(because a is closed and common to all ~), these sums may be 
performed using standard methods [72], yielding 1/(2(2eb + 1)). 
Since nothing remains which is dependent on mb and m~ , the 
sum over these quantities yields 0b' the occupation number of 
the b subshell. Finally, as Lk c~ =1 we get 

°b 
E (b) LS,L (2S+1)(2L+1) e:(naea ,nb£b·,8L) vv' a, = 2(2eb+1) 

(21 ) 
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where the only restriction is that a is closed (b may be identi
cal to a). The sum may be extended to cover all such a and b 
subshell. pairs, leaving us only with contributions between all 
subshell pairs involving just open subshells. 

(ii) The above analysis can be extended to include the 
contributions within (b=a) a subshell having one hole. The result 
is: 

(22) 

These remainin~ cases have to be evaluated numerically. 
This has been done L73] for all optical configurations of atomic 
species through N=22. 

The value of the above analysis is the fact that it can be 
used for systems where ITV appears to be state nonspecific. In 
this case, IT is transferable and can therefore by used to 
build N-elec¥ron wave-functions and energies without much compu
tation. On the other hand, we note that this chemically very 
desirable feature of parts of the correlation depends on the 
definition of the Fermi-Sea to which ITV is orthogonalized and 
therefore it is not clear to what extent this is satisfied in 
excited states of arbitrary atoms and small molecules. We point 
out that a semi-quantitative idea of the extent of transferabi
li2y of pair energies (not pair functions) for configurations 
1s 2sm2pn can be found in the semiempirical work of ref. [40] 
(for comparison see refs. 28 and 41). 

Once the symmetry adapted pairs have been defined, their 
calculation is carried out individually, by expanding them in 
two-three STO's or GTO's and minimizing the energy 

/. -2 I -2"\. 
E -_ ,,<Ii U F + <liHF_ITV~IJF + <PL c ITV.£.· d 

- ~- 1 ~~ ThlS proce ure converges 
V 1 + < <Ii -2 IT I <Ii -2 IT > 

HF V ~f V 
quickly, even for tight pairs [2], and fixes the radial charact
eristics of IT. These are then assumed constant as we diagona
lize the totaY matrix to obtain the coefficients in the expansion 
of each ITV (see equation 24). 

~1 is now a compact, well correlated function. According 
to the problem of interest, the method of computation allows 
the flexibility for it to contain spectroscopic (mainly through 
ITFS and ITFS -V) as well as purely energetic information (mainly 
through ITV)' We note that the whole calculation involves analy
tic (virtual orbitals) as well as numerical (FS orbitals) func
tions and the integrations are carried out numerically. 
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VII. THE NONORTHONORMALITY (NON) PROBLEM 

Usually, CI calculations in the MO picture employ a common 
set of orthonormal spin-orbitals. However, there are physical 
and chemical problems whose solution may be optimized in terms 
of deduced chemical information using nonorthonormal basis sets. 
These are cases where the system under examination (e.g. valence
Rydberg atom-molecule reaction) can be divided into groups, 
each on~ optimized separately within its own function space, 
which are then allowed to interact. Thus, valence bond functions 
or calculations of off-diagonal matrix elements of wave-functions 
obtained from different CI give rise to NON between the basis 
functions [e.g. 74,75J. This "problem" is, of course, only 
computational not conceptual. For these cases we have handled 
it using the method of King et al [76J. 

For the theory we have outlined above, the separate varia
tional calculation of the pair functions and valence Rydberg 
HF orbitals gives rise to NON within a single calculation. The 
same NON procedure can be used. However, for reasons of economy, 
the complete NON calculation can be reduced to the calculation 
of the "direct" and the most important "exchange" overlap only. 

VIII.DETAILS CONCERNING CONSTRUCTION OF L2,S2 EIGENSTATES 

For small and moderate numbers of open subs hell electrons 
( ~ 100 determinants) the symmetry adapted basis functions 
can be obtained by numerical diagonalization of the operator 

-2 m -2 -2 
A = L. 1 (a. S. + 8. L.) l= l l l l 

(23 ) 

(or i=l, which corresponds to the Schaefer and Harris algorithm 
L77], we span the full complement of the open subshell electrons. 
All other its refer to sub-groups of electrons (with the only 
restriction being that all equivalent electrons must belonS to 
the same subgroup~,c~osen to provide unique labels(up to d sub
groups) for the_L S vectors. The a. and 8. are chosen so the 

. I f A2 d" l l elgenva ues 0 are lstlnct. 

While it is not essential to parentalize (any orthonormal 
set would do), it is useful for the purposes of analysis and 
sometimes efficiency. For example, by coupling the symmetries 
of two virtual subshells to a specific symmetry (Sv,LV)' one 
can ensure that the vector belongs to a specific FS pair--i.e. 
(n< n I)2SV + 1L where n (. n Z are the subshells being replaced. 

V 
Or, one can assign the parents in such a way as to correspond to 
optical spectroscopy conventions. Finally, when the number of 
possible couplings (N) for a given configuration exceeds the 
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number (M) of distinct I and Rk radial integrals associated with 
all the matrix elements < 4> I H I X>, then we may recouple to re
move N-M basis functions, provided such couplings are not impor
tant for the calculation of properties other than the ener~y. 
Examples of such reductions are available for energies [78J and 
transition probabilities [9J. 

For large numbers of open subshell electrons, a new proce
dure is desirable, due to diagonalization costs. Generally, 
these cases will involve a group of two electrons (e.g. bi-virtual) 
and a "core" of N-2 electrons which are distinct (no common sub
shells). It is possible to separately obtain eigenstates for 
the "core" and two electron subsystems with ease. These then 
can be combined using 3j symbols, also with ease (for an example, 
see ref. 79). This should eliminate this step as a bottleneck. 

IX. APPLICATIONS 

Below we present a few, previously unpublished results from 
calculations on small as well as large atoms which are of 
current physical interest. Each example demonstrates one or 
more computational features which, we believe, contribute to 
the field of computational Quantum Chemistry. 

We discuss this calculation at length to illustrate imple
mentation details. 

The HF energy for this state is E F=-0.115884 a.u., i.e. it 
is predicted to be unbound. The corre~ation vectors are: (2pL ), 
IT2p2. For L we took L =v where v is a virtual orbital p p p p P 
of p symmetry while for IT2p2 .we wrote: 

IT2p2 (r1 ,r2) = a (v v ) + ad(vd vd ) + af(vf vf ) + 
P PI P2 1 2 1 2 

9 2 
1> =4 at ve (24 ) 

The virtual p-space was found to need six virtual STO's and the 
d-space three. Estimates for the first compact STO per symmetry 
were made according to IX C. The second and third STO's, when 
necessary, were initialized by adding them and plotting the 
energy as a function of the non-linear parameters (no minimiza
tion). Typically, two deep, apparently well separated minima 
were found. They corresponded to compact virtuals, although 
with substantially different parameters than that of the first 
STO,partly due to the extra orthogonalization. Using these 
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initial estimates we iterated the total C1 until minimization. 
We note that the net energy lowering was not the sum of the in
crements obtained in separate calculations by the addition of the 
STO's. 

During iteration, the cross terms v v ,2pv were found to 
P1 P2 P2 

play an important role. After iteration was complete within the 
pdf space, these were transformed away by diagonalizing the f~rst 
order density matrix, leaving 12 configurat~ons of the type.-e. . 
(During iteration, one could only use the € form if a true MCHF 
calculation was performed (all coeff~cients and radials chang
ing).) Configurations of the type E (4~ e ~69) were then added, 
and their energies were found to vary aSN e Our final result 
is 0.0934 eV for the BE of H-, in com~arison with Drake's 50x50 
C1 with Hylleraas basis set value [57j of 0.0953 eV. The re
maining difference of 0.002 eV is likely due to the incomplete
ness of the p and d spaces. 

We believe that the results of this calculation demonstrate 
that single particle expansions can be highly accurate and effi
cient within reasonably short expansion lengths and that they 
can compete effectively with functions involving r .. traditional
ly thought to be the only way to obtain compact fu~dtions. 

B. H 

Recently, the possibility [81] of a long lived (~10-8 sec) 
H state which results in the ejection of one electron has been 
the subject of considerable controversy [82]. 

Shell structure considerati~ns suggest 2p3 as the possible 
most stable structure, with the SO term selected as the only 
one for which autoionization is forbidden non-relativistically. 
This configuration is embedded in the two electron continuum 
2p (£,£'). H-Is diffuse and presents an interesting theoretical 
problem. 

At finst a standard [7] HF calculation was attempted, but 
even with careful extrapolation, we were unable to reduce Z 
below 1.4. Eventually (Z-+O) the potential will get too small 
to support a single level without modification [83J of it (this 
difficulty might be equivalent to the production of positive 
orbital eigenvalues observed [84J in the matrix SCF method-
something not permitted in the numerical version). 

To proceed, we chose to replace the standard SCF procedure 
with an "SCF-C1" method, involving the two configurations 2p3 
and 2p2 vp for which the energy was minimized subject to the 
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requirement that the 2p3 character of the root was preserved. 
The CI solution was then condensed into an SCF one, creating a 
new 2p, such that Brillouin's theorem was satisfied. The process 
was repeated until little change in the energy was noted. This 
method has been used for other autoionizing states with success 
[55J, and a similar one has been applied to molecules [85J. Here, 
a very poor virial theorem was noted for the "SCF-CI" results, 
which however was considerably impro~ed w~en c~rrqlation was 
added via the configurations 2p ( vp + vd + vf ) So. All three 

virtuals were iterated, and a local minimum was found (as we 
are in the double continuum, the absolute minimum co~~esP9n~s to 
two free electrons). The final result is that the H 2pJ SO 
"state" is 1. 083 eV above the H 2p threshold. After completing 
this work, we received a preprint from the Bunges [85]in which 
an "instability" appeared about 0.1 eV lower than our "state". 
These results suggest strongly that no H state exists. 

C. Atomic Optimized Virtual Nuclear Centered GTO's for Use in 
Molecular Studies 

Virtual functions are always initially represented by us in 
analytic form, and have only a few (usually one) non-linear 
parameters (exponents) to be optimized. This representation 
allows easy adjustment during the iterating process. Our past 
atomic work has used STO's and to a lesser extent (and less 
successfully) screened hydrogenic functions for virtuals. One 
STO per symmetry (STOlf) is usually capable of picking up 70-90% 
of the correlation energy in the £ part of the pair in question. 
Usually two STO's If are sufficient. In fact the agreement with 
full multi-configurational virtuals obtained using standard [ 7J 
methods is quite good at this level. It turns out that rather 
good estimates for the exponents can be obtained cheaply--in 
particular for the first STOlf which we discuss below (the 
estimation process for the additional STO's, if needed, was 
discussed in Section IX A). 

First, the error we make (with the HF function) is due to 
the presence of the l/r .. terms and should be largest when r. ~ r .. 
Secondly, the largest ef~or within this region will occur fof J 
r. ~ r. ::::: < r> HF' i. e. the average HF radius for the subshell( s) 
b~ingJreplace(f. So, by setting < r > for the virtual function 
equal to < r> JjF' we emphasize the proper region. Prior to 
orthogonalizatlon, the virtual function (Rn( form) is: 

n-1 -ar (a.) 
r e Yt?m(-&'<P) S (25) 

and our estimate is determined by: 



THE ELECTRONIC STRUCTURE OF EXCITED STATES IN SMALL SYSTEMS 

2n + 1 
2a 

133 

(26) 

which determines a, given n. We find that different (a,n) sets 
are about as effective as one another (except for hfs, where 
we always take n=1 for s STO's, as only such STO's survive at 
the origin), and we normally use n equal to the principle quan
tum number of the lowest unfilled subshell. Equation (26), 
which is always used, is so successful that frequently no further 
adjustment of a is needed. However, if the virtual must be 
orthogonalized to the FS, then a few (5-6) iterations may be 
required. The use of non-integer values of n is not found neces
sary which is fortunate as this complicates the calculation (by 
introducing Gamma functions). 

We would like to transfer some of these results directly 
to molecules. For this to be valuable, three different proposi
tions must be essentially viable. The first is that no present 
method of generating molecular virtuals is fully satisfactory. 
The second is that a portion of the significant correlation 
effects must be essentially the same for atoms and molecules. 
Finally, we need to develop a Gaussian Type Orbital (GTO) virtu
al representation, as essentially all non-linear polyatomic codes 
use GTO's and not STO's. 

The generation of optimum virtual functions was mentioned 
in VI D. We believe that the variational procedure combined 
with systematization regarding initialization and extrapolation 
(see e.g. ref. 41 for systematics of virtual orbitals along iso-
electronic sequences--related to < r» holds promise for mole-
cules as well. 

Concerning the question of transferability of functions 
from atom to molecule, things are more uncertain. One might 
expect correlation associated with core electrons (significant 
for binding energies, etc.) to be reasonably transferable. In 
the same spirit, the bi-virtual correlation will probably be the 
most transferable of the sections as it depends least on degen
eracy effects--which are quite sensitive to their environment. 
Atomic virtuals might also be expected to describe the ionic 
part of the bond better than they do the covalent part. 

The simplest virtual functions which can appeal both to 
atomic and molecular theorists are nuclear centered single parti
cle GTO's with atomic optimized parameters, viz: 

r n- 1 e-ar2 Yem(~'cp)(~) (27) 

To our knowledge, this is the first time such functions have 
been explored as variationally optimized single particle virtual 
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functions. Once again we may use < r) to estimate the parameter 
values, i. e. 

( 1 )( 2 ) ... ( 2n ) 1 _ < > 
(3)(5) •.• (2n-1)~2TIa' - r GTO = <r> HF (28) 

As we will r-estrict n to correspond to the lowest unoccupied 
subshell (this is not a necessity, only a convention. Thus 
n-~ can be restricted to have a definite parity, as is pre
ferred in molecular work.), equation (28) determines the esti
mate for a. 

In Table 2, we present results for the bi-virtual correla
tion of He and the L-shell of C. Both STO's and GTO's are used 
and compared where possible with accurate values. We find the 
fOllowing: 

(1) GTO's are nearly as good as STO's (which are quite 
good) in picking up the correlation. (Internal evidence suggests 
the STO of d symmetry for the(2s 2p)pair is incompletely optimized, 
so this result is not an abberation. On the contrary, it suggests 
the importance of the optimizing process). 

(2) For both GTO's and STO's where no orthogonalization to 
the FS is required, the optimized values are in excellent agree
ment with the estimates. 

(~) The estimation process predicts the pd exponents of 
the is C pair to be ~ 13.1 (which has been confirmed for other 
states). This supports the statement that different pairs 
(e.g. K vs. L) require different exponents. 

(4) It may be noted that the estimation process is uncer
tain for ne n' e' pairs when n' ~ n (when n'=n, then <r> e ~ 
<r> R' ). This is symptomatic of the need for a modifigation. 
In prRctice, these pairs are found to require at least two STO's/f 
-one of which is approximately near <r) and the other near 
<r> , " Development of a valid estima¥gry process for such 
pairs~-ghich in their totality playa larger role in molecules 
than do the intra-shell pairs [24]-is in progress. 

(5) Although it is not obvious, we found that in general, 
the most important correlation configuration corresponds to in
creasing the orbital angular momentum by one unit &for single 2 
excitations, by two units). Thus, for example, ns , ns np, nd , 
ns subshells have v~, vpvd' v~, and vd as the most important 

virtual replacements. 
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D. Ni III 3d8 Term Structure 

Many interesting solid state systems (bulk and surface) 
involve Ni in its various ionization states (I-IV). At present 
these are treated within the IPM--for example at the UHF level 
with possibly long-range correlation added [87J--but it is clear 
that a thorough understanding must involve consideration of atomic 
like correlation effects. While it will be difficult to justi
fY,on a quantitative basis, the use of purely atomic treatments, 
the qualitative aspects of the correlation in the free atom or 
ion can be of considerable valu~ in guiding solid state treat
ments. In fact recent work [87.1 based on localized orbitals 
indicates that at least semi-quantitative results can be obtained 
through the use of a rather simple external potential which can 
be directly incorporated into the atomic procedures. On the 
other hand, few purely atomic studies of species with more than 
eighteen electrons exist, which is probably due to the seeming 
computational complexity involved. 

In this section, we will identify the principle correlation 
effects associated with the Ni III ion term structure and dis
cuss efficient methods for obtaining results accurate to'" 0.1 eV. 
This species was selected as it plays an important role in the 
solid state (NiO), and yet is ionized enough to depress the 
strong 3d,4s degeneracies present in the neutral atom. 

To begin with, only non-relativistic calculations were done 
to simplify matters (see ref. 88 for examples of how relativistic 
effects are currently treated). This is probably consistent 
with the level of approximation present in the remaining part 
of this treatment (in any case, the full use of relativity, even 
at the SCF level, is currently prohibited in the solid phase). 

Next, we have restricted our attention to the valence portion 
of the configuration, i.e. the 3s,3p,3d spac~ to which we have 
added a 4s, to complete the FS. It is knownJ89J that at least for 
some neutral and lightly ionized species 3d of low q, that the 
3d~4s interaction is moderate to strong, with the MCHF 4s being 
substantially different8than thf single configuration 4s. What 
is the situation for 3d of Ni+? This quegtion was examined here 
in two ways--(1) by seeing how the 4s in 3d -n 4sn varied with n, 
and (2) by seeing whether a large polarization correction (4s~v ) 

s could be found. No large e~fects were found, so the reference 
configuration was solely ~d '2and the 4s was generated from the 
configuration average 3d 4s. 

F~ll SCF calculations were made for each of the five terms 
(lSDG, PF) using the code of Froese-Fischer [7J. These were 
found to give term splittings accurate to 0.5 eV (Table 3) when 
compared to experiment, except for the 1S which has not been 
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observed (for this term only, the results based on the radials 
of the configuration average were quite far off (~1.5 eV) the 
SCF ones). 

In constructing the internal correlation (E and IT 
the only excitations allowed to 4s were those in~§lving2tR~ ~d 
e12ctro~s. Spec~ficapy we included 3d1 4s, 3s--3~, 3d2-74S , 
3p ~3d , and 3s -..3d. Where allowed, ( DS,3p) 3p --3d is the 
largest, followed (50% smaller) by 3s~3d where allowed (lD). 
As can be seen from Table 3, thr effects were particularly large 
for lS, and to a lesser extent D. 
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Next we directed our attention to the bi-virtual correlation 
believing it to be the most significant remaining correlation 
(this is discussed below). To do this, we assume pair transfera
bility within terms. This involves only a change of state (Z and 
N are fixed), and is probably worst for the well separated terms 
(e.g. 3F and lS). Under these restrictions, the contribution of 
the pairs to the excitation energy are found by numerically .. , 
evaluatlng equatlon 19, to be: 

E(3d8 S,L) - E(3d8 s' ,L') = £(3d 2S,L) - £(3d 2S',L') 

Note that only the 3d 2 pairs enter. This is due to the fact that 
the interaction of (me')q with a closed subshell (ne)4efl depends 
only on q (see Section VI) and not on the terms. Correlation 
functions then take the form: 

(3d6 (S ,L ) v v' (S ,L ))S L c c v v 

This correlation vector however, contains a considerable number 
of determinants (172 for SvLv=3F, SL=lS) which, for our standards, 
amounts to a substantial computational effort. As this was an 
exploratory calculation, we reduced the labor by assuming the 
(approximate) transferability of the pairs (whic~ we note has 
not yet been computationally demonstrated for 3d pairs in tran
sition metals), 20 reduce the complexity by looking at a smaller 
species (i.e. 3d). Since Z can be varied, we chose it in such 
a way as to make the calculation most nearly correspond to the 
original system. Recalling that most virtuals are essentially 
determined by <r) HF' w;. chose Z for 3d2 such that <r>3d? ZI"= 
< r > 3d 8 ,Z=28. 0 • z .. was found to be '" 24.5 by a serles of 

SCF calculations on the average energy. 

The pair energies were then obtained using the methods 
discussed earlier, with 1 STO/~ , and e <4. The ~ cutoff was 
chosen according to the observation that the maximum contribution 
comes from an f one unit greater than the f we are replacing, 
(in this casef =2), and we include one higher e as well to 
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achieve reasonable convergence. All pe2mitted combinations of 
the virtuals were allowed, e.g. v v , v , etc. and all exponents 

p g g 
were optimized. 

The pair energies (3d 2, Z=24.5) for the 1DGS,3FP in eV 
are: -0.320, -0.217, -0.991, -0.139, -0.320. The main contribu
tors to these pairs was the v~ with the v~ following this. For 

3 1 the P and D pairs, v contributed a non-negligible -.0.006-8 
a.u. and for the 1S -0~007 a.u.. Clearly, for the 1S the v plays 
an important role, so much so that vb should be explored asgwell. 
We believe these pair results for 3d2 electrons to be the most 
accurate ones available at this time. 

The results are then added to the previous ones, and the 
term structure is brought into NO.1 eV agreement with experi
ment (Table 3). It should be noted that there is a 2 eV correc
tion to the ~SCF results for the 1S term. 

The remaining correlation, presents us (especially ITrs-v) 
with even greater difficulties (e.g. larger number of dets per 
LS state) with no corresponding simplifications apparent (e.g. 
transferability). Based on the bi-virtual results and past ex
perience, we suggest that the excitations 3s -?-v d' 3p-c>v f' 3p2.--,. 

3d vd ' 3s 3p~3d (vp+vf ), 3d-+vs+vd+Vg are probably the most signi

ficant. 

Since this is an exploratory calculation, and several other 
approximations have been made, we sought to determine through 
examination of previous results (primarily the ground state smpn 
configurations for first row atoms) to what extent these could 
be neglected when comparing term structure arising from the same 
ground state configuration. The conclu~ion was that (a) if all 
terms have internal correlation (here s -?-p2) or all terms have 
no such correlation (true for only some terms of Ni III) and 
(b) if symmetry does not exclude an otherwise important virtual 
polarization or hole-virtual configuration (true here), the con
tributions of ~V and ITrs-v pretty much balance out between terms. 

In summary, we have identified the most important correla
tion effects contributing to the Ni III term structure and de
veloped methods for obtaining them efficiently. 
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Table 3 

Term Splitting in Ni III 3d8 (in eV) Relative to 3F , 

Calculation Type Upper Term 

1n 3p 1G 1S 

Av. Energy 2.0358 2.4663 3.1817 6.313 
~SCF 2.0356 2.4663 3.1841 7.829l? 
+Internal Fermi-Sea 1. 6846 2.2276 3.0598 6.7064 
+Bi-Virtual 1. 5132 2.0313 2.9808 5.8539 
Error -0.12 +0.07 +0.12 
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ABSTRACT 
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National Hellenic Research Foundation 
48 Vas. Constantinou Ave. 
Athens 501/1, Greece 

We present an approach to the calculation of photo excitation 
and photoionization transition probabilities which first derives, 
consistently, the important correlation effects and then computes 
them efficiently and accurately. The e.mphasis is on the correct 
evaluation of the transition matrix element and not of the exact 
Schrodinger equation for initial and final wave-functions. The 
theory is implemented through Configuration-Interaction techniques 
which allows the practical consideration of any type of state. 
Both initial and final states are treated at the same level of 
approximation due to the similarity of restrictions imposed upon 
them. The basic conceptual and computational characteristics of 
the theory are simple: The zeroth order vectors for initial and 
final states are the Fermi-Sea (FS) wave-functions. The transi
tion operator is then applied to the FS vectors and selects the 
additional correlation effects in initial and final states which 
contribute to the transition amplitude the most. These corre
lations are expressed in terms of Hartree-Fock and variationally 
optimized virtual orbitals for each state. The resulting very 
small wave-functions are then employed for the calculation of 
the transition probabilities. This First Order Theory of Osci
llator Strengths (FOTOS) is applicable to any system with a shell 
structure and symmetry (including nuclear transitions). Its ap
plication to a variety of atomic transitions has yielded accurate 
results, some of which are presented here. Also presented are 
brief discussions on the question of which form of the electric 
dipole operator is the appropriate one to use in computations, 
nonorthonormality, extraordinary absorption properties of cer
tain systems, polarizability calculations within FOTOS and the 
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extension of FOTOS to the relativistic domain. 

I. QUALITATIVE INTERPRETATION OF PHOTOABSORPTION AND PHOTO
EMISSION SPECTRA OF ATOMS AND MOLECULES 

Photoabsorption and photoemission spectra vary considerably 
according to the system examined and the energy at which they 
are carried out. The literature on the subject is big and is 
growing fast. As a result, the same basic phenomena are often 
interpreted using different types of nomenclature--a fact which 
may have caused a slight obfuscation in the field. Therefore, 
we believe it is useful for the nonexpert reader to start this 
paper by presenting briefly, in a shell model language, a simple 
interpretation of the most interesting and general transition 
processes and their significance. 

The electronic transition processes in atoms and molecules 
which are of interest to Quantum Chemistry usually involve the 
absorption or emission of one photon in the range (roughly) 1 eV-
5000 eV. The low energy side involves the spectra of the valence 
electrons in neutrals and singly ionized species (e.g. low lying 
valence-or Rydberg- Rydberg transitions, "forbidden" decays with
in the same configuration (e.g. electric quadrupole)) while the 
high energy side involves the spectra of highly ionized atoms or 
deep inner electron transitions, which are very important for 
the quantitative examination of relativistic and quantum electro
dynamic effects, and may serve to identify super-heavy transient 
nuclear species. 

Most low intensity source, one photon processes are of the 
electric dipole type. When nonrelativistic symmetry forbids this 
type, the nonrelativistically "forbidden" transitions (spin-orbit 
allowed electric dipole (SOAED), electric quadrupole (E2), mag
netic dipole (Ml), etc.) take place whose probabilities are very 
small in the neutrals but--except for the E2--increase rapidly 
with Z (e.g. ~ Z10 for Ml transition probabilities compared with 
~Z4 for El). Forbidden transitions have most often been seen 
in emission. With the application of the high intensity laser 
sources they can now be seen in absorption as well, although 
accurate ( ..... 10%) measurement of longer lived species (> 0.1 sec.) 
still presents a challenge. 

In emission, both initial and final states may be in the 
discrete or in the continuous spectrum. In absorption, the ini
tial state is usually the ground or a low lying excited state. 
The final state may again be in the discrete or in the conti
nuous spectrum. 
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In contrast to the spontaneous photoemission processes which 
occur almost exclusively via one or zero electron jumps, the 
induced photoabsorption processes may involve multielectron tran~ 
sitions as well. In theories which use a common one electron 
basis set for initial and final states, (standard CI, Many-Body 
Perturbation Theory, Green's functions, etc.), multielectron 
transitions are attributed to electron correlation exclusively, 
since the dipole operator is monoelectronic. In theories such 
as the one described in this paper, where initial and final 
states are assigned their own SCF Hartree-Fock functions, multi
electron transitions can be attributed partly to electron corre
lation and partly to the change of the HF potential which yields 
nonorthonormal orbitals--provided the orbital symmetries of 
initial and final configurations allow it. 

The samples of transitions given below demonstrate some of 
the points made above and give us the opportunity to comment, 
whenever necessary, on the importance--or lack of it--of the most 
conspicuous electron correlation effects. 

1. Ne 2 2 6 1 +[ 2 2 5 2 0 -] 1 0 
1s 2s 2p S4Ne 1s 2s 2p P1/ 2,3/2 + e P 

Single electron photoionization from the outer valence 
shell of a closed shell system. Electron correlation effects are 
small. In noble gases, only one channel is open. In larger sys
tems, the spin-orbit interaction splits the (1/2), (3/2) levels 
so that there are two distinct photoionization thresholds. 

2. Ar 

Same as above only that now electron correlation is more 
important since Ar does not have its Fermi-Sea [1] closed. Thus, 

the 3p~3d2 pair correlation is nonnegligible. 

Two-electron excitation to an autoionizing state. Correla

tion is important in the initial--(e.g. 1s~2sV , 2pV ) as well 
s p 

as in the final state (e.g. 2s2~2p2). This transition is allowed 
in SCF-HF theory as well, since <ls/2s)# 0 [2]. 

4. 
211 Zn KLH 4s S -7 Zn KLM 4snd D 

Electric quadrupole transition from the 1S ground state of 
the alkaline earths to the nd ID Rydberg series. Seen in photo-
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absorption [31. For the initial state, the Fermi-Sea correlations 
2 2 2 2 4s ~ 4,p B 4d B 4f are important while for the final states the 

"symmetry exchange" [lJcorrelation 4snd~4p2 creates a valence
Rydberg series whose effect in neutrals can be (n = 4) so large 
[4-6] that single configuration assignments to certain states 
lose meaning. 

S. 02 (3a2lt\2) X 3 I;- -7 02 (3a2lt3lt3,3a2lt4lt 3plt) 3I;-
g u g g g u g g u g u 

Photoexcitation to low lying excited states which exhibit 
"localized" valence-Rydberg mixing. In molecules this mixing 
is a function of geometry [7,8], while in atoms, it is a function 
of the nuclear charge [9,101. The mixing coefficients and the 
transition probabilities are sensitive to the relative positions 
of the diagonal matrix elements and the types of basis sets 
used [6,10]. 

6. Ag KL 3S2;3!p63d104s24p64d10Ss 2S~Ag+[KL 3s23pS3d104s24p6 

4d10Ss 3,lpo + e-] 2po 

Inner electron photoionization. Due to the open valence 
shell-CSS-electron) there is multiplet structure. Electron cor
relation is, in general, symmetry dependent i.e. multiplet struc
ture dependent. Thus, its exact effect on photoionization pro
cesses in open shell systems varies from term to term. For the 
above process, apart from the Fermi-Sea correlations for initial 
and final states, the major correlation effect is the "hole-

filling", "symmetry exchange" [1] pair correlation 3d~3pnf,e:f, 
where (nf,£f) are discrete and continuum orbitals. This corre-

lation corresponds to configurations [KL 3s23p63d8(lS,lD,lG,3p, 
3 2 6 10 3 1 0 -} 2 0 , F)4s 4p 4d Ssnf,£f ( , p) + e P wh~ch represent two 
electron excitations. Depending on the amount and type of the 
overall correlation and configuration mixing, experiments on atoms, 
molecules and solids record a multitude of peaks usually called 
"satellite", "shake-up", "multiplet" etc. [11-17]. 

Spin-orbit allowed electric dipole transitions (SOAED). 

The quintet state decays be mixing with the 1s22s2p3 3po term 
via the spin-orbit perturbation [18J. For the ground state, the 

Fermi-Sea correlation 2p2~ 2s2 and the 2s~Vd are the most 
, So" h 1 f'll' ~mportant. For the S term there ~s no Ferm~-Sea or 0 e- ~ ~ng 
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correlation because symmetry forbids it. On the other hand hole

filling correlation is allowed for the 3po term (2p2_ 2sV d' V s) 

and affects the 3pO_5S mixing as well as the 3po~ 3p transition 
matrix element. In the work of ref. [is] the effect of electron 
correlation on the spin-orbit mixing was neglected. Current work 
on the fine structure operators [19} takes electron correlation 
into account. The simpler case of singlet-triplet mixing and the 
corresponding SOAED transitions are those which are better known 
in Quantum Chemistry [20]. 

8. S KL 3s23p4 3P~S++ [3s23P2(3p ,1D,1S) + 2e-] 3so,3po,3Do 

~S++ [3S3p3(5SO,3So,1,3po,1,3Do + 2e-] 3SO,3pO,3DO 

Double photoionization of valence shells. This process con
tributes substantially to the total photo ionization of noble gases 
[21-23,13]. Open shell cases show of course the main features 
of closed shell photo ionization and in addition those specific 
to their multiplet structure. For double photoionization process
es: a) The problem of correctly computing the scattering functions 
of two free electrons simultaneously is outstanding. b) Fermi-

Sea correlations for the bound functions are important: For S 3p 
2 2 2 2 ++ these are: 3s<ri3d, 3p~3d, 3s~3d, and for S we have in 

addition 3p2~ 3s3d. However, the important "symmetry exchange" 
2 5 0 3 0 correlation 3p~3s3d,nd does not apply to the S, S terms. 

We note that this correlation effect has been given special em
phasis by Chang et al [22] who called it "virtual Auger transi
tion" in their study of Ne photoionization. c) The important 
Fermi-Sea correlations in the continuum should be again of the 
"symmetry exchange" type especially for high energies. Thus for 
the first case we have: £p£'d ~£s£'f and for the second: £p£'p 
~£s£d. Their interference and mixing with autoionizing states 
and single photo ionization channels can in principle be accounted 
for by CI in the continuum [24,25J. 

9. 

Radiative Autoionization of certain metastable states [26J. 
An emission process where the final state is in the continuum 
and the transition energy is distributed between the photon and 
the free electron. 

Although most of the examples were from the realm of atoms, 
the same phenomena and similar correlation effects are, of course, 
present in molecules. Furthermore, the general rules [lJ about 
the importance of certain correlation effects characterize all 
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atoms and many molecules. Specific cases, such as the 3p2~ 3s3d 
example of "symmetry exchange" and valence-Rydberg series per
turbation example of "hole-filling" correlation, were first dis
covered in optical spectroscopy in the 1:930's. With the recent 
and current numerous applications of theoretical models and ex
perimental spectroscopic techniques, such effects have been seen 
in a variety of cases and most probably will continue to be dis
covered in investigations of new systems. 

We now proceed with our theory of transition probabilities 
and its results. 

II. WHAT KIND OF A PHOTOABSORPTION THEORY AND WHY IS IT NECES
SARY? 

Absorption and emission of radiation have formed the basis 
for formulating the rules of Quantum Mechanics and detecting the 
energy spectra of quantized systems. However, until recently, 
the accurate measurement of absolute intensities of these spectra 
or of the related quantity, the lifetime of the excited state, 
had been extremely difficult and rare. Thus, the details of the 
response of the electronic structure of matter to the perturba
tion of the electromagnetic field, from the X-Ray to the optical 
region, remained hidden and so theory was kept comfortably un
challenged. 

Fortunately, due mainly to progress achieved recently with 
lifetime measurements of singly and multiply excited atomic and 
molecular states (eg. [27-29]and refs. therein) as well as with 
photoabsorption cross-section measurements (e.g. [11-15,30-33] and 
refs. therein) which have been producing experimental information 
of impressive detail and accuracy, the atomic and molecular 
electronic structure has revealed its qualitative and quantita
tive nature with considerable generosity. This unprecendented 
and continuing experimental success has imposed rather stringent 
criteria on theory, as photon absorption and emission in many
electron systems are processes which involve all the electrons 
to a greater or lesser degree. Theory must then be able to treat 
the dynamical effects of electron-electron interactions with such 
accuracy as to allow not only explanation of the observed but 
also quantitative prediction of the observable. 

In spite of occasional attempts to restore its respectabi
lity, the independent particle model (IPM) is in general, (ex
cluding special cases such as the K-shell photoeffect in the KeV 
region or certain Rydberg transitions in unperturbed Rydberg 
series) not good enough to treat absorption and emission of radi
ation quantitatively. Thus, for practical applications in other 
fields (e.g. application to elemental abundance determination in 
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the stars, laser physics, fusion related research in plasma phy
sics, etc.) where oscillator strengths of 1%-10% accuracy are 
needed, as well as for purposes of contributing to the understand
ing of the electronic structure of atoms and molecules, the IPM 
is of limited use. 

Therefore, one has to resort to perturbational or variation
al many-body methods [4, 6-8,16,22,23,34-57] whose usefulness and 
~ecessity lie in the fact that they can produce accurate numbers 
for properties and processes other than total energies of ground 
states or low lying excited states which, in most cases, are 
known to a high accuracy experimentally, especially for atoms 
[e.g. 58]. 

A reasonably complete many-body theory of photoabsorption 
should be able to deal with initial~(final) discrete, autoioniz
ing (predissociating) or purely continuous state transitions, 
whether the initial state is the ground or an excited state. As 
such, it should have the following characteristics: 

a) It should be based on some well-founded guiding princi
ple and not be a "hit or miss" approach which sometimes works 
and sometimes does not. 

b) It should be able to deal with single- as well as many
determinantal zeroth-order functions with the ~me ease. 

c) It should be able to predict cross-sections for single 
or multiple excitations in closed as well as in open-shell systems. 

d) It should be able to account to the same order and in a 
consistent manner, electron correlation in both initial and final 
states which mostly contributes to the amplitude of excitation 
(i.e. other types of correlation effects may contribute to the 
total energy but not necessarily--within 10%--to the cross-sec
tion). This requirement, which must be the fundamental charac
teristic of a true many-body theory of oscillator strengths, is 
closely related to the last characteristic: 

e) It should be of physical consequence and computationally 
manageable. This allows a more direct understanding of the elec
tronic decay or excitation dynamics and the consistent for each 
system, optimum, and theory-guided calculation of the required 
transition matrix elements. 

If (d) and (e) are satisfied,"overkill" calculations which 
aim at obtaining nearly exact solutions of the SChrodinger 
equation for initial and final states and are therefore extremely 
difficult to carry out for arbitrary transitions, are seen to be 
unnecessary and, perhaps, of little theoretical-chemical value 
since there is no emphasis on the transition process itself. 
Similarly, existing procedures which calculate excitation ampli
tudes directly, such as the Random Phase Approximation (RPA) 
and other, similar in spirit, algorithms, apart from the diffi
culties in satisfying characteristics (b) and (c) treat every 
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system in the same numerical way, without due consideration for 
its electronic structure. 

In this paper we formulate and apply a theory (FOTOS-First 
Order Theory of Oscillator Strengths) which is based on few fund
amental notions characterizing the mathematics and physics of the 
electronic structure of atoms and molecules and appears to be 
a very good approximation to the complete theory mentioned above 
[6,10,54-57]. 

FOTOS contains both phenomenological and computational as
pects. Both are conceptually simple and straightforward to apply. 
The phenomenology explains and predicts the quantitative features 
of photoabsorption spectra such as those due to multiplet split
tings and mUltiple excitations (satellite, shake-up peaks, etc.). 
The computational part involves the prediction and efficient cal
culation to all orders via Variational Configuration Interaction 
(VCI) procedures [1] of the correlation effects which affect the 
amplitude of excitation the most. 

FOTOS is applied here quantitatively as well as semi-quanti
tatively. The quantitative application has yielded a variety of 
accurate discrete-discrete and discrete-auto ionizing state allowed 
transition probabilities corresponding to single and multiple 
excitations. The semiquantitative applications deal with the 
derivation of the important correlation effects for a variety of 
transitions in atoms and molecules. 

Finally we comment briefly on a) the choice of the computa
tionally most useful form of the electric dipole operator, b) ex
traordinary absorption properties in cases of heavy valence-Rydberg 
mixing, c) application of FOTOS to polarizabilities, d) pro
posed relativistic variants of FOTOS. 

III. FOTOS (FIRST ORDER THEORY OF OSCILLATOR STRENGTHS) 

A. Physical Considerations: The choice of the zeroth order 
functions according to the Fermi-Sea 

The formal development and numerical application of a many
body theory of a property of a quantized system depends crucially 
on the choice of the zeroth-order approximation ~o. This is be
cause the actual calculations are by necessity approximate and 
therefore the rate of convergence to the correct answer depends 
on ~o. Thus, a choice of ~o as hydrogenic, Hartree-Fock Slater, 
minimal basis MO, or Hartree-Foc5 function, will yield different 
results if say a perturbation treatment to the same order is 
applied. For properties such as photoabsorption cross-sections, 
different choices of ~o within the RPA may even lead to different 
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physical interpretations of the observed spectra [39J. In general, 
the zeroth-order choice has been based on computational convenience 
with the object of adjusting to the necessities of a particular 
algorithm to be used. 

In FOTOS, the zeroth order wave-function ~o is based on the 
Fermi-Seas of the states involved in the transition. This choice 
is derived from considerations of the electronic structure as 
revealed by the shell model. The Fermi-Sea concept [1] , goes 
beyond the single-configuration zeroth-order model and refers to 
many essential configurations as describing the fundamental shells 
where, from a pictorial point of view, electrons spent the over
whelming part of their time. 

As we shall show later on, the F-S notion is instrumental 
in establishing FOTOS as a theoretical approach capable of quan
titative as well as easily arrived at semi-quantitative predic
tions. In addition, it appears that it is also useful for quali
tative predictions related to other properties such as polariza
bilities,electron-atom scattering, chemical bonding, etc. For 
example, let us consider the phenomenology of properties of the 
inert gases which, due to their characteristic shell structure 
and symmetry, are commonly thought of as quantum billiard balls. 
A mean field theory notion would then imply that the polarizabi
lity of the noble gases should increase more or less linearly, 
as a function of the number of electrons. This is ind~ed what is 
found from calculations which use statistical models [60J. Yet, 
experiment shows [60] that there is a sharp increase from Ne to 
Ar and from then on a linear increase. Within the Fermi-Sea 
concept we have the following qualitative explanation: Since 
both He and Ne in their ground states have all their F-S orbitals 
occupied, virtual excitations of the electrons due to the appli
cation of the external field are much more difficult than in the 
other noble gases where F-S orbitals are vacant. Thus the polar
izability, a quantity which measures the response of the atom to 
the external perturbation, is expected to increase markedly from 
Ne to Ar, the first "pseudo-closed" shell noble gas (see examples 
1 and 2 of section I). 

The above example of a qualitative application of the Fermi
Sea notion to a physical observation illustrates the physical 
relevance of this concept. 

In the many-body theory of photoabsorption to be developed 
below, this concept forms the basis for the choice of the zeroth
order functions, in both the semiquantitative as well as the 
strictly quantitative applications of the theory. This means 
that the zeroth order functions for the states participating in 
the transition are taken to be a linear combination of all FS 
configurations: 
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(1) 

(2) 

~K corresponds to a configuration, built in terms of SCF Hartree

Fock orbitals, with index K. ~~ are Slater determinants built in 

terms of the corresponding spin-orbitals, aK• The coefficients 
dL are obtained by direct diagonalization of the symmetry opera-

tors. The c K are obtained by direct diagonalization of the total 

Hamil tonian [1]. 

B. The Form of the Transition Matrix Element 

We start by reminding the reader that what is observed in 
photoabsorption (emission) processes is proportional to the 

. iK.r~ ~ --. . 
square of the ampl1tude <~ile P·£I~f)' where K 1S the 

wave-vector and "£ the polarization vector of the photon, r the 
position and p the momentum of the electron. The expansion of 
iK·r - ~ e (= 1 + K·r + ••. ) yields the various tensor components (an 

ad hoc introduction of spin is required for Ml, etc.) and the 
resulting symmetry selection rules for electric and magnetic di
pole, quadrupole etc. radiation. These selection rules do not 
only refer to quantum numbers of the exact wave-functions. They 
also apply to the electronic coordinates of the individual elec
trons treated as occupying atomic or molecular orbitals of a 
particular symmetry. 

Thus, it seems desirable to develop a photoabsorption theory 
which looks at the form of the transition matrix elements (i.e. 
the form of the wave-functions for initial and final states) 
using as basis these selection rules and the radial form of the 
corresponding transition operators rather than emphasizing the 
accurate solution of the time independent Scrxodinger equation 
for initial and final states which, as it turns out, is unneces
sary. 

Let us consider the most common type of transition, the 
electric dipole process. We write for the exact wave-functions of 
the initial and final states: 

o 
~.=~·+x., 111 

so that the exact transition matrix element is: 

(3 ) 
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< D > -= <'I' i i D I 'I' f> = < 'I'~ I D I 'I'~ > + < 'I'~ i D \ Xf> 
+ <xiIDI'I'~> + <xiIDlxf> (4) 

The principal contribution to I<D> I 2 comes from the first 
term. Since 'I'~ and 'I'~ have, in general, the largest coefficients 
in the wave-function expansion, the next two terms dictate the 
part of the function space of Xi and Xf which is connected direct-

ly with the zeroth order Fermi-Sea vectors and therefore contri

butes to I<,D)1 2 the most. 

Let xIN depict the correlation function space of I i> ,if) 
which interacts directly via D with 'I'~, 'I'~ respectively. Let 

NON b' . . h lIE 4' h X e 1tS non1nteract1ng ort ogona comp ement. q. 1S t en 
equivalent to: 

Analysis of a few atomic systems has revealed that XNON 
corresponds to correlation vectors with small coefficients 
which are reasonably well decoupled from '1'0 and XIN. This implies: 

a) their direct contribution to I.(D)1 2 is very small. I.e., 
the last three terms of eq. 5 are negligible because of the small 
coefficients and because not all correlation vectors in Xi and Xf 
are connected via D. b) Their neglect does not affect the coef-

f · . f '1'0 d IN . . f' 1 1C1ents 0 an X slgn1 1cant y. 

The above observations together with an analysis of previous 
results on transition probabilities [35,36,54J, has led us to 
the following theory: 

The form of the parts of X. and Xf which contribute the most 
---- 1 

to <'I'iID1'I'f) can be obtained from the first order terms, 

<'I'~ )DI Xf> and <xii D I 'I'~ >, by applying the one electron dipole 

selection rules to the molecular or atomic orbitals of the Fermi-

S f · . Th d . d IN d IN . ea con 19uratlons. e er1ve new Xi an Xf const1tute a 

projected Hilbert space which, as predicted by electronic struc
ture theory [1] and confirmed by computation, contains all vec
tors of spectroscopic significance together with others which 
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contribute to the character of the wave-function. These have 
the largest coefficients in the correlation vector space and 
therefore contribute the most to <Xi 1 D Ixf> as well. Since off-

diagonal properties, i.e. transition probabilities, involve the 
square of the corresponding matrix element (in contrast to dia
gonal properties), the remaining vectors with small coefficients 
have only a small contribution either through the last three terms 
of eq. 5 or through normalization. Thus eq. 5 is approximated 
well by: 

<l!'i\Dll!'f>Z <I!'~IDII!'~> + <1!'~IDlx~N> + <x~Nl DII!'~> 
IN· IN 

+ <Xi ID/Xf > (6) 

so that the FOTOS wave-functions for initial and final states 
depend on the transition under examination and have the form 

I!'~OTOS = 
1 

where 

o IN 
I!'. + X. , 

1 1 

I!'FOTOS = I!'0 
f f + (7 ) 

(8 ) 

Conditions (8) depend on symmetry and on the manner by which 
the radial functions in I!'0 and in XIN are chosen (i.e. nonortho
normality cases). 

Given this general analysis we proceed with the implementa
tion steps of FOTOS: 

C. Implementation of FOTOS 

Step 1: Calculate the Fermi-Sea zeroth order vectors, I!'~ 
1 

and I!'~. In practice, I!'~ and I!'~ contain 1-4 spectroscopic confi

gurations with orbitals computed at the H-F or the MCHF level [11. 

Step 2: The response of the F-S orbitals of the ground state 
implies a "symmetry quantization" due to the symmetry of the dipole 
operator D. We write symbolically: 

Fermi-Sea , ~ D --7 One-electron First Order Symmetries(FOS) 

ground state excited states 

The same holds for the excited states: 

! Fermi-Seal ® D ~ First Order Symmetries (FOS) 

excited state(s) ground state 
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We note that this step refers to subshell symmetries. 

Step 3: Apply "energy quantization" i. e. radial quantiza
tion. This means that we formally associate with each one-electron 
subshell symmetry a complete set of radial functions. We write 
e.g. 

for atoms: 

for diatomics: 

I ~> = Ie + 2 e + 3e + •.• + E e. + E 'e 
!A> = lA + 2A + 3A + ••• + EA + E'A 

(9) 

At this point, these expansions are only formal. The numbers 1, 
2,3 ••• signify bound orbitals and E,E' scattering orbitals with 
energy E,E'. 

Step 4: Depending on the type of transition and the energy 
region of the excited state, we assign to the orbitals of the 
formal expansions specific radial functions. Thus, if there is 
significant valence-Rydberg mixing, the Rydberg configurations 
are calculated at the H-F level. Other types of FOS are approxi
mated with one or two virtual orbitals (STO's or GTO's) with as 
yet unoptimized exponents. When strong valence-Rydberg (continu
um) mixing is absent, explicit inclusion of H-F orbitals is un
necessary except in cases of transitions to Rydberg states where 
single subshell excitations in the ground state must have some 
Rydberg character even though their energy contribution is small. 

Step 5: Using the approximate one electron basis set of step 
4 we create all possible configurations for initial and final 
states and keep only those which survive nonorthonormality (NON) 
[61]. Strong orthogonality between initial and final basis sets 
would eliminate two electron excitations of virtual type out of 
the main configuration. Usually, NON is present in neutrals and 
is negligible in the ions where the charge distribution is compact 
[61].. Energy considerations from first order perturbation theory 
[54J also eliminate a few correlation vectors. Thus, the final 
number of transition participating configurations is very small, 
on the average 10-20 only. They contain mostly single subshell 
excitations and one or two pair correlations. 

Step 6: For bound functions, the virtual orbitals are op
timized by minimizing the appropriate energy functionals of the 
FOTOS wave-functions (eq. 7) according to the theory of ref. 1. 
For autoionizing states, when the continuum contribution is re
presented by square integrable functions, additional constraints 
are implicitly or explicitly imposed and care to avoid the region 
nearly degenerate with the autoionizing state is taken [62,63]. 
Purely continuum states can be approximated either by square
integrable functions whereby a smoothing procedure must be intro-
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duced in order to create the continuous absorption spectrum [64J 
or by explicit scattering functions obtained in a frozen corre
lated core of the ion [65]. Once the FOTOS wave-functions have 
been computed, the corresponding transition probability is obtained 
by evaluating eq. 6. 

Step 7: Evaluation of the transition matrix element (eq. 6). 
Nonorthonormality (NON). The theory of evaluating off-diagonal 
matrix elements of transition operators between sums of Slater 
determinants constructed from a common set of orthonormal basis 
functions is, of course, well known and is used extensively. In 
FOTOS, the functions of eq. 7 are optimized separately and so 
their basis sets are nonorthonormal between themselves. This 
necessitates the evaluation of N-electron instead of one-electron 
integrals. 

A useful NON computational procedure is that of King et al 
[66] which allows any two sets of spin orbitals to be transformed 
into·equivalent sets such that their overlap matrix is diagonal. 
It was first adopted to the calculation of El transition proba
bilities by Westhaus [381 and later to E2 by Nicolaides and West
haus [67}. However, since the brute force application of the NON 
method requires a very large number of matrix diagonalizations 
of determinantal overlaps, we have further simplified the compu
tational effort by orders of magnitude, as follows: 

a) The inactive deep core is left intact (orthogonality 
is satisfied there). -5 

b) Radial overlaps below 10 are set equal to zero. 
c) Pseudo-configurations which ignore the radial parts 

222 43 . (e. g. is 2s 2p v ~ s p ) are constructed and the correspondlng 
determinants areP considered only if the initial and final state 
pseudoconfigurations interact. 

d) The overlap matrix 0 (and 00+,0+0) is symmetry-blocked 
and this allows the breaking of N electron matrices into a series 
of smaller ones. 

e) If zeros exist in the non-dipole symmetry blocks computa
tion ceases. 

f) For the dipole symmetry sub-block, we solve a system of 
linear equations rather than diagonalizing, since we already know 
the eigenvalue (=0). 

The net result is that we have to solve one very small set 
(1-5 typically) of linear equations for less than 10% of the pos
sible det-det' interactions, and evaluate one determinant invol
ving all the active electrons. Further study [61J has shown that 
NON can very often be neglected without significant loss of ac
curacy. 

In conclusion we emphasize that the idea to select the part 
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of Hilbert space which contributes to the transition probability 
the most by simply employing the forementioned symmetry arguments, 
is not sufficient without the correct computational implementa
tion which must be based on proper considerations of many-body 
aspects of -the electronic structure. By this we mean that if the 
zeroth order vector were, say, a hydrogenic function, and the vir
tual space were chosen in a very approximate way, the same se
lection rules would not yield accurate results. 

IV. HEURISTIC EXAMPLES 

A. The formal application of the FOTOS procedure gives rise to 
correlation vectors in the excited state usually described as 
"shake-up transitions", "satellites", "resonances" etc. Below 
we treat two simple cases from the popular groups of the alkaline 
earths and the noble gases. 

Then, 

1. The Be Atom: Photoabsorption from the Ground State. 

Fermi-Sea orbitals: 1s,2s,2p 

Fermi-Sea configurations: 
nificant) 

Fermi-Sea symmetry configurations: 

Symmetry quantization: 

(ssss) <Xl D --7 sssp 

(sspp) 0 D ~ sssp,sspd,sppp 

(ssss), (sspp) 

(10) 

i.e. the excited states reached from the ground state by electric 
dipole photoabsorption are restricted by the symmetry selection 
rules to have the above orbital symmetries; 

Radial quantization: 

Is> = a111s'> + a212s> t •.• + a / e:s > e: + a~, Ie:'s> + ••• 

/p> = ell2p> + e2i3p> + .•• + e e: je:p> + e~, I e:'p> + ••• 

/d> = c1 i3d> + c2i4d> + •.• + c I e:d> +c~,ie:'d> + ... e: 
(11 ) 

By substituting expansions (11) into the first-order symmetry 
configurations we obtain the possible observable excited states 
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in terms of configurations. Thus, when energy allows it, not 
only the singly excited 2snp, £p series appear but also the 
doubly excited, autoionizing sequences nsmp and mpnd (n> 2, m~2), 
continuum components, and excitations from the K-shell. The same 
observations hold of course for the rest of the alkaline-earths, 
where, due to their larger ground state Fermi-Seas (ns2 + np2 + nd 2 
+ ... ) a larger variety of valence electron excitations can occur 
[68] as well as excitations involving the core subshells. 

2. The Ne Atom: Photoabsorption from the Ground State. 
Due to its closed shell, inert structure, Ne is attractive to 
both theoreticians and experimentalists investigating the photo
absorption process. Recently, its valence shell photoionization 
cross-section was treated by diagrammatic Many-Body Perturbation 
Theory (MBPT) [22,23J and RPA [441 techniques. The MBPT approaches 
did not agree with each other. In their analysis of the double 
photoionization process, Chang and Poe singled out "three physi
cal effects--core rearrangement, ground-state correlations and~a 
virtual Auger transition--(which) contribute significantly to 
the double photoionization in Nell. In this paragraph we apply 
the FOTOS analysis to this problem. 

First of all, the FOTOS zeroth order Hartree-Fock matrix 
element, which includes direct and exchange (N-1) electron over
laps, accounts in a straight forward manner for "core rearrange
ment" • 

We now proceed with the derivation of the important corre
lation effects in ground and excited states. 

a) Excited State Correlations: 

Ground state F-S configurations: 

F-S symmetry configurations: 

Symmetry quantization 

(s4p6) ~ D ~ s3p7, 

Radial quantization 

5 5 
s P , 

4 5d s P 

Is> = cx111s> + cx2i2s;:> + ••• + cx£\ £s> + ••. 

same expressions as in (11) 

(12) 

(13) 

By substituting (13) into (12) we see that the function space of 

1po symmetry is spanned by configurations of the type: 1s22s22p 5 
224 26 225 224 ns,£s, 1s 2s 2p npms,£p£'s 1s 2s2p np,£p,ls 2s 2p nd,£d,ls 2s 2p 
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npmd,epe'd,ls22s2p5npmp,epe'p, etc. corresponding to single, 
double or inner electron excitations. It is obvious that the 
amplitudes of all these types of excitations interfere, provided 
that the energies required are of the same order of magnitude. 
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Consider for example the Ne+ 1s22s2p6 2S configuration. The 

"symmetry exchange" correlation' 2P~2sd is the most important 
as can be seen from the mixing coefficients in a small CI expan
sion of single subshell correlations with optimized virtual STO's 
(v~ ) [1]: 

I + 2·> I 6) /. 2 4 ) I 2 4 > Ne S = 2s2p HF + .205 2s 2p 3d HF + .140 2s 2p vd 

I 6 . 5 3 
.0023 2p vs> + .056!2s(2p vp ) s) 

(14) 

This correlation effect, whose importance and easy calculation 
has been emphasized in this and in our electronic structure 
paper Ill, gives rise to the "virtual Auger transition" [22] 
and the "shell interference" [44] diagrams, i. e. to mixing of a 

b f FOTOS f . . d' d b 2 6 su set 0 con 19uratlons erlve a ove: 1s 2s2p np,ep~ 
2 2 4 1s 2s 2p npmd,epe'd. It should be expected that for the larger 

noble gases it becomes more important [44] since the d symmetry 

can give rise to a Fermi-Sea orbital, e.g. 3p2~3S3d in Ar+. 

b) Ground State Correlations: The symmetry and orbital 
structure of the ground state correlation vectors which should 
enter a full scale FOTOS calculation of double photo ionization is 
derivable from the Fermi-Sea of the continuum excited states: 

2 4 2 4 246 K2s 2p epe'd, K2s 2p epe's, K2s 2p ese'f, K2p epe'd, 

K2p6epe's-~ontinuum Fermi-Sea for 1po doubly ionized states 

We note that the mixing coefficients are energy dependent. 

Following the FOTOS analysis on the above continuum excited 
states and disregarding a few very high lying states, we obtain 
the type of correlated wave-function for the ground state: 

11s>rOTOS = a1 \2s22p6> + a2\2s2p5eped> + a312s2p5epes> 

\ 24> 242 ·242 + a4 2s 2p edes + a512s 2p (es) > + a612s 2p (ed) > 
24> 24 .25 + a712s 2p edv s + agl2s 2p edv d > + a g 12s 2p ep> 
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where £ represent continuum or diffuse square-integrable orbi
tals. Comparison with refs. [22,23] indicates that quite a few 
ground-state correlations which are predicted here to be impor
tant have been neglected. For example, in [22] they considered 
diagrams corresponding to a6 , as' alO and all only. Although 

not all terms in (15) are crucial, it still remains to be proven 
that some of these omissions in [22,23J are justified from a 
quantitative point of view. 

B. It is worthwhile to show how pair correlations are predicted 
through FOTOS because of nonorthonormality. 

Example: The Be 1s22s2p 1po-+1s~2 1D transition. 

Due to the fact that <v 12p > ~ 0, where v is a virtual 
p p 

for the 1pO state, pair correlations of the type (2s2p)~(v v ), 
s p 

(vpvd ) are included in the FOTOS 1pO function. These vectors 

also interact directly with the other F-S configuration of the 1D 

state (see Table 1 of ref. 1), the 2s3d 1D• These correlations 
were not included in our old work on the Be sequence r35,40] 
since they correspond to all-external excitations. Tfiey are in
cluded in the approximate FOTOS calculations reported in section 
v. 

C. The major advantage of FOTOS is the dramatic reduction in 
the number of correlation vectors which are employed. Below we 
give approximate FOTOS functions for two molecular transitions 
in 02 and H20. 

1) The 02 X3~~~3~- first and second excited states: 
g u 

These important transitions have recently been examined through 
large CI by Buenker and Peyerimhoff [7J and Yoshimine et al [S]. 
The number of configurations employed were in the thousands. 

Let's assume the ground state F-S configurations to be : 

/ 42 24 ·-3-3 
a ltultg> + blltultg>' and the upper state a'\ltu ltg > + 
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b' 1;4 1i 3pll ). I 30 > is also a F-S orbital. If we assume u g u u -
orthonormality so that no pair subshell excitations are permitted, 
the FOTOS wave-functions are composed of only 15 vectors for the 
ground state and only 10 vectors for the excited state with a 
few virtuals of one STO each, to be optimized according to [1]. 
These are: 

13,,-') .. 324232243333 
~ 01111, 01111 01111 0, g g u g g u g' g u g u 

4 30 11 11 3pll 30 , g u g u u 
4 2 3 3 4 

30 11 11 3pll , 30 11 11 V ,30 11 11 3plluvo ' 
g U g U g U g au g u g u 

22323 232 30g ll 11 V ,30 11 11 3pll V ,30 11 11 3pll , 
U g llg g U g U llg g U g u 

2322424 30 11 11 V ,30 11 3pll V ,30 11 11 V 
g U g llu g U U llu g U g llg 

3 2 30 11 11 3pll , 
g U g U 

242 30 11 3pll , 
g U U 

233 30 11 11 , 
g U g 

2 4 4 2 2 4 30 11 11 3pll , 30 11 11 30 30 11 11 30 g u g u g u g u' g u g u' 
4 2 2 4 30 11 11 V ,30 11 11 V , 

g u g au g u g au 

223 30 11 11 V 
g U g llu 

2322424 30 11 11 V ,30 11 11 V ,30 11 11 V , 
g u g llg g U g 11 g U g 11 

g U 

1 1 
A1~ B1 Transition: This line has been 

studied accurately by Buenker and Peyerimhoff [69] who used wave
functions of about 2000 configurations. 

Assuming single configurational Fermi-Seas and orthonormality, 
FOTOS predicts 12 ground state and 7 excited state configurations: 
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The small FOTOS molecular functions derived above for O2 
and H20 cannot, of course, compete in detail with those employed 

in [7,8,69]. However, they indicate clearly how drastic a reduc
tion of the magnitude of computation of transition probabilities 
can be within FOTOS. Furthermore, if our experience with atoms 
can serve as an indicator, the accuracy of the results using 
these--or slightly improved--functions, is expected to be satis
factory. 

D. Electric Quadrupole Transitions 

FOTOS is of course applicable to higher multipole transitions. 

Consider for example the well-known 01 ls22s22p4 ls~lD2 electric 

quadrupole transition [67,70]. For is the FS is: a/ls22s22P4) + 

bjls22p6> • For l D, FS: ls22s22p4 Application of FOTOS 
using the electric quadrupole selection rules yields: 

'1 
I S> FOTOS : 

223 is 2s 2p v 
p 

liD> FOTOS : 

2 24 2 6 2 4 2 4 is 2s 2p , is 2p , is 2s2p vs ' is 2s2p vd ' 

2 4 2 4 223 
is 2s2p vs ' is 2s2p vd ' is 2s 2p vp ' 

2232525 is 2s 2p vf ' 1s 2p v;, 1s 2p vf . 

These small functions contain all the correlation effects which 
were computed by us in our previous stud~ of the effect of elec
tron correlation on such E2 transitions L67]. Our predictions 
proved to be in good agreement with an accurate experiment which 
followed [70], and therefore FOTOS is expected to be at least 
as accurate. 

V. QUANTITATIVE EXAMPLES 

We now proceed with the presentation of numbers for a vari
ety of transition probabilities in atoms. We note that the FOTOS 
calculations need not be perfect. I.e., as with every other 
theoretical scheme, there is always room for improvement of the 
implementation steps (e.g. basis sets) but within the theory. 
On the other hand, when compared to experimental values or other 
extensive calculations, the FOTOS results are consistently accu
rate. Depending on the amound of effort put into the calculation 
of a particular line, errors may range between 20% and 2% where 
other theoretical models can sometimes fail by factors of 2-100. 
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Therefore it appears that our implementation procedures are ade
quate. Very small oscillator strengths (.-'V O. 001) carry of course 
larger uncertainties. 

Although FOTOS has not been tested in molecules yet, we see 
no reason why the same theoretical model shouldn't work there 
as well. In fact, since many molecular transitions involve 
closed shell initial states, small molecules may prove, on the 
average, easier to handle than atoms. Finally, nuclear transi
tion probabilities can also be sUbjected to a FOTOS analysis at 
least in light nuclei where there is sufficient information to 

define the Fermi-Seas (e.g. in 016 ). Just like methods such as 
the RPA, equations of motion, Green's functions, etc. were taken 
from nuclear physics and adopted to selected Quantum Chemical 
problems with much success, the FOTOS analysis and methodology 
can prove useful to nuclear physics where the shell model and 
symmetry are known to have a considerable physical significance 
as well. 

The selected examples presented below are grouped separately 
with a brief, related commentary. Some of the FOTOS results have 
been published before and some have not. 

A. Photoexcitation of Be and He to 1po Rydberg series 

These atoms have become something of a "must" for testing 
new approaches to the theory of electronic structure and dynamics. 
He because of its simple structure and Be because, although it 
is essentially a pseudo-two electron system, it is the simplest 
many-electron system where certain open-shell correlations become 
important. In Tables 1 and 2 we present our FOTOS results from 
calculations which are rather simple when compared to the other 

theories. The FS of the excited 1po of Be states was represented 
by H-F functions and the remaining symmetry space by virtual or
bitals optimized on the two lowest states separately. 

We note that the higher Be 1po states (np ~ 3) show extreme sensi
tivity to the type of one-electron functions employed (with fL~fV 

throughout) even though the series is unperturbed by a valence 
configuration. Our values there represent what we believe to be 
a well-balanced FOTOS calculation. The K-shell and K-L intershell 
correlations were not considered. The RPA results (ref. c Table 2) 
indicate a related error of 10%. 

A noteworthy observation on Table 2 is the following: Ac
cording to the findings of Oddershede et al (ref. j of Table 2), 
when the Time-Dependent Hartree-Fock (TDHF) theory is extended 
to second order, there is noticeable difference between the 
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transition probabilities of the two methods. As Oddershede et 
al point out, this contradicts the suggestion of Shibuya et al [7~ 
and seems to indicate lack of uniform convergence, at least for 

weak transitions (e.g. see the Be 2s2 1S~2s3p 1pO transition). 
On the other hand, given the fact that the TDHF results of 
Oddershede et al disagree with those of Stewart (ref.R , Table 2) 
and Amusia et al (ref. c, Table 2), more work should be carried 
out to differentiate between purely theoretical and basis sets 
inefficiency effects. 

Surprisingly, there are no experimental values for the life

times of the np (n> 2) 1po states. Accurate measurements would 
be very helpful to theory. 

B. Oscillator Strengths Along Isoelectronic Sequences: The 
2 340 4 4 NI 2s 2p S ~ 2s2p P Sequence 

Straight forward Z-dependent perturbation theory [34,73] 
shows that the nonrelativistic oscillator strength, f, of a parti
cular transition can be expressed as a series of Z-1: 

(16) 

As Z becomes large, electron correlation effects other than those 
suggested by the hydrogenic near-degeneracies lose their criti
cal importance and f goes smoothly to fO' the hydrogenic value. 

Of course, relativistic effects introduce deviations from this 
uniformly converging nonrelativistic behavior [74]. 

The practical value of eq. 16 is that is provides the theore
tical background for easy (graphical) interpolations and extra
polations in the high Z region, provided an accurate knowledge 
of the neutral end and an accurate number for an ionic transi
tion exist. (E.g. in ref. [75J accurate f-values for transitions 

of the type 2s22pn~ 2s2pn+1 in Si ions were published (due to 

a computer input data error, the Si IX 2s22p2 1D ~2s2p3 1Do 
f-value is wrong) with the aim to serve as standards for construc
tions of accurate isoelectronic f-value sequences). 

The theoretical value of eq. 16 is that the coefficients 
f O,f1 ,f2, •.• can be computed from first principles within Z-

dependent (hydrogenic) perturbation schemes so that f-values 
which are quite accurate for large Z can be easily obtained [34] 
and be used to systematize experimental data from Beam-Foil 
S~ectroscopy [27]. 
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Table 3 

Oscillator Strengths for the N 2s22p3 4S~2s2p4 4p lsoelectronic Sequence 

(Length Form) 

0 
H_F(a) FOTOS(a) NCMET(b) NCMET(c) Z-Dep. Pert. Th. (d) A(A) Experiment 

N 1134 .490 .084 .145 .035 .279 .085leJ--

OlI 833 .428 .235 .206 .265 .26(e) 

FIll 658 .365 .233 .248 .262(e) 

NeIV 542 .322 .218 .231 .167(e) 

NaV 463 .292 .210 .214 .24(f) 

SiVIIl 319 .217 .170 .176 

(a) Ref. 10; (b) Ref. 38; (c) S.L. Davis and O. Sinanoglu, J. Chem. Phys. 62, 

3664 (1975); (d) Ref. 32; (e) E.H. Pinnington et al., Can. J. Phys. 42, 1014 

(1976); and in ~ Foil Spectroscopy Volume 1, edited by I. Sellin and D. Pegg, 

Plenum Press, 1976; (f) M. Buchet, private communication 

167 

In Table 3 we present results of FOTOS along the N 2s22p3 4So 

_ 2s2p4 4p isoelectronic sequence [10] and compare them with 
other theories and experimental values. FOTOS calculations on 
ions are very simple and yet accurate. On the other hand, they 
are also accurate on the neutral end where other theories often 
fail. 

C. Transitions to Excited States Exhibiting Heavy valence
Rydberg Mixing; An Effective Hamiltonian Approach 

When a calculation of the oscillator strength is made for a 
region where a valence configuration (inner hole or doubly excited) 
is near or embedded in Rydberg or continuum series and mixes with 
them, the redistribution of oscillator strength from the IPM to 
the correct many-body description can be unpredictably large [6, 
56J. This is because the mixing of the valence configuration 
with Rydberg-·continuum series may be large whether it lies below 
or is embedded in the discrete or continuous spectrum (in which 

case it is autoionizing). (Examples: Li ls2p2~ls2ns,nd; 
He +2 10 102 ~ lino ). g u g g 

The quantitative theoretical description of such important 
situations (e.g. avoided crossings) is very difficult to achieve 
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accurately. This is because it is often very sensitive to the 
relative positions of the diagonal matrix elements and to the 
basis sets describing the excited states in the interacting re
gion. As already stated [1], in such cases FOTOS employs expli
citly SCF H-F functions in addition to the other vectors descri
bing electron correlation. Furthermore, since FOTOS, being a 
truncated CI calculation, cannot yield the exact energy differ
ences between the valence and Rydberg levels of interest, since 
the correlation which is left out is different for the valence and 
for the Rydberg configurations, an effective Hamiltonian approach 
has been adopted [6,551 which corrects this inadequacy of the 
truncated CI. This is accomplished by shifting downwards the 
diagonal energies until the best energy match between the dia
gonalized vectors and the experimental spectrum in the region of 
the perturber is achieved. This Down-Shift Model (DSM) [6,55] 
does not change the off-diagonal matrix elements which are ex
pected not to be affected much if H-F basis functions are employed. 
(Compare this approach with the recent effective Hamiltonian 
approach of Nitzsche and Davidson [75] to a molecular case). The 
final correct adjustment of the diagonal matrix elements is ex
pected to yield the correct mixing coefficients of the nearly 
degenerate configurations without having to perform extensive 
calculations on correlation effects which FOTOS otherwise singles 
out as unimportant for oscillator strengths. 

Below we present results from FOTOS and other type calcula
tions on oscillator strengths to valence-Rydberg mixed states. 
For BI [6] and Cl III (Tables 4 and 6) DSM was employed. Agree
ment with experiment is very good, in contrast to other models. 
In BI our FOTOS results show a redistribution of oscillator 
strength over the entire series. In Be I (Table 5) the FOTOS 
calculations are not complete and the results are given only to 
present a global description of the 1D series. These approxi
mate FOTOS calculations show that the first, valence like state 
loses all its oscillator strength (this value is so small that 
only an order of magnitude accuracy can be assigned to it) which 
goes mainly to the second and third states and of course to the 
rest of the Rydberg and continuum series. 

D. Allowed Transitions in Highly Ionized Atoms: The Mg- and 
Zn-like resonance lines in Mo ions. 

Lines in certain highly ionized metals (e.~. Mo, W) are 
critically important in current plasma work [27J. The main 
theoretical importance of such transitions is the study of rela
tivistic effects on transition probabilities. In principle, 
these enter tr~ough the energy difference factor, the wave-func
tion ~hanges and the transition operator. It turns out [56,74,53, 
84,85J that for medium degrees of ionization and for spin-allowed 
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Table 6 

2 340 422 4 f-values for the Cl III 3s 3p S ~ 3s3p , 3s. 3p 3d P transi-
tions. Comparison of the HF and FOTOS results shows that the 
amount of strength lost by one state is gained by the other (see 
section VII D). 

HF F01'OS-DSM NCMETJ37] Exper. [83J 

444 
fL fv fL fV fL fv 

S-t3s3p P .685 .777 .041 .026 .085 .103 0.043 + .003 
3s23p23d 4p -

2.9 2.0 3.47 3.47 

171 

electric dipole transitions in the valence shell, the effect is 
almost exclusively through the energy difference factor provided 
the length form of the operator is employed. In Table 7 we present 
f-values in Mo ions from simple FOTOS calculations [57] where the 
experimental wave-lengths have been used. They are compared with 
recent Relativistic [53J and nonrelativistic MCHF [51] and Re
lativistic RPA calculations [84,85J. The agreement is very good. 
We note that for ions, FOTOS is expected to yield nonrelativistic 
f-values with an accuracy of better than 10%. 

E. Radiative Autoionization: The Li 1s2p2 2p Lifetime 

A recentty revealed discrepancy between theoretical [86] and 
experimental L87] lifetimes of the Li 1s2p2 2p state led us to a 
FOTOS analysis of this case [26J. It turns out that this highly 
excited metastable state can decay to the adjacent continuum 

radiatively: (Li 1s2p2 2p--.>Li+ 1s2 + e- 2po). This decay 
channel was not considered before [86,87]. Such radiative auto
ionization (RA) deexcitation mechanisms are in principle possi
ble in a variety of neutral and ionic atoms and molecules [26, 
88,89]. In Table 8 we present the results [26J of the first com
plete calculation of the transition probabilities of an excited 
state decaying radiatively to discrete as well as to continuum 
channels. In this case, RA, which is a mechanism producing a 
continuous distribution of photons and electrons, accounts for 
about 10% of the total lifetime. 
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Oscillator Strengths for the 1s.1pO resonance lines in Ho12+ and Ho~O+. 
The nonrelativistic FOTOS calculations employed the length fem and the e.~p<Ti=er."tal 
wavelength. The length form minimizes the relativistic effe~ts on the transit::o:-: 
moment and the experimental wavelength includes the effect: of relativity ,,:'1 tr.~ transi
tion energy. The first: line of MCHF results of (51] are completely nonrela'tiv!s!:ic 
calculations which take core-polarization iOlt:O account and er.tploy the thecr::-t;i.:al 
wavelength. The results of the second line employ the experimental wavelength. 

FOTOS [57] Rel. HCRF [53] HCHF [51) ReI. RPA [84,85J I 
fL fL fV fL fV fL fV 
1.56 1.30 1.29 1. 54 

1.~3 

0.574 .540 .547 .549 .566 

Transition probabilities and theoretical lifet'ime of the Li IS2p2 2p state from :OTOS 

calculations (length and velocity foms) and comparison with previous theory and ex

periment. Radiative autoionization contributes 8\-11\ ar.d the Rydberg series anctter 

9\-10\. A= E(Li+ 1s2 15) - E(Li ls2p2 2p) = 2.07 a.u. The integrated continuuc tran

sition probability includes a contributicn of 1.2x108 sec: -1 from the Is [(2S2p)3 pO] ~o 
autoionizing state and (3xlO-6)X108 sec -1 from the Is f (2s2p)lpo 12po autoionizi:.g 

state (length form). 

1.22p 2pc 

3p 

-p 

Sp 

6p 

7p 

t n=8np 

i~ 
Total 

Tranition ~obabi1itles 
(sec -1) 

rOTOS [26J LaT CI 86] 

Length Velocity Length 

208xI08 189x108 18sx108 

13.5 13.9 

3.8 4.0 

1.7 1.8 

0.9 1.0 

0.5 0.5 

1.5 1.7 

19.1 26.2 

249x108 238.1x10E 

Lifetime of the Li ls2p 2 2p state 

(sec) 

FOTOS 

0.04Ox10-9(length) 

0.042x10-9(velocity) 

[8SJ I Experi::!e!lt [87] 
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F. Applications to the Calculation of Polarizabilities 

FOTOS can be extended straight forwardly to the economical 
and accurate calculation of polarizabilities [90], and, due to 
its resulting small and compact wave-functions, of hyperpolari
zabilities. Such an application has been made to the Be dipole 
static polarizability. Its result is presented in Table 9 and is 
compared to other extensive calculations. 

We note that, for certain systems where the oscillator 
strength distribution favors the low lying states, accurate 
oscillator strengths can yield very good lower bounds to polari
zabilities [93]. 

Recent experiments on lifetimes have claimed accuracies of 
better than 1% (e.g. ref. [94J~ This is of course challenging to 
theory--although from the chemical point of view such accuracy 
is rather uninteresting. Nevertheless, in order to test the 
capability for precision of a full scale FOTOS calculation, we 

+ 2 2 220 chose to compute the Be 1s 2s S -+ 1s 2p P f-value--currently 
under investigation by the Berlin group [95]. For this case we 
broke the K shell and formed the F-S configurations I 2S> : 1s22s, 

2 2 ',20) 2 . 1s2s , 1s2p; P : 1s 2p, 1s2s2p. The vlrtual space was 
made flexible and a total of 50 vectors for each state were em
ployed. The results are presented in Table 10 together with 
previous CI [96] and Coulomb approximation [97] results as well 
as two experiments which, however, are not accurate to 1%. The 
FOTOS f L , fv spread is 2%. 

Table 9 

03, Static polarizabilities for the Be ground state, in A 

from three many-body methods (length form). 

FOTOS [90J 

CI-Hylleraas [91] 

5.49 

5.42 + .12 

PNO-CEPA [92] 5.61 

1 1 0 S: 9 vectors, P: 34 vectors 

1 1 0 S: 105 vectors, P: 53 vectors 
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Table 10 

Oscillator Strengths for the 

+ 2 2 220 Be 1s 2s S~ls 2p P Transition 

This work 

HF FOTOS CI [96] Coulomb Exper. 

fL fv fL fV fL fV 
approx. 

[97J 
0.52(a) 0.511 0.549 0.500 0.510 0.505 0.521 0.492 

0.54 + .03 (b) 

a) T. Andersen et aI, Phys. Rev. 188, 76 (1969). 
b) 1. Martinson, quoted in [97J. 

VI. LENGTH, VELOCITY AND ACCELERATION ELECTRIC DIPOLE OPERATORS 
[71] 

It is well known that formally there are at least three equi
valent expressions for the nonrelativistic oscillator strengths 
of electric dipole transitions (we neglect summations over de
generacies in initial and final states): 

2 N _ 2 
the length form (in a.u.): f L- 3(Ef -E i ) 1<ljIil~=lrjlljlf>1 

(17a) 

2 -1 N 2 
the velocity form: fV- 3 (Ef -E 1• ) I <1jI ·1 E ~ l'I'f> 1 

1 j-1 J 
N- ~. (17b) 

_2 -3 I < I ] \ > 2 the acceleration form: f A:3(Ef -Ei ) ljIi ~=1.r~ 'I'f I 

The energy-less expression is [71]: 

f = f (f If )1/2 
L A V 

(17c) 

(18) 

In general, the use of approximate N-electron wave-func
tions results in answers for eqs. 17 which disagree with each 
other. This fact has given rise to the following question: Which 
form is more appropriate for the accurate prediction of electric 
dipole transition probabilities? 
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This question was examined by us some time ago [71] and we 
reached the conclusion that in nonrelativistic quantum mechanics, 
formal arguments for or against a particular form are irrelevant 
in practice. The physically relevant question should refer only 
to accuracy of results (i.e. agreement with experiment) and in 
this respect arguments based on the proper matching between oper
ator and the configuration space emphasized by the wavefunctions 
are the most convincing. 

In the same paper we also related the fact that the RPA yields 
fL = fV [98,99J to its gauge invariance. This notion has recently 

been formalized by Lin [100]. 

VII. EXTRAORDINARY ABSORPTION PHENOMENA 

The usual deviation of the IPM from a many-body (exact) 
description of many absorption oscillator strengths is no more 
than 50%. This mayor may not alter the qualitative picture of 
the photoabsorption process and the proper assignment of the ex
cited states. 

However, there are cases where, due mainly to the valence
Rydberg type interactions, the true absorption properties of an 
atom or a molecule in a certain energy region differ considerably 
from those predicted by the IPM. We list them below, together 
with conditions for their occurence (where possible), since they 
may prove useful to qualitative and quantitative photochemistry 
and photophysics. 

A. "Collective Excitations" [107J 

These are cases where, contrary to the predictions of the 
IPM, transitions at a particular energy seem to have an unnusu
ally large probability while the surroundings hardly absorb. 
Simple physical and mathematical arguments based on the conser
vation of oscillator strength lead to the conclusion that this 
occurs whenever [107J: 

(19) 

where a is the CI coefficient of the zeroth order configuration 
m 

~ in the excited state and ~. is the initial state function. B 
m l 

is a fixed constant. 

Conditions (19) may occur in the continuum as well as in the 
discrete spectrum of small, medium or large atoms and molecules. 



176 CLEANTHES A. NICOLAIDES AND DONALD R. BECK 

Its satisfaction depends on the choice of the form of D and on 
~ .• This implies that in the case of RPA-type calculations the 

1. 

choice of the zeroth-order potential may be crucial [29,101]. 

B. Nearly Constant Distribution of Oscillator Strengths 

This is the case of the FOTOS results on Boron (Table 4). 
The absorption strength is spread over a relatively large energy 
region--in the discrete or continuous spectrum--in a nearly con
stant manner. The IPM spectrum may look completely different, 
having extrema or sharp increases or decreases. 

C. Nearly Zero Oscillator Strength 

This is the case of the Be 1s22s2p 1po~ 1s22p2 1D transition 
(Table 5). It is a one particle transition with a large HF 
oscillator strength. One might expect a non vanishing transition 
probability. Yet, the mixing with the Rydberg-continuum 2snd, 

£d 1D series apparently results in a completely destructive 
interference whereby the oscillator strength becomes nearly zero. 

D. Localized Transfer of Oscillator Strength [9,10] 

If for certain cases, such as avoided crossings, we make the 
assumption that the mixing coefficients of two closely lying 
excited states with non-vanishing off-diagonal matrix elements 
~ dictated primarily £z their mutual interaction, the following 
situations may occur: 

1) There is an exchange of oscillator strength from the IPM 
to the many-body description of equal amounts (the usual case, e.g. 
see Table 6). Experimentally this can be seen in sharp increases 
or decreases of photoabsorption cross-sections in regions of 
(avoided) crossings of atomic (as a function of Z) or molecular 
(as a function of geometry) levels [10,102]. 

2) There is no transfer of oscillator strength if 

2f2 
1 c = (20a) 

(f1 + f 2) 

d = + 2 
f1f2 

(20b) 

where c,d are the mixing coefficients in the two component excited 
state and f 1 , f2 are the corresponding zeroth order f-values. 
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3) There is ~ absorption to one state if 

f2 
c = + -----

(f1 + f 2 ) 

f1 
d=+----

(f1 + f 2 ) 

and .!. 2cd <0 
(21a) 

(21b) 

We note that conditions (2) and (3) cannot be met in an avoided 
crossing region if f 1 » f 2' 

VIII.RELATIVISTIC FOTOS 

For systems of high Z or for ionized atoms with large (Z/N) 
ratios (N equals the number of electrons, e.g. He-like Argon), 
relativistic effects gain importance. Experimentally, these 
effects manifest themselves when they induce "forbidden" transi
tions with high probability. The literature on this subject is 
growing fast and methods are being presented where a portion of 
correlation and a portion of relativity are taken into account 
~3,53,74,S4,103-106J. 
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Inclusion of relativistic effects in the FOTOS framework can 
take the following forms in approximately ascending order of 
accuracy or rigor: 

A) Employ the nonrelativistic FOTOS formalism and introduce 
the low-Z Pauli approximation perturbation (spin-orbit, spin
spin etc.) only to correct the configurational composition of the 
relevant wave-functions by mixing states of different nonrelati
vistic symmetry. Among other things, this approximation neglects 
the effect of relativity on the radial parts of the Fermi-Sea 
functions. The standard (e.g. eqs. 17 for electric dipole) non
relativistic operators should be used with experimental wave
lengths. 

B) Define quasi-relativistic Fermi-Sea wave-functions (for 
the definition and oonstruction of Rei. F-S see section 5 of [107}) 
whose orbitals are obtained from a Hartree-Fock-Dirac calculation 
[lOS] but with coefficients from a small CI which includes only 
the Coulomb and not the Breit operator. The derivation of the 
nonrelativistic correlation effects and their computation is 
carried out as in nonrelativistic FOTOS with nonrelativistic 
operators and the major components of the FS functions. For 
high energy transitions where retardation effects become impor-
tant, higher multipoles should be considered in deriving the 
"first order symmetry configurations" (see sections III B,C). 
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The final transition probability computation should employ the 
relativistic operators or, to a very good a~proximation, the non
relativistic length operator [43,57,103,105J , and experimental 
wavelengths. 

c) Define the fully relativistic Fermi-Sea wave-functions 
by using Fock-Dirac spinor configurations and including the Breit 
operator in the small CI. The relativistic first-order symmetries 
and correlation vectors are then derived by applying the relati
vistic selection rules for the transition of interest. The Rel.
FOTOS wave-functions now include F-S and virtual spinors whose 
optimization can be carried out variationally by projecting out 
the positron solutions. The fully relativistic transition opera
tors and the experimental wave-length should be used. 

The efficient and correct evaluation of atomic and molecular 
transition probabilities within a rigorous relativistic corre
lation theory is certainly one of the most challenging new direc
tions of Quantum Chemistry. 

IX. SYNOPSIS 

The main goal of this paper was to present a simple metho
dology for the systematic analysis and easy computation of transi
tion probabilities for photoabsorption and photoemission processes 
in atoms and molecules. A number of heuristic and quantitative 
examples were given. The degree of accuracy of FOTOS is high and 
perhaps allows considerable optimism regarding applications to 
molecular and/or fully relativistic N electron systems. 
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Introduction 

Photoelectron spectroscopy is concerned with the 
study of ionic states in atoms, molecules and solids. 
It has developed to become a very useful tool for the 
understanding of the electronic structure of the sys
tem. Actually it is not just a single type of spectro
scopy but represents rather a spectrum of spectroscopies. 
The incident radiation may be varied both in type and 
energy. The most frequent excitation sources are UV 
radiation (HeI line at 21.21eV, Hell line at 40.8eV, 
X-rays of various energies and nowadays also synchro-
ton radiation as well as electrons ((e,2e)-spectro
scopy) or excited atoms (Penning ionization). The elec
trons and/or ions formed in the process can be spectro
scopically examined. There also exists the possibility 
of coincidence measurements which may supply additio-
n~l data. The photoelectron spectrum (PES) contains a 
lot of information. There are the different electronic 

+This article consists of a set of lectures given by 
one of the authors (WVN) at the NATO Advanced Study 
Institute on the Island of Cos, Greece, June 4-18, 1978 
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states, each ionization process giving rise to a band. 
These bands show vibrational and rotational structure 
in the case of molecules. Whereas the vibrational struc
ture can frequently be resolved at least for small mo
lecules the rotational structure is in general unresol
vable and only leads to a broadening of the lines. 

It is generally assumed that the most prominent 
bands in the PES arise from transitions to electronic 
states that are obtained by ejection of a single elec
tron out of a molecular orbital (lID) in the ground 
state. In addition to these "simple" one-electron tran
sitions two-electron transitions can sometimes be ob
served, i.e. processes which are ionization of one plus 
simultaneous excitation of another electron. They ap
pear as satellite bands in the PES and borrow their 
intensity from the simple transitions. In the outer 
valence region and in the core region their intensity 
is small compared to the main line; i.e. a one-electron 
picture or a quasiparticle picture of the ionization 
process is valid. In the inner valence region, however, 
this need not be the case as we are going to see. The 
one-electron picture of ionization can break down com
pletely. 

The assignment of a PES requires a calculation of 
the ionization potentials (IP's) as the fundamental 
quantities. The simplest and most frequently used meth
od to calculate IP's is the use of Koopmans' theorem 
(1). According to Koopmans' theorem the i-th IP is gi
ven by the negative of the i-th orbital energy. 

(1) 

where ''f.') is the i-th HO and F the Hartree-Fock (HF) 
operator~ This approximation corresponds to the frozen 
orbital approximation (neglect of electronic reorgani
zation) and to the neglect of electronic correlation 
energy. By experience it has been found that if no fur
ther approximations are made Koopmans' theorem gives 
in many cases a reasonable ordering of the IP's and an 
estimate of their values because the reorganization and 
correlation energies are of about the same magnitude 
but often of different sign and thus they tend to canr 
cel. There can certainly be no guarantee that these two 
effects cancel. There are a number of well-known cases, 
where Koopmans' theorem fails to predict the correct 
ordering of states, e.g. N2 , F2 , CS, PN, P2' HOF, 03' 
OF2 , N2H2 , C2N2 , C4N2 , ethylene oxide, all azabenzenes 
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and SF 6 among others. Electronic reorganization can be 
included by performing sep~rate SCF calculations for 
the ionic states (~SCF method). For core ionizations 
this method has been very successful because the domi
nant effect is the reorganization in these cases (2). 
For valence ionizations the ~SC method has not been 
found to be successful (3). The best-knm.,n example is 
supplied by the N2 molecule (3a, 4-9). Koopmans' theo
rem fails as does a ~SCF calculation (3a). The inclu
sion of correlation effects becomes thus necessary. 

The next step in improving the calculation of the 
IP's must take into account the electronic correlation 
energy by some type of configuration interaction (eI) 
procedure or by equivalent methods. For a review of CI 
methods see ref.19, of Green's function methods in ge
neral ref.11 and of Green's function methods for the 
study of ionic states in particular ref.12. These me
thods can be divided into two groups. The conventional 
methods (10, 13-17) obtain the IP by taking the diffe
rence between the energies of the N-1 and N electron 
systems. The direct methods as their name implies cal
culate the IP directly (7, 12, 18-28). Because they do 
not compute the total correlation energy the direct me
thods tend to have a computational advantage. 

In the present article we are concerned with the 
Green's function method as developed by Cederbaum (12, 
27,28) for the calculation of IP's. We are going to 
discuss the Green's function, the Dyson equation and 
the diagrammatic expansion of the self-energy in chap
ter 1. In chapter 2 applications of this method to the 
calculation of IP's and electron affinities (EA's) will 
be presented. 

In the case of the vibrational structure in a PES 
a direct approach can be formulated as well (12, 29). 
The traditional approach requires the calculation of 
the separate potential surfaces of the initial and fi
nal states and is only applicable to the smallest mole
cules. The direct approach is computationally simpler 
and more appropriate for interpretative purposes. It 
has also been extended to include nonadiabatic effects. 
The theory of the vibrational structure is presented 
together with applications in chapter 3. 

In the inner valence regions of atoms and mole
cules the rIO picture of ionization can break down. The 
intensity becomes distributed over numerous lines and 
a main line ceases to exist. A method to calculate these 
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ionic states is the 2-particle-hole Tamm-Dancoff me
thod to be discussed together with applications in 
chapter 4. 

I. The one-particle Green's function and the Dyson 
equation (30) 

The one-particle Green's function is defined as the 
expectation value wit~ respect to the exact ground 
state wavefunction l~ )of the N-particle system of a 
time ordered produ~t 8f an annihilation and a creation 
operator ak and a l 

(2) 

T is Hick's time ordering operator. Applied to a pro
duct of operators T orders them in chronological order 
with time increasing from right to left. A multiplica
tive factor of -1 is added if the chronological order 
is an odd permutation of the original order. v!ith the 
help of the unit step function this can be rewritten 
as 

T {ak (t) a~ (t')} =ak (t) a; (t' )@(t-t')

a 1 (t ' ) ak (t) 9 (t I - t) . (3 ) 

The ak(t) (a~(t)) are destruction (creation) operators 
for an electron in state k. They are operators in the 
Heisenberg representation. 

(+) (t) iHt (+) e- iHt a (+) =a (+) (0) ak =e a k ; k k (4 ) 

and obey the anticommutation relations: 

[ (+) (+) 1 [ +)! ak (t), at (t)J +=0; ak (t), at (t) + =~t· (5) 

H is the full Hamiltonian of the system and is given by 

~ + 1""1; ++ 
H=ch. a . a . +-2 ~ .• V .. 1 •• a . a . at ak=H +V 

1 J. 1 1 1] r.4 1] r.4 1 ] ,0 

h.=(tf. (1) lh(1)I~· (1) is the matrix element of the 
p~rti~le operat6r and 

(6) 

one-
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V, '}'.l=/Cf, (1) If, (2 )l-1 lli1, (1) 'f. ,(2)' 
1J, \' 1 J r 12 Tj., 4 '/ 

is the two-electron integral. The\~)are the eigenfunc
tions of h(1) here. The perturbation may also be cho
sen ~n a different way by taking the HF operator 
~ J:. a, a, as the unperturbed operator: 
1 "'1 1 1 

- ~ l' + 1 ~ + + - ~t + H~c:a,a'+-2 ",~.V, 'k.(a,a,a~ak ~ V'I['I,.,a,a,nl..(7) 1 1 1 1 1J.J\..t 1J' 1 J ~ 1J 1 J J 1 J 

The E, are the orbital energies; V'lC'tJ=V'/ 't-V'LI' 
and nl=1 for"f an occupied orbital ~naJn.(=o116r l. ~n dn
occup1ed orbital. For later use we also define n~= 
1-~. In the second decomposition of H the perturba
tion is much smaller than in the first case. This and 
the availability of HF calculations make the latter 
choice the appropriate one. 

If the Hamiltonian does not explicitly depend on the 
time, the Green's function depends on time only via the 
difference~=t-t'. The Green's function in enerqy snace 
is obtained via the Fourier transform 

011 ~ 

G (CO) = f G ('t1 e ia'~dl"'; G (~=~1)" (G (W) e - iull"dw. (8) -- -~ 

Using the relation (3) in the Green's function (2) and 
inserting in the first term the complete set of states 
of the (N+1)-particle system and in the second one the 
complete set of states of the (N-1)-particle system 
one obtains: 

i (EN _EN+1 ) (t-t' ) 
Gki (t, t') =-i[ S(t-t' )~e 0 n X 

'( (~~I akl'f~+11(lf'n N+11 a ll~~> 
i(EN- 1_EN) (t-t') 

-(9(t'-t)~e m 0 
m x 

(9) 

The IP's and EA's are given by the energy differences 
in the exponentials. 
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( 1 C) 

With the help of the formulas 

%( '[') i (0( +(J)r d?;= Lim ,---i-:--:-_ 
-J e !++o 1c1+Dt.+i1 

( 11 ) 

and 

( 1 2) 

one can perform the Fourier transformation to obtain 

This form of G is ca~led the spectral representation. 
Except for the term i~which is only needed to obtain 
the correct time dependence in the Fourier back trans
formation one notes that the poles of Gk'-(~) are the 
negative exact IP's and EA's. They are tne vertical 
quantities because only the geometry of the neutral 
ground state enters. It is immediately apparent that 
the spectral representation of G is quite inappropri
ate to calculate its poles. Later we shall come to an 
equivalent formulation which is appropriate for this 
purpose. 

The one-particle Green's function is not an appro
ximation to physical reality; so far no approximations 
have been made. Let us calculate at this point the 
Green's function in the HF approximation (or the free 
Grnen's function). H has to bn replaced by Ho and 
1'1' 0 ') by the HF wavefunctionltto ') 

( 1 4) 

With these relations one obtains 
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-i t)t' l~ unoccupied 
G~L(t,t')= kl e k 

J. -it (t-t' 'i ) 
( 1 5) 

iJ tSt ' k occupied 

or after Fourier transformation 

o lim dk1 for k occupied 
( 1 6) Gkl (W) =t~O {b-Ck -i1a I a=C -1 for k unoccupied 

The poles of Gkl ~re the orbital energies, i.e. the ne
gatives of the-LP's in Koopmans' approximation. 

The Green's function can be expanded in the time 
representation by means of perturbation theory. E~ui
valently one could derive the equation of motion of 
the Green's function and uncouple the resulting hier
archy of equations. A form more appropriate for the 
calculation of the poles is the Dyson equation in the 
energy representation 

G=Go+G'2'G - - --- (17 ) 

or since G and GO have inverses 

( 1 8) 

The Dyson equation connects G with GO via a quantity 
~called the self energy.~plays the role of a ~oten
tial, it is the exact potential seen by an electron 
due to its interactions with and in its surroundings. 
As GO is known the IP's and EA's are given by the zeros 
of the equation 

( 1 9) 

One can physically understand this equation in a simple 
way. Consider the (free or) HF Green's function. If a 
potential is added to H , GOkk will be transformed to o .. 

( 20) 

~ depends on the position of all particles or e0ui
vafently on time and after Fourier transformation on 
the energy. It is, however, not necessary that G re
mains diagonal. The general form of G to be expected is 
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(21) 

which is the Dyson equation. All difficulties are trans
ferred now to obtain the self-energy. % is expanded in 
a perturbation series in the electronic interaction 
with the help of diagrammatic techniques. 

As a first step the Dyson equation will be written 
in diagrammatic form. We represent the full Green's 
function by a double line with an arrO\'! 

tWk , = iGkl (t,t') and 
t L 

GO by a single line 

ttk 

t' J 
:: iG~l (t ,t' ) . 

t,k 
The self-energy is represented by ::-irk~(tlt') • 

t' l ' 
can be \vri tten in diagrammatic 

(22) 

By iteration one obtains 

+ 

One thus obtains the full Green's function by the sum 
of all possible insertions of ~ into the GO lines. As 
!Ewill be expanded in the elec~ronic interaction as 
perturbation one needs a fe\,l more definitions (vIe \vill 
consider only closed shell systems): 

(24) 
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this is the antisymmetrized interaction vertex, 

i j 

k ~l=-iVijk.t (25) 

and 

(26) 

The diagrams representing the n-th order of the expan
sion of G are obtained by drawing all topologically 
nonequivalent linked diagrams having n V. '(kI 1 points 
and (2n+1) GO lines. The elements of onel~lnd can only 
be connected with the elements of the other kind. Two 
diagrams are topologically equivalent if it is possi
ble to transform them into one another by twisting or 
pulling the diagrams without breaking any GO line. 
Such diagrams are called Hugenholtz or Abrikosov dia
grams. If we draw the diagrams using the wiggly lines 
representing V. . one obtains the so-called Feynman 
diagrams. EachlA~1ikosov diagram contains several Feyn
man diagrams as can be seen in the second order dia
gram 

-- (27) 

Abrikosov diagrams are thus more compact than Feynman 
diagrams. Only linked diagrams are to be drawn. The 
linked cluster theorem states that the unlinked dia
grams can be factored from the linked diagrams and can
cel against the normalization denominator in the per
turbation expansion of the Green's function. Diagrams 
such as 

do not appear. It is, however, necessary to include 
the so-called exclusion principle violating diagrams 
with more than one electron in the same one-electron 
state at the same time. In the unlinked expansion they 
cancel against unlinked diagrams but in the simpler 
linked expansion they must be kept. 

From the Dyson equation and the diagrammatic ex
pansion of G one can derive the diagrammatic expansion 
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of 2. Inserting one diagram of 1 into the Dyson equa
tion implies an infinite number of diagrams in the ex
pansion of G. Diagrams \oJhich fall apart by cutting one 
GO line do not belong to%. They are automatically in
cluded by solving the Dyson equation. Their inclusion 
would lead to a double counting of diagrams. Thus ~ 
contains only irreducible diagrams, i. e. those which 
do not fall apart by cutting a single GO line. The 
rules to dravl the diagrams of ~ are simple: connect 
n V. 'fk/l points with (2n-1) GO lines (instead of 
(2n~1T ~o lines for G) and retain only irreducible 
graphs. 

Until now we have not talked about the diagrams 
for the~kL perturbation. If one starts from free par
ticles they do not appear as there is no such pertur
bation. If one starts from HP particles they do not ap
pear either. One can use the Dyson eauatioApto go from 
the free particle Green's function GO to G 

(28) 

2 contains as the only diagram)() in this fijJtse. If one 
calculates now the Green's function from G 

(29) 

these diagrams should no longer be included ~nJrHto 
avoid double counting as they are contained ln G 
already. In diagrammatic language this finds its ex
pression in the fact that 

XJ+,=o J (30) 

i.e. all diagrams containing insertions of)() and ~ 
a~e to be omitted from~. Using the rules to evaluate 
diagrams which \oJill be given below one obtains: 

;)0 i 
= ~ Vki(li] n. 

1 
1 

( 31 ) 

and 

:+ =-f Vki(l il n. . 
1 

(32) 
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This means there is no first order contribution to :t 
in the case of HF particles. Koopmans' theorem is thus 
correct to first order in the electronic interaction. 

The rules to evaluate the diagrams of :Lare given 
only for the~-representation. Each GO line points from 
a time t' to a time t and each V. 'rkiJ point is there
fore associated with a fixed tim§J~n ~he time axis. By 
permuting the V. 'Cktl points in a diagram of n-th order 
one obtains n! ~Ime-~rdered diagrams. In fig.1 the two 
time-ordered diagrams of second order and in fig.2 the 
18 time-ordered diagrams of third order are given. 

Fig.1: The time-ordered self-energy diagrams of second 
order 

Al A2 A3 A4 A 5 A6 

C1 C2 C3 C4 C5 C6 

01 02 03 04 05 06 

Fig.2: The notation of the time-ordered self-energy 
diagrams of third order 
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The rules for the evaluation of a given time-ordered 
diagram of ~k,(t,t') in energy space are: 

1.) join the external indices k and 1 by a e-i~t'-t) 
line 

2. ) 

3. ) 

4. ) 

5. ) 

draw n-1 horizontal lines between successive pairs of 
points. Each of these horizontal lines i is asso
ciated with a contribution Ai to the diagram 

o -iW(t I -t) 
each G line and e line cut by a horizon-
tal l~e i supplies an additiv~i~~~tE~?ution to 
1/A., namely +~(-~) when the e line points 
dowfiward (upward), +E.~-E.) when the G~. line points 
downward (upward). A ~ line pointing d6wnward is 
called a hole line, otherwise a particle line. A 
hole line corresponds to j being occupied, a par
ticle line to j being unoccupied 

multiply the interactions V. 'Ck(]' the cOH~~ibution 
of the horizontal lines and 1 J Yactor (-1) ~ where 
h is the number of hole lines and 1 the number of 
loops; then sum over the internal indices 

multiply the above contribution by 2-q where q is 
the number of permutations of two GO lines in the 
diagram leaving the diagram unchanged 

6.) these rules 1.) to 4.) are also valid for a time
ordered Feynman diagram; only replace the Vij[k~l 
points by the V. '1,' wiggles 

1J""'" 

7. ) the sign of the V .. Lkll points and the number of 
loops is not uniqa~Iy determined in an Abrikosov 
diagram. To obtain the proper sign of the diagram 
compare with a Feynman diagram contained in it. 

All orbitals so far are spin orbitals. In the closed 
shell case one can add a rule which only serves to per
form the spin summation. 

8.) r1~ltiply the contribution of a Feynman diagram by 
2 and replace orbitals by spatial orbitals. 

As we will evaluate the second order diagram 

n. n 
J m 
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or with spin summation 

(33) 

If the self-energy is given (up to a given order) 
the Dyson equation can be solved for the IP's and EA's. 
In fig.3 the graphical representation of the self-ener
gy is given. 

y. 
I 

Fig. 3: A schematic plot of Z'kk as a function of Wand 
of the solution of the Dyson equation 

The -~values of the intersection points of the straight 
line y=t.rlk wi th ~kk (/.4) are the IP' sand EA' s. 2: it- -
self has poles and 1S monotonically decreasing in each 
interval. There always exists (for closed shell systems) 
a large interval free of poles of 20f about 20 eV 
width. The poles start (if we neglect symmetry for the 
moment) at l LDr-1:0- 2(HOHO and!HOHO-2!LUHO' where LUHO and 
HOMO are the lowest unoccu
pied and highest occupied MO's. In this interval one 
finds the outer valence IP's. The self-energy varies 
smoothly here and a detailed knowledge of the pole 
structure is not required. As the assignment of the 
closely spaced outer valence IP's represents an impor
tant and difficult problem it is worthwhile to construct 
an approximation specially adapted for these cases, this 
we will call the outer valence-type Green's function 
method or simply the Green's function method. If the 
detailed pole structure of % must be taken into account 
a different approximation should be constructed \\Thich 
will be called the 2-particle-hole (2ph) Tamm-Dancoff 
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Green's function method. The outer valence-type Green's 
function method has been pushed to achieve high accu
racy as this is required in the outer valence region. 
In the expansion of % all terms up to and including 
the third order are taken into account fully. Higher 
order terms - called renormalization terms - which in
troduce an effective interaction are summed to infinite 
order. They can be derived by a simple procedure dis
cussed in detail in ref.12 and 27. 

From the graphical representation of the self
energy (fig.3) it can be seen that the Dyson eo.uation 
has many solutions. One of these ionic states may cor
respond to a simple hole configuration, the other ones 
are of a more complicated nature. They give rise to the 
satellite lines. This information is only useful if one 
calculates the relative intensities as well. We turn 
nm-l to this problem. 

Let us first define the pole strengths. These are 
the residues of the Green's function (eo.. (13)) or in 
shorthand notation 

lim k 'J. kx (s) X (s)* 

Gkl (c..) =,-++0 s (O+1 s -i'! (34) 

(35) 

For these pole strengths one obtains the sum rule 

<" pion(s)+~paff(p)=J (36) 
~ k ~ k kt. 
s p 

Let Dk(W) be the k-th 
W=-I of D (W) in the 
pondfng pofe strength 
equation 

I =[E+I(-I )1 k s -- s'j 

eigenvalue of G(W). For the pole 
in~erval s and for the corres
p~ one obtains from the Dyson 

(37) 

(38) 
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where the index k denotes the k-th eigenvalue. The Dole 
strength is thus large if~' is small and is small if 
the slope of % is large. 

In a photoelectron experiment one measures the 
photocurrent as a function of the kinetic enerqy, E , 
of the ejected electrons. This energy is equal to t5e 
difference between the photon energy W. and the elec-
tron binding energy I 0 

E =W-I e 0 
(39) 

The photocurrent is proportional to the intensity of 
the external radiation field over many orders of maq
nitude. The photoelectron spectrum can thus be calcu
lated in a very good approximation with the golden
rule formula. The transition probability per unit time 
and unit energy at the energy W is given by 

2 
P (W) 211"e 21(F(IA . po I\fIN" 2 x 

m2c2t FL n n n ofl 

"J ((.f)-Ee)J (EF-E~-'t) , (40 ) 

where I F) and l \f N') are the final ~nd initial states_of 
the system with ~nergies Ep and E ,respectively. A 
is the vector potential at- the n-~h electron and P n 
the momentum of this electron. The J-functions ari~e 
from energy conservation. In second quantization P(W) 
becomes 

2 e 2 c:;; ....... ~ T _ lim ( J r 
"'-m2c~ ~n (.mn l<.l t*oI1"l.liGLkmn (-1c6) 0 ((q-Ee) ) (41) 

/i I~~ " where "2"" .. =\(f. Aoplfti/. In this expression the two-par-
ticle Gf~en'§ functIon appears (its particle-hole com
ponent). The calculation of these quantities is a dif-
f icul t task. Further on an approximation to continuum 
wavefunctions is required, which for molecules is a for
midable and unsolved problem. We aim at a simplified 
expression for P(W) which still gives exact IP's and a 
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fairly accurate description of the main features of the 
spectrum. 

We approximate the final state lF~as an antisym
mftrized product of a one-electron N~9ited state le)= 
a to) and a (N-1)-electron state lqr ), i.e. the out
g5ing electron does not correlate wIth the electrons 
of the ion. It does not mean that le)describes a free 
electron; it is in genNral not a plane wave. Since the 
component of l e) in ~4" ') is almost exactly zero if E 
is sufficiently large ~t is necessary that a k annihi~ 
lates the electron in Ie) in the final state. 0ther
wise P(w) vanishes. One obtains 

2 e 2 lim -c::;- 7:":10 7" J 
P (W) 2 2.a. ~o 4!C- en 'elIo?nG In ((,t)- lib) (CQ- E e) 

mCIL(.~ e,n,t 

2 
2e 2 ~Jt.tI-E )'~, X (s) ( 2 
~l.c~1i see 1- el .t. X 

(42) 

For a particular ionic state s we have for the inten
sity at the position W=W-I o 

p(s) (w)=const2~T x(S)l2J(W-E ). (43) 
eeet.( e 

This holds in general. In the case that ~br. intens.ity 
of the line ~erives only from a statelurz > which dif
fers from \ 4" ) in the occupation of I~e"') we have for 
the intensit? 

=const (44) 

where p(s) is 
l the pole strength defined above. Let us 

now assume that r p does not depend strongly 
we can set it equ~T to a constant. We obtain 
the rati0N~f. the trans~!fon probabilities to 
states t4' > and \ If', > which both derive 
tensity ffom a stateS 14--1'-') : 

on W, so 
then for 
ionic 
their in-
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P (s) (1.0) /p (s') (w) _P (s) /P (s') 
.l l - l 1. ' (45) 

i.e. it is equal to the ratio of the pole strengths. 

Because of the relation between the slope of ~ 
and the pole strength (eq.38) one can deduce the pole 
strength from fig.3. The steeper the slope of ~- at the 
intersection point, the smaller is the intensity of the 
corresponding line in the spectrum. In the main inter
val and far from the poles of .2 the states will have a 
large pole strength (about 0.9). Satellite states bor
rowing intensity from these states will thus appear 
only with small intensity in the spectrum. 

A final remark should be made on where the dia
grammatic method comes from. One starts from the time
dependent Schrodinger equation. The time development 
operator U supplies a formal solution to this equation. 
For the time d£velopment operator in the interaction 
representationUone derives a differential equation 
which transfoJ~ed to an integral equation can be ite
~ted. The Green's function can b~ given in terms of 
U. The perturbation expansion of U leads to a pertur
bation expansion of the Green's function. Matrix ele
ments are evaluated with the aid of Wick's theorem. The 
final expressions are translated into diagrams. For a 
rigorous derivation see e.g. ref.30. 

II. Application of the Green's function method to the 
calculation of ionization potentials and electron 
affinities 

Numerical considerations 

The calculation of IP's and EA's by the Green's func
tion method involves four steps: 

1.) evaluation of one- and two-electron integrals over 
the basis functions. Cartesian Gaussian functions 
are used. 

2.) solution of the SCF equations 

3.) transformation of the integrals from the basis of 
Gaussian functions to the basis of MO's 

4.) evaluation of the diagrams from the list of 
integrals and solution of the Dyson equation. As 
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the energy enters the denominators of the diagrams 
(Brillouin-Wigner-type perturbation theory) the 
Dyson equation must be solved iteratively. Usually 
two to three steps are required where the startinq 
value for~ is the lower order calculation. It 
should be noted that the lack of size consistency 
in the Brillouin-Wiqner perturbation theory is of 
no relevance here as the correlation enerqy diffe
rence between two states of the same system is not 
a monotonic function of the number of electrons as 
is the case for the correlation enerqy. 

The first three steps are performed with the pro
gram system MUNICH of Diercksen and Kraemer (31). All 
calculations to be described have been performed on an 
IBM 360/91 or an Amdahl 470/V6 computer in double pre
cision algebra. 

The self~energy is a matrix and the calculations 
should be performed with the complete matrix. The in
verse Green's function matrix, however, is constructed 
in a basis of MO's. If the MO picture of ionization, 
i.e. ejection of an electron from an occupied MO is a 
valid one, the inverse Green's function matrix should 
be nearly diagonal. The calculations in second order 
have always been performed using a diagonal approxima
tion to ~ and the full~. The results agree in most 
cases very closely thus justifying the diagonal appro
ximation. In third order and in the calculation includ
ing renormalization corrections the diaqonal approxima
tion is used. 

In the applications we wish to demonstrate the 
accuracy which can be achieved in the IP's and EA's, 
the size of the molecules which can be treated and what 
type of problems can be solved. 

To achieve high accuracy in the computed IP's and 
EA's large basis sets must be used. They must be able 
to describe wavefunctions close to the HF limit both 
for the neutral ground state and for the various ionic 
states. Calculations with double-zeta basis sets cannot 
in general give accurate IP's. This does not preclude 
their usefulness and the necessity of doing such cal
culations in particular on larger molecules.These com
putations are more aimed towards an ~signment of a PES, 
i.e. a reliable ordering of states without the claim 
for quantitative agreement with experiment for all IP's. 
The double-zeta basis appears to be a minimal (but in 
general reliable) basis for calculations including the 
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effects of electronic correlation. To obtain accurate 
results basis sets larger than double-zeta should be 
used which are then supplemented by at least one pola
rization function per center. For the second row atoms 
it was, however, found that diffuse d-type functions 
are required as well, although this may depend on the 
molecule and the computed quantity. For H2S this proved 
to be necessary but for S02 not (33). Witfi the conse
quently resulting large basis sets one is tempted to 
look for computational simplifications. These can in
deed be found. The core orbitals may be deleted from 
the calculations (or kept frozen) but this is in gene
ral not permitted for the C, N, 0, F 2s orbitals. In a 
perturbation approach such as the present one the vir
tual orbital space may be truncated. This is a rather 
safe procedure with basis sets not including polariza
tion functions. When polarization functions are includ
ed this can also be done, but it should be noted that 
orbitals with strong d- and f-function participation 
are lying energetically fairly high. If such a trunca
tion is used a decline in the quantitative agreement 
with experiment is sometimes observed. The major sim
plification and one which is no approximation is the 
use of molecular symmetry. This can drastically reduce 
the computational expense. There are many technical 
points hidden in the programs which make them efficient 
and require an enormous amount of work for their imple
mentation but one never talks about these, and so we 
will not do it either. 

In the discussion of the accuracy achievable in 
the IP's we will discuss the three molecules N2 , H20 
and H2S. In these calculations the basis sets nave 
been exhausted completely. 

Application to N2 

The N2 molecule represents an ideal test case 
since Ko~pmans' 2heorem predicts an incorrect ordering 
for the 7T and Z states (3a). This incorrect order
ing persis¥s in ~~CF,calculations and only by includ
ing the electronic correlation energy can the correct 
ordering of states be obtained. A substantial number 
of calculations with different methods and different 
basis sets are published in the literature. Calcula
tions have here been performed with the (11s7p)/[5s4~ 
basis set (34) supplemented with 1, 2 and 3 d-type 
functions and with 2 d-type and 1 f-type functions. 
The resul ts for the 2<:;', liT and 1 G' IP' s are compiled g u u 
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together with literature values and the experimental 
Ipls (35) in table 1. Note that the numbering of orbi
tals starts with the first valence orbital. 

Table 1 

Ipls of N2 with different basis sets 

IP 9s5p 11s7p1d 11s7p2d 11s7p3d 11 s7p2d 1f 

26 14.85 1 5.31 15.45 15.53 15.52 
1# 16.34 16.80 16.76 16.75 16.83 
1 ,u 18.37 19.01 18.91 18.96 18.98 Gu 

ref. 9 ref.63 ref.36 35 expo 

15.94 15.35 16.04 15.60 
17.20 16.63 17 . 11 16.98 
19.01 18.31 19.68 18.78 

Only calculations are listed if they include polariza
tion functions. These results are very stable in parti
cular for the basis set with more than one polarization 
function. These values for the Ipls are the most accu
rate values reported in the literature for this mole
cule. With a double-zeta basis plus polarization func
tions Herman et al. obtained a maximum error of 0.34eV 
in the Ipls (9). The CI calculations which employ the 
same basis set (36) do in general agree. The result for 
the double-zeta basis as obtained with the present me
thod is included in the table as well. The maximum error 
of 0.75eV clearly demonstrates the necessity of includ
ing polarization functions for obtaining hiqh accuracy. 

Application to H20 

Many calculations and several ones of great accura
cy have been performed on the H20 molecule and its ions. 
In this way a good basis for comparison with other me
thods is obtained. Five calculations have been perform
ed with the (11s7p/6s1p)/[5s4p/3s1~ basis supplemented 
with 1, 2, 3 and 4d-type functions and with 3d-type and 
1f-type functions. Table 2 lists the results of the cal
culations together with the values obtained by Meyer 
using a (11s7p4d1f) (0 atom) and (5s1p) (H atom) basis 
set with functions added on the bonds (15a), by Chong 
et al. (37), and by Huba~ et al. (38). 
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Table 2 

IP's of H2O with different basis sets 

IP 9s5p 11s7p1d 11s7p2d 11s7p3d 11s7p4d 11s7p3d1f 

1 b 1 ('}() 12. 37 12.78 12.87 12.83 12.81 12.90 
2a 1 14.32 14.78 14.85 14.85 14.84 14.85 
lb2 18. 95 18.94 18.98 18.94 18.92 18. 91 

ref.15a ref.37 ref.38 35 expo 

12.48 12.42 12.79 12.78+ 
14.68 14.73 15. 12 14.83 +0. 11 
18.85 18.97 19. 19 18.72-0.22 

The experimental values for the IP's (35) have been 
corrected for vibrational effects by Meyer (15a). The 
present results are again the most accurate ones avai
lable in the literature. A double-zeta basis set is not 
sufficient for the calculation of accurate IP's. 

Application to H2S 

The following points were investigated in rather 
extensive calculations (32): extension of the s-p basis 
on the S atom and on the H atoms, number and exponen
tial parameters of the polarization functions on the S 
and H atoms. Table 3 gives some results. 

Table 3 

IP's of H2S with different basis setsa,b 

12s9p 

9. 91 
12.76 
15.72 

12s9p1d 

10. 14 
13.19 
15.67 

12s9p2d 

10.25 
13.28 
15.59 

12s9p3d 

10.24 
13.32 
15.57 

12s9p2d1f 

10.38 
13.36 
15.58 

35 expo 

10.48 
13.4 
15. 5 

a) centroids of the experimental bands are estimated 
from the spectrum in ref.35 

b) the 12s9p basis set on the S atom is taken from 
ref.57 

A double-zeta basis set leads to a maximum error of 
0.64eV. The large error practically persists for the 
b 1 (711 IP if one or two d-type functions with standard 
exponential parameters are added to the S atom 
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(~=0.54, 2.0). It was found that diffuse d-type func
tions must be added to the basis set to describe corre
lation energy changes in the diffuse part of the charge 
cloud. Using one diffuse d-type function the maximum 
error is 0.34eV, using two d-type functions the maximum 
error is 0.23eV, and using three it is 0.24eV. The re
sults appear to be stable under variation of the number 
of d-type functions and their exponential parameters. 
Further improvement is obtained by including f-type 
functions in the basis. The maximum error is then re
duced to 0.1eV for all IP's. 

To conclude the maximum errors which occurred in 
the other applications of the Green's function method 
will shortly be discussed. In general smaller basis sets 
with fewer polarization functions have been used than 
in the present work. When basis sets of double-zeta 
quality are used, in particular for large molecules, 
the errors in the low energy region are 0.1 to 0.6eV 
and in the high energy part 0.5 to 1eV. These larger 
errors are certainly in part due to basis set limita
tions, but in part also to the presence of intense sa
tellite lines in the high energy range. In this case 
the present renormalization method is not applicable 
and the method of ref.28 should be used to achieve 
higher accuracy. The latter comment applies also to the 
higher energy valence IP's of molecules computed with 
large basis sets. The typical maximum errors in the 
IP's which are found in the calculations with basis 
sets including polarization functions are 0.1 to 0.25eV. 

Larger errors were occasionally found and the fol
lowing reasons are likely to be responsible for it: In
tense satellite lines in the energy range (see above) , 
difficulty in determining the maximum or centroid of the 
bands due to limited resolution or to predissociation 
problems, etc. (in the latter cases the apparent maxi
mum or centroid of the band does not correspond to the 
vertical IP), incomplete exhaustion of the basis in the 
case of large and unsymmetrical molecules and finally 
limitation of basis sets if very strong d-function par
ticipation is present and an extension of the basis set 
is impossible due to the size of the molecule. 

Application to C2N2 

The HeI spectrum of C2N2 exhibits four bands which 
have been assigned (35) in order of increasing binding 
energy as 1"71, 36 , 2G' and 117.:. (The orbitals are aqain g g u u 
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numbered starting with the first valence orbital). For 
this molecule near HF limit data are available (39). 
From these data and using Koopmans' theorem the follow
ing sequence of IP' s is obtained: 17r, liT, 36 , 26 
which is clearly in serious contra- g u g u 
diction to the experimental result. Because of the qua
lity of the HF calculation only many-body effects can 
be responsible for the interchange of the liT IP with 

u both r5 - IP , s . 

To study the sensitivity of the results to the 
quality of the basis two basis sets have been employed. 
The first one (basis A) is of double-zeta quality 
(9s5p) / [4s2p]. The second basis set (basis 13) has added 
polarization functions with exponential parameters 
~d(C)=0.8 and ~d(N)=0.85. 

The results obtained with the two basis sets are 
shown in table 4. The ordering of the IP's calculated 
in first order (Koopmans' theorem) is incorrect. In 
contrast to N2 a wrong sequence is also obtained in 
second and thlrd order. It is seen that both G-orbitals 
are strongly shifted. The renormalization causes the 
~-IP's to shift only moderately compared to the above 
shifts and yields the correct ordering as well as good 
numerical values for the IP's. 

Table 4 

IP's of CaN2 calculated with bases A and B. IP(i) i=l, 
2, 3 stan s for the IP calculated in Tar i-th order 
perturbation theory, respectively. IP represents the 
final resYkr' The P are the pole strengths correspond-
ing to IP . All energies in eV. 

1>10 IP (1 ) IP(2) IP(3) IP (R) P IP(exp) 
35 Ipa 

Basis A 1'Tr 13.75 13.34 13.53 13.41 0.91 13.36 13.28 
~g 16.79 12.70 14.62 13.94 0.90 14.49 14.24 
~g 17 .15 13.06 15.05 14.31 0.89 14.86 14.68 
lr 16.73 15.72 16.05 15.89 0.88 1 5.6 15.49 

Basis B 17iP 13.60 13.17 13.24 13.20 0.91 13.36 13.22 
3<:;:g 16.93 13 .09 15.30 14.40 0.90 14.49 14.56 
2(t'g 17 . 35 13.44 15.79 14.80 0.89 14.86 14.97 
1~ 16.42 15.50 15.66 15.56 0.88 15.6 15.56 

a) These values are obtained by adding the final Koop
mans' defects to the near HF limit orbital energies 
of ref. 39. 
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The final results obtained with basis A are in 
qualitative agreement with those obtained with basis B. 
Quantitatively the G-IP' s obtained with basis ,,_ are some
what lower than the corresponding experimental IP's. 
Adding the calculated Koopmans' defects to the accurate 
orbital energies of McLean and Yoshimine the values in 
the last column of table 4 are obtained. It is seen 
that the results obtained with basis A are now of an 
accuracy that is comparable to that obtained with basis 
B. 

The calculated PES including the vibrational struc
ture which will be discussed later on is given in fig.4. 
The agreement with experiment is auantitative. 

Koopmans' theorem fails to reproduce the orderinq 
of the IP's for the N2 molecule and it fails dramatical
ly for the C2N2 molecule. In the same dramatic way it 
fails for the C4N molecule. It is always the change of 
theG(n)- and(iT-I~'s which occurs, where theG'-~~I)'s are 
the lone pair orbitals on the N atoms. These are rela
tively close together in energy in the HF calculation. 
If one would like to connect this change of orderinq 
to the localized character of the lone pair orbitals 
(the lone pair hybrid on one N atom does hardly overlap 
with the one on the other N atom) one should note that 
no change of ordering occurs in the case of the mole
cules C2F2 and C4F2 (41). The following simple rule has, 
however, emerged from a number of calculations (42, 43). 
If a molecule possesses low lying virtual orbitals of 
non-diffuse character it is an indication that conside
rable non-uniform many-body corrections can be expected 
and thus the ordering of ionic states obtained from 
Koopmans' theorem may not be the correct one. More pre
cisely for a linear or planar molecule the existence of 
a low-lying~~)-type unoccupied orbital of non-diffuse 
character and of an outer valence 1i(~) -type occupied 
orbital leads to large many-body corrections for outer 
valence IP' s of ~('m -type orbitals. Whether a change of 
ordering occurs is finally decided by the relative mag
nitude of matrix elements. E.g. trans-N2H2 , cis-N2H2 
and H2NN are all candidates for a chanqe of orderlng 
but tfiis occurs only for cis-N2H2 and H2NN (44). This 
model cannot explain everything nut it gives ar reason
able rationalization. 
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Fig.4: A comparison of the calculated and the experi
mental PES of C2N2 . a) spectrum calculated on the HF 
level, b) spectrum calculated by including many-body 
effects, c) the experimental spectrum. The calculated 
vertical IP's are indicated in the figure. 

Application to s-tetrazine 

207 

The azines constitute a family of interesting mo
lecules where, based on the above arguments, one can 
expect a frequent failure of Koopmans' theorem in sup
plying an ordering of states. The lone pair orbitals 
on the N atoms and the1,T-IP's are close together in 
energy. The molecules also possess in general low lying 
virtual orbitals of ~-symmetry. In the previous examples 
we could study basis set effects and eliminate them to 
a large extent. In the case of larger molecules this 



208 W. VON NIESSEN ET AL. 

cannot be done. It is, however, interesting to investi
gate whether the method is also useful for studying 
larger molecules, where errors due to basis effects can
not be excluded. The PES of molecules with many (say 
about 10) atoms are usually very difficult to interpret 
since frequently many broad bands overlap. Without fur
ther knowledge even the question of how many bands are 
involved must be left unanswered. A powerful method to 
calculate IP's is therefore of great importance. A fair 
number of fairly large molecules have been computed 
with the present method (for references see ref.5). Here 
we select a very recent example, the molecule s-tetra
zine. 

The PES of s-tetrazine (both HeI and Hell) has been 
taken by Gleiter et al. (45) and by Lindholm and cowor
kers (46) and has been interpreted based on extended 
Hlickel-type calculations among others. The SCF calcu
lations were performed with a double-zeta basis set (47) 
(9s5p/4s)/[4s2p/2s1. The IP's have been computed by tak
ing all valence or~itals into account (15 occupied and 
37 virtual MO's). The results are given in table 5 to
gether with the experimental IP's and the IP's obtained 
by Almlof et al. (48). These authors performed SCF cal
culations and estimated empirically correlation correc
tions to the IP's. 

Table 5 

IP's of s-tetrazine (in eV) 

Symmetry IP ( 1 ) IP(2) IP(3) IP (R) P IP(exp) 46 Ip 48 

2b1g 11 .48 8. 1 8 9.94 9.24 0.90 9.7 9.6 

3b2u 14. 64 10.67 12.82 11 .97 0.87 12. 1 12.6 

1 b 3gl ir) 12.69 12.37 12.58 12. 52 0.91 1 2 . 1 12.3 

4a 14.57 11 . 55 13.26 12.64 0.90 12.8 12.8 g 
3b3u 15.63 11 .64 13.74 12.89 0.87 12.8 13.3 

1b2g LIi) 1 3.95 13.22 13.68 13.47 0.89 13.5 13.7 

According to Koopmans' theorem the orderinq of the 
first six IP's is (with respect to increasing binding 
energy) 2b 1 ' 1 b 3 (·m, 1 b 2 ('f{), 4a , 3b 2 ' 3b] . The 
4a and 3b2g orbl~al energ~es are @ery cYose t8gether. 
Ingthe many~body calculation this ordering changes 
drastically. Instead of the above orderinQ one obtains 
2b 1g , 3b2u ' 1b3g (lT), 4ag , 3b3u and 1b2g (/T), i.e. instead 
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of the ordering 15, 14, 13, 12, 11 and 10 one obtains 
15,11,14,12,10 and 13. TheS-IP's are shifted stronq
ly, whereas theT!-IP's are shifted only moderately by 
many-body effects. Koopmans' theorem is thus totally 
useless for the interpretation of the PES of s-tetra
zine. The empirical model of Alml6f et al. is, however, 
quite successful, it differs from the present r-esults 
only in the ordering of the 3b 2u and 1 b 3 CiT) IP' s which 
are close together. g 

We have so far only given the ordering of the io
nic states. A detailed interpretation of the PES also 
requires the analysis of which ionization processes 
give rise to which bands. In this case we encounter a 
problem typical for such relatively large molecules 
with very closely spaced bands. According to the cal
culations the 2b l IP is assigned to the band at 9.7eV 
and the 3b2 ' lblg(~), 4a ,3b3 and lb 2 (~) IP's to 
the band sy~tem 5~tween 1~.9 ang 13.5eV. gThere are pro
minent peaks at 12.1eV (with a shoulder at 11.geV) at 
12.SeV and at 13.5eV and five IP's are to be distribut
ed among them. It is fairly clear that the 3b 2u IP is 
to be assigned to the shoulder at 11.geV, the lb3 tm 
IP to the band at 12.1eV, the 3b3 IP to the band ~t 
12. SeV and the 1 b 2 ('rr) IP to the gand at 13. 5eV. But 
it is not clear wfi~ther the 4a IP is to be assigned 
to the band at 12.1eV or to th~ one at 12.SeV. We pre
fer the first interpretation as the HeI spectrum shows 
a shoulder on the 12.1eV band at about 12.3eV, but we 
cannot exclude with certainty the alternative. In such 
cases (a similar one occurred in the PES of para-difluo
robenzene (49) three points should be considered: limi
ted resolution in the experimental spectrum, errors due 
to basis set deficiencies in the calculation and inaccu
racy of the molecular geometry used in the calculations. 
The last point should e.g. be taken into account in the 
case of formamide (50) where the geometry determined by 
microwave spectroscopy is relatively poor. Use of this 
geometry in the calculations leads to a different as
signment of the PES than use of the geometry determined 
by electron diffraction. In the higher energy part of 
the PES of s-tetrazine the MO picture of ionization 
starts to break down. Intense satellite lines appear 
around 15eV. The lb lu (m IP has a pole strength of only 
0.69 and the 3a IP of only 0.4S. Only the 2b 2 IP has 
a pole strengthgof 0.S2. 2ph-Tamm-Dancoff calcHlations 
have been performed for these states, but they will not 
be discussed here. 
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Application to benzene 

Owing to the fundamental importance of the benzene 
molecule in chemistry it has been extensively investi
gated. Many investigations by photoelectron spectro
scopy do exist (see ref.51 for a list of references). 
But in spite of all this work a few points in the as
signment of the spectrum remained controversial. In the 
beginning it was not clear how many IP's should be found 
in the energy range of the HeI line. The overlapping of 
bands, the possibility of Jahn-Teller splitting in the 
ionic states and the occasional observation of additio
nal peaks in the spectrum rendered this problem as well 
as the assignment of the bands difficult. It was agreed 
that 8 IP's should lie in the energy range up to 21.21 
eV and that the first IP of benzene is due to ioniza
tion from the degenerate e 1 (Ti7 orbital. The next two 
IP's are attributed to the gegenerate e 2 ~) and the 
nondegenerate a 2 tm orbitals, but the grelative order 
could not be unaMbiguously established. The convergence 
of Rydberg series, the perfluoro effect, deuterium sub
stitution, the vibrational structure and many other da
ta were used to assign the spectrum, but agreement could 
not be reached; the assignment remained a matter of in
terpretation. Another controversy concerned the rela
tive ordering of the 2a 1 and 1b 1 IP's at 15.45eV and 
16.85eV (the MO's are g u again numbered start-
ing with the first valence orbital). This problem was 
settled by Gelius using intensity arguments to inter
pret the ESCA spectrum (52). As the 1b1 MO has strong 
C 2s character in contrast to the 2a 1 u MO it should 
appear with higher intensity in the E§CA spectrum. This 
is the case for the band at 15.45eV. 

Theoretical calculations on the SCF level of appro
ximation were of little help in the clarification of 
these problems as they gave rather divergent results. 
Only the ab initio calculations employing larger basis 
sets gave acceptable results. But as the e 2 (~) and 
a Gi) MO's are quite close together the ginclusion 
otUmany-body effects is necessary. The calculations 
have been performed with the same basis sets as des
cribed for s-tetrazine. In the many-body calculations 
the 15 occupied valence orbitals and the 21 lowest 
virtual orbitals have been included (51). The results 
are given in table 6 and fig.5. 
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Table 6 

Ipls of benzene (in eV) 

Symmetry IP(1) IP(2) IP(3) IP(R) 

9.31 
13.47 
13.79 
16. 14 
17 .02 
17.42 
19.47 
22.43 

8.68 
11. 12 
11 .84 
13.60 
13.72 
14.96 
16.60 
18.92 

9.08 
12.13 
12.36 
14.62 
1 5. 11 
15.87 
17.63 
20.20 

9.10 
11 . 95 
12.26 
14.46 
14.83 
15.75 
17.48 
20.01 

P 

0.92 
0.92 
0.83 
0.90 
0.88 
0.88 
0.85 
0.83 

IP1exp) 

9.3 (9.3) 
11.4 (11.7) 
12.1 (12.2) 
13.8 (14.1) 
14.7 (14.7) 
15.4 (15.5) 
16.9 (17.0) 
19.2 (19.3) 

a) Ipls deduced from band maxima (ref. 53) and (in 
brackets) estimated from centroids 

c 
" o 
u 

---

r , 

EXP 

HF 

I 
I 

L 
I 

Fig.5: HeI PES of benzene from ref.35 and calculated 
vertical Ipls 
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In this case there is no change of ordering in go
ing from the Koopmans' theorem result to the second and 
third order and to the final results. The e 2 IP is 
smaller than the a 2 (t.n IP and the 1b1 IP l~ smaller 
than the 2a 1 IP toUmention only the t~o most contro
versial poin~s. Moreover these crucial IP's are shift
ed nearly parallelly in the different orders of the 
perturbation calculation. This is a very strong argu
ment that the calculated ordering of ionic states is 
the correct one. The overall quantitative agreement of 
the computed IP's with experiment is satisfactory in 
view of the size of the molecule and the restricted 
size of the basis set which consequently had to be used. 

But due to these basis set deficiencies it might 
still be argued that the ordering of the second and 
third IP's is open to some debate as they are separated 
by only O.3eV. In this case the calculation of the vi
brational structure of the two bands could bring the 
decision. Due to the high symmetry of benzene and as 
only totally symmetric vibrations couple in first order 
to the electronic motion (as will be demonstrated be
low) the vibrational structure in the PES can be com
puted. This has been done for the e 2 and a 2 bands 
neglecting, however, the Jahn-Tellergeffect Yn the e 2 
band. The results are given in fig.6. Comparing with g 
the experimental spectrum in fig.5 it becomes obvious 
that the onset of the second band system cannot be due 
to the a 2 band which shows strong vibrational struc
ture. As ~he a band cannot show a Jahn-Teller effect 
we can make a &~finite assignment. In a recent article 
Itah et al. (54) claim to have arrived at a purely ex
perimental assignment of the bands in the second band 
system by a study of the Rydberg series of benzene and 
deuterium substituted benzenes. 

Actually every chemist should have argued for the 
present assignment. The a 2 (~) MO is the lowest occupied 
7/-orbital and must be stroggly C-C bonding and thus 
should show strong vibrational excitation. This is not 
the case for the onset of the second band system. In
stead, it was argued that the onset of the second band 
system shows weak vibrational excitation and thus the 
a 2u (U) MO is nonbonding!! 
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Fig.6: The calculated vibrational structure of the 
2e 2g and 1 a 2u 0;) bands of benzene 

Application to electron affinities 

213 

The knowledge of EA's of atoms and molecules is 
important for the understanding of a variety of physi
cal and chemical processes. Unfortunately the experi
mental as well as the theoretical determination of ac
curate EA's is difficult. Experimentally there has been 
a breakthrough by introducing laser photodetachment 
techniques. These can, however, only be applied to spe
cies the negative ions of which are available to a suf
ficiently high density. Theoretically there has been 
progress in the last years as well. 

For the calculation of EA's very large basis sets 
are usually required. This requirement derives from the 
diffuse character of the charge cloud of the negative 
ions and the small value of the EA. Already the outer 
valence parts of atoms and molecules are frequently 
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not adequately described by using basis sets of double
zeta quality. These basis sets are commonly determined 
by the variation principle. But this is a strongly 
weighted variation which orients a basis towards the 
inner shells with at least doubtful effects on the va
lence electrons. For some properties this is not impor
tant but for others this is the case. To calculate EA's 
(especially small ones) the normal basis sets should 
be supplemented by diffuse functions. To describe cor
relation energy changes in the diffuse part of the 
charge cloud diffuse polarization functions should if 
possible be added as well. 

EA's can be calculated in essentially two diffe
rent·ways, either as the IP's of negative ions or as 
EA's of the neutral system. These correspond to the 
two processes 

A- +hV"7A+e ( 1 ) 

(2 ) 

Process (2) has rarely been used to measure EA's. If 
we consider molecules with a positive EA process (1) 
corresponds to starting in the lower potential curve 
and making transitions to vibrationally excited states 
of the neutral system. Process (2) corresponds to start
ing in the upper potential curve and making transitions 
to vibrationally excited states of the negative ion. 
The latter process is thus more appropriate to study 
properties of negative ions. 

For the present applications we use process (2). 
We start from the neutral molecules and calculate the 
EA directly. We shall discuss the molecules C2 , P2 (55), 
03 and S02 (56). The basis sets employed and the re-

sults obtained are given in table 7 together with 
the experimental values. The basis sets inlcude the 
11s7p basis set of Salez and Veillard (34) for first 
row atoms, the 9s5p basis set determined by Huzinaga 
(47) and the 12s9p basis set for second row atoms de
termined by Veillard (57). The 11s7p basis set already 
contains diffuse functions which may suffice for the 
calculation if the EA is reasonably large as is the 
case for C2 and 03' To establish the effect of diffuse 
functions they have been added to this or the small
er basis sets. 
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a)O{d=0.6 b)o(s=0.016, o(p=O.Ol, o(d=0.6 c)o(d=0.3,0.8 

d)O(d=0.15,0.45 d)cXd =0.15, 0.45, 1.5 f)o(s=0.04,o<.p= 

0.03, Old=0.15, 0.45 g)Old=0.8 h)o(s=0.09,cx.p=0.07, 

oCd =0.45 i)o(d=0.15 j)O's(8)=0.05, ()(p(8)=0.035, O(d(8)= 

0.15, o(s(O)=0.08, cx:.p (O)=0.06, o(d(O)=0.2 k) ref.58, 

1) ref.59 m) ref.60 n) ref.61 p) ref.62 

The EA determined for C2 is very stable in Koop
mans' approximation as in the Green's function calcu
lation and the agreement with experiment is quite sa
tisfactory. For P2 Koopmans' theorem predicts the in
correct sign and only many-body effects lead to a po
sitive EA. The experimental value has so large error 
bounds that it cannot be stated whether P2 has a posi
tive EA. Dif~use basis functions are important for the 
calculation and to obtain more accurate results even 
larger basis sets should be used. The EA's of 03 and 
80 2 are in quite good agreement with experiment (al
ways the adiabatic quantities have to be compared with 
the experimental values). Diffuse s- and p-type func
tions have an effect of about O.leV on the value of the 
EA. Basis set extension would still be desirable but 
the basis sets become excessively large in these cases. 

The vibrational structure in the electron attach
ment process has been computed as well. Electron attach
ment to C2 leads to practically no vibrational excita
tion, but it does so for P2 , 0 3 and 80 2 , The computed 
spectra of 0 3 and 802 are given in fig.7. The stretch
ing vibration dominates in both cases and the excita
tion is stronger for 0 1 than for 802' The spectrum for 
0 3 is a prediction, but the electron detachment spec
trum of 80 2 has been recorded by Celotta et al. (62) 
and is given in fig.8. The agreement with the computed 
spectrum is quantitative if one notes that both have 
to be mirror images of each other about the (0,0) line 
in the case one neglects the change of frequency on 
electron attachment or detachment and also anharmonici
ty effects. These effects are expected to be of greater 
importance for 0 1 than for S02 because of the stronqer 
vibrational excitation. 

We have so far onlY2tatked about the EA of the C2 
molecule leading to the ~ state. It is known, how
ever, that the C2 moleculegis one of very few molecules 
whose ~egative ion has2bo~nd exited st2te~. T~er~ is a 
bound .p- and a bound 2" state (the 2" - Z tran-

'IU u g u 
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Fig.7: The calculated electron attachment spectrum of 
a) 03 and b) 802' The energy scale represents 
the energy of the emitted photons for incident 
electrons of zero kinetic energy 
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Fig.8: Photo-detachment spectrum of S02 as observed by 
Celotta et al. (67) with vibratlonal transitions 
labelled 

sition is the Herzberg-Lagerquist band). Indications 
for further excited states exist. How do these states 
arise? Except for the 3~ MO which has a negative or
bital energy C2 possesse~ a number of virtual orbitals 
with negative or very small positive orbital energies. 
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The 2~ + state of C2 arises by direct electron attach
ment. g The Green's function method can in the same way 
as for this state be used to calculate other negative 
ion states if they arise from a direct electron attach
ment. As there are low-lying orbitals of appropriate 
symmetry one might be tempted to conclude that direct 
electron attachment is the correct mechanism for the 
other states too. But no further bound neqative ion 
states which correspond to direct electron attachment 
could be found. They all have a small but neqative EA. 
Satellite lines arise from ionization plus electron 
excitation. In the same way electron capture can be 
accompanied by electron excitation. Thus the 2ph-Tamm
Dancoff-method to be discussed in the last chapter is 
appropria~e to st~dy+such states. It was in fact found 
that the Tr. and 2" states arise in this rathzr ~om
plicated u u way. In addition another ~ 
state of C2 was calculated. As the Tamm-Dancoff- q 
method in lts presently implemented version lacks 
ground state correlation energy (see below) the results 
are not yet quantitative, but at least the calculations 
supply the understanding of the electronic structure of 
these states and for the first time qive all these 
states as bound states. 

III. The vibrational structure in molecular ionization 
spectra 

The vibrational structure is a prominent feature 
o.f molecular PES. No discussion of these spectra can 
be complete without its consideration. Some bands show 
strong, others only very weak vibrational structure. 
From these observations the bonding properties of the 
individual electrons can be deduced. The orbitals of 
diatomic molecules can thus simply be classified as 
bonding, antibondinq or nonbonding. The situation is 
more complicated for polyatomic molecules. Here the PES 
reflects the bonding character of each particular elec
tron with respect to the various normal coordinates of 
the molecule. 

As a result of the rapidly increasing number of 
normal coordinates the vibrational structure in the PES 
becomes exceedingly complex for larqer molecules. The 
interpretation of the vibrational structure (i.e. the 
assignment of the fundamentals to the observed vibra
tional lines) is therefore frequently controversial, 
even for relatively small molecules. The analysis of 
the spectra becomes greatly facilitated if it can he 
guided by some theoretical prediction of the vibrational 
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structure. For complex spectra, in particular it is un
necessary to calculate accurately the large number of 
Franck-Condon factors that determine the intensities 
of the individual lines. Even a qualitative prediction 
of the shape of the intensity distribution suffices for 
interpretation purposes. 

A theoretical determination of the vibrational 
structure could also provide a useful tool for assiqn
ing the bands. If two or more bands of the spectrum lie 
close together, the vertical IP's must be calculated to 
high accuracy in order to interpret the spectrum unam
biguously. Such assignment problems may be attacked more 
easily by using features of the vibrational structure 
to identify the bands. Many assignments of molecular 
PES are in fact based largely on arguments of this type. 
Theoretical calculations are thus desirable to put these 
arguments on a firmer basis. 

The vibrational structure in molecular electronic 
spectra can be calculated if the initial and final state 
potential surfaces are known. The spectroscopic data 
(ie. equilibrium geometry, force constants) of the mo
lecular ground state are frequently well determined, 
whereas the corresponding data for the ionic states are 
in general not experimentally available. In principle 
these data could be obtained by ab initio calculations, 
but in practice this approach is too expensive at least 
for polyatomic molecules. Furthermore the Franck-Condon 
factors depend mainly on the difference between the 
initial and final state potential functions (29). There
fore both surfaces need to be calculated to high accu
racy in order to obtain good results. 

To avoid these difficulties we extend the Green's 
function method to include the vibrational effects. It 
is an important advantage of this approach that only the 
data for the initial state are required. The Franck
Condon factors are expressed in terms of certain coupl
ing constants which can easily be calculated on the one
particle level. These coupling constants can be correct
ed (renormalized) to include many-body effects. Due to 
its simplicity the method is applicable to fairly larqe 
polyatomic molecules yielding reasonably accurate re
sults with only a moderate computational effort. 

We will first present the Hamiltonian and subse
quently derive the spectral distribution function. The 
derivation is restricted to the one-particle approxima
tion. A more complete derivation is given in ref.12+29. 
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The molecular Hamiltonian is 

(46) 

where TN is the nuclear kinetic energy, VUN the Coulomb 
repulsion of the nuclei, and HEN the Hamiltonian of the 
electrons in the field of the nuclei, which in the one
particle approximation is 

HEN =:Z ~. (R) a -: (R) a. (R) . (47) . l l l 
l 

The coordinates R are internal coordinates; translation
al and rotational degrees of freedom are assumed to be 
separated. The orbital energies and the electronic ope
rators depend on these coordinates, but the dependence 
of the operators will from now on not be explicitly in
dicated. In a later section where this dependence be
comes important we will come back to this point. 

We subtract from HEN the electronic ground state 
energy and add it to VNN 

~ E.n. 
l l 

(48) 
i 

Thus 

H = TN + Vo + ~ Ei(R) (a:ai-n i ) (49) 
l 

We now make the harmonic approximation for the ground 
state potential energy 

v (R) o 

T = 
N 

(50) 

(51 ) 

where F ,is the force constant matrix and G the ss ss' 
kinematlc matrix. 

We transform to normal coordinates which diagona
lize the potential and kinetic energy 

Q =~1/2 L- 1 R (52) 
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These normal coord+?~tes are dimensionless due to the 
frequency factor UJ • The L-matrix is the solution of 
the equation 

G F L = L w 2 , (53) 

Boson creation and annihilation operators are then in
troduced by the relations 

1 

V2 
+ 

where b s ' b s obey 

[ b(+) b(+il 
s ' s' 'J 

1 

V2 
the commutation relations 

= 0 [ b b + l - 6 
s' s'J - ss' 

In the harmonic approximation we obtain then 

(54) 

( 55) 

(56) 

where Ware the normal frequencies corresponding to 
the Q .s We substitute these expressions in the Hamil
tonia~ and leave all anharmonic terms away to obtain 

H ~ + 1 - + V (0) +LW (b b +-2)+~ /:.. (0) (a.a.-n.). o s s s .1- 111 

Ci (Q) is now 

€i (Q) 

S 1 

expanded in a Taylor series 

d4 
c.(O)+ L(~) Q+ •••••• 

1 S G S 0 S 

(57) 

(58) 

The second and higher order terms introduce freauency 
shifts and will not be considered here. For their in
clusion see ref.12, 29. The "0" denotes the equilibri
um configuration of the molecular ground state. Intro
ducing the first order coupling constants 

K (i) 
s 

1 dfi 
-;r::- ((JQ) 0 

V2 s 

we obtain finally for the Hamiltonian 

(59) 
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H VNN (0) + 2." LL' (b + b +-21) + '2. c;. (0) a -: a . 
s ss . l II 

S l 

- L 21<' (i) (a-:a.-n.) (b +b+) 
iss l l l S S 

(60) 

The spectrum is given by the transition probabili
ty per unit time and unit energy, i.e. P(W). We derive 
P(w) in the adiabatic, harmonic, Franck-Condon and one
particle approximation. Many-body effects will be dis
cussed at the end. In the adiabatic approximation the 
electronic operators are considered to depend only pa
rametrically on the nuclear coordinates Q, that is the 
nuclear kinetic energy operator is assumed to commute 
with a. and a . The electronic oPfrators then commute 
with tTIe bosofi operators band b . The transition pro
bability decomposes into aSsum ofSterms one for each 
orbital j. 

with 

P (u') =:2 
j 

P . (w) 
J 

QC 

P j (W) = J dteiW\~ol T;T j (t)lfo '> 
_"C>O 

T. =C .a. 
J eJ J 

iHt -iHt T. (t) = e T. e 
J J 

( 61 ) 

(62) 

Forl~ ~ we make in the adiabatic approximation a pro
duct agsatz i cp 0) = l 't' ~I 0'> where 14" :'> is the electronic 
ground state 0 and \6>0 the nuclear ground 
state (b 10) = 0 for all s, l.e. no vibrations are ex
ci ted). 1n the one-particle approximation I ~ ') is the 
HF wavefunction. 0 

.-
We are going to introduce a pure boson operator H 

(we neglect the constant term in the Hamiltonian in the 
following) . 

"': ",. + + ~ 
- L. Lk"s(i) (a.a.-n.) (b +b )a.1 ". 

i s l l l S s J 0/ 

(63 ) 
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For i :f j we have a -: a . a . I J... \.. = a. a -: a .1 ~ ) 
l l J 0/01 J l l 0/0 

and for i = j we have a -: a . a . \,\.\ " = o. Thus 
l l lo/Oj 

223 

Ha.\'A.,,, = L.tv (b+b + -21)a.I~\+L E. .n.a'I~" 
J 't' 0/ s s s s J 'Y 01 i (:fj ) l l J 0 I 

Hajl~o) ~ajlf~+(Eo-£j)aj\<po) 

.1\ 
H 

= 'Haj\cp 01 . 
Lev (b+b +-21 )+ 2 K (j) (b +b+) 

s s S s s s s s 

(64) 

(65) 

( 66) 

is a pure boson operator. From this it is easily seen 
that 

iHt 'I~) - {fit If ') e a. - e a. 
J 0 J 0 

(67) 

which we can use to simplify P. (w). 
J 

(68) 

(69) 
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for j an occupied orbital. 

" H is diagonalized by a unitary transformation U, 
where 

U (70) 

For this purpose we need the relation 

eABe -A = B+[A,B] +~ [A, L A,B]] (71) 

which holds if A and B are bosonic operators. Since 

[b+b+, b-b+] = -2 [b+b, b-b+] = -(b+b+) (72) 

we obtain with B =Wb+b+K(b+b+) and A =o((b-b+) 

Thus 

[A,B1 =C(W(b+b +) +2ocKi {A,[A,B]] = 20.?W 

[A, [ A,[ A, ~]] = 0 as all higher conunutators. 

2 
+" "'"i + 1 '" )<s U HU = L. W (b b +-) - L. -s s s 2 1.1 

S S ws 

2 
~ 1.; ""1,,,\ s 

i (.::;(n +-/W-,,-) t s s 2 s sw 
x e s 

(73 ) 

(74 ) 

(75) 

(76) 

We are left with having to evaluate terms of the form 
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.. j"(bb+)' ~ 
«n/ew - \ 0/. We use the Baker-Hausdorff formula. 

x+y x y - ~[x,Y] 
e = e e e (77 ) 

which is valid if [x,Y] is not an operator. 

,.< + -J~b+~b, _2.(~)2 (78) 
I - (b-b ).) . I W L.O I ~ 2 w 

(n e W \ ° = (n eel ole 

we obtain 

(79) 

where the relation 

n a -a 
nT e (80) 

and 

P j (U) \' _-,- \2 ~ -. . a ns -a 
= (..e' ~ II_s_ e s 

] s n ! 
n 1 ,n 2 ... s 

x J (u)- f:. (0) -.2 a fA) + ~ n uJ) • ( 8 1 ) 
J s s s s s s 
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a is called coupling parameter. The intensity distri
bUtion is thus a product of Poisson distributions one 
for each normal mode. The quantity - C. (0) -~'a itl 
adiabatic IP ((0,0) transition) and b1 s s s 
ment analysis it can be shown that the vertical 
-tj (0) corresponds to the centroid of the band. 

is the 
a mo
IP, i. e. 
(12,29) • 

Many-body effects can be included in a rather 
simple way. The adiabatic hypothesis tells us that we 
can think in terms of well defined potential energy sur
faces also when the electrons interact (beyond the HF 
approximation). It follows that the entire effect of 
the electron interaction terms is to replace the bosons 
by "renormalized" bosons, -6: (0) by the exact vertical 
IP and the coupling constant~ by renormalized coupling 
constants. Thus all the results obtained can be taken 
over if the~' are identified with the molecular fre
quencies in tfie exact state and if -t· (0) , K (j) etc. 
are replaced by the corresponding ren6rmaliz~d quanti
ties. Since the spectroscopic constants of the electro
nic ground state are well known experimentally for most 
molecules of interest it is only necessary to calculate 
the renormalized coupling constants in order to obtain 
the vibrational structure. 

Before proceeding to the applications let us brief
ly discuss the content of the method presented above. 
For diatomic molecules rather accurate Franck-Condon 
factors can be calculated by using potential functions 
constructed by the Rydberg-Klein-Rees method from spec
troscopic data (64) or by fitting Morse potentials to 
the spectroscopic data of the initial and final states 
(65). The calculation of Franck-Condon factors for po
lyatomic molecules, on the other hand, has been in ge
neral confined to the harmonic approximation, although 
the importance of anharmonic effects is known. It should 
be noted that this traditional harmonic approximation 
and the harmonic approximation discussed above are not 
identical. It can be shown that a major part of the an
harmonic effects neglected in the traditional approach 
is taken into account in the present harmonic approxi
mation (12, 29). 

The Hamiltonian (60) has been obtained by expandinq 
all Q-dependent terms (with the exception of the elec
tronic operators) about the equilibrium geometry of the 
electronic ground state. Calculating P(w) with this Ha
miltonian implies that the ground state and the ionic 
state potential energy surfaces are expanded about the 
ground state equilibrium geometry. It must be emphasized 
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at this point that the traditional approach to calcu
late Franck-Condon factors within the harmonic approxi
mation is to expand both potential surfaces up to se
cond order about their respective minima. The drawback 
of the traditional approach is easily understood from 
an inspection of fiq.9 which shows schematically the 
initial and final state potential surfaces. The initial 
state vibrational wavefunction can be assumed to be well 
described within the harmonic approximation. In the io
nic state, however, the nuclei perform large amplitude 
vibrations in the case of strong coupling. 

Fig.9: A schematic one-dimensional drawing of the ini
tial (i) and final (f) potential energy surfaces. 
The Franck-Condon region is indicated hy the 
shaded area. The hatffionic expansion of Vf about 
its equilibrium geometry is represented oy a 
broken line. 

In particular the minimum of the upper potential sur
face may lie considerably outside the Franck-Condon 
region as indicated by the shaded area in fig.9. It 
appears reasonable and it can be shown in detail (12, 
29) that the overall shape of the spectrum depends only 
on the behaviour of the final state potential surface 
within the Franck-Condon region. It is of advantage 
therefore to expand the final state potential surface 
about a point within the Franck-Condon region, i.e. the 
ground state equilibrium configuration, point A in fig. 
9. An expansion about the final state equilibrium con
figuration (point B) will give a poor description of 
the final state energy surface within the Franck-Condon 
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region if the coupling is strong. An expansion about 
point B is of advantage if one is interested in an 
accurate description of the first few vibrational ener
gy levels in the final state. In the strong coupling 
case, however, these levels are excited with negligi
ble intensity and do not contribute to the observed 
vibrational structure. 

It is known from the literature that the calcula
tion of the vibrational structure of some Rydberg tran
sitions and of the first band in the PES of NH3 pre
sents a problem (for a discussion and references see 
ref.66). These transitions show an extended progression 
in the bending modeV2. The intensity maximum occurs 
at n=6 in the UV absorption spectrum and at n=7 in the 
PES. The strong excitation of the bending mode is in 
qualitative agreement with the transition from a pyra
midal ground state to a planar final state. Calcula
tions in the traditional way have been performed with
in the harmonic approximation (67, 68) and employing 
anharmonic potentials for the bending vibration (69). 
In the harmonic approximation the intensity maximum was 
found to occur for n=4 in the excitation spectrum in 
rather poor agreement with experiment. The use of an
harmonic potentials did surprisingly not improve the 
result. However, if the vibrational structure in the 
PES is calculated according to the procedure outlined 
above very good agreement with experiment is obtained 
as can be seen from fig.10. The intensity maximum is 
calculated to occur at the n=7 line of the bending pro
gression as is indeed observed in the high resolution 
spectrum of Rabalais et al. (70). The calculation pre
sented here is an absolute o~e including the calcula
tion of the position of the ban~ on the energy scale. 
The potential in the case of NH3 is rather anharmonic. 
But as the Franck-Condon zone is narrow, a second order 
Taylor expansion about the center of the zone gives a 
fairly accurate description of the final state poten
tial surface within the zone. In the traditional ap
proach this part of the potential surface is represent
ed poorly and a high order Taylor expansion would be 
required to obtain an accurate description here. 

In contrast to the intensities the vibrational 
energy levels in the final state depend on the poten
tial surface as a whole. Therefore its harmonic expan
sion about the initial state equilibrium geometry does 
not necessarily lead to accurate line spacings in the 
calculated spectrum. It is our opinion, however, that 
for interpretative purposes the accurate calculation 
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Fig.10: The first band in the PES of NH3 as recorded 
by Rabalais et al. (70) (upper part) and the 
calculated spectrum (lower part) 
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of intensities is more valuable than the accurate cal
culation of line spacings. It is important to note that 
the calculated intensities are independent of the line 
spacings in the final state. In the case of simple well 
resolved spectra the line spacings may be taken from 
experiment. In the case of complex and unresolved spec
tra one is in general not interested in the intensities 
and energies of the numerous vibrational lines but in 
a prediction of the shape of the spectral distribution. 
As shown in ref. (12, 29) the low moments which repre
sent the overall shape of the spectrum are obtained 
rather accurately with the present method, whereas this 
is not the case when the traditional harmonic expansion 
is used. 
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Application to formaldehyde 

The formaldehyde molecule is well studied by pho
toelectron spectroscopy. The HeI spectrum exhibits four 
bands. There have been many discussions in the litera
ture about the assignment of the third and the fourth 
band. According to the original proposal of Baker et al. 
(71, 35) the third IP corresponds to the 1b2 MO and the 
fourth IP to the 3a 1 MO. Their argument was based on 
the analysis of the vibrational structure of both bands. 
Brundle et al. (72) on the other hand favoured the re
verse assignment on the basis of an ab initio calcula
tion. Recently a ~-scattered wave calculation employ
ing overlapping spheres has been performed (73) and the 
ordering proposed by Baker et al. was obtained. Previ
ous Green's function calculations (74) as well as Ray
leigh-Schrodinger perturbation calculations (75) pre
dicted the ordering given by Koopmans' theorem to be 
the correct one. To settle this problem definitely the 
IP's have been recalculated with the Green's function 
method employing an extensive basis set (29,76). 

The interpretation of the vibrational structure in 
the PES of H2CO has proved to be difficult as well Ow
ing to the accidental degeneracy of vibrational frequen
cies in some of the ionic states. Especially for the 
second band (1 b1 (if)) of H2CO and D2CO no assignment 
of the vibrations involved could be given, although the 
vibrational structure is well resolved and apparently 
simple. For these reasons the vibrational structure of 
the bands was calculated as well. 

The basis set used in the calculation is (11s7p1d/ 
6s1p)/[5s3p1d/3s1P1 (34). The final results for the 
IP's are given in table 8. 

Table 8 

IP's of formaldehyde (in eV) 

Symmetry IP IP(exp) a 

2b 2 10.84 10.9 

1 b 1 14.29 14.5 

3a1 16.36 16.2 

1b2 17.13 "" 17 . 0 

a) estimated centroid of the band in the PES of H2CO (35 
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The computed values are within 0.2eV of the experimen
tal ones. Because of this agreement it can be conclud
ed that the third band has to be assigned as 3a 1 and 
the fourth one as 1b2 . Koopmans' theorem thus supplies 
for this molecule the correct ordering of states. The 
ordering deduced from the overlapping spheres ~-scat
tered wave calculation is incorrect. 

In calculating the vibrational structure only the 
three totally symmetric normal vibrations Y1' Y2 and 
V3 are taken into account. The coupling to the non-to
tally symmetric vibrations occurs only through the qua
dratic coupling constants and is expected to be very 
weak. The appropriate internal symmetry coordinates 
are 

s =\ rI'-T A-, 
3 Y-"2·0 "r I 

where'T 1 and T2 denote the change of the two C-H bond 
distances, R tne change of the c-o bond length and ¢ 
the deviation of the HCH angle from its equilibrium 
value. The force field of Shimanouchi and Suzuki (77) 
is used to construct the normal coordinates of H2CO 
and 02CO in their electronic ground states. 

The vibrqttonal coupling parameters in the HF ap
proximation a\O and the renormalized coupling parame
ters as are lfsted in table 9. 

Table 9 

Vibrational coupling pa13feters for valence ionization 
of H CO and 02CO. The a are calculated on the HF 
level, the as with inclUsion of many-body effects 

(0 ) (0 ) a(o) a 1 a 2 a 3 a 1 a 2 3 

2b2 H2CO 0.217 0.375 0.087 0.033 0.129 0.126 

°2CO 0.456 0.229 0.028 0.092 0.122 0.090 

1 b 1 H2CO 0.128 3.555 0.310 0.036 2.792 0.270 

°2CO 0.778 3. 125 0.008 0.414 2.611 0.011 

3a1 H2CO 0.003 2.176 0.147 0.004 1 . 156 0.301 

°2CO 0.168 1.660 0.731 0.098 0.765 0.855 

1b2 H2CO 0.886 0.201 1 .439 0.757 0.195 1.533 

°2CO 0.765 0.995 1 .420 0.635 0.950 1 . 534 
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We show the calculated vibrational structure together 
with the corresponding band in the experimental spec
trum in figs. 11 to 14. The lines are drawn as Gaussi
ans for the first band and as Lorentzians for the others 
(half width of O.03eV) as these forms fit best the ex
perimental line shapes which are of instrumental origin. 
H2CO and D2CO represent complicated examples since the 
structure of several bands is the result of a super
position of two nearly degenerate normal modes. It is 
therefore essential to employ correct ionic state vi
brational frequencies in drawing the spectra. Having 
calculated only linear vibrational coupling constants 
we are not in a position to predict the frequency change 
due to ionization. Therefore the experimental ionic 
frequencies are used to draw the calculated vibration
al structure. Although the ionic frequencies are not 
unambiguously known for most of the ionic states of 
H2CO and D2CO it is found that they can easily be de
termined from the structure observed in the spectrum 
with the help of the calculated Franck-Condon factors. 
An exception is only the fourth band because of its 
low intensity, the very complex vibrational structure 
and the severe overlap with the third band. However, 
the vibrational structure calculated for this band is 
very complex and does not critically depend on the fre
quencies chosen in drawing the spectra. 

The first band (fig.11) corresponds to a nonbond
ing electron. The calculated vibrational structure is 
in satisfactory agreement with experiment showing that 
all three normal modes are weakly excited. 

The second band corresponds to ionization of the 
1b1 CO~-bonding electron and exhibits the expected 
strong excitation of the c-o stretching mode \72 (fig. 
12). The higher resolution spectra, however, reveal 
that the lines are doublets for both molecules. Thus 
at least one other mode must be excited. The assign
ment of this mode has caused difficulties. According 
to Turner et al. (35) the structure is due to)12 to
gether with one quantum of the C-H stretching mode .r 
It is then difficult to explain, however, the lack ot 
isotope effects. One would expect ~ to be considera
bly reduced for D CO and thus the accidental near de
generacy of both trequencies in H2CO should be removed 
for D2CO. The problem is resolved by the calculations. 
For H2CO the vibrational structure is due to excita
tion of )T2 and V3 ,for D2CO, on the other hand, the 
structure is due to V and~. Thus the coupling is 
completely different tor these two isotopic species. 
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Fig.11: The calculated (a), (b) and observed (c), (d) 
first band in the spectrum of H2CO and D2CO 

This result is already obtained on the HF level of ap
proximation. The calculated vibrational structure is in 
nearly quantitative agreement with experiment. 
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Fig. 12: The calculated (a), (b) and observed (c), (d) 
second band in the spectrum of H2CO and D2CO 
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The third band in the spectrum of H CO consists 
of a single series of narrow lines (fig.~3). From a 
comparison with the third band of D2CO which shows a 
considerably more complex vibrational structure due to 
strong excitation of both V 2 and ~1 Turner et al. (35) 
concluded that the simplicity of the third band of 
H CO was due to a degeneracy of the frequencies ~ and 
~ in the ionic state. This interpretation is confirmed 
by the present calculations. We find strong excitation 
of )J 2 accompanied by weak excitation of )7.1 in the case 
of H2CO. For D2CO, on the other hand, both)T2 and)r3 
are calculated to couple strongly, the coupllng of~3 
being even stronger than that of 112 . 

u .. 
ill 

c 
" o 
U 

a 

Tn 

C 

(iji ~I '# Qil: : Qha 
'ah'r/J.2 

16.8 

15.85 (~) 

Tn 

d 
16.8 

6.8 

Fig.13: The calculated (al, (bl and observed (cl, (dl 
third band in the spectrum of H2CO and D2CO 

The fourth band appears as a complex and diffuse 
structure in the spectra of both H2CO and D2CO (fig.14l. 
From the calculated coupling parameters we see that all 
three normal vibrations are strongly excited in the 
case of D2CO, whereas for H2CO only V1 and)71 couple 
strongly. In both cases a very complex vibrational 
structure results in agreement with the experimental 
situation. It is seen that excitation of three normal 
modes leads to a vibrational structure of such a com
plexity that it cannot be resolved with present-day 
spectrometers. From the computed vibrational structure 
it is now obvious that the third band of H2CO has to 
be assigned as 3a1 and the fourth one as 152 . The vi-
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brational mode V1 is not excited in the third band of 
D2CO but should appear in the fourth band. In the expe
rlmental spectrum there is clearly no indication of the 
.V; mode in the third band. 
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Fig.14: The calculated (a), (b) and observed (c), (d) 
fourth band in the spectrum of H2CO and D2CO. Note that 
the intense lines at lower energles in parts (c) and 
(d) belong to the third band. The fourth band is the 
diffuse structure centered at about 17.0eV. Note also 
that the experimental spectrum of H2CO (c) has been re
corded with less amplification than that of D2CO (d) 

The HF coupling parameters reproduce all trends 
discussed above, but the quantitative agreement is bet
ter when the renormalized coupling parameters are used. 

The calculations reveal very pronounced isotope 
effects in the second, third and fourth bands of these 
molecules. These results demonstrate that electronic 
bonding properties derived from so-called overlap popu
lations are of a limited value for interpreting the vi
brational structure in the PES of polyatomic molecules. 
It is the bonding strength of a particular electron 
with respect to a particular normal coordinate which is 
reflected in the spectrum and not the bonding strength 
with respect to any two nuclei in the molecule. There
fore the normal coordinate derivatives of the orbital 
energy or of the pole of the Green's function are the 
appropriate quantities to discuss the vibrational 
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structure in a PES. Isotope effects on the vibrational 
structure are then automatically taken into account in 
the construction of the ground state normal coordinates. 

Nondiabatic effects in the spectrum of butatriene (80) 

Until now we have based our considerations on the 
adiabatic approximation. This approximation relies on 
the fact that the energy difference between electronic 
states is large compared to the spacing of the rotatio
nal and vibrational energies. A breakdown of the adia
batic approximation may therefore occur when two elec
tronic states become degenerate or nearly degenerate. 
Most important is the case of symmetry induced degene
racy leading to the well-known Jahn-Teller and (for 
linear molecules) Renner-Teller effects. In particular 
the Jahn-Teller effect manifests itself in the PES. 
Molecules of high symmetry may possess spatially dege
nerate orbitals which according to the Jahn-Teller 
theorem (78) can couple linearly to vibrations of sui
table symmetry. If the coupling is sufficiently strong 
a very complex vibrational structure and a splitting 
of the band is observed. The Jahn-Teller effect in the 
second band of NH3 has been treated in ref.79. Here we 
will discuss the strong vibronic coupling effects in 
the PES of butatriene (C 4H4) (80). 

The PES of butatriene has been recorded and dis
cussed by Brogli et al. (81). The low energy part of 
the spectrum shows three bands which are well separat
ed from the fourth band in the spectrum. Theoretical 
and experimental investigations have definitely shown 
that only two of the bands in this lower part can be 
attributed to direct ionization from orbitals occupied 
in the molecular ground state. Therefore one of the 
bands 1, l' and 2 in fig.15 must be either a satellite 
line or/and due to a vibrational phenomenon. By compar
ing with spectra of similar molecules it is evident 
that band l' is the band in question. In table 10 we 
give the computed and experimental valence IP's of 
C4H4 which show that one band in the low energy part 
of the spectrum is too many. The basis set used ~n 
these calculations is (9s5pld/4s1p)/ [4s2pld/2s1p]. 
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CD 

Fig.15: The first band system in the PES of butatriene 
(81). The band l' is referred to as the/~ysterf' 
band 

Table 10 

IP's of butatriene (in eV) 

Symmetry IP IP(exp) ( 81) 

1 b 3g (m 8.95 r30 9.63 

2b 3u 9.67 9.98 

1b2u 12.07 11 .78 

1b2g 14.66 14.2 

1b3u 15.10 15.0 

3a 15.76 15.5 
g 

2b 1u 16.76 16.8 

A calculation of the satellite lines by a many-body 
Tamm-Dancoff method showed that no satellite lines 
appear in this low energy part of the spectrum. The 
first satellite lines appear near 13.8eV and can clear
ly be detected in the spectrum of ref.81. We will de
monstrate here that this mystery band arises from vi
bronic coupling effects. 
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The molecular Hamiltonian is again given by eg's 
(46) and (47). We need to maintain here that all quan
tities, also the electronic operators, depend on the 
nuclear coordinates. Rearranging the Hamiltonian as 
has been done above leads to 

HNN = TN + V 0 (R) 

HEN = 2..E. (R)[a:- (R) a. (R) -n"'" 
. 1 1 1 ij 
1 

V 0 (R) = VNN (R) + ~Ci (R) n i . 
1 

V (R) will be approximated by a harmonic potential 
wRere we expand about the molecular equilibrium geo
metry R . R-R is then replaced by dimensionless nor
mal coo~dinat~s. Introducing boson destruction and 
creation operators the pure nuclear Hamiltonian reads 

HNN = V ( 0 ) + ~ W (b + b +=-21 ) o s s s (83 ) 
s 

withu7 the ground state vibrational frequencies. We 
then e~pand the orbital energies about Ro up to first 
order and obtain 

~J«(o) (i)[a:-a.-n.J (b +b+) 
. s 111 S S 
l,S 

(84 ) 

The~(o) (i) are the electron-vibrational coupling con
stants given by 

K(o)(i) = 
s (85 ) 

Non-degenerate electronic states I~.'> couple to total
ly symmetric vibrational modes only1because (~E./DQ )0 
vanishes for non-totally symmetric modes. The f~rmi5n 
operators a. still depend on the normal coordinates. 
This means fhat the commutator of a. with the boson 
operator b does not vanish. puttin~ this commutator 
to zero me~ns that the a. depend only parametrically 
on the nuclear coordinat§s which is equivalent to the 
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adiabatic approximation as already discussed above. 

The adiabatic approximation may loose its validi
ty when the energy difference between electronic states 
is not large compared to the vibrational spacings. In 
these cases one cannot neglect the dependence of fer
mion operators on the nuclear coordinates. There is, 
however, a simple way to avoid the calculation of com
plicated commutators by transforming the a, (Q)to a Q-
independent electronic basis l 

(86) 

We insert this expression in eq. (84) for H N' expand 
I~ ,(Q» in a Taylor series and collect all terms linear 
inlQ 

+ 1 . [ + 
H =2.'W (b b + -2)+.2, c l' (o)aia i s s s S l 

(87 ) 

"5- ,-" (0) [+ +] + + "_ L- /I- (i, j) a, a, +a ,a, (b +b ) 
'<' s l J J l S S 
l J s 

Here the fermion operators do not depend on the nuclear 
coordinates. The constant term has been set equal to 
zero and 

\ s( 0) (l' , J') = f im 1 ( C c. /\ <£,,0 (2 c:: i (Q) - Cj (0) ) ~ 

X <Cfj (Q) I ~PQs l~i (Q» 

By restricting the orbital space to t If' 1 ' 1f2} we can ob
tain another form for 1\ as will be seen below 

,2 c' 2 11/2 
(0) , , _ 1f(O k 1(Q)-C2(Q)) ) 

As (l,J) - 4" ~ 2 
Q 10 

S 

( 89) 

The above Hamiltonian contains adiabatic and nonadia
batic coupling terms. Many of the coupling constants 
vanish on symmetry grounds. The selection rule for 
nonvanishing adiabatic coupling constants,Ks,is 
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(90 ) 

and for the nonadiabatic ones (As) 

r i xljxfs-;:J~ I 
( 91) 

where r. is the representation of MO llf), r the re
present~tion of Qs and/~ the totally ~ymm~tric repre
sentation. 

Up to now we have given the Hamiltonian in the 
one-particle approximation. As discussed above many
body effects can be taken into account by using renor
malized coupling constants. 

1 (dE.) Ks (i) = - - cJi Y2 Qs 0 

_ 1 i('"(/ (E 1 (Q) -E 2 (Q) )) }1/2 
As (1,2) - '4 d 2 

Q 0 s 

(92) 

The E. are the poles of the one-particle Green's func
tion. 1 

In many cases it is sufficient to restrict one
self to two close lying ionic states.of different sym
metry which we denote by llf1') and llf2/. If in addition 
only one totally symmetric vibration oland one non-to
tally symmetric vibrationp couple to the electronic 
motion then the Hamiltonian takes the form 

(93) 

This Hamiltonian underlies the calculation of the vi
brational structure of C4H4 . 

We now have to evaluate P(W) for this case. 
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(94 ) 

where T= 2'r, a '. The a, are 
b ' ' el. l. Th dl. 1 asl.s. l. e l.pO e 
a continuum and an occupied 
well. In our specific case: 

taken in the Q independent 
matrix elements Z-, between 
MO are independen~l.of Q as 

(95) 

The ground state I <P ~ 0* ~ is a product of an electro
nic groupd state l'r 0,,=a 2a 1 I vacuum) and a nuclear ground 
state I 0) of two ha~monl.c oscillators with frequencies 
UJ~andU~. We now wish to introduce pure bosonic opera
tors. This can be done by the same procedure used above. 
Due to the term involving A, which is nondiagonal in the 
electronic operators, one obtains, however, a matrix 
boson operator. 

~ .'V 

Ha1i4>0'> ='~1a114>0) +'dt,2 a 2 l<Po') 

Ha 2 i¢o'> = i21 a 1 ~¢ 0) + 'l{22 a2 \cPo') (96 ) 

or 

(97 ) 

and 

(98) 

where ~ =~ + (E 1+E 2) 1 and 

~ =[~k(tkb~ +.;) +(;.~ (b;bp+~ill rE1 +i<1 I~+~I -Alb!,+bpl l 
:_-/l(b~ +b~) -E 2+K'2 (bot +b~J 

(99 ) 

This can be used to obtain a compact form for the tran
sition probability 
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(100 ) 

The Hamiltonian dE describes the nuclear motion in 
the ionic states. The adiabatic potential surfaces V 
and Vb associated with the ionic states are obtaineda 
by diagonalizingJt-TN: 

From the difference V -Vb the equation (92) for A can 
be derived. a 

For a fixed value of Q~, say ~=O, the upper po
tential curve V (Q~) has a single minimum at Q~=O. The 
lower potentialacurve Vb (Qp) , on the other hand, has 
two minima at 

(102) 

if the relation 4A2/u~>IE1-E21 is fulfilled. The double 
minimum character of Vb indicates that the vibrational 
structure will be rather complicated. In addition one 
should note that for this range of the coupling con
stant it is a poor approximation to solve separately 
the Schrodinger equations for the Hamiltonians 

1 U 2 1 d2 
H = -k'T? + _U,IR ,- + V b 
a,b 2 ~~Q2 2 r~Q2 a, 

(103) 

and to calculate the intensities via the Franck-Condon 
principle. The eigenvectors which diagonalizeJr-TN do 
not commute with the kinetic energies in Jr. This leads 
to a complicated non-diagonal kinetic energy matrix 
operator. The normal modes decouple only if K1 = K2 . 
The strongest mixing of the modes is found if K1 and 
K2 are equal in magnitude but have different sign. This 
turns out to be the case for butatriene. 
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P(W) cannot be solved for analytically. We there
fore solve for it numerically. We calculate the eigen
values and eigenvectors of ~ in a basis of unperturbed 
harmonic oscillator states - £In~m~>l. One first ob
tains a supermatrix with 2x2 matrices~ " as 
elements. The elements are obtained via~mfi'~ m~ 

-v " _I <·nOlm,e.i 0 1(ln«-m~) 0 ) 
0(. I10l mp' nO- mfl - . de . 

\ 0 ( Dol ~i 0 ln~m ~ '> 
(104 ) 

The supermatrix decouples into two submatr ices 1(1 and 
·~2·~2 is obtained from 4(1 by interchanging all lndices 
1 and 2. The eigenvalues of ~1 and ~2 give the posi
tions of the vibrational lines in the spectrum and as 
we expand the vibrational wavefunctions in ground state 
harmonic oscillator wavefunctions the intensity of a 
line in the spectrum is obtained by multiplying the 
square of the f}rst eleme~t of the corresponding eigen
vector by ["t" e11 . or \'C'e2 1 for a line emerging from iff1 
or 1( 2' respectlvely. 

Butatriene belongs to the D2h symmetr~ group. The 
two lowest ion}c states are definltely the~3 ground 
state and thi B3 first excited state. The g next 
ionic state B2 u is energetically well separated and 
is thus exclude~ from the calculation. In order to 
study the vibrational structure in the low energy part 
of the PES we have to include the four totally sy~me
tric vibrational modes as well as the mode 2of symme2ry 
species A which couples the ionic states B3 and B3 
(B 3 x B3u x A = A ). This problem would be 8f de- g 

u g u g feating complexity if all coupl-
ing constants were nonvanishing. 

The coupling constants are evaluated first in in
ternal symmetry coordinates Sm and then transformed to 
normal coordinates Qm 

1 ~dE.) t' 11. )1 /2 ~ ~dE.) -~ (i) = - d"<t = 2u) L. Lnm V V2 Qm 0 m n () b no. ( 1 05) 

The matrix L is obtained from the force field of buta
triene. As this information is unavailable it was piec
ed together from the force field of ethylene and the 
frequencies of C4H4 . Details are given in ref.80. HF 
calculations of the energies and coupling constants 
showed that only the mode )j couples strongly, all 
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ot~er adiabatic cou~ling constants are negligible: 
E( B3 )~-9.00eV, E( B3u )=-10.31ev, ~(A )=0.26eV, 
. 2 g . 2 u 
K2 ( B3g ) =-0. 26eV , K 2 ( B3u ) =0. 2geV. These quantities 

will be abbreviated by E J , E2 ,'A,K,K2 , respectively. 
We are faced with the situatlon ddscribed by the sim
plified Hamiltonian (93). Many-body calculations on 
energies and coupling constants have also been per
formed. They reduce the energy split E1-E 2 as well as 
the absolute magnitude of the coupling constants. The 
energies and coupling constants which enter the cal
culation of the spectrum are listed in table 11. There 
are four sets of calculations. 

Table 11 

The energies and coupling constants used in the calcu
lations of the PES of butatriene HF=Hartree-Fock, MB= 
many-body, I=freely chosen energies E1 and E2 and the 
coupling constants from MB, II=best flt. All quantities 
in eV if not otherwise stated 

HF MB I II 

-E 1 9.00 8.95 9.4 9.45 

-E 2 10.31 9.67 9.9 9.85 

K 1 -0.26 -0.19 -0.19 -0.15 

1-\2 0.29 0.23 0.23 0.18 

A 0.26 0.26 0.26 0.225 

w~= 2079 -1 (83) , u~ = 736 -1 (83) cm cm 

To be able to compare with experiment we have drawn 
the calculated spectra in fig.16 A-D representing the 
vibrational lines by Lore2tzians 01 width (hwhm) 0.025 
eV and have assumed I L:'" 11 = '0(; 2l . The spectra in 
figs. A and B have bee~ computea using the HF and ma
ny-body results, respectively. It is seen that the vi
bronic coupling effects influence the first band only 
little, i.e. the individual vibrational lines of mode 
~show only little structure due to interaction with 
mOdefo. This is due to the large energy difference 
E1-E2 obtained in the HF approximation. By including 
many-body effects this difference becomes smaller, the 
modes ~ and~ interact stronger and the more complex 
structure shown in fig.B results. The distance between 
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the most intense peaks is still too large in the calcu
lated spectrum. This is mainly due to basis set defi
ciencies as discussed in ref. (82). In particular, E1 
will be lowered by using extended basis sets. In fig.C 
we have thus chosen E1=-9.4eV and E2=-9.geV and other
wise taken the many-body results. Tne fine structure 
of the first band in the experimental spectrum is well 
reproduced and it is seen that a third band emerges bet
ween the two bands. This band clearly represents the 
mystery band. 

A B 

!J 
c 
:> ,., 
~ 
:s 
a 

c 0 

8.0 110 .v 

Fig.16: The calculated PES of butatriene (see text) 

In order to find out how accurately the experimen
tal spectrum can be reproduced with the Hamiltonian 
(93) we have varied the energies and coupling constants 
to obtain the best fit. This best result is plotted in 
fig.D and the best fit parameters are listed in table 
11. The result is very satisfactory. The number of 
peaks in bands 1 and l' is accurately reproduced as is 
also the onset of band 2 and the peculiar diffuse struc
ture of this band. 

The best fit coupling constants are quite close to 
those obtained from the many-body calculation. The cal
culated spectrum is very sensitive to changes in the 
coupling constants and especially in the energy diffe
rence. 
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To gain some further insight into the coupling 
mechanism we have performed three more calculations 
whose results are plotted in fig.17 A to C. 

A 

B 

c 

8.0 11.0 eV 

Fig.17: Investigation of the influence of the indivi
dual coupling constants on the first band 
system of butatriene 

In the first calculation the best fit parameters are 
used, but A is set to zero, i.e. no vibronic coupling 
is allowed for. Neglecting K1 and K but including A 
leads to the spectrum in fig.B. Botri spectra have lit
tle in common with the experimental one. In the last 
calculation the sign of K1 is reversed (fig.C). Again 
a rather different spectrum results. These results 
underline the fact that the mystery band arises from 
a rather subtle interplay between the totally and non
totally symmetric vibrations. 
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IV. The 2-particle-hole Tamm-Dancoff approximation 
(12, 28) 

247 

In the first chapters we have presented the Green's 
function method as it can be applied to the calculation 
of outer valence IP's, i.e. to IP's which are far from 
the poles of the self-energy. These IP's have pole 
strengths close to unity. A consequence is that there 
is one line in the PES for each r.10. Satellite lines 
will accompany these main lines, but they have only 
small relative intensities. The corresponding electro
nic states are of a complicated nature. These solutions 
lie in the pole region of the self-energy. The inner 
valence IP's will lie in this region too. To calculate 
these IP's and the satellite lines a method is required 
which takes the pole structure of the self-energy into 
account. Quite new phenomena may occur in this energy 
range. We are going to see that in the inner valence 
region the one-particle picture of ionization may break 
down completely. The familiar concepts useful in the 
outer valence region and in the core are without vali
dity here. The method used for these calculations is 
the 2-particle-hole Tamm-Dancoff approximation (2ph-TDA). 

The exact self-energy has a constant and an energy
dependent term which we denote by M(W) 

2"((.0) = ~ (.p) + M(Lo) • (1.06 ) 

As 2 (~) can be obtained from M ("") (see ref. 1 2) we in
vestigate only M(W) here. The straightforward pertur
bation expansion of the self-energy is certainly limit
ed to low orders because of the rapidly increasing ef
fort involved in calculating higher orders. The lowest 
01Qyr energy-dependent term is the second order term 
M (W) 

M ( 2 ) (w) 1 L V V X 
pq = 2" j kt' pj[ kt] qj [ki1 

(1.07 ) 
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This expansion up to second order has the an1~¥tical 
structure of the exact M(W). Unfortunately M has, 
in general, proved to provide only a poor approxima
tion (27). The extension to the third order or any 
higher finite order will destroy the simple spectral 
structure of the second order expre1jton, since qua
dratic poles are added already by M (~~. It is thus 
clear that an expansion up to a finite order will com
pletely fail to describe M (u)) in the neighbourhood of 
its poles, whereas it might be useful if a region far 
from the poles is only of interest. The latter is the 
case for the outer valence IP's of closed shell systems. 

We have to look for a structure conserving appro
ximation, that is, an approximation for M(u)) exhibiting 
the spectral form reflected by the exact self-energy. 
Such an approximation can only be obtained by some kind 
of infinite partial summation. Well-known examples of 
partial summations of diagrams are the summation of all 
ring diagrams (RPA approximation) and of all ladder 
diagrams. Unfortunately neither the RPA nor the ladder 
self-energy parts are satisfactory for finite electro
nic systems. A simple addition of the RPA and ladder 
series indeed contains all third order terms of M. (W) 
that have been found to be essential, but leads to ne
gative intensities (28). 

Let us consider the second order expression eq. 
107 isee also the diagrams given in chapter I). The poles 
of M describe ionic states where one electron is re
moved from the occupied MO kct) and another one is ex
cited from the occupied MO~k) i£ro the unoccupied or
bital j. Analogously the poles M correspond to an 
electron attachment process to an unoccupied orbital 
accompanied by a simultaneous particle-hole excit~ri29' 
The c2,responding states have the configuration k ~ j 
and j k,f, 2yspectively. By solving the Dyson equa
tion with M( these configurations are allowed to in
te,act with the one-hole and one-particle configurations 
p- and p which are described by GO. The resulting io
nic states now include correlation effects. 

The mechanism leading to the breakdown to the MO 
picture of ionization can also be under~t029 based on 
these considerations. A configuration k '1 j where k 
and 1 specify occupied outer valence orbitals and j a 
low lying unoccupied orb~ral can be nearly degenerate 
with the configuration p of a more deeply lying va
lence orbital p. In this case strong configuration 
interaction can take place (this depends on the value 
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of V2 'kP) and the two resulting ioni~1states will have
a coR~laerable contribution of the p configuration. 
The lines in the spectrum will then have comparable 
intensities. In ~ctual calculations we often find se
veral poles of M to be nearly degenerate with the 
one-particle eneP~y E . The intensity originally cor
responding to the p oPbital (and thus to a single line 
in the MO picture) is about equally distributed over 
many lines. It is then not possible to identify any 
of these lines as the "main" line representing the io
nization of the orbital p and the remaining ones as 
satellite lines. At this place we wish to mention that 
i~1some ca§rs two (or more) one-hole configurations 
p and p' !9t~1act indirectly via a confiquration 
of the type k '1 j. As a consequence the Green's func
tion becomes nondiagonal and the resulting line corres
P29d!9g to the ionic state which develops from the 
k 1 j configuration cannot be thought of as arising 
from the ionization of a specific MO. 

As mentioned before the second order expression 
for M is in general not adequate to obtain accurate 
results. The 2h1p(2p1h) excitations are free and their 
energies are thus too large by about 10 to 20eV to des
cribe adequately the energies of ionization with simul
taneous excitation. In higher orders additional inter
actions come into play which can be considered to re
normalize these excitations. Such processes can be 
taken into account to infinite order in the electronic 
interaction by summing certain classes of diagrams. We 
consider the 2h1p case. The 2h1p diagrams arise from 
the second order diagram by successively introducing 
further electronic interaction points. Thereby one can 
connect either lines 1 and 2 or 2 and 3 or 1 and 3. 
This construction principle leads to a simple recursion 
formula. We separate M (i.(;) into its external vertices 
and the remainder. pq 

Mpq(U)) = t >- Vqjrkt]r;ki,j 'k'l' (Ld Vpj '[k 't1 
jk f L. 
j 'k 'i' 

( 108) 

thus defining the kernel of the self-energy, r. A.s f' 
is anti symmetric in k and i and in k' and 1 ' 

r j k 1', j 'k '-I' = - fj ik ,j 'k ' t, = -/j kl ,j , {, k ' 

= fjik,j 't'k' (109 ) 
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it follows that 

M (~= 2 Vqjk.1r;kl,j'k'l' (W)Vpj'k'l' (110) pq jk,t 
j 'k'f' 

or in matrix notation 

(111 ) 

From the definition of r it is clear that it also has 
a spectral representation similar to M(W) and is sub
ject to an expansion in pow~rf of V .. (kel' where, how
ever, the n-th order term r n corr~~ponas to the (n+2) 
-th term of the self-energy. The zero-th order term is 
obtained to be 

(11 2 ) 

where 

tj\l,j 'k'l' = 6jj , (Jkk,d),f,-Jkl,d.e k') . (113 ) 

We shall omit the infinitesimal quantity~ in 'what fol
lows and restrict ourselves to the 2h1p ahd 2p1h space 
in the whole development. We further introduce the dia
gonal matrix 

((»1 - ~) j kl , j 'k 'f' = J j j , S kk ' Jj f' (w+ E j - £ k - £1 ). (1 1 4 ) 

r(O) can then be written as 

( 11 5 ) 

or in diagrammatic form (for the 2h1p case) 

t{~ 
k' I' j' 

xi 
k' ..e' j' 

( 11 6) 
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where the second term is the exchange part. Evaluation 
by the diagram rules leads immediately to the algebraic 
form given above. In the next order one obtains in the 
2h1p case six diagrams. By connecting e.g. lines k and 
lone obtains the two diagrams 

j k 1 j 

k' .f' j' {' k' j' 

By the diagram rules one obtains for these two diagrams 

-1 -1 0 
(u)+Cj-tk-Ej) vke[k'i'] (W+Cj,-Ck'-Cp') 't. (118) 

Including the other terms as well one obtains instead 
of the V term a matrix C which contains combinations 
of the V terms. Thus 

(1 1 9 ) 

where 

Cjk/,j'k'i' -6jj,Vkl[k'f~ +dkk 'Vj1 'U:et 
t J'l'Vjk'[j'k] (120) 

from which the recursion formula for r can easily be 
derived 

( 1 21 ) 

In the same way one can obtain a Dyson like equation 
forr. Letr'''k''i'' "k'" (W) be represented by the 
diagram ] ,] < 

k" j " 

+ (122) 

2h1ft 

k' .(' j , 
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We can add an interaction point in three possible ways, 
e.g. 

j" 

2hJr- -1J = (t<)+ [ . - C k - E; ) '.." X 
J JJ 

'f + X' V kf [k" f .j rj " k" (" , j • k '1 ' (123) 

k' l' j , 

and by adding the other possible diagrams one obtains 

(~-K) -1C r. ( 1 24) 

With each added interaction point a factor (ul-K) -1c 
is added. Contin~i?g in this way one obtains a qeome
tric series in r o( C. As I' is an infinite summation 
with first termr OJ we have 

r = r (0) + r 0) C f' = (u,'-K) -1 or + (W-K) -1 C r ( 125) 

or in diagrammatic form 

This is the Dyson like equation for~. This equation 
can be solved to give 

(127) 

Analogous equations result in the 2p1£rcase. The two 
parts of r mayrbe den~ted asr and P with correspond
ing matrices C and C for the 2h1p and 2p1h case, re
spectively. (For a more complete derivation and the 
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general RPA equation see ref.12) 

Taking these two parts of r together and adding 
the external vertices to form H (~,) we have summed over 
all diagrams with two hole and one particle line and 
with two particle and one hole line between any two 
interaction points. The summation includes all ladder 
and RPA type diagrams to infinite order and is the sim
plest approximation which gives the correct analytical 
structure of the self-energy. Having obtained the self
energy via an infinite summation we are left with hav
ing to solve the Dyson equation. By solving the Dyson 
equation the 1h and 1p processes are coupled to the 
2h1p and 2p1h processes. In this way we obtain meaning
ful excitations in G. 

There exists a connection between the present ap
proach and a wavefunction approach. If we leave the 2p1h 
part of the self-energy away the Dyson equation is equi
valent to CI with single excitations, i.e. no ground 
st~te correlation is included. More precisely, the exact 
(N-1) electron wavefunctions can be expanded according to 

I N-1) <' ",$ .\. N; ~ "",s + \ilJNj' W = L. \)\.. a . ~ + LV\.· 'k a . a 0 a k "f + .... 
T s ill 0 ijk lJ l J 0 (128) 

\ tyN+1> = ~ f~a:lo/~)+2~. ~ka:a:aklrN/\+ .... 
s ill 0, ijk lJ l J 0 • 

In the 2ph-TDA the ground state Ilf'~} is replaced by 

the unperturbed ground statel~~. Since one is only 

interested in such ionic states characterized by a 

set of three indices s= [ijk} the at ~ (f3~) and <X ~ 0 kl. 
s l l lJ m 

(PijkPm) and higher coefficients are set equal to 

zero in the TDA self-energy part. Considering the 0( ~, 

(j..~ ok and p~ 'fo~ Ok as variational parameters the ener-
lJ l lJ N-1 N N+1 N 

gies E -E (HF) and E -E (HF) are ob-s 0 s 0 

tained as roots of secular equations equivalent to 

the Dyson equation without the 2p1h or 2h1p self

energy parts, respectively. Solving the Dyson equa

tion with both self-energy parts one takes account of 

the eX ~ (A~) and higher excitations and of correlation 
l 'r"l 
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in 1 WN), although the ground state correlation will 
stillobe included to an insufficient degree in general. 
This will result in the outer valence IP's being too 
small by 0 to 1.SeV. Ionic state correlation effects, 
however, dominate the processes in which we are inter
ested and thus the 2ph-TDA should be adequate to obtain 
at least a qualitatively correct ionization spectrum 
over the whole energy range. 

Some technical considerations 

Let us start from a self-energy of the form 

A + L" r:pn X~n + L Kpm k~m 
2 pq (W) pq n {,()-(jn-i~ mW-fm+ir (129) 

With the aid of partitioning it is easily shown that 
solving the Dyson equation is equivalent to solving 
the eigenvalue equation for the matrix 

Y ( 130) 

where A, X, K are matrices with elements A , 'X and 
~ , respectIvely and €., (/..., ~ are diagonal pq pn 

m matrices with the-orbital energies and the poles 
of the self-energy as elements. The eigenvalues of Y 
are the poles of the Green's function and the p-th com
ponent of the corresponding eigenvect21s are the ampli
tudes of G. More generally G =(W1-Y) . In the 2ph-IDA 
the OC ~£d P are the eigen-pq pqvalues of K+C 
and K~C , m respecriyrly. In rhtfcase one can com-
bine the equati29s r' = (u..'-K-C' ) ro and eq. (130) to 
give G =(W1-Z) with pq - - pq 

( 
E VI II V -

Z VI + K+C I 0 ( 131) -
VII+ 0 K+C II -

where VI and VII are matrices with elements V pj[kl] wi th nj nknt-;1 and njnkn..e=1, respectively. 
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We now have three different ways to obtain the 
Green's function. The first method is to calculate the 
self-energy first and then to solve directly the Dyson 
equation using e.g. the pole search procedure. The oth
er two methods involve diagonalization of matrices ei
ther by calculating the self-energy first followed by 
the diagonalization of Y or by diagonalizing Z directly. 
At a first glance one may prefer the last method because 
only one diagonalization if requiIId. This is, however, 
misleading. The matrices C and C are usually of large 
dimensions which renders a direct diagonalization of Z 
difficult if many orbitals are to be included! The fifst 
two methods take advantage of the fact that M and I ¥ 
can be calculated separately in the TDA an~Ithat M 
which involves the usually larger matrix C Ihas much 
less influence on the calculated IP's than M . The lat
ter fact is especially important. One can reduce the 
dimensions of ~ considerably by replacingh! and ~ by 
aI±ew effective poles and amplitudes which approximate 
M well in the energy region of ionization. Compared 
to the others the first method is found to be the fast
est. It has, however, two disadvantages. One may miss 
solutions due to numerical problems because of the 
strange shape M (W) may have and it does not provide 
the complete eigenvectors of Y which are important for 
interpreting the computational results. 

It should be noted that if the Green's function 
matrix is diagonal, the self-energy is also diagonal 
and one obtains a matrix Y as in eq. (130) for each 
orbital p. £ and A are then reduced to one element each: 
E and A -In thIs case the Dyson equation can be 

p PP written for each orbital separately 

( 1 32) 

We have performed the TDA calculations both in the full 
and diagonal versions of the Green's function. The 
Green's function is in general well approximated by 
its diagonal form and we will discuss only the results 
obtained in this way. A notice on what may happen if 
the full form of the Green's function is used has been 
made above already. 
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Application to CS (84) 

As the first application we will discuss the CS 
molecule. The CS molecule is selected because the ef
fects we wish to investigate occur already at fairly 
low energies and because its three valence5-type IP's 
exhibit all effects which can occur. The calculations 
have been perform~ with the basis set (12s9p2d/11s7p 
1d)/[7s5p2d/5s3p1dJ. The basis set has been completely 
exhausted in the Green's function calculation, whereas 
in the TDA calculation the five occupied valence and 
the 15 lowest virtual orbitals have included. The PES 
of CS exhibi ts a curious phenomenon (f ig . 18) (85). 

14 16 IN 18 

Fig.18: The PES of CS (85) 

In the low energy region up to 21.21eV there should be 
3 bands, but four are actually found (84). The first 
two IP' s are 715 and 2'iI, whereas Koopmans' theorem pre
dicts the reverse ordering. The Green's function as 
well as the TDA calculations predicts the correct or
dering. The nature of the next two bands is not clear 
from the experiment. Let us first discuss the 7~ orbi
tal. The self-energy L' ~7~ is graphically presented 
in fig.19. Thr f!lst pole of ~ corresponds to the con
figuration 7<:;, 2-i\ 3". The intersection of Z with the 
line Y~-C ~ occurs in the main interval and leads to 
a large pofe strength. There will be thus one main line 
and only unimportant satellite lines in the PES. One 
of thes~1sa~rllite lines corresponds to the ~9nfigura
tion 7(£1 2lT 3lT wi th a small admixture of 7G: . The 
situation is already different for the 6GMO (fiq.20). 
The intersection of '2Wf.,G with Y=u.-- E6C;; occurs in the 
main interval but close to the pole region of the self
energy and one finds actually two solutions with rough
ly equal pole strengths. The other satellite lines are 
unimportant. The main line is thus split into two lines 
of roughly equal intensity, thus explaining the experi
mentally observed phenomenon. Both ionic states have 
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cO~tigurati29s ~9ich are mixtures of the configurations 
7r:i and 7G 211 Ji/. A one-particle picture of ioniza
tion is inappropriate. The next higher excitations are 
already mixtures of different 2h1p configurations. 

The SG MO is a typical inner valence MO. Its 
energy lies amidst the poles of the self-energy_t fig . 
21) resulting in a strong interaction of the ~ con
figuration with various 2h1p configurations. The re
sult is a complete breakdown of the MO picture of io
nization. The intensity is distributed about evenly 
over many lines. In fig.22 we summarize the results 
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obtained for the valence ~ ionization of CS in the form 
of a line spectrum. The height of the lines is qiven by 
the pole strengths. Note the different scale in the 
last spectrum corresponding to the 5G MO. 

Application to N2 and CO 

The first three IP's lie in the main interval of 
the self-energy and the MO picture of ionization applies. 
Here we are mainly interested in the 2~ MO of N2 and 
the ~MO of co. The calculations have g been per-
formed with two basis sets (9s5p) /[4s2p] (47) and (11 s 
7p)/[5s3p] (34). The results are qualitatively the same 
in both calculations and only the results obtained with 
the larger basis will be discussed (86). It should be 
noted that a further enlargement of the basis (e.g. by 
including polarization functions) may change the rela
tive intensities and energies of the lines, but will 
not change the qualitative aspect, i.e. the breakdown 
of the MO picture. The results for the 3 E5line of co 
is shown together with the experimental spectrum (87) in 
fig.23 and for the "2e( line" of N2 in fig.24. (Experi
mental spectrum from r~f.88). The calculated Franck
Condon envelops of the lin~s are drawn in the fiqures 
for a better comparison with experiment. For CO we find 
a main line at 39.geV which carries most of the inten
sity (45%). It is accompanied by several more or less 
weak satellite lines. It is clear that the intense line 
at 39.geV represents the ionization of an electron from 
the 3eMO and that the satellite lines have borrowed 
intensity from the main line. It should be noted that 
the satellite lines appear on both sides of the main 
line. The ones at lower energy can obtain their inten
sity only via correlation effects. Recently Bagus and 
Viinikka (89) have performed CI calculations for the 
valence and inner valence region of co in a limited 
model space of 5 occupied and 3 unoccupied orbitals. 
Apart from the absence of some intense satellite lines 
especially on the high energy side of the 36peak their 
results are qualitatively similar to the present ones. 
Their calculated inner valence IP's are 5 to 7eV high
er than the experimental ones. This discrepancy is pro
bably due to the missing of a sufficient number of vir
tual orbitals in the basis leading to a strong under
estimation of relaxation effects. The errors in the 
present calculations are about 1 to 2eV. 
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The situation is somewhat different for the N2 
molecule (fig.24). The main part of the intensity lS 
distributed about evenly over three lines at 37.9, 
39.9 and 41.6eV (86). This explains the large width 
and strange shape of the band found in the experiment. 
It is no longer possible to identify anyone of these 
lines as the main line corresponding to the 2G orbi
tal. We cannot exclude with certainty that theg lSline 
which survived in CO in the present calculation is also 
split into several closely spaced lines when the basis 
set is further enlarged. There are a number of satel
lite lines on both sides of the lines around 40eV. The 
major ones are indicated in the spectrum. It is also 
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indicated from which MO's they derive their intensity. 
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Fig.24: Calculated and observed inner valence spectrum 
of N2 (88) 

In the diagonal approximation to the self-energy 
the satellite at 28.geV of N2 derives its intensity 
from the 25' orbital, but in the calculation using 
the full se~f-energy it obtains its intensity from both 
the 2c:1 and the 36 orbital. As a consequence one can 
expectg that the g intensity of this line relative to 
the lines of pure 26 character varies with incident 
photon energy as is ~n fact observed. It is seen from 
fig.5 of ref.88 that the cross section for 3G ioniza
tion increases markedly when going from AL~ g to YMj 
radiation. This explains why the intensity of the line 
near 2geV increases relative to the intensity of the 
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2~ lines when going from AL~ to y~ radiation. The 
g same effect is observed in CO. 

Application to formic acid (90) 

The breakdown of the one-particle picture of io
nization becomes even more prominent in the case of 
larger molecules. Unfortunately there are few spectra 
in the relevant energy range which are free of inten
sity, background and impurity problems. For formic acid, 
however, we could find a Hell PES (91) which at least 
partly covers the relevant energy range so that the 
theoretical predictions can be checked. The calcula
tions on formic acid were performed with the basis set 
(9sSp1d/4s)/L4s2p1d/2s] (47). In the Green's function 
calculation the basis set was exhausted and in the TDA 
calculation only the 9 occupied orbitals and the 7 un
occupied orbitals lowest in energy were taken into ac
count. This is due to the large dimension of the ma
trices which have to be completely diagonalized. 

For the 10a', 2a", 9a', 1a", 8a' and 7a' outer 
valence orbitals of HCOOH the MO picture of ionization 
is retained. There is one intense line carrying about 
90% of the spectral intensity. More interesting are the 
results for the inner valence orbitals. For the 6a', 
Sa' and 4a' orbitals there exists no longer a "main 
line". To exhibit the results more clearly the calcu
lated vertical ionization spectrum between 20 and 40eV 
is shown in fig.2S. The Hell spectrum of Potts et ale 
(91) is given in fig. 26. Each line represents an io
nization process, the relative intensity being given 
by the pole strength. Satellite lines originating from 
the outer valence orbitals are assigned in the figure. 
For the 6a' orbital we find a splitting into several 
very closely spaced lines. The correlation effects are 
most spectacular, however, for the Sa' and 4a' orbitals. 
As shown in fig.2S the Sa' and 4a' strength is spread 
over a large number of lines. No individual line car
ries more than about 10% of the total strength asso
ciated with one orbital. The lines extend over more 
than SeV for both orbitals. The experimental spectrum 
shows broad peaks at 22.0, 30.7 and 33.0eV. The pre
dicted splitting of the 6a' band can of course not be 
resolved experimentally due to the vibrational broaden
ing of the lines. The calculated ionization spectrum 
shows that the remaining two bands in the Hell spec
trum arise mainly from the Sa' orbital, although the 
band at higher energy also contains lines originating 
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from the 4a' orbital. The observed peak separation of 
2.3eV is in excellent agreement with the calculated 
spacing of 2.4eV. A further intense peak is to be ex
pected near 38eV originating mainly from the 4a' orbi
tal. 
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Fig.25: Calculated vertical ionization spectrum of 
HCOOH between 20 and 40eV 
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Fig.26: Hell PES of HCOOH as recorded by Potts et al. 
(91 ) 

Application to N20 4 (92) 

For molecules containing first row atoms the one
particle picture of ionization may break down for the 
inner valence orbitals of mainly 2s character. For mo
lecules containing second row atoms this breakdown 
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starts at much lower energies. But where does this 
breakdown start? This question can only be answered by 
a calculation for each molecule. One can only say that 
if there are low lying non-diffuse virtual orbitals of 
appropriate symmetry which lead to low lying poles of 
the self-energy the breakdown tends to occur at lower 
energies. With the statement that for molecules con
taining first row atoms the breakdown occurs for the 
2s-type orbitals one may be on rather shaky qrounds. 
We wish to demonstrate this for the case of the N20 4 
molecule. Several authors have recently been able 
to extract the PES of N20 4 from a mixture of N0 2 with 
N20 4 and to measure the IP's of the latter molecule 
(for a discussion and references see ref.92 where the 

N20 4 molecule is studied in detail). In fig.27 we give 
tfie PES of N20 4 as recorded by Gan et al. (93). This 
is the best resolved spectrum. The assignment of 
the spectrum proved to be quite difficult. The basis 
set used for the calculation is of double zeta quali
ty. The Green's function and TDA are presented in de
tail in ref.92. Here we discuss only the results of 
the TDA calculations. For these calculations the 17 
occupied valence orbitals and the 8 unoccupied orbi
tals lowest in orbital energy have been included. The 
ionization spectrum of N20 4 computed in this way is 
shown in fig.28 (10-21eV range) and fig.29 (21 to 51eV 
range) . 

The experimentally observed separation of the 
spectrum into a group of lines below 15eV and a group 
of lines between 15 and 21eV is clearly reproduced by 
the calculations. The five lines below 15eV have pole 
strengths between 0.8 and 0.9. The ordering of the IP's 
is the same as obtained by the outer valence type cal
culation, i.e. there is an interchange of the 3b 2 IP 
with both the 1b1 and 1a IP's as compared to g the 
prediction of Koo~mans' u theorem. The good aqreement 
between the outer valence type Green's function re
sults and the TDA results leaves no doubt as to the 
assignment of the first five IP's of N20 4 . Fig.28 shows 
furthermore that below 15eV the ionization spectrum of 
N20 4 is completely free of satellite lines. For the 

group of lines between 15 and 21eV very strong 
correlation effects are predicted by the TDA calcula
tion. All lines in this energy range have pole strength~ 
of 0.7 or less. The 3a line near 1geV is split into 
closely spaced componeHts with intensities of 41% and 
22%, respectively. The remaining intensity appears 
above 22eV. A similar situation is found for the 2b 3 
orbital. For the 1b2u orbital we find a line near u 



ON GREEN'S FUNCTION METHODS FOR THE STUDY OF IONIC STATES 265 

19 17 15 13 11 
BINDING ENERGY (eV) 

Fig.27: HeI PES of N20 4 as recorded by Gan et al. (93) 

1 = 40g 2 = lou 3 =1b'g 4= 3b2g 
5 = 3b3u 6 = 3b,u 7 =2b2g 8 = 1b3g N2 04 

10 9 = 2b3u 10= 1 b2u 11 =30g 12= 2b,u 

0.9 1 
>- 5 32 4 
.... 0.8 
Ui 
z 12 7 
UJ 0.7 6 .... 
z 

0.6 ~ 

9 
-' 

8 <s: 0.5 10 
0:: 

11 .... 
u 0.4 
UJ 
CL 
(f) 0.3 11 9 

0.2 

0.1 I~ 
6 

2 

21 19 17 15 13 11 
BINDING ENERGY leV) 

Fig.28: The ionization spectrum of N20 4 up to 21eV 
binding energy obtained by tne 2ph-TDA Green's 
function method 

18ev which carries, however, only 46% of the total in
tensity. A group of three lines originating from the 
1b 2 orbital and carrying altogether 28% of the inten-

u sity appears near 23eV separated by 5eV from the 
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lowest energy 1b2 line. A similar situation is found 
for the 1b3 orbl~al with intense lines at 17.1eV(P= 
0.47) and g 22.7eV(P=0.23). For the 3b 1 orbital we 
note that a strong (P=0.11) satellite u line appears 
at 17.7eV, less than 2eV higher than the 3b 1 main line. 
For the 2b 1 orbital, on the other hand, a u weak sa
tellite u line is found 2.7eV below 2b 1 main line. 
All these features show that for N20 4 the u familiar 
MO picture of ionization breaks down above 15eV 
ionization energy. A distinction between main lines and 
satellite lines is no longer possible there. The self
energy has poles with large residues above 15eV. The 
outer valence type Green's function method is not ap
plicable in this energy range. Since there are more 
lines in the theoretical ionization spectrum between 
15 and 21eV than resolved peaks in the HeI PES a de
tailed assignment of calculated lines to structures in 
the experimental spectrum is hardly possible except for 
the isolated band observed at 15.6eV which corresponds 
to the calculated 3b1 line at 15.8eV. Above 17eV the 
concept of orbital u ordering becomes questionable. 
The 1b2 line near 18eV e.g. is situated between two 
of the u lines originating from the 2b3u orbital. The 
question how many IP's should be observed below 21eV 
finds no unique answer. For the 1b3 ' 2b3 and 1b2 
orbitals roughly one half of the g u u 
intensity appears below 21eV, the second half above 
21eV. Apart from such difficulties the calculated or
dering of the IP's is in agreement with the conclusions 
of Gan et al. The high energy part of the valence io
nization spectrum of N20 4 is shown in fig.29. There is 
a dense line structure covering nearly the whole 
range from 21 to 44eV. The 2s orbitals of 0 and N have 
dissolved into numerous lines. 

One question should finally be answered. Why is 
the orbital picture of ionization applicable to the 
core orbitals? It should be mentioned immediately that 
it can break down completely as it does for heavier 
atoms (e.g. Xe, ref.94). We will consider here only 
molecules with first row atoms. Correlation effects 
between simple hole and 2h1p configurations can lead 
to the breakdown of the MO picture of ionization. The 
core hole energies, however, are found to be much high
er than can be reached by 2h1p valence type excitations. 
The self-energy exhibits only poles which lie at higher 
energies than the core IP. In addition the self-energy 
has a cut in the core region. But as this continuum 
contributes mainly to the lifetimes of the states the 
situation is quite similar to the outer valence region. 
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Fig.29: The continuation of fig.28 up to 51eV binding 
energy. Note that the ordinate scale is diffe
rent from that in fig.28 

There is a large interval free of poles of ~. In prin
ciple larger molecules with several atoms of the same 
type but in different chemical surroundings might show 
in the core a breakdown of the MO picture of ioniza
tion as simple hole configurations may have about the 
same energy as configurations with one core hole and 
a valence type excitation. The residues of the self
energy poles must be large enough for strong correla
tion effects to occur. For ionizatio~ of orbital i 
these residues are proportional to V, 'Lk~ . Whether 
they can be large enough remains to lJ {~e seen. In 
discussing these effects it should be noted that the 
localization characteristics of core valence and un
occupied orbitals are very different. In fact recent 
calculations demonstrate that this breakdown does oc
cur, e.g. in para-nitroaniline (95). Experiment gives 
one N1s peak as simple, the other one as a doublet (96). 
The calculations predict in fact a triplet. 
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AUGER ELECI'RON SPECI'RA FroM FREE ATOMS AND illLECULES 

Hans Siegbahn 

Institute of Physics, University of Uppsala 

1. INTroDUCTION AND GEt\1ERAL ASPECI'S OF AUGER ELECTroN SPECI'RA 

A system excited to a discrete, quasistationary state 
above the first ionization potential may decay by the emission 
of an electron. In current terminology, electron emission from 
neutral systems is generally referred to as autoionization, while 
the term Auger electron emission is usually reserved to designate 
decay from initially ionic states. The latter processes were first 
observed by P. Auger in 1925 /1/. He studied X-ray absorption by 
means of cloud chamber experi1nents and found that besides the 
photoelectron tracks, other tracks appeared, whose len:rths were 
independent of the X-ray photon energy. He concluded thus that 
these were due to internal conversion processes. 

The kinetic energy of an emitted Auger electron is 
given by: 

EAug = ~ot(X) - ~ot(YZ) (1) 

where ~ t(X) is the total energy of the initial state with a 
vacancy ~n shell X and E (YZ) that of the final state with two 
vacancies in shells Y andoZ. The transition is referred to as an 
XYZ transition (KLL, il1B etc.). Special types of transitions are 
those where Y or Z is equal to X, which are generally tenned 
Coster-Kronig transitions. Super Coster-Kronig processes are de
fined by Y = Z = X. 

Eg. (1) involves the assumption that the production of 
Auger electrons is a two-step process, where the creation of the 
initial vacancy does not affect the subsequent Auger decay. This 
may not be entirely true, if the excitation energy is close to 
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the ionization threshold. Schmidt et al. /2/ have recently em
ployed synchrotron radiation to excite Auger electrons from 
xenon. It was thenlfound, that a shift occurred in the position 
of the NS02 P2 3 ( So) Auger line, when the photon energy was 
only slighEly nigher than the NS threshold. A postcollision inter
action (PCI) thus occurs between the photoelectron and the Auger 
electron. In the follaving, we shall consider Auger electron 
spectra excited with energies well above threshold, such that 
PCI effects on the energies are absent. 

The rate of an Auger transition is given by the matrix 
element coupling the discrete hole state to the continuum: 

P XYZ ex [<\jI (X) [ H [ \jI (YZ) > [ 2 (2) 

where H is the (N -i)-particle Hamiltonian and \jI{YZ) contains a 
free Auger~electron continuum part /3 - 7/. For a non-zero rate, 
\jI (X) and \jI tyZ) should have the same syrrmetry. This leads to 
selection rules in the Auger spectra. In the atomic case, the 
main line KLL Auger spectrum cont~~nI seven ~ss!£lr fina13ionic 
states f92" Iture IS-s:oupling ({2s) (So), 2s 2p (Pl and Po 1 2) 
and (2p) (So and D2)). In j j-coupling the number of states' 18 
six (~lLl,L1L2,L2L2,LiL3~L2L3 and L3L3) ~dlthe ful!lin!rnvediate 
30upl1ng case COn!~l~S n1~e state3 ({2s) (So), 2s 2p (~l and 
PO,1,2) and (2p) (So,"'D2 and PO,2»)' 

In addition to the main Auger electron lines, satellite 
lines are generally observed in the spectra. These may arise 
through a number of mechanisms. First, the initial state of the 
Auger process may be excited above the hole ground state or mUlti
ply ionized. Such states may be populated by means of multi
electron transitions in the primary ionization (shake-up, shake
off) or by Auger electron decay from laver lying hole states 
(e.g. an L, hole in Ar, which decays by a Coster-Kronig transition 
to an L2 l'12 3 double hole state) second, multielectron processes 
in the Auger'process itself analogous to those in the primary 
ionization may occur {shake-up and shake-off (double Auger pro
cess) ). Third, transitions may occur from excited states of the 
neutral species - autoionization. The intensities of these latter 
transi tions is highly dependent on the mode of excitation. Thus, 
autoionization satellites are generally much more intense if a 
source continuous in energy is used, such as electrons, than if 
e.g. characteristic X-rays are employed. 

The first category of satellites mentioned above may 
have laver or higher energy than the main lines, depending on 
whether the initial state shake-up or shake..-off excitation parti
cipates in the Auger decay or not. The second type (final state 
shake-up, shake-off) leads to lav-energy lines and autoionization 
peaks occur on the high-energy side of the main lines. 
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The free-atan Auger spectra motly studied so far have 
been the noble gas spectra /8 - 17/. For these systems, naturally, 
the most advanced theoretical calculations have been made. Since 
continuum functions can be generated by numerical integration of 
the radial SchrOdinger equation for these cases, transition rates 
can be calculated to a high degree of sophistication, including 
also interchannel coupling /16, 18 - 20/. These systems furnish 
thus critical tests of theory. The most accurately studied spect
rum so far in this respect is the NeKLL spectrum / 8, 9, 13, 15, 
18 - 20/. 

Auger transitions in molecules and solids are appropri
ately classified according to the character of the final vacan
cies. If these occur in shells which can be considered core-like, 
the main line Auger electron spectrum will be very similar to a 
free-atan spectrum, both with regard to relative intensities and 
relative energies, The entire spectrum may shift with respect to 
changes in the chemical state of the element, hcwever. A chemical 
dependence of the satellite peaks will in general also be present, 
when these involve valence electron excitations. 

When any of the final vacancies of the Auger transition 
occur in the valence shell of -a: molecule or a SOlid, the spectrum 
will in general lose its atanic character. The analysis of such 
spectra are often canplicated, since the effects of final state 
couplings and electron polarization must be considered for multi
center hole-state wavefunctions. A first approc±mation to Auger 
spectra in solids, where the final vacancies are both in the 
outermost electron band, is a selfconvolution of the occupied 
density of states. This simple consideration would give an Auger 
spectrum with approximately twice the width of the band. Deviations 
fran such predictions have been found, hcwever /21 - 24/. 

Molecular Auger spectra with vacancies among the valence 
electrons is interpretationally sImpler than the solid band struc
ture case, but requires extensive calculations for a detailed 
account. A number of small molecules have been investigated, where 
it has proved possible to assign most of the observed structures 
/9, 25 - 34/. In the case of the water molecule /28, 33/ the 
energies of the transitions were calculated by open-shell Hartree
Fock procedures, followed by a limited CI. The intensities of 
the transitions were estimated on the basis of a quasiatanic 
model, in which the rates were given by linear combinations of 
atani~ transition rates. By this approach structures due to the 
main transitions could be identified. In general, the origin of 
satellite structures in molecular and solid state Auger spectra 
i~ diffi~lt to assign in any reliBble fashion. 

I shall consider below sane K Auger spectra, which have 
been studied in our laboratory. These will serve to illustrate 
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the concepts mentioned above and sane of the methods used in the 
interpretations of these types of spectra. 

2 . EXPERIMENTAL CONDITIONS 

The recording of Auger electron spectra requires basic
ally three units: an excitation source, an electron energy ana
lyzer and an electron detector. The excitation source most can
rronly used is an electron gun, producing a beam of electrons 
of energies of up to say, 10 keV. Electrons provide effective 
agents in producing the primary vacanci~s and intense Auger 
signals are thus achieved. A special use of electron excitation 
has been made in solid surface investigations, where Auger 
electron spectroscopy is a versatile investigative method, 
due to its high surface sensitivity (the Auger electrons are 
sampled fran the first few atonic layers of the sample). This 
type of electron excitation, Scanning Auger Electron Spectro
scopy (SAES) , uses a fine-focus electron gun which sweeps over 
the sample surface. Since the Auger electron spectra provide 
elemental identification, one can obtain a picture of the atonic 
distribution on the surface in this way. The lateral resolution 
is of the order of 0.5 ~. 

Ion or photon beams are alternative rrodes of exciting 
Auger spectra. As previously indicated, the various excitation 
rrodes will lead to the same relative intensities arrong the main 
lines. HONever, the ratio between the satellite and the main line 
intensi ties may be affected. This furnishes a possibility of 
assignment of satellite structure. In particular, it is expected 
that final state shake-up, shake-off satellites will be indepen
dent of excitation mode, whereas the other two types mentioned 
above will not. In this context the possibility of using syn
chrotron radiation is an attractive alternative. Selective ex
citation to auto-ionizing states with synchrotron radiation in 
conjunction with Auger electron spectroscopy has been studied in 
krypton and xenon /35/. 

The electron energy analyzers that are used for Auger 
spectroscopy are generally either of retarding grid type or de
flection type, hemispherical capacitor and cylindrical mirror 
spectraneters. The first type is a nonimaging analyzer, in which 
the electron energies are analyzed by means of retarding poten
tials between spherical grids. The deflection type analyzers 
create an electron-optical image of the electron source, whose 
position is dependent on the energy. The retarding grid type is 
generally used at much lONer resolution and signal to background 
than the deflection type analyzers. Its main use has been in 
solid surface investigations, where it is employed in combined 
LEED/Auger systems. 
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Fig. 1. Schematic view of experimental arrangement for recording of Auger electron spectra by electron impact. 

The experimental arrangement used to record the spectra presented belCl'W is shCl'Wn in Fig. 1. The electrons used for excitation are generated in an electron gun with a small focus (50 fJffi at 5 kV and 5 jJA). By means of an electrostatic quadruIX'le lens the beam is adjusted to enter the sample gas cell through a small hole. The gas cell is an aluminum tube, the inside of which is coated with graphite to avoid local charging. The upper part 
of the cell is connected to the gas inlet system. Since the Auger electrons that are analyzed by this spectraneter may have. high energies (EA >2000 eV), a preretardation lens system is incorporated. Theupurpose of this device is to enhance the total resolution of the system (~. /Ek. ). With ~ normal resolution of the spectrometer of say, In In 5 . 10- the instrumental contri-
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bution to the line widths would become unacceptably large (-1 eV) 
without retardation. The electrostatic lens system, schematically 
shown in Fig. 1, was designed to operate in the magnetic field of 
the electron energy analyzer. It allows a retardation ratio of 
1: 5. The gas cell is held at a high potential (U2) which is the 
retarding voltage of the outgoing electrons. 

The detector unit in this case is of multichannel type 
which allows the recording of an extended energy range of the 
spectrum at one spectraneter field setting. The detector consists 
of two channeltron plates coupled in series followed by a phosphor 
screen. The channeltron plates are circular discs with a diameter 
of 2.5 em, each containing small holes (diameter 10 - 50 )JIll). The 
holes through the two plates act as indivicual electron multipliers 
with a high gain. The light frem the phosphor is then focused on 
to a photod.iod.e array, where each photon pulse is digitized and 
stored in the memory of a caTlputer. This technique makes it possi
ble to record very high counting rates (up to 100 000 counts per 
second per channel). This is of importance in the context of Auger 
electron spectra, where large intensities may often be achieved. 

3. THE KLL AUGER ELECl'RON SPECl'RUM. OF ARGON 

The KLL Auger spectrum of argon is shown in Fig. 2 and 
mnuerical data are contained in Table 1. The main lines arising 
fran the decay of a single vacancy in the K shell are denoted by 
the LS- and jj-coupling notations. Since the spectraneter con
tributionlto the line widths has been reduced by preretardation, 
the L2L3 ( 02) main line has nearly the natural Lorentzian shape. 
It has a wiath of 1.19 eV and a curve fit to this line gives a 
Voigt function with 0.56 eV Gaussii:m and 0.92 eV Lorentzian con
tributions. This natural linewidth is daninated. by the lifetime 
of the K-shell hole state. 

A number of satellite peaks can be observed in the spect
rum. In order to gain insight into the formation of these satelli
tes, relativistic M::SCF calculations were performed. The program 
used is based on expansion of the wave function in jj-states, for 
which the coefficients and one-electron radial functions are 
optimized by means of the variational principle /36/. The initial 
states which were calculated had K, KH and KL holes and the final 
states LL, U'l, LLL and L2 3L2 3M holes. A total of 87 hole states 
were thus considered /37/: ' 

For the case of shake-off in the t1 shell at the ioniza
tion of the K shell, one expects to find a spectrum similar to the 
normal KLL spectrum wtih regard to the intensity ratios but shift
ed towards lower kinetic energies. This shift can be estimated 
fran optical data by considering it as a difference between two 
binding energies: 
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of the spectrum on an expanded energy scale. " 
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Table 1: Exper:i:rnental and theoretical data for Ar KIL spectrum. 
Energies in eV. 

EXPERIHEN'l'AL CALCULATION 

LINE! RELATIVE 

FINAl. STATE IN'l'. F\qIlM ENERGY ENERGY ENERGY 

3 
L3L3 ( P2) 3 1.4 8.6 2669.1 2670.9 

3 
L3L3 ( Po) 1 1.2 6.4 2666.9 2668.4 

1 
L2L3 ( D2) 540 1.19 0 2660.51 2661.9 

1 
L2L2 ( So) 73 1. 79 -9.60 2650.91 2653.0 

1 19 2.0 ··11 .3 2649.2 -
2 97 4.8 -17.0 2613.5 -
3 15 2.7 -26.7 2633.8 -
4 5 2.2 -30.7 2629.8 -
5 19 3. -1 -35.3 2625.2 -
6 3 3.7 -44.7 2615.8 -

3 
L1L3 ( P2) 2601. 7 

3 
L1L3 ( PI) 34 4.1 -60.8 2599.7 2600.2 

3 L1L2 ( Pol 2599.4 

7 8 3.7 -76.9 2583.6 -
1 L1L2 ( PI) 100 3.7 -84.8 2575.7 2575.5 

8 13 5.1 -94.5 2566.0 -
9 23 4.8 -101.6 2558.9 -

10 5 10.9 -117 2544 -
1 

L1L1 ( So) 26 6.6 -151. 6 2508.9 2508.3 

11 6 8.2 -168 2492 -
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L'I=E _i1 = 
Aug Aug 

= (E.-r, t (Lil1) - ~ t (LL)) - (~at (1OIJ) - ~ t (K) ) (3) 
The second 5~acket bindlRg energy can-De approx~ated as the 
ionization potential of KII. Similarly, the binding for the M 
electron in the doubly (LL) ionized atan can be taken as the 
ionization potential of CallI. Thus: 

L'I ~ I (CallI) - I (KII) p p (4) 

Optical data for these quantities gives ~19. 4 eV. This is in 
approximate agreement with the observed value of 17.0 eV for the 
satellite. 
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The results obtained fran the calculations for the H
shake-off satellites are indicated by bars in thelbottan ~art of 
Fig. 1, which shaNS the energy region around the So and 1)2 
lines on an expanded energy scale. The theoretica+ energies of 
the transitions have been normalized to the main ~ transition, 
i.e. they have been corrected for the difference be~een experi
ment and theory (-1.4 eV) for this transition. The heights of the 
bars are proportional to ~e prcxtuct of the intensity of the 
corresponding main line ( D2 or So) and the statistical weights 
in the final state. The calculations shaN that ~e shift, between 
the satellite and main line is the s~ for the So and ""D2 
transi tions . 

As mentioned, a similar H-shake-off satellite structure 
. is expected to appear at each main line. This is als~ found to 
be th~ case and the ~cted satellites to the L1Ll ( S ), 
L1L2 (-Lp) and L1L2 (P) lines occur at a distance of ~ut 17 eV 
fran the corresponding main line (peaks no. 11, 9 and 7, respect
ively) . 

The fractional intensity of the t-1-shake-off satellite 
(defined as ISA~ (ISAT + I~:lAIN)) gives the probability for shake
off in the prlffiary lonization. It is found to be 16% fran the 
present spectrum. 

In the case of shake-off in the L shell at the ioniza
tion of the K shell (which has a substantially laNer probability 
than M shell shake-off) satellite peaks will also be produced in 
the Auger spectrum. The possible termslo~ the i~i3ial states, 
ls2s or ls2p hole configurations, are'S and ,~ P, rJspectively. 
In the calculations, the splitting between thI -p an~ P terms 
was calculated to be 12.0 eV and between the S and S terms 
17.0 eV. The transitions that are allaNed in LS coupling are in
dicated by bars in Fig. 2. They are clustered in three different 
groups. An initial shake-off in 2p leads to two possible trans
itions to a final state with two vacancies in 2s. These trans
itions are calculated to lie in the energy region around the 
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LILI (ISO) main line. The next group corresponds to K-+L1L2 3 
transitlons and the calculated energies of these cover an'energy 
range fran peak 7 to peak lQ in the spectrum. PrOIl'\ previous studies 
on the NeKLL spectrum 113/, only three of these aJ?e expected to 
~a:1e appreciable int~s~ty. The first of the transiti'Ons with 

, P iniiria2 state ( P-+ P) could be associated with peak number 
10. The ip-+ P trans~ ti~n is expected to fall into the H-sbake-off 
peak no. 9 and the P-+ D is probably manifested in peak no. 8 ~ 

The third group of L-satellites are those caning fran 
the K-+L 3L2 3 transitions with a vacancy in the L or L 3 sub
shell. ofl'l.ese'are contained in the satellites with fue n~rs 
fran 3 to 6 in the spectrum. 

4. KIM AUGER ELECI'RON SPECTRUM OF ARGON 

The recorded spectrum of the KI11 Auger transitions is 
sho.vn in Fig. 3 and the experimental and theoretical data are 
given in Table 2. To get the total intensity of the KflI1 trans
i tions compared to the intensity of the KLL transitions, the 
strongestlpeak in the KLM spectrum was recorded simultaneously 
with the D2 peak in the KLL spectrum. The intensities of the 
two lines were then canpared to each other and to the total in
tensity of the spectra. This gave a ratio of 1:7 for the proba
bilities of the KLH to the KLL transitions. The 101M spectrum is 
weak and does not contribute by more than 1% to the total K 
Auger transition rate. 

The kinetic energies derived fran the calculations are 
marked by bars in Fig. 3. In3 the KL 3M2 3 transitions the ener
gies corresponding to the ' P finaf'states have been omitted, 
since these are forbidden in LS coupling. The spin orbit splitt
ings of the S and D states in the same group of transitions have 
been indicated. 

In assigning this spectrum, use is made of the fact that 
the transition probability to a triplet state is expected to be 
appreciably lower than to the corresponding singlet state of that 
configuration /28, 33/. The strongest peak in the spectrum is 
thus assigned to the ~2 final state of the L2 3M:z 3 configuration. 
The bump observed on thellow energy side of tnis peak fits ener
getically well with the So transition, obta~ed fran the calcu
lati~n. The peak on the hi~h energy side of "'n2 is assigned to 
~e D transition and the S peak is probably nidden under the 
ID2 intensity. The two peaks at 12 eV lower energy than the main 
ID2 lin~ are the K-+L2 1~'ll transitions with possible final states 
P and P. The intensi bes of the two observed peaks ClJe almost 

equal, which is probably due to a satel~ite under the P peak. 
The L M2 3 peak consis1s mainly of the ~ state with a small 
contr!butlon fran the P state on the hign energy side. The LlHl 
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Fig. 3. KIM Auger electron spectrum of argon. Full bars indicate 
transition energies obtained by relativistic DF-calculations. The 
dashed bar indicates the transition energy ob~i~ed for the L1Ml 
state2in4an a::SCF calculation including (~13s 3p 3d) and 
(~13s 3p 4s) configurations. 
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Table 2: Experimental and theoretical data for the Ar KIM spect
rum. Energies in eV. 

EX1>EHT~a;;-;TIII, CALCULATIO~ 
~ 

LU:E/ REJ.AT I v,.: 
,,"'II I!J\L ~;'l'ATE ]NT. F~·:·rH·1 ENEHGY ENERGY ENERGY -----

],?-, }'!;>, 3 (3 D) 19 2.0 2.:; 
II 

2925.8 2929.1 

1.2 ,3;':;>,3(\\) 2927.6 

L;>,}:2,3(1 D2 ) 
)oa 1. 46 0 29:13.35 

2926.0 

L;,3H;>,3(l.sO) 10 1. ". -1. 8 2921.6 2923.1 

1 9 6.2 -6.8 2916.5 

"' 2908.2* 11 l·:I.,Pl(~I') 16 2.0 -11.5 2911. (; 

L 2, :; -.1 1 (1 p 1 ) 32 2.7 -13.9 2909.S 2906.1 

2 10 3.7 -24.9 2898.5 

3 2 2. ~ -27.8 289:'.5 

4 3 4.4 -32. ) 2891. 2 

:, 3 8.0 -39. (; 2083.7 

1.) ~1?, 3 (31') 2849.7* 

1.)N2 , 3 (Ipl) 
26 3.7 -"/5.1 28~8.2 

2848.:' 

6 4 7.4 -83.1 28~0.2 

LJ H1 (3S1 ) 2830.6 

L1~11 (ISO) 
16 3.5 -89.9 2833.5 

2826.6° 

7 6 4.4 -103. S 2819.5 

.J 

* weighted average 2 4 2 4 
a. Inclusio~ of (~2 33s 3p 3d) and (~2 33s 3p 4s) configurations 
shifts the Po trans~Zio~ energy fran ~90~.5 eV to 2913.4 eV. 
b. Inclusion of (~13s 3p 3d) and (~13s 3p 4s) configurations shifts 
this energy to 2832I. 5 eV. 
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peak is ccmposed of 3s and is lines, the singlet being the stronger. 

Fig. 3 and Table 2 show that the L1H 3 and L" ~ 3 
energies are well reproduced by the relativlstic calcufaiions. 
However, the L1Hl and L2 3Hl transitions are off fran the observ
ed peaks by more than 5 eV. 'This is ITU.lch larger than any of the 
observed discrepancies between experiment and theory in both the 
KIJ., and ~e KIM spectra. ~ve therefore extended the 3alculations 
for the S state of the L Hl configuration and the P state of the 
L2 3Hl configuration b¥, a~dmg addit~on~l configuration~. ~ese 
wete of2th~ type (~13s 3p 3d), (~13s 3p 4s) and (~ 33s 3p 3d), 
(~2 33s 3p 4s), respectively. It was found, that ~e transition 
enetgies shifted by as much as 7.9 eV and 6.9 eV, respectively. 
These MCSCF results are in good agreement with the observed peaks 
(cL Fig. 3). The main contributing configurations mixing with the 

L1M" L2 3Ml hole states were the d-excited states. This type of 
CI for lnner valence holes has been found also in a large nunber 
of other cases /39 - 46/. In particular, in the noble gas photo
electron spectra, energy shifts as well as prominent satellites 
have been observed for Ar3s, Kr4s and Xe5s /39, 40, 46/. In4all 
of these cases, interactions between the s hole state and p nd 
configurations have been found to be of considerable importance. 
In addition, for hr, effects pertaining to this type of CI has 
been observed als) i.n the Ut'l Auger spectnnn /14, Hi, 17/. 

The satellites appearing in the KI11 spectrum are partly 
due to shake-off in the H-shell in the priroa...vy ionization. It is 
reasonable to assume that they will have total intensi t~_es com
parable to those found in the KIJ., spectrum. The posi tiom of these 
satellites in the KIll spectrum will be different canpared to the 
KIJ., case, however, since the final state will l1ave two holes in 
the H shE!ll. In addition to these satellites, one I~ts also 
lines due to the final state CI mentioned above. Further investi
gations of the satellite structure is being carried out. 

5. MJLECULAR KIJ., AUGER SPECTRA; H2S,802 and SF6 

Since sulphur is a second row element, the S KLL Auger 
spectra will have atanic character. The observed spectra for the 
three molecules H2S ,802 and SF 6 are very similar to the Ar KLL 
spectrum with respect Eo the appearance of the main lines. In 
Tables 3 - 5 the measured data for these three molecules are given. 
The main lines are denoted by the same atomic notation as for the 
Ar case. Calculations were performed for H2S and 802 and these 
results are also given in Tables 3 and 4. 

The calculations were performed for the main transitions 
and for satellite transitions, which involve an initial state 
valence shake-off hole. The initial K-shell hole state was compu
ted by SCF I s followed by a limited CI. The CI calculations were 
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Table 3: Experimental and theoretical data for the S KLL spectrum 
of H2S. Satellite peaks are indicated by X in column 3. For the 
theoretical values on the satellites, t~e mean energy and spread 
of several components are given /55/. Energies in eV. 

LINE EXPERIMENl'AL CALCULATIOO 

REIATIVE REIATIVE 
No FINAL srA're SAT. rnr. ENERGY ENERGY FWHM ENERGY SPREAD 

A 4 2108.5 10.1 1.5 - -
2 3 2 2105.4 7.0 1.5 6.6 L2,3( PO,2) -
_u_ x - - - - -6.7 3.4 

L2~3(~2) 454 2098.42 0 1.35 0 -
2 _11- x 128 2086.3 -12.1 3.7 -13.1 1.6 

1 61 2091.7 -6.7 4.6 - -
2 1 

L2,3( So) 41 2089.94 -8.48 1.5 -7.1 -
3 _"_ x 13 2077.6 -20.8 4.0 -19.6 1.1 

4 20 2073.2 -25.2 4.0 - -
3 

LIL2,3( PO,1,2) 29 2047.4 -51.0 3.1 -49.6 -
5 -"- x 7 2035.7 -62.6 4.0 -63.4 4.2 

LIL2,3(~1) 100 2026.9 -71.5 3.0 -71.4 -
6 -"- x 27 2014.9 -83.5 4.5 -84.2 1.2 

7 8 2003.2 -95.2 7.0 - -
1 

LILI ( So) 27 1971.4 -127.4 5.6 -126.0 -
8 _"- x 9 1961.1 -137.3 7.0 -139.1 1.0 
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Table 4: Data for the S KLL spectrum of SO~ /55/. Energies in eV. 
-.---- If. 

LINE EXPERIMENrAL CALCULATION 
~ 

RElATIVE RElATIVE 
No FINAL STATE SAT. INT. ENER;Y ENER;Y FWHM ENER;Y SPREAD 

A 10 2105.8 10.4 1.8 - -
2 3 

5 2103.0 7.6 1.9 6.7 L2,3( PO,2) -
_"- x - - - - -4.7 3.3 

L2~3 (~2) 493 2095.40 0 1.38 0 -

2 _"- x 50 2085.7 -9.7 1.8 -1l.5 3.5 

1 64 2087.9 -7.5 3.8 - -
2 1 54 2087.0 -8.4 1.5 "-6.7 L2,3 ( So) -

3 _"_ x 22 2077.7 -17.7 5.0 -17.7 2.1 

4 8 2068.5 -26.9 3.8 - -
3 32 2044.4 -51.0 3.1 -49.4 L1L2,3( PO,1,2) -

5 _"- x 6 2034.9 -60.5 4.8 -60.9 3.1 

LIL2,3(~1) 100 2024.0 -71.4 3.0 -71.3 -

6 _"- x 16 2014.6 -80.8 3.5 -82.3 2.0 

1 26 1969.0 -126.4 5.9 -126.2 LILl ( So) -

8 _11- X 9 1960.6 -134.8 6.4 -137.2 1.6 
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Table 5: Data for the S KLL spectrum of SF 6. /55/ Energies in eV. 

LINE EXPERIMENl'AL 

No FINAL STATE SAT. INI'EN5ITY ENERGY REL. ENERGY FWHM 

A 18 2102.2 9.7 1.6 

2 3 
L2,3( PO,2) 2 2099.6 7.1 1.6 

x 46 2095.0 2.5 3.6 

L2~3 (~2) 441 2092.52 0 1.22 

2 _"_ x 53 2085.7 -6.8 2.4 

1 28 2088.2 -4.4 3.1 

2 1 
L2,3 ( So) 34 2084.8 -7.7 1.4 

3 _fI_ X 20 2078.9 -13.6 4.8 

4a 30 2068.9 -23.6 6.2 

4b 15 2062.5 -30.0 4.0 

3 
L1L2,3( PO,1,2) 23 2042.0 -50.5 3.0 

5 _fI_ x 9 2027.6 -64.9 3.8 

L1L2,3 (~1) 100 2021.8 -70.7 5.5 

6 _"_ x 20 2015.3 -70.2 6.2 

1 
L1L1 ( So) 61 1968.5 -124.3 10.4 
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partly made to correct the OS-SCF results, which is necessary 
when the state has more than hole per symmetry (singlet coupled) 
/33/. The Clls for the main line final states involved a redistri
bution of the two holes within the internal orbitals (those or
bitals occupied in the ground state of the neutral species). For 
H2S test cemputations were made which showed that differences in 
tlie Auger transition energies of less than 0.35 eV were induced 
by limiting the CI to the L-shell instead of to the full internal 
space. 

'The satellite transition energies were ccrrputed by a 
L'lSCF-CI procedure. For the initial states a sum-of-states SCF 
was performed, in which the la was singly occupied and another 
hole was distributed over the 5al , 2b1 and 2b2 (with weight 1/3 
each) in H2S and over the 5al , 2°1 ana 4b2 in S02' The energies 
of the initial states were evaluated frem these vectors by using 
either the SCF or the CI program. Similarly, final state vectors 
were obtained frem an SCF havin] the 2al and 3al open in H2S and 
the 3al and 4al open in S02' and having a valence hole distributed 
as for the initial states. Limited Clls were then performed in
volving a redistribution of the shake-off hole among the valence 
orbitals. All theor~tical results in Tables 3 and 4 are normaliz
ed to the L2 3L2 3 (-'-D2) transition energy (the discrepancy between 
theory and experiment for the -l)2 transition in H2S is 4.8 eV, 
principally due to relativistic effects) . 

In Fig. 4 the en~gy region around the main lu2 and lso 
peaks are shown with the -'-D2 peaks normalized to the same energy. 
The satellite structure is seen to have roughly the same intensity 
as was observed in the Ar KLL case. In these cases, however, a 
shift in the position is found when going frem H S to SF • This 
shift is reproduced by the calculations (cf. Tables 3 ~ 4). There 
is thus little doublt as to the origin of these satellite peaks as 
due to initial state shake-off. tlbreover I a satellite p€ak of 
similar relative intensity is found for each main line in the 
spectra. 

The shift in energy of the satellite frem H2S to SF is 
seen to be acccrrpanied by a decrease in relative intensity. ~n 
discussing the origin of such an effect the intensities of satel
lites due to shake-up observers should also be considered. Such 
lines will appear between the shake-off satellite and the main line. 
These shake-up lines will cempete with the shake-off lines for 
intensity and the ratio between the two could well vary frem system 
to system. It is also possible for the total shake-up + shake-off 
intensity to vary. Seme of the relevant intensities were thus 
estimated from the calculated wavefunctions. In the sudden approxi
mation the relative intensity of monopole transitions is given by: 



290 

(J) 
~ z 
::> o 
u 
~ 
UJ 
Z 

SF6 
3 

01--

3 

2 

; , 
." .. ' 

.~:..\ 

150 102 

~ ~ 
20600c 1-1 

) ( 
i 
I 
i 
i 
i .: r 

..•. \ ............ ,: ...... :. 

10600c --; 

i 
i 
i 
; 
i 
I 
I 
i _, l 

~ ,. 
':; ,-,,,,:, 

:',i:-" 

45200c -i 
i 

..... 0 i 
; 

:'~ I j 

...... / \ + .£ 
\0 ...... i 

... " 
".:....,. .... i·· 

i 
i 
i 
\ X 

\ 1 

i 
i 
i 
i 
l 
I 

\ 
1 

, 
\ .' . 

'. 

\ 

i 
i 
i 
i 
i 
I 
i 
\ 

I 
, 

, 

HANS SIEGBAHN 

A 

\ 1 

./ .. ".JII":-:/--'<IIAo .... ".,....",-

.~ 

-20 -10 0 +10 
RELATIVE ENERGY (eV) 

Fig. 4. KL2 3L? 3 part of the S KLL Auger electron spectra for 
H2S I S?2 an~ SF 6. The peak marked X for the SF 6 spectrum refers 
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Pk,l = I<Nak~GI~l>1 '2 (4) 

where ~ is the ground state, ak is the annihilator of the kth 
electrog, ~l is an eigenfunction for the ionized systEm and N is 
a normalizing factor. Thus, the total relative shake-up + shake
off intensity accompanying the initial lal ionization is: 

(5) 
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The total shake-up intensities for IL,S and 502 were estimated by 
sumning over the intensities of the ICMest shake-up states. It was 
found that the total shake-up + shake-off intensity was 25% for 
both H2S and S02' The ratio of total shake-up to total shake-off 
intenslty was also found to be the same for these tv~ molecules, 
roughly 1:4. OUr calculations were thus not able to point to any 
major effects which could account for the observed differences be
tween the satellite intensities for these two molecules. Since 
only a very small number of shake-up states were considered in 
these calculations, hcwever, it could well be that S02 has more 
shake-up intensity than IL,S, due to the much larger nUmber of 
available transitions in the former case. 

An interesting peak (marked A in Fig. 4) appears at the 
high energy side of the 102 transition'l'I'his peak has nearly con
stant energy shift with respect to the 1)2 line, The possibility 
of this line as originating fran an lnpunty can be ruled out. 
Further, our calculations on these systems, as well as on atonic 
S and Ar, clearly shCMS that it cannot3be due to a main line 
transition(a possibility would be the P2 transition, but this 
occurs at a lc:wer energy). This latter interpretation is ruled 
out also on intensity g~ounds, since the relative intensity of the 
line is not constant for the wee 1{101ecules. It is therefore pro
posed that Ws peak is due to the -'-n2 Auger transition fran an 
auto-ionizing K-excited neutral state. Thls type of excitation is 
allCMed in the present case, since electron banbardment is used to 
produce the spectra. 

6. CONCLUDING REMARKS 

The rrethods for recording and interpreting Auger elec
tron spectra fraR atans, molecules and solids are in a continuous 
developnent. For atans, theory is at present capable of predictions 
of Auger spectral features beyond one-particle models both with 
regard to transition rates and energies. On the experlinental side, 
free atan spectra fran metal vapors can na.v be studied by means of 
high tenperature techniques /47/. The use of synchrotron radiation 
in the excitation of Auger spectra is being explored and, as 
demonstrated above, the use of preretardation of the Auger elec
trons for high energy spectra allows substantial improvements in 
resolution. A l~e number of problems still lack a satisfactory 
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treatment, however. For molecules and solids, this concerns for 
instance transition rate calculations, where the final vacancies 
occur among the valence electrons, as well as satellite transitions 
Another area of particular interest, not explicitly discussed 
above, is the chemical shifts of Auger lines and their relation 
to the electronic structure. A number of investigations indicate 
that these shifts are related to the core electron binding energy 
shifts via the relaxation energy of the photoionization process. 
Other quanti ties will also contribute, however, and the approxi
mations involved in discussing these effects deserve further study 
/48 - 54/. 
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Fig. 5. Shift of KL2L3(~21 Auger line vs. S 2E.3L2 binding energy 
shift for a number Of sulphur-containing rrolecules. 
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MANY BODY PERTURBATION METHODS FOR THE CALCULATION OF EXCITED 
STATES 

Michael A. Robb, Dermot Hegarty and Sally Prime* 

Department of Chemistry, 
Queen Elizabeth College, 
London, W8 7AH. 

These lecture notes are intended to provide an elementary 
introduction to the use of the methods of diagrammatic Many 
Body Perturbation Theory (MBPT) for calculations on excited 
states of molecules. They represent neither a review nor an 
original article. Consequently the bibliography is limited to 
a few essential references. Limitations of space permit only a 
brief discussion of the main ideas. We shall refer the reader 
to the literature for numerical results where appropriate. 

I NTRODUCTI ON 

The configuration interaction method (CI) [lJ when used with 
a multi-dimensional reference space is the most general method 
for obtaining wavefunctions for excited states of molecules. 
However, this method is linear in the numbers of configurations 
and is not "size consistent" (i.e. as the number of electrons 
increases, many electron effects as manifested in the unlinked 
cluster excitations are not included). In oontrast, many body 
methods (quasi-degenerate many body perturbation theory(QD-MBPT) 
[2-4J or many body Greens Functions (MB-GF) [5,6J ) are non
linear. The non-linearity of many body methods arises through 
diagram factorizations which lead to "exclusion principle 
violating" (EPV) diagrams where the intermediate states do not 
correspond to physical states. 

In these notes we will be concerned with the application of 
many body methods to the calculation of a manifold of excited 
states from a single energy independent effective Hamiltonian. 
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Our treatment is adapted from that of Brandow [2,3J. However, 
in order to keep the discussion at an elementary level we shall 
try to formulate the problem as far as possible in the language 
of the CI method and matrix calculus. 

Many-body perturbation theory can thus be derived from a 
Rayleigh Schrodinger perturbation theory formulation of the CI 
method. One simply replaces summations over determinantal states 
by summations over spin-orbitals. The expressions OVEr 
determinants reduce to expressions over the one and two electron 
integrals in the spin-orbital basis. The terms that remain after 
performing order by order cancellations are enumerated using 
diagrams. 

There are two formulations of QD-MBPT that we wish to discuss 
the valence/core expansion of Brandow [2J and the energy 
independent propaga tor [5J method. The valence/core expansion 
yields an effective Hamiltonian which gives the eigenvalues of 
the valence states relative to a core (in which the valence 
electrons are absent). This method is suitable for an open shell 
ground state. The energy independent propagator type formulation 
is suitable for calcul~tion 0 f excitation energies relative to 
a closed shell reference function. 

We shall illustrate these methods by first describing quasi
degenerate Rayleigh-Schroainger perturbation theory (QD-RSPT) 
as an algorithm for CI with a partitioned Hamiltonian. The 
reduction IJf QD-RSPT to the valence/core expansion of QD-MBPT 
wi 11 then be illustrated usi ng the example of the 7f -
Hamiltonian of ethylene. Finally, we shall demonstrate the 
propagator type form of QD-MBPT using the single particle 
propagator (ionization potentials) as an example. 

QUASI-DEGENERATERAYLEIGH-SCHRODINGER PERTURBATION THEORY 
(QD-MBPT) . 

Our objective is to compute an effective Hamiltonian operator 
H whi ch operates on a model or reference space r ~It·! so 
that we have 

-H Ao( ;: E A « « ( 1 ) 

with 

1.J. = ~ 
The eigenvalues i:~ span 
experimental interest and 

(2) 

the region of the spectrum of 1e is the projection of the complete 
oc. 
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wavefunction onto the model space ¢tf.l. . The operator H wi 11 
be obtained as a perturbation expansiOn that is not dependent on 
the parti cul ar ei genva 1 ue EO\. 

Let us consider the partitioning of the full space on which 
the Hamiltonian;s allowed to act, into a reference ~pace and a 
complimentry secondary space. The matrix representation of the 
Schrodinger equation can now be written in partitioned form as 

(~:i-V~-l-;-t) (;j= E< (~:) (3) 

Jl O and Lt2 are the diagonal and off diagonal part of the matrix 
representation of the Hamiltonian in the reference ~pace. ~ is 
the representative in the secondary space, while ~ and ~ 
contain the matrix elements between the refere'nce and secondary 
spaces. The coeffi ci ent vectors A.t and 8ft. gi ve the wave
function projection on to the reference and-secondary spaces. 

If we now el iminate 8.c. from eq. 3 we have 

(4) 

with 

Ii (Eo() = H 0.,. V 1 + 21' (Eo( - W) -1 z (5 ) 

If we now expand the ~~dependence out of the inverse matrix in 
eq. 5 we obtain (see ref [2-4,7]) 

_ J. (i) .,. ti) ( _j. 

H = HO+ V + z: z ~ ES-W) Z8 
A It 6 

+ FOLDED DIAGRAMS (6) 
$ ~ 

The symbol ~ is used here to deno~ a direct sum, 7", (Z'~) 
denotes the A th row (column) of Z (Z) and the additi on in 
simple matrix multiplication is thus replaced by a direct sum. 
The fourth term (FOLDED DIAGRAMS) in eq. 6 represents the energy 
renormalization terms. The algebraic structure of these terms 
is rather complicated and we shall discuss them subsequently 
using diagrammatic methods. Finally I:~ is just the diagonal 
element of H 0 

The most important features of the effective Hamiltonian 
defined by eq. 6 are 

a) it is energy independent so that all eigenvalues are 
obtained from a single diagonalization and 
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b) it is non-hermitian. 

One may generate the usual RSPT perturbation series using an 
expansion of the form 

rAJ _ ~)-2. __ ,l\-:I. -:I. -1. 
~ ~ ,.., + A SA + ... (7) 

where A is some part ofEs-W which is diagonal. Finally. one 
should observe that one obtains perturbation series for each 
matrix element of t:r --

TRANSCRIPTION OF QD-RSPT TO THE LINKED VALENCE EXPANSION OF 
QD-MBPT. 

The transcription'of QD-RSPT to diagrammatic QD MBPT is most 
easily understood by considering an example [8J that is familiar 
to most quantum chemists - the Pariser - Parr effective 1'(
Hamiltonian for ethylene. 

The reference space consists of all possible occupancies of 
the 7r a tomi c orbitals p~ and 1'0\. 

fS.1 = / oP( J8 .... ~ ~ I ~ = / ~ II .. -. 11 J 
(8) 

~J -= 1",,8 ... if fa I ~ -= I <;9 .... ~ ~ I 
where we use .. ,.. to denote the frozen core orbi ta 1 s. Thus the 
reference space corresponds to an orthogonal valence bond 
calculation with a frozen core of ~ orbitals. The matrix 
elements of "'0+ v~ in this reference space (using the ZDO 
approximation) can be written using the usual Pariser - Parr 
parameters as 

where 

a 0( of. y,~ 
o 
IS 

0< = < /!./ he.,. Ii I ~ > 
JB: <~. I;, ,,"'w I ~. > 
Y" = < ~ e· I ~ ~. ? 
y,& 11 < ~. ~ I ~. P,,' ~ 

o o 
o (9) 

(10) 
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The secondary space consists of all possible excitation of both 
core tr and valence(." ) orbitals.· For purposes of discussion 
we shall truncate the ~econdary space at double excitations from 
this manifold. If we use symbols.' ......... etc. to denote virtual 
orbitals it is convenient to group the double substitutions into 
various classes. 

VALENCE EXCITATIONS 

VALENCE-CORE EXCITATIONS 

CORE-EXCITATIONS 

/oep·· .. k.A./ 

II<~····~·LI 

I ~. p ... e·~ I 
I 1f:.R." p. 1'. / 

A ~ 

J ~~ .... 1 ~I 

(11 ) 

Let us now look at an example of the transcription to 
diagrammatic form of one of the contributions to the third term 
in eq. 6. 

< f. Iii'" ., ; a .,. ~ <" I HI'I( '7 <~A/ fi' ,~ "> (12) 
• ;1. r ~ E-I: 4 I( 

where <:. 4, I HI ~otC '> is an element of Z+ and ER is obtained 
from the diagonal part of W. Let us look at the term where 

(13 ) 

Considering the energy denominators first, it is convenient to 
compute our energies relative to Ecore, the energy obtained if 
all the Inr electrons have been removed. 
Thus 

E;;o~.:: ~ £,... 
where € yo is the orbi ta 1 energy of orbi ta 1 Y. The energy 
denominators relative to Ecore one are thus given as 

E4 :. c~ + E~ 
E"~:: £1<'" e:e ~ E"~ - C-<. 

Then, using the rules for matrix elements our determina~tal 
wavefunctions to evaluate the numerator we have 

<fJ,,1 II I +/C. ""~fl(l#I'~ / :: 
E4l. -1:,.. 
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We can represent the right hand side of eq. 14 diagrammatically 
as shown in fig. 1. 

Ie(~····~ll r l t1. 

I( I. IJI'····" '<I E_ .,.£"~ 1 :l 
-~-~ 

- lo(/J,,·p;;1 1 . , 

- I<. ~Vt a. 

~A~ k -.1 

< I<t I ad{/, < i 0( /J( t.. '/' 

Figure 1. A second order valence-core diagram. 

The rules for evaluating this diagram are summarized in fig. 2 
and we shall consider fig. 1 in some detail. 

There are two essential diagram elements; vertical oriented 
lines and the horizontal dashed lines which represent 
interaction vertices. The upward oriented l,nes run over the 
valence and virtual orbitals while the downward lines carry the 
labels of the core orbitals. The states involved in the 
perturbation expression can be read off from the three levels of 
the diagram from bottom to top: ~~ ~Al ~ The numerator of 
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F 

t:-----t: < It 8 leo '7 :: JJ ACt) If (a) "-If .. l ct·. D(~ 
t;~ 

t;--® <. A I his> 

l'JEMOM IN 14 TO/( 

£ ... €. - E -E 
e E 8 D 

Jf!.tt.I..E 3 S'/'-N 
(_ of)" .,.12 .... h = NO. OF HOL6' LIME 

Il. = NO. of: C"OSWO I.. 00,0 

Fig. 2. Rules for the evaluation of the diagrams of 
QD-MBPT. 
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the perturbation expression is computed from the interaction 
vertices according to rule 2 in fig. 2. For the evaluation of 
the energy denominator (rule 3 fig. 2) one first closes the 
diagram from top to bottom, discarding the "bottom" labels. The 
denominator is then given as the sum of the orbital energies of 
the down going lines minus the orbital energies of the upward 
1 i nes . 

One may proceed by enumerating all possible types of diagram 
that arise from the configurations of eq. 11. In doing this one 
encounters diagrams of the type shown in fig. 3c (which arises 
from a double core excitation with passive valence orbitals). 
Note that in dia. 3c, the summation over I< and ~ is restricted 
so that e·!,/}· ~ k~ since otherwise the intermediate state 
would violate the Pauli exclusion principle. However, the 
correlation energy of the core (valence electrons removed but 
valence orbitals retained) can be written as the sum of dia. 3a 
and dia. 36. Thus we may write dia. 3c as a sum of ~ia. 3d, 3e, 
3f etc. The new di a. 3e and 3f correct for the overcounti ng in 3d . 
However, if we are interested in the relative energies of the 
valence states, we need never evaluateA E,o/U' (ie dia. 3d.) 
since it only contributes to the reference zero of the energy 
scale. However, we can no longer interpret dia. 3e and 3f in 
the usual fashion since the intermediate states violate the 
exclusion principle.(EPV diagrams). 

Thus we have introduced some non-linearity into the problem. 
The double excitations of the core do not need to be considered 
explicitly. Only the EPV diagrams that remain after the partial 
cancellation of AE CGI(~ need be computed. 

There is one more element of diagrammatic QD-MBPT that we 
must discuss - the folded diagrams of eq. 6. These diagrams 
result from the expansion of the explicit eigenvalue dependence 
from eq. 5. A typical energy renormalization term in QD-RSPT is 
given at third order as 

.,. -1 ( .. 1 1 
~ ~ - 'Z~~ (liS - ER ) E"c - Elf) ZRS Vsc 

Note the highly assymmetric nature of the expression. This term 
is enumerated using "folded diagrams" as shown in fig. 4. 

In fig. 4a we show the diagram corresponding to one of the 
terms in eGo 15. The levels of the diagram are labelled with 
energies of the states ~A ¢~ ¢. ¢c. . Using the usual 
diagram rules one obtains the cor~ect expression for the 
numerator in the perturbation expression from fig. 4a. However, 
the diagram must be kinked or "folded" along the circled lines 
to give fig. 4b so that the ususal rules for the denominators 
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+ 

+ 

t )( 6.E 
~. L.Oite 

(C) (d. ) 

:---,-c<~. G: 'lot) 
~. _____ Ii 

(f) 

Figure 3. Factorization of the core cor~elation energy 
(qia. a & b)to give EPV dia. e and f. 
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p. EC 
(P. 

.,.. Ep. ~ .. d 

p~ Ea E~ T 
EPIC 

k~-_;_Oo(fA P..e £+E+~-f" .to I( :.c. c( 

e" E'A €~ i- f~ 
(.. ,..m, 

~) 

(F, - EI() 
€ +c -E-E" 

t1c ~ I( -e e 0( 

E" +E. f"~ "f.. f.. ,.. ~ 

-~ -E"-~ 
p~ k .t. Jt 

(gc - 1:,( ) 

(10) 

Figure 4. An example of the evaluation of a folded 
diagram. Dia. a is folded to give dia. b 
which may be evaluated by the rules given in 
fig. 2. 
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apply. (Note that because we evaluate our diagrams from bottom 
to top we must fold downwards. If one discards the "top" labels 
then one must fold upwards). In fig. 4b we illustrate the 
application of the rules for the denominators for the folded 
diagrams. 

We should Roint out at this stage that in the special case 
where ~ : po and ~ .. ~. in fi g. 4b one may sum the folded 
diagrams ~o infinite order (using a geometric series). The 
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result of this procedure is that one may include the "diagonal" 
folded diagrams in the diagram of figure 2 as a denominator shift. 
Thus the denominator of the diagram in fig. 2 becomes 

where 

(17 ) 

The energy shift AE3 has a simple interpretation. It is the 
eigenvalue shift evaluated as though all the other reference 
states were absent. 

Finally, in fig. 5 we have given the diagrams (to second ordeD 
that contribute to the effective 7.r Hamiltonian. Diagrams a, 
d, g. represent the "bare" one and two electrons integrals, 
diagrams b, e, i, account for 0- polarization and ~ - 7.r 
correlation, diagrams c f h represent 0--4- correlation and 
diagram j accounts for 1T-?;r correlation. Clearly this 
analysis could be regarded as a scheme for the "ab-initio" 
calculation of semi-empherical parameters (see reference [8J for 
a detailed discussion). However, the significant point for the 
present discussion is that one has a scheme for the construction 
of an energy independent effective Hamiltonian which gives the 
relative energies of the valence (ie 11 - electron) states. 
Further, the explicit calculation of the correlation energy of 
the ~ electrons is not required. 

The above formulation of QD-MBPT is probably the most general 
method for the calculation of excited state wavefunctions since 
the ground state need not be a closed shell. Thus to conclude 
this section we should make a few brief comments on the 
practical aspects of the method. 

In our own work [7J we have examined the numerical stability 
of QD-RSPT in comparison with variational CI as a prelude to 
performining QD-MBPT calculations. Limitations of space preclude 
the presentation of the details of this work so we shall limit 
discussion to the main conclusions. 
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t)(: -~-€) 1,· ----~ ----ll (J~. )1~ 

----V ---V p. ..c. 

c~ ) 
~ , . 

Q» .... ~) 

_'.i __ " ~ ___ ~ 

---~ /!----v 
f. I~. 
... r;.. 

(-f) 

-- »-----
,0.. ----

A 

P . 
.4 

(J) 

Figure 5. Diagrams for the Pariser - Parr effective n 
Hamiltonian. 
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Initially, the main practical difficulties were associated 
with the summation of the folded diagrams. Certainly, we have 
found it essential to shift denominators with the diagonal 
folded diagrams; however. we have found that one need only keep 
the off-diagonal folded diagrams to third order. 

The central technical problem in our opinion is the so -
called lIintruder state prob1em ll • If one of the secondary states 
lies embedded in or very close to the reference manifold then 
the perturbation expansion diverges. From a practical point of 
view the solution to the problem is simply to include the 
intruder state in the reference manifold. However, in the case 
where the valence state is in fact embedded in the continuum 
the problem will become intractable as the basis set is extended 
to completeness. 

PROPAGATOR OR EQUATIONS OF MOTION TYPE THEORIES 
IN QD-MBPT. 
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In add.ition to the core/valence form of QD-MBPT just discussed, 
it is possible to formulate the propagator or equation of motion 
[5J methods for excitation energies in terms of an energy 
independent effective Hamiltonian. As an example we shall 
consider the single particle many-body Greens Function(M8-GF) 
method as implemented by Cederbaumand co-workers[9 ,10J A 
detailed examination of the problem is clearly not possible in 
the limited space available so we shall concentrate on the 
diagrammatic representation of Cederbaum[9 J in lowest orders 
only. 

For the problem of the computation of ionization potentials, 
the reference space consists of all single hole states 

[h, 1 = /0< > (18) 

while the secondary space contains all single and double 
excitations relative to the single hole states: 

[ h s ~ ~ 1-< III< > ( 19a) 

f las ~ =- Ie(;; > (19b) 
where for example I (1("~~ represents the state where the 
occupied spin orbital ~ has been removed and the spin orbitals 
/I and )'" have been replaced by virtual spin orbitals k 

and ~ . The second order QD-MBPT diagrams are given in fig. 6. 
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DC. hi 0(. h. 
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k J,3 t y 
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p h. , hi 
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----:0 k t 

i 
--- --

(e) 

Figure 6. Second order diagrams for single hole excitation 
in QD-MBPT. 
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The diagrams are evaluated using the same rules as given in 
fig. 2 except that we no longer have any valence lines. Diagram 
6a involves the intermediate state h3 while dia. 6b involves 
the intermediate state hs . In fig. 6c we show again the 
factorization of A.E oAS; however, now~E"CcJ(E' is the 
correlation energy of tne closed shell grounds~ate. Again we 
have EPV diagrams which give rise to the non-linearity of the 
problem. 

In the MB-GF method of Cederbaum [ 9 J one observes a simple 
one - to one correspondence between the diagrams through.third 

• order for the self-energy and the diagrams for the effective 
Hamiltonian of QD-MBPT. However, the energy denominators are 
different at second order. For example the energy denominators 
for dia. 6a and 6b are 

dia 

dia 

6a (QD-MBPT) = - C4I('+ ~ E~ + i"yo t e:. - fl( 

6a(MB-GF) ... W tty i'f~ -fk 

(20a) 

(20b) 

dia 6b(QD-MBPT) = E#J +4E~ .,. i"y - £'1( - E~ (21a) 

dia 6b(MB-GF) = "'-> to ey .. tk, - E.,e (21 b) 

In eq. 20a and 21a the term AE". is a denominator shift from the 
folded diagrams and in equations (20b) and (21b) Lo is the 
ionization potential. The relationship between the two sets of 
denominators can be established by observing that for near 
degeneracy we have 

w~ e~ -AE~ ~ €~ - 0. EIJ ~ .. ' (22) 

Thus dia. 6a is almost the same in the two methods. The 
essential difference is that in QD-MBPT only part of the 
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energy dependence (see eq. 16 and 17) has been resummed back into 
the denominators. On the other hand, for dia. 6b the two 
theories differ by 0\6. Ea(in the denominators. Brandow [2J has 
shown how this difference may be accounted for and it is 
particularly instructive to illustrate tbe essential feature of 
this argument as given in fig. 7. 

Consider the 4th order diagrams shown in fig. 7a and 7b. The 
numerators of the perturbation expressions for both diagrams are 
identical. However, because the two diagrams differ only in the 
relative order of the lowest interaction lines the sum 
factorizes. If we denote the denominators of the leTt hand and 
right hand parts of each diagram as EL and ER' Then the sum may 
be written as 2 -l, .. 1 
[e"~ (E'L + E'~) I:~]" + [E',.. (E,,~E',4C) eL] = LE'Jt '" .. E'1(1 
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Figure 7. Expansion of the self energy diagrams of 
MB-GF methods in terms of QD-MBPT diagrams. 
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Thus we may think of the left hand part of the diagram as though 
it was inserted into the right. If the insertion is diagonal 
then it may be summed to produce a denomi nator shift of - A Ii 
as indicated in diagram 7c. One may have a similar insertion on 
the other external line so that one can represent the MB-GF 
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dia 7d as the sum of the QD-MBPT dia. 7e, 7f and 7g. Thus the 
two-AS terms partly cancel the AI: from the folded diagrams. 
Thus one may think of the MB-GF diagrams as being a higly 
summed form of QD-MBPT. 

We must emphasize that the relationship between MB-GF and 
QD-MBPT just discussed is not exact. The A E from the 
folded diagrams contains many terms that are no~cancelled by 
similar terms that result from diagram factorizations af the 
type just discussed. Beyond lowest orders of perturbation theory 
QD-MBPT and MB-GF differ significantly. The difference arises 
because the MB-GF theory has a different reference manifold that 
is constructed by allowing complete sets of second quantized 
operators to operate on the exact correlated ground state 
wavefunction [llJ. As a consequence the MB-GF cannot be 
interpreted in terms of simple CI type language. However, for 
calculation of ionization potentials the numerical results 
through third order of perturbation theory should be very similar 
since the folded diagrams do not begin to occur until 4th order 
of perturbation theory. 

It is possible to carry out the same analysis for the particle 
-hole propagator(electronic excitation energies). Again the 
analysis is ~imple for the Random Phase Approximation (see 
reference [2J); however, beyond this the theories are quite 
different owing to the use of a different reference manifold. 

We believe that there are some advantages in the QD-MBPT 
approach as compared to the MB-GF method. Firstly, one obtains 
all the eigenvalues from a single matrix diagonalization and 
dependence of the MB-GF method. Secondly, the intruder state 
problem is more easily dealt with in QD-MBPT. A consideration 
of the calculation of the shake up states (the hJ states in 
eq. 19a) i 11 us tra tes th is poi nt. I n the MB-GF trleory [9 J these 
states have been treated using a 2 particle-hole propagator. In 
QD-MBPT these states will occur in a natural way as intruder 
states in the reference space of the single hole states and do 
not require any special techniques. 

Finally, let us comment very briefly on practical aspects of 
QD-MBPT methods for propagator type theories. The major problem 
is to decide which diagrams beyond second order are to be summed. 
In our own work [12J we have summed the "ladder" diagrams which 
do not contain non-diagonal hole line interactions. The accuracy 
obtainable is similar to the 3rd order MB-GF theory [lOJ. The 
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most important practical consideration within this type of 
calculation is the extent to which the effects of ground state 
correlation can be taken as independent of the particular 
reference state. As an example, consider the third order 
diagrams shown in figure 8. 

0--- --DO 
---

-- ---

__ A - --11 
v- -3) 

Figure 8. Modification of the effects of ground state 
correlation energy by an external hole line. 

Here the effects of ground state correlation energy (see for 
example diagram 6b) is modified by the external hole line. If 
this sort of effect has to be included to high orders of 
perturbation theory then the advantage of the non-linearity of 
the method becomes lost. Cederbaum's calculations [9 ] 
indicate that each of these diagrams is large but their sum is 
very small. 
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CONCLUSIONS 

In these lectures we have attempted to indicate the main 
features of QD-MBPT for the calculation of excited states. From 
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a practical point of view these methods are still in the early 
stages of development. However, we have tried to show that the 
generality of the method, particularly in the form of the valence/ 
core expansion, may lead to applicability in a wide range of 
excited state calculations. 

ACKNOWLEDGEMENTS 

Two of us (S. P. and D. H.) wish to acknowledge the SRC for 
the provision of studentships. 



316 MICHAEL A. ROBB ET AL. 

REFERENCES 

1. I. Shavit~Application of Electronic Structure Theory vol. 4 
ed. H. F. Schaefer III(P1enum, New York, 1977) 

2. B. H. Brandow,Rev. Mod. Phys. 39, 771 (1967). 

3. B. H. Brandow, Adv. in Quantum Chemistry lQ, 187 (1977). 

4. V. Kvasnicka, Adv. Chern. Phys. 26, 345, (1977). 

5. J. Linderberg and Y. Ohrn, Propagators in Quantum Chemistry 
(Academic Press, 1973). 

6. Gy. Csanak, H. S. Taylor and R. Yaris, Advan. Atomic Mol. 
Phys. Z' 287 (1971) 

7. D. Hegarty and M. A. Robb (to be published). 

8. B. H. Brandow, Quantum Theory of Polymers ed. J. M. Andre 
and J. Ladik (Plenum, 1977). 

9. L. S. Cederbaum and W. Domcke, Adv. Chern. Phys. 26, 205(197n 

10. W. von Niessen, G. H. F. Diercksen and L. S. Cederbaum, J. 
Chern. Phys. 67, 4124 (1977). 

11. B. Pickup and O. Goscinski, Mol. Phys. 36, 1013 (1973). 

12. S. Prime and M. A. Robb, Chern. Phys. Lett. 47, 527, (1977). 



THE CALCULATION OF ATOMIC AND MOLECULAR ELECTRON BINDING ENERGIES 

Yngve Ohrn 

Department of Chemistry, University of Florida 
Gainesville, Florida 32611 

I. INTRODUCTION 

Interest in accurate theoretical determination of electron 
binding energies has grown with the experimental advances in the 
field of photoelectron spectrometry. Much early work [1] on 
ionization potentials, photoionization cross sections, chemical 
shifts etc. relied on semiempirical models. It was also recog
nized early [2] that ground state Hartree-Fock ab-initio orbital 
energies (according to Koopmans' theorem) can with some success 
be used as measures of valence electron binding energies, while 
core ionization energies are rather poorly represented in this 
manner. 

Detailed studies have been made of the nature of the cor
rection terms which are necessary in order to go beyond the 
results of Koopmans' theorem. Pickup and Goscinski [3] have 
given an erudite analysis of the error terms through second 
order in perturbation theory and they stress the propagator or 
Green's function equations [4] as the best direct method to ob
tain electron binding energies. The work of Cederbaum et al. [5], 
Purvis, and Ohrn [6], and Simons et al. [7] indicates clearly 
that when a M~ller-Plesset [8] partitioning of the many-electron 
Hamiltonian is used, terms at least through third order in per
turbation theory are needed to produce a predictive theory. 

We separate the correction terms to Koopmans' theorem results 
into two classes. The first we call relaxation terms [3] and the 
second class is denoted correlation terms. There are sometimes 
reasons to consider further subdivisions of the correction terms 
but for our purposes this will suffice. The relaxation terms can 
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be obtained through all orders by the ~ESCF procedure [9]. This 
consists of separate Hartree-Fock calculations on the N-electron 
ground state and the (N-1)-electron state (or N+1)-electron state 
considered to be the final ion state of an electron detachment (or 
attachment) process. Subtraction of the resulting total energies 
then yields the appropriate electron binding energy with full 
account taken for relaxation. The correlation terms require fur
theranalysis and we will repeat some of the recent results of 
Born, Kurtz, and Ohrn [10]. The electron correlation yields com
plicated terms in third order and there is a great need for sim
plified expressions which yield adequate numerical results for 
electron binding energies from the innermost core region to the 
outer valence region for a variety of atomic and molecular systems. 
The relative importance of the relaxation and the correlation 
terms varies a great deal from the core to the valence region 
(see Fig. 1) and there is a delicate balance between these two 
kinds of terms which makes the problem of calculating electron 
binding energies a challanging one. 

In the next section I define some of the notation used and 
introduce the basic ideas of the theory of the electron propagator. 

II. THE ELECTRON PROPAGATOR 

The importance of the electron propagator is readily ap
p'reciated from its spectral form as discussed by Linderberg and 
Ohrn [4]. In a spin orbital basis this spectral form is a matrix 
with elements 

G .. (E) = E 
lJ n 

<NlaiIN+l,n)<N+l,nla; N) + 
E - E (N+l) + E (N) + in n 0 

t f1) 
<N I aJ.1 N-l,n) <N-l,n I a. N) 

1 , 
E + E (N-l) - E (N) - in n 0 

which have only simple poles in the energy plane when the spin 
orbital basis is discrete and finite. When the convergence para
meter n >0 approaches 0 these poles are all on the real energy 
axis and equal to the difference between the stationary state 
total energies of the N-electron ground state and the appropriate 
final ion states. The overlap amplitude [11] between such states 

fn(j) = il+1,nla;IN), gn(i)= <N-1,nla i IN) (2) 

involve the electron field operators ai, and at corresponding to 
the spin orbital basis [4]. Normally this would be the ground 
state Hartree-Fock spin orbital basis, which would be divided into 
occupied and unoccupied spin orbitals. Throughout this paper we 
use the notation a,b,c, ... for occupied spin orbitals, p,q,r, ... 
for unoccupied, and i,j,k, ... for unspecified spin orbitals. 
These overlap amplitudes are important for the calculation of 
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intensities in photoelectron spectrometry for principal as well 
as sate 11 ite structures n 1]. 

The many-electron Hamiltonian can be expressed as 

H = H(i Ihlj)a!a.+~HH (ij Ilkl)a1'!'aJTala k, 
ij 1 J ij kl 

where the antisymmetric two-electron integrals 

(3) 

(ij Ilkl) = fi*(1)j*(2)ri~(1-P12)k(1)1 (2)d(1)d(2) (4) 

are used. 

This Hamiltonian operates in the Fock space spanned by all 
the independent eigenstates of the number operator of the total 
number of electrons, which can be constructed within the chosen 
spin orbital basis. 

When we use a spin orbital basis which diagonalizes the 
Fock operator 

F .. = (i Ihlj) + H (iklljl)(aktal) = E.O.. (5) 
lJ kl 1 lJ 

we can naturally partition the Hamiltonian as [8] 

where 
';4 

Ho = l: E. a . a .. . 1 1 1 
1 

(6) 

(7) 

The electron propagator consistent with the uncorrelated elec
tron dynamics described by Ho can be denoted Go and its matrix 
elements in the spin orbital basis expressed as in Eq. (1) for 
the full electron propagator. For §O, however, we now interpret 
IN as the Hartree-Fock ground state 

IN) = aia; ... a~lvac.) = IHF) (8) 

where Ivac.) is the nondegenerate eigenstate of the electron 
number operator corresponding to the eigenvalue zero. Similarly 
we have 

E (N) = l: E 
o a a (9) 

(10) 
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with 
/N-l,b) = II a:/vac.), and /N+1,pJ= II a: a;/vac.), (11) 

a=b a 

respectively. Normalized determinantal states, and the anti
commutation relations 

[a i ,ajJ+ = [ar,aIJ+ = [a i ,aJ]+ - 0ij = 0 

yield fp(j) = (N+1,plajIN)= ±Opj' and 

gb(i) = iI-1,bla i IN)=±obi . 

(12) 

(13) 

(14) 

We see from Eq. (1) that the full electron propagator Gij(E) de
pends on the electron field operators a., and at, which 
justifies the notation [4]: 1 J 

(15) 

The expression of Gij(E) in Eq. (1) can now be manipulated using 
the identities 

E(E - En(N+1) + Eo(N))-l 

= 1 + (E (N+1) - E (N))(E - E (N+1) + Eo(N))-~ (16) non 

and similar expressions for the second term inside the summation 
of Eq. (1). This results in the following equation 

( t I tl ( t E (ai;aj»E = (N [ai,aj ]+ N) + ([ai,H];a)E' (18) 

which is the equation of motion of the electron propagator or 
rather a chain of equations since the more complicated pro
pagator «[ai ,H) ;a~) E has an analogous definition to the one of 
«ai; aj»E given ln Eq. (1) with the commutator [a.,H] replacing 
ai . The iteration of Eq. (18) yields 1 

t t t «ai ;aj ):r = E (fai ,aj ]+) + E ([[a i ,H] ,aj ]+) 

+ c 3 ([[[ai'H]'H]'a}])+ ... 

where the average ( ... ) is taken with respect to the ground 
state I~. In order to be able to employ standard matrix and 
vector space techniques, Eq. (19) can be recast in terms of 
superoperators acting on a space of electron field operators. 
One introduces [12] a linear space with elements [13] 

(19) 
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t "r {aa' ap ; apaaa b, aaapaq a<b, p<q ... }. (20) 

For X and Y being general elements of this linear space of A 

electron field operators we defiue a superoperator identity I, 
and a superoperator Hamiltonian H such that 

IX = X , HX = [X,H], 

and a scalar product 

(Xly) = < [Y,Xt ]+). 

The identification 
t A A 1 

<~.;a.)\ = (a.I(EI-Hf a,.) , J 'E J 

(21) 

(22) 

(23) 

is now readily made from the expansion in Eq. (19). Introducing 
vector arrays of electron field operators we can write the 
matrix relation 

(24) 

The techniques of inner projections and partitioning [14] can 
now be used for systematic approximate treatments of the electron 
propagator [15] by turning the superoperator inverse into a 
matrix inverse [3]: 

(25) 

where h is a manifold of elements from the linear space of elec
tron fleld operators. When h is partitioned as h = {a;f} with the 
orthogonality condition (!lrT = ~ [15] one readily obtaTns [3,15]: 

§.-I(E) = (!IEI-H)!) - (!IHDCfJ (EI-H)D-1(rIH!). (26) 

Different approximations are attained by truncation of the inner 
projection manifold f and choice of approximate ground states 
for the average defining the scalar product in Eq. (22). This 
can be systematized by perturbation theory. 

Choosing the same partitioning of H as we did for H in 
Eqs. (6) and (7): 

A A 

H = Ho + (H-Ho)' (27) 

we can easily implement the details of Raleigh-Schrodinger 
perturbation theory and identify 

~1(E) = (!I (Ei-Ho)~ (28) 
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with the average over IHF) of Eq. (8). When the approximate 
ground state is expressed as 

IN) = IHF) + Icorrelation) 

we can write Eq. (26) as 

~-1(E) = ~1(E) - ~(E) 

(29) 

(30) 

collecting all the contributions from the correlated motion of 
the electrons into the "self-energy" matrix ~(E). 

III. APPROXIMATIONS 

The electron propagator contains information of electron 
binding energies, photoionization cross sections, total energies, 
and allows the calculation of average values of arbitrary one
electron quantum mechanical operators. We will here concentrate 
on the electron binding energies and in particular on single
electron ionizations and electron attachment for atomic and 
molecular systems. The discussion is also for all practical pur
poses limited to vertical processes. 

The matrix elements of Eq. (3) satisfy 

( -1 G) .. = (E - E.)O .. - l: .. (E) 
- lJ 1 lJ lJ 

(31) 

where we have utilized Eqs. (9)-(14) for the elements of ~1. 
From Eq. (1) we can see that Gij(E) has simple poles at values 
of the energy parameter corresponding to electron binding 
energies. This means that the matrix elements of G-1(E) 
vanishes at such values of the energy parameter. Thus electron 
binding energies E satisfy the relation 

(32) 

or 
E = E. + l: .. (E) • 

1 11 
(33) 

When the part i of the inner projection manifold is neglected 
and we do not consider corrections to the ground state beyond 
IHF), the self energy, as defined here, vanishes and the elec
tron binding energies are given as the orbital energies s· (or 
the negative thereof). This is contained in the Koopmans1 theorem 
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[2] and is the so-called frozen orbital approximation, i.e. 
it considers neither relaxation nor correlation effects. 

The corrections to the Koopmans' theorem result are con
tained in Lii(E) and this quantity is conveniently analyzed 
in terms of perturbation theory [6,10]. Through second order 
in electron interaction we can write [4,10] 

When we are considering an ionization energy, spin orbital i 
labelling si, and Lii in Eq. (33) will be an occupied orbital 
in I HF). One can then isolate the terms in the second sum of 
Eq. (34), which result when the summation index a, or b equals 
i. This yields 
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L~~2)= _ H I < ai II pi) 12 (35) 
11 ap Sa - sp 

and it is precisely the second-order contribution to the ioni
zation energy calculated as the difference 

-1i(t.SCF)=EHF(N)-E~F(N-l), with EHF(N)=~sa- ~~b (abllab) , and 

where E~F(N-l) is the total energy obtained from a separate SCF 
calculation on the state characterized by the spin orbital i 
being removed from the electron configuration of the Hartree
Fock N-electron ground state. This is the so called t.SCF [16] 
approximation to the electron binding energy and is defined as 
the relaxation corrections. The expression (35) thus is the 
second-order relaxation terms and similarly we can identify the 
relaxation corrections in any order of perturbation theory [10]. 

Diagrammatic rules have been given by Born, Kurtz, and Ohrn 
[10] so that, through any order in perturbation theory, we can 
separate Lii(E) into a relaxation part L~i' and a correlation part 
(the rest) L~i' All the diagrams or terms in the perturbation 
theory expanS10n of -I (t.SCF) are most easily summed to all orders 
in perturbation theory by simply performing the t.SCF calculation. 
We can then write Eq. (33) as 

E = -1.(t.SCF) + L~.(E) 
1 11 

C and focus the approximate treatment on the correlation part Lii . 
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The relative importance of ~~i' and ~~i varies from the 
core to the outer valence region and the delicate balance be-
tween these two kinds of error is quite different in the core 
region as compared with the outer valence electrons. In Figure 
1 the relaxation error and the correlation error are displayed 
for the furan molecule for all the principal ionization energies 
(those being identifiable with a single occupied spin orbital). 
The trend shown here is typical for all molecular systems which 
have been studied so far. In the deep core the relaxation error 
dominates and just illustrates the success of ~SCF or approxi
mations thereof as the Transition Operator Method [17] for the 
calculation of core ionization energies. The outer region is 
characterized by the relaxation and the correlation er:rors having 
opposite sign offering possibilities for cancellation and realistic 
results with Koopmans' theorem. The deep valence region is more 
complicated since both kinds of errors are equally important and 
reinforces each other. This region is usually characterized by 
strong configuration mixing and photoelectron spectra, when 
available for this region, usually display a rich satellite 
structure. When several atoms of the same kind occur as the four 
carbon atoms in the furan molecule another consideration comes 
into play for the core ionizations. This can be labeled as a 
localization effect. When the ~SCF or TOM calculations are carried 
out with the full molecular symmetry taken into account (C for 
furan) the carbon core orbitals are delocalized and the re~~lting 
relaxation errors are large but only half of what they become 
when the calculations are carried out with reduced symmetry (Cs 
for furan). The correlation corrections become correspondingly 
less important upon localization of the core orbitals. 

The treatment of ~ii(E) can then be as ambitious as algebraic 
skill and computer budge~ will allow. In Table 1 we list some 
results from Kurtz, and Ohrn [18] for the water molecule using 
different simple approximations and a good quality basis (14 CGTO 
combination of Dunning's [19] oxygen basis and Huzinaga's [20] 
hydrogen basis augmented with a unit exponent d-orbital on oxygen 
and a p-orbital on each hydrogen). It is extremely important to 
saturate the basis set for this type of calculations before con
sidering going to higher orders in perturbation theory, which is 
often leading to a different order of magnitude in complexity and 
computing effort. The different results listed correspond to the 
following expressions: 



60
1 

-
~
 

FU
RA

N 
o 

H'
C(

)_
H 

C-
, 

,(
 

H
 

c 
c 

c 
Ill

. 
C

 
C

 
6b

z 
~
 

I~
; 

9a
1 

IO
aI 

IIa
l 

/a"
 

13
01 

IS
aI 

, 
I 

' 
II'

 I
 q 

I 
,..

" 
2

3
 

'1
9.

0 
17

.5
 

15
.1 

13
.8

 
19

.5
 

EN
ER

G
Y 

(e
V

) 

c 
c 

2b
t 

la
2 

2a
" 

30
" 

I 
II

 
I! 

10
.3

 
8

.9
 

F
ig

ur
e 

1.
 

Th
e 

re
la

xa
ti

on
 e

rr
o

r 
(r

).
 

th
e 

co
rr

el
at

io
n

 e
rr

o
r 

(c
).

 
an

d 
th

e 
lo

ca
li

za
ti

o
n

 
er

ro
r 

(L
) 

in
 c

al
cu

la
te

d 
el

ec
tr

on
 b

in
di

ng
 e

ne
rg

ie
s 

fo
r 

fu
ra

n 
as

 
de

fi
ne

d 
in

 t
he

 t
ex

t.
 

~ is::
 

('5
 >
 z o is::
 o t""
' 

tT
l n c:: ~ ::0
 f:l i!5 >-
l 

::0
 o Z
 

t:C
 Z
 " Z C

'l 
tT

l 
Z

 
tT

l 
::0

 
C

'l tTi
 

en
 

W
 

tv
 

U
, 



326 YNGVEOHRN 

KT E = E:' 
1 

~SCF E = -Ii (~SCF) 

2nd order RSPT (2) E = s. + L: .. (s.) 
1 11 1 

2nd corr. ~SCF C(2) E = -I.{~SCF) + L: .. (s.) 
1 11 1 

~SCF q-part. E = -I.{~SCF) + L:~~2){E) 
1 11 

(iterated) 

where L:~~2){E) = L:~~) - L:~.(2). 
11 11 11 

Table 1 

Electron binding energies for H2O (eV) 

2-nd 2-nd 
order corr. ~SCF 

state KT ~SCF RSPT ~SCF g-eart. a 
~ 

1a1 559.39 540.49 529.72 540.69 540.72 540.2 

2a1 36.62 33.86 31.81 32.78 32.31b 32.2 

1b2 19.34 17.93 17.98 19.14 18.72 18.6 

3a1 15.66 13.15 13.28 14.30 14.33 14.7 

1b2 13.67 10.89 10.87 12.06 12.09 12.6 

aThese experimental results quoted from reference [21]. 

bThere is another solution (branch) at 33.66 eV with somewhat 
smaller residue of the electron propagator, and still another 
one at 36.69 eV with virtually zero residue. [18] 

For comparison I list in Table 2 some results with other re
lated approaches. The water molecule is a common test system and 
it is interesting to compare the simple ~SCF q-part. (second-order) 
results with those obtained using second-order (Ced2) and third
order (Ced3) Green's function theory (Cederbaum, Holneicher, and 
von Niessen [22]) and those using straight Raleigh-Schrodinger 
perturbation theory through second (HU2) and third order (HU3) 
(Hubac, and Urban [23]) with about the same quality basis sets. 
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Table 2 

Electron binding energies for H2O (eV) 

with different methods 

state Ced2 Ced3 HU2 Hu3 K0(14 )a K0(14+~ol )b 

2a1 32.93 35.10 33.38 35.22 32.8 32.31 

1b2 17.70 19.22 17.93 19.42 18.7 18.72 

3a1 13.18 15.18 12.62 14.74 13.8 14.33 

1b1 10.92 13.03 10.48 12.75 11.8 12.09 

aThese results are obtained as ~SCF q-part with a 14 CGTO 
Dunning Huzinaga basis. The difference with the last column 
is a basis effect. [19] 

bThese results are repeated from Table 1. 

The simple ~SCF q-part. formula for c~lculating electron 
energies has also been used by Kurtz, and Ohrn [19] to cal
culate electron affinities for small molecules with encouraging 
results. More studies are underway and it is a hope that this 
simple formula or improvements of it will provide efficient ways 
to calculate vertical electron affinities for molecules which 
otherwise are too large for accurate treatments. 
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THEORY OF ONE ELECTRON BINDING ENERGIES INCLUDING CORRELATION, 
RELATIVISTIC AND RADIATIVE EFFECTS: APPLICATION TO FREE ATOMS 
AND METALS 

ABSTRACT. 
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Theoretical Chemistry Institute 
National Hellenic Research Foundation 
Athens 501/1 Greece 

The recent emphasis on non rare-gas core Binding Energies (BE) uleasure
ments and the continued use of these BE to probe bulk and surface proper
ties makes this ft timely subject to review. The wide range of atoms treated 
and the accuracies required place stringent demands on any comprehensive 
theory, forcing it to consider effects of relaxation, relativity, radiation, 
correlation, nuclear size and the bulk. To date, there is no theory capable 
of treating these simultaneously, although we suggest a means by which rela
tivistic and correlation'effects may eventually be unified. This would 
leave proper treatment of bulk effects as the prominent challenge. 

The existing additive theory is reviewed and extended to include a 
way of making a· priori determinations of when and what correlation effects 
are large. This allows assessment of experimental observat.ions and of inde
pendent particle model results and eases computation of correlation effects. 
A simple method of including the significant radiative effects ~s also put 
forth. This theory has been applied to the Is BE of C, 0, 0-, r, r-, Ne, 
Na, Na+ in excellent agrea~ent with experiment (~O.1-0.2 eV), to all core 
subshells of K, (accuracies~O.1-Q.5 eV), and to selected subshells of Cs. 
Modifying Shirley's ad hoc model for "extra atomic relaxation", which we 
suggest has considerable utility, we produce metallic EE which agree 
with measured values to within 1-2 eV. 

I. INTRODUCTION 

Since the mid 1960's a large successful effort using the 
methods of photoelectron spectroscopy (PES), initiated by the 
development of high resolution electron spectrometers and conven
ient line sources, has yielded results for binding and 'excitation 
energies, cross sections, electron decay probabilities (Auger 
effects) of excited and ionized states in atoms, molecules and 
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the solid state (lJ. The indirect use of these methods is even 
more impressive--they have probed surface reactions, determined 
charge distributions in molecules, investigated effects of elec
tron correlation, detected trace elements, made molecular struc
ture determinations, etc. Accuracies range from a few tenths to 
one electron volt. 

The exploitation of the indirect applications has been great
ly facilitated by noting that binding (BE) and Auger (AE) energies 
associated with similar species (e.g. for the same atom residing 
in different molecular environments or between a free and metal
lic atom) exhibit differences (chemical shifts) whose gross fea
tures at least are often explained by simple ad hoc models. 

In this work, we will be concerned with BE of free atoms, 
and when they can form a metal, we predict standard state core 
BE as well to within 1-2 eV, using a model for "extra-atomic re
laxation". BE are of particular interest in very heavy atomic 
species because they allow us to identify a transient species by 
the characteristic X-rays they emit. Furthermore BE exhibit some 
rather interesting correlation effects. 

Since we will impose no restriction on the type of atom con
sidered, we will have to include the effects of correlation, re
lativity, radiation, relaxation, and take nuclear size into ac
count. In Table 1, we illustrate that all these effects can be 
important. 

At present, there exists no theory capable of simultaneously 
treating all these effects, which will be treated additively in 
this work. In Section V we suggest a method by which all of them, 
except radiative ones can be treated properly. 

Existing experimental core atomic BE are generally limited 
to the rare gases t 1a ,2-3] and metallic elements (.4-81 (some 
recent workt7] using fast ion beam projectile Auger spectroscopy 
shows promise of yielding core BE for non-metallic elements to 
within a few tenths of an eV). Often, BE have been extracted 
from standard state (e.g. thin film, bulk) X-ray energies by com
bining them with atomic UV measurements, and applying some ad 
hoc model t 9,10]. These models, which can also be used to probe 
the bulk (e.g. the charge state) are thus of considerable inter
est and are discussed for metals in Section VI. However, since 
they only seem capable of at most 1-2 eV accuracy, they do not 
suffice to predict "experimental" values for atomic BE. 

In Section II we discuss the definition of the binding energy 
and observe that it is non-unique. In the following section (III) 
we review existing additive theories of binding energies, consi
dering one in detail. There, we propose a comprehensive a priori 
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Table 1 

Comparison of the Different Contributions to the 
Binding Energy (eV) Throughout the Periodic Table 

Species 

Type Is Ne(a) Is K(a) ~s Cs(a) Is Mg(b) Is Fm(c) 3s Fm(c) 

Non-relativistic (d) 
orbital eigenvalue 891.7 3633.~ 236.6 

Non-relativistic(d) 
relaxation -23.2 -32.8 -6.1 -92.8 -U7 -45 

One particle(d) 1.2 17.0 16.7 83556.3 1~2929 7250 

Two-particle 
relativistic -0.3 -2.8 -0.1 -303.3 -67~ -18 

Radiative -0.1 -1.2 -0.1 -15~.6 -302 -19 

Non-relativistic 
correlation 1.1 0.9 -6.6 ",1. N 1. IV -(1-3) 

Relativistit 
correlation e) small '2 '2 '2 '2 ? 

Nuclear Size small small ? _5~(f) +8(g) '2 

Total (rows 
1~1953(h) 7213(h) 1-7) 870.11 361~.~ 2~0.~ 83099.7 

Precision(i) ",0.2 '" 0.5 '" 2-3 "'~ ""30 "" 15 

(a) This work. 
(b) A.M. Desiderio and W.R. Johnson, Phys. Rev. A3, 1267 (1971). 
(c) B. Fricke, J.P. Desclaux and J.T. Waber, Phy~ Rev. Letts 28, 7l~ (1972). 
(d) If non-relativistic ~SCF results are available (Ne, K, Cs)~hen all three 

entries are given. Otherwise (Mg, Fm) relativistic ~SCF is compared with 
the relativistic orbital eigenvalue. 

(e) No theory exists which would yield this quantity. It is probably no 
larger than the non-relativistic correlation energy for larger species, 
and negligible for smaller species (see Section V). 

(f) Difference between a point and extended nuclear model (already included 
in (d». 

(g) This is the uncertainty in the extended nuclear model. 
(h) No correlation included. 
(il Approximately the accuracy of the theoretical result. 
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scheme which allows the determination of when correlation effects 
are important, and what the principle constituents are (in the 
configuration sense). In particular, we suggest a mechanism to 
account for the anomalous behavior [llJ of the 5d BE in the acti
nides. In_sectio~ IV, we appl~ the additive method to predict BE 
of C, 0, 0 , F, F , Ne, Na, Na , K and Cs which are in excellent 
agreement with experiment, where available. Section V outlines 
a method for the simultaneous inclusion of relativistic and cor
relation effects which we have under development. In the final 
section, we discuss a semi-localized exciton model for metallic 
BE which we use to "correct" our free atom BE, achieving results 
which agree with standard state experiment to 1-2 eV. 

II. DEFINITION OF THE BINDING ENERGY 

In photoelectron spectroscopy one knows the energy of the 
photon beam and measures the energy of the electrons which emerge 
after the interaction between atom and beam (assumed to be in
stantaneous and energy independent). Energy conservation requires: 

(1) 

The initial energy E. is defined well (for not a too intense pho
ton beam which would1induce an initial state width), 

(2) 

where EG(N) is the ground state energy of the N-electron atom or 
molecule. It satisfies: 

(3) 

For the final state, both experimentalists and theoreticians make 
use of the formal separation: 

Ef = X(N-1) + K.E. 

where K.E. is what is measured as kinetic energy of the ejected 
electron and X is a property of the (N-l) electron system (we 
assume corrections for recoil have been accounted for). 

Experimentally, the quantity 

X(N-1) - EG(N) = hv - K.E. (5) 

is designated as the Binding Energy of the observed electron: 

(6) 
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and involves only measurable quantities. 

On the other hand, X(N-1) is identified as Elon(N-1) satis
fying the eigenvalue equation: 

(7 ) 

in which case the theoretical Binding Energy is defined as: 

(8) 

Presently, the equivalence of eqs. 6 and 8 is well accepted. 
A variety of approximations, such as Koopmans' theorem, "frozen 
core", relaxation model, adiabatic model, ~SCF, or more advanced 
many-body methods which include relativistic, electron correla
tion and radiative effects have been applied to the calculation 
of eq. 8 for a variety of systems and are discussed in the fol
lowing sections. (We note that for inner hole states, in prin
ciple the calculation of Elon(N-1) should involve the considera
tion of an energy shift which is energy independent only in low
est order and is due to self-energy modifications particular to 
nonstationary states. Currently, such corrections are usually 
omitted. ) 

However, beyond the complexities which characterize the ri
gorous computation of the total energy Elon(N-1), it appears that 
the measured B.E. (eq. 6) is not identical to the theoretical 
B.E. (eq. 8) - contrary to what has been thought all along. 
This conclusion, which was stated in one sentence in 1975 (12), 
can be reached in the following way: 

The interactions among the N-electrons in the final state 
can be written in Hamiltonian form to a good approximation which 
includes relativistic effects, 

H(N) = ~i=~ h(i) + ~.<N .g(ij) 
~ ] 

(9) 

where h(i) and g(ij) are one - and two - electron operators (see 
following sections). The corresponding Schrodinger equation is 
H(N) ~(N) = E(N) ~(N) where E(N)= Ef • 

A measurement of the total E(N) would yield Ef of equation 1. 
Such a measurement should in principle involve the simultaneous 
recording of the energies of the final products. 

However, if the N-electron system is conceptually divided 
according to eqs. 4 and 7, the separation 

(10) 
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where EI (N-1) is the unperturbed solution of eq. 7 and K.E. is 
the measSFed free electron energy, implies the separation of the 
N-electron Hamiltonian and energy into two parts without any 
"self-energy" type corrections. (The word "self-energy" is cho
sen in order to show some analogy with the Lamb shift corrections 
which arise from the interaction of the isolated atomic system 
with the radiation field, to which, in fact, it is coupled conti
nuously. ) 

Prediction of magnitudes of the effects mentioned above is, 
of course, beyond the scope of this paper. Their calculation 
would have to involve some assumption about the energy dependence 
(time dependence) of the photon-atom-ion-electron interaction 
process. However, we point out that according to eq. 8 the B.E. 
of electrons in N-electron systems should be independent of the 
photon energy. Therefore, small variations of observed B.E. 
Ceq. 6) as a function of photon energy would indicate a certain 
anomaly in the accepted definitions. (Accurate measurements of 
B.E. as a function of photon energy over a large range are about 
to become possible using synchrotron radiation.) In fact, such 
variations have recently been observed in Auger spectroscopy for 
small free electron energies and have been attributed to "post
collision interactions" (13,14). 

In conclusion, our point is that the quantity which is called 
Binding Energy and is measured from the relationship: 

B.E' E ; hv - K.E. xp 
(6) 

is not identical to the (in principle) calculable quantity that 
has up to now been defined as: 

(8) 

and is therefore independent of the photon energy. Having made 
this point we proceed with the theory for the accurate calcula
tion of eq. 8 in many-electron atoms assuming BEE = BETh' 
Modification of this definition for solids is pos¥Boned until 
Section VI. 

III. THEORY OF FREE ATOM BINDING ENERGIES 

Given the current experimental accuracies obtainable for both 
gas and standard state core BE (tenths of an eV), and the rela
tively small size of the chemical shift between atom and stan
dard state (41eV), we need a theory capable of yielding accura
cies~O.leV. This requires the careful consideration of relati
vistic, correlation, radiative, nuclear size and bulk effects 
(standard state). 
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For the purposes of discussion, we will choose to divide the 
total energy of an atom up as follows: 

Etot = £NR-SCF + ~R-SCF + EDirac-SCF + EBreit-SCF + 

E + E + E NR-Corr R-Corr Rad 
(11) 

This division closely patterns the methods used to evaluate atomic 
BE. The first two quantities, the non-relativistic orbital eigen
value, £NR-SCF' and the non-relativistic relaxation energy, 
RNR-SCF, constitute the non-relativistic SCF energy. The third 
is the one-body relativistic SCF correction to the first two--
or equivalently, the first three terms are the one-particle
relativistic SCF energy (a different decomposition into the sum 
of the relativistic orbital energy and the relativistic relaxa
tion energy is sometimes useful (see Table 1». The next term, 
EBreit-SCF contains the relativistic two particle corrections 
(through order (Za)2, where a is the fine structure constant), 
evaluated at the SCF level. ENR-Corr is the non-relativistic 
correlation energy obtained using the non-relativistic SCF solu
tion as a zeroth order function, and the sum ENR-Corr + ER-Corr 
is its relativistic equivalent. The radiative effects, ERad , 
here will always be added on to the result to form Etot. Effects 
of nuclear size are accounted for within the Hamiltonian. 

A. The Independent Particle Model (IPM) or SCF Solution 

Most BE for Z )18 have been evaluated at the IPM level with 
or without inclusion of relativistic effects. For inner elec
trons, consideration of relativity is clearly mandatory even for 
the lightest species. For these, however, this can be done in a 
perturbative way [lSJ. Relativistic effects are incorporated by 
taking as a Hamiltonian (in a.u.) 

+ E.(. l/r .. 
1 J 1J 

(12) 

where the single sum is over one-electron Dirac Hamiltonians r 16] • 
The~i are 4 x 4 matrices built from Pauli spin-matrices, p. 
is the linear momentum, and 8i is a 4 x 4 matrix built froTIi2 x 2 
identity matrices. The first term is the kinetic energy, the 
second the rest energy, and the third the electron-nuclear poten
tial energy. 

It is computationally possible [17J to express V(r.) in terms 
1 of a point potential 

v t(r.) = -Z/r. p 1 1 
(13a) 



336 DONALD R. BECK AND CLEANTHES A. NICOLAIDES 

or a constant charge within a sphere of radius R where 
R = 2.2677 x 10-5 VAM, with AM being the atomiH mass (13b) 

n 

or a Fermi charge distribution PN=Po/ U. +exp (b(r-R ) D wi th 
~as the thickness parameter n (13c) . 

Potentials can be constructed for (13b) directly, and for (13c) 
by solving a differential equation. The use of a finite nuclear 
model has been found to be essential in the study of trans-uranic 
elements, with the effect largest for subs hells having a high 
density near the nucleus (e.g. s electrons). Even in Hg, these 
effects change the 3s orbital eigenvalue by 3 eV [18J. Theyob
viously will have a significant effect on hyperfine structure for 
these species. 

IPM calculations for use in binding energy studies are 
usually implemented within the restricted Hartree-~ock (RHF) or 
Hartree-Fock-Slater (HFS) method. The latter is based on the 
average energy and also uses a local approximation for the ex
change [19], which is inappropriate when very high precision is 
desired (1 part in 5000 for deep core levels of Fm) or when ex
change effects (outermost subshells) are large. We should point 
out that most existing ~SCF results for BE of heavy atoms use the 
relativistic HFS method (la,20], and they are often quite useful. 

Codes for implementing the SCF (RHF) calculation within the 
non-relativistic approximation have been designed by Froese
Fischer t 211, and relativistically by Desclaux \)7]. These are 
both based on the pioneering work of Hartree t 22a J. Others 
[22b-22d] have also contributed to these developments. 

Once the SCF result for the ground state is obtained, IPM 
BE calculations can be done in one of two ways. In the first, a 
second SCF calculation is carrted out for the hole state, and the 
results subtracted to yield a lI.'sCF result, which includes the 
effect of relaxation. For atoms, such procedures are quite trac
table, providing one uses due care to make sure that SCF toler
ances are high enough. This is particularly important for valence 
electrons in heavy atoms. Molecular systems however, apart from 
additional conceptual problems related to delocalization of inner 
holes [23], are still rather difficult to handle this way. Solids 
present other difficulties--as the energy of the model solid is 
infinite. 

Methods avoiding this difficulty are principally based on 
corrections (for relaxation)to BE obtained from ground state 
orbital eigenvalues (loosely, Koopmans' theorem). These have 
been developed by a number of authors [24], and also form an in
tegral part of propagator [25] and Green's functions methods L 261 
(which include some correlation effects). When relaxation effects 
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are large (see Table 1), their proper inclusion forces considera
tion of third and higher order perturbation theory, which requires 
further developments of the above techniques. A more complete 
survey of calculations at the IPM level may be found in the work 
of Larkins t 27] . 

B. EBreit-SCF 

The Hamiltonian of equation 12 may be corrected to include 
(to order (Za)2), two-particle relativistic effects, through 
the use of the Breit operator t10, to yield: 

H 1 = HD + ~.<. B(i,j), where re l ] 

B(i,j) = (-1/2r .. )'a .• a. + (a .• r .. )(a:.r .. )/r.:] (14) 
lJ L'i..l ""J "'-l "'lJ -J -lJ lJ 

This contains the effects of retardation. Several other forms of 
these corrections have been proposed ~28-30], some of which appear 
to be more accurate, but jUdging from the Fm results, their in
clusion can be postponed. 

Most present treatments of B(i,j) use the SCF functions 
created from equation 12 within the context of zeroth order per
turbation theory. Higher order effects are therefore postponed 
to ER 1 C • There are two reasons for this restrictive treat
ment. e Tn~rfirst is formal--both H 1 and HD admit electron and 
positron solutions, the latter beiR~ of lower energy. If we eva
luated B(i,j) in higher order perturbation theory using complete 
sets (positron and electron functions), the correction is the wrong 
order of magnitude and too large (16]. On the other hand, it 
may be possible (see Section V) in practice to avoid such diffi
culties, although treatment of B(i,j) at the SCF level is an ex
pensive proposition and is probably unnecessary (large numbers of 
new two particle magnetic radial integrals appear. A precursor 
of the present-day relativistic codes actually allowed for such 
a possibility ( 22d). B(i,j) may have to be included at the 
variational C.I. level if electron correlation effects are large 
or when fine structure effects significantly (beyond first order) 
affect wavefunction determination. (B(i,j) contains terms 
which serve to screen the bare nucleus spin-orbit contribution, 
and these screening effects have been found to be important C 31] ). 
For all core electrons, the effect of B(i,j) should be included, 
although for smaller species this may be done using perturbation 
theory \)5]. 

C. Non-Relativistic Correlation 

a. General: It is recognized that for core properties of 
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medium to high Z atoms relativistic effects should no longer be 
treated perturbatively. At the same time, as we have seen (Table 
1), correlation effects can in many cases be important as well. 
Given the absence of a combined relativistic-correlation theory, 
we have no recourse but to treat such effects non-relativistical
ly and add them on to relativistic SCF results, a procedure we 
call the additive theory of BE. It is not so well appreciated 
that a combined theory will also be required for valence proper
ties such as molecular bonds, excitation energies, transition 
probabilities, etc. for the heavier atoms, but the evidence for 
this is mounting (32-35J . 

b. Review of Existing Non-Relativistic Correlation Theories 
There are a whole host of substantially- successful correlation 
theories which have been applied to small (Z l18) atoms. These 
include Rayleigh-Schrodinger (36)and Many BodY Perturbation 
Theories (MBPT) [37-39J, Brueckner-Goldstone equations (40] , 
Propagator Methods [25} , Green's functions ~26J, Equations of Mo
tion [411, Random Phase Approximation (RPA) t. 42-4:TI , Multi-Confi
gurational methods [44J, First Order methods t. 451, perturbation 
theory directed-variational C.I. im~lemented methods (46-48J, 
superposition of configurations t. 49), etc. Some of these appear 
to have difficult-to-remove restrictions even for small systems 
(e.g. only ground or single determinantal states may be treated 
with ease, or only a limited number of configurations may be con
sidered, or there is no configuration selection mechanism, etc.) 
which limit their general applicability. Very few have been ap
plied to larger species, due in part to the computational complex
ities involved. Among the exceptions is found work using RPA 
methods (42) (e.g. Xe). 

In the next section, we will discuss in some detail one of 
these methods l47-48] which at present has been used to treat 
rather larger species (e.g. Cs) with the practical computational 
limit currently being the consideration of active d electrons. 

c. A Perturbation Theory Directed Variational C.I. Imple
mented Non-Relativistic Correlation Procedure This is an approach 
which we have discussed in Paper I in this volume (50J. Here we 
only outline what is essential for application to BE. The langu
age used throughout is that of C.I. which remains, in our belief, 
the most general implementation procedure available for atoms and 
small molecules (certain aspects of correlation in extended sys
tems is more appropriately described by other methods (50]). 

For perturbation theory to be effective, a proper zeroth 
order (or reference) function ~ must be found. A satisfactory 
solution is to use the few (usually one) most dominant configu
rationes) which are selected on the basis of past computational 
and physical (e.g. spectroscopic) experience. Such a function is 
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determined self-consistently, i.e. by RHF means. The correlation 
function X is then given by: 

and the correlation energy is the difference between the exact 
(non-relativistic) and referflnce energies: 

(16) 

First order perturbation theory is then used to restrict X to a 
tractable form i.e. we include only those configurations in X 
(call them~ which have a non vanishing matrix element with ~, 
viz: 

<'~\H\e) ~ 0 
X 

(17) 

Within the form, the solutions are obtained variationally to all 
orders. Failure to do this falsely emphasizes certain higher 
order effects which would not be compensated for. This is dis
cussed further in Paper I. Because H contains only one and two 
particle operators, for a given configuration in ~,e~, only single 
and double subshell excitations must be kept. The emphasis on 
subshells rather than s~in-orbitals results in a more accurate 
tractable procedure [50J. 

Schematically, we have in subshell terms 

u' 
X 

(18) 

where s~, s'~ are occupied subshells in C~ and ux ' u'x are vacant 
and orthogonal to all subshells in C~. 

In principle, this substitution must be carried over all sub
shell(s) (pairs) in C~ and all C~. Such a function, providing 
the Ux are variationally optimized is found to give excellent 
results for nearly all properties of atoms and small molecules 
(small electron affinities can be an exception). 

A further separation of each Ux is then made to exhibit 
near degeneracies directly, giving them special weight. This is 
helpful both for the purpose of analysis and computation (50]. Thus 

u = s + v (19) 
X X X 

where the collection of all s~ and sx (i.e. all the nearly 
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degenerate subshells) is known as the Fermi sea (FS), all of whose 
members are to be determined at the same level of computational 
approximation. Vx is called a virtual subshell function, ortho
gonal to all members of the FS, and is determined by variational 
C.L methods [50]. Equation (11) then expands to: 

s.~s . X 
(internal polarization) (20a) 

s~~vx (virtual polarization) (20b) 

s~ s' ~ S s' (internal Fermi-Sea) (20c) 
~ X X 

s~ S' ~s v (hole-virtual) (2Od) 
~ X X 

s~ S' ~v v' (bi-virtual) (20e) 
~ X X 

This grouping conveniently corresponds for the most part to the 
role these excitations play for different properties. For example, 
hole-virtual, internal, and bi-virtual correlation are largest for 
BE. When energetically allowed, the first corresponds to Coster
Kronig events, and the second to super Coster-Kronig events (51). 
With the reference function)(20a) + (20c) form the FS configura
tions. 

d. Exam~les (i) Consider the ground state of the Ne atom. 
Here ~=ls2 2s 2p6 and since all nearby degeneracies have been 
accounted for, u=v and only (20e) survives. The correlation func
tion is then created as follows: 

2 2 2 2 
Is ~v + v + vd s P 

Is 2S~vs2 + Vp2 + vsvst + vp Vp' + vid ' + v/ 

Is 2p~v v + v vd + ••• s p P 

2p2~ vs2 + v/ + vsvd + v/ . . . 

. . . . 
(21) 

In the above we have limited ourselves to one radial function 
particular to each subshell pair (e.g. v t v t v tv) except 
for Is 2s where two are needed to form t~e 3SScoup~ing.s The sub
script refers to the azimuthal symmetry (£) which although it has 
no formal cut-off, unlike (20a)-{20d), in practice the expansion 
is found to converge rapidly withJt. 

(ii) Consider the ground state of the Be atom, and assume 
that ~ = 1s2 2s2 suffices (low Z). Here we have a nearby degen
eracy (2s and 2p) so 

(22) 
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Suppose also that we are interested in valence subs hell proper
ties, so the 1s2 core is considered frozen. We then have only 
the configurations: 1s2 2s v (20b), 1s2 2p2 (20c), 2p vp (20d) 
appearing with (20e) (see th~ Ne example for these). The first 
four structures do have symmetry cutoffs (J,f1). 
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In carrying out our BE calculations, which are obtained by 
subtracting the result of two separate variational C.I. calcu
lations for the upper and lower states, we make use of the approxi
mate decouplingL50J of the sections of X in the following form: 
We do ~ + (20a) - (20d) and ~ + (20e) independently and add the 
results together. 

e. Which are the Important Configurations? To be included, 
a configuration must make a significant contribution (70.05 eV) 
to the energy and to the BE. Configurations contribut1ng only to 
the former are left out in the spirit of approaches such as those 
based on Green's functions, propagators, etc. Most of these be
long to type (20e). 

f. Sections (20a)-(20d) Whenever valence internal corre
lations, (20c), are present they should be included. They depend 
on symmetry and affect the multiplet structure as well as in
tensities. For example, consider the 2s ionization in S. The 
final multiplets will be 1s2 2s 2p5 3s2 3p4 4,2p, 2D,2S. Out of 
these, only the 2S symmetry allows the important 3s2~ 3p2 near
degeneracy correlation. Thus, internal correlation in the valence 
shells will have an effect on the photoelectron spectrum (energies 
and intensities) of an inner shell excitation. The first accur
ate correlation study of multiplet structure for inner electron 
excitation of an open shell system was done in 1973 [581. 

The most important remaining correlations, (20a)-(20d), are 
associated with the final state, and are either of type (20c) or 
(20d). Past experience drawn for K,L, M subshells from optical 
spectroscopy, Auger spectroscopy (e.g. (super) Coster-Kronig e
vents), computational results, suggests the following classifica
tion of the important (20c) and (20d) types for the entire perio
dic table (see also reference 47). (See Table 2.) 

The estimates of the sizes of these effects can depend sub
stantially on the species and subshell involved due to the follow
ing factors: 
a) the structure of the off-diagonal matrix element, i.e. the 
group theoretical coefficients 
b) how many subshells which have the replacement symmetry of the 
non-hole filling electron are fully occupied. The fewer there 
are, the larger the effect. 
c) how deep the core hole is. The deeper it is, the more nearly 
degenerate are the nl subshe1ls, enhancing the effect. This 
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Table 2 

The Most Important Internal and Hole-Virtual Correlation Contributions 
to the Final State for Binding Energy Studies 

Subs hells removed New Subs hells When Size (eV)(a) Where 
~~ in C 

--')( 

sHoles 

nd2 ns g n411 

np nf ns g n~1I 

nf2 ns g n~1I 

np nd ns f n73 -7 lis in Cs; f=lIf 
2 np ns d n~2 -2 2s in K; d=vd+3d 

-7 3s in K; d=3d + lid. 

p Holes 

ns nf np g n~1I 

nd nf np g n~1I 

002 np f n~3 -10 lip in Cs; 
-2. po) 3p in Sr; 

ns nd np f n'q3 -1 lip in Cs; 

d Holes 

2 nd g n?jll Weak? np 
nf2 nd g n~1I Large Actinides 

text) 

np nf nd g n~1I 

ns np OOf n),3 Weak? 

f Holes 

ns np nf g n~1I Weak? 

np nd nf g n9 11 

(a) This work. 
(b) The addition of this correlation brings Dirac-HF results into nearly 

(!:.. 0.1 eV) perfect agreement with recent experimental values[lI] • 
The remaining ,weaker,correlation effects-internal valence and bi
virtual-apparently cancel out in this case. 

f=4f 

f= vf 
f=lIf 

(see 
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usually competes with (b). 
d) whether the replacement is energetically allowed (i.e. (super) 
Coster-Kronig?). If the hole state is embedded in the hole-vir
tual or internal continuum, one must use approaches like that of 
Fano and Altick [52-53J (C.I. in the continuum) to calculate the 
shift which may be positive or negative. For example, we have 
found a 3.3 eV shift to lower energies due to 2p2~2s vd corre
lation for the 2s 2p6 2S hole state of F I (54J. When energeti
cally forbidden, the BE is always reduced by this effect. 

The largest contributions for s-holes and p-holes have a 
considerable literature associated with them. A particular case 
of the p2~s d substitution was suggested by Bacher [55] (in 1933!) 
as responsible for the anomalous term splitting observed in Mg I 
1D, which was later confirmed by Zare L56]. Related behavior in 
Mn was also explained by Bagus et al L57) in this way. The hole
virtual analog in the first row (2p2~2s vd) is primarily res
ponsible for the departure of valence properties (e.g. f-values) 
from their HF values [47J • 

More recently it was suggested that the anomalous behavior 
observed [2-3J for ttp BE was due [3,4'U to the 4d2~4p f substi
tution which has now been confirmed by recent calculations (42). 

Here we propose that the anomolous behavior observed for 
5d BE in the actinide region ~llJ may be principally due to the 
5f2 ~ 5d g replacement. 

g. Section (20e) In the 1960's, it was shown[58j that bi
virtual correlation configurations associated with a given spin
orbital pair are decoupled to first order (and so may be computed 
independently of one another), and that the total hi-virtual 
energy is given as a sum of symmetry adapted (in practice this 
means the two virtuals are coupled to form a parent of pure S, 
L symmetry) pair energies, E, i.e. 

Evv ' = LS as £(n~S n~S;SSLS) (23) 

where the as are purely group theoretical constants which can be 
computed using equations ,'\-2.0 of Paper I. 

Moreover it was demonstrated, semi -empirically (' 59J at first 
for small atoms, and later in an ab-initio manner, that the bi
virtual pair energies are roughly independent of Z,N and state, 
viz, transferable. 

Thus in our BE work, bi-virtual pairs common to both states 
(same as) can be excluded. Inter-shell pair energies (n # n) 
are found to be individually smaller than intra-shell pair ener
gies Cn = n) and provided there is not a considerably larger num-
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ber of them (which can be the case in molecules and medium to 
large atoms) these can be neglected. Furthermore, the more dis
tinct the shell structure is, the less important are these inter
shell pairs in the agregate. Consequently their neglect in larger 
atoms is more rigorous for inner shell BE. 

h. Example: Bi-virtual Contribution to the 1s BE of Ne 
From equation 11 of Paper I, the bi -virtual energy of the ground 
state Evv,(g.s.) is given by: 

E ,(g.s.) = E(ls2) + 3 E(ls 2s 3S) + E(ls 2s l S) + 
vv 

3 E(ls 2p 1po) + 9 d1s 
3 0 

2p P ) + 2 d2s ) + 

E(2s 2p 1po) E(2s 2p 3po) 2 1 
3 + 9 + d2p S) + 

9 
2 3 2 1 E(2p P) + 5 E(2p D) (24) 

and for the 1s hole state, assuming transferability of the E, we 
have for E ,(ls): vv -

E ,(ls):: E ,(g.s) - E(ls2) - 1.5 E(ls 2s 3S) - 0.5 E(ls 
vv - vv 

1 1 0 3 0 2s S) - 1.5 E(ls.2p P ) - 4.5 E(ls 2p P ) 

(25) 

Dropping the small inter-shell pairs (which was not done 
for our calculations on small atoms), the non-relativistic bi
virtual correlation energy's contribution to the 1s BE of Ne, is; 

vv' 2 
BENR C (ls) = -E{ls ) - orr -

(26) 

or about a 1 eV increase in the BE. Bi-virtual correlation will 
always increase the BE since all E'S are negative and there are 
more of them in the ground state than in the hole stat~. For the 
2s BE of K, this increase is about 0.5 eV and for 
the np BE of K about 1.5 eV (this is larger essentially because 
more pairs are "broken" in the hole state). 

Bi-virtual correlation, while important, is secondary to 
the larger correlations of Table 2, providing they are allowed. 
For 1s BE those of Table 2 are smaller because a FS subs hell 
change is involved. 

D. ER-Corr 

Since no satisfactory treatment of relativistic correlation 
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effects exists at this time, we must take this contribution to be 
zero. We may hope that such effects will usually (but not always) 
be only a fraction of ENR C • - orr 

In the next section, we complete the discussion of the 
"additive" theory of BE, by introducing the radiative effects. 

E. Radiative Effects 

The Dirac theory for hydrogenic atoms predicts that the en
ergy depends only on nand j and not on..Q.. In 1947, Lamb and 
RetherfordL60] experimentally determined that the 2s1/2 level 
in H was 1058 MHz higher than the 2P1/2 level in contradiction to 
the Dirac theory. 

This deviation, now known as the Lamb shift, was explained 
first by Bethe ( 6i], who included a substantial part of the cor
rection using conventional non-relativistic quantum mechanics. 
This was soon afterwards improved using quantum electrodynamic 
techniques. Since that time a considerable amount of work on 
hydrogenic atoms (lsl 2 and 2s 2 levels) has been done to de
velop the higher ordef. terms t M-63] which has been the subject 
of a recent review (641. 

The two main radiative corrections (and the only ones of 
concern here) are the self-energy (SE) and vacuum polarization 
(VP) terms. The former arises from the interaction of the elec
tron with an external potential (the nucleus) which spreads the 
electron out, diminishing the point charge Coulomb binding energy. 
This pushes sl/2 levels higher than P1/2 in hydrogenic atoms. 
Levels of higner nare also affected (they may go up or down) but 
to a much lesser extent and we ignore it in this work (this effect 
is important in Fm however). 

The other significant term arises because the effective po
tential seen by the electron is modified by the vacuum polariza
tion due to virtual electron-positron pairs. This correction 
lowers the s1/2 levels and is usually no more than 20% of the 
self-energy term. In the independent particle model, if an ns 
electron is removed then that much less radiative energy is pre
sent. It is clear from Table 1 that even for small species such 
as K, these effects can be quite substantial (1V1 eV for the Is 
BE) and they must be included. Radiative effects grow as Z4a 3l na , 
much faster than non-relativistic effects (Z2) and only alna 
smaller than relativistic effects. 

Fortunately, they can be treated for our purposes in a re
latively straight-forward way. We will neglect effects associ
ated with two or more electrons as they are small l16] , and only 
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acknowledge the existence of the other electrons by modifying the 
nuclear charge (screening). Finally, only the deeper ns BE must 
include this contribution. For a given ~ , radiative effects 
falloff faster than n-3 with increasing n, due to the additional 
screening present in outer shells. 

Much of the work in this area t62,65] has concentrated on is 
shifts for low to medium Z for which expansions in Za (including 
higher order terms) were developed. Unfortunately, these do not 
converge sufficiently rapidly for the species of concern here 
(Za :0.2-0.4). On the other hand, Desiderio and Johnson (66J, 
following the work of Brown et al \67J have developed a method 
for evaluating the self-energy for K electrons which avoids the 
above expansion, and published results for selected values of Z 
(70~Z~ 90). In part of this work, Dirac-Slater SCF wavefunctions 
were used, so the effect of screening was included at the IPM 
level. This was found to be about 2% (Z= 70-80) for K electrons 
and grew with N as one might expect. This approach is not en
tirely satisfactory for our purposes, since we must depend on 
published results, which would force us to extrapolate from Z=70, 
and to provide an estimatory process for other ns BE (n"> 1). 

However, Erickson has recently established a result [63] 
valid for all Z for the self energy of hydrogenic ns electrons 
which combines an analytic and graphical result (Figure 2, ref. 
63). Specifically, the self-energy is given by (in a.u.): 

F (Z) 
n 

(27) 

where Fn is a slightly n-dependent dimensionless function, which 
varies (with Z) from 1 to 2 for the species of interest. We ig
nore the n dependence here. 

The leading term in the vacuum polarization correction is 
[65J (in a. u. ) 

(28) 

The net effect of corrections to this term seem small [65] and so 
will be neglected. 

To represent the many-electron atom, we choose to let Z be 
an effective Z throughout equations (27) and (28). Since these 
Z's appear hydrogenically through the value of the ns radial 
function at the origin (61], Rns (0), the effective Z should be 
determined by matching the SCF result (non-relativistic for small 
atoms, relativistic for large ones) to a screened hydrogenic 
solution for the above quantity. Screening effects can in fact 
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be substantial for ns electrons (n ') 1). For example the radia
tive contribution to the 3s BE of Hg is reduced 0.3 a.u. by screen
ing. 

Finally, the radiative contribution to the BE, BERad , is: 

BERad = ESE(Zh) + EVP(Zh) - 2 LEsE(Zi) + EVP(Zi)] (29) 

where Zh' Zi' are the final and initial 
always reduces the BE for ns electrons. 
(29) on the 1s BE of Hg and found it to 
ment with other results. 

IV. GAS PHASE BINDING ENERGIES 

state effective Z's. This 
We have tested equation 

be in substantial agree-

In Table 3 we present our (this work and references 47-48, 
68-70 ) gas phase results for binding energies. All calculations 
were done by performing a ~SCF relativistic Hartree-Fock calcu
lation. Radiative effects were added using equation (29). For 
the small atoms (C,O,O-,F,F-,Ne,Na,Na+) non-relativistic corre
lation was added essentially by using the full correlation func
tion (eqns. 20a-20e). These results are in excellent (0.1-0.2 eV) 
agreement with experiment C la, 4,6,8, 71-74J where available. 

Our calculations of ENR- C for K and Cs are more explora-
tory due to their lar~e size t~~Ele 3 contains corrections to 
earlier published t48J K values). For K, we have included all 
the non-cancelling intra-shell bi-virtual energy, the important 
hole-virtual correlation, and the symmetry changing virtual polari
zations. BE accuracies appear to average 0.3-0.5 eV., although the 
3s BE (which is subject to large correlation effects) discrepancy 
remains a puzzle. 

For Cs, only the important hole-virtual correlation has been 
added to the 3p,3d and 4s BE which were chosen for investigation 
as they are important for solid state studies (75J and complement 
existing free atom experimental values [761. Errors for these 
appear to be ~0.4 eV. 

V. TOWARDS A COMBINED RELATIVISTIC-CORRELATION THEORY 

Our goal is a theory which simultaneously treats both corre
lation and relativisitic effects and which is capable of dealing 
with any property. This will take on a simplified form for BE, 
much as did the non-relativistic theory. 

As noted earlier, such a theory does not exist. There has 
been some work in this direction. Beck [77-78J used the low Z 
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Table 3 

BE (in eV) 

Gas Phase Standard State ---
Subshell/Speeies TheoryCa,b) Expt. TheoryCa) Expt. 

Shift Total 

15 Li 611.ll-1r7~ 7.9 56.6 57.2{)Ql 

15 Be 123.6 rrJ 9.6 1111.0 115.SU-C] 

15 B 200.8l7) 11.0 189.8 191 u-oJ 
15 C 296.3 296.2\71 15.2 281.1 289.3 ITO] 
15 0 5l1li.5 non-metallie 

-15 0 528.6 non-metallie 

Is F 698.0 non-metallie 
-Is F 679.8 non-metaUie 

15 Ne 870.11 870.31 \721 non-meta1lie 

15 Na 1079.3 1079.0~31 
1074.0\!01. 

15 Nat 
1079.1 61 6.5 1072.8 

1083.6 

Is K 36111.11 4.7 3609.6 3610~a1 
(.15) 

2s K 384.6 11.9 379.7 379 ~aJ 
(:211) 

2p1/2 K 303 .7 303.7.@)1i-] 5.0 2gB .6 299 \!a] 
2p3/2 K 300.9 301.2 ~ 8j 5.0 29S.7 296n.a1 

(.07) 300.9 IIJ 

3s K 39.6 
(.67) 

11.7 311.9 36 \!a] 

3P1/2 K 211." 211.8\7I1J 11.8 19.6 20.0Q.~ 

3P3/2 K 211.2 2'1.5~1I1 11.8 19.4 
(.211) 

3pi/2 Cs 1073.0 11.2 1068.7 1068.9\jS] 
(.011) 

3d3/2 Cs 7115.8 
(.02) 

7115.8 [e] 11.2 7111.6 7112.9 ITS] 

3d5/2 Cs 732.0 
(.02) 

731.8 [c] 11.2 727.8 727. 9 (15J 

lis Cs 238.5 ".2 234.3 233.9~5] 

Ca) This work. Between the two terms of lowest energy (z.fll). or between 

the levels of unique J. 

(b) Approximate multiplet (level) splittings are given in parentheses. 

(e) M.S. Banna. B. Wallbank. D.C. Frost. C.A. McDowell. and J.S.H.Q. Perera, 

J. Chem. Phys. ~. 51159 (1978). 
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Pauli approximation (16J (the Hamiltonian is formed by expanding 
the Dirac and Breit Hamiltonians and keeping terms through order 
CZa)2) and incorporated correlation effects via C.I. While this 
was successful for low and medium Z systems (the inversion of the 
2D fine structure for the Na I isoelectronic sequence was ex
plained t 78 J in this way), it was pointed out that the Za ex
pansion did not converge rapidly enough to justify its use for 
high Z. 

Ivanov et al ~)~ have considered few electron systems using 
the Gell-Mann and Low formula within the context of perturbation 
theory, based on hydrogenic Dirac functions. Johnson and Lin [80] 
have initiated a relativistic variant of the Random Phase Approxi
mation and applied it to the He isoelectronic sequence. We expect 
that this will have similar strengths and weaknesses as its non
relativistic counterpart. 

Finally, there are the relativistic multi-configurational 
approaches (32,81J. Their principle difficulties are that only 
a few configurations can be treated simultaneously and there is 
no configuration selection mechanism. Within this context, they 
are quite powerful. 

A. A Proposed Relativistic Pair Correlation Procedure 

The essential features of this proposal will parallel those 
of the non-relativistic approach, viz: (1) there will be a rela
tivistic reference function il>R which describes the system "well", 
(2) creation of a relativistic Fermi sea (RFS) and virtual space, 
(3) generation of the form of the correlation function Xa by 
applying first order perturbation theory, (4) determinatlon of 
XR by variational C.I. methods. 

1. Relativistic IjlR An easy way to create this function is 
to think non-relativistically and adjust the results. Thus, a 
given state is usually described well even for high Z systems by 
a few "non-relativistic" configurations (CIjl)' The relativistic 
forms are ~nerated by the replacement (nj )q to (n~ ( 2 )q-m x 
(n ~ +£1/2)) where m~ 2 Q + 2, q-m~ 2Q for each subsheH ~resent. 
For c osed subshells (q = 4~ + 2) only the equality obtains. 

In general then, il>R takes on a multi-configurational charac
ter, except in the limit of complete j-j coupling, even if Ijl is 
single configurational. This is the "natural" relativistic cou
ling, and all the algebra-first enumerated by Swirles [82J for 
many electron systems, later modernized and extended by Grant [1~
has been developed within this scheme. 

On the other hand, the "physics" may dictate another coupling-
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for example the valence electrons may be nearly LS coupled, so 
expanding in LSJ eigenstates would be more desirable. The ab
sence of a convenient means to accomplish this has impeded the 
use of relativistic procedures, particularly in the lighter atoms. 
Here, we suggest a way by which this can be overcome. We recall 
that any complete orthonormal set (within the configuration space) 
may be used. Let us then ignore2the 2minor component (it prohi
b~ts the 2construction of exact L ,S eigenstates) and diagonalize 
Land S using the remaining function. This fixes all the co
efficients arising from a single non-relativistic configuration 
(if parents are necessary to characterize the state as well, these 
can be treated in a similar manner). If we have near LS coupling, 
one vector will dominate ~R and we can use the fixed co-
efficients within the relativistic SCF process to determine just 
the radials, i.e. the calculation becomes single configurational 
(which speeds it up, and removes some possible convergence pro
blems). The remaining vectors, if needed, can be added at the 
C.I. level. Only when we are far from LS or jj coupling would a. 
true relativistic multi-configurational procedure become necessary. 

2. The Relativistic Fermi Sea (RFS) and Virtual Space All 
spinors appearing in ~R and all those nearly degenerate with them 
form the relativistic Fermi sea (RFS). These may be generated 
from the non-relativistic FS (which we have given for ground states 
of all atoms L4:1) by makin~ th~ repla~ement n.R~n~_(1/2) <-€;t 0) 
and n~p (1/2) wlt~ the provlso If nQ. lS present, nJ[; (~, R = 
j .!. < 1Y2) , ~ 1-;) must be present Js well--for thes~ two are 
relativistically degenerate in the high Z hydrogenic limit. All 
RFS spinors are to be generated at the (separate) SCF level. 

To complete the space, we add a set of spinors orthogonal to 
all RFS spinors, which are determined at the variational C.I. 
level. Prior to orthonormalization, these virtuals will probably 
have the form: 

virtual I\. r g e -ar 

where both a and g are non-linear parameters to be chosen varia
tionally. As in the non-relativistic case, these are truncated 
(relativistic)hydrogenic functions. 

3. First Order Form of the Relativistic Correlation Function 
~ We again select the form by use of first order perturbation 
theory, keeping only configurations C for which the matrix 
element: XR 

r .. -l+B(i,j)\ C)1-0 
lJ XR 

is non-zero. The configurations can be classified according to 
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equations (20). Symmetry considerations (parity, total angular 
momentum) will serve to truncate (20a)-(20d) to a finite number 
of configurations. 
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When constructing Cx ' it may be advantageous (certainly for 
deep core excitations) toR jj couple part of the configuration, 
and use a different coupling (perhaps 1S) for the outer electrons 
[83]. This would most nearly diagonalize the correlation confi
guration and allow the decoupling ideas of Paper I to be applied 
here (in a somewhat modified form). 

To illustrate the method, consider the ground (J=O) state 
of a Be-like atom, and take the is spinors as fixed (forming a 
core). The only configurations which can be generated solely 
from the RFS ( which includes only 2s1/2 2Pl/2 2P3/2) are: 

222 
2s1/2 ' 2Pl/2 ' 2P3/2 
the minor components) 

The latter two can be coupled (ignoring 

to form 1S0 and 3Po ' and depending on Z, 
2 2 1 

we may choose them to have one (2s 1/2) two (+p SO) or three 
2 3 (+p PO) vectors to form ~R (the others appear in (20c)). 

Hole-virtual and virtual polarization configurations are: 
2s1/2vs l/2' 2Pl/2vPl/2' 2P3/2vP3/2' These demonstrate the rapid 

symmetry cutoff. Bi-virtual configurations (allowing one virtual 
per symmetry and cutting the expansion off at f-symmetries) are: 
2222222 

vS1/ 2 + vP1/ 2 , vP3/2 + vd3/ 2 ,vd 5/ 2 + vf5/ 2 ,vf7/ 2 Iden-

tification of just what belongs in ER-Corr is difficult. Cer
tainly 3PO contributions involving virtuals will always be found 
there. More importantly, the differences in the strengths of the 
off diagonal interactions with (20a)-(20e) (in first order) be
tween the non-relativistic and relativistic treatments also be
long there. Eventually, one will simply compare the correlatfon 
results of Section III with those of this method and assign the 
difference to ER-Corr' 

4. Variational C.I. It may be noted that we have used the 
Breit operator to produce the configurations in XR' We propose 
to also include B in the Hamiltonian during the variational C.I. 
process because, as we argued earlier, it may significantly af
fect the wavefunctions in some cases. 

Yet, there may be some formal difficulty (Section III). How 
can we avoid this? 

Both the SCF functional and the C.I. functional admit (with 
either equation (12) or equation (14)) positron as well as electron 
solutions (these correspond to different stationary points). At 
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the SCF level, where we do not propose to use B (see Section III), 
positron solutions are avoided by simply choosing the proper (i.e. 
electron) input. This means major components are truly larger 
than minor components, radial functions have the proper number of 
nodes, etc. (see also the work of Kim [ 84 J for a further discus
sion on this point). We should note that a number of relativis
tic SCF calculations have now been done and nothing catastrophic 
has occured. 

In the C.I. calculations, we will insist that virtuals exhi
bit a similar major component dominance and that all correlation 
configurations remain small (a large correlation function could 
indicate we are trying to "correct" our electron solution by intro
ducing positron components. This would certainly lower the energy, 
but it would be incorrect.) 

Further work on this proposal is in progress. 

VI. CORE BE IN METALS 

Core BE of metals are not only of interest in themselves (e.g. 
for surface and catalytic studies), but because in the past most 
experimental core BE were only available from standard state 
measurements. There is thus considerable interest in finding a 
simple relationship between the free and metallic BE. 

Standard state BES are measured relative to the Fermi level 
(BEF5) and to refer them to the common vacuum level BEVS, we must 
introduce the work function ~, viz. 

BE S = BE S 
V F + ~ (30) 

where ~ is the energy necessary to remove the least bound con
duction band electron from the solid. This quantity is known for 
most metals r 8!f1 • 

A series of comparisons 
the standard state BEVS (not 
vat ions [la,10,86,89] : 

A of core BE for free atoms (BE ) and 
just metals) has yielded' the obser-

(a) BEA = BEVS + S; Se= 4-15 eV 
(b) within an atom, ~ore level shifts are nearly independent 
of the hole position (to a few tenths of an eV) 

This latter behavior has been used to combine optical BE for 
valence subshells of free atoms with X-ray standard state core BE 
C1a,9,10,87]. However, the results are quite uncertain, princi
pally because of the different shift experienced by the core vs. 
the valence BE. Given these differences, even theories which 
accurately account for standard state valence properties (e.g. the 
work function) are of no direct concern to this work and will not 
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be considered further. Present theoretical and experimental pre
cisions would also suggest that even the difference of core BE 
should not be transferred from solid to atom unless essential. 

The models used to account for the difference between the 
metal and gas phase for core BE fall into two categories: those 
which add the correction to the free atom perturbatively, and 
those which deal with the metal directly. Both approaches have 
had their successes and failures. For the latter, we have the 
image potential method of Gadzuk [88J, and a density functional 
approach for rare gases in noble metals by Citrin and Hamann (89J . 
If a completely ab initio approach of this nature is desired, 
some way of including the local atomic-like effects discussed in 
Section III will have to be found. 

In this section, we will concentrate on the other approach. 
Its principle proponents are Ley, Shirley et al L901 and Watson 
et al [91J. In molecules, a "potential" model t92J similar in 
spirit to these has been used to correlate chemical shifts among 
different compounds containing the atomic species of interest. 

There appear to be three standard state effects contributing 
to the shift for which some estimates have been made. The first, 
and the only one examined in detail here, has been called "extra
atomic relaxation" and represents the screening of the final state 
hole by the electrons around the atom being probed. The second 
arises from the presence of a dipole sheet on the surface, and 
seems to vary from a few tenths to one electron volt. The final 
effect investigated comes from renormalization of the atomic func
tions due to their confinement in the unit cell. This has been 
estimated by Watson et al [91J to be about as important as the 
extra-atomic relaxation effects at least for transition metals. 
More work should be done on this term, for it essentially destroys 
the good agreement (1-2 eV) obtained using just the first effect, 
and also seems ]2! to yield shifts which are independent of the 
core hole--an observed effect. 

A. Extra-Atomic Relaxation 

The essential features of the model discussed here were first 
put forward by Shirley, Ley et al (90,93J. In it, the excess 
charge in the hole state is assumed screened by tte itinerant 
electrons forming a semi-localized exciton by the dropping down of 
a conduction band below EF. This is in the spirit of a model first 
proposed by Friedel [94]. One further assumes that the process 
can be made atomic-like by assuming the exciton wavefunction is 
found only in the neighborhood of the hole state and that it has 
the symmetry of the lowest unbound state in the conduction band. 
These two restrictions will mean that our extra-atomic relaxation 



354 DONALD R. BECK AND CLEANTHES A. NICOLAIDES 

shifts are too large. Ley et al (90J then go on to make further 
approximations within an atomic framework, some of which give 
rise to rather large (3-4 eV) un-necessary (see below and ref. 95) 
errors particularly for light atoms. 

Our interpretation of this model is as follows: Let the 
atomic configuration characteristic of the n~ hole state in the 
solid be 

4~ +1 - q ... (nO) •. . (m.Q) (8,L). (q<4.£.+2) -'\ m~n 

Here mi is the valence (in atomic notation) subshell of lowest 
energy which is not completely filled. The free atomic approxi
mation to the excitonic state is then: 

41 +1 - q+1 --... (nQ) ... (m..Q ) (S,L). 
m~n 

80 we subtract from the atomic BE 

n 4Q +1 - q 
E( ... (nx.) ... (mJ!.) (8,L) . ) 

m~n 

11 42+1 
- E( ••• (~) ••• 

(m! )q+1(S,L) . ) 
m~n 

(31) 

to generate a vacuum standard state BE. Two remarks are in order 
here. First, there can be a configuration change upon going from 
the atom to the solid, and if this happens (it doesn't for the 
species of Table 3), the free atom BE must be precorrected to 
account for it. Watson et al [94J found such corrections removed 
much of the theoretical experimental discrepancies observed in 
the transition metals (these are particularly sensitive to the 
3d-4s degeneracies). In that work and here, it was also impli
citly assumed that formation of the exciton does not induce a 
further configuration change. The second feature is that one 
computes for the BE the difference between the two terms of mini
mum energy. 

The standard state results of Table 3 were obtained by adding 
a 2s (Li), a 2p (Be,B,C) and 3s (Na), 4s (K) and a 6s (Cs) elec
tron to the hole state configuration. For all cases, 8 was eva
luated from separate 6SCF calculations- relativistic on~s for Z~10 
and non-relativistic ones for Z ~ 10. For the light atoms, we 
also included correlation effects by using the internal, internal 
polarization, virtual polarization and hole-virtual correlation 
of the species in which nQ (here 1s) is closed and Z is increased 
by one unit--an application of the equivalent cores idea (see 
below). The uncancelled bi-virtual energy was obtained by using 
equation ,q of Paper I to generate the group theoretical coeffi
cients and the pair energies taken from reference[59] 

The results shown in Table III are all in agreement with the 
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standard state experiment (101 to within 1-2 eV. The C(ls) 
anamoly may arise from the fact that it (graphite) is partially 
co-valent and the assumption of a pure 5so excitonic state may be 
inappropriate (a calculation based on the average energy lowers 
the shift by 4.3 eV). 

It can be seen that the theoretical shift is quite constant 
for core BE belonging to th~ same species. This may be understood 
at the SCF level as follows. The two configurations differ only 
in having one extra electron in the outermost subshell. The ion
ization potential of the extra electron may be given reasonably 
well by the orbital eigenvalue. If we assume this is independent 
of the position of the hole, the shift is constant. 

In the above, we have made use of an equivalent cores approx
imation to obtain a portion of the correlation energy. This has 
been employed in a variety of contexts, and with care can be quite 
useful. This does not obtain when exchange effects involving the 
core-hole are large as for first row atoms (2eV errors result 
then). For larger species, it seems to be quite good (see also 
the work of Firsht and McWeeny (97]), and represents an extremely 
simple way of evaluating equation (~') for the shift is then 
nothing more than the first ionization potential (known optically) 
of the species with nuclear charge Z + 1. 

In summary, we have found a rather simple model for extra
atomic relaxation predicts core BE shifts for the metallic species 
considered to within 1-2 eV. It does not however tell us much 
about "what is happening" in the solid (charge state information 
is acessible though). Furthermore it should not be applied to 
valence hole BE - these can have markedly different shifts and we 
do not expect a model which predicts constant shifts to account 
for these effects. On the other hand, it was the relatively 
simple localized nature of core holes that led to our original t6~ 
interest in them (0,0-). 

Further improvement will have to involve direct consideration 
of solid state aspects. Perhaps this can be done by combining 
the local or orbital methods of Kunz and Adams t98J with the 
methods of the preceeding sections. 
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ATOMIC PHOTOIONIZATION CROSS SECTIONS 

P. L. A1tick 

Physics Dept., Univ. of Nevada, Reno, Nevada 89557, USA 

In these lectures I will discuss various methods of calcu
lating atomic photoionization cross sections with emphasis on 
resonant structures. I will attempt to order the methods accord
ing to the complexity of the problem that they can be used on. 
Thus the Feshbach projection operator formalism, which is most 
applicable to the calculation of resonance parameters in two elec
tron systems will be first and the R-matrix and quantum defect 
methods which can handle many channel photoionization will be 
last. Because of time limitation, the discussion will be descrip
tive rather than detailed. Not all useful approaches can be pre
sented, but the most important ones left out (RPA, MBPT) will be 
covered by other lecturers. 

The appearance of resonances or structure in various kinds 
of cross sections in atomic, molecular, or nuclear physics is by 
no means rare. The first low energy neutron-nuclei scattering 
experiments produced typically nothing but sequences of resonances. 
They are also ubiquitous in atomic physics, and already more than 
40 years ago Beutler investigated resonant phenomena in various 
photoionization cross sectionsll ). At the atomic level our basic 
theory is, of course, a wave theory, and so it is not surprising 
that various kinds of interference effects manifest themselves 
when a beam of particles interacts with a complex target. 

Resonances come in all shapes and sizes and show up in dif
ferent kinds of experiments, e.g. photoionization, elastic and in
elastic electron scattering, inelastic proton scattering, etc. 
When attempting to understand such diverse phenomena, a helpful 
unifying concept is that the resonance occurs because of the 
structure of an excited state of the system. Since excited states 
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are the main topic of this school, this point of view is quite 
an appropriate one to pursue. 

Thus, the theoretical problem of describing resonant phenom
ena boils down to the problem of calculating properties of ex
cited states of various systems. In these lectures we will look 
at several approaches to this problem that have been successful. 

Before becoming immersed in the theory, however, we will 
orient ourselves by looking at some diverse experimental results. 
A system that has received an immense amount of theoretical 
attention is helium. Here, Madden and Codling(2) have ~ound re
sonances in photoabsorption in the neighborhood of 200~. Sever
al series were found converging to thresholds of the He+ ion. 
The diagram, Fig. 1, shows the location of some of those reson
ances below the n = 2 He+ level. These are examples of Feshbach 
Resonances, i.e. they can be associated with definite configura
tions. Thus the lowest lp resonance is denoted 2s2p and others 
are evidently formed from 2snp, 2pns and 2pnd configurations. 
Such labeling does not mean that these configurations form sta
tionary states. Rather, one can form a physical picture of the 
two electrons occupying bound orbitals for, say 10 to 100 orbits 
and then an energy transfer takes place with the result 2s 2p + 

ls kp where kp represents a free electron. Looked at in this 
way, the atom is said to autoionize. The lifetime of the pseudo 
bound state manifests itself in a resonant width, r, and for 
isolated resonances, i.e. r « separation between neighboring 
pairs, the intrinsic parameters of the resonance are its location 
and its width. In addition, there is a line profile index, q, 

n=l-----

V\=I-----

I Orl i fA t'~n 

---11....--- He 

Fig. 1. A level diagram for He showing the location of the 
lowest Feshbach resonances. 
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introduced by Fano(3) whose value depends on the method of exci
tation, but, when calculated, allows detailed comparison between 
theory and experiment. Fig. 2 shows a sequence of resonances in 
He. The asymmetric profile is a characteristic line shape and 
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can be reproduced by a suitable value of q. In He the near de
generacy of the levels with the same n gives rise to special con
figuration-interaction effects which are an interesting story, 
but one we will not pursue. For purposes of orientation, the 
width of the broadest resonance is r - .04 eV 9iving a lifetime of 
- h/r - 2 x 10-14 s. The narrowest resonance t2p3d} has r - 10-6 
eV. 

If we go from He(ls2) to Be( 2s 2) we find drastic differences 
in the appearance of the photoionization cross section in the 
vicinity of the resonances. In Fig. 3 a broad series and a nar
row series are evident. These are also Feshbach resonances 
arising from 2pns, 2pnd configurations. The large width of the 
2pns resonances indicates a strong interaction between the bound 
and continuum states and so the reaction 2pns + 2s kp goes fast. 
The ultimate reason for this is that the 2s and 2p orbitals are 
from the same shell and thus overlap considerably. The widths of 
the 2pns resonances are so large that they can no longer be treat
ed as isolated, and it becomes a problem to find suitable para
meters to characterize the appearance of the cross section. 

In both of the above cases, the resonant configuration was 

ELECTRON VOLTS 
70 65 60 55 50 

a.: 
~ 250 
I-
<t 

"7e 200 
~ 
I-

~ 150 
U 
l;: 
lL. 
~ 100 
u 
z 
0 .--
I- 50 
a. 
n: 
0 
(f) 

0 CD 
<t 180 190 200 210 220 230 240 

WAVELENGTH (ANGSTROMS) 

Fig. 2. The absorption coefficient of helium in the 175-245-~. 
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Fig. 3. Theoretical (above) and experimental results for the 
photoionization cross section of Be near threshold. 
The theoretical work is from Ref. 4, and the experi
mental work is from Ref. 5. 

doubly excited from the ground state, but all that is necessary 
for autoionization is that the configuration lie above the first 
ionization threshold and so single excitations from inner shells 
are also candidates. This type of r(e~onance is found in the 
photoionization cross section of Ar 6) shown in Fig. 4. Here 
the resonances are due to configurations of the type 3s3p6np lp. 
Note that the position of the resonances is noted by a sharp dip 
rather than an increase in the cross section. This feature is 
readily explainable in terms of theory we will present. At high
er energies double excitation and inner shell excitations over
lap resulting in a spectrum of considerable complexity. 
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--... '" .-

...... . ~ 

- ,0 
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U'4 .....,.. 11 14 .c .,j 

Fig. 4. The photoionization cross section of Ar from Ref. 6. 
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As a final example, a somewhat different kind of feature is 
found in the photoionization cross section of Xe sketched in Fig. 
5. This large feature begins with the 4d threshold for ioniza
tion and is due to 4d ~ sf photon excitation. The effective 
potential for the f electron contains both attractive and repul
sive regions separated by a barrier perhaps a few eV high. It 
is possible for the f electron to get'tlelayed" in the attractive 
well at certain energies and this occurrence manifests itself by 
a broad peak in the cross section. Such a peak is called a "shape 
resonance" as it is not i dentifi ed with a hi gh lyi ng confi gurati on 
but rather is a result of the dynamics of an electron in a cen
tral field. 

The earliest calculations on the resonan~es81n He and H
used the Feshbach projection operator theory,l/, ) and papers are 
still appearing with very accurate results based on it. The 
achievement of the formalism is to reduce the calculation of the 
position of a resonance to a bound state problem. Thus the ar
senal of weapons built up over the years for attacking such bound 
state problems is available. On the other hand, to complete the 
description of the resonance, a width and energy shift are need
ed and to get them, one must employ a continuum function. 

The theory will be developed with an eye to applying it to 
He. There are difficulties in applications to heavier atoms 
which will be mentioned as we go along. We begin by looking for 
a partial wave scattering solution to the e + He+ ~ e + He+ prob
lem, i.e. we seek a function ~y where 

(H - E)~y = O. (1) 

The subscript y represents an appropriate set of quantum numbers, 
e.g. L2, Lz' S2, Sz. Since these do not change during the 
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Fig.5. The 4d photoionization cross section of Xe. (From W. 
Brandt, L. Eder, S. Lundqvist, JQSRT, I, 185 (1967». 

development, we will no longer write them. If we are interested 
in resonances below the n = 2 level of He+, E should be chosen 
so that ~ describes elastic scattering below that threshold. Thus 

~(r ,r ) ~ u (r ) f2' sin (krz + </» (2) 
~l ~2 r2~ 0 ~l ~iK r2 
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where E = k2/2. The energy normalization is chosen, and the com
plete phase shift ¢ includes effects of angular momentum, the 
Coulomb field, plus effects of the short range interaction with 
the atomic electron. The function uo(rl) is the ls function of 
He+. In general it is an eigenstate of the target atom Hamilton
ian and so is known exactly only for one electron atoms. 

We now seek to portion the quantum mechanical vector space 
into two parts by introducing projection operators P, Q, where 

P+Q=l. (3) 

Thus, they span the entire space. P is then chosen so that 

(4) 

and Q = 1 - P. Since ~([l ,[2) is symmetrized, it doesn't matter 
which variable becomes large. The fact that P is specified only 
in an asymptotic region results in a lack of uniqueness for the 
choice and, in fact, there are an infinite number of choices of 
P which will satisfy Eq. 4. This freedom caused some confusion 
earlier, and to better understand it, consider the vector space 
with a basis of symmetrized products of He+ eigenfunctions un(r). 
Here n represents both bound and continuum states. Now let 

~(~1'~2) =.Lj I anmun(~l )um(~2) (5) 
m 

where ~ performs the necessary symmetry operation. In the asymp
totic region 

~(~l '~2)r2~ uo(~l) tmlaom l um'(~2) (6) 

where now the sum ml includes only continuum states as the others 
vanish in this limit. Thus P only need project onto this subset 
of basic vectors and whether or not it includes any others is 
arbitrary. A common and workable choice of Q is 

i.e. all sets of products in Eq. (5) with either n or m = 0 are 
in the P subspace. 

To see the utility of introducing P and Q, we write 

P(H-E)(P+Q)I~> = 0 

Q(H-E)(P+Q)I~> = 0 
(8) 
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(From here on the Dirac notation will be convenient.) By some 
formal manipulation we get an equation for IP~> which is 

(Hpp + Vopt - E)IP~> = 0, (9) 

where Hpp = PHP and 
_ 1 

Vopt - HpQ Q(E-H)Q HQP · (10) 

Recalling that IP~> has all the scattering information, all we 
have accomplished so far is to define an optical potential. It 
proves useful to consider now the set of eigenstates of HQQ which 
are complete within the Q space. Thus 

(11 ) 

The spectrum of HQQ is discrete below the n = 2 threshold of He+ 
because of the chOlce of Q. Thus the choice we made is appro
priate for the description of resonances in this region. Singling 
out one of these levels, t, we can write (9) as 

(Hpp + V'opt-E) IP~> = -HpQ l~t><~tIHQpIP~> 
E-e:t 

(12) 

where V'opt is missing the t term. We see that the rhs of Eq. 12 
varies rapidly for E ~ £t. This rapid variation will cause the 
phase shift to move through ~ radians as E passes through the 
region of £t. 

To solve Eq. 12 consider the complete set of solutions to 
the homogeneous equation I~e>' thus 

I > -+ () f2'sin(kr2 + n) 
~ e uo ~1 i 1TK r 

r 2-+<>0 2 
( 13) 

where e = ~ and now n is the combined phase shift due to all 
factors, but not the level t. Writing the Green's function 

G = f de I~e><~el 
e-E ' (14 ) 

a formal solution to Eq. 12 is 
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IP~> = ITI > - GH I~t> <~tIHQpIP~>. 
E PQ E-e:t 

(15) 

We are thus led immediately to 
<~ IH Ip~> = <~tIHQPITIE>(E-e:t) 

t QP E-e:t-~ 
( 16) 

where 

(17) 

Now, Eq. 15 becomes 

Ip~> = ITIE> - GHQpl~t><~tIHQpITIE> (18) 
E-e:t-~ 

To find the phase shift due to the level t, we look at Eq. (18) in 
the asymptotic region. To get the correct asymptotic behavior 
for IP~>, the principal value of G is taken, thus 

Us i ng Eq. (19) in Eq. (18) we fi nd 

uo(r1) f2' sin( Kr2 +n+ nr ) 
P~I r2-+<x> - cos nr ~tK r2 where 

(19) 

(20) 

The nr is a resonant phase shift, and the parameters of the re
sonance are its width 

(21) 

and its location 
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(22) 

Thus the position of the resonance is shifted from the eigen
value Et by the background continuum. Many calculations on e + H 
and e + He+ hav~ beeQ carried out using the Feshbach approach. 
Some early onesl9,10} just used hydrogenic functions as basis 
sets. If the 1s function is omitted, the resulting set forms 
vectors in the Q space mentioned above, and the calculation be
comes a standard bound state CI problem. In Ref. 10 an alternate 
choice of Q was made in that some configurations contained the 1s 
orbital. To achieve higher accuracy, one could imagine using a 
variation trial function including r12 explicitly. This has 19 ) 
fact been done in a series of papers by Bhatia and co-workersl 1 
who solved the sticky problem of projecting Q onto a function of 
the form 

(23) 

Of course, one is not through when the eigenvalues of HQQ have 
been found. To compare with scattering experiments, the width r, 
and shift, &, must also be known. For e + He+, & - 10-3 eV or 
smaller so it is not terribly important. The widths are of the 
same magnitude, but can be measured in high resolution electron 
scattering experiments and especially in photoionization work. 
Bhatia et a1 have calculated these parameters by using a polarized 
orbital continuum function for InE>' 

As a sample of the kind of results obtained, we will look 
at some 1p resonances in e + He+ below the n = 2 threshold in 
Table I. 

We are :ompa~ing.eigenva1ues of HQg here with experimental 
values so & 1S be1ng 19nored. The Bhatla-Tempkin calculation 
uses -80 terms in a function of the form given in Eq. 23, and is 

Table I. Properties of Low Lying lp Resonances in He. All figures in eV. 
Location is in eV above the ground state of He+. 

lpCl) l p(2) lp(3) 
E r E r E r 

Ref. 11 60.152 .0363 62.759 1.17 x 10-4 63.663 .010 

Ref. 10 60.27 62.76 63.67 

Ref. 9 60.35 62.79 63.71 

Exet . {Ref. 2) 60.13 .038 62.76 63.65 .008 
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the most elaborate to date. The agreement with experiment, in
cluding the shifts, is quite satisfactory. In Ref. 10 -40 hydro
genic configurations are used and in Ref. 9, ten such configura
tions are used. Recently theoretical results for $, P, D, F 
resonances below n = 2, and n = 3 threshQld$ have been published 
for isoelectronic He atoms with Z = l-5.l l2 ) These are CI cal
culations using hydrogenic basis functions. 

These results are impressive; however, they are obtained on 
two electron systems for which exact wave functions are known for 
the positive ion. To treat heavier atoms one immediately confronts 
the problem of defining Q. If it is defined to project out an 
approximate ground state, e.g. a Hartree Fock state, then it is 
not clear what the spectrum of HOQ is as the number of configura
tions in the Q space is increased indefinitely. Also, in some 
cases the widths of the resonances become sizable fractions~ an 
eV, and the shifts too, so that one must worry about the energy 
dependence of r and ~ about Er, which is to say that the parametri
zation of the resonance breaks down. For photoionization calcula
tions an excited state wave function is needed, and the Feshbach 
approach does not provide one. For all these reasons, and because 
it isn1t too much more work, one might calculate ~ directly in
stead of breaking it up, by the method of CI in the continuum. 
The basic formalism for this kind of calculation is due to Fano(3) 
and will be described in the context Qf a calculation carried out 
for magnesium by Bates and myself.(13) The resonances in Mg have 
a very similar appearance to those shown in Fig. 3 for Be. 

The ground state configuration of Mg (Z = 12) is ls22s22p63s2. 
The fundamental initial approximation is that the core of 10 
electrons is inert so that the calculation becomes one of the dy
namics of the two valence electrons. The photoionization cross 
section is calculated, so the excited state to be found has lp 
symmetry. The resonances arise from 3p-ns and 3p-nd configurations 
interacting with a ~s-kp continuum background. The wave function 
~ is composed of symmetrized products of Hartree Fock orbitals 
found as follows. Orbitals to be used in the ground and autoioniz
ing configurations were computed in the Mg III core potential, in
cluding exchange. The p orbitals which represent the continuum 
were found in a core +3s potential appropriate for singlet states. 
Using two potentials in this way results in two kinds of discrete 
p orbitals. Thus the basis set is not orthogonal in the one elec
tron sense, and when computing one electron operator matrix ele
ments, overlap integrals must be evaluated. This disadvantage is 
more than compensated for by the fact that the Hamiltonian is dia
gonal within the set of these continuum states. Let Ie> represent 
a configuration 3sep, then 

<eIHle l > = eo(e-e l ), (24) 
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a result which simplifies the computation a great deal. 

Using this basis then if In> represents a configuration 3s-np 
and if Iv> represents an autoionizing configuration, i.e. either 
3p-ns, 3p-nd or 3dnf, the various matrix elements are 

<nIHln'> = enonn l 

<nIHle> = 0 

<nIHlv> = Vnv 

<eIHle ' > = eo(e-e ' ) 

<eIHlv> = Vev 

<vIHlv'> = uw l 

and we wish to find the excited state 

I~E> = E a In> + E fvlv> + fde'a I lei>. 
n n v e 

Using the matrix elements above and H~E = E~E' we find 

ae = E VevfV/(E-e), 
v 

i.e. ae is singular at E = E. Following Fano, we remove the 
singularity by the substitution 

b 
aE = P [E~E] + S(E) bE o(E-e). 

(25) 

(26) 

(27) 

(28) 

The P indicates principal value, and the be are now non-singular. 
This type of substitution generates the correct asymptotic be
havior for I~E> as will be shown below. The coefficient B(E) will 
also be interpreted. By a little manipulation, the equations to 
be solved are 

(E ')f '\ u I f -u vv v - L vv l Vi 
vltv 

(29) 
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The an have been formally eliminated through the relation. 

(E-en)an = t Vnvfv' 
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(30) 

To understand the form of the solution of Eqns. (29) near a 
resonance, suppose that there is just one resonant configuration 
v and neglect also the discrete part of the continuum. If 
Uvv = ev, we have 

or, eliminating be in the upper equation 

f del IVe'v12 2 
(E-ev) - P E-el - S(E)(VEv) = 0 

so 

This resembles Eq. 20 quite strongly, and, in fact, they are 
really the same thing. The asymptotic form of Ie> is 

Ie> « sin(kr+n) 
~ r 

in analogy to Eq. 13. But 

f de I be I Ie> 
I'¥E>~ = p E-e l + S(E)bEIE> j 

a relation that leads immediately to 

tan nr = - (SrE)) 

(31) 

(32) 

(33) 

(34) 

(35) 

(36) 

by steps similar to those in Eqs. (19) and (20). Combining Eq. 
(33) and (36) we arrive back at (20). T(h~ explicit values of f 
and be can also be found for this case. 3) v 
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Returning to Eqs. (29), they may be solved numerically by 
discretizing the integral in a manner described in Ref. 14. The 
result is a set of linear, homogeneous, algebraic equations with 
eigenvalue SeE). The normalized solution yields the coefficients 
an, f ,be. In the neighborhood of a narrow isolated resonance, 
we can fit the computed phase shift, which now is n + nr, to the 
form 

(37) 

where the first two terms are background terms. Thus rand Er 
can be determined immediately from the solution. The actual phase 
shift obtained for Mg is shown in Fig. 6 where broad (3p-ns) and 
narrow (3p-nd) resonances can be seen. 

To see the effect of these resonances on the photoionization 
cross section, which is given by 

(38) 

a ground state must be determined and the matrix element evaluated. 

Fano(3) has shown that the profile of an isolated, narrow, 
resonance is given by 

(39) 

Fig. 6. Phase shift for Mg. The energy is measured relative to 
the MgIII ground state. 
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where crB(E) is the background, i.e. non resonant cross section, 
£ = E-£r/(~r), and q, the line profile index, is a constant. 
Digressing for a bit, the profile in Eq. 39 has been much used in 
analysis of autoionizing lines. The value of q may be plus or 
minus, and the magnitude >1 or <1. For q < 1, the resonance ap
pears as a window. An example of this was shown in Fig. 4. In 
this case, the oscillator strength to the resonant level is weak
er than to the continuum so in that region where ~ contains a 
strong admixture of the resonant level, the oscillator strength 
is depressed below the background. For the more common case of 
q > 1, the reasoning is reversed and an asymmetric peak, like 
that in Fig. 2, is seen. 

For the alkaline earths, however, the broad resonances can
not be parametrized by q because q is energy dependent over the 
resonance. In fact, in Be, q goes from +00 to _00 over the 2p-3s 
resonance. A 47 configuration ground state was used in Eq. (38) 
to give a cross section for Mg, which is ~bown in Fig. 7. It 
agrees in general shape with experime~t.() AQalQgous calcula
tions have been carried out for Hel14 J and Be. l15 ) 

By this approach we have avoided difficulties in the par
tition of configuration space in P and Q space and presumably the 
results would increase in accuracy as more configurations are 
added. Thus more systems are susceptible to treatment using this 
method than Feshbach's. However, the applications to date have 
been in energy regimes where there is only one open channel and 

3~----~~----~----~~-'----~ 

Fig. 7. Photoionization cross section of Mg (dipole-velocity 
formulation) . 
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several closed ones. To treat several open channels using CI in 
the continuum, one encounters severe difficulties which have not 
yet been overcome. These will be outlined by considering an ex
tension of the Mg problem to higher energies. 

Suppose an excited state wave function of Mg is desired 
above the 3p threshold, i.e. both the 3s and 3p channels are 
open. Configurations like 3s-ap, 3p-as and 3p-ad would be used 
to compose the wave function where a indicates a discrete quan
tum number below the threshold and energy above the threshold. 
To avoid the cumbersome formalisms of non orthogonal basis sets, 
one would like to define, once and for all, a zero order Hamil
tonian, Ho, that is the same for all the members of the basis. 

One possible choice for the problem being considered here 
would be a Hartree Fock Hamiltonian for Mg++, i.e. the orbitals 
would be computed in a potential which has a Coulomb tail with 
charge 2. This is an appropriate choice for the 3s and 3p orbi
tal in configurations where the other electron is in a high 
Rydberg state or in the continuum, but a poor choice for the con
tinuum orbitals because the asymptotic Coulomb potential has the 
wrong charge, i.e. 2 instead of 1. Because of this matrix ele
ments like 

<3s kplHI3s kip> 

develop logarithmic singularities as k+k l and the prescription 
given in Eq. 28 breaks down as neither term is defined in this 
case. Thus the analytic structure of the amplitudes ae defined 
earlier becomes more complicated and it appears difficult to fold 
this analytic structure into a feasible numerical approach. See 
Ref. 16 for a more detailed treatment of this problem. 

So CI in the continuum has not been generally applied as yet 
to problems with more than on~ open channel, but one specific 
application has been made.(17) Theoreticatmethods have been 
developed, however, which are capable of handling this situation. 
An important one is the R matrix m~thQd adapted to atomic physics 
mainly by Burke and collaborators.l18) 

The R matrix approach involves partitioning physical space 
into two regions r < a and r > a. The internal region is where 
the electron interactions are large and exchange is important and 
so in this region essentially CI is used to construct a N+l elec
tron wave function. Because the space is bound, there are no 
divergences in matrix elements to worry about. On the spherical 
boundary certain boundary conditions on the free electron wave 
function are imposed and these lead to an R matrix of the form 
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(40) 

where the i,j are channel indices, EA are the eigenvalues of the 
states found inside the sphere, and the YAi are amplitudes also 
found from the solution inside the sphere. The point in writing 
Eq. 40 down is to see that its energy dependence ~s explicit so 
it need not be recalculated for each E. 

Now standard close coupling equations are solved outside the 
sphere using the long range residual potentials, and the matching 
of solutions (but not slopes) at r = a provides the scattering 
information or the excited state wave function for photoionization . . 

The excited states of a number of neutral atoms and ions have 
been calculated in this way and the method seems fully capable of 
yielding reliable results for light atoms with not too many open 
channels. As one illustration in Fig. 8 the experimental and 
theoretical photoionization cross section for Al is shown. The 
ground state is 3s23p2p and three channels (3s2 lS,3s3p lp, 3s3p 
3p) were included in the R matrix calculation. Previous theo
retical efforts had yielded a cross section only about 1/2 the 
experimental value. The value of the cross section is important 

1oo,-------.-----------~-------____.20 

Al'('S') Al' (Ip') Al'CP') 

80 16 

12 

WQ~lfngth (A) 

Fig. 8. Photoionization Cross Section of Al. 
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in studies of the solar atmosphere, so the present agreement be
tween theory and experiment is pleasing. 

Another method of treating several open channels which is 
closely allied in spirit to the R matrix approach is quantum de
fect theory or multi channel quantum defect theory (MQDT). Here 
the goal is to describe excited states, including series of re
sonances, by more fundamental parameters which have weak energy 
dependence. 

Let us pursue this line of thought further by considering a 
fictitious atom with two ionization thresholds. We will call the 
two series with their associated continua channels a and b with 
threshold energies la > lb. A complete description of the ex
cited states of tbe atom would include the energies of the dis
crete levels below Ib, the widths and energies of the autoioniz
ing levels between la and Ib and the scattering matrix for ener
gies above lb. Applying MQDT, one can find parameters which are 
either constant around the thresholds or vary slowly with energy 
from which all of the above data can be extracted. Thus this 
theory has the power to correlate seemingly distinct properties 
of the atom and to find many theoretical values from just a few 
parameters. The(th~Ory has b~en)developed mainly by two groups 
headed by Seaton 19) and Fanol 20 whose approaches are somewhat 
different. It has been applied to both atoms and molecules. In 
what follows we give a descriptive account and hope in so doing 
to suggest some of the power of the approach. 

The main ideas are most clearly seen by studying a one chan
nel system. The alkalies below the 2nd ionization threshold are 
a good example. It has long been known that the levels labeled 
by a particular L have energies given by a relation 

E - 1 (41) n - - 2(n-~)2 

where n is an integer and ~, the quantum defect, is almost con
stant for large n. Seaton was able to show that 

8(0) = 1T~ (42) 

where 8(0) is the phase shift at zero energy. Thus, within a 
few eV of threshold, one parameter, ~, gives the location of the 
discrete states and also the scattering information. When more 
channels are present, the same general approach can be developed, 
but before that is discussed, we should ask why it is that ~ is 
constant over such an energy range of a few eV on both sides of 
threshold. 

The answer is found by breaking the radial wave function for 
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the channel electron into two parts as follows 

~E(r) = ~(E,r) for 0 ~ r ~ ro and 

= N[f(E,r) COsTI~-g(E,r)sin~] r ~ roo 
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(43) 

(44) 

The radius ro is chosen to be sufficiently large so that the po
tential energy of the electron beyond r is -l/r, i.e. just the 
Coulomb potential. But the solutions o~ the Schrodinger equation 
for such a potential are well known and so in Eq. (43) f(E,r) is 
the regular Coulomb function and g(E,r) the irregular. The value 
of ~ is found by matching the logarithmic derivative of ~(E,r) 
at ro, so the near constancy of ~ derives from the near constancy 
of this derivative. Evidently ~(E,r), being the wave function in 
the core, is rather difficult to calculate; in fact it doesn't 
really exist because the many electron wave function is not sep
arable in the core region. Nevertheless for our purposes we 
assume it is to be found in some sort of effective potential U(r). 
The curvature of the function is determined by (U(r)-E), but a
round the first threshold E-O and is thus very small compared to 
U(r) for small values of r. As a consequence of this, the cur
vature of ~(E,r) and hence its logarithmic derivative is practi
cally independent of E. A nice numerical illustration Of(th1S 
independence can be found in a recent lecture by Starace. 21) 

To find the proper extension of this idea to a multi channel 
system, consider a two channel atom. A standard scattering cal
culation, above Ia, would produce two wave functions with the 
following asymptotic forms 

~l - ~a(f(€a,r) + Kaa g(€a,r)) + ~b Kab g(€b,r) (45a) 

The functions ~a and ~b are the positive ion wave functions along 
with angular and spin factors for the free electron. The ener
gies €a and €b are the asymptotic kinetic energies of the free 
electron. The coefficients form the K matrix. Fano and co
workers have emphasized that the useful parameters for MQDT come 
from the characterization of the "short range eigenstates" of the 
system which are different from the asymptotic states in Eq. 45. 
The short range eigenstates are those for which the K matrix is 
diagonal with the form 

(46) 

where ~a are the eigenphase shifts. These states have asymptotic 
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form 

(47) 

The transformation from the asymptotic states to the short range 
ranges is called a frame transformation and is accomplished by 
the matrix Uai. Arguing by analogy to the single channel case, 
the ~a and Uai' coming from the short range solution should have 
weak energy dependence, an assumption which is borne out by the 
applications. 

Altogether then, the relevant parameters in the MQDT are the 
~a, the frame transformation matrix Uai, and the threshold ener
gies la and lb. If photoionization is being considered, a fur
ther vector of oscillator strengths, Da , is Qecessary. It is 
possible to take a complex system like Ar t22 ) with 5 channels and 
by analyzing experimental data determine most of these MQDT para
meters and thus be able to predict energy levels, autoionization 
profiles, scattering matrices, etc. For the same system, Ar, 
recently an ab-initio ~alculation was performed which produced 
~a and Uia directlyl23} and found reasonable agreement with the 
values fit from experiment. 

In the approach used by Seaton and collaborators, solutions 
to close coupling equations above all relevant thresholds are 
found numerically. The K matrix is then related to matrix Y 
which has simple analytic properties and thus can be continued 
below the thresholds. Once below, then, one goes from Y back to 
K and thus effectively can continue the K matrix in this way 
avoiding the complexities of thresholds and series of resonqnces. 
As one example of a number of applications now made, Mooresl24 } 
found locations and widths of resonances in Be using MQDT and 
was able to achieve good agreement with direct close coupling 
results. 

Granted that several-open-channel systems can be treated 
successfully by the above methods, let us look into what happens 
as the excitation energy is raised still higher. More channels 
will open until eventually the possibility of two or more free 
electrons in the field of the ionic core exists. There is at 
present no satisfactory theoretical way to describe such a state. 
The R matrix method, in its present formulation, as well as the 
MQDT assume one free electron for which an asymptotic wave func
tion is known analytically. This function can be used for match
ing to an inner function on a spherical boundary. When there 
are two free electrons in an ionic field, the asymptotic wave 
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function is not known. Further, it is not clear what the boun
dary between inner and outer regions should be now nor what boun
dary conditions to impose on such a boundary. This problem is 
addressed in Ref. 25 where a hyperspherical coordinate set is 
proposed (R = r1 2 + r22) with a boundary R = constant, but no 
applications have been forthcoming so far. 

Under these circumstances, it is somewhat remarkable that 
sensible theoretical results can be obtained by more or less 
ignoring the difficulties in the excited state. Byron and 
Joachain,(26) ten years ago, computed the double photoionization 
cross section for He using an uncorrelated final state composed 
of Z = 2, i.e. unscreened, Coulomb functions and achieved results 
in goqd ~greement with experiment. More recently Carter and 
Kellyl27} using many-body-perturbation-theory computed double 
photoionization cross sections for Ar and Ne and found some sensi
tivity to the final state in Ne, but still obtained good results. 
Their basis set for the free electrons was computed in an ionic 
core of one charge. The message of these calculations seems to 
be that ground state correlations are the dominant ones for this 
process. 

Despite these successes, the effect of mutual screening of 
the free electrons is not understood, and further investigation 
to clarify when such effects are or are not important would be 
valuable. 

REFERENCES 

1. E.g. H. Beutler, Z. Physik 93, 177 (1935). 
2. R. P. Madden and K. Cod1ing:-Ap. J. 141, 364 (1965). 
3. U. Fano, Phys. Rev. 124, 1866 (1961)-
4. J. Dubau and J. Wells, J. Phys. B6, 1452 (1973). 
5. G. Mehlman-Balloffet and J. M. Esteva, Ap. J. 157, 945 (1969). 
6. R. P. Madden, D. L. Ederer, K. Codling, Phys. Rev. 177, 136 

(1969). - , 
7. H. Feshbach, Ann. Phys. (NY) ~, 337 (1958); 19, 287 (1962). 
8. T. F. O'Malley and S. Geltman, Phys. Rev. 13~ A1344 (1965). 
9. P. L. Altick and E. N. Moore, Phys. Rev. Ltrs. 15, 100 (1965). 

10. L. Lipsky and A. Russek, Phys. Rev. 142, 59 (1966). 
11. A. K: Bhatia and A: Tempkin, Phys. Rev. All, 2018 (1975). 
12. L. Llpsky, R. Ananla, M. J. Conneely, Atomic Data and Nuclear 

Data Tables, 20, 127 (1977). 
13. G. N. Bates and P. L. Altick, J. Phys. B6, 653 (1973). 
14. P. L. Altick and E. N. Moore, Phys. Rev--. 147, 59 (1966). 
15. G. N. Bates, private communication. -
16. P. L. Altick, Phys. Rev. 179, 71 (1969). 
17. D. E. Ramaker and D. M. Schrader, Phys. Rev. A9, 1980 (1974). 



382 P. L. ALTICK 

18. For a review, see P. G. Burke, "R Matrix Theory fn Atomic 
and Molecular Processes," in Atomic Physics 5 (Plenum Press, 
New York, 1977). 

19. M. J. Seaton, Comments on Atomic and Molecular Physics, II, 
37, (1969). Reference to the basic series of papers are 
given here. 

20. U. Fano, J. Opt. Soc. Am. 65, 979 (1975), and references 
given therein. --

21. A. F. Starace, liThe Quantum Defect Theory Approach, II in NATO 
Advanced Study Series, Series B, Physics V.18 (Plenum Press, 
New York, 1976). 

22. C. M. Lee and K. T. Lu, Phys. Rev. A8, 1241 (1973). 
23. C. M. Lee, Phys. Rev. A10, 584 (1974T. 
24. D. L. Moores, Proc. Phys. Soc. 91, 830 (1967). 
25. U. Fano and M. Inokuti, Argonneliationa1 Lab. AWL-7680 

(unpUblished) . 
26. F. W. Byron, Jr. and C. J. Joachain, Phys. Rev. 164,1 (1967). 
27. R. L. Carter and H. P. Kelly, Phys. Rev. A, ~, 1525 (1978). 



THEORY OF ATOMIC AND MOLECULAR NON-STATIONARY STATES WITHIN THE 
COORDINATE ROTATION METHOD 

ABSTRACT. 

CLEANTHES A. NICOLAIDES and DONALD R. BECK 

Theoretical Chemistry Institute 
National Hellenic Research Foundation 
48 Vas. Constantinou Ave., Athens 501/1, Greece 

The recently developed dilation (coordinate rotation) theory 
of the Coulomb Hamiltonian allows the calculation of energies and 
widths of non stationary atomic and molecular states using square
integrable basis sets only. In the pioneering applications of 
this theory to two electron atomic autoionizing states, it was 
found necessary to employ large basis sets in brute force CI cal
culations, an expensive approach which has significant limitations 
when it comes to larger systems. In this paper we present a many
body theory of autoionizing and autodissociating states which im
plements the dilatation theory in an efficient and consistent way. 
In the case of autodissociating states it is not required to in
voke the Born-Oppenheimer approximation. The present approach 
first isolates in the .(1-plane (.(1 is the rotation angle) the "lo
calized" correlation effects from the "asymptotic" ones by ro
tating the coordinates of the localized function, ~ , which, in 
the time dependent theory, represents the initiallyOlocalized 
state before it decays. The coordinate rotation leaves the real 
energy of ~ invariant and allows the inclusion of "asymptotic" 
correlationovectors, in terms of "Gamow orbitals", which perturb 
~ and E and yield the decay energy shift and width. Our theory 
i~ suppo~ted by numerical examples on H and He. 

I. INTRODUCTION 

Resonances which can be associated with nonstationary states, 
are important phenomena in photon-atom, molecule, electron-atom, 
molecule and atom-atom collisions. These states are highly ex
cited. They are above the first ionization threshold, I, of the 
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same symmetry and thus decay by electronic auto ionization or by 
molecular predissociation or both. They playa fundamental - but 
yet little understood quantitatively - role in collision and chem
ical reaction kinetics and in deexcitation mechanisms of multi
electron systems. 

The standard theories for treating these states involve the 
continuum of the scattering states [see 1-3 and refs. therein] '. 
For example, the width r is given, to lowest order, by the golden 
rule formula [1-3J (in a.u.): 

(1) 

where ~ is the initially localized N-electron, M-nuclei wave
functioR, E its energy and U(E ) is the 6-function normalized 
scattering ~tate at energy (E £ I). (H - E ) is the perturba
tion, V, which causes the dec~y. This can b~ the Coulomb opera
tor, (Coulomb autoionization) the Breit operator, (relativistic 
autoionization) the nuclear motion coupling operator (predissoci
ation) etc. 

The solution of the correct U(E ) is not easy, especially 
for molecules, where the loss of sph~rical symmetry and the addi
tional degrees of freedom present, (vibrations-rotations), render 
the scattering problem a formidable one. Thus, currently there 
i2 great interest in applying methods which, although they employ 
L basis sets as ordinary bound state calculations do, supply all 
the necessary information about the property under examination. 
One such method applicable to the calculation of resonances is 
the Complex Coordinate Rotation (CCR) method [4-7J which is based 
on the dilatation transformation theory of Aguilar-Balslev-Combes 
(ABC) and Simon [8-10]. 

The ABC theory has shown that if the transformation r~rei~, 
where 0 -< ~4/2, is carried out on the atomic Coulomb Hamiltonian 
(r stands f~r the electronic coordinates), the resolvent, R(z)~ 
[z - H(~)] ,of the rotated Hamiltonian H(~), can be analyti
cally continued onto the second Riemann sheet of the lower half 
plane. This continuation reveals the pole, zo' corresponding to 
a resonance and defined as: 

z = E - (i/2)r 
o 

where E is the position and r is the width. 

(2) 

The pole z is the solution of the complex eigenvalue equa-
tion; 0 

(z 
o 

(3) 
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where ~(r) is square integrable and H(~) is non Hermitian. For 
an atom, the form of H(~) is simple: 

+ (4) 

where T and V are the kinetic and Coulomb potential energy opera
tors. The spectrum of H(~) has the following characteristics as 
a function of the rotation angle ~ [10J: 

a) The bound states remain on the real axis, at the posi
tions of the discrete eigenvalues of H. 

b) The continuum, which extends from each ionization thres
hold to infinity, rotates by an angle -2~. 

c) The resonances are exposed by the rotation at their 
exact positions and, once exposed, they remain fixed and are not 
functions of the rotation angle. 

A pictorial representation of the above statements is shown 
in figure 1. 

II. APPLICATION OF THE ABC THEORY- PREVIOUS METHODS 

The aforementioned mathematical results do not, of course, 
lift any of the difficulties of the many-body problem. However, 
they do lay the foundations for treating autoionizing - and pre
dissociating states as we propose here - without the explicit use 
of scattering functions since we are solving a rather simple, in 
principle, non Hermitian eigenvalue problem in Hilbert space. 
Nevertheless, there remains the problem of how to make the formal 
results of the ABC theory computationally attractive. Quantum 

x X 
! 

Continu.ou.s 
Spec.hu.m 

;'8 
t~te H(9) 

~to.tecl Sca.tteti", 
Sta.U.:J 

Fig. 1. Results of the ABC theory: .~The spectrum of H(~) after 
the coordinate transformation r~re~ is made. From ref. 10. 
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Fig. 2. Application of the ABC theory (refs. 8,9) within a fixed 
finite basis set: Variation of the complex eigenvalues with the 
angle ~ indicates a region of stability for a particular root, 
with which the resonance is identified [4J. 

chemistry has as a task to produce accurate numbers. It is only 
when these novel theories are implemented in an optimum manner 
that they will prove useful to Quantum Chemistry. 

Thus far, there have been applications of the CCR method to 
only two electron atoms and the Stark effect [4-7J. These pioneer 
applications have taken the following two forms - ~oth approximate 
due to the fact that the basis set employed is finite and there
fore the exact characteristics of the ABC theory (i.e. fig. 1) 
cannot be reproduced: 

A) One chooses a very large square integrable basis set, 
usually of the Hylleraas type, and repeatedly diagonalizes H(~) 
as a function of the angle~. It turns out [4] that a particular 
root - which is identified with the resonance - shows a certain 
stability over a region of a few values of~. This approach, 
discovered numerically by Doolen, is shown in fig. 2. 

Comment: Method A is a brute force CI approach. It is in
capable of handling many-electron atomic and molecular auto ionizing 
states efficiently. In fact, even for two electron atoms there 
is considerable sensitivity of the final results to the choice 
of the basis set L7J. Besides, if one has to work so hard to ob
tain the position and the width, why not use formula (1) where, at 
least for atoms, the scattering state can be calculated reasonably 
accuratIl~ and without much effort? As explained in ref. 3, for 
He 2s2p P such a computation is orders of magnitude cheaper than 
a CCR computation ~ it has been applied up to ~. 

B) One chooses different basis sets of increasing size and, 
for a fixed angle ~, diagonalizes H(~). A spiral-like convergence 
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Fig. 3. Application of the ABC theory within basis sets of in
creasing size and a fixed rotation angle: convergence of a root 
with a spiral-like behavior [5,6]. 

to a complex number (identified with the resonance) is observed 
as a function of the size of the set [5,6]. This is shown in 
fig. 3. 
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Comment: For obvious reasons, method B has the same draw
backs when it comes to applications in arbitrary many-electron 
systems. Thus, both of the above pioneer, brute force computa
tional methods seem to obey the law of diminishing returns due to 
the number of diagonalizations in the complex plane, (diagonali
zation of complex matrices is much more time consuming than ordi
nary diagonalizations), to the magnitude of the basis sets re
quired or to the extreme difficulties in utilizing Hylleraas type 
functions for multi-electron systems. Perturbative approaches 
which attempt to circumvent partly these computational difficul
ties have already been int~oduced [7] with encouraging results. 
Nevertheless, as Ho et al [11] have recently noted, "the full 
advantages of the complex rotation method for more than two
electron systems have yet to be realized". 

The difficulties with the size and accuracy of the basis 
sets required for an accurate CCR calculation indicate the abso
lute necessity for an alternative, breakthrough approach, capable 
of singling out and computing efficiently the important correla
tion and continuum contribution in the ~-plane thus reducing the 
magnitude of the computations. 

The theory we describe below [3, 12J is in this spirit. 

III. THE MANY-BODY CALCULATION OF RESONANCES IN MANY-ELECTRON
NUCLEI SYSTEMS BY THE COORDINATE ROTATION METHOD 

There are two main ideas present in our proposal: 
1) The isolation in the ~-plane, of the important correlation 
effects contributing to the initially localized state ~ [2,3J, o 
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from the contribution of the scattering functions which interact 
with 0/ and cause the decay shift and width. This isolation and 
effici~nt computation is acb~eved by rotating the coordinates of 
0/ (r) so that 0/ (r)~o/ (re~ )= 0/ (-\}). The previous methods have 

o 0 :.i 0 0 to employ large L bas~s sets because they must represent both 
the "localized electron corrftlation" as well as the asymptotic 
behavior of the resonance. This will be demonstrated by our ex
ample on the bound states of Hydrogen where only one rotated 
function is equivalent to an infinite, fixed, unrotated basis set. 
2) The abolition of the traditional Born-Oppenheimer (B-O) ap
proximation for highly excited, predissociating states. For such 
states, the B-O approximation is not necessarily a good one. The 
ABC theory allows in principle, a treatment of the problem of non
stationary states in N-electron, M-nuclei molecules interacting 
via Coulomb forces, based on purely quantum mechanical notions, 
i.e. by treating the nuclear positions as coordinates,i.e. dyna
mical variables,and not as parameters [13J. 

A. Molecular Excited States Without the B-O approximation (BOA) 
and the CCR Method 

The BOA constitutes the backbone of most theoretical analysis 
and almost all calculations in molecular physics. Its usefulness 
in explaining physical and chemical phenomena need not be re
emphasized here. Yet, just like the shell (orbital) model which 
has also proved of fundamental importance in explaining physical 
chemical properties, the BOA does not represent the quantum mecha
nical truth rigorously. The breakdown of the BOA is considerably 
enhanced in excited states where, degeneracies and/or near-degen
eracies may often distort the physical picture conveyed by it or 
may render it an inappropriate zeroth order approximation. Auto
dissociating (predissociating) states are usually conceptualized 
within a model whereby a BO excited state surface "crosses" a re
pulsive, dissociating surface and a transition to the molecular 
break-up continuum occurs caused by the corresponding nuclear 
motion coupling operator. The phenomenon of predissociation can 
also be viewed as caused by the decay of an initially localized 
molecular state without reference to the BOA. This picture suits 
the ABC' theory rigorously and we would like to suggest that these 
two unexplored fields, i.e. quantum chemistry without the BOA and 
the CCR method, could be combined in the treatment of molecular 
autodissociating states. 

We consider a molecule of N-electrons, (coordinates r), and 
M-nuclei, (coordinates R), in a convenient coordinate system. 
The usual Coulomb Hamiltonian, H(r,R), is assumed to have a com
plete set of stationary states, 0/ (r,R), satisfying the time 
independent Schrodinger equation: n 
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(E - H(r,R»)'I' (r,R) = 0 
n n 

(5 ) 

H(r,R) is self-adjoint and has a point as well as a continuous 
spectrum. This spectrum is different from the standard B-O spec
trum. In particular, no energy surfaces appear. Just eigen
values which may be distinct, degenerate or nearly degenerate. 
In the continuous spectrum there can be regions of "spectral con
centration" (i.e. large amplitude of the localized function'!') 
which can be associated with resonances. 0 

We now rotate the coordinates Rand r according to the ABC 
theory [8-10J so that equation (3) is obtained but in this case 
with the rotated nuclear coordinates included. Note that no 
Born-Oppenheimer (BO) approximation is made. The total wave: 
function simply has to satisfy fermion and boson permutation sym
metry and parity invariance. The problems of symmetry and basis 
sets which ensue (which are outside the scope of this presenta
tion) are assumed solvable by successive approximations to the 
energy problem (e.g. starting with BO or diabatic states, then 
using appropriate localized nuclear basis sets etc.). We expect 
the same characteristic ~-spectrum described in refs. [8-10] 
where now the complex poles in general need not be simple but can 
be overlapping (competition between autoionization and autodis
sociation). A two parameter (~,~) dilatation operator (one for 
each type of coordinate) would presumably produce the same results 
while it would be suitable for calculations of electronic reso
nances in the B-O approximation. 

Once this formal operation is defined, the important question 
remains: Since by necessity the practical Hilbert space is finite, 
how should the ABC theory be applied, in a physically meaningful 
and computationally tractable and consistent manner, to an arbi
trary nonstaionary state? 

Before we present our many-body approach, we outline certain 
aspects of the properties of the wavefunctions for nonstationary 
states: 

B. Remarks on Certain Characteristics of Resonance Wave-functions 

Autoionizing as well as (auto)predissociating states decay 
to the adjacent electronic or nuclear continuum because of inter
actions found in their own Hamiltonian. According to time depen
dent theory [2,3J, at t=O of their creation they are described 
by a localized (square integrable) function'!', which as time 
evolves acquires a nonlocalizable part repres~nting the free par
ticle(s). At t=~ the system has decayed into its constituent 
free fragments. An equivalent time-independent picture is that 
of an energy dep~nden~ function 'I'(r,R;z ), satisfying Schrodin-
ger's equation [l4-16j: 0 
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(z - H(r,R»~(r,R;z ) = 0 (6) 
o 0 

with the boundary conditions (for notational simplicity we con
sider only electronic autoionization) 

~~O 0 
r.~ 

1 

_J[ i~ r.1 ~ ,...,,-,c(z»)'/~. xe 01 
r.~w 0 lon 

1 

(7a) 

(7b) 

where ~ is the N-electron antisymmetrizer and the coefficient 
c(z ) is determined by how the asymptotic form is matched onto 
~ ,Othe localized part describing the region where the potential, 
Vo¢ O. 

The functions ~(r,R;z ) can be called Gamow [141 or resonance 
functions and have been th~ ~ubject of man~ investigations, es
pecially in nuclear physics le.g. 3, 17-20J. They are character
ized by the outgoing wave boundary condition through which they 
depend on the eigenvalue z. They are not square integrable 
and therefore matrix elemegts in terms of S~ch]functions must be 
defined in a different, but consistent way L20. One such methoq 
is the extension of the coordinates r to the complex plane~0-22J 
which makes them square integrable. 

We note that this operation can be thought of as an exer
cise in the theory of pert~rbations of the boundary conditions 
of differential equati~ns l3] in analogy with problems related 
to deformeg nuclei [23J. Thus, when the coordinate transformation 
fer) = re l is applied to the differential equation (6) we obtain 
eq. 3. 

A comparison of the above - i.e. the wave-function character
istics of a nonstationary state - to the two methods employed in 
applying the ABC theory, shows that in these methods: 
a) Square integrable basis sets must at the same time account 
for electron correlation in fhe ~ocalized function ~ which does 
not contribute to the decay 2,3J as well as for theOasymptotic 
characteristics of eq. 7b. Since there are no systematics for 
either of them, it is not surprising that it has been necessary 
to employ very ~arge basis sets. 
b) The same! set must account for electron correlation and 
asymptotic effects for all values of the rotation angle~. Since 
all previous experience of choices of basis sets has been for the 
~ = 0 cases, i.e. for ordinary ground or excited state calcula
tions, the choice of a good basis set in the ~-plane is difficult 
as there is no guiding principle behind it. For example, a cor
relation vector which is important for ~ = 0 may lose its impor
tance as the spectrum is rotated and vice versa. 
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The above observations, and comparison with concepts related 
to the properties of_resonances as derived from time dependent 
decay theory [2,3,24} have led us to the following theory: 

C. Many-Body Approach for N-electron, M-nuclei Nonstationary 
States 

The position of resonances can be defined as the complex 
eigenvalue of the non Hermitian matrix equation [2,3, 24] in 
Hilbert space: 

(z - H - A(z )) ~(r) = 0 
000 

(8) 

where H is the projection of H onto the subspace defined by ~ (r), 
the loc~lized function at t=O, and A(z) is the non-hermitian 0 

"self-energy" perturbation operator causing the shift, l!., and the 
width, r, of the nonstationary state. A(z) contains the conti
nuum information. By analogy, we can write eq. 3 as: 

(z - H(O) - K(~))~(r) = 0 
o 

(9) 

where H(O) is the projection of H(~) onto the localized, unrotated 
(~ = 0) Hilbert space, with expectation value E , and the pertur

o bation 

(10) 

contains the asymptotic information causing the shift l!. and the 
width r. 

The operators in eqs. 9 and 10 should be thought of as matrices 
defined in terms of the function space on which they operate. The 
analytic form of K(~) has the correct limit as ~~O, i.e. K(O) = O. 
This means that within the space of square integrable functions, 
the real Hamiltonian yields a real expectation value, <~ IHI~)= 
<~ IH(O)I~)= E. As ~ is turned on, K(~) is added tooH(O),o 

. 0 h 0 1 H 0'1 . b H'" h 1 l.e. t e tota aml tonlan ecomes non ermltlan Wlt a comp ex 
eigenvalue at z , (eq. 2), whose real part, E = E + l!.. This ex
plicit transforgation of the form of the Hamilton~an from H(O) to 
H(O) + K(~) is equivalent to stating that, in a standard CI com
putation using localized and scattering functions[lJ, H(O) re
presents the square integrable function2 and K(~) the scattering 
states and their interaction with the L space. (See the Q,P 
formalism of refs. 1 and 2.) If the function space corresponding 
to the scattering states is excluded, there is no decay i.e. A(z) 
of eq. 8 is zero. As stated earlier, this corresponds to K(~)=O, 
a condition which occurs at ~ = O. 

The preservation of the smallness of (l!. - ir/2) as a function 
of the angle and the consistent and optimum calculation of E and 

o 
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U. - if /2) on a Hilbert space of square integrable functions con
stitutes the foundation of our approach. 

We write for the localized function: 

~o(r,R) = aHF ~HF(r,R) + Ek ak ~k(r,R) (11) 

~HF(r,R) is an independent particle moqel, (IPM), Hartree-Fock 
(or MCHF) function assumed calculable 125j. The corresponding 
Hamiltonian represents the electronic and nuclear kinetic energy 
as well as an average of interactions among all electrons and 
nuclei. 

IPM Hamiltonians are separable and therefore their point 
spectrum can overlap the continuous one of the «N,M) -1) Hamil
tonian, which essentially coincides with the exact continuous 
spectrum. ~ (r,R) are correlation vectors which, to first order, 
contain single and pair ~orrelation functions,of electrons, E(r1 ). 
rr(r1 ,r2), electron-nuclel, rr(r1 ,R1), or nuclel E(R1), rr(R1 ,R2). 
Metnods pf calculating E(r1 ) and rr(r1 ,r2 ) are discussed in this 
volume [26J. We note that, just as with Dound excited states, 
only a few of ~k carry large coefficients and are therefore im
portant for off-diagonal matrix element calculations such as 
radiative and radiationless widths [2,3,27,28]. The remaining 
(infinite) are important only for energy positions. This obser
vation holds for autoionized states. The calculation of E(R1 ), 
rr(r1 ,R1) and,rr(R1 ,R2) necessary for autodissociating states, is 
terra lncognlta. 

Within the B-O approximation, the separation (11) is, by now, 
common practice in ground state calculqtions. However, it has 
not been so common for excited states [26] and even more so for 
autoionizing states where, the systematic and accurate study of 
~ectron corrJelation in N-electron systems is in its infancy 
Le.g. 2,3,29 • Within this scheme, the first step is the accu

rate calculation of an SCF HF function. For atoms, this can be 
done numerically or analytically. Convergence in neutrals and 
negative ions is often difficult and tricks such as Z extrapola
tion must be used. Since there is no minimum principle, the final 
solution is chosen based on criteria such as orbital occupancy, 
nodal structure and the satisfaction of the virial theorem. We 
note that the third criterion is a very important computational 
tool at the HF level. This is because, in our opinion, any bound 
state approach to the calculation of resonances which uses the 
true Hermitian Hamiltonian can only be based on the criterion of 
localization. The virial theorem is a crucial test of localiza
tion in physical systems. Since H-F functions for ordinary bound 
states are known to satisfy the virial theorem rigorously, the 
degree of satisfaction of this condition of HF calculations or 
resonances has been used by us as a measure of the localizability 
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of the corresponding ~ . 
o 
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The second step is the calculation of the square integrable 
correlation vectors ~k' Of the infinity of ~k contributing to E , 
our understanding of excited states [2,26] suggests that those i~
portant for the wave-function characteristics - i.e. for width 
calculations within formula 1 - are mainly those which arise from 
Fermi-Sea and hole-filling correlations. 

The above brief discussion on the goal of our approach and 
on the analysis of the electronic structure of auto ionizing states 
brings us to the related question: Since E is very near the 
exact (complex) resonance energy, and sinceoas ~ is turned on the 
correlation vectors in ~ acquire in general a different and 
unpredictable importance~ is there a transformation of coordinates 
in ~ that preserves this closeness, preserves the electron cor
rela~ion characteristics of ~ and thus allows a rigorous and con
sistent treatment of the pert8rbation K(~)? 

The answer is yes and is derived from an analogy with decay 
theory [2,3, 24J: 

_(i/~~Hthe time dependent case, it is the unitary operator U(t) = 
e , t). 0, (whose Laplace transform, R( z), has the same 
properties as the resolvent R(z,~» that preserves this property: 

(12) 

where ~(t) = U(t) ~(O) is the rotated function in the time plane. 
The resulting perturbation, A(z) is then very small (level shift 
and width). 

By analogy, the equivalent transformation in the ~-plane 
of the wave-function ~ should be given in terms of the dilata
tion operator, D(~), wRich in the ABC theory was used to obtain 
the spectral properties of the Hamiltonian H(~). For the mole
cular.ijamilt~nian used here, this property is D(~) H(r,R) -7 
H(r e1 ,R e1 ). Thus, the following two theorems can be stated: 

.~ Theorem 1: The N-electron, M-nuclei function ~ (~)::::~ (rei~, 
Re1 ) will leave the expectation value E = <~ (0) IOH(O)I~o(O» 
. . d .. th " 1 0 0 0 lnvarlant un er rotatl0ns ln e v-p ane: 

Theorem 2: For a Coulomb Hamiltonian, in an actual Configura-
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tion-Interaction (CI) type calculation with one particle square
integrable, analytic functions as basis sets, all overlap, one 
and two particle ini~§7~,~ rem~~n invariani(~~~'~ tra~~formations 
of the type u(r)->e u(re); U(R)~e U(Re). In the 
~ of atoms this ~ be shown explicitly. ---

Corollary 1: Localized Hamiltonian matrices created at ~=O 
yield the same real eigenvalues and the same expansion coefficients 
for the resulting roots for all ~. 

Corollary 2: In a many-body treatment of ~ (~), all Hartree
rock, single and pair correlation functions whigh are orthogonal 
to core orbitals of lower configurations for ~=O [2] when rotated 
must remain orthogonalized to the rotated same core orbitals for 
~ > o. 

Corollary 3: In general, the norm of ~(~), the exact square 
integrable solution of H(~), will be very close to the norm of 
~ (~). The difference of their expectation values yields the 
l~vel shift, ~, and the width, r. 

Given the above theorems and corollaries, we now turn to the 
calculation of the perturbation K(~) and finally to examples 
which support the above considerations. 

K(~) is a one and two particle operator. Therefore, to a 
good approximation it is pair excitations from ~ that will re
present the important processes involving the cogtinuum. This 
observation allows the treatment of multichannel problems: The 
"asymptotic pair functions" IT (r ,r2), IT (R1 ,R2 ) are seen to 
give rise to autoionization, ~dtoaissocia~ron or both. These 
correlation functions should be such that they describe the asymp
totic region of the resonance function yet they preserve the over
all square-integrability property as required by the ABC theory. 
I.e. we write for the total function ~(~): 

~(~) = a(~) ~ (~) + b(~) X (~) 
o as 

(14) 

where ~ (~) is the rotated ~ and X (~) is the "asymptotic cor
relatiog function" i.e. the gorrect~~n to ~ (~) which introduces 
explicit information about the asymptotic b~havior of the resonance. 
Since X (~) is the square integrable counterpart of eq. 7b, the 
rotatio~Sangle ~ should be greater than the angle characterizing 
the complex eigenvalue. 

D. Optimization of X(~) 

X(~) can in principle be calculated via perturbative or vari
ational procedures which, however, must be different than the 
standard ones applied to bound states because 1) The theory con-
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tains the parameter ~ - i.e. these procedures must be carried 
out directly in the ~-plane 2) There is no minimum principle of 
the Rayleigh-Ritz type on the total (complex) energy of the reso
nance. 

Our approach is based on the use of the Virial Theorem (VT) 
in the ~-plane. In analogy with the HF calculations, we search 
for a constraint which can be related to the localizability of 
the autoionizing states and to the related stationarity as a 
function of ~ of the complex pole as predicted by the ABC theory 
(see fig. 1) and the numerical results of Doolen (fig. 2). This 
stationarity can be expressed as 

~z(~)1 = 0 
d~ ~=~ 

o 

(15) 

where z(~) is the complex eigenvalue 

(16) 

and ~ is the optimum angle at which z(~ )=z , the true resonance 
.• 0 0 0 posltlon. 

The combination of eqs. 15 and 16 produces the condition 

<'I'(~)lv(~) I 'I'(~»I = -2 
<,'I'(~)jT(~) i 'I'(~» ~=~ 

o 
(17 ) 

The VT of eq. 17 has also been derived and employed inde
pendently by Brandas and Froelich [30] and Yaris and Winkler [311. 
In the context of our theory, since E is already very near the 
resonance position, the VT essentially fixes, in principle, the 
width and the shift by fixing the parameters in X(~). To what 
extent this constraint yields a unique solution within finite 
basis set calculations is still unknown. However, we point out 
that an additional constraint may be employeq for width calcula
tions: According to the arguments of refs. [20,32J and the equiva
lence between eqs. 3 and 6, the equation 

(18 ) 

constitutes a constraint on the parameters of X(~) 
( <qt(~) I H(~) i 'P(~» = £ - iy/2 ) which can be employed for the 
calculation of widths. 

IV. APPLICATIONS 

A. Hydrogen Atom 
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The Hydrogen spect~ym has no resonances. Its discrete states 
are poles of (z - H(~» on the real axis. According to the ABC 
theory, they are independent of~. In order to check the ideas 
described above, we did the following: First we showed (the proof 
is trivial) that the rotated hydrogenic functions are solutions 
of the rotated Hamiltonian with real eigenvalues. I.e. (H(~) -
E )~ (~)=O. In this case ~ is a true bound state (say the 1s 
s¥at~). Thus', we showed thgt theorem 1 holds in a case where the 
wave-function corresponding to the localized ~ is known exactly. 
Secondly, we diagonalized H(~) in a basis set 8f unrotated, real 
hydrogenic functions Ins). For the ground state we obtained 
complex eigenvalues from a fixed basis set: 

(19) 

As ~ increased, the coefficients a (~), n> 1, increased 
rapidly in magnitude and the width of tHe ground state was larger 
than typical resonance widths after ~)4°. This shows the origin 
of the slow convergence of the coordinate rotation method where 
up to now only fixed, large basis sets have been used. I.e., an 
arbitrarily chosen set of square integrable functions may be a 
good representation on the real axis but in the ~-plane they need 
not. Thus, the choice of such basis sets has up to now been arbi
trary, lacking a theoretical and consistent background. Rota-
tion of the coordinate of the 1s function makes the pseudo complex 
pole disappear, something that could be accomplished with real 
unrotated functions (e.g. Sturmians) only in the limit of complete
ness. 

B. Gaussian Nuclear Functions and Molecular Nonstationary States 

Slater type orbitals are approximations to the hydrogenic 
solutions and constitute suitable basis sets for calculations of 
the the electronic structure of atoms and molecules. Since the 
hydrogenic Schrodinger equation remains invariant under rotation, 
rotated STO's remain a basis set with fast convergence properties 
in the ~-plane. In our proposed many-body theory, we eliminate 
the Born-Oppenheimer approximation since a) the coordinate rota
tion method is perfectly suited for facing such as challenge, 
and b) in highly excited molecular states which can undergo auto
ionization or autodissociation, the B-O approximation may often 
be useless physically as well as computationally. In analogy with 
the hydrogenic Hamiltonian and wave-functions, we have rotated 
the harmonic oscillator and its solutions and have-obtained the 
;a;e eigenvalues. Thus, we-8uggest that the localized rotated--
Gaussian functions are well suited to describe the nuclear func
tions of molecular nonstationary states in the ~-plane [13.1. 

C. The He 2s2plpO Resonance 
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In order to explore our proposed theory within our presently 
limitedlc8mputer limitations, we chose to study the we!l-known 
He 2s2p P resonance for which accurate results exist Le.g 33]. 
First we computed ~ and E variationally by minimizing 

o 0 

(20) 

where 

Wo = ~HF + X ,<XI~HF>= o,<.x I He+ls> =0 (21) 

1 0 -
~HF is the analytic HF function of He 2s2p P and X contained 16 
correlation vectors with 7 non-linear parameters [26]. The opti
mized E = - 0.692075 a.u. is only 0.023 eV higher than the 

o energy of the large Hylleraas type function of ref. 33. 

According to our theory, the complete rotated wave-function 
was written as 

~(~ ) = a(~) ~ (~) 
o 

+ b(~) II (~) 
as (22) 

where the asymptotic pair correlation function IIas(~) represents 
the "hole-filling" auto ionizing process (2s2p)~(1s e:p) and is 
taken to be: 

IIas(~) = Ei=~A[ls(~)gi(~,ki' ai )] (23) 

ls(~) is the rotated He+ is function. g.(~,k.,a.) represents 
the asymptotic behavior of the Gamow resofiance1 (7E). It has the 
form: 

-k i(~ - ~. + 3R/2) 
C ~ ~ -) ni e- ire 1 g. v,K. ,a. = r 

1 1 1 
(24) 

where (k,a) are parameters to be determined subject to the virial 
theorem constraint. 

Expansion of asymptotic pair correlation functions in terms 
of orbitals of the form (24) may prove useful for resonance studies 
just like Slater type orbitals have become the standard ingredient 
of bound state calculations. We shall call these orbitals 
"Gamow Orbitals" (GO). 

The rotated Hamiltonian matrix was constructed after an ana
lysis of the correlation effects of ~ showed that the HF func
tion is a good approximation to it. ~n fact, a straight-forward, 
simple calculation of the width using eq. 1 with HF functions for 
~ and U(E ) yielded r = 0.040 eV compared with the accurate [331 
rO= 0.03630 eV. Therefore, in the spirit of our theory, we took 
for the diagonal matrix element 
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<'I' (0(}) IH(O(})/'I' (o(}») = E = - 0.692075 a.u. 
000 

(25) 

while for the off-diagonal one, i.e. the one describing the loca
lized-asymptotic interaction: 

(26) 

The approximation (26) coupled with the rotation of 'I' (0(}) reduces 
the computational magnItude of the problem considerab~y. ' We note 
that such approximations become valid and transparent only within 
our many-body scheme which is based on the explicit consideration 
and isolation of the important correlation effects in auto ionizing 
states. In this case we have even been able, as a first approxi
mation, to consider only the HF function. 

The computations were carried out as follows: The Hartree
Fock function, ~HF' had an analytic form so that rotation can be 
carried out. Obtaining analytic Hartree-Fock functions for con
figurations such as 2s2p, which have states below them with iden
tical orbital symmetry, (i.e. 1s np, 1s £p), using methods based 
on the Roothaan expansion approach are slow converging although 
possible [2,29]. Thus, we applied the following procedure: An 
estimate for the 2s and 2p orbitals was provided from the Be 
1s22s2p1pO sequence. A 3-configuration CI was set up where the 
other two configurations were 2sv and v 2p, with v and v single 
5TO's whose exponents and coeffic~ents w~re determi~ed var~ation
ally subject to the constraint of excluding the 1s£p energy line. 
The CI results were then condensed to form new radial functions, 
2s' and 2p' in such a way as to eliminate single excitations, 
(at this stage), and the process was repeated until satisfactory 
(here within 0.001 a.u. of the numerical HF energy) convergence 
was obtained. 

To provide flexibility for the small and intermediate region 
or r, the g. were orthogonalized to the first three members of 
the rotated1 He np Hartree-Fock functions whose unrotated forms 
were taken from ref. 34. We note that the g. can be made compact 
or diffuse by varying the parameters k. accofdinglY. 

1 

In the calculations_re~or!ed_heEe,_we chose m=2 (eq. 9), 
n1=2, n2=3 (eq. 10) and a1=a2=a, k1=k2=k •. For a given set of (k,a) 
tne complex symmetric energy matrix, which depends on 0(} only 
through IT ,was diagonalized for O(}=160 • A limited search around . as - -the reglon k=1.6l7, a= 0.015 - these values were chosen using the 
true resonance position and geometrical arguments - yielded a 
value of f = 0.0538 eV, ~ = - 0.0157 eV. (The accurate values 
of ref. 33 are f=0.0363 eV, ~=-0.0071 eV. However, we note that 
our calculation involved a 3 x 3 CI only!) 

The above results, obtained at a cost of less than 1 minute 
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per (k,~) point on the IBM/125 (a slow machine), suggest a satis
factory application of our theory. We expect them to improve 
substantially by an increase in the flexibility of the asympto
tic pair function - expecially in describing the inner region -
and a search in the ~-plane. The great advantage in this search 
is that the complex matrices which must be diagonalized are small 
since we look only for corrections to E which is invariant to 
rotations. This should be contrasted t8 the standard applications 
of the ABC theory where large complex matrices must be diagona
lized [4,7]. 

V. CONCLUSION 

The CCR method constitutes a rigorous approach to the calcu
lation of energies and widths of nonstationary states. In this 
lecture we make the suggestion that it should be applicable to 
autodissociating molecular states if they are treated outside the 
standard Born-Oppenheimer approximation. In our opinion, within 
the framework of our many-body theory, the computational bottle
neck of this proposal seems to be the HF function of a molecular 
excited state where one treats electrons and nuclei on an equal 
footing. The correlation functions could be expressed in terms 
of the standard STO's and nuclear Gaussians. The above proposal 
is of course very speculative. The B-O approximation has become 
standard practice in Quantum Chemistry and one hesitates to leave 
it even when there is no apparent reason of why it should be ne
cessary, as in the case of predissociation and certain avoided 
crossings of ordinary excited states. 

The other proposal of this lecture is more specific and has 
yielded numerical results: It deals with the many-body treat
ment of resonances within the ABC theory. Our approach involves 
the following practical steps: 
1) Produce a localized unrotated (~=O), compact ~ and the 
corresponding E [2,3,26j. On the average, ~ conta~ns the Har~ 
tree-Fock plus ~O-20 correlation vectors withOoptimized orbitals. 
E is very close to E, the real part of the exact energy in the 
c8mplex plane,so that all the effort to improve E can be done at 
this stage. The rest of the calculation (below),oinvolves the 
energy shift ~;E-E and width r only. 
2) Analyze the c8rrelation effects in ~ and eliminate those 
which are represented by vectors with sma~l coefficients or other
wise expected to have small matrix elements with the continuum-
according to the golden rule (eq. 1). This allows the approxi
mation ~ _ ~', where ~, contains mainly Fermi -Sea and those "hole
filling"Ocor~elation vgctors which contribute to the localization 
of ~ L26,3]. 
3) °Rotate H4H(~) and retain the exact characteristic:s (e.g). its 
small size) of ~ for ~)O by transforming ~ (r)~~ (rel~)3i~ (~), 
with <~ (~)IH(~)f ~ (~~= E • i.e. constant~ The ~otated. gomplete 

000 
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Hamiltqnian.matrix is.then formed as: ~1= E , H1j =Hj1=<~~(~)1 
H{~)lxJ (~», Hjk=~J (~) I H(~)lxl< (~)J. ~here are only a few 
XJ (~)a~ (3-6) "asymp!f8tic correla!f~on" vectors containing ro
t~~ed bound as well as "Gamow orbitals" (eq. 24). Therefore, the 
magnitude of the complex matrix in the ~-plane whose diagonaliza
tion yields the energy shift ~ and width r, is, on the average, 
(4x4-BxB) only!, with a rather simple matrix element structure 
(typically 45-65 configurational matrix elements). This should 
be compared with the previous methods of the brute force CI type 
where: For a two electron system and BO Hylleraas function ex
pansion, there are 3240 complicated unrotated matrix elements to 
be set up (only once), followed by a series (10-20) of BOxBO 
complex diagonalizations at various angles, in order to choose 
the E(~) for which the assumed basis set is most stable. 
4) The "asymptotic pair functions" II ,which give rise to auto
ionization and autodissociation and ar~sexpanded in terms of ro
tated fixed H-F core orbitals and parametrized Gamow orbitals, are 
optimized by imposing the constraint of the Virial Theorem in the 
~-plane (eq. 17). The choice of the optimum ~ at which this op
timization should take place most efficiently as well as the choice 
of the best set of Gamow orbitals (whose behavior at small and 
intermediate values of r is also critical) for an arbitrary system, 
constitute interesting future research directions within this 
theory. 

The essence and the importance of this approach is that 
even for large systems, the complex matrices which are dia~ona
lized in the ~-plane are small since Eo=<~o(~)IH(~)I~o(~») is 
fixed, and one must optimize only the asymptotic correlation. 
Thus, the drastic reduction of the magnitude of the problem and 
the systematic and efficient manner by which localized and asymp
totic correlation effects are incorporated into the complex co
ordinate rotation method within our many-body theory, allow consi
derable optimism as regards the accurate treatment of many 
electron-nuclei resonances by the CCR method. 

Currently, the theory is being applied to inner hole states 
of many-electron systems. 
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INTRODUCTION 

The adequate description of bond-breaking 
processes is a difficult problem since it requires 
very good correlated wave functions to account for 
the generally quite large difference in correlation 
energy between the combined system and the indivi
dual fragments. The situation is especially critical 
if multiple bonds are broken as in N2' for example, 
for which the single-configuration Hartree-Fock treat
ment yields only a dissociation energy of De = 5.18 
eV [1], i.e 4.72 eV below the experimental result [2J. 
But even in systems containing only a single bond such 

as F2 the use of correlated wavefunctions is essential 
since it is well-known that this molecule is not even 
found to be bound with respect to two F atoms in the 
Hartree-Fock approximation. And finally it is also 
obvious that extremely weak bonds like van der Waals 
interactions can only be described by methods going 
beyond the single-configuration approach. 

The problem seems to be even more difficult 
for the situation in which not only ground state 
but also excited state potential energy surfaces 
up to the dissociation limits have to be treated 
since in this case correlation energy differences 
between fragments and combined system as well as 
between various electronic states must be accounted 

403 

Cleanthes A. Nicolaides and Donald R. Beck (eds.), Excited States in Quantum Chemistry, 403-416. 
All Rights Reserved. Copyright © 1978 by D. Reidel Publishing Company, Dordrecht, Holland. 



404 SIGRID D. PEYERIMHOFF AND ROBERT J. BUENKER 

for in order to obtain a quantitativly reliable des
cription of the behavior of the entire system. In 
addition further complications might arise by the in
teraction of various excited states, so that 
treatments going beyond the Born-Oppenheimer approach 
or those involving spin-dependent interactions (for 
example LS coupling) must be introduced. Hence it is 
clear that quite elaborate procedures are necessary 
to describe photochemical processes in a quantitative 
manner. 

Fortunately the knowledge of the approximate 
behavior of various excited state potential surfaces 
is already sufficient in a number of cases in order 
to obtain a better understanding of various photo
chemical aspects, and hence it is not necessary to 
always push the theoretical treatment to its limits. 
In what follows a number of examples will be given 
in this context to demonstrate the accuracy and pos
sible applicability of treatments at various levels 
of sophistication. 

II. ACCURACY OF GROUND STATE DISSOCIATION CURVES 

The accuracy with which ground state disso
ciation curves can be calculated depends in the main 
on the AO basis set employed and to some extent on 
the characteristics of the special system under in
vestigation. Small systems such as He2+ can of course 
be treated extremely well without much computational 
(or theoretical) effort [3]. In a study of this sys
tem by an MRD-CI the dissociation energy is in error 
by no more than 15 meV based on a comparison of the 
calculated potential energy surface with experimental 
vibrational and rotational quantum numbers and inten
sities of observed levels [3]; adjustments in the 
calculated potential energy curve which had to be 
made to obtain full consistency with the measured 
data were less than 1.0 meV in the important bonding 
region between 103 and 3.5 bohr. The correlation 
energy shows much larger variations in this area 
(Table 1). The theoretical treatment was thereby 
designed in such a way that each data point on the 
potential energy surface required less than five 
minutes of CPU time on an IBM 370/168 (all steps 
included, i.e. AO integral generation, SCF itera
tions, MO transformation and CI time). 
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Table 1 Accuracy test for the H e2-l(lLgf) potential curve. 
Given are the energy differences (in hartree) 
between the experimental curve and the calculated 
values. For comparison the calculated correlation 
energy is given in the last column. 

R (bohr) ~E (exptl.-calc.)a) calculated Ecorr 

1. 30 0.00001 0.06101 
1.40 0.00002 0.06175 
1.50 0.00001 0.06255 
1. 75 0.00000 0.06489 
1. 90 0.00000 0.06640 
1.975 0.00001 0.06712 
2.0626 0.00000 0.06795 
2.15 0.00002 0.06875 
2.25 -0.00001 0.06962 
2.50 0.00000 0.07152 
2.75 -0.00001 0.07297 
3.00 -0.00003 0.07395 
3.50 -0.00001 0.07492 
4.00 -0.00017 0.07503 
5.00 -0.00022 0.07448 
5.50 +0.00004 0.07417 
7.50 +0.00001 0.07365 

10.00 +0.00056 0.07359 

a) All values are normalized, so that ~E = 0 for the mini-
mum. Absolute error probably 0.00535 hartree (= 0.146 eV). 

The very weak van der Waals minimum for 
HeH2 in its ground state is only 0.60-4hartree [4,5J 
and hence the CI treatment must be designed sucb as 
to account for at least this accuracy in order to 
give meaningful results for the He+H2 interaction. 
In this case it is also quite important to consider 
the variation in the H? distance with the approach 
of the He atom, which ~urns out to be a quite impor
tant factor in this reaction [5,6]. 

The calculations of dissociation energies 
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for larger systems such as O2 and N2 exhibit of course 
considerably larger errors if AO basis sets of stan
dard size (DZ plus some polarization) are employed 
in the MRD-CI treatment, although such basis sets 
have been generally found to be quite sufficient for 
the description of excitation energies. In 02 the 
calculated dissociation energy is 5.1 eV [7] compared 
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to the measured quantity of 5.21 eV; in N2 the MRD-CI 
treatment improves the situation considerably com
pared to the Hartree-Fock value (5.18 eV) and finds a 
De of 9.33 eV [8J employing a relatively large basis 
of 72 AOls (DZ plus bond and two nitrogen d polari
zation species), but this value falls still short of 
the required 9.90 eV measured in experiments. It must 
be pointed out, however, that N2 with it~ triple bond 
dissociating into two nitrogen atoms in S states is 
probably one of the most difficult dissociation 
processes to treat computationally. 

A further example to be chosen in this sec
tion is the hydrogen abstraction reaction [9,101 for 
systems like HN2 or HCOo In this case a significant 
activation barrier has to be overcome but in the 
low Cs symmetry (bent HCO molecule) the SCF treatment 
is already sufficient to describe this process (18.8 
kcal/mole [9l vs 17.5 + 2 or 15.7 + 1.5 kcal derived 
from experiments), so that the CI treatment adds 
essentially a constant lowering to all the SCF data 
points along the H-CO dissociation path. This reaction 
is also interesting from a theoretical point of view 
[9] since in the2linear nuclear framework the lowest 
HCO state is of n symmetry and hence cannot disso
ciate (according to the usual symmetry rules for 
surfaces described at the electronic tevel)into 
the dissociation products H(2S) + CO( E+) with com
bined 2E+ symmetry; in the often-used language this 
would be a symmetry-forbidden process. On the other 
hand as soon as the restriction of a linear nuclear 
framework is relaxed (the lowest-energy occurs for 
the bent molecule conformation) the 2n state will 
split into an AI and A" component ~here~y the AI 
species can very readily mix with E+- AI 
configuration of the dissociation products, and the 
abstraction reaction would be classified as a 
symmetry allowed process. It is also worth noting 
that this mixing in the lower Cs symmetry occurs at 
the orbital level and hence can already be accounted 
for at the SCF level of treatment. 

In polyatomic systems various dissociation 
paths might be of importance and it is generally 
quite difficult to treat all at the same level of 
accuracy and at the same time keep the amount of 
computational effort within reasonable limits. 
Standard examples found in the+literature include 
the surface calculations on H3 or H2F [11J. Another 
example is given in Table 2 wfiich compares the per
formance of the SCF and CI procedures in describing 
the stability of the dissociation products of HOClo 
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Table 2 Relative stabilities (in kcal/mole) of several 
HOCl fragments obtained from various treatmentsa) 

De Do 
SCF CI best C1 best C1 Exptl. 

HOCl (lAI) 0.0 0.0 0.0 0.0 0.0 
H(2S)+C10(2rr ) 80.4 98.6 97.9 91.1 98.0 
OH(2rr )+Cl(2P) 16.0 47.1 53.6 62.0 60.3 
0(3p)+HC1(1};+) 5.5 44.7 50.9 58.3 59.3 
H(2S)+Cl(2p)+ 82.8 142.4 150.4 153.5 165.8 
0(3p) 

a) For details see the original reference [12J 

It is quite obvious that again the hydrogen abstrac
tion process is treated at least in qualitatively 
reasonable fashion by the SCF method, but that the 
single-determinantal description for the 0(3p) ab
straction is especially poor. Details about the CI 
treatment can be found in the original reference l121 

III. EXCITED STATE POTENTIAL CURVES LEADING TO DISSO
CIATION 

Various potential curves calculated by the 
MRD-CI method for the 02 molecules ~re given in 
Fig. 1 • Two dissociation limits 0(5p) + 0(3p) and 
0(5p) + 0(1D) are approached by the various curves 
and although the last data point given is only at 
an 00 distance of 4.08 bohr, it is clearly seen from 
the figure that the calculations are able to des
cribe the potential energy curves up to the disso
ciation limi~s in a quite satisfactory mannero The 
form of the Z - ground state curve is represented 
very well (thegcalculated stretChing frequency is 
1621 cm-1 compared t0315§0 cm- ~iven1experim5ntallY) 
and all five curves ( Zg ,3~u, TI u ' TIu and TIU) 
converge to the first dissociation limit (calculated 
at 501 eV compared to the experimental 5.21 eV) to 
within 0.1 eVe The relative energy difference between 
the ground state and the B3zu- state is also in ex
cellent agreement with spectroscoP3c measurements 
since the calculated 0-0 B3z u - 4-- Z g - transition 
energy is 6.07 eV compared to the corresponding ex
perimental To value of 6.12 eVe Furthermore calcula-
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Fig. 1 Potential Curves for various states of 02 
obtained from MRD-CI calculations. 

ted and experimental upper state stretching f,equen
cy compare quite satisfactorily (v = 758 cm- calco 
versus 709 cm-1 exptl.) so that itOcan be assumed 
that the second dissociation limit 0(3p) + 0(1n) is 
also approached ~o within an accuracy of 0.1 eVo 

The calculated B3Iu- potential surface is 
intersected by three ITv states of singtet, triplet 
and quintet multiplicity, whereby the ITu is found 
to cross between v' = 0 and v' = 1 while the other 
curves cause the main perturbations around v' = 3 
(3IT u at the inner B3Eu limb between vibrational 
levels 3 and 4 and ?rr u at the outer branch); coupling 
matrix elements between the respective states would 
have to be evaluated in order to obtain a more quan
titative theoretical picture of the predissociation 
phenomena which are observed for this B state experi
mentally. 
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Table 3 Dissociation limits (in eV) in N2 (R =10 bohr) obtained 
from the MRD-CI treatment and comparison with experiment 

State o (4S + 4S) 
e 

o (4S + 20) e 
o (4S + 2p) e 

7'i. + 9.33 
5 u+ 

9.37 'i. 
1 9+ 9.29 'i.9 
2xN(4S) 9.28 
31I 12.08 
3 u 

lIu 13.39 
Experiment 9.90 12.29 13.48 

4 4 Three differ ent2dissociation limits, namely 
8 + 8, 48 + 2D, 48 + P have been studied in N2 by 

the MRD-CI method [8J. Actual5calculations for tne 
energies of the lowest 1Eg+, Eg+ and 7Eu+ states at 
NN = 10 bohr agree within 0.08 eV (Table 3) with one 
another and coincide for all practical purgoses with 
the energy of two nitrogen atoms in their 8 states 
once the same AO basis set is employed. In this 
connection it must be pointed out that such agreement 
is only obtained through the use of the extrapolation 
procedure to account for the weakly interacting species; 
the CI results truncated at a particular threshold (~ 
0) show much larger variance. It is also interesting 
in this connection that the+number of refer~nce species 
(one for 7Eu+, six for 5Eg and 20 for Eg) as well 
as the order o! the total CI sPfce+(39288 for 7Eu+, 
202198 for 5Eg and 224710 for ~g) vary considerably 
from one state to another, whereby by far the smallest 
secular equation (order 573 at zero threshold with 
one reference species) is obtained for4the calcula
tion of a single nitrogen atom in its 8 state. 

The calculatiomfor the higher dissocation 
limits are also quite satisfactory in the large AO basis 
(Table 3), but more sizeable errors [8] occur (up to 
0.80 eV in the respective dissociation energies) if 
only a DZ basis with bond polarization functions 
(amounting to a total of 40 AO's instead of 72) is 
employedc 
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Various potential curves for the approach of 
a He atom to H2 in a number of excited states have 
also been investigated and very acceptable accuracy 
for the MRD-CI method in the calculation of the va
rious (predominantly van der Waals minima) has been 
observed [5,6J. In this study quenching of H2 in 
special vibrational levels of electronically excited 
states by the presence of He atoms could be qualita
tively explained thereby. 

IV. APPLICATION TO PHOTOCHEMISTRY: NH3 PHOTOLYSIS 

A. NH3 Excited States 

The photodecomposition of NH3 into various 
fragments has been studied quite extensively as a 
function of the incident frequency of light by va
rious experimental procedures [13J, and the CI method 
has recently been applied [14J for the investi~ation 
of the phot~chemica~ NH3 fragmentation into H( S) and 
NH2 in its B1 and A1 states. The most important 
features of this study [14J will be reviewed in the 
present lecture. 

The first excited states of ammonia, being 
a saturated system, can be characterized in the 
main as Rydberg species originating from a transi
tion of the highest occupied MO (3a1) into 3s and 
3p united-atom-like AO'so Ex~erimentally the first 
two, denoted by A (3a1 -- 3s) and B (3a1 - 3px, 3py) 
have been well characterized while the third state, 
C (3a1 - 3pz) is occasionally still considered as 
being part of the B+-X transition, although detailed 
electron impact work [151 has clearly identified it 
as a separate electronic transitiono The molecule 
prefers a planar geometry in all three Rydberg series 
and hence the appropri~te sgati~l symmet1y designa
tion of the states is A1'(X), A2"Ot) , E"(B) and 
1A1'(C). Calculated vertical and 0-0 excitation ener
gies are contained in Table 4 for comparison with 
experiment together with the corresponding oscilla
tor strengths. 

The calculations agree very convincinglYN 
with the well-known energy and intensity of the A 
band (Table 4). There are small deviations between 
corresponding calculated and experimental values 
for the location of the 0-0 band of the B transi
tion, however; the origin of this 13 A-- X system 
was originally placed [16J at 7.455 eV and was later 
[17J corrected to 7.34 eV, but the CI calculations 
predict it to be still lower by at least one (or 
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Table 4 Calculated properties for the first three excited 
states in NH3 

r-/ B 'C A 

C3v geometry 
1A IE 1A symmetry 1 1 

excitation 3a1 --.3s a1 - pX,y 3a1 --3pz 
fiE (eV) 6.29 7.84 8.21 
f 0.089 0.002 0.002 

exptl. flE(eV) 6.39 (v=6) 7.91 (v=5,) z8.14 
(7.9 - 8.6) 

exptl . f 0.079, 0.088 com,Q.arable 30 times r-
0.0696 to C weaker than A 

D3hgeometry 
1A II 1E" 1A I symmetry 
II 2 II 1 

excitation 1a2 -3s a2 -3px'J 1a2" -.,..3pz 
fiE (eV) 5.61 6.99 7.34 
exptl. To (eV) 5.72 7.34 -<::. 7.90 

C2v geometry 
18 1A +18 1A symmetry 1 2 1 1 

perhaps two) v I quanta (Table 4) at 7.10-7.20 eV 
if the same ac6uracy is assumed as in the case of the 
A~ X band. This renumbering (by flv = 1) would place 
the intensity maximum at VI = 6 (instead of VI = 5 
as assumed so far) in line with the situation for 
the much stronger A~ X transition. The location 
of the 0-0 band of the C -- X transition is not known 
experimentally while the calculations place it around 
7.34 eV; i.e. 0.87 eV below the calculated vertical 
transition energy, in close analogy to the situation 
in the A 4- X system. 

B._ NH3--+NH2(2B1 ) + H(2S) Decomposition 

It seems to be well established [13] that 
production of NH2 in its X2B1 ground state occurs 
via primary excitation into the A state of ammo
nia; the dissociation process NH3(1A2") - NH2( 2B1)+ 
H(2S) is a spin- and spatially-allowed process even 
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if the relatively high C2v symmetry is maintained 
throughout. Line broadening of the upper state indi
cates that the barrier toward dissociation is re
latively small and the fact that no emission is seen 
from this Rydberg state would appear to support this 
assumption. Results of SCF calculations (restricted 
to C2v symmetry) given in Fig. 2 support such an 

Elharlree) 
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-55.9 
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-56.1 

D3h 
NH3 I 

, 1 
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e 2v Symmttry 

" 1 __________ 
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I 
I 

C ('A;l : 
'11 0,"_3 po," I 

A 'A2: 
"0;'-3.11 , 

I 

2.0 3.0 4.0 7.0 .B 
0., 

Fig. 2 Calculated SCF potential curves for frag
mentation of NH, in various states of NH2 + H; 
C2v symmetry assumed 

assignment for the dissociation process in an al
most quantitative manner: while H for this process 
is determined to be -1.2 eV on the basis of thermo
dynamic data, the calculated energy difference bet
ween NH in its A(1A2") state and the products NH2 
(2B1)+H3(2S) is -1.1) eVe From all vibrational NH, 
levels in this state tunnelling through the barrier 
seems to be possible. 

From a more technical point of view it is 
interesting that the barrier to hydrogen abstrac
tion (as in HCO, for example [9,10}) can already be 
obtained at the SCF level of treatment. In this case 
the 3s Rydberg orbital is converted along the reac
tion path into a 3s + a* (NH) and finally into a 
pure 1s hydrogen atomic orbital at the NH2+H disso
ciation limit. Such a continuous transformation from 
a Rydberg species into one of purely valence-shell 
characteristics (mixing at the orbital rather than 
at the configuration level) is observed in various 
other systems such as BH [18J, HNO or H20 (Mulliken 
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refers to this process, or rather the reverse thereof, 
as "Rydbergization" l18])o An important distinction 
in describing this type of interaction as opposed 
to a more commonly occurring interaction (or avoided 
crossing) between states is simply that there must 
not be a well-defined complementary electronic state 
which can be unambiguously identified at each value 
of the reaction coordinate [19]. Similar behavior is 
also expected for analogous states in the photolysis 
of water or methane. 

C. NH3 --. NH2(2A1 ) + H(2S) Decomposition 

On the basis of ener~ consideration it is 
quite often assumed that the B(1E") state ~f ammo
nia induces photolysis into NH2*(1A1) + H( S). Under 
the restriction of a refction path maintaining C2v 
symmetry, however, the E" inducing specied' corre
lates with either A2 or B1, whereas the fragments 
possess A1 symmetry, hence making the overall pro
cess symmetry-forbidden in the usual ~ense. On the 
other hand on energetic grounds the C(1A1') state 
would also be a likely candidate to induce photolysis, 
and indeed symmetry arguments wquld speak more in 
favor of such a reaction since A1' correlates di
rectly with A1 in C2v2symmetry, i.e. the symmetry 
of the NH2*(2A1) x H( S) fragments. 

SCF calculations for the corresponding trip
let state (Fig. 2) (which can be taken to be repre
sentative for the Rydberg singlet state of importance 
in the present discussion) show that after configura
tion mixing with a state of like symmetry, a very 
similar potential energy curve is ~btained connecting 
the C state with the NH2(2A1) + H( S) fragments as 
has been calculated in connection with the decompo
sition from the A state. A relatively small barrier 
for the singlet is therefore expected which again 
makes a tunnelling process quite probable. In this 
case, however, the change in character of the upper 
state during dissociation requires actual CI mixing 
in the conventional sense.In addition crossing with 
the 1A1 ground state potential curve will occur at 
large NH2-H separations in the C2v framework, which 
will complicate somewhat the assumed reaction path. 
Finally it should also be mentioned that the thres
hold energy for NH2(2A1) fluorescence is 7.56 eV, 
i.e. a value which would also be somewaht more con
sistent with the location of the 0-0 band for the C 
state rather than that of B, which has so far been 
thought to be the inducing species for this process. 
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V. CONCLUDING REHARKS 

The various examples discussed in the lec
ture have shown that present-day CI calculations are 
quite feasible for the reliable description of all 
portions of potential energy surfaces (including the 
dissociation limits) within the Born-Oppenheimer 
framework for ground and electronically excited 
states of molecules or molecular systems. They will 
become a very useful tool for the detailed study of 
photochemical processes of small systems if problems 
occurring in connection with the interaction of 
various states can also be dealt with in a quanti
tative manner. Such investigations will require treat
ments going beyond the Born-Oppenheimer approxima
tion and/or the spin-independent hamiltonian. 

a Non-adiabatic matrix elements of the form 
<~ila-I~·> which couple two or more CI states can 
alreaay 1e calculated using CI wave functions of stan
dard size (3000 - 5000 expansion terms) [20]. Rou
tines to evaluate matrix elements for spin-orbit 
and spin-spin interaction at the CI level are being 
written in various laboratories in order to calcu
late fine structure splittings as well as transitions 
between states of different multiplicity. And finally 
it will also be necessary to extend the treatment 
of vibrational features in order to include rota
tional phenomena. 

Progress is being made on the solution of 
all of these problems so that there is a realistic 
hope to be able to use the theoretical treatments 
based on the MRD-CI procedure in the not too distant 
future in order to study quantitative spectroscopic 
and photochemical details of this nature which cannot 
be dealt with by purely experimental methods. 
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THE ROLE OF THE EXCITED STATE IN ORGANIC PHOTOCHEMISTRY 

Josef Michl 

Department of Chemistry, University of Utah, 
Salt Lake City, Utah 84112, U. S. A. 

1. INTRODUCTION 

Organic photochemical reactivity, along with organometallic 
reactivity, poses currently perhaps the most exciting challenge 
to those interested in theoretical organic chemistry. Because 
of their inherently more complicated nature, photochemical reac
tions are very difficult to analyze experimentally to the degree 
of mechanistic detail to which one has become accustomed in the 
case of thermal reactions. Even relatively crude theory is thus 
offered a good chance to make fundamental contributions to the 
understanding and prediction of the events occurring between 
initial excitation of an organic molecule to an electronically 
excited state (S, singlet; T, triplet) and the emergence of the 
first product in its thermalized ground state (SO), 

The material presented in these notes is meant to provide 
a brief survey of the subject for those unfamiliar with it, and 
can in no way be considered exhaustive. Moreover, the field of 
theoretical organic photochemistry is in the midst of rapid 
development and is full of controversies and unsettled issues. 
Inevitably, the examples selected for illustration will reflect 
the author's biases and interests, and it is important to keep 
in mind that many of the presently accepted concepts may well 
change in the future. 

We shall start by outlining the current physical picture of 
the photochemical process for an organic molecule in solution. 
This is based on the Born-Oppenheimer approximation, i.e., On 
the concept of motion on potential energy hypersurfaces, with 
non-radiative jumps between surfaces added as an afterthought. 

417 

Cleanthes A. Nicolaides and Donald R. Beck (eds.), Excited States in Quantum Chemistry, 417-435. 
All Rights Reserved. Copyright © 1978 by D. Reidel Publishing Company, Dordrecht, Holland. 



418 JOSEF MICHL 

This description will naturally introduce the distinction of two 
broad and partially overlapping categories of electronic excited 
states, which we shall refer to as "spectroscopic" and "reactive" 
for lack of better terms, and we shall then proceed to outline 
their main characteristics for selected classes of organic com
pounds and illustrate their role in a simple description of the 
photochemical process. 

2. A SIMPLIFIED MODEL OF THE PHOTOCHEMICAL PROCESS 

Electronic excitation, whether by photon absorption or by 
energy transfer, changes the electronic part of the molecular 
wavefunction and, to a good approximation, leaves t~ vibra
tional part of the wave function unchanged: 1jJ 1·1jJ" ~ 1jJ l'·1jJ "b' 
At low temperatures, 1jJ "b is the zero-point ~lbr~t£onal funct¥6n 
corresponding to the p~tential energy hypersurface of the ground 
state. In general, this will not be a vibrational eigenfunction 
of the excited state hypersurface, so that immediately after ex
citation, it will start to develop in time. Collisions with the 
surrounding medium will complicate this process. In a very short 
time, On the order of picoseconds, the molecule will end up 
thermally equilibrated in one or another of the accessible minima 
in the excited state hypersurface, with probabilities which could 
in principle be estimated from a trajectory calculation or an 
equivalent. 

Three complications now need to be considered. First, even 
if the excited electronic state was not the lowest one of a given 
multiplicity, i.e. it was Sn or Tn rather than Sl or Tl , internal 
conversion (radiationless jumping between surfaces of like mul
tiplicity) will bring the molecule to the Sl or Tl hypersurface 
anyway, typically on a picosecond time-scale or even faster, and 
the extra electronic energy will be first converted into vibra
tional energy of the mOlecule and then lost to the surrounding 
thermal bath. The probabilities with which the molecule ends 
up in one or another minimum in Sl (or Tl ) may in principle be 
quite different when the initial excitation is into a higher 
state Sn (or Tn) (the chances of reaching remote minima usually 
improve as the excitation energy increases--"upper excited state 
reactions"), or even into a different vibrational level of the 
Sl (or Tl) state ("hot excited state reactions"), but in practice 
such effects have been observed relatively infrequently, and 
organic photochemistry in dense media is usually considered to be 
wavelength-independent, although this appears to be a dangerous 
oversimplification. 

A second complication arises from the fact that internal 
conversion from Sl to So may at times also occur extremely fast, 
so that the first vibrationally equilibrated species which emerges 
already is in the electronic ground state ("direct reactions"). 
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It is not clear how widespread the occurrence of these reactions 
is in organic photochemistry. Points at which such very rapid 
return from Sl to So occurs have been referred to as "funnels" 
in Sl' In a more general sense, the expression "funnel" is 
used for any minimum in Sl or avoided touching of Sl with So 
which efficiently returns molecules to SO, be it after vibra
tional equilibration or before. 

A third complication occurs in molecules containing heavy 
atoms or certain other structural features which accelerate 
intersystem crossing from the originally reached singlet mani
fold to the triplet manifold to such an extent that it competes 
with vibrational relaxation in the singlet manifold. The first 
thermally equilibrated species formed may then be in a minimum 
in the Tl hypersurface even if the initial excitation was into 
Sn' 
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In one way or another, picoseconds after the initial excita
tion, the molecule will typically find itself thermally equili
brated with the bath in a local minimum in the 51' Tl' or So 
hypersurfaces: in Sl if the initial excitation was by photon 
absorption, in Tl if it was by sensitization, or if special 
structural features such as heavy atoms are present, and in So 
if the reaction was "direct". Thus, the first two types of pro
ceSses involve an intermediate and are sometimes referred to as 
"complex reactions", as opposed to "direct reactions" which do 
not. Quite commonly, but not always, the initially reached 
minimum in 51 (or Tl ) is located at a geometry which is close to 
the equilibrIum geometry of the original ground-state species, 
so that no net chemical reaction can be said to have taken place 
so far, only a relaxed excited state of the starting material has 
been prepared. 

Next, slower processes can come to playa role. The most 
important among these are, first, thermally activated motion 
from the originallY reached minimum over relatively small barri
ers to other minima or funnels, which represent adiabatic photo
chemical reactions proper and can often be described by ordinary 
absolute reaction rate theory; second, intersystem crossing, 
which frequently occurs on a nanosecond time-scale and takes the 
molecule from the singlet to the triplet manifold and thus 
eventually to a new minimum in Tl ; third, fluorescence 
(Sl ~ So + hv, nanosecond time-scale) or phosphorescence 
(T l ~ So + hv, usually millisecond or slower time-scale) which 
return the molecule to the ground So surface; and fourth, radia
tionless conversion Sl ~ So or Tl ~ SO' which is usually insig
nificant unless the 51-So (or Tl-SO) energy gap in the region of 
the minimum is small. Other processes are possible, such as 
further photon absorption or either excitation or de-excitation 
by energy transfer (T-T annihilation, quenching), but will not 
be discussed here. 
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The description given so far is best suited for unimolecular 
photochemical reactions. If the process is bimolecular, both 
components must be considered as a "supermolecule" and the above 
description is then again valid except that motion along certain 
directions in the nuclear configuration space of the supermole
cule is unusually slow since it is diffusion-limited. 

Whether the eventual return to So is radiative or radiation
less, its most important characteristIc is the location of the 
minimum in Sl or Tl from which it occurs in the nuclear config
uration space, i.e. the geometry of the species at the time of 
the return. If the return occurs to a region of So hypersurface 
which is sloping down back to the starting minimum, the whole 
process is considered photophysical since there is no net chemi
cal change. If the return is to a region of So which corresponds 
to a "continental divide" or which clearly slopes downhill to 
some other minimum in SO' a net chemical reaction will have 
occurred as a result of the initial excitation, and the process 
is considered photochemical. In this latter case, radiative re
turn ("adiabatic photochemistry") is uncommOn. In either case, 
non-radiative return produces a species with considerable excess 
of vibrational energy, which may travel over some normally for
bidding barriers to yet another minimum in Sl before it equili
brates thermally with its surroundings ("hot !;round state 
reaction"), but such processes appear to be very rare in dense 
media. 

A simplified theoretical treatment of a photochemical reac
tion can then in principle proceed in three stages. First, the 
location of the minima in the Sl (or Tl ) hypersurfaces must be 
determined. Second, it must be determined which of the minima 
are accessible, i.e. not separated by insurmountable barriers, 
given the initial excitation conditions, and it must be estimated 
which of the minima will actually be populated with significant 
probabilities and provide points of return to the ground state. 
Third, it must be determined from the shape of the So surface 
what the products of return from these important minima in Sl 
(or Tl) will be. All of these steps are difficult; the second 
one appears to be the hardest. In practice, one is usually 
reduced to working backwards, i.e. to rationalizing observed ex
perimental results rather than making ~ priori predictions of 
new types of reactions. 

Already such a limited program requires considerable insight 
into the nature of excited state hypersurfaces, permitting esti
mates of the location of minima and barriers under conditions 
where reliable calculations are prohibitively expensive and 
where even crude calculations are less than straightforward, so 
that qualitative arguments based on devices such as correlation 
diagrams frequently have been the only recourse so far. It 
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should be noted that a calculation of the shapes of the excited 
singlet potential energy hypersurfaces along realistic reaction 
paths, which usually lead through regions of biradicaloid geome
tries, cannot be reasonably performed by straightforward applica
tion of existing standard MO programs, since these generally 
begin by a closed-shell SCF calculation. 

3. "SPECTROSCOPIC" AND "BIRADICALOID" MINIMA IN EXCITED STATE 
HYPE RSURFACES 

There are two basic types of geometries at which one would 
intuitively expect mInIma in Sl and Tl hypersurfaces to occur. 
First, "spectroscopic" minima near ground state geometries. 
After all, excitation of one electron out of dozens may well 
represent only a minor perturbation in the bonding, particularly 
in a relatively large molecule: the fluorescent Sl and phos
phorescent Tl states of benzene have roughly the geometry of its 
So ground state. Even in smaller molecules the difference, 
though noticeable, is frequently quite small: Sl and T 1 nn* 
excited formaldehyde is pyramidal rather than planar but still 
quite similar to So formaldehyde, etc. Radiative processes 
between such minima may be somewhat constrained by the Franck
Condon principle, but are generally readily observable, hence 
"spectroscopic" excited states. If such an excited state mini
mum is reached by approximately vertical excitation from a So 
minimum, and the molecule then returns to SO, either non-radia
tively or radiatively, it will generally land in the same 
minimum in which it started with no net chemical change (except 
if a "hot ground state reaction" intervenes, but these appear 
to be quite rare in dense media, except perhaps for interconver
sion of conformers). Only if return to So occurs from a "spec
troscopic" minimum of one species after initial excitation of 
another species, after significant geometry and bonding changes 
while in the excited state, will a photochemical change result. 
These are "adiabatic photochemical reactions", quite rare for 
large molecules except for simple proton-transfer processes. 
An example of such a reaction is the rearrangement of dewarnaph
thalene to naphthalene. 

The other type of geometries at which one can expect minima 
in Sl and Tl hypersurfaces (or "funnels" in Sl for rapid return 
to SO) are those of biradicaloid type, i.e. those in which the 
simple MO picture of the molecule shows two roughly non-bonding 
orbitals occupied by a total of only two electrons in the ground 
state. Such geometries are usually highly unfavorable in the So 
state, since the two electrons contribute nothing to bonding. 
As a result, one less bond is present than is effectively possi
ble. Upon distortion to a geometry at which the two orbitals are 
caused to interact, one becomes bonding and holds both 
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electrons in the ground state, while the other becomes antibond
ing. In the excited states Sl and Tl the situation is quite 
different. Now, the same distortion will not be stabilizing but 
is likely to bring about destabilization, at least initially, 
since only one of the two electrons can be kept in the orbital 
which becomes bonding, while the other is kept in the orbital 
which becomes antibonding and the effect of the latter usually 
prevails. The simplest example is the breaking of a sigma bond 
in its SO, Sl and Tl states (Figure I). The minimum in the So 
state occurs at a short intermolecular distance which is clearly 
not biradicaloid, the 0 orbital being strongly bonding, the 0* 
orbital strongly antibonding. On the other hand, the minimum in 
the T state occurs at infinite internuclear separation, a 
clearly biradicaloid geometry at which two non-bonding orbitals 
are present. The simplest example is the H2 molecule, with a 
minimum in So at O. 74 ~ and a purely dissociative Tl state. The 
Sl minimum occurs at an intermediate but still relatively long 
internuclear distance (in H2 this is 1.3 ~), at which the 0 
orbital is much less bonding and 0* much less antibonding than 
they were at the equilibrium geometry in SO' The difference be
tween the best geometry of Tl (the two non-bonding orbitals far 
separated in space, "loose biradicaloid geometry") and that of 
Sl (the two orbitals relatively close to each other, "tight bi
radicaloid geometry") is easily understood when it is realized 
that the Sl state at a biradicaloid geometry tends to be, and in 
H2 is, of "zwitterionic" nature, and separation of the two 
centers requires electrostatic energy (the Sl state is reasonably 
represented as H+H- ++ H-H+). The location of the minimum in S 
represents a compromise between the tendency to proceed to biraa
icaloid geometries, i.e. to minimize the 0g-0~ separation, and 
the tendency to minimize the electrostatic energy. The tendency 
for minima in TI to occur at loose biradicaloid geometries and 
those in Sl to occur at tight biradicaloid geometries should re
sult in different points of return to the So surface. It is 
probably quite general and is responsible for a large part of 
the differences between singlet and triplet photochemistry. 

The states of a sigma bond are more complicated if one or 
both atoms which it connects carry lone pair electrons, but this 
will not be discussed here. It will be noted that in simple 
molecules such as H2 the "spectroscopic" excited states are the 
same as the "biradicaloid" excited states--there are no separate 
minima at the two types of geometries in one and the same surface. 
The same is true in ethylene. In general, however, this will not 
be so in large organic molecules. E.g., the loose biradicaloid 
minimum which is attained by the stretching of the benzylic C-H 
bond of toluene to give CnH~CH2' + H' occurs in the same Tl sur
face as the phosphorescent spectroscopic" minimum responsible 
for the phosphorescence of toluene, but they are quite distinct 
and separated by a sizeable barrier. 
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Figure 1. Electronic states of a sigma bond (schematic). 
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Since at biradicaloid geometries the So and Tl states 
generally lie close to each other and usually even the S state 
is not much higher in energy, radiationless return from Sl or Tl 
to So should be very fast and molecules in these minima should 
not be nearly as easy to observe directly as they are in the 
"spectroscopic" minima at ordinary geometries. The return to So 
should produce highly reactive biradicaloid entities with one 
bond missing, and subsequent motion on the So surface to one of 
the nearby local minima usually provides an excellent chance to 
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produce chemical change. Thus, return to So through a biradica
loid minimum is likely to lead to a net photochemical transforma
tion for at least a fraction of the originally excited molecules. 

A surface with more than one minimum can usually be thought 
of as resulting from an interaction of several zero-order states 
with one minimum in each, where the interaction results in avoid
ance of crossings. For instance, the TI surface of toluene along 
the path of nuclear geometries which lead to dissociation to 
C&HSCH2' + H· can be viewed as originating from interaction of a 
locally excited rrrr* triplet state of the benzene chromophore and 
the locally excited crcr* triplet configuration of the C-H bond. 
The former is of lower energy at the initial geometries, the 
latter at the final geometries, somewhere along the way they in
tend to cross, but the crossing is avoided and results in a 
barrier separating two minima in the TI surface (Figure 2). Unce 

E 

CSH5CH2+H 

nuclear configuration coordinate 

Figure 2. Triplet states of toluene (schematic). 
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we identify the zero order states, we can use them for nomencla
ture purposes. If the zero-order state responsible for the 
reactive minimum is described by a single configuration, it is 
sometimes referred to as the "characteristic configuration" for 
that particular photochemical path. We can now say that two 
excited triplet states play a role in our model reaction, the 
triplet photochemical conversion of toluene to C6HSCH2· + H·. 
First, a "spectroscopic" state, into which initial excitation 
occurs, either by energy transfer (triplet sensitization), or 
indirectly by intersystem crossing from the singlet manifold; 
second, a "reactive" state, in which the actual dissociation 
occurs. In actual practice, the barrier separating the "spec
troscopic" minimum from the "biradicaloid" one is too high in 
this particular case and the reaction proceeds only upon absorp
tion of a second photon by the spectroscopic triplet state, but 
this does not detract from the illustrative value needed here. 
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The surfaces for both zero-order states continue to the 
other side of the avoided crossing, where they represent higher 
Sn or T states, and one might argue that direct vertical exci
tation rnto the "reactive" state, or more accurately, into some 
excited state which contains a large component of the zero-order 
"reactive" state, should be possible, even if unfavorable be
cause of poor Franck-Condon overlap. In our particular case, 
intersystem crossing and sensitization are unlikely to populate 
such a high-energy state, but it is quite possible that internal 
conversion after the above-mentioned absorption of a second pho
ton by a molecule in the spectroscopic TI state actually produces 
just this result. 

The situation described for the dissociation of toluene 
appears to be widespread in photochemical reactions of large 
organic mOlecules. With exceptions such as cis-trans photoiso
merization of very simple olefins, the usual means of initial 
excitation, i.e. photon absorption or energy transfer with pro
duction of one of the low-lying excited states, occur into a 
"spectroscopic" state which is different, in the zero-order 
sense, from the "reactive" excited state from which the return 
to So occurs. Of course, the travel to this ultimate reactive 
state may proceed via a whole series of intermediate minima in 
Sl or TI' thus intermediate zero-order states. The role of 
the two types of states in the overall process is quite differ
ent. The spectroscopic state permits the initial excitation, 
and the slope of its hypersurface in the direction of the reac
tion coordinate determines whether a substantial barrier will 
stand in the way of conversion to the "reactive" state. The 
spectroscopic minImum preserves the excited molecule until it 
can escape towards the reactive minimum. Its role is particularly 
crucial in bimolecular processes, where this escape has to wait 
for diffusion to bring in a reaction partner. The initial escape 
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probably frequently is into an excimer or exciplex state, from 
which the reactive minimum is reached subsequently. 

A molecule in a biradicaloid minimum, i.e. in the "reactive 
state", has rarely been observed spectroscopically. It plays a 
key role in the whole photochemical process. It is by the loca
tion of its minimum (and rate of return to SO) that the geometry 
reached immediately upon return to So is determined. This, along 
with the shape of the So hypersurface, will determine the nature 
of the products. 

To complete the task of describing the role of the excited 
state in organic photochemistry, we turn to a brief review of 
the common types of spectroscopic excited states, followed by a 
description of reactive excited states for selected photochemical 
reactions. 

4. "SPECTROSCOPIC" EXCITED STATES 

Ground states of the vast majority of known organic mole
cules are closed-shell singlets. It is customary to describe 
excited states in terms of the dominant configuration in the CI 
expansion. Important occupied MOs ~. are of the 0, n, and rr 
types; important virtual MOs ~. are 6f the 0* and rr* types. 
States of 00*, and to a consid~rable degree, also orr* 
and rro* types, are of limited importance for solution organic 
photochemistry, which is usually restricted to wavelengths longer 
than 200 nm. Transitions into states of na* type, important for 
instance in simple amines, sulfides, and halides, and particularly 
states of nrr* type, important for instance in carbonyl compounds 
and aza heterocycles, are basically intra-atomic in nature. Al
though the n orbitals are not completely localized on a single 
atOm such as 0, N, S, or halogen, they generally largely extend 
over a different set of AOs than the 0* and particularly rr* or
bitals into which the excitation occurs. As a result, transition 
density may be delocalized over several atoms, but on each atom 
it integrates to zero, so that the overall tr~sition dipole is 
a sum of small atomic dipoles of the type <slmlp> and the transi
tion density ~.~. is small. Also the 2elf-repulsion of the 
overlap density 1 J K .. = ff~. (IH. (1) i:- ~. (2)¢. (2)dT dT2 

lJ 1 J 1 2 1 J I , 
and therefore the singlet-triplet splitting 2K .. , are small. 
Transitions of this type are usually clearly pfe\ent in absorp
tion spectra only if they occur at lower energies than any of 
the rrrr* transitions, otherwise they are overlapped. At times, 
they can be detected by specialized techniques s~ch as measure
ment of circular dichroism if the molecule is chiral. Unfor
tunately, in the more widely applicable magnetic circular dichroic 
and linear dichroic spectra, these transitions are rarely easier 
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to detect than in ordinary absorption spectra. They are also 
relatively expensive to calculate, since they require explicit 
consideration of all valence electrons. In very small molecules, 
ab initio methods have been used with success. For larger mole
CUles, it has been most common to use the semiempirical CNDO/S 
model, which appears to work quite well. 

Transitions of the TITI* type are of the interatomic type. 
These are truly molecular transitions, without analogy in iso
lated atoms. Both the TI and the TI* orbitals in principle spread 
over the same set of AOs. If both have large coefficients on 
the same AOs, the transition densities have large net charges 
on individual atoms, frequently producing quite large transition 
dipoles. Also the self-repulsion of the overlap density and 
therefore the singlet-triplet splitting are frequently very 
large. If the AOs where the orbital TI has large coefficients 
do not coincide with those where TI* has large coefficients, the 
transition involves interatomic charge transfer, such transitions 
are generally weaker and have smaller singlet-triplet splittings. 
Since the observation of nn* transitions is relatively easy, a 
very large number of them have been characterized in a great 
many molecules. Calculations for these transitions also are 
much easier, since already TI-electron methods (PPP) provide 
quite reliable spectral predictions. Two large classes of 
molecules with excited states of this type will be mentioned 
here. One comprises linear polyenes and their derivatives, the 
other comprises annulenes (cyclic polyenes) and their derivatives. 

Linear polyenes and their derivatives are of considerable 
interest in photochemistry, both because of the variety of 
interesting chemical transformations which they undergo and be
cause of their relation to the process of vision. They are 
characterized by a relatively intense singlet TITI* transition 
corresponding to the excitation from the highest occupied (HO) 
to the lowest unoccupied (LU) MO, which gradually shifts to 
lower energies and becomes more intense as the conjugated chain 
is extended. Approximately degenerate with this strongly 
allowed transition is an extremely weak transition into a state 
which is often referred to as doubly excited, since the doubly 
excited HOMO,HOMO + LUMO,LUMO configuration has considerable 
weight in it, although other configurations are also important. 
The existence of the state was predicted from semiempirical TI
electron calculations long before it was actually observed. The 
direct observations have so far been limited to fairly long 
polyenes, where this "forbidden" state is the lowest excited 
singlet. The lowest triplet state of linear polyenes is well 
described by the HOMO + LUMO configuration. 

Annulenes are the parents of a vast array of cyclic mole
cules, including all aromatic compounds and many others. Many 



428 JOSEF MICHL 

of these are once again of great photochemical interest both 
intrinsically and because of their importance in biology (e.g., 
nucleic acid components). Daughter molecules can be derived 
not only by introduction of substituents (e.g., aniline) and 
heteroatoms (e.g., pyridine), but also by introducing bridges 
(e.g., pyrene) and cross-links (e.g., anthracene) inside the 
annulene ring. Each annulene is characterized by the number of 
atoms in the ring, n, and by the number of ~ electrons. Those 
with 4N+2 ~ electrons (N = 0, 1, 2, .•. ) and their daughter 
molecules are by far the most important class in practice (an 
example of an important class of cyclic molecules derived from 
4N-electron annulene perimeters are the quinones). As shown in 
Figure 3, the parent (4N+2) -el ectron en] annulenes are charac
terized by four low-energy excited configurations resulting from 
excitations from the degenerate HOMO to the degenerate LUMO (if 
N = 0, HOMO is not degenerate, and if N = n/2-l, LUMO is not 
degenerate, in which cases there are only two low-energy con
figurations). Using MOs adapted to the en group, which generally 
have non-zero angular momentum, two of these excitations can be 

-3 

............ I!!'!!!~-----

Figure 3. Molecular orbitals and configurations of a (4N+2)
electron [n1 annulene. Angular momentum quantum 
numbers, net electron circulation, and the z-compon
ents of the magnetic moment are shown. 
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referred to as sense-preserving, since they preserve the sense 
of net circulation of the electron which is being excited. These 
excitations change the angular momentum quantum number of the 
electron which is being promoted by one and are strongly allowed. 
Their upper states are degenerate; this degenerate excited state 
is assigned the symbol B and is of El symmetry in the C group. 
The other two excitations, present only if N ~ 0 and N ~ n/2-l, 
are referred to as sense-reversing, since they reverse the 
sense of net circulation of the electron. They change the 
angular momentum quantum number by more than one and are electric
dipole forbidden (they still appear in absorption spectra weakly, 
due to vibronic intensity borrowing). If the perimeter is 
charged, i.e. n ~ 4N+2, their upper state is degenerate and is 
assigned the symbol L (symmetry E2N 1 in the C group). If the 
perimeter is electroneutral, i.e. n+= 4N+2, th~se two configura
tions mix to produce two states of B symmetry in the C group. 
In one of these, Lb , nodes pass through atoms (B 2 in ¥he Dnh 
group); in the other, L , nodes bisect bonds (B l uin the Dnh 
group). The B states l!e considerably above theUL states ln 
energy. In the singlet manifold, lLa lies above lLb, in the 
triplet manifold, 3Lb lies above 3La. The lLb and 3Lb states 
are roughly isoenergetic. 

In daughter molecules derived from (4N+2)-electron [nJ
annulenes, the same four singlet and four triplet states can 
still be traced (if N = 0 or N = n/2-l, only the two singlet 
and two triplet B states are present). Except for highly sym
metrical derivatives, such as coronene or metalloporphyrins, 
degeneracies are removed. If n ~ 4N+2, one observes two weak 
to medium-intensity closely spaced singlet transitions into Ll 
and L states, pOlarized in mutually roughly perpendicular 
directions, followed at higher energies by two strong transitions 
into B1 and B2 states (e.g., tropolone, indole). The transitions 
into tne lowest singlet and triplet Ll states correspond to pre
dominantly HOMO + LUMO excitation. If n = 4N+2, two weak to 
medium intensity singlet transitions Into Lb and L states ap
pear, followed at higher energies by intense trans!tions to Bb 
and B states. If symmetry is relatively high, such as C or 
D2h, the Lb and L transitions are polarized at right angr¥s 

to each othe~ (Bb is parallel to Lb and Ba to La); if it is 
too low, such as CS ' they may be polarized in such a way (e.g., 
I-substituted naphthalenes) or may be nearly parallel (e.g., 
2-substituted naphthalenes), depending on the nature of the per
turbation of the parent perimeter in a presently well understood 
way. Again depending on the nature of the perturbation, one or 
the other of the transitions may have nearly vanishing purely 
electron~c intensity and be dominated by vibronic contributions 
fLb in naphthalene, L in azulene). In the singlet manifold, 

Lb usually but not a!ways lies below lLa as in the parent annu
lene; in the triplet manifold, 3La generally is lowest. The 
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.. . 1, 3L d d' transltlons lnto states correspon to pre omlnant 
HOMO + LUMO excitatiofl. 

Other transitions are present at higher energies, some of 
these calculated to contain substantial contributions from 
doubly excited configurations, but much less is generally known 
about them. 

5. "REACTIVE" EXCITED STATES 

Present-day knowledge of these zero-order states is based 
primarily on qualitative correlation diagrams and on calculations. 
From the way in which these states were introduced, they corre
spond to biradicaloid minima in Sl and T. As shown on the 
example of a simple sigma bond (Flgure I), these do not need to 
occur at identical geometries even for one and the same photo
chemical path, but in the first approximation we shall find it 
useful to discuss them jointly. 

Many types of biradicaloid geometries are possible and they 
are perhaps most conveniently listed according to one of the 
frequently several processes which can produce them starting 
from "ordinary" molecular geometries. Thus, stretching any 
single bond in a molecule will lead to a "stretched a-bond" 
biradicaloid minimum (typically occurring for an only partially 
extended a bond in Sl and for a fully broken a bond in Tl ), with 
a characteristic configuration of the 0'0'* type. Twisting a 
double bond will lead to a "twisted double bond" biradicaloid 
minimum, with a characteristic configuration of the nn* type. 
An interesting type of a biradicaloid geometry is reached by 
performing a pericyclic reaction of the ground-state forbidden 
type half-way, i.e. to the "antiaromatic" geometry· where the 
molecule is isoelectronic with a Huckel 4N-electron annulene or 
a Moebius (4N+2)-electron annulene and thus biradicaloid. Along 
such a pericyclic path, the ground configuration of the starting 
material correlates with a doubly excited configuration of the 
product and vice versa, so that in the state correlation diagram 
a barrier results in the So surface and a "pericyclic" minimum 
has a good chance of resulting in the Sl but not Tl surface. 
Various other types of biradicaloid geometries can be envisaged 
but will not be discussed here. 

In many cases (e.g., Figure 2), the zero-order Sl and Tl 
states at the biradicaloid geometries, when followed back to 
the geometry of the starting material, extrapolate to states 
which are at very high energies (0'0'*). In others, such as 
for the "pericyclic" minimum in Sl' they result in doubly ex
cited states. In neither of these cases do they lead us back 
to one of the well known "spectroscopic" states. However, this 
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can also happen: the nn* characteristic configuration of a 
"twisted double bond" biradicaloid minimum extrapolates back to 
one of the spectroscopic nn* states of an olefin. 

Since the "reactive state" in most cases is not the state 
produced in the initial excitation, it is important to consider 
the role of the initial "spectroscopic" state in delivering the 
molecule to the reactive minimum. Under the usual experimental 
conditions, travel from the spectroscopic minimum in Sl or TI 
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has to either be downhill or over only a small barrier, with 
thermal activation. In terms of correlation diagrams, this 
requires the "spectroscopic" Sl or TI state to correlate with a 
very low lying state at the biradicaloid geometry, and preferably 
with the lowest excited state of the product. Reaction paths 
along which the correlation is with some highly excited state of 
the product are said to be "orbital symmetry forbidden". 

A good example is provided by pericyclic processes. In 
order for such a process to be photochemically feasible, one 
of the ground-state occupied bonding orbitals of the starting 
material must correlate with a ground-state unoccupied antibond
ing orbital of the product and vice versa. This guarantees a 
biradicaloid geometry half-way along the reaction path and thus 
a minimum in Sl providing a productive return to So at a suitable 
point. If it lS the HOMO of the starting material which becomes 
LUMO of the product and LUMO of the starting material which be
comes HOMO of the product (normal orbital crossing), the HOMO ~ 
~ LUMO configuration of the starting material will correlate with 
the HOMO ~ LUMO configuration of the product. As noted in the 
preceding section, the HOMO ~ LUMO configuration frequently but 
not always predominates in the Sl spectroscopic state of a 
starting or final material, and practically always predominates 
in its TI state. If this is so, no correlation-imposed barrier 
is expected and the conversion from the spectroscopic to the 
reactive minimum in Sl or TI should be easy. However! in those 
cyclic molecules in which the ILb state is below the La state 
at the starting geometry, a barrler must be expected along the 
way. There is indeed considerable evidence for the existence 
of such barriers in the singlet photochemistry of benzene and 
naphthalene derivatives, which can at times be overcome by use 
of shorter excitation wavel engths. 

If the orbital crossing is of the abnormal type, i.e. in
volves orbitals other than HOMO and LUMO, it is most unlikely 
that the needed configuration will predominate in the Sl or TI 
state of the starting material and a sizeable barrier must then 
be expected for both the singlet and the triplet reaction along 
this path. 
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From what has been said so far about the need for conversion 
from a spectroscopic minimum to the reactive minimum it is hardly 
surprising that many photochemical reactions are suppressed at 
low temperatures, and conversely, that more efficient fluores
cenCe frequently results upon cooling. 

The efficiency with which typical reactive mlnlma deliver 
molecules to the So surface is impressive. Still, it is possible 
for molecules to escape on the Sl surface and to continue towards 
the product geometry. This is revealed by product fluorescence 
(adiabatic photochemistry) and has been observed for extremely 
exothermic reactions for which the pericyclic minimum in Sl 
probably is considerably tilted. 

Little can be said at present about the electronic states 
of molecules at biradicaloid geometries from experiment. Few 
reliable calculations exist and much work is needed before a 
thorough understanding can be developed. The electronic states 
at a stretched a-bond minimum have been already discussed 
(Figure 1). The states at a pericyclic minimum can be exempli
fied by the singlet states of hypothetical square H4 as a model. 
The lowest few among these are shown in Figure 4 for a rectangu
lar reaction path H + D t ZHD. The avoided crossing of the 
ground (G) and the doublJ excited (D) states and the resulting 
pericyclic minimum in Sl and barrier in So are clearly apparent. 
The doubly excited D state corresponds to an overall singlet 
coupling of two triplet HZ molecules (triplet-triplet annihila
tion state). The singly excited HOMO + LUMO state (S) of the 
starting materials correlates with the HOMO + LUMP state of the 
products and contains a shallow minimum half-way through the 
reaction path. This state corresponds to the combination of a 
ground state HZ molecule with a singlet singly excited HZ mole
cule (aa*) , is referred to as the excimer state, and the mini
mum as the excimer minimum. In more complicated cycloaddition 
processes" this minimum does not occur at the same geometry as 
the pericyclic minimum, but earlier in the path of the approach 
of the two components, so that a return from it to So results 
only in redissociation to the starting materials. To the con
trary, return to So from the pericyclic minimum Occurs half-way 
along the reaction path and produces cycloaddition products as 
well as starting materials. The relative energies and positions 
of the excimer anti triplet-triplet annihilation surfaces clearly 
playa key role in determining the photochemical process. Other 
states are indicated in Figure 4; the I and I' states correspond 
to cation-anion annihilation processes. 

The comparison of Figures 1 and 4 reveals an interesting 
difference: at the biradicaloid geometries of HZ' the singly 
e'xcited singlet state lies below the doubly excited singlet 
state; at those of H4 , the opposite is true. Intuitively, the 
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state ordering in H2 is more easily understood. Yet, the oppo
site ordering in H4 is essential for the appearance of a peri
cyclic minimum in S at the biradicaloid geometry, and for the 
occurrence of the photochemical process. The difference can be 
understood in simple terms by a combination of the MO and VB 
theories. It will not be discussed here in detail and it will 
just be noted that both excited singlets of H2 are purely 
"zwitterionic", H+W ~ WW, while in H4 only the singly excited 
state is. The doubly excited state has acquired considerable 
covalent character by mixing with other configurations and has 
been stabilized relative to the singly excited state. This is 
perhaps most easily understood when one remembers that in the 
limit of an infinitely large H4 square this state becomes degen
erate with So and represents four neutral H atoms, and that in 
the limit of diagonal bonding this state correlates with two H2 
molecules in their ground states. 

E 

t · • • 
·1· 
T- +2.

1 

• • 

Figure 4. Singlet states of H4 along a rectangular H2 + D2 ~ 2HD 
reaction path (schematic, symmetry labels shown refer 
to the two symmetry planes indicated at the bottom). 
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6. SUMMARY 

The ideas outlined briefly above have been applied to a wide 
array of organic photochemical processes, and the concepts of 
initial excitation to a "spectroscopic" state followed by motion 
to a "reactive minimum", return to So and thermal equilibration 
seem to be generally useful. The use of qualitative arguments 
such as correlation diagrams can, of course, only provide par
tial answers. To make further progress, calculations of potential 
energy hypersurfaces along optimized paths by reasonably reliable 
methods are needed, to be followed in the future by analyses of 
the dynamics of the processes occurring on these surfaces. Clearly 
organic photochemistry offers a wide-open and challenging area 
for theoreticians. 

Since this text was written only as a study aid, no attempt 
was made to assign priorities to original authors and to give 
literature references. It appears appropriate, however, to pro
vide a few leading references for those interested in additional 
detail. These are mostly to review articles: simpl e models of 
organic photochemical processes l , the role of correlation dia
grams and of barriers and minima in excited state hypersurfaces 2, 
the spectroscopic excited states of polyenes 3 and of cyclic TI

systems4, the excited states at biradicaloid geometries 5, and 
the status of ~uantum chemical computations for organic photo
chemical paths . 

7. 

(1) 
(2) 

(3) 

(4) 

(5) 
(6) 
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I. INTRODUCTION 

The lectures here are concerned with excitations to the N-body 
system instead of the N+I-body system which is the normal result 
of an energy band calculation. Thus one has to investigate the 
two-body Green's function formation and not stop with the single
particle function. In the first two lectures the Green's function 
formalism is used to construct a set of Bethe-Salpeter equations 
from which the excitation energies and corresponding Bethe
Salpeter amplitudes are deduced [I]. The third part will describe 
one of the excited states that can be obtained using a laser 
beam on a semiconductor, namely theqlantum mechanical fluid 
composed entirely of electrons and holes [2J. The exciton 
mechanism of superconductivity [3] and experimental evidence [4] 
are the subjects of the last lecture. This last part is still 
under study and the lecture will point out the current situation. 

2. GENERAL STRUCTURE OF EXCITATIONS IN MANY-BODY SYSTEMS 

There are a number of methods now being used to investigate the 
excited states of many-body systems as can be seen by the other 
lectures at the Study Institute. The method used here is to 
construct the particle hole (PH) polarization propagator which 
is similar to the quantities studied by Cizek and Paldus [5]. 
The poles of the PH polarization propagator correspond to 
excitations of the N-particle system. The propagator describes 
the density response of the system to an external potential and 
thus may be used to construct the dielectric function. One not 
only gets information about a system's exciton structure, but 
also about such quantities as collective modes and optical 
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absorption structure. 
In this part the Green's function formalism is used to 

construct a set of Bethe-Salpeter equations from which the 
excitation energies and corresponding Bethe-Salpeter amplitudes 
are deduced. From these the PH polarization propagator is 
constructed. The various terms of the Green's function expansion 
can easily be classified in such categories as hole-renormalization 
effects, particle-renormalization effects, and particle-hole 
interactions. Systematic analyses of the contributions to these 
categories are then possible. For the examples of atoms studied 
it is found that the correct description of the hole requires 
significant many-body corrections, but that the particle-hole 
interaction is unresponsive to the detailed structure of the 
particle or the hole and that the particle renormalization 
effects are small. 

The polarization propagator describes the response of the 
system to a perturbation of the form 

(2.1) 
J\ 

where veX(x,t) is an external perturbing potential and ~(x) is 
a field operator of the form 

A. /\ 

"f(x)t:>O)=~ Ll n (X)C I1 (t=O) . (2.2) 
n 

Here {un (x)} is a complete set of orthonormal spin orbitals, and 
{cn(t)} are Heisenberg operators obeying Fermi statistics. 

The PH polarization propagator TI(x,x') is given by 

(2.3) 

x = x)t 1 

where I ~o'>is the exact Heisenberg ground state of the system, 
and T is the time-ordering operator. Expanding in the complete, 
orthonormal set {un I, 

l.1[(x Xl) = L lMCX)U.'\(~) LL:(~l)u.f\-('i) l. T[;'r'''''A(t-tl) . (2.4) 
J "" r. 'At'" I /\ 1- } 1-

The relation between the PH polarization propagator and the 
inverse dielectric functions is 

E,-\x) x') ::: ~\ X_Xl) + Sat X" V( X-Xli) T[ (Xl~ Xl) 

(;rj~(1 (t--e):::~(t-t')$~£'r~ + ~ V,M').jr$ Tr,)rio(~(t-t') 

(2.5a) 

(2.5b) 

The frequency transform of Tr '\ f\ (t-t' ) is defined as: 
Arid-l-

iT () 1 (I Til ) -i-W(t-*.l) 
k).f'jol(> t-t' =='2.1T j oIw IL?rj~ (L.> e.. (2.6) 
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and using the Lehmann representation TI '\ (v.J) becomes 
"riri..('> 

T[~ '~ (w) == Z [<'!J./2,Y" Ii'" >< Y. I~~c(\ 11'0'> _ <'!k'.lc~c(lIY" '><lI.I<-1C,.I'f 0'>] , 
'rlf> 1'1 w-(E,,-Eo)"v',\ w4-(E,,-Eo)-~"1 (2.7) 

"1==0+ , 

where the intermediate states I ~11 ') refer to exci ted states of 
the N-particle system. The poles of ~~~j~~ give the excited 
state energies of tl:e system which can be reached by a density 
perturbation. 

Using the interaction representation the structure of If)~io((\ 
is depicted schematically as: 

# ! I + 

The directed lines are single-particle propagators which in 
gener~l ha~e. s~lf-energy renormalizations. 1r).""j"'~ (ev) also 
conta~ns d~sJo~nt graphs, however, and these terms are inde
pendent of t-t' and contribute only at w=o. Since the main 
interest is for Wf 0, these terms will be omitted from further 
discussion. Using the above graphs, the Bethe-Salpeter equations 
are: 

l()t'io(~(W) = rr~f'-)o(~w) +s~& rcl~~~, ~"rjf.J<.olj(Jl) KSI';'S(Wj W,-c.J2) [~Sj"(l (GJiWl) (2.8) 

where 

(2.9) 

and 

(2.10) 

Note that G;..; in Eq. (2.9) refers to the full one-partic1e 
Green's function. Eq. (2.8) is an integral equation, but if the 
kernel K( Wj w 1- wl. ) depended only on w, the Bethe-Salpeter 
equation would reduce to a Dyson's equation: 

1"(, (I.)) = T[~ (w) + :Lr iT; .... o,,(w) K~y.'1g ('-I) T("1&'~1\ (w) • 
Arjo(~ A/"j"'t> ~V'/'I() I q J ) l-

(2.11 ) 

It is this equation which will be investigated. 
In matrix notation 
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(2. 12) 

This equation is factorable, and the inverse is 

IT-\w) == TIo-\W) - ~ (wi (2.13 ) 

The matrix elements of F (w) have a pole at w =En -Eo unless the 
numerators inEq. (2.7) vanish; however, the structure of l[(w) 
in the vicinity of the pole is analytic, and for real w , 

(2.14 ) 

Thus, for real w, Tf( w) can be diagonalized with a unitary 
transformation 

(2.15 ) 

From the inverse 

(2. 16 ) 

one sees that U(w) also diagonalizes T[-I(w). Since some of 
the diagonal ~trix elements of jID( w) have poles at the exact 
excitation energies of the system, the corresponding diagonal 
matrix elements of JID("J) have zeros at the same points. Thus, 
the zero eigenvalues of l[ -I(w) correspond to the collective 
energy levels of the system, and one needs to solve the frequency
dependent eigenvalue problem 

(2. 17) 

with 

Combining Equ. (2.17) with Eq. (2.13) yields 

(2.18 ) 

from which the exci tation energies, W , and the corresponding 
eigenvectors C( w) can be obtained. 

To proceed further, it is necessary to study the structure 
of !5(£..). The first-order expression for !5( w) is 

(2.19 ) 

(2.20) 
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Note that K(I) is independent of frequency so that Eq. (2.11) 
is correct to first-order in the electron-electron interaction. 
The Green's function lines may be written as 

" A;(w) A:''*(w) (2.2Ia) 
GAo( (W) = ~ w - w .... (w) 

The usual pole structure is implied with VJ n referring to the 
ionization energy of the N.:!:.1 body sys tem. The A~ ( w) is a one
particle amplitude between the N- and N+I body systems. For 
free particle, Eq. (2.2Ia) becomes -

[ G(ot--F) 
6).o",,(wJ=~').c<. W-W~-tL"1 + 

(2.2Ib) 

o • 
Here F refers to the Fermi level and 0J .... to the e~genvalue of 
the free-particle Hamiltonian. 

To get nO(uu), use Eqs. (2.9), (2.10) and (2.2Ia). After 
performing the frequency integration, ITO(w) becomes 

n0 ) =~ [~"",5(wJA;k(w_JA~(w",,-w)A"':(w_-w) 
'). ....... .,11\ (<.U w - [w - w (w - w) ] / J,.... '"YY\./Y\. ~ "'W\ ""'" 

_ ~_A~(w".;tw)A;*(w",tr..J A?(w_)A-;'i(w,...) ] (2.22) 

w + [w""" -w", (w"'" +w)] 

Here and throughout this section, the index m refers to ionizations 
of the N+I particle system, while n refers to ionizations of the 
N-I system; all other indices are general. The factor gm is 

(2.23) 

If the free-particle Green's function in the expression for KC(w) 
is used one obtains: 

(2.24) 

Inserting K(I)(w) into (2.12) for !(w) yields the structure 
depicted below. 
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Using n.0,o(w) instead of 1!.°(w) in Eq. (2.12), and !(I)(w) 
in place of K( w), one obtains the random-phase approximation 
(RPA) equations for IT (w). In the RPA, Eq. (2.18) is 

(W-W~L)C".-L[ (V"", tt' ,-V IHI)C".,+(V t 'L'-V" ,.)C~ ,]:::O,(2.25a) 
"WI"" ~I} ) "W\ """''''"''','''It- "M.,L "WI. J"'M ~L/"·"X. ",I'M 

-( 0 )C"" ~[(V -V ) "" (V -V )(\ ]=O(2.25b) 
W-IW"",t t--St, t.-,t''':' ~""":t'_ C-:t,+ i.-;":£" U.',_'- t''':'' , 

w· =wo-wo 
"'d. """ L 

In the RPA, one may make the identification 

Using this equation, the correct spin structure for excited 
state I~", '> for closed-shell systems becomes: 

{ 
C~"'t 

C~.S==~ (C~t~~ -C~o(tJ j C:cX .T = C;~ol4-
J I' J 1 

ff (C~cX~ + C;J,cel') 

(2.26) 

(2.27) 

The indices Sand T refer to singlet and triplet, and the spin 
is indicated explicitly. Rearranging Eqs. (2.25) with the use 
of Eqs. (2.27) and assuming the basis set is real, one obtains 

(2.28) 

~\ (6. E-w..£. ,.,.,'i' C;~ + M""'t,_'i.! C,:, ~,) =-wC;"" 
where J 

M~t 'I.' == 2 Ct V t 'n' - V -£.'_'i .... ~, ,"W\ 6 "W\oo\ I"""A... J 

~= 1 (/)iM~) , y- -::.0 (hrteA) 
In addition, using restricted Hartree-Fock orbitals, V-..t. ..... Il, 
is the matrix element over spatial orbitals assumed to b~ 
independent of spin. The matrix M describes mUltipair excitations. 
If M=O, Eqs. (2.28) are separable. Then their diagonal elements 
yield 

(2.29 ) 
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These matrix elements are equivalent to the first-order O!O 
constructions [6J. In fact, the O!O equations derived from 
the! operator used in Ref. '[61 are equivalent to Eqs. (2.28) 
if M=O and further set 1=1' in l:.E. The open-shell result is 
more complicated than the above owing to the fact that the 
unperturbed ground state is multideterminantal. However, a 
construction can be made which gives equations similar to Eqs. 
(2.28) with an approximate excitation spin structure, except 
that in this case the different spin excitations are coupled. 

The structure of Eq. (2.18) would be similar to that of 
Eqs. (2.28) if It°(w) in Eq. (2.12) is retained (instead of 
using 1{00(w)) and assume A: (w) was independent of w • This 
is approximately true in most cases. The major difference would 
be that w~ would be replaced by wn in Eqs. (2.28). Since wn 
differs from w~ by the renormalization effects coming from the 
particle or hole self-energies, an investigation of the self
energies would yield these effects. Also, it is clear from the 
structure of Eqs. (2.28) and (2.29) that K(w) contains the 
particle-hole interactions. Thus one has a clear separation 
between structures which contribute to the relaxation and 
correlation of the hole or particle and those which contribute 
to particle-hole interactions. 

To outline the above, make the replacements: 

Q =1 
I d "" 

Eq. (2.22) becomes 

"'" -li 1.. A t'JI: 
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lfO w) ~ L [ AI' AI'- A). l"oJ. 

A/"jo/.('> ( """It. <..J- (w",,-wi ,) +L'1 (2.30) 

o 
The poles of 1[(",,) occur at 

w =.:!:. (w""" - w 1...1 . 
If the poles of IT(00) are not far from this value, then the 
above replacement is valid. Using the following definition 

(2.31 ) 

(2.32 ) 

Here, K' (w) has the same structure as !.( w) except that it 
contains 

VI =L ",,'JI. 0 V p;t "l 
(2.33) Arc A",\ O"\'F- Ag Av-"" o;r~ '-"HV-

Thus one can solve equations for the renormalized excitations of 
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the same form as the RPA equations 

except that in Eqs. (2.28), wn would replace w~ and WIO,pq 
would :eplace Vno,pq' . 

F1nally, the construct1on of It (00) using the Bethe-Salpeter 
amp li tude is 

\ = L [ C~ (;:J c:~ ((01) _ C;JW\xC;A*(~) ] 
Tf)j'"jO'f,Cw j 'Y\. w-CJ.,Jw)-r~"1. w+W~(W)-L""l (2.35) 

To perform these calculations one needs the self-energy 
structure of the one-particle Green's function. The general 
structure of the one- particle Green's function presented in 
Eq. (2.2Ia) is given by the Dyson's equation 

G'),Jwl =G~.J(.J + ~ G)°'1 (w) L'tiw) Gcr-o( (w) (2.36) 

The self-energy L:'6" (w) contains all many-body corrections to 
the one-particle Green's function. Similar to Eq. (2.18) one 
seeks solutions to the equation 

(2.37) 

which was used to construct Eq. (2.2Ia). The general structure 
of G'),,,,, (w) in the Lehmann representation is 

II" 'W llt1 wN;11 A t I" 1o.lN I" + I 1I-1X 'l.}-1j" 11.1'") J G (\ = ,,[<Yo IC2-\ 1", >< 1" c ... 1'0"> + <lr. C"" Ii.. .:1[" c'). ';f. 

)""W) ~ w-(ENt1_fN\tl"1 W_(EN_EN-1)-~"1 ,(2.38) 
~ 0) 0 ~ 

Thus the \ w",l refer to ionizations of the (N+I )-particle systems. 
One interpretation of wI (or wm) is to think of it as the 
energy necessary to create a hole among the occupied orbitals 
(or to fill a hole in the virtuals), and "2 ').()(. (w) describes 
the relaxation and rearrangement of electrons around the hole. 

The structure of L ')."" (w) may be determined using many
body perturbation theory. If one chooses SCF-RHF orbitals, 
all diagrams contributing to canonical Hartree-Fock are omitted. 
The second-order expression for L:>.oI. (w) is 

• (2.39) 

A partial summation of third- and higher-order diagrams 
for L). .... (w) is possible by the following procedure. The 
structure of these terms is given by the product of the 
appropriate term in Eq. (2.39) times an interaction matrix 
element divided by the same denominator and with appropriate 
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sign. These elements form a geometric progression which may be 
summed to all orders by shifting the denominator in Eq. (2.39) 
to get: 

° Q"V V V . W-tW-W-W,+ .. + " .. - "+,,,'\1 
.R.. """"" """'" """"'''W>,Jl.Jf". """"""""'/ L"- ........ ""","""""- ~ 

(2.40) 

The higher-order diagonal exchange terms are not included in 
L').1>o/.., (w) • The nondiagonal terms omitted from 'L.';oI.. (w) tend 

to converge rapidly, and the major contributions from diagrams 
of this type are included in Eq. (2.40). 

To investigate further the construction of 1"').",(w), note 
that L'),o<., involve ionizations of the N,!.2 body systems as well 
as excitations of the N-body system. Thus, the correct first
order structure of these excitations is 

N+2: 

N-2: 

N: 

{ 

WO + w o , -t V 'I::tV I ' 
~ ,..,..,.. ""'~/"""""""'" """" ......... }"""""-... 

l.w: + V""""""I"""""" 

{ wL + w~ - \{~J.L'.e.' +" Vu..: d 

2w~ - Vu La.- ' 
J 2.V 

WO-w"-v +{ "",,,,),,,,,,,,1. 
""" ~ __ ,R.t 0 

- \ 
'VV' - """ 

for spin-averaged orbitals, where the upper term refers to the 
singlet and the lower term to the triplet. The partial summation 
in Eq. (2.40) may be modified to include averaged exchange 
interactions from the above excitations by shifting the 
denominators of Eq. (2.40) to reach 

(2.41 ) 

Acutally atomic calculations show little difference between the 
averaging used in Eq. (2.41) and separation into singlet and 
triplet excitations. 

Another set of higher-order diagrams which can be thought 
as contributing to the correlated charge density in an HF-like 
model are included in L expressed as 
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In order to study the effects of screening via the RPA dielectric 
function in the self-energy, use Eq. (2.35) to construct L~~(w) , 

SC 'DE ("5) ~1'HD \ 
l.)..Jw) = 2""" (~) -t 2~.Jw) - L')../ WJ 

[
V., t(e -+C )(C\,,-+c; ,)V""'tUctt' 

, ~ )t,,,,,,,,~.t l¥ooo """'" """'" I 

TL £- 0 I!.)c. 

"" _t,~t'R." W - W t , + w", - V',\ (2.43) 

-t L \....:, .... /(:1 +C~,..)(C:·e" (2.,") V ..... "JJ,~~] 
""" ",.,,).2'_" w - "":.' - w: + ;, "1 

~HD (~ 
where L'),oI. (w) has the same structure as ~M(W) except the 
denominators are shifted to be 
~114D \ 
L.,,,_, ( ... ): (W-W:"-Vlo tVl;-tV .,-V •• tV I 'Ln-Y 'n "t~"") "'go. I'fN, "'- .... ,&..4w "'"'.IL,"""'. """,'1M,'&'" IW\."I"""'~ l 

(w -tw!, -w: -w;, -V_ .... ,u."V ..... t,""'t-V""" ... ).'tdV""'t, .... r - l..,) • 

Thus 2~~(w) contains contributions from the screened exchange 
to all orders (both diagonal and off-diagonal particle-hole 
interaction terms), but the cross terms are bet~l1een diagonal 
particle-particle and hole-hole ladders and diagonal particle
hole ladders only. 

3. ELECTRON-HOLE LIQUIDS 

It has been discovered that the carrriers of electric charge 
inside a crystal can exist in a state that is a liquid in a 
modern sense. This new liquid has many of the properties 
associated with an ordinary fluid such as water. The charged 
particles that form the new fluid can exist as a vapor; when 
the relative humidity of the vapor becomes high enough, the 
particles condense. Like water, the new liquid evaporates 
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and eventually disappears when it is heated or when the density 
of the particles in the surrounding gas is reduced. It will not 
form at all at temperatures higher than a critical value. It 
appears as a cloud of droplets, which scatters right as a fog 
of water droplets does. 

Although the new liquid resembles water in many ways, it 
is quite unusual in others. To begin with, it only exists inside 
a solid semiconductor and it cannot be extracted from that 
environment. Instead of the atoms or molecules of an ordinary 
liquid it consists of electrons and holes. The electrons and 
holes continually annihilate each other, and as a result the 
liquid is an inherently unstable substance. Finally, the new 
liquid is of particular interest because it is essentially a 
quantum-mechanical fluid. For these reasons the new liquid 
offers a unique testing ground for some of the fundamental 
principles of physics. 

To begin the discussion of the electron-hole liquid, 
consider the simplest case of isotropic-nondegenerate 
energy bands for the electrons and holes. In the limit that the 
hole mass mh equals the electron mass me the problem is that 
of a hypothetical gas of electrons and positrons in which the 
radiative recombination of electrons and positrons is ignored. 
In the limit ~ »me the problem is equivalent to the metallic 
phase of hydrogen. 

The Hamiltonian is given by 
N N '1. '1. 

1 ~ '1. 1", 1. 1 ";"~ ~"""" e 
~=.:-- LV -- £-.\1: +1.LK.'r.~ + 1 L K'f" 

l""e ,=1 L 2.'l'nj, ~=1 ~ '*a '3 '''a '~ 
(3.1 ) , 

where the first two terms represent the kinetic energies and the 
other terms represent the repulsive Coulomb interaction between 
like particles and the attractive Coulomb interactions between 
unlike particles. All of the Coulomb interactions are reduced 
by the static dielectric constant,~. The unit of energy will be 
the binding energy of the exciton w~ich is given by the 
standard1hydrogenic formula Ex=fJ-/mK Ry where )J.is the reduced 
mass, ~- =m;l+mhl. The corresponding unit of length is the Bohr 
radius of an exciton which is ax=(mK/!,- )ao ' The density of 
electrons n can be characterized by the dimensionless parameter 
r s , the radius of a sphere whose volume is equal to n- I measured 
in units of ai. 

At high densities, or small values of rs, the electron-hole 
liquid will be metallic. The dominant term in the high-density 
limit is the kinetic energy of the degenerate electrons and holes 
which gives a contribution to the ground-state energy per electron, 

E ::;~(k~ -+ ~~ ):=:~(91i)1.h~::::: 2.2.1 
k. 5' 2 """e. '2. """R S If 'I~ rr~2. , (3.2) 

where k F is the Fermi momentum of the electrons. The first 
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correction is the exchange energy which is the expectation value 
of the potential energy in the ground state of noninteracting 
electrons and holes: 

E =_7>e.2. h ::::_~ ~)1/3_1 =_ 1.832. 
ex 2. if I{ F 1l (4- If,,> "(I) 

(3.3) 

Note that the electrons and holes make equal contributions to the 
exchange energy irrespective of the mass ratio mh/me' Several 
schemes based on the random-phase approximation (RPA) have been 
developed to estimate the correlation energy of the single
component electron gas in the intermediate density regime 
1 trs ~ 5. These procedures, although lacking a rigorous 
justification, give good agreement when compared with experiments 
on nearly-free-electron metals. Since the various estimate of 
the correlation energy of the electron gas do not differ 
appreciably, the Hubbard scheme for the single-component electron 
gas is used. The exact expression for the correlation energy is 

- 1 S1 ~A r d..k r r -1 1 _ (d.;: ~Tie'2. 
tr :::-21T'Y\ ~ J (h)~ Jclw l,."V\LE A (k)w) -Cex -2jC21i)'!. ~1.. 

"" 0 0 

(3.4) 

The)., integral is over the coupling cons tant A e2• In the RPA 
the total polarizability is given by the sum of the polarization 
of the electrons, rre, and the holes, lIh, so that 

(3.5) 

The RPA polarizability 11 RPA is given by the Lindhard function 

(3.6) 

where "Ytpo- =1, P < PF , and ""-pe-=O otherwise. At short wavelengths, 
or k« kF in Eq. (3.4), the RPA result for the correlation energy 
is seriously in error, since it treats the correlations between 
particles on an equal footing irrespective of their spin states. 
Hubbard showed that one could approximately include the diagrams 
that are the exchange conjugates of the RPA bubble diagrams by 
replacing Tf RPA by lTH' where 

11 RrA Ck l w) 
(3.7) 

where ~(k)=O.5k2/(k2+K~). Generalizing his arguments straight
forwardly to the mUlticomponent system, one places Eq. (3.7) 
separately for each component. This complicates the integration 
over the coupling constant in Eq. (3.4). 

In the equal-mass limit, TIeE. lIh and the correlation energy 
can be expressed after a little algebra as 

1 Scl~ r (1 "'2.(h)w) -1 "L\J.z.1w) )) (3 8) 
EG=-~1T'Y\ C21T)3 jg..w -Z:Yl,w) ~ 1-1\(k,w) -2 Z(h,w ) . 
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where IT=A+i Land 1:1= [2-k2f2(k2+k~)J L with AI fA= "i:..)/2-.. 
Note that the exchange contributions play a less important 
role than in the single-component electron gas and cancel 
only one-fourth of the RPA correlation energy at large k. 
The results are given in Fig. 1. 

EG 
0.0 

- 0.5 

-1.0 
Ge Excdon 

-1.5' 

-1. 0 -+----"-''''---.------<----~3- 'Y",., 

Fig. 1. Ground-state energy plotted against rs' (a) Isotropic 
model with one maximum in the valence band and one minimum in 
the conduction band; (b) germanium and (0) germanium under a 
large (1,1,1) strain. 

The minimum value lies substantially above the energy of free 
excitons so that within this approximate scheme no metallic 
state bound relative to free excitons (with equal masses) is 
found. 

One major weakness of this calculation is that terms 
corresponding to the mUltiple scattering of an electron and 
hole have been omitted and these give rise to the exciton bound 
state. 

4. EXCITON MECF.UU~ISM OF SUPERCONDUCTIVITY 

The exciton mechanism of superconductivity is discussed with 
respect to a particular model, a thin metal layer on a semi
conductor surface. In this model, the metal electrons at the 
Fermi surface tunnel into the semiconductor gap where they 
interact with virtual excitons, producing a net attractive 
interaction among the electrons in direct analogy with the 
phonon mechanism of superconductivity. 

Two questions needing consideration are: How far are the 
metal electrons near the Fermi surface expected to tunnel into 
the semiconductor gap, and what is the effective interaction 
constant in the semiconductor due to exciton effects? 

To investigate the first question suppose that the metal 
film and semiconductor are in intimate contact with no barrier 
separating them. This implies that there is a chemical bonding 
at the interface such that the tails of the wave functions of 

449 
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the electrons near the Fermi surface of the metal penetrate 
into the energy-gap region of the semiconductor. For optimum 
penetration, the Fermi level, EF,of the metal should be near 
the center of the semiconductor gap at the interface. Band 
bending due to the space charge of the metal electrons in the 
semiconductor should be less than the order of half of the 
average gap. This gives some limitation on the maximum penetration 
of the metal electrons one can have without getting a large 
concentration of free carriers in the semiconductor near the 
interface. 

To get an estimate of the penetration and calculate the 
band bending due to the space charge of the metal electrons 
in the semiconductor, a simple model will be used. A~sume that the 
band gap Eg is small compared with the semiconductor plasma energy, 
so that fortw<CEg, the dielectric function is large. For w>wa- I 

in the first approximation, the screening is similar to that of 
a metal with an electron density equal to that of the valence 
electrons. 

For simplicity assume an isotropic energy gap in the 
semiconductor such that the electron energy E measured from mid
gap may be expressed in the form 

1 1. J1/2. E=i [E.'l..-t(2:"Ecr) (4.1) 

in analogy with a superconductor wi th a gap 2 A =Eg • Here E: 
is the free-electron energy, measured from the Ferm1 level at 
midgap, 

(4.2) 

The Fermi energy may be expressed as 

11 'l. (IJ.. 'l.) E F = 2."", h.t; F -+ kll (4.3) 

where kZF is the value of kz required to give the energy EF for 
a given transverse component k /I : 

'1 1/2 
A1F ::: [ (L'Yv-..Er/.t..?. ) - All J. (4.4) 

For energies in the gap region, 
comp lex, kz --, kzF+i~, and 

I E I < 1/2 Eg, kz becomes 

-1:,1-
C = L (~) AH t;( , 

where we have assumed 0<-.« kZF and neglected 
~2. Solving Eq. (4.1) for ~ gives 

_ 'WI. [ (4 E ~y.- f2J1(2 
<:::f.. - J.2. [ h'J... _ A'l.. J1/-).. 

h F 1/ 

(4.5) 

a term of the order 

(4.6) 
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where kF is the magnitude of the Fermi wave vector. 
The wave functions decay as e - 0<.1 and the electron 

density as e-2~ •• To get the average depth of penetration 
D= < I /2r::i.. ') for electrons with energies in the gap, average 
over energies and over kll values. This gives 

1 0 .... F .t.1k 
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1 (-t:, \( r [~ '2. '2.J1I1 -) (~r 1. 111h n - ~~ 
D=<2o(>="""E)j h:E'})-E cit }/j[hF-A '1 ~1/d..f{1I-3"""-E .(4.7) 

6 -E'ih. Fad' 

For kF=I.SxI08cm- l , corresponding to an electron density of 
NI023/ cm3 and Eg"'2eV, it is found that D is of the order of sR. 

The voltage drop due to the space charge of the 
penetrating electrons in the gap is less than one might 
suppose because of the high dielectric constant of the 
semiconductor. The number of such electrons per unit area 
of semiconductor surface is 

(4.8) 

where 2N(0) is the Fermi-level density of states for electrons 
of both spins in the metal, ~N(O)Eg is the corresponding 
density of electrons at the interface in the energy range 
-1/2 Eg to 0 of the semiconductor gap, and D is the average 
depth of penetration. 

The electric field produced by these electrons at the 
interface is itrreG" IK, where K is the dielectric constant 
and the voltage drop is of the order 411e fSD/K. The change in 
electron energy due to this drop should be less than half 
the gap. Thus 

4rrel.rNCo) t5t 1) 1. 

K 

1 

< 1 Ed' 
(4.9) 

or 

g1l e 2..r NCo) D'l < K 

For kF '" I.Sxl08cm -I, N(0)",,3xI033 erg- I cm-3 and DNSxI 0-3 cm, one 
finds 1<,/1( (. 40. For ~ IVI /2, Ko should be of the order of 20 or 
larger. Such values are typical of many narrow-gap semiconductors. 

For later use, define the parameter b=. I(D/L, where L is 
the thickness of the metal film and b roughly signifies the 
fraction of the time the metal electrons spend in the semiconductor. 
TakingL IVIO-IS~, r",I/2, and D"'S~, one gets bIVI/4-I/6. 

Now look at the effective interaction constant in the semi
conductor due to exciton effects. As it is well known from BeS 
theory of superconductivity, an attractive interaction between 
electrons near the Fermi surface in a material is necessary for 
a superconducting state to exist. For the metal-semiconductor 
system, the interaction is the combination of three contributions, 
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(4.10) 

where Vph is the phonon part, Vc the Coulomb interaction, and 
Vex the exciton part. The w variable is an energy variable 
representing the energy difference between the initial and 
final states which occurs in the matrix elements for the 
scattering processes. 

The Coulomb interaction is represented by the parameter ~ 
The Fourier transform of the screened Coulomb potential Vc(q,w) 
is 

, (4.11) 

where <t, ware the momentum and energy transfers in the electron 
scattering, E.-I ("iI, tv) is the inverse dielectric function for a 
metal of equivalent electron density, and qs is the appropriate 
screening wave vector. fJ.. is defined to be the average of V c (q, w ) 
over the Fermi surface times the density of states at the Fermi 
surface, N(o) 

(4.12) 

The average over the Fermi surface <Vc>, may be expressed as an 
integral over q, leaving ~ as a function of w only. Choose the 
square well model, in which ~ is a constant out to W =GUF: 

jJ... for 0 ~ I wi f: WF 
o otherwise 

Typical values of ~are of the order of 0.2-0.5. 

(4.13) 

The phonon interaction may be described by a parameter ~ph' 
Adopting McMillan's definition of 'Aph, one has 

_!) rPM C:(w) F( w) 1 

A 11 - L. j w a..w (4.14) 
p 0 

where Cj.... 2(<...) is an average matrix element of the phonon 
interaction, F(w) is the phonon density of states, and wpm is 
the maximum phonon energy. It has been assumed that the metal
semiconductor system has a single electron-phonon coupling 
constant which is uniform through the entire system. 
~ Finally consider the exciton interaction. A metal electron 
kIt is scattered to k21 by exciting a semiconductor valence
band electron kv into a state above the gap kc and createsa . . . -.\ 
v1rtual exc1ton. The pa1red electron ~kl~ then absorbs the 
exciton and scatters into the state -kZ~. Conservation of wave 
vector requires the q=kZ-kl=kv-kc+k, where k is a reciprocal 
lattice vector. In general q may be outside of the first 
Brillouin zone, and thus there are several values of k and 
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kv-kc that satisfy this condition. To estimate the exciton
electron coupling, ~ex, consider the following simple model. 
The interaction term in the Hamiltonian for a metal electron 
arising from the semiconductor electrons consists of a screened 
Coulomb-like potential, summed over all of the semiconductor 
valence electrons: 
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) (4.15) 

where r is the coordinate of the metal electron and ri is the 
position of the ith semiconductor-valence electron. The sub
script s implies that the interaction is screened as in a 
metallic jellium model of equivalent electron density. 

The Fourier transform for w« wF is 

4lfe'l ~~I;f.--rl 
"deM.-:l(:r;==t t q,'ld~/w"'O) e.. ' 

Clearly, 4 'IT e2/q2E is the Fourier coefficient screened 
interaction. 

(4.16) 

The fluctuations in potential in each cell that give rise 
to the band gaps will be treated in perturbation theory. The 
reciprocal dielectric function, e-Ior,k') is a tensor in the 
reciprocal lattice vectors k and k'. The tensor character allows 
for local field effects and it has been shown that for the 
phonon mechanism, local fields permit an effective 
attractive interaction 'A ph >)J- without violating stability 
considerations. The same applies in an analogous way to the 
exciton mechanism. 

One can wri te 
~(ltlT€"1..)S -i-q,;y' 

'deM.J:=t <1,1. ~'\,e.. 

where 

(4.17) 

(4. 18) 

The screening factor S in Eq. (4.17) is of order 1/2 and 
approximates the effects of the dielectric tensor E-I • 

1 

S = < E-1 > ::::: < (<t,:+'l:J > "-;~ (4.19) 

since average q' s are of the order kF and qs IV kF' The angular 
brackets denote an average over the Fermi surface. 

The interacting matrix element is 

(4.20) 
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where to, kl> is the initial state with no exciton and a metal 
electron of momentum kl and IN, 1<2'> is the final state with an 
exciton IN> of definite momentum -q and the metal electron 
scattered to k2=kl+q. Assuming plane-wave states for the metal 
electrons, the matrix element becomes 

4lTe.2. \ (' 
M = ~ S (~) ( S'I,dNO 0'l,<t.1 (4.21) 

where (~q)NOiE <NI~ql 0) • Actually only the transverse components 
of It can be defined by a wave vector and there will be only a 
limited number of states in the kz direction, but this will not 
effect the order of magnitude of the estimates to be made. The 
range of interaction is less than the depth of penetration into 
the semiconductor. 

This exciton scattering process is second order in 
perturbation theory, involving both the emission and absorption 
of a virtual exciton. Either pair of electrons may emit or absorb 
the exci ton, implying an addi tiona I factor of 2. Thus for W <.(W NO , 

V =2. L IMI'1-
ex III W NO 

(4.22) 

However, this expression for IMI2 still needs to be modified by 
the factor that gives the fraction of time the metal electrons 
are in the semiconductor b and by the decreased amplitude in 
the penetration region f : 

he.1. (g 'lYNO 

~tb ~ W wo 
V ::: 2Sl. 41re..1. 

ex 'l,1.. 

Now approximate wNO by its average value <~O '> = wg, the 
average gap width: 

(4.23) 

_ 2 41ie.~ <:;",(4 iT e.
1
'l.) ( \'2. 

Vex - 2. S f 6 q, 'l W ~ ~ \ ~ 't, } NO (4 • 24) 

Consider the following two sum rules: 
~ ~ r WE: (w) olw =~ UWp'l. =(~ 1T) 4lT 'Y1.e, ~ 
o 1 

rt.ll 41Te..' ( \'1. 
j E. (wI cJ,w = 2.. ---q:l ~'\. J NO 
o l N ~ 

(4.25) 

(4.26) 

where wp is the electronic-plasma frequency, ~2 is the 
imaginary part of the dielectric function, and rt e is the 
density of semiconductor valence electrons. To approximate the 
first sum rule, assume that E:2 is sharply peaked at w=Wg and 
integrate over just this exciton peak: 

(4.27) 
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One may reduce ne to some value neff to account for integrating 
only over the exciton peak. Then 

, ,'1. .. 4 ~ 2 '1 S ~ 11" ""p "' '\" II e ( ) 
peoAW~ E1 (w)J W ::"2 w~'L ==Wa 'N ~ S't No (4.28) 

giving 

(4.29) 

The value of Aex is N(O) times the average of Vex over 
the Fermi surface: 

'l. 'l. 

').el<=N(O)<Vex'>~[N(O)<S(~~; })J(S>~6~;1) (4.30) 

W1. 

Aex == S rb f'- ( W~l ) • (4.31) 

Taking favorable estimates for parameters (b"-I/4, ~ "'1/2, 
f"'I/3, 5"-1/2, wp"-lOeV, W g"'2eV) one gets 

~ex ~ O.S (4.32) 

On the experimental side a large temperature-dependent 
transition in the magnitude of the ambient axial electric field 
inside a vertical copper tube has been observed. Above a 
temperature of 4.SoK, the ambient field is 3xI0-7V/m or greater. 
Below 4.SoK, the magnitude of the ambient field drops very rapidly, 
reaching SxIO-IIV/m at 4.2~. One measures the time of flight 
spectra of an electron going in the center of the copper tube, 
giving 

(4.33) 

where h is the length of the tube, Eamb is the effective ambient 
electric field assumed to consist of a constant term due to 
gravitationally induced distortion of the tube and a term due 
to the patch effect with a complicated z dependence, and Eapp 
is the uniform applied field. An examination of the copper 
surface revealed a layer of copper oxide approximate ly 20 ~ 
thick. This gives the metal-semiconductor interface which is 
needed for the excitonic superconductor. The screening of Eamb 
by the 2-D superconductor is a .reasonable guess at this stage of 
the investigation. 

S. CONCLUSION 

The two simple descriptions for the electron-hole liquid and 
the exciton mechanism of superconductivity point out that one 
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needs to have a fundamental calculation of the PH propagator 
in order to investigate these systems. The equations derived in 
part II offer a reasonable starting point. The results obtained 
on atomic systems were very good, and as demonstrated by Ladik 
[7J, these approximations work quite well for complicated 
polymers using the OAO approximation. 
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ASPECTS OF THE THEORY OF DISORDERED SYSTEMS* 

E. N. Economou+ 

Department of Physics, N. R. C. Demokritos 
Aghia Paraskevi, Athens, Greece 

ABSTRACT. Questions related to the structural instabilities and 
the disorder of non periodic solids are briefly reviewed. Dis
order may cause localization of the one particle eigenstates 
thus affecting seriously the transport properties of the materials. 
The metastability of the amorphous state is revealed physically 
through a linear (in T) contribution to the specific heat in the 
limit T~O. 

1. INTRODUCTION 

Solid State Physics deals mainly with crystalline materials 
which exhibit periodicity interrupted occassionally by impurities, 
defects, etc. However, there are materials of great physical 
and technological interest which do not possess any periodicity, 
e.g. amorphous semiconductors, amorphous metals, non stoichiome
tric alloys, spin glasses, organometallic conductors such as TCNQ 
salts, etc. In the last ten years there has been a growing inter
est in these nonperiodic materials both because of the challenging 
problem of understanding their behavior and because of the possi
bilities of technological applications they offer [11 . Thus a 
new subfield in the Physics of Condensed Matter has been born 
(2-51. 

Here I will attempt to present some aspects of the conceptual 
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framework which has been developed in order to understand the 
properties of these materials. I will mainly concentrate on 
three questions: (i) the role of disorder in localizing the eigen
states; (ii) the existence in amorphous materials of many states 
almost degenerate to the "ground" state; (iii) the electronic 
structure of chalcogenide glasses. These questions were singled 
out because they are related with novel physical phenomena char
acteristic of the non-crystalline state. 

2. RANDOMNESS AND LOCALIZATION 

2.1 Formulation of the problem 

To deal with this question we employ first the independent 
particle approximation (IPA). It must be stressed that such a 
drastic approximation has not been justified. If anything t one 
expects correlation effects to be more important in disordered 
systems (in which the IPA eigenstates may be localized) than in 
crystalline systems (where the IPA eigenstates are Bloch waves). 

Within the IPA the problem can be formulated as follows: 
Given the one particle random Hamiltonian H (more correctly: 
given the probability distribution of the matrix elements of H) 
find 

(i) the density of states 
(ii) properties of the eigenfunctions, especially whether 

they are localized (i.e. vanishing fast enough at infinity) or 
extended (i.e. non normalizable as the volume becomes infinite). 

The determination of the density of states (DOS) is a very 
important task, since almost all physical quantities depend on 
the DOS. Special techniques have been developed for this pur
pose [6J. However, it should be noted that the DOS of a disor
dered system is not qualitatively different from that of the 
corresponding ordered system. On the other hand, the possibility 
of localized states forming a continuum is a novel feature not 
to be found in ordinary one particle quantum systems, where the 
continuous spectrum corresponds to extended eigenstates and the 
localized eigenstates form a discrete spectrum. We examine first, 
in Sect. 2.2, some physical consequences steming from the exis
tence of a continuum corresponding to localized eigenstates. We 
then consider the question of the existence of this feature both 
within the framework of classical mechanics (Sect. 2.3) and the 
framework of quantum mechanics (Sect. 2.4). 

2.2 Physical Consequences 

If the Fermi energy EF happens to be within a region of lo
calized eigenstates, the system will exhibit insulating behavior, 
in the sense that 



ASPECTS OF THE THEORY OF DISORDERED SYSTEMS 459 

(2.1) 

where 0T=O is the zero temperature DC conductivity. Furthermore 
at finite temperatures the electronic transport can take place 
through phonon assisted hopping; Mott [71 demonstrated and others 
elaborated [7J that in this case the temperature dependence of 
the DC conductivity is given by 

o(T) = A exp [ _(~o) 1 / 4J (2.2) 

Thus o(T)-+O as T~O, which means that at T=O the electronic 
mobility is zero in the region of localized states. Mott [8) 
proposed that the mobility jumps discontinuously to a non zero 
value as we enter the part of the spectrum corresponding to ex
tended eigenstates. This non zero value gives a minimum metallic 
conductivity which can be estimated by assuming that the minimum 
mean free path, £ . , equals to the interatomic distance, a. 
S . f h mln . f h d .. tartlng rom t e expreSSlon or t e con uctlVlty 

o :; n e2 ~ (2.3) 
m vF 

where n is the electron density, n = N/a3 , N is the number of 
valence electrons per atom, and m is the electronic mass; vF' 
the Fermi velocity, is related to n by 

(2.4) 

d is the dimensionality of the system. Substituting Eq. (2.4) 
in Eq. (2.3) and taking into account that e . Na and that N . =1 
we obtain mln mln 

°min'ii 

2 
e d-2 

a (2.5) 

Note that for d=2 the mlnlmum metallic conductivity depends only 
on universal constants. A more refined treatment [9J based on 
scaling considerations yields for d=2 

2 
o. = .12 e 1ft mln (2.6) 

For experimental evidence supporting Eq. (2.6) see ref. [10J. 
Eqs. (2.1,.2,.6) show the far reaching physical consequences of 
the assumption of the existence of continua corresponding to lo
calized states. Having thus motivated our interest in the ques
tion of localization, we review briefly the progress which has 
been made in demonstrating the existence of localization as a 
result of randomness. 
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2.2 Percolation Theory 

It is instructive to examine first the problem of a classi
cal particle of energy E moving in a random potential VCr). In 
this case the particle is localized (extended) if the surface 
V(~)=E is closed (open). To visualize the situation consider 
the 2-d case; correspond to the potential VCr) the height her) 
of a random terrain; and to the energy E a uniform water level. 
The regions h(r.)<E (Le. V(r)<E) are covered by water, while 
the region h(~» E (i.e. V(r»E) is land. For low water levels 
(E «E ) all the water areas are lakes, L e. they are surrounded 
by lana, a situation which corresponds to localized electrons. 
As the water level increases the lakes become more numerous and 
of larger area each. At some critical level h=h (E=E) lakes 
are joined together to form the first ocean, i.e~ the first ex~ 
tended state. This first ocean has a very complicated shape and 
covers a small fraction of the total area. As the water level 
is further raised many lakes are able to join the first ocean 
which becomes larger and with smoother boundaries. Finally if 
the level h is much higher than h almost all lakes join together 
to form a single ocean which cove~s almost all the total area 
except for some small isolated islands, which are the analogs of 
scattering centers in an ordinary metal. There are computer 
experiments (see the article by E. N. Economou et. al. in ref.[3J) 
which verify the picture presented above. Efforts have been made 
to relate the critical value E to a critical value, v , of the 
fraction of the water area, v,c[11]; v depends on theCdimension-

c ality. 

The mathematical treatment of this problem is facilitated 
by expressing it in a lattice formulation. How such a formula
tion arises can be seen by considering a classical electron of 
energy E initially placed at a particular atom. If E is larger 
than the saddle point of the potential between the particular 
atom and a specified nearest neighbor, the electron can migrate 
to this nearest neighbor; otherwise the direct path (bond) 
connecting the two atoms is blocked. In a random system a frac
tion Ph~ Pb(E) of the nearest neighbors bonds will be open and 
a fraction 1-Pb is blocked. The question is to find the proba
bility P for an electron (initially placed at a particular atom) 
to escape to infinity following a path of open nearest neighbor 
bonds. This is the bond percolation problem. There is also the 
site percolation problem where we try to find P as a function of 
p , where p is the fraction of allowed sites in the lattice. 
T~ere is a ~igorous mathematical proof that a critical value of 
Pb' p~, (or of p , pc) exists (corresponding to the critical 
value E introdu~ed ~arlier) such that for p < P~ (or p < pC) 
p=O, i.~., the electron remains localized. ~he critical en~rgy 
E is termed mobility edge. The physical picture emerging from 
p~rcolation theory is summarized in Fig. 1, where the mobility vs. 
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E is also plotted (curve b) [12). 

2.3 Quantum treatment of localization. 

In the last subsection the question of localization was 
examined within the framework of classical mechanics. What modi
fications quantum mechanics brings to the classical picture? 
One effect is that the electron can tunnel over the land area 
from one lake to a nearby disjoint lake creating thus the possi
bility of delocalization; another effect is that a wave cannot 
easily propagate through the very complicated shape of the first 
ocean because of strong surface scattering [13J. Thus the two 
effects oppose each other and may leave the classical picture 
qualitatively unchanged. Wave propagation can always be described 
as the transfer of the oscillation amplitude (with the help of 
some transfer matrix elements t .. ) from a region i of local osci
llations of frequency w. to a r§gion j of frequency w .. The trans
fer is facilitated by l~rge values of t .. and is impeded by large 
values of W.-w. [14]. The simplest r~~lization of the general 
problem is t~e doupled pendulum systems shown in Fig. 2. The lo
calization or not of the eigen-oscillation is expected to depend 
on the magnitude of t .. and on the spread (standard deviation) 
in the distribution of] w. . The mathematical treatment of this 
problem is usually based 6n the convergence of the so called re
normalized perturbation expansion for the Green's function of the 
system, as was originally proposed by Anderson [15J. For a re
view of the subject see the article by Economou et al in ref. [3], 
the review article by Thouless [16] and Chapter 7 in ref. l17J. 
For a I-d system the eigenstates become always localized (some 
pathological exceptions do exist) no matter how small the degree 
of randomness is [18]. For higher dimensional systems there is 
no rigorous result. However, the available complicated approxi
mate theories [15-17J , the numerical solutions of Schrodinger 
equation L19-21J, as well as the analysis of experimental data 
strongly suggest that the picture summarized in Fig. 1 is valid. 
In each band there are at least two mobility edges E which, as 
the degree of randomness increases, move inwards towgrds the 
center of the band. As the randomness exceeds a critical value 
the two mobility edges merge together and all the eigenstates 
in the band become localized. The disappearance of extended 
states as a result of randomness is called Anderson's transition. 

The question of the behavior of the eigenfunctions near a 
mobility edge is of great importance. Mott argues that an ex
tended eigenstate cannot follow a complicated shape like the per
colation channel. On the contrary, he assumes that, if the eigen
state is extended, it is more or less uniformly spread over the 
whole volume. Such an assumption leads to a discontinuous drop 
of the mobili$y at E (curve a of Fig. 1). The value of the 
mobility at E defin~s a minimum metallic conductivity, a concept 
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which seems to be supported by experimental evidence (8,9 j , 
especially in metal-oxide-silicon field effect transistor (MOSFET) 
[22,23] where the position of the Fermi level can be controlled 
by an external voltage. It should be mentioned that in the 
interesting regime in MOSFETs many body effects seem to be sig
nificant; this question has not been examined yet in a satis
factory way. 

3. DEGENERACY OF THE "GROUND" STATE 

Many amorphous materials find themselves in a metastable 
"ground" state which lies higher in energy (or free energy for 
T ) 0) than the true ground state which is the crystalline one; 
a substantial potential barrier prevents the crystallization of 
the material for temperature below the glass transition tempera
ture. However, very close to the metastable "ground" state there 
are many other almost degenerate states differingjfrom the "ground" 
state because of some local rearrangements of nuclear coordinates 
and bonding configurations. The amorphous state is thus some-
how similar to a photoexcited state in a complex molecule [24] , 
although for an amorphous material the potential barrier is so 
high that the state is stable for practical purposes. In Fig. 3 
we plot schematically the potential curve vs. the totality of 
nuclear coordinates indicating the essential differences between 
a crystalline true ground state and an amorphous metastable ground 
state. 

A direct consequence of the picture shown in Fig. 3 is that 
the low temperature specific heat behaves as 

C = Cl 3 T3 ; crystalline insulator (3.1) 

C = Cl1T + Cl3 
, T3 ; amorphous insulator (3.2) 

where Cl is related to speed of sound. The existence of the 
linear ~erm in the specific heat was observed experimentally [25J. 
As a matter of fact, it was this dramatic linear term in the speci
fic heat which led Anderson et al. [26J and Phillips [27J to 
postulate the existence of alternative local configurations to 
which the system can tunnel. Experiments showing a saturation 
of the ultrasonic attenuation, and measurements on thermal con
ductivity, temperature dependence of the sound velocity, and nu
clear spin lattice relaxation provide further evidence for the 
existence of the local rearrangement modes (LRM). A direct 
experimental evidence for the existence of LRM in amorphous 
structures is provided by the observation of Kondo effect in 
non magnetic amorphous metals (28]. The Kondo effect is a loga
rithmic rise of the resistivity with decreasing temperature; 
this rise is due to the scattering of the conduction electrons by 
a two level system such as a magnetic impurity. Although the 
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concept of LRM has been proved very useful in analysing experi
mental data no one has succeeded in constructing a particular 
structure exhibiting explicitly LRM; such a construction is an 
important task for advancing our understanding of the behavior of 
disordered system. 

4. ELECTRONIC STRUCTURE OF AMORPHOUS SEMICONDUCTORS 

I am refering here to the so called chalcogenide glasses 
(see ref. [1] or the article by Fritzsche in ref. [3) ) which 
can be prepared in the amorphous state in the bulk, have a low 
coordination number, and possess a lone pair. Examples are Se, 
Te, As2Se3 , As 2S3 etc. Understanding the electronic structure 
of sucfi materials is a challenging problem. The observed pinning 
of the Fermi level strongly suggests the existence of a non zero 
density of states at the Fermi level. On the other hand, the 
observed diamagnetism, the non metallic behavior and the existence 
of an optical gap all suggest a behavior similar to the crystalline 
case where the Fermi level lies in the gap. Other experimental 
observations such as photostructural changes, midgap absorption 
and ESR signal after illumination, etc., are unique characteris
tics of the amorphous state, which are not well understood. 

Anderson [29] proposed a picture which goes a long way in 
explaining the puzzling experimental observations. He assumed 
that the I-particle density of states is very similar to that of 
the crystalline state. However, in the amorphous state some 
pairs of electrons are formed with energies around the center of 
the gap. Thus the electronic structure looks as shown schemati
cally in Fig. 4. Mott et al [30] and Kastner et al [31J have pro
posed a similar picture on the basis of an analysis based on local 
molecular orbitals. In all cases a picture like that of Fig. 4 
requires the existence of strong electron-electron (or hole-
hole) attraction for the formation of the midgap pairs. 
Anderson [29] assumed that local phonons in certain special places 
mediate the attraction; Mott et al [3~ and Kastner et al [31] 
talk about "defects" which provide at least partially the attrac
tive forces required. 

Economou et al (321 attempted to synthesize the unique 
structural characteristic of the amorphous state shown in Fig. 3 
with the characteristic electronic structure shown in Fig. 4, 
by assuming that there is an interaction between the electrons and 
the LRM. Such an interaction creates both the metastable states 
and the pair states shown in Fig. 4; furthermore it directly 
relates electrons with structural features (the LRM) and conse
quently it accounts naturally for photostructural properties. 
Several of the predictions of the model are in agreement with 
experimental observations. The construction of a specific 
molecular model incorporating LRM will greatly contribute to our 
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understanding of the properties of amorphous materials; the 
role of local phonons and LRM will be revealed, and the proposed 
pictures will be tested explicitly. 
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EXCITED STATES OF TRANSITION METAL OXIDES* 

ABSTRACT 

A. Barry Kunz 

Department of Physics and Materials Research Laboratory 
University of Illinois at Urbana-Champaign 
Urbana, Illinois, U.S.A. 61801 

A discussion of the electronic structure of the non-metallic 
transition metal oxides is presented. To be successful any model 
must quantitatively, at least, describe the following phenomena: 
insulating behavior of open shell systems; magnetic properties 
and low lying magnetic excitations; cohesion and phonon spectro
scopy; "localized" excitations or excitons and; Bloch like exci
tations. We argue that the least sophisticated model which can 
attempt such a description is the Unrestricted Hartree-Fock model 
(UHF), and even in this limit Koopman's theorem may not be assumed 
but rather total energy differences of several self-consistent 
solutions are needed. We further show that if quantitative 
accuracy is needed correlation corrections beyond the UHF limit 
are necessary. We discuss several simple models for inclusion 
of correlation corrections using techniques of classical electro
dynamics on one hand and of Configuration Interaction on the 
other hand. Detailed calculations are presented using these 
models and comparisons with optical spectroscopy are made. There 
is a reasonable comparison of theory and experiment produced by 
these methods, and the ground state of FeO, CoO and NiO is seen 
to be insulating whereas that of TiO and VO is seen to be 
metallic. 

II. INTRODUCTION 

The first transition period elements and their oxides form 
one of the most interesting class of materials in terms of the 
variety and strangeness of their physical properties. These 
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systems exhibit magnetic phenomena ranging from ferromagnetism 
to antiferromagnetism. The oxides in particular exhibit a great 
variety of electrical behavior, ranging from being good conductors 
of electricity to being excellent insulators. Many of these 
properties are hard to understand on a first principal basis and 
a wide variety of ad hoc models are invented to account for the 
observed properties. An abbreviated list of some important 
properties of the systems TiO, VO, MnO, FeO, CoO and NiO is to 
be found in Table 1. A brief study of this table will enable 
the reader to determine quickly for himself that many of these 
properties behave strangely. 

Consider for example the lattice parameter for the oxides. 
As atomic number (Z) decreases in a given row of the periodic 
table, the atomic radius increases, thus as the cation in oxide 
changes we expect the lattice constant to increase as Z decreases. 
This is true for TiO and VO or for MnO, FeO, CoO and NiO, but 
the lattice parameter of either TiO and VO is substantially 
smaller than for MnO. Simple crystal field arguments are able 
in part to justify this behavior but the detailed numerical 
evaluation of the radial extent of the d-orbitals negates the 
effect of crystal field arguments, so this property itself is 
yet a mystery. 

A second and much more interesting anomally is associated 
with the occupation of the d band. All six of the oxides shown 
have fewer than 10 electrons in the 3d band (2-8 actually). On 
the basis of elementary energy band theory these systems would be 
metallic in nature. This is certainly true for TiO and most 
likely vo. One finds MnO, FeO, CoO and NiO are insulating. In 
addition, these four systems are antiferromagnetic and exhibit a 
variety of spin directions and magnetic lattice types as seen in 
Table 1. It is this set of properties which seems to be'most 
interesting to investigators and it is these properties which 
form the basis for the investigations we discuss in this set of 
lectures. 

The initial starting point is to recognize that these four 
systems, along with several others we do not consider here, fall 
in the category of Mott insulators (N. F. Mott, 1949, 1952, 1956, 
1958, 1961, 1969). The category of system called Mott insulators 
may loosely be assumed to include systems which are conducting in 
terms of elementary ftnergy band theory but are insulating experi
mentally. It is of course assumed that the experimental insulat
ing behavior is not due to crystal imperfections, impurities or 
slight deviations from stoichiometry but is an intrinsic property 
of these systems. It is not appropriate here to give a review 
of the properties of Mott insulators and the reader is referred 
to the works of Mott. 
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There have been many attempts to justify the behavior of the 
"Mott" insulators and it is necessary to briefly discuss several 
of them here. The first is due to Slater and Wilson (T. M. Wilson, 
1968, 1970). This model attempts to use the antiferromagnetic 
lattice and ordinary energy band theory to explain the insulating 
behavior. In this model the cation is allowed to be spin polar
ized. Thus at the atomic level one has two 3d states, a majority 
spin state and a minority spin state, each five fold degenerate. 
In the crystal field of a f.c.c. system each of these levels 
splits into two levels, one three fold degenerate the other two 
fold. Normally, the threefold level is lower in energy. If one 
includes periodic symmetry of the lattice these levels broaden 
out into energy bands. Provided the bands do not overlap in this 
normal order case, systems of 3, 5, 6 or 8 d electrons have the 
possibility of remaining insulating. This evolution of energy 
levels is seen in Fig. 1 for the case of NiO using the band 
results of Wilson. There are three immediate criticisms of this 
result. The first is this model doesn't explain the insulating 
behavior of CoO. The second is that this model predicts a very 
small photoconductivity energy gap, which is not seen experiment
ally. Finally, this model is conducting above the Neel temper
ature whereas the systems shown in Table I remain insulating well 
above this temperature. This model is therefore not considered to 
be the explanation of the phenomena observed in NiO or the other 
systems. 
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Fig. I The evolution of the Ni++ 3d level into bands is shown. 
In part a the 3d level of a RHF like calculation is given. In 
part b it is split into two levels by spin polarization. In 
part c the spin polarized levels are split by aI. octahedral 
field and in part d the antiferromagnetic NiO band structure 
of Wilson is given. 
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A second model is that of Hubbard. It is an ad hoc type of 
many body model which, provided one chooses one parameters with 
care is consistent with the observed conductivity data (J. Hubbard, 
1963, 1964, 1965, 1966). In this model in its most simple form 
one assumes there is a single s orbital on each lattice site. 
This orbital may be either spin up or spin down. It is further 
assumed there is exactly one electron per lattice site. This 
model assumes that it takes an energy ~ to create a hole on one 
of the atom sites and to place a second electron on another 
lattice site a large distance away. This system having a hole 
on one site and an electron on another has periodic symmetry. 
This invariance gives rise to a matrix element of the Hamiltonian 
called, S, which is for transferring the hole and electron from 
their site to a neighboring one. This S parameter gives rise to 
an energy band of finite width. If the width is sufficiently 
great so that the total energy lowering due to periodic symmetry 
exceeds the ~ parameter one has a system in which charge hopping 
occurs and is thus a conductor. Clearly by judicious choice of 
~ and S one may easily explain the properties of the Mott insu
lators. It is also clear that this model can use much study in 
order to justify its genesis and to properly define its essential 
parameters. This is done in this lecture series. The essential 
physics of a Hubbard model is simply summarized in a more general 
case: there are exactly n electrons per unit cell; these electrons 
are strongly correlated. If one moves right another exchanges 
with it moving left in an insulating ground state; conductivity 
is via a hopping mechanism. 

Next we have the ad hoc model of Adler and Feinleib. This 
model is sufficiently broad as to cover most of the experiments 
and is the least justified theoretically. In this model some 
electrons are assumed to exist in band states, principally the 
oxygen 2p and the cation 4s states, and the cation 3d states are 
assumed to be atomically localized. This gives rise to an energy 
level structure as seen in Fig. 2 specifically here for NiO. 
In the ground state we have a filled 0 2p band and a collection 
of Ni++ ions each in a 3dB (3F atomic) ground state. There are 
low lying excitations in which the 3dB (3F) configuration is 
excited to other terms within the 3dB mainfold and designated as 
3dB*. The next excitation is from a 3dB state into the 4s con
duction band. Thus here the photoconductivity is due to electrons 
in band states in contrast to a Hubbard model. There are also 
true Hubbard like excitations designated as 3d7 + 3d9 etc. This 
model is very appealing in that it has the potential to explain 
much about the transition metal oxides. It also have one clear 
disadvantage in that Brandow has argued that for a truely periodic 
system no local eigenfunctions exist for a system in the inde
pendent particle limit (D. Adler 196B, D. Adler and J. Feinleib, 
1970) (B. H. Brandow 1976 and references contained therein). 
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Fig. 2 The NiO energy level schematic of Adler and Feinleib is 
given. Both Bloch like and local states are indicated. 

More recently there have been a series of attempts to develop 
a comprehensive theory of insulators by Brandow (B. H. Brandow 
1977). This attempt is based upon detailed considerations of a 
Spin Polarized Hartree-Fock equation (SPHF) and uses some semi
rigorous theoretical arguments to evaluate and define the 6 
parameter in a Hubbard model. This attempt furthermore refines 
the possibilities available to couple the ideas of Adler and 
Feinleib, of Hubbard and of Wilson and Slater into a coherent 
idea. Much of the discussion presented by Brandow is related 
to the magnetic properties and any attempt to actually compute 
the needed theoretical parameters is omitted. In this author's 
opinion the chief drawback to the work of Brandow is that it is 
incomplete, many necessary theoretical theorems are missing, thus 
reducing Brandow's ideas to plausability arguments. We will not 
review this model further. 

Finally, it is necessary to mention the numerically suggested 
theories of Brown, Gahwiller and Kunz (1971) of Collins, Kunz and 
Deutsch (1974) and of Collins, Kunz and Ivey (1975). These 
theories were based upon developments of the generalized 
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Hartree-Fock theory in which the virtual orbitals were chosen 
from a variationally chosen operator possessing a Koopman's like 
theorem appropriate to excitation and including electron-hole 
interaction. The hole character was chosen to minimize the 
excitation energy. This model predicted many numbers but the 
calculations were in some cases crude enough to prevent very 
accurate quantitative answers. In addition, these works suffered 
in a similar way to the theories of Brandow. They lacked the 
necessary analytic theorems to turn the numerical studies from 
plausibility arguments into detailed theoretical understanding. 
In this manuscript we consider in detail the theoretical question 
of the ground state and the elementary excitations of a narrow 
band system and provide a more detailed set of calculations for 
NiO than has been available. We begin with a one electron model. 

II. THE UNRESTRICTED HARTREE-FOCK METHOD (UHF) 

In this study, we use the normal n-electron Hamiltonian, H, 
in which we neglect relativistic effects and the finite mass of 
the nuclei. H is found to be: 

H 

f. 
1 

h2 2 
-- - 'V 

2m i 

2 
e 

gij -+-+ Ir.-r. I 
1 J 

(1) 

N 

L 
1=1 

-+ 
Here there are N nuclei of charge ZI at site RI . The electron 
charge is e and its mass m. Lower case letters refer to electron 
properties and upper case letters refer to nuclear properties. 
In our wavefunction we include spin degrees of freedom and thus 
use coordinate *i to include space degrees of freedom ti and spin. 
Ideally, we would like to solve: 

(2) 

but this is too difficult. Therefore, we approximate our solution 
by: 
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subject to the constraints, 

and 

or 

+ 
~i (x) 

+ 
~.(r)a , 

1 

+ + 
~.(x) = ~.(r)13 • 

1 1 
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The quantities a, and 8 are the usual Pauli eigenfunctions for 
spin and spin down respectively. The functional form of ~.(r) 
is chosen variationally without requiring any symmetry ada~tion 
on the part of the ~'s or requiring spin up spin down orbitals 
to occur in pairs. Thus, this model has the potential to go 
beyond the SPHF methods of Brandow. 

If we choose the ~'s by requiring the expectation value of 
H be minimized with respect to ~HF and our given constra~nts, one 
obtains in canonical form the normal UFH equation, defining 
~. (r.) : 

1 J 

F ~i (3) 

In defining p the ~'s act as operators as needed and P(2,l) is 
the operator which interchanges coordinate ~l with ~2' If one 
were to take this function and constrain the ~'s to be symmetry 
adapted to the nuclear geometry, the SPHF solution occurs and if 
one additionally constrains the solutions to exist in symmetry 
adapted spin up spin down pairs the Restricted Hartree-Fock (RHF) 
solution occurs. The reader is cautioned that most other authors 
simply refer to the RHF solution as being the Hartree-Fock solu
tion. 

Let us briefly consider some possible problems of using a 
UHF solution. In general there are operators called symmetry 
operators, Si' which commute with H. If we ignore the question 
of degeneracy one finds that if, 
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then one has 

H '!' i = Ei '!' i ' (4) 

and 

Therefore in the case of atoms the H given in Eq. (1) commutes 
with orbital angular momentum, L, and spin, S, and the z com
ponent of each. Thus, the eigenfunction of H are also eigen
factors of L, Lz ' Sand Sz. In the RHF model the one-electron 
orbitals are also required to be symmetry adapted to the same 
symmetry operators as H thus guaranteeing that '!' have proper 
symmetry properties. In the UHF case the one electron orbitals 
are only eigenfunctions of Sz and thus the total wavefunction 
doesn't necessarily have the proper symmetry characteristics. 
We note this defect can be easily eliminated by forming a pro
jected linear combination of the possible ground state UHF 
solutions if the ground state is degenerate. If it is not 
degenerate the problem vanishes. However, it is also found by 
many calculations that the UHF solution often has almost correct 
symmetry properties. In any event as LBwdin (1966) has shown, 
since one doesn't demand an exact eigenstate of H it is somewhat 
inconsistent to demand an exact eigenstate of the item commuting 
with H, and to do so may compromise the quality of the energy 
solution. 
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The next general consideration concerns the meaning of the 
eigenvalue in the UHF Eq. (3). The meaning is given by Koopman's 
theorem here. That is, if we assume the orbitals of the system 
are unchanged if either an electron is removed or added to the 
system then the eigenvalue, Ei' for an occupied orbital is the 
negative of the energy needed to remove that electron, while the 
eigenvalue, Ea , of a virtual orbital is the energy lost in adding 
that electron to the system. If the change in remaining orbitals 
is not negligible one can calculate the energy charge by perform
ing separate self-consistent solutions for the normal and ionized 
system. The difference in ionization energy computed in this 
self-consistent way and in the Koopman's limit is termed the 
relaxation energy, (D. J. Mi~kish et aI, 1974). This quantity is 
of considerable importance in this study. 

There is one important final point concerning the eigen
value in a UHF scheme as compared to either a SPHF or an RHF 
scheme. This is in a given subshell (i.e. the Ni 3d or B 2p) if 
the subshell is not full, each one electron orbital is allowed 
to have a different eigenvalue whereas in SPHF or RHF this is not 
so. This says that in general there is a large energy gap between 
the occupied orbitals of a subshell and the virtual ones. This 



480 A. BARRY KUNZ 

fact and its importance to Mott insulators was partly recognized 
by Brandow (1977). Ignoring other considerations for a moment, 
the important point can be seen by considering a pair of well 
separated Ni++ ions (3d8 ground state). In the RHF Koopman's 
limit it requires - €3d energy to remove an electron from one of 
them and one gains back €3d energy in adding it to the other Ni 
for a net energy charge of O. Thus one can easily find an 
assembly of such Ni++ ions are metallic. This is not so in the 
UHF limit and here it takes - €3d occ to remove an electron from 
one and only again of €3d virt is recovered upon adding the electron 
to the second for a finite charge. Thus unless this energy charge 
is overcome by energy recovery due to forming bands as one gets 
an assembly of overlapping Ni++ ions the ground state for the 
ensemble is insulating. 

This final consideration consists of how to include electron 
correlations. Basically, these are due to the fact that for an 
insulator if a carrier is instantaneously resident on a lattice 
ion, the surrounding ions polarize dynamically in response to 
this charge. It is possible to accurately compute this correla
tion energy for insulators using the electron polaron model 
(A. B. Kunz, 1972). This model is based upon doing a two particle 
excitation configuration interaction calculation (eI) by means of 
ordinary Ray1eigh-Schrodinger perturbation theory or by means of 
Brillouin-Wigner Perturbation theory. We include this correlation 
in the calculations presented here. It is possible similarly to 
correlate metallic systems using a field of virtual p1asmons to 
describe the system's excitations (A. W. Overhauser, 1971). 

III. DEVELOPMENT OF THE UHF METHOD FOR NARROW BAND MATERIALS 

A narrow band material is one in which the overlap of the 
atomic orbitals from site to site is small (~ 0.1 or so) such that 
the band widths are narrow (0-8 eV roughly). In the case where 
bands are narrow the features of the UHF solution discussed .in 
Section II, makes it possible for a system of partly filled atomic 
subshe11s to have all filled energy bands and thus be insulating. 
Let us consider this possibility in detail. We note that Seitz 
(1940) has shown that for systems of filled bands one may rotate 
the eigenfunctions of the Fock operator into local orbitals (a 
Heitier-London representation) and there is a one to one relation
ship between the band states and the local orbitals. This fact 
characterizes an insulator. If the bands are only partly filled 
there is only a many to one relationship between the localized 
orbitals (Wannier functions usually) and the band states. This 
fact characterizes a metal. We note it is possible for the insu
lator to have a zero actual gap and hence be really a semimetal 
or have a small gap characteristic of a semiconductor as well as 
a large gap. The size of this gap is a subject for numerical 
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solution and is called the photo conducting gap. There may be 
other gaps of smaller size in which one forms excitons or local 
excitations. 

Consider a translationally invariant system containing one 
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or more atom with a partly filled subshell per unit cell. We 
assume each unit cell has the same atoms in the same location as 
any other one. We use the variational theorem. Let the functions 
xam(r) refer to a set of local orthonormal basis functions. The 
label a refers to site and the m to which function at that site. 
Then if the eigensolutions of Eq. (3) obey Bloch's theorem and 
if the resultant bands are partly filled, the eigenfunctions, 
¢tj are; 

-+ 1 \' 
¢kj (x) = -- L e 

IN a,m 
(5) 

The label k refers to 
coefficients, Ajma(i) 
define: 

symmetry labels and m is a band index. The 
are chosen to minimize total energy. If we 

and 

f 'B' a1 J 

5aiBj 

<x .1 fll xB . > ., 
a1 J 

I I i A£ia(k) A£jB(k) 
£ k 
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-+ -+ -+ 
ik· (R -R ) B a e 

s Then the total energy in the symmetry adapted case, ET, is: 

E5 =I 5 
amBn 

f +lI [5 5 - 5 5 ] 
T amBn 2 apyr Bqos apos Bqyr am ap 

Bn Bq 
yr 

x g + V os apBqyros NN 

(6) 

(7) 

This is the exact energy for a single determinant trial function 
using one electron orbital of the form of Eq. (5). In Eq. (7) 
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there are terms independent of (RI-RJ ), terms which go as 
IRI-RJI-l and terms which fall of as exp (-IRI-RJI). For 
sufficiently large lattice constant only the constant terms 
remain here and these yield a total energy (keeping in mind all 
unit cells are identical). 

L S f +1 L [S S - S S ] 
Cl.man Cl.man 2 Cl.pCl.r Cl.qCl.s Cl.PCl.S Cl.qCl.r mn pq 

x gCl.pCl.qCl.rCl.s 

N E ps 

rs 

(8) 

We may use an alternate starting trial eigenfunction. In 
this one there are assumed to be m electrons per unit cell and 
these can be considered to occupy m of the x's. Thus there is a 
one to one correspondence between occupied x's, electrons and 
eigensolutions of Eq. (3). Assuming here a finite gap this is an 
insulating state. Let us for convenience define a coefficient 
aiCi. to be unity if xCl.i is occupied and 0 otherwise. Therefore, 
the total energy, E~, in the non-symmetry adapted case, given 
exactly is: 

fCi. aiCl.fiCl.iCl. +-} LaiCi. a jS [giCl.jSiCl.jf5 - giCl.jSjSiCl.]· (9) 

jB 

Again, in the limit of large lattice constant for a system of N 
identical unit cells one has 

a, 
lCi. f, , +12 L lCl.1Cl. 

i,j 
a, a, [g, , , ,- g, , , , ]. (10) 

lCi. JCI. lCl.JCl.1Cl.JCI. lCl.JCl.JCl.1Cl. 

We note here for neutral unit cell systems this ex~ression is 
correct up to and including terms falling off as IRI-RJI-l but 
not exponentially fast. 

The essential question is which total energy is lower that 
of Eq. (10) or Eq. (8). If we choose the x's to produce the 
least energy solution for (10), the occupied x's just become the 
ground state UHF orbitals for the atoms in the unit cell and the 
total energy is just N times the atomic energy. In the case of 
Eq. (8) the total energy may be shown to be of the form of an 
atom in the UHF limit in which the ground state orbitals are 
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only partly occupied unless the a's of Eq. (5) are such that a 
one-to-one relationship between electrons and occupied local 
orbitals occurs. This being the case it can be shown that 

(11) 

and thus the ground state for large lattice constant is one in 
which there is an insulating UHF trial function. This doesn't 
imply that the eigenfunctions of (3) are local; they have been 
shown for a filled band case such as here to be Bloch like 
(Brandow 1977 and references contained therein), only that all 
bands are filled or empty. Thus the ground state is inherently 
insulating here. If one retains terms of the form 11I-1JI-l in 
reducing Eq. (7) one finds the insulating state persists if we 
have only a single non-filled band and describe it by a single 
Wannier function per site per possible electron in the subshell 
until, 

2 1+ + 1 1 e / R -R > <x .s. x .x .> I J Nearest Ul Ul g12 Ul Ul 
(12) 

Neighbor 
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Here Xai is the Wannier function for the band in question. Since 
there is always some lattice constant for which this occurs, the 
UHF model has an insulator to metal transition. Typically for 
the transition metals the value of the matrix element in Eq. (12) 
for a 3d shell is about 1 Ry and thus the nearest neighbor dis
tance for the transition is about 2 au. For such a distance 
overlaps are far from negligible so that Eq. (12) cannot predict 
where the transition occurs only that a transition is possible. 
We see that including overlap terms causes the transition to 
occur at lar~er separation. In particular we add twice the band 
width to e2//1I-1JI for the partly filled subshell and then see 
if it exceeds the matrix element of (12). This is seen in 
Table 2 for several systems. 

Before we can use this model, solving for Eq. (3), self
consistently there is one last detail to consider. The eigen
values and hence energy bands are defined by ionization processes. 
Therefore, we must consider whether the new hole (electron) is 
local or Bloch like. If it is Bloch like the Koopman's eigen
value corrected for correlation yields the correct definition, 
if a local calculation using relaxation corrections yields the 
eigenvalue and may include correlation corrections also. Note 
this hole (electron) localization is a artifact of the UHF 
solution. In a more correct description by projecting on the 
UHF trial wave function one has a solution in which the hole 
(electron) hops from site to site. We don't consider this here. 
None the less, there is a great distinction here. If localiza
tion occurs, the hole (electron) conduction is via hopping but 
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TABLE 2 

Width, relaxation, and other relevant parameters for severed transition metal 
oxide systems are given as well as some compiled values of other relevant parameters 
discussed in the text. Results in eV. 

~ TiD FeD CoO NiO 
Property 

3d width 6.8 eV* 1.3 eV* 2.5 eV* 3.0 eV* 

3d relaxation 1.4 eV* 2.9 eV* 3.7 eV* 5.0 eV* 

predicted photo-
produced hole conduction hopping hopping hopping 
conduc tion type 

e2/n.n. dist. 6.9 eV 6.7 eV 6.7 eV 6.9 eV 

<3d3d i g i3d3d> 17.5 eV 23.7 eV 25.1 eV 26.5 eV 

predicted metal conductivity type insulator insulator insulator 

experimental 
metal conductivity type insulator insulator insulator 

• From symmetry adapted calculations. This is the appropriate limit if true Bloch 
like behavior occur s. 

if not, is via the normal Bloch electron conductivity mechanism. 
Techniques similar to those used in studying the ground state 
nature show that the hole (electron) is local provided the hole 
(electron) lies below the vacuum level, and that the relaxation 
energy for that subshell on an ion is greater in magnitude than 
the width for that band. We now study the energy bands in detail 
for NiO to test these ideas and to study the NiO spectra. Table 2 
shows results for the values of the 3d hole on several systems. 

IV. CALCULATIONS FOR NiO IN SEVERAL LIMITS 

In order to test the quantitative utility of the preceeding 
considerations we have made detailed calculations for TiO, YO, 
FeO, CoO and NiO. We will discuss the NiO results here briefly. 
Early attempts were made to look at this system in a RHF like 
limit in which the non-local exchange was replaced by a local 
one using the Slater prescription. The first calculation was 
a non-se1f-consistent one and is due to Mattheiss (1972). It is 
seen in Fig. 3. The second attempt of this type is a se1f
consistent result due to Collins, Kunz and Ivey (1975). It is 
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Fig. 3 Non-magnetically ordered NiO band using the Slater 
exchange are shown. In part a the non-self-consistent results 
of Mattheis are given and in part b the self-consistent results 
of Collins, Kunz and Ivey are shown. 

seen also in Fig. 3. 
is vital; there is a 
both results predict 
between the occupied 
5 eV. 

The essential features are: self-consistency 
gap between the 0 2p and the Ni 3d band; 
conducting behavior; there is an energy gap 
3d level and the virtual 4s level of about 

The next level of sophistication is the SPHF type results 
of Wilson (1968, 1970) discussed earlier and shown in Fig. 1. 
Here again the local approximation is made for the exchange. 

The self-consistent RHF bands have been evaluated for NiO 
(Kunz and Surratt 1978) and are seen in Fig. 4. These bands 
have also been corrected for relaxation and correlation effects. 
These results also appear in Fig. 4. We discuss these latter 
results here. The essential features are: correlation greatly 
modifies the band structure; the system here is predicted to be 
conducting; the width of the Ni 3d band is similar to that in the 
local exchange calculations; the width of the 0 2p band is much 
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Fig. 4 The RHF results for NiO are in part a and the correlated 
RHF results are in part b. The results are self-consistent. 

greater than in the local exchange calculation. The Ni-3d to 
Ni4s gap is about 5 eV; the Ni 3d and 0 2p band overlap in energy. 

The next result is for NiO in an antiferromagnetic state 
in which we symmetry adapt the solution producing a SPHF result. 
This calculation is self-consistent. This is a non local ex
change equivalent to the Wilson result. The SPHF results appear 
in Fig. 5 as do the SPHF results corrected for correlation and 
relaxation. We discuss here these later results. We find: 
correlation strongly modifies the bands; the system is conducting 
due to Ni 3d band Ni 3d band overlaps as well as Ni 3d band 0 2p 
band overlap. This is due to slightly greater 3d band widths 
here than in the Wilson result. Otherwise, the comments to our 
RHF solution apply here also. 

The final result considered here is the true UHF result. 
In order to consider this result it is first necessary to find 
if the hole (electron) states will be Bloch like or local in 
the one electron picture (using one Slater determinant). We 
compute the band widths and relaxation energies first. This is 
seen for the 3d level in Table 2. From this study we deduce 
that: core holes in general localize; the 0 2s and 2p levels 
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Fig. 5 The SPHF results for NiO areshown in part a and the 
correlated SPHF results are in part b. The results are for 
antiferromagnetic ordering and are self-consistent. 

have Bloch holes; the Ni 3d holes or localize; the virtual levels 
form Bloch states. This behavior gives rise to some computational 
difficulties which are surmounted by using local orbital tech
niques, which are valid here since for our insulating NiO we 
have a "filled subshell" case, to construct a first order density 
matrix for the Fock operator self-consistently. We then diago
nalize the resulting Fock matrix using a basis of local orbitals 
plus virtual local states subject to the constraint that the 
Bloch states be orthogonal to the occupied 3d manifold. This 
produces the 0 2p and the conduction bands (Ni 4s like mostly) 
shown in Fig. 6 The 3d levels are then obtained by diagonalizing 
the 3d Fock matrix in a cluster model such that the 3d eigen
values using Koopman's theorem here correspond to the formation 
of "local unrelaxed" hole states. These levels are seen in 
Fig. 6 for the filled and the virtual 3d manifold. Finally, 
relaxation effects (actually needed to have a local 3d level) 
are added along with correlation corrections to form the Bloch 
and local level scheme shown in Fig. 7. The important observa
tions to be reached from Figs. 6 and 7 are that: there is 
substantial spin polarization of the occupied 3d manifold; due 
to the absence of a central potential about a Ni ion there is 
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Fig. 6 The self-consistent UHF results are shown for NiO. In 
part a the band states (hole or electron) are shown and in 
part b the local states (hole or electron) as defined by 
ionization processes are seen. 

splitting in the 3d local states due to this as well as to the 
crystal field effect; there is a substantial gap between the 
occupied and the virtual 3d manifold; this calculation finds NiO 
to be an insulator; relaxation and correlation effects are 
important; hole conduction in the Ni 3d level is by hopping; 
electrons in the 4s level conduct by normal band processes. 

In carrying out this calculation we find each Ni ion has 
five electrons in the 3d level of one spin and 3 in the opposite 
spin. Thus due to the small hybridization computed for the 3d 
level on an ion with other occupied ions we find site by Ni site 
that Hund 's rule is obeyed. Thus each Ni ion has a magnetic 
moment. Furthermore, by calculation of total energies including 
nearest 0 neighbor super exchange we find each Ni likes to have 
as many of its neighboring Ni's of opposite spin as possible. 
Thus, each Ni has six nearest neighbor of like spin and six of 
opposite. This is consistent with (Ill) sheets of Ni having 
opposite spin. Furthermore, at this level of calculation a 
N~e1 temperature of 100 K is predicted. Due to diffuseness of 
the 0 2p orbitals, the inclusion of super exchange to nearest 
neighbor 0 is not converged. We are currently extending this 
super exchange ~alculation to second and third neighbors. This 
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Fig. 7 The correlated UHF results for NiO are shown. The Bloch 
states are in part a, the local states as defined by ioniza
tion are in part b, and the photoemission data of Eastman 
and Freeouf are shown in part c to be compared to the occupied 
energy bands. 

also means we label the 3d levels by a majority and minority spin 
label where which spin this is varies from site to site. This 
also implies above the N{el temperature spin ordering vanishes 
due to randomization of local moments but the dominant character 
remains insulating. Since the 0 2p levels band, we don't distin
guish site to site for majority, minority spins here. 

We can make several predictions here. The photo gap is as 
shown from the Ni 3d level to the Ni 4s conduction band and has 
a predicted gap of 5.3 eV (experiment is 3.8-4.0 eV). If we 
did a symmetry projection on the hole state, the 3d levels 
would broaden and would lower the predicted value, so the error 
is of the right sign. The Hubbard gap is as shown here and is 
about 15 eV. This is also the predicted value for ~ since the 
hopping widths are not included in this figure. The photo 
emission data of Eastman and Freeouf (1975) are also shown in 
Fig. 7. The deconvolution of experiment into a 3d and 2p mani
fold is due to Eastman and Freeouf. Since the absolute energy 
of the experiment is ill defined we align the 3d peaks in theory 
and experiment. Agreement is excellent. Finally, we show the 
optical absorption data of Powell and Spicer (1977) for NiO in 
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Fig. 8 A summary of the theoretical and experimental results for 
optical absorption spectrum of NiO is given. 

Fig. 8. The theoretical spectral features of importance are 
included here as we compute them including the 3d8 + 3d8* structure. 
This 3d8 + 3d8* transitions lie below the observed threshold, but 
are either spin or dipole forbidden so we don't expect them to 
be easily seen experimentally. The figure is largely self 
explanatory. In conclusion we find a UHF model adequate for 
qualitative features of the Mott insulators but to achieve 
quantitative accuracy inclusion of correlation is essential. 

*Research supported in part by the U.S. Air Force Office of 
Scientific Research, Grant AFOSR-76-2989. 
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v. A MOLECULAR TEST OF THESE IDEAS 

It is possible to study the phenomena discussed here for 
molecular systems and there is one advantage in doing so. In 
Section III we discuss the criteria to be applied in determining 
if a system in a UHF limit is insulating or metallic and if a 
hole (electron) will be Bloch like or localized. The criteria in 
all cases is based upon total energy considerations and for 
solids exact evaluation is not practical, however, a set of 
approximate criteria are developed based upon some well defined 
but approximate calculations such as atomic relaxation energies, 
band widths, Coulomb self-repulsions, etc. have been given. In 
the case of a molecular system, it should be possible to perform, 
within the UHF limit, exact evaluations of total energy for all 
types of state and also evaluations of the quantities needed for 
the approximate criteria presented and thus test in a concrete 
way the approximate criteria discussed in Section III. 

Several systems were studied here, He2' He4, Heg, H2 , H4' 
Ni2 and NilO . In all cases similar qualitative results were 
obtained. The most complete study performed was for He8 and it 
will be discussed here as ,the prototype for all the other studies. 
For each He atom a basis of 6 s-like gaussian orbitals was used 
and the gaussian exponents were varied to minimize the energy of 
the He atom. The orbitals were not contracted. The eight He 
atoms were placed on the corners of a cube so that all He atoms 
were equivalent. The cube edge was varied in length. Since in 
a finite molecular system the UHF solution always has a finite 
energy gap between the lowest virtual state and the highest 
occupied state a study of the insulator metal transition is not 
possible since one cannot tell whether the gap is due to 
finiteness of system or other causes. However, one can ionize 
the system singly and see if the resulting hole in the system 
ground state is local or Bloch like. Therefore, as a function 
of cube edge length, I calculate the total energy of Re8' and 
HeS using both Bloch and local hole starting input for He~. The 
hole character is reexamined at the end of the run to see if the 
He~ local input retains its local hole character and also to see 
which input produces the lowest energy state. In keeping with 
the approximate criteria, compute the He atomic relaxation 
energy and the width of the Is He band. These factors and the 
predictions are seen in Table 3. In this table the 8th He atom 
is the one chosen at input to have the local hole. 

The lesson of Table 3 is clear. The simple criteria for 
hole type work rather well, predicting the actual crossover to a 
cube edge length charge of 0.05 au. We also see that the relevant 
parameters are a very sensitive function of distance so the theory 
seems to work well. Finally, we note that in the exact solution 
the local hole is just that, very local. Even at the edge of 
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Table 3 

He8 results are given as a function of cube edge length, a, in a.u. Energies 
are in eV here. 

~ 2.0 3.5 3.65 3.70 3.75 4.0 6.0 

a.o. overlap .3267 - - - - .0497 .0094 

occ. band width 32.12 2.39 1. 68 1.49 1.32 0.64 0.00 

at. reI. energy 1.42 1.42 1.42 1.42 1.42 1.42 1.42 

Approximate theory Bloch Bloch Bloch Bloch local local local hole type 

exact UHF Bloch Bloch Bloch local local hole type local local 

no. electrons 1.88 1.88 1.88 1.04 1.01 1.00 on He (8) 1.00 

going delocal, the hole is still almost perfectly localized on 
the eighth He atom. Similar results to this were obtained for 
other' molecular systems studied. 
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ABSTRACT. The SCF LCAO Crystal Orbital (Hartree-Fock) method is 
reviewed in the cases of polymers with simple translational 
symmetry and with a combined symmetry operation. As example the 
band structure of the periodic DNA model polycytosine is discussed. 

For the treatment of aperiodic (multicomponent) polymers 
the coherent potential approximation with a k- and energy
dependent self energy is described. As illustrative example 
calculations for the (SN)x - (SN)x two-component mixed polymer 
are presented. To investigate t~e extra levels of a cluster of 
impurities embedded in a periodic crystal the SCF resolvent 
method has been developed. 

For the calculations of excited states of polymers 
applications of the OAO method are shown. Further the 
applicability of the more general Green's function formalism 
for the investigation of localized excitations in polymers is 
discussed. Finally to treat partially delocalized excitations 
in polymers the formalism of the intermediate (charge transfer) 
exciton theory and its application to polymers is reviewed. 

I. INTRODUCTION 

Polymers are of great interest both for practical purposes and 
from the point of view of physical considerations. Polymers are 
forming plastics, biopolymers like nucleic acids (DNA and RNA) 
and proteins play a fundamental role in life processes and 
recently highly conducting polymers like (SN)x or the TCNQ-TTF, 
TCNQ-NMP systems with pseudo one-dimensional chains embedded in 
a three-dimensional molecular crystal seem to be the candidates 
for the discovery of such new physical phenomena which do not 
occur im simpler solids. In theillst years a vast amount of 
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experimental information has been gathered especially about the 
different properties of the highly conducting polymers. To 
interpret these different physical and chemical properties 
(which underlie in the case of biopolymers also their biological 
functions) one has to obtain a fair knowledge of the electronic 
structure of polymers in their ground- and excited states. 

If a polymer is completely aperiodic one can treat it only 
approximately. If the polymer is built up from 2 or more 
components in a random sequence, one can apply to it the coherent 
potential approximation (CPA) with a k- and energy dependent 
self energy [I]. On the other hand if we have a cluster of 
impurities or a distortion embedded in a periodic system the 
resolvent method can be used in its SCF form with an AO basis 
(ab initio SCF LCAO resolvent method [2J). Since in both cases 
gaps may occur in the density of the parent periodic system 
the effects of disorder can be considered as certain types of 
excited states. 

If we are able to define in a polymer or in a molecular 
crystal an elementary cell, by the repetition of which (the 
symmetry operation is not necessarily a simple translation, it 
may be a combined operation of a simultaneous translation and 
rotation) we can build up the whole system, we can treat this 
system with the aid of a proper combination of quantum chemical 
and solid state physical methods. 

In this paper we shall review the ab initio SCF LCAO 
crystal orbital (CO) method for the treatment of the ground 
state of periodic polymers. It will be shown that the derivation 
presented is valid also in the case of a combined symmetry 
operation. As next point the application of the CPA method for 
aperiodic polymers will be discussed and the SCF resolvent 
method will be formulated. In the following section the treat
ment of excited states of polymers assuming local excitations 
in the subunits (O!O method, Green's function treatment) will 
be briefly reviewed (for a more detailed discussion of these 
methods see the papers of T.C. Collins and W. von Niessen in 
this book). Finally the formalism of the intermediate exciton 
theory and its application to polymers will be presented. 

2. TREATMENT OF THE GROUND STATE OF POLYMERS 

2.1 Periodic Polymers 

2.1.1 Ab initio SCF LCAO Crystal Orbital (CO) Method in the Case 
of Simple Translation. 

If we have m orbitals in the unit cell of a three-dimensional 
polymer or molecular crystal and the number of unit cells in 
the direction of each crystal axis is 2N+l, we can write the 
delocalized crystal orbitals (CO-s) in the LCAO approximation 
in the form 
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..... m ~ 

i~ = ~ ~ C(P)A·/t CL X~ 
~ ~=1 '1'4 d 

w~ere P=(PI,P2,P3)' Q=(QI,q2,q3)' the integers Pj and Qj 
(J=I,2,3) run from -N, ••• D, ••• ,N and L means the Stnmllatlon 

(1) 

N " "I Of ~ 
L L L v'\-x (;y-R ..... -~ ) over all cells, ~1:-N '\l"-N ql"'-N Further I\~ - ')' , ~A 

is the gth AD (which belongs to the atom with position vector 
~) of the cell characterized by the vectorRq=QlaI+Q2a2+Q3~3' 
~ Writing down the expectation value 

< ~r I F I ~:» _ £: (-") 
<~~I~j$) - fp,. 

J.. J... 

(2 ) 
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of the Fock operator F and performing a Ritz variation procedure, 
we obtain in the standard way for the whole polymer the matrix 
equation 

(3 ) 

The hypermatrices ~ and g have the dimensions MxM with M=mx(2N+I)3 
and their elements are defined as 

(4a) 

(4b) 

respectively. (The mxm blocks of f and ~ give the interactions 
between the orbitals belonging to-the different unit cells.) 

Taking into account the translational symmetry and introducing 
periodic boundary conditions it is easy to show that f and ~ 
are cyclic hypermatrices, i.e. they are cyclic in their blocks 
(for a detailed derivation see [3, 4J). It is possible to show [5J 
that with the aid of the unitary matrix ~ which has the mxm 
blocks -

(5 ) 

we can blockdiagonalize ~ and g. To perform this blockdiagonali
zation we can write 

(6 ) 

or 

(7) 

where 



498 J. LADIK 

(8) 

The pth diagonal block of the blockdiagonal matrices ~' and g' 
is given by the expression [3,4l 

t (pJ == ~'i ex.-p [i2rrr'i 1('2 Nt 1)] [(~) 

~l(r) = 2:9 exr[i21Tpq/(2Nt1)J~(cf) , 

(9a) 

(9b) 

respectively, where ~(q) and §(q) stand for the submatrices of 
the original cyclic hypermatrIces. 

Using the fact that ~' and §' are blockdiagonal, equ. (7) 
can be decomposed to the equations 

(IO) 

corresponding to the different blocks ~'(p) and §'(p). 
If N--'tOD we can introduce the continous variables 

(II) 

Since the Pj-S had the values -N, ••. ,N, the kj~will hav~ val~es 
between -:- ~/aj and IT" /aj. Defining the vector k=k)b)+k2b2+k3b3, 
where the bj-s are the basis vectors of the reciprocal space 
(by definit10n aibj=2TI ~ ij)+ we can now write instead of ()O) 

!ct) d(k)R. = [(k)£,.~(k)~(k)~ (;"=~/l) ... )'m) (12) 

with 

ICk) = L" ex.p (ik R-q J £c~) , 
~ (k) = L"9 V<f' ( i k Rej) ~ (9") • 

(13a) 

(I3b) 

To solve equ.-s (12) we can eliminate the overlap matrix 
§(k) with the aid of Lowdin's symmetric orthogonalizatiort 
procedure in analogy to !he molecular case. The only difference 
is that both F(k) and S(k) are now not real, but Hermitian 
complex matri~es (for the details see again [4]). He end up in 
this way with the eigenvalue equation 

(14) 

where 

+ ~ 

By identifying the vectors k with the crystal momentum we 
demand that they have to belong to the first Brillouin zone 
of the crystal. 
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of the Fock operator (where MA is the number of atoms in the 
unit cell, n~ is the number of filled bands, 

'" P 1 -> 

K (f I A j ;;.1 ~ (;Y11 = < p p.. (rf111 ~ I P (rf1) '> 1 ~ ("f1) 

(l7a) 

(l7b) 

are the Coulomb and exchange operators, respectively), the LCAO 
form (I) of the crystal orbitals and introducing the charge 
bond order matrix of the polymer as 

n!!\ 

.£> == 2. Lp {;-1 ~(f)~ ~(r); (18) 

one can derive [3,41 for the [ ~(ii)] r,s matrix elements the 
expression 

~ /\ -' Y'Yl 

[F(q)1r,,., =<'X~ I HNIX~ '> + L~1 2:91 !;:1 P(91-92JU.,V • (19) 
"""'" -a. ........ -.Ito I --a. ....II. ~ -l 

( 0 9. I q 'h 1 a ~ 1 I 91 ~ ) . <1.1" Xu. XI:> Xu- ) -"2 < X-r XI-<. Xv X':> '> • 
Here P(q)-Q2)u v is the u,vth element of the submatrix 
2(ql-Q2)=2(q),Q2) for which (if we take into account the 
~(P)h=Y Q(p)h transformation, the definition (5) of Y and 
introduce again instead of the vector p with discrete components 
the vector k with continously varying components (see equ. (II» 
we can write 

",l\; 

f(~1-ql')=~ SWt:1 £:!(k)~4Ck)i ex.p[.k(R'f.-R9')J it , (20) 

where uu is the volume of the first Brillouin zone. 
Equations (12),(13),(19) and (20) define then the ab initio 

SCF LCAO crystal orbital (Hartree-Fock) method with a non-local 
exchange for crystals or polymers with a simple translation 
symmetry. Using this method a number of calculations have been 
performed for linear chains [6J and also for simple three
dimensional crystals (simple metals and ionic crystals [7J). 
Different semiempirical fonus (PPP CO, CNDO/2 CO, MINDO/~ and 13 
CO etc.) of the described SCF LCAO CO method have been 
developed and applied to a large number of polymers also with 
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more bulky unit cells [6,8,9J. 

2.1.2. The SCF LCAO CO Method in the Case of a Combined 
Symmetry Operation 

J. LADIK 

We can apply the formalism developed in the proceeding point 
also in the case of a combined symmetry operation. To show 
this let us assume that we have a helix in which we get from one 
unit to the next by a translation~ and a simultaneous rotation 
~ • We can introduce then the helix operator 

(21) 

where :0 ( 01.) stands for the ope rator of the ro tation around the 
main axis of the he lix by an angle of or- [IOJ. For the sake of 
simplicity let us assume further that after n repetition~ of 
the helix operation we obtain the "large" translation t, 

.,.. 1'1 ( -") /\ S ~/T. =T (22) 

We can further introduce again the Born-von Karman periodic 
boundary conditions in the form 

S2.N+1 A 

= 1 (23) 

where N is a large integer and measures the number of unit cells. 
If r is the Fock operator of the helix it holds further 

that 

(24) 

and so we can classify the eigenfunctions of r according to 
the one-dimensional representations of the finite Abelian group 
G= {sm; m=I,.:.,2N+I} • The kth representation of this group is 
thus ~)k =exp q~~f)' This means that the eigenvalue equation 

(25) 

has to be fulfilled, where 't k may have again an LCAD form 
(see equ. (I», but k is now defined on the combined symmetry 

+It should be mentioned that the following considerations hold 
also in the case, when (22) is not fulfilled, i.e.<:X/2lT is 

not integer. 
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operation+. We can easily write down also the three-dimensional 
analogue of equ. (25) as 

5~1 5;1 5;3 ~k ::ex.p[;2rr(1'"rl1k1+f'Yllk2tm3k3)/(2Nt1)]YJk :::J~k fj( ,(26) 

m' 
where SjJ (j=I,2,3) means mj repeated applications of 
operator in the j-th directlon. 

To generate the eigenfunctions If-' k of Sm (in the 
one-dimensional case) we can introduce the projection 
~ [IOJ 

the helix 

simpler 
operator 

(27) 

which fulfills the relation Smt\= fmk~' OtcOI=cS kl and Lk(\=1. 
IfX~ =Xg(r-Rq-rU) stands again for the gth AD of the qth 
cell we can generate the generalized LCAD Bloch orbitals of the 
helix with the aid of the expression 

(28) 

The same procedure can be applied also if we have in our 
reference cell not only a single AD but a linear combination 
of them (LCAD MD). 

To be able to apply equ. (28) we have to express 

S-m X (~-r~A) ::: X [Sr.y;t) -R~A ] (29) 
<t ~ cr 9 

where the right hand side of (29) follows from the well known 
relation that S-m applied to a function is identical with the 
transformation of the coordinate system under the inverse 
operation [I IJ. Taking into account that 

+In other words the hypermatrices ~ and ~ will be again cyclic 
hypermatrices, if we construct their blocks ];;«(1) and sec}) ,\lith 
the aid of the combined symmetry operation S (i.e. in the 
matrix elements (4a) and (4b) we can get from the cell 
:haracterized by p to the cell q by the repeated application 
of S) and introduce periodic boundary conditions. These cyclic 
hypermatrices can be blockdiagonalized again with the aid of 
the unitary matrix (5) and~we can introduce again instead of 
the vectors p the vectors k which have according to (I I) 
continously varying components. 
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we can further write 

X~[St\O(;t)_;qAJ ==X~[D(t>\c<);=-tmT- R~A ] (30) 

Using the identity [IOJ 

we can write down our final result 

(31 ) 

This means that by applying the helix operator S-m to an AO we have 
to (I) perform m times the helix operation on the position of 
the nucleus and (2) we have to rotate the argument of the AO 
with the angle mtJl., around the axis of the helix. 

Taking into account the result (31) the ab initio SCF LCAO 
CO program for linear chains has been modifie~to be applicable 
also for the case of a combined symmetry operation. This 
modified program has been applied for a single polycytosine 
helix [12J. The basis used in this pilot calculation was a} 2 

linear combination of Gaussian lobes of the form x(r)=~)~ ~ ;<X'r. 
The exponents c< of the uncontracted Gaussian lobes and the 
contraction coefficients were taken for the heavy atoms from 
[13J, for the hydrogen atoms from [14J. Though the applied 
basis was a minimal one (5 contracted Gaussians on the C,N and 
o atoms and one on the H atom) comparative calculations on 
molecules (f0r which calculations with better basis sets are 
also available) have shown that the overall description of the 
valence-shell one-electron properties (valence-shell contributions 
to the dipole moments, ionization potentials etc.) is with this 
basis rather good [12J. 

In the band structure calculation of polyC the nearest 
neighbors' interactions approximation (which in the case of this 
stacked chain is rather probably not very poor) has been applied. 
It should be emphasized that in this computation the non-local 
Hartree-Fock exchange term has been used without any approximation 
to it and all integrals in an absolute value larger than 10-8 
a.u. have been retained. To obtain consistent results 9 different 
k values in the first Brillouin zone were needed. The geometry 
applied forthe polyC is the same as that of a ~.Jatson-Crick-type 
helix for which the structural data of DNA B [15J were used. 

The energy band structure obtained consists of forty-five 
bands (corresponding to the 45 basis functions per unit cell) 



ELECTRONIC STRUCTURE AND EXCITED STATES OF POLYMERS 

of which twenty-nine are doubly filled. The correspondence 
between the individual HO levels ( tHO) and between the bands 
is always unambigous as it can be seen from an inspection of 
Table I which shows the physically most interesting four bands 
around the Fermi level (for further details see [12J). 

Table I 

The physically most important four energy bands around the Fermi 
level of periodic polycytosine. The original molecular energy 
levels (tHO), the band minima and maxima (E mn and £. ~x' 
respectively) with the corresponding ka values and the band 
widths ( At) are given in eV 

£.HO E C? (ka) 
m~n 

E CO (ka) 
max A£ 

4.585 4.813(0) 5. 129 (11 ) 0.316 
1.929 a) 1.5346(0) 2. 775(rr) 1 .241 

-9.766 -9.665 ( rr ) -9. 113 ( 0 ) 0.552 
-11.488 -11.115(0) -1O.898( 11") 0.218 

a) Highest fi lled leve 1. 

Inspection of the wave functions shows that though the 
symmetry of the original HO-s is broken in polyC because of 
the stacked arrangement of the units, one can still define 
quasi-~- and 6-type bands. In this sense the valence band, 
the conduction band and the second lowest unfilled band are 
of quasi-IT-type and the second highest filled band is of 
quasi-<5 -type. Though the eight quasi- 11 -type bands are 
located mainly around the Fermi level, as the more detailed 
results [12J show, the 6"-Tj separation is not fulfilled in 
polyC. 

It is important to point out that the valence- and 
conduction bands resulting from the present ab initio 
calculation are much broader (I\J 0.5 and rv l.reV, respectively) 
than those obtained previously with different semiempirical 
CO methods [16J. If this trend will be valid also for other 
periodic DNA models (for which calculations are in progress) 
and also for calculations with larger basis sets, it will 
be inevitable to recalculate the transport properties of DNA 
[17J with these new band structures. 

Concerning the positions of the bands it should be 
mentioned that though the description of the filled bands 
seems to be satisfactory (the theoretical first ionization 
potential of 9.11 eV obtained applying Koopman's theorem 
agrees quite well with the experimental value of 8.90 eV [18J), 

the gap (ll Eg f\.J 10. 65eV) is clearly too large. This very 
large gap is a dHect consequence of the failure of the 
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Hartree-Fock method in describing the virtual levels with the 
aid of an N particle potential instead of the appropriate 
N-I particle potential [19J. To the correction of this gap 
we shall return at the treatment of the excited states of 
polymers. 

2.2 Aperiodic Polymers 

2.2.1 Application of the Coherent Potential Approximation (CPA) 
to Polymers 

As it is well known, most polymers are aperiodic consisting of 
two or more components (for instance in DNA we have four 
different units, in proteins twenty). For the treatment of 
these substitutionally disordered polymers in which the overall 
geometry is the same (the double helix of DNA, the ex -helix or 
~ pleated sheet structure of proteins), but the units are 

different, the Coherent Potentifl Approximation (CPA) seems 
to be the rr.ost suitable method. 

The basis assumption of the CPA method is [I] that one 
substitutes the average of the multicomponent system by an 
effective medium determined so that the average fluctuation 
through the medium is zero. This can be achieved by replacing 
each site in the crystal but one++ with an unknown coherent 
potential. One embeds then at the reference site an A or a B 
component (in a simple case of an A, B two-component 
compositionally disordered system) with the probability f and 
I-f, respectively. We solve then the problem of this sinele 
impurity embedded in the effective medium described by the 
coherent potential. The coherent potential on the other hand 
is determined by the self-consistency requirement that the 
average scattering (or fluctuation) from the chosen reference 
site is also zero. 

+ Until the different units are rather similar the simpler 
virtual crystal approximation (which essentially averages 
the Fock matrices according to the composition and the nearest 
neighbors' frequencies; see [2]) gives tolerable results, 
but in most practical cases this method does not provide an 
acceptable description of the aperiodic polymers [20]. On the 
other hand if the units of the aperiodic polymer are not very 
small, direct cluster calculations [21] cannot be performed, 

++ especially not in an ab initio form. 
In this single site approximation of CPA it is assumed that 
after a scattering form this site no repeated scattering occurs 
before a scattering from another site has taken place. 
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To formulate mathematically the method+ we can start from 
the Dyson equation of the single particle Green's function G of 
the disordered system, 
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(32) 

where GO is the Green's function of the unperturbed perfectly 
periodic system which is in its Fourier transformed form 

GOCkIE)=: [E-[A(k)r1 , GO(Ei=Jl- 1 L[E-[A(k)r'" (33) 
k 

(!Lis the volume of the crystal). Further the deviation from the 
perfectly periodic system A A(k) can be w¥itten in the case of 
a single site diagonal perturbation [I] as 

(34) 

Equ. (32) (which can be derived [IJ from the perturbation 
expansion 

(35) 

of G) can be written also in the form 

(36 ) 

where the one-dimensional scattering matrix T, is defined as 

T==L(1-LG O )-'1 (37) 

In the case of CPA we can define a Green's function Ge for 
the effective medium again through the Dyson equation 

G = GO + GO L G e e (38) 

(which defines also the self-energy ~). Solving (38) for GO 
we obtain 

(39) 

+ He wri te here down only the basic equations, for their 
derivation see [IJ. ++ 
By writing (32) in a scalar form we consider a single band, or 
in other words our single reference site has only one orbital. 
In the general case with more than one orbital per site or 
with defects extending over more sites (many band 
case) (32) has to be written in a matrix form. 
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Substituting this expression of GO into the Dyson equation (35) 
of the exact Green's function of the system one can write 

(40) 

which leads after rearrangement to the equation 

(41) 

where Lle=A-L" [IJ. Thus at the unperturbed sites (.6=0) of the 
original system lle=-2: and of the perturbed sites lle=,6-2.. 
Using the definition (37) of T we can now write for its average 
(by substituting instead of A L'le and instead of GO Ge ) 

where f is the pr~bability of the perturbed sites. 
According to the fundamental approximation of CPA the 

average fluctuation from the effective medium is zero, 

< T» :::; 0 

Putting equ. (42) equal to zero one obtains after some 
manipulations the CPA equation [1, 22 ] 

~ (k)E)=fACin/{ ~ -+ [L(k,E)-A(k)] Ge (E)1 

(42) 

(43) 

(44) 

With (33) we obtain from (38) for Ge 

Ge(kIE) = [ E- LA(k)- 2.(t,E)r" (45a) 

and finally 

Ge(E) ::..n.-~~ G/k,E) ==.JI-1~ [E-cA(k')-:L(K,E)r" • 
k k 

(45b) 

-' 
In the case when the k dependence of L can be neglected 

Ge (E) is simply [23J 

(46 ) 

Equ. (46) can be applied, however, only in cases when the 
density of states curves of the periodic systems A and B have 
the same shape, only one curve is shifted with respect to the 
other by a constant ~value. In the case of substitutionally 
disordered polymers due to the complexity of their subunits 
we cannot expect, however, that this condition will be fulfilled. 

Returning to the general formalism with k-dependent self
energy we can write for the spectral density [23] and for the 
average density of states per molecule, respectively, 
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g eEl = 12.-1 ~ A(k, E.I = - rr-1 JfVVI. GeJE+ iO) 
k 

Using further the Kramers-Kronig [24] relation one obtains 
00 

Ge.(EI= f g(E')!(E-E1) ekE) 
-00 

Finally using the rule 

+ 

for the ratio of two complex numbers we can write 

~ GeJk) E) = "J"M L:(k, E) { [E- [A(t)-Re ~ Ck) E) ] 2. + 
+ [1"",I(k,E)]'lV 1 
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(47) 

(48) 

(49) 

(50) 

Equations (44) - (50) are the expressions which can be used 
for an actual calculation with a k-dependent self-energy. (In 
the case of a linear aperiodic polymer we can write instead of 
the vector k everywhere in these equations the scalar k). One 
starts the iterative procedure with a guess for Ge(E)+, one 
obtains the first values for I(k,E) from (44) for different k 
and E values. Substituting this into (50) and the resulting 
1m Ge(k,E) values into (47) and (48), respectively, one obtains 
the first approximation for ~(e). Putting finally this into (49) 
one gets the next approximation for Ge(E). This numerical 
procedure (which only recently was worked out [25J for the treat
ment of an aperiodic polymer with k-dependent self-energy) has 
to be repeated until self consistency is reached in ~ (E). 

The CPA method with k-dependent L has been applied for the 
treatment of hydrogen impurities in the highly conducting 
polymer (SN)x (polysulphurnitride) which becomes superconductive 
at 0.26oK [26J. Several authors performed band structure 
calculations for this quasi one-dimensional system (both 
semiempirical [27] and minimal basis ab initio [28J ones). There 
are also in the literature non-self-consistent OPW and LeAO 
calculations for the 3-dimensional system [29J. Recently we have 

+ Taking either the Green's function of pure A(~=O, Ge(E)=Go(E)) 
or the virtual crystal Green's function (L (k)=f A (k) which 
one obtains in a good approximation from (44) if A(k) is small) 
computing it by (49) with the virtual crystal SVC(Ef) 
density of states which belongs to the energy band 

(51 ) 
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executed also an ab initio double t band structure calculation 
[30] for the linear chain which has given rather good agreement 
with experiment for the effective electronic mas.s and density 
of states at the Fermi level. 

Recently at IBM (San Jose) five to ten mol per cent hydrogen 
was found in (SN)X [3IJ. The position of the hydrogen impurities 
is unknown (as it is of the Br2, j[2 andjtl molecules with which 
(SN)x was modified also [32]), but most probably the H atoms 
bind to the N atoms. In this way they change the hybridization 
state of the N atoms and the number of IT -electrons in the 
partially filled band of (SN)~ (in a 'S""N ..... unit there are 
3 1T -electrons, while in a\S/ t!t"'" unit there are 4). 

To find out the shift of the Fermi level and the change in 
the density of states the above described form of CPA has been 
applied using as input the ab initio minimal basis band structures 
of the periodic (SN)x and (1[)x chains [33]. From these the 
densities of states ~(E) of the two periodic chains# have been 
computed using the method of Delhalle [34] (see Fig. I) 

3. 

I 
I 

: 1~.,;)r~(L_~~ 
-8. -6. -4 . -2 . O. 2. 

E (eV.) 

Fig. 1 

The density of states curv~f of the pure (SN)X and (s~)x 
systems in (eV. mol. spin) units. 
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As we can see from Fig. I. the shape of the two density of 
states curves is very different. Our first attempts to apply 
CPA to the mixed system with a constant (k-independent) ~ 
have therefore failed. As next step we applied the above 
described procedure with a k- and E-dependent 2:, L:(k,E) [25J. 
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In the actual calculations 93 different Ei-values and ~ 
points (O=ki~ Tria) were chosen for which L"(ki,Ei) was computed 
in every iteration step. To reach self-consistency between 24 
(f=0.3) and 70 (f=0.5) iteration steps were needed using the 
SCF criterion 

I (n)(E.\ - (n-1l(E'\ I ~ 10-3 [ l ]-tI 
gel) gel J o..Ll mO V E· I (52) 

Finally after self-consistency was reached the position of the 
Fermi level was determined for each value of f by numerical 
integration using the relation 

S t F ~ ~ SC F) ( E) ~ E ::: 1 + r 
E,.,;n 

The calculations for a given f value have taken between 100 
200 seconds on a CYBER 172 com~uter (for further details of 
numerical calculations see [25J). 

Fig.-s 2 and 3 present the density of states curves 
of the mixed system for different hydrogen concentrations f 
obtained with the aid of the described procedure. 

..
I 

C 
'5. 
\f) 

1. 

(5 
E 
>' O,.t-':--_-'--___ ..L--"'-__ .L..-__ 

~ 1. 
IiI 
Ci 

f=O,lO 

f==OD3 

O->--J....,"'---............ --.._-.--..L..r_-. _~. -'--' ~_~--.-_ 
-8. - 6. -4 . -2 , O. 2 . 

E(eV.) 

Fig. 2 

(53) 

and 
the 

The density of states curves of the (SN)x and (S~)x mixed system 
obtained in the CPA approximation with f=0.03, and 0.10 in 
(eV. mol. spin)-I units. 
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1. f=0.50 

... 
c: Ef 
'g. r 
~ O.-J-L-__ -'---___ 1-L-____ -.1 

~1. f=O.30 
:@ 
a. 

G= 
I 

O. 
-8. -6. -4. :..2. O. 2. 

E(eV.) 

Fig. 3 

The density of states curves of the (SN)X and (S~)x mixed 
system obtained in the CPA approximation with f=0.30 and 
f=0.50 in (eV. mol. spin)-I units. 

Further density of states curves for f=0.05, 0.07, 0.20 and 
0.40 can be found in [25J. 

J. LADIK 

The most interesting feature of the ~e(E) curves in the Fig.-s 
is their complicated structure 1;\lith spikes and dips which in many 
cases go to zero producing gaps in the band of the mixed system. 
In this connection it should be emphasized that there are no 
zero dips in the g(E) curves of the two periodic systems (see 
Fig. I) and therefore their occurrence (already at f=0.03) is a 
genuine effect of the aperiodicity. Such structur~s are well 
known from computer experiments on linear chains L22J and from 
cluster-CPA calculations [22J (in which the impurities are 
extended over more sites), but could not be obtained until now 
with the one-site CPA with a k-independent L. 

Looking at the positions of these spikes and dips it is 
easy to recognize (that they always occur at such E values 
at which the g (E) curves of the periodic systems have a large 
curvature (compare Fig. 2 and 3 with Fig. I). Therefore probably 
the small gaps occurring in the band of the mixed system are not 
due to Anderson localization, but to the fact that levels of 
the original periodic systems which lie in a high curvature 
region of q(E) are more sensitive to perturbations due to the 
other component, than the other levels. SN 

From Fig. lone can see that the (H)X periodic chain has 
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a much narrower valence band than (SN)X (with corresponding large 
peaks in the density of states). The Fermi level of (SN)x lies 
at -1.0geV, while the upper limit of the completely filled 
valence band of (SU)x is at -4.38eV. One would expect on the 
basis of the rather large differences in the density of states 
curves of the two systems that in the mixed system already a 
small percentage of (S~~ would have a comparatively large 
influence on the density of states curve of pure (SN~. 

This expectation is fulfilled as one can see from Fig. 2 
where the density of states curves obtained in the CPA 
approximation for the mixed system with 10% (or less) hydrogen 
are shown. At very low hydrogen concentration (f=0.03) already 
new peaks in the density of states curve start to develop in the 
region between -4.4eV and -8.0eV. At higher f values (see 
Fig. 3) peaks of (SN)x and (S~>x in the region between -7 and 
-8eV fuse to one broader peak. On the other hand in consequence 
of the very high but extremely narrow peaks of (S~)x between 
-4.8 and -4.4eV new peaks develop but they are shifted to the 
region around -5.6eV (see especially the curve belonging to 
f=0.50). In all these cases one can see a clear demonstration 
for the fact that the CPA method gives essentially different 
results than the simple virtual crystal approximation. 

The position of the Fermi level of the mixed system is. not a 
sensitive function of f at low concentrations ( tF=-1 .geV for 
f=O.OO, ~F=-1.6eV for f=0.03 and 0.10. At high concentrations 
of course its position shifts towards lower energies ( ~F=-2.leV 
at f=0.30 and eF=-2.6eV at f=0.50). One should mention 
that the density of states at the Fermi level monotonously 
increases with the increase of f ( g(E)=O.IO, 0.1 I, 0.13, 0.18 
and 0.26 at f=O.OO, 0.03, 0.10, 0.30 and 0.50, respectively). 

Finally one should point out that by doping (SN>X with 
hydrogen one could expect to find the theoretically obtained 
spikes and dips in the 3(E) curve of the mixed system by 
photoelectron spectroscopy (for the complications which can 
occur by the interpretation of these spectra see, however, [25]). 
Further since according to the BCS theory of superconductivity 
the transition temperature Tc depends exponentially on the 
density of states at the Fermi level [35], 

(54) 

(here 8D is the Debye temperature and V is the BCS electron
electron interaction parameter), one would expect that due to 
the increase of q( [F) with the concentration of hydrogen, 
the transition temperature would increase also with increased 
H doping. 
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2.2.2 SCF LCAO Resolvent Method for the Treatment of a Cluster 
of Impurities Embedded in a Periodic Polymer 

To be able to treat a cluster of impurities, an extended 
distortion or another type of local perturbation of a three
dimensional periodic crystal we have to introduce a proper 
labeling of the different cells. For that purpose let us assume 
again that we have m orbitals in the unit cell of a periodic 
3-dime~sional crystal and the number of unit cells should be 
(2NtI) (2N+I cells in each direction). Let us introduce the 
row vector 

, .. " (55 ) 

, -" 
for the m orbitals of the cell character1zed by p. From the 
row vector Xf> one can build up the hyper-row-vector containing 
the AO-s of-the chain characterized by PI and P2 

Xf1lfll = (ryf'1If'l j (-N) XfJ1JP2,f3 XP1JP2}N) (56) 
1\ ''''J " .. , - - - -

which will have m(2N+I) components. From the vectors (56) we can 
form such hyper-row-vectors which contain all the AO-s of the 
cells lying in the plane characterized by the vector component 
PI! 

1'1 - (X P1J (-N) f01,P2. (1)N) (57) X - ,,,,,X "",X 
which have m(2N+I)2 components. Finally fr~ the vectors (57) one 
can construct the hy~er-row vector X containing all the AO-s of 
the whole crystal [3J, --

_ ( -N .pi N ) 
)<- X '''''X ,· .. x - - - -

(58) 

Wi th the aid of these conventions we can easily find out the 
labeling of any mxm block, of the matrix E = < c(t I FI6' > .+ 
Thus It = < ~;1 IF 1 ~i'i > is that submatrix of ~ which contains 
the AO-s of the planes characterized by qI and PI, respectively. 
Similarly the submatrix f~:/,q! = < ~ 4~ I Q'21 F I ')( 1'1/f>2. > 
gives the interaction between the AO-s belonging to the chains 
c~aracterized bJ qI, q2 and PI, P2, respectively. Finally 
K~ =< 19~192.lh I FI2S f',f'1,f'? '> is the~subma~rix between the AO-s 
belonging to the cells labeled by q and p, respectively. 

Let us assume that at the cell characterized by p we 
have an extended impurity (or distortion) instead of the 
original cell and for the sake of simplicity let us assume 
that the impurity cell has only m orbitals. 

+ + +"1 Since 6 is a row vector and thus ~ a col~1ll£ vectorj<llF ~) 
forms a quadratic matrix of the dimension NxN, where 
N=m(2N+I)3. 
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Then we can introduce the submatrix 

(58) 

which gives the deviation of the Fock matrix of the impurity 
(b~ ) from that of the unperturbed unit cell(f~O). 
We can introduce in a similar way for the deviations of the 
intercell interaction matrices caused by the different potential 
of the impurity the matrices 

('...-.l. ~ -> 

F~ =- F! - F!:o (59) 
:::::9 ='1 =9 

;<to • 
where f ti refers aga~n to the corresponding matrix the un-
perturbed crystal. 

In the case of first neighbors' interactions we can write 
q)=P)±). qZ=PZ' q3=P3; q)=p). qZ=PZ±). q3=P3; q)=P). qZ=PZ. 
q3=P3 t ) (which defines altogether 6 different deviation matrices 
If) . In a similar way we have lZ second neighbors (q)=p)±) 
and qZ=PZ±)' q3=P3; q)=p1t~and q3=P3±)' qZ=PZ; q)=P) , 
qZ=PZ±) and q3=P3±)) and 8 thira neighbors (q)=P)±) and PZ=PZ±) 
and q3=P3±))' 

To construct a deviation hypermatrix ~' from the deviation 
submatrices (58) and (59) we have to find out the labels of the 
corresponding blocks. For the sake of simplicity let us restrict 
ourselves to first neighbors' interactions (the extension to 
the second and third neighbors goes similarly in a straight
forward way [36J). In this case we can write (taking into 
account the labeling of the hypermatrix components introduced 
above) 

,(60 ) 
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where F(1)=F!1)Pl)P3 T1 F(2.)=::Ff'1Jr~+1)P3 F(3)=F~1T"')rl)r3 
== =p ,= =p , =- =p , 

,.... ) "'F P1d'1) r3- 1 "'F( )t-r - "'FP 
[(-1 == =;:5 etc. and = 1 - =P1/(.l~/P3+1 etc. 
Since a change in P2 means a change of the chain to ,.,hich the 
cell characterized by p belongs and a change in PI gives a 
change in the plane given by P2 and P3' the distances between 
the non-zero blocks indicated in E' are easily understandable. 

After the described construction of ~' we can formulate 
our problem as 

F f:. =( £Q+!))f =:\~~=/Jso+':sl~) (61 ) 

where ~o and §o are the Fock- and overlap hypermatrices, 
respectively,-of the unperturbed crystal and ~' and §' are 
corresponding deviation matrices (§' can be constructed in 
same way as F'). We can blockdiagonalize again the cyclic 

the 
the 

= 0 0 hypermatrices ~ and g , 
U+Fo UUtc -'AU+soUU+C= 
====== ====-

= ( f 0 - So) U + c = - U t ( F) - :\ S 1) C 
= = =- === =-

(62) 

where 

- - -- -- = =- == (63) 

The unitary matrix was defined before (see equ. (51) for U)· 
Multiplying (62) from the left by Q(~O_ §o)-I and introducing 
the resolvent [37, 2J - - -

l == U (FO-ASOf 1 Ut (64) 

we obtain the equation 

(65 ) 

If one takes into account that ~' and §' have with a few 
exceptions zero blocks, the hypermatrix equ: (65) reduces to a 
set of 7m homogeneous linear equations, if we write down separately 
the equations for those subvectors of c which correspond to 
the non zero blocks of~' and §'. In this way we obtain in a 
straightforward way in the first neighbors' interactions 
approximation 

£"-3 
.£-2. 
~-1 
£ 0 

£1 
£.2-
S:! 



ELECTRONIC STRUCTURE AND EXCITED STATES OF POLYMERS 

-3 '1. 0 "3 A +1 A .. A_ ... J\. = -3 = = -3 = 3 =-3 

. 
--s 

- .J\. c 
o A 3 A +1 ... ./ L 

=0 = =0 

1: -3 
~-2 
~-1 

~o 

S. " 
~'l 
£:'3 

=0 

where according to the detailed calculation [3, 36J 

AL 
=K 
.1\0 
=K 

K =.-3, ... , 0 , ... , 3 
L=-3, ... ,3 but L,*O ] 
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(66) 

(67) 

(68) 

In this simplified notation 0 corresponds to p and for instance 
i=-3 corresponds to the vector q with components ql=PI-I, q2=P2 
and q3=P3' P 

The blocks of ~~ are given by 

z! =w-" r 6<f>LOL-R;;Ykl [ICi()- '.\~(k)r1 olk (69) 
1 Jw q r - - , 

where the mxm matrices [(k) and ~(k) which belong to the periodic 
problem were defined by-equ.-s (12) and (13) (to make these 
definitions consistent with our present notation we 

.-"' ~ have to write in equ.-s (13) instead of ~(q) and ~(q) 
F~+q and Se+q' respectively). 

To solve the equ. (66) for ~ we can write 

cle.:.t [ A. (),)] = 0 (70a) 

If the order of the matrix 7m is not small (which is the case 
already if we have 10 electrons in the unit cell) the solution 
of (lOa) may be rather difficult, because the determinant in 
certain regions of A may be a very quickly varying function of A.. 
To overcome this difficulty we canmultiply-tJ,(which is not a 
Hermitian matrix) from the left by (F' - ').~I )-to obtain the 
Hermi tian matrix .6.H().)::: (E'- ).~')~ 0.')= [38]. (It is easy to show 
that the matrices i' and ~, of dimension 7mx7m can be constructed 
from the non-zero blocks of (60) in the form of 

X 
0 X 0 

"'1 X 
F = X X X X X X X where X stands for a = X non-zero block 

0 X g 
X 
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of E'. ) One then can determine the roots ~ of det[~(~]=O by 
solving the eigenvalue equ. 

(70b) 

for the zero eigenvalues, Ej (A )=0 [38]. After the energy values 
~ have been computed they can be substituted back into (66) to 

determine the subvector ~i(i=-3, ••. ,3). 
One should mention that instead of using (69) for the blocks 

of (68) one can write down an expression for its elements in 
which the denominator will be simply [ c(k) '-')..] (see equ. (3.23) 
of [2J)instead of E(k)-'A§.(k). To obtain t5is expression one has 
to repeat the derivation leading to (66) I 21 by not simply 
blockdiagonalizing EO and ~o but completely diagonalizing them 
(in other words one-has to-solve first the problem of the periodic 
crystal). One would expect that this "fully diagonalized" version 
of the theory will make easier the determination of the impurity 
levels, than the above in detail described "block dtagonalized" 
version. 

One can perform the whole described procedure also in an 
SCF way if one writes down for the elements of ~' the appropriate 
Hartree-Fock expressions: 

(71) 

Here the elements of the impurity charge-bond order matrix are 
defined as 

* ( . ') n >It 
AJmf· (~-~ ) = 2 L. c.-> c· -> (72) 'P fl· r. v..,v i::. 1 ~)r11v.. tjpl.,'\T 1 

where the coefficients c,,~~ u.etc. are components of the sub--JJ <11 

vector~ £j;P1~~ the~pertor ed problem (in the submatrix the 
symbol~c notat~onLPI,~2=-3 means that the components of the vector 
PI and P2' respectively,have~to take the values ennumerated 
after equ. (59». Further ~ p,~ stands for the g-th impurity 
orbital in the impurity cell given by p and 

(73) 

determine then in the usual way the SCF Equations (71) and 
procedure. 

+ To summarize to find the impurity levels (or surface bands) 

+One can obtain the self-consistent surface bands of a three
dimensional crystal as a special case of the described theory[3~ • 



ELECTRONIC STRUCTURE AND EXCITED STATES OF POLYMERS 

of a crystal one (1) starts by solving the periodic problem 
(which is necessary to apply the numerically easier "fully 
diagonalized" version). (2) Then one has to find the roots ~ j 
of det[..6-('>.')1=0. (3) Substituting then back into (66) one can 
compute the vector w . (4) Finally substituting the components 
of its subvectors ~j (i=-3, .•. ,3) into (72) one can construct 
the impurity submatrices ~~. The steps (2)-(4) of this 
procedure have to be repeated until self consistency is reached. 
In this way th~ impurity levels lying outside the bulk bands can 
be calculated. 

A detailed investigation of the numerical aspects of the 
described procedure [20J and its application first to the case 
of an one-dimensional chain is in progress. 

3. EXCITED STATES OF POLYMERS 

3.1 Intracell Excitations 

517 

If our polymer contains subunits not very strongly interacting 
like in the stacked chain of polycytosine and we have a completely 
filled valence band, one can approximate the excited states of 
the polymer on the basis of those of its constituents. 

3.1.1 The Application of the Excitation Hamiltonian (OAO Method) 
to Polymers 

In the closed-shell Hartree-Fock (HF) theory the singlet excitation 
energy from a filled level with energy [i to a virtual level 
with energy Ea is given by the well known expression 

A'E. = £. -E.. -]. +2.1<,. 
,l..~ 0.. 0... J., ... 0... '" 0" , (74) 

where JI..tA. = < ~ L (1J q:;~ (1) 11 /1'(12 I ~~ ('I) <Pc,.(1) '> 
K i.e.. =.( ¥J1) icJ2.) 11/"111 !o.,C1} c} ~ (1) '> . The expression (74) 
is of course only an approximation to the correct excitation 
energy, because (1) it does not take into account the change of 
the distribution of the other electrons (this so-called 
relaxation energy can be treated if one makes a separate open
shell calculation for the excited state and takes the difference of 
the total energies of the excited state and of the ground state; 
~SCF method) and (2) does not take into account the change of 
correlation energies in the excited and ground state, respectively. 
To take into account both effects one has to make a separate 

+ In the case if impuri ty levels lie wi thin the bulk bands, 
i. e. the eigenvalues E j (A) of.t;; have po les at 'A = l(k), 
the ~ values still can be determined in a somewhat more 
comp licated way [20J which we do not discuss here. 
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calculation together with correlation (and possibly, if it is 
known, taking also the different geometry of the excited state) 
for the excited and ground states, respectively, and then one 
has to compute the difference of the total energies of both 
states. Such rather extensive calculations (together with 
geometry optimization) have been already performed for some simple 
molecules [401 but cannot be executed yet for larger molecules 
and polymers. 

For polymers and solids we have the additional problem that as 
it is easy to show [41J the integrals Jia and Kia vanish, if 
the number of electrons n goes to infinity, 

----'0 (75 ) 

This means that we are left with the singlet excitation energy 

AE. (k)==£"Ct)-£t,Ck) 
I. ...., <A. "'" 

(76) 

. + . . of the solid or polymer which of course IS too large. 
To overcome this difficulty and to take into account 

(at least the larger part) of the relaxation, one can calculate 
more correct virtual energy levels of the constituent molecules 
of a polymer than the Hartree-Fock method provides taking 
instead of the incorrect n-particle Vn potential of the HF method 

the correct n-I particle Vn- I potential [19J with the aid of 
the modified Fock-operator 

"") ........ /\ A l""-

F ::: F 1" 0 AO (77) 

projects into the subspace of the virtual orbitals. The HF 
orbi tals 11 ~ F (1 ) > are defined by the equation 

r I q;~F(1» = £~F / X HF(1)" 
-I. I.::t'l I (79) 

while the"orbitals /'f 0..(1 )are the eigenfunctions of the modified 
operator F', 

(F + OAO) I 'Vo,.(1)') = t~ I \jJ<>-(1) (80) 

+ As it is well known in a solid at an excitation from band i 
to band a the crystal momentum k has to be conserved. 
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In the case of a singlet-singlet i~a excitation we can choose 
our ! operator as 

Ai. =- < ~ ~F(l) 11/'Y11 (-1- 2 ~11) I ~~F(2) > 
Expanding the orbi tals IIJi 0.. (1) '> in terms of the HF orbi tals 

1~(...c1» = ~1 Co-,i.- I ~~F(1) (81) 

we obtain the matrix equation 

(82) 

where the elements of the matrix ~l are defined as 

( -.') =< rHF) "'F+OAA.O")~HF) .tl. ki Pk ~ -g. • - ) 
(83) 

From equ. (83) it is easy to see that for the filled orbitals 
r! has the same eigenvalues ti as the Fock-matrix of the 
iiAmodified Fock-operator r, the virtual levels, however, will be 
changed. The corrected excitation energy (the difference of the 
total energies in the excited and in the ground state) can be 
obtained in this way directly as the difference of the corrected 
one-electron energies [42] 

" '" E -E - ) AE.l,-'lC>.. = l.4Q G -f..C>..-f..~ (84) 
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Since we can assume in a rather good approximation that in a 
stacked polymer like polyC an excitation occurs locally on a 
single cytosine molecule, after performing an OAO calculation 
for the single molecule one can shift the centers of the empty 
bands to the corresponding corrected positions of the virtual 
levels. Applying the OAO method for the excitation from the HOMO 
level, one obtains in this way a corrected gap between the valence 
band and the approximated exciton band (assuming it has the 
same width as the conduction band). In Table II we give the HOMO 
and LEMO levels of the four nucleotide bases and their with the 
OAO method corrected LEMO levels. 
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Table II 

The minimal basis HONO and LEMa levels and with the OM method 
corrected LEMa levels (in eV-s) of the four nucleotide bases. 

Level Cytosin(C) Guanin(G) Thymin(T) Adenin(A) 

LEMa 1.931 3.612 3.203 2.332 
LEMa (corrected) -2.816 -3.495 -4.488 -3.582 
HOMO -9.768 -8.209 -9.602 -9.288 
Corrected gap 6.952 4.714 5.154 5.706 
Experimental 
HOMO~LEMO 

excitation enerlY 4.3 4.2 4.7 4.9 
[43 

Comparing the corrected eLEMO EnOMO energy differences in 
Table II with the experimental values one can see that though they 
are still too large (especially in the case of C), the OAO 
procedure has corrected the major part of the error, if we 
compare the band gap with the experimental excitation energy (as we 
have to do in the case of a polymer). 

If we shift now the center ot the conduction band of polyC 
(see Table I) to its corrected LEMO level and further if we assume 
that the valence and exciton bands of the other three nucleotide 
bases have the same widths as the valence and conduction bands 
of polyC and we place them around (as centers) the HOMO .and (with 
OAO corrected)LEMO levels of the single molecules, we obtain 
the estimated valence and exciton bands of the four homopoly
nucleotides which are given in Table III. 

Table III 

The valence and exciton bands of polyC and those estimated 
in the case of the other three homopolynucleotides (in eV-s) 

polyC polyG polyT polyA 

Exciton band center -2.816 -3.495 -4.448 -3.582 
width 1.241 1.241 1.241 1.241 

Valence band center -9.768 -8.209 -9.602 -9.288 
width 0.552 0.552 0.552 0.552 

Gap 6.056 3.818 4.257 4.810 

In connection with Table III it should be mentioned that 
the experimental UV absorption spectrum of DNA corresponds in 
a good approximation to the superposition of the abso~ption 
spectra of its constituents (with correspondingly smaller 
intensity). This fact seems to be in contradiction to the 
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existence of a band structure of DNA. On the other hand if the 
valence and exciton bands of the homopolynucleotides would have 
rather similar dispersions (i.e. the k-values belonging to the 
lower and upper limits of the valence and exciton band of a 
given homopolynucleotide would be the same (which is not the 
case for the valence and conduction band of polyC; see Table I) 
and the widths of the two bands would be the same) this could 
be understood also in the case of broad valence and exciton 
bands. To be able to answer finally this question one has to 
perform a detailed exciton band calculation of the four 
homopolynucleotides (see section 3.3.3) starting from their 
ab initio HF band structures (which has not been done yet). Such 
a-calculation would yield not only the position of the exciton 
bands, but also their width and dispersion. 

3.1.2 Possibility of the Application of the Green's Function 
and Coupled Cluster Expansion Formalism 

In this point we want to mention only briefly that in a polymer 
of weakly interacting units one can apply instead of the OAO 
method the more general Green's function formalism to calculate 
the excited states of the units. After that one could try to 
estimate the excited states of the whole polymer starting from 
the knowledge of the excited states of the monomers in a similar 
way as it was outlined in the previous point at the discussion 
of the OAO method. 

The Green's function formalism is discussed in several papers 
in this volume [44J. As it is well known the excitation energy 
of a system of electrons having the Hamiltonian a, are given by 
the poles of the corresponding hole-particle Green's function [451 

G(ol/~/r/&;t)=<'\tIT[Q~(t)Qr(t)Q.:'(O)Q{!>(o)JI"fo ') (85) 

Here I~o)stands f~r the exact ground state in the Heisenberg 
representation, ai(t) and ai(t), respectively, are the creation 
and annihilation operators defined on the states of an approximate 
separable Hamil ton -operator Ho and t is the time-ordering 
operator. Substituting the exact time-dependence of the operators 
in the Heisenberg representation into (85), introducing the step 
function 8(t)=1 if t >0, S(t)=O if t < a and performing a 
Fourier transformation with respect to the time on the resulting 
expression one obtains for the connected part of the Green's 
function [45, 46] 

0" 

Gc. (oll~/rrISj EJ = ~ r ~t ex-r(~Et-EItI) G«(ol/~lrl Sjt) == 
6' £--'10 -!)D 

+ 

==-~ ~ ~ [--g-",--
€ -"J 0 nto E Y1 - E 0 - E - ~ €, 

t 
(86) 
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Here 

where ~Q is the disconnected part of the Green's function 

So = G (~I ~ j 0) G ( 6, r / 0 ) 

Further 

~: = < ~o I c.1 0.'( 1'il1'1 ) < "1' .. 1 Q.: ().~ I ~ 0 '> 
g: = < ~o I 0..: Q.(l. \ "f", ') t.. ":1:'..\ 0..1 o..~ I 1:0 ') 

+ 
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(87) 

(88) 

(89a) 

(89b) 

From (86) we can observe that the exact excitation energies of 
the system are given by the poles of the connected part of the 
particle-hole Green's function (in the energy representation). 

To find these poles, at least approximately, Paldus and 
Cizek [461 have expressed the Green's function in a perturbation 
form. For that purpose they have expressed the Hamiltonian a 
as 

1\" 1\ 

H = Ho + ~ V 1 (90) 

where g is the coupling constant and they choose for ao the Fock 
operator, ao=r. After this they have rewritten the Green's 
function (85) in the interaction representation. Using Wick's 
theorem and diagrammatical techniques they could express the 
individual terms of the resulting perturbation series through 
the set of the pertinent Feynman-diagrams. Without going into 
more details (for them see [46]) it should be mentioned only 
that they have derived the analogue of the Dyson equ. for the ho1e
particle Green's function. They have given in this way explicit 
expressions to the third order of perturbation theory for the 
excitation energy [461. The method was applied until now only 
to a system of 6 TI electrons using the PPP(Pariser-Parr-Pople) 
model Hamiltonian [47J. There would be no larger difficulties, 
however, to apply this method to the units of a polymer using as 
one-electron wave functions their ab initio (Hartree-Fock) MO-s. 

It should be mentioned only that another promising 
possibility for the direct determination (taking into account also 
the change in the correlation energy) of the excited states of 
larger monomers (like the nucleotide bases in DNA) in a polymer 
is the recently worked out open-shell version of the coupled 
cluster (1"1'>= e.TI+c.'> ) method [481 (for the coupled cluster 
method in its closed-shell form see [491). 

+From the last expressions one can see that in deriving (86) the 
identity ~ 1 "fV\'>< "±',.J = 1 has been applied. 

'" 
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This extensio.n o.f the metho.d starts with the Ansatz 
A A A 

I ":iJ O.S. '> = W 11J '> = W e.. T I ~ 0 '> (91 ) 

where in 

(92) 

the first o.perato.r WI pro.vides an appro.priate zero. o.rder 
wavefunctio.n o.f the o.pen shell system by acting o.n I ~~ and 
the further o.perato.rs Wi(i=2,3, .•• ,.~) co.ntain i mo.re creatio.n
annihilatio.n o.perato.r pairs than WI (in o.ther wo.rds they 
describe the changes in the co.rrelatio.n with respect to. the 
reference clo.sed-she 11 state 11'0'». The Ansatz (91) can pro.vide 
go.o.d results (also. if tl1e take into. acco.unt o.nly the first few 
terms in the series (92» if the excitatio.ns invo.lve directly 
o.nly o.ne o.r two. valence electro.ns in which case o.ne can assume 
that the majo.rity o.f the pair (o.r higher cluster) co.rrelatio.ns 
will no.t be drastically changed. Witho.ut go.ing into. further 
details (fo.r them see [48J) it sho.uld be mentio.ned that by 
expressing the excitatio.n energy as the change o.f the expectatio.n 
values o.f a fo.rmed by I"±'')(gro.und state) and 11°·S'> (excited state), 
respectively, it was po.ssible to. sho.w [48J by cancellatio.n of 
diagrams that o.ne can o.btain a direct expressio.n o.f the energy 
difference (excitatio.n). Since the pro.gramming o.f the clo.sed 
shell versio.n o.f this metho.d in its ab initio. fo.rm and its 
applicatio.n to. po.lymers (using instead o.f HF MO-s HF Wannier 
functio.ns o.btained fro.m the HF Blo.ch o.rbitals o.f the band 
structure calculatio.n) are in progress in co.o.peratio.n with 
J. Cizek [50], it will no.t be very difficult to. extend the 
pro.grams also. to. the case o.f excitatio.ns using the new open
shell version of the coupled cluster expansion metho.d. 

Determining with the help of these methods in the future 
the excited states of the monomers of a polymer with weakly 
interacting units, one could place in a rough approximatio.n 
around these excited states as centers the conduction band of the 
polymers pertaining its width. In this way one would obtain at 
least for the position (but of co.urse again not for its width 
and dispersio.n) of the excito.n band a better appro.ximatio.n than 
with the aid of the simple OAO method. 

3.1.3 The Application of the Intermediate (Charge Transfer) 
Exciton Theo.ry to Polymers 

If we have performed an approximate Hartree-Fock (ab initio. 
SCF LCAO CO) calculation we can transform the delo.calized Blo.ch 
functions obtained into. around the site Ri localized Wannier 
functions with the aid of the expression 

(93) 



524 J. LADIK 

[51J, where the LeAD Bloch function 

lJ..d ,.. (~) = (2.N+-1f3/2 ~ ~i.:kR'i ~ cJ...(~) X~ 
"'-;.« "'3"=1 :P-.,,;!- <a' 

(94) 

and h stands for the band index. 
With the aid of these Wannier functions we can write down 

the many electron wavefunction for the excited configuration in 
which an electron with spin 5 has been excited f~om the state 
n at site Ri to the state m with spin 61 at site Rj 

:t. ~ ..... )) AI\[ ) J (95) 
l:"1'l1'Vl (R~IQ~ 1<.86" = C1. nR1 Cf... ••• Cl..1'\'1~~ ~ ••. , 

where the Wannier function ~'R.. 6' takes the place in the anti
symmetrized product of an 1S.. ~ 1 (6J6"'::<l.or~).Introducing the 
notation Rj=Ri+r:; we can fC:-rm from the configurations (95) 
the translationally invariant exciton wavefunction 

1: (-""'" -311., -i.~k J: (-" -' -» 
:t'mn KI~J=('l.N·t1) .<::..,;e ~~ xVlW) k-K-"'1k =-

-3/2., "'K'R.·- -x -" If\ (96) = ('2.Nt1) L."R,e.. "~i1 .... (I<"~"""'R(.+I;)1 
l 

Here ~ nm(k-K~k) stands for the configuration (antisymmetrized 
product) of Bloch functions in which Un t-~ has been substituted 
by Urn t. This means that our electron-hole pair (exciton) has 
a mom~ntum of K and a separation of ~ (for the sake of simplicity 
we have supressed the spin indices in (96). 

Finally we can take also a linear combination of the 
different separations of the electron-hole pair (in the simple 
localized or Frenkel exciton theory (r=(J). So we can write for 
the wavefunction of our intermediate (charge transfer) exciton 

(97) 

where M=1 or 3 stands for the singlet or triplet exciton state 
with momentum K, respectively. 

Following the work of Takeuti [52] and its generalization to 
off-diagonal elements «(1:'* l11l ) of the matrix Vnm(R) by Kertesz 
[53] one can derive using perturbation theory the expression 

M (~~)-~ 'G (E ..... -> ..... ')MV (-l-'>'7i'Il) 
UnW) Kd~ -~J ~I i'1V\o1 JK,~-{!l VlWI K J (l,J(.;) • 

• MUI1Wl (K,0 J1 ) (M=1 J 3) (98) 

for the determination of the coefficients MUnm(K,~ ). Here the 
electron-hole Green's function Gnm is given by 

(99) 
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[52, 53J and the matrix elements MVnm(i<, rl, rl) ) are defined 
as 

MV (-'-'I ->11) " ~KRl,( ( .... ) (-> _)1 1 I (~-,\ ... ""'11 
Y\WJ \(, (':J) ~ = - Lilt. e. < 0.." 'l1 Q. m "(l-~~ "(12 Q.. n 'fl-~Jo..l'\'1(;;l-Ri-r» 

~ 

- 2. 6M (' > excR. ) (100) 

Here the integral < >e~ch is the exchange integral corresponding 
to the first term and ¢M=! or a for a singlet or triplet excited 
state, respectively. To solve the system of equations (98) one 
has to find the E(R) value for which a solution exists. 

The described theory has been applied by Kertesz [54J 
for polyethylene (the -HC=CH-CH=CH chain) and for polyC and 
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polyU (U stands· for uracil) using semiempirical SCF LCAO 'iT electron 
(PPP) band structures [55]. For polyethylene alternating bond 
distances and for polyC and polyU the geometrical data of DNA B 
[561 have been applied. 

In Table IV we give following Kert~sz [54J for polyethylene 
the singlet and triplet intermediate exciton bands for the 
valence band4conduction band transition including first 
neighbors' charge transfer (~=O,.!,.I) 

Table IV 

The first singlet and triplet intermediate exciton bands of 
polyethylene in the first neighbors' charge transfer approximation 
after Kertesz [54J (in eV-s) 

K 1E( K) 3E(K) lc(K)- tv(K) 

a 2.17 0.03 15.02 

2 Tf /5 3.70 1.27 13.10 
11" 6.06 3.22 3.62 

Looking at the Table we can see first of all that the excitation 
energies belonging to different values of K are very different 
from the corresponding one-electron level differences. The 
physically most significant theoretical 1E(K=0) values are 
3.50 eV in the case of a Frenkel exciton (~=O), 2.17 eV in the 
first neighbors' and 2.24 eV in the second neighbors' (0)=0,+1,+2) 
intermediate exciton case [54J. The intermediate exciton values
agree quite well with the corresponding experimental value of 
2.32 eV [57J. 

An analysis of the coefficients 1Uvc (K, ~ ) and 3Uvc(K,~ ) 
obtained for polyethylene from the same calculation [54J shows 
that the singlet exciton is rather delocalized (1 Uvc (+I) and 
1Uvc (+2) are -0.52 and 0.26, respectively) while the triplet 
exciton 1S more strongly localized. 

In contrary to polyethylene in the cases of the stacked 
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polyC and polyU chains the 1E(K=0) values calculated with the 
aid of the intermediate exciton theory do not differ strongly 
from the excitation energies of the single C and U molecules 
calculated with the aid of the closed shell Hartree-Fock 
formalism (see equ. (74». The difference 1E(K=0)- 1A EUbMO~ LEMO 
is for polyC 0.07eV in the case of the intermediate exc~ton 
(~=O,,:,I) and -0.03eV in the case of the Frenkel exciton (0=0), 
while for polyU the shift given by the intermediate exciton 
theory is 0.16eV [54J. The smallness of these energy shifts 
(if the shifts are similar also in the case of ab initio band 
structures and also for the other homopolynucleatides) could 
explain that the UV absorption spectrum of DNA corresponds 
in a good approximation to the superposition of the spectra 
of the constitQent bases (see 3.1.1). 

Finally it should be mentioned that though for the 
calculation of the excitation energies the application of the 
intermediate exciton theory does not seem to be necessary in 
the case of the weakly interacting homopolynucleotides, the 
situation is completely different if one computes the more 
sensitive intensities. According to the calculations of Kertesz 
[54J the oscillator strength (f) values differ strongly (in the 
case of polyU by a factor greater than 2) if someone applies 
the intermediate exciton theory instead of assuming localized 
(Frenkel) excitons. The hypochromicity (H) values calculated 
on the basis of these f values differ by a factor of 5 for U. 
Further for polyC and for polyU the H values calculated with the 
aid of the intermediate exciton theory agree much better with 
experiment than the Frenkel exciton H-values [54J. 

He can conclude that the inclusion of charge transfer type 
excitations is necessary also in the case of covalently not
bonded (stacked or hydrogen bonded) polymers if one desires 
to describe also the finer details of their electronic spectra 
with the help of an exciton theory. Such calculations starting 
from our ab initio (HF) band structure are in progress. 
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INTRODUCTION 

Let us start with an obvious and consequently 
trivial statement. The theoretical methods useful for 
an investigation of solid surfaces must be closely re
lated to the methods used for a description of both 
molecules and crystals, due to the fact that the same 
natural laws determine electronic structures of a solid 
surface as well as of molecules and crystals. For the 
same reason, important observable properties of a 
crystal surface can be considered as a synthesis or 
compromise between the properties of a solid bulk and 
of a molecule. Besides the properties which are 
customarily named physical, the existence of character
istic chemical properties offers a foundation for the 
large extremely important field of technical chemistry 
known as heterogeneous catalysis. 

It was evident a long time ago that, in principle, 
a quantum mechanical treatment of the electronic struc
ture of surfaces is a challenging problem. But twenty 
years ago a detailed theoretical investigation was 
very difficult and not very rewarding because the 
direct experimental verification of tediously obtained 
predictions was absolutely out of the question. The tech
nically superb catalysts available a long time ago 
have such a complicated geometry and electronic struc
ture so that they are practically useless for a com-
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parison of calculated and experimentally determined 
properties. The flood of theoretical surface science 
work in the very recent literature is not only due to 
the demanding and complex nature of the theoretical 
problem, but is due to the only recently manageable 
preparation and experimental investigation of clean 
surfaces. Along with the recent possibilities for a 
preparation of clean surfaces, appropriate experimen
tal methods for measurements of spectroscopical and 
structural properties of surfaces are currently 
available (e.g., ultra violet and x-ray photoelectron 
spectroscopy, Auger electron spectroscopy, appearance
potential spectroscopy, vacuum-tunneling spectroscopy, 
field-ion spectroscopy and low-energy electron spectros
copy) . 

Interesting and very specific properties of a 
solid surface resulting from the fact that a surface 
represents a compromise between a molecule and a solid, 
have attracted the attention of many scientists as an 
interesting intellectual exercise in the early days of 
quantum mechanics. This can be illustrated by the ex
ample of the so called electronic surface states. The 
surface states are one-electron states in which the 
probability of finding an electron in the surface region 
is finite and the probability of finding an electron 
far away from the surface is negligible. Different 
types of surface states were predicted and investigated 
in sporadic single papers (e.g., by Tamm in 1932, 
Shockley and Goodwin in 1939, Coulson and Hoffmann in 
1950) . 

Already in these pioneering contributions, a 
variety of methodical approaches were employed such as 
the Kronig-Penney potential, the nearly free-electron 
model, and the tight-binding approximation which is 
analogous to the LCAO-MO method of quantum chemistry. 
This manifold of approaches which are customarily 
used in solid state theory and in quantum chemistry 
correspond to a variety of aspects which emphasize 
either the physical or chemical nature of surface 
phenomena. 

It seems natural that the chemical aspects of the 
electronic structure of surfaces can be better des
cribed using quantum chemical approaches. Different 
kinds of MO-LCAO approaches play a dominant role be
cause they preserve the chemical individuality of the 
crystal constituents to a certain degree. The generali
zation of the MO-LCAO approach as the expansion of 
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one-electron functions in terms of more or less locali
zed basis functions offers a fundament for nearly ~ll 
ab-initio quantum chemical techniques. It is clear 
that the specificjty of the surface problem requires 
some methodical modification of the current methods 
used in molecular physics. The number of atoms and 
therefore of atomic orbitals (basis functions) is de 
facto infinite. Also the translation symmetry of the 
system which simplifies the solution of the problem 
in the solid state theory is lost at least in the di
rection perpendicular to the surface. 

In these lectures, the emphasis will be put on the 
MO-LCAO approach to the problem of electronic structure 
of solid surfaces. We will pay special attention to the 
one-electron surface states and localized chemisorption 
states because they are good examples of the specific 
properties of the solid surface. It is of course useful 
to :lembed" the surface state theory in a more general 
theory of the electronic structure of solid surfaces, 
and for this reason we will start with some general 
considerations. 

GREEN'S OPERATOR 

The Green's function technique and the so called 
resolvent method are quite extensively used to describe 
the electronic states of very large systems. Several 
methodical approaches to the problem of solid surfaces 
are based on the Green's operator theory. For this 
reason, some fundamental definitions and properties of 
the Green's operator will be reviewed here. 

The time independent Schroedinger equation 

(H-E.)!E.,a> =~ (E.)! E.,a> =0 (1) 
J J J J 

can be also written as 

HP. = E.P. 
J J J 

In equation (2) the operator 

P.=~ !E.,a> <E.,a! 
J a J J 

( 2 ) 

is the projector on the space spanned by all eigenstates 
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iEj,a> with the eigenvalue Ej. 

The Green's operator is defined as 

( 4 ) 

at any point z in the complex plane except at z=E. for 
which Eq.(l) is fullfilled. From equations (1) and J (4) 
it follows that: 

Because the basis formed by the eigenvectors of 
an observable is by definition complete, the so called 
spectral expansion of the Green's operator exists: 

( 6 ) 

On the other hand, the projection operator p. 
can be expressed in the form of an integral over the 
contour r(E.) in the complex plane which encloses the 
single eing~nvalue E. lying of course on the real axis: 

1 rh ~ J 
P j = 2ni :JJG (z)dz (7) 

r ( E . ) 
J 

Evidently, the projector on the space of all states 
with energies lying in the interval on the real axis 

~ 1 A 

enclosed by th~e contour r is: 

P r = 2 ni G(z)dz (8) 

As a consequence of definitions (4) and (8), important 
for the energy calculations of large systems, it 

follows ~ ~ ~ A ~ 1 rf: ~ 
2ni \}J(ZI-H)G(Z)dZ= 2ni \}Jz G(z)dz-HPr=O (9) 

r r 

GREEN OPERATORS FOR TWO SYSTEMS AND DYSON EQUATION 

Let us compare two systems Sand S with Hamil
tonians Hand g , respectively. The syst~m S can be for 
example the cry~tal C with the adsorbed atom A. 
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The system Soconsists of the same crystal C and the 
atom A separated by a large distance so that there is 
no interaction between them. If the difference between 
both Hamiltonians can be formulated as a perturbation 
potential V 

-V = H- H 
o 

(10 ) 

then the relation between the Green's operator G as
signed to H and the operator G assigned to H is given 

o 0 
by the Dyson equation 

G(z) = G (z)(I+VG(z)) 
o 

(ll ) 

The formal solution of Dyson's equation can be written 
as: 

where 

- - 1-
G(z) = L (z)- G (z) 

o 

- - - - -1 -- -
L(z)=~(z)G (z)=~(z)~- (z)=I-G (z)V 

000 

(12 ) 

(13 ) 

The difference between the Green's operator G(z) and 
G (z) is: 

o 
- - - 1 - - - 1- --
G(z)-G (z)=(L- -I)G (z)=L- G VG 

o 0 0 0 
(14) 

If the Schroedinger equation (1) is rewritten 
with the help of the perturbation potential V (10) as: 

(E.I-if )IE .• a> =vl E .• a> 
J 0 J J 

the multiplication of Eq. (la) by G (E.) yields 
o J 

L(E.)i E .• a>=O 
J J 

-

(la) 

(15 ) 

if the operator L(E.) defined by Eq.(13) exists for 
J z=E .. 

J 

REPRESENTATION OF GREEN'S OPERATORS 

As an illustration we will consider a simple com
plete orthonormal basis set ~ formed by the kets 
ill>cB: 
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( 16 ) 

The representation of the Green's operator G(z) 
in the basis B is the matrix: 

with 

I Ll I (18 ) 

where the symbol ILlI denotes the determinant of the 
matrix representation of the operator defined by 
Eq. (4). The subdeterminant of the determinant I LlI, in 
which the v-th row and ~-th column are omitted is 
labelled by ILl(z)lvw 

It is evident that the points on the real axis 
for which it holds z=~ ( so called poles of fi) are 
given by the determinantal equation 

The representation of the Eq. (15) in the basis B 
gives a linear homogenous system of equatiomof the 
form: 

(20) 

with the following condition for obtaining a non
trivial solution: 

I <~I£(Ej) Iv> 1=1 (6~v- L G~X(E)Vxv ) 1=0 (21) 
X 

In the above equa~ion G~x~and VXv are matrix elements 
of the operators Go and V, respectively in the basis 
B. Evidently the relation (21) is mainly useful in 
the shown form if~the operator GO(Ej) assigned to 
the Hamiltonian Ho ex~sts (i.e., if the eigenvalue 
Ej of the Hamiltonian H describing the investigated 
system is not degenerate with any eigenvalue E~ of 
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the Hamiltonian Ho assigned to the unperturbed system 

So)· 

THE BASIS FORMED BY LOCALIZED KETS 
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If the basis kets I].I>E:~ are sufficiently localized 
and simultaneously the perturbation Rotential is 
suffi~iently local so that Vxv = <xlvlv>=o holds when 
I X>(. Q and I v>E:QC~ where QUQ=~, then the partition of 
the basis B into parts Q and Q is advantageous for a 
treatment of the determinantal equation (21). 

Since Vxv =0 if Iv>E:Q, it follows that 

(22) 

In other words the columns of the determinant 
1<].IIE(E.)lv>,lv>c<i contain zeros as the off-diagonal 
matrix ~lements and the value 1 as the diagonal elements. 
The dimension of the determinant is reduced to the 
dimension of the subspace spanned by the kets I].I>E:Q. 
The dimension of Q can be finite even when the dimension 
of the basis B is infinite. If the projector on the 
system Q is n~med Q, the determinantal equation (21) 
can be written in the form: 

( 23) 

Solutions of the Eq. (23) yield eigenvalues of the 
Hamiltonian H which are distinct from the eigenvalues 
of the Hamiltonian H describing the unperturbed 

o 
system So' 

Two examples should illustrate this procedure. 
The system So in the first example is composed of the 
crystal C and the chemisorbate molecule A which do not 
mutually interact. In the system S, the crystal C and 
the molecule A do interact. The formulation of the 
problem is especially simple if the model Hamiltonian 
is a Hueckel type effective one-electron Hamiltonian 
and the basis is formed by the orthogonal (or ortho
gonalized) well localized orbitals. The number of or
bitals localized at any single center can be greater 
than one. Hence, the perturbation potential V has the 
form 

V=VA+VAQ+VQA+VQ ( 24) 
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In Eq. (24), the notation has b~~~ introduced 
~hat the product of t~ree o~erators KZL is denoted by 
ZKL if the operators K and L are proJect~rs on the 
vector spaces K and L respectively (ZKK=ZK). A denotes 
in Eq. (24) the ve ctor space s panne d by a tomi c orb i t al s 
associated with the molecule, and QLC is the subspace 
of atomic orbitals associated with the crystal for 
which holds 

and VQ '" 0 

The first and fourth term in Eq. (24) describes the 
perturbation inside the chemisorbate molecule A and 
in the neighborhood of the chemisorption site inside 
the crystal C, respectively. The second and third term 
on the right-hand side of Eq. (24) describe the 
chemical interaction between chemisorb ate and chemi
sorbent. The Green's operator Go=Go can be written 
as: 

( 26) 

The matrix L(E) in the determinantal equation ,-
(23) takes the block form: 

-0-
Oj1V-<j1I GAVAlv> -<j1IG~VAQ Iv> A 

L(E)= (27) 

-0-
-<j1IGQVQA Iv> oj1v-<j1IG~vQ Q 

A Q 

For illustration let us consider an oversimplified 
model with one atomic orbital la>in the chemisorbate 
molecule A forming a chemical bond with one AO Ix> of 
the chemisorption site in the crystal surface. The 
Coulomb perturbation is also acting only on the 
atomic orbitals 10> and Ix>. The perturbation potential 
in the Hueckel model takes the simple form: 

v=lIa a la><al+ Sax (Ia><xl+ Ix><al)+ 

lIaxlx><xl ( 28) 

Hence, Eq. (27), for the determination of the energies 
distinct from energies of the unperturbed crystal C 
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and the unperturbed adsorbate molecule A, reduces to 

(29) 

Dividing Eq. (29) by GgoG~x' one obtains the relation 

(29a) 

which has a form very similar to the Hueckel equation 
for a diatomic molecule: 

(30) 
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This similarity indicates that in general the 
chemisorbate molecule together with the chemisorption 
site can be considered in the one-electron approxi
mation as a so called chemisorption molecule embedded 
in its neighborhood. This is particularly true if we 
are interested in a localized one-electron state with 
an energy located quite far from the energy band (or 
from the energy bands in more complicated models) of 
the unperturbed crystal. If in addition the chemisor
bate consists of a single atom described by the orbital 
!o>, then 

(Go )_1= E-ag,.(Goxx )=" !<X!j>!:1 
00 ~ E - E. 

J 
j 

where a~ is the Coulomb integral of unperturbed AO and 
E is the mean energy of the energy band associated 
with the unperturbed crystal C. Substitution of the 
relations (31) into Eq. (29a) yields Eq. (30) with 

In the second example we will start with the in
finite crystal described by the one-electron Hamiltonian 
gO.Let us cut the crystal in two halves C and R. The 
purpose is to obt~in the surface states starting from 
the information which we assume to have for the in-
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finite crystal with complete translation symmetry in 
three dimensions. The perturbation potential forbids 
the transition of an electron from the parts C to R 
and vice versa: 

The Green's operator G has the property 

By multiplication of the Dyson equation (11) by the 
projector a from the right and left side, we obtain 
the following equation: 

which has the formal solution 

with 

Hence, Eq. (23) takes the form: 

ILC(E) I=<~I Q-G~Vc + G~RH~clv>=o (38) 

with the dimension of the region QCC which is perturbed 
by cutting the infinite crystal. Eq. (38) was used in 
the literature for a determination of surface state 
energies. It is worth mentioning that if we multiply 
Eq. (11) from the right by the projector C and from the 
left by the projector R, the following relation is ob
t ained: 

It is evident that Eq. (38) yields only a necessary 
but not sufficient condition for the energies of surface 
states and consequently the solutions of the Eq. (38) 
can also yield spurious states. Therefore, it is ne-
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cessary to carry out a careful examination of the 
wave functions of the surface states obtained by the 
Eq. (38). 

PARTITION OF THE INVESTIGATED SYSTEM 

The Dyson equation, in general, and especially 
the determinantal Eq. (28) are useful only if we are 
able to determine the matrix element G~v' The deter
mination of the Green's operator matrix elements for 
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a large system is not a simple task if we do not know 
explicitely the energies of the one-electron functions. 
For this reason several techniques for a direct cal
culation of the Green's operator matrix elements will 
be demonstrated in this section. 

Let us divide the vector space spanned#by the 
basis ~ in two subspaces A and R. The Hamiltonian and 
the corresponding Green's operator can be decomposed 
according to the above mentioned partition scheme: 

R R 
H= E RCD ' G= E GCD 

C,D=A C,D=A 
( 40) 

The multiplication of the Green's operator definition 
~ 

(zI-H) G(z) = I (4a) 

from the left and right by the projector A yields the 
following relation: 

(41) 

The Green's operator GRA can be calculated from the 
relation obt§!-ined by mUItiplication 2f Eq. (4a) from 
the left by R and from the right by A: 

~ A A 

(zI-HR)GRA-HRAGA=O ( 42) 

For the Green's operator GA it follows that 

where 
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-
(zI (44) 

The <luanti ty G~ 1) is the Green's operator for the sub
system R. Notice, that the G (1) '" G because G is the 
projection of the Green's op~rator,Rassigned ~o the 
whole system, on the subsystem R. 

As a very simple example let us formulate the 
Green's operator matrix element of a linear chain C 
composed of a single AO in each elementary cell. All 
Coulomb integrals a]J and resonance integrals S]Jv are 
e<lual to a and S, respectively with the exception 
that a 1 ", a and S ",S. According to E<l. (43) the first 

. 12 ~ . 
matr1x element 01" u 1S: 

<11G 11>=G = [(z-a )_S2 G(1)]-1 1 1 12 2 

If the system C is a semiinfinite chain with 

and S12= S, then 

( 45) 

a = a 
1 

G G(1) (46) 
1 2 

and G1 can be calculated directly from E<l. (45) as: 

(47) 

Since in our model the subsystem R is a linear chain 
with a 1=a and S12 = S, E<l. (47) determines G;1l as well, 
and E<l. (45) for the semiinfinite chain C reads as: 

The values of z can be real or complex. The sign in 
front of the s<luare root in E<ls. (45), (4n and (48) 
must be chosen in such a way that 

I G 1<1 
1 

( 49) 

Evidently if z is real the Green's operator matrix 
element can be complex when /z-al< 21 S I . This is the 
case when z lies inside the energy band of the non
localized states for which this simple model yields the 
energy expression: 
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E = a+ 2S cosl; 

with 0::;;1;<2n. 

The other application of Eq. (23) is the so called 
continuous fraction expression for the diagonal matrix 
elements of the Green's operator. Let us partition the 
system S into the parts Ui where j=1, .... L with the 
corresponding projectors 'OJ' The system c~mposed from 
all parts Uk for k=l+l.~~.L ~s denoted by Ul' 
Th e G r e en's 0 per at 0 r U 1 G U 1 = G ( 1) is 

with 

~ [~ ~ 
G = 11 -H (1) (1) (1,1) G H_ ~ ~ ]-1 

(1) (1,1 ) 

l1(j)=U j ZU j ,G(j )=UjGUj ,H(j ,j)= 

UjHUJ,H(},~=UJHUj 

Repeating the partition procedure for the vector space 
U1 0 n e 0 b t a ins 

(}(1>=[6.(1> -H(1,1)[ 6.(2). -H(2,2) G(2) H(2";2)] -1 H(1,1>]-1 

( 53) 

If th~ vector~spaces Uj can be chosen in such a way 
that H(j,:n= H(j,j+1)' then Eq. (53) takes the form 

G(1t[6.(1) -H(1,2)[ 6.(2)-H(2,3)G(3)H(3,2) ]-1 H(2,1) J-1 
( 54) 

If this procelure is continued, an operator expression 
which reminds us of the continuous fraction expressions 
is obtained: 

[ 11 -
(2) 

~ 

H (2,3) [ I'. -H 
(3) (3, /.j.) 
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In the case of a linear chain with a single ~O in 
each elementary cell, the matrix element <1 I G1 (z ) 11 > 
can be written directly in the form of a continuous 
fraction expression 

<11G (Z)11>=[z-a1-S~2 [z-a2 -S: 3 [z-a3-S:~' 

For example, if the following relation holds: 

< n + 1 I G fi ( z) I n + 1 > = < n + 2 I Gnrr( Z ) I n + 2 > = 

~[(z-a)± ~(z_a)2- 4S 2 J (57) 

the sequence can be determined and the explicit ex
pression for <11& (z) 11> is obtained. The continuous 

• 1 • 
fractlon procedure can be started at an arbltrary ap-
propriate AO of the chain and ~roceed towards the 
proximate chain end as well as parallely in the oposite 
direction (going away from the nearest end of the 
chain) . 

The representation of the operator relation (55) 
can be, in principle, determined if for a given n, the 
matrix 

is known. Then,~the matrix representation of the in
verse operator M- 1 can be successively evaluated ac
cording to the following relation 

( M - 1 ) = ( - 1 ) ll+ VI M I - 1 / I M I 
,..,.. llV """" Vll/ 

HARTREE-FOCK PROCEDURE 

Similarly as in the quantum theory of molecules 
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an explicit consideration of the electron-electron 
interaction, at least in an approximate way, is of 
importance for the treatment of electronic surface 
phenomena. For this reason the application of the 
Hartree-Fock approach will be discussed in this section. 

In the restricted Hartree-Fock procedure (RHF), 
two electrons with opposite spins always occupy the 
lowest possible one-electron states obtained as eigen
functions of the RHF one-electron operator F. In the 
UHF approach the Hartree-Fock operators for electrons 
with spins ex and S are different. Because of its simpli
city, we will discuss the RHF approximation only. As it 
is well known, the UHF approach has the advantage of re
specting the correlation effects to some degree, but it 
treats the spin properties in an inappropriate way. 

In the Green's operator theory briefly described 
in these lectures, no specific properties are attri
buted to the observable H to which the Green's operator 
G(z) has been assigned. Therefore, all relations ob
tained until now can be also used for the Hartree-Fock 
operator F. The H-F operator in the LCAO approach with 
zero differential overlap approximation depends, of 
course, upon the matrix elements of the one-electron 
density, i.e., upon the atomic charges and the bond 
orders in the quantum chemistry language. The analogs 
for a very large system can be formulated according 
to Eq. (8) with the help of the projector on the Fermi 
sea (i.e. the manifold of doubly occupied energy 
levels) as: 

P].lv= ;i CJj<].liG(z)iv>dZ (59) 

r(HF) 

where the operator G(z) is assigned to the Hartree
Fock operator F and the contour r(HF) in the complex 
plane encloses the Fermi sea. According to Eq. (9), 
the sum of doubly occupied eigenvalues of F is equal 
to: 

~ = 'IT~ (j) zTrG( z) dz 

r(HF) 

(60) 

The electronic energy in the H-F theory must be, of 
course, corrected in such a way that the electron
electron interaction is not counted twice. Therefore, 
the electronic energy of the system is: 
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(j) [ZTrG(Z)dZ+Tr(h 1G(Z))] dz 

r (HF) 

( 61 ) 

where ~ is the one-electron part of the Hamiltonian H. 
In the ZDO approximation, the operator cr(z) depends 
upon the orbital charges p~~ and upon the bond orders 
P~v(~h). 

In the theory of chemisorption, the differences 
between properties of the system 8 and 8 0 are im
portant (8 0 and 8 are models of the chemisorbate and 
the chemisorbent without as well as with mutual inter
action, respectively). The chemisorption energy can be 
written in the form: 

~ E = 2 ; i ({J [z T r( G ( Z ) - G 0 ( Z ) ) + T r( h1 G ( Z ) - h~ Go ( Z ) ) ] d Z 

r(HF) + CT(~n (62) 

where CT(~r) is the correction term due to the fact 
that the Fermi energies of the systems 8 and 8 0 are 
not the same. This correction term includes mainly the 
contributions from the changed occupation of the lo
calized levels. The operator hand hO is the one-electron 
part of the Hamiltonian ~ and1~0 deJcribing the system 
8 and 8 0 , respectively. 

H = h 1 + h2 

The difference between the Green's operators which 
figures in the first term on the right-hand side of the 
Eq. (62), can be written as: 

T r( G ( Z ) - G < Z ))= T r [ E - 1 Go V GO] = T r ( L - 1 G ~ V) = 

Tr(£-1'~~) = TiT E ILI~v<~I#lv> = 
~)v 

a~~l~ ILl (64) 

In Eq. (64) the following simplification was possible 

to introduce: 

a1 
dZ 

( 65) 
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because of the relation 

-L: = 
j 

L: 
j ,k (z-E. ) JO 

( 66 ) 

The chemisorption energy can be consequently written 
in the form: 

H= 2;i rJj r ;!L0LI+Tr(h,(G(,I-Go(,11 

r(HF) 

+ Tr(",Oo('I)J d, +CT (MI (671 
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where t>h1 = 11 1 - h~. The first term in Eq. (67) gives the 
difference between all poles ( below the common Fermi 
level) of the Green's operator G(z) assigned to the 

system 8 in which the chemisorption interaction is 
switched on and all poles (below the same Fermi level) 
of Go(z) assigned to the system 8 0 with no chemisorp
tion interaction. Only differences of quantities des
cribing the systems 8 and 8 0 figure directly in all 
terms entering the expression for the chemisorption 
energy t>E. 

The calculation of the eigenvalues and eigen
functions of the Hartree-Fock operator can be made 
easier when the whole model under consideration is 
partitioned in two parts. The region near to the sur
face (including chemisorbate if it is present) forms 
part A where the electron density differs substantially 
from the electron density in the crystal bulk. The 
region more distant from the crystal surface forms part 
R where the electron density is roughly equal to the 
electron density in the bulk and, therefore, assumed 
to be known. The relation similar to Eq. (43) 

F G-(1l 
F = FA - AR R ( 68 ) 

makes possible a reduction in the dimensionality of the 
problem if the Green's operator for the hypothetical 
crystal with the same one-electron density in the 
surface region as within the crystal bulk is known. 
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ROLE OF SYMMETRY IN SURFACE SCIENCE 

Some models which are of interest in surface 
science exhibit two-dimensional translation symmetry. 
For example, models for clean surfaces without large· 
surface reconstruction as well as models for ideal 
surfaces with a complete monolayer of chemisorbate have 
the translation symmetry given by the surface geometry. 

The one-electron functions Ij,k> must belong to a 
given representation of the two dimensional translation 
group of the surface. A representation is characterized 
by the two-dimensional wave vector k 

(69) 
-+* 

where the as are the elementary vectors of the reci-
procal surface lattice. The eigen kets of the RHF 
operator have the form: 

-+ nc ~ -+ -+ -+ 
I j ; k> = :E l.J_ < p , m 3 ; k I j ; k> I p , m 3 ; k > = 

P:::1 m3=1 

nc 

~ 
The number of layers considered in the model is given 
by N3 . The label p distinguishes AO's localized in the 
same elementary cell and nc is the number of such AO's. 
Layers parallel to the surface are labelled by m • The 
layer orbital~lp,m3;[> is obtained from a projection of 
the operator Pt on the selected AO Ip,m3 ;3> of type p 
localized in the arbitrarily chosen elementary cello 
in the m~th layer: 

+ 00 

Pit = K L -+-+ 
exp(mk) t-+ m 

m1 ,m2 =- 00 

where K is a normalization constant and the operator t-+ . I -+ m traslates the orbltal p,m 3 ;o> f~om the cell labelled 
m1 =m2 =o parallel to the surface lnto the cell labelled 
by m1 ,m2 • 

The introduction of "symmetry adapted" layer orbi
tals in the H-F equations gives(if we drop the assump
tion on the orthogonality of AO's) 



THEORY OF SURFACE STATES AND CHEMISORPTION 

the classical secular equation of the form: 

-Ej (k) 8 mj p' ;IIl:3 p (k)]= 0 ( '72 ) 

where m;=1 .... N3 and p'=1 ..... nc. The Fourrier trans
forms of HF matrix F and of the overlap matrix 8 are: 

and 

-)

Fm'p'.m p(k)= 
3 '3 

-)-

8m, p'. m p ( k) = 
3' '3 

K ('74) 
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Equations ('72) are very often used in 
face work in order to solve the model 
which the finite numbers of layers N3 

theoretical sur
of a crystal in 
is considered. 

It is evident for the crystal bulk that the 8CF 
problem can be analogously formulated in secular 
equation form: 

where p'=1 , .... nc. In Eq. ('75) the Fourier transforms 
-)-

corresponding to three-dimensional wave vector k 

( '76 ) 

have analogous meaning as in the two-dimensional case 
(cf. Eqs. ('73) and ('74)). 
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The MO crystal orbitals have the form: 

nc 

1 j i~>= ~ 
-+ -+ -+ 

< P i ~ 1 j i ~> 1 P i'£> = 
p=1 

nc 

p=1 

with the three-dimensional Fourier transforms P.~ 
of AO's IPii> with 

ri; = t 
i=1 

m·it· 1 1 

The solutions (77) of secular equations (75) can 
be used as a starting-point of the procedure based on 
the Dyson equation or at least for sake of comparison 
between surface and bulk properties. 

EXPLICIT CONSIDERATION OF A NON-ORTHOGONAL BASIS. 

In the LCAO-type approximation commonly used in 
quantum chemistry and in solid state theory the non
orthogonal one-electron basis is adjusted to the studied 
problem. Therefore. for instance. the two systems con
sidered in the derivation of Dyson equation are charac
terized in the approximative methods (ab-initio as well 
as semiempirical) with different basis sets: Ill o >E.!2.n. 
and Ill>E~ for the systems So and S. respectively. The 
system So can be composed from a crystal and a chemi
sorbed molecule at infinite distance and the system S 
can be the same molecule and the same crystal in 
mutual interaction. Very often it is possible to find 
an one-to-one correspondence between Illo> and Ill>. so 
that the notation Ill> = Illo> can be used. 

Nevertheless it holds: 

The corresponding identity operators for systems Sand 
So have different meaning: 

( 80) 
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Obviously, the following relation holds: 

(zI-H)-(zIo-H o ) = a- 1 (z)_(G O (z))_1 

- v+z(1-1 o ) = - Vs(z) 
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( 81 ) 

where the definition (10) of the perturbation~gotential 
V is used. The mUltiplication of Eq. (81) by G from 
left and by G from right followed by mUltiplication of 
the resulting relation by the operator 1s defined as: 

1S = 1o-Go[v-z(1 - 1 0 )] (82) 

gives the resolved Dyson equation for a nonorthogonal 
bas is: 

(83 ) 

The dual basis to the nonorthogonal basis Band Bo 
IS defined as: 

(84 ) 

and 

respectively. The mentioned assignment Ix o > ~ Ix>, ~ 
was ~tilized. The corresponding identity operators I 
and 10 for the systems 8 and 8 0 are: 

~ =2: IlJ><lJ 1 1=2: IlJ ><lJI I 
1 lJ lJ 

10= 2: IlJ><lJ~I=L IlJ~><lJl (86 ) 
lJ lJ 

According to the choice of the basis the different 
representations of the Green's operator &(z) exist: 

G \[~ J It « lJ k I & ( z ) I v 1 > ) :: ( G lJ[~ , ~) k ,1 = 0 , 1 . ( 87 ) 

"ith the convention llJo> for the kets of the original 
basis ~. Kets IlJ 1> from the corresponding dual basis 
are defined by Eq. (84). The representation of the 
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relation (4) defining G(z) can be written in the form: 

or 

L: <]..11 I G I X1 ><X I Z I v>=<]..I1 V>=Omv 
X 

(88) 

(89 ) 

Therefore the matrix G [1, 1J c;....an ,pe obtained directly 
from the "secular" matrix !J. LO,Oj but frequently the 
matrix 

is more useful. 
For example the local density of states in the 

one-electron approximation is ~roportional to the 
imaginary part of the Tr(G l1'~). 

The Dyson equation (83) has the following repre
sentation 

with 

G L1, 1} = ( L - 1) [1,6] ( GO) [1' ~ ..... ~ 

<]..I~If,slx>= 0]..lX -.L:(G~A) [I,!J (VAX-Z(SAX-S~X)) 
A 

If the perturbation V=H-Ho as well as the 
difference between the basis Band Bo characterized by 
the quantity !J.S]..Iv= Syv - S~v ~re nearly vanishing out
side the region Q, then analogously to Eq. (22) the 
following relation holds: 

<]..lIE (E)lv>=o s ]..IV , v€Q 

Therefore, the basic equation of the Koster-Slater 
resolvent method can be written in the form: 

If the partitioning scheme is applied for the in
vestigated system in the nonorthogonal basis, the re
lation (43) can be written in the matrix form (cf. 
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also definition (44): 

( - 1) [0, oj [0 ,0] 19 ,0] 
G = 6 -6 AR """A ""'A "" 

( G ( 1) ) [1' 1] 6[0, 0] 
R _RA 
",.... 

= H 19, oj _ ES _ (H 1.9,0] _ ES ) ( G (1) ) [1' ~ 
-A ~A _AR ""AR "",R 

( [0,0] _ ES ) 
liRA "",RA 

DISCUSSION AND CONCLUSION 

In this series of lectures the fundamentals of the 
tight binding (LCAO-MO) theory of electronic structure 
of surfaces and of chemisorption have been demonstrated. 
The orthogonal basis spanning the space of one-electron 
functions was used in the major part of these lectures. 
As it has been also shown the theory can be easily 
generalized for a nonorthogonal basis by introducing 
the dual basis. This procedure is shown in detail in 
the review article (1) (compare also reference (2»). In 
comparison with the matrix representation the direct 
use of operator formalism is advantageous because the 
origin and the meaning of individual terms due to the 
approximative character of LCAO approach are more 
transparent. 

The relations derived in the present paper can be 
used directly in the theory of localized one-electron 
states of different kinds(3) and localized chemisorption 
states (4). The number of papers utilizing the LCAO-MO 
theory for the investigation of surface states is at 
present Iluite large (5). Also, the basic relations of the 
tight binding method which have been presented here in 
context with the surface theory can be applied more 
generally for a determination of the local density of 
states using the Green's function formalism (6). The 
concept of the surface molecule (7) as well as the 
continuous fraction(B) and momentum(9) methods for 
direct calculation of local density of states in semi
conductors and transition metals are based on the dis
cussed partition technillue. 

It is worthwhile to emphasize that the Green's 
function technique for problems of the electronic 
structure of surfaces with and without chemisorbed 
species must be used with extreme care, mainly if the 
model Hamiltonian does not describe the electron-electron 
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interaction in a sufficiently efficient way. If the 
transition from the realistic quasicontinuous spectrum 
to the (nonrealistic idealized) continuous spectrum is 
made not carefully enough, the nonrealistic unsuffi
cient screening of the surface charges may easily 
o c cur ( 16) . 

The consideration of models taking into account 
the finite number of two-dimensionally infinite layers 
can reproduce some surface properties in a very nice 
manner(11). This type of models allows a straightfor
ward implementation of the SCF procedure. The simula
tion of surfaces and surface defects can be carried 
out in the form of cluster calculations which can 
utilize almost any method known from quantum chemistry. 

The Roothaan-like one-electron approaches using 
one-electron function expansion in terms of localized 
orbitals have many disadvantages when applied on large 
systems (e.g., over completeness problem, improper des
cription of the nonbounded and nearly nonbounded elec
tronic states, insufficient consideration of correlation 
effects). The methods using one-electron density func
tional formalism (12), pseudopotential approaches (13) 
as well as procedures with explicit introduction of 
electron correlation in the valence bond fashion(1~) 
attempt to overcome the mentioned shortcomings of the 
one-electron LCAO-MO type methods. 

Nevertheless, the complete investigation of the 
LCAO approach with all mentioned disadvantages is very 
important and fruitful because of the SUbstantial inter
pretation power of the tight binding methods for des
cription of chemical phenomena. The systematic compari
son with other approaches should give more insight in 
the nature of physical and catalytic properties of solid 
surfac·es. 
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MO-LCAO approach for surfaces 532-533 

N resonance transition probability 167 
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N2 
dissociation 405-406, 409 
inner ionization potentials 259-262 
outer ionization potentials 98-99, 201-202 

N2R2 and N2D2 vibrational intensities 72-73 
N204 inner ionization potentials 263-267 
Na binding energy, atom and metal 347-348 
Na+ atomic binding energy 347-348 
Ne binding energy 347-348 
Ni III term structure 

3d2 pair correlation energies 138 
important correlation effects 136-137 

Nin localizability in 491-492 
NiO solid 

Bloch-like vs. localized states 486 
conductivity mechanism 488 
conductivity type 472, 484 
photogap in 489 

Non-adiabatic coupling 
butatriene 236, 244-246 
ethane 74-75 

Non-orthonormality 
diagonal (energy) 129 
off-diagonal (transition probabilities) 

Non-symmetry adapted functions for solids 
Nuclear size effects on binding energies 

o atomic binding energy 
0- atomic binding energy 
02 

dissociation 405-408 
~~~chuman-Runge band 66 
DAD method 

in polymers 518-521 
in solids 443, 484-485 

OR, lifetime II 

347-348 
347-348 

156 
482 

31, 335-336 

Optical double resonance technique for lifetimes 16 
Oscillator strengths (see also transition probabilities) 

loss and gain to continuum 375 
Ozone 

electron affinities 215 
excitation energies 89-90 
transition moments 89-90 
vibrational structure 217 

P2 electron affinity 215 
Particle-hole polarization propagator 438 
Pb I lifetime II 
Percolation theory for amorphous solids 460-461 

INDEX 

Pericycle biradicaloid geometry in photochemical reactions 430-433 
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Perturbation theory 
continuum processes (see complex co-ordinate rotation) 
quasi-degenerate many body (QD-MBPT) 297ff 

advantages of 297 
denominator shifts in 307, 311 
diagram rules 302-308 
effective valence Hamiltonians for molecules 300-308 
exclusion principle violating diagrams 304 
folded diagrams 304-306 
intruder state problem 309 
ladder diagrams 313 
relationship to Green's functions 
relationship to Rayleigh-Schrodinger 298 
renormalization terms 299, 304 

Phase shift in photoionization 371-374 
Phase shift technique for lifetimes 8-9 
Phosphorescence 419 
Photochemical reactivity 417ff 

avoided crossings 424 
bi-radicaloid minima 421-426, 430-433 

example for sigma bonding 422-423 
de-excitation, fast 

funnels 419 
internal conversion 418 
intersystem crossing 419 

de-excitation, slow 
fluorescence 419, 432 
internal conversion 419 
intersystem crossing 419 
phosphorescence 419 
thermal activation 419 

direct reactions 418 
geometry effects 420ff 
HOMO, LUMO transitions 427ff 
hot excited state reactions 418 
n to n* transitions 427 
polyenes, linear and cyclic 427-430 

intensities in 429-430 
spectroscopic states 421, 425-430 

classification of transitions 426 
role of n to n* transitions 427 

toulene, avoided crossing 424 
upper excited state reactions 418 

Photoelectron spectroscopy, general features 183-186, 209 
Photoionization, mostly atomic 

C.!. method for 371-374 
double, final state problem 380-381 
examples 361ff 
Feshbach method 367-369 
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quantum defect theory 
multi-channel 378-379 
single channel 378 

resonances, parameters of 369-370, 374 
R-matrix method 376-377 
satellite intensities 318-319 
several channels, problem of 376 
shape resonances, definition 365 
transfer of oscillator strength 365 

Plasmas, transition probabilities for Mo impurities 168, 172 
Polarizability of Be 173 
Polarization functions for molecules 80 
Polarization propagator (see also Green's functions) 35ff, 318-

321 
annihilator condition 38-42 
correlation effects in 318, 323-325 
intensities from 318-319 
poles of 322 
relaxation effects in 318, 323-325 

Poly-cytosine band structure 502-503, 518-521 
Polyenes in photochemistry 427-430 
Poly-ethylene band structure 523-526 
Polymers electronic structure 

Adenin 518-521 
coherent potential approximation 
combined symmetry basis functions 
coupled cluster methods 522-523 
Cytosin 518-521 
Green's functions 521 
Guanin 518-521 

504-507 
500-502 

intermediate excition theory (charge transfer) 523-526 
OAO method for localized excitons 518-521 
poly-cytosine 502-503, 518-521 
poly-ethylene 523-526 
poly-sulphurnitride (SN)x 

with and without hydrogen impurities 507-511 
SCF LCAO CO HF formulation 519 
SCF resolvent method for impurities 512-517 
self energy, k and energy dependence 496 
Thymin 518-521 

Population inversions (lasers) 27 
Post-collisional interactions (PCr) 274, 334 
Predissociation (see also lifetimes) 

complex co-ordinate rotation method for 388-389, 396 
Propane 

excitation energies 85-89 
ionization potentials 85-89 
transition moments 85-89 

Radiative auto ionization 147, 171-172 
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Radiative effects on binding energies 345-347 
Random Phase Approximation (RPA) 39, 248, 253, 442 
Rb III satellites 121 
Reactive states (see photochemistry) 
Reference functions 

for atoms, non-relativistic 338-340 
for atoms, relativistic 349-350 
for molecules (MRD-CI) 48-49, 54 

Relativistic-correlation theory 348-352 
basis sets 349 
Breit operator 351-352 
coupling problems 349 
degeneracies in 349 
example 351 
form of correlation function 349-350 
need for 338 
reference function 348 

Relativistic effects 
on binding energies 331, 335-337 
on lifetimes 19, 21, 171, 177-178 
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Relaxation effects on ionization potentials 322-323, 331, 336-337 
Resonances (see also photoionization), parameters of 369-370, 374 
R-matrix method for photoionization 376-377 

Satellites (see also Auger effect, photoionization) 184 
Ar 278ff 
H2S 278ff 
origin for Auger 274 
SF6 278ff 
S02 278ff 
strong 249 

SCF (see also independent particle model) 
problems for molecular inner hole states 289 

SCF LCAO CO HF for polymers 496-499 
SCF resolvent method for polymers 512-517 
Self energy for Green's functions 189, 195, 322 

behavior for CS 257 
k and/or energy dependence 247, 496 

SF6 Auger energies, KLL 288, 290 
Shape resonance, definition 365 
Shake-off, shake-up satellites 274 
Singlet-triplet splitting problems in molecules 42 
SiD radiative lifetimes 41 
Slater-Wilson model for transition metal oxides 474, 485 
(SN)x 

band structure 507-511 
density of states 509-510 
superconductor 507, 511 

S02 
Auger energy, KLL 287, 290 
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electron affinity 215 
vibrational structure 217 

Specific heat in amorphous solids 464 
Spectroscopic states in photochemistry 421, 425-430 
Spin-orbit allowed transitions 146-147 
Sr binding energy, atomic 342 
Stretched sigma bond in photochemistry 430 
Sudden approximation in H2S and S02 291 
Superconductivity 

exciton mechanism for 449, 452-455 
Surfaces 531ff 

clean, role of 532 
Green's function approach to 531ff 
MO-LCAO method 532-533 
states 

properties 532 
review of current approaches 553-554 
spurious, possible appearance of 540-541 
symmetry 548 

surface probes, experimental 276 
symmetry 548 
tight binding method 531ff 
two systems approach to 534-535, 537-542, 546-547 

Symmetry eigenstate construction for atoms 
non-relativistic 129-130 
relativistic 349-350 

Tamm-Dancoff method applied to molecules 
for inner valance properties 195, 247-256 
solution process 254-255 

s-tetrazine, ionization potentials 206-209 
Thymin, band structure 518-521 
Tight binding method for surfaces 531ff 
Timing Data 

MRD-CI 52-55 
polarization propagator 42 

TiO solid, properties 472, 484 
Transferability of atomic correlation energy 137, 344 
Transformation of integrals (see also Cholesky decomposition) 

timing in MRD-CI 54-55 
Transition metal oxides 471ff 

Alder Feinleib model 475 
electron polaron 480 
Hubbard model 475 
GAG method 484-485 
properties, review 472 
RHF results for NiO 485-486 
Slater-Wilson model 474, 485 
Spin-polarized HF model 476 
UHF method 477-483 

INDEX 
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Bloch vs localized states 486, 491-492 
conductivity 

mechanism in NiO 488 
type predicted 471ff 

non-symmetry adapted functions ~n 482ff 
photo gap in NiO 489 

Transition moments (see also vibrational intensities) 
ethane 85-89 
H20 83-84 
H2S 83-86 
Ozone 89-90 
propane 85-89 

Transition Operator Method (TOM) 324 
Transition probabilities (see also oscillator strengths, 

transition moments) 
collective excitations in 175 
correlation effects (within FOTOS) 

double photoionization 147, 158-160 
electric quadrupole 145, 162 
multi-jump transitions 145 
radiative autoionization 147 
rare gases 145 
spin-orbit allowed 146-147 
symmetry exchange type 146 
valence-Rydberg mixing 146, 167-168 
transfer of oscillator strength 176-177 

correlation functions 152-153 
detailed examples 157-162 
formula for molecules 197 
isoelectronic sequence Z dependence 166-167 
mechanisms of 144 
non-adiabatic effects in molecules 241-243 
non-orthonormality effects 155-156 
operator forms 152, 171, 174 
radial functions within FOTOS 155 
reference functions within FOTOS 150-152 
r~ativistic effects 171, 177-178 
results (FOTOS) 

B 169 
Be I 163, 165, 170 
Be II 173 
Cl III 171 
He 163-164 
Li 171-172 
Mo XIII XXXI 168, 172 
N 167 

theory (FOTOS) 149-157, 168, 177-178 
vibrational structure 222-225 

Transport properties of amorphous solids 457 
Trapping of resonance radiation, effect on lifetime 13 
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Twisted double bond, role in photochemistry 430 

U I lifetimes II 

Valence-continuum mixing, large in F: 120 
Valence-Rydberg mixing, large (see also avoided crossings) 

in B 120 
in 02 67,120,146,160-161,167-168 

VibratlOnal 
anharmonicity effects 226-228 
band oscillator strengths 66 
equations within Born-Oppenheimer 65-66 
Hamiltonian 220-222 

non-adiabatic effects 238-240 
intensities, results 

ammonia 228-229 
benezene 212-213 
butatriene 236, 244-246 
formaldehyde 230-236 
HCN and DCN 71 
HSO 69 
N2H2 and N2D2 72-73 
02 66-67 
03 217 
S02 217 
SOH 66-67 

transition probabilities 222-225 
correlation effects on 226 
non-adiabatic effects on 241-243 

Vibrational theory, non adiabatic 218-229 
Violation of vibrational selection rules 72-73 
Virial theorem and localization 392, 395 
Virtual functions 

atoms 
a priori estimate of non-linear parameters 130-134 
efficiency of single particle expansions 130-134 

molecules 
Gaussian virtuals for 132-135 

VO solid, properties 472 

width of resonance (see also photoionization, complex co-ordinate 
rotation) 
formula for 274, 384 

Wrong ordering from Koopmans' theorem 184ff 

Xe, cross section 365-366 
Xei lifetime 9 

Yb I lifetime 6 

Z expansion for transition probabilities 166 




