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Preface

Credit risk management has been a keystone of prudent traditional banking for

thousands of years. Bankers have to consider the risks and expected profits in order

to decide to whom and how much to lend. When a loan is granted, there must be

monitoring and communication with the borrower, in particular in the case of

financial distress or simple unwillingness to repay. These decisions used to be

based on experience and expertise, but with the advance of modern mathematical,

statistical, and computational tools the discipline has become increasingly sophis-

ticated. Credit risk is not only managed, but also priced and measured using various

accurate mathematical and statistical tools and models. The credit risk management

decisions must be now based on the results of exact pricing and measurement.

The growth of consumer credit in the last 50 years would hardly have been

possible without automatically operated credit scoring. Credit scoring developed

using various classification or regression methods, in particular with logistic

regression, has become an industry standard accepted as an accurate credit risk

assessment tool, often performing better than human credit risk officers. The

scoring measures the credit risk not only by using a score discriminating between

better and worse loan applications, but also by estimating the probability of default

within one year or another given time horizon. The risk can be also priced by

calculating the risk premium that should be part of the loan interest rate in order to

cover properly the expected credit losses.

Moreover, the complexity of credit risk modeling has increased with the advance

of financial derivatives, which essentially always involve counterparty credit risk.

Assessment of the counterparty credit risk is essentially impossible to separate from

the market risk analysis. Credit risk is directly priced into credit derivatives, whose

value depends on one or more reference credit entities. The credit derivatives and

related asset backed securities became popular at the end of the nineties and at the

beginning of the previous decade. Nevertheless, the global financial crisis has

shown that the complexity of their pricing has been seriously underestimated, and

the market has become much more cautious with respect to these products

since then.

The banking industry has been always regulated to a certain extent, but with the

advance of globalization and the experience of many banking and financial crises

with negative consequences on vast numbers of bank clients, employment, eco-

nomic growth, and state budgets, regulation has become global, focusing more and
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more on risk management issues. The modern regulation approved in Basel by a

committee representing the central banks of the most developed nations requires

banks to keep sufficient capital to cover unexpected losses related to credit, market,

and operational risk. In addition, the financial institutions are required to have

sound risk management processes and organization satisfying the outlined regu-

latory principles. For example, the credit risk management should be able to

estimate unexpected credit risk on the bank’s loan portfolio independently of the

regulatory capital calculation. The latest version of the regulation (Basel III) also

requires banks to price the counterparty credit risk (Credit Valuation Adjustment—

CVA) and estimate its stressed value in order to calculate a specific additional part

of the regulatory capital.

The main goal of this book is to cover the most important historically developed

areas of credit risk management, pricing, and measurement as outlined above, but

also to focus on the latest developments and research. Each chapter also contains a

discussion of relevant regulatory principles and requirements. The book is intended

for academic researchers and practitioners in the field of derivatives and risk

management and for specialists in banks and financial institutions, as well as for

graduate degree students of economics, finance, and financial engineering.

The author refers not only to a long list of literature on the subject of credit risk

management, pricing and measurement but also to his experience as a market and

credit risk manager in a large Czech bank (Komerčnı́ banka) and as a partner of the

Quantitative Consulting company participating in or managing many credit risk

projects for a number of domestic and international banks. The quality of the

English language text has been greatly improved thanks to Chris Sadil. Many

thanks belong to K. Sivakumar, who took care of the final text and picture editing.

Last but not least, the work could not have been finished without the personal

support and patience of my wife Nadia.

Although the materials presented here have been thoroughly checked, some

mistakes may possibly remain. Any comments can be sent to jiri.witzany@vse.cz.

Prague, Czech Republic Jiřı́ Witzany
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Introduction 1

Many monographs on credit risk start, and deal, essentially only with different

computational methods for measuring and modeling credit risk. As the title

indicates, we want to focus not only on various modeling techniques for credit

risk pricing and measurement, but also on key issues of credit risk management;

i.e., we also want to look at the proper setting of the credit risk organization, credit

risk processes, powers, and controls. It may be observed from many failures and

mishaps which have occurred in various banks around the world, including the

recent systemic crisis, that the key problem often lies, rather, in conflicts of interest,

insufficient controls, or the low levels of power vested in those who knew that there

was a problem (and who were able to gauge the risks correctly) but were not able to

prevent, or limit, the risky transactions. This experience can also be confirmed by

the author, who was responsible for overseeing the risks inherent in trading

activities, as well as the later credit risks in the classical banking activities of a

large Czech bank1 in the late nineties, and in the first half of the previous decade. On

the other hand, in many cases, in particular during the recent crisis, insufficient

controls and regulation have been partially connected to the low level of under-

standing, and consequent underestimation, of the risks involved. Hence, to summa-

rize, one should neither overestimate nor underestimate the importance of credit

measurement techniques with respect to the classical credit risk management

issues. We shall start discussing the credit risk organization and management issues

in Chap. 2.

Nowadays it is impossible to write a textbook on banking credit risk without

incorporating a discussion of the Basel II/III Regulation requirements, their impacts

and consequences. This regulation is sometimes taken as a law from above, and

essentially all risk management effort is focused on the fulfillment of its

requirements and standards. Sound risk management should, nevertheless, still be

performed in the shareholders’ own best interests, even if there were no Basel

1Komerčnı́ banka, a.s.
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regulations at all. The current regulation has not been created from nothing, but

reflects the best practices and experiences of the banking industry before the

regulatory framework was first proposed, fine-tuned, and put into practice. It is,

on the other hand, far from perfect, and cannot be taken as a dogma, and there is a

lot of room for improvement, both in the area of implementation, as well as in the

area of possible future changes in the regulation. We will take a critical approach,

following the regulation, its requirements, and implementation steps, as well as

critically discussing possible improvements and techniques that go beyond the

regulation.

The first task faced by anyone considering a new transaction or business

relationship with a counterparty, which may or may not fulfill its future obligations,

is credit risk assessment. That is some sort of estimate of the adverse possibility of

default, which helps one to make the final decision; yes, no, or yes with some

additional conditions. In some traditional banks, the bankruptcy of a corporate

debtor is considered as ex post facto evidence of wrong initial decision making,

along with the corresponding credit assessment. This reasoning might have some

logic in the case of the largest debtors or project financing, but does not make any

sense in the case of mass segments, such as the small and medium enterprises

(SME) sector, and in particular, in the case of retail portfolios with many small

debtors. We cannot have a crystal ball which tells us whether each particular client

will fail or not. For a large portfolio to experience 1, 10%, or even more defaults

within a year does not mean automatically that the assessment was wrong. If the

assessment predicted 1, 10%, or some other percentage of defaults and the reality

matches the expectation, then the assessment was correct. Moreover, if the interest

income on the receivables that did not default covers sufficiently not only the cost

of funds and administrative costs, but also the losses, with some remaining profit,

then there is a sound business case. This common approach of modern banking

requires advanced financial analysis and statistical (rating and scoring) techniques

that will be described in Chap. 3. The chapter will also discuss alternative classifi-

cation and data-mining methods as Support Vector Machines, Random Forests, or

Neural Network that are the subject of recent research, with the logistic regression

still representing an industry standard.

Even if our credit assessment process and pricing methodology are correct, we

need to take the large picture into account and draw appropriate conclusions from

it. If many things go wrong, do we have enough reserves and capital to survive? The

advanced statistical approaches to this question are discussed in Chap. 4. The

question is, in fact, the main concern of the regulatory capital requirement. The

goal of the regulator is to make sure that the banking system is sufficiently stable, as

one bank failure may cause large losses to many other banks, and so, to the whole

economy and the tax payers in the end. The Basel II/III Regulation provides a more

or less simplified approach, inspired by the economic capital models, and there is

still a need for advanced complementary modeling.

Recent decades have seen a tremendous growth in the trading of credit derivative

instruments with many positive and, unfortunately also, negative effects such as we

could see in the recent global financial crisis. Credit derivatives, like derivatives in

2 1 Introduction
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general, are derived from more basic underlying instruments or market indicators.

The derivatives always involve future cash flows (or exchange of assets) that are

subject to the prices of the underlying assets, or values, of the underlying indicators.

In the case of the credit derivatives, the underlying assets are typically bonds or

loans, and the simplest indicator is the one of default, or no default, of a reference

entity whose credit risk is “insured” by the credit derivative. Credit derivative

securities, like CDO, treat credit risk like raw milk which is separated into

skimmed, medium fat, fat, and creamy milk. The fat and creamy milk can taste

good to the markets, but may become sour as we have seen recently. Since the credit

derivatives are traded on the financial markets, where prices change almost contin-

uously, the modeling and pricing of the derivatives requires the introduction of

stochastic modeling methods in a fashion similar to the classical derivatives. In

addition, the financial crisis and the Basel III regulation has drawn more attention to

counterparty credit risk management. The Credit Valuation Adjustment (CVA) has

become a mandatory component of derivative pricing. The most important types of

credit derivatives and the main approaches to their pricing, as well as CVA

calculation principles will be introduced in the last chapter.

1 Introduction 3



Credit Risk Management 2

If a person or an organizational unit within a bank or corporation performs credit

assessment, then there are two essential questions: Do they have the necessary skills

and techniques to assess the credit risk properly, and, secondly, will the assessment

really be independent and unbiased? For example, if the assessment is entrusted to a

salesperson remunerated according to the number and volume of loans granted,

then there is a clear danger of underestimating the risks; i.e., being too optimistic

when looking at the applicants’ financial situation in order to maximize the business

target. The situation is even worse if there is a relationship, potentially even corrupt,

between the salesperson and the applicant. Such a situation is, unfortunately, not

impossible. Hence a bank may have excellent credit modeling software, and many

qualified mathematicians, but if those simple issues (one could say operational

risks) are omitted, then there is a big problem. Therefore, we need to discuss, firstly,

the appropriate or recommended models of credit risk organization, as well as the

separation of powers, both in the case of classical banking (or corporate business)

activities, as well as in the case of trading and investment activities. Those

recommendations, in fact, go hand in hand with the Basel risk management process

standards.

2.1 Credit Risk Organization

The first and the most important requirement for a sound banking credit risk

organization, is the separation of powers between the risk management and the

business side. A possible organizational structure of a universal bank involved in

commercial corporate and retail banking, as well as in investment banking is shown

in Fig. 2.1. The risk management division of the bank is headed by the Chief Risk

Officer (CRO), who should be a member of the management board. The business

divisions, investment banking, and marketing should report to other members of the

board. Risk Management is close to the Finance and Accounting sections of the

bank, which are usually directed by the Chief Finance Officer (CFO). The

# Springer International Publishing AG 2017
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responsibilities of CRO and CFO can possibly be delegated to just one member of

the board. Another controlling unit close to risk management is the Internal Audit

and Control section, which stands above all the other departments and divisions in

terms of control and auditing supervision. The independence of the Internal Audit

and Risk Management sections is often strengthened by direct reporting to the

Supervisory Board, which acts on behalf of the shareholders. There is also a

compliance department responsible for adherence to legal and regulatory

requirements. If the bank belongs to a large banking group, then the CRO is usually

nominated by the superior risk management of the group and is only formally

appointed by the CEO (Chief Executive Officer).

Credit analysis, the setting of exposure limits, estimation of expected losses

entering the risk margin calculation, and final transaction approval should be

optimally done independently of those officials who take care of the clients’

business. Smaller transactions, in particular retail, may be processed automatically

using a software system. The system design and maintenance responsibility must be

sufficiently independent of the business and marketing side. This part of the bank is

motivated by the maximization of volumes, market share, and/or number of clients.

An important component of the approval process is the assessment of collateral; in

particular of real estate, which must also be controlled by the risk. Credit risk

management may, and usually does, delegate certain limited approval responsibil-

ity to the business units. The exact division of underwriting powers is always a

CEO

Business 
Divisions

Investment 
Banking

Internal Audit 
and Control

CRO : Risk 
Management

Products and 
Marketing

Operations
IT

Business 
origination

Credit Risk 
Management

Product 
design

• Credit rating
• Limits setting
• Collateral appraisal
• Credit approval
• Risk margin setting
• Credit monitoring
• Workout/collections

• Product and process 
risk assessment

CFO :
Finance

Shareholders
Supervisory Board

Fig. 2.1 A universal bank organization structure
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compromise between the efficiency of the process, and the conservativeness of the

risk management standards.

The key role of risk management does not end with the approval and granting of

a loan to the client. The overall credit process and the split of responsibilities can be

schematically illustrated by Fig. 2.2. Corporate clients should be obliged to submit

regular financial reports, which need to be monitored by the client relationship

officials, as well as (depending on the size of the exposure) by credit analysts. If the

reports or other information indicate a worsening of the client’s situation, then

corrective actions should be taken. The action may be the stopping of any new

withdrawals, negotiation with the client on the initiation of early repayments based

on existing contractual covenants, recommendation to change the current business

plan, etc. The last phase of the credit process already belongs to the workout phase

when the exposure turns bad. Since the client relationship officials tend to underes-

timate the problems, the exposure should be transferred to a different specialized

unit which may be under the responsibility of risk. The workout activities could also

be under the business side management, but at all events, there should be a change

of personal and organizational responsibility in the case of a bad client that is going

through bankruptcy or restructuring.

The monitoring of retail loans is more mechanical, and usually based on the

so-called behavioral scoring. The process of collecting retail loans with delayed

repayments normally starts very early with the so-called soft collection method,

whereby the clients are contacted by phone. It may end by the selling or outsourcing

2

REVIEW OF THE CREDIT PROCESS

• Business units
• Credit Risk

Credit origination Monitoring

Responsibility

Key activities

Workout

• Business units
• Credit Risk 
• Market Risk

• Debt Recovery

• Credit rating
• Evaluation of 

applications
• Risk adjusted pricing
• Collateral valuation

• Monitoring and 
identification of cases 
turning bad

• Reclassification / 
Provisioning of bad 
loans

• Corrective actions

• Recovering of bad 
debts

• Closing unsolvable 
cases

Fig. 2.2 A review of the credit process
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of the defaulted loans to specialized collection companies that initiate possible legal

steps, the sale of collateral, or executions.

Provisioning is a very important part of the monitoring process. Provisions

reduce the receivable net accounting value in order to reflect expected losses. The

provisioning process is governed by the IAS/IFRS standards, but should be, in

principle, consistent with Basel II/III or the economic valuation approach. Provi-

sioning is usually connected to a classification system, classifying performing loans

as Standard and Watch, while non-performing or impaired are classed as Substan-

dard, Doubtful, and Loss. Specific provisions are created on the impaired loans. For

example, the exposure of loans classified as Loss not covered by valuable collateral

is usually provisioned at 100%. Early and correct provisioning which has an impact

on the P/L statement of the bank, as well as on the responsible business unit, is the

best way to initiate a corrective action, as well as being a wake-up call. Many banks

which tried to hide provisions in order to improve financial results temporarily,

eventually ended up with huge losses. Therefore, provisioning should be again

primarily under the control of the credit risk management part of the bank.

Last, but not least, we should mention the importance of data for good credit risk

management. First of all, the bank should be able to filter out clients where there is

serious negative information, including the bank’s own experience from the past.

For example, if a client engaged in a fraudulent activity when applying for a

consumer loan, his/her application should be automatically rejected if the client

applies for a small business loan and vice versa. This may seem trivial, but requires

well organized and interconnected databases covering all available sources of

information. Banks often build large data-warehouses with different areas, includ-

ing a credit risk data mart. The information is used, not only as a black list, but

generally to obtain a rating utilizing all available information. Moreover, there are

external banking and non-banking registers (credit bureaus) where the negative and

even positive credit information is shared by banking and non-banking institutions.

Thus, credit risk must closely cooperate with the bank’s IT and Finance in the

building and maintaining of those databases which form the key foundation of a

sound credit risk management process.

2.2 Trading and Investment Banking

Trading and investment activities should be, in principle, separated from commer-

cial banking. There should be a “Chinese wall” preventing the investment part of

the bank from using insider information obtained from clients in the classical credit

process. Moreover, the monitoring of financial market instruments exposures is, in

general, very complex and goes hand in hand with the ability to price and quantify

the risks associated with the instruments. A relatively simple example may be given

by an FX forward contract (e.g. selling 10 million EUR for 260 million CZK with

settlement in 1 month). The initial market value of an FX forward contract between

the bank and counterparty A, if entered into under market conditions, should be

8 2 Credit Risk Management



equal approximately to zero, but can later fluctuate to positive and negative values

due to the exchange rate movement as shown in Fig. 2.3.

There are two types of credit risk that should be considered. They are the

settlement risk and the counterparty risk. The settlement risk is the risk that the

bank pays the notional (10 million EUR in our example) on the settlement day,

while the counterparty fails to pay the full corresponding amount (260 million CZK

in our example). In the case of bankruptcy, most of the notional amount would be

usually lost for the bank. The realization of settlement risk is rare, but it does

happen, because financial institutions, from time to time, go bankrupt. The settle-

ment risk can be eliminated, or minimized, through the use of an appropriate

settlement procedure, e.g. delivery versus payment.

The more important and complex type of credit risk that needs to be managed is

the counterparty risk; i.e. the possibility that the counterparty fails before, or at,

maturity, and the transaction must be canceled before the final settlement. If this

happens, and the market value from the bank’s perspective is positive, then there is

a loss, since the value accounted in the P/L must be written-off or provisioned. The

difference compared to the settlement risk is that there is no payment (in the case of

the FX forward) between the bank and the counterparty, which might declare

bankruptcy, or is known not to be able to settle the transaction. It may seem that

such a loss is only virtual and not real. The reality of the loss can be explained by

considering that such transactions are normally matched by offsetting transactions

within a trading portfolio. For example, if the transaction from Fig. 2.3 was simply

mirrored by an identical, but opposite, transaction with another counterparty B, then

the bank must still settle the transaction and realize the loss with respect to

counterparty B, but it gets no profit from the transaction with counterparty A

where the settlement is not realized.

Now the question is, what credit exposure of the FX forward transaction should

be recorded with respect to the credit limit at the origin, and during the life, of the

Settlement

Market

Value

+

-

0

Fig. 2.3 A possible

development of the FX

forward market value
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deal? The market value at the beginning is zero, but there is a credit risk as the

market value can easily go, for instance, up to 10% of the domestic currency

nominal amount, and at the same time, we do not know the future. On the other

hand, it would be clearly much too conservative to consider the full notional

amount as the credit exposure. Also, during the life of the transaction we need to

consider the actual market value, if positive, and the possibility of its future

increase. This reasoning leads to the classical counterparty risk equivalent exposure

formula:

Exposure ¼ max market value, 0ð Þ þ x%� Notional amount.

The percentage x% corresponds to the estimated volatility of the instrument’s

market value and to its remaining maturity. Note that the exposure is not static but

dynamic depending on its volatile market value. The total exposure with respect to

a single counterparty, due to many transactions, can be partially reduced by

so-called netting agreements, allowing us to net positive and negative market

values in the case of bankruptcy.

The complexity of managing counterparty credit risk with respect to a given set

of limits can be seen during the financial market crisis, when market prices swing

up and down, and a number of financial institutions go bankrupt. The effect is

twofold: first of all, many of the market values go up in significant excess of the

initial buffer (x%�Notional Amount), and moreover, an unexpected number of

counterparties fail, so that overall losses are much larger than ever expected.

There might be a domino effect such as we could see during the recent financial

crisis. The importance of sound counterparty risk management is underlined by an

exponential growth of derivatives trading in terms of OTC (over-the-counter

derivatives not settled in organized exchanges) outstanding notional (Fig. 2.4),

and deepening credit relationships of the market participants.

The Counterparty Credit Risk (CCR) measurement has become even more

complex with the advance of the Credit Valuation Adjustment (CVA) concept
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and the new Basel III requirements. The CVA is defined as the expected present

value of loss on a derivative position due to the counterparty’s default. Although the

definition leads to a complex modeling of the derivative price and counterparty

default process, there are various simplified methods that allow one to calculate

CVA in practice (see Sect. 5.6). The CVA has become a standard component of

derivatives pricing. Moreover, variation of CVA due to changes of counterparties’

credit quality creates a new source of market losses. The Basel III document (BCBS

2010) in its introduction points out that during the financial crisis, the CVA

revaluation was a greater source of losses than those arising from outright defaults.

Therefore, the regulation introduces a new capital charge to cover the CVA market

losses, meaning that banks not only need to calculate CVA but also to model its

future variation.

Due to the complexity and interrelationships of the credit and market risk of the

financial market products, credit risk management is usually integrated into a

trading risk department. The counterparty risk limits of corporate clients eligible

to enter into financial market transactions should, however, be set within the

standard credit assessment process. Special attention needs to be paid to credit

assessment; i.e., determination of limits and ratings on financial institutions and

countries. The country and financial institutions risk assessment is usually based on

external ratings and separated from classical corporate and retail credit risk man-

agement. A typical organizational structure is shown in Fig. 2.5.

Besides the Trading Risk Management department and the Front Office, i.e. the

trading room, the diagram shows the Middle Office and the New Product Commit-

tee. The role of the Middle Office is to maintain an up-to-date database of existing

transactions, enter new transactions into the trading system, perform reconciliation

with the Back Office (reporting to Finance; not shown in the figure, though also

very important for sound risk management), preparing various reports, and moni-

toring market and credit exposure with respect to valid limits on a daily basis. Thus,

the Middle Office is primarily an executive branch of the risk management, as well

as being the unit supporting the day-to-day business of the trading room.

Risk Management
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Corporate Credit 
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Trading Risk 
Management

Middle Office

Investment
Banking
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New Product 
Committee

Fig. 2.5 Organization of credit risk management of trading and investment banking
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The responsibility of the New Product Committee is to negotiate and approve

new financial markets products. As there are newer and newer financial instruments

on the financial markets, it is important to set the appropriate rules, evaluation, and

risk assessment methodology (approved by risk management), before any new

product transaction is entered into by the dealers. There are many examples

where this simple principle has been bypassed with serious consequences. For

example, in the nineties, a large Czech bank invested in securities called Credit

Linked Notes (CLN) without using the proper credit risk methodology. The

securities were issued by a London bank, and so the exposure was naively drawn

only with respect to the London bank and British limits that were sufficiently large.

Nevertheless, the repayments of the coupons and principal were linked to Russian

government bonds. Later, during the Asian crisis, the Russian bonds defaulted and

the Czech bank suffered huge losses, afterwards discovering that the exposure had,

in fact, been drawn against the Russian government, and not the London bank. The

limits set for the Russian government would not have allowed the investment, but

the missing methodology, as well as the complexity of the relatively new instru-

ment allowed them to be bypassed.

The importance and difficulty of investment banking credit risk management is

underlined by the bankruptcies of, and huge losses suffered by, the leading market

players during the recent financial crises; even those that had been assumed to

represent the best practice on the markets like JP Morgan or Goldman Sachs. For

example, the latter is given as a benchmark of the best credit risk culture in the work

of Caouette, Altman, and other respected practitioners and academics published at

the beginning of 2008. That publication cites Craig Broderick, responsible for risk

management in Goldman Sachs in 2007, saying with self-confidence: “Our risk
culture has always been good in my view, but it is stronger than ever today. We have
evolved from a firm where you could take a little bit of market risk and no credit
risk, to a place that takes quite a bit of market and credit risk in many of our
activities. However, we do so with the clear proviso that we will take only the risks
that we understand, can control and are being compensated for.” In spite of that,

Goldman Sachs suffered huge losses at the end of 2008 and had to be transformed

(together with Morgan Stanley) from an investment bank into a bank holding

company eligible for help from the Federal Reserve.

2.3 Basel Credit Risk Management Requirements

The credit risk management organization principles are not only recommendations

based on the author’s experience, but also follow from the Basel banking regula-

tion. Before we point out the most important parts of the regulation related to the

subject, let us firstly review the development and overall structure of the current

regulatory framework.

The goal of the Basel II regulatory framework (BCBS 2004) is to set higher risk

management and internal control standards for banks all over the world, as well as

to introduce a new more risk-sensitive approach to the regulatory capital

12 2 Credit Risk Management



calculation. A brief overview of the historical development illustrates the fact that

the regulation has undergone a long and complex process, and represents, essen-

tially, a compromise between the varying points of view and interests. The first

Capital Accord (BCBS 1988) was officially published by the Basel Committee on

Banking Supervision, representing the regulators of the most developed countries,

in 1988 with an implementation deadline in 1992. The Accord was amended to

incorporate market risks in 1996. At that time, discussions on a new regulatory

framework had already started, and the first Consultative Paper was published in

1999. After receiving many comments from banks and national supervisors, a

second Consultative Paper was issued in 2001. The New Capital Accord (also

called Basel II) was finally published, after long and numerous discussions, as

well as a number of Quantitative Studies, in June 2004. The document was updated

to incorporate certain relatively minor issues in 2005. A comprehensive version

incorporating the market risk part (BCBS 1996) was published in 2006. In order to

put the New Accord into practice, it had to be implemented into national legislation

and regulatory frameworks. Specifically, the European Union published the Imple-

mentation Directive (CAD 2006) in June 2006. The Capital Adequacy Directive

had to be further incorporated into the national legislations within the EU. The

Czech National Bank published the corresponding Provision (CNB 2007) in June

2007, and so the first year in which the new approach was fully applied by banks in

the Czech Republic, and similarly in other European countries, was 2008. The

financial crises which began in mid-2007 have driven the Basel Committee to

propose new amendments and modifications to the Accord. The final versions of

amendments to the Basel II Framework, in particular in the area of securitization, as

well as Revisions to the Market Risk Framework (BCBS 2009a, b), were published

in July 2009. Finally, in December 2010, BCBS approved another reform of the

framework called Basel III (BCBS 2010). Basel III does not change the approach to

the calculation of capital requirements for classical credit exposures. It does,

however, enhance capital requirements for market risk and introduces a new

CVA capital requirement. For banks, the most challenging part of the new regula-

tion lies in the strengthened capital requirements for the quality of capital and in the

introduction of new capital conservative and countercyclical measures. Other new

important requirements are relatively simple leverage and liquidity limits (see

Fig. 2.6 for a more detailed overview). There is also an important shift in the EU

implementation: the capital and liquidity requirements now take the form of a

regulation (CRR 2013) directly applicable as a “single rulebook” to member

countries without national discretion, while the supervisory assessment principles

remain in the form of a directive (CRD 2013).

Basel II/III has not changed significantly the BCBS (1996) methodology of

market risk regulatory capital calculation. A completely new element, brought in

by Basel II, is the operational risk capital requirement. The credit risk capital

requirement is significantly extended and elaborated by the new regulation, com-

pared to the 1988 Capital Accord, allowing, optionally, a standardized (SA) or

internal rating based approach (IRBA), in addition to providing a credit-risk

securitization framework.

2.3 Basel Credit Risk Management Requirements 13
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The main guiding principle of the Basel regulation can be seen in Fig. 2.7. Banks

regularly suffer (annual) credit, operational, and market expected, or unexpected,

losses. The expected part of the losses, based on a long term history, should be

covered from annual revenues. The unexpected part, if not covered by the revenues,

must be charged against the capital. In good years, the actual losses may be lower

than expected, but in bad years, the bank needs a sufficient capital buffer. Hence the

goal of the regulation is to set up a procedure estimating the potential unexpected

loss on a regulatory probability level. The task is mathematically depicted in

Fig. 2.8.

The Value at Risk approach had already been incorporated into the 1996 Market

Risk Amendment. Banks may either follow the standardized approach,

approximating the market Value at Risk (VaR) through a precisely prescribed

calculation procedure, or may use the Internal Model Approach (IMA), where the

market VaR is calculated using their own model subject to regulatory approval.

Many banks already used some form of internal market VaR model before the

implementation of the Amendment and have recently obtained or applied for

regulatory approval for the Internal Model Approach.

Fig. 2.7 Expected versus unexpected loss (Source: BCBS 2005a)

Fig. 2.8 Expected and unexpected losses (Source: BCBS 2005a)
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The new operational risk requirement allows a simplified approach (basic

indicator or standardized), or even an internal operational Value at Risk (VaR)

model called the Advanced Measurement Approach (AMA). To obtain AMA

regulatory approval, banks must collect sufficient historical operational loss data

(5 years) that are complete and consistent. The banks must demonstrate to the

regulator that potentially severe “tail” loss events at the 99.9% probability level are

covered by the outcome of the internal model. The expected losses are in this case

included in the capital requirement due to the nature of operational risk. Currently,

most banks apply just the basic indicator or the standardized approach, as the loss

data have not been usually stored in the required form in the past, and the opera-

tional VaR models are still being investigated and discussed by researchers and

practitioners.

The credit risk regulatory capital calculation has undergone significant changes

compared to the 1988 Accord. In the original approach, each on-balance sheet, or

adjusted off-balance sheet, exposure has been classified into four broad risk buckets

and multiplied by a 0, 20, 50, or 100% coefficient to obtain the risk weighted assets

(RWA). In particular, all corporate or retail assets fall into the 100% bucket without

any differentiation. The capital adequacy ratio (CAR), required to be at least 8%,

has been then calculated as the total capital divided by the total risk weighted assets:

CAR ¼ available capital

RWA
:

Equally, the regulatory capital requirement could be calculated as 8% times the

RWA calculated separately for each individual exposure. The New Accord

preserves this portfolio invariant approach (where the capital requirement for an

exposure does not depend on the portfolio which it belongs to), but significantly

refines risk differentiation in the risk weight determination.

The Standardized Approach uses in principle five buckets (0, 20, 50, 100,

150%), but more importantly allows the use of ratings obtained from external

agencies. The corporate assets may thus fall into four different categories (20, 50,

100, and 150%) according to their risk rating. Moreover the risk weight for retail

assets may be reduced to 75%, or even 35%, in the case of residential exposures

subject to regulatory approval.

The New Accord does not allow banks to use a full scope credit risk internal

model. The advanced approach is, rather, based on a regulatory formula, or a set of

regulatory formulas, where certain input parameters are estimated by internal

models. The outcomes of the formulas are risk weights, or equivalently capital

charges calculated separately per each exposure. The only parameter to be

estimated by banks in the Foundation Internal Rating Based Approach (IRBF) is

the probability of default (PD). The PD parameter is to be derived from an internal

credit rating system with assigned expected probabilities of default calibrated to the

historical data. Other key parameters are the Loss Given Default (LGD), Exposure

at Default (EAD), or the closely related Conversion Factor (CF), and Effective

Maturity (M). The remaining parameters used by the formulas as correlations, or
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maturity adjustments are set directly by the regulation. The LGD and CF

parameters are defined by the regulation in the Foundation Approach, and may be

estimated by an internal model in the Advanced Internal Rating Based Model

(IRBA)). Corporate exposures admit both the IRBF and IRBA approaches, while

retail exposures admit only IRBA if the internal rating based approach is to be used.

Therefore, application of IRB to retail exposures means one’s own estimation of all

the three parameters; PD, LGD, and EAD. The internal parameter estimation

models must satisfy a number of requirements (minimum standards) set by the

regulator in terms of data quality, length of the observation period, structure,

methodology etc., and must obtain regulatory approval.

The estimation of the PD, LGD, and EAD parameters will be discussed in more

detail in Chap. 3. Let us now focus on the qualitative risk management requirements

laid down recently by the BIS regulation. The overall structure of the regulation is

shown in Fig. 2.9. The qualitative credit risk management requirements have been

formulated in particular as the minimum requirements for the IRB approach, and

within the second Pillar for the supervisory review process. A detailed document on

the internal banking control system BCBS (1998) has been, to a certain extent,

incorporated into the Revised Framework.

Regarding the independence of the credit risk function, the regulation (BCBS

2006a) clearly says:

Fig. 2.9 Structure of the Basel II regulation (Source: BCBS 2005a)
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441. Banks must have independent credit risk control units that are responsible for the
design or selection, implementation and performance of their internal rating systems. The
unit(s) must be functionally independent from the personnel and management functions
responsible for originating exposures. Areas of responsibility must include:

• Testing and monitoring internal grades;
• Production and analysis of summary reports from the bank’s rating system, to include

historical default data sorted by rating at the time of default and one year prior to
default, grade migration analyses, and monitoring of trends in key rating criteria;

• Implementing procedures to verify that rating definitions are consistently applied across
departments and geographic areas;

• Reviewing and documenting any changes to the rating process, including the reasons
for the changes; and

• Reviewing the rating criteria to evaluate if they remain predictive of risk. Changes to the
rating process, criteria or individual rating parameters must be documented and
retained for supervisors to review.

The responsibility of the management board is defined in detail in the Supervi-

sory Pillar, for example:

730. The bank’s board of directors has responsibility for setting the bank’s tolerance for
risks. It should also ensure that management establishes a framework for assessing the
various risks, develops a system to relate risk to the bank’s capital level, and establishes a
method for monitoring compliance with internal policies. It is likewise important that the
board of directors adopts and supports strong internal controls and written policies and
procedures and ensures that management effectively communicates these throughout the
organization.

We could continue citing many paragraphs of the regulation related to the

previous sections. Other qualitative requirements will be explained when we

discuss the quantitative part of the Basel document in the following chapter.
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Rating and Scoring Systems 3

The main goal of the credit assessment process is to approve acceptable loan

applications, reject clients that will probably default in the future, and, moreover,

set up loan pricing so that the credit losses are covered by collected credit margins.

This does not have to be necessarily achieved through a rating system. Neverthe-

less, the approach of assigning a credit grade on a finite scale to each client, and/or

exposure, has become a general keystone of the modern credit risk management

process. The rating can be obtained in many different ways. There are external

agencies like Standard & Poor’s and Moody’s which have been assigning ratings to

bond issuers, large corporations, and countries for more than 100 years. Ratings can

be also produced by banks internally in many different ways—by experienced

credit analysts, by statistical, or even artificial intelligence methods, or by a

combination of human and machine assessment. Before we start describing in

detail any particular methods, we should, first of all, define our expectation of a

rating system, and the methods used to measure how well the expectations are met.

3.1 Rating Quality Measurement and Validation

A general rating scheme is shown in Fig. 3.1. It starts with a client or facility infor-

mation (e.g. bond issue, or a new transaction under consideration) and produces a

rating/scoring on a scale. Well-known examples of scales are those of the external

rating agencies, e.g., Standard & Poor’s, starting with the worst non-default rating:

C, and going up to the best rating AAA, or the very similar one of Moody’s, starting

with C and going up to the best Aaa. Some banks denote rating classes by numbers,

often starting with 1 denoting the best grade, and higher numbers denoting worse

grades. In the following we will use the reversed numbering as a standard scale,

which is also used in practice, with 1 denoting the worst grade, and higher numbers

the better credit grades. The number of grades may vary. Generally, rating scales do

not have many grades—typically somewhere between 7 and 25. Ratings assigned in

the standard numbering are alternatively called rating scores. As we shall see,
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statistical rating systems also typically produce a score on a much finer scale,

e.g. 1–1000. The scoring itself could be used as a rating, but it is usually

transformed into a rating scale with a much smaller number of grades.

The “Rating System” may include any of the methods mentioned, or it may even

be an oracle. Yet our question is: “Does the rating perform well or not?” To answer

the question we firstly have to specify our definitions and expectations:

• Do we seek an assessment of credit risk in a short time period (e.g. a 1-year

horizon) or over a long term horizon?

• Does the rating assess the possibility of default on any of the client’s obligations,

or does it deal with only one credit facility (e.g. a bond issue)?

• Is the rating based on the client’s existing debt, or is it conditional on a new loan

the client is applying for?

• Do the rating grades represent any specific probabilities of default or not?

• How do we define default (legally proclaimed bankruptcy, any delay in

payments, delay in payments exceeding 90 days, etc.)?

It is clear that as we do not know the future, we can judge the quality of a “black

box” rating system based only on its real, observable performance. We want to

measure the performance of a given rating system, and to validate, i.e. verify, that it

has satisfied our expectations. Let us assume, for example, that the risk horizon is

1 year. Then we need to collect ratings produced by the systems, on a set of

non-defaulted clients at time T, and wait until time T+ 1 to record defaulted and

non-defaulted clients. The same observation could be made at other times (see

Fig. 3.2) forming so called cohorts.

Then we put all debtors, or exposures rated in the cohorts, into the set of initially

rated observations, and put the final state into the set of observed defaults and

non-defaults, and analyze the number of observed defaults per individual rating

class. Our expectation is that there should be relatively fewer defaults on good

credit ratings than on worse credit ratings. For each rating: s ¼ 1, . . . ,N, we
calculate the corresponding observed default rate simply as:

Rating SystemClient/facility
information

C … AAA

C … Aaa

1 … 21

1 … 1000

Rating/scoring in a scale

Fig. 3.1 General rating process diagram
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ps ¼
ds
ns

ð3:1Þ

where ns is the number of observations with rating s, and ds is the number of

defaults recorded within the rating class. For example, Fig. 3.3 shows historical

1-year default rates for Moody’s rating grades Aaa-B3, and we can use it to assess

visually the performance of Moody’s rating system. To calculate the default rate,

the study defines cohorts for each grade and for each year in the period as the set of

corporate issuers with the given grade at the beginning of the year, and the defaults

(based on legal bankruptcy and/or missed payments) are counted at the end of the

year, hence there is no overlap, as in Fig. 3.2. The default rate for a grade over the

whole period is defined as the total number of defaults divided by the sum of counts

of observed issuers in the cohorts according to (3.1).

Looking at Fig. 3.3 we might be quite satisfied, as better ratings generally show

much lower observed default rates than worse ratings. Nevertheless, there are a few

signs of imperfection; in particular, the rating Aa3 shows a higher default rate than

the better ratings A1, A2, A3. Likewise, Ba1 shows a higher rate than Ba2.

Intuitively we tend to say that those are just statistical errors, but how do we

measure the quality of the system more precisely? If there were explicit

T1
Ratings

T2
Ratings

Tk
Ratings

Defaults Defaults Defaults

…

Fig. 3.2 Historical observations of ratings and defaults

Fig. 3.3 Historical default rates by Moody’s ratings Aaa-B3 (Source: moodys.com)
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probabilities of default assigned to the ratings, we could calculate some kind of

average deviation between the expected and observed rate of default. Since the

probabilities of default are not usually explicitly assigned to the ratings of external

agencies, let us look first at the more difficult case of measuring just the discrimi-

nation power of a rating system.

Discrimination Power of Rating Systems

There is a variety of goodness-of-fit measures described in literature. We shall

focus on the two generally used in banking practice; i.e., the Accuracy Ratio (AR),

also called Somers’ D or Gini’s Coefficient, which is obtained from the Cumulative

Accuracy Profile (CAP), and AUC—Area under the Receiver Operating Character-

istic Curve (ROC). There is extensive literature on the subject, including the signal

detection theory and medical literature, but we shall mostly follow the study related

to the validation of rating systems by Engelman et al. (2003). The two indicators

can be defined and, naturally, interpreted in the language of probabilities, where we

use ratings to discriminate ex-ante between bad and good debtors, defaulting and

not defaulting in the rating time horizon.

Given a good debtor X and a bad debtor Y (the information becoming known

ex-post) we say that the rating successfully discriminated (gave a correct signal)

between X and Y, if the ex-ante rating(X)> rating(Y). On the other hand we say

that the rating was not successful (gave a wrong signal) if rating(X)< rating(Y),

and finally we say that the rating did not discriminate (gave no signal) if rating

(X)¼ rating(Y). Let p1 denote the probability of the successful discrimination of an

arbitrary good X, and an arbitrary bad Y; p2 the probability of wrong discrimina-

tion, and p3 the probability of no discrimination, i.e.

p1 ¼ Pr rating Xð Þ > rating Yð Þ��X is good, Y is bad
� �

,

p2 ¼ Pr rating Xð Þ < rating Yð Þ��X is good, Y is bad
� �

,

p3 ¼ Pr rating Xð Þ ¼ rating Yð Þ��X is good, Y is bad
� �

:

Then, we can define theoretically the accuracy ratio AR as the probability of good

discrimination minus the probability of wrong discrimination

AR ¼ p1 � p2

assigning “negative points” to wrong decisions. The definition above is, in fact,

equivalent to the Somers’ D-concordance statistic (generally defined for two

ordinal valued random variables) and it can be shown to be equal to the Accuracy

Ratio as we prove later. Similarly, we can define AUC as the probability of good

discrimination, plus one half of the probability of no discrimination:
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AUC ¼ p1 þ
p3
2
;

as if our strategy would be to toss a coin if the rating gave us no hint. Thus, AUC

measures the ratio of good decisions from all attempts, including the coin tossing

strategy. Since p1 þ p2 þ p3 ¼ 1, it is straightforward to verify that

AUC ¼ 1
2
1þ ARð Þ, so the AUC is just a linear transformation of AR, and vice

versa. Note that AUC is always a value between 0 and 1, while the Accuracy Ratio

generally takes values between �1 and 1. If the discrimination by rating were

always correct, then AR¼ 1¼AUC. If it were always incorrect, then AR¼�1

while AUC¼ 0. And if it did not discriminate at all, assigning the same rating to all

debtors or making the same number of correct and incorrect decisions, then AR¼ 0

while AUC¼ 0.5.

The two measures are usually primarily defined geometrically and some effort is

necessary to show that the probabilistic definitions are equivalent to the geometrical

ones. The accuracy ratio can be defined from the Cumulative Accuracy Profile

(CAP) curve, closely related to the Lorenz curve used to measure income disparity.

Let us assume that our rating scale is {1, . . .,N}. The CAP curve (Fig. 3.4) is

defined as the line in the rectangle 0; 1½ � � 0; 1½ � starting from the origin and linearly

connecting the points (xs, ys), s ¼ 1, . . . ,N where

xs ¼ F sð Þ ¼ Pr rating Xð Þ � s
��X is a rated debtor

� �
denotes the cumulative proportion of all debtors with a rating not better than s,
while

ys ¼ F s
��B� � ¼ Pr rating Yð Þ � s

��Y is a rated bad debtor
� �

is the cumulative proportion of bad debtors with a rating not better than s.
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The “random model” in Fig. 3.4 corresponds to the situation where the rating

does not discriminate between bad and good clients at all, as if we always just

tossed a coin. On the other hand the “perfect model” would assign the lowest rating

score to all bad debtors, while all the remaining good debtors would be assigned the

next rating score, i.e. x1 ¼ π, y1 ¼ 1, where π is the overall probability of default.

Since the goal is to get as close as possible to the perfect model, it is natural to

measure the quality of the rating system by the proportion aR
aP
, where aR is the

area between the random model curve (diagonal) and the rating model curve while

aP ¼ 1
2
� π

2
is the area between the randommodel curve and the perfect model curve.

We will show at the end of this subsection that this definition is equivalent to the

probabilistic definition of the Accuracy Ratio; i.e. AR ¼ aR
aP
:

A similar curve frequently used in rating validation studies is the ROC (Receiver

Operating Characteristic curve used in the signal detection theory). An example of

the ROC curve is shown on Fig. 3.5. In the context of rating, the “false alarm rate” is

the relative proportion of clients with a low score among all good clients; i.e. for a

given score the value is

xs ¼ F s
��G� � ¼ Pr rating Xð Þ � s

��X is good
� �

;

while the “hit rate” is the relative proportion of clients with a low score among all

bad clients, i.e.

ys ¼ F s
��B� � ¼ Pr rating Yð Þ � s

��Y is bad
� �

:

The ROC curve then connects linearly the origin and the points (xs, ys),
s ¼ 1, . . . ,N.

The random model ROC curve is again the diagonal, while the perfect model

ROC curve connects the origin, the point (0, 1), and the point (1, 1). Thus, it is also

False alarm rate
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natural to measure the quality of the rating by the Area under ROC, denoted A in

Fig. 3.5, and we will show that this is the equivalent to the probabilistic definition of

AUC. Recalling that AR ¼ 2 AUC � 1
2

� �
we see that the Accuracy Ratio also equals

twice the area between the rating model and the random model ROC curves.

The following proof of equivalence of the probabilistic and geometric definitions
for AR and AUC can be omitted by the less mathematically inclined reader. Let us

start with the area A shown in Fig. 3.5. It can be expressed (defining x0 ¼ y0 ¼ 0and

r Xð Þ ¼ rating Xð Þ) as

A ¼
XN
s¼1

1

2
ys�1 þ ysð Þ xs � xs�1ð Þ ¼

¼
XN
s¼1

1

2
Pr r Yð Þ � s� 1

��Y is bad
� �þ Pr r Yð Þ � s

��Y is bad
� �� �

� Pr r Xð Þ ¼ s
��X is good

� �
¼
XN
s¼1

Pr r Yð Þ � s� 1
��Y is bad

� �þ 1

2
Pr r Yð Þ ¼ s

��Y is bad
� �� �

� Pr r Xð Þ ¼ s
��X is good

� �
¼
XN
s¼1

Pr r Yð Þ � s� 1, r Yð Þ ¼ s
��Y is bad, X is good

� �

þ 1

2

XN
s¼1

Pr r Yð Þ ¼ s, r Xð Þ ¼ s
��Y is bad, X is good

� �

¼ p1 þ
1

2
p3 ¼ AUC:

Regarding AR, and the definition based on the CAP curve, we can proceed

similarly but we also need to use the fact that

Pr r Yð Þ ¼ s½ � ¼ 1� πð ÞPr r Xð Þ ¼ s
��X is good

� �þ πPr r Yð Þ ¼ s
��Y is bad

� �
as π ¼ Pr X is bad½ � is the ex-ante probability of default (i.e., being bad). Looking at
Fig. 3.4 we see that
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aRþ1

2
¼
XN
s¼1

1

2
ys�1þysð Þ xs�xs�1ð Þ¼

¼
XN
s¼1

1

2
Pr r Yð Þ� s�1

��Y is bad� �þPr r Yð Þ� s
��Y is bad� �� � �Pr r Xð Þ¼ s½ �

¼ 1�πð Þ
XN
s¼1

1

2
Pr r Yð Þ� s�1

��Y is bad� �þPr r Yð Þ� s
��Y is bad� �� �

�Pr r Xð Þ¼ s
��X is good

� �þπ
XN
s¼1

1

2
Pr r Yð Þ� s�1

��Y is bad� �þPr r Yð Þ� s
��Y is bad� �� �

�Pr r Yð Þ¼ s
��Y is bad� �

¼ 1�πð ÞAUCþπ
XN
s¼1

1

2
Pr r Yð Þ� s

��Y is bad� �þPr r Yð Þ� s�1
��Y is bad� �� �

� Pr r Yð Þ� s
��Y is bad� ��Pr r Yð Þ� s�1

��Y is bad� �� �
¼ 1�πð ÞAUCþπ

XN
s¼1

1

2
Pr r Yð Þ� s

��Y is bad� �� �2� Pr r Yð Þ� s�1
��Y is bad� �� �2� �

¼ 1�πð ÞAUCþ1

2
π:

Since aP ¼ 1
2
� π

2
, and we already know that AUC ¼ 1

2
1þ ARð Þ, using just the

probabilistic definitions, it is now easy to verify that indeed:AR ¼ aR
aP
(end of proof).

Finally, let us mention some other measures of rating systems’ discrimination

power, like the Kolmogorov-Smirnov, Kruskall-Wallis, and Kendall’s τ statistics.

Of those, the most frequently used, the Kolmogorov-Smirnov statistic (KS), which can

be defined as KS ¼ max
s

��xs � ys
�� where xs; ysð Þ ¼ F s

��G� �
,F s

��B� �� �
, s ¼ 1, . . . ,N

are the points on the ROC curves; i.e. the coordinates are relative proportions of good

clients and bad clients. It is easy to see that
��xs � ys

�� is in fact the distance of the point
(xs, ys) from the diagonal (see Fig. 3.5), multiplied by

ffiffiffi
2

p
, and so KS=

ffiffiffi
2

p
is the

maximum distance of the ROC curve from the diagonal. Hence, the KS statistic is

similar but less comprehensive, compared to the AR and AUC statistics. Therefore, if

computational power allows us to calculate AR or AUC, we should rather use one of

those.

Empirical Estimations of AR and AUC

The analyzed ideal definitions of AR and AUC must be in practice numerically

approximated, as we have only a finite sample of rated borrowers with observed
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defaults (validation sample) and not the full population sample. The estimatesAR or

AUCmay be calculated using the geometric or probabilistic definitions, and one has

to realize that the estimate generally differs from the ideal value and certainly

depends on the validation sample used. If the rating system is developed on a

historical sample, then its Gini coefficient (AR) measured on the training sample

will normally be higher than the coefficient calculated on another sample. Gener-

ally, we prefer out-of-sample validation (calculating the measurements on a sample

different from the training sample). Optimally, the default observations of the

testing sample should really be done in the period following the rating assignment.

For example, this is the case of Gini’s coefficient reported in Standard & Poor’s

Annual Global Corporate Default Study (Apr 2014), and shown in Fig. 3.6,

indicating a relatively very good ex post performance of the rating decisions. The

high Gini, at around 90%, means that the rating agency downgrades the issuers

already 1 year before default in the majority of cases.

Given the estimate of the Gini coefficient AR, we should also look at the

confidence interval for the real coefficient AR on the confidence level α, using an

estimator given, e.g., in Engelman et al. (2003), as well as also being automatically

calculated by many statistical packages. The confidence interval could be quite

large if the validation sample is too small with just a few defaults. The S&P report,

unfortunately, does not explicitly show any confidence intervals, but the time series

in Fig. 3.6 indicates that the interval can be relatively large; e.g., somewhere

between 80 and 95%, depending on the confidence level. Confidence intervals

could also be used for a simple comparison of real Gini coefficients (AR1 and

AR2) based on estimates AR1 and AR2. If AR1 < AR2, and the two intervals with

confidence level α do not intersect each other, then we can conclude that AR1 < AR2;
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Fig. 3.6 Performance of S&P corporate ratings measured by the Gini coefficient (Based on data

reported by Standard & Poor’s CreditPro®)

3.1 Rating Quality Measurement and Validation 27



or more precisely, we reject the hypothesis AR1 � AR2, at least on probability level α.
In this case we do not take into account the correlation of the estimators, which is

usually positive, in particular, if the two coefficients are calculated on the same

validation sample. In this case, we can use a better T-statistic in the form:

T ¼ AR2 � AR1ð Þ2
σ̂ 2
1 þ σ̂ 2

2 � 2cov1,2
; ð3:2Þ

where the variances and covariance are estimated by a formula given in the

aforementioned paper (for AUC, and equally for AR), or by advanced statistical

packages. The statistic is asymptotically χ2-distributed with one degree of freedom,

provided the null hypothesis H0 : AR2 � AR1 ¼ 0 holds.

Example Table 3.1 shows Gini coefficients of two rating systems calculated on the

same validation sample. Such output for Gini coefficients, or AUC, is provided by

many statistical packages (Stata, SPSS, SAS, etc.).

The 95% confidence intervals are calculated using the reported standard errors,

and with the asymptotic normality assumption. The coefficients are relatively close,

the confidence intervals overlap, and so we cannot compare the quality of the two

rating systems, even on the 95% probability level. The package, however, reports

also the T-statistic (3.2) denoted as χ2(1). The reported value corresponds to the

shown standard errors σ̂ 1 and σ̂ 2, and the correlation 0.8, i.e.

T ¼ 71%� 69%ð Þ2= 1:2%2 þ 1:3%2 � 2� 0:8� 1:2%� 1:3%
� � ¼: 9:86:

Since the probability of values larger than 9.86 for a χ2-distribution with one degree
of freedom is 0.17% we can reject the null hypothesis H0: AR1 � AR2 ¼ 0 on the

probability level 99% or even higher. Similarly for any a > 0, we can reject the

hypothesis H0: AR1 � AR2 ¼ a. In that sense, we can reject AR1 � AR2 on the 99%

probability level, and conclude that the second rating has a better performance than

the first one on that probability level, though the difference between the Gini

coefficients is relatively small.□

Table 3.1 Gini coefficients for two rating systems

Gini (%) St. error (%) 95% Confidence interval (%)

Rating1 69 1.2 66.65 71.35

Rating2 71.50 1.30 68.95 74.05

H0: Gini(Rating1)¼Gini(Rating2)

χ2 1ð Þ ¼ 9:89
Pr > χ2 1ð Þ½ � ¼ 0:17%
Source: Stata
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Measures of the Correctness of Categorical Predictions

The rating systems are in practice, especially for the retail segment, used in

connection with a cut-off rating score sc to accept or reject loan applications: all

applications with the rating score� sc are rejected, while those with the rating score
> ss should be approved. The cut-off score could be determined by a marketing

strategy, or by optimizing the expected overall profit on the product. For example, if

the bank offers credit cards with a competitive market interest rate, then the cut-off

sc should correspond to the marginal probability of default (e.g. 10%) that still

allows the cards to be given to debtors, with ratings around sc remaining profitable.

If the cut-off sc is given, then, rather than in AR or AUC, we are interested in certain

error measurements, or the overall cost of the errors incurred by the approval

process, when some bad debtors might be approved, while some good debtors

could be rejected.

In fact the problem can be formulated as one of classification: the goal is, given

ex-ante applications, to predict good (approve) and bad (reject) applications as

accurately as possible. Given a testing sample, the classification accuracy (ACC)

can be simply defined as the number of accurate predictions (good predicted as

good and bad as bad) divided by the number of all cases. The classification can be

done even without any rating or scoring system (see for example classification trees

in Sect. 3.3), and in that case the accuracy is a straightforward and intuitive

performance measure. In the case of rating and scoring systems it is quite ambigu-

ous, since it depends on the selected cut-off. Another disadvantage of ACC is that it

might depend on the testing sample proportion of good and bad. For example, a

“silly” classification system that predicts all cases as good will have ACC ¼ nG=n
where nG is the number of good and n the number of all cases.

The overall situation can be characterized in more detail by the so called

confusion matrix (Thomas 2009), where we split the total number of applications

into actual goods and bads n ¼ nG þ nB ; the actual goods into those that are

predicted as good (approved), and those that are predicted as bad (rejected)

nG ¼ gG þ bG, and the actual bads into those that are predicted as good (approved)

and those that are predicted as bad (rejected) nB ¼ gB þ bB, see Table 3.2.
We are interested in the Type I error when the hypothesis is true (the borrower is

good), and the system predicts otherwise (the borrower is rejected). The probability

of the Type I error assessing actual goods based on the confusion matrix is bG/nG;
alternatively gG/nG is called the positive predictive value or precision. Similarly, a

Type II error is when the hypothesis is false (the applicant is bad), but the system

predicts that the hypothesis is true (the loan is granted). The probability of the Type

Table 3.2 Confusion

matrix
Actual goods Actual bads Total

Approved gG gB g

Rejected bG bB b

Actual numbers nG nB n
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II error is gB/nB; alternatively nB/nB is called the negative predictive value. Given
the confusion matrix, the accuracy can be calculated as ðgG þ bBÞ=n.

The confusion matrix can also be represented in terms of the underlying cumu-

lative proportions of good and bad debtors, F sc
��G� �

and F sc
��B� �

, used to build the

ROC, and the ex-ante probabilities of borrowers being good and bad, πG and πB—
see Table 3.3. The proportion of good predicted as bad is, in fact, equal to the false

alarm rateF sc
��G� �

;while the proportion of bad predicted as good equals one minus

hit rate, i.e.Fc sc
��B� � ¼ 1� F sc

��B� �
. The relative total number of Type II and Type

I errors out of all cases is then ER ¼ πBF
c sc

��B� �þ πGF sc
��G� �

and the classifica-

tion accuracy can be expressed as ACC ¼ πGF
c sc

��G� �þ πBF sc
��B� �

.

This approach is more practical, since normally we do not know exactly the

actual numbers of goods and bads of rejected applicants in a validation sample and

we also do not have the information on defaults on the rejected applications.

Nevertheless, we do know the cumulative distributions functions F s
��G� �

and

F s
��B� �

, and we may estimate the overall probabilities πG and πB; e.g. based on

the scores that should be available for all applicants in the sample.

Example Let us assume that we have a scorecard assigning scores in the range

from 0 to 100, and that the proposed cut-off score is 50. The validation sample of

historical applications has 10,000 observations, out of which 9000 have been

approved, and the others rejected. Our scorecard has been developed on another

(training) sample, and we want to estimate the error rates on the validation sample

representing a hypothetical set of new applications. The cumulative proportion of

goods and bads can be calculated on the 10000 validation sample cases, where we

have the information on defaults. Let us say that the cut-off score false alarm rate is

F 50
��G� � ¼ 14%, while the hit rate is F 50

��B� � ¼ 76%, and so the probability of

approving a bad borrower is 24%. Moreover, based on the scores assigned to all

applicants in the validation sample, we estimate that the overall proportion of bads

is πB ¼ 10%, and the proportion of goods is πG ¼ 90%. Consequently, the total rate

of error can be calculated as

ER ¼ 10%� 24%þ 90%� 14% ¼ 15%: □

The example above indicates that the Type II error (approval of a bad applicant)

has generally a lower weight than the Type I error (rejection of a good applicant).

The situation is, in practice, even a little more complicated, since the loss caused by

an approved bad application generally differs from the loss caused by rejection of a

good application. Here we mean the opportunity cost with respect to a perfect

approval system, which accepts all the good applications, and rejects all the bad

Table 3.3 Confusion

matrix in terms of the

underlying probabilities

Actual goods Actual bads Total

Approved πGF
c sc

��G� �
πBF

c sc
��B� �

Fc(sc)

Rejected πGF sc
��G� �

πBF sc
��B� �

F(sc)

Total actual πG πB 1
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ones. Let us say that the net loss on a bad loan is l and the potential net profit on a

good loan is q, assuming that all the loans are of the same unit size. Then the

weighted cost of errors can be expressed as

WCE ¼ lπBF
c sc
��B� �þ qπGF sc

��G� � ¼ qπG C � Fc sc
��B� �þ F sc

��G� �� �
;

where: C ¼ lπB
qπG

. If the parameters l and q do not depend on the cut-off score

(in practice they could, since a change of cut-off should lead to a change in pricing

policy), we may try to minimize the weighted cost of errors, i.e. effectively the

function

w scð Þ ¼ C � Fc sc
��B� �þ F sc

��G� � ¼ C� C � F sc
��B� �þ F sc

��G� �
:

Note that ifC ¼ 1, we in fact need to maximizeF sc
��G� �� F sc

��B� �
, which leads

exactly to the maximization of the KS statistic. Generally, we need to find the score

s, wherew0 sð Þ ¼ 0; i.e. the point xs; ysð Þ ¼ F s
��G� �

,F s
��B� �� �

on the ROC curve, and

where the slope of the tangent line equals exactly 1/C. Figure 3.7 shows the shift

along the ROC, when the profit is maximized just as the tangent line has the

required slope, hence, not exactly at the point with the maximum distance from

the diagonal, as in case of the Kolmogorov-Smirnov statistic. If the goal is to

maximize the volume granted, which can be expressed as

1� πBF sc
��B� �þ πGF sc

��G� �� �
, out of the total number of applications, then we

just need to move down to the left to the origin A where all applications are

approved. However, if we want to minimize future losses on defaulted loans that

can be estimated as lπBF
c sc

��B� �
out of the total number of applications, we need to

move up, i.e. in the direction to point C, where all the applications are, in fact,

rejected.

B

Volume

increases

Profits

increase

A ( | )F s G

( | )F s B

C

Losses

increase

Fig. 3.7 Profit, volume, and losses when moving along the ROC curve
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Measurement of Accuracy and Validation of PD Estimates

Let us now consider the case when the rating system produces not only the rating

scores on the scale 1,. . .,N, but also forecasted probabilities of default PD1, . . .,PDN

assigned explicitly to the rating grades. Given a validation sample, we calculate the

realized default rates ps ¼ ds=ns, s ¼ 1, . . . ,N, where ns is the number of

observations, and ds the number of defaults with the rating s. The forecasted and

realized probabilities can be compared visually, but again, we want to use some

statistics to measure more exactly the quality of the rating system PD estimates.

The most useful and frequently used is the Hosmer-Lemeshow (HL) Test,
calculating a weighted sum of normalized squared differences between the fore-

casted probabilities and the realized default rates:

Sχ
2

N ¼
XN
s¼1

ns PDs � psð Þ2
PDs 1� PDsð Þ ¼

XN
s¼1

nsPDs � dsð Þ2
nsPDs 1� PDsð Þ ð3:3Þ

The null hypothesis H0 is that the default probability in grade s is PDs for all s.
Moreover, If we assume that the defaults are independent, then the statistic asymp-

totically converge (with all ns ! 1) to the χ2-distribution, with N � 2 degrees of

freedom (Hosmer and Lemeshow 2000). Therefore, we need the Hosmer-

Lemeshow (CS) statistic to be a small value with a large corresponding p-value

in order not to reject H0.

Example Table 3.4 shows an example of the Hosmer-Lemeshow Test calculation.

There are seven rating grades with predicted PDs going from 50% for the worst

rating grade 1, down to 1% for the best rating grade 7. There are 7450 observations

with a total of 352 defaults distributed among the rating grades according to the

table. The sum of all contributions to the statistic, according to (3.3), is relatively

high: Sχ
2

7 ¼: 11, 17with corresponding p-value; i.e., the probability that χ2 > 11, 17 at

4.8%. The rating grade contributions show that the most significant differences

appear for the grades 2, 3, and 5.

The result can be interpreted as a rejection of the hypothesis that the predicted

PDs are correct on the 95% level. On the other hand, the correctness hypothesis

cannot be rejected on the 99% level.□

Table 3.4 Hosmer-Lemeshow test calculation example

Rating 1 2 3 4 5 6 7

Predicted PD (%) 50 30 15 8 4 2 1

Observations 50 100 300 1000 3000 2000 1000

Defaults 28 37 36 90 102 46 13

Observed PD 56.0 37.0 12.0 9.0 3.4 2.3 1.3

HL test contribution 0.72 2.33 2.12 1.36 2.81 0.92 0.91

HL test total 11.17

p-value 0.048
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The construction of the HL test is based on the assumption of the independence

of defaults, while the empirical evidence often shows that there is a positive default

correlation. In that case, with valid H0, the deviations of default rates from theoreti-

cal PDs would be larger than in the case of independent defaults. Thus, the statistic

would be too conservative in rejecting H0 more frequently than necessary (a false

positive type I error). A possible solution proposed by Engelmann and Rauhmeier

(2006), is to estimate the default correlation, and determine the statistic’s distribu-

tion using the Monte Carlo simulation. That means simulating defaults for different

rating grades with ns debtors, probabilities PDs, and with a given correlation,1 or

correlation matrix. The value (3.3) would be calculated for each scenario, obtaining

an empirical distribution of the statistic. The distribution is then used to determine

the p-value based on the real validation sample statistic.

Another widely used and a simple method is the Binomial Test. Its disadvantage
is that it can be used only for a single rating grade s with the forecast probability of
default PDs. We can apply a one-tailed or two-tailed test. If the null hypothesis is

that PD is the default probability, and we assume that the events of default are

independent, then the probability of j defaults out of n observations is

n
j


 �
PDjð1� PDÞn�j

. Therefore, the probability of observing d or more defaults is

Bð� d; ns,PDsÞ ¼
Xns
j¼d

ns
j


 �
PDs

jð1� PDsÞns�j
,

Bð� d; ns,PDsÞ ¼ 1� Bð� d þ 1; ns,PDsÞ:
ð3:4Þ

So, if we observe d > ns � PDs defaults and B � d;Ns,PDsð Þ � 1� α, i.e. the
probability of getting this many defaults is small, then the null hypothesis is

rejected on the confidence level α using the right-tailed test. Otherwise, we may

say that we fail to reject the hypothesis H0 on the given confidence level. Similarly,

if we observe too few defaults d < ns � PDs andB � d;Ns,PDsð Þ � 1� α, then the
null hypothesis is rejected on the confidence level α using the left-tailed test.

Example Let us consider the 7th rating grade in Table 3.4 with the forecast

probability of default PD7 ¼ 1%. Out of 1000 non-defaulting debtors at

the beginning of a year, we observe 13 defaults during the year. Our expectation

of 1%� 1000 ¼ 10 was exceeded by three defaults. Is it enough to reject the

forecast probability as too low, or is it still within a tolerance interval on the 95%

confidence level? The tail binomial distribution probability (3.4), with the given

parameters can be easily calculated, for example, using the Excel function

BINOMDIST. Since the result B � 13; 1000, 1%ð Þ ¼ 20:75% is safely larger than

1� α ¼ 5%, we may conclude that the number of defaults is not large enough to

reject H0 : PD7 ¼ 1% as a conservative probability of default estimate. The

minimum number of observed defaults that would reject H0 would be in general

1Default correlation can be defined simply as the correlation between corresponding binary 0–1

variables. For another treatment of default correlation see also Section 4.2.
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dα ¼ min d : B � d;Ns,PDsð Þ � 1� αf g:
With the given parameters, the minimum number of defaults given our confidence

level is d95% ¼ 16 as B � 16; 1000, 1%ð Þ ¼ 4:79%:
On the other hand, for the rating grade 5 we observe in Table 3.4 too few defaults,

102, while the expectation is 3000� 0:04 ¼ 120. In this case, the null hypothesis can

be rejected on the 95% confidence level, sinceB � 102; 3000, 4%ð Þ ¼ 4:83% using the

left-tailed test. □
The binomial distribution can be approximated with a normal distribution, if the

number of observations is large. However, the approximation is not usually needed

with modern computational tools. The test again overestimates the significance of

deviations in the realized default rate from the forecast default rate if there is a

positive default correlation. This means that the test becomes too conservative. In

order to improve the precision of the test, the Monte Carlo simulation generating

the empirical distribution with a given correlation can be used. There is also an

analytic formula based on the Gaussian copula (see Chap. 4), as proposed by

Blochwitz et al. in Engelmann and Rauhmeier (2006).

3.2 Analytical Ratings

Corporate ratings are, even today, when there are so many sophisticated statistical

scoring techniques in existence, usually obtained by a rating process that is, at most,

only partially automated. The reason is that the key rating factors are not only

quantitative, but also qualitative. Management quality, ownership structure, tech-

nology, competitive position, legal and regulatory issues can be translated into

certain scores, but the assessment must, in any case, be done by an experienced

analyst. Figure 3.8 shows a list of possible business and financial factors in a rating

process, corresponding to the methodology of Standard & Poor’s (Trueck and

Rachev 2009).

Business Risk Financial Risk

Industry Characteristics Financial Characteristics

Competitive Position Financial Policy

Marketing Profitability

Technology Capital Structure

Efficiency Cash Flow Protection

Regulation Financial Flexibility

Management Business Risk 

Financial and qualitative analysis

Meeting with management

Rating proposal

Rating Committee

FINAL

RATING

Fig. 3.8 Corporate credit analysis factors and the rating process
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Rating agencies generally provide issue-specific ratings and issue credit ratings.

Most corporations approach rating agencies to request a rating prior to the sale or

registration of a debt issue. Some rating agencies, like S&P, publish ratings for all

public corporate debt issues over a certain threshold (USD50 million in the case of

S&P). For the purpose of basic research, analysts require financial information

about the company, 5 years of audited annual financial statements, the last several

interim financial statements, and a description of the company’s operations,

products, management policies, and plans. Meetings with management and visits

to facilities are usually an important part of the rating process. The goal is to review,

in detail, the company’s key operating and financial plans, management policies,

and other factors that may impact the rating. The financial analysis focuses on a

number of financial ratios that are compared to the industry averages, and to their

past values. Table 3.5 shows a sample of commonly used financial ratios out of the

many possible ones.

When the analyst completes the analysis and a rating proposal, a rating commit-

tee with a presentation is called. Once the rating is determined, the company is

notified of the rating and the major considerations supporting it. Usually, the rating

agencies allow the issuer to respond to the rating decision prior to its publication.

Such an appeal must be processed very quickly so that the final rating can be

published in the media or released to the company. Generally, all of the major rating

agencies agree that a rating is, in the end, a credit opinion with interpretation, as

shown in Table 3.6. The rating symbols shown in the table may be further modified

with + or� (S&P, Fitch), or with 1, 2, 3 (Moody’s).

Table 3.5 Commonly used financial ratios (see, e.g., Caouette et al. 2008)

Category Ratio

Operating performance Return on equity (ROE)¼Net income/equity

Return on assets (ROA)¼Net income/assets

Operating margin¼EBITDA/sales

Net Profit Margin¼Net income/sales

Effective tax rate

Sales/sales last year

Productivity¼ (sales-material costs)/personal costs

Debt service coverage EBITDA/interest

Capital expenditure/interest

Financial leverage Leverage¼ assets/equity

Liabilities/equity

Bank debt/assets

Liabilities/liabilities last year

Liquidity Current ratio¼ current assets/current liabilities

Quick ratio¼ quick assets/current liabilities

Inventory/Sales

Receivables Aging of receivable (30,60,90,90+ past due)

Average collection period
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Therefore, it is difficult to provide a unique, or reliable, mapping of ratings to

default probabilities. There are a number of studies that do so, but the numbers, due

to cyclical effects, must be treated very carefully.

The rating agencies have become tremendously influential, covering over $34

trillion in securities on the international financial markets. Many portfolio managers

have investment limits on various securities tied to the ratings, and so rating

decisions often have a tremendous impact on the prices of securities and the ability

of companies to finance themselves. This importance has even been strengthened

by the Basel II regulation, allowing banks to calculate capital requirements

according to external ratings in the Standardized Approach. One of the more widely

discussed weaknesses of the external rating process is the institutional conflict of

interest, caused by the fact that ratings are mostly paid for by the issuers, and not by

the investors. This has been particularly pronounced during the recent subprime

mortgage crisis. It turned out that the agencies assigned positive ratings to many

structured bonds (CDOs), which later turned sour, and there is a general suspicion

that the high ratings were related to the high fees paid to the rating agencies. The

bonds then qualified as acceptable securities for many institutional investors, which

suffered huge losses during the crisis.

Credit underwriting is a fundamental function of banks, and so banks should

have an internal credit assessment capacity, even in cases where the companies

have an external rating. The process and methodology in detail vary with different

banks, but are, in principal, similar to the process described above. The process also

depends on the type of lending provided: asset-based, project, or unsecured general

corporate lending. In the case of asset-based lending, the emphasis is put on the

valuation of the borrower’s assets, while in the other two types, it is on the

borrower’s ability to generate future cash flows. Banking credit analysts are turned

Table 3.6 Long-term senior debt rating symbols (Source: S&P, Fitch/Moody’s)

Rating Interpretation

Investment grade ratings

AAA/

Aaa

Highest quality; extremely strong; highly unlikely to be affected by foreseeable

events

AA/Aa Very High quality; capacity for repayments is not significantly vulnerable to

foreseeable events

A/A Strong payment capacity; more likely to be affected by changes in economic

circumstances

BBB/Ba Adequate payment capacity; a negative change in environment may affect capacity

for repayment

Below investment grade ratings

BB/Ba Considered speculative with possibility of developing credit risks

B/B Considered very speculative with significant credit risk

CCC/

Caa

Considered highly speculative with substantial credit risk

CC/Ca Maybe in default, or wildly speculative

C/C/D In bankruptcy, or default
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into experts over the course of their careers, gaining additional authority as they

acquire experience and demonstrate their skills. Consequently, banks that lack the

expertise tend to develop the automated rating systems discussed in the next

section. On the other hand, banks with traditional analytical expertise will hesitate

before replacing a human expert with a machine. Financial data based scorings, or

other automated ratings, will be used only as an input for the analytical expert

assessment.

Regarding the retail, small business, and SME segments, the application of

automated rating systems has become almost an industry standard. Nevertheless,

in the past, retail loan applications have also been assessed by analysts, and decided

by loan officers. For example, in the case of households, the key factors analyzed

would be debt to salary ratio, household costs, employment status, age, marital

status, education, etc. Regarding small businesses, it usually turns out that account-

ing numbers have a very low explanatory power, and an expert judgment is very

important. Even with a modern automated rating system, for any of the segments,

the credit process usually allows for overriding by a competent credit officer. In any

case, as pointed out in the introduction to the chapter, any system needs a careful

periodical monitoring of performance, and an unbiased comparison with other

possible rating methodologies using the methods described in the previous section.

3.3 Regression Rating Systems

Before we turn our attention to the logistic regression model as the most widely

used technique in the financial sector, let us list and discuss a variety of possible

statistical and other automated rating models:

1. Econometric models include classification trees, random forests, linear and

multiple discriminant analysis, linear, logit (logistic), and probit regression.

The models estimate the probability of default as the target (explained) variable

by a set of explanatory variables including financial ratios, categorical variables,

and also qualitative assessment indicators. The models’ parameters are

estimated based on historical data with information on defaults and the explana-

tory variables values. The structure of the explanatory variables is proposed

based on expert judgment and optimized with statistical methods.

2. Shadow ratingmodels are not based on the history of defaults, but on a database

of the rating decisions of an external credit agency. The models try to mimic,

using a regression technique, the expertise of the rating agencies, in particular

for segments where there are not so many historical defaults, especially

countries, financial institutions, or large corporations.

3. Artificial neural networks try to mimic the functioning of the human brain by

emulating a network of interconnected neurons. The networks are also trained on

historical data. The neural networks are, in a sense, similar to the econometric

approach, but the final model is more difficult to interpret, being often

characterized as a black box.
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4. Linear programing and Support Vector Machines aim to separate sets of

good and bad observations represented by the vectors of explanatory variables,

possibly after a transformation, by a hyperplane in an optimal way.

5. Rule-based, or expert systems mimic, in a structured way, the process used by

an experienced analyst to arrive at credit decisions. The systems are built on the

expertise provided by experienced analysts, and transformed with an applied

logic methodology into a set of decision rules within a knowledge-base. Expert

systems are used in practice, for instance for small business clients, where

econometric techniques do not work well and “human” analysts become too

expensive relative to the loan size.

6. Structural models are typically based on the option valuation theory, consid-

ering default as an event where the assets fall below the debt level. The best

known example of this approach is Moody’s KMV model, using the informa-

tion on stock price development. The output of the KMV methodology is

called EDF (Expected Default Frequency), and has become quite successful

on the U.S. market (see Sect. 4.5). It is, however, not very applicable in

emerging countries, where the stock markets are not sufficiently developed.

There are also attempts to apply the structural approach to retail clients with a

behavior score playing the role of stochastic asset value (Thomas 2009).

In this section we will focus on the “mainstream” regression models, in particu-

lar on the logistic regression scorecard that has become a banking industry standard.

Other alternative approaches to building an automated rating system will be

discussed in the following section. The KMV structural approach will be explained

in Chap. 4 as a part of the portfolio modeling approach.

Altman’s Z-Score

A linear scoring function assigns to a company a linear combination of financial

ratios and other numerical explanatory variables xi with the goal to discriminate

between bad and good borrowers:

z ¼
Xk
i¼1

βixi: ð3:5Þ

Altman’s Z-Score (Altman 1968), is the first successful model of this form for

the corporate segment, where the particular coefficients and financial ratios are:

Z ¼ 1:2x1 þ 1:4x2 þ 2:3x3 þ 0:6x4 þ 0:999x5;

where the variables are given in Table 3.7
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The idea of the discriminant analysis method is, given a sample of historical

observations, to select the appropriate financial ratios and find their optimal combi-

nation so that the score (3.5) maximizes the variance between the group of bankrupt

and non-bankrupt companies and, at the same time, minimizes intra group

variances. The development performed by Altman on a group of 33 bankrupt and

33 non-bankrupt companies was an iterative process including and excluding

variables, correlation testing, and involving a lot of expert judgment which cannot

be defined as a straightforward statistical optimization. At the end, when the

variables were selected, Altman found the coefficients maximizing the F-value

calculated as

N1 �z1 � �zð Þ2 þ N2 �z2 � �zð Þ2XN1

i¼1

z1, i � �z1ð Þ2 þ
XN2

i¼1

z2, i � �z2ð Þ2
; ð3:6Þ

where zg,i is the score of the i-th company, Ng the number of companies, �zg the group

averages for the two groups g ¼ 1, 2, and �z is the overall average. Altman also

estimated an optimal upper boundary of 1.81 (fails), and a lower boundary of 2.99

(non-fail). Any score between the two boundaries is treated as being in the zone of

ignorance.

Despite the criticism mentioned in many studies (see; e.g., Duffie and Singleton

2003) which point out that the model may have substantial sample selection bias,

the original Z-Score model and its modifications (ZETAModel, private companies,

emerging market companies, etc.) have endured as a practical analytical tool to

this day.

Linear Regression

The discriminant analysis is closely related to the classical regression model trying

to establish a linear relationship between the default variable: yi ∈ 0; 1f g; and the

Table 3.7 Z-score model variable group means and F-ratios

Variable Ratio

Bankrupt

group mean

Non-bankrupt

group mean

F-

ratio

x1 Working capital/total assets �6.1% 41.4% 32.60

x2 Retained earnings/total assets �62.6% 35.5% 58.86

x3 EBIT/total assets �31.8% 15.4% 25.56

x4 Market value of equity/Book

value of liabilities

40.1% 247.7% 33.26

x5 Sales/total assets 1.5 1.9 2.84

Source: Altman (1968)
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borrowers’ i column vector of characteristics xi observed in the period before

default:

yi ¼ β0 � xi þ ui:

Here, we assume as usual that the first element of xi is the constant xi, 0 ¼ 1

corresponding to the absolute term β0, i.e. β0 � xi ¼ β0 þ β1xi, 1 þ � � � þ βkxi,k. So,
if there are k explanatory variables, the dimension of the vector xi is k þ 1. The

variables can be continuous, categorical (with a finite range of qualitative values)

that are encoded by sets of binary dummy variables (indicating by {0, 1} each of the

possible categorical values), or ordinal (in fact categorical, attaining a finite range

of integer values which do not have to be necessarily encoded by dummy variables).

The standard ordinary least squares (OLS) regression will yield an estimate b of the

vector β, that can be used to calculate the scores for any given set of input

parameters. To see that the method is, in fact, equivalent to the discriminant

analysis, note that the F-value (3.6) does not change when the coefficients in

(3.5) are multiplied by an arbitrary scaling factor, nor when we add an absolute

term either. So, without loss of generality, we may assume that �z1 ¼ 1, and �z2 ¼ 0:
Maximization of (3.6) with these assumptions is equivalent to minimization of

XN1

i¼1

z1, i � �z1ð Þ2 þ
XN2

i¼1

z2, i � �z2ð Þ2

which is the same as in the OLS regression. The main drawbacks of the linear

regression, as well as of the discriminant approach, follow from the classical

regression analysis. Since the variables yi ∈ 0; 1f g take only two values, the residuals
ui are heteroscedastic; i.e. the variance depends on i, and so the estimation of

β is inefficient. The problem can be partially solved with the weighted least

squares (WLS) estimator, but the standard errors of the estimated coefficients

b remain biased. Another problem is that the values of the score zi ¼ β0 � ximay be

negative, or larger than 1, and so are difficult to interpret as the probability of

default.

Logistic Regression

In this situation, it is more appropriate to apply an econometric model designed

specifically for analyzing binary dependent variables, in particular the Logit or

Probit model (Greene 2003). Of those, the Logit, or Logistic Regression model, is

the most popular in banking practice, as well as in academic literature. In both

approaches, a possible interpretation is to model a latent future credit score variable

y*i ¼ β0 � xi þ ui;
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where the score is decomposed into a known (expected) value β0 � xi (the actual

score) and an unknown future change ui of the score that is assumed to have zero

mean and a known distribution. The value of the variable y�i triggers the default

event yi ¼ 1 if and only ify*i � 0:Hence the probability of default conditional on the
vector of explanatory variables xi is

pi ¼ Pr½yi ¼ 1
��xi� ¼ Pr½ui þ β0 � xi � 0� ¼ Fi �β0 � xið Þ; ð3:7Þ

where Fi is the cumulative distribution function (cdf) of the random variable ui. In

other words, the link function Fi consistently transforms the score zi ¼ β0 � xi that
takes values in the interval �1, þ1ð Þ to the corresponding probability of default
values in (0, 1). A high score implies a low probability of default and a low score

means a higher probability of default. The relationship can be also interpreted in a

structural model spirit: the score zi ¼ β0 � xi characterizes the debtor’s credit

capacity today (at the beginning of the observation period), while ui denotes the
future unknown change of the credit capacity. If the total future score breaches a

threshold, then the default takes place.

If the distribution of ui is normal, then we can use the standard normal cumula-

tive distribution function Fi xð Þ ¼ Φ xð Þ leading to the Probit model. If instead, the

residuals are assumed to follow the logistic distribution, then:

Fi xð Þ ¼ Λ xð Þ ¼ ex

1þ ex
¼ 1

e�x þ 1
:

The mean of the logistic distribution is 0, but note that the variance equals

s2 ¼ π2=3 > 1. In order to compare it visually with the standard normal distribution

(Fig. 3.9) we need to normalize the logit probability density function (pdf)

f logit, var ¼ 1ð Þ ¼ e�x=s

s 1þ e�x=sð Þ2
where s ¼

ffiffiffi
3

p
=π:

Both distributions are quite similar, except for the tails, which are heavier for the

logistic distribution (have higher kurtosis).

For a single borrower the probability of default pi is not observable. However, if
we were able to split our sample into a number of groups with common

characteristics xi, and observed default rates pi for those groups, then the OLS or

WLS regression could be applied to the dependent variable F�1 pið Þ and the

explanatory variables xi [see (3.7)]. Such a grouping, however, usually involves

considerable problems due to the limited number of observations. A better way to

estimate logit and probit models, which does not require any grouping, is the

Maximum Likelihood Estimation (MLE) Method. Given an estimate b of the

unknown parameters β, the probability of default conditional on xi is F �b0 � xið Þ:
So, if we observe yi ¼ 1; then the likelihood of the observation isF �b0 � xið Þ, and if
we observe yi ¼ 0, then the likelihood of the observation is the complementary
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value 1� F �b0 � xið Þ. Assuming that the observations are independent, the total

likelihood of the observed dataset given the coefficient vector b can be expressed as

L bð Þ ¼
Y
i

F �b0 � xið Þyi 1� F �b0 � xið Þð Þ1�yi :

The estimation of the vector b is then based on the maximization of the likelihood

function, or rather, for numerical purposes on the maximization of the

log-likelihood function

ln L bð Þ ¼ l bð Þ ¼
X
i

yiln F �b0 � xið Þ þ 1� yið Þln 1� F �b0 � xið Þð Þ½ �: ð3:8Þ

Usually, the choice of the link function is not theoretically driven. In fact, the

differences between the probit and logit models are often negligible (see Fig. 3.9).

One argument for the logit distribution is that the fatter tails of the logit distribution

give larger weights to extreme events corresponding better to the real world

datasets. The logit model also turns out to be numerically more efficient, and its

coefficients can be relatively easily interpreted.

Notice that the equation pi ¼ Λ β0�xið Þ can be rewritten as
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normalized logistic distribution (Logit)
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1� pi
pi

¼ eβ
0�xi , or equivalently ln

1� pi
pi


 �
¼ β0�xi: ð3:9Þ

The left hand side of the first Eq. (3.9) is called the good-bad odds i.e., the

probability of good divided by the probability of bad. The right hand side means

that one unit increase of the k-th variable has a multiplicative impact of eβk on the

odds, or equally, looking at the second equation, an additive effect of βk on the log
good-bad odds.

Henceforth, we will work with the logistic regression model. If Fi ¼ Λ, then the

partial derivatives of (3.8) take the following relatively simple form:

∂l
∂bj

¼
X
i

yi � Λ �b0�xið Þð Þxi, j ¼ 0 for j ¼ 0, . . . , k: ð3:10Þ

It can be shown that the Hessian (the matrix of the second order derivatives) is

negatively definite, consequently, the log likelihood function is strictly concave,

and so the solution exists and is unique. The solution can be found using Newton-

Raphson’s algorithm usually after just a few iterations. Sincexi, 0 ¼ 1corresponding

to the intercept coefficient b0, we have a useful observation that the average of the

predicted probabilities (on the training sample) equals the overall default rate in the

sample. The estimated parameters b are asymptotic normal with the mean β, and
their standard errors can be obtained by inverting the Hessian (Greene 2003). The

standard errors s. e. (bj) are reported automatically by most statistical packages, and

it is not necessary to put down the formulas. The significance of the individual

parameters is then easily tested with the Wald statistic W ¼ bj

s:e: bjð Þ which has the

asymptotic normal N(0, 1) distribution. This means that we reject the hypothesis H0:

βj ¼ 0on the confidence level α if
��W�� � Φ�1 1� α=2ð Þ. Similarly, we may obtain a

confidence interval for the true coefficient βj given the estimate bj and its standard

error.

The rating score of a debtor a with a vector of characteristics x(a) can be defined
either directly as the probability of being good pG að Þ ¼ Λ �b0�x að Þð Þ scaled to an

interval, e.g. 0–1000, or as the original linear function value s að Þ ¼ b0�x að Þ that has
the additive property of log-odds scores (a unit change in an explanatory variable

has a constant impact on the score). Note that the log-odds score s(a) is usually

nonnegative, since the predicted probability of default pB að Þ ¼ 1
1þes að Þ should be

normally less than 50%. For examplePD ¼ 0:1% corresponds to the log-odds score

ln 0:999=0:001ð Þ ¼ 6:9, while PD ¼ 20% corresponds to ln 0:8=0:2ð Þ ¼ 1:39: Thus,
for example, if the log-odds score s að Þ ¼ b0�x að Þ is multiplied by the constant

150, we get a scaled log-odds score that is approximately in the range 0–1000.

We have intentionally used the notation a for a new debtor that does not belong

to the development sample with observations indexed by i ¼ 1, . . . ,N. Our goal is
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not just to maximize the likelihood on the development sample, where we already

know whether a default happened or not, but rather to achieve good prediction

capabilities on a set of debtors where we do not know the future. This requires, in

particular, a careful selection of the explanatory variables.

To test robustness of the resulting function, the given data are usually split into

two parts: a development (training or in) sample (e.g. 70% of the data, 70% of bad

debtors and 70% of good debtors), and a testing (out or validation) sample (30%).

The coefficients of selected variables are estimated only on the development

sample, but how well the scorecard fits the data is then measured not only on the

in-sample, but also on the out-sample. If the values drop significantly, comparing

in-sample and out-sample goodness of fit measures, then the model should not be

accepted. Given a set of selected variables, the procedure can be repeated randomly,

dividing the initial dataset into the development and the testing part. The resulting

empirical distribution of the estimated coefficients and goodness of fit measures

give us an even better picture of the scoring model’s robustness.

Selection of Variables

It is obvious that on a fixed development sample the best value of the likelihood

function, and the closely related Gini coefficient, is maximized when all the

available explanatory variables are used. If the number of possible explanatory

variables is large (over 20), then the usual result is that many of the coefficients are

insignificant; i.e., we cannot reject the null hypothesis H0: βj ¼ 0 on a reasonable

confidence level (at least 90%). Then, we cannot even be sure about the sign of the

coefficient; if our estimate bj is positive, the “true” coefficient βj can be, in fact,

negative, and vice versa. It may also happen that the hypothesis βj ¼ 0 is not

statistically rejected, yet the sign of the estimated coefficient bj contradicts eco-

nomic reasoning or experience. Thus, even though the likelihood, and Gini, has

been maximized on the development sample, the wrong coefficients might signifi-

cantly decrease the predictive power on the testing sample and on future sets of loan

applications.

The conclusion is that the coefficients of the final scoring function should be

significant, with not too wide confidence intervals, and should not contradict our

expertise. This can be achieved by limiting the number of explanatory variables to a

number optimally between 7 and 15, or even less, eliminating correlated variables

and variables with low explanatory power. This goal can be achieved in a number of

ways, for instance with the forward selection procedure, adding one by one the

variables with the best explanatory power, or with the backward selection proce-
dure, removing one by one the variables with the worst explanatory power. This is

typically done based on the coefficients’ p-values or using a test comparing the

likelihood of the restricted model with fewer explanatory variables and the likeli-

hood of the larger model.

It can be shown (Hosmer and Lemeshow 2000) that the statistic
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G ¼ �ln
likelihood of the restricted model

likelihood of the larger model


 �

has asymptotically the χ2 k � lð Þ distribution, provided the number of variables of

the larger model is k, of the restricted model l, and the null hypothesis is that the true
coefficients βj of the new variables are all zero. So, in the forward selection

procedure we may add, one by one, new variables, maximizing the χ2(1) statistics.
The null hypothesis must also be rejected at some specified minimal level, and if

there is no such new variable, the procedure stops. The forward stepwise selection
procedure, which can be characterized as a combination of the forward and

backward procedures, in addition eliminates at each step already included variables

that have become insignificant when new variables have been added.

It is not recommended to apply the automated selection procedure to too long a

list of potential explanatory variables. The procedure then becomes quite time

consuming, in particular for large datasets, and its outcome might be also influenced

by undesirable noise in the data, e.g. by correlated variables that will surely exist if

the list of variables is too long, etc. Therefore, the general recommendation is to

create a short list of variables, around 20–30, that have an acceptable explanatory

power based on the univariate analysis discussed below. The selection of the

variables can be based on the univariate Gini coefficient (e.g., requiring at least

10% value) and/or on the Information Value described below (typically, at least

4%). In addition, the variables should not be correlated—if there are two highly

correlated variables, then the one with the lower explanatory power is to be

eliminated from the short list. The correlation cut off is set expertly typically at

about 30–70%. The automated selection procedure applied to a carefully designed

short list usually produces a reasonable outcome. Nevertheless, additional expert

modifications, like forcing some variables to stay in the final list or eliminating

others, are often applied. One also has to distinguish the corporate segment where

the variables are usually continuous (financial ratios) and the retail segment with

explanatory variables being mostly categorical.

A practical approach applicable to the corporate segment (Hayden 2003) or to

the retail segment may be the following:

1. Perform a univariate analysis on pre-selected financial ratios, testing the

explanatory power and linearity assumption of log odds according to (3.9),

using only one single explanatory variable without the remaining ones. In this

case, the sample needs to be split into a number of bins according to the variable

values. The number of bins depends on the number of defaults in the sample,

requiring that rates of default for the bins can be reasonably estimated. The

corresponding average bin variable values, and log odds, can be plotted on a

chart with an OLS interpolation. Figure 3.10 shows an example of the result for

two variables where the number of bins used is 50. The first chart confirms a

satisfactory linear dependence of the log odds on the first tested variable

(Current Liabilities/Total Assets). The second variable (Sales Growth), how-

ever, shows a non-linear, even non-monotone, impact on the log-odds. The
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Fig. 3.10 An example of univariate analysis (Source: Hayden 2003)
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solution is either to reject the variable and find an alternative with linear

behavior, or to design a transformation of the original variable so that the

resulting dependence is linear. The variables that show no, or too low, explana-

tory power (e.g., measured simply by R2 or by the Gini coefficient) in the

univariate analysis are rejected.

2. Calculate the correlation matrix on the set of variables selected in the previous

step. It is known that if highly correlated variables are included in the model,

then the coefficients will be significantly and systematically biased. The rule of

thumb is to eliminate correlations above 50% by grouping the variables

according to the correlations, and selecting those with the best explanatory

power from each group.

3. Run the forward (or backward, or stepwise) selection logistic regression on the

set of variables from step 2. The automated selection procedure might be

combined with expert judgement, forcing some variables into the regression,

or vice versa removing variables with a coefficient sign contradicting expert

opinion.

4. Validate the result by calculating in- and out-sample Gini’s coefficients and the

Hosmer-Lemeshow statistics. If the values are below an acceptable level, try to

find alternative explanatory variables. Acceptable values of Gini’s coefficient

start at about 30%. The Hosmer-Lemeshow statistic p-value should not be too

small; e.g. not less than 10% as explained in Sect. 3.1.

The procedure described above is more appropriate for the corporate segment,

where the explanatory variables like financial ratios are naturally continuous.

Categorical variables are used more often in the retail segment, and the analysis

is usually based on slightly different techniques. Examples of categorical variables

are: marital status, education, employment status, driver’s license, residential

status, phone line, etc. But even ordinal variables like age, or number of children,

are usually represented by categorical variables with just a few possibilities; for

example: age 18–24, 24–32,. . ., 65 and older. A categorical variable attaining

C values c ¼ 1, . . . ,C is, as usual in a regression analysis, encoded by C� 1

dummy variables. It means that there are C� 1 beta coefficients to be estimated

and it is, therefore, desirable not to have more categories than necessary.

The explanatory power of a categorical variable can be measured not only by the

univariate logistic regression Gini’s coefficient, but can also be, as a first approxi-

mation, easily investigated graphically by looking at the average default rates, or

log-odds, for subsamples obtained when we split the development sample into

C parts according to the categorical values. If all the default rates are approximately

the same, then the variable does not look promising. Categories showing similar

default rates, or with a low number of good or bad debtors, should be merged.

Figure 3.11 shows, as an example, percentages of bad borrowers according to

marital status taken from the crosstab in Table 3.8. The chart indicates that all

categories have an impact on the default rate, with “Married male” being not

surprisingly very close to “Married female”, and “Divorced” being close to “Part-

ner”. Moreover, the categories “Widowed” and “Partner” have a low number of
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observations; a rule of thumb is that there should be at least 5% of all observations

in each class (i.e. over 500 in this case). Therefore, the categories “Widowed” and

“Partner” need to be merged with a relatively close category which is “Widowed”.

So, in addition, after merging the categories “Married male” and “Married female”

into “Married” we are left with only three categorical values: “Married”, “Single”,

and “Other—Widowed, Partner, Divorced” that have, at least visually, an accept-

able discriminative power between bad and good loans.

In a more quantitative approach we should look at the CS statistic (3.3) and its

p-values. The CS statistic of the distribution of PDs into five original bins,

according to the categorical values in Table 3.8, turns out to be 49.44, while the

CS statistic, after the proposed merging into three bins, is just a little bit less, 48.12.

The Chi-squared distribution p-values are, in both cases, very low (<0.001), and the

p-value in the second case is even lower than in the first since the number of degrees

of freedom has been reduced from four to two. Note, however, that the CS statistic

does not capture the issue of a low number of observations or defaults in a bin. In

this particular case, the primary reason for merging the categorical values was the

low number of defaults in the categories “Widowed” and “Partner”, and the CS

0.00%
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1.50%

2.00%

2.50%

3.00%

3.50%

4.00%

Married
female

Widowed Partner Divorced Single Married male

%Bad

Fig. 3.11 Percentage of bad borrowers according to “Marital Status” values

Table 3.8 Crosstab for the variable “marital status”
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statistic confirmed that we lost almost no discriminatory power. If we tried to create

just two bins; e.g., “Married” and all the other categories in the second bin, then the

CS statistic would be reduced more significantly to 44.71, but still remaining

relatively high.

Other widely used and sophisticated quantitative measures of discrimination

power applied to categorical variables are the Weight of Evidence (WoE) and the
Information Value (IV) [Porath in Engelmann and Rauhmeier (2006); Thomas

(2009)]. The Weight of Evidence of a categorical value c can be defined as the

change between the overall log odds ratio and the log odds ratio given the value c. It
follows from the Bayes theorem that it can be defined as:

WoE cð Þ ¼ lnPr c
��Good� �� lnPr c

��Bad� �
:

Note that the valuePr c
��Good� �

is calculated as the relative frequency of c among

all good loans and, analogously, lnPr c
��Bad� �

. For example, we can calculate based

on Table 3.8

WoE Singleð Þ ¼ lnPr Single
��Good� �� lnPr Single

��Bad� � ¼
¼ ln643=10776� ln25=160 ¼ �0:96:

To be more precise, as usual, what we are calculating above is not the theoretical

population WoE but an estimate based on the given sample. In order to explain the

definition and importance of the Weight of Evidence, let us decompose the good-

bad odds according to the Bayes theorem

Pr Good
��c� �

Pr Bad
��c� � ¼ Pr c

��Good� �
Pr c

��Bad� � � Pr Good½ �
Pr Bad½ � :

Applying ln to both sides of the equation we obtain

lno cð Þ ¼ lnoPop þWoE cð Þ; ð3:11Þ

where oPop ¼ Pr Good½ �
Pr Bad½ � denotes the population good-bad odds, and o cð Þ ¼ Pr Good

��c� �
Pr Bad

��c� �
the odds conditional on the information given by c. Therefore, instead of inspecting
the log-odds of a categorical variable we may look at WoE. One of the advantages

is that we can directly identify categorical variables that have a positive impact on

the logodds, i.e. implying lower predicted probability of bad, and those that have a

negative impact. For example, Fig. 3.12 shows that only the “Marital Status”

categories “Married male” and “Married female” have positive WoE, while all

the other categories have negative WoE values. This may better explain the

decision to merge the category “Widowed” with “Partner” and “Single” and not

with “Married”. Table 3.9 compares the log-odds and WoE values and verifies that

the difference indeed always equals the dataset population WoE.
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In fact, the identity (3.11) could be used to build a naı̈ve Bayes scorecard. Let us

assume that there are n categorical explanatory variables c1, . . ., cn. If we were able
to calculate the weight of evidence for each combination c ¼ c1; . . . ; cnh i of

possible categorical values:

WoE cð Þ ¼ lnPr c
��Good� �� lnPr c

��Bad� �
;

then we could define the score, conditional on the information c according to (3.11)

as:

s cð Þ ¼ sPop þWoE cð Þ; ð3:12Þ
where the population log odds score is sPop ¼ ln oPop. Note that the equation

naturally separates the population log-odds from the information implied by the

information c, which does not depend on the level of the overall population odds. A

positive value ofWoE(c) indicates that the group is better than the average, and the
negative value that it is worse.

To get a better intuition of the order of the weight of evidence values which

could be interpreted as significant, notice thatWoE ¼ ln2 ¼ 0:69 doubles the good-
bad-odds, while, for example, WoE ¼ ln1:2 ¼ 0:18 increases the good-bad-odds
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Fig. 3.12 Weight of evidence according to the “Marital Status” values

Table 3.9 Log-odds, WoE, and their difference for the variable “Marital Status”
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only by 20%. The probability of default given by the log-odds score can be

expressed, by definition, as

Pr Bad
��c� � ¼ 1

1þ e�s cð Þ :

The score card defined by (3.12) would be perfect if we were able to estimate

precisely WoE(c) for all possible combinations of the categorical values. This is,

however, in practice virtually impossible, since for a larger number of categorical

variables there is a huge number of their combinations, with just a few, or no,

observations in the corresponding bins. One possible approach is to accept the

strong assumption that the categorical variables are independent. Then

Pr c
��Good� � ¼ Pr c1

��Good� �� � �Pr c2��Good� �
and

Pr c
��Bad� � ¼ Pr c1

��Bad� �� � �Pr c2��Bad� �
:

Consequently,

WoE cð Þ ¼ WoE c1ð Þ þ � � � þWoE cnð Þ, and so

s cð Þ ¼ sPop þWoE c1ð Þ þ � � � þWoE cnð Þ: ð3:13Þ
Therefore, under the assumption of the independence of the explanatory cate-

gorical variables, the weight of evidence of a single categorical value presents its

contribution to the naı̈ve log-odds score. Nevertheless, in reality the independence

assumption is too strong, and the naı̈ve Bayes score given by (3.13) is just an

approximation of a more precise score obtained by logistic regression handling

possible dependencies between the variables. In any case, the decomposition (3.13)

illustrates well the importance of the concept of WoE.
A comprehensive discrimination measure of a categorical variable can be

calculated as a probability weighted average of the Weights of Evidence for

c ¼ 1, . . . ,C called the Information Value (IV). The formal definition is:

IV ¼
XC
c¼1

WoE cð Þ � Pr c
��Good� �� Pr c

��Bad� �� �
:

Note that the value is always nonnegative since the sign ofWoE(c) is always the

same as the sign of Pr c
��Good� �� Pr c

��Bad� �
but, on the other hand, there is no

upper bound. The information value can be indeed interpreted as the average WoE,
weighted by the probability distribution of categorical values in the population of

goods, minus the averageWoE, weighted by the probability distribution of categor-
ical values in the population of bads. SinceWoE should be positive for good debtors

and negative for bad debtors, the resulting Information Value reflects the
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discrimination power between bad and good, given by the information contained in

the categorical variable values.

Therefore, the measures WoE and IV are good indicators to assess the relative

discrimination power of the categorical values and variables. The disadvantage is

that there is no appropriate asymptotic probability distribution for the measures, so

we cannot tell from the absolute values whether the discriminatory value is satis-

factory or not. Regarding the Information Value, the rule of thumb is that the

minimum required to keep a variable on the short list is 0.04–0.10 (while for the

univariate Gini coefficient it is 0.10–0.15). In the coarse classification process one

should control the decrease of the two values (IV and/or univariate Gini) in order to

avoid unnecessary loss of information.

For example, Table 3.10 shows WoE and the Information value of the “Marital

Status” after coarse classification. The Information Value before coarse classifica-

tion has been 0.33 and so there is only a small and acceptable decrease of the value,

which remains high at 0.32.

To summarize, a standard scoring function development process on a general

dataset with categorical and numerical potential explanatory variables should

include the following steps:

1. Preselect variables from a long list in order to get at most 20–30 variables

where a more detailed univariate analysis and course classification will be

performed. The selection is usually based on statistical and expert criteria. For

each variable, numerical or categorical, the univariate Gini coefficient can be

automatically calculated as the (in-sample) Gini coefficient of the logistic

regression function with the single variable. A typical cut-off value for the

univariate Gini is then around 10%, depending on the number of available

variables. For categorical variables, or binned numerical variables, the Informa-

tion Values should also be calculated, requiring, for example, 4% as a minimum.

The selection does not have to be purely mechanical; some variables might be

preselected on an expert basis in spite of their lower explanatory power, or, vice

versa, some variables with relatively high statistics might, for some reason, be

expertly eliminated.

2. Perform a univariate analysis of the preselected variables that need to be more

closely inspected in terms of log-odds dependence on their values. This is

Table 3.10 WoE and IV for “Marital Status” after coarse classification
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straightforward for categorical variables where the log-odds can be easily

calculated for each categorical value, i.e. as lnG=B cð Þ ¼ ln
1�p̂ cð Þ
p̂ cð Þ , where

p̂ cð Þ ¼ d cð Þ
n cð Þ, n(c) is the number of observations where the categorical variable

takes the value c and d(c) is the number of observed defaults, again conditional

on the categorical value c. For a numerical variable, the sample needs to be split

into a number of equally sized bins so that there are sufficient numbers of

observations and defaults to calculate the empirical log-odds for individual bins.

3. Based on the univariate analysis and on our approach to the scoring function

development, various transformations of the preselected variables can be

applied. For the retail segment, it is quite common to use categorical variables

only. In this case, numerical variables are transformed into categorical by

binning. On the other hand, for corporate segments it is more usual to use

numerical variables only, so if there is a categorical variable, it needs to be

transformed into a numerical one. The standard transformation uses the dummy

variables. However, it is also possible to replace a single categorical variable by

a single numerical variable. This can be achieved by replacing the categorical

values by the corresponding Weight of Evidence (WoE) values defined above.

This transformation is also called “WoEization” and is sometimes applied to all

categorical variables, even in the retail segment, to transform categorical

variables into numerical ones. This idea can be also used to define easily a

transformation of a numerical variable with strongly non-linear dependence of

the log-odds like the second variable in Fig. 3.10. The variable has, in fact,

already been transformed into a categorical one by binning, and it can be

transformed back into a numerical one by assigning the WoE values to the

corresponding bins. The dependence of the log-odds on the explanatory variable

value will then be perfectly linear according to (3.11), since the difference

between the bin log-odds and WoE equals the population log-odds that are

independent of the bins.

4. The categorical variables that have too many values need to be coarse classified

by merging categories with similar default rates (or WoE) and/or with too low

numbers of observations.

5. Correlation analysis should be performed to eliminate highly correlated

variables, typically with correlation larger than 50%. It is straightforward to

calculate the correlations between continuous variables. For categorical ones,

one may calculate the correlation between dummy variables. However, the

correlation analysis may become too complicated, having a number of dummies

for each single categorical variable. A possible solution is to replace the cate-

gorical variables by their WoE numerical equivalents, at least for the purpose of

the correlation analysis. An alternative and useful correlation statistic is the

Variance Inflation Factor (VIF)2 that measures how much collinearity exists in

2The Variance Inflation Factor is defined asVIF ¼ 1
1�Rj

2 where Rj
2is the coefficient of regression of

the explanatory factor j on all the other explanatory factors.
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the regression analysis. A typical cut-off corresponding to highly correlated

variables would be around 5–10.

6. Perform a manual expert opinion based selection of variables, and/or an

automated selection of variables, e.g. using the stepwise regression. The final

list usually does not have more than 10 significant variables.

7. Estimate the regression coefficients on the in-sample dataset and calculate in-

and out-sample performance, i.e. the Gini coefficient (AUC) and other statis-

tics. It is advisable to repeat the cross-validation for different in/out sample

splits. If the out-sample Gini coefficient does not decrease too much (by, at most,

a few percentage points) compared to the in-sample Gini, the selection of

variables and their transformations are accepted. The final regression

coefficients can be estimated on the full data set. Note that the partially expert-

based univariate analysis and selection of variables described above works with

the full sample. Nevertheless, in order to better test the robustness of the

development, the univariate analysis and selection of variables can also be

performed only in-sample. In this case it is advisable to have a sufficiently

large dataset (in particular enough bad observations), and the coarse classifica-

tion and selection procedures should be automated enough so that different in-

out-sample splits can be tested. If the “WoEization” approach is applied, then

one has to keep in mind that the WoE values in fact play the role of estimated

parameters and so should be estimated in-sample (not on the full sample) in the

validation procedure.

Case Study

We will illustrate the development of a logistic regression scorecard on a

consumer loan dataset obtained from a large Czech bank. The dataset was also

used in Witzany (2009b, d–f) to analyze the sensitivity of quality of a scoring

function, depending on the definition of defaults. In this case study, however, we

use only one standard definition of default; i.e., 90 days-past-due with a mini-

mum past due balance of 100 CZK. The dataset contains application data on

10,936 accounts observed in the period 1/2002–10/2008. For each of the

accounts we have the information of default, or no default, in the 12-month

horizon after origination. The dataset contains just 160 defaults, and 10,776

non-defaulted observations, i.e. the experienced default rate is only 1.48%. The

explanatory variables labeled in the second column of Table 3.11 are mostly

categorical (sex, age, marital status, etc.). Monthly and other incomes are used as

numerical variables and the number of dependents may be used as numerical or

categorical.

Looking at Table 3.11, it is clear that there are too many categorical values,

which would probably cause over-fitting and low robustness of the model if we did
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not perform any coarse classification and selection of variables. There would be

76 dummy variables encoding the categorical values, and it is clear that for some

variables like Education, Age, Employment Stability, Employer Type etc., the

number of categories would be too high. Let us, nevertheless, first look at the

results of the logistic regression without any selection of variables and without any

coarse classification performed using the SAS software package. In order to

compare in-sample and out-sample results, the dataset is split into a training sample

with 65% of goods and bads, and 35% of goods and bads in the remaining

validation sample. Table 3.12 lists only part of the list of coefficients (as there are

over 79 lines in the full table), and their significance from the unrestricted model.

The significance of all the variables, with the exception of “Other income”, is

unacceptably low. Poor robustness of the model is illustrated by Table 3.13, where

we generate different random in-sample/out-sample selections, apply the logistic

model, and calculate the in-sample and out-sample Gini coefficients. We could be

satisfied with the in-sample Gini, which is around 70%, but the out-sample coeffi-

cient turns out to be just around the range of 40–50% with quite high variability.

The difference between the average in-sample and out-sample Gini is almost 28%.

This poor performance, or even worse, should be expected if the scorecard was

implemented in practice and used to score new applications.

Thus, in order to improve robustness, i.e. the out-sample performance of the

model, we need to coarse classify the categorical variables and then run a variable

selection procedure in the way described above. First, let us look at the univariate

Table 3.11 Scoring dataset description

Scoring dataset Observations 10,936

31 Jul 2009 14:56 Variables 21

Variable name Variable description # of categorical values

id_deal Account number N/A

def Default (90 days, 100 CZK) 2

mesprij Monthly income N/A

pocvyz Number of dependents 8

ostprij Other income N/A

k1pohlavi Sex 2

k2vek Age 15

k3stav Marital status 6

k4vzdel Education 8

k5stabil Employment stability 10

k6platce Employer type 9

k7forby Type of housing 6

k8forspl Type of repayment 6

k27kk Credit card 2

k28soczar Social status 10

k29bydtel Home phone lines 3

k30zamtel Employment phone lines 4
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Gini coefficients and Information values of the individual explanatory variables

(of course, not including the Account Number variable) in Table 3.14 in order to

eliminate the variables with low discrimination power. The Gini and IV of Sex,

Credit Card, and Employment Phone lines are too low and we will not consider

these variables any more. The Gini of monthly and Other Income is also quite low

(we do not calculate IV since those are numerical variables), but it makes sense to

define Total Income as the sum of Monthly and Other Income. The Gini above 18%

now becomes more interesting, and we can include this variable in the short list.

The relationship between Total Income and log-odds can be further investigated by

Table 3.12 SAS logistic regression coefficients sample without coarse classifications and vari-

able selection

Table 3.13 In-sample and

out-sample Gini coefficients

for the unrestricted model

Full model Gini coefficients

Run In-sample (%) Out-sample (%)

1 67.9 47.6

2 72.1 35.7

3 71.9 26.2

4 64.2 57.7

5 70.2 40.0

Ave 69.3 41.4

Std 3.3 11.9
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categorizing the variable into 10 equally sized bins. Table 3.14 shows that Gini of

the Binned Total Income increases to 25.4%, and IV is quite high at 20.79%, and so

this variable is included into the short list.

Now we can proceed with the coarse classification. We have already shown

(Fig. 3.12 and Table 3.10) how to reduce the number of categories for Marital

Status from 6 to 3 while keeping the univariate Gini still above 21% and IV above

22%. Similarly, we can reduce the number of categories for the other variables, for

example 8 to 4 for the Education variable (Table 3.15) keeping IV still at 15.5%.

It is also interesting to look at Fig. 3.13 showing that the dependence of WoE on

the ten equally sized binned categories of Total income is not monotonic as one

would expect. Low income below 15,000 has, apparently, a negative WoE, but the

Woe corresponding to income below 11,000 is close to zero. Similarly, The WoE

for income above 15,000 is positive, but close to zero for incomes between 21,000

and 26,000. Since there is no fundamental reason for the non-monotonicity we have

decided to coarse classify the first four bins (monthly income below 15,000) into the

“Low income” bin, the following 5 bins (income between 15,000 and 291,000) into

“Medium income”, and finally the last bin (income above 291,000) as “High

Table 3.14 Univariate Gini and Information Value before and after coarse classification and/or

“Woeization”

Table 3.15 Coarse classification of the education variable
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income”. The resulting IV dropped to 15.6%, but we have achieved a much better

robustness and consistency of the categorical variable.

The overall outcome of the course classification, i.e. the numbers of categorical

values, Gini, and IV, is shown in Table 3.14. To proceed with the selection of

variables we have several options: we can use the categorical variables or we can

replace the categorical values with the corresponding WoE values and perform

regression with the numerical explanatory variables. The “WoEization” can be

done before coarse classification, saving us some work, or after coarse classifica-

tion, achieving better robustness of the estimatedWoE values. The Gini coefficients

for the two options are shown in the last two columns of Table 3.14. The univariate

Gini coefficients after “WoEization” without coarse classification are, by definition,

the same as for the original categorical values3 while the Gini after “WoEization”

with coarse classification are the same as the categorical Gini after coarse classifi-

cation. The transformed numerical variables also allow us to perform a comprehen-

sible correlation analysis (Table 3.16). The mutual correlations are at an acceptable

level, not above 50%, and so we do not eliminate any additional variables from the

short list. The highest mutual correlation of 50% can be observed, not surprisingly,

between the Number of Dependents and Marital Status.

Table 3.17 shows the results of the regression with the categorical variables after

coarse classification. The stepwise selection procedure applied to the full dataset

has selected nine variables that remain significant in the final model: Number of

Bin 1 2 3 4 5 6 7 8 9 10
Income (x1 000) 11.1 12.5 13.7 14.8 16.0 17.5 19.2 21.8 26.4 291.7 

WoE 0.09 - 0.77 - 0.38 - 0.32 - 0.35 0.69 0.42 0.05 0.13 0.69 

 (1.00)

 (0.80)

 (0.60)

 (0.40)

 (0.20)

 -
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 0.80

1 2 3 4 5 6 7 8 9 10W
oE
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Fig. 3.13 Dependence of WoE on binned income

3Some small differences might be caused by approximate WoE values for categories with no good

or bad observation.
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Dependents, Employment Stability, Home Phone Line, Type of Repayment,

Employer Type, Age, Income, Social Status, and Type of Housing. Note that

some apparently important explanatory variables like Education did not enter the

model, while seemingly irrelevant one like Home Phone Line did. The out-sample

Table 3.16 Correlation analysis of the explanatory variables after coarse classification and

“WoEization”

PRIJ_BIN
1

POCVYZ
1 1 1

K2VEK K3STAV K4VZDE
L1

K5STABI
L1

K6PLAT
CE1

K7FORB
Y1

K8FORS
PL1

K28SOC
ZAR1

K29BYD
TEL1

PRIJ_BIN1 100% 17% 2% 14% 19% 8% 1% 4% -1% 1% 7%
POCVYZ1 17% 100% 21% 50% 7% 11% 2% 12% 5% 2% 7%
K2VEK1 2% 21% 100% 25% 2% 24% 6% 17% 7% -3% 9%
K3STAV1 14% 50% 25% 100% 4% 13% 4% 18% 3% -4% 12%
K4VZDEL1 19% 7% 2% 4% 100% 11% 8% 3% 7% 8% 15%
K5STABIL1 8% 11% 24% 13% 11% 100% 25% 5% 3% 32% 7%
K6PLATCE1 1% 2% 6% 4% 8% 25% 100% -1% 2% 6% 4%
K7FORBY1 4% 12% 17% 18% 3% 5% -1% 100% 3% -5% 11%
K8FORSPL1 -1% 5% 7% 3% 7% 3% 2% 3% 100% 2% 3%
K28SOCZAR1 1% 2% -3% -4% 8% 32% 6% -5% 2% 100% -4%
K29BYDTEL1 7% 7% 9% 12% 15% 7% 4% 11% 3% -4% 100%

Pearson Correlation Coefficients, N = 10936

Table 3.17 Stepwise selection of categorical variables and the validation performance

Summary of stepwise selection

Step

Effect

DF

Number Score Wald

Pr>ChiSqEntered Removed In

Chi-

square

Chi-

square

1 POCVYZ1 2 1 68.0450 <.0001

2 K5STABIL1 3 2 56.5916 <.0001

3 K29BYDTEL1 1 3 21.1297 <.0001

4 K8FORSPL1 1 4 19.4712 <.0001

5 K6PLATCE1 2 5 16.2111 0.0003

6 K2VEK1 2 6 11.5255 0.0031

7 PRIJ_BIN1 2 7 9.4163 0.0090

8 K28SOCZAR1 3 8 9.7886 0.0205

9 K7FORBY1 2 9 6.7938 0.0335

Categorical variables selection

Run In-sample (%) Out-sample (%)

1 59.1 61.4

2 60.6 53.2

3 59.9 56.6

4 60.2 51.2

5 59.4 57.6

Ave 59.8 56.0

std 0.6 4.0
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performance, where we fix the list of nine variables, estimate coefficients

in-sample, and calculate Gini out-sample, is shown in the second part of Table 3.17

with average Gini around 56%, and is now much better than in Table 3.13. The

difference between the in-sample and out-sample performance is now much

tighter—below 4%, as expected.

Tables 3.18 and 3.19 show the results of the stepwise selection after

“WoEization” with and without coarse classification. Note that the lists of selected

variables slightly differ. The first WoE regression uses nine variables as the

categorical regression, but Education now replaces Social Status, while the second

WoE regression uses ten variables including both Education and Social Status. The

out-sample performance of the WoE regression without coarse classification

appears to be the best, but the slightly lower Gini of the WoE regression with

coarse classification has a much lower variation and indicates better stability.

To conclude, any of the three approaches above would yield acceptable and

more-or-less similar results. The alternatives involving coarse classification prom-

ise better robustness and a more transparent scoring function, while the approach

based on “WoEization” without coarse classification saves considerable develop-

ment time devoted to the transformation of variables.

The case study demonstrates that the development of a scoring function is not a

fully automated process—it involves a number of expert decisions based on

Table 3.18 Performance of the model after “WoEization” and without coarse classification

Analysis of maximum likelihood estimates

Parameter DF Estimate

Standard

Error

Wald

Chi-square Pr>ChiSq

Intercept 1 4.2436 0.0947 2006.6314 <.0001

1 PRIJ_BIN1 1 0.7017 0.1829 14.7250 0.0001

2 POCVYZ1 1 0.4855 0.1425 11.6116 0.0007

3 K2VEK1 1 0.4339 0.1458 8.8638 0.0029

4 K4VZDEL1 1 0.5198 0.2363 4.8393 0.0278

5 K5STABIL1 1 0.6811 0.1374 24.5883 <.0001

6 K6PLATCE1 1 0.7859 0.1617 23.6186 <.0001

7 K7FORBY1 1 0.4447 0.2227 3.9870 0.0459

8 K8FORSPL1 1 0.7795 0.1849 17.7723 <.0001

9 K29BYDTEL1 1 0.6725 0.1888 12.6855 0.0004

WoE1 variables selection

Run In-sample (%) Out-sample (%)

1 63.3 59.3

2 61.7 62.1

3 66.0 52.1

4 65.7 52.1

5 61.5 59.5

Ave 63.6 57.0

std 2.1 4.6
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experience or a deeper understanding of the explanatory variables and underlying

data. It is important to go carefully through the basic steps, starting from univariate

analysis, continuing with variable selection, and ending with a thorough validation.

If the final result is not satisfactory then one needs to go back iteratively and

possibly change previously taken decisions until the results are considered good

enough.

Reject Inference

A typical scoring function development dataset has a major problem called “reject

bias” caused by the fact that financial institutions observe defaults only on

exposures that have been previously approved. In other words, there are no good-

bad observations for borrowers that have been rejected. For example, a very simple

approval process might incorporate various “KO” (Knock-Out) criteria, as in an

extremely conservative approach rejecting all applicants with income below

25,000. Based on Fig. 3.13, the case study set of observations would be reduced

by more than 80%, and we could make hardly any statistical inference on incomes

below 25,000. In a less extreme case, low income could be harshly penalized in the

Table 3.19 Performance of the model after “WoEization” and coarse classification

Analysis of maximum likelihood estimates

Parameter DF Estimate

Standard

Error

Wald

Chi-square Pr>ChiSq

Intercept 1 4.1271 0.0955 1869.4498 <.0001

1 PRIJ_BIN1_woe 1 0.5007 0.2197 5.1950 0.0227

2 POCVYZ1_woe 1 0.4253 0.1248 11.6230 0.0007

3 K2VEK1_woe 1 0.4806 0.1570 9.3758 0.0022

4 K4VZDEL1_woe 1 0.4836 0.2417 4.0052 0.0454

5 K5STABIL1_woe 1 0.6367 0.1437 19.6249 <.0001

6 K6PLATCE1_woe 1 0.7539 0.1791 17.7248 <.0001

7 K7FORBY1_woe 1 0.5666 0.2363 5.7513 0.0165

8 K8FORSPL1_woe 1 0.7415 0.1938 14.6359 0.0001

9 K28SOCZAR1_woe 1 0.8378 0.3491 5.7610 0.0164

10 K29BYDTEL1_woe 1 0.6921 0.1941 12.7171 0.0004

WoE2 variables selection

Run In-sample (%) Out-sample (%)

1 62.8 52.6

2 62.6 53.1

3 60.7 58.6

4 62.5 54.9

5 59.8 57.2

Ave 61.7 55.3

std 1.3 2.6
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original scoring, causing a very low number of low income approved applications.

Therefore the income variable would be probably eliminated in the new scoring

function due to low discrimination caused mainly by the small number of low

income observations and not by the fact that income is not a discriminating factor

per se.

A number of techniques known as reject inference have been proposed to

overcome the reject bias. The cleanest way to solve the problem is to construct a

sample in which no case was rejected. This can be achieved by accepting all

applicants over a limited testing period. Another possibility mentioned by Thomas

et al. (2002) is to randomly accept applicants that would normally be rejected (with

scores below the cut-off) in a proportion that inversely depends on the estimated

probability of default. Specifically, if p(s) is the probability of default depending

on the estimated score s, then the approval rate a(s) should satisfy the inequality

p sð Þa sð Þ � DRmax controlling the expected population default rate below a

predetermined maximum limit DRmax, i.e. we can set a sð Þ ¼ DRmax=p sð Þ. The
approved cases then need to be reweighted by w sð Þ ¼ 1=a sð Þ in order to obtain a

representative good-bad population sample based on accepted and rejected

applications.4

Among a number of reject inference methods proposed in literature we should

mention two basic approaches: reweighting and augmentation (see Crook and

Banasik 2004; Anderson et al. 2009). The reweighting reject inference scheme

assigns new weights to the approved cases in order to better represent the full

sample distribution. The first step is to build an accept-reject scorecard (AR) using

the dataset with all available explanatory factors and the accept/reject information.

Then, for accepted observations with the AR score s (or within a score band),

we calculate the empirical approval rate a(s) and reweight the approved cases by

w sð Þ ¼ 1=a sð Þ in order to represent the rejected cases where the good-bad

observations are missing. This procedure implicitly assumes (see also the original

paper of Hsia 1978) that the probability of default conditional on the AR score s is
the same for the approved and rejected cases, i.e.

Pr Bad
��s,A� � ¼ Pr Bad

��s,R� �
: ð3:14Þ

The augmentation method extends the dataset with the rejected observations. Let

us assume, combining the prior and new models, that pj is the estimated probability

of default of a rejected case j. In principle, there are two ways how to assign the

rejected cases with an unknown outcome to the good-bad categories. The first, also

called the fuzzy method, splits the observation j into two: j0 assigned bad with the

weight pj and j00 assigned good with the complementary weight 1� pj. In this way

we more or less perfectly represent the available knowledge of the reject cases in

4The logistic regression can be easily generalized to include positive weights of the observations.

The weights are applied as multiplicative factors in the log-likelihood function (3.8). Standard

statistical SW packages allow one to use the observation weights.
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the augmented dataset. Another approach is to classify each reject j so that the

estimated default probabilities are somehow respected. One possibility is to

classify j as randomly bad or good with the probabilities pj and 1� pj. In

order to avoid additional sampling error, it might be preferable to split the reject

observations into bands according to the estimated default probabilities, and

sample good and bad from the bands in appropriate proportions. Finally, we can

also apply the hard cut-off method where all rejected cases j with pj below a

certain cut-off are classified as bad and others (above the cut-off) as good. The

cut-off is usually set as the average expected default probability on the rejected

subsample.

The default probabilities on the rejected cases can be estimated using the old

scoring function, in particular if the previous model worked quite well and we just

want to improve it using the new observations. Another possibility is to use a pure

extrapolation approach where a new model is developed on the approved subsam-

ple and the new scoring function is used to estimate the default probabilities on the

reject cases. Finally, we may develop the accept-reject scorecard, use the assump-

tion (3.14), and estimate

Pr Bad
��s,A� � ¼ X

x, sAR xð Þ¼s

Pr Bad
��x,A� �

Pr x
��sAR xð Þ ¼ s

� �

where Pr Bad
��x,A� �

is the default probability estimated using the new model and

Pr x
��sAR xð Þ ¼ s

� �
is the relative frequency of the characteristic vector x with the

accept-reject score. In other words, Pr Bad
��s,A� �

is estimated as the average

probability of default given by the new model weighted by the conditional distri-

bution of the characteristic vectors in the full sample. This method may be useful,

for example, if the old model is not known and we have only the information on the

accept-reject decisions.

It is obvious that none of the augmentation methods is perfect, and so we should

control the proportion between the approved cases, where real outcomes are known,

and the augmented rejected cases, where the classification is artificial. If the

proportion of the rejected cases is too large, then an additional reweighting multi-

plier can be applied so that the overall weight of the reject subsample is below a

reasonable limit, e.g. 30 or 50%. Various studies (e.g., Crook and Banasik 2004)

show that reject inference does not bring an automatic improvement of the final

scoring function and that the outcome depends on the specific situation and good

expert decisions.

Combination of Qualitative and Quantitative Assessment

As shown above, scoring function explanatory variables can be quantitative as well

as qualitative. However, in the case of corporate borrowers’ assessment, it appears

better to separate the automatic financial rating based on the quantitative financial

ratios from the qualitative rating based more on the expert’s judgment. The
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qualitative rating could be purely traditional, or more mechanical, assessing various

qualitative factors such as management experience, business relationships, market

position, etc., in a questionnaire. The answers would be numerically encoded and

translated into a qualitative rating score. The final qualitative rating could be

manually adjusted under certain conditions. The qualitative and quantitative scores

could be then combined by a logistic regression model with two explanatory

variables, producing the single final score, and a rating grade (Fig. 3.14). The

decomposition of the process provides a better interpretation, and understanding,

of why a borrower receives a high or low rating. This is important for the corporate

segment, where the automated rating system usually has just a decision-making

support role.

Rating Calibration and PD Estimation

Even though the logistic regression tries to predict directly the probabilities of

default, the process of scoring function development, and the assignment of the

probabilities of default to scoring values, are usually separated. There might be

several reasons for this. The development sample might use a proportion of good

and bad, e.g. 50:50, not corresponding to the real observed default rate. Therefore,

the PDs estimated by the logistic regression might be biased due to the dataset

construction. Another more fundamental issue is related to changes in the overall

default probabilities (for a specific segment and product) over time. It appears that

the probability of default of a borrower depends not only on the borrower’s specific

factors, but also on a set of systematic factors, such as GDP growth, unemployment,

interest rates etc. A scoring function based on borrower specific information, and on

a set of historical data, should keep its discriminatory power, but will not predict the

PDs correctly if the systematic factors (usually not used as explanatory variables)

change. Therefore, scoring functions developed some time ago do need recalibra-

tion; i.e., a new function assigning probabilities to the scores. The scoring function

development process is time consuming, and even a freshly developed scoring

based on a large dataset spanning a number of years needs recalibration. If the

Fig. 3.14 Qualitative and quantitative corporate rating process
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dataset covers good and bad years, i.e. goes through the cycle (TTC), then the

resulting logit function gives estimates of some sort of average TTC probabilities of

default. That is desirable from the regulatory point of view, but business requires

rather Point in Time (PIT) estimates of the probabilities of default; i.e., the best

available predictions for the coming period, typically 1 year, depending on the

product maturity. Therefore, the TTC scoring function needs to be recalibrated

using up-to-date default information to produce PIT PD predictions. Another

situation is when there is only a relatively short history of a product and a small

number of defaults defined in the desired time horizon. The scoring function can be

developed based on a modified definition of default observed in a short horizon, for

instance, default on the first payment or just 60 DPD (days past due), and then

recalibrated to the target definition of default.

The recalibration process may be set up as follows. Let s(a) be a linear transfor-

mation of the log odds score�β0�x að Þ, where the coefficients come from the logistic

regression. The values are typically scaled into a conventional range such as 0–100,

or 0–1000. For new prospective borrowers we employ the single variable Logit

model, with the score s(a) being the only explanatory variable:

p að Þ ¼ Λ αþ βs að Þð Þ, i:e: ln p að Þ
1� p að Þ ¼ αþ βs að Þ:

To estimate the simple model, we use the latest observations covering the

desired default time horizon. For example, if the prediction horizon is 1 year, we

use the set of borrowers that were not in default 1 year ago and observe the defaults

which have occurred during the past 12 months. In this way, we utilize both the

discriminatory power of the scoring function and the latest information on defaults.

The intercept α and the slope β could possibly be estimated by an OLS regression

on the log odds explained by the score splitting the sample into a number of bins

according to the scores. The simple approach may result in a prediction bias, the

difference of the average predicted PD, and the overall frequency of default in the

calibration sample. The problem can be solved simply by running the single

variable logistic regression on the calibration sample. According to (3.10) there

will be no prediction bias.

Figure 3.15 gives a typical example of the development of actual default rates

versus the predicted PD. The PD predicted by a scoring function developed at the

end of 2003, without any subsequent calibration, shows a more-or-less stable

prediction of PDs at a level around 4% on a given product portfolio

(e.g. consumer loans). The small fluctuations are caused by changes in portfolio

composition (in terms of explanatory variable distribution). The actual experienced

portfolio rates of default are, however, much more volatile, and diverge from the

original scorecard predictions, going up, notably, to 7% in 2007 and 2008. Thus the

non-calibrated PDs, provided by the original scorecard, would significantly under-

estimate the risk. If the bank wanted to keep the same original scoring function,

then a solution would be given by quarterly recalibrations. The predicted PD, based
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on the most recent data, still has certain lag compared to the reality, but performs

much better than the non-calibrated scoring function.

The scores that take many possible values are usually translated into rating

grades on a smaller scale. From the business perspective the scale might be very

simple: 1—“yes”, 2—“maybe”, 3—“no”, corresponding to the approval process.

Applications rated as “yes” are automatically approved, applications rated as “no”

declined, and applications rated as “maybe” are sent for further expert assessment.

If the rating is used to differentiate the credit margin according to the risk, then

there should be more grades in the approval zone. Better differentiation may also be

useful in the grey zone, but the number of grades on a reasonable scale for the retail

segment usually does not exceed 10, and 25 for the corporate segment. There are

different philosophies as to how to translate the scores into rating grades. The

simplest approach is to fix the score value intervals for each rating grade, with a

targeted distribution of borrowers. For example, if the score value range is [0,

1000], and the rating scale is the Moody’s one, then the range for “Aaa” could be

[981, 1000] for “Aa1”: [961, 980], and so on up to “Ca” with [0, 100]. In this

approach, the ratings are a kind of transformed rounded values of the scores. The

rating grades will express TTC rather than PIT probabilities of default, depending

on the cyclicality of the explanatory variables and on the calibration approach. An

alternative philosophy is to assign the rating grades according to fixed bands for PIT

PD values. The rating grade 1 may be defined by the PD interval [0, 0.5%), the

grade 2 by [0.5%, 1.5%), and so on, with the last grade reserved for the highest PD

values. In that case, the assignment of scoring values to the rating grades depends

on the PD recalibration. While for the first approach, for a single rating class,

historical observed frequencies of default fluctuate with the cycle, for the second

approach, the observed values should be within, or not too far from, the PD interval

defining the rating grade.
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Fig. 3.15 Comparison of actual and predicted rates of default with and without calibration
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Shadow Rating

The shadow rating is typically employed when default data are rare, but there are

external ratings from respected rating agencies. This may be the case of

governments, regions, municipalities, financial institutions, or large corporations.

The bank often does not have, or does not want to build, a specialized credit

analysis department, but at the same time, it is difficult to develop a scoring system

using an ordinary statistical approach, as there are too few historical defaults. If a

significant part (but not all) of the segment is rated by external agencies, then the

idea is to mimic the external ratings by an internally developed scoring function that

uses the existing external ratings and related PDs as a development dataset. The first

step requiring expertise is the identification of the explanatory factors potentially

used by the rating agencies. The factors can include macroeconomic factors, and

financial or country risk indicators. Secondly, the external ratings have to be

calibrated, i.e. probabilities of default have to be attached to them. In this

case one can use the frequency of default over an observation period preceding

the rating decision (PIT philosophy), or over a fixed, long time horizon going

through the cycles (TTC philosophy). Then we apply the logistic regression

model of the form:

pi ¼ Λ β0�xið Þ, i:e: ln pi
1� pi

¼ β0�xi;

where xi is the vector of the explanatory variables of an externally rated borrower,

and pi is the predicted probability of default (given by the external ratings in the

development sample). The coefficients β can be estimated by a simple OLS

regression of log-odds, explained by the factors selected by a method as described

above. The performance of the system does not have to be very high, and it should

be considered, rather, as a supporting decision tool for an analyst who has the power

to override the final decision. For details and a case study see Erlenmaier in

Engelmann and Rauhmeier (2006).

Survival Analysis

As we can see, the classical logistic regression approach does not capture well the

time scale of the default dynamics. Sometimes we need to predict default in a short

time horizon; in other situation, over a long time horizon. There is also empirical

evidence that for most products the probability of default depends on aging; i.e.,

time on the books. For example, unsecured consumer loans have a large probability

of default shortly after being granted, since some borrowers might not be willing to

repay from the very beginning, while the probability declines later for loans that

have “survived” the initial period (see Fig. 3.16). In the case of mortgages the

typical pattern is different: initially the probability of default is low, but later, after a

few years, it may go up due to the loss of repayment capacity (e.g. unemployment,

divorce, jump in interest rates after a reset, etc.). Therefore, to model the behavior
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Fig. 3.16 An example of monthly empirical default rates depending on time after the first

drawing for unsecured consumer loans and mortgages
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of the loan over its life cycle, we need more than a prediction of PD in a single time

horizon.

Survival analysis is appropriate in situations where we observe a population of

objects that stay in a certain state (survive) for some time until an exit (death or

failure) happens. This is, literally, our situation; interpreting default as an exit.

Survival analysis also allows the use of censored observations; i.e., observations of

objects which are known to have survived until a certain time, but on which no more

information is available. This is another useful feature, incorporating the most

recent data when we have many newly granted loans (within the last year), where

the default/non-default observations are not normally used in the logistic regres-

sion. A number of studies (see. e.g., Andreeva 2006; Thomas 2009) have confirmed

that the method may give better results in terms of discrimination power measures

than the classical logistic regression.

Generally, the goal is to study the time until failure, and the probability of

survival or failure in a given time period. The key survival analysis concepts

(Greene 2003) are the survival function, and the hazard rate. Let T be the random

variable representing the time of exit of an object, f tð Þ, t � 0, its continuous

probability density function, and F(t), its cumulative distribution function. Then,

F(t) is the probability of exit (failure) of an individual until the time t, while the

survival function S tð Þ ¼ 1� F tð Þ gives the probability of survival until t. The
hazard rate is defined as

λ tð Þ ¼ f tð Þ
S tð Þ :

This gives the rate at which objects that have survived until the time t, exit exactly
at time t; specifically, λ(t)δt is approximately the probability of exit during the time

interval
�
t, tþ δt

�
, provided the object is still alive at t. In the case of credit risk

survival modeling, the hazard function is usually called the intensity of default. The
probability of exit F(t) in this case, corresponds to the cumulative probability of

default in the time horizon t. It is also useful to define the cumulative hazard
function

Λ tð Þ ¼
ðt
0

λ sð Þds:

It can be seen that the cumulative survival function then is S tð Þ ¼ e�Λ tð Þ, and the

cumulative exit (default) rate F tð Þ ¼ 1� e�Λ tð Þ.
Figure 3.17 shows an example of default hazard functions for consumer loans

(Pazdera et al. 2009), depending on borrower’s education level, with a typical patter

where the hazard is higher during an initial period after the credit origination. This

is also confirmed by Andreeva (2006) where the credit card data from several

European countries show the general pattern of significantly higher hazard during

the first year of the exposures.

3.3 Regression Rating Systems 69



The models are specified through the hazard function, given in parametric or

semi-parametric forms. The parameters are, moreover, allowed to depend on

explanatory variables characterizing the objects under observation. The simplest

model is the exponential one with the constant hazard function λExponential tð Þ ¼ λ.
Other, more general, parametric models allow different shapes of the hazard

function (Fig. 3.18).

Fig. 3.17 Consumer loan default hazard functions (Source: Pazdera et al. 2009)
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Fig. 3.18 Parametric hazard functions
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For example, the parametric Weibull model is specified by:

λWeibull tð Þ ¼ λp λtð Þp�1
, SWeibull tð Þ ¼ e� λtð Þp ;

while the Lognormal and Loglogistic models have the form:

f Lognormal tð Þ ¼ p=tð Þϕ pln λtð Þð Þ, SLognormal tð Þ ¼ Φ �pln λtð Þð Þ

λLoglog tð Þ ¼ λp λtð Þp�1= 1þ λtð Þp½ �, SLoglog tð Þ ¼ Λ �pln λtð Þð Þ ¼ 1

1þ λtð Þp :

In fact, the Lognormal and Loglogistic models are better characterized by

defining the log of default time, ln T, cumulative distribution; standard normal5

with mean (intercept) μ ¼ �ln λ and standard deviation (scale) σ ¼ 1=p; and the

logistic distribution with mean μ ¼ �lnλ and variance σ2 ¼ π2= 3p2ð Þ. It turns out
that the Lognormal model is a parsimonious choice fitting most credit products

relatively well.

The coefficient λ ¼ e�x0β in all cases depends on the vector of covariates

x (without the constant 1). The coefficients θ¼ β; pð Þ are estimated using a

maximum likelihood method, maximizing the total log-likelihood function:

ln L θð Þ ¼
X

uncensored

observations

ln λ t
��θ� �þ X

all observations

ln S t
��θ� �

: ð3:15Þ

The lognormal and loglogistic parameterizations can also be formulated as

accelerated failure time models where ln T ¼ x0βþ ε and ε has the specified

distribution.

The parametric models are attractive for their simplicity, but may impose too

much restriction on the structure of data. Fewer restrictions are imposed by the Cox

(1972) proportional hazard model, which we shall focus on. The proposed hazard

function has a semi-parametric form:

λ t; xð Þ ¼ λ0 tð Þexp x0βð Þ;
where λ0(t) is called the baseline hazard function independent of the explanatory

variables x while exp(x ’ β) determines the risk level.

The baseline hazard is a step function estimated on a discrete set of points where

exits or censoring take place. The corresponding survival function is in the form

5Here,Φ and ϕ denote the cumulative distribution and the probability density function of the

standard normal distribution.
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S t; xð Þ ¼ exp �
ðt
0

λ0 sð Þexp x0βð Þ
0
@

1
A ¼ S0 tð Þexp x0βð Þ

, where S0 tð Þ

¼ exp �
ðt
0

λ0 sð Þ
0
@

1
A: ð3:16Þ

The coefficient vector β is estimated using the partial likelihood: if an object i,
with covariates xi exits at time ti, if we assume that there is only one exit at that

time, and if Ai is the set of objects alive at ti, then the partial likelihood that just

i∈Ai exits is:

Li βð Þ ¼ λ ti; xið ÞX
j∈Ai

λ ti; xj
� � ¼ exp �xi

0βð ÞX
j∈Ai

exp �xj
0β

� � : ð3:17Þ

The coefficients β are then obtained by maximizing ln L ¼
XK
i¼1

ln Li numerically

using the Newton–Raphson algorithm. Generally, we need to handle ties; i.e.,

multiple exits at the same time. This happens, typically, when we have only

monthly data. The partial likelihood function (3.17) can be generalized in a

straightforward manner for the case of di ties (frequency weights) at the same

time ti. However, due to computational complexity,6 the exact partial likelihood

function is usually approximated by an estimate due to Breslow (1974), or due to

Efron (see Kalbfleisch and Prentice 2002). Given β, the baseline hazard function

values are estimated separately for each of the unit time intervals, where the

function is assumed to be picewise constant maximizing the likelihood function:

Lt ¼
Yn
i¼1

�
λ0 tð Þexp xi

0βð Þ�dNi tð Þexp
Xt
u¼0

�λ0 uð Þexp xi
0βð ÞYi uð Þ

 !
:

Here dNi(t) is an indicator of the fact that subject i died in the time interval
�
t� 1, t

�
,

and Yi(t) is an indicator of the fact that subject i is at the time t� 1 still alive. By

differentiating the log likelihood function with respect to λ(t) the maximum likeli-

hood estimator can be derived in the Breslow-Crowley form:

6The summation in the denominator of (3.17) must, in general, be done over all subsets of Ai with

the size di.
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λ̂ 0 tð Þ ¼

Xn
i¼1

dNi tð Þ
Xn
i¼1

exp xi0βð ÞYi tð Þ
: ð3:18Þ

If there are no explanatory variables; i.e. exp xi
0βð Þ ¼ 1, then the estimator gives

us the Kaplan-Meier hazard rate function, and the corresponding Kaplan-Meier

survival function.

So, to apply the survival analysis approach, we need the survival-time dataset

with characteristics vectors xi, and times of default or censoring ti indicated by

ci ∈ 0; 1f g, for borrowers i ¼ 1, . . . ,N. The time is measured from the granting of

the loan until default, or until the end of the observation period. The first step,

provided by the main statistical packages, would be to draw the Kaplan-Meier

survival function and the corresponding hazard function. Then we may decide for a

parametric or non-parametric model. It is advisable to select the best explanatory

variables through the classical logistic regression procedure with a standard default

horizon. After that we can compare, relatively easily, the different survival models.

The non-parametric Cox models better fit the specific shape of the hazard function.

On the other hand, the parametric models may give better regression results and are

useful if we have only short time horizon data and want to perform a longer time

horizon analysis. The best survival models show similar performance compared to

the Logistic Regression models, but their main advantage is that they provide

consistent PD estimates for various time horizons. For a comparison of the models

using a discrimination power measure we need, however, to revert to a fixed time

horizon. For a more detailed discussion and illustration of survival modeling, see

also Stepanova and Thomas (2002).

In practice, the survival analysis is often combined with the standard scoring or

rating outcomes. The logistic regression allows us to perform a thorough univariate

analysis and selection of explanatory variables, as explained and illustrated in the

previous subsection, which is not so straightforward in the survival analysis set-up.

Nevertheless, the survival analysis may use the score as a numerical variable or the

rating as a categorical explanatory variable.

For example, Fig. 3.19 shows the estimated Kaplan-Meier (empirical), exponen-

tial, Weibull, and lognormal hazard function estimated with a categorical variable

for ratings A, B, C on a real-life large mortgage portfolio. The duration (months on

book) of the observations ranges from 1 to 73 months. The number of observations

of course declines, and the empirical hazard rate becomes noisier as we approach

the maximum observation span. If we wanted to use the empirical hazard rate,

in fact the Cox model, then there would be no estimations beyond 73 months.

Therefore, it is more appropriate to choose a parametric model that smoothes out

the noisy empirical hazard functions and extrapolates its values beyond the obser-

vation horizon of 73 months. The exponential, Weibull, and lognormal models have
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been compared in terms of log-likelihood with the lognormal model performing the

best as indicated visually by Fig. 3.19. The intercept (mean) of the lognormal model

depends on the rating category, while the scale is the same for all the rating classes.

Note that the rates in Fig. 3.19 are measured on a monthly basis, for example, the

hazard 0.3% on a monthly basis corresponds to the annualized default probability

3.5%, etc. The hazard rates and the corresponding survival probabilities can be used

to estimate credit risk margins consistently in the range 0.2–0.8% p.a. as described

in Sect. 3.5 (based on a relatively low loss given default for a mortgage product that

is below 20%).

3.4 Alternative Automated Rating Systems

Although logistic regression provides generally very good predictive results, there

is ongoing research into alternative methods that might lead to better performance

of the classification system in specific situations. For example, the goal of collection

scoring is to predict the impact of various collection actions (phone calls, mails,

legal actions, etc.) where there is no need to explain the outcome to clients or

internally to sales persons in the bank. What matters most is the prediction power,

and in this case the neural networks, support vector machines, or random forests

might be preferred over the classical logistic regression.
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Fig. 3.19 Comparison of different survival models conditional on ratings on a mortgage portfolio
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Classification Trees

We will start the overview of alternative systems with classification trees, which

present, in a sense, a simpler and, to a certain extent, more transparent method than

logistic regression. However, the performance of classification trees is usually

worse compared to logistic regression, and they are used rather as a complementary

analytical tool, for example, in order to identify the most important variables,

potential segmentation, etc.

Given a set of characteristics for a set of borrowers, it is natural to try to separate

the better ones from the worse ones using a classification tree (or recursive

partitioning algorithm—see Breiman et al. 1984), where we divide the borrowers

firstly according to the most relevant variable, then those subgroups according to

another variable, or, with respect to the first variable, with a limited range of values,

and so on. The rules of division must be developed on a training sample for which

we have the initial characteristics and indicators of default after a given time period.

The division rules need to be chosen in order to maximize the homogeneity of the

two subgroups or to provide a divergence measure of the difference in default risk

between the two subsets. For an ordinal, or continuous, variable, the tree algorithm

looks for possible split thresholds, while for a categorical variable it even needs to

consider all the possible subsets of the categorical values. The splitting is repeated

until no group can be split into two subgroups based on a chosen criterion when the

homogeneity or discrimination measure improvement is not significant, or the

group becomes too small, or the tree is too deep, etc. The ratio of bad in the

nodes can be possibly used as a PD predictor or as a score. The terminal nodes

are then classified as good or bad based on a cut-off.

Then, each new applicant can be classified according to the rules pertaining

effectively to a rating, and possibly to a PD estimate. As usual, the performance of

the classification tree (Gini coefficient, KS statistic, classification accuracy, etc.)

can be assessed on a validation (testing) dataset.

The validation dataset is sometimes used for so called pruning. The idea is to

make the tree “grown” on the training set more robust by pruning some of its

branches in order to improve its performance on the validation dataset. There are

many possible approaches to pruning, and it is often rather an expert process. In this

case, there should be a third testing set to measure the final performance of the

pruned tree, since the validation set has, in fact, been used in the second phase of the

tree training (pruning).

Popular splitting measures include the Kolmogorov-Smirnov statistic, the Gini

index, Entropy index, or the chi-squared statistic.

The Kolmogorov-Smirnov statistic is calculated as described in Sect. 3.2, but for
a simple two-value classification of the group into the left (l ) and right (r) subgroup.
Therefore, the statistic is simply:
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KS ¼ Pr l
��B� �� Pr l

��G� ��� ��:
The Gini index, which should not be confused with the Gini coefficient, is one of

the impurity index measures that aim to measure how impure each node v of the tree
is (a node is optimally pure either if all its members are good or all are bad). If i(v) is
such an index, then the strategy is to split the node into the left and right subgroups

so that their weighted impurity decreases as much as possible. Therefore, we

maximize the change in impurity

I ¼ i vð Þ � i lð ÞPr l½ � � i rð ÞPr r½ �:
One can propose as a possible basic impurity index the minimum proportion of

good or bad in a node, i vð Þ ¼ min Pr G
��v� �

, Pr B
��v� �� �

. Although this looks useful,

this index does not work well in practice: for example, if the parent node v and the

child nodes l and r all contain a minority of bads, then the change of impurity

will be always equal to zero and the measure does not help to decide which split is

the best. Instead of being a linear proportion, the Gini index is a quadratic function

of the proportion of good (or bad) and gives relatively more weight to purer nodes

(see Fig. 3.20):

iG vð Þ ¼ Pr G
��v� �� Pr B

��v� � ¼ Pr G
��v� �� 1� Pr G

��v� �� �
:

The entropy index is another nonlinear impurity measure defined as follows:

iE vð Þ ¼ �Pr G
��v� �

ln Pr G
��v� �� �� Pr B

��v� �
ln Pr B

��v� �� �
:

Fig. 3.20 Comparison of

alternative impurity measures

(basic impurity, Gini index,

and entropy index)
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This measure is related to the information statistic and can be intuitively defined

as the level of disorder. In other words, it is a measure reflecting the average amount

of information of a good-bad split in the given proportion.

Finally, let us mention the chi-squared (CS) statistic. Generally, given K groups

with n1, . . ., nK observations, and d1, . . ., dK defaults, the statistic aims to test the

hypothesis that the distribution of defaults is the same for all the groups. So, it is

natural to set the average expected probability of default PD ¼
XK
k¼1

nk=
XK
k¼1

dk, and,

similarly to the Hosmer-Lemeshow statistic (Sect. 3.2), calculate the sum of

normalized squared differences between the expected and observed numbers of

default:

CS ¼
XK
k¼1

nkPD� dkð Þ2
nkPD 1� PDð Þ: ð3:19Þ

Note the variance of the variable defined as the number of defaults on nk debtors
(provided that the events of default are independent, and the probability of default is

PD) indeed is nkPD 1� PDð Þ. The statistic has (asymptotically) the chi-squared

distribution with K � 1 degrees of freedom, so we can use the p-values to compare

partitioning with different numbers of groups. In the case of the (binary) classifica-

tion trees we have only two groups, K ¼ 2; and we try to maximize the CS statistic

as a divergence measure between the rates of default in the left and in the right

group.

The Case Study Continued

Figure 3.21 shows an example of a classification tree built in the SAS Enterprise

Miner application on the same data set as the one used in the Sect. 3.3 case study.

The dataset where categorical variables have been already coarse classified as in

Sect. 3.3 has been split into training and validation sets in the proportion 70:30 with

approximately the same proportion of bads. The tree shown in Fig. 3.12 has depth

limited to 3 in order to have only a few nodes on the display. The algorithm using

the Gini impurity index as the branching criterion identified the length of employ-

ment as the most important, then age, number of dependents, etc. Note that the base

default rate of 1.45% (on the root with 7,653 observations) splits into 2.47% in the

left subgroup of borrowers with length of (current) employment less than 7 and into

a much lower default rate of 0.72% in the right group of borrowers with stable

employment for 7 or more years. Then, following the right branch, the number of

dependents shows a high discrimination power with a high default rate of 3.91% for

childless borrowers and a low default rate of 0.58% for those having at least one

child. Following the right subgroup again, it is interesting to note that borrowers

with very long employment duration (9 years or more) have a much higher default
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rate than those employed for between 7 and 8 years. This dependence might be

considered inconsistent, and the two branches could possibly be pruned on an

expert basis.

Therefore we can see that the classification tree can provide a relatively nice

interpretation and insight into the importance of the various variables and their

combinations.

The full tree was built automatically using the Gini impurity measure and setting

150 as the minimum leaf size. The depth of the tree is 7 and it would be difficult to

display in a legible way. Table 3.20 and Fig. 3.22 show a comparison of the

prediction performance of the classification tree with the logistic regression and a

neural network model (with three neurons in one hidden layer as described below),

all automatically developed in the SAS Enterprise Miner. It is interesting to

compare the training and testing sample results. While the classification tree and

neural network models perform better compared to the logistic regression on the

Fig. 3.21 Classification tree with maximum depth set 3 built in SAS Enterprise Miner 13.2

Table 3.20 A comparison of the logistic regression, classification tree, and neural network

models
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training model, the logistic regression outperforms the other models on the testing

sample. The robustness of the logistic regression is related to a more careful

(stepwise) selection of variables. In order to obtain a fair comparison we have

used the dataset after the coarse classification that was done as part of the logistic

storing function development. However, the coarse classification is not usually

done before applying the tree or neural network models, making the risk of

overfitting even more serious. As mentioned above, the robustness of the classifi-

cation tree can be improved by automated or interactive pruning, but the general

experience is that it is difficult to achieve performance of the logistic regression

obtained by the standard development procedure.

Artificial Neural Networks

Neural networks have been inspired by the architecture of the human brain, where a

large number of dendrites carry signals neurons which send converted signals to

other neurons, etc. The artificial neural networks approach is classified as a

non-statistical method for scorecard development (Thomas et al. 2002). Neverthe-

less, an artificial network model can be on a high level described mathematically as

a nonlinear predictive function f(x;w), whose predictive power is assessed by

standard statistical methods and whose vector of parameters w is estimated by

various numerical and, to a certain extent, statistical methods. The outcome is a

numerical or classification value depending on the vector of explanatory variables

x, and the form of the function is given by the neural network architecture. The

simplest architecture is a single-layer neural network shown in Fig. 3.23.

Fig. 3.22 A comparison of the ROC for the logistic regression, classification tree, and neural

network models
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Algebraically, the output of the network is y ¼ F uð Þ where u ¼
Xp
j¼0

wjxj is a linear

combination of the explanatory variables (as usual with x0 ¼ 1 so that w0 represents

the constant) and F is a nonlinear activation function. A popular one is our favorite

logistic function F uð Þ ¼ 1
1þe�au which transforms the linear combination u onto a

value in the interval (0, 1). Other alternative logistic functions are the simple

threshold function (F uð Þ ¼ 1 if u � 0 and F uð Þ ¼ 0 if u < 0 ), or the tangent

hyperbolic function, F uð Þ ¼ tanh uð Þ, etc.
Note that the single-layer neural network with the logistic activation function is

equivalent to the logit model. However, the simplest network is not able to handle

many classification problems like the well-known XOR problem (unless we can use

nonlinear transformations and combinations of the inputs). It is obvious that the

neural networks provide much more flexibility if we allow more neurons and layers

processing inputs from previous layers. Figure 3.24 shows an example of a

two-layer neural network with three hidden neurons. The inputs are firstly com-

bined and transformed by the three hidden neurons and their outputs are finally

processed by the output neuron. In this case we have to index the coefficients and

intermediate inputs/outputs in a slightly more complicated way, where the super-

script stands for the layer (not for a power). The neural networks can have more

output neurons and any number of hidden neurons and layers. The number of

parameters is, of course, rapidly increasing, with the number of hidden neurons

making the calibration computationally more difficult and causing possible over-

parametrization. In spite of that, due to increased computational power, deep neural
networks with many hidden layers have become quite popular and successful in

many artificial intelligence areas such as automatic vision or speech recognition.

A neural network y ¼ f x;wð Þ is trained, i.e. its coefficients calibrated, using

similar numerical techniques to those used for the statistical models based on a

training dataset hyt, xti. Here we consider, for the sake of simplicity, only

one-dimensional output yt and index the dataset by t ¼ 1, 2, . . . in order to
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Fig. 3.23 A single-layer neural network
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emphasize that additional training cases may come over time and the training

procedure can be incremental. Firstly, for an observation hyt, xti and an estimation

ŷ t ¼ f xt;wð Þ given a set of parameters w, we need to define an error function,

e.g. the usual squared error

E tð Þ ¼ 1

2
yt � ŷ tð Þ2:

If we consider a block of observations or the full dataset, then we use the average

value

Emean ¼ 1

N

XT
t¼1

E tð Þ:

If want to calibrate the network based on the full dataset, then the goal is simply to

find the vector of parameters w, minimizing the error function Emean(w). If we want

to apply incremental learning, then we simply need to adjust the weightsw to reflect

appropriately the information contained in the training case t. The back-propaga-
tion algorithm is based in both cases on the gradient-descent method where we

move in each iteration in the direction of the negative gradient �∇E ¼ � ∂E
∂wc

ij

D E
,

i.e.Δwc
ij ¼ �η ∂E

∂wc
ij
where η is a positive training rate coefficient to make the changes

smaller or larger. The partial derivatives can be calculated analytically using the

chain rule, provided the activation function has an analytical derivative (which is

the case, e.g., for the logistic function). For example, in the case of a single layer

0x

1x

px

∑ F

Hidden layer

3 neurons

Output layer

1 neuron 

1

10w
1

20w

1

3pw

.

.

.

.

Input layer

p inputs

2

1y y=
∑ F

∑ F

∑ F
1

1pw

2

11w

2

12w

2

13w
1

12y

1

11y

1

13y1

13u

1

12u

1

11u
2

1u

Fig. 3.24 A multi-layer neural network
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neural network ŷ ¼ F uð Þ, u ¼
Xp
j¼0

wjxj, and E ¼ 0:5 y� ŷð Þ2 for a training case

hy, xi. Hence,

∂E
∂wj

¼ ∂E
∂ŷ

� ∂ŷ
∂u

� ∂u
∂wj

¼ � y� ŷð Þ � F0 uð Þ � xj;

and so we change wj by a positive multiple of y� ŷð Þ � F0 uð Þ � xj. In the case of a

multiple-layer neuron network, the chain rule must be applied more times, e.g. for

the two-layer network and for an input layer coefficient w1
ij shown in Fig. 3.24

where ŷ ¼ y21 ¼ F u21
� �

, u21 ¼
X

w2
1ky

1
1k and so on, the partial derivative can be

expressed as follows:

∂E
∂w1

ij

¼ ∂E
∂y21

� ∂y
2
1

∂u21
� ∂u

2
1

∂y11i
� ∂y

1
1i

∂u11i
� ∂u

1
1i

∂w1
ij

¼ �ðy� ŷ Þ � F0 ðu21Þ � w2
1i � F

0 ðu11iÞ � xj:

Generally, the partial derivatives can be expressed analytically recursively starting

from the output layer and going back to the deeper hidden layer neurons. The

gradient-descent algorithm unfortunately, unlike the Newton-Rapson algorithm,

does not know which training constant η is optimal, even if the optimization is

done on the full dataset. A too small η may cause the algorithm to be very small

and get stuck in a local minimum, while a too large η may cause oscillations and

divergence of the algorithm. This is one of the reasons why sequential back-

propagation is preferred. Regarding termination of the training, the theoretical condi-

tion would be∇E ¼ 0. However, the practical condition to stop the back-propagation

is to require that the absolute value of the change ΔE tð Þ ¼ E tð Þ � E t� 1ð Þ should be
sufficiently small. There are many possible numerical improvements of the basic

back-propagation algorithm. One possibility, for example, is the momentum method

setting

Δwc
ij tð Þ ¼ αΔwc

ij t� 1ð Þ � η
∂E tð Þ
∂wc

ij

where 0 < α < 1 reducing the oscillation of the weights.

Table 3.20 and Fig. 3.22 show that the neural network (in this case with one

hidden layer) can be quite competitive compared to the logistic regression. By

increasing the number of neurons we certainly increase the in-sample performance,

but not necessarily the out-sample performance due to overfitting. Nevertheless,

even with a high out-sample performance, credit analysts usually remain sceptical

due to the difficult interpretability of the relatively high number of estimated

coefficients and the black-box nature of the model.
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Nearest-Neighbor Approach

The idea of the nearest neighbor approach is very simple: given a historical dataset

of observations with known outcomes of the target variable hyi, xii and given a new
case with a vector of explanatory variables x and unknown outcome y, let us find
k “similar” or “near” historical cases xi1 , . . . , xik and estimate y based on the known

outcomes yi1 , . . . , yik , e.g. calculating the average value ŷ ¼ 1
k

Xk
j¼1

yij . In the case of

a binary variable, the average would be a score, and an appropriate cut-off value can

be used to obtain a binary prediction.

In order to make the idea work, we have to define the “similarity” or “nearness”

more exactly. The first proposal is to use the ordinary Euclidean metrics d x; yð Þ
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x� yð ÞT � x� yð Þ

q
assuming that all variables are numerical (categorical being

transformed to the dummy variables). Of course, there are many more general

possibilities, for example, defining the distance by dA x; yð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x� yð ÞTA x� yð Þ

q
where A is a positive definite matrix. Henley and Hand (1996), in their extensive

study of nearest-neighbor applications in credit scoring, proposed a mixture of the

Euclidean distance and the distance in the direction w that best separates good and

bad, which can be obtained from discriminant or linear regression analysis, i.e.

dA x; yð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x� yð ÞT I þ DwT � wð Þ x� yð Þ

q
. They show, on a training sample, that

the nearest-neighbor approach gives competitive classification accuracy com-

pared to linear, logistic regression, or other methods. According to the empirical

study, the best choice of the weight D is somewhere between 1.4 and 1.8, and

the results stabilized for k ranging between 100 and 3000. They argue that it is

optimal if the training set has an equal mix of goods and bads. Although the

nearest-neighbor approach is not frequently used for credit scoring, it has some

attractive features. In particular, the system can be dynamically updated by

adding new observations and possibly dropping the oldest ones. Individual

decisions can be analyzed based on the sets of the k nearest neighbors, espe-

cially if k is not too large. On the other hand, the approach can be viewed as

even more “black box” than neural networks since it has basically no clear

internal structure. In the case of the Henley and Hand (1996) approach, one still

has to run at least a regression on the explanatory variables. It might then be

suggested that it is better to use a regression scorecard directly without the

search for nearest neighbors.

Linear Programming and Support Vector Machines

The goal of a score card s xið Þ ¼
Xn
k¼1

βkxik is to separate good and bad cases.

Optimally, we would like to have a cut-off value c so that s xið Þ � c for all bad
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cases xi ∈AB and s xið Þ > c for all good cases xi ∈AG (on the training and/or

validation sample). The separation is then used on new observations in order to

obtain ex ante predictions. Note that we do not have to consider the intercept β0 that
is replaced by the generally non-zero cut-off value c. If the explanatory factors are

all numerical (with categorical factors replaced by the dummy variables) then the

problem can be formulated geometrically as a linear separability problem of the two

sets of points AG and AB in the space R
n. Since, usually, it is not possible to obtain a

perfect division of goods and bads, we need to allow for possible errors s xið Þ � c
þεi for xi ∈AB and s xið Þ � c� εi for xi ∈AG where εi � 0 for all i. This leads to a

linear program where the objective is to minimize the total sum of errors
X
i

εi that

can be solved by classical linear programing methods. Alternatively, we may

simplify the program by assuming a constant error term εi ¼ ε and minimizing

just ε over possible values of the coefficient vector β and the cut-off c. The
advantage of the linear programing is that we can add additional expert constraints,

e.g. requiring that the coefficient of one variable is larger than the coefficient of

another variable, e.g. β1 � β2. However, the linear programing formulation above

has one pitfall: if one sets all βi ¼ 0 and c ¼ 0, then the minimization problem is

trivially solved with all errors equal to zero, εi ¼ 0. A straightforward solution is to

require that there is a gap between the two sets, i.e. requiring that s xið Þ � cþ a� εi
for the good cases and a very small predetermined positive constant a. Then one has
to decide how to choose the constant a and also how to deal with points within the

gap. An elegant solution has been proposed by Glover (1990) requiring that the

distance between the mean of bad scores and the mean of good scores should be

equal to 1. The linear program solution cannot then be a trivial one. On the other

hand, since the coefficient can be multiplied by any nonzero constant, the condition

can always be satisfied, provided that not all the scores equal to zero. Therefore,

there is no loss of generality by adding Glover’s condition that ensures that the

solution is non-zero.

The separation problem can also be formulated as maximization of the distance

between two hyperplanes dividing the bad and good points (see Fig. 3.25).

After a normalization of the coefficient vector, the two hyperplanes can be

described by the following two vector equations:

w � x� c ¼ �1 and w � x� c ¼ 1:

Therefore, the hard-margin requirement is that

w � xi � c � �1 for all xi ∈AB and w � xi � c � 1 for all xi ∈AG:

Since, geometrically, the distance between the two planes equals 2/kwk, the maxi-

mum distance is achieved by minimizing wk k2 ¼
X

w2
k subject to the constraints
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above. This optimization problem is not a linear program any more, but can be solved

by the techniques of quadratic programming. The idea is a basis of the method,

in machine learning, called support vector machines (Cortes and Vapnik 1995).

To explain the terminology at least partially, the support vectors in Fig. 3.25 are

the vectors xi that are nearest to the mid separation hyperplane w � x� c ¼ 0 and so

determine (support) the two max-margin hyperplanes.

As in the case of linear programing, the hard-margin problem is only exception-

ally solvable, and one has to introduce soft margins:

w � xi � c � �1þ εi for all xi ∈AB and w � xi � c � 1� εi for all xi ∈AG;

with εi � 0. Equivalently, we can directly set εi ¼ max 0, 1� w � xi � cð Þð Þ for xi
∈AG and εi ¼ max 0, 1þ w � xi � cð Þð Þ for xi ∈AB. Then we wish to minimize the

average error and the squared norm kwk2, which can be achieved, e.g. by

minimizing 1
N

XN
i¼1

εi þ λ wk k2 for a predetermined positive constant λ. Choosing a

sufficiently small λ ensures that the soft-margin SVM solution will be the same as

the hard-margin SVM solution if the data are linearly separable, but still yields a

solution if they are not.

The linear SVM algorithm can be generalized by a general nonlinear transfor-

mation of the points xi ∈Rn to φ(xi) in a higher-dimensional (or even infinite

dimensional) space where the originally linearly non-separable sets might become

separable. Then, given a new vector of explanatory factors x∈Rn, the separating

planes can be used for a prediction based on φ(x). In order to keep the nonlinear
SVM classification algorithm efficient, the kernel trick is usually applied. The idea

is to specify the dot product φ xð Þ � φ yð Þ as a function k(x, y) instead of the function

φ directly.

0c⋅ − =w x1c⋅ − =w x

1c⋅ − = −w x

w

Fig. 3.25 Hyperplanes

separating the good and bad

points
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Example Let x, y∈R2 and

k x; yð Þ ¼ x � yð Þ2 ¼ x21y
2
1 þ 2x1y1x2y2 þ x22y

2
2

¼ x21,
ffiffiffi
2

p
x1x2, x

2
2

D E
� y21,

ffiffiffi
2

p
y1y2, y

2
2

D E
:

Therefore, the implicitly determined transformation from R2 to R3 is

φ xð Þ ¼ x21,
ffiffiffi
2

p
x1x2, x

2
2

� 

.

The most popular kernels include: homogenous and non-homogenous polyno-

mial k x; yð Þ ¼ x � yð Þd or k x; yð Þ ¼ x � yþ 1ð Þd, the Gaussian radial basis

k x; yð Þ ¼ exp �γ x� yk k2
� �

, etc. It follows from the example above that the

non-linear transformations implicitly allow us to process various interactions

between the explanatory variables.

Another trick that makes the algorithm more efficient is to realize that even in a

very high dimensional space it is sufficient to search for the separating hyperplanes

in the space spanned by the transformed vectors φ(xi). Therefore, we look for the

perpendicular vector in the form w ¼
X

αiφ xið Þ, i.e. minimize 1
N

XN
i¼1

εi þ λ wk k2

over all α in RN where N is the number of observations. Since

w � φ xj
� � ¼X αik xi; xj

� �
the matrix of the products k(xi, xj) is the only input

(plus the good/bad information and the constant λ) of the quadratic optimization

problem that can be solved by relatively efficient methods described in the exten-

sive SVM literature. It can be shown that αi ¼ 0 provided φ(xi) lies on the correct

side of the boundary and the vector w can be written as a linear combination of the

support vectors. Therefore, the number of nonzero parameters is not usually as large

as N. □
Regarding the application of this method to credit scoring, there are a number of

empirical studies comparing logistic regression, discriminant analysis, and other

methods with SVMs. Generally, SVMs perform very well on a level comparable

with the best models, namely the logistic regression or the neural networks. In spite

of good empirical results, SVMs have not been extensively used in banking credit

risk management practice, again due to the low interpretability of the estimated

parameters and a perceived risk of overfitting.

Ensemble Models and Random Forests

Ensemble models are motivated by the proverb according to which more heads are

better than one. That is, given several models, let us collect their answers and use an

average or majority vote to produce the final ensemble model answer, assuming that

collective wisdom is better than the individual models. To formulate the argument

more exactly, let us assume that we have a number of models M1, . . .,Mn that
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produce unbiased estimations ŷ Mi
¼ yþ εi of the true target variable y conditional

on explanatory factors x with errors εi that all have mean zero and standard

deviation equal to some σ. Here, we assume, for the sake of simplicity, that y is a
continuous variable or the objective probability conditional on x in the case of a

binary outcome. If the model errors were independent, then the average estimation

ŷ Ens ¼
1

n

Xn
i¼1

ŷ Mi
¼ yþ ε

error again has mean equal to zero, but the standard deviation is reduced to σ=
ffiffiffi
n

p
due to the model error “diversification” effect. In practice, of course, the individual

model errors do not have to be independent and the standard deviations would not

be the same, but as long as the correlations are lower than one, there is a chance that

the ensemble model will perform better than the individual models.

Figure 3.26 shows an ensemble model diagram built from the logistic regression,

a classification tree, and a neural network on the case study dataset in SAS

Enterprise Miner. The model simply averages the posterior probability of the

default estimates. The discrimination power of the model (Table 3.21) is indeed

slightly higher compared with the individual models (Table 3.20).

Fig. 3.26 An ensemble model diagram

Table 3.21 Performance of two ensemble models and a random forest
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Similarly, we can build an ensemble model from several classification trees.

However, we have to use trees that are, to a certain extent, independent. This can be

done manually, for example starting with the different variables used for splitting at

the root of the tree. Figure 3.27 shows the ROC of three different classification trees

and the apparently better ROC of the corresponding ensemble trees. The trees are

based on different random training subsamples of the dataset, and the root splitting

variable was modified in an interactive mode. While the individual trees’ Gini

coefficient is around 40%, the ensemble tree’s Gini is much better at 49%

(Table 3.20).

This result can be improved by “growing” a Random Forest with many trees

generated randomly in an automated way (Breiman 2001). In order to achieve the

relative independence of the trees, the algorithm firstly selects a random subsample

(bagging), or bootstraps with resampling, and in addition chooses a random subset

of the explanatory variables that will be used to build the tree. Since the individual

classification trees are weaker (due to selection only of some explanatory variables)

it is important to generate a larger number of trees, i.e. a forest. The SAS Enterprise

Miner application, in fact, allows one to “grow” a random forest easily. Table 3.20

shows that a random forest with 1000 classification trees has the Gini coefficient

comparable to the best models.

To conclude, let us mention the results of some of the many published empirical

studies comparing different classification techniques. For example, Baesens et al.

(2003) compare various state-of-the-art credit scoring algorithms such as logistic or

linear regression, neural networks, or support-vector machines on eight real-life

credit scoring datasets. They conclude that least squares, support-vector-machines

and neural network outperform the other methods, but the simple classifiers, such as

the logistic and linear regression, also perform very well for credit scoring. Other

studies like Haltuf (2015) or Kesely (2015) demonstrate, rather, the superiority of

the classical logistic regression. Lessmann et al. (2008) compare 22 classifiers on

ten public domain datasets: Random forests are the winners in terms of AUC for

Fig. 3.27 ROC for three decision trees and the corresponding ensemble model
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five datasets, neural networks for two datasets, SVM also for two datasets, and,

finally, the classical statistical inference methods like the logistic or linear regres-

sion outperform other methods only in the case of one dataset. The dominance of

ensemble methods is confirmed in an updated credit scoring study of Lessmann

et al. (2015). The set of investigated methods from Baesens et al. (2003) is extended

by a large number of homogenous and heterogeneous ensemble methods. Homog-

enous ensembles (e.g., random forests) use one base model and generate randomly a

large number of classifiers. Heterogeneous ensembles create the classifiers using

different classification algorithms. Unlike the simple heterogeneous ensemble of

the three models shown in Fig. 3.26, these models must involve a selection

procedure with a random element in order to generate automatically a large number

of classifiers. Among 41 methods benchmarked using different alternative perfor-

mance measures over eight credit scoring datasets, the heterogeneous ensembles

occupy the first 11 places, followed more or less by the homogenous ensembles, and

then by the individual classifiers. The random forest ranks 12th, artificial neural

networks 14th, and logistic regression 16th.

Ensemble models suffer from the same “black box” criticism as the neural

networks and the other alternative models. Nevertheless, the most recent empirical

tests show that these models can outperform the logistic regression industry stan-

dard in a systematic way and so should be considered at least in areas where the

interpretability of the model and its parameters is not of the highest priority (such as

fraud or collection scoring, etc.).

Markov Chain Models

An alternative, and in a sense simpler, way to capture default and loss dynamics, is

to use the Markov Chain modeling approach. The idea is that there are a finite

number of credit behavior states, including the default state, that loans migrate

between the states, and we may estimate the migration probabilities and make

further predictions. The states could be rating grades, but are more often simply

states according to the number of days-past-due (e.g. 0–30, 31–60, 61–90, 90+,

i.e. default), or some other elementary characteristics. There is a basic time period,

for instance, one month, or one quarter, and the goal is to model the behavior over a

longer time horizon including more periods. The Markov assumption is that the

process is memoryless, i.e. that transition to a state depends only on the previous

state, not on the history of the state transitions before. Specifically, if there are

J states j ¼ 1, . . . , J, and the states at times t ¼ 0, 1, 2, . . . are represented by

random variables X0,X1,X1, . . ., then the Markov property says that the probability

of transition from state i at time t� 1 to state j taken at time t does not depend on any
possible path of previous states k0, . . . , kt�2:

Pr Xt ¼ j
��X0 ¼ k0, . . . ,Xt�2 ¼ kt�2,Xt�1 ¼ i

� � ¼ Pr Xt ¼ j
��Xt�1 ¼ i

� �
:
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The probability pt i; jð Þ ¼ Pr Xt ¼ j
��Xt�1 ¼ i

� �
is called the transition probability,

and we can define the transition matrix Pt ¼ pt i; jð Þð Þ Ji, j¼1. It is obvious that all

elements of the matrix are non-negative and the sum of each row is one. The key

observation is that the multiplication of matrices corresponds to migration over

multiple periods. For example:

Pr X2 ¼ j
��X0 ¼ i

� � ¼XJ
k¼1

p1 i; kð Þ � p2 k; jð Þ ¼ P1P2ð Þ i; jð Þ

where P1P2 denotes ordinary matrix multiplication. Similarly, the T-stage transition
probabilities are given by the matrix P1P2 . . .PT. Therefore, if J is the default state,
then P1P2 . . .PT(i, J) is the probability of default of a borrower starting from state

i at time 0 in the T-stage time horizon. So, if we estimate, based on historical data,

the transition matrices Pt, then we have a dynamic model of default probabilities in

different time horizons. The transition matrices may indeed depend on “aging”; i.e.,

time on books, as can be seen from Fig. 3.27. The transition probabilities in Pt must

be then calculated, starting with loans which were granted t periods ago. Neverthe-
less, notice that we do not need a long period to estimate the matrices Pt for

different values of t (as t measures time from the origination of an exposure, not

the absolute time). It is sufficient to have just a one-period observation window

where we need to count the number of casesnt�1 ið Þwith age t� 1and in the state i at
the beginning of the period, and then the number of cases nt(i, j) that were in state

i at time t� 1 and subsequently moved into state j at time t. Then the estimated

transition probability is

p̂ t i; jð Þ ¼ nt i; jð Þ=nt�1 ið Þ: ð3:20Þ

The estimation can be simplified if we assume that the Markov chain is homog-

enous, that is: Pt ¼ P does not depend on t. This would be the case, rather, of

classical corporate exposures. Then the power matrix PT fully characterizes the

distribution of the variable XT. The default state J is often defined as an absorbing

one; loans that enter the state never leave it; i.e., p J; Jð Þ ¼ 1 and p J; jð Þ ¼ 0 for

j 6¼ J. Other examples of absorbing states are repayment or “not rated”.

Table 3.22 shows, as an example, the S&P rating transition probability matrix

that is usually published in rating agencies’ statistical reports. The matrix has, in

fact, two absorbing (or persistent) states; “D” denoting default and “N.R.” meaning

not rated. So, to get a 9� 9 matrix, the table could be amended with two rows for

the states “D” and “N.R.” having 1.00 on the diagonal, and 0.00 elsewhere. The

powers of the matrix unfortunately do not give the full default rate estimation, as

part of the ratings will end with a positive probability in the state “N.R.”, where we

do not know exactly the proportion of defaulters. The problem may solved by an

adjustment of the matrix, assuming that there is an average distribution of rating

grades in the “N.R.” class.
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An Application of MC Models: Estimating Provisions

A simple matrix algebra can be used to estimate loan loss provisions (expected

losses) of impaired (defaulted) exposures over an indefinite horizon conditional on

a current credit behavior status (see also Prášková and Lachout 2012). Let us

assume that the states j ¼ 1, . . . , J corresponding to DPD bands, or other

characteristics of principal exposures where repayment improvement or worsening

is still possible, are transitional, and that there are three absorbing states; “repaid”,

“cured”, and “written-off”, which have the special codes R,C, and L. In order to

estimate provisions on a defaulted exposure in state k we need to estimate the

proportion of the principal exposure that is going to be written-off in an infinite

horizon, i.e.

p1 k; Lð Þ ¼ Pr Xτ ¼ L
��Xt ¼ k

� � ð3:21Þ
where τ denotes the (random) time when an absorbing state (repaid, cured, or

written-off) is reached. LetP ¼ p i; jð Þð Þ Ji, j¼1 denote the time-homogenous transition

matrix between the transitional states and U the 3� n matrix rows transition

probabilities p1 k; Lð Þ, p1 k;Cð Þ, p1 k;Rð Þ, where p1 k;Cð Þ and p1 k;Rð Þ are defined
analogously to (3.21). Note that it is implicitly assumed in (3.21) that the

probabilities of migration from a state at time t into an absorbing state in the infinite
horizon do not depend on t. Over a single period, an exposure in the state k might

migrate directly to an absorbing state, or to another transitional state j from which it

can again migrate to an absorbing state in the infinite horizon. Therefore, we obtain

the following recurrent equation:

p1 k; Lð Þ ¼ p k; Lð Þ þ
XJ
j¼1

p k; jð Þp1 j; Lð Þ;

and similarly for p1 k;Cð Þ and p1 k;Rð Þ. The three recurrent equations can be

expressed in the matrix form as:

Table 3.22 S&P global average 1-year transition rates 1981–2004 (%)
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U ¼ Qþ PU ð3:22Þ
where Q is the one period transition probability matrix from the transitive to the

absorbing states, i.e. with rows p(k,L ), p(k,C), p(k,R). The matrices P and Q may

be estimated based on one period observations and the unknown matrix U can be

then easily obtained solving (3.22) by the matrix algebra:

U ¼ I � Pð Þ�1Q:

Markov Property Testing

The literature on applications of Markov chain matrices is quite extensive (see,

e.g. Thomas 2009; Trueck and Rachev 2009). However, there are not too many

papers dealing with the problem of how to test the Markov property. It is usually

implicitly assumed that the Markov property holds, but given a dataset and a

definition of the states, it is not so easy to test it statistically. For example,

Ait-Sahalia (1996) proposes a test statistic based on the Chapman-Kolmogorov

equation, which, for a discrete Markov chain, simply says that by multiplying two

consecutive transition matrices we get the corresponding 2-stage transition

probabilities:

Pr Xtþ1 ¼ j
��Xt�1 ¼ i

� � ¼XJ
k¼1

pt i; kð Þ � ptþ1 k; jð Þ ¼ PtPtþ1ð Þ i; jð Þ:

According to Chen and Hong (2012), the test is not complete in the sense that it

does not reject some non-Markovian processes; they propose a more complex test

examining a growing number of lag dependencies based on the concept of the

conditional characteristic function.

A simple test of the Markov property given a finite credit dataset and a definition

of states is described in Thomas et al. (2002). Let nt�1 ið Þ, nt(i, j) be defined as in

(3.20) and let nt(i, j, k) denote analogously the number of exposures that were in

state i at time t� 2, then in state j at time t� 1, and finally in state k at time t. The
time-homogenous probability of moving from i to j can be estimated by:

p̂ i; jð Þ ¼
XT
t¼1

nt i; jð Þ=
XT
t¼1

nt�1 ið Þ;

and the probability of moving from to k conditional on previous states i and j:

92 3 Rating and Scoring Systems



p̂ i; j; kð Þ ¼
XT
t¼2

nt i; j; kð Þ=
XT
t¼2

nt�1 i; jð Þ:

These are estimators of probabilities p(i, j, k) and p(i, j). The Markov property

implies that p i; j; kð Þ ¼ p j; kð Þ for all i and so a χ2 test can be applied. According

to Thomas et al. (2002)

S ¼
XJ
i, k¼1

n i; jð Þ p̂ i; j; kð Þ � p̂ j; kð Þð Þ2
p̂ j; kð Þ

has a χ2 distribution with J � 1ð Þ2 degrees of freedom.

Continuous Time Markov Processes

Observing credit state migrations that can take place essentially any time, it is often

more appropriate to consider a continuous time process. The Markov chain variable

Xt ∈ 1; ::; Jf g is now indexed by continuous time t � 0. It is, in fact, a discrete state

stochastic process whose evolution is described by transition matrices P(s, t) whose
elements are transition probabilities pij(s, t) between states i and j from time s to t.
The Markov property implies the familiar matrix identity:

Pðs, uÞ ¼ Pðs, tÞPðt, uÞ for s < t < u: ð3:23Þ
The continuous time discrete-state processes can be studied in an analogy to

survival analysis where we deal only with two states. Given two states i 6¼ j, let us
define the transition intensity (hazard rate)

λij tð Þ ¼ lim
Δt!0

pij t, tþ Δtð Þ
Δt

;

where we implicitly assume that the limit always exists. Note that the limit would

not exist for i ¼ j since in this case pij t, tþ Δtð Þ approaches one. Therefore, if Λ(t) is
the matrix with zeros on the diagonal and λij(t) elsewhere, then we have formally

P t, tþ dtð Þ ¼ I þ Λ tð Þdt and so according to (3.23)

P 0;Tð Þ ¼
YT
0

I þ Λ tð Þdtð Þ:

The product should be interpreted as a limit of finite products when dt ¼ T=K
with K being large (going to infinity). The exponential survival analysis model with

a constant hazard rate corresponds to the assumption of a constant transition

intensity matrix Λ ¼ Λ tð Þ. Then, indeed,
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P 0; Tð Þ ¼ exp I þ ΛTð Þ ¼ I þ ΛT þ 1

2
Λ2T2 þ � � �:

The constant intensities can be estimated from historical migration data in a

straightforward way. Let us consider two states i 6¼ j and an exposure that has

entered the state i, then after a certain time Tl it may migrate to state j, or it may

migrate into another state, or it may stay in state i until the end of the observation

window. The observation (of a migration form i to j) is censored in the last two

cases and uncensored in the first case. Let T* ¼
X

Tl and N be the number of

uncensored observations, i.e. of exits.7 Then we have the following estimate:

λ̂ ij ¼ N=T*: ð3:24Þ
The times Tl, measured in years, could be based on daily data utilizing maxi-

mally the available historical information including censored observations.

Remark It is easy to see that (3.24) is a consistent maximum likelihood estimate

for the exponential survival model. Since S tð Þ ¼ exp �λijt
� �

is the survival function,

that is the probability of continuously staying in state i without transition to j until
time t, and according to (3.15), the log-likelihood function we need to maximize is

ln L λij
� � ¼ �λijT

* þ Nln λij;

where N and T* are defined as above. Its maximum can be found by setting the first

derivative equal to zero, i.e. indeed

∂ln L λij
� �

∂λij
¼ �T* þ N

λij
¼ 0,

λij ¼ N=T*:

3.5 Expected Loss, LGD, and EAD Estimations

So far, we have focused just on ratings, and the probabilities of defaults, which play

the role of a decision support tool in the process of the acceptance or rejection of

loan applications. But the bottom line for the banking business is the final profit/loss

of a loan product portfolio, which depends on the appropriate loan pricing, rates of

default, and realized losses on the defaulted loans. The interest rate of a loan should

reflect the internal cost of funds, the risk premium, and the administrative cost. The

7Note that an exposure may be in state i more than once during our observation window.
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internal cost of funds may be given by a fixed or floating rate, corresponding to the

interest the bank is paying on customer deposits and on the interbank market. It is

usually defined as the marginal financing rate close to the offered rates quoted on

the interbank market. The internal cost of funds is the minimum that must be

covered when granting a loan, otherwise the loan granting business lacks any

rationale. Secondly, the interest income on loans, specifically the business margin,

must cover the administrative costs related to the loans, and last, but not least, the

risk premium must pay for the expected credit losses that do happen on a larger

portfolio. After all those costs, the bank still has to account some positive net profit

which should bear a certain relation to the bank’s capital. It is often emphasized that

the business margin, on a stand-alone basis, does not often guarantee sufficient

profitability. Clients with loans are expected to have a side-business with the bank

which generates additional income, related, for instance, to current account and

maintenance fees, asset management, insurance, etc. The cross-selling effect

is often taken into account when the business margin is calculated.

Let us now focus on the key element of the credit margin calculation called the

Expected Loss (EL). Let us fix a time horizon T, and, for a loan i, define the absolute

loss Labsi (T ) as the amount of provisions charged at the end of the period in the case

of default of the loan, and zero otherwise. According to IAS rules, provisions can be

created only in the case of credit impairment, which usually coincides with the

definition of default. In some cases banks may create provisions earlier, but those

should not be considered as incurred losses, rather, as reserves. If a loan is written-

off during the period, thenLabs
i

Tð Þwill be simply the written-off amount. In the case

of default, the provisions should be estimated as an economic loss on the exposure

at the time of the default, reflecting the expected recovery cash flows, or bad debt

market value. Having defined the random variable Labsi (T ), we can define the

theoretical absolute expected loss ELabs
i ¼ E Labs

i Tð Þ� �
. The relative expected loss

would be then ELi ¼ ELabs
i =EADi Tð Þ, where EADi(T ) is the expected total expo-

sure of the loan at the time of default (usually approximated by the initial exposure

balance). Let us for the sake of simplicity assume that a given portfolio of N loans is

homogenous in terms of cumulative probability of default PD, in the time horizon

T, in terms of the relative expected loss EL, and size A. Now let us calculate the

relative risk premium RP that is collected only on loans that do not default during

the period, solving the simple equation requiring that expected losses are covered

exactly by the collected premiums,

N � 1� PDð Þ � A� RP ¼ N � A� EL, i:e:

RP ¼ EL

1� PD
: ð3:25Þ

The EL (expected loss) and RP (risk premium) rates need to be annualized if

calculated over a horizon different from 1 year. We could possibly improve the

model, taking into account the randomness of the time of default, exposure,
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recovery rates, partial installment payments, and, in particular, the time value of

money. Nevertheless, the Eq. (3.25) is, in most situations, sufficient to estimate

roughly the risk margin that must be added to the internal cost of funds and

administration costs as a minimum, in order not to run a money losing business.

The risk premium may serve just to set appropriate pricing, or as an internal cost

charged to business units as an insurance premium. The central budget in the latter

case must cover the credit losses from the created “credit insurance reserves”. In

this system, business units can focus on the distribution of loans without fear of

unexpected credit losses. The system still needs to have a participation element

motivating business places to maintain a satisfactory loan portfolio quality.

To estimate the expected loss key parameter, it is useful to break down the

expected loss into the probability of default, and the absolute loss at default:

ELabs ¼ E L½ � ¼ E Labs
��Default� �� Pr Default½ � ¼ E L� Exp

��Default� �� PD:

The variables Exp, and the percentage loss L ¼ Labs=Exp, may be considered in

most situations to be independent, and so we can further break down the expected

conditional loss as

E L� Exp
��Default� � ffi LGD � EAD;

where:

LGD ¼ E Labs=Exp
��Default� �

and EAD ¼ E Exp
��Default� �

:

The estimation of Exposure at Default is non-trivial for revolving exposures like

credit cards, overdrafts, lines of credit, etc. For other products, it is simply set equal

to the outstanding exposure. Hence, for the absolute loss we have the following

elementary decomposition

ELabs ¼ PD� LGD� EAD: ð3:26Þ
In the case when EAD equals the actual exposure, the percentage loss rate can be

simply expressed as EL ¼ PD� LGD.
According to (3.25), the risk premium can be calculated per each rating class, or

for a whole product pool. Retail products like credit cards, or consumer loans, often

have a flat interest rate based more on marketing criteria. In general, the credit risk

and marketing management’s task is to find an optimum scoring cut-off level s0, for
the product application approval (only clients with a score of at least s0 are

approved) maximizing the overall profit. Given s0, we may estimate the average

PD(s0), the expected loss EL(s0), and the risk premium RP(s0) given by (3.25). In

fact, since there is a one-to-one correspondence between the average PD, and the

cut-off score, the optimization can also be based on a target average default rate

PD0. The estimation must use an assumption based on the distribution of the
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approved loans across the score values, and on an LGD estimation. If the loan fixed

interest rate is R, the cost of the funds is R0, and the administrative costs as a

percentage rate is C, then the percentage average net income is

NIrel s0ð Þ ¼ R� R0 � RP s0ð Þ � C. With a higher cut-off score, the quality of the

production improves and the percentage net income goes up. On the other hand, a

higher cut-off implies a lower volume of loans granted; i.e., the rejection rate goes

up. If V is the volume of all loan applications estimated by the marketing depart-

ment, then the potentially approved volume V s0ð Þ ¼ V � Pr s � s0½ �, will decrease
with a higher cut-off score s0. The absolute net income is then simply

NI ¼ NIrel s0ð Þ � V s0ð Þ. An example of the relationship between the cut-off

(or average PD), and the overall net income is shown in Fig. 3.28. The conservative

cut-off corresponding to PD0 ¼ 1%, or the too optimistic one corresponding to

PD0 ¼ 8%, clearly do not lead to the best results. In fact, in this simple model, the

optimum, around PD0 ¼ 4:3%, corresponds to the point where the marginal net

income; i.e., net income on loans with a score exactly at s0, equals zero (see also

Sect. 3.1). The optimization should also take into account the various levels of the

product price, and the cost of risk capital, which will be discussed in Chap. 4.

LGD and Recovery Rate Estimation

In order to estimate the LGD, we first need to specify the notions of realized

(ex post), and expected (ex ante), Recovery Rate (RR), and the complementary

Loss Given Default (LGD). Realized RR can be observed only on defaulted
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receivables, while the expected recovery rate is estimated for non-defaulted receiv-

ables based on currently available information. The RR and LGD are expressed as

percentages of the exposure outstanding at default (EAD), and LGD ¼ 1� RR is

simply the complementary loss rate based on the recovery rate that is usually less

than 1. For market instruments like bonds, or other debt securities, we may define

the realized market RR as the market value of the principal (plus coupon accrued at

default) of the security shortly (typically 1 month) after the default. Applicability of

the definition assumes the existence of an efficient, and sufficiently liquid, market

for defaulted debt. For other receivables we have to observe the net recovery cash

flows CFt from the receivable generated by a work-out process. The work-out

process may be internal or external, where a collection company is paid a fee for

collecting the payment on behalf of the receivable owner. The process may also

combine the ordinary collection and partially the sale of the receivables to third

parties. In any case, the work-out process involves significant costs that must be

deducted from the gross recoveries. The net cash flows must be finally discounted,

with a discount rate r appropriately reflecting the risk (BCBS 2005a, b, c).

RR ¼ 1

EAD

Xn
i¼1

CFti

1þ rð Þti : ð3:27Þ

The work-out recovery rate should, in a sense, mimic the market recovery rates.

The relationship between the two ex-ante notions is an analogy between the

fundamental value and the market value of a stock. Thus, the discount rate can be

based on a measure of the RR systematic risk, and the general price of the risk (see

Witzany 2009a). Since the market recovery rate is never negative, and can be hardly

larger than 1, normally we assume that RR, as well as LGD ¼ 1� RR, lie in the

interval [0, 1]. The calculation of the work-out recovery rates according to (3.27)

may, however, in some cases lead to negative values due to high costs and low, or

no, recoveries, and, on the other hand, it may lead sometimes to values larger than

1 in the case of large and successfully collected late fees.

Having collected and calculated the realized recovery rates, the next task is to

estimate the LGD for non-defaulted accounts. In the case of new loan applications,

banks need to estimate not only the probability of default (PD) in the given horizon,

but also the LGD in the same horizon.

There are, in principle, two approaches that can be combined: pool level and

account level regression based LGD estimations. The basic pool level approach is

based on elementary criteria like the collateralization level (e.g., according to

LTV—loan to value ratio, in the case of mortgages), debtor type (e.g., industry

in the case of corporate exposures), loan seniority etc. in order to split historical

defaulted exposures and realized LGD observations, as well as non-defaulted

exposures, into LGD homogenous pools. Average historical LGDs, and the

corresponding confidence intervals, are then computed for every pool. The pools
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that do not discriminate between the LGD estimates should be merged, and the pool

estimates are used as ex ante predictions.

In the regression based approach, we try to estimate a regression model

LGDi ¼ f ðβ0xiÞ þ εi, ð3:28Þ
where xi are LGD explanatory variables (e.g. collateral value, financial ratios, etc.),

β is the vector of the regression coefficients, and f is an appropriate link function.

We need to apply a link function, since the values of an ordinary linear regression

term β 0 xi lie in �1,1ð Þ, while LGD values are more or less in the interval [0, 1].

The link function could simply be the Logit function, or rather, a function

transforming the normal distribution into an appropriate LGD distribution, e.g.,

beta, mixed beta, or an empirical distribution. Figure 3.29 shows the recovery rate

distributions for corporate loans according to seniority, as reported by Moody’s. At

least one of the classes (Sr. Unsecured), shows a bimodal shape (either rather low,

or rather high, recovery rates). This is even more pronounced for consumer loans,

where a logistic regression discriminating between low and high recoveries could

be applicable.

The performance of the model is, in general, measured using the in-sample or

out-sample classical statistic R2 (see, e.g. Greene 2003). Alternatively, Spearman’s

rank correlation or Somers’D (Gini coefficient) can be used. The predicted values

LGD að Þ ¼ f β0x að Þð Þ, can be used as account level LGD estimations, or to define

Fig. 3.29 Probability densities of recovery by seniority (Source: Schuermann 2002)
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LGD rating and corresponding LGD pools. LGD predictions can be recalibrated on

the rating pools analogously to PD calibration. The advantage of the approach is

that the regression univariate, and multivariate, analysis helps to analyze the most

important explanatory factors, and to define the optimal LGD pools.

There are many issues encountered by banks estimating LGD. Firstly, there are

often not enough observations. Some products, such as mortgages, or large corpo-

rate debtors, may have rare defaults and, moreover, banks in the past did not pay too

much attention to the systematic collection of recovery data. Even if a bank started

to collect data a few years ago, the problem is that the standard internal recovery

process takes a long time; up to 3 or even more years; and so we do not know the

ultimate recovery rates for the most recent defaults. This issue may be overcome by

an extension method, which extrapolates partial recovery rates using existing

completed recovery observations. Alternatively, there is the possibility of applying

a modified Survival Analysis method (see Witzany et al. 2010).

Secondly, a number of studies (see Fig. 3.30) show the cycle dependent

variability of recovery rates and LGDs (Schuermann 2002; Altman et al. 2002),

and the bank must decide whether the estimations are to be Point-in-Time (PIT), or

Through-the-Cycle (TTC). In the case of pool level estimates, this can be achieved

by analyzing the monthly, or quarterly LGD time series; i.e., time series of average

LGDs on receivables which have defaulted in a given period and that belong to the

pool. If the time series is long enough, then the appropriate PIT LGD estimations

(prolonging a series based on an econometric model), or TTC LGD estimations,

Fig. 3.30 Defaulted bond and bank loan recovery index, U.S. debtors. Shaded regions indicate

recession periods (Source: Schuermann 2002)
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usually as weighted long run averages, can be produced. In the case of account level

predictions, one possible method is to include relevant macroeconomic indicators

in the vector of explanatory variables x. Then LGD að Þ ¼ f β0x að Þð Þwith systematic

variables set to the values forecast for the coming period, produces PIT estimations.

On the other hand, if the macroeconomic explanatory variables are set equal to the

long term average values and other variables are TTC, then the estimations reflect

the TTC philosophy.

Another issue is that the work-out methods often change, some receivables being

sold, others collected internally, whilst others are collected by external companies

with an incentive scheme, etc. The pooling criteria and account level regression

then must respect the main identified processes.

It should be pointed out that the LGD parameter is as important as the PD. The

methodology and experience with its estimation is, nevertheless, much more

limited. There are many new academic papers on the subject, and we shall probably

see new interesting and sophisticated approaches to LGD modeling in the near

future.

Provisions and Write-Offs

LGD estimations should go hand in hand with the provisioning process. Provisions

decrease the value of receivables with respect to problematic credit borrowers.

Since the amount impacts directly on the bank’s P/L statement, provisioning is a

very sensitive process that should not be under the control of the business part of the

bank, nor even of the credit analysts who had approved the original loan. Provi-

sioning is one of the most important items scrutinized by external auditors during an

annual review.

The process is (in the case of international banks) regulated by the International

Accounting Standards (IAS 39 issued by IASB—International Accounting

Standards Board and replaced by International Financial Reporting Standards—

IFRS 9 published in 2014 and becoming effective from 2018). According to the IAS

39 standards, the provisions reducing the asset value are charged if there is

objective evidence of “impairment”. The IAS notion of “impairment” might be

interpreted a little bit differently compared to the Basel II definition of default.

Usually, impaired receivables are always considered as defaulted. However, there

might be defaulted receivables where no material loss is expected due to high

quality collateral. Since “impairment” is related to a material loss, these receivables

are not necessarily considered as impaired. A typical case of “impairment” evi-

dence is a legal event (bankruptcy, restructuring), days past due, etc. The provisions

should be equal to the decrease of the asset value (cash flows discounted by the

effective interest rate, EIR) due to the impairment. Interest accrued after

impairment is calculated using the “amortized cost” principle, i.e. as the EIR

applied to the net present value. For large impaired exposures, the determination

of provisions depends on expert analysis. For smaller exposures, various statistical
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methods could be applied. In fact, the IAS allows the creation of provisions

statistically, on a portfolio basis, if there is an overall deterioration of certain key

indicators (e.g., overall payment discipline of credit card borrowers, or property

prices in the case of mortgages, regional unemployment in the case of consumer

loans, etc.). There is a popular flow rate model based on the Markov Chain which

classifies the receivables into various buckets, according to past due days, and

calculates the transition probabilities, including the two persistent states of repay-

ment and write-off.

IFRS 9 in addition requires the creation of an impairment allowance based on

the expected present value of credit losses from defaults over the next 12 months,

unless there is a significant increase of the credit risk of the borrower. The

allowance is created from the very origination of a receivable. If the credit risk

increases, then the allowance must cover the projected lifetime losses, but interest

is still calculated based on the gross carrying amount. In the case of default, the

concept does not change—provisions must cover the lifetime credit expected loss,

in this case conditioned by an incurred (not expected) default, but the interest is

based on the “amortized cost” principle. The new accounting standards aim to be

forward looking, requiring banks to recognize losses on time, in particular,

following the experiences from the recent financial crises. The credit allowances

should create an additional buffer against traditional impairment losses and

presumably make the banking sector safer. However, the complexity of the

expected credit loss estimations, in particular over the lifetime horizon, might

bring undesirable flexibility of P/L management to the banks, or on the other

hand, a new pro-cyclical source of P/L volatility related to swings in general

credit expectations.

EAD and Conversion Factor Estimation

Exposure at default is the third key parameter in the expected loss decomposition

(3.26). Its precise estimation is more important for products such as revolving loans

and lines of credit, where the drawn exposure at the time of default may differ

significantly from the actual on-balance sheet exposure. There is quite limited

literature on the subject (Araten and Jacobs 2001; Moral 2006; Jacobs 2008), so

we will follow mainly Witzany (2009c).

A popular approach also incorporated into CAD (2006) and CRR (2013) is based

on the notion of the Conversion Factor (CF); estimating the utilization of the

undrawn amount upon default. If we know the conversion factor, we may calculate:

EAD ¼ Current Exposureþ CF� Undrawn Limit:

Another approach mentioned in CEBS (2006), is to express the conversion factors

from the total credit limits, not only from the undrawn limit. We will call this

coefficient the Credit Conversion Factor (CCF). This method, with the

EAD ¼ CCF� Limit, is also called the momentum approach.
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Firstly, let us define more precisely the key notions. Ex-post EAD, on a defaulted
facility, is defined simply as the gross exposure Ex(td) at the time of default td,
where Ex a; tð Þ ¼ Ex tð Þ denotes the on-balance sheet exposure of the facility a at

time t. We omit the argument a whenever it is clear from the context.

It is not so straightforward to define the ex-post conversion factor on a defaulted

facility, since it requires a retrospective observation point called the reference date
tr, where we observe the undrawn amountL trð Þ � Ex trð Þwith L(t) denoting the total
credit limit at time t. Since the conversion factor measures the utilization from the

undrawn amount, we need L trð Þ � Ex trð Þ > 0. Then it makes sense to define the

ex-post CF as:

CF ¼ CF a; trð Þ ¼ Ex tdð Þ � Ex trð Þ
L trð Þ � Ex trð Þ : ð3:29Þ

Note that an observed (ex-post) conversion factor may, in practice, be negative if

the drawn exposure between the reference date and the default date declines, but it

is also larger than 1 if the exposure at default exceeds the limit effective at the

reference date. This may happen if there is an increase in the limit, or a breach of the

limit, for example caused by interest and late fees. We will admit such observed

values, but the estimated ex-ante conversion factor still has to be non-negative

(a regulatory requirement), and will usually be expected to be lower than, or equal

to, 1 (estimated CF larger than 1 being, exceptionally, acceptable). Notice that the

expression (3.29) is very sensitive to the drawn amount if the undrawn amount is

small.

Regarding the ex-ante EAD and CF, we will start with a full probabilistic

definition and an analysis of the concept. Let T denote the time of default of the

non-defaulted facility a from the perspective of time t. Since we do not know the

time of default, T is a random variable, and T < 1, as we may assume that any

debtor eventually defaults in the infinite time horizon. Let us assume that EAD is

defined in the 1-year horizon, so, the theoretical definition is

EAD ¼ EAD a; tð Þ ¼ E Ex Tð Þ��t < T � tþ 1
� �

: ð3:30Þ
In order to break down the unknown time of default, and EAD conditional on the

time of default, we need to introduce the time to default density function fa(s);
i.e. fa(s)Δs being the unconditional probability that default happens over the time

interval
�
s, sþ Δs

�
. The time to default density function generally depends on the

properties of the facility a including the time from origination. Consequently, EAD
can be expressed as the fa(s)ds weighted average of expected exposure upon default
at T ¼ s:
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EAD ¼ EAD a; tð Þ ¼

ðtþ1

t

E Ex Tð Þ��T ¼ s
� �

f a sð Þds

P t < T � tþ 1½ � : ð3:31Þ

Thus, according to the analysis, ex-ante EAD also depends on the probability

distribution (density function) of the time to default. In particular, for short term

retail loans we have seen that the time to default density function may be large

shortly after drawing, and later it may significantly decline.

The distribution of the time to default depends on a particular product, as well as

on the time from the facility origination. There is a significant dependence of EAD
on the time to default, as confirmed by the study by Araten and Jacobs (2001).

Consequently, we will use the definition (3.31), which can be also called the PD-
weighted approach.

In practice, we need to approximate the integral (3.31) numerically. It can be

approximated by a discrete summation: Let us split the 1-year time interval into a

sequence of subintervals
�
t0, t1

�
, . . . ,

�
tn�1, tn

�
where 0 ¼ t0 < t1 < � � � < tn ¼ 1.

Next we estimateEADi conditional on time of default T being in the interval
�
ti�1, ti

�
,

and the probability p̂ i, that default happens during this interval for i ¼ 1, . . . , n .

Consequently p̂ ¼
Xn
i¼1

p̂ i estimates the probability of default within 1 year. The

probabilities can be taken on a portfolio basis or conditional on the facility properties.

Then, in line with (3.31) we get the simple approximation:

EAD ¼ 1

p̂

Xn
i¼1

p̂ iEAD
i

ð3:32Þ

An empirical study in Witzany (2009c) shows that the estimation may give

significantly different results, compared to EAD estimated in a fixed time (usually

1-year) horizon.

The Reference data set (RDS) is a set of ex-post observations used for ex-ante

EAD estimations. Our notation follows Moral (2006). An observation

o ¼ a; tr; td;RD
!� �

consists of a defaulted facility identification, the reference

date, the date of default, and a vector of risk drivers containing at least the

information on exposures and limits at the reference and default dates (Ex(tr),
L(tr),Ex(td), L(td)).

As explained in the definition of ex-post EAD, and CF, a single observation is

not determined only by the facility that defaulted at time td, but also by the reference
date tr, at which we measure the retrospective drawn, and undrawn, amount. We do

not exclude the possibility of more than one reference date for a given single

defaulted facility in order to capture the dependence of EAD and CF on the time

to default. The most common choice (and the most conservative, in line with the
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analysis above), is the 1-year horizon corresponding to the unexpected credit loss

estimation horizon. Generally, there are different alternatives (Moral 2006): Fixed
Time Horizon, Cohort Approach, or Variable Time Approach.

The Fixed Time Horizon Approach sets tr ¼ td � T where T is a fixed time

horizon (see Fig. 3.31). RDS defined in this way, in fact, leads to an estimation of

EAD and CF, conditional on the time to default being equal exactly to T. Therefore,
a number of RDS with different fixed time horizons, and based on the same set of

defaulted facilities, may be constructed in the PD-weighted approach. Banks often

use T ¼ 1 year as a standard choice.

The Cohort Method divides the observation period into intervals
�
T0,T1

�
, . . .�

Tn�1,Tn

�
of a fixed length, usually 1 year (see Fig. 3.32). Defaulted facilities are

grouped into cohorts according to the default date. The reference date of an

observation is defined as the starting point of the corresponding time interval;

i.e., if td ∈
�
Ti,Tiþ1

�
then we set tr ¼ Ti: In this case, the time to default probability

distribution is implicitly captured in the data. However the beginnings of intervals

may cause an initial seasonal bias (for example Ti some time before Christmas will

probably show higher drawing on credit cards, or overdrafts, than during some

other months). So, it is advisable to set Ti at “normal” periods of the year with

average drawings.

The Variable Time Horizon Approach uses a range of fixed horizon values

T1, . . .,Tk, e.g. 1 to 12 months, or 3, 6, 9, and 12 months (see Fig. 3.33). For each

observation we calculate the realized conversion factors for the set of reference

dates tr ¼ td � Ti, i ¼ 1, . . . , k. The difference, compared to the fixed horizon,

approach is that we put all the observations a, td � Ti, td, . . .ð Þ into one RDS. In the
fixed horizon approach, we admit different time horizons only in different reference
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data sets used for conditional EAD estimation. When all the observations are put

into one RDS, there might be a problem with homogeneity; for example, the

facilities that have been already marked as risky with restrictions on further

drawing, should be treated separately. Moreover, there is an issue of the high

correlation of the different observations obtained from one defaulted account.

The RDS, on the other hand, captures implicitly the possible dependence of EAD
and CF on the time to default, but the distribution of the time of default (appearing

flat in the RDS), is not realistically reflected. It is not, by definition, suitable for the

PD-weighted approach.

To summarize, it is recommended to use the fixed-time horizon RDS for the PD-
weighted approach (different time horizons for different RDS). Otherwise, the
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cohort method should be preferred, unless the drawings show strong seasonality. In

that case, we would recommend the variable-time horizon approach.

When estimating EAD at the pool level approach, defaulted and non-defaulted

receivables are classified into a number of disjoint pools l ¼ 1, . . . ,m that are

homogenous with respect to selected risk drivers, and which contain, at the same

time, a sufficient amount of historical data. Pool l dataset RDS(l ) is used to obtain

an estimation of the conversion factor CF lð Þ. Then, for a non-defaulted facility

a belonging to the pool l based on the conversion factor approach we set:

EAD a; tð Þ ¼ Ex a; tð Þ þ L a; tð Þ � Ex a; tð Þð Þ � CF lð Þ:
There are several approaches to the conversion factor estimation. The simplest

approach is to calculate the sample (default-weighted) mean:

CF lð Þ ¼ 1

RDS lð Þj j
X

o∈RDS lð Þ
CF oð Þ

where, given a reference data set with calculated ex-post conversion factors

CF oð Þ, o∈RDS, the same weight is assigned to each observation, disregarding

the magnitude of undrawn amount or the time of the observation. In particular, the

observations with very low undrawn amounts may bring a significant random error

into the estimation. This problem is generally solved by the weighted mean
approach:

CF lð Þ ¼
X

wo � CF oð ÞX
wo

; ð3:33Þ

where wo (o∈RDS lð Þ) are appropriate positive weights. The natural candidates for
the weights are the undrawn limits wo ¼ L oð Þ � Ex oð Þ. Then we get

CF lð Þ ¼
X

EAD oð Þ � Ex oð Þð ÞX
L oð Þ � Ex oð Þð Þ :

In order to choose the best approach it is natural to start with the standard goodness-

of-fit measure

GF ¼
X

o∈RDS lð Þ
EAD oð Þ � EAD oð Þð Þ2:

In other words, we are looking for estimation methods producing ex-ante EAD
estimates that minimize the sum of the squared differences between realized EADs,
and the ex-ante predictions. If we restrict ourselves to estimations of the form
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EAD oð Þ ¼ Ex oð Þ þ CF lð Þ � L oð Þ � Ex oð Þð Þ
then we need to minimize

GF ¼
X

EAD oð Þ � E oð Þ � CF lð Þ � L oð Þ � Ex oð Þð Þð Þ2 ð3:34Þ

which is equivalent to the OLS regression without constant:

EADðoÞ � ExðoÞ ¼ αþ βðLðoÞ � EðoÞÞ þ εðoÞ with α ¼ 0 and β ¼ CF: ð3:35Þ
Consequently:

CF lð Þ ¼
X

EAD oð Þ � Ex oð Þ� � �L oð Þ � Ex oð Þ� �
X

L oð Þ � Ex oð Þð Þ2 : ð3:36Þ

Note that this formula corresponds to the weighted mean approach (3.33), with

wo ¼ L oð Þ � Ex oð Þð Þ2. The formula (3.36) could be recommended as the most

consistent pool level CF estimation approach.

It is also possible to refine the regression (3.35) with β ¼ CF expressed in terms

of other explanatory variables (macroeconomic, facility, or debtor level risk

drivers). CF can be modeled in different parametric forms. The simplest linear

form would be CF ¼ b0f , where f is a vector of relevant risk drivers and b is the

vector of linear regression coefficients. Alternatively, we may use a link function,

for example, the exponential function CF ¼ e�b0f ; where the outcome is always

positive, but may be also larger than 1. If the historical data confirm thatCF∈ 0; 1½ �,
then the logit function might be more appropriate:

CF ¼ Λ b0fð Þ ¼ eb
0f

1þ eb
0f
:

The coefficients are obtained by numerically optimizing, either the sum of squared

errors (3.34), or by using the maximum likelihood approach. The account level

estimations should, rather, be used to analyze the most relevant risk drivers, and to

define the optimal pools where the pool level estimate (3.36) is applied. For more

details, see Witzany (2009c).

Risk Premiums Revisited

The concept of survival probabilities together with LGD and EAD estimates can be

used to set up much more precise actuarial calculation of the risk premiums.

Specifically, let us assume that we have estimated the survival function S(t),
possibly conditional on a rating class or even specific on the characteristics of an
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individual exposure. In addition, assume that EAD(t) is the expected exposure at

time t (measured from the exposure origination) and LGD(t) the loss given default

rate, possibly depending on time, but usually assumed to be constant. The equiva-

lence principle used in a simplified form in (3.25) can now be applied taking into

account the default and survival probabilities over the full life of the product. The

life-time discounted expected loss can be approximated as

ELLT ¼
XK
k¼1

LGD kΔtð Þ � EAD kΔtð Þ � e�rkΔt� S k � 1ð ÞΔtð Þ � S kΔtð Þð Þ;

where the time to maturity T ¼ KΔt is split into shorter time intervals, e.g. months

corresponding to installment frequency, and r is an appropriate discount rate.

Therefore, we are adding up the discounted losses at times kΔt weighted by the

default probabilities over the time intervals k � 1ð ÞΔt, kΔtð � fork ¼ 1, . . . ,K:On the
other hand, if RP denotes the unknown premium rate paid always at kΔt based on

the outstanding balance and conditional on survival (that default has not taken place

until kΔt) then the expected life time income can be expressed as

EILT ¼ RP�
XK
k¼1

EAD kΔtð Þ � e�rkΔt�S kΔtð Þ:

Finally, the actuarial equivalence principle equation ELLT ¼ EILT can be easily

solved for the risk premium as follows:

RP ¼

XK
k¼1

LGD � EAD kΔtð Þ � e�rkΔt� S k � 1ð ÞΔtð Þ � S kΔtð Þð Þ

XK
k¼1

EAD kΔtð Þ � e�rkΔt�S kΔtð Þ
: ð3:37Þ

As mentioned at the end of Sect. 3.3, the estimated real-life mortgage portfolio

products survival functions shown in Fig. 3.19 can be used to estimate consistently

credit margins for the three considered ratings A, B, and C. The future exposure at

default EAD(t) is easily calculated based on the installment calendar that is known

for non-revolving products like mortgages. The loss given default parameter

assumed to be constant, i.e. independent on time, has been estimated slightly

below 20% based on the historical data. It is obvious, looking at Fig. 3.19, that

the risk premium based on the simplified formula (3.25) may differ quite signifi-

cantly from the calculation given by (3.37).
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3.6 Basel II Rating Based Approach

The development and the main goals of the Basel II/III regulation have been

introduced in Sect. 2.3. As shown in Fig. 2.9, there are three Regulatory Pillars:

Minimum Capital Requirements, Supervisory Review Process, and Market Disci-

pline. Let us look closer at the quantitative First Pillar that gives the rules for capital

adequacy calculation.

The Capital Adequacy Ratio (CAR) is defined and expressed as the capital

divided by the Risk Weighted Assets (RWA):

Capital Ratio ¼ Total Capital

Credit RWAþMarket RWAþ Operational RWA
: ð3:38Þ

The minimum requirement for the Capital Ratio is 8% plus various conservative

and countercyclical margins introduced by Basel III (BCBS 2010). Originally

(BCBS 1988), the risk weighted assets had been calculated as on-balance, or

off-balance, exposures multiplied by a set of coefficients, and there was no Market

Risk, or Operational Risk Part. The idea was to have sufficient capital in the case of

a stressed scenario, when the losses amount to 8% or more of RWA. In the context

of the current Basel II regulation, the principle did not change, but banks are, rather,

asked to calculate the regulatory capital related to credit, market, and operational

risks, which should cover unexpected losses (see Fig. 2.7), and compare the

required regulatory capital with the available shareholders capital. The formula

(3.38) could be now rather written as

Capital Ratio ¼ Total Capital

Regulatory Capital
� 8%: ð3:39Þ

If the bank’s capital is greater than, or equal to, the required regulatory capital,

then the bank is fine. Otherwise, there is a problem. The formulas (3.38) and (3.39)

are equivalent through the relationship: RWA¼ 12.5�Regulatory Capital, or

equally, Regulatory Capital¼ 8%�RWA.

Here, we focus on the credit risk regulatory capital (or RWA), which can be

calculated using several approaches (see Fig. 3.34): Standardized (SA) and internal

rating based (IRB), with two sub-alternative approaches; foundation (IRBF) and

advanced (IRBA).

Compared to Basel I regulation, all Basel II approaches incorporate credit

ratings: external in the case of SA, and internal in the case of IRB. The empirical

and theoretical evidence is that the unexpected credit risk is related to expected

losses, and the main idea of the regulation is to differentiate assets according to their

credit ratings. The Standardized Approach just refines the differentiation of the risk

weights in RWA calculation, while the Internal Rating Based Approach works with

PD, LGD, EAD, and other parameters, to estimate the contribution of each single
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asset to unexpected loss. While PD is implied by the internal ratings, the other two

parameters, LGD and EAD, are either set by the regulator in the Foundation

Approach, or estimated by the bank in the Advanced Approach. The regulation

works with five broad asset classes: corporate, sovereign, bank, retail, and equity.

Within the corporate asset class, and the retail asset class, there is a number of

sub-classes. The banks may apply any of the approaches separately within the asset

classes. While the SA approach is the minimum approach, the IRBF or IRBA

approaches are subject to a regulatory approval.

We have intentionally omitted too frequent citation of Basel II in the previous

sections in order to emphasize that the various credit measurement techniques were

developed before, and independently of, the regulation. The new regulation uses the

already existing concepts, and at the same time, fosters new developments. The

motivations for business oriented credit measurement and regulatory credit

calculations are close, but not identical. The regulation needs rather conservative

and stable (through-the-cycle) estimates, while business needs the most accurate

and up-to-date (point-in-time) estimates. Moreover, the regulation sets down a

number of qualitative standards which could be too restrictive for the development

and application of new credit measurement and management methods. Therefore, it

is optimal to have the same rating system, PD, LGD, and EAD estimates for both

purposes, but in some areas, differences could exist.

The Standardized Approach

The main difference of the standardized approach, compared to the old Accord, is

that the risk weights depend on ratings assigned by eligible External Credit Assess-

ment Institutions (ECAIs); i.e., credit rating agencies like S&P, Moody’s, or Fitch.

The list of ECAI’s is approved by national supervisors based on several criteria:

objectivity, independence, international access/transparency, disclosure, resources,

and credibility. Table 3.23 shows the weights according to the S&P-like rating

Fig. 3.34 Different Basel II approaches to credit risk measurement (Source: BCBS 2005a)
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scale. National supervisors are, however, responsible for assigning the ECAI’s

ratings to the available weights. If there are more ratings available, then the second

worst weight applies.

Moreover, retail loans not secured by residential real estate receive a flat 75%

weight while mortgages have 35% weight. The weight is increased to 100–150%

for past due (90 days and more) retail loans and 50–100% for mortgages. Unrated

exposures are assigned a flat weight of 100% corresponding to an average weight of

the rated exposures. However, this can be criticized as an incentive for higher risk

debtors to avoid obtaining any external rating (note that the ratings B- and worse

receive the weight 150%).

Thus, generally the RWA is calculated asE� w; i.e., the Exposure multiplied by

the Risk Weight that is determined by the ratings and the regulatory tables. For

on-balance sheet items, E is just the outstanding exposure, while for off-balance

sheet items, E is calculated as a credit conversion factor (CCF) multiplied by the

off-balance sheet exposure. For example, for guarantees, the CCF is 20% if the

original maturity is up to 1 year, and 50% if the maturity is over 1 year. The

regulator also reflects various credit risk mitigation techniques. The exposure may,

in the simple approach, be reduced due to collateralization by assets like cash or

gold, or the risk-weight may be substituted by a reduced one, according to the

guarantee counterparty. In the comprehensive approach, the risk weight w is

reduced by a formula depending on the collateral quality.

The idea behind the RWA coefficient tables lies in the empirical and theoretical

fact that unexpected credit losses are related to the expected losses. For example, if

the expected loss rate on a homogenous portfolio was 3%, then the unexpected or

stressed loss rate would be three to four times higher, say 11%. While the expected

loss should be covered by the margin, the unexpected loss of 11�3%¼ 8%, needs

to be covered by the capital. The 8% required capital cushion corresponds to the

12:5� 8% ¼ 100% risk weight (BB+ to B� weight for all asset classes in

Table 3.23). Indeed, for the S&amp;P rating classes BB+ to B�, the average

historical default rate is at about 5%, and, considering a normal LGD value of

Table 3.23 Risk weights for sovereigns, banks, and corporations

Rating

Sovereign risk

weights (%)

Bank risk

weights (%) Rating

Corporate risk

weights (%)

AAA to

AA�
0 20 AAA to

AA�
20

A+ to A� 20 50 A+ to A� 50

BBB+ to

BBB�
50 100 BBB+ to

BBB�
100

BB+ to B� 100 100 BB+ to

BB�
100

Below B� 150 150 Below

BB�
150

Unrated 100 100 Unrated 100

Source: BCBS (2006a)
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60%, we are at the expected loss around 3% ¼ 5%� 60%. This is a very rough

calculation just to illustrate the logic of the risk weights, depending on the ratings,

or effectively on the corresponding expected loss rates. The main advantage of this

new approach, compared to the old Accord, is that it reasonably differentiates

within the most important asset classes (corporations, banks, and sovereigns)

according to the risk. Yet, the differentiation is still very approximate and the

calculation does not reflect other key factors, such as portfolio diversification and

asset correlation.

The Internal Rating Based Approach

In the IRB approach, Table 3.23 is replaced by a formula, or rather a set of formulas,

that vary according to the different asset classes and sub-classes. The formulas in

general look as follows:

RWA ¼ EAD� w
w ¼ K � 12:5
K ¼ UDR PDð Þ � PDð Þ � LGD �MA;

ð3:40Þ

where UDR denotes an unexpected default rate calculated by a regulatory formula,

with PD being the key input parameter, LGD is the regulatory, or own, estimate of

the loss given default, andMA is the maturity adjustment, again given by a specific

formula depending on the receivable’s maturity. Note that the RWA formula is just

mechanically derived from the capital requirement ratio K, applied to the exposure

at default EAD. The maturity adjustment is applied only to non-retail receivables;

for retail receivables MA¼ 1. The formulas vary for different asset classes, and

differ in particular in the UDR calculation, where the asset correlation is either

given as a constant, or by a formula depending on PD and size of firm in the case of

small and medium enterprises (SME).

Figure 3.35 illustrates the dependence of the risk weight w in the case of

corporate exposures, with LGD set at 45%, and maturity M at 3 years. Note that

the weights are relatively close to Table 3.23 when the rating grades are replaced by

the average long term default rates.

We have intentionally omitted presenting the full formulas in this section. The

formulas and the theory behind them will be outlined in Sect. 4.7. The point is that

the formulas (3.40) are, in a sense, continuous and higher dimensional alternatives

of Table 3.23, and the key PD parameter is estimated through an internal rating

system.

An eligible internal rating system for an asset class must satisfy a number of

regulatory conditions and must be approved by the national supervisor. It is difficult

to summarize all the qualitative requirements set up by the BCBS (2006a). The

guiding principle is that the regulator wants to see higher credit risk measurement

standards leading to unbiased, or rather conservative PD estimates. The internal
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rating system may be expert based, mechanical, or a combination of both. It must

differentiate meaningfully across the different risk classes. The minimum number

of rating grades is explicitly given in the case of corporate, sovereign, and bank

exposures as seven for non-defaulted, plus one for defaulted, receivables. For those

asset classes the rating system must have two dimensions, borrower and transaction

specific; while in the case of retail exposures, both dimensions could be covered by

a one-dimensional rating system. The rating risk horizon must be at least 1 year.

According to §415 of the BCBS (2006a): “The range of economic conditions that
are considered when making assessments must be consistent with current
conditions, and those that are likely to occur over a business cycle within the
respective industry/geographic region.” Note that this requirement shifts the rating

system closer to the TTC (Through-The-Cycle) philosophy, diverging from a more

usual PIT (Point-In-Time) business oriented internal rating system.

PD estimates are assigned to the rating grades. The estimates must be based on

long-term averages of the 1-year default rates of debtors in the grade, and must

incorporate a margin of conservatism that is related to the likely range of estimation

error. The length of the underlying historical observation period must be at least

5 years. The bank must use, consistently, a definition of default satisfying the

regulatory conditions according to which a debtor that is “unlikely to pay”, or

90 days past due, must be classified as defaulted. The rating and PD estimation

process must be well documented. Moreover, the bank must regularly (at least once

a year) perform a validation (see Sect. 3.1), and report the results to its supervisor.

Note that the PD requirements again emphasize the TTC, and the rather conser-

vative philosophy of the regulatory estimates, which may differ from the PIT

business oriented values.

0%

50%

100%

150%

200%

250%

0,00% 1,00% 2,00% 3,00% 4,00% 5,00% 6,00% 7,00% 8,00% 9,00% 10,00%

w

PD

Risk Weight as a Function of PD

w

Fig. 3.35 Basel II IRB risk weights for corporates (LGD¼ 45%, M¼ 3)
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The Foundation (IRBF) Versus Advanced (IRBA) Approach

The LGD and CF parameters are set down explicitly by the regulation in the

Foundation Approach, but internally estimated by the bank in the Advanced

Approach. Banks may choose between the two approaches only in case of

non-retail exposures. For retail exposures only the Advanced Approach is possible

in the context of the IRB.

Under the Foundation Approach, senior claims on corporations, sovereigns and

banks not secured by recognized collateral are assigned a 45% LGD, while

subordinated exposures are assigned 75% LGD. The values may be reduced by

recognizable collateral. The EAD is defined as the on-balance sheet exposures, or

off-balance sheet exposure times and the CF coefficient is defined as in the SA

approach.

In the Advanced Approach (IRBA), banks produce their own LGD and EAD

estimates, subject to a number of qualitative requirements similar to the PD

estimates. However, there is an important difference between the PD parameter

that is stressed through the formula (3.40), and LGD, EAD parameters that are not

explicitly stressed. For this reason the regulation does not require only the

incorporation of an estimation error, but also other margins of conservatism that

should be part of the final estimates. According to §468 of the BCBS (2006a, b): “A
bank must estimate an LGD for each facility that aims to reflect economic downturn
conditions where necessary to capture the relevant risks. This LGD cannot be less
than the long-run default-weighted average loss rate given default calculated based
on the average economic loss of all observed defaults within the data source for that
type of facility. In addition, a bank must take into account the potential for the LGD
of the facility to be higher than the default-weighted average during a period when
credit losses are substantially higher than average.”Moreover, the banks must also

take into account the potential dependence of the borrower risk and the collateral or

collateral provider, or currency risk, in the case of a currency mismatch between the

loan and the collateral value. Overall, the produced LGD, and similarly the EAD,

estimates are not to be the expected future values, but rather, certain stressed values.

A reasonable interpretation and implementation of those requirements is a chal-

lenge for banks and their national supervisors. There is an ongoing discussion

among practitioners and academicians on these two puzzling concepts, as well as

on the related potential systemic risks (see Sect. 4.7).

The banks also have to estimate LGDs on defaulted assets, again reflecting the

possibility that they would have to recognize additional, unexpected losses during

the recovery period. For each defaulted asset, the banks must, moreover, obtain

their best estimate of the expected loss (BEEL) on that asset, based on current

economic circumstances and facility status (§471 of the BCBS 2006a). The specific

capital requirement for defaulted assets is then defined as:
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RWA ¼ EAD � w
w ¼ K � 12:5
K ¼ max 0,LGD� BEELð Þ

Note, that by definition, LGD should be never less than the BEEL. Thus, the capital

requirement on the defaulted exposure is simply defined as the difference between

the unexpected losses, and the expected losses. The regulation does not specify the

probability level at which the unexpected loss should be estimated. Therefore, a

consistent statistical estimation of the parameter is even more challenging than

LGD for non-defaulted exposures. The BEEL value should be, at the same time,

compared with provisions and write-offs. The former being less than the latter may

“attract supervisory scrutiny” and must be justified by the bank. Such a situation

may happen when the credit risk management and modeling process is separated

from the more traditional accounting based provisioning process. It would be

simplest to stipulate that provisions are greater than, or equal to, BEEL, but since

the Basel regulation cannot set strict rules on accounting (regulated by the account-

ing authorities), there is, instead, this soft rule strongly urging the banks to syn-

chronize the two concepts.

Finally, banks applying IRBA must compare the total amount of expected losses

EL ¼ PD� LGD � EAD, with total eligible provisions (§43, §375, and §380 of the
BCBS 2006a). If the total expected loss amount exceeds total eligible provisions,

banks must deduct the difference from their capital in a specified way. Note that

banks currently create provisions, according to IAS 39, on the class of all impaired

assets that, generally, is not identical to the class of defaulted assets. The principle

of portfolio provisions also allows one to create provisions on individually

non-defaulted, yet statistically impaired, exposures. The existing provisions should

reflect the incurred losses (on an individual or portfolio basis) caused by the past

events, while expected losses capture future, not yet realized events, and should be

more or less covered by the margin income. The discrepancy between provisions

and expected losses should be partially resolved by the IFRS 9 implementation

effective since 2018 (see Sect. 3.5).
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Portfolio Credit Risk 4

So far we have focused on methods how to properly measure credit risk and

approve individual loan transactions. But even if this process is under control and

loan underwriting is going well, a prudent bank management must ask the question;

“When is enough enough?” Can the bank portfolio grow without limitations, or is

there a limit? Moreover, is it optimal to specialize in one client segment, or

economic sector, or is it better to split the underwriting activities among more

segments and sectors? More specifically, can we optimize the risk/return relation-

ship in the sense of the Markowitz Portfolio Theory (Fig. 4.1)?

The Markowitz Theory is suitable for portfolio equity investments, where the

returns may be assumed to be jointly normal, characterized by a covariance matrix.

Various portfolios, combinations of the available stocks with different weights then

give different risk/expected return profiles. Since the returns are assumed to be

normal, their standard deviation is a satisfactory measure of risk that is compared

with the expected returns. The point is that there is a diversification effect if the

correlation between two assets with similar return is less than 1. Consequently, it is

always better to diversify our investment into two or more assets than to put all the

money into one asset. And because investors prefer to minimize risk and maximize

return, not all portfolios are optimal; the portfolios inside the shaded area in Fig. 4.1

are not optimal, since either the expected return can be improved without increasing

the risk, or the risk can be reduced without reducing the return. The top part of the

borderline of the shaded area is called the Efficient Frontier, where the optimal

portfolio risk/return combinations lie. When stock investments are combined with a

risk free investment with zero risk, and return RF, we obtain the Capital Market

Line (the straight line RFM in Fig. 4.1); with the Efficient Market Portfolio

M playing a key role in the Capital Asset Pricing Model (CAPM).

To apply the portfolio theory to a loan portfolio, we first need to define an

appropriate risk measure. The difference is that loan portfolio returns are heavily

asymmetric, and certainly not normal. Nevertheless, intuitively it should also be

better to diversify the available financing resources among more debtors and

economic sectors than bet all the money on one debtor, or economic sector. The
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risk measure applied here, to make the intuition numerically tractable, is the credit

unexpected loss or equally, the economic capital.

We have already seen that there is a banking regulation requiring that the capital

ratio; i.e., capital divided by the risk weighted assets, must be at least 8%, so, given

a capital level, the loan portfolio (with positive risk weights) cannot grow indefi-

nitely. The regulation also puts certain limits on concentrations, i.e. on exposures

with respect to single borrowers, or economically connected groups. Yet the

question should first be answered independently of the existing regulation. We

will explain the notions of expected and unexpected risk applied to a credit

portfolio, and discuss the various approaches to their modeling and estimation.

We shall see that the Basel regulation has been motivated by intuition and the

modeling progress in this area.

4.1 Economic Capital, Expected, and Unexpected Losses

Let us formulate more precisely the definition of the expected and unexpected

losses, already indicated in Fig. 2.8. Let us have a portfolio of assets (and

liabilities), and let X denote the loss (with a positive sign if there is loss, and a

negative sign if there is a profit) on the portfolio in a fixed time horizon T. Today we
do not know the value X, which depends on the future “state of the world”, and so

we model it as a random variable. The expected loss is then obviously defined as

EL ¼ E X½ �, and the unexpected loss as the difference between a quantile of the

random variable X and the expected loss. Let FX xð Þ ¼ Pr X � x½ � be the distribution
function of X, then, given a probability level α (e.g. 95 or 99%), define the quantile

qX
α ¼ inf x

��FX xð Þ � α
� �

. The absolute Value at Risk VaRabs
α ¼ qX

α being the same

as the quantile expresses the potential maximum absolute loss that can be realized

on the probability level α. The unexpected loss, or relative Value at Risk VaRrel
α ,

E(R)

RF

M

σ

Fig. 4.1 Risk versus return

optimization
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measuring the probability level α potential excess loss over EL, is then precisely

expressed as UL ¼ qX
α � E X½ �.

The concept of VaR was first developed on investment or trading portfolios. The

situation is simplest if the variable X can be assumed normally distributed with

mean μ and standard deviation σ, i.e. N(μ, σ2). Then the unexpected loss on any

probability level is simply proportional to σ, and so, the standard deviation is a

sufficient measure of risk. Specifically, qX
α ¼ μþ qN

α � σ where qNα is the quantile of

the standardized normal N(0, 1) distribution [for example, in the Excel application

given by the function NORMSINV (α)]. Hence, UL ¼ VaRrel
α ¼ qN

α � σ. The nor-

mality assumption is approximately valid for equity and foreign currency

portfolios, where the portfolio standard deviation can be obtained analytically

from individual asset return variances, mutual correlations, and the asset weights.

The situation becomes more complex when the returns are not normal, or depend

nonlinearly on the normal returns of the underlying assets, as in the case of options,

or other derivatives. This is, in fact, also the case of debt instruments, bonds or loans

that have implicit embedded options, as we shall see. Then the estimations of Value

at Risk become more complex, generally leading to a Monte Carlo Simulation

approach, where the distribution of losses is generated numerically, calculating the

portfolio values in many simulated scenarios.

The Unexpected Loss, or Value at Risk concept can be directly applied to a

portfolio of corporate bonds valued with market prices. To analyze the future loss

X ¼ V0 � V1, we need to model the distribution of the future bond portfolio values

V1. If there are historical bond price series (which is rarely the case), then the

covariance matrix could be applied for a short time interval where the price changes

are not too large. The short term bond price changes are mostly related to

movements in risk free interest rates and to changes in the issuers credit quality

(spreads) from the perspective of the financial markets. The normal distribution

based approach will not be appropriate for a longer time horizon when the bond

returns are not symmetrical. In that case, we need to find a more sophisticated

approach.

The situation is even more difficult for ordinary banking loan portfolios. First,

there is no market value. The accounting value is defined as the outstanding

receivable amount, minus provisions if the receivable is impaired. In fact, there is

almost no profit potential (besides the interest revenue), and the total loss at the end

of a period is just the sum of net provisions created on the portfolio (provisions can

be also released, therefore, exceptionally, there could be a profit). This is the loss

that enters the Profit/Loss Statement, and that should be the most important for any

bank management. Thus, firstly the approaches based on market values can be

applied only approximately. Secondly, we usually do not have any historical market

price series data that could be directly applied to our assets.

If a bank knows how to estimate the unexpected loss on its portfolio of all the

operations (market, credit, and operational) on a probability level, then it should be,

first of all, compared to the bank’s available capital. For example, if we estimate the

unexpected loss to be 20 billion CZK in a 1 year horizon, on the 95% probability

4.1 Economic Capital, Expected, and Unexpected Losses 119



level, and the bank’s capital is just 15 billion CZK, then there is obviously a

problem. The bank will go completely bankrupt within 1 year with a probability

of at least 5%, which should not be acceptable to the shareholders, prudent bank

management, or the regulators either. The bank should choose a relatively high

confidence level α; e.g. 99, 99.5, or even 99.9%, on which the unexpected losses are

calculated and compared to the capital. The probability 1� α should correspond to

the targeted annual probability of default of the bank itself; i.e., to its own targeted

credit rating. The unexpected loss should then be strictly less than, or equal to, the

available capital. If it is already equal, and some new investments are proposed,

then new capital, corresponding to the incremental unexpected loss will have to be

raised. Therefore it is natural to define the economic capital of a new operation

as the amount equal to the incremental unexpected loss, and compare the expected

profit to it. The ratio should satisfy a condition on the minimum return on capital,

and, moreover, the approach can be used to compare consistently a number of

proposed projects (loan applications), maximizing the expected return/economic

capital ratio. Note, however, that the capital allocation mechanism is incremental—

the diversification effect of the new investment depends on the existing portfolio.

The allocation of capital in a portfolio becomes a little bit problematic if the order

of investments is not given, since it is not clear how to split “the diversification

portfolio effect.” A proportional approach is, then, probably the most natural.

A leading role in the implementation of economic capital allocation has

been played by the Bankers Trust, which in 1995 introduced the concept of

RAROC—Risk Adjusted Return on Capital. The return is compared to the

RAROC economic capital coefficient, expressed for a market product simply as

2:33 � Weekly volatility � ffiffiffiffiffi
52

p � 1� Tax rateð Þ. The term 2.33 corresponds

to the 99% standardized normal distribution quantile,
ffiffiffiffiffi
52

p
scales the weekly

volatility of returns to a 1-year horizon, and the term (1�Tax rate) says that the

bank is interested, primarily, in net after tax profit (or loss). The formula

differentiates between less and more risky assets, but it does not take into account

the diversification effect. Later, the Bankers Trust expanded the original RAROC

concept into a “comprehensive risk management system”, based on the concept of

Value at Risk, termed RAROC 2020.

Our ability to evaluate the unexpected loss at portfolio level enables us to

optimize the risk–return relationship as in the Markowitz portfolio model shown

in Fig. 4.1, but with the risk measured, not by the standard deviation, but by the

unexpected loss; i.e., economic capital.

4.2 CreditMetrics

The CreditMetrics methodology, published by JP Morgan (1997), has become a

standard in the field of portfolio credit risk measurement. The model is based on

ratings that are assumed to determine the values of individual debt instruments. It is

a Monte Carlo simulation based approach requiring relatively extensive data inputs.
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The methodology was originally designed for bonds priced by their market values,

but the approach can be modified to a loan portfolio, and loss defined in terms of

accounting provisions based on a classification system.

The model can be described by the following key principles:

1. Today’s prices of bonds are determined by their ratings. And, of course, by the

term structure of risk-free interest rates that is fixed throughout the calculation.

The rating scale is, for example, S&P’s or Moody’s. Therefore, for each rating

there is a rating specific term structure of interest rates allowing us to consis-

tently value bonds with different maturities. The term structure is obtained from

the market prices of bonds with the given rating, and with different maturities in

a standard manner. The curves are provided by financial data information

companies, such as Bloomberg, and there is, in any case, enough market data

to perform the calculations of the term structure. The difference between the

rating specific interest rates incorporating certain credit losses and the risk-free

interest rates forms the rating specific term structure of credit spreads.

2. Future prices of bonds (e.g., in a 1-year horizon) are determined by their future
ratings. The point is, that we use today’s rating specific term structure of interest

rates to obtain the forward rating specific term structure of interest rates. This

allows us to determine the forward price of a bond, conditional on its future

rating. The market value of a defaulted bond is determined by a recovery rate

parameter, depending on its seniority. Note that in this approach we,

intentionally, do not take into account interest rate risk. Our goal is, indeed, to

analyze only the credit risk. Nevertheless, the model can be extended, simulating

also the future risk-free rates, using an appropriate interest rate model, and

combining the risk-free rates with the forward credit spreads.

3. Rating migration probabilities are obtained from historical data. The rating

transition probabilities are regularly published and monitored by all major rating

agencies. So, for a single bond portfolio of a given initial rating, it is no problem

to simulate the distribution of future market values.

4. Rating migration correlations are modeled through asset correlations. To sim-

ulate joint migrations of many bonds from different issuers, we have to take into

account their correlations. This is the key part of the model that utilizes Merton’s

credit risk option model, connecting the credit risk with a relationship between

the firm’s asset value and its total debt.

5. The asset correlations are estimated by mapping the firms into various economic
sector indices. Moreover, in order to estimate the individual firm correlations,

we need the sector indices’ correlations which can be obtained, for example,

from equity markets data.

6. Finally, simulate future ratings and market values of all bonds in the portfolio to
obtain the portfolio value empirical distribution, expected, and unexpected loss
on any given probability level. In practice we simulate, first of all, the indices’

returns with a given correlation structure, as there are a limited number of

indices used. Then the idiosyncratic (firm specific) independent factors are
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simulated. The calculated firm specific asset returns are translated into new

ratings and market values.

Let us now give more technical details on the steps outlined above.

Bond Valuation

Regarding valuation, we assume that for each rating s, there is a term structure of

zero-coupon interest rate rs(t) for every maturity t, allowing us to value an s-rated
bond, paying the cash flow CF tið Þ, i ¼ 1, . . . , n. The risk adjusted present value is
given by the standard formula

P ¼
Xn
i¼1

CF tið Þ
1þ rs tið Þð Þti :

The same principle can be used to value the bond at a future time t0, using
the forward rates implied by the current zero coupon rates i.e., by solving the

equations

1þ rs tð Þð Þt ¼ 1þ rs t0ð Þð Þt0 1þ rs t0; tð Þð Þt�t0

for the forward rate rs t0; tð Þ, t > t0: If we assume that the given bond has a new

rating u at time t0 then the simulated forward value is

Pu ¼
X
ti�t0

CF tið Þ
1þ ru t0; tið Þð Þti�t0

: ð4:1Þ

The situation might be complicated by coupon payments between today and

time t0. Here, we assume, for the sake of simplicity, that the first coupon is paid just

at t0; typically in 1 year, and so it is included in (4.1).

Rating Migration

Simulated migration of a bond’s rating, with a given initial rating, should respect

the historical transition probabilities as shown, for instance, in Table 4.1.

Another key input factor is the recovery rate that is used in the case of default

represented by the worst rating. Table 4.2 shows the average recovery rates by

seniority classes (the order in which liabilities are satisfied in the case of bank-

ruptcy; senior bonds being the first, and junior subordinated the last). The standard

deviations show that the recovery rates in the case of default are not deterministic.

In general, the recovery rates should be simulated based on an appropriate proba-

bility distribution (see Sect. 3.5), but the average values are often used in a

simplified approach. The simplification does not cause a significant error on a

large portfolio if the rate of default is not correlated with the recovery rates.

However, a number of studies (Altman et al. 2002) indicate that there could be a

negative correlation, explained by the economic cycle simultaneously pushing

default rates up and recovery rates down. It is shown in Witzany (2009d) that the
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impact of PD and Recovery Rate correlation may be quite significant, even in the

case of a large homogenous portfolio. The original CreditMetrics methodology

does not take the PD—Recovery Rate correlation into account. One possible way of

incorporating it into the model is proposed in Witzany (2009d).

Based on the two tables above, it is straightforward to simulate single bond

portfolio future values. Figure 4.2 shows the probability distribution of a 5-year

BBB bond’s values after 1 year with a deterministic recovery rate.

To simulate credit migrations of a two, or more, bond portfolio, we have to take

correlations into account. It is possible to tabulate historical migrations of pairs of

bonds with a given rating to all possible pairs of ratings, for example, the historical

transition probability of two bonds with ratings (A, BB) going to (BB, BBB). This

approach could be applied to a two bond portfolio, but hardly generalized to a many

bond portfolio. More importantly, we have to realize that the correlation between

the rating migration of two bonds depends more on shared systematic (macroeco-

nomic) factors, than on specific initial ratings.

The CreditMetrics solution is to parameterize the change of rating of a bond b by
a continuous random variable r(b) with the standard normal distribution N(0, 1).
The variable can be interpreted as a standardized asset return based on Merton’s

structural default model, but we can also interpret it purely technically as an

appropriately scaled credit scoring change. Given an initial rating, we may define,

based on rating transition probabilities, a sequence of thresholds for r(b) to trigger

possible rating migrations. For example, according to Table 4.1, the transition

probability from BB to Default is 1.06%. Since positive values of r(b) should

intuitively mean credit quality improvement, and negative values deterioration,

we are looking for a threshold ZDef, so that Pr r bð Þ � ZDef

� � ¼ 1:06%: Conse-

quently, ZDef ¼ Φ�1 1:06%ð Þ ¼ �2:3. The threshold for CCC must satisfy the

condition Pr ZDef < r bð Þ � ZCCC

� � ¼ 1%, since 1% is the migration probability

from BB to CCC, thus: ZCCC ¼ Φ�1ð1:06%þ 1%Þ ¼ �2:04. Similarly, using the

BB rating migration probabilities, we may evaluate ZCC up to ZAAA (Fig. 4.3).

Table 4.1 One-year transition probabilities (Source: Crouhy et al. 2000)

Initial rating

Rating at year-end (%)

AAA AA A BBB BB B CCC Default

AAA 90.81 8.33 0.68 0.06 0.12 0 0 0

AA 0.70 90.65 7.79 0.64 0.06 0.14 0.02 0

A 0.09 2.27 91.05 5.52 0.74 0.26 0.01 0.06

BBB 0.02 0.33 5.95 86.93 5.30 1.17 0.12 0.18

BB 0.03 0.14 0.67 7.73 80.53 8.84 1.00 1.06

B 0 0.11 0.24 0.43 6.48 83.46 4.07 5.20

CCC 0.22 0 0.22 1.30 2.38 11.24 64.86 19.79

4.2 CreditMetrics 123



Merton’s Structural Model

The rating migration model described above is, in fact, based on Merton’s structural

model. The idea of the model is that the default of a firm on its debtD happens if the

value of the firm’s assets A falls below the debt; i.e. A < D. Since the assets change
in time stochastically similarly to the firm’s equity, we can use a stochastic model

for A(t), starting at an initial value A 0ð Þ > D. To simplify the situation, let us

assume that there is just a loan with bullet repayment of an amount D at time T, and
we are looking only at the time of maturity T. If A Tð Þ � D, then the assets are

sufficient to pay the debt back in full, and there is no default. The remaining

shareholders’ value is A Tð Þ � D. On the other hand, if A Tð Þ < D, then there is a

default, the firm goes into bankruptcy or liquidation, the creditors receive just the

asset value A(T), and the shareholders value is 0 (Fig. 4.4).

The model has been formulated not only to theoretically define the probability of

default, but, in fact, primarily to apply the theory of option valuations to the debt

and equity market valuation. The final payoff for creditors at maturity can be

expressed as

Table 4.2 Recovery rates

by seniority (Source: JP

Morgan 1997)

Seniority class Mean (%) Standard deviation (%)

Senior secured 53.80 26.86

Senior unsecured 51.13 25.45

Senior subordinated 38.52 23.81

Subordinated 32.74 20.18

Junior subordinated 17.09 10.90

Fig. 4.2 Simulation of a single bond portfolio (Source: JP Morgan 1997)
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D Tð Þ ¼ min D,A Tð Þð Þ ¼ D�max D� A Tð Þ, 0ð Þ;
and so the value of the risky debt can be theoretically valued as the value of the risk

free debt, minus the value of the European put option on the firm’s assets, with the

exercise price D, and maturity T, sold to the shareholders for the credit margin paid

over a risk free interest rate. The shareholders payoff at time T can, on the other

hand, be expressed asE Tð Þ ¼ max A Tð Þ � D, 0ð Þand so the equity value E(0) can be
theoretically valued just as the European call option on the assets, with the exercise

price D. If the asset value follows, for example, the geometric Brownian motion

given by the stochastic differential equation:

Fig. 4.3 Distribution of asset returns with rating change thresholds (Source: JP Morgan 1997)

As
se

ts

Debt

Time

Default

Fig. 4.4 Merton’s structural model
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dA tð Þ ¼ μA tð Þdtþ σA tð ÞdW tð Þ;
then the call and put options can be evaluated with the Black-Scholes-Merton

formula. It is clear that the model has a number of shortcomings. Firstly, the asset

market value process is latent; i.e., it is not empirically observable in the majority of

cases. This issue can be overcome using stock market data. We can argue that the

asset value follows approximately the equity value, and so the volatilities and

correlations estimated from stock price data can be used for the assets. In fact,

there is a functional relationship between the equity prices and the asset prices

given by the model as explained above, and so, using the stochastic calculus, the

parameters estimated from stock data can be transformed into the appropriate

parameters for the latent asset prices. This principle applied by the KMV model

is discussed in more depth in Sect. 4.5. Another issue is that the assets are generally

of different liquidity—short-term, long-term, financial and non-financial—and

should be discounted in different ways during a distress situation. In addition,

default can happen generally at any time before maturity, because of a missed

coupon payment or bankruptcy declared due to indebtedness, so this is an American

rather than European option. Some of these problems are handled in more

elaborated models like the KMV one.

Let us now focus on the rating migration modeling. In the basic structural model

the probability of default is determined by the actual asset value A(t), and the asset

volatility σ; in fact, by the distance of lnA(t) from lnP, since the log value follows

an ordinary Brownian motion with a drift stochastic differential equation:

d lnAð Þ ¼ μ� σ2=2
� 	

dtþ σdW:

The larger the distance is, the better the credit rating should be. Thus, starting from

an initial rating, the rating migration at time 1 is determined by the standardized

N(0, 1) asset return:

r ¼ 1

σ
ln
A 1ð Þ
A 0ð Þ � μ� σ2=2

� 	
 �
:

If the return is positive, then there is a rating improvement, and if the return is

negative, then there is a rating deterioration based on the rating migration threshold

evaluated from the historical migration probabilities as explained above. Notice

that at the end we do not need to estimate the volatility σ, as the rating migrations

depend only on the values of the standardized return variable r.

Rating Migration and Asset Correlations

Clearly, it would be incorrect to simulate rating migrations as independent events,

since the individual debtor’s situations often depend on the same macroeconomic

factors, or there could even be a mutual specific economic interdependence
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between two or more debtors. We have seen that it is practically impossible to

model the joint correlation migration of all the initial combinations of two, or more,

ratings into new sets of ratings. Alternatively, one could try to replace the alpha-

betical ratings “Default”, “CCC”,. . ., “AAA” by some ordinals, e.g.: 1,. . .,8, and
estimate the correlation between the changes of those variables. This approach is,

nevertheless, hardly econometrically justifiable. A natural solution is to use the

asset correlations based on Merton’s structural model. Given debtors i ¼ 1, . . . ,N,

all we need to know is the matrix Σ of correlations ρij ¼ ρ ri; rj
� 	

between the

standardized asset returns, and the rating migration thresholds. The correlations

could be estimated from the equity returns data, if all the companies are liquidly

traded on stock markets. Since this is usually not the case, CreditMetrics proposes

the use of a single-, or multi-, factor model, breaking down debtors’ returns into a

combination of systematic factors and independent, idiosyncratic, debtor specific

factors; i.e.,

ri ¼
Xk
j¼1

wi, jr Ij
� 	þ wi,kþ1Ei; ð4:2Þ

where r(Ij) is the standardized return of the systematic factor (e.g. sector or country

index) Ij, and Ei is the standardized debtor specific factor. Since the systematic

factors can be correlated, it is generally insufficient to require
Xkþ1

j¼1

w2
i, j ¼ 1, in order

to have ri standardized. Determination of the weights, and thus, of the correlations,

is a key step in the model and, unfortunately, also one of the most problematic parts

of the CreditMetrics methodology. The Technical Document, in fact, proposes only

an expert approach: estimate the weights of the systematic factors (combination of

all systematic factors), and of the complementary idiosyncratic factor. In the case of

more systematic sector, or country factors, specify the “participation” of the debtor

and combine the indices appropriately.

Example Let us consider just one systematic factor I, e.g., a general market index,

and let us say that for the first debtor we expertly estimate that 90% of firms’ asset

return volatility is explained by the systematic factor. Therefore:

r1 ¼ 0:9r Ið Þ þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 0:92

p
E1 ¼ 0:9r Ið Þ þ 0:44E1:

Similarly, for the second debtor, we estimate that just 70% of the volatility is

explained by the systematic factor, i.e.

r2 ¼ 0:7r Ið Þ þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 0:72

p
E2 ¼ 0:7r Ið Þ þ 0:71E1:

Since the idiosyncratic factors E1 and E2 are mutually independent, and also

independent of the systematic factor r(I), the implied correlation is simply
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ρ r1; r2ð Þ ¼ 0:9 � 0:7 � ρ r Ið Þ, r Ið Þð Þ ¼ 0:63:□

Consequently, the expertly set systematic weights determine the mutual

correlations, and significantly influence the final output of the model; i.e., the

estimated unexpected loss. If the implied correlations are too far from the “real”

correlations, then the output of the model can be completely wrong.

Let us now break down the systematic part into two indices. Assume that our

experts estimate that the first debtor has a 60% participation in the automotive

industry, and 40% participation in the electronics industry. This is interpreted by

CreditMetrics as if the systematic (not standardized) part of the return were

expressed by a linear combination of the two industry index returns:

R Ið Þ ¼ 0:6 � R IAutð Þ þ 0:4 � R IElð Þ:
To normalize the return R(I), we need to calculate its standard deviation:

σ R Ið Þð Þ
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0:62σ R IAutð Þð Þ2þ0:42σ R IElð Þð Þ2þ2 �0:6 �0:4 �ρ R IAutð Þ, R IElð Þð Þ�σ R IAutð Þð Þ�σ R IElð Þð Þ

q
Thus, given the volatilities σ R IAutð Þð Þ ¼ 20%, σ R IElð Þð Þ ¼ 35% and the correlation

ρ R IAutð Þ,R IElð Þð Þ ¼ 30% of the sector indices, we obtain σ R Ið Þð Þ ¼ 19:3%. Finally,

we express the standardized return r Ið Þ ¼ R Ið Þ=σ R Ið Þð Þ as a combination of the

returns r IAutð Þ ¼ R IAutð Þ=σ R IAutð Þð Þ and r IElð Þ ¼ R IElð Þ=σ R IElð Þð Þ

r Ið Þ ¼ 0:6 � σ R IAutð Þð Þ
σ R Ið Þð Þ r IAutð Þ þ 0:4 � σ R IElð Þð Þ

σ R Ið Þð Þ r IElð Þ

¼ 0:57 � r IAutð Þ þ 0:67 � r IElð Þ:
Since the weight of the combined systematic factor is 0.9, we finally get:

r1 ¼ 0:9 � 0:57 � r IAutð Þ þ 0:9 � 0:67 � r IElð Þ þ 0:44E1
¼ 0:51 � r IAutð Þ þ 0:6 � r IElð Þ þ 0:44E1:

The second debtor is classified as being 90% in electronics and 10% in the

automotive sector. Applying the same calculations on r2, we obtain:

r2 ¼ 0:04 � r IAutð Þ þ 0:69 � r IElð Þ þ 0:71E2:

The implied correlation between r1 and r2, then, is

ρ r1; r2ð Þ ¼ 0:51 � 0:04þ 0:6 � 0:69þ 0:51 � 0:69þ 0:04 � 0:6ð Þ � ρ r IAutð Þ, r IElð Þð Þ
¼ 0:55:

Although the expert classification of a firm into one or more sectors is plausible, we

do not see it as a realistic approach to the estimation of the systematic and
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idiosyncratic factor weights determining an overall correlation level. The system-

atic weight should be based rather on an empirical estimation, for example, using

stock returns of a similar company traded on the markets.

Portfolio Simulation

Given an asset return correlation matrix Σ, the scenarios can be generated

sampling a vector of the standardized normal variables u, and multiplying it by

the Cholesky matrix A; i.e., the lower triangular matrix, so that A � AT ¼ Σ. Given
the vector of standardized asset returns r ¼ Au, we determine, based on the

thresholds, the rating migrations and the simulated portfolio value V(r) at the
end of the period. Repeating the procedure we obtain a large number of sampled

values V1, . . .,VM, and an empirical distribution of the portfolio market value as in

Fig. 4.5. In the case that there is only one systematic factor, or a few of them, it is

computationally more efficient to sample first of all the systematic factors, and

then the independent idiosyncratic factors generating ri according to (4.2) for all

the exposures.

The empirical distribution can then be used to estimate the mean μ̂ ¼ 1
M

XM
i¼1

Vi,

the standard deviation σ̂ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

M�1

XM
i¼1

Vi � μ̂ð Þ2
s

, and, for a given probability α, the

α quantile as theαM� lowest value when the sequence V1, . . .,VM is sorted from the
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Fig. 4.5 Credit portfolio Monte Carlo simulation
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least to the largest value. When doing this, we also have to keep track of the

confidence intervals of our estimations. Generally, the order of precision of a

plain Monte Carlo simulation based estimation is 1ffiffiffi
M

p , and so the naı̈ve minimum

number of simulations should be at least 10,000. Regarding the sample quantiles,

the confidence intervals can be estimated using a principle similar to the asymptotic

normal binomial test (see JP Morgan 1997). For example, if we wish to get the 90%

confidence interval of the α quantile set:

i1 ¼ αM � 1:65
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Mα 1� αð Þ

pj k
, and

i2 ¼ αM þ 1:65
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Mα 1� αð Þ

pl m
:

Then Vi1 ;Vi2½ � is the 90% confidence interval for qα. For a very small probability

level α, such as 0.1%, we need, first of all, enough scenarios, so that i1 > 0, and, to

achieve satisfactory precision, the number of scenarios must be quite large. See

Fig. 4.6 as an example of the slow convergence of the 0.1 percentile estimate.

Distribution of Recovery Rates

So far, we have implicitly assumed that the market value assigned to a defaulted

bond, i.e., its recovery rate, is deterministic. However, individual recovery rates are

characterized not only by their mean expected values, but also by their wide

Fig. 4.6 Evolution of the 90% confidence bands for the 0.1 percentile (Source: JP Morgan 1997)
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uncertainty, as indicated by the large standard deviations shown in Table 4.2. One

popular possibility, also proposed by the CreditMetrics document, is to model the

recovery rate distribution by a beta distribution. Beta distribution is fully

characterized by its minimum, maximum, mean, and standard deviations. Since

recovery rates (at least in case of bonds) are normally between 0 and 100% of their

face value, we can use the beta distributions with minimum 0, maximum 1, mean

and standard deviations, according to Table 4.2. Then, for example, the

distributions shown in Fig. 4.7 can be used in the Monte Carlo simulation to sample

random recovery rates.

Default Rate and Recovery Rate Correlation

However, as it has already been pointed out, there is growing literature (see; e.g.,

Altman et al. 2002, and Fig. 4.8, or Altman et al. 2004 for an overview) showing

that there is empirical evidence of the negative default rate and recovery rate

correlation.

One possible approach to extending the CreditMetrics model, incorporating

negative PD and RR correlation, is proposed in Witzany (2009d). Let us, for the

sake of simplicity, consider the two-systematic-factor model, where defaults are

driven by one systematic factor, and by idiosyncratic factors, while the recovery

rates are driven by the default systematic factor, by an additional recovery

systematic factor, and also by the recovery rate idiosyncratic factors. The idea

is that the recovery rates are influenced, partially, by the same macroeconomic

factors as default rates, but also by additional factors, for example, related to

real estate collateral values. The mix of those two factors allows us to model

Fig. 4.7 Example beta distributions for seniority classes (Source: JP Morgan 1997)

4.2 CreditMetrics 131



different levels of PD and RR correlations. Formally, the two factors can be

expressed as

ri ¼ ffiffiffiffiffi
ρ1

p
X1 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ρ1

p
Ei, 1 and

yi ¼
ffiffiffiffiffi
ρ2

p
ωX1 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ω2

p
X2

� 

þ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ρ2

p
Ei, 2;

ð4:3Þ

where the systematic factors X1,X2, and the idiosyncratic factors Ei,1, Ei,2, are

independent standardized normal variables. The mutual PD correlation ρ1, and
the mutual LGD correlation ρ2, are assumed to be positive, but the correlation ω,
between the PD systematic factor and the RR systematic factor, is allowed (and, in

fact, expected) to be negative. The first factor ri, drives the rating migration and

default as above, while the second factor yi, sampled in the case of default, drives

the recovery rate. Since yi has a standardized normal N(0, 1) distribution, we need to
know the individual recovery rate distribution. This can be either a beta distribution

(Fig. 4.7), or any other parametric or empirically derived distribution. Let Q be the

RR cumulative distribution function, then, given the factor yi, applying the quantile-
to-quantile transformation, the corresponding recovery rate is:

RRi ¼ Q�1 Φ yið Þð Þ: ð4:4Þ
To simulate credit portfolio losses, first of all, draw the two systematic factors X1

and X2, then the idiosyncratic factors Ei,1, for all exposures in the portfolio, and

finally Ei,2 for the exposures which default. The method can be easily generalized to

Fig. 4.8 Empirical evidence of negative PD and LGD correlation (Source: Altman et al. 2002)
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incorporate more systematic PD factors replacing X1, and possibly even more

systematic factors, instead of X2.

A reliable estimation of the correlation coefficient ω is certainly the difficult

part of the model. Witzany (2009d) uses a maximum likelihood method to estimate

ω̂ ¼ �11:2% on a large historical dataset of unsecured retail loans. The idea is to

look at the time series of monthly observed default rates, and recovery rates, on the

defaulted loans. Assuming that the portfolio is large, we may express, using the

Vasicek formula (see Sect. 4.7), the observed portfolio PD as a function of the latent

(time dependent) systematic factor X1, and the observed portfolio RR, averaging

(4.4) over the idiosyncratic factor, as a function of the combined latent factor

ωX1 þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ω2

p
X2. The functions, at the same time, depend on the correlations

ρ1 and ρ2, which can be estimated by the MLE method, together with the parameter

ω. The article demonstrates that the impact of the estimated correlation to a 99.9%

unexpected credit loss (economic capital), on a large asymptoticz portfolio, is

almost a 30% increase of capital, compared to the zero PD–RR correlation

model. Similar results in a simpler model were obtained by Altman et al. (2002).

4.3 CreditRisk+

CreditRisk+ is a methodology proposed by Credit Suisse (1997) involving an

application of an actuarial science framework to the derivation of the loss distribu-

tion of a credit portfolio. A significant advantage of the approach, compared to

CreditMetrics, is that all the calculations can be done analytically, without Monte

Carlo simulations. The ingenious statistical technique based on probability

generating functions is, however, quite complex, and can discourage users, who

might tend to view it as a black-box methodology. However, the principles of the

approach can be easily illustrated, and, in fact, applied within the framework of the

Monte Carlo simulations.

First, let us consider a homogenous portfolio of N receivables of the same size,

economic sector, and credit risk with an actual expected probability of default PD0

in the 1 year horizon. The main difference, compared to CreditMetrics, is that the

probability of default is not fixed, but is itself a stochastic random state variable,

changing at the end of the modeling horizon to an unknown value PD1, and the

defaults are realized independently conditional on that PD1 probability of default.

The value itself becomes an indicator of the overall macroeconomic situation. The

model is called “reduced-form”, since it does not try to capture any of the internal

mechanics of defaults. On the other hand, CreditMetrics belongs, rather, to the class

of “structural models”, as it is based on Merton’s approach, where the stochastic

asset value falling below that of the liabilities explains the event of default. The

CreditRisk+, like a simulation in the simplified framework, can be performed in the

following two steps:
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1. Simulate the future probability of default PD1 based on the actual predicted

value PD0, and on an appropriate probability distribution (e.g., Gamma),

calibrated to the observed or predicted variation of historical default rates.

2. Simulate the number of defaults in the portfolio of N receivables, assuming the

probability of default is PD1 and the default events are independent. The precise

distribution would be the binomial one, but for the sake of an analytical solution,

the Poisson distribution approximating well the binomial one for large values of

N and low PD1 can be used. The number of defaults multiplied by a fixed

expected loss given default (LGD) parameter is, then, the final credit loss

given by one simulation run.

Note that the model based only on independent defaults, generated with a fixed

ex ante probability PD0 on a portfolio of N receivables, would be completely

unrealistic, as the standard deviation of the simulated portfolio default rate would

be PD0ffiffiffi
N

p ; i.e., almost zero if N is large, contrary to the empirical observation of annual

default rates fluctuating in an order of the average default rate (see Table 4.3). Thus,

step 1 simulating the PD itself is of key importance.

The analytic solution is based on the concept of probability generating functions.

Let X be a random variable attaining nonnegative integer values; i.e.

X∈ 0; 1; 2; 3; . . .f g, with probabilities pn ¼ Pr X ¼ n½ �. The corresponding proba-

bility generating function is formally defined as

GX zð Þ ¼
X1
n¼0

pnz
n:

One of the most important tricks is that the sum of the two independent variables

X þ Y corresponds to the multiplication of the respective probability generating

functions:

GX zð Þ � GY zð Þ ¼
X1
n¼0

pnz
n

 !
�

X1
n¼0

qnz
n

 !
¼
X1
n¼0

Xn
i¼0

piqn�i

 !
zn ¼ GXþY zð Þ:

If the two probability generating functions have simple analytical forms, then the

same is true for GXþY zð Þ and the coefficients, i.e., probabilities, can be obtained

from the infinite Taylor’s expansion. This is, in particular, the case of the Poisson

distribution, with a nice generating function in the exponential form:

GX zð Þ ¼ eμ z�1ð Þ ¼
X1
n¼0

e�μ μ
n

n!
zn, i:e:, Pr X ¼ n½ � ¼ e�μ μ

n

n!
: ð4:5Þ

The Poisson distribution mean and variance are both equal to μ. It approximates

well to the binomial distribution of a variableX∈ 0; 1; 2; 3; . . . ;Nf g;with the mean

μ ¼ N � p for a large N, and a small probability p. If X and Y are independent, with
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the Poisson distribution means μ1 and μ2, then, X þ Y has the Poisson distribution

with the mean μ1 þ μ2, since e
μ1 z�1ð Þeμ2 z�1ð Þ ¼ e μ1þμ2ð Þ z�1ð Þ. This rule can be applied

to generalize the approach for a portfolio of receivables, homogenous in terms of

size and sector, but possibly with different levels of risk. In this case, just set μ0

¼
X
a∈A

PDa: Indeed, if the PDs are determined by rating grades, let μr be the

expected number of defaults in the rating grade pool r ¼ 1, . . . ,R, then the

probability generating function of the total number of defaults has the form G zð Þ
¼ eμ z�1ð Þ of the Poisson distribution with the mean

μ ¼
XR
r¼1

μr:

The Poisson distribution can, moreover, be analytically combined with the Gamma

distribution Γ(α, β), with parameters α and β, defined by the density function:

f xð Þ ¼ 1

βαΓ αð Þ e
�x

βxα�1, where Γ αð Þ ¼
Z1
0

e�xxα�1dx:

The shape and scale parameters α and β can be calculated from the mean μ and the

standard deviation σ:

α ¼ μ2

σ2
, β ¼ σ2

μ
: ð4:6Þ

Figure 4.9 shows, for illustration, the shape of the Gamma distribution, with the

mean 100, and standard deviations set to 10, 50, and 90.

Let PD0 be the initial (average) default probability, and σPD the estimated

standard deviation of observed overall annual probabilities of default. Since we

focus on the number of defaults in a given portfolio with N receivables, let us set

μ0 ¼ N � PD0, σ0 ¼ N � σPD, calculate α and β according to (4.6), and sample the

Table 4.3 One-year default rates by rating, 1970–1995 (Source: Crouhy et al. 2000)

Credit rating One-year default rate average (%) Standard deviation (%)

Aaa 0.00 0.00

Aa 0.03 0.10

A 0.01 0.00

Baa 0.13 0.30

Ba 1.42 1.30

B 7.62 5.10
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mean number of defaults μ1 from Γ(α, β). Finally, generate the number of defaults

X from the Poisson distribution with the mean μ1. Since:

Pr X ¼ n½ � ¼
Z1
0

Pr X ¼ n
��μ ¼ x

� �
f xð Þdx ¼

Z1
0

e�x x
n

n!
f xð Þdx;

the probability generating function for X can be expressed as an integral that can,

fortunately, be analytically solved:

G zð Þ ¼
X1
n¼0

Z1
0

e�x x
n

n!
f xð Þdx

0
@

1
Azn ¼

Z1
0

X1
n¼0

e�x x
n

n!
zn

 !
f xð Þdx ¼

¼
Z1
0

ex z�1ð Þf xð Þdx ¼ 1

βα 1þ β�1 � z
� 	α:

ð4:7Þ

The function on the right hand side can be differentiated at z ¼ 0, and expressed by

the Taylor expansion. The coefficient of zn is, finally, the desired formula for the

probability of n defaults in the context of our elementary model, specifically:

Pr X ¼ n½ � ¼ 1� qð Þα nþ α� 1

n


 �
qn, where q ¼ β

1þ β
:

This result overn ¼ 0, . . . ,N can be identified as the probability density function of

the Negative Binomial distribution.
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Fig. 4.9 Gamma distribution with mean 100 and various standard deviations
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The method above needs to be generalized in two directions: firstly we need to

allow different exposure sizes, and secondly different economic sectors. In terms of

a Monte Carlo simulation, the CreditRisk+ approach can be formulated as follows:

1. Adjust exposures with recovery rates that are considered to be deterministic.

Moreover, split the adjusted exposures into size bands representing multiples of

a large unit exposure. Divide expertly the portfolio according to the economic

sectors (one exposure could also be split into more sectors). The actual mean

number of defaults in a sector/size band portfolio is calculated as the sum of

probabilities of default over all the exposures in the portfolio.

2. The sector portfolios are treated as independent.

3. Simulate the future mean number of defaults independently for each sector

portfolio, according to an appropriate (Gamma) distribution. For each sector,

divide the simulated number of defaults among the size bands, proportionately,

according to the expected values.

4. Conditional on the sampled numbers of defaults in each sector portfolio and size

band, generate the number of realized defaults treated as independent events

(e.g., using the Poisson distribution).

5. Calculate the total loss (as a multiple of the basic exposure unit) over all sectors

and size bands for each simulation scenario.

The description shows a major shortcoming of the model, which assumes

independence between sectors. Empirically, there is a positive correlation between

sector default rates, although lower than within the sector correlations. Moreover,

the credit portfolio risk will be significantly reduced if the modeler chooses a fine

sector classification compared to just a few sector classifications. This issue can be

easily overcome in the Monte Carlo approach, admitting a correlation structure

between the sector default rates. The non-zero correlation assumption, however,

aborts the nice analytical solution, using the probability generating functions.

Therefore, assuming sector default rates independence, analytically, all we need

to solve is the combination of different size bands within a sector portfolio. Once

we have sector generating functions, the overall portfolio probability generating

function is obtained just as their product. Let us fix a base exposure amount L, and
assume that every (expected recovery rate adjusted) exposure in the portfolio is a

multiplem� L, m∈ 1; . . . ;Mf g. It means that, in practice, the adjusted exposures

must be rounded to integer multiples of L. A credit portfolio loss will be also always

an integer multiple of L, and so we seek to find the probability generating function:

G zð Þ ¼
X1
n¼0

Pr portfolio loss ¼ n� L½ �zn:

Let us consider a sub-portfolio of exposures with the sizemj � L, and assume that μj
is the number of expected defaults in the band j ¼ 1, . . . , k. In an analogy to (4.5),
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the loss generating function corresponding to the Poisson distribution number of

defaults, with the mean μj, can be expressed as:

Gj zð Þ ¼ eμj z
mj�1ð Þ ¼

X1
n¼0

e�μj
μn
j

n!
zmjn:

Since defaults conditional on the mean number of defaults μj, j ¼ 1, . . . , k are

independent, the sector portfolio loss generating function is:

G zð Þ ¼
Yk
j¼1

Gj zð Þ ¼
Yk
j¼1

eμj z
mj�1ð Þ ¼e

X
μj þ

X
μjz

mj

¼ eμ P zð Þ�1ð Þ;

setting μ ¼
Xk
j¼1

μj and P zð Þ ¼
Xk
j¼1

μj
μ
zmj . Note that changing μ and all μj in the same

proportion does not change the polynomial P(z); in other words we implicitly

assume that the default rate is the same for all exposure bands. Consequently, the

procedure of sampling μ from a Gamma distribution with the mean μ0 ¼ N � PD0,

standard deviation σ0 ¼ N � σPD, and adjusting μj proportionately as μ
μ0, j
μ0
,

corresponds, as in (4.7), to the integral:

G zð Þ ¼
Z1
0

ex P zð Þ�1ð Þf xð Þdx ¼ 1

βα 1þ β�1 � P zð Þ� 	α: ð4:8Þ

If Gs(z) denotes the probability generating function in the form (4.8) for sector

s ¼ 1, . . . , S, then the overall probability generating function

Gfinal zð Þ ¼
YS
s¼1

Gs zð Þ

has an analytic form, and its coefficients can be obtained by differentiation at z ¼ 0.

The symbolic differentiation certainly is not simple, but computationally much

more efficient than a full Monte Carlo simulation. The cost paid for this computa-

tional efficiency is that there is a limited correlation structure imposed by the

model; in particular the assumption of independent sectors. The model can, how-

ever, be recommended for a homogenous retail portfolio that could be treated as a

single sector, and where a full Credit Metrics debtor rating based simulation would

not make too much sense.

Figure 4.10 shows an example of the loss distribution for a single sector portfolio

of 10,000 recovery rate adjusted exposures with a total volume of 3 billion CZK and

total expected loss 120 million CZK. The probability distribution, i.e. the

probabilities Pr Loss ¼ n� L½ � for n ¼ 0, . . . , 60 000, has been calculated
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implementing the CreditRisk+ model with L ¼ 50000 implemented in Excel in a

few seconds. The distribution allows us to find quantiles easily on any probability

level. For example, the 99% quantile indicated by the red line is 178 million CZK.

Therefore, the unexpected loss on the 99% probability level (Credit VaR) equals

178� 120¼ 58 million CZK. The distribution can be also used to easily calculate

other characteristics such as the expected shortfall, or conditional Value at Risk,
defined as the average loss exceeding the quantile on a probability level α. For-
mally, CVaRrel

α ¼ E X
��X � qX

α

� �� E X½ � where X denotes the loss. For example, the

shortfall of the sample portfolio on the 99% level is 67 million CZK, which is

slightly higher than the Value at Risk.

4.4 CreditPortfolioView

The CreditPortfolioView model, developed by Wilson (1997a, b) and proposed by

the McKinsey Consulting Company, is a macroeconomic multi-factor model for

joint conditional distributions of default and migration probabilities. While the

CreditRisk+ uses a very simple estimation of the initial rating/sector probability

of default PDj,0 and its standard deviation, the CreditPortfolioView works with a

model where macroeconomic variables explain the observed rates of defaults. The

main idea is that the next period default rate can, to certain extent, be predicted from

the known macroeconomic indicators, and what needs to be modeled is the residual

risk; i.e., the difference between the default rate realized in the future and its

prediction (see Fig. 4.11).

Fig. 4.10 Example of the loss distribution generated by the CreditRisk+ model (the green line
indicates the expected loss and the red line the 99% quantile of the distribution)
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Specifically, since macroeconomic variables follow a certain auto-regressive

process, the model produces a distribution of future default rates, conditional on

the actual, and recently observed, macroeconomic variables. The macroeconomic

approach also improves the CreditRisk+ methodology, incorporating losses implied

by rating deterioration, not just by defaults. On the other hand, the complex

approach requires a Monte Carlo simulation.

The macroeconomic model is a relatively standard one, explaining a given sector

j, and a speculative grade debtor’s probability of default in the period t (e.g.,

1 month or a quarter) as PDj, t ¼ Λ Yj, t

� 	
, where Λ is the logit function, and Yj,t is

a macroeconomic score capturing the state of the economy by the multi-factor

model

Yj, t ¼ βj0Xj, t þ Ej, t; ð4:9Þ

where Xj,t are selected basic macroeconomic variables for the sector, and βj are the
regression coefficients to be estimated. In the proposed implementation, the mac-

roeconomic variables, indexed by i, moreover, follow a univariate auto-regressive

model of the order 2 (AR2):

Fig. 4.11 Actual versus predicted default rates in Germany (Source: Wilson 1998)
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Xj, t, i ¼ γj, i, 0 þ γj, i, 1Xj, t�1, i þ γj, i, 2Xj, t�2, i þ ej, t, i: ð4:10Þ

The error terms ej,t,i are assumed to be independent and identically distributed

with a normal distribution, while Ej,t are assumed to have joint normal distribution

characterized by a covariance matrix. Once the model has been calibrated, based on

historical macroeconomic variables and observed rates of default, the assumptions

can be used to simulate PDj, t,PDj, tþ1, . . . ,PDj, tþT based on the information

available at time t� 1:
CreditPortfolioView, in addition, proposes adjustments to the unconditional

Markov transition matrixM, based on historical averages covering several business

cycles, across many different industries. The matrix implies certain unconditional

probability of default PD0 for speculative grade debtors. On the other hand, PDj, tþs

is a PIT estimate, conditional on the state of economy, and of a specific industry,

that is expected to be larger than PD0 in economic recession, and less than PD0 in

economic expansion. The ratioPDj, tþs=PD0 can then be used to adjust the migration

probabilities in order to produce the transition matrix:

Mj, tþs ¼ MðPDj, tþs=PD0Þ,
conditional on the state of the economy and the sector j. One possible simple

approach is to set M(PDj,t/PD0) equal to the recession historical data based matrix

if PDj, tþs > PD0 and equal to the expansion matrix otherwise. The matrices for

sectors j ¼ 1, . . . , J

Mj,T ¼
YT
s¼1

MðPDj, tþs=PD0Þ

are then used to generate, independently (conditional on the simulated macroeco-

nomic development), rating migrations of debtors over the time horizon T. The
simulated market values are then obtained as in the CreditMetrics model.

Note that the CreditPortfolioView presents a combination of the CreditRisk+

and the CreditMetrics models. In the first step, the probabilities of default are

simulated, and in the second step, the independent defaults (rating transitions) are

sampled, conditional on the simulated probabilities like in CreditRisk+. But the

simulated probabilities are tied to macroeconomic variables, as well as being

similarly tied to the asset values driving individual defaults in the CreditMetrics

model.
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4.5 KMV Portfolio Manager

The KMV portfolio model combines the basic principles of the CreditMetrics

approach and the KMV Expected Default Frequency (EDF) methodology. The

KMV EDF estimates the probabilities of default, and the market values, of risky

debts from stock market data by applying the option pricing theory. The model does

not use historical rating transition probabilities, or risk adjusted discount factors.

The KMV argues that the actual (risk neutral) credit migration probabilities are

much larger than those shown by historical migration frequencies. Indeed, as we

have discussed in Sect. 3.3, the external rating agencies’ systems are somewhere

between PIT and TTC, and so the rating grade probabilities of default are not fixed,

and changes of risk are not always reflected in the rating migration as assumed by

CreditMetrics. The disadvantage of the KMV approach is that it is appropriate only

for a portfolio of loans, or bonds, of publicly listed corporations, not for retail or

SME portfolios, where stock market data are not usually available.

Similarly to CreditMetrics, we assume that a debtor’s default is driven by the

asset value A, following the geometric Brownian motion stochastic differential

equation (see also Sect. 4.2):

dA ¼ μAAdtþ σAAdW:

In a discrete setting, a path of A of the process can be simulated step by step:

A 0ð Þ ¼ A0, A tþ Δtð Þ ¼ A tð Þ 1þ μAΔtþ σAE tð Þð Þ ð4:11Þ

where E tð Þ � N 0,Δtð Þ. Since the valuation of derivatives may be done in the risk-

neutral world, with investors requiring the risk free return r on any investment,

regardless of risk, we may assume that the drift is μA ¼ r and discount at the same

time all the cash flows with r. To determine the actual market value of a risky claim

paying the notional N at time T, if the assets value ends up above a default threshold
A Tð Þ � K, and paying just the deterministic recovery rate 1� LGDð ÞN in the case

of default, i.e. if A Tð Þ < K, all we need to know is the initial asset value A0 and the

volatility σA. Therefore, the value of the risky claim is a function of the two

parameters:

P 0ð Þ ¼ f A0; σAð Þ:
The asset values are not directly observable, but what we may observe is the

corporate equity price E0 and its volatility σV.
As explained below, in detail, there is a one-to-one functional relationship

between the pairs (A0, σA) and (E0, σE), so consequently, the unknown asset value

parameters can be obtained from the observed equity price parameters:

A0 ¼ h1 E0; σEð Þ and σA ¼ h2 E0; σEð Þ: ð4:12Þ
Our goal is, however, to simulate, or determine, the distribution of the market

values of claims in the given portfolio in a time horizon H < T. In a simulation
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approach for a single debtor starting from known parameters (A0, σA), we may

generate, according to (4.11) (or just sample, using the lognormal property of the

geometric Brownian motion; see e.g. Hull 2009), the future asset values A(H ), and

the corresponding future claim values given by:

P Hð Þ ¼ f A Hð Þ, σAð Þ: ð4:13Þ
For a portfolio of multiple debtors, we must incorporate a correlation structure of

the asset returns similar to CreditMetrics. To recapitulate, there are the following

basic steps:

1. Based on equity prices, determine for every debtor in the portfolio the initial

asset value and the asset volatility given by (4.12).

2. Estimate correlations between debtor asset returns, as in Sect. 4.2.

3. Simulate many times the future asset values, evaluate the loan values according

to (4.13), and obtain the simulated total credit portfolio value.

The KMV also proposes an analytic solution that is applicable under the assump-

tion of a constant pair-wise correlation ρ, and other simplifying assumptions. The

portfolio credit loss is then shown to have a normal inverse distribution, for which it is

relatively easy to compute the required percentiles. In the case of more complex

correlation modeling, the simulation technology is nevertheless needed.

Having reviewed the principles of the KMV credit portfolio modeling approach,

let us look in detail at its most important elements.

Estimation of the Asset Value and the Asset Volatility

As explained in Sect. 4.2, if there is only one loan in the amount D, payable at time

T, then the equity value at the loan maturity is E Tð Þ ¼ max A Tð Þ � D, 0ð Þ; i.e., the
payoff of the European call option with the exercise price D, and maturity T (see

e.g. Hull 2009). If the asset value follows (in the risk neutral world) the standard

geometric Brownian motion:

dA ¼ rAdtþ σAAdW; ð4:14Þ
then the call option at time t can be valued by the Black-Scholes formula:

E0 ¼ A0Φðd1Þ � De�rðT�tÞΦðd2Þ ð4:15Þ
where

d1 ¼ lnA0=Dþ ðr þ σ2A=2ÞðT � tÞ
σA

ffiffiffiffiffiffiffiffiffiffiffi
T � t

p and d2 ¼ d1 � σA
ffiffiffiffiffiffiffiffiffiffiffi
T � t

p
: ð4:16Þ

Generally, we have the relationship E ¼ G A; tð Þ fixing the parameters σA,
r, and T. According to Ito’s Lemma, E follows the process
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dE ¼ ∂E
∂A

rAþ ∂E
∂t

þ 1

2

∂2
E

∂A2
σ2AA

2

 !
dtþ ∂E

∂A
σAAdW;

consequently, the stock volatility can be solved from the equation σEE0 ¼ ∂E
∂A σAA0.

Since it can be shown that ∂E
∂A ¼ Φ d1ð Þ we obtain:

σE ¼ A0

E0

Φ d1ð ÞσA: ð4:17Þ

So indeed, (4.15) and (4.17) give a transformation

E0 ¼ f 1 A0; σAð Þ, σE ¼ f 2 A0; σAð Þ, which can be inverted, as the relationship

can be shown to be one-to-one. Empirically, given the values E0 and σE,
obtained from historical stock price data, the two equations are solved for A0

and σA by an iterative numerical method.

Distance to Default and the Expected Default Frequency

If the borrower had only one loan payable at time T in the amount D, then the risk

neutral probability of default could be expressed asQT ¼ Pr A Tð Þ < D½ � ¼ Φ �d2ð Þ,
where d2 is given by (4.16). However, in practice, the situation is different. A

typical firm has many obligations, short-term, medium-term, and long-term loans

payable in installments at different times. Default is the event whereby the firm

misses a payment on a coupon, and/or reimbursement of the principal. Cross default

clauses in debt contracts are such that when the firm misses a single payment, it is

declared in default on all its obligations. If bankruptcy is proclaimed, the firm is

liquidated, and the proceeds from the sale of the assets are distributed among

creditors according to priority rules.

For all these reasons it is difficult to define exactly a general default threshold

that would correspond to the real world event of default. Instead, KMV proposes to

use an expertly set default point, defined as the firm short-term debt (STD), plus one

half of the long-term debt (LTD), classifying all financial obligations into these two

categories; i.e., DPT ¼ STDþ LTD=2. The default point, and the probability of

breaching the threshold Pr A 1ð Þ < DPT½ � ¼ Φ �d2ð Þ, calculated in the 1 year hori-

zon d2, is given by (4.16) with D ¼ DPT (see Fig. 4.12).

As explained above, the probability Pr A 1ð Þ < DPT½ � is not identical with the

real probability of default, but it is, clearly, a good indicator of credit quality

in the context of the structural model. The idea is to use the probability Φ �d2ð Þ,
or for practical reasons, the indicator DD ¼ d2, called the Distance to Default,

as a score that still needs to be calibrated to empirical default rates (note that Φ
�DDð Þ is a decreasing function of DD). Indeed, the KMV uses a database of a

large sample of firms to map the DD, for each time horizon, to the calibrated

probabilities of default, called the Expected Default Frequencies—EDF (see

Fig. 4.13).

The figure shows default frequencies in the 1-year horizon, for example, based

on the historical observations of the 1-year default rate of firms with DD ¼ 4 is
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0.4%, and so the assigned Expected Default Frequency is EDF1 ¼ 0:4%. In this

way, the expected probability of default, EDFT(DD), is a function of DD and the

time horizon T.
The KMV company has been providing the service of “Credit Monitor”, calcu-

lating the estimated EDF values since 1993. A number of studies have shown that

the EDF is a useful leading indicator of default. Changes in EDF also tend to

anticipate, at least 1 year ahead, the typical downgrading dynamics of issuers by

rating agencies as illustrated in Fig. 4.14.

Indeed, the EDFs derived from stock market data are much more reactive to

changes in firms’ financial, and overall economic, situations. The KMV has also

constructed the EDF implied (S&P scale) ratings based on non-overlapping

ranges of default probabilities that are typical for individual rating classes. For

example, the firms with an annual EDF of less than, or equal to, 2 bps are ranked
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AAA, firms with EDF between 3 and 6 bps are AA, and so on. The time series of

EDF ratings can then be used to produce a transition matrix shown in Table 4.4.

There is a striking difference when the matrix is compared to the transition

probabilities based on actual S&P rating changes in Table 4.5. The probabilities

of the KMV rating staying in the same class are much lower than in the case of the

S&P probabilities, while the migration probabilities are much larger. On the other

hand, the speculative grade probabilities of default are larger in the case of the

S&P transition matrix. The phenomenon can be explained by a slower reaction

of S&P ratings to actual credit quality changes, and also by the fact that the

probabilities of default are not tied to the S&P ratings and partially fluctuate with

the cycle. The objection can be raised that the KMV rating migrations are

overestimated, being, as they are, driven by the stock market, where the prices

may also fluctuate up and down, due to psychological and other non-fundamental

reasons.

Risk Neutral Probabilities of Default and Valuation of Contingent Claims

In calibrating the Distance to Default to Expected Default Frequencies, based on

historical probabilities of default, we have unfortunately departed from the prin-

ciple of risk neutral probabilities of default. The EDF’s are estimations of real

world probabilities, yet we still need estimations of calibrated risk neutral

probabilities of default that allow us to discount risky cash flows with the risk

free interest rate.

Let us consider a zero coupon bond paying the full nominal A amount at maturity

T if there is no default, and just the recovery rateRR� A ¼ 1� LGDð Þ � A if there

is a default. If EDFT is the real world probability of default at time T, then we know
how to calculate the mean cash flow at time T, but we do not know precisely how to

discount it to obtain its present (market) value, since it is a risky cash flow, and a

Time
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B

BBB

D Default

EDF

S&P Rating

Fig. 4.14 EDF of a firm

versus S&P rating
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certain risk margin should be added to the standard risk free discount rate. On the

other hand, if QT is the cumulative risk neutral probability of default in the time

horizon T, then the mean cash flow in the risk neutral world can be discounted just

with the risk free interest rate:

PV ¼ e�rTEQ cash flow½ � ¼ e�rTA 1� QTð Þ þ QT 1� LGDð Þð Þ
¼ e�rTA 1� LGDð Þ þ 1� QTð ÞLGDð Þ

The same principle can be used for a general cash flow [CF1, . . .,CFn] representing

a loan, bond or other instrument. If Q1, . . .,Qn are the cumulative risk neutral

probabilities of default, and r1, . . ., rn the risk free interest rates in continuous

compounding at the payment time horizons T1, . . .,Tn, then:

Table 4.4 KMV rating transition matrix (Source: Crouhy et al. 2000)

Initial rating

Rating at year-end (%)

AAA AA A BBB BB B CCC Default

AAA 66.26 22.22 7.37 2.45 0.86 0.67 0.14 0.02

AA 21.66 43.04 25.83 6.56 1.99 0.68 0.20 0.04

A 2.76 20.34 44.19 22.94 7.42 1.97 0.28 0.10

BBB 0.30 2.80 22.63 42.54 23.52 6.95 1.00 0.26

BB 0.08 0.24 3.69 22.93 44.41 24.53 3.41 0.71

B 0.01 0.05 0.39 3.48 20.47 53.00 20.58 2.01

CCC 0.00 0.01 0.09 0.26 1.79 17.77 69.94 10.13

Table 4.5 S&P rating transition matrix (Source: Crouhy et al. 2000)

Initial rating

Rating at year-end (%)

AAA AA A BBB BB B CCC Default

AAA 90.81 8.33 0.68 0.06 0.12 0 0 0

AA 0.70 90.65 7.79 0.64 0.06 0.14 0.02 0

A 0.09 2.27 91.05 5.52 0.74 0.26 0.01 0.06

BBB 0.02 0.33 5.95 86.93 5.30 1.17 0.12 0.18

BB 0.03 0.14 0.67 7.73 80.53 8.84 1.00 1.06

B 0 0.11 0.24 0.43 6.48 83.46 4.07 5.20

CCC 0.22 0 0.22 1.30 2.38 11.24 64.86 19.79
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PV ¼ EQ discounted cash flow½ � ¼
Xn
i¼1

e�riTiEQ Cash flowi½ � ¼

¼
Xn
i¼1

e�riTiCFi 1� LGDð Þ þ
Xn
i¼1

e�riTi 1� Qið ÞCFiLGD:

ð4:18Þ

Example What is the value of a 3-year bond with a face value of $100,000, which

pays an annual coupon of 5%? Let us assume that the risk-free interest rate is 3% for

all maturities, LGD ¼ 60%, and the cumulative risk neutral probabilities are given

in Table 4.6.

Note that the present value in (4.18) is on the right hand side of the table, and

broken down into the risk free part calculated in the column PV1 and the risk part

evaluated in the column PV2. The final present value, 99.552% of the face value

calculated in the risk neutral framework, should be identical to the market value

evaluated using real world EDFs, and discounted with risk adjusted interest rates.□
What remains is to evaluate all debt instruments in our portfolio corresponding

to different borrowers in order to transform the real world EDFs into risk neutral

probabilities. Let us fix a borrower, time horizon T, and the estimated Expected

Default Frequency EDFT. The real world asset value process is governed by the

stochastic differential equation:

dA∗ ¼ μA∗dtþ σA∗dW;

with the drift μ > r reflecting a positive price of risk. There is an exact default

threshold KT, so that EDFT ¼ Pr A∗ Tð Þ < KT½ �. When the probabilities are

transformed from the real into the risk neutral world, the present value of contingent

cash flows is preserved; in particular the present value contingent on the asset value

falling below the threshold KT. Therefore, the risk neutral probability is

QT ¼ Pr A Tð Þ < KT½ �, with the same KT and the asset value process given by the

risk neutral process

dA ¼ rAdtþ σAdW;

starting at the same initial value A 0ð Þ ¼ A∗ 0ð Þ ¼ A0. Both probabilities can be

expressed using the appropriate Black-Scholes-Merton formulas, and compared:

EDFT ¼ N �d2ð Þ, d2 ¼ lnA0=KT þ μ� σ2=2ð ÞT
σ
ffiffiffi
T

p ;

QT ¼ N �d*2
� 	

, d*2 ¼
lnA0=KT þ r � σ2=2ð ÞT

σ
ffiffiffi
T

p :
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Since d2 ¼ d∗2 � μ� rð Þ ffiffiffiffiffiffiffiffi
T=σ

p
, we may eliminate the unknown default threshold

KT, and express the risk neutral probability QT in terms of the known Expected

Default Frequency:

QT ¼ N N�1 EDFTð Þ þ μ� r

σ

ffiffiffi
T

p� 

: ð4:19Þ

The remaining unknown parameter is the risk adjustment μ� r, which can be

estimated according to the Capital Asset Pricing Model (CAPM); i.e., μ� r ¼ βπ,
where β is the borrower’s asset beta with respect to the market, and π ¼ μM � r is
the risk premium of the market portfolio. Since the beta parameter can be calculated

as β ¼ ρ σ
σM

; where ρ is the correlation of the asset return and the market portfolio

returns, the adjustment in (4.19) can be expressed as:

μ� r

σ

ffiffiffi
T

p
¼ ρ

π

σM

ffiffiffi
T

p
¼ ρU

ffiffiffi
T

p
ð4:20Þ

withU ¼ π
σM

being Sharpe’s ratio. In practice, Sharpe’s ratio can be calibrated from

the bond market data, and the correlation ρ can be estimated from the stock

market data.

Example Calculate the risk neutral probability of default if the Expected Default

Frequency in the 2 year horizon is EDF2 ¼ 5%. Assume that Sharpe’s ratio of the

S&P 500 index is U ¼ 0:406, and the debtor stock versus S&P 500 returns

correlation ρ ¼ 0:7: Since the same correlation is applicable to the asset returns,

we may calculate the risk adjustment according to (4.20) as

ρU
ffiffiffi
T

p ¼ 0:7� 0:406� ffiffiffi
2

p ¼ 0:402. Finally, according to (4.19), we get

Q2 ¼ N N�1 0:05ð Þ þ 0:402
� 	 ¼ 0:107:

Therefore, the risk neutral probability Q2¼ 10.7% is more than twice the real world

probability EDF2¼ 5%.□

Table 4.6 Risk neutral present value calculation example

Time CFi Qi (%) e�rTi PV1 PV2 PV

1 5000.00 3.00 0.9704 1940.89 2824.00 4764.89

2 5000.00 6.50 0.9418 1883.53 2641.65 4525.18

3 105,000.00 9.90 0.9139 38,385.11 51,877.48 90,262.59

Total 42,209.53 57,343.12 99,552.65
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4.6 Comparison of the Models

The four presented models, i.e. CreditMetrics, CreditRisk+, CreditPortfolioView,

and KMV Portfolio Manager, aim to estimate the same theoretical value defined

(in Sect. 4.1) as the unexpected loss UL ¼ qX
α � E X½ � on a portfolio of receivables,

given a time horizon T and probability level α. Since the models use different

mechanics to simulate future portfolio values and different data sources to calibrate

the calculation, we should not be surprised by relatively different outcomes, if the

models are applied to the same portfolio.

Recall that the CreditMetrics model requires rating transition probabilities,

recovery rates, yield curves for different rating classes, and an estimation of mutual

asset correlation matrix. The model is appropriate for portfolios of bonds, corporate

loans, or even larger retail receivables. The CreditMetrics methodology is refined in

the KMV Portfolio Manager where we need, instead of historical transition

probabilities and the rating yield curves, historical stock market data and the capital

structure for each debtor in the portfolio. Moreover, the methodology requires a

mapping of EDF values to historical default probabilities. Such a database is

maintained essentially only by the company KMV Moody’s. Both models use a

market valuation of receivables at the time T, the values are nevertheless obtained
in slightly different ways. The KMV Portfolio Manager does not utilize historical

rating transition probabilities, but implicitly generates transition probabilities based

on the stock market price volatility. It is generally argued that the KMV implied

transition probabilities are larger than the historical probabilities, as stock returns

reflect changes in credit quality much more quickly than the external ratings.

While CreditMetrics is a universal model that can be applied to portfolios of

different assets, KMV is limited only to debtors with liquid stocks traded on the

markets, thus it is very difficult to be applied in countries with less developed equity

markets. CreditMetrics could be used even on consumer loan or mortgage

portfolios, but simulation of the rating migration on each single retail receivable

might be computationally quite demanding. In that case an efficient solution is

provided by the CreditRisk+ methodology that needs just individual ex-ante

probabilities of default, historical annual default rate volatilities, recovery rates,

and possibly a segmentation into economic sectors. The disadvantage of the model

is that there is limited flexibility of the correlation structure. This is usually not an

issue for the retail portfolios of small homogenous receivables.

Finally, we should mention the CreditPortfolioView Model, which tries to

separate expected and unexpected macroeconomic development. The model there-

fore needs a historical series of appropriate macroeconomic variables as well as

historical rates of default for different rating classes. The macroeconomic model

then allows the simulation of future probabilities of default (depending on ratings).

The defaults, or rather rating changes, are then simulated conditionally on those

probabilities. The model is not frequently used in practice due to the difficult

macroeconomic modeling, and an ad hoc procedure is used to define the conditional

transition matrix and loss distribution.
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There is an interesting empirical study by Kolman (2010) comparing the results

of the CreditMetrics, CreditRisk+, and KMV Portfolio Manager on a specific

portfolio. The portfolio comprises 20 bonds of various issuers from different sectors

in the U.S.A. The par value of the individual bond investments is around 10 million

USD and total portfolio par value is 164 million USD. The bonds are rated by both

Moody’s and Fitch, with most of the ratings grades being speculative. Moreover, all

the issuers have stocks traded on the markets and capital structure data publicly

available. The CreditMetrics model is implemented based on Moody’s historical

transition probabilities, and correlations derived from the stock market data.

CreditRisk+ is based on historical average default rate volatility, and just a

single-sector approach is applied. In the case of the KMV model, besides the

stock market data, the author uses a publicly available study mapping the EDF

values to historical PDs (for details see Kolman 2010). Thus, all the models are

applied on the same bond portfolio, use real historical and financial data, and

simulate the portfolio loss in the same 1-year horizon. The empirical probability

distributions shown in Fig. 4.15 and the relevant quantiles are, however, far from

being identical.

The jumpy shape of the CreditRisk+ and CreditMetrics distributions is explained

by the discrete character of the methodologies and by the fact that the portfolio is

relatively small, having just 20 debtors. CreditRisk+ models just different numbers

of defaults, while CreditMetrics is slightly finer, simulating all possible rating

Fig. 4.15 Distribution of future portfolio values simulated by the three models (Source: Kolman

2010)

4.6 Comparison of the Models 151



migrations, yet the largest losses are caused by downgrades of the largest bond

exposures to the state of defaults. The KMV model, on the other hand, simulates all

possible continuous changes of the market values of the individual bonds driven by

the underlying asset value processes. Consequently the KMV probability distribu-

tion turns out to be much smoother. Table 4.7 shows the means of the portfolio

simulated future market values, the 1% quantile, and the corresponding unexpected

loss, i.e. 99% Credit Value at Risk.

While CreditMetrics and the KMV model estimated 99% unexpected losses

(i.e. the 1% quantile minus the mean portfolio value) are relatively close, the

CreditRisk+ unexpected loss is much smaller. This can be explained by the fact

that CreditRisk+ uses the Poisson distribution to simulate the number of defaults,

which works well for portfolios with much larger numbers of assets than 20.

Moreover, CreditRisk+ does not capture rating migrations which may cause

additional unexpected losses, or there might be an inconsistency between the

historical default rate volatility and the historical transition matrix. Generally, we

would rather expect the KMV estimate, compared to CreditMetrics, to be more

conservative. The fact that the CreditMetrics 99% unexpected loss came out larger

than the KMV result could be explained by the jumpy shape of the CreditMetrics

distribution and the smooth character of the KMV distribution.

To conclude, the empirical study of Kolman (2010) shows that it is questionable

to apply the CreditRisk+ model to a portfolio with a limited number of bonds or

large corporate exposures. On the other hand, it was confirmed that the

CreditMetrics and KMV models give similar results, if calibrated with consistent

historical data. But even for these two models, the empirical study gave a relative

difference of approximately 10% between the estimated values. Thus, the credit

risk analysts implementing a credit portfolio model should not take the resulting

unexpected loss estimate as the absolute truth. Optimally, more portfolio models

should be implemented, and the outcomes in terms of loss distributions should be

critically compared.

4.7 Vasicek’s Model and the Basel Capital Calculation

The Basel I capital requirement (BCBS 1988) was based on a simple credit risk

capital calculation, set as 8% of the assets multiplied by risk weights from the range

0, 20, 50, and 100%. Domestic, OECD governments’, and central banks’ exposures

Table 4.7 The unexpected losses estimated by the three models (Source: Kolman 2010)

Mean value 1% quantile 99% quantile Unexpected loss

CreditMetrics 169.141 118.069 180.755 45.931

CreditRiks+ 158.867 134.000 168.000 24.867

KMV model 158.598 118.771 174.506 39.827
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received 0%, OECD commercial banks 20%, and residential mortgages 50%, while

all corporate, business, and consumer loans received 100%. There was some

differentiation according to the riskiness of the exposures, but in the most important

corporate, business, and retail segments, the 100% weight did not differentiate the

risk at all. The guiding principle of the new Basel II regulation was to improve the

credit risk calculation formula that should provide a reasonable estimate of the

unexpected loss in the context: Credit Value at Risk (see Fig. 2.8).

In the previous section we reviewed several portfolio credit risk models. It could

be proposed to allow the banks to use their internal portfolio credit risk model,

which would have to be approved by the regulator, as in the case of market risk.

Nevertheless, the models use quite different approaches and, in fact, may lead to a

wide range of results, as we have seen in Sect. 4.6. The models are very sensitive to

asset correlation, rating transition matrices, and other parameters which are difficult

to estimate. In this situation, when the credit risk modeling techniques are still being

developed, BCBS has decided for a compromise, applying a simple approach based

on the Vasicek (1987) model, which has some of the key elements of the more

complex models described in the previous sections, but provides an analytic

formula that needs just a few key input parameters (PD, LGD, EAD), and may be

applied separately to each exposure.

Vasicek’s Model

Let us consider a non-defaulted borrower j, and let Tj be the time to default on the

borrower’s exposure. It is assumed that everyone will default once, and as the time

of the future event is unknown at present, the time Tj < 1 is treated as a random

variable. If Qj denotes the cumulative probability distribution of Tj, then, it can be

easily verified that the quantile-to-quantile transformed variableXj ¼ Φ�1 Qj Tj

� 	� 	
has the standardized normal distribution. Note that default in the 1-year horizon

happens if Tj � 1, or, equally, if, and only if, Xj � Φ�1 PDð Þ, where PD¼Qj 1ð Þ is
the 1-year probability of default. The advantage of the transformation is that we can

take the assumption that the variables are multivariate normal with a fixed mutual

correlation ρ. The properties of normal variables can be used to obtain a nice

analytical result. Effectively, we are applying the one-factor Gaussian copula

model. If the mutual correlation is ρ, then each factor Xj can be broken down into

one common systematic factor M, and an idiosyncratic; i.e., independent specific

factor Zj, both with the standard normal distribution:

Xj ¼ ffiffiffi
ρ

p
M þ

ffiffiffiffiffiffiffiffiffiffiffi
1� ρ

p
Zj: ð4:21Þ

Let us assume for a moment that the ex-ante probability of default PD is the

same for all the exposures j ¼ 1, . . . , J in a large portfolio. In a Monte Carlo

approach, similar to CreditMetrics, we first of all generate on the portfolio level the

systematic factor m � N 0; 1ð Þ, and then for each exposure j ¼ 1, . . . , J, the

idiosyncratic factor zj � N 0; 1ð Þ. Since J is large, the rate of default; i.e., the relative
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number of cases where xj ¼ ffiffiffi
ρ

p
mþ ffiffiffiffiffiffiffiffiffiffiffi

1� ρ
p

zj � Φ�1 PDð Þ approaches, by the law

of large numbers, the conditional default probability:

Pr
ffiffiffi
ρ

p
M þ

ffiffiffiffiffiffiffiffiffiffiffi
1� ρ

p
Zj � Φ�1 PDð Þ��M ¼ m

h i
¼ Pr Tj � 1

��M ¼ m
� � ¼ PD1 mð Þ;

i.e., the rate of default PD1, conditional on the systematic factor M ¼ m. Note that
the events of defaults conditional uponM ¼ m are independent, and so the standard

deviation of the simulated rate of default is of the order PD1=
ffiffiffi
J

p
. In Vasicek’s

model this variance is neglected, assuming that the portfolio is asymptotic; i.e.,

J infinite. Compare this to credit CreditRisk+, where we simulate, first of all, the

overall PD, and then the independent events of defaults conditional upon the proba-

bility of default PD.

Finally, the conditional rate of default can be expressed as:

PD1 mð Þ ¼ Pr Tj � 1
��M ¼ m

� � ¼ Pr Xj � Φ�1 PDð Þ��M ¼ m
� � ¼

¼ Pr
ffiffiffi
ρ

p
M þ ffiffiffiffiffiffiffiffiffiffiffi

1� ρ
p

Zj � Φ�1 PDð Þ��M ¼ m
� � ¼ Pr Zj �

Φ�1 PDð Þ � ffiffiffi
ρ

p
mffiffiffiffiffiffiffiffiffiffiffi

1� ρ
p

� �
¼

¼ Φ
Φ�1 PDð Þ � ffiffiffi

ρ
p

mffiffiffiffiffiffiffiffiffiffiffi
1� ρ

p

 �

ð4:22Þ
Since the conditional portfolio rate of default PD1(m) monotonically depends just

on the one factor, m � N 0; 1ð Þ, we can use the quantiles of m to obtain the

unexpected default rate on any desired probability level α (e.g., 99%), setting

m ¼ Φ�1 1� αð Þ ¼ �Φ�1 αð Þ. Thus, the unexpected default rate on the probability

level α can be expressed as:

UDRα PDð Þ ¼ Φ
Φ�1 PDð Þ þ ffiffiffi

ρ
p

:Φ�1 αð Þffiffiffiffiffiffiffiffiffiffiffi
1� ρ

p

 �

: ð4:23Þ

The same argument may be used on a portfolio of exposures with different

probabilities of default, driven by a rating scale, assuming that for each rating grade

the number of exposures is large. Since there is still just one systematic factor, the

Vasicek’s formula (4.23), applied on exposure level, gives an individual contribu-

tion to the overall unexpected default rate. Moreover, if it is multiplied by the

Exposure at Default (EAD), and estimated Loss Given Default (LGD), we get an

individual loan contribution to the overall portfolio unexpected loss.

Basel II/III Capital Formula, Its Advantages, and Disadvantages

Even though the first Consultative Papers contained proposals attempting to capture

portfolio granularity; i.e., penalizing less diversified portfolios, the final version of

the capital calculation formula is portfolio invariant based on (4.23), defining the
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percentage capital requirement (K), and the risk weighted assets independently of

the portfolio context as

RWA ¼ EAD� w,
w ¼ K � 12:5,
K ¼ UDR99:9% PDð Þ � PDð Þ � LGD�MA:

ð4:24Þ

The banks applying IRB must estimate the PD parameter and, in the advanced

approach, even the LGD and EAD parameters, using their internal models

satisfying a number of qualitative requirements. Correlation, the key parameter in

(4.23), is given by the regulation according to individual segments. For corporate,

sovereign, and bank exposures, the correlation is set to be a weighted average

between 0.12 and 0.24, depending on the PD:

ρ ¼ 0:12
1� e�50PD

1� e�50
þ 0:24

e�50PD � e�50

1� e�50
:

The correlation is slightly reduced for SME exposures, reflecting lower sizes and

higher diversification. Similarly, for consumer loans, the correlation is a weighted

average between 0.03 and 0.16, while for mortgages it is fixed at ρ ¼ 0:15, and
finally for revolving loans (e.g. credit cards) it is ρ ¼ 0:04. The maturity adjustment

is applied only to corporate, sovereign, and bank exposures, in an attempt to

differentiate between shorter maturities with a lower risk, and longer maturities

with a higher risk, by the following relatively complex econometric formula:

MA ¼ 1þ ðM � 2:5Þb
1� 1:5b

, b ¼ ð0:1182� 0:05478lnPDÞ2:

For retail receivables the adjustment is not used, or equivalently, MA ¼ 1. The

regulators have also decided to apply the high probability level α ¼ 99:9%, which

appears to be over-conservative. For example, the analogous insurance industry

regulation, Solvency II, works with the probability level of 99.5%. Since the

formula (4.23) assumes a perfectly diversified portfolio, the high probability level

may be intended as a cushion, making up for an imperfect diversification not

reflected in the model. Different levels of ordinary diversification are also clearly

incorporated into the correlation coefficients, which are reduced for SME

exposures, compared to corporate ones, and for revolving credit compared to

consumer loans and mortgages, i.e. for exposures where we normally expect a

well-diversified portfolio. In fact, the coefficients had to be calibrated to differenti-

ate the risk and, at the same time, were based on a number of Quantitative

Studies (see BCBS 2006b), so that the overall capital level in the system did not

change significantly. Moreover, the intention of the regulators was to motivate

banks to adopt the IRBF, or IRBA, approach and the higher credit risk management

standards, and so the IRB capital requirements should be, under normal conditions,

slightly below the Standardized Approach required capital calculated on an identi-

cal portfolio.
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To summarize, compared to the Basel I RWA calculation, the Basel II formula

provides much better risk sensitivity. Yet, it remains still relatively simple, requir-

ing banks to estimate the key parameters without the need for any sophisticated

simulation, or analytical, portfolio modeling. We can conclude that certain issues

remain unresolved, and some new problems have arisen.

From the perspective of the models presented in Sects. 4.2–4.5, Vasicek’s model

makes significant simplifying assumptions, neglecting, in particular, the effect of

low diversification due to a limited number of exposures, and the possibility of a

more complex correlation structure. The regulatory correlations are necessarily

calibrated in the spirit of “one size fits all.”

Another issue is an underestimation of the unexpected recovery risk. As already

discussed in Sect. 3.5, a number of studies have empirically shown (Altman et al.

2004) that recovery rates tend to be high when the economy is doing well, and low

when the economy is down. Thus, there is also a negative PD x LGD correlation. It

is demonstrated in Witzany (2009d) that the impact on economic capital might be

quite significant. The regulation (§468 BCBS 2006a) tries to solve the problem, by

requiring that LGD be estimated with a margin of conservatism, reflecting the

impact of economic downturns. But the formulation remains vague, allowing

different interpretations. It should be made more specific in the future. The precise

modeling of unexpected default rates, and no, or limited, modeling of unexpected

LGD has another surprising effect, as pointed out in Witzany (2009e). The banks

have a certain, though limited, freedom, in defining the event of default. If the

definition is too soft, flagging exposures as defaulted relatively early, then many

may become ‘cured’; i.e., debtors start to pay regularly again, and after some time

are flagged as non-defaulted with a 100% observed recovery rate. The soft default

definition causes the empirically observed PD to be higher, while the empirical

LGD is lower (as many defaulted cases show zero loss). It turns out that this leads to

a lower capital requirement, calculated according to (4.24) and (4.23), compared to

a standard definition of default. The effect is caused by insufficient modeling of

unexpected recovery risk and, on the other hand, by the Vasicek formula, which

gives an unexpected default rate estimate that is proportionally lower for higher PD

values (see Fig. 3.35).

Pro-cyclicality has become a rising concern, in particular, in the context of the

recent crisis. A number of studies (Gordy and Howells 2006; Repullo et al. 2009),

have pointed out that the Basel II capital requirement on an average portfolio is

relatively low when the economy is doing well, and goes up when the economy is in

a recession (see Fig. 4.16). The effect is caused by the general PIT property of

internal rating systems, and the implied PDs as already explained in Sect. 3.6. Note

that the pro-cyclical effect did not exist in the Basel I framework, with the simple

structure of constant risk weights. The higher capital requirements discourage

banks from providing more loans in a recession, and the low capital requirement

encourages more loans in a period of economic expansion. Although this might be

correct from the microeconomic point of view, it has a serious macroeconomic

effect, worsening the crises and overheating the economy during expansions. There

has been an ongoing discussion on how to “treat the disease without killing the
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patient,” using the phrase of Gordy and Howells (2006) which has led to some

conclusions partially incorporated into the Basel III reform (BCBS 2010). As

explained in Sect. 2.3, Basel III did not change the capital requirement formula

(4.24), but introduced capital conservation and countercyclical buffers in order to

mitigate the Basel II pro-cyclical effect. Other Basel III key components are related

to capital quality, the risk coverage of market products (see also Sect. 5.6),

leverage, and liquidity risk management standards.

Economic Capital and Stress Testing According to Basel II/III

Even though the new regulatory capital calculation tries to approximate the concept

of economic capital; i.e., unexpected credit portfolio loss; banks are still required

under Pillar II (§725 Principle 1, BCBS 2006a) to “have a process for assessing
their overall capital adequacy in relation to their risk profile and a strategy for
maintaining their capital levels.” That is optimally achieved by modeling overall

credit, market, and operational risk, using the best available techniques and all

available data. The results should be compared to the regulatory capital, as well as

to the available capital, and additional capital charges may be required by the

regulator if the latter appears too low. Banks are required, explicitly, under Pillar

I and Pillar II, to perform scenario based stress testing.
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Fig. 4.16 Basel II capital requirement and GDP growth, Spain 1986–2007 (Source: Repullo et al.

2009)
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Credit Derivatives and Counterparty
Credit Risk 5

Financial derivatives are generally contracts whose financial payoffs depend on the

prices of certain underlying assets. The contracts are traded Over the Counter

(OTC), or in a standardized form on organized exchanges. The most popular

derivative types are forwards, futures, options, and swaps. The underlying assets

are, typically, interest rate instruments, stocks, foreign currencies, or commodities.

The reasons for entering into a derivative contract might be hedging, speculation, or

arbitrage. Compared to on-balance sheet instruments, derivatives allow investors

and market participants to hedge their existing positions, or to enter into new

exposures with no, or very low, initial investment. This is an advantage in the

case of hedging, but at the same time, in the case of a speculation, a danger, since

large risks could be taken too easily. Derivatives are sometimes compared to

electricity; something that is very useful if properly used, but extremely dangerous

if used irresponsibly. In spite of those warnings, the derivatives market has grown

tremendously in recent decades, with OTC outstanding notional amounts exceeding

650 trillion USD, as of the end of 2014, and exchange traded derivatives’ annual

turnover exceeding 1450 trillion USD in 2014.

Similarly, credit derivatives are contracts with payoffs that depend on the

creditworthiness of one, or more, counterparties. The creditworthiness is expressed

either by binary information indicating default or no default, or by a credit rating,

by a market credit spread, or by the market value of credit instruments, for example,

corporate bonds. Currently, credit derivatives are traded on OTC markets only,

although after the financial crisis, the new regulation (Dodd-Frank Act in the

U.S. and EMIR—European Market Infrastructure Regulation) has introduced man-

datory centralized clearing for the most important products (e.g., index CDS). As in

the case of the classical derivatives, there is a multitude of special credit derivatives

instruments, but we will focus only on a few of the most important: Credit Default

Swaps (CDS), Total Return Swaps (TRS), Asset Backed Securities (ABS), Mort-

gage Backed Securities (MBS), and the Collateralized Debt Obligations (CDO).

CDS and TRS can be compared to credit protection, or insurance contracts.

Investors can buy or sell protection against defaults of one or more reference credit
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entities. ABS, MBS, and CDO, on the other hand, allow financial institutions to

pack, slice into different risk categories, and sell a portfolio of loans to other

investors. The underlying assets of ABS are retail exposures like auto, credit

card, equipment, housing related, student, and other loans, while MBS underlying

assets are residential and commercial mortgages. As we explain later ABS and

MBS are issued in tranches, and the tranches might be used as underlying assets of

CDOs, which makes the analysis of CDOs even more difficult than in the case of

ABS or MBS.

While classical derivatives have been actively traded for over 100 years, the

trade in credit derivatives started relatively recently, in the late 1990s, with an

exponential growth until 2007. Figure 5.1 shows that the trend has been reversed

during the recent financial crisis, and yet the global outstanding notional amounts

still exceeded 15 trillion USD at the end of 2014. The decline can be attributed

partially to lower trading activity, but also to the effect of a centralized settlement

allowing CDS positions to be closed out before maturity. The fast growth in credit

derivatives trading, and in particular, of asset securitization, could, unfortunately,

be blamed, to a certain extent, for the crisis.

The financial crisis has, in particular, had a significant impact on the develop-

ment of global CDO issuance, as shown in Fig. 5.2. The sharp increase in CDO

issuance went hand in hand with the strong growth of the subprime mortgage

market in the U.S. until 2006–2007, and contributed to the creation of the real

estate bubble. Other issues were the difficult valuation models, which were under-

stood only by a few market participants, as well as too large dependence on

rating agencies. The catastrophic implications of the financial crisis on some

major market players almost caused a fear of CDOs, and a sharp decline of issuance

to relatively negligible volumes (4.3 billion USD for 2009). A significant reduction

of volumes can also be seen in the issuance of ABS and MBS (Fig. 5.3). Neverthe-

less, the most recent numbers indicate a partial recovery of the CDO as well as the

ABS market.

The mechanics of CDS, TRS, ABS/MBS and CDO will be described in more

detail in Sect. 5.1. The section also gives an introduction to elementary valuation

principles. More advanced modeling and valuation techniques are then outlined in

Sects. 5.2–5.4. and Sect. 5.5 discusses credit derivatives regulatiry issues.

Counterparty credit risk is the risk of loss on a derivative position due to default

of the counterparty. The modeling of the risk incorporates both the task of the

derivative pricing and the credit risk modeling. The topic has become recently,

especially during and after the financial crisis, very important and so we focus on it

in the last Sect. 5.6.

5.1 Credit Derivatives Market

Credit Default Swaps

The most popular credit derivative is a credit default swap (CDS). A single name

CDS contract provides insurance (credit protection) against losses in the case of the
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default of a specified subject, known as the reference entity. The buyer of the

insurance makes periodic payments to the insurance seller and receives compensa-

tion in the case of default, called the credit event. In case of financial settlement, the

compensation may be calculated as the loss on a notional amount, based on

quotations collected by an independent agent. Another possibility is a physical

settlement, which could be stipulated by the contract. This is an obligation of the

insurance seller to buy the underlying bonds from the insurance buyer for their face

value.
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Example Figure 5.4 shows an example of a CDS contract, where the credit

protection buyer pays, annually, 200 basis points (i.e. 2%) on the notional amount

of 10 million EUR (corresponding to 1000 bonds with 10,000 EUR face value),

against the possibility of default during the next 5 years. Those were approximately

the quotes on the Greek government debt CDS at the end of November 2009. Let us

assume that the CDS starts on December 1, the credit spread is, as usual, payable in

arrears on December 1 of 2010, 2011, 2012, 2013, and 2014; the reference entity is

a country G, and the settlement, in the case of default, is in cash.
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If there was no default, then the credit protection seller receives 5� 0.2¼þ1

million EUR, and there is no payment to the credit protection buyer. Let us now

assume that on June 1, 2013, the reference entity G defaults. The calculation agent,

based on quotations usually 1 month after default, determines the loss at 45%. The

credit protection seller then must pay 4.5 million EUR to the credit protection buyer

to cover the loss. The credit protection buyer must still pay the accrued credit

protection spread for the period December 1, 2012–June 1, 2013; i.e., 100,000

EUR, but the remaining credit spread payments are terminated due to the event of

default. In this case, the net result is negative, i.e. 0.7� 4.5¼�3.8 million EUR

from the perspective of the credit protection seller. □
The CDS contracts are not as innovative as is sometimes claimed. In fact, a CDS

contract is essentially the same as a banking guarantee. The single-name and multi-

name CDS also share a number of principles with reinsurance contracts. The main

difference is that CDS contracts are, to a large extent, standardized through an

ISDA (International Swap and Derivatives Association) framework documentation,

allowing for fast OTC trading. Moreover, CDS contracts are not subject to insur-

ance regulation.

Credit Spreads and Risk Neutral Probabilities

Risk neutral probabilities have already been introduced in Sect. 4.5 as a key

theoretical framework for the valuation of credit event contingent claims. The

relationship between risk neutral PDs, historical PDs, and the market values of

bonds or CDS is outlined in Fig. 5.5.

We have seen in Sect. 4.5 that the risk neutral PDs could be derived directly from

the historical PDs. However, it is more usual to derive risk neutral PDs from market

bond prices if those are available. Corporate bond prices reflect not only expected

losses due to a real probability of default, but, moreover, the uncertainty of the

estimates, and the price of risk charged by the investors for the possibility of losses

in the case of default. Remember that the risk-neutral valuation principle, based on

applied stochastic calculus, says that given one, or more, sources of uncertainty, we

can adjust the probabilities of all the scenarios so that the value of any derivative

security today can be calculated as the expected future value, discounted by the risk

free interest rate. Given the market value of a risky bond, and the risk-free interest

rate, the risk neutral PDs can be relatively easily calculated. In turn, risk neutral PDs

can be used to value different credit derivatives and to determine the equilibrium of

CDS spreads.

Credit
protection

buyer

Credit
protection

seller

200 basis points p.a.

Loss coverage in case of default

Fig. 5.4 Credit default swap example
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CDS spreads can be, however, directly obtained from bond yields using asset

swaps. We are going to give an example of the relationship, before illustrating, in

detail, the risk neutral PDs calculation.

Example Let us firstly assume that the market value of a 5 year corporate bond,

with a 5% annual coupon, is 100%. If government bonds can be currently issued

with a 4% coupon, representing the 5 year risk free interest rate, then the market

5 year CDS spread (with physical, or cash, settlement, not binary) on the same

corporation should be close to s ¼ 1%. The argument is that the investment in the

corporate bond, combined with the CDS protection paying s on the same notional

amount, is equivalent to becoming a risk free investment. A small complication is

that in the case of default, for instance after 3 years, the loss is covered by the

protection seller, i.e. effectively 100% of the notional amount is paid back, and the

coupon payments are terminated. Moreover, in practice, the bond market values

deviate from the 100% par value. The second issue is resolved with an asset swap.

Let us say that counterparty A buys the bond value for 94%. A corresponding asset

swap with counterparty B is defined as follows: first the counterparty A pays B the

6% difference between the par and market value of the bond. A, moreover, pays the

coupon 5% annually to B, and B pays Liborþ s of the bond principal to A until

maturity, independently (!) of whether the bond issuer defaults or not. From the

perspective of A, the cash flow is transformed to a 100% principal investment into a

corporate bond, with the same issuer paying Libor þ s. Again, we can argue that

the spread s must be (approximately) equal to the market CDS spread. □
Generally, risk neutral probabilities can be calculated from the valuation formula

(4.18), which may be written in the simplified form:

P ¼
Xn
i¼1

e�riTiCFi � 1� LGDð Þ þ
Xn
i¼1

e�riTi 1� Qið Þ � CFi � LGD ð5:1Þ

where Qi is the cumulative risk neutral probability of default with maturity Ti, ri the
risk free interest rate with maturity Ti, CFi the payment due at Ti, and LGD is the

fixed loss given default ratio. Starting from the market values of fixed coupon

Fig. 5.5 Relationship

between different sources of

credit risk valuation
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bonds, maturing in 1, then 2, or more years, we can bootstrap the risk neutral

probabilities for one, two, or longer maturities.

Example Table 5.1 shows the input market prices of bonds with different coupons,

and maturities of 1, 2, and 3 years. The fourth column gives the risk free annual

interest rates for the respective maturities. The risk-neutral cumulative probabilities

of default in the last column are calculated as follows. The loss given default is

assumed to be a fixed LGD ¼ 0:4. The 1-year probabilityQ1 ¼ 0:0111 is calculated
solving the Eq. (5.1) for the 1-year bond:

101 ¼ e�0:02 � 103:5� 0:6þ e�0:02 � 1� Q1ð Þ � 103:5� 0:4:

The 2 year probability Q2 is obtained from the Eq. (5.1) for the 2 year bond, with Q1

already known:

102:5 ¼ e�0:02 � 5� 0:6þ e�0:03105� 0:6þ e�0:02 1� 0:0111ð Þ � 5� 0:4
þ e�0:03 1� Q2ð Þ � 105� 0:4:

Similarly, we continue to get the 3 year probability Q3 from the Eq. (4.18) for the

3 year bond based on the already calculated values for Q1 and Q2. □
The procedure illustrated above gives us a number of cumulative risk neutral

probabilities of default for a discrete set of maturities. In order to value a general

contingent cash flow, we need to interpolate, or extrapolate, the cumulative

probabilities of default for all possible maturities. This can be consistently done

using the concept of survival analysis outlined in Sect. 3.3. Recall the hazard rate,

or rather intensity of default, λ(t), that is defined as the annualized probability of

default of the given entity over the time interval t, tþ dt½ Þ, provided there was no

default until t. Thus, if Q(t) is the cumulative probability of default, and S tð Þ ¼ 1

�Q tð Þ the corresponding cumulative probability of survival, then:

λ tð Þ ¼ dQ tð Þ
1� Q tð Þ

1

dt
, i:e:

dS tð Þ
dt

¼ �λ tð ÞS tð Þ;

and so

Table 5.1 Calculation of

risk neutral probabilities

from bond prices

Bond value Coupon Maturity ri (%) Q (%)

101.00 3.50 1 2.00 1.11

102.50 5.00 2 3.00 3.20

102.00 5.00 3 3.50 5.45
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Q tð Þ ¼ 1� e
�
ð t
0

λ sð Þds
; ð5:2Þ

or

Q tð Þ ¼ 1� e�λ tð Þt ð5:3Þ

where λ tð Þ ¼ 1
t

ðt
0

λ sð Þds is the average default intensity between time 0 and time t.

It makes sense to assume that the default intensity is constant, independent of

time (exponential model), or that the intensities follow a certain parametric, or

nonparametric, pattern. So, given a set of calculated cumulative probabilities of

default of an entity (or rating grade), e.g., Q(1), Q(2), Q(3), . . . we may calculate

the corresponding average default intensities λ 1ð Þ, λ 2ð Þ, λ 3ð Þ, . . . from (5.3), and

interpolate or extrapolate λ tð Þ between those values for a general t. Finally, Q(t) is
obtained again by (5.3). Alternatively, we may assume that the intensities are,

piecewise, constant, e.g., that there is constant intensity of default λ1 over the first
year that can be calculated from (5.2) given Q(1), λ2 for the second year obtained

from Q(2) and λ1, etc. The Eq. (5.3) again allows us to calculate Q(t) for arbitrary
maturity.

Example The resulting average intensities, and annual constant intensities of

default based on cumulative risk-neutral probabilities of default, obtained in

Table 5.1, are shown in Table 5.2. The solution of (5.3) for λ tð Þ is straightforward:

λ tð Þ ¼ �1

t
ln 1� Q tð Þð Þ:

Regarding constant intensities, note that if λ1 ¼ λ 1ð Þ, then

λ2 ¼ �ln 1� Q 2ð Þð Þ � λ1, and so on.

To estimate the cumulative probability of default for t ¼ 2:5, we may linearly

interpolate the average intensity

λ 2:5ð Þ ¼ λ 2ð Þ þ λ 3ð Þ� �
=2 ¼ 1:75%;

and obtain Q 2:5ð Þ ¼ 4:27%. Alternatively, we could use (5.2) and the constant

intensities of default, Q 2:5ð Þ ¼ 1� e�λ1�λ2�0:5λ3 ¼ 4:33%. The results are close,

but not identical, since the first approach implicitly assumes a smooth (not piece-

wise constant) shape of the intensities of default. □
The average, or constant, annual intensities of default also allow us to analyze

better the term structure of the probabilities of default. The average intensities could

be put into an analogy with annualized interest rates in continuous compounding,
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while the annual intensities are parallel to the forward annual interest rates implied

by the term structure of the interest rates. For example, Table 5.2 shows that the risk

neutral intensities of default expected by the market are increasing, which is a

normal situation for higher rating grades.

The average risk neutral default intensity λ can be also estimated in a simplified

way from the spread s of a bond over a yield of a similar risk free bond. Since the

spread must cover the bond’s average annual losses over its life, we may use the

approximate equation s¼λ � LGD= 1� λ
� �

or λ ¼ s= LGD þ sð Þ. Note that the

approach neglects the effect of discounting. For example, if the spread is

200 basis points (i.e. 2%), and LGD ¼ 0:4, then λ ¼ 0:02=0:42 ¼ 7:76%.

Hull (2009) compares historical default intensities and risk neutral intensities

obtained from bonds of various rating classes. Table 5.3 shows that there is a

dramatic difference between the historical intensities and risk-neutral intensities

obtained from bond prices, in particular for the best ratings, where the risk-

neutral intensities are 10, or more, times the historical frequencies. The phenom-

enon is explained by the existence of systematic non-diversifiable risk, which

does have a price. If the economic capital, in the sense explained in Sect. 4.1,

allocated to a bond were, for example 8%, and the required annual return on

economic capital were 15%, then investors would have to add 8%� 15% ¼ 1:2
% to the expected annualized losses and to the risk free yield. Moreover,

corporate bonds are relatively illiquid, and so investors also require a premium

over the yield on liquid government bonds. It could be also argued that the

unexpected loss priced by the market is not only the systematic one caused by

the positive correlation, but is also caused, partly, by the low diversification risk,

due to the fact that full diversification is difficult, or impossible, to achieve on

corporate bond markets.

Valuation of Single Name CDS

Valuation of single name CDS is relatively straightforward. One applies the

formula (5.1), and a given term structure of risk neutral default probabilities Q(t)
for the CDS reference credit entity. Nevertheless, as for other OTC derivatives, we

need to distinguish the valuation of an outstanding CDS position, and determination

of the market CDS spread, which makes the market value of a new CDS contract

equal to zero.

Table 5.2 Calculation of

intensities from the

cumulative probabilities of

default

Maturity Q (%) λ (%) Const. λ (%)

1 1.11 1.12 1.12

2 3.20 1.62 2.13

3 5.45 1.87 2.36

5.1 Credit Derivatives Market 167

http://dx.doi.org/10.1007/978-3-319-49800-3_4


Example Let us consider an outstanding CDS position, with 3 remaining years to

maturity, where we pay 120 basis points on $100 million notional, and the reference

entity has the risk neutral default probabilities shown in Table 5.1. We make the

simplifying assumption that defaults always happen halfway through a year. There-

fore, the spread $1.2 million is paid at the end of years 1, 2, and 3, provided the

reference entity survives, and the payoff, in the amount of $40 million (assuming

LGD ¼ 0:4), is paid at time 0.5, 1.5, or 2.5, if the reference entity defaults by the

end of the year 1, 2, or 3. In the case of default, we also need to deduct the accrued

semi-annual spread payment of $0.6 million. For the payoff, we need to use the

unconditional default probabilities for the respective years; i.e., Q(1) for the first

year, Q 2ð Þ � Q 1ð Þ for the second, and Q 3ð Þ � Q 2ð Þ for the third; since the swap is

terminated by the default event. The cash flows, with the annual default and

survival probabilities, and with the risk free rates used for discounting, are shown

in Table 5.4. The resulting mark-to-market value of �$1.21 million shows that the

credit spread is too high under current market conditions; i.e. under market implied

risk neutral probabilities of default. This can also be verified in a simplified way,

comparing the annualized expected loss estimate

λ 3ð Þ � LGD ¼ 1:87%� 0:4 ¼ 0:75%;

and the spread payment of 1.2%.

A slightly different task is to determine the spread s, which makes the market

value of a 3 year CDS, entered into under current market conditions, equal to zero.

Then, we must replace the fixed payment of $1.2 million in Table 5.4, by the

expression $ 100s million, the payoff by $ 40� 50sð Þ million, and express the

expected present value as a function of the unknown variable s:

PV ¼ 2, 098� 275:8� s

Finally, the equilibrium spread is the solution of the equation PV ¼ 0 ; i.e.,

s ¼ 2:098=275:8 ¼ 0:76%. It can be verified, by recalculating Table 5.4 with the

76 basis point CDS payment, that the resulting market value is then indeed almost

zero. □

Table 5.3 Seven-year default intensities in % p.a. (Source: Hull 2009)

Rating

Historical default

intensity

Default intensity from

bonds Ratio Difference

Aaa 0.04 0.60 16.7 0.56

Aa 0.05 0.74 14.6 0.68

A 0.11 1.16 10.5 1.04

Baa 0.43 2.13 5.0 1.71

Ba 2.16 4.67 2.2 2.54

Caa and

lower

13.07 18.16 1.4 5.5
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The CDS valuation, shown above, starts with bond market values that are usually

strongly determined by the external, or internal, ratings of the reference entity

performed by rating agencies and other market players. However, once the CDS

market becomes liquid, new credit information might be incorporated into market

CDS prices much faster than to the updated ratings or bond prices. The CDS prices,

then, in a sense, emancipate and become a primary source of the actual market view

of the credit quality of a subject, which can be used to value other credit instruments

like bonds or loans (see Fig. 5.5). For example, Fig. 5.6 shows the development of

Ireland’s, Greece’s, Spain’s, and Portugal’s sovereign CDS spreads during the

period 1/2009–12/2010, and it is the best characterization of recent dramatic

developments in the Greek and other European government credit problems, as

viewed by the financial markets.

Total Return Swaps

Total return swap (TRS) is a credit derivative contract that directly allows us to

transform a risky investment into an almost risk-free cash investment paying a

floating reference rate. It is an agreement between a total return payer and a total
return receiver to exchange the total return on a risky bond (or other assets) for

Libor (or another reference rate), plus certain spread. If there is a default on the

bond, then the swap is usually terminated. By the total return, we understand not

only coupons and interest, but also the change in market value of the asset over the

life of the swap.

As an example, consider an investment of $95 million into 5-year bonds with 4%

coupon purchased at 95% of their face value. The investor may enter into a

corresponding 5-year total return swap (Fig. 5.7), exchanging the $2 million

semi-annual coupons for Liborþ 0.1% on the $100 million bonds’ notional. At

maturity, if there is no default, the investor, as the total return payer, will also pay

the $5 million difference between the repaid bonds’ face value ($100 million) and

the initial $95 million market value. If there is a default, then the swap is terminated

and the total return payer receives the difference between $95 million and the

investment value at default, plus the accrued Liborþ 0.1% interest. The result is

Table 5.4 Valuation of an outstanding CDS

Time Qi (%) ri (%) CFi Probability (%) Expected PV

0.5 2.00 39.40 1.11 0.43

1 1.11 2.00 �1.20 98.89 �1.16

1.5 2.50 39.40 2.09 0.79

2 3.20 3.00 �1.20 96.80 �1.09

2.5 2.17 39.40 2.26 0.84

3 5.45 3.50 �1.20 94.55 �1.02

Total �1.21
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similar to a combination of an asset swap and a CDS protection. However, the total

return swap can also be entered into for a period shorter than the bond’s maturity.

The change in market value, then, reflects not only the change in the issuers’ credit

quality, but also the possible risk free yield curve movement.

Note that the 10 basis points spread over LIBOR is not an analogy of a CDS

spread on the issuer’s risk. The total return payer retains the bonds, but his return is

risk-free, provided the total return receiver does not default in the case when the

bond issuer defaults, and there is a loss to be covered by the swap. Therefore, the

10 point spread reflects, rather, the total return swap receiver’s (in fact, the credit

protection provider’s) probability of default, and it is also related to the correlation

with the issuer’s credit risk.

The example shown describes the possible mechanics of a total return swap.

There are, however, many alternatives; for instance, the physical settlement at

maturity of the swap, or at the default of the underlying bond, periodic payments

based on the underlying asset value gain/loss, etc.

CDS Indices

A simple CDS index can be defined in a similar way to equity indices, as an average

quoted CDS spread taken over a defined portfolio of reference entities. However,

the standard CDS indices, like CDX NA IG; covering 125 investment grade

companies, and iTraxx Europe, covering 125 investment companies in Europe,
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Fig. 5.6 CDS spreads of selected EU countries 10/2009–5/2010 (Source: Standard & Poor’s)
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are more than just statistical figures. The indices are traded as multi-name credit

default swaps where the protection seller pays for the credit losses of the

counterparties in the underlying portfolio. Roughly speaking, the contract can be

broken down into a collection of 125 credit default swaps on the individual names

with the same notional. Consequently, the index quotation should be (almost) equal

to the average CDS spread over the portfolio in an arbitrage free market.

The CDX NA IG, and iTraxx Europe OTC contracts, are quite standardized and

can be compared, in a sense, to the exchange traded contracts, such as futures or

options. In fact, the NYSE Euronext made iTraxx CDS contracts available for

processing and clearing on its Bclear platform at the end of 2008. There is an active

market for maturities of 3, 5,7, and 10 years for contracts ending usually December

20, or June 20, and with a typical notional of $100 million. Moreover, for each

index and maturity there is a “coupon” specified, and the standardized contracts are

traded based on the CDS market value settlement. For example, for the Series

24 5-year iTraxx Europe, maturing on June 20, 2020, the coupon has been set at

100 basis points (Source: Markit Financial Information Services).

Let us assume that the actual market iTraxx Europe quote is 79 basis points as

indicated by Fig. 5.8. It means that the market value of the CDS contract, with its

fixed 100 basis points coupon, is positive from the perspective of the credit

protection seller, and so the seller must pay an initial compensation to the credit

Total
return
payer

Total
return

receiver

Total return on asset

LIBOR + 10 basis points

Fig. 5.7 Total return swap

Fig. 5.8 Development of the iTraxx Europe index 2006–2015 (Source: Thomson Reuters)
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protection buyer. This mechanism allows counterparties to enter into opposite

positions in order to close-out the contracts with a net gain/loss given by the initial

settlement payments. The compensation is the market value of the CDS position

calculated by a standardized methodology based on the risk neutral probabilities of

default, and discounted by risk free interest rates, as explained above. The standard

recovery rate used for the valuation is currently set at 40%. The market value is

usually expressed as the duration, multiplied by the difference between the quote

and the coupon; i.e., in our case, 21 basis points. If the duration was 4.9, then the

market value would be4:9� 0:21% ¼ 1:029%of the CDS notional amount payable

at the initial settlement date by the protection buyer (compare with the quotations in

Fig. 5.9). The credit protection buyer then pays, in arrears, the fixed 100 basis point

multiplied by the notional multiplied by n/125, where n is the number of companies

that have not defaulted yet.

Multi-name CDS

The CDS indices characterize not only the average level of credit risk on a portfolio

of counterparties, but are traded, in fact, as multi-name CDS contracts. Generally,

basket or multi-name CDS are contracts based on a number of reference entities.

The index contracts described above belong to the category of add-up CDS, where

the protection seller provides a payoff when any of the reference entities default.

The add-up CDS is terminated only if all the entities default, otherwise, it continues

with a reduced notional. As we have argued, add-up CDS can be broken down into a

set of corresponding single name CDS. There is, however, one small difference in

Fig. 5.9 Series 24 5-year iTraxx Europe quotation (Source: Thomson Reuters)
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their valuation: the single name swaps would have different market spreads, while

the add-up CDS quote represents a flat spread, applicable to all the entities. Since

entities with higher spreads have lower survival probabilities, the add-up basket

CDS spread is usually slightly below the average of the corresponding single name

spreads.

The valuation becomes more complex for the first-to-default, second-to-default,
and generally, the nth-to-default basket CDS that provides a payoff only when the

n-th default occurs. The payoff paid by the credit protection seller is calculated as

the loss on the n-th default, and the swap is then terminated; i.e., there are no further

payments by either party.

Example Let us consider a 5-year second-to-default swap on the basket of ten

counterparties (bonds) with the same $1 million notional, and with the spread of

200 basis points. The protection buyer pays the 2% p.a. spread, as long as there is no

or only one, default. If no, or just one, entity defaults during the 5 year period, then

there is no payoff from the protection seller, and the total payment by the credit

protection buyer is 5� 2%� $1 million¼ $0.1 million. If there is a second default,

then the loss on the defaulted counterparty bond is settled, physically or in cash, the

spread accrued until the time of the second default is paid, and the swap is

terminated. Therefore, if LGD ¼ 0:6 then the payoff is $0.6 million.

Before we enter into such a swap, we should be able to decide whether the

offered spread is too high or too low. It turns out that the answer depends on a new

variable, on the correlation between the defaults of the debtors in the portfolio. Let

us assume, in the context of the example, that the 5-year risk neutral cumulative

default probability is 10% for each of the counterparties. Let us consider, for the

sake of illustration, the following two possibilities:

1. Defaults of all the counterparties are fully dependent (100% correlation). In this

case, there is either no default (no payoff), or ten defaults ($0.6 million payoff).

The probability of the joint default is 10%, and so the probability weighted,

i.e. expected, payoff would be $0.06 million without discounting. The expected

payoff is lower than the total spread payment of $0.1 million (without the effect

of discounting and survival probabilities), and so, the 200 basis points spread

appears to be too high from the perspective of the protection buyer.

2. The defaults are independent (0% correlation). Then we can easily calculate that

the probability of no default is q0 ¼ 0:910 ¼ 0:3487, the probability of one

defaultq1 ¼ 10 � 0:1 � 0:99 ¼ 0:387, and the probability of two, or more, defaults

isq�2 ¼ 1� q0 � q1 ¼ 0:264. Therefore, the expected payoff, without the effect

discounting, is q�2 � $0:6million ¼ $0:158million. Thus, under the zero cor-

relation assumption, the 200 basis points spread corresponding to a maximum

$0.1 million total spread payment becomes quite attractive. □
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It turns out that valuation of a basket CDS is very sensitive to the default

correlation parameter, as well as the probabilities of default. Section 5.2 will

discuss advanced default correlation modeling and the valuation techniques.

Asset-Backed Securities and Collateralized Debt Obligations

An asset-backed security (ABS) is, in general, a security created from a portfolio of

loans, bonds, or other financial assets. The assets are sold to a special entity called

the Special Purpose Vehicle (SPV), which issues and sells to investors the ABS

which is financing the purchase of the asset portfolio into the SPV. The ABS

investors receive coupons and principal repayments that depend solely on the

cash flows from the asset portfolio, not on the credit quality of the creator. For

example, a bank providing consumer loans may need to free up its capital to sell

more loans. Rather than keeping the existing consumer loan receivables on its

balance sheet, the bank may decide to set up an SPV, and sell the loan portfolio to

the SPV. The bank is then insulated from the credit risk of the loan portfolio, which

is borne solely by the ABS investors and, moreover, it earns a fee for originating

and servicing the loans.

Figure 5.10 shows a scheme of a “pass-through” ABS where the loan portfolio

cash flows are directly passed, after subtracting the fees, to the ABS investors, and

there is no prioritization. The coupons and principal of the ABS bonds should be

paid in full if the assumptions regarding defaults and losses are met. The investors

may even receive a premium, but if the loan portfolio losses exceed the

assumptions, then, the investors suffer a loss.

A mortgage-backed security (MBS) is a type of asset backed security

representing a claim on the cash flows from mortgage loans, most commonly on

residential property. The securitization process is often facilitated by government

agencies, or government-sponsored enterprises, which may offer features to miti-

gate the risk of default associated with these mortgages. In the United States, most

Loan
Portfolio

ABS
Investors

ABS
proceeds

Assets

Bank

SPV
Coupons

and
principal

ABS
price

Fig. 5.10 Pass-through ABS scheme
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MBS’s are issued by the government sponsored Federal National Mortgage Asso-

ciation (Fannie Mae), and the Federal Home Loan Mortgage Corporation (Freddie

Mac), or by the Government National Mortgage Association (Ginnie Mae). Ginnie

Mae is fully backed by the government guarantees, so that investors receive timely

payments. Fannie Mae and Freddie Mac also provide certain guarantees and, while

not backed fully by the government, have special authority to borrow from the

U.S. Treasury. Investors in MBS still bear the risk of higher losses on the mortgage

portfolio, as well as an interest rate risk of early mortgage prepayments. Huge

financial losses suffered by government sponsored enterprises, caused by the

increased numbers of subprime mortgage defaults, marked the beginning of the

global financial crisis in late 2007. In 2008 Fannie Mae and Ginnie Mae were

placed into the conservatorship (forced administration) of the Federal Housing

Finance Agency. The U.S. Government effectively took over both agencies and

provided them with a financial support exceeding 100 billion USD. It should be

noted that the agencies repaid the subsidy in dividends paid to the Treasury in the

years 2013–2014.

The credit rating of an ABS is often enhanced by issuing one, or more,

subordinated tranches which cover credit losses with priority over the most senior

tranche, as shown in Fig. 5.11. The portfolio cash flows are used to repay coupons

and principal, using a set of rules known as the waterfall: the cash flows are, first of
all, used to pay the Senior Tranche investors’ promised return of 5% in the given

example, then, as far as possible, the Mezzanine Tranche investors’ return of 10%,

and finally the Equity Tranche investors’ return, up to 25%. From a different

perspective, the loan portfolio losses are first of all, allocated to the Equity Tranche,

Fig. 5.11 Possible structure

of an ABS with three tranches
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then, if exceeding 5%, to the Mezzanine Tranche, and finally, the losses over 20%

of the portfolio value hit the Senior Tranche. If the portfolio expected loss was

somewhere around 2%, then, unexpected losses over 20% should be highly improb-

able, and so the Senior Tranche may receive a very high rating. Thus, the Senior

Tranche is collateralized by the subordinated tranches. The equity tranche on the

other hand becomes quite risky, and usually is not rated.

The sophisticated construction is motivated by the demand for investments into

higher grade bonds by many institutional investors, such as pension funds, or

insurance companies, which have investment limits linked to the ratings. The

conservative investors may go into the senior ABS, and less risk averse investors

may invest in the mezzanine, or equity, ABS. The equity tranche is also sometimes

retained by the ABS creator.

Collateralized Debt Obligations

A type of asset-backed security that has become quite popular, and that, at the

same time, has been blamed for the recent financial crisis, is the collateralized

debt obligation. In this case, the assets that are securitized are bonds or corporate

loans. There is always the element of tranching; i.e., there is a number of tranches

from the senior one to equity. The number of tranches is often larger than three.

According to this definition, it may be hard to understand what the connection

between CDOs and the subprime mortgage crisis is. Let us look at the develop-

ment of the issuance of those securities by collateral type since 2000, in Table 5.5,

provided by SIFMA (Securities Industry and Financial Markets Association). In

2004–2007, the majority of issued CDOs had collateral classified as structured

finance, meaning MBSs, ABSs, or their tranches. The tranches used for securiti-

zation were typically mezzanine MBS/ABS tranches, which were difficult to sell

as such (Hull 2009). Thus, in this way, subprime mortgages have been packed

into MBSs and repacked into CDOs. In fact, there is a double securitization, and

we should speak about ABS CDOs. Similarly, there could also be CDO-squared

CDOs, where the securitized assets are again CDOs. The valuation of those ABS

CDOs or CDOs-squared becomes very difficult, not only because of the mathe-

matical model, but also in terms of understanding and decoding all of the legal

documentation related to the issues. The market has become dependent on rating

agencies that were often too optimistic, partly due to a conflict of interest (being

paid by the CDOs issuers), and partly due to the various weaknesses of the

models, or data used. High uncertainty in the pricing of those securities, and a

panic on the market during the crises, led to large losses, even on the senior

tranches. Table 5.5 shows that Structured Finance CDOs were almost totally

abandoned in 2009. However, it seems that the CDO market has recovered

since then and we have to hope that the market participants have taken a lesson

from the crisis.

An alternative way of CDO classification is into cash flow, hybrid, synthetic, and
market value. The structure we have described above is a cash CDO. The synthetic

funded CDO is based on a short position in one, or more, CDSs, and a
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corresponding amount of risk free investments. For example, instead of creating a

portfolio of corporate loans, the originator of the CDO creates a portfolio consisting

of short positions (sold protection) in credit default swaps. The bank may retain the

relationship with the corporate clients, and at the same time, transfer the credit risk

of the existing loans to the SPV and the CDO investors. The volume of funded

synthetic CDOs issued was over $48 billion in 2007, but went down to $0.25 in

2009. Hybrid CDOs combine the funding structures of cash and synthetic CDOs.

Market value CDOs allow trading in, and market valuation of, the underlying

assets.

Another classification of CDO securities is into the arbitrage and balance sheet

types. Balance sheet CDOs aim to remove assets, or the risk of assets, from the

balance sheet of the originator, while arbitrage CDOs attempt to capture the

mismatch between the yields of assets (CDO collateral), and the financing costs

of the generally higher rated liabilities (CDO tranches).

Unfunded Synthetic CDOs

The numbers in Table 5.5 do not include what is called unfunded synthetic CDOs,

because those are not, in fact, securities, but OTC contracts similar to the basket

CDS. An unfunded synthetic CDO is structured so that default losses on the

underlying CDS portfolio are allocated to tranches. For example, in an analogy to

Fig. 5.11, the equity tranche would be responsible for the first 5% of the losses, the

mezzanine tranche for the next 15% of the losses, and the senior tranche for the

remaining losses. The principal amounts: 5, 15, and 80% of the total would be

reduced by the losses paid to protection buyers. If a notional is wiped out, then the

CDO tranche is terminated. The construction is not as new, or exotic, as it might

seem. It is, in fact, quite similar to the non-proportional reinsurance contracts that

have been used on the reinsurance market since long before the CDS and CDO

products were invented.

Besides the standardized indices like CDX or iTraxx, which are traded as CDS

contracts, there are even standard single tranches that are traded as synthetic CDOs.

Trading in those contracts is known as single tranche trading. In the case of CDX,

there are six tranches defined by the loss thresholds: 3, 7, 10, 15, 30, 100%, and in

the case of iTraxx Europe, the thresholds are: 3, 6, 9, 12, 22, 100%. The contracts

usually pay a fixed spread, with an upfront fee that is quoted. For example, the 10Y

iTraxx Europe 9–12 contract maturing in June 2021 has been quoted at 109 bp, as of

15th October, 2015, meaning that the protection buyer pays 1.09% of the agreed

notional upfront, and then standard 1% p.a. quarterly in arrears. If the cumulative

loss on the iTraxx portfolio since the start date of the contract is less than 9%, then

there is no payment by the protection seller. If the losses are, for example, 10%,

then, 1/3 of the notional amount is paid by the protection seller, and the notional is

reduced to 2/3. The protection buyer continues to pay the 1% spread on the reduced
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notional. If the iTraxx losses exceed 12%, then the full notional will be paid to the

protection buyer, and there will be no more spread payment.

Other Credit Derivatives

Similar, to classical derivatives, once the market with “simple” credit derivatives

was established, it was natural for derivatives dealers to trade more complex

contracts like forwards and options on CDS.

A forward credit default swap is an obligation to buy or sell a specified CDS

(reference entity, maturity, notional, settlement mechanism) at a future time T, with
a fixed spread s. Unlike forward interest rate swaps, the contract may cease to exist

if the reference entity defaults before time T. Similarly, a CDS call/put option

would give the option holder an option to buy/sell a specified CDS protection at

price s at time T. Again, the option will cease to exist if the reference entity defaults
before time T. For example, there are forwards and options on iTraxx, or CDX.

Similar to the CDS market, there are forwards and options on CDO or ABS

tranches.

5.2 Valuation of Multi-name Credit Derivatives

We have seen that the mathematics of the risk-free discount interest rates, and risk-

neutral probabilities of default, is sufficient to value classical bonds, or single name

CDS. However, the valuation of multi-name credit derivatives, such as basket CDS

or CDOs, brings a new level of difficulty. In principle, we need to model the

probability distribution of returns and losses split into different CDO tranches, or

basket CDS layers. Essentially, we may apply the credit portfolio modeling

techniques outlined in Chap. 4, but in this case, the requirements on modeling

precision, having a real financial impact, are much higher than in the case of the

pure risk management, where it might be sufficient to obtain just an approximate

estimation of unexpected losses. We have seen that there are different models that

might give different results, and in all cases there are the key concepts of default,

asset return, or correlation, which enter the model. The estimations of the credit

portfolio unexpected loss quantiles turn out to be extremely sensitive to the

correlation parameters, but these numbers themselves are usually difficult to esti-

mate, due to limited and ever changing data. The model and correlation risk could

be blamed for uncertainty in the valuation of the multi-name instruments.

Underestimation of the model and parameter risks could also be blamed for the

recent financial crisis.

In this section we will look, first of all, at the connection between the valuation

of multi-name credit derivatives and the unexpected risk modeling. Then we will

outline a general Monte Carlo simulation approach and an analytical approach, in

the context of the Gaussian copula correlation modeling. In the next section, we will

look at several alternative advanced dependence modeling approaches.
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Unexpected Loss Modeling and Multi-name Credit Derivatives Valuation

To demonstrate the close relationship between the two goals, unexpected loss

modeling and multi-name credit derivatives valuation, let us consider a simplified,

unfunded, synthetic CDO structure, where the payoff, depending on the underlying

portfolio losses, is realized only at maturity T. Let us assume that the portfolio value

payable at time T is 1 unit, and the tranche thresholds are

0 ¼ x0 < x1 < � � � < xn ¼ 1. To calculate the market spreads assumed to be paid

in the form of upfront fees we need to introduce the risk-neutral random variable

X∈ 0; 1½ � representing losses on an underlying portfolio of certain single name CDS

contracts; i.e., on corresponding loans or bonds, at maturity T. Note that the risk-

neutral distribution of losses differs from the real world distribution of losses, just

as risk-neutral probabilities of default differ from the real probabilities. Given that,

we can easily define the payoff of tranche i as

Payoffi ¼
0 ifX � xi�1

X � xi�1 if xi�1 < X � xi
xi � xi�1 if xi < X:

8<
:

If r is the risk-free constant interest rate, and F(x) the cumulative distribution

function of the random variable X, then the Tranche imarket value can be expressed

as:

f i ¼ e�γTE Payoffi½ � ¼
¼ e�γT F xið Þ � F xi�1ð Þð ÞE X � xi�1

��xi�1 < X � xi
� �þ 1� F xið Þð Þ xi � xi�1ð Þ� �

:

ð5:4Þ
If F(x) is approximately linear between xi�1 and xi (i.e., X is approximately

uniformly distributed in the interval Xi�1;Xi½ �), then,

E X � xi�1

��xi�1 < X � xi
� � ffi xi þ xi�1

2
� xi�1 ¼ xi � xi�1

2
;

and finally, using the linearity of F(x) on the interval xi�1; xi½ �, we get that the value
of tranche i as a percentage si of its notional value xi�1 � xi is approximately equal

to the risk-neutral probability that the loss exceeds the midpoint of xi�1; xi½ �,
discounted by the risk free interest rate r from T to time zero,

si ¼ f i
xi � xi�1

ffi e�rT 1� F
xi�1 þ xi

2

� �� �
¼ e�rTPr X >

xi�1 þ xi
2

h i
: ð5:5Þ
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On the other hand, if we are given market prices expressed as up-front percent-

age spreads si, then we can estimate the values

F
xi�1 þ xi

2

� �
ffi 1� erTsi; ð5:6Þ

which allows us to construct an approximation of the cumulative distribution

function F(x), assuming linearity on the intervals xi�1; xi½ �, and the facts that F 0ð Þ
¼ 0 and F 1ð Þ ¼ 1: Similarly, if we consider a funded CDO with a 1 unit underlying

portfolio, and a tranche payoff defined as the notional minus the tranche loss at time

T, then the market value of tranche i as a percentage of the tranche notional should
be approximately equal to the risk-neutral probability of loss being less than the

midpoint of xi�1; xi½ �, discounted by r, specifically

pi ffi 1� e�rT
� �þ e�rTF

xi�1 þ xi
2

� �
: ð5:7Þ

Consequently, the valuation of a simplified CDO, or basket of CDS tranches,

goes hand-in-hand with the underlying portfolio loss modeling. Full knowledge of

the risk neutral loss distribution allows us to value precisely the tranches according

to (5.4), and the tranche market value gives us an approximation of the distribution

function according to (5.6) or (5.7), which improves with an increasing number of

tranches.

In practice, the situation is more complex since the cash flows, payoff and spread

payments are realized between the start date and maturity, not only at maturity. It

means that we need to model not only the distribution of losses at time T, but also
their distribution over time. Thus, we need to model the times of defaults and

survival probabilities. Yet, looking at cumulative losses and total up-front fees, the

approximate relationships (5.5) and (5.7) between the market prices and the risk

neutral cumulative probabilities remain valid. Note that in case of CDOs, the

situation is also more complex due to the coupons paid by the tranches. By the

notional, in the context of the simplified model described in the case of a general

CDO, we mean the time T forward value of all the promised payments, and the loss

is compared with respect to this value.

General Monte Carlo Simulation Approach

As argued above, the valuation of basket CDS, or CDOs, is in principle equivalent

to portfolio loss modeling, for which, in Chap. 4, we have described various Monte

Carlo simulation approaches. Since, in practice, we need to model not only the total

loss at the end of a horizon, but also the cash flows over time; we need to improve

the model, which can be formulated in a general Monte Carlo simulation

framework.
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Specification:

1. Fix the term structure of the risk-free interest rates. In the basic approach,

interest rates can be considered deterministic. In an advanced approach, interest

rates should be stochastic, and possibly correlated with intensities of default.

2. For each receivable in the portfolio, determine the cash flows (payment calen-

dar) of coupon and principal repayments. In the case of float coupons, for

instance, Libor + 1% p.a., and deterministic interest rates, replace the unknown

float rate with the corresponding forward risk free interest rate.

3. For each receivable i, estimate the term structure of risk neutral probabilities of

default; i.e., the distribution of the time to default variable τi. In Sect. 5.4 we will
study possibilities of how to approach the stochastic intensity of default

modeling.

4. Use either a flat recovery rate, or recovery rate depending on claim seniority,

possibly on individual debtors. An advanced option is a random recovery rate

with an appropriate distribution.

5. Specify correlations (dependence) among the times to default. Note that a

complete specification would have to involve the joint distribution of the vector

of n random variables τi; i ¼ 1, . . . , nh i. The standard solution is the Gaussian

copula model, where we specify all the correlations ρi,j of the standardized

default times, i.e. of the variables Xj ¼ Φ�1 Qj τj
� �� �

, assuming a joint normal

distribution as described in Sect. 4.7. We have to keep in mind that this is just

one of many possible correlation models. The copula specification (Gaussian or

other) allows simulating times to default accordingly. Moreover, if our ambition

is to use stochastic recovery rates, with a dependence on default rates, the

correlation structure needs to be specified as well.

Simulation:

6. Simulate the times to default τi; i ¼ 1, . . . , nh i, and the recovery rates RRi if

there is a default in the given time horizon; i.e., if τi � T. Conditional on this

scenario, obtain an exact realized cash flow generated by the underlying loan

portfolio until the maturity T.
7. Based on the specified CDO waterfall, or basket CDS definition, determine the

payoff cash flows conditional on the times of the default scenario given by step

6. Discount the payoff cash flows with the risk-free interest rates, and add the

result to a list of simulated values.

Final result evaluation:

8. Since our goal is to get the discounted expected (i.e., average) payoff, we need to

run steps 6 and 7 sufficiently many times and then calculate the mean value,

approximating the market value of the given instrument (or a number of

tranches that can be valued simultaneously). The confidence interval, and
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number of simulation runs required may be estimated using the techniques

discussed in Sect. 4.2.

Besides the problem of the risk-neutral probabilities of default, recovery rates, and

correlation structure specification, it should be pointed out that the apparently simple

step 7; i.e., the implementation of a CDO or CDS waterfall, may be quite complex.

This is the case, in particular, for the “classical” CDOs with an underlying portfolio

of loans and bonds including structured ones. The interest and principal repayments

are used to cover management fees, tranche coupons, and principals, based on

various complex prioritization schemes (see, e.g., Duffie and Singleton 2003).

Typically, a tranche is repaid as a sinking-fund bond, with a promised coupon

c (paid n times in a year), where the principal F kð Þ, k ¼ 0, . . . ,K may be gradually

repaid, or contractually reduced over given K periods; and on the other hand, in the

case of insufficient coupon payments Y(k), there is an accrued interest variable:

U 0ð Þ ¼ 0,

U kð Þ ¼ 1þ c

n

� �
U k � 1ð Þ þ c

n
F k � 1ð Þ � Y kð Þ:

The reduction of the principal may be due to a prepayment D(k), or unpaid

contractual reduction J(k), typically due to losses on the underlying portfolio; i.e.,

F kð Þ ¼ F k � 1ð Þ � D kð Þ � J kð Þ, with F(0) equal to the initial tranche face value.

The scheme also usually involves a reserve account R(k), where any excess cash is

deposited and accrues risk free interest. The reserve account is drawn if there is a

cash shortfall, and it is fully paid out at maturity. At maturity the reduced principal

plus the unpaid accrued interest are to be paid to the extent provided for in the CDO

contract. Thus, the accrued unpaid interest effectively enhances the principal. It

should be noted that a shortfall on the final payment does not constitute the CDO

default, as long as the contractual prioritization rules were met. The equity tranche

usually does not have any defined coupon, and receives only the remaining cash at

maturity.

There are two basic types of prioritization schemes: uniform and fast. Under the
uniform prioritization, there are no early prepayments of principal. The collected

interest is used to pay for coupons from the most senior tranche down to the junior

tranches, modifying the unpaid accrued interest, or the reserve account as defined

above. On the other hand, the total losses, less collected and undistributed interest

income, define the unpaid principal reductions, starting from the equity tranche, and

going up to more senior tranches. At maturity, the final collected principal, and the

remaining reserve are paid in priority order, covering both coupons and principal,

with the equity tranche collecting any remaining amount (the final amount allocated

to the equity tranche can exceed the remaining principal).

Under the fast prioritization, the senior tranche is allocated interest and principal

repayments as quickly as possible, until the remaining principal is reduced to zero,

or until maturity. Meanwhile, the mezzanine tranche accrues unpaid interest which

starts to be paid back once the senior tranche has been repaid, and so on. For this
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scheme, there are no contractual reductions of principal (in fact, reduction of

the principal would not make any difference in the fast cash flow allocation

scheme).

In practice, the prioritization schemes are usually somewhere between the two

simple cases, applying the so called over-collateralization and interest rate cover-

age tests, which may trigger early principal repayments. For example, the over-

collateralization test for the senior tranche may require that the actual underlying

portfolio principal, divided by the senior tranche principal, is larger than 120%.

The interest rate coverage test may require that the collected interest, divided by

the senior tranche coupon, is larger than 150%, etc. If the condition is satisfied,

then the collected interest is used as in the uniform prioritization scheme. On the

other hand, if the condition is not satisfied, then the fast prioritization,

i.e. repayment of the principal of the senior tranche, is applied until the tests

are satisfied.

Analytical Valuation of Basket CDS

The single-factor Guassian copula model has been already explained in the context

of Vasicek’s Model (Sect. 4.7). Under the model, the standardized time to default

variable Xj ¼ Φ�1 Qj τj
� �� �

is broken down into a systematic factor M, and an

idiosyncratic; i.e., debtor specific factor Zj so that the factors are independent,

standardized normal, and

Xj ¼ ffiffiffiffi
ρj

p
M þ

ffiffiffiffiffiffiffiffiffiffiffiffi
1� ρj

q
Zj: ð5:8Þ

Thus, the mutual correlation of the standardized times to default i and j is
ffiffiffiffiffiffiffiffiρiρj

p
.

Analogously to (4.22) we get that the cumulative probability of default in the time

horizon t and conditional on M ¼ m is

Qj t
��m� � ¼ Pr τj � t

��M ¼ m
� � ¼ Φ

Φ�1 Qj tð Þ
� �� ffiffiffiffi

ρj
p

mffiffiffiffiffiffiffiffiffiffiffiffi
1� ρj

p
 !

: ð5:9Þ

Moreover, in the standard market model we assume that the portfolio is homog-

enous, i.e. that all the correlations are the same ρ ¼ ρj and the time-to-default

distribution Qj is the same Q for all debtors in the portfolio (Hull 2009). The key

idea is that, conditional on a fixed systematic variable value M ¼ m, the time to

default variables become independent, and the market value might be expressed

analytically. The result then needs to be averaged (i.e., integrated out) over all

possible values of M with the standard normal density. The calculation also

implicitly assumes that we know the unconditional cumulative default probability

function in the form Q tð Þ ¼ 1� e�Λ tð Þ where Λ(t) is the cumulative hazard (see
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Sect. 3.3). It is usually assumed that the default intensity λ is constant, i.e.

Q tð Þ ¼ 1� e�λt, but λ can be also a deterministic function of time (see Sect. 5.1).

Let us consider a kth-to-default CDS on a portfolio of n debtors, each with the

same one unit notional, and with the same (risk neutral) intensity of default.

Conditional on the systematic factor value M ¼ m, the probability of exactly

l defaults by the time t is given by the binomial distribution formula:

P l, t
��m� � ¼ n

l


 �
Q t
��m� �l

1� Q t
��m� �� �n�l

:

The probability of l defaults could be also expressed in the case where the

conditional probabilities of default depend on the individual borrowers, but of

course, with a significantly more complex expression.1 If T is the CDS maturity,

then the probability of a positive payoff can be easily expressed as:

P � k,T
��m� � ¼Xn

l¼k

P l,T
��m� �

:

To obtain the full valuation result we need to model the defaults and the CDS

payments in the periods t0 ¼ 0, t1, . . . , tN ¼ T. Suppose that the spread as a

percentage of each of the underlying receivables, with a unit exposure, is s, and
let D(t) be the maturity t discount factor; i.e., the present value of one currency unit
paid at t. In the standard market model, the defaults are assumed to happen in the

midpoints of the periods tj�1; tj
� �

. The loss given default is assumed in the

homogenous model to be a constant L ¼ 1� R . Then, the market value of the

CDS, conditional on the systematic factor value M ¼ m, from the perspective of a

protection seller can be expressed as the discounted value of expected spread

payments minus the discounted expected value of the payoff in the case of default:

MV mð Þ ¼
XN
j¼1

s tj�1 � tj
� �

D tj
� �

P < k, tj
��m� �þ

þ
XN
j¼1

0:5s tj�1 � tj
� �

D 0:5tj�1 þ 0:5tj�1

� �
P � k, tj

��m� �� P � k, tj�1

��m� �� ��
�
XN
j¼1

L� D 0:5tj�1 þ 0:5tj�1

� �
P � k, tj

��m� �� P � k, tj�1

��m� �� �
ð5:10Þ

1In this case, the conditional default probability n can be calculated recursively with respect to, the
number of borrowers in the portfolio, essentially adding them one by one, see Brigo et al. (2010).
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Finally, the unconditional market value is obtained integrating (5.10) over m with the

standard normal distribution:

MV ¼
ðþ1

�1
MV mð Þφ mð Þdm: ð5:11Þ

While the expression (5.10) is analytical, the integral (5.11) needs to be evaluated

numerically. Note that based on (5.10) and (5.11), the market value can written in

the form: MV ¼ s Aþ Bð Þ � C, where A,B are the integrals of the first and the

second sum in (5.10), taking out the variable s, and C is the integral of the third sum.

When CDS is entered into under market conditions the value must be equal to zero,

and so we can easily solve it the spread s ¼ C
AþB.

Valuation of Synthetic CDOs

Let us consider an unfunded synthetic CDO on a portfolio of n receivables each

with the same exposure 1/n, and a tranche with the attachment and detachment
points 0 � A � B � 1 . If the cumulative loss L(t) on the portfolio exceeds the

attachment point A then the protection payer pays the difference L tð Þ � A, but not
more than B� A. Since defaults take place gradually, it is useful to introduce the

reduced tranche [A,B] notional cumulative loss function

LA,BðtÞ ¼
min

�
maxðLðtÞ,AÞ,B

�
� A

B� A
: ð5:12Þ

The default leg present value, given the loss function, then is

DLA,B 0ð Þ ¼
ðT
0

D tð ÞdLA,B tð Þ ffi
XN
j¼1

D 0:5tj�1 þ 0:5tj
� �

LA,B tj
� �� LA,B tj�1

� �� �
ð5:13Þ

where we approximately assume as above that the premium payment periods are

t0 ¼ 0, t1, . . . , tN ¼ T and defaults take place only in the middle of the periods.

Regarding the premium leg, there is a slight conventional difference used by the

standard synthetic CDOs like DJ-iTraxx or CDX compared to the kth-to-default
CDS described above. The premium is, in this case, paid on the tranche notional

amount less non-recovered losses (not less defaulted notional amounts) at the end of

each premium period; i.e., again given the reduced tranche loss function, we define

the “risky annuity” as
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DVA,B 0ð Þ ¼
XN
j¼1

tj � tj�1

� �
D tj
� �

1� LA,B tj
� �� �

: ð5:14Þ

If U and s denote the up-front payment and the spread premium, then the

premium leg present value is U þ sDVA,B 0ð Þ, conditional on the loss function.

Therefore, to find the initial fair market spread we just need to solve the equation

E0 DLA,B 0ð Þ� � ¼ U þ sE0 DVA,B 0ð Þ� �
, and so ð5:15Þ

s ¼ E0 DLA,B 0ð Þ� �� U

E0 DVA,B 0ð Þ� � : ð5:16Þ

Here, the risk-neutral expected value is taken from the time 0 perspective.

In the standard market model we apply the single-factor Gaussian copula and the

homogeneity assumptions as above, i.e.

Pr L tð Þ ¼ k 1� Rð Þ½ � ¼
ðþ1

�1
P k, t

��m� �
φ mð Þdm:

This semi-analytical formula allows us to calculate E0[L
A,B(t)], and, therefore, the

expected values as in Eq. (5.15).

Large Homogenous Portfolio Model

If we assume that the portfolio is homogenous and that the number of its elements is

large (tends to infinity) then the formula for the default and premium leg formulas

can be further simplified, and the premium can, in fact, be expressed analytically. In

this case, by the law of large numbers, the conditional default rate approaches (can

be approximated by) the conditional probability of default Q t
��m� �

given by (5.9).

Therefore, the conditional expected loss on the large homogenous portfolio (LHP)

can be expressed as �L t
��m� � ¼ LQ t

��m� �
and the [0,B] tranche conditional expected

loss simply as

�L0,B t
��m� � ¼ min �L t

��m� �
,B

� �
=B:

Finally, the unconditional loss can be obtained integrating out the systematic factor:

�L0,B tð Þ ¼ E0
�L0,B t

��m� �� � ¼ ð 1
B
min �L t

��m� �
,B

� �
φ mð Þdm: ð5:17Þ

It turns out (Brigo et al. 2010) that this integral can be solved analytically:
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�L0,B tð Þ ¼ Φ A1ð Þ þ L

B
Φ2 A1,Φ�1 Q tð Þð Þ;� ffiffiffi

ρ
p� �

,

A1 ¼ Φ�1 Q tð Þð Þ � ffiffiffiffiffiffiffiffiffiffiffi
1� ρ

p
Φ�1 B=Lð Þffiffiffi

ρ
p :

ð5:18Þ

For a generic tranche [A,B] we can use the elementary relationship

�LA,B tð Þ ¼ 1

A� B
B�L0,B tð Þ � A�L0,A tð Þ� �

: ð5:19Þ

Therefore, according to (5.13) and (5.14) there are analytical formulas for the

default leg and for the premium leg, and so for the equilibrium tranche spread

s ¼ DLA,B 0ð Þ � U

DVA,B 0ð Þ , ð5:20Þ

where

DLA,B 0ð Þ ¼
XN
j¼1

D 0:5tj�1 þ 0:5tj
� �

LA,B tj
� �� LA,B tj�1

� �� �
and

DVA,B 0ð Þ ¼
XN
j¼1

D tj
� �

tj � tj�1

� �
1� LA,B tj

� �� �
:

Compound and Base Correlations

Given the market quotation of a CDS index and its tranches (see, e.g., the iTraxx

quotes in Fig. 5.12) we arrive at the concept of implied correlations similar to the

implied option volatilities. To be specific, let us consider the finite homogenous

pool model and assume that we are given the homogenous default probabilities

estimated from the underlying index quotations for a set of maturities. Note that the

market spread implied by the formula (5.20) is a function s ¼ s ρð Þ of the correlation
parameter used in (5.9) and (5.18), and so by inverting this relationship given a

market spread we can obtain the implied correlation called the compound
correlation.

However, it turns out that the concept of compound correlations is quite prob-

lematic and the market uses rather so called base correlation quotes (see Fig. 5.12).
To explain the difference, note that the tranche [A,B] expected loss function

(5.19) can be expressed as a function of two correlations,

�LA,B t; ρA; ρBð Þ ¼ 1

A� B
B�L0,B t; ρBð Þ � A�L0,A t; ρAð Þ� �
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where ρA is the correlation used to value the tranche [0,A] according to (5.18).

Therefore, according to (5.13) and (5.14), the tranche [A,B] default leg and the

risky annuity can be written as function of two correlations ρA and ρB, and so the

spread sA,B ¼ s ρA; ρBð Þ is a function of the two correlations. Now, we can exactly

explain the difference between the two correlation concepts: the compound corre-

lation ρA,B solves the equation sA,B ¼ s ρA,B; ρA,B
� �

and depends on both the

attachment and detachment points, while the base correlation ρA is the one that

correctly values the “base” tranche [0,A] and depends only on the detachment

point. Given market quotations, the base correlations can be calculated recursively:

for the first tranche [0,A] the correlation ρA is implied directly by the quote. Next,

given ρA find ρB solving the equation sA,B ¼ s ρA; ρBð Þ where sA,B is the market

quote.

One advantage of the base correlations is that they can be more-or-less consis-

tently interpolated (as in Fig. 5.12) and then used to calculate the implied sA,B

spread for any nonstandard attachment and detachment points A and B. It is not
clear how to value, in a simple way, non-standard tranches given compound

correlations. A more serious flaw of the compound correlations is that the market

spread is not always a monotonous function of the compound correlations (see, for

example, Fig. 5.13), and so the equation sA,B ¼ s ρA,B; ρA,B
� �

does not have to have a

unique solution! According to an empirical study of Torresetti et al. (2006) this is in

fact a very frequent situation. The study shows that this invertibility problem does

not arise with the base correlation.

Fig. 5.12 DJ-iTraxx CDS tranche quotations (3. 12. 2015, source: Bloomberg)
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However, even the base correlation is not without flaws. Torresetti et al. (2006)

point out that for certain tranches and base correlations, the expected tranche loss

becomes negative. Note that there is an inconsistency of both concepts, with the

single-factor Gaussian model assuming that there is only one correlation. Hence,

already using two correlations ρA and ρB to calculate the expected tranche loss and

fair tranche spread is inconsistent with the theoretical model, and one should not be

surprised sometimes to obtain strange results.

5.3 Advanced Dependence Modeling

Although the single-factor Gaussian model provides computationally a relatively

efficient way to value CDO tranches, we have seen above that the market reality

(correlation skew) is not consistent with the assumption of a constant Gaussian time

of default correlation. In this section, we will discuss several advanced dependence

approaches that aim to fix this problem. The multitude of available methods, each

with pros and cons, and with more or less different results, demonstrates the model

risk of the CDO tranche valuation. The fact that the Gaussian Copula has been, until

recently, the only market standard model, also explains the fragility undergone by

the markets during the recent financial crisis.

Fig. 5.13 Tranche spread as a function of compound correlation (Source: Torresetti et al. 2006)
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Double-t and the Logistic Copula

Hull and White (2004) note that the two factors in the decomposition (5.8) of the

standardized time to default of an individual debtor into a systematic and idiosyn-

cratic component can have generally any zero-mean and unit-variance distributions

leading to various correlation structures. In particular, besides the Gaussian copula,

they propose to use the Student t-distributions, possibly with different degrees of

freedom. The goal is to find the parameters (correlation and the degree of freedom)

that flatten the correlation skew, i.e. a single correlation can be applied to value all

CDO tranches at the same time. The argument is that the fatter tails of the Student

t-distributions should better fit the market reality.

Specifically, letM and Zj have the Student t-distributions with d1 and d2 degrees
of freedom, respectively. Then, unfortunately, the convoluted variable

Xj ¼ ffiffiffi
ρ

p
M þ

ffiffiffiffiffiffiffiffiffiffiffi
1� ρ

p
Zj ð5:21Þ

does not have the Student t-distribution. However, the cumulative distribution

function FXj
, depending on the degrees of freedom and on the correlation

parameters, can be obtained numerically by a simulation, or by integration (Vrins

2009). Another slightly more computationally efficient way is to employ the

technique of Fourier transformations. Since the characteristic function of a scaled

Student t-distribution is known, we can use the Gil-Pelaez transformation to

retrieve the distribution FXj
from the product of the two characteristic functions

corresponding to the convoluted random variable (for more details see, e.g.,

Kolman 2014). Brigo et al. (2010) propose to use the moment-generating functions

and an inverse Laplace transform as an alternative to the Fourier transformation.

The distribution function FXj
is needed not only to calculate the conditional

probability of default given the correlation parameter:

QjðtjmÞ ¼ Pr½τj � tjM ¼ m� ¼ Fd2

FXj

�1ðQjðtÞÞ � ffiffiffi
ρ

p
mffiffiffiffiffiffiffiffiffiffiffi

1� ρ
p

 !
,

where Fd2 is the Student t-distribution with d2 degrees of freedom, but also to fit the

model, i.e. to estimate the correlation parameter and the degrees of freedom. Since

the distribution function must be numerically estimated for each combination of

parameters, the fitting procedure becomes computationally quite demanding.

Witzany (2013b) investigates the logistic distribution copula where both

variables in (5.21) have the logistic distribution Λ xð Þ ¼ 1= 1þ e�xð Þ. Although a

mix of two logistic distributions is not exactly logistic the study proposes to use the

logistic distribution as an approximation. It should be noted that the logistic

distribution is used not only to calculate the conditional probabilities of default,

but also in the fitting phase, presumably offsetting the effect of the approximation.

The important advantage of this approach is that both the logistic distribution
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function and its inverse are analytical, and so the calculations are very efficient. The

model is empirically applied to estimate the 99.9% regulatory capital quantile on

different loan product portfolios. It turns out that the logistic copula model more

than doubles the required capital compared to the Gaussian standard model. Other

possibilities tested in the literature are the Normal Inverse Gaussian (NIG) distri-

bution based copula (Kolman 2013) or a copula corresponding to a mix of Gaussian

and Generalized Hyperbolic distributions (Gapko and Smid 2012).

Copula Based Correlation Modeling

So far, we have focused on single-factor homogenous models with one single

correlation. However, as noted in the full Monte Carlo simulation description in

Sect. 5.2, even in the case of the Gaussian model one should specify n nþ 1ð Þ=2
correlations where n is the number of receivables. This large number of correlations

is collapsed to one correlation in the case of the homogenous model and to

n correlations in case of the non-homogenous single-factor model. The model

could be improved introducing more systematic factors, e.g. corresponding to

sectors as in Sect. 4.2. Nevertheless, in full generality, we have to work with

(at least) n nþ 1ð Þ=2 correlations and, moreover, with different correlation

structures that can be described by the concept of copulas.

To be more specific, in Step 5 of the Monte Carlo Simulation approach, the key

task is to specify the correlation structure of the time to default variables

τi; i ¼ 1, . . . , nh i. Even if we use the normalized variables Xj ¼ Φ�1 Qj τj
� �� �

, the

multivariate normal distribution with a general correlations matrix
P

is not, by far,

the only possibility. Consider, for example, the one-systematic factor model (5.8),

breaking Xj down into a systematic factor and an idiosyncratic factor with a fixed

correlation coefficient ρ. There is empirical evidence that correlations might be low

under normal circumstances, and become high in a financial crisis, when many

things go wrong and the systematic factorM is very low. This could be captured by

the relationship

Xj ¼
ffiffiffiffiffiffiffiffiffiffiffi
ρ Mð Þ

p
M þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ρ Mð Þ

p
Zj ð5:22Þ

with the correlation ρ(M ) depending on the systematic factor.

Example Let us assume that the “true” correlation structure is given by (5.22),

with ρ Mð Þ ¼ 0; if M > Φ�1 0:01ð Þ and ρ Mð Þ ¼ 1, if M � Φ�1 0:01ð Þ. The ordinary
correlation between Xi and Xj for i 6¼ j can be estimated empirically, or calculated

analytically, to be ρ ffi 6:9%. If this correlation is used as an input to the Gaussian

Copula single-factor model, on a portfolio of loans with uniform PD ¼ 1%, then,

the probability of loss on the senior tranche would be virtually 0. But, according to

the “true” model, defaults happen ifM � Φ�1 0:01ð Þ, and in this case all the debtors
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would go into default due to the 100% correlation. Therefore, the “true” probability

of loss on the senior tranche would be 1%.

Note that the mistake in the example above happened, not because we made a

wrong estimate of the correlation, but because we chose a wrong correlation model,

applying the Gaussian Copula model in the situation of a strongly nonlinear

relationship between Xi and Xj for i 6¼ j. □
It turns out that in order to describe a general correlation structure of a set of

random variables, it is useful to separate the marginal distributions of the variables

and the dependence structure captured by a multi-variate function called the copula

function. The application of copula to credit risk modeling (valuation of multi-

name credit derivatives) was first proposed by Li (1999). For a more complete

treatment of copulas, the reader is referred also to Nelsen (1999), or Cherubini

et al. (2004).

Let us consider, for the sake of simplicity, two random variables X1 and X2 with

the joint distribution function F(x1, x2). Let us assume that the marginal distribution

functions F1ðx1Þ ¼ Fðx1, þ1Þ and F2 x2ð Þ ¼ F þ1, x2ð Þ are both continuous and

strictly increasing. Since the two functionsFi : �1, þ1½ � ! 0; 1½ � are one-to-one
and invertible we can define the dependence function C : 0; 1½ � � 0; 1½ � ! 0; 1½ � as
follows: for u, v∈ 0; 1½ � simply set

C u; vð Þ¼F F1
�1 uð Þ,F2

�1 vð Þ� � ¼ Pr F1 X1ð Þ � u,F2 X2ð Þ � v½ �:
Therefore, the function C can be also characterized as the bivariate joined cumula-

tive distribution of the two uniform random variables F1(X1) and F2(X2). It imme-

diately follows that it has the following elementary properties:

(a) C 0; vð Þ ¼ C 0; vð Þ ¼ 0;
(b) C u; 1ð Þ ¼ u and C 1; vð Þ ¼ v for every u, v∈ 0; 1½ �, and moreover

(c) C is 2-increasing, i.e. for every 0 � u1 � u2 � 1, 0 � v1 � v2 � 1

C u2; v2ð Þ � C u2; v1ð Þ � C u1; v2ð Þ þ C u1; v1ð Þ � 0:

The last inequality follows realizing that the left hand side equals the probability

Pr F1 X1ð Þ∈ u1; u2½ �,F2 X2ð Þ∈ v1; v2½ �½ �:
Note that it follows from the property (c) that C(u, v) is non-decreasing in both

variables u and v.2 Sklar (1959) defines bivariate copulas as functions satisfying the
properties (a–c) above. Sklar’s famous Theorem says that for any bivariate copula

C and continuous marginal distribution functions F1 and F2, the function C(F1(x1),
F2(x2)) is a joint distribution function with margins F1 and F2; i.e. there are random

2Let v1 ¼ 0and v2 ¼ v, then according to the two-increasingness propertyC u2; vð Þ � C u1; vð Þ � 0

whenever u2 � u1.
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variables X1 and X2 with those marginal distributions and the copula C. The
definitions and Sklar’s theorem can also be generalized for non-continuous mar-

ginal distributions with only slight technical complications. It follows from the

definition that the copula functions are invariant to the increasing transformations

of the random variables.3 The invariance property holds for concordance measures

like Kendall’s tau, Spearman’s rho, or Gini’s coefficient, but not for the classical

linear correlation measure.

It is useful to define the following three important copulas:

– the maximum copula Cþ u; vð Þ ¼ min u; vf g,
– the minimum copula C� u; vð Þ ¼ max uþ v� 1, 0f g,
– and the product copula C⊥ u; vð Þ ¼ uv.

The maximum copula corresponds to perfect dependence between two random

variables. For example, if U ¼ V are uniform and perfectly dependent then indeed

Pr U � u,V � v½ � ¼ Pr U � min u; vf g½ � ¼ Cþ u; vð Þ:
On the other hand, if U and V are perfectly negatively dependent, i.e. U ¼ 1� V,
then

Pr 1� V � u,V � v½ � ¼ Pr 1� u � V � v½ � ¼ C� u; vð Þ:
The product copula simply corresponds to independent random variables where

Pr U � u,V � v½ � ¼ uv ¼ C⊥ u; vð Þ:
Hence, the copula function is also called the independent copula.

It can be easily hown4 that for any bivariate copula C the following (Fréchet–

Hoeffding) inequality holds:

C� u; vð Þ � C u; vð Þ � Cþ u; vð Þ:
Therefore the two copulasC� andCþ are called the Fréchet upper and lower bounds.

Sklar’s Theorem allows us to define and investigate many interesting depen-

dence structures. Firstly, we define a copula and then we “plug in” any marginal

distributions to obtain various joint distributions. For example, it is easy show that

any convex linear combination pC1 þ 1� pð ÞC2 of two copulas C1 and C2 (with

p∈ 0; 1½ �) must again be a copula. In particular, in this way, we can mix the lower

3If C is the copula given by two random variables X1,X2 and if α1, α2 are two increasing continuous
functions, then C is also the copula given by α1(X1), α2(X2).
4The left-hand side of the inequality follows from the copula properties (b) and (c) setting

u2 ¼ v2 ¼ 1, u1 ¼ u, and v1 ¼ v. The right-hand side of the inequality follows from the fact that

C is increasing in both variables and from (b).
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Fréchet bound, the upper Fréchet bound and the independent copula to obtain the

Fréchet family of copulas. In particular, we can consider the Fréchet mixture

copulas in the form C ¼ pCþ þ 1� pð ÞC⊥ as a special case combining the upper

Fréchet bound (the perfect copula) and the independent copula. It can be shown that

the copula has both upper and lower tail dependencymeasured by p in the sense that

the conditional probability Pr U � u
��V � u

� �
approaches p when u is small, and

similarly Pr U � u
��V � u

� �
approaches p when u is close to 1. This copula is very

simple and the (tail) dependency parameter p appears to be more relevant in

financial applications then the standard linear correlation coefficient ρ.
Another example is the Marshall-Olkin copulas:

C u1; u2ð Þ ¼ min u1�α1
1 u2, u1u

1�α2
2

� �
where α1, α2 ∈ 0; 1½ �. It can be shown (Nelsen 1999) that the standard concordance

measures like Kendall’s tau, Spearman’s rho, or the upper tail dependency can be

expressed in a simple analytical form given the two parameters:

τ ¼ α1α2
α1 þ α2 � α1α2

, ρS ¼
3α1α2

2α1 þ 2α2 � α1α2
, and λU ¼ min α1; α2ð Þ:

There are a number of other well-known parametric copula families like the

Gaussian, Student t, the Fréchet, or the Archimedean copulas. Let us look at their

detailed definitions in the general multivariate set-up.

In the multivariate case, the copula functions correspond to joint distribution

functions of n uniform variables U1, . . .,Un, i.e.

C u1; . . . ;Unð Þ ¼ Pr U1 � u1, . . . ,Un � un½ �:
Now, we must have C 0; u2; . . . ; unð Þ ¼ 0, C u1; 1; . . . ; 1ð Þ ¼ u1, etc. The copula

property (c) generalizes to the requirement that C is n-increasing, that is the

probability mass on any sub-rectangle of [0, 1]n must be nonnegative.

In the multivariate case, the product copula C⊥ u1; . . . ; unð Þ ¼ u1� � �un again

corresponds to n independent random variables; while the Fréchet upper bound Cþ

u1, . . . unð Þ ¼ min u1; . . . ; unð Þ corresponds to the fully dependent variables. It can

be shown that max u1 þ � � � þ un � 1, 0ð Þ is a lower bound, i.e.

max u1 þ � � � þ un � 1, 0ð Þ � C u1, . . . unð Þ for any copula C, but unfortunately,

for any n > 2, the function is never a copula.5 It means that we cannot generalize

the bivariate Fréchet copula family to the multivariate case, but we can still

define the multivariate mixture copulas pCþ þ 1� pð ÞC⊥.

5Nevertheless, for any u∈ 0; 1½ �n there is a copula C so that max u1 þ � � � þ un � 1, 0ð Þ � C uð Þ.
Therefore it is the best lower bound (Nelsen 1999).
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The Gaussian copula function, which we have used for default correlation

modeling so far, is given by a multivariate normal distribution function

Φn x1; . . . ; xn;Σð Þ, with a correlation matrix Σ:

CG u1; . . . ; unð Þ ¼ Φn Φ�1 u1ð Þ, . . . ,Φ�1 u1ð Þ;Σ� �
:

It is important to note that the copula is defined from the multivariate Gaussian

distribution but can be defined by non-Gaussian margins, e.g. lognormal or expo-

nential that we used in time to default modeling. The copula function of a vector of

random variables hX1, . . .,Xni with general marginal distributions F1, . . .,Fn (con-

tinuous increasing) is Gaussian, and the quantile-to-quantile (Q-Q) transformation

Φ�1 F1 X1ð Þð Þ, . . . ,Φ�1 Fn Xnð Þð Þ� 

is multivariate Gaussian. Specifically, we have

used the Gaussian single-factor copula model where the Gaussian structure is

simpler: there is a single Gaussian common factor, and the mutual correlations

are determined by a correlation with respect to the common factor.

Another useful class of copula functions are the Student’s t copulas, with

v degrees of freedom, similarly to the Gaussian copula given by the relationship:

CS u1; . . . ; unð Þ ¼ tn,v t�1
v u1ð Þ, . . . t�1

v u1ð Þ;Σ� �
;

where tv is the univariate Student’s t distribution, and tn,v the multivariate Student’s

t distribution with a correlation matrix Σ. The multivariate Student’s t distribution

vector of random variables might be obtained from a vector of normal variables

hX1, . . .Xni, with the distribution Φn x1; . . . ; xn;Σð Þ divided by
ffiffiffiffiffiffiffiffi
Y=v

p
,where Y is an

independent χ2v variable.
A popular universal class of copulas are the Archimedean copulas defined by the

analytical form

CA u1; . . . ; unð Þ ¼ φ�1 φ u1ð Þ þ � � � þ φ unð Þð Þ;
where φ is a strictly decreasing and convex function from [0, 1] onto 0, þ1½ �. The
function φ is called the generator of the Archimedean copula. The best known

Archimedean copulas are:

1. Gumbel’s Copula: φ uð Þ ¼ �1n uð Þð Þα, α > 1,

2. Clayton’s Copula: φ uð Þ ¼ u�α � 1, α > 0, or

3. Frank’s Copula: φ uð Þ ¼ 1n e�αu�1
e�α�1

� �
, α > 0.

In order to use a parametric copula for credit risk modeling one needs to estimate

its parameters and then simulate (or optimally analytically describe) the distribution

of future cash flows of the multi-name credit derivative we want to value.

The classical inference of copula parameters is based on the maximum likeli-

hood estimation (MLE) method. Let us assume that we have a sample of (presum-

ably independent) observations Xt; t ¼ 1, . . . ,Tf g, e.g. financial asset returns, from
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a multivariate distribution characterized by a copula C and marginal distributions

F1, . . .,Fn from a parametric family with unknown parameters θ. In order to

estimate θ using the exact MLE method we just need to express the multivariate

density function:

f xð Þ ¼ c F1 x1ð Þ, . . . ,Fn xnð Þð Þ �
Yn
i¼1

f i xið Þ;

where the copula density is c ¼ ∂n
C

∂u1...∂un
and fi ‘s are the marginal densities. The

log-likelihood function then is

lðθÞ ¼
X
t

ln c F1 xt1ð Þ, . . . ,Fn xtnð Þð Þ þ
X
t

Xn
i¼1

ln f iðxtiÞ:

The exact MLE estimation θ ¼ arg max l θð Þ then has the standard asymptotic

properties (Cherubini et al. 2004). In particular, the covariance matrix of θ (Fisher’s
information matrix) can be estimated by the inverse of the negative Hessian matrix

of the likelihood function.

The MLE procedure might be computationally very intensive, especially if there

are many copula and marginal distributions’ parameters to estimate. The estimation

procedure can be simplified by the so called inference for the margins method

(IFM) where, in the first step, we estimate the margin parameters maximizing only

the likelihood related to the margins and then, in the second step, we estimate the

copula parameters maximizing the copula likelihood function. The IFM estimator is

not necessarily the same as the MLE estimator; it is only an approximation and

could serve as an initial value for the exact MLE procedure. Another possible

method called canonical maximum likelihood (CML) transforms the marginal data

into uniform variants based on their empirical distributions. Finally, the copula

itself can be estimated non-parametrically, typically using a kernel in order to

obtain a smoothed empirical copula.

In order to simulate a multivariate distribution, e.g. times of default hτ1, . . ., τni,
specified by the marginal distributions Q1(τ1), . . .,Qn(τn), and a copula C(u1, . . .,
un), all we need to do is to simulate hu1, . . ., uni from C and apply the

transformations τj ¼ Q�1
j uj
� �

. This is relatively simple for the Gaussian or Student

t copula. Given a correlation matrix Σ to simulate from Gaussian copula distribu-

tion, one needs just to sample x ¼ x1; . . . ; xnh i from the corresponding multivariate

Gaussian distribution N x; 0;Σð Þ (e.g., based on the Choleski decomposition of Σ)
and then use the Q-Q transformations τj ¼ Q�1

j Φ xj
� �� �

. One can proceed similarly

in case of the Student t distribution.

For a general copula simulation we need to find the conditional distributions:
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Ck uk
��u1, . . . , uk�1

� � ¼ Pr Uk � uk
��U1 ¼ u1, . . . ,Uk�1 ¼ uk�1

� �
:

The conditional distributions can be obtained by partial differentiation of the

copula function. For example, for a differentiable bivariate copula C(u, v) it follows
that

cu vð Þ ¼ Pr V � v
��U ¼ u

� � ¼ lim
Δu!0

C uþ Δu, vð Þ � C u; vð Þ
Δu

¼ ∂C
∂u

:

Hence, to sample a pair (u, v) from C we can just sample independent variable

u,w∈ 0; 1½ � from the uniform distribution and set v ¼ c�1
u wð Þ to get the

second draw.

For a multi-variate copula C let Ck u1; . . . ; ukð Þ ¼ C u1; . . . ; uk; 1; . . . ; 1ð Þ where
k ¼ 2, . . . , n. Then

Ck uk
��u1, . . . , uk�1

� � ¼ Pr Uk � uk
��U1 ¼ u1, . . . ,Uk�1 ¼ uk�1

� � ¼
¼ ∂k�1

Ck u1; . . . ; ukð Þ
∂u1 . . .∂uk�1

=
∂k�1

Ck�1 u1; . . . ; uk�1ð Þ
∂u1 . . .∂uk�1

:

The Monte Carlo simulation then proceeds as follows:

– Simulate a random value u1 from U(0, 1),

– Simulate a random value u2 from C2 ���u1� �
,

– . . .

– Simulate a random value un from Cn ���u1, . . . , un�1

� �
.

As in the bivariate case, a value uk is simulated from Ck uk
��u1, . . . , uk�1

� �
by

sampling w∈ 0; 1½ � from the uniform distribution and setting

uk¼C�1
k w

��u1, . . . , uk�1

� �
. Therefore, the procedure is relatively efficient if the

conditional distribution can be inverted. It is easy to see that the distributions Ck

are analytical for Archimedean copulas (with φ and φ�1 analytical) and can be

inverted for the particular copulas listed above (Gumbel, Clayton, and Frank).

Without analytical invertibility, the equation w ¼ Ck uk
��u1, . . . , uk�1

� �
must be

solved numerically and the procedure obviously becomes computationally more

intensive.

Implied Copula

A popular approach to CDO tranche valuation has been proposed by Hull andWhite

(2006). Although the method is called “implied copula”, it does not, in fact, use the
concept of copulas directly. The idea is to focus on the probability distribution of

the portfolio losses, or equivalent, given a constant LGD, on the distribution of

default rates. The non-parametric loss distribution is calibrated from available
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tranche quotations. Then, it can be used to value any other non-standard tranche.

The “implied copula” is, therefore, in a way implicitly hidden in the loss probability

distribution. It is not explicitly specified and calibrated.

Specifically, let us consider a homogenous portfolio with constant intensity of

default conditional on a systematic factorM taking finitely many values m1, . . .,mh.

Hull and White (2006) propose to specify a reasonable list of possible default

intensity values λ1, . . ., λh and calibrate their probabilities p1, . . ., ph. We can assume

a constant recovery rate R, or, in a more general approach, conditional recovery

rates R1, . . .,Rh. The recovery rates can be linked to the default intensities via a

functional form, e.g. exponential, as proposed in Cantor et al. (2005). Note that the

systematic factor numerical values have no meaning; we just have scenarios

indexed 1, . . ., h with the specified default intensities (and recovery rates). For

any single name i, the conditional probability of default in a time horizon t is

Q t
��j� � ¼ Pr τi � t

��M ¼ mj

� � ¼ 1� e�λjT ;

and the unconditional probability of default:

Q tð Þ ¼ Pr τi � t½ � ¼
Xh
j¼1

pj 1� e�λjT
� �

:

In the case of the LHP (Large Homogenous Portfolio) model, all randomness is

eliminated and both the default rate and the loss rate are determined by the scenario.

Therefore, given the scenario probability distribution, we can express the condi-

tional loss L t
��j� � ¼ 1� Rj

� �
1� e�λjt
� �

, and hence the tranche [A,B] conditional

loss according to (5.12), the conditional default leg DLA,B 0
��j� �

value according to

(5.13), and the risky annuityDVA,B 0
��j� �

value according to (5.14). Given the market

quotes UA,B of the up-front payment and the spread SA,B we can calculate the

conditional premium leg value

PLA,B 0
��j� � ¼ UA,B þ SA,BDVA,B 0

��j� �
;

and the conditional premium receiver tranche market value

MVA,B 0
��j� � ¼ PLA,B 0

��j� �� DLA,B 0
��j� �

:

Finally, all the conditional quantities can be easily made unconditional; in particu-

lar, the unconditional receiver tranche market value is:

MVA,B 0ð Þ ¼
Xh
j¼1

pjMVA,B 0
��j� �

:
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The calibration goal is to find p1, . . ., ph subject to the standard conditionsX
pj ¼ 1, pj � 0 in order to make MVA,B(0) equal to zero, or at least as close to

zero as possible, taking into account all quoted tranches [Ak,Bk]. One may also

include the index quote condition (corresponding to the tranche [0,100%]). For

example, for iTraxx Europe there are, besides the index quote, only six tranches

with the attachment/detachment points 0, 3, 6, 9, 12, 22, 100%, hence we should be

able to make the market values equal to zero if there are eight or more scenarios.

However, Brigo et al. (2010) note that one may need up to 30 scenarios, i.e. h ¼ 30,

or even 125 scenarios listing all possible default rates (less than 100%) on the index

portfolio, in order to fit the quotes with sufficient precision. The number of

scenarios has another unpleasant effect in that the optimization has multiple

solutions depending on the initial guess. It is shown that this issue can be overcome

by imposing an additional smoothing condition on the probability distribution.

Expected Tranche Loss

Even though the implied copula model is a powerful empirical approach, it is still

a static model where the loss distribution is obtained only from single maturity

quotes. Indeed, it turns out that for the implied copula model, and likewise for

any other copula model, the loss distributions might differ for different maturities.

The Expected Tranche Loss approach (Walker 2006) is a relatively straightfor-

ward, model-free way to extract the key information needed to value CDO

tranches based on quotes across maturities and attachment/detachment points. It

is based on the simple observation that the key inputs in the equilibrium spread

formula

SA,B0 ¼ E0 DLA,B 0ð Þ� �� UA,B
0

E0 DVA,B 0ð Þ� � ¼

¼

Xn
j¼1

D 0:5tj�1 þ 0:5tj
� �

E LA,B tj
� �� �� E LA,B tj�1

� �� �� �� UA,B
0

XN
j¼1

tj � tj�1

� �
D tj
� �

1� E LA,B tj
� �� �� �

ð5:23Þ

are the expected tranche losses E[LA,B(tj)] where tj are typically the quarterly

premium payment times and [A,B] are the standard attachment/detachment points.

Now, in a dynamically consistent model, the expected tranche losses should be the

same independently of the CDO tranche maturity. Therefore, the idea is to collect

all the available upfront fees and spread quotes UA;B
0;T , S

A;B
0;T for different maturities

T and, in a way, bootstrap the expected tranche loss E[LA,B(tj)] values from the

quotes. Then, using appropriate interpolations, the formula (5.23) can be used to

value consistently any other non-standard tranche with an arbitrary maturity. One
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possible approach is to look directly for E[LA,B(tj)]. However, as with the compound

and base correlation, we then have an issue with interpolation for non-standard

tranches, and it is more appropriate to estimate the expected equity losses gðt,BÞ
¼ E½L0,BðtÞ� for the “base” tranches [0,B]. Given these quantities we know that

E LA,B tð Þ� � ¼ g t;Bð Þ � g t;Að Þ
B� A

;

and so (5.23) can be rewritten as a set of equations for the available spread and

up-front fees with unknown values g(tj,Bk), for standard payment times tj and
detachment points Bk (e.g. 0, 3, 6, 12, 22, 100%). Since the equations do not have

to have an exact solution, we have to run an optimization problem minimizing a

mispricing function. For a quoted maturity T and tranche [A,B] the standard

mispricing formula is

MST,A,B ¼ SA,BT � SA,B,mid
T

SA,B, askT � SA,B, bidT

� �
=2

where SA;BT is the model implied spread and SA;B;bidT , SA;B;askT are the quotes. Overall,

we minimize the sum of squared mispricings

X
quoted tranche T;A;Bð Þ

MS2T,A,B: ð5:24Þ

In addition, we have to formulate some necessary constraints on the expected equity

tranche loss values g(tj,Bk):

0 � g tj;Bk

� � � 1, g tj; 0
� � ¼ 0;

g tj;Bk

� � � g tj�1;Bk

� �
;

g tj;Bk�1

� � � g tj;Bk

� �
;

g tj;Bkþ1

� � � g tj;Bk

� �þ Bkþ1 � Bkð Þ g tj;Bk

� �� g tj;Bk�1

� �
Bk � Bk�1

:

The last inequality equivalent to the ETL inequality between a more and a less

senior tranche:

E LBk ,Bkþ1 tj
� �� � � E LBk�1,Bk tj

� �� �
:

Brigo et al. (2010) tested the model on DJ-iTraxx pre-crisis data (2003–2006) and

concluded that the pricing error never exceeded by more than 20% the bid-ask
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range with spline interpolations, i.e. the model was able to fit the market data

very well.

To conclude, instead of going into arbitrary structural assumptions, like the

Gaussian or other copulas, the ETL method focuses on the most direct market

quantities that are embedded in the quotations. Compared to the copula models, the

ETL approach provides acceptable market fit and at the same time does not lead to

inconsistencies in the time dimension.

Generalized Poisson Loss Model

Another idea proposed by Brigo et al. (2006a, b) is to model the dynamics of the

portfolio loss as a stochastic process Z(t) characterized as a mix of independent

Poisson processes Nj(t) with different amplitudes αj. The counting Poisson process

starts at Nj 0ð Þ ¼ 0 and from time to time jumps up by one, i.e. dNj ¼ 0 or 1 where

the probability of a nonzero jump is λj(t)dt and λj(t) is the Poisson intensity. If we

had a portfolio of independent exposure with identical default intensity λ, then one

Poisson process with this intensity would count random defaults on the portfolio

over time. However, since these dependencies and multiple defaults might take

place over a short time period, it is proposed to add another independent process

multiplied, for example, by the amplitude 2, i.e. modeling the occurrence of double

defaults. Then, to improve the model, we can add a third process multiplied by a

larger amplitude, and so on. Therefore, the Generalized-Poisson process we want to

apply will have the following form:

Z tð Þ ¼
Xn
j¼1

αjNj tð Þ;

where the Poisson processes are independent, α1 < α2 < . . . ; and the intensities

λj(t) are deterministic functions of time. One possibility is to use this process as the

default-counting process and multiply it by a fixed LGD. However, Brigo et al.

(2006a, b) propose to model the loss directly, defining it as Lt ¼ min Zt;M
0ð Þ=M0

whereM0 � M is larger than or equal to the number of names in the portfolio. In this

way, we make sure that the loss does not exceed 100% and at the same time allow

that the minimum jump size can be less than 1/M (e.g., corresponding to LGD/M ).

The advantage of the Generalized-Poisson process is that it can be handled

relatively well analytically; the marginal distributions of Z(t), i.e. the loss

distributions conditional on t, can be obtained from the characteristic function

φZ tð Þ uð Þ ¼ E0 exp iuZ tð Þð Þ½ � ¼ E0 exp iu
Xn
j¼1

αjNj tð Þ
 !" #

¼

¼
YN
j¼1

E0 exp iuαjNj tð Þ
� �� � ¼YN

j¼1

φNj tð Þ uαj
� �

:
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Now, the point is that for each Poison process the characteristic function is known

leading to

φZðtÞðuÞ ¼ exp
�XN

j¼1

ΛjðtÞðeiuαj � 1Þ
�
,

where Λj tð Þ ¼
ðt
0

λj sð Þds is the cumulated intensity. Finally, the probability distribu-

tion of Z(t) can be computed via the inverse Fourier transformation of the charac-

teristic function. Note that the technique is analogous to the one employed by the

CreditRiskþ methodology (Sect. 4.3).

Once we are able to calculate the loss distribution and the expected tranche

losses, the calibration procedure can be formulated, as usual based on available

market quotes and minimizing an objective error function. First we need to set the

integer M0 � M. Brigo et al. (2006a, b) recommend M0 ¼ 200 in the case that M
¼ 125 (note that 125=200 ¼ 62:5% corresponds to a “normal” LGD value),

although the value of M0 can be arbitrarily large. The next step is to choose α1
(typically equal to 1) and a non-decreasing function Λ1(t) piecewise constant in the
tranche maturities. Then choose α2 and Λ2(t), and so on, until the default intensities
are negligible or the fit is sufficiently good. The proposed fit function (5.24) is the

same as for the ETL model.

Brigo et al. (2006a, b) report very good empirical results based on 2005 market

data. Figure 5.14 shows an interesting example of the multimodal loss distributions

for various maturities with modes corresponding to different amplitudes of the

Generalized-Poisson distribution.

Fig. 5.14 Loss distribution evolution of the GPL model with minimum loss jump size of 50 bp on

all the quoted maturities up to 10 years, drawn as a continuous line (source: Brigo et al. 2006b)
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5.4 Dynamic Intensity of Default Modeling

The credit derivatives valuation models discussed so far can be characterized as

static models. The probabilities of defaults are estimated for different time horizons

from today’s perspective, and even future intensities of default are modeled as the

fixed forward intensities of default, implied by the current default probabilities.

However, looking, for example, at the development of short term market CDS

spreads, the intensities of default are not deterministic, but develop apparently

stochastically over time. Therefore, default intensities should be modeled as ran-

dom over time, i.e. stochastic as well. The stochastic approach might improve the

valuation of various complex credit derivatives, and it is necessary to value options

on CDS and similar products.

The challenging problem of dynamic credit risk modeling can be compared to

interest rate modeling. Today, we may derive the static term structure of the (risk

free) interest rates from bonds, interest rate swaps, or other instruments which can

be valued, like most interest rate products, just by discounting the fixed cash flows.

But to value interest rate options and other derivatives, we need to introduce a

stochastic model of interest rates. This is more difficult than modeling a stock price

or an exchange rate because we need to capture the development of the full term

structure of interest, for example, of the curve of zero coupon interest rates with all

possible maturities R t; Tð Þ; T � th i, from the perspective of time t. We know

today’s term structure R 0; Tð Þ; T � 0h i, but for t > 0 all the variables R(t,T ) are
stochastic. The advanced models like Heath, Jarrow, and Morton (HJM), or the

LIBOR-market model indeed describe the dynamics of the full term structure (see

e.g. Hull 2009). We will firstly look in more detail at the popular Vasicek’s model
which belongs to the class of the short-rate models, primarily modeling only the

instantaneous interest rate r(t), and implying all the other interest rates and variables

from the model. The approach is similar to the intensity of default stochastic

reduced form models outlined below. Moreover, the interest rate and probability

of default modeling should go hand in hand in the more advanced models, since

there might be a certain degree of interdependence between intensity of default and

the interest rate level. We will also look at alternative structural models similar to

the KMV EDF approach, where default is triggered by the stochastic asset value

breaking a default threshold. The probability of default is then determined by the

distance of the asset value from the threshold and the process dynamics.

204 5 Credit Derivatives and Counterparty Credit Risk



Vasicek’s Interest Rate Model

Vasicek’s model (Vasicek 1977) can be described by the stochastic differential

equation

dr ¼ a b� rð Þdtþ σdz; ð5:25Þ
where a, b, and σ are constants, dr ¼ dr tð Þ is the change of the instantaneous

interest rate r(t) over an infinitesimal time interval of length dt, and dz is the random
change of the Wiener process; i.e., dz 	 N 0; dtð Þ. Without going into the

fundamentals of the stochastic processes, we may interpret the Eq. (5.25) as a

Monte Carlo simulation algorithm described as follows:

1. Set r 0ð Þ ¼ r0, fix a time horizon T, and an elementary time step Δt ¼ T=N.
2. Given r(t), sampleΔz from N(0,Δt) and set r tþ Δtð Þ ¼ r tð Þ þ a b� r tð Þð Þ þ σΔz.
3. Repeat the step 2 until T ¼ NΔt, and interpolate linearly r(t) between the

calculated values r j� 1ð ÞΔtð Þ and r( jΔt) for j ¼ 1, . . . ,N. The resulting

function r : 0; T½ � ! R is one short-rate simulated path.

4. Repeat the steps 2 and 3 to obtain a larger number of simulated paths.

Note that all we know today is the instantaneous interest rate r0. All the future
rates are unknown, i.e. stochastic, but with a distribution governed by the

Eq. (5.25). The logic of the equation is that there is a random change of the rate

given by σdz, but unlike to stocks, there is no positive (or negative) drift, rather, a

tendency to revert to the mean level given by the parameter b, with the speed given
by a > 0. Figure 5.15 shows a sample path simulated according to (5.25) with the

indicated parameters. The arrows indicate the tendency of the stochastic interest

rate r to revert to the long term mean b ¼ 4%
In order to value other interest rate instruments, the model needs to be set up in

the world that is risk-neutral with respect to the instantaneous interest rate r(t); i.e.,
investors investing into any security require just the return r(t)dt over the period

t, tþ dt½ � (and not more), regardless of the asset’s level of risk. If f denotes the value
of the security, then the risk-neutral principle can be formally expressed by the

equation:

df

f
¼ rdtþ σf dz:

Technically we need to change the real-world probability measure to a new

measure that is also called forward risk-neutral, with respect to a numeraire
(Hull 2009). Here the numeraire is the money-market account with the initial

value g 0ð Þ ¼ 1, and accruing the instantaneous interest rate; i.e. dg ¼ rgdt. There-
fore, the value of the money-market account at time t can be expressed as:
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g tð Þ ¼ exp

ðt
0

r τð Þdτ
0
@

1
A: ð5:26Þ

Note that g(t) is random, since the integral in (5.26) is taken over a random path

of r. We say that a measure is forward risk neutral with respect to g, if, for any
security derivative with the same source of uncertainty (i.e., depending on the same

underlying Wiener process or processes) f/g is a martingale; i.e.,

f ðtÞ
gðtÞ ¼ Ê

f ðTÞ
gðTÞ jt
� �

, t < T,

where Ê ���t� �
denotes the conditional expected value with respect to the measure,

and from the perspective (given information) of time t. In particular, if the payoff of
a derivative fT at time T is known, then its time zero market value can be expressed

as:

f 0 ¼ Ê exp
�
�
ðT
0

rðτÞdτ
�
f T

2
4

3
5: ð5:27Þ

So, if P(t,T ) denotes the market value of the zero coupon bond paying 1 unit at

time T, then

P t; Tð Þ ¼ Ê exp �
ðT
0

r τð Þdτ
0
@

1
A

2
4

3
5: ð5:28Þ
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Fig. 5.15 A path simulated by Vasicek’s model with the parameters r0 ¼ 3%, a ¼ 0:1, b ¼ 4%,

and σ ¼ 2%
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Once we get the values of P t; Tð Þ, T > t, we also have the full term-structure of

interest rates R t; Tð Þ ¼ �1
T�t lnP t;Tð Þ in the continuous compounding for all

maturities. Note that the expected value in (5.28) depends only on the initial

value r ¼ r tð Þ, on times t,T, and on the fixed parameters of the stochastic process

a, b, σ. The values in (5.28) and, in general, in (5.27), can be estimated numerically

by a Monte Carlo simulation. However, one of the reasons for the popularity of

Vasicek’s model is that the solution for P t; Tð Þ ¼ f r; tð Þ can be found in an affine
form:

f ðr, tÞ ¼ e�ðαðtÞþβðtÞrÞðT�tÞ, ð5:29Þ
or equivalently, Rðr, t,TÞ ¼ αðtÞ þ βðtÞr. The key tool for getting the solution and,

in general, to obtain various results in stochastic calculus, is Ito’s Lemma, which
says that if x(t) is a stochastic process satisfying the equationdx ¼ a x; tð Þdtþ b x; tð Þdz
and if f(x, t) is a sufficiently differentiable function of two independent variables,

then f ¼ f x tð Þ, tð Þ is a new stochastic process satisfying the equation:

df ¼ ∂f
∂x

aþ ∂f
∂t

þ 1

2

∂2
f

∂x2
b2

 !
dtþ ∂f

∂x
bdz:

In the forward risk neutral probability measure, for f(r,t) ¼ P(r,t,T ), the drift

coefficient must be equal to rf and thus, in the case of Vasicek’s model, we obtain

the classical Black-Scholes-Merton partial differential equation:

∂f
∂r

a b� rð Þ þ ∂f
∂t

þ 1

2

∂2
f

∂r2
σ2 ¼ f r:

The partial differential equation can be solved analytically for an f in the form

(5.29), and with the boundary condition f ðr,TÞ ¼ 1. The final solution is usually

written as follows:

P t; Tð Þ ¼ A t;Tð Þe�B t;Tð Þr tð Þ,

B t; Tð Þ ¼ 1� e�a T�tð Þ

a
, and

A t;Tð Þ ¼ exp
B t; Tð Þ � T þ tð Þ a2b� σ2=2ð Þ

a2
� σ2B t; Tð Þ2

4a

 !
:

The interest rate r(t) can also be characterized as a normal variable, with an

analytically expressed mean and variance. This indicates a disadvantage of the

model, since r(t) may be negative with a positive probability. On the other hand,

this significantly simplifies the simulation of future interest rates r(t), and thus, of

P(t, T ), R(t, T ) and so on. Moreover, continuing in the analysis outlined above, it is

possible to obtain an analytical solution for options on zero coupon bonds, fixed

coupon bonds, and other “plain vanilla” interest rate derivatives.
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Besides the possibility of negative interest rates, another shortcoming of the

model is its limited flexibility for capturing the initial term structure of interest

rates. There are a number of other short rate models like the Cox, Ingersoll, and

Ross model, the Ho-Lee model, or the Hull-White; one or more factor models

which improve on Vasicek’s model, but typically at the cost of lower analytical

tractability.

Structural Stochastic Models

Before discussing the intensity of default models sharing certain similarities with

the short rate models, let us look at the class of structural models already introduced

in Sect. 4.5.

In the Black-Scholes-Merton approach, A(t) is the asset value at time t following
the geometric Brownian motion stochastic differential equation:

dA ¼ μ� γð ÞAdtþ σAdz; ð5:30Þ
where μ is the mean rate of return on the assets, γ the dividend payout ratio, and

default at time T is defined by the condition A Tð Þ < D, where D is a default

threshold. Then, the probability of default at time T is given by the distance to

default as Φ �DDð Þ where DD ¼ d2; see (4.16) and Fig. 5.16.

Unfortunately, since we need to capture the random time to default, this model is

not sufficient. It could be argued that default happens once the default threshold is

passed. In fact, one of the problems of the Black-Scholes-Merton model is that

it may happen that A sð Þ < D for some s < T, yet A Tð Þ � D. So the debtor who,

in fact, should have defaulted during the period (0, T ), does not default at time

T, according to the model. This leads to the concept of first-passage models,
where default happens in the time interval [t, T], anytime there is an s∈ t; T½ �, so
that A sð Þ < D. Given a path for A, the time of default can be defined as τ ¼ inf

s;A sð Þ < Df g: The probability of default, p(t,T ) in [t,T], can still be expressed

analytically, applying the technique for the valuation of barrier options (Duffie and

Singleton 2003)

pðt,TÞ ¼ HðXt, T � tÞ,
where

Xt ¼ lnA tð Þ � lnD

σ
;

H x; sð Þ ¼ Φ xþmsffiffi
s

p
� �

� e�2mxΦ �xþmsffiffi
s

p
� �

, and m¼ μ�γ�σ2=2
σ . The most serious flaw

of the model is that it implies unrealistically low forward intensities of default in a

short horizon if the initial asset value At is not close to the debt threshold D (Duffie

and Singleton 2003). Figure 5.16 shows the default swap spreads implied by the
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first passage model. The curve starting at the origin, and labeled “Perfect Informa-

tion”, illustrates that the model swap spread is initially very low as the default

intensities are close to zero for the first few months, and then it increases rapidly and

slightly declines for longer maturities.

The empirical evidence says that the default spreads are more-or-less flat, may

increase for good ratings, or decrease for bad ratings, but never start at zero as

implied by the first-passage model. This inconsistency can be partially solved by a

number of methods. For example, the classical first-passage model assumes perfect

knowledge of the assets value and of the default threshold which is not completely

realistic. If we allow for imperfect information, i.e. assuming that the initial asset

value A(0) (and/or the default threshold D) is drawn from a random distribution,

then we may get a more realistic picture (see the curve labeled “Imperfect Infor-

mation” in Fig. 5.16).

Another way to make the first-passage model more realistic is to add the

possibility of jumps into the stochastic model for A(t); i.e.,

dA ¼ μ� γ � kð ÞAdtþ σAdzþ AdJ;

where J is a compound Poisson process, and k is the mean jump size multiplied by

the arrival intensity of jumps. The assets of a firm may, indeed, jump up and down

for many different reasons, and that may cause a sudden default, even if the initial

distance to default was relatively large. The model generally becomes less tractable,

da erpS
pa

wStluafe
D

Time to Maturity

Perfect Information

Imperfect Information

Fig. 5.16 Default swap spreads implied by the first-passage model with perfect and imperfect

information
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but if the jump sizes are assumed to be lognormal, then there is an analytical

solution provided by Zhou (2001).

Reduced Form Models

Reduced form models, treating just the default intensity as a stochastic process,

present a natural alternative to the structural models. A clear advantage is that

probabilities of default are empirically observable (e.g., through CDS quotations),

while asset value processes are usually latent. It should be easier to set up, calibrate,

and back-test a given stochastic intensity model, while the structural models are

usually quite inflexible, or too complex, as discussed above. On the other hand, in

the structural approach, the term structure of default probabilities, as well as the

arrival of default, is defined by the asset value stochastic model; the value of A(t)
and the parameters of the model determine the probabilities of defaultp t; Tð Þ,T > t,
and at the same time, any particular path of A sð Þ, s � t determines the time of

default. This is not the case of stochastic intensity models. For a particular path of

λ sð Þ, s � t, we just know that the probability of default at any time interval of the

form s, sþ ds½ �, conditional on survival until s, is λ(s)ds, but the specific time of

default is not determined. To incorporate the time of default, the concept of a

doubly stochastic process is introduced (Duffie and Singleton 2003). Hence, there

are two layers of uncertainty:

1. the stochastic intensity process, and

2. the Poisson arrival of default process, conditional on the default intensity

process.

For example, let us assume that the stochastic intensity is governed in an analogy

to Vasicek’s short rate model by the mean reversion stochastic differential

equation:

dλ ¼ a b� λð Þdtþ σdz: ð5:31Þ
If our goal is just to simulate random times of default on a time interval [0, T], then
we may proceed as follows:

1. Fix a small Δt ¼ T=N and set λ 0ð Þ ¼ λ0.
2. For a given s ¼ jΔt, j ¼ 0, . . . ,N � 1, provided there was no default until s,

sample Poisson default on s, sþ Δt½ �, with the probability λ(s)Δt. If there is a

sampled default, set τ ¼ sþ Δt=2. If there is no default, sample Δz 	 N 0;Δtð Þ,
and set λ sþ Δtð Þ ¼ λ sð Þ þ a b� λ sð Þð Þ þ σΔz.

3. Repeat Step 2 until a default, or until time T. If no default was sampled until T,
set τ ¼ þ1:
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The naı̈ve Monte Carlo procedure, applicable to an arbitrary stochastic default

intensity model, can be slightly improved using the concept of a compensator:

Compensator simulation: Simulate the cumulative intensity of default:

Λ tð Þ ¼
ðt
0

λ sð Þds for t∈ 0; T½ �;

and independently sample a value u from the standard (unit mean) exponential

distribution. Let τ be chosen so that Λ τð Þ ¼ u, i.e. τ ¼ Λ�1 uð Þ, if u � Λ Tð Þ, and
τ ¼ þ1 otherwise.

To explain, a random variable U has the standard exponential distribution, if

its cumulative distribution function is Pr U � t½ � ¼ 1� e�t, t � 0; i.e., its survival

function Pr U > t½ � ¼ e�t: Thus, U would be the time to default variable if the

intensity of default was 1; therefore, its mean value equals 1. The compensator

function Λ(t) transforms the real time to the unit intensity time to default time

scaling by the given intensities of default λ sð Þ, s∈ 0; T½ �: Formally,

Pr τ > t½ � ¼ Pr Λ�1 Uð Þ > t
� � ¼ Pr U > Λ tð Þ½ � ¼ e�Λ tð Þ:

Recall that according to (5.2), the survival probability conditional on a specific

default intensity path is:

S tj⟨λðsÞ; 0 � s � t⟩ð Þ ¼ exp
�
�
ðt
0

λðsÞds
�
¼ e�ΛðtÞ, ð5:32Þ

consequently, the two step compensator simulation indeed generates the desired

distribution of times to default.

Conditioning (5.32) on the information available at time 0, we get that:

S 0; tð Þ ¼ Pr τ > t
��0� � ¼ Ê exp �

ðt
0

λ sð Þds
0
@

1
A

2
4

3
5: ð5:33Þ

Note that the survival probability S t; Tð Þ ¼ Pr τ > T
��t� �

for the time horizon T,

from the perspective of time t, has exactly the form of (5.28), as in Vasicek’s model,

and thus it can be solved analytically in an affine form (5.29).

If the default intensity model can be treated analytically, as in the case of the

affine specification above, then we can, in fact, proceed much more efficiently.

Inverse survival function simulation: Generally, if the survival probability S tð Þ
¼ S 0; tð Þ as a decreasing continuous function S : 0, þ1½ � ! 0; 1½ � can be analyti-

cally calculated, then the time to default is easily simulated sampling the variable

u from the uniform distribution U(0, 1), and calculating τ ¼ S�1 uð Þ.
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Indeed, Pr τ > t½ � ¼ Pr S�1 uð Þ > t
� � ¼ Pr u < S tð Þ½ � ¼ S tð Þ; see Fig. 5.17 for an

illustration.

As in the case of interest rate modeling, there are many advanced default

intensity models that have certain advantages compared to Vasicek’s model, but

become less analytically tractable. Among the most popular are the mean reverting

model with jumps, the Cox-Ingersoll-Ross (CIR) model, and the Heath, Jarrow, and

Morton (HJM) models.

The mean-reverting process with jumps can be written as:

dλ ¼ κ γ � λð Þdtþ dJ: ð5:34Þ
So, there are independently distributed jumps at Poisson arrival times, with

certain intensity c, and between the jumps the process is exponentially reverting

to the mean γ at the rate κ. If the jumps are, for example, exponentially distributed,

then the process belongs to the class of basic affine processes; i.e., the survival

probability from t to T can be expressed in the form:

Sðt, TÞ ¼ e�ðαðtÞþβðtÞλðtÞÞðT�tÞ, ð5:35Þ
where α(t) and β(t) are determininstic functions depending only on the process

parameters, and on the argument t (see Duffie and Singleton 2003). The logic of the
model is that the worsening of credit quality usually happens in jumps, while

improvement is gradual; see Fig. 5.18 for an illustration of a simulated path.

Another popular model used when modeling interest rates and default

intensities, is the CIR—Cox, Ingersoll, and Ross (1985) model, for which:

Survival Time

Survival

Probability

+

-

0

1

u

τ

(0,1)U

Fig. 5.17 Simulating time to default with the inverse survival function
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dλ ¼ κ γ � λð Þdtþ σ
ffiffiffi
λ

p
dz:

The model is similar to Vasicek’s model (5.31), but the term σdz is replaced with

σ
ffiffiffi
λ

p
dz. It can be argued that this random change better fits the empirical reality, but

most importantly, the intensity λ (or interest rate) always stays nonnegative in the

CIR model, while Vasicek’s model admits negative values. The model also has an

affine form solution (5.35), although more complex than in the case of Vasicek’s

model. The simulated paths are not as jumpy as in the case of the mean reverting

process with jumps—compare Figs. 5.18 and 5.19.
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Fig. 5.18 A simulated path of the mean-reverting process with jumps (κ ¼ 0:1; γ ¼ 1%; c ¼ 75

%; and jump mean 2%)
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Fig. 5.19 A simulated path of the CIR process (κ ¼ 0:1; γ ¼ 1%; and σ ¼ 10%)
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Even though the paths of the two processes have different shapes, the forward

default rate term structures are very similar. Note that the forward default rates are

implied by the expected survival probabilities (5.33), and by the relationship

λð0, tÞ ¼ �1

Sð0, tÞ
dSð0, tÞ

dt
: ð5:36Þ

Figure 5.20 shows a typical term structure of the forward default rates implied by

the CIR model depending on the relationship between the initial intensity λ(0) and
the long term mean reverting intensity level γ. The forward default rate of course

reverts to the base level γ, but it is slightly decresing also if λ 0ð Þ ¼ γ due the

convexity effect (Jensen’s inequality) as it is given by (5.36) and (5.33).

Duffie and Singleton (2003) generate forward intensities in the CIR model with

varying initial intensities, and then calibrate the parameters of the mean-reverting

model to match the moments of λ, implied by the CIR model. It turns out that that

the resulting forward intensities implied by the mean reverting model are almost

identical and have the same term structure pattern as shown in Fig. 5.20.

The model can be further combined, for example, considering a combination of

the CIR model and the jump model:

dλ ¼ κ γ � λð Þdtþ σ
ffiffiffi
λ

p
dzþ dJ:

The more complicated CIR model with jumps does not necessarily bring a signifi-

cant improvement, as indicated by the comparison of the pure jump and the pure

CIR diffusion models above. Nevertheless, it still belongs to the class of affine

intensity models.

The disadvantage of the intensity models, similar to the short rate models, is the

limited flexibility in fitting the initial term structure of probabilities of default and

their volatilities. This is solved by the Heath, Jarrow, and Morton (1992)—HJM
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model, where the term structure is captured by the curve λ t; Tð Þ; t � Th i of forward
intensities of default from the perspective of time t, which evolves according to the
following set of stochastic differential equations:

dλ t; Tð Þ ¼ μ t;Tð Þdtþ σ t; Tð Þdzt, t < T:

The initial values λ(0, T ), are given by the current forward (risk neutral) intensities

of default. The volatilities σ(t, T ) can be estimated from historical, or market, data,

but by the same arguments used by the interest rate HJM model, the drift μ must be

calculated from the volatilities in the form:

μ t; Tð Þ ¼ σ t; Tð Þ �
ðT
t

σ t; sð Þds:

Reduced Form Pricing

Joint short rate r(t) and default intensity λ(t) modeling under the risk neutral

measure enable us, as shown by Lando (1988), to price a zero-coupon defaultable

bond as

Pðt,TÞ ¼ Ê exp �
ðT
t

r uð Þ þ λ uð Þð Þdu
0
@

1
A��t

2
4

3
5 ð5:37Þ

provided that the default has not already occurred by time t. Indeed, conditional on

the path of r and λ, the risk neutral survival probability between t and T is exp

�
ðT
t

λ uð Þdu
0
@

1
A; the discount factor is exp �

ðT
t

r uð Þdu
0
@

1
A; and so the risk neutral

conditional discounted expected cash flow is exp �
ðT
t

r uð Þ þ λ uð Þð Þdu
0
@

1
A: Taking

the average over all possible paths we obtain (5.37).

Interest Rate and Default Intensity Correlations

The Eq. (5.37) naturally admits a correlation between the two processes. According

to Lando (2005), dependence may be introduced through a correlated Wiener
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process driving the stochastic differential equations for interest rates and default

intensities. For example, if the short rate r and the intensity λ both follow Vasicek’s

process and the estimated correlation between the short time increments dr and dλ is
to be ρ, then the stochastic equations can be written as

dr ¼ a b� rð Þdtþ σrdz1,

dλ ¼ κ γ � λð Þdtþ σλ ρdz1 þ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ρ2

p
dz2

� �
:

As Lando (2005) notes, Vasicek’s model is easy to work with and gives a closed

form solution. Its disadvantage is the possibility of negative interest rate or default

intensities. The same approach unfortunately cannot be easily applied to the CIR

process. It turns out that the processes are not jointly affine and the model is difficult

to work with.

The correlation structure between interest rates and default intensities of one or

more obligors is, however, naturally incorporated into affine intensity models

(Duffie and Singleton 2003). The idea is that there is an underlying stochastic

multidimensional factor X¼ X1; . . . ;Xnð Þ of independent affine (e.g. Vasicek’s or

CIR) processes explaining short interest rates and default intensities through affine

relationships

r ¼ ar þ br � X,
λ ¼ aλ þ bλ � X: ð5:38Þ

The variables Xi may include industry or economic business cycle indicators,

interest rate and yield spread factors, or other drivers. This model allows the

correlation between the short rate and default intensity through their joint depen-

dence on X. Moreover, the model is easily extended to more debtors with default

intensity correlations specified by a multifactor model. The survival probability and

the presented value of a defaultable zero-coupon bond can be shown to have, again,

a tractable exponential affine solution:

S t; Tð Þ ¼ eαS t;Tð ÞþβS t;Tð Þ�X tð Þ and
P t;Tð Þ ¼ eαP t;Tð ÞþβP t;Tð Þ�X tð Þ:

ð5:39Þ

CDO and Basket CDS Valuation

The affine multi-dimensional model (5.38) gives us a new way of simulating times

to default in order to value a CDO, or basket CDS, in a Monte Carlo simulation, as

described in Sect. 5.2:

1. Generate the affine processes X¼ X1; . . . ;Xnð Þ over a given interval [0, T].
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2. Based on (5.38), calculate the implied paths of the short rate r, and of the

intensities λ1, . . ., λk where k is the number of debtors in our portfolio.

3. Sample independent times of default τ1, . . ., τk conditional on the calculated

intensities, using the compensator approach.

4. Set up the CDO, or basket CDS, cash flows conditional on the times of default

τ1, . . ., τk, and calculate their present value with the discount factors calculated

according to (5.39); i.e., again conditional on the simulated path for X.

5. Running the Steps 1–4 sufficiently, calculate the mean and other moments of the

simulated present values many times.

Note that the defaults themselves are independent, conditionally on the

simulated intensities. The dependence is incorporated into the process for the

intensities of default, similar to how it is in the CreditRiskþ model, while in the

structural CreditMetrics model, the correlated factors drive the arrivals of default

directly. The difficult part in implementing the model is, as usual, the calibration of

the processes for X, and the estimation of the coefficients in (5.38). For a more

detailed treatment of the implementation issues, the reader is referred to Lando

(2005), Duffie and Singleton (2003); or Fong (2006).

5.5 Basel on Credit Derivatives and Securitization

Credit derivatives and securitized products allow the transfer of credit risk between

different market players, and must, of necessity, be dealt with by banking regula-

tion. Basel II (BCBS 2006a) treats credit derivatives in sections related to credit risk

mitigation (i.e., reduction of exposures due to collateral or credit protection, see

§109–210 of BCBS 2006a), and in parts related to off-balance sheet exposures (see

e.g. §82–89 of BCBS 2006a). The capital requirements of securitized transactions,

including synthetic deals, are described in detail in the special Part IV of the first

Pillar, called “Securitization Framework” (see Fig. 2.9).

The Basel III reform (BCBS 2010) does not change this treatment directly.

However, there is an indirect impact of the new capital requirement related to

counterparty credit risk, namely the CVA capital charge discussed in the following

section that can be quite significant in the case of credit derivatives. Another

indirect limitation is created by the newly introduced leverage ratio that includes

all off-balance sheet exposures. Basel III also substantially increases capital

requirements for re-securitized exposures.

The essential approach of Basel II on credit derivatives is the substitution

approach; that is, the risk weight of the protection seller substitutes the risk weight

of the underlying asset. On the other hand, the protection seller assumes the credit

exposure of the reference entity. The regulation sets down a number of strict

qualitative criteria for the credit event definition, asset and maturity mismatches,

and gives a list of eligible protection providers, including sovereign entities, private

sector entities (PSE), banks, and securities firms with a lower risk weight than the

counterparty. The credit protection must be irrevocable and unconditional in order
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to qualify for the substitution approach. Interestingly, the regulation also allows one

to apply first and second to default swaps. The first to default swap may substitute,

in terms of the risk weight, only the exposure in the protected portfolio with the

least risk weight, and with an amount not larger than the CDS notional. The second

to default can be used only in connection with the first to default swap on the same

portfolio. Regarding the capital requirement of the protection seller, the bank has to

use either an external credit assessment of the product and apply a corresponding

regulatory weight, or, if there is no such rating, it has to calculate the sum of all risk

weights in the portfolio up to 1250%, and apply it to the protection notional. In case

of the second to default swap, the best risk weight in the portfolio can be excluded

(§207–210, BCBS 2006a).

According to Part IV of the Basel II, first Pillar (§538–643): “Banks must apply

the securitization framework for determining regulatory capital requirements on

exposures arising from traditional and synthetic securitizations or similar structures

that contain features common to both. Since securitizations may be structured in

many different ways, the capital treatment of a securitization exposure must be

determined on the basis of its economic substance rather than its legal form.” So,

although the document describes a number of securitization techniques, including

ABS, ABCP, credit enhancements, and others, it tries to foresee the dynamic

development of new types of securitized products which might not be formally

covered by the text, yet should be treated on the basis of economic substance in an

analogy with the given principles. Due to the complexity of the securitized

products, the regulation emphasizes external ratings. The risk weights in Table 5.6

illustrate the attractiveness of investments in securitized senior tranches, in terms of

capital requirements, even though the underlying portfolio might receive a much

higher risk weight. This, maybe, also explains the excessive pressure put on the

rating agencies by the new regulation (or temptation for them) to assign higher

grades. This effect has been to a certain extent mitigated by the Enhancements to

the Basel II Framework (BCBS 2009a), belonging to a set of BCBS documents

sometimes called “Basel 2.5”, which significantly increases the requirement for

re-securitized exposures, i.e. exposures like CDO based on pools of assets

containing securitized exposures. In order to limit dependence on external ratings,

BCBS (2009a) adds a new general rule, according to which a bank using the

Table 5.6 Risk weights of securitized and re-securitized assets by long-term rating category in

the Standardized Approach

External credit

assessment

AAA to

AA� (%)

Aþ to

A� (%)

BBBþ to

BBB� (%)

BBþ to

BB� (%)

Bþ and below

or unrated

Risk weight

(securitized

exposures)

20 50 100 350 Deduction

Risk weight

(re-securitized

exposures)

40 100 225 650 Deduction
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securitization framework must, on an ongoing basis, have a comprehensive under-

standing of the risk characteristics of its individual securitization exposures,

whether on-balance sheet or off-balance sheet, as well as the risk characteristics

of the pools underlying its securitization exposures.

Nevertheless, even in the case of securitized exposures, banks are also allowed

to use an Internal Rating Based (IRB) approach. The IRB approach is applicable

only if the bank has been approved for applying the IRB approach to all classes of

the securitized underlying assets. The banks can then apply the Rating Based

Approach (RBA), using an internal, or external or inferred credit rating. The

RBA risk weights refine Table 5.6, depending on the rating type and the granularity

of the underlying portfolio. If external or inferred ratings are not available, then the

banks may apply the Supervisory Formula (SF), or the external rating agency

methodology based Internal Assessment Approach (IAA).

Under the relatively complex Supervisory Formula Approach, the capital

charge for a securitization tranche depends on seven bank-supplied inputs: the

amount of the underlying exposures (UE); the securitization exposure’s propor-

tion of the tranche that contains the securitization exposure (TP); the IRB capital

charge which would be applicable if the underlying exposures were not

securitized (KIRB); the tranche’s credit enhancement level (L) and thickness

(T); the pool’s effective number of exposures (N); and the pool’s exposure-

weighted average loss-given-default (EWALGD). As in the case of ordinary

exposures, the formula tries to approximate the unexpected loss of the products.

Compared to the stochastic models described in the previous sections, the formula

is based on a number of simplifying assumptions and, not surprisingly, it has a

number of weaknesses.

The recent financial crisis has put the Basel regulation of credit derivatives and

securitized products under scrutiny. The Basel II enhancements and the Basel III

reform try to fix the most important issues and strengthen the resilience of the

banking sector. However, the reforms are still in the process of implementation with

unclear outcomes, and the regulatory discussion continues. We believe that the

ongoing research in the field of credit risk management, modeling, and general

understanding of the topic, to which this book aims to contribute, is one way of

avoiding at least some of the mistakes which were made in the past.

5.6 Counterparty Credit Risk

Counterparty credit risk (CCR) is a specific form of risk arising from the possibility

of default of a counterparty before the maturity of a financial transaction. The

products subject to counterparty credit risk are, in particular, over-the-counter

(OTC) derivatives and securities financing transactions (e.g., repo operations).

Exchange traded derivatives or derivatives settled with a central counterparty are

only theoretically subject to a counterparty credit risk. Even an exchange or its

clearinghouse (Central Counterparty—CCP) may go bankrupt. However, the prob-

ability of default of an OTC counterparty is generally much higher.
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Let us consider a financial contract, for example, a forward or swap transaction,

between a financial institution and a counterparty. If the counterparty defaults at

time τ before the contract’s maturity T then the institution may (but does not have

to) suffer a loss depending on the legal set-up and the value of the transaction at the

time of default. Under standard legal documentation (The International Swaps and
Derivatives Association—ISDA Master Agreement) the market value fτ (from the

perspective of the institution) will be frozen at the time of default, remaining cash

flows will be canceled, and the amount fτ will be either payable by the institution to
the counterparty, if negative, or by the counterparty to the institution, if positive.

Hence, if f τ � 0, then the institution does not suffer any loss due to the

counterparty’s default, since the transaction is just closed-out before maturity for

its market value. However, if f τ > 0 then the institution’s exposure with respect to

the counterparty will be probably paid-back only partially, or not at all. If l denotes
the fractional Loss Given Default coefficient (LGD), then the loss will be l� f τ.
The loss could be much higher in a non-standard legal situation when the institution

would be obliged to fulfill all the future payments under the contract, but the

counterparty’s payments would become part of bankruptcy claims. On the other

hand, the loss on collateralized transactions, where the market value is secured by

cash or other high quality collateral, may be completely eliminated in case of the

counterparty’s default. The situation becomes more complicated, provided all

losses and profits with respect to a single defaulting counterparty can be mutually

netted.

In any case, in market terms, the Credit Valuation Adjustment (CVA) can be

defined as the difference between the market value of a transaction with respect to a

theoretically risk-free counterparty and the market value of the identical transaction

with respect to the specific risky counterparty. In other words, CVA can be specified

as the theoretical cost of insurance against the counterparty credit losses, and

therefore, under the risk neutral valuation principle, CVA is expressed as the

expected discounted loss caused by a possible counterparty default event. Focusing

on the standard set-up, we can write theoretically

CVA ¼ E discounted CCR loss½ � ¼ E e-rτmax f τ; 0ð Þ � l� I τ � Tð Þ½ �; ð5:40Þ
Where I τ � Tð Þ denotes the indicator function, i.e. it is 1 if τ � T and 0 otherwise,

r is the risk-free rate in continuous compounding, and E is the expectation operator

under the risk neutral probability measure. Given CVA, we can adjust the derivative

market value as f d ¼ f nd � CVAwhere fnd is the no-default (risk-free counterparty)
valuation and fd is the market value with respect to a given risky counterparty. It is

clear that the CVA risk-neutral definition (5.40) involves several uncertainties: the

time and probability of default and the derivative transaction value at the time of

default. Even the loss given default, as well as the discount rate, depending on the

time of default τ should be considered as stochastic. Moreover, all those variables

might be mutually correlated. Therefore, CVA modeling is generally even more

challenging than the valuation of complex derivatives without considering the

counterparty credit risk.
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Expected Exposure and Credit Valuation Adjustment

There are many approaches to CVA valuation. The most general method is based on

a Monte Carlo simulation of future market factors, exposures, intensities of default,

and times to default. On the other hand, a simplified practical “add-on” approach

tries to express CVA as an expected exposure with respect to the counterparty,

multiplied by the probability of counterparty default, and by the LGD. The

expected exposure itself is, in general, estimated by a Monte Carlo simulation

(that is usually much simpler compared to a full scale simulation of all the factors).

For some products, the expected exposure can be calculated using the option

valuation formula.

In order to come up with a realistic practical formula, one needs to make a

number of simplifying assumptions. Firstly, let us assume independence between

the time to default and exposure; moreover, assume that the loss rate l is constant,
and that the discount rate r(t) and the counterparty default (forward) intensity6 q(t)
are deterministic functions of time. Dividing the time interval into subintervals

0 ¼ t0 < . . . < tm ¼ T, the simplified CVA expression (see e.g. Gregory 2010) can

be written as:

CVA _¼ l
Xm
j¼1

e�r tjð Þ�tjEE tj
� �

q tj
� �

Δtj; ð5:41Þ

where Δtj ¼ tj � tj�1 and the expected exposure EE tð Þ ¼ E max f t; 0ð Þ½ � is defined
independently of the other factors. The expected exposure can, in general, be

estimated by the Monte Carlo simulation method. For some products, like forwards

or swaps, it can be expressed in an analytic or semi-analytic form. On the other

hand, if the derivative value ft itself is not analytical, then we have to cope with a

numerically difficult “double” Monte Carlo simulation, i.e. with simulations that

are embedded in another Monte Carlo simulation.

Example 1 Let us consider a simple outstanding 1-year forward to buy a

non-dividend stock for K ¼ 101 with the current spot price S0 ¼ 100. Assume

that the risk-free rate is r ¼ 1%; that the counterparty risk-neutral intensity of

default q ¼ 4%; and the LGD l ¼ 60%; are constant. The forward value at time t is

f t ¼ St � e�r T�tð ÞK conditional on the spot price St, and so the expected exposure

EE tð Þ ¼ E max St � e�r T�tð ÞK, 0
� �h i

¼ c t, e�r T�tð ÞK
� �

ert

is just the market value of the European call option with maturity t, and the strike

price e�r T�tð ÞK that can be evaluated using the Black-Scholes formula and

re-discounted forward to the time t (i.e., multiplied by the factor ert). Equivalently,

6That is q(t)Δt is the probability of default over the period t, tþ Δt½ �.
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the adjustment can be calculated by integrating the call option value from the time

0 to T

CVA ¼
ðT
0

l� c t, e�r T�tð ÞK
� �

� q�dt¼:
Xm
j¼1

l� q� c tj, e
�r T�tjð ÞK

� �
Δtj: ð5:42Þ

Table 5.7 shows a calculation according to (5.42) dividing the time to maturity into

ten subintervals only. The resulting CVA presents more than 10 bps of the forward

notional amount. We have assumed, for the sake of simplicity, that the interest rates

and forward default intensities were constant. The calculation would remain essen-

tially the same if we were given the term structure of interest rates and of the default

intensities.□
The calculation of the expected exposure for option-like products turns out to be

relatively simple, since the signs of the market values do not change. An option

seller exposure would always be zero (once the premium was paid) while an option

buyer exposure would always be just the option value. For a European option, the

expected exposure would be, by the principle of iterated expectations, equal to the

current option value re-discounted forward to the time t, i.e. EE tð Þ ¼ c0e
rt.

The expected exposure of a forward transaction is an increasing function of time

as illustrated above. However, for an outstanding interest rate swap, the expected

exposure would be zero at the start date, provided the swap had been entered into

under market conditions, and at maturity when all the cash flows have been settled;

its maximum would be attained somewhere in the middle between the start date and

the maturity (see Fig. 5.21 for an illustration). In fact, the expected exposure turns

out to be just a swaption value that can be evaluated using a generalized Black-

Scholes formula (see Witzany 2013a).

Table 5.7 Long forward CVA calculation

t EE(t) CVA contr.

0.1 1.89 0.005

-

1.00    

2.00    

3.00    

4.00    

5.00    

6.00    

7.00    

- 0.2    0.4    0.6    0.8    1.0    

EE(t)0.2 2.73 0.007

0.3 3.38 0.008

0.4 3.93 0.009

0.5 4.42 0.011

0.6 4.88 0.012

0.7 5.29 0.013

0.8 5.69 0.014

0.9 6.06 0.014

1.0 6.41 0.015

CVA 0.107
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Further simplification can be achieved by introducing the expected positive
exposure defined as an average of EE(t) over time:

EPE ¼ 1

T

ðT
0

EE tð Þdt¼: 1
T

Xm
j¼1

EE tj
� � � Δtj: ð5:43Þ

If we assume that the intensity of default is constant or independent of the

expected exposure then CVA can be approximately written as

CVA¼: �q� l� EPE� A 0ð Þ ð5:44Þ
Where �q is the average intensity of default and

A 0ð Þ ¼
Xm
j¼1

e�r tjð Þ�tjΔtj ð5:45Þ

is the risk-free annuity value.

Example 2 The expected positive exposure of the forward contract from Example

1 can be estimated as an average of values from the second column in Table 5.7

EPE¼: 4:47. Similarly, the annuity (5.45) can be estimated as an average of the

discount factors applied: A 0ð Þ¼: 0:99. Therefore, we have a simple calculation

CVA¼: 0:04� 0:6� 4:47� 0:99¼: 0:107
which gives us exactly the same result as in Table 5.7.□

The concept of EPE is also useful in connection with Credit Default Swap (CDS)
quotations. Let us assume for the sake of simplicity that the CDS payoff is settled in

cash and that default can take place only in times t1, . . ., tm when the spread is being

paid. If S(t) denotes the reference entity (risk-neutral) survival probability function7

0

0.02

0.04

0.06

0.08

0.1

0.12

0 2 4 6 8 10

IRS EE(t)Fig. 5.21 Expected

exposure of a 10-year interest

rate swap

7S tð Þ ¼ Pr τ > t½ � is defined as the probability that default does not take place until time t.
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then the spread must satisfy the classical insurance equivalence relation (see also

Sect. 5.1):

Xm
j¼1

e�r tjð Þ�tjX � Δtj � S tj
� � ¼Xm

j¼1

e�r tjð Þ�tj l� ΔS tj
� �

; ð5:46Þ

whereΔS tj
� � ¼ S tj

� �� S tj�1

� �
is the probability of default during the time interval

tj�1; tj
� �

; i.e.ΔS tj
� � ¼ q tj

� �
Δtj using the concept of default intensity. The left-hand

side of (5.46) corresponds to the expected discounted premium income, while the

right-hand side corresponds to the expected discounted payoff.

Now, if X is a market CDS spread quotation for the reference entity being equal

to our counterparty and for the maturity T, and if we replace EE(tj) by the constant

EPE in (5.41), then

CVA¼: EPE
Xm
j¼1

e�rðtjÞ�tj � l� ΔSðtjÞ ¼

¼ EPE
Xm
j¼1

e�rðtjÞ�tjX � Δtj � SðtjÞ ¼ X � EPE� ACDSð0Þ:
ð5:47Þ

Consequently, CVA can be simply approximated as the CDS spread times EPE

times the risky (CDS) annuity

ACDS 0ð Þ ¼
Xm
j¼1

e�r tjð Þ�tjΔtj � S tj
� �

:

For swap-like products, the CVA is often expressed as a spread XCVA that can be

added to the periodical fixed or float payment. Since the payments are terminated in

the case of default, we need to solve the equation

CVA ¼ XCVA � L�
Xm
j¼1

e�r tjð Þ�tjΔtjS tj
� �

; ð5:48Þ

where L is the swap notional. Therefore, combining (5.47) and (5.48) we get a nice

and simple approximation:

XCVA¼: XCDS
EPE

L
: ð5:49Þ

Example 3 Let us consider a 10-year 1 billion CZK notional interest rate swap

where we should receive the fixed coupon with the expected exposure profile as

shown in Fig. 5.21. Without considering the counterparty credit risk the IRS market

rate would be 4%. The expected positive exposure (based on 40% volatility of the

IRS rates) is 71 million CZK. Assume that the CDS spread quoted for our
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counterparty equals 250 bps. According to (5.49) the CVA spread comes out at

approximately 18 bps. Consequently, the adjusted fix payment paid by the counter-

party should be 4.18%, which significantly differs from the 4% rate without the

CVA adjustment.□
The decompositions (5.44) or (5.47) allow certain stressing of the CVA. Besides

the probability of default (intensity or the CDS spread), the exposure can be stressed

by introducing the potential future exposure (PFE) as a quantile of the average

exposure (depending on paths from 0 to T ). The Basel II internal approach also

introduces the notion of effective EE that is defined as EE but with the additional

requirement of being non-decreasing. Effective EPE is then defined as the average

of effective EE. This approach is related rather to a netted portfolio of transactions

with respect to a counterparty, where maturing transactions are expected to be

replaced with new ones.

Collateralization and Netting

The counterparty credit risk of an OTC derivative can be mitigated in a way similar

to the margin mechanism applied to exchange traded products if the OTC

counterparties agree to post collateral, usually in cash, covering the derivative

market value. In practice, this can be achieved by signing the Credit Support
Annex (CSA) of the ISDA Master Agreement. The collateralization can be two-

way or one-way. For example, a bank would require a corporate counterparty to

post collateral covering the exposure max( ft, 0), but no collateral would be sent by

the bank if ft became negative. Two-way collateralization has recently become

quite normal between banking counterparties. According to the ISDA Margin

Survey 2015 (ISDA 2015), the use of collateral has indeed become extensive: in

2014 89% of non-cleared fixed-income derivatives and 97% of non-cleared credit

derivatives were collateralized with a CSA agreement, while more than 80% of

derivatives portfolios with more than 2500 trades are reconciled daily, and the use

of cash or government securities accounts for over 90% of total collateral. These

numbers have had an increasing trend over the last years (for more details see also

Baran 2016).

If the collaterals were recalculated and posted on a continuous basis, then the

CCR would be virtually eliminated. In practice, there is a standard remargining

period or a minimum threshold, and so there might be a residual counterparty risk.

For example, if the remargining period was 1 day, then there still should be a CVA

corresponding to the 1 day horizon during which the margin does not necessarily

cover the market value in the case of unexpected market volatility.

Another way to mitigate CCR with respect to a counterparty is a netting

agreement allowing one to net the positive and negative market values of

different derivative contracts in the case of the counterparty’s default, i.e. the

exposure needs to be defined and monitored on the portfolio basis as E tð Þ ¼ max

V tð Þ, 0ð Þ where V tð Þ ¼
X

f i tð Þ is the sum of the outstanding transactions’ market

values with respect to the single counterparty. For a more complex portfolio,
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there is little chance to find a precise analytical formula for the expected netted

exposure. Nevertheless, if we can assume that the portfolio linearly depends on

market factors and that V(t) approximately follows a generalized Wiener process,

i.e. if

V tð Þ ¼ V 0ð Þ þ μtþ σZ
ffiffi
t

p
where, Z 	 N 0; 1ð Þ

then we can find relatively easily analytical formulas for EE, EPE, or PFE (Gregory

2010). In particular, if V 0ð Þ ¼ 0 and μ ¼ 0, then EE tð Þ ¼ σ
ffiffi
t

p
φ 0ð Þ and

EPE ¼ σφ 0ð Þ
T

ðT
0

ffiffi
t

p
dt ¼ 2

3
σφ 0ð Þ

ffiffiffi
T

p
¼: 0:27σ

ffiffiffi
T

p
:

For more complex non-linear portfolios, where we cannot assume normality, a

Monte Carlo simulation needs to be used. Notice that the problem is technically

similar to the VaR estimation. We need to model future exposure probability

distribution, focusing in this case on the positive rather than on negative values of

the portfolio. However, the time dimension makes the task even more challenging.

Wrong Way Risk

We have already emphasized that the simplified CVA formula (5.41) is based on the

assumption that the exposure and the event of default are independent. This formula

should not be used if there is evidence of a link between default, or intensity of

default, and of the exposure. The formula can, in fact, be easily fixed defining the

expected exposure conditional on default EE∗ tð Þ ¼ E max f t; 0ð Þ��t ¼ τ
� �

. Then the

analogous formula

CVA¼: l
Xm
j¼1

e�r tjð Þ�tjEE∗ tj
� � � q tj

� � � Δtj ð5:50Þ

becomes consistent with (5.40). In terms of causality, there is usually a common

driver for the exposure and the event of default, and so we cannot say that one event

causes the other or vice versa. For example, if a company is sensitive to currency

devaluation and if the exchange rate impacts the exposure then there could be either

a wrong way risk, EE∗ tð Þ > EE tð Þ, with the exposure increasing in the case of

devaluation, or a right way risk, EE∗ tð Þ < EE tð Þ, with the exposure going down in

the case of revaluation. Both wrong way and right way risks exist similarly for

interest rate products, but in the case of CDS exposures the risk is almost always in

the wrong way direction from the perspective of the credit protection buyer. If the

systematic credit risk increases, e.g. during a financial crisis, then the CDS exposure

goes up and the counterparty credit risk generally increases as well.

One way to solve the conditional expected exposure analytically, in some cases,

is to use the standard Gaussian copula model where the time to default τ ¼ S�1

Φ Xð Þð Þ is driven by a normally distributed variable X 	 N 0; 1ð Þ transformed using
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the inverse survival function. Similarly, let us assume that the derivative or portfo-

lio value V tð Þ ¼ G Zð Þ at time t is driven by a normal variable Z 	 N 0; 1ð Þ through
an increasing function G. Now, the exposure-default correlation can be captured by
the correlation ρ between the normal variables X and Z. Since a high value of X is

translated into a low value of τ, as the survival function is decreasing, a positive

correlation ρ > 0 corresponds to the wrong way risk while a negative correlation

ρ < 0corresponds to the right way risk. The conditional expected exposure can then

be written as

EE∗ tð Þ ¼ E G
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ρ2

p
Y þ ρX

� �þ��X ¼ Φ�1 S tð Þð Þ
� �

¼

¼
ð1

�1
G

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ρ2

p
yþ ρΦ�1 S tð Þð Þ

� �þ
φ yð Þdy;

ð5:51Þ

Decomposing Z ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ρ2

p
Y þ ρX where X, Y 	 N 0; 1ð Þ are independent. For

example, if V tð Þ ¼ μtþ σ
ffiffi
t

p
Z follows just the generalized Wiener process then

EE* tð Þ ¼
ð1

�a=b

aþ byð Þφ yð Þdy ¼ aΦ
a

b

� �
þ bφ

a

b

� �
;

where a ¼ μtþ ρσ
ffiffi
t

p
Φ�1 S tð Þð Þ and b ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ρ2

p
σ
ffiffi
t

p
.

The principle (5.51) can be used to express the expected loss of a forward or to

price an option with the wrong way risk by a semi analytic formula (Gregory 2010).

In a similar fashion, Černý and Witzany (2015) obtained and tested a semi-

analytical formula to price the CVA of interest rate swaps with the wrong way

risk. In general, a Monte Carlo simulation for underlying market factors and the

counterparty time of default needs to be run (see, e.g., Brigo and Pallavicini 2008).

Example 4 Let us consider the outstanding 1-year forward from Example 1 and let

us recalculate the CVA with the wrong way risk Gaussian correlation ρ ¼ 0:5. The
stock price is lognormally distributed and can be written as

St Zð Þ ¼ S0exp r � σ2=2
� �

tþ σ
ffiffi
t

p
Z

� �
:

If we assume for the sake of simplicity that the default density q ¼ 4% is constant

over the 1-year horizon then the survival function is linear, i.e. S tð Þ ¼ 1� qt.
Therefore, in line with (5.51) the conditional expected exposure can be written as

EE* tð Þ ¼
ð1

�1
St

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ρ2

p
yþ ρΦ�1 S tð Þð Þ

� �
� e�r T�tð ÞK

� �þ
φ yð Þdy
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This integral could be solved analytically, as mentioned above, but we can also

evaluate it numerically for t ¼ 0:1, 0:2, . . . , 1 similarly to Table 5.7. The condi-

tional EE*(t) values, their average EPE* ¼ 11:21, and the corresponding CVA
¼ 0:282 come out more than twice as high than without the wrong way risk!□

Bilateral Counterparty Credit Risk

So far, we have assumed that there is a default-free institution that has a counter-

party with a positive probability of default. In reality, both counterparties may

default. If the institution defaults at time t and if the outstanding derivative market

value f t < 0 is negative then the counterparty will lose and the institution will

“save” the amount�lI � f t where lI is the institution’s LGD ratio. In this sense, the

institution has an “option to default” with a potential positive payoff. Bilateral
credit valuation adjustment (BCVA, sometimes also denoted BVA or TVA—total
valuation adjustment) takes into account both effects of the potential loss due to the
counterparty’s default and the potential “profit” due to the institution’s own default.

Let τI denote the institution’s time of default and τC the counterparty’s time of

default. Then the BCVA can be decomposed into two parts8

BCVA ¼ CVAC � CVAI

where CVAC covers the counterparty’s default, provided that the institution has not

defaulted sooner

CVAC ¼ E e�rτCmax f τC ; 0
� �� lC � I τC � T&τC < τIð Þ� �

;

and analogously

CVAI ¼ E e�rτImax �f τI , 0
� �� lI � I τI � T&τI < τCð Þ� �

:

The CVAI is also sometimes called the Debit Valuation Adjustment (DVA). If we
assume that the institution and the counterparty cannot both default before T (or that

the probability of this event is negligible) then CVAC and CVAI are just the “one-

way” CVAs we have discussed so far from the opposite perspectives. The proba-

bility of joint default, i.e. of τC, τI � T is negligible if the defaults are independent

and their probabilities are low. Otherwise, this possibility needs to be taken into

account in the context of a correlation model.

The advantage of the concept of BCVA is that it makes derivatives

valuation symmetric again. Note that with the “one-way” CVA, the institution’s

market value is f I ¼ f nd � CVAC while the counterparty’s market value is

f C ¼ �f nd � CVAI 6¼ �f I. With the bilateral adjustment we have f I ¼ f nd �
BCVA and f C ¼ �f nd þ BCVA ¼ �f I.

8Implicitly assuming that Pr τC ¼ τI½ � ¼ 0.
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The accounting of CVA, DVA and BCVA has gradually become a market

standard and has been mandatory since 1/2013 (IFRS 13). On the other hand, it

should be noted that BCVA has the strange effect that the deterioration of the

institution’s own credit quality is translated into its accounting profit. This can be

compared to marking down liabilities due to own credit downgrade. During the

crisis, this has indeed happened, when a large investment bank reported a 1 billion

USD profit based on this effect. Such a situation is not acceptable to auditors and

regulators who prefer conservative accounting principles and tend to require banks

to account just the CVA rather than BCVA.

What Are the Risk-Free Rates?

With the emergence of the ever-present counterparty credit risk, the markets started

to reconsider the classical approach to the construction of the risk-free rates from

the government bond yields or from interest rate swap rates. Figure 5.22 shows the

German government 5-year CDS spread development (approximating the govern-

ment bond spreads over the risk free rate) that went as high as 100 bps during 2011.

The risk of the German government is considered to be almost minimal compared

to other countries where the CDS spreads even went up to hundreds of basis points.

This market reality leads to a preference for a zero coupon curve built from

interest rate swap rates where the counterparty risk is much smaller (the expected

exposure is usually just a fraction of the swap notional amount). A fixed IRS rate is

the cost of the rolled-over financing of a reference rated (e.g., AA) bank, where the

bank can be periodically replaced by another one in the case of its credit deteriora-

tion. Nevertheless, we have to keep in mind that even a high rated entity can default

during the reset time horizon (3M or 6M), and so short rates do incorporate certain

Daily QDEGV5YUSAC=R 21.7.2008 - 9.9.2013 (GMT)

Line; QDEGV5YUSAC=R; Mid Spread(Last)
6.6.2013; 27,974; +0,001; N/A
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Fig. 5.22 Germany 5Y CDS spread (Source: Thomson Reuters)
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credit spreads that are, consequently, reflected in the IRS rates. Figure 5.23 shows

the development of the 3M USD Libor and the US Treasury 3M bill rate (which is

close to the ideal risk free rate). The spread between the two rates went over 400 bps

and still remains relatively high.

Another argument against the IRS rates is the emergence of significant basis swap

spreads. Figure 5.24 shows that the markets have recently perceived the 6M Euribor

credit premium to be at least 10 bps higher than the 3M Euribor financing premium.

This phenomenon indicates that, in spite of the still relatively high rating of the

financial market counterparties, the intensities of default are viewed as

non-negligible and increasing in time (see Fig. 5.16). Practically, it means that the

zero coupon curve based on swaps with 6M float payments would differ from the

curve based on swaps with 3M periodicity, and so on. Using the swaps, there would

be a multitude of risk-free curves, completely changing the paradigm of one single

risk-free curve. The situation would become even more complicated considering

cross-currency swap basis spreads (see Baran and Witzany 2013; Baran 2016).

The current solution generally accepted by the market is to use the Over-Night
Index Swap (OIS) rates in order to construct the risk free curve, since the 1-day

horizon risk (default intensity) is considered minimal (Fig. 5.16). An OIS is similar

to plain vanilla IRS with the difference that the float rate is calculated daily (every

business day) as an official overnight rate and, in order to simplify the settlement,

compounded over longer periods into an Overnight Index Average (ONIA), or the
Effective Federal Funds Rate for USD, the Euro Overnight Index Average

Fig. 5.23 The spread between the 3 M USD Libor and 3 M US T-bill rates (Source: Bloomberg)
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(EONIA) for EUR, the Sterling Overnight Index Average (SONIA) for GBP, the

Czech Overnight Index Average (CZEONIA) for CZK, etc. The compounding is

based on daily (business day) O/N deposit periods

r ¼
Ynb
t¼1

1þ rt � nt
360

� �
� 1

 !
360

n
;

Where rt is the O/N rate, nt the number of calendar days in the O/N period (normally

1 day, but it can also be 3 days for a weekend), nb the number of business days in the

compounding period (e.g. 3 or 6 months), and n is the total number of days. OIS

swaps tend to be short lived, often only 3 months or less. For swaps of 1 year or less,

there is only a single payment at maturity defined as the difference between the

fixed rate and the compounded OIS rate. For longer swaps the payments are made

quarterly or annually.

A fixed OIS rate again represents the cost of the rolled-over financing of a

reference rated bank, where the bank can be replaced by another one in the case

of credit deterioration. In this case, the roll-over periods are only one business day

and the probability of a full default of a reference rated entity (e.g., AA rated)

during one single business day is considered almost negligible (there is usually a

sequence of downgrades before an AA bank ends up in default). Indeed, Fig. 5.26

shows that the spread between the 3M USD Libor and the 3M OIS rates

approximates well the TED9 spread (compare to Fig. 5.23). Therefore, if there is
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Fig. 5.24 The 5Y basis spreads for 3 M/6 M Euribor and 3 M/6 M Pribor (Source: Bloomberg)

9The TED spread is the difference between the interest rates on interbank loans (USD Libor) and

on short-term U.S. government debt (“T-bills”).
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a liquid market for the OIS swaps (which is the case for USD and EUR) then the

rates can be used to construct an almost ideal risk-free zero coupon curve. For

currencies with a limited or no OIS market, an approximation needs to be used (see

Baran and Witzany 2013, for a discussion).

Figure 5.25 shows an example of EUR and CZK OIS quotes. The EUR OIS

market turns out to be quite liquid, with quotes going from 1M up to 50Y, but the

CZKOIS market unfortunately provides quotes only up to 1 year. The quotes can be

compared with Euribor, Pribor, or IRS rates that, indeed, turn out to be at least

20–40 bps higher than the respective OIS rates.

Fig. 5.25 EUR and CZK OIS quotations (Source: Thomson Reuters, 5.2.2016)
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It should be pointed out that the “true” risk-free rates are a necessary input of

derivative valuation models (Hull and White 2012a). Derivatives should be first

valued, assuming there are no defaults, and then adjusted for the (bilateral) coun-

terparty credit risk f ¼ f nd � BCVA. Generally, it is not correct to use the interest

rate reflecting the counterparty’s cost of financing as an input of the derivative

valuation model. For example, for a long European call option, it is possible to write

f ¼ e�rCTÊ ST � Kð Þþ� �
, where rC is the counterparty’s cost of financing (assuming

no credit risk on the part of the institution), but the risk-neutral expected value is

based on the assumption that the drift of St is the risk free rate r0 and not the risky

rate. In this particular case, the no-default option value can in fact be adjusted as

f ¼ e� rC�r0ð ÞTf nd using the counterparty’s credit spread. Nevertheless, this formula

is not applicable to derivatives like forwards or swaps, where the cash flows can be

both positive and negative.

The same discussion applies to collateralized derivative transactions. If there is a

two-way continuous collateralization, then the discounting rate can be effectively

replaced by the rate rM accrued on the margin account, yet the drift of the asset

prices is still the risk-free rate (in the risk neutral world). In this case, we can use the

multiplicative adjustment f ¼ e� rM�r0ð ÞTf nd for all types of derivatives. If rM > r0
then the collateral interest brings an advantage to the counterparty receiving a

positive payoff, and vice versa if rM < r0.

Fig. 5.26 The spread between 3 M USD Libor and 3 M USD OIS rates (Source: Bloomberg)
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Basel III CVA Capital Charge

The accounting of CVA and DVA has definitely improved both awareness and the

management of the counterparty credit risk. For large institutions the total P/L

impact of the seemingly small adjustments might be in billions of USD. The new

BCVA accounting practice has at the same time highlighted the existence of a new

price risk category: movements of counterparty credit risk (and of own credit risk),

and of exposures, causing changes in the total BCVA with a positive or negative

impact on P/L. BCBS (2010) notes that while the Basel II standard covers the risk of

a counterparty default, it does not address similar CVA risk, which during the

financial crisis was a greater source of losses than those arising from outright

defaults. Therefore, the Basel III regulation (BCBS 2010) introduces a new CVA

capital charge to cover the risk of mark-to-market losses on CVA for the OTC

derivatives. Banks are not required to calculate this capital charge for transactions

with respect to a central counterparty (CCP) or securities financing transactions.

Note that the regulator does not, in contrast to IFRS 13, consider the bilateral

BCVA, which could increase the total market value due to institutions’ own credit

deterioration.

In principle, the regulator wants banks, in the Internal Market Model (IMM)

approach, to calculate the VaR of their portfolio market value incorporating the

credit value adjustments

MV ¼
X
i

f nd, i � CVAi

� �

depending not only on the market factors but also on the credit spreads of their

individual counterparties. More precisely speaking, the CVA capital charge should

be calculated separately from the pure market risk capital charge, i.e. considering

counterparty defaults as the only source of losses (but at the same time simulating

future exposures depending on the underlying market factors).

Firstly, BCBS (2010) explicitly requires banks to use a simplified formula

similar to (5.41) for the purpose of the capital charge calculation:

CVA¼LGDMKT�XT
i¼1

max 0,exp � si�1 � ti�1

LGDMKT


 �
�exp � si � ti

LGDMKT


 �
 �
�

EEi�1 �Di�1þEEi �Di

2


 � ð5:52Þ

where si is the credit spread corresponding to maturity ti. The banks should use

market CDS spreads whenever available. If a CDS spread is not available, the banks

are supposed to use a proxy. Similarly, LGDMKT is the loss given default of the

counterparty based on a market instrument, if available, and on a proxy otherwise.

Finally, EEi is the expected exposure andDi the discount factor, both corresponding

to the revaluation time ti. Note that the term
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exp � si � ti
LGDMKT


 �

estimates the survival probability until time ti implied by the loss given default

LGDMKT and the spread si (and an implicit assumption of a constant intensity of

default). Therefore, the first factor in the summation approximates the probability

of the counterparty’s default between ti�1 and ti, while the second factor stands for

an average discounted exposure during this time interval. According to the regula-

tion, any internal model, based on direct CVA revaluation, or on spread

sensitivities, must be based on (5.52). Likewise, the Basel III market risk capital

charge and the CVA capital charge must be calculated as the sum of non-stressed

and stressed VaR components. The non-stressed VaR components use the expected

exposures and spread variations corresponding to normal market conditions, while

the stressed VaR must use stressed future exposures and spread variations

corresponding to a financial crisis.

Looking at the IMM requirements, it is not surprising that the majority of banks

will opt, regarding the total capital charge, for a relatively simple standardized

formula where the capital charge is calculated as a percentage of each exposure

depending on the counterparty’s rating, transaction maturity, and possible (coun-

terparty) credit risk protection. The individual capital charges are then aggregated

on a portfolio level:

K ¼ 2:33

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX
i

0:5wi MiEAD
total
i �Mhedge

i Bi

� �
�
X
ind

windMindBind

 !2

þ
X
i

0:75w2
i MiEAD

total
i �Mhedge

i Bi

� �2

vuuuuuuut
ð5:53Þ

where wi is the weight corresponding to counterparty i based on its rating and

Table 5.8 (if there is no external rating, then the bank must, subject to regulatory

approval, map its internal rating to an external rating); EADtotal
i is the total exposure

with respect to the counterparty i (with or without netting) including the effect of

collateral; Mi is the effective weighted maturity (duration) of the transaction with

respect to the counterparty i; Bi is the notional of purchased single-name CDS

hedges (with respect to the reference entity i) with maturityM
hedge
i ; and, finally, Bind

is the notional of purchased index CDS hedge with maturity Mind.

To get some intuition on the formula, note that wi looks like a regulatory

estimate of a “standard” annualized CVA change as a percentage of the duration

and hedge adjusted exposureMiEAD
total
i �M

hedge
i Bi. Therefore, the first part under

the square root of (5.53) corresponds to an estimate of the total portfolio CVA

standard deviation assuming that the counterparties are perfectly correlated, but

allowing for a systematic CDS index hedge, while the second part under the square

5.6 Counterparty Credit Risk 235



root corresponds to the standard deviation estimate assuming the counterparties are

independent. The two estimates correspond to decomposition into single-factor

systematic and idiosyncratic factors with the weight ρ2 ¼ 0:52 ¼ 0:25 for the

systematic variance and the complementary weight 1� ρ2 ¼ 0:75 for the idiosyn-

cratic variance. Therefore, the square root stands for a conservative portfolio CVA

standard deviation estimate and the multiplier 2.33 is just the standard normal 99%

quantile. So, indeed, the result of (5.53) appears to estimate the 99% CVA VaR in a

1-year horizon (for a more detailed explanation see, for example, Pykhtin 2012).

FVA, KVA, MVA, and Other XVAs

Besides the CVA, DVA, and BCVA that have become more-or-less standard

accounting and regulatory concepts, there are other more controversial valuation

adjustments like FVA, LVA, KVA, or MVA, altogether denoted as XVAs (Gregory

2015).

To explain the reasoning behind the Funding Value Adjustment (FVA), let us
consider as an example a non-collateralized derivative position with a positive

market value, e.g. a long option. The derivative position is an asset that has been

acquired by paying a premium, and the cost is funded internally by a rate

corresponding to the institution’s cost of financing. On the other hand, the market

value accrues only the risk-free rate used for discounting of the derivatives expected

cash flow, e.g. the OIS rate. Consequently, there is a difference between the

institution’s financing rate and the risk-free (OIS) rate, which calls for an additional

valuation adjustment. The same, but positive, effect is applicable if a derivative

market value is negative, i.e. a liability. In this case, the interest cost of the liability

equals the OIS rate, but the interest revenue is the funding rate. The funding cost

spread FSC and the funding benefit spread FSB could be generally different, and so

we should calculate separately the two FVA ¼ FCAþ FBA components, i.e. the

Funding Cost Adjustment (FCA) and the funding benefit adjustment (FBA).

Mathematically,

Table 5.8 Regulatory

CVA weights (BCBS 2010,

par. 104)

Rating Weight wi(%)

AAA 0.7

AA 0.7

A 0.8

BBB 1.0

BB 2.0

B 3

CCC 10.0
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FVA ¼ E

ðT
0

e�rtmax f t; 0ð Þ � FSC tð Þ � S tð Þdt
2
4

3
5

� E

ðT
0

e�rtmax �f t, 0ð Þ � FSB tð Þ � S tð Þdt
2
4

3
5; ð5:54Þ

Where FSC is the funding (cost) spread on the asset side, FSB is the funding (benefit)
spread on the liability side, and S(t) the transaction survival probability, i.e. the joint
survival probability for both counterparties.

The adjusted derivative market value should now be

f adj0 ¼ f nd0 � CVAþ DVA� FVA:

It should be noted that the concept of FVA remains controversial. According to Hull

and White (2012b), FVA should not be reflected in the valuation of derivatives—

the standard valuation argument says that derivative value should be equal to the

risk-neutral expectation of the cash-flows discounted by the risk-free rate, not by

any entity specific funding rate. Moreover, if the funding costs are applied, then the

valuation of derivatives will be asymmetric and arbitrage opportunities will exist.

In spite of the continuing academic discussion, according to a market survey

(Gregory 2015), the majority of large global banks do account for FVA with a

total impact in billions of USD.

Regarding practical calculations, the usual assumption is that the exposure and

funding spreads are independent. Moreover, depending on close-out assumptions

(Gregory 2015), the survival probability can be neglected. Then, after a standard

discretization, we have the following relatively simple formula

FVA ¼
Xm
j¼1

e�rtjEE tj
� � � FSC tj

� �
Δtj �

Xm
j¼1

e�rtjENE tj
� � � FSB tj

� �
Δtj ð5:55Þ

Where ENE(t) is the expected negative exposure, FSC tð Þ the expected (or forward)

funding cost spread, and FSB tð Þ the expected funding benefit spread.

However, defining the FVA component more precisely, it has become obvious

that there is an overlap with the concept of DVA. The institution’s funding spread

should be theoretically equal to the product of the default probability and the

institution’s LGD, i.e. FSB tj
� � ¼ l � q tj

� �
, hence
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FBA ¼ �
Xm
j¼1

e�rtjENE tj
� � � FSB tj

� �
Δtj ¼ �l

Xm
j¼1

e�rtjENE tj
� � � q tj

� �
Δtj ¼ DVA:

Note that this argument does not apply to CVA and FCA, since CVA uses the

counterparty’s default probabilities, while the FCA institution’s funding spread

depends on its own funding probabilities. One simple solution of this finding is to

apply either FBA or DVA, i.e. the total adjustment would be either the “CVA and
symmetric funding” CVAþ FVA or “bilateral CVA and asymmetric funding”
BCVAþ FCA. According to Gregory (2015), the market practice prefers the asym-

metric funding approach.

Another consistent solution to the CVA/FVA overlap is to define the funding

benefit spread only as the liquidity spread above the risk-free rate, plus a standard

institution’s credit spread, i.e. we should define rather the liquidity (benefit) spread

as the difference between the real market spread and the theoretical spread:

LSB tj
� � ¼ MSB tj

� �� l � q tj
� �

. Some authors (Gregory 2015; Hull and White

2012b, c; Crépey et al. 2014) argue that the same principle applies to FCA on the

asset side. The reasoning is that the asset quality influences an institution’s overall

credit quality, and so the cost of funding should depend on the asset credit risk. For

example, an investment into treasury bonds has no (negative) contribution to the

institution’s credit quality, and so should be funded by the risk-free rate, possibly

plus an institution-specific liquidity spread. Therefore, we obtain an alternative

definition of FVA, denoted rather as LVA—Liquidity Valuation Adjustment (Crépey
et al. 2014), where the funding spread in (5.54) is replaced by the liquidity spread

LSB tj
� � ¼ MSB tj

� �� l � q tj
� �

only. In market terms, the liquidity spread can be

estimated as the difference between the institution’s bond yield spread and the CDS

spread. It seems that the concept of LVA resolves the academic controversy, and is

accepted, for example, by Hull and White (2014).

Another XVA to be mentioned is the Margin Valuation Adjustment—MVA.
While FVA is related to uncollateralized transactions, MVA arises due to standard

overcollateralization requirements, mainly due to initial margin posting. Organized

exchange derivatives positions or OTC positions cleared by a CCP (central coun-

terparty) involve initial margin and maintenance margin management. The require-

ment is defined not to collateralize actual counterparty’s losses, but in order to

cover potential losses over a short-time horizon (1–10 days) and on a high confi-

dence level (e.g. 99%). The excess margin balance usually exists even for bilateral

transactions depending on the margin mechanism. In any case, the margin balance

earns a return RIM that will be at most equal to the OIS rate, and its financing at the

same time represents a funding cost FC that will be larger than the OIS rate.

Therefore, the MVA can be defined mathematically as follows:
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MVA ¼ E

ðT
0

e�rtIM tð Þ � FC tð Þ � RIM tð Þð Þ � S tð Þdt
2
4

3
5

Where IM(t) is the initial margin balance and S(t) the (joint) survival probability. As
above, the calculations can be simplified by discretizing the time interval and

assuming independence between the margin balance and the funding spread.

Finally, let us look the Capital Valuation Adjustment—KVA, which is supposed

to reflect the cost of regulatory capital related to derivative transactions. Tradition-

ally, there has been the market risk capital requirement, calculated for different

product portfolios and market factors. The capital requirement is significant for

proprietary positions but can be neglected for back-to-back operations. Another

component is the classical default CCR capital requirement defined as the RWA

times 8%. The derivative exposures can be calculated according to Basel II rules by

several methods: CEM—current exposure method, SM—standardized exposure

method, and IMM—internal model method. The new Basel III component is the

CVA charge described above. The total capital requirement C(t) that needs to be

calculated on a (derivative) portfolio level again represents a cost, in this case the

cost of capital CC(t) The cost of capital should be considered rather as the spread

between the required capital return and the risk-free rate (since the capital per se can

be invested into risk-free assets). Thus, the KVA mathematical definition is

KVA ¼ E

ðT
0

e�rtC tð Þ � CC tð Þ � S tð Þdt
2
4

3
5:

As usual the formula can be discretized and based on the expected capital

requirements EC(t) and other relevant expected future parameters.

While CVA and (more or less) FVA have become accounting standards, MVA

and KVA are used rather for reporting and monitoring. There is an ongoing debate

regarding the consequences of their accounting, possible side-effects and overlaps.

In any case, the debate around FVA mentioned above should be resolved first of all,

before the institutions start to account for the other XVAs.
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Conclusion 6

The art and science of credit risk pricing, measurements, and management have

been on a long journey and made a significant progress during recent decades. The

classic credit risk management question as to whether a loan application should be

approved or not, and, possibly, under which conditions, used to be approached by

experts based on their experience and analytical skills. Advances in mathematics,

statistics, and computer power have brought new sophisticated, automated methods

that either support or completely replace skilled credit analysts. The growth of

banking portfolios, in particular in the area of consumer and mortgage financing,

has highlighted the issue of portfolio credit risk that is not driven by losses on any

single exposure, but rather by losses due to higher than expected default rates. As

we have seen in Chap. 4, portfolio modeling involves not only the estimation of

individual default probabilities, but also the concept of default correlation, which

remains challenging even today. The development of credit risk management

standards in financial institutions has gone hand in hand with changes in the

Basel regulation, which aims to set basic risk management standards and define

regulatory capital based on the risk undertaken. The concepts of rating, PD, LGD,

EAD, or expected and unexpected loss, were used by many advanced credit risk

managers before Basel II, but since the introduction of the new regulation, these

concepts have really become standard and widespread. Since the nineties we have

seen rapid growth of the derivative markets. Counterparty credit risk used to be

handled in a relatively simple way through limits on counterparty exposures based

on various simple equivalents. Recently, in particular after the financial crisis, the

issue of counterparty credit has become much more complicated with the advance

of the many different valuation adjustments (XVAs) discussed in Sect. 5.6. Last but

not least, we should mention the credit derivatives and credit derivative-linked

securities, such as CDOs, which started to be traded actively at the beginning of the

previous decade. Their pricing and risk management, seriously challenged by the
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financial crisis, still pose a real challenge to financial engineers, as shown in

Chap. 5. We hope that this text provides not only an overview of credit risk

pricing, measurement, and management methods, but also that it will contribute to

the ongoing research in this area.
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funding cost (FCA), 236

funding value (FVA), 236

liquidity valuation (LVA), 238

margin valuation (MVA), 238

total valuation (TVA), 228

value (XVA), 236

Affine form, 207

Algorithm

back-propagation, 81

Newton–Raphson, 43, 72

Altman’s Z-Score, 38

Analysis, univariate, 45

Annuity

risk-free, 223

risky, 224

Approach

add-on, 221

advanced internal rating based (IRBA), 17,

110

advanced measurement(AMA), 16

basic indicator, 16

cohort, 105

comprehensive, 112

extrapolation, 63

fixed time horizon, 105

foundation internal rating based (IRBF), 16,

110

internal assessment (IAA), 219

internal market model (IMM), 234

internal model (IMA), 15

internal rating based (IRB), 13, 110, 219

momentum, 102

nearest neighbor, 83

PD-weighted, 104

pool level, 107

portfolio invariant, 16

rating based (RBA), 219

simple, 112

standardized (SA), 13, 110

substitution, 217

supervisory formula (SFA), 219

Value at Risk, 15

variable time, 105

Area under the curve (AUC), 22

Arrears, payments in, 162

Artificial neural networks, 37

Asset

backed security (ABS), 174

correlation, 117

return, standardized, 123, 126

swap, 164

volatility, 126, 142

Asset-backed security (ABS)

pass-through, 174

tranche, 175

waterfall, 175

Augmentation, 62

B
Bagging, 88

Bclear platform, 171

Beta, asset, 149

Bond

junior subordinated, 122

senior, 122

Breslow-Crowley estimator, 72

# Springer International Publishing AG 2017

J. Witzany, Credit Risk Management, DOI 10.1007/978-3-319-49800-3
243



Buffer

conservation, 157

countercyclical, 157

C
Canonical maximum likelihood (CML), 197

Capital

adequacy ratio (CAR), 16, 110

CVA charge, 217, 234

economic, 118, 120, 157

market line, 117

regulatory, requirement, 16

risk adjusted return (RAROC), 120

CDX NA IG, 170

Chinese wall, 8

Choleski decomposition, 197

Classification

accuracy (ACC), 29

coarse, 52

system, 8

tree, 75

Collateralization

continuous, 225

minimum threshold, 225

one-way, 225

real estate, 131

two-way, 225

Collateralized Debt Obligations (CDO)

cash flow, 176

hybrid, 176

market value, 176

synthetic, 176

unfunded synthetic, 178

waterfall, 182

Committee

Basel, on Banking Supervision

(BCBS), 13

New Product, 12

rating, 35

Compensator, 211

Confidence interval, 130

Confusion matrix, 29

Contingent claim, 146

Continuous compounding, 207

Contract, forward, 8

Conversion

factor (CF), 16, 102

factor, credit (CCF), 102

Copula

Archimedean, 195

Archimedean, generator, 196

bivariate, 193

Clayton’s, 196

double-t, 191

Frank’s, 196
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