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Preface

When thinking, at the beginning of the new century, on our horizons in 
seismology, we might return to the old question related to the seismic rota-
tion effects and waves. Seismology, with its spectacular achievements 
instrumentation, data processing, seismic tomography and source process 
theories – remains practically confined to linear ideal elasticity (isotropic 
or anisotropic). Numerous renown seismologists have tried to go beyond 
this horizon. As concerns rotation waves, such attempts were inspired by 
numerous macroscopic observations pointing out the rotation effects, often 
observed on the ground surface. However, this problem has been appar-
ently closed by Mallet in 1862, who gave the following explanation: rota-
tions of a body on the surface are due to a sequence of impacts of different 
seismic phases emerging under different angles. Later on, in 1937, Ima-
mura underlined an influence of different inertia moments of an inflicted 
body. Thus, the surface rotation effects – rotation of some objects on the 
ground surface – were explained as being caused by the consecutive incli-
nations and recovery of these objects to the vertical, when hit by the inci-
dent seismic body or surface waves. The final position of the object could 
become slightly twisted in comparison to its former place; the differences 
between the inertia tensor moments of the object and/or its attachment (as 
related to friction resistance of binding) to the ground surface play an im-
portant role. 

At that time, seismic observations were not accurate enough to detect 
any rotation waves; moreover, from the point of view of ideal elasticity – 
such waves shall not be observed at all, because rotation motion, even if 
generated in a seismic source, shall be immediately attenuated. Of course, 
there remains the displacement rotation component, which differs from 
zero for shear motion, but in an ideal isotropic elastic body this component 
attains very small values.  

Perhaps some new, but rather isolated, attempts to record the rotation 
waves were undertaken again in relation to these theoretical predictions. 
However, most of them failed again because the instrumental tools were 
not powerful enough. 

In the second half of last century, we have observed a spectacular de-
velopment of mechanics of continua including defects, granular structure 
and other deviations from the ideal linear elasticity. Special interests were 
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concentrated on the micropolar and micromorphic continua. In such elastic 
continua, the real rotations can be accompanied by another kind of axial 
motion – the twist-bend motion.  

We must stress that seismologists share different opinions on the nature 
of rotation waves. Perhaps, still the majority believes that such rotation 
motions are not related to inner rotations but are directly related to rotation 
of displacement field which may reach much higher magnitudes in materi-
als with an internal structure than in homogeneous layers; considering 
damages in the high buildings, there are many examples indicating enor-
mous increase of rotation effects caused by consecutive impacts of seismic 
body and surface waves.  

The rotation and twist motions are parts of the microdisplacement mo-
tion as related to the tensor of microstrain which appears in the generalized 
continua. In ideal elasticity, any rotation motion is reduced to the dis-
placement vector rotation components, while the twist motion is related to 
the non-diagonal strain components. In our Monograph, both approaches 
are discussed. 

In the last years, new types of the very sensitive rotation seismographs 
and the laser/fiber ring interferometers (ring laser gyroscopes and fiber op-
tic gyros), based on the Sagnac principle, opened new abilities of recording 
techniques.

Real media deviate from the ideal elasticity mainly due to defect content 
and granular structure; such media will be further called the structured 
continua. At the same time, some theoretical papers have recently ap-
peared pointing out that the values of the displacement rotation compo-
nents may be much higher than those predicted by the ideal elastic theory. 
In both cases, anisotropy shall be also included. 

However, apart of the rotation of displacements, in the structured media 
there may also appear true rotation motions, as independent deformation 
features. These rotation motions are part of the deformation and rotation 
tensors, which includes rotation, twist and compression/dilatation motions; 
together with the displacement vector, these motions form a complete de-
formation pattern.

The theory of structured continua enhanced our interest in the microdis-
placement motions. The microdisplacement fields are produced by the 
asymmetric pattern of the faulting and friction motions. The slip friction 
process causes rotation of adjacent grains and any deviations from symme-
try lead to a non-zero net rotation motion. Here, we point out the major 
feature of earthquakes revealed in faulting along the main fault plane. This 
is the main asymmetry feature of earthquake processes. We may admit that 
generation of real rotation and twist motions in a source zone is a real fact. 
However, there remains an open question whether such fields can propa-
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gate far from a source or are quickly attenuated when reaching a more con-
solidated elastic zone. Probably we should confine our considerations to 
the near-field effects only. 

However, we shall again take into account the fact that body and surface 
seismic waves, when entering a near-surface region, which is characterized 
by the more complex structure features, may give rise to conjugated mi-
crodisplacement motions; hence, rotation and twist waves may again ap-
pear due to interaction of the incident seismic waves with the complex fea-
tures of a near-surface zone. The theories of micropolar and micromorphic 
media predict some relation between the displacement derivatives and the 
microdisplacements. 

Such considerations inspired us to write a comprehension monograph 
which may open a new insight into seismological observations and studies. 
We decided that a subject of such a monograph shall be broad, covering 
many aspects, beginning from the historical observations, through modern 
sensors detecting different types of seismic motions, to the advanced theo-
ries and models giving us a better insight into the complexity pattern of 
earthquake source processes. Among other things, further studies on soli-
ton solutions for the events generated in a confined source zone may im-
prove the fracture band models, as introduced by some authors participat-
ing in the present task. Also, more attention shall be paid to the anisotropy 
pattern related to the earthquake source zone. 

At last, we shall turn to questions related to the earthquake engineering 
problems which may arise even due to small rotation motions; the whole 
problem started because in many cases some twist deformations have been 
observed on ground surface. And now we shall also examine whether the 
true rotation or twist motions, however small, can influence some struc-
tures senstive to moment of momentum impact.  

The book covers, thus, many subjects, enlightened from different points 
of view, as presented by the individual authors; we tried to collect the in-
dividual contributions in such a way as to create a possibly complete cov-
erage of the discussed subjects. 

At the end of these considerations, it seems suitable to give a very brief 
outline of the content of the present Monograph. It is divided into the fol-
lowing six parts: 

Part I. MACROSEISMIC ROTATION EFFECTS AND MICROMOTIONS.
We discuss the possible causes of the rotation motions and effects in the 
Earth’s interior and on its surface; also we recall some descriptions of the 
rotation-like damages caused by the historical earthquakes. 

Part II. THEORY OF CONTINUA AND FIELDS OF DEFECTS. We pre-
sent the asymmetric theory of continuous media with defects and anti-
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symmetric strains and stresses (as equivalent to the stress moments and re-
lated conservation law for moment of momentum); the included introduc-
tion to the soliton physics has a particular meaning for the fracturing proc-
esses. 

Part III. ROTATION MOTIONS, SEISMIC SOURCE MODELS, AND 
ASYMMETRY OF FRACTURE. We discuss a rotation counterpart in the 
fracturing process and the related energy release, we approach the prob-
lems of complex fracturing and flow phenomena and we face the problems 
of analysis of the complex seismic motions; further, we present different 
approaches to fracturing processes and the associated rotation motions in 
the seismic active regions. 

Part IV. EFFECTS RELATED TO MEDIUM STRUCTURES AND 
COMPLEXITY OF WAVE PROPAGATION. We present some new ap-
proaches to the complexity of deformations in the structured and micro-
morphic media; the non-Riemannian description of deformations is in-
cluded.

Part V. SEISMIC ROTATIONAL MOTIONS: RECORDING TECHNIQUES 
AND DATA ANALYSIS. Starting with a historical note, we include the de-
scriptions of some modern measuring systems for rotation, twist and tilt 
motions, we discuss the gained observations and recordings and we give 
their tentative analysis. 

Part VI. ROTATIONS AND ENGINEERING SEISMOLOGY. We end our 
Monograph with the problems of the earthquake engineering and strong 
motions which include the rotation and tilt impacts on high buildings. 

Acknowledgement.  I would like to express my great thankfulness to 
the editors of the camera-ready PDF form of manuscripts, Mrs Anna 
Dziembowska, Mrs Maria Wernik and their staff, for their devoted and la-
borious work.  

Roman Teisseyre 
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PART  I 

MACROSEISMIC ROTATION EFFECTS 

AND MICROMOTIONS 



1 Development of Earthquake Rotational Effect 

Study 

Jan T. Kozák

Geophysical Institute, Academy of  Sciences of the Czech Republic 
14131  Prague 4 – Sporilov, Bo ni, Czech Republic
e-mail: kozak@ig.cas.cz  

Rotational earthquake effects were observed and mentioned by numerous 
geo-savants in the course of the 19th century. However, it has been often 
believed that scientific fundaments of this phenomenon were not laid until 
the end of this century. Indeed, in the latter period many specialized 
monographs, books and textbooks on geology appeared, in which exam-
ples of rotational earthquake displacements were shown, discussed and 
more or less correctly explained. 

However, a closer look into this field reveals that the fundaments of   
advanced seismological and seismic observations of various earthquake  
effects, among them rotational ones, had been established much  earlier, 
already in the first half of the 19th century. 

It was, e.g. Leopold von Buch (1774-1853) who conducted comprehen-
sive observations on the 1799 Silesian earthquake with the aim to deter-
mine the shape and size of the earthquake epicenter zone on the base of 
civic reports. The pioneer results by von  Buch were published in a local 
journal with limited regional and scientific impact and therefore they soon 
sunk below the common horizon (Buch 1801 and 1867-1885). 

Substantial progress in macroseismic observations, analysis and results’ 
interpretation was reached by (today practically unknown) German 
mathematician P.N.C. Egen (1793-1844) who made and published an    
excellent macroseismic analysis of the 1828 North-Rhine earthquake. He, 
according Günther (1901), is the author of the first “actual macroseismic” 
map of an earthquake (see Egen 1828). 

Further progress in the field was reached by G.H.O. Volger (1822-1897) 
who presented a thorough and voluminous study on the 1855 Visp, Swit-
zerland, earthquake complemented by an excellent and advanced macro-
seismic isoseismal map of the event (Volger 1856 and 1857-1858). 
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In the mid-nineteenth century, the largest move forward in the observa-
tion, analysis and explanation of seismic effects – including the rotational 
ones – must be ascribed to Robert Mallet (1810-1881), author of the fa-
mous analytical work on the 1857 Great Neapolitan Earthquake entitled 
“The First Principles of Observational Seismology” (Mallet 1862). Let us 
pay a closer attention to his concept. 

Modern theoretical and observational seismologists – armed with the 
last tools of modern theoretical approaches such as nonlinear physics, the-
ory of micromorphic medium, etc. – know that there are more mechanisms 
or models to explain the observed rotational earthquake effects (see, e.g. 
Teisseyre and Kozák 2003). Mallet, however, who derived and published 
his explanation of rotational effects some 150 years earlier, had at his dis-
posal only simple relations of classical mechanics and had to work with 
the subjects such as, for instance, earthquake shock (= seismic wave im-
pact), emergence angle (= azimuth and vertical angles of seismic wave ar-
rival), rotated body mass, gravity, centre of gravity, friction or adherence, 

centre of adherence, main wave (= P wave), subordinate or second semi-

phase wave (= such as S wave, surface waves, etc., and also  reflected 
wave phases). 

Nevertheless, even with these simple tools Mallet succeeded to formu-
late two fundamental mechanisms of the rotational seismic effects;  let us 
denote them Rot1 and Rot2. Let us cite the author for the first of them: 
Where the body is projected from a base or support with which it has fric-

tion or adherence, and the line of the wave transit through its centre of 

gravity does not also pass through the centre of adherence (that is, the 

point of the base, and between it and supports, in which all the resting 

forces, or adherence, etc., may be supposed concentrated), then, besides 

projection, a movement round a centre of spontaneous rotation within the 
body will also be impressed (cit. Mallet 1862).  

In such a way the author described a fundamental rotational mechanism, 
Rot1, of the body subjected to seismic impact turning around the “centre of 
adherence” (conf. Teisseyre and Kozák 2003).  

As concerns rotation of a body in vertical plane, Mallet proposed        
another mechanism, which consisted in mutual configuration of horizontal 
component of seismic wave impact and gravity in special situations (see 
Mallet 1862, fasc edn 1987, vol 1., p 45). In page 78 of the same work 
Mallet writes: .....twisting of objects upon their bases such as vases, chim-

neys, obelisks, etc., of which we shall record many examples.....[were] first 

explained by myself several years since  (Mallet 1848). 
As for the second fundamental mechanism of seismic rotational effects, 

Rot2, Mallet suggested its explanation by means of “subordinate waves” 
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consequently emerging under different emergence angles (in comparison 
with the direct wave) eventually rotating the inflicted body. 

By subordinate waves a modern reader would substitute wave phases re-
flected on inner Earth’s boundaries. Let us give a room to the author (cit.): 
If the observer look due to south at a square pyramid, for example, whose 

sides stay cardinal and it be tilted by the first semiphase of a shock from 

east to west, the pyramid will tilt or rise upon the eastern edge of its base; 

and if, before it has had time to fall back, it be acted on by another shock 

from north to south, the pyramid will rotate, upon the bisection or some 

other point, of the edge on which it momentarily rested, and will hence to 

come to repose, after having twisted from left to right, or with the hands of 

a watch (cit. from Mallet 1862, fasc edn 1987, vol 1, p 376-77).  
In principle the second Mallet’s mechanism, Rot2, is identical with the 

one denoted as (b) in the paper by Teisseyre and Kozák (2003). It should 
be noted that Mallet, far before the type analysis of individual phases of 
seismic waves was done and accepted, and with a little knowledge on re-
flecting and refracting boundaries inside the earth, still succeeded to assess 
the importance of the subordinate or second semiphase waves for proper 
explanation of the observed rotational effects of Rot2 type. 

In the decades which followed the publication of Mallet’s analysis, rota-
tional effects in question gradually appeared in numerous European mono-
graphs, geo-encyclopedias and textbooks on geology and geography as a 
fashion element: more or less detailed explanation of this phenomenon was 
entirely founded on the concept by Mallet. In most of these writings, indi-
vidual authors often copied each other in presenting the same examples of
rotational effects and even the same illustrations. 

One of  widely presented manifestations of rotational effects – splitting 
of stone blocks of the obelisks at the St. Bruno monastery (Italy) and their 
mutual rotation – can be found, e.g., in Charles Lyell’s “Lehrbuch der Ge-
ologie”. However,  Lyell (1833) used this displacement to demonstrate ex-
clusively the obelisks structure disintegration (splitting), not the effects of 
stone blocks rotation.  

Disintegrated blocks of the obelisk at the San Bruno monastery were 
also commented by Alexander von Humboldt. In his “Kosmos”, Humboldt 
argued against the proposals by Mallet (cit.): Apparent circular (rota-
torische) quakes such as these, .....Mallet tried to convert into linear dis-

placement (see Mallet 1848 and Humboldt 1845-1862). 
In the 1870s and 1880s, rotational effects were frequently reported in 

the papers on individual earthquakes of the time. In his report on the 1872 
Central-German earthquake, Karl von Seebach described interaction of 
seismic waves with two pyramids composed of rectangular wooden blocks 
of small dimensions located on the writing desk in a building of small fac-
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tory in Chomutov town (on Czech/Saxony border, ca 2o from the epicen-
ter): After passage of seismic waves, the individual wooden blocks were 

found to be mutually rotated, see Fig. 1.1. However, the author did not 
analyze in greater detail the technical parameters of the situation, such as 
path of seismic waves through the factory edifice towards to the writing 
desk, friction conditions of the block surfaces, etc. (Seebach 1873, and 
Gutdeutsch et al. 1992). 

Fig. 1.1  Rotation of the two small pyramids of wooden blocks after the 1872 Cen-
tral German earthquake  (Seebach, 1873) 

An experienced Austrian geologist Franz Suess observed and discussed 
rotational effects when analyzing the 1895 Laibach (Ljubljana) earthquake 
in Slovenia. He wrote (cit.): Similarly as for all large earthquakes, also 

during the Ljubljana quake shifting of block/plate fundaments of columns 

and tombstones was observed. It is surprising how many different explana-

tions and interpretations of these movements were proposed. Except of 
Humboldt’s [model of] rotational earthquakes (rotatorischen Erdbeben), 
also a displacement of a torsion type was suggested, resulting from con-

temporary effects [interference] of direct and reflected waves, or from an 

elliptic displacement of the Earth particles due to possible interference of 

secondary transversal waves with the tremors of other type. Seismology 

has not proceeded enough to allow to decide to which of the above expla-
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nations the truth should be ascribed. However, I myself do not believe that 
the discussed displacement should be initiated by a single pulse [Stoss]. 
More probably, the rotational effects should result from two shocks,       

following one-shortly-after-the-other, coming from different directions

(Suess 1896, p. 485). 
Siegmund Günther in his “Handbuch der Geophysik” writes about un-

dulatory or rotational character of seismic waves and illustrates it by a 
classical example – splitting and rotation of the obelisks at the St. Bruno 
monastery. Günther’s interpretation is conform to the one by Mallet (Gün-
ther 1897). 

Famous obelisk at the St. Bruno monastery was mentioned and its     
displacements explained also by M. Neumayr in his “Erdgeschichte”. The
author presents this example together with the other evident rotational 
earthquake displacements of the time. In this context he writes about 
earthquake vibration behaviour without more detailed explanation (Neu-
mayr 1897).

In Russia, Ivan S. Mushketov, an eminent Russian seismologist of the 
turn of the 19th century discussed the rotational effects of earthquakes in 
his voluminous textbook “Fizicheskaya geologia” (“Physical Geology”).  
He presented classical examples (such as San Bruno obelisks) together 
with other examples of this phenomenon observed during recent European 
and Russian events: author’s explanation is also based upon the analysis by 
Mallet, see Mushketov (1899). 

After 1900 – since the type analysis of seismic waves and fundamental 
principles of their propagation were still not  satisfactorily  defined  and 
accepted – also common explanation of earthquake rotational effects has 
not overcome the limits given by simple mechanical approach presented 
by Mallet. In the series of fundamental books prepared on the new disci-
pline in geo-research, i.e., on seismology, still the old examples of rota-
tional effects (observed during the 1783 Calabria, 1873 Belluno, 1878 
West-German, 1895 Ljubljana, 1896 Guatemala, Schönai, Japan, and other 
famous earthquakes) were presented to illustrate this phenomenon. Out of    
a long series of publications let us cite at least Sieberg (1904), Jeništa 
(1906-1907), Lawson et al. (1908), Purkyn  (1908), Kafka (1909), Supan 
(1911). It is worth to note that the observational seismology in this single 
point appeared a bit behind rapid seismic instrumental progress  at that 
time (e.g. Plešinger and Kozák 2003). 

Rotational secondary effects (as seismologists in later decades of the 
20th century often named rotational effects) were regarded as marginal 
phenomena accompanying main seismogenic displacements in numerous 
works of this period (see, e.g. Janda 1940, and – as a historical reminis-
cence – Musson 1991 who discussed the early report by Milne 1842). 
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As concerns both classical mechanical rotation models, Rot1 and Rot2, 
called sometimes also technical or false models, they remained to serve for 
physical explanation of rotational phenomena throughout most of the 20th 
century. One of the reasons of decreasing interest of seismologists in rota-
tional effects in this period lay in common opinion that they have  little to 
do with the modern theory of seismic wave propagation, being more-or-
less derived from technical conditions, such as friction, wave interference, 
etc.

Another mechanism – let us name it Rot3 – relates directly to rotation of 
displacement field both in an inner source near-zone and in the layers be-
neath a recording station. The effects related to such a mechanism can 
much differ in the amplitudes and nature depending on source mechanism 
and medium structure properties. In the last decades of the 20th century – 
taking advantage of the advanced continuum mechanics and ray theory and  
other theoretical achievements on the seismic wave origin and source 
mechanisms – new models related to this mechanism have been proposed. 
Many of them are founded on mutual interference of individual wave 
phases – not yet mutually separated – in the inner seismic source zone. In 
this situation, the surface Love waves and their horizontal component may, 
under special conditions, prescribing the properties of the surface zone, 
contribute to rotational effects in the near-source zone (see, e.g. Takeo and 
Ito 1997). Mechanism of the Rot3 type will be discussed in detail in sev-
eral chapters of this monograph.  

All three mechanisms, Rot1, Rot2 and Rot3, are derived from mechani-
cal principles of elastic (seismic) wave propagation.  Another mechanism 
(let us denote it Rot4), on the other hand, is linked with the real rotational 
deformations and the properties of the medium through which the seismic 
wave propagates. Modern theory of such a medium, usually called as a  
micromorphic medium, was investigated theoretically and also under labo-
ratory conditions, first of all by Polish and Japanese seismologists. It will 
be demonstrated in other chapters that the advanced theory of micromor-
phic medium enables to detect rotational component of seismic waves due 
to wave interaction with the propagation medium treated by the terms of 
micromorphic description (Moriya and Teisseyre 1999, and Teisseyre et al. 
2003). 

Mechanism Rot5, recently proposed by Teisseyre (2004), relates to rota-
tion and twist motions; this mechanism is based on additional constitu-
tional bonds between the antisymmetric part of stresses and density of the 
self-rotation nuclei as being related to an internal friction in a homogenous 
elastic medium. The antisymmetric stresses correspond to stress moments. 

The models Rot3 – Rot5 are derived within the terms of linear physics 
and  elastic wave  propagation in  an elastic or quasi-elastic  medium. 
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Laboratory and observational research in the last two decades in the field 
of non-linear medium and non-linear physics based on propagation of non-
linear deformational wave, which was performed in cooperation of Rus-
sian and Czech seismologists, seems to reveal the existence of a next 
mechanism, model Rot6, as related to the coherent (self-organized) transla-
tion fracture wave. Its physical principles are given in a separate chapter 
(see Aksenov et al. 1993, and Aksenov 2006). 

In our retrospection we can state that after a brilliant analysis of simple 
mechanics of seismic rotational effects presented by Robert Mallet as early 
as in 1850s, seismologists had to wait much over hundred years for more 
sophisticated, more “physical” and more complex explanation of the phe-
nomenon in question, as the relatively recent mechanisms Rot3, Rot 4, 
Rot5 and especially Rot6 demonstrate.  Do these recent models mean the 
last word in our understanding of the physics of seismic rotational effects? 
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2.1   Introduction 

In Chapter 1, some data have been presented on the observed surface 
rotation effects and related damage caused by strong earthquakes; the 
rotation effects associated with earthquakes have been described and 
discussed already in the first theoretical attempts to analyse the seismic 
wave propagation (see Mallet 1862, Hobbs 1907, Gutenberg 1926, Davison 
1927).  

Mallet (1862) explained the rotation effects as being due to the 
incidence of a sequence of seismic phases consecutively emerging under 
different emergence angles and rotating the inflicted body. 

Imamura (1937) proposed to explain the rotation effects by an impact of 
body waves at the ground surface on objects having different inertia axes; 
to this explanation, we can add the effects related to possible different 
adjustments of various parts of the object to its basement or even different 
friction properties between them. 

We can take into account the four main categories of causes leading to 
the observed/recorded rotation effects: 

Generation of rotation motions in an earthquake source, e.g., due to 
internal friction processes at the microfracturing and at the macrofault 
where the nonlinear effects are evidently present; this concerns, in 
particular,  the  formation  of a coherent  fracture  translation wave (self 
-organization) preceding the slip displacement. 
Generation of coupled rotation waves in an underground space beneath 
the recording station; in a medium with grains or with any kind of 
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internal structure, as for example that described by the micromorphic or 
micropolar theories, there may appear the rotation waves coupled to the 
seismic body waves. 
Effect of counterpart of rotation of the displacement velocities, both in 
the linear and nonlinear ranges. 
Appearance of the apparent rotation effects caused by a sequence of 
seismic body or surface waves and the resulting impacts on the objects 
situated on ground surface (we can call this category a false rotation). 
The slip and fracture processes in a seismic source may cause the 

rotation of grains adjacent to the internal slip planes (Fig. 2.1a). A fracture 
process is entirely asymmetric, both in the micro- and macroscales. The 
main fracture may be accompanied by auxiliary perpendicular fracturings 
frequently appearing later as aftershocks (Fig. 2.1b). Twiss and Gefel 
(1990) have considered the brittle fault zones composed of rigid grains; the 
progressive processes in such zones may lead to macrorotations becoming 
the sources of microspin motions. In the further paper (Twiss et al. 1993), 
the authors estimated the effect of block rotation in a source on the seismic 
moment tensor.

The instantaneous process remains asymmetric and can be treated as a 
source of rotations, which may contain both a proper rotation and a twist 
motion. The twist motion, similar to shear deformation, represents differ- 
ent rotation shifts for perpendicular directions. At fracturing, the rotations 
adjacent to the perpendicular microfaults have opposite orientations; 
hence, when a length of microfault along one direction is greater than that 

Fig. 2.1 Slip faults  and rotation  of adjacent grains  –  scheme of source pattern:
(a) symmetric case, (b) asymmetric case
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along the other direction, there appears rotation (Fig. 2.2). The rotations 
are related to internal friction processes. 

A microstructure and defect content in a medium (Teisseyre 1973) can 
be another source of rotations. There are numerous papers on this subject; 
here, we shall point out the works by Takeo and Ito (1997), and by 
Teisseyre (2002), which give direct seismological applications. We are 
entitled to believe that the observations carried out at extremely short 
distances from seismic sources can reveal such rotation and twist motions. 
A question whether the rotation motions at a seismic source can propagate 
in a form of waves through geological layers from such a seismic source to 
a distant recording station seems still open. Recent theoretical studies 
(Teisseyre 2004, Boraty ski and Teisseyre 2004) and some observational 
results bring a positive answer to this question. In practice, however, the 
conditions related to geological structures and to the region near the 
recording station can be either more or less favourable for detection of 
rotation waves. The secondary rotation waves are related to coupling 
between a microstructure and defect content in a medium; in other words, 
the seismic body and surface waves can give rise, due to interaction with 
the medium structure, to coupled rotation waves.  

The effect of displacement velocity rotation ( rot u ) can be roughly 
estimated using the magnitudes of the observed displacement velocities; 
when deriving, with the use of the plane wave theory for ideal elastic 
medium, the rotation by means of time derivative of recorded data we can 
roughly estimate the effect. Some comparisons between the observed 
rotation motions and the effect so derived lead to the conclusion that the 
effect of rotation of displacement motions is small. However, Takeo and 

Fig. 2.2 Complex asymmetric pattern: rotation and twist motion
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Ito (1997) proved theoretically that an influence of defects, expressed in 
the framework of the non-Riemannian geometry by torsion and curvature 
tensors, is such that at short distances the rotation of displacement velocity 
may be of importance (the near-field rotation effects).  

Finally, the incident seismic waves exert direct influence on the objects 
situated on the Earth’s surface; a sequence of incident waves and also the 
shape and structure of the objects (as expressed by inertia moment tensor) 
and the properties of the junction with the ground (friction and binding 
strength) determine the resulting effects. Many, but probably not all 
historical observations are related to this category. 

The rotation and spin motions (related to real rotational deformations) 
can propagate in a medium with internal defects (dislocation and disclina- 
tion densities) or even in a homogeneous medium in which, except of the 
classical constitutive relation between the symmetric strains and stresses, 
there are additional constitutive relations for the antisymmetric part of 
stresses and the spin and twist nuclei, as related to rotation of grains and 
internal friction. 

Finally, strong rotational seismic effects (both horizontal and vertical) 
have been observed right in the epicenter of some shallow earthquakes. An 
explanation for these effects by the coherent translation wave at a seismic 
source arising in a self-organization process has recently been proposed 
(for details see Chapter 17 by V. Aksenov). 

It follows from the above classification that individual sources of 
rotational seismic effects are not equally effective along the whole record-
ing interval from the epicenter to the far-field distances. However, we do 
not have suitable tools in our hands enabling us to estimate these effects 
and to make their reliable quantitative comparison. 

Many questions related to the rotation waves remain still open: up to 
now, we have no reliable data on propagation properties (velocity and 
attenuation) of such waves through geological media and on the influence 
of distance from source to the recording station; we have no laboratory 
data on the bonds between the particles or grains related to their mutual 
rotations and hence on the related elastic constant.

We shall note that the observed macrorotation effects due to large 
earthquakes may be not entirely caused by the microrotation motions 
related to seismic waves; we cannot prove, up to now, any unambiguous 
relation between the macrorotation effects and the microrotation motions 
observed with very sensitive recording systems. 

A better insight into the theories related to rotation and twist micro- 
motions is needed, as outlined further on in this chapter. 
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2.2   Elements of the Basic Theory 

Teisseyre (1973, 1974) attributed the appearence of rotation effects to the 
seismic wave coupling with micromorphic response of a medium having 
an internal/granular structure. 

We shall, however, account now for different approaches to the 
continuum description of real bodies: the media with internal structure 
could be described by micropolar (rotation of grains) or micromorphic 
(rotation and deformation of grains) theories; the linear, nonelastic media 
could be described by adequately modified constitutive relations (for 
example, for thermoelastic bodies or those with plastic relation between 
stresses and deformation rates). According to Kröner’s idea (see Kröner 
1981, 1982) we can combine both approaches by introducing the self fields 
or, in other words, by introducing a distribution of the self-stress or self-
strain nuclei. At the same time, we preserve the ideal stress-strain relation. 
We will follow Kröner’s approach which accounts both for the medium 
structure influence and for the content of defects and nuclei of stresses or 
deformations. 

We introduce the total strains, rotations and distortions related to the 
displacements and, thus, automatically fulfil the compatibility conditions: 

,  ,T T TE u u u  , (2.1)

where symbols ( ) and [ ] mean the symmetrized and antisymmetrized 
products of the elements contained inside them.  

We demand that the total fields present the sums of the elastic and self 
fields:

, ,T S T S T SE E E  . (2.2)

The elastic fields are the observables, the self fields represent distortions 
related to medium deviations from ideal elasticity and to an influence of 
other fields (thermal, electric and also that of rotation and friction nature); 
a sum of elastic and self fields shall result in the field called total, so 
defined due to obeying the constitutive relation for ideal elasticity. 

The stresses (strictly speaking, the symmetric part of stresses, see the 
text below) remain related to strains by the ideal elastic form of the 
constitutive relations; in our presentation, such an ideal relation is valid for 
the total stress and strain fields, so we can write 

 tr 2 ,T T T T SS I E E S S S   , (2.3)
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while for real media the elastic fields are given as differences between the 
total and the self-fields, e.g., T SE E E , T SS S S . The self-fields 
introduce deviations from ideal elasticity (Kröner 1982): defect content, 
interacting fields and internal nuclei (e.g., dislocation and disclination 
densities, thermal field, rotation nuclei). The strain and stress elastic fields 
can be no longer symmetric, and the elastic rotation may become 
asymmetric too; the constitutive relation for the elastic stresses and strains, 
as corresponding to that in Eq. (2.3), shall be supplemented by the 
constitutive relation for the antisymmetric part of strain and stresses. This 
approach includes also continua with structure, e.g., micropolar or 
micromorphic continua with internal bonds (the constitutive relations). We 
will return to these problems in Chapter 4. 

After Shimbo (1975, 1995) we can introduce the bonds for the point 
rotations by assuming that the internal friction along the microslip planes 
produces the rotation of grains due to the appearance of an antisymmetric 
part of stresses along such microplanes (Fig. 2.2): 

.. ..*

1

2
S   , (2.4)

where the material constant  is a new constant different from the shear 
modulus, and symbol [..] means the antisymmetric part of a tensor. 

Another kind of the constitutive relation and the related bonds can be 
introduced between the stress and rotation moments; under some 
conditions such an approach can be equivalent to that presented above with 
antisymmetric stresses and rotations. 

The constitutive relation between the rotation field and the antisym- 
metric stress field can be supplemented with the assumption (Teisseyre 
2002) that the elastic rotation relates to the antisymmetric strain and we 
shall note that the antisymmetric strains and stresses relate directly to the 
antisymmetric self-strains and self-stresses: 

.. ..E    and .. .. .. ..,S SE E S S   . (2.5)

While for the twist motion, as given by the symmetric part of the 
asymmetric rotation tensor, we have to assume that it is equal to the 
symmetric self-rotation field, and, further, we can assume that the latter is 
equal to symmetric self-strain field: 

.. ..
S  ,    where .. ..

S SE   , (2.6)

where symbol (..) means the symmetric part of a tensor. 
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The antisymmetric part of elastic strain and the antisymmetric part of 
elastic rotation are related to the so-called microdisplacement motions 
introduced in micromorphic theories by Eringen (1999, and Eringen and 
Suhubi 1964).  

The constitutive relations for the symmetric parts of elastic stresses and 
strains ..

T SE E E  become, according to Eq. (2.3): 

* *
.. .. tr  tr 2 2T S T SS I E I E   , (2.7)

where the constants * and relates to the respective moduli for the micro-
displacement motions. 

Trace (..)tr S  presents  an influence of diagonal  self-strains  related to
compression/extension of micrograins, which are usually neglected; in 
such a case we will have 

*
(..) tr 2 2T T SS I E E   . (2.7 )

Rotation motions can be explained by theories for media with structures 
(see: micropolar and micromorphic media; e.g., Eringen and Suhubi 1964, 
Teisseyre 1973, 1995) or containing defects (see: theories related to the 
dislocation and disclination densities in continua, e.g., Teisseyre 1995, 
2002).

In a near-fracturing state, we can consider, using the theory of elastic 
beams, the torques acting on bonds in a crystal lattice (Roux 1990, De 
Arcangelis 1990), as shown in Fig. 2.3. Such torques are conjugated to 
rotations around nodes; near a percolation threshold the related processes 
can lead to rotation of some internal rigid microstructures. 

Fig. 2.3 Bending of bonds around the lattice nodes – modified after De Arcangelis 
(1990) 
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The sources of rotation motion in a focal source zone can be attributed, 
as well, to friction processes and grain rotations or to the stress couples 
connected with the small structural elements (microfaults) permeating such 
a zone (Teisseyre 1973). 

2.3   Recording the Rotation and Twist Motions 

Mechanical deformation may contain two independent fields: displace-
ments and rotations; the latter appear when there exist a suitable excitation 
source and the internal bonds joining rotation motion with a stress moment 
or with a nonsymmetric part of stresses, like that given by Eq. (2.4). The 
system used can detect the rotation velocities.  

Using the azimuthal array of seismographs, Droste and Teisseyre (1976) 
derived  the  first rotation  seismograms  at the recording site  very close 
(1-3 km) to mine event hypocentres (Droste and Teisseyre 1976; 
reproduced in Teisseyre 1995, p 625). Figure 2.4 explains the measuring 
system suitable for estimating the azimuth towards the epicenter: it was a 
6-channel azimuth system of horizontal seismographs used to record very 
close seismic events (at distances ca. 5 km) in a mine in Silesia, Poland. 
The azimuths as a function of time were determined by two numerical 
procedures estimating the errors of azimuth determinations in respect to 
the known position of the epicenter: in the first procedure we assumed that 
there is no rotation effect, while in the other that the rotation of seismo- 

Fig. 2.4 System of the azimuth station. The asterisk denotes the epicenter position;
the continuous line indicates the azimuth towards epicenter while the dashed lines
mark the range of azimuth variations 
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graph platform may take place. The method used enabled us to estimate 
the amplitudes of rotation motion for the moments when the errors for 
azimuth estimation were smaller than the errors for a fixed position of the 
platform; the respective time moments coincide with times when 
amplitudes of the recorded seismic wave were near the maxima. This was 
probably the first rotation seismogram achieved.  

Contemporary systems designated to record the rotation velocities are 
based either on the very sensitive instruments measuring rotation, like the 
laser ring interferometers (see Takeo and Ito 1997) or on the rotation 
seismometer system. The latter consists of the pairs of antiparallel seismo- 
graphs situated very close to each other (Moriya and Marumo 1998, 
Moriya and Teisseyre 1999) or suspended on a common axis (see Teis- 
seyre 2002); such systems require a very close identity of the seismograph 

Fig. 2.5 The rotation seismogram derived from the azimuth variations – only for
the time moments when their estimations were reliable 
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responses and enable to record not only the rotation motion but also the 
twist type motion.  

A pair consisting of two pendulum seismometers, aligned antiparallel 
(e.g., along the y-axis, to measure the x-component of displacement 
motion) and having identical responses, permits to measure two velocity 
fields containing the displacement and rotation velocities:  

,S S

xy xy

u u
u u l u u l

y y
  , (2.9)

where l is the reduced length of seismometer pendulum. 
A sum of these fields yields displacement velocity, while for the dif- 

ference of records we arrive at the definition of the microdisplacement 
tensor (here, the component xy):

1
,

2 2
S

xy xy

u u u
u u u U

l y
  . (2.10)

The microdisplacements are defined here in relation to the observable 
values; rotation and twist become defined as 

1 1 1
,

2 2 2

1 1 1
.

2 2 2

S S

xy yx xy yx

S S

xy yx xy yx

u
U U

y x

u
U U

y x

(2.11)

Any measuring system detecting rotation motions measures together the 
velocity displacement and the corresponding component of rotation. We 
can only estimate the respective influences of these fields by computing 
the magnitudes of rotation displacement velocities from the records of u

and  and comparing these magnitudes with the recorded ones related to 
the observed rotation and twist motions. 

The observable quantities U  relate to the displacement motions and 
rotations (in Eq. (2.6) we have put S SE )

( ) ( ) ( ) ( )

[ ] [ ] [ ] [ ]

,

.

T S T S

sym sym sym sym

T S T S

antsym antsym antsym antsym

U E E E E

U
(2.12)

According to these relations, we can state that the observables relate to 
elastic stresses or to rotations.
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Estimating the order of magnitude of u y  and y  by means of 
the plane wave approximation and comparing it with the recorded micro- 
displacement field U , we have shown that in most cases analyzed so far 
the space derivatives of displacement motions TE  in these relations (Eqs. 
2.10–2.12) can be neglected; the observed fields U would be comparable, 
by orders of magnitude, with the estimated orders of u y  and y

only for very small wave velocities. However, in some cases this 
approximation can be not true. 

Finally, we shall return to the question of reliability of recording of the 
microdisplacement fields U .

In reality, the responses of the two antiparallel sensors, ,R ,R  are 
slightly different; instead of relation (2.9) we shall write 

* *, ,xy xy

u u
u R u R l u R u R l

y y
(2.13)

where these convolutions contain now the ground displacement motion, u ,
and ground rotations S .

For the difference of records we obtain 

*2 xy

u
u R u R l

y
 . (2.14)

Thus, the seismograph systems record both the microdisplacement 
motion (hereabove, the second term) and the errors due to differences in 
responses (the first term). Both terms shall be evaluated and only in the 
case when the first term is smaller than the second one we can be sure that 
our records are reliable. Similarly, we shall reconsider relation (2.8) for the 
second rotation system. Teisseyre et al. (2003), and Nowo y ski and 
Teisseyre KP (2003) proposed a special computation procedure to 
eliminate such errors related to differences in the responses.  

Theoretically, the laser ring interferometers should record only the rota- 
tion component, but due to finite dimension of the recording platform there 
enter the derivatives of displacement motion and an influence of rotation 
of the velocity displacement will appear. 

In the next chapters, several examples of recording of rotation and twist 
fields are presented. However, as we already mentioned, we shall still keep 
in mind that no unambiguous relation has been found – up to now – 
between these microrotation motions (true rotation) and the observed 
macrorotation effects (true and/or false rotations). 
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In the last decades, though, some progress in this respect has certainly 
been achieved. New fundamental ideas have been put forward and basic 
results of advanced theoretical approach have been obtained in the field of 
interaction of incident seismic waves with micromorphism and defect 
content.

Some experiments providing observational confirmation and verifica- 
tion of the studied phenomena have also been made; their first results 
corroborate the theoretical conclusions and indicate the usefulness of the 
observational systems.  
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The Southwestern Cape is considered to be one of the regions with the 
highest level of seismic activity of tectonic origin in South Africa. In this 
respect, the Tulbagh-Ceres area is of prime interest, as pointed out by the 
destructive Tulbagh earthquake of 29 September 1969. This earthquake 
caused severe damages, including rotation of tombstones and memorials in 
cemeteries in the earthquake-affected towns. 

According to Theron (1974), earth tremors have been recorded in the 
Southwestern Cape as early as 1620. The number of earthquakes recorded 
in his catalogue for the period 1620-1971 is 73, with at least 7 of them 
considered to have had local magnitudes ML between 5.1 and 6.5. The first 
300 years of this catalogue contains approximately 23 tremors, against 
about 53 tremors during its last 50 years. This fact is not considered to in-
dicate increased seismicity in the area, but is rather the result of incomplete 
recording prior to 1920 and the limited history of observed earthquakes. 
The catalogue was incorporated into a more complete catalogue by 
Fernández and Guzmán (1979), covering all events recorded in Southern 
Africa for the period 1620-1970. It is evident from the Fernández and 
Guzmán catalogue that the number of recorded events in the Southwestern 
Cape since 1920 is almost double of that reported by Theron (1974). 

A large portion of the Southwestern Cape events in the Fernández and 
Guzmán (1979) catalogue resulted from the seismicity recorded in the 
Tulbagh area, especially in the time directly following the large Tulbagh 
earthquake on 29 September 1969. This earthquake, having a local magni-
tude ML of 6.3, was the most destructive earthquake in South African his-
tory and was followed by a long sequence of aftershocks, the most severe 
of which, on 14 April 1970, had ML of 5.7. A comprehensive report regard-
ing the 1969 earthquake (van Wyk and Kent, 1974) covers aspects such as 
the geology of the Tulbagh-Ceres area, the seismic history of the South-
western Cape, macroseismic observations in the meizoseismal areas of the 
1969 earthquake, hydrological phenomena associated with the earthquake, 
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aftershocks of the earthquake, the focal mechanism of the earthquake, geo-
physical implications of the whole earthquake sequence during 1969-1971, 
some elements of seismic risk assessment and earthquake-resistant build-
ing recommendations.

The worst damage resulting from the Tulbagh earthquake of 29 Septem-
ber 1969 occurred in the northern part of the Tulbagh Valley which is situ-
ated close to the epicentre (Keyser, 1974). Severe damage occurred to 
buildings in the towns of Tulbagh, Wolsely, Ceres and Prince Alfred Ham-
let. Damage also occurred in the villages of Saron, Gouda and Hermon as 
well as in the towns of Worcester and Porterville. Slight damage was ob-
served, in particular, in towns as far away as Stellenbosch which is about 
80 km from the epicentre. The maximum seismic intensity (in modified 
Mercalli scale) of VIII was observed during the earthquake in the Tulbagh 
region. This corresponds to a ground movement of 0.13 g  PGA < 0.26 g 
according to the intensity–PGA (Peak Ground Acceleration) relation of 
Trifunac and Brady (1975), where the lower and upper limits of PGA were 

Fig. 3.1  The memorial at the cemetery northeast of Tulbagh, some 15-20 km from
the 29 September 1969 Tulbagh earthquake epicenter (33.28° S, 19.14° E). The
marble pillars  supporting the roof  with ornaments  were rotated by about 10°
(Archives of the Council for Geoscience, Pretoria, South Africa) 
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obtained by substituting the intensity in the intensity-PGA relation by 
VII½ and VIII½, respectively. The seismic hazard and risk assessment for 
the Tulbagh area is presented by Kijko et al. (2002, 2003). 

Severe damage  was observed  in  many  cemeteries  in  the  earthquake 
-affected towns. In Wolseley, about 20 km from the epicentre, more than 
50% of the tombstones were toppled over, mostly in westerly direction. A 
cemetery north-east of Tulbagh experienced less damage. However, a me-
morial, consisting of a few marble pillars supporting an ornamental roof 
rotated through about 10°. The roof shifted in south-westerly direction 
(Keyser, 1974). A photo of this memorial after destruction is shown in 
Fig. 3.1. 

In Ceres cemetery, about 20 km from the epicentre, more than 70% of 
the tombstones collapsed. The majority fell over to the west. Only one fell 
to the east. Three tombstones rotated anticlockwise through 45° (Keyser, 
1974). A spectacular photo of one of the anticlockwise rotated tombstones 
in the Ceres cemetery is shown in Fig. 3.2. 

Fig. 3.2 Tombstone in the Ceres cemetery showing anticlockwise rotation through 
45 degrees. Source: “Die Aardbewing van 29 September 1969 in die Suidweste-
like Kaapprovinsie, Suid-Afrika” Geological Survey, Republic of South Africa, 
Department of Mines, Seismologiese Reeks 4, 1974, 48 pp”
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4.1 Introduction 

The deviations from classical elasticity can be related to the defect distri-
bution (dislocation and disclination densities), thermal excitation, some 
features of internal structure and different types of nuclei (e.g. electric nu-
clei, rotation nuclei); other deviations lead to an elasto-plastic behaviour. 

The Kröner approach to continua with a distribution of self-field sources 
is applied to a wide class of deviations from the classical ideal elasticity; 
the same approach is applied to the theory of continua with asymmetric 
fields; the related equations of motion are derived. Such an approach re-
places other methods based on the constitutive relations specific for each 
type of the medium considered. In this approach, the reference constitutive 
relation remains the same, but deviations from the classical ideal elasticity 
are attributed to different sources, nuclei and defects introduced into con-
tinuum theory.  

Our considerations extend on deviations from the stress symmetry. 
The elastic deformation fields, strain, rotation and distortion, represent 

real observables; the Kröner continuum with defect distribution of differ-
ent kinds is based on definitions of the elastic, total and self-fields. We use 
this approach (see Kröner 1958, 1981) to the elastic theory of continuum 
deviating from the ideal elasticity and from the stress and strain symmetry; 
the total stresses and strains remain symmetric while the total rotation re-
mains antisymmetric. 
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The total fields ET and T are defined as the fields which can be ex-
pressed by means of the displacement field: 

T T T1 1

2 2
,l k l k l

kl kl kl
k l k l k

u u u u u
E

x x x x x
(4.1)

while the self-fields represent distribution of internal sources (nuclei) caus-
ing the disturbances in the strain and rotation fields. The elastic fields E
and  deviate from total fields due to an influence of the self-fields 
(Kröner 1958, 1981): 

T T SS, , .T S
E E E (4.2)

Total fields ET and T  fulfil the compatibility conditions: 

2 T 2 T

0 , 0 .mn mn
ikm jtn ikm jtn

k t k t

E

x x x x

The compatibility conditions for the elastic fields help us  to define the in-
compatibility tensors for elastic and self-fields:  

2 2 S

,mn mn
ij ikm jtn ikm jtn

k t k t

E E
I

x x x x

2 2 S

.mn mn
ij ikm jtn ikm jtn

k t k t

J
x x x x

(4.3)

These two tensors can be separated into the symmetric and antisymmetric 
parts (Teisseyre and Boraty ski 2003, Boraty ski and Teisseyre 2004). 

Elastic stresses and strains shall obey some reference constitutive rela-
tion; for symmetric fields we assume that such a relation is that of the ideal 
elasticity: 

2 .lk lk ss lkS E E (4.4)

The elastic and self strains and stresses can be, in general, asymmetric; 
hence, their anti-symmetric parts shall be mutually compensated to pre-
serve symmetry: 

S S0 , 0 .
ik ik ik ik

E E S S (4.5)

Similarly, the elastic and self rotations are asymmetric and hence their 
symmetric parts shall be mutually compensated: 

S 0 .
ik ik (4.6)



4 Deviations from Symmetry and Elasticity 33

We shall note that the balance law for the antisymmetric stresses and rota-
tions replaces the balance between stress moments and angular momen-
tum. 

4.2 Symmetric Stresses: Motion Equations 

First, we recall the classic case of symmetric stresses in a continuum with 
defects (dislocations and disclinations; see Teisseyre 2001); for elastic 
fields we write the equation of motion expressing divergence of symmetric 
elastic stresses: 

T S ,lk l l l l

k

S
x t t t t

or                             
2

S
2

,lk l l

k

S u
x t t

(4.7)

where S  is the plastic velocity. From this relation we obtain, after differ-
entiation and symmetrization: 

2
T S S

2

1 1

2 2
,lk sk ls l s

k s k l s l

S S E
x x x x t t x x

(4.7 )

                  
2

T S
2

( )

,sllk ls sl

k s ls

S E J E
x x t t

(4.8)

where for the dislocation current slJ  we put (Teisseyre 2002) 

S S1

2
.S

sl sl l s

s l

J E
t x x

(4.8 )

Finally, using relations (4.2) and (4.4) we get 

2 2

2 2

( )

.
2 2 (3 2 )lk ls ls nn sl

k s ls

S S S J
x x t t t

(4.8 )

This equation of motion contains on the right-hand side the propagation 
and diffusion terms.  
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4.3 Thermal Deformations 

Before going into more general considerations we take the case of thermal 
distortion; the Duhamel–Neuman relation determines the following consti-
tutive law and the motion equation:  

2
0 ther

2
( ) (3 2 ) l

lk lk

k k l

u
S S u T

x x x t
, (4.9)

0 ther( ) (3 2 ) ,ls ls lsS S u T (4.10)

where 0
lkS  represent stresses for the isothermal case. 

Differentiation and symmetrization brings the next relation: 

2
0 T ther

2

( )

( ) (3 2 ) .lk ls

k s l sls

S u E T
x x t x x

(4.11)

Thermal distortions can be described by the dislocation fields (Muskhel-
ishvili 1953, Teisseyre 1986); hence, starting with the constitutive law 
(4.4) and using relation (4.8) we obtain the equivalent relation: 

( ) ( ) ( )

2
T S

2

( )

.

T S

lk lk lk

k s k s k sls ls ls

slls sl

S S u S
x x x x x x

E J E
t t t

(4.12)

Comparing these two relations for 0 ( ) ( )TS u S u  we obtain the expres-
sion for the thermal self-strain and current: 

ther ,S

ls lsE T S ther(3 2 )ls lsS T  , ther
ls lsJ T  . (4.13)

In this manner we arrive also at the total stress field: the Kröner contin-
uum  

T S S2 (3 2 ) nnls ls ls ls nn ls lsS S S E E E  . (4.14)

Comparing (4.13) with the definition of the dislocation current tensor 
and plastic flow (4.8 ) (Teisseyre 2002), we obtain the vanishing of the 

thermal flow 0S
k  . 

In a similar way we can define the plastic flow velocities and currents 
for other sources of distortions, like piezoelectric, anomalous piezoelectric 
(Teisseyre 2001) and magnetic (Nagahama 2001). 
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4.4 The Maxwell and Voigt–Kelvin Bodies: Equivalence 
      Theorems 

A linear generalized constitutive stress-strain relation for the total fields is 
as follows: 

2 2T T T TT
ik ik ss ik ikik

S E E vES . (4.15)

Such a relation can be written for a sum of the elastic and self-fields (ap-
proach of Kröner 1981):  

2 2 2 2 .S S S S

ik ik ik ik ik SS ik ik ik ikS S S S E E E vE vE (4.16)

We will search for the definitions of the self-fields which would pre-
serve the ideal elastic relation for the elastic field; we assume here that the 
trace of self-fields vanishes, T

ss ssE E . Hence, separating these tensors into 

the axial ikS  and deviatoric ikS  parts, 1
3ik ik ssS S  and ik ik ikS S S , we 

can write for the deviatoric fields 

2 2 2 2S S SS
ik ik ik ik ikik ikik

S S E E v vESS E . (4.16´) 

For the Maxwell body, in particular, we have: 

2 2T T T

ik ik ikS E vE

and          2 2 2 2 .SM SM SM
ik ik ik ik ik ik

S S E E v vE E

(4.17)

When the self-stresses and strains are defined as 

2 2 2SM SM SM

ik ik ik ikS E vE vE , (4.18)

we preserve the ideal elastic relation for the elastic fields. 

Similarly, for the Voigt–Kelvin body we have: 

2T T TT
ik ik ss ikik

S E ES  , (4.19)

2 2SV SVSV
ik ik ik ikik ik

S S E ES S  . (4.19´) 

When defining the self-fields as 

2SV SVSV
ik ikik ik

S ES S , (4.20)
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we obtain again the ideal elastic relation for the elastic fields. 
We can combine these results obtaining the complete equivalence be-

tween the Kröner approach and the various constitutive relation approach: 

2 2 2S S SS
ik ik ik ikik ik

S E vE vES S . (4.21)

We will now compare the equations of motion for the two above-
mentioned approaches describing the distortions from ideal elasticity.  

The equation of motion is given by relation (4.7) and the related self-
strain, current and plastic velocity join relation (4.8´). 

4.5 Asymmetric Fields 

The antisymmetric part of self-strains may be related to internal microfric-
tions (stress moment resistance), while the symmetric part of self-rotations 
may represent some axial motion, called further on the bend-twist motion. 

Already in the micromorphic continuum (Eringen and Suhubi 1964, Er-
ingen and Claus 1970, Eringen and Kafadar 1976), the microstrain can 
contain its antisymmetric part while the gyration tensor can contain its 
symmetric part; these peculiarities extend, moreover, on the stresses and 
stress moments and on the inertia spin tensor (in the latter, some additional 
asymmetric properties may result from the microinertia tensor).  

In this chapter we recall some of our former results for the continuum 
with defect distribution and we present a uniform continuum with rotation 
motions – of spin and twist-bend types (Teisseyre 2002, 2004, Teisseyre 
and Boraty ski 2002, 2003, Boraty ski and Teisseyre 2004); in our ap-
proach we supplement the ideal elasticity constitutive law, the strain-stress 
relation, by an additional relation joining the rotation tensor and the 
asymmetric stresses. The asymmetry of fields follows from the antisym-
metric stresses introduced by Shimbo (1975, 1995) and Shimbo and Ka-
waguchi (1976) as related to the friction processes and rotations of grains. 
Fracture processes develop usually along the main fault plane, giving rise 
to the initial asymmetry of the fracture pattern; the same concerns the mi-
cro-fracturing and internal friction processes. Due to friction, the rotation 
of grains adjacent to the micro-slip planes causes an appearance of the an-
tisymmetric part of stresses. Owing to the additional constitutive law be-
tween the antisymmetric parts of stresses and strains, we can evade an in-
fluence of the Hook law, which, when used as a unique law in the ideal 
elasticity, rules out an existence of rotation waves. Thus, it comes out that 
the rotation vibrations can, in such an ideal elastic continuum, propagate 
and be not attenuated.  
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Already in the micromorphic continuum (Eringen and Suhubi 1964, Er-
ingen and Claus 1970, Eringen and Kafadar 1976, Eringen 1999), the mi-
crostrain can contain its anti-symmetric part while the gyration tensor can 
contain its symmetric part; these peculiarities extend, moreover, on the 
stresses and stress moments and on the inertia spin tensor (in the latter, ad-
ditional asymmetric properties may result from the microinertia tensor). 
The relations for the microstrain and microstress moments can be ex-
pressed with the use of notion of the self fields including their symmetric 
and antisymmetric parts. The motion equations shall be supplemented with 
that including a balance for stress moments and angular momentum.  

Some features of the micromorphic continuum can also be described in 
the frame of our approach with the properly defined self-fields. 

Here, we will also show that even in a uniform continuum, when the ro-
tation of individual particles and the related bond distortions generate anti-
symmetric stresses, the rotation waves propagate and are not attenuated, 
similarly as the displacement motion in ideal elasticity. 

An alternative way of introducing the rotation motions is to consider a 
continuum with defect densities (dislocations and disclinations) and/or ro-
tation nuclei (Teisseyre and Boraty ski 2003, Boraty ski and Teisseyre 
2004); see the next chapters. 

In our approach, the asymmetry of fields follows from the relation be-
tween the antisymmetric stresses and is related to the friction processes 
and rotation of grains, as introduced by Shimbo (1975, 1995). Fracture 
processes usually develop along the main fault plane; hence, there appears 
the initial asymmetry of the fracture pattern (Teisseyre and Kozak 2003); 
due to friction, the rotation of grains adjacent to the main slip plane gives 
rise to the antisymmetric part of stresses and the twist-bend tensor. Thus, 
as we have proposed in our earlier paper, we introduce after Shimbo (1975 
and 1995) the bonds for rotation motion as the constitutive relation be-
tween the antisymmetric strains; cf. Eqs. (4.5) and (4.6): 

S
[ ] [ ] [ ]*

1

2
S S

lk lk lkS E  , (4.22)

where the constant µ* represents the rotation rigidity of bonds and is re-
lated to the inner friction.

We also have to include a counterpart to spin motion – the axial sym-
metric motion called the bend-twist motion and representing vibrations of 
the rotation nuclei; we assume that the related strain and rotation self-fields 
follow the similar relation as given in (4.22). Thus, we can write 

S
( ) ( ) ( )*

1

2
S S

lk lk lkS E      and     S
*

1

2
S S

lk lk lkE S  . (4.23)
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Equations of motion for asymmetric fields 

In the equation of motion for the continuum with asymmetric fields (Eq. 
4.8) the elastic stresses split into the total and self fields with the condition 
that traces of these tensors remain equal to each other 

( ) ( ) ( ) ( ), ,T S T T
ik ik ik nn nn nn nnS S S S S E E . (4.24)

The symmetric parts of the elastic stresses relate to elastic strains accord-
ing to the constitutive law (4.4) and to self-rotations according to (4.23); 
we obtain: 

2
* T S

( ) ( ) 2

( )

( 2 ) ( )T S

lk lk ls ls

k s ls

S E
x x t

* 23 3
( )

( )

2( )
S

lkk l
ls

l s k k k s k s sl

u u
J

t x x x x x x x x

                                           ( ) ( )

( )

.Sl
sl sl

s sl

u
J

x
(4.25)

For a homogeneous elastic continuum (vanishing of currents) we obtain 
* 23 3

( )

( )

2( )
S

lkk l

l s k k k s k s sl

u u

x x x x x x x x

                       ( )

( )

.Sl
sl

s sl

u

x
(4.26)

For the antisymmetric part of elastic stresses we shall take into account 
the fact that the stress moments and antisymmetric stresses shall enter into 
the equilibrium conditions; in the homogeneous continuum theory we as-
sume that strain moments relate to the antisymmetric part of strains and, 
thus, the respective equations reduce to relation between the antisymmetric 
stresses and antisymmetric strains and rotations (Teisseyre 2002, Teisseyre 
and Boraty ski 2003). 

Antisymmetric stresses relate to an internal rotation motion; these 
stresses become important in zones with higher dislocation densities and 
their evolution (zones under high stresses) or in zones where microfrac-
tures nucleate; in such zones we can expect the presence of rotation nuclei. 
Considering a slip/fracture process along the tectonic plane, we can try to 
split our equations of motion into two parts: one describing the dynamic 
process in which the interaction of defects is confined to the very close vi-
cinity of this plane, and the other relating to radiation in the surrounding 
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elastic space. This method has been introduced by Teisseyre and Yama-
shita (1999). 

For the antisymmetric stress S[in] we apply the balance law, expressing, 
on the one hand, the rotation of force [ ]in nS x  acting on a body element 
due to the antisymmetric stresses (rotational moment of forces per infini-
tesimal arm length corresponding to stress moments), and, on the other 
hand, the balancing term, the acceleration related to angular momentum: 

2

[ ] [ ]2

1

2lki ni lki ki

k n

S
x x t

. (4.27)

Equivalently, using the constitutive law (4.22) we obtain: 

2

[ ] [ ]2

[ ]

1
2

2
S Si

lki ni lki ki

k n k ki

u

x x t x
. (4.28)

In this equations  there appears the dislocation current which can be alter-
natively expressed by the dislocation density and its motion velocity, 
where the latter can be expressed by a difference of stress and stress resis-
tance (Mataga et al. 1987, Teisseyre 2001, Teisseyre and Boraty ski
2003).

Stress resistance is related to rotational deformations of grains (inner 
friction), but let us note that also other geometrical objects, the in-plane 
and out-of-plane deformations of dislocation lines; kinks and jogs (Kocks 
et al. 1975) hamper a motion of dislocations influencing only a coefficient 
at stress resistance (as the density of the objects increases with increasing 
dislocation density and its velocity field). 

Correspondence to the micropolar theory 

In the micropolar theory the motion equation for a stress moment becomes 

, [ ] [ ] ( ) ,S

is s isl sl isl sl im S L N (4.29)

where the isotropic inertia tensor is proportional to a square of the charac-
teristic length; mis,s are the microstress moments. 

When passing to a continuum with the vanishing characteristic length 
and mis,s = 0, this relation becomes only stating that antisymmetric stresses 
depend on the body couples, e.g., on an internal rotation moments in an 
earthquake focus: 

[ ] [ ] 0 ,isl sl isl slS L (4.30)

while the acceleration of an angular motion ( )
S

i  becomes related to a 
higher order moments as presented in the previous sections. 
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Degenerated mechanics 

When the displacement motions vanish, we obtain, respectively, from rela-
tions (4.26) and (4.27): 

2 2
( )

( ) [ ] [ ]2 2 2 2

( )

1 1
, ,

S

lk S S S

sl lki ni l

k s T k n Rls
x x V t x x V t

(4.31)

where 2 2 2T RV V  and the velocities for spin and twist waves are 
equal.

For the spin motion [s] and the bend-twist motion (s) we can write the 
following conservation laws (Teisseyre 2004): 

[ ] 0S

k

kx
     or     [ ] 0S

k mn

kx
mn

and                   S
(s),s ( ) 4S

s mn

sx
mn  , 

(4.32)

where the symbol smn  with the bold indexes means that this antisymmet-
ric tensor is applied without permutation over these indexes. 

The conservation law for the bend-twist motion provides a new quantity 
, which may be related to some source object, called the bending charge; 

its meaning will be considered in a next chapter. 
Relations (4.31) represent the pure bend-twist and spin transverse waves 

with elastic bonds; there is no attenuation under the usual assumptions as 
used for ideal elastic body. This case presents a kind of degenerated me-
chanics; usually, we consider continuum mechanics in terms of the theory 
with displacement field and without spin motion, but here we have a re-
verse situation: we have spin and bend-twist motion and no displacement 
field.
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5.1 Introduction 

We define the degenerated mechanics as that in which the displacement 
motions are neglected and only the spin and bend-twist motions can exist 
as the only independent elastic fields (Teisseyre 2005, Teisseyre et al. 
2005). We consider the spin and twist motions in a homogeneous contin-
uum. This case is opposite to that of the classic ideal elasticity. The appro-
priate constitutive laws support the existence of an elastic response due to 
the rotational deformations of bonds in a lattice network. We introduce a 
system of potentials which would help us to understand the waves and 
geometrical features of degenerated mechanics and its Riemannian geome-
try.

Figure 5.1 presents the bond deformations related to rotation of grains 
for a spin motion and for shears. A geometrical description of the other  type 

Fig. 5.1  Deformation of the bond caused by rotation of grains for a spin motion 
(left) and for shear strains (right)
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of axial deformation, the bend-twist (Teisseyre 2004, 2005), will be given 
at the end of this chapter. The bonds related to rotational deformations can 
be considered to be weaker than those related to elastic rigidity moduli. 

As explained in the former chapter the total rotation is equal to the sum 
of elastic rotation and self-rotation fields. However, when displacements 
vanish, the total rotation, as represented by the antisymmetric tensor, van-
ishes too: 

0 , .T S S

ki ki ki ki ki (5.1)

The antisymmetric part of the self-rotation field, [ ] [ ]
S
ki ki , gives 

rise to a proper rotation motion (spin), while its symmetric part, 

( ) ( )
S
ki ki  , relates to the symmetric axial motion called the bend-twist 

motion. The self-fields related to rotation nuclei S
ki  present the possible 

sources of rotation processes and bring us to a world of asymmetric con-
tinuum. The antisymmetric stresses correspond to stress moments (see 
Teisseyre 2005). 

The bend-twist deformations present the grain deformations caused by 
elastic strain; however, when considering the grains as the “rigid” points of 
continuum, such bend-twist deformation converts to a kind of a 3D space 
curvature, see further on. 

In a degenerated continuum, the asymmetric self-rotation is exactly op-
posite to an asymmetric elastic rotation, S = – .

Vector representations of the spin and bend-twist tensors are as follows: 

[ ] [ ] [ ] ( ) ( )

1

2
, ,s smn mn s s smn mn mn mn (5.2)

where we  introduced a convention  for the  bold  indexes in the skew-
tensor smn  which means that a permutation over these indexes is excluded 

(no sum  over the  bold indexes in ( )smn mn , so  such a  product  of  the 

antisymmetric and symmetric tensors does not vanish). 
The conservation laws for the spin and twist-bend fields can be written 

as follows: 

[ ], ( ),0 and 4s s s s (5.3)

Scalar  field   is  defined  as  a divergence  of  the bend-twist  vector  and  
becomes related to a possible space curvature; such a curvature can repre-
sent a matter or its density field.  
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Considering now the complex field [ ] ( )is s k , we have the conti-

nuity law 

[ ], ( ), [ ] ( )( i )d ( i ) 4 d ,
ikps s p s p k k k k ks I s
V t

(5.4)

where the current Ik is introduced as related to the scalar field . From this 
relation we get: 

[ ] ( ) ( ) [ ]

1 1
4 , 0 .kps s k k kps s k

p p

I
x V x V

(5.5)

The introduced velocity  V  is related to the rotation rigidity modulus µ* as 
follows:

V 2 = 2µ*/

In these equations, when considering the moving frames, we may as-
sume the relativistic way for a sum of velocities and, therefore, when ve-
locity V will approach c, we obtain a complete similarity between the de-
generated mechanics with the formalism of EM theory ( [s] = Bs, (s) = Es,
Ik = Jk, q = , V = c). However, further on we will consider some special 
cases of the degenerated mechanics being distinctly different. 

From relations (5.5) we get the wave equations: 

2 2

[ ] [ ]2 2

1 4
,k k kps s

n n p

I
x x V t V x

(5.6)

2 2

( ) ( )2 2 2

1 4
4k k k

n n k

I
x x V t V x

(5.7)

However, Eq. (5.7) differs from that derived by Teisseyre (2005) from the 
motion equations for the symmetric and asymmetric stresses with the dis-
placement and rotation motions existing together; when reducing the 
above-mentioned motion equations to the case with the vanishing dis-
placement field u = 0 (see Eqs. (35) and (37) in Teisseyre 2005) we would 
obtain the equation different from Eq. (5.7). The explanation of these facts 
is the following: the former equations, supplemented additionally with 
some body angular moments [ ]l  and ( )k , had the following form: 

2

[ ] [ ] [ ]2 2

1
,l l l

n nx x V t
(5.8)
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2
( )

( ) ( )2 2

( )

1

( : no permutation for ) . 

lk

sl k k

k s sl

k

x x V t
ls

ls ls

(5.9)

Equations (5.8) and (5.9) were derived under the assumption of addi-
tional constitutive laws for rotation motion and related stresses, which for 
the case when the displacement field is neglected reduce to the following: 

[ ] [ ] [ ]2 2 ,S S

ik ik ikS (5.10)

( ) ( ) ( )2 2 .S S

ts ts tsS (5.11)

The first of these represents the Shimbo (1975, 1995) law for the antisym-
metric stresses and internal friction related to rotation of grains, while the 
second relates to a strain caused by the grain deformation (the deformable 
grains constituting the continuum, similar to that of the micromorphic 
type). The spin motion (5.8) coincides with (5.6) when putting  

[ ]

4
.l lps s

p

I
c x

We have mentioned that the second relation for the bend-twist motion 
(Eq. 5.9) remains  different in an  essential way  from that derived in the 
present paper (Eq. 5.7). The only reason is the choice of the constitutive 
law for bend-twist deformation and self-stress (5.11), having the same 
form as for the spin field (5.10), as proposed in the former paper (see Eq. 
26 in Teisseyre 2005). However, when constructing a consistent theory for 
the degenerated motion, including the continuity law (5.3), we are forced 
to introduce, instead of (5.11), the new constitutive law for the symmetric 
part of rotation tensor and self-stresses: 

( )
( )

( )

2 tsS

tn

s nts

S
x x

(5.12)

or               ( ) ( ) ( )( )
2 2 .S S

si tn ni ts ni ts
ts

S (5.12a)

Such a relation permits to describe properly the space curvature for a me-
dium with non-deformable volume elements (point rigid-grains forming a 
continuum). 
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With the new constitutive relation (5.12) we obtain a new form of mo-
tion equation  

2
( )

( ) ( )2 2

1
,k

k k

n nx x V t
(5.13)

which for ( ) ,2

4
4k k kI

c
 coincides exactly with (5.7). 

Antisymmetric potentials for rotation motions 

We define a set of 3D vector potentials sA  and ˆ
sA , and the current poten-

tials s and  in the following way (Teisseyre et al. 2005): 

[ ] , ( ) , , , ,
ˆ ˆ, , 0 , 0 ,k kbs s b k k kbs s b s s s sA A A A (5.14)

, , ,

4 1 1
, 4 ,k k kbs s b kkI

V V V
(5.15)

where we can define the vector current potentials s and acccording to 
the relation

, , , ,4 , 0 .ndk k d ndk kbs bd n ss s sI (5.16)

The potentials sA  and ˆ
sA  may  be related  to the  axial  motions  in the 

6D space geometry  see further on. According to the spin and bend-twist 
motion equations (5.5) and (5.3), we shall put  for the potentials defined by 
Eq. (5.14): 

, ,

1 1 ˆ, 0 ,kbs s b k k b bA A A
V t V

(5.17)

, ,

1ˆ ˆ 0 , 0 .kbs s b k b bA A A
V t

(5.18)

As we know, the tensor of the EM field can be constructed from the EM 
vector fields, Bs and Es. In a similar manner we can proceed with the 4D 
tensor fields ; according to definitions (5.2) and (5.5), we can write 
such tensors in the moving frame x  = {xm , iVt} as follows: 
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[ ] ( )i , (5.19)

[ ] [ ] ( ) ( ) ( ) [ ]

[ ] [ ] ( ) ( ) ( ) [ ]

[ ] [ ] ( ) ( ) ( ) [ ]

( ) ( ) ( ) [ ] [ ] [ ]

0 i 0 i

0 i 0 i
i .

0 i 0 i

i i i 0 i i i 0

z y x z y x

z x y z x y

y x z y x z

x y z x y z

Now we may construct the complex antisymmetric tensor for potentials 
A :

ˆi ,A A A (5.20)

3 2 1 3 2 1

3 1 2 3 1 2

2 1 3 2 1 3

1 2 31 2 3

ˆ ˆ ˆ0 i 0 i
ˆ ˆ ˆ0 i 0 i

i
ˆ ˆ ˆ0 i 0 i

ˆ ˆ ˆ i i i 0i i i 0

A A A A A A

A A A A A A
A

A A A A A A

A A AA A A

or

3 2 1

3 1 2

2 1 3

1 2 3

0

0 ˆ, i .
0

0

k k k

A A A

A A A
A A A A

A A A

A A A

(5.21)

According to (5.17) and (5.18), the tensor A  fulfils the conditions: 

,

1
, { , 0}kA

V
(5.22)

leading to the wave equations: 

, ,
ˆ ˆˆ, 0, , 0,n n s s n n s sA J A A J A (5.23)

where

, 2

1 1ˆ, .n ndk k d k kJ J
V V t

(5.24)

When defining the tensor J
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3 2 1

3 1 2

2 1 3

1 2 3

0

0 ˆ, i
0

0

n n n

J J J

J J J
J J J J

J J J

J J J

(5.25)

we arrive at the relation  

.A J (5.26)

Applying the operator sbn bx  we obtain Eqs. (5.6) and (5.7). 

5.2 Transition to Symmetric Tensor of Potentials 

We will present now a way how to arrive at the symmetric tensor of po-
tentials in order to combine it with the 4D metric tensor g .

We introduce the new potentials ˆis s sN N N  fulfilling the additional 
conditions:

, 1 ,1 2 ,2, , ,s skn n kN (5.27)

which  reduce  these  potentials to the 2D form:  NS with S = {1, 2}, as    
N3 = 0. It also follows from (5.27) that

, 1,1 2,2 0S SN N N (5.28)

and we postulate the following bridge relations to the formerly defined po-
tentials:

, , , ,
ˆˆ, .kbs s b kbs s b kbs s b kbs s bN A N A (5.29)

With these conditions, we introduce the natural symmetric tensor of 
potentials in the 4D form: 

ˆ ˆi , i ,N N NN N N Y Y Y (5.30)

2 1 2 1

1 2 1 2

2 1 2 1

1 2 1 2

0 0 0 0

0 0 0 0
.

0 0 0 0

0 0 0 0

N N Y Y

N N Y Y
N Y

N N Y Y

N N Y Y

   (5.31) 
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Similarly, we shall define the 2D vector of current potentials K which 
shall fulfil the following bridge relation to the previously defined current 
potentials s (Eq. 5.22): 

1,3 2 , 2,3 1 , 1,2 2,1 3 ,, ,bs s b bs s b dk k d (5.32)

and, instead of relations (5.24) for currents NJ  and ˆ
NJ , we have intro-

duced the new definitions: 

1,3 2 2,3 1

1 1 1 ˆ, , .N NY Y Y
c V V t

(5.33)

Having these bridge relations we obtain, similarly to (5.22)–(5.24), the 
following  equations  for the 4D  symmetric  potentials  for  spin  and 
bend-twist motions, s = [s] + i (k), and the related current potentials  = 
{ K, 0, 0}: 

, 2

,

1 1ˆ ˆ, ,

1
, .

N N NdK K d N N NN Y N Y
V V t

N N Y
V

(5.34)

We will show, further on, that all these symmetric matrices are the ten-
sors related to the -Dirac tensors. 

Space curvature and complex metric tensor 

The tensor of potentials (5.31) can be written as follows: 

1 2

1 2

0 0 0 1 0 0 1 0

0 0 1 0 0 0 0 1

0 1 0 0 1 0 0 0

1 0 0 0 0 1 0 0

0 0 0 i 0 0 i 0

0 0 i 0 0 0 0 iˆ ˆ
0 i 0 0 i 0 0 0

i 0 0 0 0 i 0 0

N N N

N N

(5.35)
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or

1 2 1 2 1 2
1 2 1 2 1 2

ˆ ˆi i .N N N N N N N (5.36)

The complimentary tensors are: 

3 4

0 0 0 i i

0 0 i 0 0 i 0 0
, .

0 i 0 0 0 0 i 0

i 0 0 0 0 0 0 i

(5.37)

The matrices  fulfil the conditions for the -Dirac matrices for the 
Minkovski-like space:

2 2, i , d d d d d ,m k kx x Vt S x x V t t (5.38)

2 . (5.39)

However, when disturbing these matrices in the way indicated below  

1 1 2 2 3 3 4 4
1 2(1 ) , (1 ) , ,N N (5.40)

we obtain the known relation for the Dirac matrices: 

2 .g (5.41)

Thus, we have the complex disturbances N1 and N2 as the first order dis-
turbances to the metric tensor: 

1

2

1 2 0 0 0

0 1 2 0 0
.

0 0 1 0

0 0 0 1

N

N
g (5.42)

Note that the tensor Y  can be also built with the help of the Dirac ten-
sors:

1 2 1 2
1 2 1 2

ˆ ˆi iY Y Y Y Y (5.43)

and we might be able to consider the Einstein-like relations for our degen-
erated mechanics, but we prefer to avoid such considerations as being, too 
abstract (see Teisseyre 2005, Teisseyre et al. 2005).  

We shall only note that, instead of the 4D presentation, it was also pos-
sible to present our relations in the 2D forms with the tensor  
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2 1

1 2
AB

N N
N

N N

and with the help of the 2D Pauli tensors  

1 2 3

0 1 0 i 1 0
, , .

1 0 i 0 0 1

5.3 Special Case 

As we already metioned, our considerations relate the moving frame        
x  = {xm , iVt}. Let us consider a very special case with vanishing of the 
currents; according to (5.15) this assumption requires to put 

, 0, 0, 0 .k s S (5.44)

For such a case, our equations become
2 2 2 2

[ ] [ ] ( ) ( )2 2 2 2

1 1
0 , 4 .k k k k

n n n n kx x V t x x V t x (5.45)

For the antisymmetric potentials, we shall change Eqs. (5.14) and (5.15) 
for rotation motions as follows: 

[ ] , ( ) , ,

, ,

ˆ, ,

0 , 4 .

k kbs s b k k kbs s b

k kk

A A
(5.46)

The potential  corresponds to the classic gravity-like potential; the field 
when related to a space curvature can be assumed to be positive-definite.  

When introducing the natural symmetric tensor of potentials as before 
(Eq. 5.31) and the related conditions (5.27)–(5.29), we obtain, instead of 
(5.34), the following equations: 

, 0, 0SN N (5.47)

and, as mentioned above, the complex disturbances N1 and N2 which fit the 
Dirac-type presentation can be combined with the disturbances to metric 
tensor g  (Eq. 5.42); for the scalar of curvature tensor (3D Riemannian 
geometry) we obtain for this special case 
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1 22 2 0 .R h h N N (5.48)

5.4 Conclusions 

The conservation and balance laws for spin and twist fields and the stress-
related equations of motion for symmetric and antisymmetric parts of 
stresses can be treated as source functions describing the spin and twist 
processes accompanying the fracture processes. For the related rotation 
waves, of spin and twist type, there is no attenuation as for the ideal elastic 
waves; these motions are accompanied by the related rotational vibration 
of the points of continuum. 

The degenerated continuum mechanics leads to deformations of the 
Euclidean space into a Riemannian one and can be described by the com-
plex equations similar, in the form, to that for the EM fields and may, 
when assuming the special case of the theory, describe also the classic 
gravity. 

With a new constitutive law joining the self-rotations with asymmetric 
stresses, we can evade an influence of the Hook law, which in the ideal 
elasticity rules out an existence of the rotation waves, even in a homoge-
neous elastic continuum. Thus, it is not true that in a homogeneous elastic 
continuum the rotation vibrations are automatically attenuated and ruled 
out.

An alternative way to introduce the rotation motions, based on a concept 
of the asymmetric continuum with dislocation and disclination densities 
and rotation nuclei, was presented in our former papers (Teisseyre 2001, 
2002, Teisseyre and Boraty ski 2003); here, we show that even in a uni-
form continuum such rotational vibrations and waves exist and are not at-
tenuated in contrast to displacement motion in the ideal elasticity. 

The other important conclusion is that the influence of rotational proc-
esses in earthquake sources outside the fracture is theoretically not attenu-
ated in a homogeneous continuum, unlike in the case of classical ideal 
elasticity, and the related waves can propagate to distant sites. 

Figure 5.2 presents the bending of a flat circuit surface related to a  
bend-twist deformation as limited to the 2D space but with curvature into 
the third direction; this is a simplified illustration for the bend-twist defor-
mation of a sphere becoming affected with a Riemannian curvature and a 
continuum of such points obeys the constitutive law (5.12). An illustration 
of the considered bending  for a 2D continuum is presented in Fig. 5.3. 
This figure relates to the 2D surface with the axial  convexities/concavities 



54 R. Teisseyre, M. Bia ecki, M. Górski 

Fig. 5.2  The bending of a flat circuit surface into the perpendicular direction: sim-
plified illustration for the deformation of a sphere affected by a Riemannian curva-
ture 

oriented along the perpendicular axis; in a reality we shall apply such a 
scheme to the 3D space obtaining the bending deformation forming the 
Riemannian curvature. Such a curvature vanishes for Yk = 0 and  = 0. 

In 3D, similar bending-type deformations might be considered for a lat-
tice with two different types of the alternating nodes representing the op-
posite ions. A bending deformation caused by an electric field will appear 
on a surface as the alternating knob-convexities and socket-concavities. A 
slightly different effect will appear when considering an elastic deforma-
tion in a lattice with two different types of the alternating nodes character-
ized by the bonds of different elastic moduli; the respective bendings will 
appear on a surface with the knobs/sockets (convexities/concavities) of dif-
ferent intensities in an alternating way. 

Our relations present a new approach  for obtaining the Riemannian   
description of geometrical deformations related to the bend-twist motions. 

Fig. 5.3  A continuum subject to deformations with axial convexities/concavities 
as presented in Fig. 5.2; deformation such a 2D surface is a simplified illustration 
of deformation of the 3D space 
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6.1 Introduction 

In Chapter 4 we have considered rotation motions related to dynamical 
processes in a homogeneous continuum, and here we will study deforma-
tions of rotational type related to a structure of defects in the elastic con-
tinuum. A defect distribution may include, among others, the dislocation 
and disclination densities and rotation nuclei. We take into account two 
kinds of rotation nuclei as related to the two approaches to the definition of 
the twist-bend tensor. In this theory, the elastic and self-fields of stresses 
and strains become asymmetric, while the total fields remain related to 
displacement field as required by the compatibility conditions. However, 
the tensor of incompatibility becomes asymmetric. 

The antisymmetric stresses play a role of stress moments. We derive the 
dislocation stress relations and the equations of motion for the symmetric 
and antisymmetric parts of stresses. Special attention is paid to spin and 
bend-twist motions. 

After Chapter 4 we repeat that according to the Kröner method (Kröner 
1981), the elastic strains, rotations and distortions in a continuum with 
defects can be expressed as a difference between the total and self-fields:

T S ,E E E
T S , (6.1)
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                         T S , T S.S S S

The elastic strains, rotations and stresses become asymmetric and the re-
spective deviations are mutually compensated: 

S
[ ] [ ] 0 ,E E S

( ) ( ) 0 , S
[ ] [ ] 0 .S S (6.1a)

In our approach, the asymmetry of fields follows from the notion of an-
tisymmetric stresses introduced by Shimbo (1975, 1995) and Shimbo and 
Kawaguchi (1976) and related to the friction processes and rotation of 
grains. Fracture processes develop usually along the main fault plane; 
hence, there appears the initial asymmetry of the fracture pattern (Teis-
seyre and Kozak 2003); due to friction, the rotation of grains adjacent to 
the main slip plane gives rise to the antisymmetric part of stresses and the 
bend-twist deformations. 

We define the self-rotation tensor  by deviations from the total rotation: 

,S

sn sn       .T S

sn sn sn sn sn (6.2)

In our former papers (Teisseyre 2001, Teisseyre and Boraty ski 2002) 
we introduced the following definition of the twist-bend tensor: 

,
T

mk
mq ksq

s

T

x
(6.3)

where again the total field splits into the elastic and self parts 

.T S

mq mq mq (6.4)

The above definition differs from that introduced earlier by Kossecka and 
DeWitt (1977) and related to gradient of the rotation vector 

1

2
.

T T
qT ns

mq nsq

m mx x
(6.5)

Their definition led, in direct calculations, to vanishing of both the Frank 
vector (Kossecka and DeWitt 1977) and the disclination density. 

These two definitions, (6.3) and (6.5), may describe two different types 
of rotation nuclei; Kossecka and DeWitt’s definition directly leads to the 
pure rotation nuclei only, while Teisseyre’s definition describes nuclei 
which can undergo the rotation and bend-twist vibrations and includes the 
non-vanishing  Frank vector and disclination density. 

The total fields related to these two definitions coincide (apart of the 
sign):
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T T

mq mq (6.6)

hence, we can combine these two kinds of rotation nuclei, putting 
1.a b  We obtain 

T T
qT T T mk

mq mq mq ksq

m s

a b a b
x x

(6.7)

or

,T T T S S

mq mq mq mq mq mq mqa b a b a b (6.8)

where for the material parameters a and b we have 1, 0a ,
0,1b ; for b = 0 and a = –1 we get Kossecka and DeWitt’s contin-

uum (Kossecka and DeWitt 1977), while for a = 0 and b = 1 we have Teis-
seyre’s continuum (Teisseyre 2001). 

The incompatibility tensor splits into symmetric and antisymmetric 
parts; for the symmetric part we write the classical forms (Kossecka and 
DeWitt 1977):  

2 2
( )

( ) ,
S

mn (mn)

ij ikm jtn ikm jtn

k t k t

E E
I

x x x x
(6.9)

( )

1

2
,qk pk

pq pmk pq qmk qp

m m

I
x x

(6.10)

where and are the dislocation and disclination densities, as introduced 
in the next section. 

In the elastic continuum with rotations nuclei we introduce the bonds for 
point rotations by assuming after Shimbo (1975 and 1995) the antisymmet-
ric stresses related to the friction processes, 

[ ] [ ] [ ] [ ] [ ]* *

1 1
,

2 2
S S S

lk lk lk lk lkE S S (6.11)

where *  is a rotation rigidity modulus. 
Similarly, we assume for symmetric parts (cf. Eq. 5.12): 

( ) ( ) ( )* ( )

1
,

2
S

ni ts ni ts si tn ts
S (6.12)

Hence, combining (6.12) with (6.11) we obtain: 

S S
mn mn mnE  . (6.13)
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In analogy to relation (6.9), we put for the antisymmetric part of the in-
compatibility tensor:  

2 2
[mn] [ ]

[ ] .
S

mn

ij ikm jtn ikm jtn

k t k t

E
I

x x x x
(6.14)

Our considerations, related to the defect distribution, dislocations, dis-
clinations and rotation nuclei, contain some partial results presented by 
Kossecka and DeWitt (1977), Teisseyre (2002), Teisseyre and Boraty ski
(2002, 2003), but some modifications and corrections have been necessary. 

When deriving the equations of motion, we follow the approach of Teis-
seyre and Yamashita (1999) and Teisseyre (2001); the equations of motion 
split into the symmetric and antisymmetric parts, the latter prevailing on 
the fracture plane. 

6.2 Defect Density Fields 

Following Kossecka and De Witt (1977), we define the total disclosure 
and twist along a closed circuit (the Burgers vector and the Frank vector) 
as related to the symmetric part of plastic/self strain and self twist-bend 
tensors:

( ) d ,S S

l kl lqr kq r kB E x l d .S

q kq kl (6.15)

From (15), the dislocation and disclination densities become 

( ) ,
S

kl S

pl pmk klq mq

m

E

x

d ,l pl lqr pq r pB x s

(6.16)

,
S

kq

pq pmk

mx
      d .q pq ps (6.17)

Further, we obtain 

( ) .
S

kl S S

pl pmk pl qq lp

m

E

x
(6.18)

From the definitions of the twist-bend tensor (6.6) and (6.7) it follows that: 
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– for the elastic part 

1

2
,ns mk

mq mq mq nsq ksq

m s

a b a b
x x

(6.19)

– for the self-part 

1

2
.S S S ns mn

mq mq mq nsq nsq

m s

a b a b
x x

(6.20)

From these relations and with the help of (6.12) and (6.13) we obtain the 
following formulae for dislocation and disclination densities: 

[ ]

( ) ,

qkkl

pl pmk pl qmk

m m

kllk
pmk pmk

m m

a b
x x

b
x x

(6.21)

2

,ks
pq pmk qns

m n

b
x x

0 ,
S S

pl qq lp

p l px x x
(6.22)

with the conditions 

0pl

lpq pq

px
        and        0 .pq

px
(6.23)

We shall note that, as we have mentioned above, in Kossecka and 
DeWitt’s continuum the direct computation leads to vanishing of disclina-
tion velocity; hence, Kossecka and DeWitt (1977) have further assumed 
that spin velocity w differs from the time derivative of rotation: w .
This approach and the assumption that the self twist-bend tensor S

mq  is 

not equal to S

q mx , leads to another definition of disclination density 

rate ; however, further on, we follow our simple approach in which 
w = .

Returning to the expressions for the incompatibility tensors, the sym-
metric (6.10) and antisymmetric (6.14), we can now write 

( ) [ ]

( )
.

S S

qk kq kq

pq pmk pmk

m mpq pq

I
x x

(6.24)
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From the compatibilities for the total fields (see: Kossecka and DeWitt 
1977, and Teisseyre 2001) we arrive at deviations for the self-fields which 
help us to define the related currents; we obtain 

– for the dislocation current 

( ) ( )

( ) [ ](1 ) ,

S
Sl

kl kl kl kls s

k

S

l
kl kl

k

J E b a
x

b a
x

(6.25)

where, according to (6.13), ( )
S

klE  is related to  the introduced bend-twist 

motion; 
– for the disclination current 

( ) [ ] .sk kskn
kq nsq qns nsq

s n n

Y b b b
x x x

(6.26)

The self-twist motions are the sources of disclinations and contribute to 
the formation of dislocation fields. From these relations, there follow the 
conservation laws: 

0 ,kl
pl pmk pmk klq mq

m

J
Y

x
(6.27)

2
( ) 0 .kq ks

pq pmk pmk qns

m m n

Y
b

x x x
(6.28)

The continuity relations are very similar to those obtained by Kossecka 
and DeWitt (1977), except of the last term in Eq. (6.28). 

As to the dislocation current, we may also estimate it independently; ac-
cording to Teodosiu (1970) and Teisseyre (2001) we obtain 

,pk qmk qp mJ c V (6.29)

where V is the dislocation flow velocity. 
Several attempts have been made to estimate such a velocity. Using the 

expression derived by Mataga et al. (1987), we obtain the following equa-
tion for the dislocation density flow: 

2 2
,

( )

ql qlkl
m qmk

kl

S R
V

S R R
(6.30)
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where S is the stress field; R is the resistance stress, cB = bR (B is the drag 
coefficient, b is the Burgers vector of dislocation), m and Vm = m/c are, 
respectively, the dislocation velocity and relative dislocation velocity with 
respect to the shear wave velocity. 

6.3 Dislocation–Stress Relations 

For incompatibility tensor we have two equivalent expressions: the one 
given by Eq. (6.24) and the other obtained from the stress-strain relations 
(the classical relation for symmetric stresses and Eq. (6.15) for the anti-
symmetric stresses with the Poisson ratio ):

( ) [ ]* 1
.

kl kl kl ii

pq pmk qnl

m n

v
S S S

v
I

x x

(6.31)

Comparing this expression with (6.24) for the state of equilibrium we can 
derive from the dislocation-stress relations (cf. Teisseyre 2001; in the pa-
per by Teisseyre 2002, a similar derivation procedure is presented sepa-
rately for the screw and edge dislocations; however, in the formula for 
screw dislocations the term S(kl) has been erroneously omitted): 

( ) [ ]* 11 1

2 2

kl kl kl ii

sk tt sk snl

n

v
S S S

v

x
  , 

(6.32)

– for screw dislocations 

( ) [ ]*1
 ,     

kl kl

sk snl

n

S S

s k
x

(6.32a)

– for edge dislocations 

( ) [ ]* 11
 ,    s

2

kl kl kl ii

sk snl

n

v
S S S

v
k

x
. (6.32b)
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6.4 Equations of Motion 

6.4.1  Symmetric stresses 

The right-hand side of the equation of motion in a continuum with defects 
can be expressed by a difference between the total and self accelerations 
(Kossecka and DeWitt 1977): 

,lk l

k

S
x t

,T S

l l l
t t t

(6.33)

where stresses are understood as the symmetric ones. 
Plastic velocity S is related to the dislocation velocity, but its sym-

metrized space derivatives may differ from the rate of plastic strains. Tak-
ing the space derivative of this relation and symmetrizing the result we can 
arrive at 

2

( ) ( )2

( ) ( )

T S

lk ls l

k s sls ls

S E
x x t t x

and with the help of (6.1) and (6.25) we get 

2

( ) ( ) ( ) ( )2

( )

,lk sl sl sl

k s ls

S E J b
x x t t

(6.34)

where the right-hand side contains the propagation and diffusion terms; the 
dislocation current can be estimated from relations (6.29) and (6.30) while 
the dislocation density from (6.32). 

These equations can be expressed by displacement motion and self rota-
tions; from 

2

( ) ( ) ( ) ( ) ( )2

( )

( ) (1 )T S T

lk lk ls sl sl

k s ls

S S E J b
x x t t

we obtain 

( )*

2
0

( ) ( ) ( )2

( ) 2

(1 )
2 2

slk l

l s k k k s k k

Sl s
sl sl sl

s l

u u

x x x x x x x x

u u
J E b

t x x t
(6.35)
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and for vanishing of displacement motion and other self-fields we obtain 
for the bend-twist waves (cf. Chap. 4): 

2
( )*

( )2
2 (1 ) ,sl

sl

k k

b
x x t

*
2 2

.
(1 )TV

b
(6.36)

These equations lead further to a classical displacement-type equation with 
additional source function. The waves presented have no attenuation under 
the assumptions used for the ideal elastic bodies. 

6.4.2  Antisymmetric stresses 

For antisymmetric stresses we shall apply the balance law expressing an 
equality of the change of rotation of force acting on a body element equal 
to the acceleration of rotation 

2

[ ] [ ]2
.lki in lki ik

k n

S
x x t

(6.37)

Another form of this equation determines the relation of the total rota-
tions with field [ki]

2
*

[ ] [ ]2
4 2i k

ik ik

n n k i

u u

x x t x x
. (6.38)

For vanishing displacement motion we obtain for the spin waves the for-
mula, presented already in the former chapter: 

2
*

[ ] [ ]2
2 ik ik

n nx x t
 ,

*
2 2

RV  . (6.39)

6.5 Discussion 

We have shown that a defect continuum with dislocations and disclinations 
may lead to structural deformations of rotation type; in a dynamical case 
these deformations contribute to formation of spin and bend-twist waves. 

When assuming that self-rotation fields are the only sources of distor-
tions, it seems possible to estimate the counterparts a and b in the twist-
bend tensor. However, this is not exactly true taking into account an arbi-
trary definition of the bend-twist modulus as equal to the rotation rigidity 
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modulus in Eq. (6.12). Nevertheless, studying differences of the bend-twist 
wave velocities (see: Eq. 6.36) for different samples – in the sense of dif-
ferent deformation history, and consequently different defect content – we 
may relate such velocity differences to the different b-values.
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7.1  Introduction 

We outline some fundamental principles of description of defects in crys-
tal-like media in terms of a discrete approach instead of widely used con-
tinuous one. There are at least two sorts of general arguments supporting 
the discrete version of the theory of defects. One is connected with physi-
cal nature of crystals, which is evidently discrete. Continuum-medium 
crystal model is a very useful theoretical construction, but it is a kind of 
idealization. This fact has to be reflected in mathematical structure of the 
theory. Second, more practical reason, comes from recent significant 
growth of interest in discrete mathematics and its application in different 
areas of mathematical physics, quantitative biology and computer sciences. 
As a result, a lot of new techniques were developed and many obstacles 
were overcome. Our aim here is to demonstrate a possibility of applying 
some of them for description of crystal-like media. 

In the sequel of this section we introduce basic concepts and point out 
genesis of our approach. In Sect. 7.2 we introduce notion of discrete de-
scription and discuss some differences between it and its continuous coun-
terpart. Section 7.3 is devoted to derivation of a discrete version of Wein-
garten theorem. In the last section we outline some prospects and 
consequences of this approach.  

The theory of defects (e.g., Kröner 1981) describes physical properties 
of bodies with internal stresses caused by disturbances in ideal, regular and 
ordered structure of the medium. Nowadays this theory is well established 
and found many applications, including those in seismology (Takeo and 
Ito 1997) and geodesy (Yamasaki and Nagahama 1999a). 

Mathematical structure of fundamental equations of the theory of de-
fects is similar to that of the Einstein-Cartan theory of gravitation (Traut-
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man 2006, Hehl et al. 1976, Hammond 2002). A comprehensive compari-
son of these theories is presented by Ruggiero and Tartaglia (2003). A 
meaningful extension of Einstein-Cartan theory in comparison to the clas-
sical Einstein theory of gravitation is to study properties of space-time ge-
ometry with nonzero torsion. This makes it attractive for description of ro-
tational effects. One of our prospective aims is to transfer some results into 
such a general framework (Teisseyre 2002, 2005, Teisseyre and Bia ecki
2005).

The theory of defects as a rule is formulated within the continuum 
framework which is usually claimed to be good for geometrical description 
(eg. Yamasaki and Nagahama 1999b). This continuum could be obtained 
from crystalline-like lattice by a limiting process, in which ”atoms” are 
split into smaller ones, so that the overall structure is preserved, but the lat-
tice base is reduced. Such a procedure allows a proper definition of mass 
and defect densities, with the preservation of crystallographic directions. 

The assumption that the lattice constant and other variables could be in-
finitesimally small provides a significant simplification in many cases. For 
instance, it is possible to obtain in this way a simple characterization of the 
Frank vector. The crucial point is that only infinitesimal rotations could 
obey simple addition law, contrary to non-Abelian nature of rotation group 
for finite angles. This result strongly depends on infinitesimal size of de-
fects and the rejection of this assumption leads to complicated formulas.  

On the other hand, one can recently observe a remarkable development 
of discrete techniques in mathematical physics. In the theory of integrable 
systems (called also the soliton theory) it is well known that a single dis-
crete nonlinear equation ”contains” many important nonlinear partial dif-
ferential equations, which means, they can be derived from this equation 
taking a suitable limit (Hirota 1981). Nowadays, also discrete geometry, 
developed in close connection with integrable differential equations, 
proved to provide fruitful concepts and has their counterparts in classical 
differential geometry. (For a recent state of theory of discrete integrable 
systems see Grammaticos et al. 2004.) 

It is worth mentioning the important terminological difference between 
discrete and ultradiscrete objects. For the first ones, the independent vari-
ables are discrete, but the dependent ones are continuous. The ultradis-
crete, or completely discrete systems, deal with all variables being discrete, 
and are called cellular automata. (For integrable ultradiscrete systems see, 
for example, Tokihiro 2004, Doliwa et al. 2003, Bia ecki and Doliwa 
2005.) Notice that the construction of completely discrete theory of de-
fects, allowing only for discrete positions of atoms, is also possible in 
principle.
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The motivation towards a discrete theory of defects is to transfer the de-
velopment of discrete techniques from mathematics and mathematical 
physics to material science and to describe crystal-like media as funda-
mentally discrete objects. 

7.2  Towards a Discrete Description 

An idea of a geometric description of crystals with defects comes from 
mapping an undeformed medium to a deformed one.  Denote by 

3( , , )i j kx x xx   the Cartesian coordinates of a material point P of un-

deformed body. After deformation, point P has coordinates x + u(x),
where u(x) is the displacement field which describes the amount and direc-
tion of the deformation. So, in a continuous case, we have 

( )x x u x  , 

where prime indicates the coordinates after deformation. Lets focus our at-
tention on a discrete case. If we denote position of lattice point 

3
1 2 3( , , )P n n n   by  3( , , ) ( , , )i j k i j kn n n x x xnx x , one could ex-

pect, by analogy, 

( )n n a nx x u x  . (7.1)

However, the meaning of this relation is not clear in the presence of de-
fects. Assume that atoms at point P were removed leaving a vacancy. 
What is the value of the displacement field ua(xn) for P in this case? Is it 
meaningful what is its position after deformation? If we assume that atoms 
which build a crystal structure are indistinguishable, as vacancies are, we 
have troubles with the meaning of ua(xn). In such a case, an additional 
definition is required. In the continuous case, one can claim that the set of 
singular points of this sort is of measure zero and “neglect” them. But 
when every small value is finite, the situation requires more precise treat-
ment. If we intend to describe the defects, we cannot use the above relation 
without modifications.  

Let us discuss the introduction of a Burgers vector. Denote by B0 a close 
circuit consisting of N atoms in undeformed medium, as schematically de-
picted in Fig. 7.1. When mapped into disturbed medium, the points form a 
contour which is no longer closed. The failure to close the circuit is given 
by lattice vector b called local Burgers vector. We assume the definition in 
which this vector points from the beginning to the end of circuit B. Then 
we have 
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Fig. 7.1  Schematic diagram of N-atom circuit before and after deformation 

0 andn nx x b

where we indicate that sums are taken for N subsequent atoms forming cir-
cuits B0 and B, respectively. However, to obtain 

,

( )a n

B N

u x b  , (7.2)

in a way consistent with Eq. (7.1), we cannot assume that atoms along B
after vacancy are shifted up for situation presented in Fig. 7.1. In that case, 
each shifted atom apart from small disturbance ua(xn) adds lattice spacings 
l0. If we consider situation where  ua(xn) = 0  for every point of B (or there 
is mirror symmetry in crystal with the plane containing the plane of defects 
and the last point of B is apart from the plane), then we see that b should 
be of the order of l0 for one vacancy.  

We are forced to assume the rule: when crossing the defect point we 
have to add (or subtract) a lattice spacing l0 and measure ua(xn), starting 
from the next point along the Burgers circuit. This agrees with indistin-
guishability of atoms in our model. So, instead of Eq. (7.1) we have 

( ) ( ) : ( )n n D n a n n nx x x u x x u x  , (7.3)

where

0

0

0  for no defects

( ) for vacancy  

for interstice
D nx l

l

and l0 pointed in the direction we cross a defect. Notice also that Eq. (7.2) 
cannot be derived from (7.1) by taking sum of both sides without specify-
ing the meaning of these sums.  
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The described situation is, in a sense, quite typical, when constructing 
discrete models. Some difficulties (or differences) could “disappear” when 
taking a continuum limit. As a rule, there could be many continuous coun-
terparts of a given discrete system, depending on specific settings of taking 
the limit. From that point of view, discrete cases are basic and allow to 
control the meaning and mutual dependencies of different parameters of 
the model. 

7.3  Discrete Weingarten Theorem 

To demonstrate a possibility of realizing discrete description of defects in 
crystal-like materials with cubic structure, we will derive a discrete version 
of the Weingarten theorem. Notice that lattices with non-cubic structures 
are also under investigation (see Zakrzewski 2005). In this section we will 
transfer to a discrete case the result described by Kleinert (2006). 

Consider a crystal with a half plane layer of lattice sites removed; the 
configuration is schematically presented in Fig. 7.2. The positions of 
points are given by  

( , , ) ( , , ) ( )i j k i j kn n n x x x xx  . 

Denote by T  a shift by one in variable , for example 

( , , ) : ( , 1, )j i j k i j kT n n n n n nx x  , 

and by 
1 , , ,T i j k  , 

Fig. 7.2  Deformation of lattice with a half plane layer removed 

  j = j2

  j = j1
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a discrete counterpart of a first derivative in the variable n . In the follow-
ing we will omit dependent variables if they have the same value in all 
terms of equation. Let us introduce also the symmetric strain field 

1

2
:u u u

and the local rotation field  

1

2
:w u u

which is antisymmetric. 
Although the removed layer of atoms has broken the regular structure of 

crystal, we assume that in the lattice rearranged in this way both sides of 
cutting surface fit to each other. This implies there is no “jump” in strain 
and its first derivative when crossing the rearranged surface. So, the physi-
cal requirement for the crystal structure along a cutting surface is reflected 
in the following conditions: 

0Du  , (7.4)

( ) 0D ku  , (7.5)

where D stands for direction k crossing the singular surface. We would 
like to point out that the noncommutativity around the defects 

or equivalentlyi j j i i j j iTT T Tx x x x

is a source of nonzero curvature and torsion (see Kleinert 2006). 
Let us investigate the following expression 

1 2

1 1 2 2

( ) ( )

: ( ) ( ) ( ) ( ) ,

D i j D i j

i i i i

u n j u n j

u j u j u j u jx x x x

where x
+ stands for the upper half space and x– for lower one. It could be 

rearranged to 

2 1 2 1( ) ( ) ( ) ( ) ,i i i iu j u j u j u jx x x x

and then expressed by sums along the contour lines below C  and above 
C  cutting surfaces 
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2 2

1 1

1 1

: :

j j

j i j i

C j j C j j

u u  . 

Using decomposition into symmetric and antisymmetric parts, we get  

2 2

1 1

1 1

: :

j j

ij ij ij ij

C j j C j j

u w u w  . 

If for simplicity we assume  nj(j1) = 0  then 

2

1

1

:

j

ij

C j j

w

could be written as 

2

1

1

:

j

ij j

C j j

w j  . 

Integrating this expression by parts (see the Appendix) we arrive at 

2
2

1
1

1

0
:

( )
j

j

ij j j j j ijj
C j j

w n T n w  . 

Using this result, we can write 

1 2( ) ( )D i j D i ju n j u n j

in the form 

2 2

1 1

2 2

1 1

2

1

1 1

2 2 2 2
: :

1 1

2 2 2
: :

1

:

( ) ( ) ( ) ( )

( ) ( ) ( )

( ) ( )

j j

ij ij j j j ij ij ij j j j ij

C j j C j j

j j

ij ij ij j j j ij

C j j C j j

j

D ij j j D j ij

C j j

w j n u T n w w j n u T n w

w j w j n u T n w

u T n w .

Since Ti and Tj commute for the undisturbed part of crystal, we obtain 

( )

.
j ij j i j ij

j i j j ij i j j j ij i jj j ii

w u u

u u u u u u

Taking into account the physical assumptions, i.e. Eqs. (7.4) and (7.5), 
we conclude that this integral is equal to zero.  
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In general, when we allow summation not only along straight path of 
C , we obtain more generally  2 kwij = k( iuj jui) = ( i kuj + i juk) + 
( j kui + j iuk) + ( k i i k)uj ( k j j k)ui + ( j i i j)uk. With 
commutativity assumption we arrive at  kwij = ( iukj + juki).

As a result, we obtain that for the difference of “jumps” between two 
arbitrary points the following relation is valid 

2 2(2) (1) (2) (1) ( ) ( )D i D i j j ij iju u x x w j w j  . (7.6)

Introducing the rotation matrix  

2 2: ( ) ( )ij ij ijw j w j

and the rotation vector  

1

2
:k ijk ij  , 

where ijk  is the antisymmetric symbol of Levi-Civita, we can rewrite 

Eq. (7.6) in the following form: 

(2) (1) (2) (1)D Du u x x  . 

This is a discrete version of  Weingarten’s Theorem. The “jump” of the 
displacement field crossing the cutting surface can be only a constant vec-
tor plus a fixed rotation.  

7.4  Prospects 

As we have shown in this introductory presentation, it is possible to obtain 
the equations of continuous theory of defects in a discrete way. Not supris-
ingly, the relations are exactly the same in both cases. This is not a disad-
vantage of the discrete approach; in contrary, the first test showed that it 
retains all results, which proved to be in agreement with measurement and 
were successfully applied in material sciences. Our hope and motivation is 
that the discrete version could deal with new phenomena, but reasonable 
discussion of this topic is impossible at such early stage. Also, it seems 
very hard to predict applications of this preliminary version of the theory.  

However, there are some general guidelines where to look for advan-
tages of this approach. As mentioned in the introduction, the  discrete ap-
proach proved its unifying and simplifying potential in the theory of inte-
grable systems. So we expect a similar result in the theory of defects. 
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Discrete theories, with their lack of infinitesimally small amounts, are 
clear to understand and control, which makes them more comprehensive 
and promising in education. And last but not least, discrete models are 
suitable for numerical implementation and could be directly used for com-
putational needs of material engineering and other scientific disciplines 
applying the theory of defects, including Earth sciences. 

Appendix: Discrete Integration by Parts 

The discrete version of the integration by parts theorem could be derived 
in the same way as its continuous counterpart. We start from the Leibnitz 
rule for differentiation of the product of two functions:  

( )u v u T v u v T u v u v  . 

Performing sums, one can easily obtain  

:

( ) ( )( ) ( )( )
end

beg

x

end beg

C x

u v u v u vx x

and for the other side 

: :

end end

beg beg

x x

C x C x

u T v u v  . 

Joining the above expressions we arrive at the desired result. 
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8.1  Introduction

Usually when searching for the fault slip solutions we rely on classical 
elasticity with the friction constitutive laws introduced according to the 
experimental data. In spite of the fact that the obtained equations do not 
theoretically apply to elastic continuum that includes any distribution of 
defects as objects with their own stress field, the obtained results well 
explain the observational data. 

Instead we may consider an elastic continuum with asymmetric stresses 
and defects (Teisseyre and Boraty ski 2003); such an approach permits to 
study the defect interactions and elastodynamic solutions describing a slip 
propagation along a fault and related seismic radiation (Teisseyre and 
Yamashita 1999). 

As explained in the former Chapters 4–6, an elastic asymmetric con-
tinuum with defects and rotation nuclei can be analized with the help of the 
Kröner method with the elastic strains and stresses, E and S, and corres-
ponding self fields, ES and SS forming together the total strain and stress 
fields E

T = E + ES, S
T = S + SS. In this method, we maintain the same 

type of the stress-strain constitutive relation – that of the ideal elasticity 
relation. The self fields are related to the internal stresses and their action 
can replace the role of friction constitutive laws (Teisseyre 2004). 

In this chapter we will consider the motion equations for dislocations 
and disclinations and fracturing phenomena: a process from a glide motion 
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to fracture slip and the subsequent formation of the soliton wave. Our 
consideration will end on a relation between the emitted seismic wave and 
the considered fracturing on a fault plane. 

8.2  Fault and Related Stresses

Our problem concerns a fault seismic zone; its plane is defined by 
y = x2 = 0. Defect accumulation and related induced shears on a fault 
S12(x, z) are described by the antiplane 11, and inplane 31 dislocations; 
hence, there follows the orientation of the other axes (x = x1, z = x3). The 
system is surrounded by the intact rocks under stresses S11, S22, S33. A fault 
plane is defined as that having its rigidity µ0 smaller than its bulk value µ
in the surrounding rocks µ0 < µ. Considering the boundary conditions – 
stress continuity as well as their tangent derivatives – we get on the fault 
boundary 

0 0 0 0
(8.1)

defining a dislocation density jumps up to the greater value along a fault 
zone.

In 1D (x, t) systems a dislocation density is given as gradient of stresses 
S , but a dislocation density is related also to slip  on a fault plane; both 
relations lead to the direct relation between slip and local stress on fault: 

1
,S

x

1
,     hence ,S

where  is the friction,  is a certain reference thickness. When computing 
a dislocation density we count the dislocations comprised in a layer of 
such a thickness.

8.3  Evolution Equations for Dislocations and 
       Disclinations 

The defect conservation laws derived in Chapter 6 do not include the crea-
tion and annihilation processes:  

dislocation density:    0 ,kl
pl pmk pmk klq mq

m

J
Y

x
(8.2a)
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disclination density:    
2

( ) 0 ,
S

kq ks

pq pmk pmk qns

m m n

Y
b

x x x
(8.3)

where J and Y are the dislocation and disclination currents, respectively. 

With [ ]
S

ks

kq nsq

n

Y b
x

,          and          
2 S

ks
pq pmk qns

m n

b
x x

         

(b = {0, 1}; see Chap. 4) the relation (8.3) presents the identity. However, 
the self-rotation field S can be treated as a source term as it may appear 
due to internal dynamic processes, like earthquakes (cf. Chap 4). 

Thus, we can assume that the last term in (8.2a), as the source function 
term, may include the creation and annihilation of the dislocation pairs; the 
relation (8.2a) may be written simply as (Teisseyre 2001) 

,kl
pl pmk pl

m

J

x
(8.2b)

where  is a source term, playing a similar role as body forces in usual 
equation of motion.  

The stress-dislocations relation in our system can be written as follows 
(cf. Chap. 6, Eq. 6.32a):  

11 (12) [12]

1 1
,S S

z z
(8.4a)

where the line dislocations are assumed to be parallel to the x-axis; µ* is 
the rotation rigidity.  

For the inplane case with the we obtain 

31 (12) [12]

1 1
,

2 2
S S

x x

(8.4b)

with the line dislocations parallel to the z-axis.
These relations permitts to treat the antiplane and inplane cases in a 

similar way.  

8.4  Motion Equations: Fault and Radiation Parts  

Following the results given in Chapter 6, the stress motion equations (6.35) 
become:  
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2

( )

( )

2 2

( ) ( ) ( )2 2

2

.

ks ii ks

k l ls

S

ls ls ls

E E
x x

E J b
t t t

(8.5a)

A dislocation current and the self-rotation field is practically limited to the 
fault zone; thus, we can write

2

( ) ( ) ( ) ( )

( )

,T S

lk ls ls ls

k s ls

S E b J
x x

(8.5b)

where for dislocation current (Chap. 6, Eq. 6.29) and velocity in a dynamic 
range (6.30) we have  

( )( )mlq qs ls mls
J c V

( ) .ip jp

m mij

ip

S R
V

R
(8.6)

From (8.6) we obtain 

(12)
(12) [12]12

(12) [12]

1

2
2abs

abs .

S

S

S R
J c E

R z z

E
x x (8.7)

While for the basic equations for antisymmetric stresses we write after 
(6.35):

2 2 2

[12] [12] [12]2

2 2

[12] [12]2 2

2

.

S

k k k k

T S

S
x x x x t

t t
(8.8)

Motion equations in terms of strains become:  

2 2 2

11 (12) 112 2
1 1 1 2

2 2 ,iiE E E E
x x x x

(8.9a)

2 2 2

22 (12) 222 2
2 2 1 2

2 2 ,iiE E E E
x x x x

(8.9b)
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2 2

33 332
3 3 3

2 ,iiE E E
x x x

(8.9c)

2 2 2 2

(12) 11 222 2
1 2 1 2 1 2

(12) (12) (12)

2

.

ii

S

E E E E
x x x x x x

E b J
t

(8.9d)

The last equation can be written as

2 2 2 2

(12) 11 222 2
1 2 1 2 1 2

(12) (12) (12) [12]

2

(12) [12] (12)2

2

2abs

abs .

ii

S

S S

E E E E
x x x x x x

E c E E
R z z

E b
x x t

(8.9e)

The fault plane is defined as

4
0 0( ) 1 exp( ) .y ay (8.10)

Hence, an elastic strain field E can be presented as difference, ET – ES of 
the total E

T field and the self E
S = S strain part, and we identify these 

parts with the fault field E
S = E  and the wave radiation field E

T = E .
Further, we assume that the self strains are only important on a fault plane, 
and that this field shall rapidly extinct outside the fault plane y = 0. Thus, 
we can put

4
(12) (12)

4
[12] [12]

( ) exp ( )

( ) exp ( )

E x z t Dy E x z t

E x z t Dy E x z t
(8.11)

and further:

4

4

4

( ) exp ( ) ,

( ) exp ( ) ,

( ) exp ( ) .

x z t Dy x z t

x z t Dy x z t

J x z t Dy J x z t

(8.12)
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As to other components, we take them for the fault and radiation parts:  

0
11 11

4
11

( ) exp i i i i

exp ( ) ,

x y zE x z t k x k y k z t E

Dy E x z t

0
22 22

4
22

( ) exp i i i i

exp ( ) ,

x y zE x z t k x k y k z t E

Dy E x z t

 (8.13) 

0
33 33

4
33

( ) exp i i i i

exp ( ) ,

x y zE x z t k x k y k z t E

Dy E x z t

0
12 12

4
12

( ) exp i i i i

exp ( ) .

x y zE x z t k x k y k z t E

Dy E x z t

In a fault plane domain (x, z, t), y = 0 the fracturing processes will cause 
the stress changes while a seismic wave radiation will be observed in the 
considered (x, y, z, t) domain. 

From (8.9) in the (x, y, z, t) domain, outside the fault, we obtain:  

2
2 2

1 11 1 22 332
0 ,

2
k E k E E

a
(8.14a)

2
2 2
2 22 2 11 33 1 2 (12)2

2
0 ,

2 2
k E k E E k k E

a
(8.14b)

2
2 2
3 33 3 22 332

0 ,
2

k E k E E
a

(8.14c)

2
2 2

1 2 (12) 1 2 11 222

1
0 ,

2 2iik k E k k E E E
c

(8.14d)

where a and c are the P- and S-wave velocities.

On the fault y = 0, we put c = c0 in the (x, z, t) domain, and we obtain  
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2 2

0 (12) (12)2 2
1

0 (12) (12) [12]

2

(12) [12] (12)2

2 2

2abs

abs ,

S

S S

D E E
x t

c E E
R t z z

E b
x x t

(8.15)

where the relations for other components appear to be independent of (12)E ;

hence, we put 

11 0 ,E 22 0 ,E 33 0 .E

For the inplane motion 

2 2

0 0 (12) (12)2 2
1

2

0 (12) (12) [12] (12)2

2 2

abs ,S S

D E E
x t

c E E b
R t x t

(8.16a)

and for the antiplane motion  

2

0 (12) (12)2

2

0 (12) (12) [12] (12)2

2

2 abs .
z

S S

D E E
t

c E E b
R t z t

(8.16b)

The obtained equations can be written (with (12)E X , and [12]
SG ,

2

(12)2 2
0

1 SF b
c t

  the source terms) as follows:  

2 2

2 2 2
0

1
abs ( ) ,X X B X X G AX F

x c t t x
(8.16a') 

2

2 2
0

1
2 abs ( ) ,X B X X G AX F

c t t z
(8.16b') 

where c0 is the shear wave velocity on a fault plane (µ = µ0).
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The source functions F and G are related to dislocation densities, see 
Eqs. (8.4a) and (8.4b). Probably the source functions F and G cannot be 
given independently; for the final moment of the process, the counterparts 
of the inplane and antiplane motions shall be related to each other on a 
common plane to approch the equilibrium condition div S  0. In other 
words, the counterparts of the inplane and antiplane motions are mutually 
related on a common plane, at least, for a final time moment t t0, when  

0div ( ) 0 .x y z tS (8.16c)

Both motions can occur simultaneously, see Fig. 8.1. 
Assume that an inplane motion occurs first, forming a fractured segment; 

its sides parallel to motion direction become formed with the related screw 
dislocations; we may expect that an antiplane motion might start in a 
neighbouring segment – see Fig. 8.2 (such a sequence can start reversely: 
first an antiplane motion and then an inplane one).  

Fig. 8.1  Fault plane: simultaneous  inplane and antiplane motions 

Fig. 8.2  Inplane motion and induced antiplane motion on the neighbouring faults 

These motions could be separated by some time interval (shock and 
aftershock); the related motions described by one of these equations 
(8.16a') or (8.16b') can start later releasing stresses in an aftershock with 
the final condition (8.16c).  

Of course, these equations can be simply solved separately for the 
inplane and antiplane motions; when putting for the searched function and 
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for the source functions X = X(x, t), F = F(x, t) and G = G(x, t), we arrive at 
the following independent equations:  

–  inplane 

2 2

2 2 2
0

1
abs ( ) ,X X B X X G AX F

x c t t x
(8.17a)

–  antiplane  

( )X X z t       ( ) ,F F z t       and      ( ) ,G G z t

2

2 2
0

1
2 abs ( ) ,X B X X G AZ F

c t t z
(8.17b)

where, e.g., the source functions can be given as proportional to sine 
-terms:  

0 sin ( ) ,G G x Vt     and    0 sin ( ) ,F F x Vt

and respectively:  

0 sin ( ) ,G G z Wt     and    0 sin ( ) .F F z Wt

These equations can be solved numericaly with the assumed intial 
conditions X(x, 0) = sin(x) and for X(x, 0) = x sin(x); some examples of the 
obtained solutions are presented in Figs. 8.3–8.10 in the domains x: {0, },
t: {0, }.

Fig. 8.3  Inplane motion for X(x, 0) = sin x and X(0, t) = 0, X( , t) = t. Left: 3D plot 
X(x, t). Right: plot for X(1.5, t)
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Fig. 8.4  Inplane motion for X(x, 0) = sin x and X(0, t) = 0, X( , t) = t. Left: 3D plot 
t X(x, t). Right: plot for t X(1.5, t)

Fig. 8.5  Antiplane motion for X(x, 0) = sin x and X(0, t) = 0, X( , t) = t. Left: 3D 
plot X(x, t). Right: plot for X(1.5, t)

Fig. 8.6  Antiplane motion for X(x, 0) = sin x and X(0, t) = 0, X( , t) = t. Left: 3D 
plot t X(x, t). Right: plot for t X(1.5, t)
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Fig. 8.7  Inplane motion for X(x, 0) = x sin x and X(0, t) = 0, X( , t) = t. Left: 3D 
plot X(x, t). Right: plot for X(1.5, t)

Fig. 8.8  Inplane motion for X(x, 0) = x sin x and X(0, t) = 0, X( , t) = t. Left: 3D 
plot t X(x, t). Right: plot for t X(1.5, t)

Fig. 8.9  Antiplane motion for X(x, 0) = x sin x and X(0, t) = 0, X( , t) = t. Left: 3D 
plot X(x, t). Right: plot for X(1.5, t)
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Fig. 8.10  Antiplane motion for X(x, 0) = x sin x and X(0, t) = 0, X( , t) = t. Left:

3D plot t X(x, t). Right: plot for t X(1.5, t)

Solutions were obtained with the help of Mathematica Version 5 Pro-
gram. An additional boundary condition for X = 0 is given by X(0, t) = 0. 
The other boundary condition for x =  can also be assumed as X( , t) = 0, 
which will corresponds to the motion presented in Fig 8.1, or we can 
resign from such a restriction allowing further fault propagation as 
presented in Fig. 8.2. 

With the obtained solutions, we can return to the wave equations outside 
the fault (8.14a, b, c, d), where the known solutions on a fault (12)X E

are treated as the boundary/initial conditions for E(12).

8.5  Discussion 

The presented approach helps us to better understand a relation between 
the inplane and antiplane motions; their relation on a common fault 
becomes evident. For the independent solutions in time (shock and 
aftershock), we can take the initial condition for equation describing 
aftershock as that given by the final value of first solution describing main 
shock.

We shall also recall that the space derivatives of the strains are 
proportional to the related dislocation densities. 
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9.1  Introduction 

Tribology is in general the study of adhesion, friction, lubrication and wear 
of surfaces in relative motion. It seems that the more we learn about tribol-
ogy the more complex it appears (Urbakh et al. 2004). Recent advances in 
friction reveal that it plays a major role in diverse systems and phenomena 
which although at first glance seemed to be unrelated are found to exhibit 
common features that are shared by all tribological processes in the fields 
of physics, chemistry, biology, geology and engineering. 

In the explanation of the classical laws of friction, e.g., the static fric-
tion, force is proportional to the load, and even since the early attempts 
(Coulomb 1785) the role played by interactions between asperities at the 
surfaces of solids was emphasized. Furthermore, the idea was put forward 
(Bowden and Tabor 1950, 1964) that the real contact area is very small and 
involves such large stresses that a significant plastification occurs. In sim-
ple words, one may view a material surface as being rough, consisting of 
asperities of different sizes which will deform under pressure. Thus, for 
static friction, in the frame of the so-called adhesion model, the friction 
results from the intermolecular adhesion between two surfaces at the 
points of contact (e.g., see Bowden and Tabor 1950, 1964). The basic as-
sumption of this model is that when placing one surface on top of another, 
the deformation will cease when the total yield pressure of the asperities 
becomes equal to the load of the upper surface divided by the total contact 
area Ac. This area is usually several orders of magnitude smaller than the 
apparent area A, e.g., Ac/A  10-6 (Johansen et al. 1993); thus, even though 
the apparent area A may be macroscopic, the actual contact area Ac can be 
small to such an extent that microscopic randomness may not simply aver-
age out. This is the stochastic element that can result in strong fluctuations 
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of the static friction. Hence, the aforementioned classical friction law, stat-
ing that the static friction force is proportional to the load, holds only in an 
average sense. In the case of dynamic friction, as the velocity increases,
there will be more momentum transfer into the normal direction, producing 
an upward force on the upper surface. This results in an increase in the 
separation between the two surfaces, thus leading to a decrease in the con-
tact area. In the frame of the adhesion model, the decrease of the contact 
area reflects a reduced adhesion, which qualitatively explains the experi-
mental results. An alternative model, which uses the collisions between the 
asperities as the dissipation mechanism, was also suggested. However, in 
spite of their partial success, these two models cannot fully account for the 
observed (non-linear hysteretic) phenomena (e.g., see Section 9.2). Both 
models lead to the following picture: If the fluctuations in the static fric-
tion are indeed determined by surface area and contact area, then the dy-
namic friction should fluctuate for the same reasons. This shows that the 
deterministic friction velocity relations suggested (e.g., see Section 9.3) 
hold only in an average sense. 

Furthermore, there are puzzles even for fully understanding very simple 
cases. For example, take a coin and launch it across your desk, recording 
the distance travelled. Now spin the coin about the axis perpendicular to its 
surface as you launch it; the coin will travel farther, even if we launch it 
with the same initial velocity. The coin will stop moving and stop spinning 
at exactly the same instant (Farkas et al. 2003). The explanation of such 
experiments (e.g., see Halsey 2003 and references therein) may be 
achieved on the basis of the suggestion that the coupled equations, describ-
ing how the spinning motion of the coin and its velocity both decrease with 
time, are highly non-linear (cf. The nonlinear nature of friction in general 
has been reviewed by Urbakh et al. 2004). It is recently shown (Farkas et 
al. 2003) that even when considering a coin, the sliding on a table is not a 
simple system. The frictional mechanics of the coin is governed by mate-
rial phenomena at scales much smaller than the size of the coin. The well-
known laws of friction (i.e., the so-called Amonton’s laws) ignore the exis-
tence of these complex phenomena at smaller length scales entirely, at the 
cost of introducing a highly non-linear description of the macroscopic 
scale of the coin (Halsey 2003). 

Finally, we shortly refer to comment on the reason why several attempts 
have been made to model earthquakes by spring-block systems (with many 
degrees of freedom). Assume that a block resting on a surface is attached 
to a spring, the other end of which is pulled at a constant velocity. It has 
been observed that, at sufficiently slow velocities, the sliding process is not 
a continuous one, but the motion proceeds by jerks; the contact surfaces 
“stick” together until (as a result of the gradually increasing pull) there is a 
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sudden break with a consequent very rapid slip. This behaviour has been 
termed stick-slip motion and is reminiscent of fault seismicity (e.g. Brace 
and Byerlee 1966, Scholz 1998).

9.2  Stick-Slip Friction of a Granular System.  
       Hysteresis and Precursors 

The response of a granular medium to shear forces plays a major role in 
earthquake dynamics. Slipping events occur along faults which are often 
separated by a “gouge” filled with sand or other granular material between 
more rigid regions (Lubkin 1997). The actual time-dependent frictional 
forces of granular material during brief periods of motion, i.e., individual 
slip events, have been experimentally studied by Nasuno et al. (1997), who 
were able to determine force variations within slip events lasting as little as 
40 ms. Earlier studies of granular friction have mostly emphasized large 
systems, high velocity flows, and large normal stress, while Nasuno et al. 
(1997) measurements allowed direct imaging of particle dynamics and 
showed a stick-slip behaviour at low velocity across the layer, with a tran-
sition to continuous motion at higher velocity gradients (see the caption to 
Fig. 9.2). Furthermore, they found that the frictional force, within individ-
ual slip events, is a multi-valued function of velocity (Fig. 9.2b) and that 
localized microscopic rearrangements precede (and follow) macroscopic 
slip events. 

The experiment of Nasuno et al. (1997) could be briefly described as 
follows: A 2mm-thick granular layer consists of spherical glass beads with 
diameters ranging from 70 to 110 m. Shear stress was applied, by pushing 
with a (adjustable stiffness) leaf spring, on a transparent glass cover plate 
(which was roughened to prevent slip at the plate surface) across the 
granular layer. A translational stage pushes the spring mount at a speed ,
and the spring deflection was measured as a function of time. Figure 9.1 
depicts the results for various velocities: For a relatively low velocity, i.e., 

 5.67 m/s, a stick-slip motion (a) occurs; upon using a stronger spring, 
the deflections become smaller but the motions remain discrete. Increasing 
the velocity  by a factor of 1000 (using the same weak spring as in “a”), 
the dynamics changed from stick-slip motion to an inertia-dominated oscil-
lation (b). Upon a further increase of velocity, a critical value of  was 
reached, and the motion became irregular but continuous. 

It seems that the stick-slip motion is a characteristic behaviour but only 
at low velocities. The stick-slip phenomena can be summarized as fol-
lows: If k denotes the spring constant and m the mass of the upper plate, 
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the slip duration s is comparable to the characteristic inertial time 

2 /in m k   (recall that the angular frequency  is given by 

/k m  and 2 / in ) and is substantially shorter than the time be-
tween slip events. The granular flow during slip seems to occur predomi-
nantly in the top few layers of the particles. It is important to note that vis-
ual observation reveals that the onset of sliding involves fluidization (i.e., 
transition from a solid state to fluid state, see also Section 9.5) of granular 
particles in the upper layers. The observed stick-slip motion is almost peri-
odic for a wide range of parameter values. As the pushing velocity  in-
creases, the mean period T decreases while the slip distance per event re-
mains constant, until the inertia dominated regime is reached, which is 
depicted in the middle of Fig. 9.1b. The transition from the latter regime to 
continuous sliding (with fluctuations, see Fig. 9.1c) occurs at a critical 
value c, which decreases with increasing k and also varies with m. The 
oscillation amplitude strongly fluctuates near c.

Fig. 9.1 Spring deflection as a function of time according to the experiment of
Nasuno et al. (1997): (a) For a relatively low velocity  = 5.67 m/s, stick-slip
motion occurs. When the system sticks, the cover plate is at rest, and the spring
deflection increases linearly with time until it applies the maximum static friction
force; upon reaching this value, the granular layer cannot sustain the imposed
shear stress and the plate suddenly accelerates, while the friction force decreases.
When the stress becomes small enough, sticking recurs. (b) When velocity is 1000
times larger,  = 5.667 mm/s, inertia-dominated oscillation occurs. (c) When 
becomes even larger,  = 11.33 mm/s, steady sliding motion with fluctuations oc-
curs (Lubkin 1997) 
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An investigation of what happens during individual slip events is de-
picted in Fig. 9.2. Figure 9.2a shows the instantaneous sliding velocity ver-
sus time for four different pushing speeds ranging from  = 56.67 to 
1133.27 m/s; despite the large variation in the pushing velocity  (cf. for 
fixed spring constant and mass), it is remarkable that the four curves coin-
cide and reveal “velocity pulses” as large as 1 cm/s, which last only a short 
time, i.e., around 40 ms. The instantaneous (normalized) frictional force 

Fig. 9.2 Study of individual slip events, according to the experiment of Nasuno et
al. (1997): (a) Instantaneous velocity versus time, for four different pushing
speeds (the pulses are forced to coincide at the end of each event); (b) Instantane-
ous normalized frictional force for 3 different slip events, which correspond to the
same pushing speed  = 113 m/s (Lubkin 1997) 
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(  = F/mg, where g stands as usually for the gravity acceleration) versus
the instantaneous sliding velocity (of the moving plate that has mass m, as 
mentioned) is depicted in Fig. 9.2b, for three slip events, but for a given 
pushing speed   = 113 m/s. An hysteresis loop is observed as follows: 
The cover plate is at rest at the position “a” and the applied force starts to 
continuously increase; the frictional force rises (from the position “a” to 
“b”) along the vertical axis and at point “b” the motion begins; between 
“b” and “c” the plate is accelerating (the velocity increases, but the fric-
tional force decreases) and the velocity reaches its maximum value at “c” 
(where the frictional force reaches a low value). From “c” to “a”, the plate 
decelerates (until coming to rest), the frictional force remains low (it con-
tinues to decrease slowly at first and then rapidly as the slider comes to 
rest) and does not retrace the first part (“c”  “b”); the arrows in Fig. 9.2b 
indicate a hysteresis loop, which is identical for all events in a run. The 
frictional force is not a single valued function of velocity (memory ef-
fects); it is larger for increasing than for decreasing velocity within indi-
vidual events. One source of the latter difference is that an expansion of 
the layer during motion occurs, i.e., the measurements show that the layer 
thickness increases by roughly 15 m during the slip events; thus a time 
(about 2 ms) is required for the plate to fall a distance equal to the ob-
served (vertical) dilation of 15 m.  

Imaging the granular layer through a microscope, Nasuno et al. (1997) 
clarified what happens during apparently quiescent intervals: Significant 
microscopic rearrangement events occur, during the sticking intervals, and 
their accumulation leads to creep. By subtracting two adjacent images (cf. 
the system was photographed at one-second intervals) they observed that 
they are not identical, there are regions that have moved (microscopic slip 
sites) (Lubkin 1997). The frequency of these microscopic rearrangements 
of precursor events was found to increase dramatically just before a major 
slip event; thus, before the major events, the precursors were also detect-
able macroscopically, because they contribute a finite amount of the creep. 
The accumulated precursors produce a displacement by about 1% as large 
as that occurring during a slip event.  

Stick-slip motion at low speed was also found in recent experiments 
(quoted by Lubkin 1997) that studied the friction between relatively 
smooth solids, e.g., a paper sliding on a paper; these experiments also re-
ported creep before a slip event and showed an increase of the coefficient 
of static friction, when the materials remained in contact.  
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9.3  Rock Friction 

During the last several decades, geophysicists have been trying to ex-
plain the energy budget for tectonic faulting, which does not seem to add 
up (see Marone 2004 and references therein). The main unexplained fact 
could be summarized as follows: Faults appear more slippery (in other 
words, less constrained by friction) than has been predicted by theoretical 
work and laboratory measurements. The latter indicate that the frictional 
stress faulting (close to the Earth’s surface) must be of the order of 50-
100 MPa. This reflects that, during faulting, substantial heat should be pro-
duced in view of the following fact: when counting the other main energy 
expenses, i.e., radiation of seismic waves, and the creation of surface area 
from the production and comminution of “wear material”, we find that 
they are only a small fraction of the total energy dissipation (which is es-
timated upon considering that the income side of energy budget comes 
from the driving forces of plate tectonics and the elastic energy stored in 
the Earth’s solid crust). The problem consists in the fact that the expected 
frictional heat is missing (e.g., Scholz 2000). 

It has been suggested long ago, as already mentioned, that earthquakes 
result from a stick-slip frictional event, and it was assumed that sliding be-
gins when the ratio of shear to normal stress on the surface reaches a value 

s, the static friction coefficient. Once sliding initiates, the frictional re-
sistance decreases and is described through a lower dynamic friction co-

efficient d; this weakening of sliding resistance may, depending on the 
stiffness of the system, result in a dynamic instability (Scholz 1998). How-
ever, according to the recent aspects of rock mechanics (e.g., see Tullis 
1996, Scholz 1998), there is an ageing of s (i.e., static friction increases 
with the time of being static) and a velocity dependence of d ( d decreases 
with increasing slip velocity, but see below); in addition, when the velocity 
is changed, the transition to the new frictional resistance requires sliding 
some distance. Thus, within the frame of the new notions, there is now a 
continuum of varying friction values, while in the old frame the situation 
was described, as mentioned, in terms only of the static friction S and the 
dynamic friction d alone.

The current views on the rock friction behaviour could be alternatively 
summarised as follows: There are two competing effects: the direct effect

and the evolution effect. The former is an initial increase in the resistance 
to sliding that occurs when the velocity of sliding is abruptly increased 
(Fig. 9.3); this is termed “the direct effect”, because the change of resis-
tance occurs instantaneously and in the same sense as the change in veloc-
ity  (Tullis 1996).  The second  effect  refers  to  the fact  that,  after  abrupt 
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changes in velocity, the frictional resistance evolves to a new steady-state 
resistance over a characteristic slip distance (thus the term “evolution ef-
fect”). When sliding is stopped for some period of time (after having at-
tained a steady-state frictional resistance at constant velocity) and then re-
sumed, the resistance climbs up to a peak value, which is larger than the 
steady-state value prior to the hold, and subsequently decays to the original 
steady-state value. The peak value increases nearly with the logarithm of 
the hold time (Fig. 9.4), i.e., surfaces in stationary contact increase in 
strength with time (thus a re-strengthening of surfaces between slip epi-
sodes occurs, without which a repeated unstable slip is impossible); this ef-
fect, which is an important aspect of rock friction in terms of application to 
earthquakes, is known as the evolution effect.

Fig. 9.3 The frictional response versus the displacement, when the sliding velocity
suddenly increases from a smaller value to a larger one and then is returning to its
initial value (Scholz 1998) 

Fig. 9.4 The increasing  of the static friction versus the time period of holding
static (Tullis 1996) 
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In summary, laboratory experiments show that the friction of rocks is a 
function of time, velocity of sliding, and displacement. The processes re-
sponsible for these dependencies are still unknown. Furthermore, the fol-
lowing point must be emphasized (e.g., see Tullis 1996): No laboratory 
experiments in rocks combine the large displacement, high slip rate, high 
normal stress, and presence of pressurized pore fluids that characterize 
earthquake slip. This means that the processes that may occur during dy-
namic slip in earthquakes have not been thoroughly explored experimen-
tally. Chief among these are the shear heating and the associated possible 
melting or increase in pore fluid pressure. Recent laboratory experiments, 
that have been performed at high sliding velocities, of the order of m/s (see 
Section 9.4), which are believed to occur before earthquakes, showed that 
some of the conclusions deduced from the earlier laboratory measurements 
cannot be extended to the high velocity regime. 

The laboratory observations are described through the so-called rate/ 
state-variable constitutive law. However, when one looks carefully at the 
details, none of the laws suggested fits all aspects of experimental data and 
a better law is needed (Tullis 1996). The version of “the rate and state fric-
tion law”, which is believed to better account for the experimental data 
(Beeler et al. 1994, Scholz 1998), is the Dieterich–Ruina or “slowness” 
law, which reads: 

0
0

0

ln lna b
L

(9.1)

where  denotes the shear stress and  the effective normal stress (i.e., the 
applied normal stress minus pore pressure),  is the slip velocity, 0 is a 
reference velocity and a, b are the material properties (see below); thus, the 
frictional resistance is described in terms of the so-called base friction 0

(the steady-state friction at  = 0), nearly independent of rock type and 
temperature, which is modified by second order effects involving a de-
pendence on sliding velocity and a state variable  (Scholz 1998); the latter 
evolves according to 

d
1

dt L
(9.2)

and hence at the steady state (SS) 

SS

L
 , (9.3)
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where L is the critical slip distance, which is usually interpreted as the slid-
ing distance required to renew the contact population and, in this frame, SS

represents an average “contact lifetime”. At steady state, we have 

0
0

( ) lna b (9.4)

and a–b could be defined as the velocity dependence of steady-state fric-
tion SS:

(ln )
SSa b  . (9.5)

This can be visualised in Fig. 9.3, which schematically shows what hap-
pens when the sliding velocity is abruptly increased from a smaller value 
(the left portion in Fig. 9.3) to a larger one (the right portion); upon the ini-
tial application of the velocity increase, there is an “abrupt” increase a in 
friction, which is followed by a gradual decrease b (the difference in the 
friction of the two stages is equal to a–b, as shown). 

A possible connection of S and d to the parameters a and b could be 
described as follows: If we define the dynamic friction coefficient d as the 
steady friction SS at velocity , and S as the starting friction following a 
period of time in stationary contact, we have: 

(ln )
d a b (9.6a)

and, for long t:

(ln )
S b
t

 . (9.6b)

If a–b > 0, the steady state friction SS increases upon increasing veloc-
ity  (see Eq. 9.5); such a system is intrinsically stable. On the other hand, 
if a–b < 0, the value of SS decreases upon increasing ; this is the case 
which is of interest for earthquakes, because when the applied normal 
stress  exceeds a critical value c the sliding is unstable under quasistatic 
loading. This can be understood on the basis of a spring-slider model (with 
fixed stiffness k) depicted in Fig. 9.5a in which the slider is assumed to 
obey Eq. (9.1). Figure 9.5b shows the velocity jump , necessary to de-
stabilize the system, versus . This reveals that if  exceeds the critical 
value:

/( )c kL a b (9.7)
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Oscillations

v

UnstableConditionally stable

c

a b

sliding is unstable with respect to a vanishing incremental velocity pertur-
bation  (i.e., a quasistatic loading). If   < c  the system is in the so-
called conditionally stable field, because it is stable under quasistatic load-
ing, but may become unstable under sufficiently strong dynamic loading, 
i.e., if subjected to a velocity jump  exceeding that depicted in Fig. 9.5b. 
For smaller jumps, at the stability border (close to c, see the shaded re-
gion of Fig. 9.5b), sliding occurs by self-sustaining oscillatory motion 
(Scholz 1998, Heslot et al. 1994). Earthquakes can nucleate only in the re-
gions of a fault which lie within the unstable regime. 

Equation (9.7) is derived in the case of the one dimensional spring-slider 
of Fig. 9.5a. For the two or three dimensional case of a slipping patch of 
size L, the stiffness k can be written as  k = nG/L  (Scholz 1998), where G
is the shear modulus and n a geometrical factor of the order of unity. This 
implies that the instability occurs when L reaches a critical size Lc, called 
the nucleation length, given by (see Eq. 9.7): 

( )c

G n L
L

b a
 . (9.8)

Laboratory observations indicate that stable sliding initiates at a point 
and then spreads out with an accelerating sliding velocity until the instabil-
ity arises at Lc. It is not known yet whether such a nucleation occurs at 
natural faults. Furthermore, the physical significance as well as the scaling 
of the parameter L, which is of the order of 10 m in the laboratory, have 
not yet been clarified. 

Fig. 9.5a A spring-slider model obeying Eq. (9.1); (b) the velocity jump , nec-
essary to destabilize the system, versus  (Scholz 1998) 

v

cOscillations 
 Conditionally stable Unstable 
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9.4  Laboratory Experiments at High Rates of Slip.
       The Energy Budget for Tectonic Faulting 

As already mentioned in the previous section, the dynamics of the tectonic 
faults that produce earthquakes remains puzzling (Marone 2004) since an 
energy budged imbalance seems to exist in tectonic faulting. Recent labo-
ratory experiments, however, which will be discussed in this section, when 
applied to tectonic faults indicate that frictional stress and shear heating 
may be much lower than expected, thus probably resolving, at least par-
tially, the question of this imbalance.  

The friction experiments in rocks mentioned in the previous section 
have been made at steady-state sliding conditions using velocities of no 
more than 1 cm/s; at such velocities, as mentioned, hysteretic elastic and 
plastic deformations at the scale of roughness asperities are of significant 
importance (e.g., see also Caroli and Nozieres 1996, Tanguy and Nozieres 
1996, Caroli and Velicky 1997, Bocquet and Jensen 1997). These veloci-
ties, however, are orders of magnitude smaller than the sliding velocities 
which are believed to occur during an earthquake (meters or ten meters per 
second) and hence the extrapolation of the validity of the aforementioned 
constitutive laws (especially their velocity weakening dependence) to such 
velocities is very doubtful. This doubt is strengthened from studies of the 
physical mechanisms involved in the friction laws, which suggests (e.g. 
Lomnitz-Adler 1991, Pisarenko and Mora 1994) that different mechanisms 
(i.e., collisions between asperities and transfer of momentum between the 
directions parallel and perpendicular to the motion) may become important 
at large velocities. Furthermore, the results of three laboratory experiments 
described below started to shed light on what happens at such large veloci-
ties:

First, Tsutsumi and Shimamoto (1996, 1997) performed friction meas-
urements on rotating cylindrical samples at velocities up to 1.8 m/s and for 
slips of several tens of meters. This experiment shows that the behaviour 
of the friction changes upon increasing the velocity: at small velocities, the 
friction exhibits a “velocity weakening” regime (thus agreeing with the 
former friction experiments at small velocities), but this behaviour alters, 
at larger velocities, to a “velocity strengthening”. At even larger velocities, 
a “velocity weakening” regime is again found, which seems to be associ-
ated to the melting of a very thin layer. This behaviour seems to be in 
agreement with a “velocity strengthening” behaviour found in recent 3D 
numerical simulations (Maveyraud et al. 1999); the latter have been per-
formed in the regime of velocities of one meter to ten meters per second 
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and showed that there is a doubling of the friction coefficient when the ve-
locity increases from 1 to 10 m/s. 

Second, Johansen and Sornette (1999) reported the behaviour of the dy-
namic friction in the high velocity regime (i.e., slip velocities ranging up to 

max  0.35 m/s) from an experimental investigation in dry metallic fric-
tion. This was a spring-block sliding experiment, performed on a variety of 
smooth surfaces and revealed that acoustic radiation may control friction 
in the following sense: Radiation damping is a well-known phenomenon in 
electromagnetism (e.g., see p. 783 of Jackson 1975), but the corresponding 
mechanism of dynamic friction due to radiation of phonons had not re-
ceived much attention. In Varotsos (2004), laboratory measurements have 
been discussed, which showed that the sound waves emitted by a propagat-
ing crack interact with the crack tip and modify the crack velocity. By the 
same token, in the friction experiments, the acoustic waves – emitted dur-
ing sliding – lead to a radiation damping feedback; this feedback was 
found to be important in the range of high slip velocities studied by 
Johansen and Sornette (1999). Note that Varotsos (2001) showed that the 
radiation damping force – which is proportional to the derivative of the ac-
celeration – plays a key role in the explanation of the experimental find-
ings in the field measurements of acoustic emission before earthquakes. 

Third, Di Toro et al. (2004) reported measurements on quartz rich rock 
both at low- and high-slip rates. They found that in the former case friction 
is indeed high in agreement with previous studies, but in the latter case 
friction drops dramatically as the slip velocity approaches a few mm/s. 
More precisely, the data indicate an extraordinary progressive decrease in 
frictional resistance with increasing slip velocity above 1 mm/s; this de-
crease extrapolates to zero friction at seismic slip rates of 1 m/s, which 
might be due to the formation of a thin layer of silica gel on the fault sur-
face. Di Toro et al. suggest that this might explain the low strength of ma-
jor faults during earthquakes. We note, however, that Marone (2004) 
pointed out several reasons for caution in extrapolating these laboratory 
measurements to tectonic faults. Nonetheless, Marone adopted the view 
that nowadays several lines of evidence point to a high-speed, dynamic 
weakening of fault zones. 

Experiments of Di Toro et al. (2004) suggest that the “weakening” 
mechanism is connected, as mentioned above, to a thin layer of silica gel 
acting as grease between the surfaces. An additional key factor in these ex-
periments is the low rate of heat production, which may provide a helpful 
clue in understanding the balance in the problematic energy budget for 
faulting since shear heating would be negligible, dissipation of seismic en-
ergy would be dominated by radiation of seismic waves and creation of 
surface area (Marone 2004). In other words, frictional stress and shear 
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heating are much lower than previously expected, thus implying that the 
energy imbalance for faulting, described in the beginning of the previous 
section, probably originates from a non accurate estimation of the energy 
income rather than of the energy expenses. 

The following clarification might be added. Varotsos et al. (2004) re-
cently explained from first Principles why in the Gutenberg–Richter law 
(stating that the cumulative number of earthquakes  N(>M)  with magni-
tude greater than M is given by  N (>M)  10-bM)  the so-called b-value is 
usually found to be around unity ranging only slightly from region to re-
gion. This explanation was achieved just by applying the analysis in the 
natural time-domain suggested by Varotsos and coworkers (e.g. Varotsos et 
al. 2001, 2002, Varotsos 2005), without using any adjustable parameter. 
There is nothing to differentiate the physics of earthquake rupture for small 
and large earthquakes in such a general scheme. According to the experi-
ment of Di Toro et al. (2004) the onset of “weakening” occurs at only a 
few mm/s which would be reached even for very small earthquakes. Thus, 
all earthquakes, small and large ones, would experience considerable dy-
namic “weakening”, while earlier analyses have been predicted on the ex-
pectation that it occurs only for earthquakes of magnitude 5 or larger (Ma-
rone 2004, Kanamori and Heaton 2000). Hence, it seems that the current 
aspects coincide with the conclusion that there is no break in earthquake 
scaling relations. 

9.5  Modern Views on Friction. Theoretical Studies 

The theoretical approaches introduced to investigate frictional forces in 
sheared systems can be classified into the following three categories: large-
scale molecular dynamics simulations, phenomenological rate-state models 
and “minimalistic” models. These three theoretical approaches to model 
friction have been recently reviewed by Urbakh et al. (2004). Simulations 
of the molecular order and dynamics in thin molecular layers (e.g., 
Thompson and Robbins 1990) indicated that stick-slip motion is associated 
with transitions from a static solid state to a sliding fluid state. Further-
more, friction over correlated surfaces has been analysed. Two such studies 
are now briefly presented below. 

First, we report on the memory effects in elasto-plastic models found by
Tanguy and Roux (1997). They presented a model where the effective fric-
tion law results from the competition of the random interaction potential 
on the surface and the elastic properties of the solid (reduced to the elastic 
coupling between the asperity, and the center of mass of the solid). The ef-
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fect of a long-range correlated scale-invariant random pinning force on the 
motion and friction properties of an elastically driven asperity was studied 
in the quasistatic regime. This study showed that, when the elastic cou-
pling is weak, the macroscopic dynamic behaviour of the asperity can be 
described as elasto-plastic with a perfectly plastic plateau. The plastic pla-
teau corresponds to statistically stationary sliding. Considering the fact that 
the macroscopic friction behaviour results from the competition between 
reversible and irreversible motion due to the multiplicity of equilibrium 
positions, they obtained a history-dependent behaviour, with marked mem-
ory effects over a characteristic length scale. It seems that this length scale 
is related to the “memory length” L involved in the Eqs. (9.1) to (9.8) of 
the “rate and state friction law”. However, the interconnection of these two 
“memory lengths” needs further investigation.  

Second, we refer to a study of the correlations induced by the dampened 
motion of a finite-size elastic chain with long range interactions by Tanguy 
et al. (1998). We clarify that in the case of solid friction, the dynamics of 
the slider is usually reduced to that of the asperities at the surface of the 
solid. The competition between the elastic restoring force (originating from 
the bulk) and the nonlinear pinning force (due to the contact between as-
perities of different solids) gives rise to multiple stable equilibrium posi-
tions. This multistability is responsible for hysteretic behaviour of asper-
ities, when they are driven quasistatically over the pinning centers 
belonging to the surface of the other solid; the dissipation arises from this 
hysteretic behaviour. Tanguy et al. (1998) investigated the effect of the 
long-range elastic couplings on the fluctuations accompanying the average 
behaviour of an elastic line, driven quasistatically on a substrate with 
quenched (not changing with time) disorder. A schematic motion of the 
elastic chain is depicted in Fig. 1 of Tanguy et al. (1998). They considered 
a (discrete) one-dimensional elastic chain of size L which was discretized 
into L/d blocks; each point of discretization was called “asperity” and 
hence the quantity d represents the distance between asperities (in the 
strong-pinning limit, see below). Each site of the chain was subjected to 
the following forces: a driving force Fext(t), a random pinning force (from 
the interface) (which represents the interaction between the heterogeneous 
surface and the elastic chain and is always nonlinear), and a long-range 
elastic force describing the coupling to the other sites of the chain. Tanguy
et al. (1998) studied the “strong-pinning” limit, i.e., the case when the cou-
plings are small in comparison to the distortions of the pinning-potential. 
This study finally showed (more details can be found in Varotsos 2004) 
that  the system organizes  after a transient  in a stationary state  with long 
-range correlation and the memory of the initial state is lost. Tanguy et al. 
(1998) identified a crossover time-length tc above which the uniform dis-
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tribution is valid and below which a power-law behaviour (with a non-
trivial exponent) is observed. Furthermore, Tanguy et al. (1998) found that 
for a mix of various couplings, the system exhibits a crossover between a 
regime controlled by the short-range coupling (at small times and lengths) 
and a regime controlled by the long range coupling (at large times and 
lengths).

We finally report on three solutions to the friction problem that have re-
cently been proposed (the first two are briefly reviewed by Kessler 2001). 

The first, suggested by Muser et al. (2001), attributes a crucial role to 
dirt, i.e., the diffuse collection of foreign mobile atoms trapped between 
the two surfaces.  Their numerical stimulations  show  that these mobile 
atoms quickly find appropriate gaps between the surfaces, where they be-
come trapped; these atoms then “lock” the two surfaces in place. To move 
the top surface, it has to be pushed up and over the dirt atoms. An area in-
dependent friction coefficient is obtained, for any surface geometry, when 
an adsorbed layer of mobile atoms is introduced between the surfaces.  

The second mechanism was suggested by Gerde and Marder (2001). 
This is based on the physics of self-healing shear fracture and the basic 
idea could be simplified as follows (Kessler 2001): Imagine, we want to 
move a large rug some distance along the floor. Instead of dragging it, a 
less back-breaking method is to lift the back edge, slide the edge forward a 
bit and so introduce a ridge in the rug. Pushing on the ridge moves it for-
wards along the length of the rug, until it reaches the end. The net result is 
that the rug has been moved. In the fracture considered by Gerde and 
Marder (mode II crack) the two surfaces remain in close proximity and can 
come together again and bond, or “re-heal”, in their new laterally shifted 
positions. This re-bonding sets in some distance downstream of the crack 
edge, so the crack is of finite length. Their model also predicts the mini-
mum shear force required to initiate a propagating crack. Once this mini-
mum force is applied, self-healing cracks are created, causing the surfaces 
to slide past one another.  

The third mechanism was suggested by Rubinstein et al. (2004), who 
showed that the onset of frictional slip is governed by three different types 
of coherent crack-like fronts. Two of these fronts, which propagate at sub-
sonic and intersonic velocities, have been also the subject of earlier studies 
by various groups. Rubinstein et al. show that a third type of front, which 
propagates an order of magnitude slower, is the dominant mechanism for 
the rupture of the interface. No sliding occurs until either of the two slower 
fronts traverses the entire interface. 
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9.6  Constitutive Friction Law for the Antisymmetric 
       Stresses 

It is usually assumed that the dynamic processes along faults are governed 
by the friction constitutive laws, as discussed in this chapter. However, in a 
precursory time domain the dynamics of deformations is related to the “in-
ner friction” which hampers a motion of dislocations; such an inner fric-
tion is called a stress resistance.  

It is worth noting that both kinds of frictions, i.e., the one on a fracture 
plane and that on a glide plane, may be closely related to rotations of parti-
cles/grains adjacent to slip planes; the related macroscopic constants are, 
of course, different for the two types of friction. Shimbo (1975, 1995) in-
troduced the constitutive law governing the rotation motions as related to 
the rotation of grains adjacent to the slip planes which results in an appear-
ance of antisymmetric stresses (cf. Teisseyre 2005): 

[lk] [lk] [lk] [lk]* *

1 1
=  , = ,

2 2
S SS S

µ µ
(9.9)

where [lk]
S   is a self-rotation field and the factor *µ  is introduced to indi-

cate that the constitutive parameter related to rotations is different from 
that related to rigidity µ.

A fracture is usually characterized by an asymmetric fault pattern as 
manifested by the existence of main fault fracturing. The introduced anti-
symmetric stresses replace an action of the stress moments and the angular 
momentum. In our considerations we obtain instead the balance law ex-
pressing on the one hand the rotation of force arising from antisymmetric 
stresses (rot div S[lk]) acting on a body element and on the other hand the 
acceleration of rotation (Teisseyre 2005); in addition, we may introduce 
here also a body moment of forces related to the source function  (Teis-
seyre 2001):.  
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It has been proposed that the bonds related to rotation are not as strong 
as those related to displacement motions and we can expect that the related 
waves propagate to distant sites (Teisseyre et al. 2003). It seems that the 
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transition from the precursory, very slow processes to those related to frac-
turing corresponds to the transition from the microscale motions to the 
miniscale and collective macroscale motions and fracturings.  

Instead of the body source function introduced above, we can introduce 
a stress moment resistance related to the inner friction (glide motion) and 
friction (fracturing) processes connected with rotations. As a result, we 
may expect to get different levels of the stress moment resistance magni-
tudes and the stress moment resistance R[lk] to be able to introduce into the 
former relation (instead of the source function). In such a case, the last 
equation will be written in the new form: 

2 2

[ ] [ ] [ ]2

1

2
lki ni ni lki ki

k n

S R
x x t

 , (9.11)

where the following expression for the stress moment resistance 
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describes the transition from the premonitory to the fracture rebound proc-
ess (see Teisseyre and Yamashita 1999) and is written in the form pre-
sented by Virieux and Madariaga (1982); it included changes of the fric-
tion constitutive laws from premonitory exponential to slip nucleation 
phase (slip weakening) and to dynamic phase (slip rate friction law) (see 
Varotsos 2004, Teisseyre 2001). 

Both approaches, the one in which the variation of stress resistance 
(Eq. 9.12) directly reduces the antisymmetric stresses, as above, and the 
other in which this variations enter into the source function (Eq. 9.10), in-
troduce (into the respective relations) some instabilities related to friction 
and rotation processes. 

9.7  Open Questions 

Although the dynamics of friction has been studied for hundreds of years, 
there are many aspects of these everyday processes that are not fully un-
derstood. A list of outstanding fundamental questions can be found in the 
review of Urbakh et al. (2004). Chief among these are: First, the onset of 
frictional motion (slip), which is central to diverse fields, e.g., physics, 
mechanics of earthquakes, tribology in general, still awaits for a full ex-
planation despite the aforementioned recent advances. As a second exam-
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ple, we refer to the question on whether stick and slip regimes are indica-
tive of different phase states (liquid, solid, glassy) of the confined inter-
faces.

Another point of central importance is the following: Recently, an en-
tirely new time domain, termed natural time, has been introduced (Varot-
sos et al. 2001, 2002) as already mentioned above. It is known that Seismic 
Electric Signals (SES) activities are recorded before major earthquakes 
(see Varotsos 2005 and references therein). Such a recording signifies that 
the candidate area entered the critical regime. Upon analyzing the subse-
quent seismicity in the natural time-domain, we find (Varotsos et al. 2001, 
Varotsos 2005) that the time of the impending mainshock can be deter-
mined with an accuracy of the order of a few days. An application of this 
procedure to laboratory measurements, in order to find out whether it can 
approach the onset of frictional slip as well, has not yet been attempted. 
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10.1  Introduction

This chapter is a brief review of some fundamental equations and recent 
results in the theory of solitons and their applications in physics. The soli-
ton idea is a remarkable mathematical structure based on the integrability 
of a rather wide class of nonlinear differential equations. Solitons or soli-
tary waves are a special kind of localized waves that propagate undistorted 
in shape. They are essentially nonlinear waves. We begin with the discov-
ery of a solitary wave on the Edinburgh to Glasgow Canal by J. Scott Rus-
sell in 1834 (see Russell 1844, 1895). The solitary waves were known ear-
lier than solitons. Much later, Zabusky and Kruskal (1965) discovered the 
mathematical structure of solitons. At that time it became clear that there 
are some intimate connections between these two concepts. While all soli-
tons are solitary waves, the converse is not true; solitons have to satisfy 
more requirements than solitary waves. Solitons are a very restricted sub-
set of solitary waves. A concept of soliton is very simple on intuitive 
grounds if we begin our study from solitary waves on shallow water. Ever 
since Korteweg and de Vries (KdV) first derived their famous equation for 
water waves in 1895, solitons have been a fascinating and popular area of 
study in the physics community. This chapter characterises the main fea-
tures of these waves, and then reviews the fundamental concepts of the 
theory of nonlinear waves in order to sketch a few key ideas of the theory 
of solitons. There are approximately one hundred known integrable 
nonlinear differential equations with soliton solutions, including the KdV 
equation, the modified Korteweg–de Vries (mKdV) equation, the Ka-
domtsev–Petviashvili (KP) equation, the nonlinear Schrödinger (NLS) 
equation, the Boussinesq equations, the Klein Gordon (KG) equation, and 
the sine-Gordon (SG) equation. While these investigations reveal general 
properties of solitons, of importance is the physical insight and applica-
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tions of solitary waves in modelling physical phenomena. Zabusky and 
Kruskal (1965) coined the term “soliton” due to the analogy with particles. 
The nagging question naturally arises: what is the difference between soli-
tons and solitary waves? The standardized definitions for solitons and soli-
tary waves were not established. Both are colloquially called solitons. 
There are many different working definitions in the literature describing 
how to distinguish solitons from solitary waves. These definitions change 
from author to author. Many authors refer to solitons as special wave 
pulses that can pass through each other or bounce back from each other 
(“elastic” interactions), keeping their basic identity and acting as particles. 
They are non-dispersive localized packets of energy moving with uniform 
velocity. Solitons resemble extended particles, even though they are solu-
tions of nonlinear wave equations. Solitons are used successfully to model 
elementary particles in quantum field theories (cf., Rajaraman 1982). 
Some authors refer to waves which interact “inelastically” as solitary 
waves. Solitary waves were discovered in many branches of science, such 
as water dynamics, tsunami waves, optics, plasma, dipole chains, protein 
chains, dislocations, and seismology. In this chapter, we shall use both 
terms “soliton” and “solitary wave”, interchangeably. 

Solitons can exist in the so-called dispersive media. Most media are dis-
persive. That is, an initial very small amplitude disturbance in the form of 
a pulse will, as time evolves, tend to broaden and break up into its individ-
ual components. These are simple waves moving with different phase ve-
locities.

The existence of solitons is based on the fundamental assumption that 
large amplitude disturbances are considered, and it is necessary to invoke a 
nonlinear theory. Solitons exist because of this nonlinearity and travel with 
uniform velocity and no distortion in shape. If they collide, they subse-
quently retain their original shape and velocity. In fact, solitons are the re-
sult of the interplay between dispersivity and non-linearity. Namely, for 
differential equations where both dispersive and nonlinear terms are pre-
sent, the effects can balance each other in such a way that special solutions 
called solitary waves or solitons emerge. 

This chapter briefly introduces the most famous nonlinear differential 
equations with soliton solutions, considers rotating solitons, and finally 
summarizes results on discrete soliton systems (cf., Hirota 1981, Tokihiro 
2004). The Box-Ball System (BBS) and its application to the description 
of soliton motion is also discussed (cf., Toda 1967). General conclusions 
on soliton stability and applications close the chapter. 
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10.2  The Discovery of Solitary Waves 

In 1834, British engineer J. Scott Russell was riding a horse along the Ed-
inburgh to Glasgow Canal. Suddenly, he noticed something strange. He 
expressed it in his own words (Russell 1844, 1895): …the mass of water in 

the channel…rolled forward with great velocity, assuming the form of a 

large solitary elevation, a rounded, smooth and well-defined heap of wa-

ter, which continued its course along the channel apparently without 

change of form or diminution of speed. I followed it on horseback, and 

overtook it still rolling on at a rate of some eight or nine miles an hour, 

preserving its original figure some thirty feet long and a foot to a foot and 
a half in height.

This was the first quantitative observation of a water solitary wave and 
was followed by measurements and laboratory experiments on these 
nonlinear waves (Drazin 1983, Drazin and Johnson 1989). Russell (1844, 
1895) wrote reports summarizing his observations and experiments on 
solitary waves. He observed that a taller solitary wave propagates faster 
than a smaller one. In addition, he deduced empirically a formula for the 
steady velocity v of the solitary wave. 

10.3  The Korteweg–de Vries Equation 

In 1895 Korteweg and his student de Vries presented a skillful derivation 
of a solitary wave equation (Korteweg and de Vries 1895). Their starting 
points were the equations of motion for surface water waves. They simpli-
fied these equations under the assumption that the solution propagates in 
the direction of increasing x. In addition, they assumed that the solution 
has amplitude A and wavelength  related to the water depth h by 

2 2( / ) ( / ) 1A h h . Starting from a priori knowledge concerning an ex-
pected solution, Korteweg and de Vries found that a solitary wave would 
be described by the following nonlinear partial differential equation: 

3

3
0 ,

u u u u
u

t x x x
(10.1)

where  = 0 or  = 1, and u = u(x, t) is the displacement of the water sur-
face from its equilibrium position at location x and time t. Here the units of 
time and distance were scaled. Equation (10.1) is known as the KdV equa-
tion. The nonlinearity is modeled in this equation by the third term that is 
proportional to displacement, and the dispersion is described by the fourth 
term that is proportional to the third derivative of displacement. The inter-
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play between these two terms is crucial for the formation of solitons. It is 
noteworthy that this equation does not describe dissipation. However, a 
soliton is characterized by a stable shape and constant velocity. Emploing 
a substitution method to Eq. (10.1), Korteweg and de Vries (1895) substi-
tuted ( , ) ( )u x t x vt and solved the resulting ordinary differential equa-
tion for . They obtained a solution in the form of the following soliton 

2 ( - ) 1
( , ) 3( 1) sech ,

2

x vt v
u x t v (10.2)

where v is the constant speed of the soliton.  
Figure 10.1 shows a solution to the KdV equation in the form of a single 

soliton expressed by Eq. (10.2) for particular amplitude. However, this 
equation also reveals that for i different amplitudes ( 1)iv , we can obtain 
many soliton solutions and i solitons exist here. This multi-soliton solution 
to the KdV equation is depicted in Fig. 10.2. The solitons have a tendency 
to form a sequence, with the soliton of the maximum amplitude in the front 
and the soliton of the smallest amplitude at the rear. 

Fig. 10.1  A solution to the KdV equation in the form of a single soliton propagat-
ing to the right 

Fig. 10.2  A multi-soliton solution to the KdV equation in the form of a sequence 
of four solitons moving to the right. The soliton of the maximum amplitude leads 
the sequence 
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Many researchers endeavored to generalize the KdV equation in differ-
ent ways. Some of them accomplished their aims by introducing additional 
transformations (e.g., Miura 1968) and others introduced an additional 
space dimension (e.g., Kadomtsev and Petviashvili 1970). 

10.4  The Modified Korteweg–de Vries Equation 

Miura (1968) and Miura et al. (1968) generalized the KdV equation. As a 
result, they obtained the so-called modified KdV equation (mKdV) in the 
form 

3
2

3
6 0 .

w w w
w

t x x
(10.3)

After Miura (1968), we define the relationship between the displace-
ment u(x,t) described by the KdV equation and the new function w(x, t) in 
the form 2/ .u w x w  It should be emphasized that the mKdV equation 
is also analytically solvable.  

10.5  The Kadomtsev–Petviashvili Equation 

The world we inhabit has 3 (space) +1 (time) dimensions, whereas most of 
the equations we have been studying have (1+1) dimensions. An interest-
ing question is: what can we learn from these simple equations? Indeed, 
even one spatial dimension can reveal the most important features of 
physical phenomena. Depending on the particular physical model, one may 
describe wave processes in (1+1), (2+1) or (3+1) dimensions.  

Kadomtsev and Petviashvili (1970) generalized the KdV equation using 
two space dimensions by including a y-dependent term in this equation. In 
such a situation it is reasonable to assume a potential flow (Infeld and 
Rowlands 2000) 

u . (10.4)

The Kadomtsev Petviashvili (KP) equation can be written as 

2 2 4 2

2 4 2
0 ,

2x t x x x y
(10.5)

where 1 .
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We can see that this equation is not symmetrical with respect to x and y
variables. In contrary, we can observe here that x and y play different parts 
in this equation, or in other words, they have different weights. 

It is noteworthy that if we remove the derivative with respect to x in 
front of the parenthesis, we obtain the KdV equation inside the parentheses 
as follows

3 2

3 2
0 .

2x t x x y
(10.6)

From the above equation, we can conclude that the KP solitons for  = 1 
travel in the x direction, but not in the y direction. In most cases they inter-
act elastically, and they separate after the interaction. In addition, they 
have a zone of mutual interaction at the intersection that is called a virtual 
soliton. However, for some critical angles of the intersection, the KP soli-
tons interact inelastically and join one another. Such a wave process is 
called a soliton resonance. The KP solitons for  = 1 are stable. They were 
observed on water surfaces and in plasma physics (Infeld and Rowlands 
2000).  

The other version of the KP equation for  = –1 was also applied in 
solid state physics, physics of liquids, and other branches of science. Dif-
ferent kinds of solitons were observed, and many elastic interactions be-
tween them were described. However, some solitons are not quite stable, 
they decay after some period of time. The KP equation is also a very inter-
esting area of research for discrete soliton systems (Tokihiro 2004). We 
shall discuss this problem at the end of this chapter. 

10.6  The Boussinesq Equations 

Let us write down the first Boussinesq equation 

2 2 2 2
2

2 2 2 2
,

u u u
u c

t x x t
(10.7)

where c is a constant coefficient. 
The second Boussinesq equation (nonlinear string equation) can be ex-

pressed in the form 

2 2 2 2
2

2 2 2 2
,

u u u
u d

t x x x
(10.8)

where d is a constant coefficient. 
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It is noteworthy that the KdV equation and Boussinesq equations are 
simple reductions of the following equation: 

2 3

2 3

3 3 1
.

4 2 4

u u u u u
u

y x t x x
(10.9)

10.7  The Doubly Dispersive Equations 

Samsonov (1988) investigated the following nonlinear equation: 

2 2 2 2 2
2

2 2 2 2 2
6 ,

u u u u u
u a b g

t x x t x t
(10.10)

where  is a small parameter, g is the dimensionless “viscosity”, and a and 
b are constant coefficients. He called it the doubly dispersive equation 
(DDE), the wave equation describing dispersion and dissipation and hav-
ing exact solitary solutions. 

10.8  The Nonlinear Schrödinger Equation 

Let us take a closer look at the most famous nonlinear wave equation in 
quantum mechanics that puts a great emphasis on the wave amplitude 
and its physical interpretations. Namely, we recall the nonlinear Schrödin-
ger (NLS) wave equation. It belongs to the category of soliton equations 
and reveals multi-soliton solutions. It is also one of the most universal 
nonlinear differential equations and it was applied in many different 
branches of science. In general, the NLS equations can describe multi-
wave interactions, depending on additional conditions. The cubic NLS 
equation can be expressed as follows: 

2 2
2

2 2
i 2 0 ,

t x y
(10.11)

where 1 .
The above equation also describes dispersive systems. The final form of 

this equation is the result of the interplay between dispersivity and nonlin-
earity that determines a different weight of each term. The NLS equation 
has soliton solutions. These solitons behave in a similar way as the KdV 
solitons. They are characterized by spatial and temporal stability and col-
lide elastically. Their envelope can describe a simple pulse. 
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10.9  The Nonlinear Klein–Gordon Equation 

The nonlinear Klein–Gordon equation (KG) can be expressed as 

2 2

2 2
( ) 0 ,

u u
u

t x u
(10.12)

where  is a general nonlinear function of u that may take different forms. 
For an exponential nonlinearity ( ) / exp( )u u u , Eq. (10.12) was used 
as a modelling equation for many physical phenomena. For a cubic nonlin-
earity 3( ) /u u u u , Eq. (10.12) also had many applications. For 
instance, Rajaraman (1982) described the motion of an elementary particle 
in the framework of the unified field theory by using the nonlinear Klein 
–Gordon equation in the form 

2 2
3

2 2
,

u u
Au Bu

t x
(10.13)

where A and B are positive constants. 

Fig. 10.3  The curve u(x) denotes the static kink solution of the Klein–Gordon 
equation (10.13). The curve E(x) depicts the energy density of the kink that is lo-
calized with a width characterized by A-1/2 (modified from Rajaraman 1982) 
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The soliton solution of this equation is as follows: 

1 21 2
1

1 2
( ) tanh .

2

A x xA
u x

B
(10.14)

Figure 10.3 displays a soliton solution u(x) of the Klein Gordon equa-
tion (10.13) and the energy density E(x) of the soliton. The solution above 
the x-axis plotted in Fig. 10.3 is called the “kink” and the one beneath the 
x-axis the “antikink”. The invariance of the solution with respect to trans-
lation is clearly visible, since a change in x1 merely moves the solution 
along the x-axis.

10.10  The Sine-Gordon Equation 

The sine-Gordon equation (SG) is a special case of the Klein–Gordon 
equation (KG). It was employed in the modelling of many physical proc-
esses such as for instance: motion of crystal dislocations in the periodic 
Peierls potential, motion of charged particles, biological processes like 
DNA dynamics, magnetic flux in the theory of Josephson junction ladders, 
Bloch wall motion in magnetic crystals, and two-dimensional models of 
elementary particles in the unified field theory (Rajaraman 1982). More in-
formation concerning soliton applications can be found in Barone et al. 
(1971), Scott et al. (1973), and Infeld and Rowlands (2000). The sine 
-Gordon equation can be expressed in the following form: 

2 2

2 2
sin ( , ) .x t

x t
(10.15)

10.11  The Inverse Scattering Transform 

Processes of evolution of physical phenomena can be described by evolu-
tion equations that characterize how some physical variables evolve in 
time. The evolution equations are usually in the form of a set of nonlinear 
differential equations with given initial conditions. Most of them are very 
difficult to solve. Fortunately, some of them have a simple inner structure 
and can be reduced to linear differential equations that have exact analyti-
cal solutions. Due to the fact that these solutions describe physical models 
and represent applications of mathematics to the real world, they help to 
stimulate research in this branch of science. There are several mathemati-
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cal techniques that can be employed for this task. One of them is the so-
called inverse scattering transform (IST), which is a generalization of the 
Fourier transform. The Fourier transforms are commonly employed to find 
solutions of linear differential equations. The main advantage of IST is that 
it reduces nonlinear problems to linear ones. We should recall that the in-
verse scattering problem is already well known in quantum mechanics. 
The key idea of this approach is that we have given the asymptotic form 
for the solution, and our goal is to construct the potential. In this process of 
constructing an appropriate potential or pseudo-potential, time t is treated 
as a parameter. When we say that we have given the asymptotic form for 
the solution, we mean that some features of the solution can be predicted. 
The key role in the IST is played by the Schrödinger equation. The famous 
KdV equation and many others can be solved using the IST technique. The 
IST was formulated by Gardner et al. (1967, 1974). Some more details 
concerning the IST are presented by Ablowitz and Segur (1981), Newell 
(1985), and Infeld and Rowlands (2000). The IST method allows us to 
transform the nonlinear partial differential equation into a linear integral 
equation that we can solve analytically. In addition, the obtained solutions 
have a form of solitons. A shortcoming of the method is that u(x, t) and 
various derivatives must approach zero as x . Thus, this method 
gives only some of the solutions of the nonlinear differential equation in 
question. The IST method excludes periodic solutions and train waves. 

10.12  Rotating Solitons 

Solitons, in general, can be composed of a single field or of many fields. 
When a soliton is composed of multiple fields that have different struc-
tures, they are called complex solitons or vector solitons. Moreover, there 
are composite solitons that are made up of optical fields that have different 
modes of their jointly induced waveguide; in addition, these multimode 
solitons can be viewed as spatial or temporal solitons. Composite solitons 
may have different forms. Carmon et al. (2001) presented some observa-
tions of (2+1)D composite solitons carrying angular momentum, and rotat-
ing throughout propagation. They called them propeller solitons because 
their planes of equal phase are shaped as propeller blades. Propeller soli-
tons propagate without loss of energy and momentum. These solitons are 
composed of a bell-shaped mode jointly trapped with a 2D dipole mode ro-
tating in unison. Such solitons can be described by the NLS equation. The 
envelopes 1 and 2 of the NLS equation were described by Carmon et al. 
(2001) as follows: 
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2
1,2 1,2 1,2

2 22

1 2

i 0 , (10.16)

where  = –1, and  denotes the propagation distance. 
These types of solitons can describe two-component Bose–Einstein con-

densates as well. However, in this case the soliton components describe 
states of the cooled atomic gas in a spherical trap. Carmon et al. (2001) 
suggest that a vortex-type composite soliton is better suited for these con-
densates. Figure 10.4 shows a rotating dipole soliton. It is noteworthy that 
the intensity structure of the soliton components, not only the phase, ro-
tates during propagation. 

Fig. 10.4  Rotating dipole soliton. The intensity structure of the soliton compo-
nents rotates throughout propagation 

Pigier et al. (2001) observed interactions of a pair of such solitons dur-
ing their corotation or counterrotation. The rotating solitons exchange the 
angular momentum between the field components. 

The wave function can be found from the NLS equation as a result of 
numerical  approach.  Pigier et al. (2001)  investigated  stability  properties  

Fig. 10.5  Interactions of two corotating dipole solitons: the input configuration of 
the dipole mode 
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and different directions of soliton rotation. They examined the arrange-
ment of two poles and the forces of interaction between the rotating soli-
tons. Figure 10.5 illustrates the interactions (collisions) of two corotating 
propeller solitons. The above figure shows the input configuration of the 
dipole mode. 

Pigier et al. (2001) studied several cases of interactions (collisions) be-
tween dipole-type composite solitons that carry angular momentum. Figure 
10.6 illustrates interactions (collisions) of two corotating propeller soli-
tons. This figure shows the output configuration of the dipole mode. From 
these experiments, Pigier et al. (2001) concluded that during this collision 
the angular momentum is transmitted from the input solitons to the output 
solitons. Thus, they found that rotating solitons are very vigorous because 
they can survive collisions and become rotating solitons again. 

Fig. 10.6  Interactions of two corotating dipole solitons: the output configuration 
of the dipole mode 

10.13  Discrete Soliton Systems 

We summarize some results on ultradiscrete soliton systems presented by 
Tokihiro (2004). Discrete systems may have discrete space coordinates or 
discrete time or both. Starting from continuous equations, we can obtain a 
cellular automaton (CA), i.e., a discrete system.  

We will discuss a very famous integrable CA, the so-called Box and 
Ball System (BBS). Takahashi (1991) investigated some soliton systems 
defined by boxes and balls. Let us consider a sequence of boxes that repre-
sent a soliton position. At the initial time, we consider four sequences of 
balls representing solitons, as depicted in Fig. 10.7. Each sequence of con-
secutive balls represents one soliton. The length of the sequence represents 
the soliton amplitude. The empty boxes are treated as inactive cells and 
boxes with balls are treated as active cells.  

As time goes on in discrete steps, the balls move according to the fol-
lowing rules. Balls can move only left to right. First, we move the leftmost 
ball to its  nearest  empty  box.  Next,  we  move  the  leftmost  ball  of  the  
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Fig. 10.7  A state of the BBS representing solitons with different amplitudes. The 
soliton amplitude is directly proportional to the length of the sequence of the balls 

remaining balls to its nearest empty box. We move each ball in this order 
only once until all the balls change their positions. This moving of se-
quences of balls represents the motions of solitons and is depicted in 
Fig. 10.8. The Toda lattice is extremely useful in discrete soliton systems, 
and it is worth noting that the BBS can be applied to the discrete KP equa-
tion and to the discrete Toda equation (cf., Toda 1967).  

Figure 10.8 describes interactions between solitons during their motion. 
It can be observed that the phase of solitons represented by balls is shifted 
after collision. After some time, the soliton with the highest amplitude 
leads the group of solitons. The amplitudes of the following solitons are 
thus smaller and smaller. The last soliton in this group has the smallest 
amplitude. This picture of motion of solitons is in excellent agreement 
with observations carried out by J. Scott Russell in 1834. 

Fig. 10.8  Time evolution of the BBS representing the motion of solitons. The 
soliton speed is directly proportional to its amplitude (modified from Tokihiro 
2004) 

Bia ecki (2005a, b) presented a solution of the cellular automaton asso-
ciated with the discrete KdV equation, using an algebro-geometric solution 
of the discrete KP equation over a finite field out of a hyperelliptic curve. 
Bia ecki and Doliwa (2005) transferred the algebro-geometric method of 
construction of solutions of the discrete KP equation to the finite field 
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case. They employed a Jacobian of the underlying algebraic curve in con-
struction of the solution.  

Zabrodin (2004) gave a review of some topics on Hirota’s bilinear dif-
ference equation (HBDE). This 3D difference equation is helpful in all 
kinds of discretization procedures for many soliton equations. The key idea 
of his approach is a discrete version of Zakharov–Shabat equations for 
M-operators in the form of difference or pseudo-difference operators. He 
considered different approximations of HBDE by 2D equations. Moreover, 
he discussed discrete versions of the KdV, sine-Gordon, Toda chain, and 
other aspects of HBDE.  

10.14  Conclusions 

This chapter presented a few universal nonlinear wave equations with soli-
ton solutions. There are several mathematical methods that can be em-
ployed to find such solutions. One of them is the IST, which is a generali-
zation of the Fourier transform. We summarized the IST that can be used 
to solve the KdV equation and other soliton equations.  

The intriguing question naturally arises: why do solitons have such a 
magnificent structural stability in space and time? A straightforward an-
swer is that they are portions of self-trapped energy that can be carried 
over a certain distance without loss of energy and momentum. Each soliton 
equation is associated with an infinite number of constants of motion. 
Thus, the time evolution of the soliton must be kept within limits. 

Perhaps because of the circumstances in which the solitons were discov-
ered, many physicists think of them as massive objects, but the size of soli-
tons can be as small as we like. Thus, solitons can look like point particles. 
Rajaraman (1982) described the motion of an elementary particle in the 
framework of the unified field theory by using a soliton solution of the 
nonlinear Klein–Gordon equation. 

Each year, mathematicians, physicists, biologists, and seismologists de-
vote their papers to solitons and their applications. Zorski and Infeld 
(1992) developed a new soliton equation for dipole chains. They formu-
lated a continuum dynamics of a peptide chain (Zorski and Infeld 1997). 
Adding to the increase in attention paid to solitons in string theory and as-
trophysics (rotating black holes) have been the ripple effects of discoveries 
of new and universal applications of solitons. 
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11.1  Introduction 

There are many reports about rotations of tombstones and stone lanterns 
during large earthquakes (e.g. Yamaguchi and Odaka 1974). Only transla-
tional ground motions, however, have been observed in instrumental 
measurements of seismic waves, and quantitative measurements of rota-
tional ground motions have not been made until quite recently. Bouchon 
and Aki (1982) simulated rotational ground motions near earthquake faults 
buried in layered media for strike-slip and dip-slip fault models, and ob-
tained a maximum rotational velocity of 1.5 10 3 rad/s produced by a bur-
ied 30 km long strike-slip fault with slip of 1 m. Their simulation shows 
that the rotational motions are small compared with the amplitude of the 
translational motions. The difficulty experienced in measuring of rotational 
motions excited by earthquakes is caused by a lack of technology for 
measuring such small rotational motions. 

Recently, Nigbor (1994) succeeded in measuring rotational and transla-
tional motions using a new angular measurement sensor (Morris 1971) at a 
surface station during a non-proliferation experiment at the Department of 
Energy, Nevada Test Site, using a very large (1 kiloton) chemical explo-
sion. The sensor will allow us to measure the rotational ground motions of 
seismic waves in the near future. 

What will rotational motions excited by earthquakes tell us? We will 
have accurate data for arrival times of SH waves, because the rotational 
component around the vertical axis is sensitive to SH waves although not 
to P-SV waves. A vertically heterogeneous, isotropic, elastic medium is the 
first-order approximation of the Earth’s interior, so that we can expect to 
have a clear SH-wave onset in records of the rotational component around 
the vertical axis. When we try to separate SH waves from P-SV waves us-
ing translational motions, we need to rotate two horizontal components 
into radial and transverse components. To do this, we have to know the in-
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cident directions of seismic waves. Now, we will be able simply to detect 
onsets of SH waves using the rotational component only. 

The purpose of this paper is to elucidate another possibility, which is re-
lated to seismic sources. The familiar source model of earthquakes is a dis-
location model concerned with a discontinuity of displacement across in-
ternal surfaces in a continuum, but not with a rotation across the surfaces. 
The rotation naturally generates rotational seismic waves. Defects in the 
continuum other than dislocations inclusive of tensile fractures are sources 
of such rotational motions. Teisseyre (1973) discussed, based on the mi-
cropolar theory, the possibility of rotational motions in source processes. 
There are several theories that deal with elastic continua with internal de-
fects inside (e.g. Kondo 1949a, b, 1957, Bilby et al. 1955, Kröner 1958, 
Amari 1962, 1968, Mura 1963, 1972, deWit 1973, Kossecka and deWit 
1977a, b). Among them, the most general perspective is provided by the 
geometrical theory of defects (Kondo 1949a, b, 1957). Based upon the 
theory, we will derive a general expression for rotational motions of seis-
mic waves. This, as well as a general expression for translational motion, 
completely specifies the seismic waves. 

We start with a sketch of the geometrical theory of defects. After outlin-
ing the fundamental concepts in Sect. 11.2.1, we present a space-time for-
mulation in Sect. 11.2.2 so that we can treat time-dependent problems. An 
expression of defects is generalized by using geometrical quantities intro-
duced in these subsections. Two kinds of defects, dislocations and discli-
nations, play important roles. Interestingly, their motions are closely re-
lated with each other, being characterized by continuity equations. Section 
11.2.3 is devoted to their derivation, using the space-time of Section 
11.2.2. The strain related to earthquakes will be less than 10 3; the magni-
tude of strain of granite rocks just before brittle fractures was measured in 
triaxial compression tests (e.g. Mogi 1978). So we can employ a linear ap-
proximation to obtain our main result, simple formulae (11.97) and (11.98) 
for rotational and translational motions excited by earthquakes are used. 
Finally in Section 11.4, we present a simulation of rotational motion ex-
cited by an earthquake, and discuss the possibility of detection in real 
situations.

11.2  Geometrical Theory of Defects 

11.2.1  Fundamental concept 

Take an elastic material with internal defects, and cut it into many small 
pieces free of defects.  Then, information on the defects will be reflected in  
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the relative location of the neighbouring pieces after being relaxed to a 
strain-free state. Using this idea in the framework of non-Riemannian ge-
ometry, a general theory was developed by Kondo (1949a, b, 1953, 1955, 
1957), and his successors (e.g. Amari 1962, 1968, 1981, Shiozawa 1980). 
First we give a sketch of their theory. 

Let xi(i = 1, 2, 3) be a coordinate system in the real Euclidean space E3

in which a material body M is immersed. The coordinate system can be 
Cartesian or spherical etc., although it need not be orthogonal. To each 
point of M we attach the coordinate xi(i = 1, 2, 3), which the point occupies 
in E3. We now have a manifold, hereafter called a material manifold.  Let 
e

i(P) (i = 1, 2, 3) be the natural bases (vectors directed along the xi axes) at 
point P of the manifold. The tangent space Tp is a vector space spanned by 
the vectors e1(P), e2(P), e3(P).

The material body, in general, is not free from strains, because of exter-
nal forces applied from the outside or plastic defects existing inside. Take 
out of the material an element small enough to be free from defects. The 
element can then be transformed elastically to the strain-free state by cut-
ting it off from the surroundings and releasing it from the constraints of the 
surroundings. This procedure is named naturalization. The states before 
and after the naturalization are called the real state and the natural state,
respectively (see Fig. 11.1). We assume that the natural state is realized by 
an affine transformation of the torn small material element.  

Fig. 11.1  Schematic image of “naturalization” 

Suppose the vectors e1, e2, e3 become 1 2 3, , ,e e e  respectively, through 

naturalization. The squared length 2d Ns  of dx after naturalization is written 

as
2d d d ,i j

N ijs g x x (11.1)

with

, ,ij i jg e e (11.2)
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which defines a metric tensor in the tangent space Tp. Here ( ,i je e ) indi-
cates the inner product in E3. The summation convention for repeated indi-
ces is followed throughout.  

Take two points, P(xi) and P (xi + dxi), in M. We cut off two neighbour-
ing material elements located around P(xi) and P (xi + dxi) from the sur-
roundings, and release them to the natural states. In this process, the two 
elements are kept connected. By this naturalization, the basis vectors ei at 
P and ie  at P  are transformed to ie  and ie , respectively. In general, ei

Tp and i pTe  are vectors belonging to different vector spaces, so that they 

are not comparable. However, we can compare the naturalized vectors ie

and ie  because they are in the same Euclidean space E3. The difference 

( ) ( )i iP Pe e  is expressed as d i k

ji kx e  up to O(dxj) with a suitable quan-

tity k

ji . This quantity k

ji  enables us to relate two tangent spaces, Tp and 

Tp : the origin of Tp  is mapped to dx Tp ,

d d ,i

ixx e (11.3)

and the basis vector ( )i Pe  is mapped to ( ) d ( )j k

i ji kP x Pe e  in Tp ,

d d .j k

i ji kxe e (11.4)

Equations (11.3) and (11.4) define an affine connection in the material 
manifold M, where ( )k

ji P  are called parameters of affine connection. We 
have thus incorporated the effects of defects into the rules of connection. 

We assume that there is no strain gradient between neighbouring natu-
ralized elements, that is, Tp  is mapped to Tp by rotation only. This connec-
tion is called a metric connection characterized by vanishing of the covari-
ant derivative of the metric tensor gij:

0m m

k ij k ij ki mj kj mig g g g , (11.5)

where k and k denote a covariant derivative and a partial derivative with 
respect to xk, respectively.  

Let us see what the connection implies. Take a closed circuit L in M

which  encircles  an  area    passing  through  a  point  P,  and  develop 
tangent spaces along L using the above connection, as shown in Fig. 11.2. 
Let P = P0, P1, P2, …, Pn be a sequence of neighbouring points on L. We 
can map the tangent space  

iPT  to the tangent space  
1iPT .  By repeating this 

procedure, the tangent space 
0P PT T  is mapped  to

1PT ,  and  then  to  
2PT ,
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Fig. 11.2  A discrepancy of location uk and a change of vector direction 
k k k  due to “naturalization” 

and so on, and finally we have a mapping from TP onto itself by going 
round through a loop L. Let the origin of TP be mapped to a point 

k

k Pu Te  and let a vector k

ke  be mapped to ( )k k

ke . Then, we 
have

d ,k k ij

iju S f (11.6)

1

2
d ,

ijl

k l k ijR f (11.7)

where the integration is taken over , and df ij represents small surface ele-
ments of . The quantities k

ijS  and k

ijlR  in the integrands are a torsion ten-

sor and a curvature tensor, respectively, and are defined by  

[ ] ,k k

ij ijS (11.8)

[ ] ][2 2 .k k k m

ijl i j l j li m
R (11.9)

Here [..] denotes the alternation operation applied to indices in [..] except 
for those in .. . The alternation [...] over p indices is obtained by adding p!
signed isomers with permuted indices and by dividing the alternation by 
p!, where the sign is positive if the permutation is even and negative if 
odd. If indices have to be singled out, the sign  is used; for example, 
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[ ]

1

6
.P P P P P P P (11.10)

Equations (11.8) and (11.9) are written explicitly as  

[ ]

1

2
,k k k k

ij ij ij jiS (11.11)

[ ] ][2 2 .k k k m k k k m k m

ijl i j l j l i jl j il im jl jm ili m
R (11.12)

The relations (11.6) and (11.7) allow for the following physical interpre-
tations. Let us cut a loop of small material elements from the surroundings 
along L. This forms a ring, which cannot in general be put in the natural 
state without cutting it further into a non-ring form. When we cut the ring 
at point P and release the strain, we have a sequence of naturalized ele-
ments, which does not form a ring in the natural state (see Fig. 11.2). The 
discrepancy of position uk is given by Eq. (11.6) and the change k of 
the vector k is given by Eq. (11.7). The defect due to the torsion tensor is 
called the dislocation, which is commonly used in earthquake source mod-
els. The curvature tensor, on the other hand, gives another defect called 
disclination.

We further introduce two strain tensors, a strain tensor eij and a rota-
tional strain tensor ijk defined by 

1

2
,ij ij ije a g (11.13)

[ ] [ ] ,ijk i jk i jk (11.14)

where aij = (ei, ej) is a metric tensor in E3, agreeing with ij in case of the 
Cartesian coordinates.  In  Eq. (11.14),  ijk  is defined as p

ijk pk ijg , and

1

2
.ijk i jk j ik k ija a a (11.15)

The strain tensor eij represents how the material element at P is de-
formed from the natural state: the difference between the length in the real 
state and the one in the natural state is given as 

1 2 1 2( d d ) ( d d ) d d .i j i j i j

ij ij ija x x g x x e x x

On the other hand, antisymmetric part of d m k

mi kjx g  shows the relative 
rotation between the two bases at P  and P   in the natural state. i[jk]  is the 
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corresponding quantity when there are no defects, so that ijk contains in-
formation on the intrinsic rotation between two neighbouring elements in 
the natural state. 

The torsion tensor and the curvature tensor can be rewritten in terms of 
the strain tensor and the rotational strain tensors as 

[ ] [ ] ,k

ij ij k i j kS e (11.16)

[ ] ][2 2 .rs

ijlk i j lk j lsi kr
R g (11.17)

The compatibility condition of  eij  and  ijk  is characterized by vanishing 
of the torsion and the curvature tensors: Sijk = Rijlk = 0. The compatibility 
condition in linear approximation means that there exist a vector ui and a 
tensor ij such that

( ) ,ij i je u (11.18)

[ ] ,ijk i jk i j ku (11.19)

where ( ) and [ ] mean mixing and alternation, respectively. The mixing ( ) 
over p indices is effected in the same way as the alternation except that the 
sign is always positive. For example, 

( )

1

6
,P P P P P P P (11.20)

and Eq. (11.15) is written as 

1

2
.ij i j j ie u u (11.21)

11.2.2  Space-time formulation 

We extend the formulation in the previous section to deal with moving de-
fects. We add a time axis to the Euclidean space E3 to make a 4-D Euclid-
ean space E4. Each point of a deformed material can be marked with a 4-D 
coordinate system x (  = 0, 1, 2, 3), where x0 = t and xi(i = 1, 2, 3) denote 
the time and the space coordinates, respectively. We then have a 4-D mate-
rial manifold M. Hereafter, the Greek indices run over both the time and 
the space coordinates, while Roman indices run over the space coordinates 
only, unless otherwise stated. 
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Let e (P) (  = 0, 1, 2, 3)  be  the  natural  basis  at  point P  of  the mani-
fold M.  The tangent space Tp  is  a vector  space  spanned  by  the vectors 
e (P) (  = 0, 1, 2, 3). Note that e0(P) is a unit vector of the x0-axis, so is in-
dependent of P and is always perpendicular to ei(P).

The connections between the neighbouring tangent spaces Tp and Tp  of 
P(x ) and P (x + dx ) are defined by  

d d ,xx e (11.22)

d d ,xe e (11.23)

through the naturalization as in the previous subsection. Since we deal 
with the non-relativistic case, we define the naturalization involving time 
as follows. Let ( )Pe  be a result of the naturalization of ( )Pe . First, vec-

tors ie  remain in E3 ; that is, 0( , ) 0ie e . Second, by Galilei transforma-

tion, the vector 0
i

ie e  indicating the motion of P with the velocity 

( )i i P  is naturalized to a unit vector of the time axis, i0 = (1, 0, 0, 0), 
representing a state without motion. In other words, 

0 0+ .i

ie e i (11.24)

We can easily get 

0 0 ,l (11.25)

using the relation 0(d ) 0le e . From Eq. (11.24), 0de  can be expressed as 

0d d d + d .k k k l k

k k l kx xe e e e (11.26)

Remembering that the relation 

d d ,xe e (11.27)

holds by definition, we have 

0
0 0 0 0d d d .k

kx xe e e (11.28)

Comparing Eqs. (11.20), (11.21), and (11.23), we have 
0 0 , (11.29)

0 .k k l k

l (11.30)
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The metric tensor defined by g = ( )e e  is expressed as 

1 2 3

1 11 12 13

2 21 22 23

3 31 32 33

1

.

k

k

g g g
g

g g g

g g g

(11.31)

We define, in the same manner as the 3-Dl case, a torsion tensor and a cur-
vature tensor as 

[ ] ,S (11.32)

[ ] ][2 2 ,R (11.33)

and a strain tensor and a rotational strain tensor as 

1

2
,e a g (11.34)

[ ] [ ] . (11.35)

Here
1

2
,a a a (11.36)

and ( , )a e e  is a metric tensor; the components relating to time axis 

are a00 = 1 and ai0 = a0i = 0. A 4-D counterpart of Eqs. (11.16) and (11.17) 
now reads: 

[ ] [ ] ,S e (11.37)

[ ] ][2 2 .R g (11.38)

We note that the 3-D components of the torsion and curvature tensors de-
fined above agree with those in previous subsection because 0 0 . We 

also note that the connection is a metric connection in the 4-D sense, 
0k g , by virtue of Eqs. (11.5), (11.29), and (11.30).  

From the definition of the strain tensor, e , and Eq. (11.31), we have  

00 00 00

1 1

2 2
1 1 0 ,k

ke a g (11.39)
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0 0 0 0

1 1 1

2 2 2
.k k k k ke a g g (11.40)

From the definition of , 0 is represented as

0 0 0

1 1

2 2
,kg g (11.41)

which gives a gradient of the velocity. 

11.2.3  Density and current tensors of defects  

In this section we confine ourselves to linear problems where higher-order 
terms of geometrical quantities are negligible. We will derive systemati-
cally the results that were obtained based on a linear theory of elasticity by 
Mura (1963, 1972, 1982), deWit (1973), and Kossecka and deWit (1977a, 
b) and so on. First we introduce two density tensors,  ij for dislocation and 

 ij for disclination, using the torsion tensor (11.37) and the curvature ten-
sor (11.38) as follows: 

,ij ilk j

lkS g (11.42)

4 .ij ilk jmn

klmnR g (11.43)

Here and in the following ijk is Eddington’s epsilon:  

1 if is an even permutation of (1, 2, 3)

1 if is an odd permutation of (1, 2, 3)

0 otherwise

ijk

ijk

ijk

ijk (11.44)

and g = det(gij). The meanings of ij and  ij will be clear from the relations 
(11.6) and (11.7). Since ijk g  behaves as a tensor under the 3-D trans-
formation, ,t t t ( )x x x x , so do ij and  ij. The inverse rela-
tions of Eqs. (11.42) and (11.43) are written as  

1

2
,j ij

lk ilkS g (11.45)

.ij

klmn ikl jmnR g (11.46)

Their current tensors n

mI  and n

mJ  are defined as 
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0 0 ,n n n

m m mI S S (11.47)

0

1

2
.n npq

m m pqJ R g (11.48)

Let us now derive continuity equations in linear approximation, which 
will justify the above introduction. Hereafter we assume that the coordi-
nate system xi is Cartesian. From Bianchi’s identities, the following equa-
tions are fulfilled by the torsion and curvature tensors (Schouten 1954), 

[ ] [ ]2 ,R S R (11.49)

[ ] [ ] [ ]2 4 ,R S S S (11.50)

and an identity for the curvature tensor under the metric connection: 

( ) 0R . From the definition of the curvature tensor, it is obvious that 

( ) 0R . The connection treated in this paper is metric ( 0)g , so 

we have ( ) 0R  (Schouten 1954). Equation (11.50) becomes  

[ ] [ ]2 ,R S (11.51)

if we neglect terms of order higher than 0( )k

ij . Employing this equation, 
we obtain

[1 23]

1

2
6 .p pij klp

p m p ijm m klpmS S R (11.52)

From Eq. (11.43), we have the relation:  

1 1

4 2
,pq pkl qrs klp

ipq ipq klrs klpmR R (11.53)

if we use g = 1 for the Cartesian coordinate system and ( ) 0R . Then, 
we have the relation 

0 .p pq

p i ipq (11.54)

Employing a formula for Eddington’s epsilon 

,

i i i

p q r

ijk lmn pl qm rn j j j

p q r

k k k

p q r

gg g g (11.55)
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we see ij defined by Eq. (11.43) agrees with the Einstein tensor Gji

1

2
,ji ji jiG R Rg (11.56)

in a 3-D space. Here ji kj mi

kmR g g R , p

km pkmR R  and p

pR R . The Ein-

stein Gji generally satisfies 

[ ]3 .i r k il

i j jk i rlG S R g (11.57)

Hence, neglecting the higher-order terms, we have 

0 .il

i (11.58)

The formula (11.57) is obtained from Eq. (11.49) in three dimensions, i.e. 
the indices run over space coordinates 1, 2, 3, as follows. Multiplied by 

 and contracting along , the left-hand side term of Eq. (11.49) be-
comes  

[ ]

1

3
,R R R R (11.59)

where R R . Again, multiplying by g  and contracting along ,

the term on the left-hand side becomes 
2 1

3 2
R R , where 

R R . When we apply the same procedure to the term on the right-hand 

side of Eq. (11.49), it becomes [ ]2S R g . Because 

1

2
G R R , we get Eq. (11.57) in three dimensions.  

Let Eq. (11.42) be partially differentiated with respect to time:

0 0 0 0

1

2
2 .m mij mij mij mij

k ijk i jk i jk ij kS I R R (11.60)

Here, the relation [0 ] [0 ]2k k

ij ijR S  deduced from Eq. (11.51) is used. From 

the definition of n

iJ  we have the following expression: 

0 .n

njk i i jkJ R (11.61)

Then, Eq. (11.60) can be rewritten as

0 0

1

2
2 .m mij n mij

k i jk njk i ij kI J R (11.62)
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Neglecting the higher-order terms in Eq. (11.38) and using Eq. (11.41), the 
following relation holds: 

0

1

2
0 ,ij k i j k j i kR (11.63)

and, finally, we have 

0 2 0 .m mij n

k i jk njk iI J (11.64)

In linear approximation, we have from Eq. (11.49) that 

[ ] 0 ,R (11.65)

and it follows that 

0 0 0 .ijpq i j pq j ipqR R R (11.66)

Let mn be partially differentiated with respect to time: 

0 0

1

4
,mn mij npq mij n

ijpq i jR J (11.67)

then we have 

0 0 .mn mpq n

p qJ (11.68)

Therefore, the continuity equations take form of 

0 2 0m mij n

k i jk njk iI J   and 0 0mn mpq n

p qJ (11.69)

and the dislocation tensor and disclination tensor are related to each other 
by  

0p pq

p i ipq   and   0 .il

i (11.70)

Here we note that the geometrical theory presents more general framework 
than the dislocation theory: dislocation is a defect accompanied by the van-
ishing of curvature tensor Rijlk and is sometimes called a plasticity of dis-
tant parallelism.  

We will rewrite the above expression using the strain tensor eij and the 
rotational strain tensor ijk for later convenience. In general, the deforma-
tion is not completely elastic but partly plastic, so we decompose the ten-
sors into elastic and plastic components as 

,E

ij ij ije e e (11.71)
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,E

ijk ijk ijk (11.72)

where the superscripts E and  denote the elastic part and the plastic part, 
respectively. When defects are present, a displacement field has a discrep-
ancy and a change of vector on a defect surface, as shown in Fig. 11.2, 
which are given by Eqs. (11.6) and (11.7) in general. Therefore, it is found 
that the spatial derivative of displacement has a singularity on the defect 
surface, and this singular part is found to be plastic parts of these strain 
tensors. When no defects are present, the plastic fields are compatible, i.e. 
the plastic parts of these strain tensors can be derived from a plastic dis-
placement, ju , and a plastic tensor, jk , using Eqs. (11.18) and (11.19) 
which satisfy the compatibility conditions, Sijk = Rijlk = 0. We sometimes 
conventionally introduce the total displacement uj and jk satisfying Eqs. 
(11.18) and (11.19), even when ije  and ijk  do not vanish. It should be 
noted, however, that ju  and jk  are no longer single-valued functions be-
cause of the incompatibility. This is easily understood in the dislocation 
model of earthquake: ju  is discontinuous on the fault plane. The above 
convention will be permitted as long as multivaluedness does no harm (see 
Sect. 11.3).

Because the elastic deformation satisfies the compatibility conditions, 
E

ije  and E

ijk  do not contribute to the torsion tensor and the curvature tensor. 
Therefore, neglecting the higher-order terms, the torsion tensor and the 
curvature tensor are written as

[ ] [ ] ,ijk ij k i j kS e (11.73)

[ ]2 .ijlk i j lkR (11.74)

Substituting Eqs. (11.73) and (11.74) into Eqs. (11.42) and (11.43), we 
have

,i ipq n

j qjn p p qje (11.75)

,ij ipq j

p q (11.76)

where

1

2

j jpq

i ipq    or   .p

ijk jkp i (11.77)
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The current densities mnI  and n

mJ  are similarly given by 

0
0 0

1

2
,l

mn mnl mn m nI e (11.78)

0 0 .n n n

m m mJ (11.79)

11.3  Formulation of Rotational and Translational Motions
         Due to Earthquakes 

In order to develop equations for seismic waves from buried plastic de-
formations, we shall describe such sources in terms of a transformational 
(or stress-free) strain introduced in the source volume. This problem is a 
generalization of Eshelby’s “transformation problem” to an anisotropic 
medium and an inhomogeneous stress-free strain (Eshelby 1957). We note 
here  that  the  concept  of  the  transformational  strain  in  Eshelby  (1957) 
is identical with the plastic strain of this paper. Similar approaches have 
been made by Mura (1972, 1982), deWit (1973), Kossecka and deWit 
(1977a, b), etc., who gave displacements and distortions caused by disloca-
tions and/or disclinations in a linear elastic continuum. Kossecka and 
deWit (1977b) proposed a simple expression for the rotational velocity of a 
distribution of moving dislocations and disclinations. However, they as-
sumed the existence of a “plastic velocity” whose physical meaning was 
not clear. 

Since we are interested in the ground motions excited by an earthquake, 
we assume that there exists a bounded region VS outside of which defects 
vanish and the material deforms elastically. It should be noted that an 
earthquake is an internal process of the Earth, and the displacement field 
excited by an earthquake has a quiescent past. In this section, we will de-
rive a simple formula for rotational motion caused by an earthquake. 

To help understand the following formal derivation, let us briefly illus-
trate Eshelby’s recipe of how to implement defects in the material. First, 
we separate the source material VS by cutting along the surface S enclosing 
VS and removing VS from the surroundings. Second, we let the source ma-
terial undergo plastic strain (stress-free strain) which causes deformation 
without changing the stress within VS . Third, we apply extra surface trac-
tions or fictitious body forces that will restore the source volume to its 
original shape. Then, we put the source material back in the hole and weld 
the material across S, removing the extra tractions or fictitious body forces 
on S, and find the resulting displacement caused by the plastic strain. So, 
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the moral of Eshelby’s method is that a defect described by the plastic 
strain kle  can be simulated by the extra traction given by ijkl

kl jC e n  or the 

fictitious body force given by ijkl

j klC e  where C ijkl is a tensor of elastic 

constants (e.g. Aki and Richards 1980). 
The above procedure is simply done as follows. Keeping in mind that 

kle  is stress-free, we apply Hook’s law, 

,ij ijkl E

klC e (11.80)

together with ( )
E

k l kl klu e e  to the equation of motion without body 

forces:

0 0 .i ij

ju (11.81)

Here  is the density of the medium. The tensor C ijkl is a symmetric tensor 
with respect to the i and j indices (C ijkl = C jikl) due to a symmetric charac-
teristic of elastic stress, and with respect to the k and l indices (C ijkl = C ijlk)
due to a symmetric characteristic of elastic strain. Therefore, we obtain the 
equation of motion as follows:  

0 0 .i ijkl

j k l j klu C u e (11.82)

Using Green’s function Gni(x, t ; , 0), a seismic displacement (trans-
lational motion) generated by a plastic strain can be expressed as 

( , ) d ( , ; ,0) ( , )d ( ) ,ijkl

n j ni klu x t C G x t e V (11.83)

after integration by parts. Green’s function Gni(x, t ; , 0) satisfies an 
equation of motion  

0 0 ln ( ) ( ) ,i ijkl i

n j k nG C G x t (11.84)

and represents the nth component of the displacement resulting from a unit 
impulse source of the ith component applied at x = , and t =  (e.g. Aki 
and Richards, 1980). i

n  and (x ) or (t ) denote Kronecker’s delta 
and delta functions, respectively. Differentiating Eq. (11.83), we have 

( , ) d ( , ; ,0) ( , )d ( )

d ( , ; ,0) ( , )d ( ),

ijkl

m n m j ni kl

ijkl

j ni m kl

u x t C G x t e V

C G x t e V (11.85)
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where we have used integration by parts with respect to space and the 
boundary condition that the plastic strain ( kle ) vanishes outside of VS. The 

partial differentiation with respect to  or the mth component of  is explic-
itly  shown  by  an  index  with  a  prime,  for  example,  0   and  m . From 
Eq. (11.75), we have 

,p p

m kl pmk l l k ml lmke e (11.86)

where i

i , from which it follows that 

0 0

( , ) d ( , ; ,0)

( , ) ( , ) ( , ) d ( )

d ( , ; ,0)

( , ) ( , ) d ( ) ( , )

d ( , ; ,0) ( , )d ( ) ,

ijkl

m n j ni

p p

pmk l l k ml

ijkl

pmk j ni

p p

l l mn

l

n ml

u x t C G x t

e V

C G x t

V e x t

G t x e V
(11.87)

where we have used integration by parts again and the symmetric property 
of C ijkl. Here, a reciprocal relation of Green’s function, 

( , ; ,0) ( , ; ,0)l l

n nG x t G t x , is also employed. The second term on 
the right-hand side of Eq. (11.87) vanishes because we assume the plastic 
strain outside the source volume (VS) to be zero. The partial differentiation 
of Eq. (11.83) with respect to time yields  

0 0

0

( , ) d ( , ; ,0) ( , )d ( )

d ( , ; ,0) ( , )d ( )

ijkl p

m n pmk j ni l

ijkl p

pmk j ni l

u x t C G x t V

C G x t V

0 0 0

0

( , ) d ( , ; ,0)

( , )d ( ) .

l

mn n

ml

e x t G x

e t V (11.88)

The first term (I1) on the right-hand side of the above equation can be re-
written using Eq. (11.66) as  
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1

0 0

I d 2 d

2 d d 2

2 d d d d ,

ijkl prs q

pmk j ni r sl qsl r

ijkl

kl m j ni mn

l ijkl q

n ml qml k j ni

C G I J V

I C G V I

G I V C J G V (11.89)

where we also use the relations 

,prs r s s r

pmk m k m k (11.90)

0 0 ( ) ( ) ,ijkl l l

k j ni n nC G G x t (11.91)

and
0 (due to ) .ijkl q ijkl ijlk

qkl mC J C C (11.92)

From Eq. (11.58), we have a relation 

0 0 .k k k

j j jJ (11.93)

Substituting this equation into the integrand of the second term (I2) on the 
right-hand side of Eq. (11.88), we have 

2 0

0

0 0 0

I d d d d

d d

d d .

ijkl p ijkl p

pmk l j ni pmk l j ni

ijkl q p

qml k j ni pmn

l p

pml n

C J G V C G V

C J G V

G V (11.94)

Finally, Eq. (11.88) is written as  

0

0 0

0 0

0 0

( , ) 2 d ( , ; ,0) ( , )d ( )

2 ( , ) ( , ) ( , )

d ( , ; ,0)

2 ( , ) ( , ) ( , ) d ( ) .

ijkl

m n m j ni kl

p

mn mn pmn

l

n

p

ml ml pml

u x t C G x I t V

I x t e x t x t

G x

I e V (11.95)
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The second term on the right-hand side of Eq. (11.95) is zero because de-
fects are limited in VS and x is outside of VS. The integrand of the third 
term can be simplified using Eq. (11.78), and Eq. (11.95) is rewritten as 
follows:

0

0 0

( , ) 2 d ( , ; ,0) ( , )d ( )

d ( , ; ,0) ( , )d ( ) .

ijkl

m n m j ni kl

l

n m l

u x t C G x t I V

G t x V

(11.96)

This equation is a generalized version of Eq. (38.36) in Mura (1980). We 
have, then, a simple expression for the rotational velocity of a seismic 
wave as follows:

0 0

0 0

0 0

1

2

1

2

1

2

1

2

( , )

d ( , ; ,0) ( , )d ( )

d ( , ; ,0) ( , )d ( )

d ( , ; ,0)

( , ) ( , ) ( , ) d ( )

d

qq

qmn ijkl

m j ni kl

qmn l

n m l

qmn ijkl

m j ni

kl kl k l

x t

C G x t I V

G x t V

C G x t

e V

u

0 0 ( , ; ,0) ( , )d ( ) .qmn l

n m lG t x V (11.97)

On the other hand, the velocity of translational motion is written as  

0 0( , ) d ( , ; ,0) ( , )d ( ) .ijkl

q j qi klu x t C G x t e V (11.98)

These two equations show that we can estimate the tensors 0kl , k l  us-
ing the translational and rotational motions of seismic waves simultane-
ously. 

11.4  Possibility of Estimating a Rotational Strain Tensor
         Due to an Earthquake

To  get  information  about 0kl  and k l  due  to  an  earthquake  based  on 
observed  seismic  waves,  it  is  necessary  that 0kl  and k l  appearing in  



   M. Takeo 150

Eq. (11.97) have a magnitude equal to or higher than 0 kle . Let us estimate 
their magnitudes in a simple case. In this section, we also assume that the 
coordinate system xi is Cartesian. 

From Eqs. (11.6), (11.7), (11.45), and (11.46), the discrepancy uj and 
the change k  of a vector k  due to defects are rewritten as

d d ,pq i

j pqj j iu S f (11.99)

1 1

2 2
d d d ,l pq l ipq l ij

k pqlk pqlk i jlk iR f R (11.100) 

where d dpq ipq

if g  and d i is the i th component of the area vector 

of . Now, we consider a simple model of an earthquake such that a mate-
rial below a surface S has been plastically displaced with respect to a mate-
rial above S by a constant amount which represents a rigid motion; the up-
per plane (denoted by S+) slips by a constant Burgers vector b  relative to 
the lower plane (denoted by S ), and S+ twists against S  by a constant 
Frank vector  at point x0 (see Fig. 11.3).  

Fig. 11.3  Schematic figures of dislocation (upper) and disclination (lower). The 
dislocation line is defined as a part of the boundary of a slip plane S. The disclina-
tion line is created by twisting surface S  against surface S  by rotation angle 
at point x0. L is a Burgers circuit. When vector  is normal to S , the disclination 
is of a twist type, and it is of a wedge type when  is on S
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We will derive expressions for the dislocation tensor ij  and the discli-
nation tensor ij  in the case of a constant Burgers vector b and a constant 
Frank vector . Since the discrepancy ju  and the change k  of a vec-

tor k  are related to the Burgers vector bj and the Frank vector i by  

0 ,j j j
u b x x (11.101) 

,i j

k ijkk (11.102) 

by comparing these with Eqs. (11.99) and (11.100), we have formulae re-
lating ij  and ij  to bj and j:

d ;j l l ij

k jlk jlk i (11.103) 

therefore

d ,j ij

i (11.104) 

and

0 0

0

d d

d .

i im n n

j j j i jmn ij

i ip q q

j jpq i

b u x x

x x

x x

(11.105) 

Introducing l

p  and ij  satisfying 

,i ipq n

j p qj qjn p (11.106) 

,ij ipq j

p q (11.107) 

and defining l

pqn qnl p , we have 

d ,j j i

i

L

L (11.108) 

0 d ,p q q i

j ij jpq i

L

b x x L (11.109) 

where we have used Stoke’s theorem. 
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We see, the integrand of the first term on the right-hand side of (11.95) 
reads

0 0

1

2
,mn mn mn m nI (11.110) 

where

( ) ,j j

i i S (11.111) 

0( ) ,p q q

ij i j jpqS b x x (11.112) 

0 0 0 ( ) .q q

kl klq klq S (11.113) 

Here i (S) is defined by 

( ) ( ) d ( ) ( )d .i i i

S S

S x n S x S (11.114) 

It is straightforward to check that Eqs. (11.111) and (11.112) satisfy 
(11.108) and (11.109) if we note that  

1 if crosses positively,

( )d ( )d 0 if does not cross ,

1 if crosses negatively,

i i

i i

S L

L S

L S S L L S

L S

(11.115) 

because the curve L crosses the surface S once as shown in Fig. 11.3. Here 
i(L) is defined by  

( ) ( ) d ( ) ( )d .i i

i

L L

L x t L x L (11.116) 

During the last decade, waveform inversion of strong motion and tele-
seismic data excited by earthquakes have been used to determine the spa-
tial and temporal variations of slip on the fault plane (e.g. Hartzell and 
Heaton 1983, Kikuchi and Fukao 1987, Takeo 1988), clarifying that the 
slip distribution on the fault plane of large earthquakes is generally very 
complex. The spatial resolution of the slip distribution obtained in these 
inversions is more than a few kilometers at best; the resolution depends on 
the minimum wavelength of the seismic waves employed in the inversion. 
Now, we assume that the Burgers vector is constant in the region S whose 
length-scale is shorter than 103 m, because we have no information about 
slip distributions in source areas smaller than several square kilometers. 
The order of  is not clear because the value related to an earthquake has 
not been obtained until now. One possible rotational deformation during an 
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earthquake is a tensile fracture at an end of the fault plane, as illustrated in 
Fig. 11.4. Let us assume that the order of (O( )) is 10 2 radian ( 1o)
and the area (S ) concerning this phenomenon is an order of magnitude 
less than the area of the fault plane (S), i.e., S S 0.1. The spatial varia-
tion of slip velocity ( l) also has a large uncertainty due to the lack of ob-
servations. It seems, however, reasonable to assume that the spatial scale 
of variation is not shorter than the scale of S. Taking appropriate values for 
other parameters: ( ) 1 mjO b , -1( ) 1 m slO and O (Eq.11.114) 1km-1,

we get 3
0( ) 10mnO , 3

0( ) 10mnO  and 3( ) 10m nO  This result 

shows that 0 ,mn m n  and 0 mn  have similar orders of magnitude, and it 

is possible to estimate 0mn  and m n , i.e., 0mn  and m n  using the trans-
lational and rotational motions of seismic waves simultaneously. 

Fig. 11.4  Schematic image of a tensile fracture at edges of a fault plane 

The resolution of the new angular sensor (Morris 1971, Nigbor 1994) is 
limited by internal sensor noise of about 3 10-4 rad/s, the value obtained in 
a field observation on the Izu peninsula, Japan. In order to estimate the 
magnitude of an earthquake whose rotational ground motion can be ob-
served by the angular sensor, we calculate the rotational and translational 
velocities excited by an earthquake with a seismic moment of 1018 N m
buried 5 km deep. The focal mechanism is a vertical strike-slip fault: only 
dislocation  is taken  into account  in this case.  The reflection-transmission  

Table 11.1  Velocity structures used in the simulation of rotational and transla-
tional ground motions 

VP

[km/s] 
VS

[km/s] [kg/m3]
Depth 
[km] 

QP QS

2.80 1.30 2.30 103   0.00 200 100 
5.60 2.90 2.50 103   2.70 400 200 
6.00 3.40 2.60 103   6.10 500 230 
6.80 4.00 3.00 103 19.00 600 270 
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Fig. 11.5  Synthetic ground velocities of rotational and translational components 
at six stations of different hypocentral distances, . The number attached to each 
trace is the peak-to-peak amplitude of each of ground velocities. z , r and ut de-
note a rotational velocity around the vertical axis, the one around the radial axis, 
and a translational velocity of transverse direction, respectively 

matrices (Kennett and Kerry 1979) and the discrete wavenumber method 
(Bouchon 1981) are used in the calculation of ground motion, assuming 
the anelastic layered half-space structure listed in Table 11.1. Figure 11.5 
represents the rotational and translational ground velocities at stations that 
are in line along the strike direction of the fault plane. The rotational ve-
locity around the vertical axis ( z) has a maximum value of 2 10-3 rad/s at 
the hypocentral distance of 5 km. This simulation shows that this angular 
sensor will be able to record rotational motion excited by an earthquake of 
moment magnitude 6 (seismic moment: 1018 N m) up to a hypocentral dis-
tance of 25 km.  

11.5  Conclusions 

We extend the dislocation model of earthquakes to cover phenomena gen-
erated by rotational motions in the source area. The extended model in-
cludes defects, dislocations and disclinations, which are shown to be com-
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pletely characterized by geometrical quantities, a torsion tensor and a cur-
vature tensor. We derive a set of continuity equations among densities of 
dislocation and disclination and their currents. 

Employing the continuity equations, we derive a simple expression for 
the rotational velocity of seismic waves. Combining the rotational motions 
of seismic waves with the translational motions, we can estimate the ten-
sors 0mn  and m n , i.e., the rotational strain tensor and the spatial varia-
tion of slip velocity. These quantities will be large at the edges of a fault 
plane due to spatially rapid changes in slip on the fault and/or a formation 
of tensile fractures. We estimate from a simulation that the angular sensor 
now available will detect the rotational motions from earthquakes with 
magnitude 6 or larger if the hypocentral distance is shorter than 25 km.  
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12.1 Introduction  

Only translational ground motions have been observed in instrumental 
measurements of seismic waves, and quantitative measurements of rota-
tional ground motions have not been made until quite recently. Nigbor 
(1994) succeeded in measuring rotational and translational motions using a 
new angular measuring sensor (Morris 1971) at a surface station during a 
non-proliferation experiment at the Nevada Test Site. Spudich et al. (1995) 
also estimated a rotational ground motion excited by the 1992 Landers 
earthquake (M = 7.4) at the UPSAR seismograph array about 400 km 
northwest of the epicenter. Stedman et al. (1995) observed a rotational 
ground motion around the vertical axis using a Ring Laser Gyro. This mo-
tion was excited by an earthquake of magnitude 6.3 at Kelburn, Welling-
ton, New Zealand, whose epicentral distance is more than 200 km. Nobody 
has, however, succeeded in recording a strong ground rotational motion in 
the near-source region of earthquakes until now.

Bouchon and Aki (1982) simulated rotational ground motions near 
earthquake faults buried in layered media for strike-slip and dip-slip fault 
models, and obtained a maximum rotational velocity of 1.5x10-3 rad/s pro-
duced by a buried 30 km long strike-slip fault with slip of 1 m. On the 
other hand, employing the geometrical theory of defects, Takeo and Ito 
(1997) obtained a general expression for rotational motions of seismic 
waves as a function of parameters of source defects. They made it clear 
that a rotational strain tensor and a spatial variation of slip velocity can be 
estimated combining the rotational motions with the translational motions. 
These quantities will be large at edges of a fault plane due to spatially 
rapid changes in slip on a fault plane (Takeo and Ito 1997). Therefore, 
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near-source rotational motions produce much detailed information on rup-
ture processes of earthquakes.

During an earthquake swarm at offshore region of Ito in Izu peninsula, 
Japan, we succeeded in recording rotational ground motions in the near-
source region of earthquakes. The purpose of this paper is to report the 
characteristics of the rotational ground motions excited by the earthquakes.  

12.2 Observational System  

The observational system consists of a triaxial translational sensor, a triax-
ial rotational sensor, and a six-channel digital recorder. The translational 
and rotational motions are measured by a Kinemetrics FBA-23 triaxial   
accelerograph, and by a Systron Donner MotionPak triaxial gyro sensor, 
respectively. These sensors are similar to those of the recording system de-
signed by Nigbor (1994). Full-scale outputs of the translational sensor and 
the rotational sensor are ±1 G and ±8.73x10-1 rad/s, respectively. The trans-
lational sensor has flat frequency response to translational acceleration 
from DC to 50 Hz. The rotational sensor has flat frequency response to ro-
tational velocities around three axes perpendicularly intersecting each 
other from DC to 75 Hz.  

The digital data logger is a REF TEK 72A-08 DAS which has a three-
channel, 24-bit resolution digitizer and a three-channel, 16-bit resolution 
digitizer. The signals from the rotational sensor are digitized by the 16-bit 
resolution digitizer, and those from the accelerograph are digitized by the 
24-bit resolution digitizer. The sampling rate of this logger is 20 samples/s 
under a continuous recording mode. This observational system has been 
installed at Cape Kawana (KAW), about 4.5 km southeast of Ito, and near 
Cape Shiofuki (SOF), about 2.5 km east of Ito, since October 1996.  

12.3 Near-Source Ground Rotational Motions  

The earthquake swarm started on 2 March, 1997, and lasted for 24 days: 
the source area lay about 3 km east of Cape Kawana extending for about   
5 km in the east-west direction. Figure 12.1 shows epicenters of earth-
quakes with magnitudes larger than 3.5 that occurred from 2 March 15:00 
to 7 March 15:00. During this swarm, 13 events excited large rotational 
ground motions exceeding the internal noise level of the rotational sensor 
at KAW. The observational system operated at SOF had a trouble and 
could not record ground motions.  
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Fig. 12.1  Epicenters of earthquake swarm from 2 March 15:00 to 7 March 15:00 
at offshore Ito in Izu peninsula, Japan. The earthquakes with magnitudes larger 
than 3.5 are shown. The hatched area in the bottom panel on the right-hand side   
represents the offshore Ito. KAW is a station where an observational system for 
rotational and translational motions is installed. The closed circles represent the 
epicenters of the largest and the second largest events of the earthquake swarm.  

The largest earthquake with a magnitude of 5.7 occurred at 3:51 GMT 
on 4 March. Figure 12.2 shows the triaxial translational velocities and the 
triaxial rotational velocities excited by the largest event and the second 
largest event which occurred at 14:09 GMT on 3 March, whose epicenters 
are shown in Fig. 12.1. These translational velocities are obtained by nu-
merically integrating the accelerograms. The largest amplitude of rota-
tional velocity observed at KAW during this swarm is 2.6x10-2 rad/s 
around the east-west axis, i.e. tilt in the north-south direction, which was 
excited by the second largest event. The maximum rotational velocity ex-
cited by the largest event is 5.9x10-3 rad/s around the north-south axis, i.e. 
tilt in the east-west direction. The peak to peak amplitude of acceleration at 
KAW during the largest event is 3 m/s2, whereas that of the second largest 
event is 8 m/s2. These large rotational velocities are accompanied by the 
large accelerations. The G sensitivity of the sensor (sensitivity to transla-
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tional acceleration) provided by the manufacturer is less than                  
3.5x10-4 rad/s/G, so that the errors in the rotational velocities due to large 
translational motions are less than 1.1x10-4 rad/s for the largest event, and    
2.9x10-4 rad/s for the second largest event. These errors are about  two    
orders in magnitude smaller than the signals in both cases.  

Fig. 12.2  Triaxial translational velocities and triaxial rotational velocities excited 
by the largest event (upper panel) and the second largest event (lower panel),      
respectively. The epicenters are represented by closed circles in Fig. 12.1  
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The rotational velocities around the horizontal axes seem to be domi-
nated by relatively higher frequency than those around the vertical axis. 
The Nyquist frequency of the recording system is 10 Hz. The frequency 
dominating the rotational velocities around the horizontal axes, i.e. tilts, is 
only a little lower than the Nyquist frequency of the recording system, so 
that quantitative evaluation of the tilts is very difficult. Therefore, we focus 
on the rotational motion around the vertical axis and present a preliminary 
analysis concerning the source process of the largest event in the next sec-
tion.

12.4 Discussion  

The seismic moment of the strike-slip fault model used in Bouchon and 
Aki (1982) was about 8x1018 N·m, and the rotational velocity around the 
vertical axis of 1.5x10-3 rad/s was produced at a station 1 km away from 
the fault. The seismic moments of the largest and the second largest events 
of the swarm are 1.2x1017 N·m and 2.7x1016 N·m (Hayashi, personal com-
munication, 1997). These values are two orders in magnitude smaller than 
that of the simulation model employed by Bouchon and Aki (1982).      
The maximum rotational velocities around the vertical axis at KAW are, 
however, about 3.3x10-3 rad/s for the largest event and about 8.1x10-3 rad/s
for the second largest event. KAW lies about 3.3 km away from the both 
epicenters. The observed rotational velocities are several times larger than 
the simulation result, in spite of these smaller seismic moments and greater 
epicentral distances.  

What caused the large discrepancy between the observation and the 
simulation? During the last decade, waveform inversion analyses have 
clarified that the slip distribution on the fault plane of large earthquakes is 
generally complex (e.g. Hartzell and Heaton 1983, Kikuchi and Fukao 
1987). One possible answer is that the large rotational velocities are caused 
by heterogeneity of slip velocity on the fault.  

Takeo and Ito (1997) derived a general expression for rotational veloci-
ties of seismic waves as a function of the geometrical quantities: torsion   
tensor and curvature tensor. Neglecting the term which dominates only in 
the high-frequency range, we get a simple expression as follows:  

0 ( , ) d ( , ; ,0) ( , ) d ( ) .q qmn ijkl

m j ni klt C G t I Vx x (12.1)

The velocity of translational motion is written as  
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*
0 0( , ) d ( , ; ,0) ( , ) d ( ) ,ijkl

q j qi klu t C G t e Vx x
’

 (12.2) 

where  Cijkl, Ikl , 
*
kle  and qmn  are the tensor of elastic constants, the current    

tensor of defect, the plastic strain, and Eddington’s epsilon, respectively. 
Green’s function  Gni (x, t– ; , 0) satisfies the equation of motion 

0 0 ( ) ( ) ,i ijkl i

n j k ln nG C G tx  (12.3) 

where i

n  and (x– )  or (t– ) denote Kronecker’s delta and delta func-
tions, respectively. Ikl  is simply given by 

* *
0 0

1

2
( ) ,kl kl kl lkI e v

’ ’

 (12.4) 

where / 0   and / m m · *
0kl  , and l  are the plastic part of a ro-

tational strain tensor and the slip velocity, respectively. For further details 
of these tensors, the reader should refer to Takeo and Ito (1997). These 
equations show that not only the plastic strain but also the rotational strain 
and the spatial variation of slip velocity at earthquake sources directly gen-
erate  rotational components in seismic waves. On the other hand, transla-
tional motions in seismic waves are only excited by the plastic strain as 
shown in Eq. (12.2), which can be transformed into a dislocation in case of 
a simple fault model (Takeo and Ito 1997). Bouchon and Aki (1982) took 
into account only rotational motions excited by dislocations on the fault 
plane, and did not evaluate the direct excitation of rotational motions due 
to a spatial variation of slip velocity and due to rotational strains. The con-
tribution of a spatial variation of slip velocity is another possible answer to 
the question posed in the head of the previous paragraph.  

Since the radiation patterns of seismic waves due to the second and the 
third terms on the right-hand side of Eq. (12.4) are different from each 
other, we can estimate how to change slip velocities spatially even in case 
of a point source approximation using rotational and translational motions 
at several stations around the source area. In the present case, however, we 
cannot estimate the spatial variation uniquely, because the rotational mo-
tions were recorded at KAW only. Therefore, we apply a simple point 
source model to evaluate the rotational velocity around the vertical axis 
during the largest event. The distribution of epicenters just after the largest 
event suggests that the nodal plane of the focal mechanism striking in the 
direction of  N154°E is the fault plane of the largest event (see Fig. 12.3). 
First, we calculate the rotational velocity around the vertical axis at KAW 
using the focal mechanism shown in Fig. 12.3 with the seismic moment   
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of 1.2x1017 N·m. The seismic-moment-rate function is assumed to be an 
isogonal trapezoid as shown in Fig. 12.4. We assume that t1 and t2 are 0.2 s 
and 0.8 s, respectively; these values are obtained by trial and error fitting 
of the pulse width of the strong motion records. The reflection-transmission 
matrices (Kennett and Kerry 1979) and the discrete method (Bouchon 
1981) are used in the calculation of ground motion, assuming the anelastic 
layered half-space structure listed in Table 12.1.  

Fig. 12.3  Seismicity just after the largest event and the focal mechanism of the 
largest event obtained using near-field strong motion records (Hayashi, personal 
communication, 1997). The focal mechanism is plotted on the lower hemisphere. 
The epicenters with magnitudes larger than 2.5 which occurred on 4 March from 
3:51 to 4:59 are shown 

Fig. 12.4  The source-time function of PS1 used in the waveform calculation.  The 
time constants t1 and t2 approximately correspond to the rise time of dislocation 
and the time for the rupture front to propagate through the fault, respectively 
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Table 12.1  Velocity structure used in the calculation 

VP

[km/s] 

VS

[km/s] [g/cm3]

h

[km] 

     PQ       SQ

1.95 0.23 2.00 0.00 50 30  

2.05 0.48 2.00 0.04 50 30  

2.15 0.73 2.00 0.08 50 30  

2.25 0.98 2.00 0.12 50 30  

2.60 1.30 2.00 0.16 100 50  

4.20 2.20 2.30 0.36 300 200  

5.30 3.10 2.50 1.86 500 300  

6.00 3.46 2.70 4.30 1000 500  

6.80 3.93 3.00 15.0 1000 500  

7.80 4.50 3.20 30.0 2000 1000  

Fig. 12.5  Comparison of observed rotational velocity around the vertical axis at 
KAW with synthetics calculated for a simple model composed by two point 
sources. An upper trace of the synthetics is the rotational velocity considering the 
full contribution of PS1 and PS2. A second trace represents the rotational velocity 
which takes into account PS1 and only the contribution of the spatial variation of 
slip velocity in PS2. The bottom trace is the rotational velocity excited by PS1. In 
this calculation, we consider that PS2 lies at the southeastern edge, but the syn-
thetic for PS2 is calculated for the same epicentral distance with PS1. However, 
the synthetic for PS2 using the epicentral distance 1 km longer than that of PS1 
differs little from the previous one 

The bottom trace in Fig. 12.5 is the rotational velocity excited by this point 
source. The peak amplitude of the synthetic is about one seventh of the  



12  Ground Rotational Motions Recorded in Near-Source Region of Earthquakes  165

observation. The first half cycle of the synthetics has a similar waveform 
with the observation, but the waveform in the later part is quite different 
from the observation, which has a large spiky pulse.  

We employ another point source which represents a spatial variation of 
slip velocity in a small region. Hereafter, we denote the former point 
source by PS1, and the latter by PS2. The first term on the right-hand side 
of Eq. (12.4) will vanish when we assume a flat fault plane in a homoge-
neous medium (Takeo and Ito 1997). Then, we consider the excitation of 
rotational motion due to the second term ( 0

*
kle ) and the third term ( k l)

of Eq. (12.4) in PS2. The largest event is dominated by the left-lateral 
strike-slip motion with the strike direction of N154°E. Here, we assume    
a simple case of the spatial variation of slip such that the left-lateral   
strike-slip velocity decreases rapidly as we go to the edge of the fault.   
The duration of the spiky pulse appeared in the observation is about 0.1 s. 
The isosceles triangle with a base length of 0.1 s is employed as a    
source-time function of PS2. This duration of the source time corresponds 
to the spatial extent of about a hundred meters along the rupture direction 
assuming the rupture velocity of 3 km/s. We assume that the magnitude of 
the third term, µ k l dV (µ is the rigidity), is 1x1016 N·m/s, and that the 
source material satisfies the Poisson relation (  = µ). Then, the third term 
along the strike direction of N154ºE can be transformed to the components 
of the source-tensor as follows:

16

2.62 0.79 0.0

0.79 1.38 0.0 1 10

0.0 0.0 1.0

 (12.5) 

Based on this model, we calculate the rotational velocity around the verti-
cal axis.

The second term on the right-hand side of Eq. (12.4) excites not only the 
rotational velocity through Eq. (12.1) but also the translational velocity 
through Eq. (12.2). For the second term, we use the same source-time 
function as that of the third term, and assume that the seismic moment of 
this limited region is 1x1016 N·m. Because this source time has short dura-
tion, the second term excites large spiky translational velocities of 0.5 m/s 
and 0.3 m/s on the NS and EW components of the translational velocity at 
KAW, respectively. The observed translational velocities, however, do not 
have such large amplitudes. Therefore, 1x1016 N·m is the supremum of the 
seismic moment concerned with the second term of Eq. (12.4) in PS2.  

Changing the time lag between PS1 and PS2, we calculate the synthetic 
rotational velocity and compare it with the observation. When the time lag 
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is 0.3 s, we get a best fit between the synthetics and observation, as shown 
in Fig. 12.5. The second trace of the synthetics in Fig. 12.5 represents the 
rotational velocity which takes into account PS1 and only the contribution 
of the spatial variation of slip velocity in PS2 which lies at the southeastern 
edge of the fault. The spatial variation of slip velocity along the fault at the 
northwestern edge has the opposite sign to that at the southeastern edge. 
Then, the spiky pulse of the rotational velocity shown in the second trace 
has the reverse sign when PS2 lies at the northwestern edge. The upper 
trace of the synthetics in Fig. 12.5 is the rotational velocity considering the 
full contribution of PS1 and PS2 in the case when PS2 lies at the south-
eastern edge. The synthetic reproduces the observation well. When PS2 
lies at the northwestern edge, the spiky pulses excited by the second term 
and by the spatial variation of slip velocity will cancel each other. If the 
spatial variation of slip velocity is small and the large pulse is excited only 
by the second term of Eq. (12.4), PS2 must have the seismic moment       
of 2x1016 N·m. However, this source also excites the translational velocity 
with amplitude larger than 1 m/s which was not observed. Therefore, the 
large spatial change of slip velocity should occur rapidly during the rupture 
process of the largest event. The time lag of 0.3 s corresponds to the spatial 
separation of about 1 km between PS1 and PS2 assuming the rupture ve-
locity of 3 km/s. Then, we can estimate that PS2 lies about 1 km southeast 
of PS1 or the hypocenter; in other words, the fault slip stopped rapidly 
about 1 km southeast of the hypocenter.  

In the region of the eastern coast of Izu peninsula, many young and 
small submarine volcanoes are identified (Hamuro et al. 1980), and a sub-
marine eruption occurred on 13 July 1989, during an earthquake swarm at 
the eastern offshore Ito which started on 30 June 1989. A shallow reflec-
tion survey in this region reveals that there are several old dyke formations 
whose P wave velocity is higher than that of the surrounding media      
(Kasahara et al. 1991). These old dyke formations are one of the candi-
dates of barriers which make the slip stop rapidly. A similar rupture proc-
ess was inferred for the largest earthquake of the 1989 earthquake swarm 
at the eastern offshore Ito (Takeo 1992). Of course, this simple model is 
not a unique one to explain the large rotational velocity observed at KAW, 
but is a candidate for the rupture model of the largest event.  
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13.1  Introduction 

In this chapter we recall some basic ideas of the Earthquake Dislocation 
Theory (Droste and Teisseyre 1959, Teisseyre 1961, 1964, 1970) and Frac-
ture Band Model (Teisseyre 1996, 1997, Teisseyre and Wiejacz 1993, 
Teisseyre et al. 2001) in order to obtain a better insight into the problem of 
fracturing under different load conditions, including the earthquake pre-
monitory and rebound phases. A counterpart of the rotation processes and 
rotation energy release explains fragmentation process and permits to es-
timate the efficiency of different fracturing modes. 

13.2  Earthquake Dislocation Theory 

We will start with recalling some elements of the elastic dislocation theory 
(e.g., Eshelby et al. 1951, Nabarro 1951, Kröner 1981):

–  Dislocation notion in its physical meaning is related to disorder in a 
crystal lattice caused by a slip along a certain glide plane by a lattice spac-
ing (lattice constant ); as a result, the lattice disorders appear only at the 
edges of the glide, while along a glide the continuity is preserved. This 
notion differs essentially from a geological dislocation like fault. 

–  Dislocated area with a constant slip value (the Burgers vector) 
u , along its surface, is bounded at its edges by the dislocation line, 

called in physics just a dislocation (only such a line represents a real 
physical object in a crystal lattice). 

–  The elastic energy is concentrated around a dislocation line and is a 
source of elastic deformation, decreasing with distance from the disloca-
tion.
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–  Dislocations can have different signs (orientation of slip vector as re-
lated to the normal of the dislocated area); the dislocations of opposite 
signs attract each other (tendency to join the respective two dislocated 
areas), while dislocations of the same sign repel each other; a dislocated 
area is bounded at its opposite edges by the dislocations of opposite sign. 

–  An external stress field acts on a dislocation line; when this load 
overpasses a certain limit (stress resistance), the opposite dislocations 
move in the opposite directions (the Koehler force). 

–  Under an external load the dislocations having the same sign and 
situated on a common plane, may form a dislocation array; this happens 
when the dislocations moving in the same direction are, at the first leading 
dislocation, stopped by some barrier (obstacle), with a greater stress resis-
tance.

–  The dislocations grouped in an array form a concentration of stress 
field 0AS n S  ( 0S  is the external stress load, An  is the number of disloca-
tions) and when the concentration of stresses is very high, such an array 
well approximates a dislocation with the slip An .

–  The stress field of an array, with a sufficiently great number of dislo-
cations entering it, exactly approximates the field of a crack tip. 

–  At the other side of the obstacle, the travelling array can meet the 
opposite array; the external forces and additionally the attraction of the 
opposite arrays may break the barrier and the strains of the two arrays will 
be mutually canceled, and their energies will be released; a related dy-
namic process becomes manifested by formation of a micro-crack. 
Recall now the basic elements of the Earthquake Dislocation Theory 
(Droste and Teisseyre 1959, Teisseyre 1961, 1964, 1970): 

–  The early premonitory time-domain: formation of the dislocation ar-
rays of different signs, interaction between the arrays, generation of the 
micro-cracks accompanied with the respective energy releases (transition 
from quasi-static to dynamic processes and from stress resistance to fric-
tion).

–  The advanced premonitory time-domain: interaction between the tips 
of microcracks of opposite orientations (signs); mutual annihilation of the 
respective crack tips leading to expansion of the cracks, formation of big-
ger and bigger cracks; formation of fragments of slip fracturing (macro-
cracks, fragmentation); development of a rapid dynamic process along the 
planes with the slip fragments, in which the fragmented parts join together 
in a main fault (an earthquake); the possible aftershocks. These processes 
may develop along two perpendicular planes, but in reality, due to the fact 
that any geological space is extremely complex, one main fracture plane is 
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usually formed first, and an asymmetric geometry pattern of the resulting 
faults remains. 

In this theory, an energy release is explained by the mutual annihilations 
of the strain energies of the opposite groups of defects: dislocation arrays, 
tips of microcracks, tips of cracks and those of fragments (macrocracks). 

13.3  Earthquake Thermodynamics and Fracture Band  
         Model 

The basic elements of the fracture band model in a 2D simplification 
(Teisseyre 1996, 1997, Teisseyre et al. 2001): 

–  In an earthquake preparation zone, besides the basic lattice, we ex-
pect an existence of a super-lattice caused by the interactions between the 
densely distributed dislocations (a dislocation super-lattice can be associ-
ated with an internal structure, band of the old slip planes or the slip plane 
fragments). 

–  We assume that for the super-lattice constant  we can put .
–  We expect that in earthquake preparation zone the super-lattice may 

be very irregular. In order to make it more coherent we define, at desired 
places, the vacant dislocations; a difference between the best fitted regular 
super-lattice and the real one defines a number of the vacant dislocations. 

–  The thermodynamics of a super-lattice (Teisseyre 2001) is based on 
the Gibbs formation energy ˆ fg  for a vacant dislocation and the related 
expression for an equilibrium number of vacant dislocations is 

3

ˆ1
ˆ exp

f

eq

g
n

kT
.

–  For a fracture model we assume for simplicity a disc model of an 
earthquake volume 

2 .V R D (13.1)

–  In the fracture band model, we assume that a band of slips is active 
both during the premonitory time-domain and during the fracture process; 
the respective motions appear as glide motions (dislocation slips) and as 
fracturing (fracture slip). 

–  We assume that a local shear stress before an earthquake can be es-
timated by the value of the related stress drop (Teisseyre 2001) 

,S A S (13.2)
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where we shall note that this assumption follows from the studies of series 
of earthquakes (see Teisseyre 1996, Teisseyre and Wiejacz 1993). 

–  The Burgers dislocation vector b (slip vector) is assumed to be given 
by the product of the number of dislocations in an array and the lattice 
constant

b u N ,

where the number of dislocations entering an array may be estimated to be 
proportional to the shear local field; hence, according to the former as-
sumption we can put 

N B S (13.3)

and we get

.
B

b u B S S
A

–  For a band of shear planes, an equivalent value shall be multiplied by 
ratio of a band width D and super-lattice constant  (Fig. 13.1): 

.
D B D

b u B S S
A

(13.4)

Fig. 13.1  Shear band model 

– Finally, for a seismic scalar moment we obtain the expression  

0 2 ,M b s B S R D (13.5)
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where for the given M 0, S, R and assumed constants µ, ,  we can find a 
source thickness D.

–  For the total energy release we get the formulae 

21

2
E S S R D , 2 2( )

2

A
E S R D , (13.6)

where the second relation follows from the above-mentioned empirical 
relation (13.2).  

Using the observational data , , radE S R  and the thickness D esti-
mated from the seismic moment (13.5), we may estimate the total energy 
release (13.6).

–  The estimated total energy release can be compared with the Boltz-
mann expression for the energy release 

2
3

ˆkT
E R D (13.7)

as defined by the volume of the broken bonds, with ˆ  being the source 
damage parameter. However for the band model we shall define, instead of 
the elementary volume element 3 , the element related to both the crystal 
lattice and super-lattice 2 . We get instead of (13.7): 

2
2

kT
E R D (13.8)

and hence the redefined damage parameter  can be estimated. 
–  The seismic efficiency can be now estimated as follows: 

2 2

2

( )

rad radE E

E A S R D
 . (13.9)

–  The shear band fracture model can be generalized to the form includ-
ing the action of tensile stresses (Teisseyre et al. 2001). 
Some thermodynamic considerations related to the presented fracture band 
model are presented in paper by Teisseyre (2001). 

13.4  Elastic Rotation Energy  

A density of strain energy for the case of asymmetric fields (see Chapter 3) 
can be written as 
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1 1

2 2
,T S T S

ik ik ik ik ik ikS E S S E E (13.10)

where this expression contains also the elastic rotation energy. 
This formula can be considered separately for the axial and deviatoric 

fields; for any tensor F we can write: 

1 1

3 3
ˆ ,  ,ik ss ik ik ik ss ikF F F F F (13.11)

and on this basis we consider the cases of compression, shears and rota-
tions separately. 

We assume that the diagonal terms ˆ
ssS , ˆ

ssE  of the total fields are equal 
to those of the elastic fields; this means that the self fields are zero in the 

axial/deviatoric representation: ˆ = 0S
kkS , ˆ 0S

kkE .
The energy densities can be written as 

2
3 2

2
k

k

u

x
                 for the compression case, and

( ) ( ) ( ) ( ) ( ) ( ) ( )
1 1

2 2

T S T S
ik ik ik ik ik ikS E S S E E

or

*
( ) ( ) ( ) ( ) ( )

( ) ( )

1

2

S Sk k
ik ik ik ik

i iik ik

u u
S E

x x
,

                                                           for the shear case, 

(13.12)

where referring to Chapter 3 we use the following assumption for the self 

-rotation field: ( ) ( )
S S
ik ikE ,  is the rotation rigidity (Shimbo 1995, Teis-

seyre and Boraty ski 2003). Hence, here and further on we neglect the 

cross terms as formed by the independent fields, like ( )

( )

0Sk
ik

i ik

u

x
.

The density of the rotation elastic energy is 

*
[ ] [ ] [ ] [ ] [ ]

[ ] [ ]

1

2

S Sk k
ik ik ik ik

i iik ik

u u
S E

x x
 . (13.13)
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We shall underline that the elastic rotation energy is included only when 
assuming the constitutive law joining rotations with the antisymmetric 
stresses. This expression corresponds to the density of angular motion 
energy when putting for the constitutive law for the antisymmetric part of 
stresses and for the self-fields the following relations: 

* *
[ ] [ ] [ ] [ ] [ ] [ ] [ ]2 ,     2 ,     T S S S S S
ik ik ik ik ik ik ikS E E S E (13.14)

as already postulated in Chapters 3 and 5. 

13.5  Cross-Band Fracturing Model and Rotation 
         Processes 

During the precursory time-domain and during a seismic event we can 
consider the same system of glide and slip planes as defined for the band 
model. The cross band model (see Teisseyre 2004) consists of two per-
pedicularly oriented shear plane systems: one greater with the characteris-
tic parameters R, D and the other smaller, with parameters r, d (Fig. 13.2, 
also compare Fig. 13.1).  

Fig. 13.2  Two systems of the band planes 

Taking the slip values on the parallel and perpendicular planes as related 
to the dislocation arrays, we put according to (13.4) for slips on the parallel 
(main) planes and on the perpendicular planes: 
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            ,
D

u N B D S      and 

,
d

u N B d S
(13.15)

where the parameters B  and B  determine an asymmetry of the fracture 
pattern:

,N B S N B S .

We relate these slips with the stress drop during a considered seismic 
event.

For the band model describing the systems of the parallel (main) planes 
and perpendicular planes we may define the seismic moment, stress re-
lease, and rotation release or the drop of the angular seismic moment. Such 
expressions contain both the classic energy release and the elastic rotation 
energy release, assuming that stress drops contain both symmetric and 
antisymmetric parts: (  ) [  ]S S S .

For the seismic moment generalized in such a way, and its release, we 
obtain:

             2( ) ,M S D R 2( ) ,M S d r     and 
2( ) ,M D S R 2( )M d S r

or according to Eqs. (13.2), (13.6), and (13.15): 

             2 2( ) ( ) ,
A

M N R D S R
B

     and 

2 2( ) ( ) .
A

M N r d S r
B

(13.16)

With
2

u D
N  and 

2

u d
N  we obtain 

the expressions for elastic rotation energy release: 

2 2
[ ] 2 2

( ) ( ) ,
A D D

E M N R N N D S R
B

(13.17)

2 2
[ ] 2 2

( ) ( ).
A d d

E M N r N N d S r
B
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The energy release expressions presented here correspond to the previ-
ously defined density of elastic rotation energy (13.14). 

Compression and induced shears [12] [21]S S

Under the assumption V = 0 we can reexamine Dietrich’s (1978) com-
pression experiments, which leads to the conclusion that for the precursory 
shear stress 12 0preS  (as induced by the confining pressure) we arrive at 

coseismic rebound compensation of shears by the rebound stress 12 0rebS

(signs are defined arbitrarily): 

12 12 0pre rebS S . (13.18)

With the antisymmetric stresses induced by a rotation process as shown 
in Fig. 13.3, we can propose the following reinterpretation: 

–  local induced shear stresses are antisymmetric: 12 0S  and 12 0S ;
–  for stresses on the parallel plane  (which will become the main frac-

ture plane) we have 

12 0 ,preS                   12 0 ;rebS (13.19)

–  for rotations (on the main plane  we have ( ( ) ( )
S
ik ik )

clockwise ,pre         anticlockwise ;reb (13.20)

–  for stresses on an auxiliary, perpendicular plane  we have 

21 0 ,preS           21 0 ;rebS (13.21)

–  for rotations on an auxiliary, perpendicular plane  we have 

clockwise ,pre        anticlockwise .reb (13.22)

Precursory rotations associated with slips or dislocations are opposite to 
that related to coseismic process and both preserve their sense on perpen-
dicular planes. 

The repeated precursory processes lead to a number of the micro-
fracturings finally forming a fragmentation pattern. On the presented fig-
ures, here and further, we explain schematically a possible pattern of pre-
monitory distributions of the dislocations arrays or microcracks; a rebound 
process follows such a scheme leading to a cumulative process of energy 
release. 
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To relate the stress acumulation S to defect densities, we recall the basic 
relation S = nS0 for the dislocation array in an equilibrium (supported by 
the external stress S0). This relation comes from interaction of the disloca-
tions (densities i represented here by the stress gradients Si) pushed by 
the external field S0 to the first blocking dislocation; S is the resulting 
stress accumulation at the place of the first dislocation: 

0 0

d d
n x

iS S i S x
x

 . (13.23)

In our case, we have no initial shear field but only compression: due to the 
lower value of shear resistance we have to assume that inside a body there 
appear regions with the induced shear stresses of opposite signs (as a re-
sult, we get the induced antisymmetric shear stress). 

Fig. 13.3  Compression: induced shear stresses of opposite signs on perpendicu-
larly orientated planes; a common sense of rotations 

According to the band-model, the shear stress is related to the concen-
tration of induced dislocations (in the number Nind, nind, respectively): the 
induced shear stressess are asymmetric, S = An, hence, the stresses at these 
planes can be related to dislocation densities (Fig. 13.2): 

–  on the parallel plane  : 

,pre ind indS AN     ,reb ind indS AN (13.24)

– on the perpendicular plane 

,pre ind indS An .reb ind indS An (13.25)
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The signs of dislocations of these planes can be different, depending also 
on the position of their wedge, but a common sense of rotations shall be 
preserved on these planes. 

Earthquake process and its energy release relates to a coalescence of 
dislocation arrays of opposite signs; also that part of energy release which 
depends on drop of moment of momentum depends on dislocation coales-
cence process; it can be expressed by the rotation release. 

For a total shear release on the two planes we can demand at a compres-
sion (with the signs as in Eq. 13.19) 

0 ,pre rebS S     0A pre A rebS S (13.26)

while for an instantaneous, rebound, shear stress drop and the total shear 
stress drop we get 

     ,reb indS A N     ,reb indS A n

reb ind indS A N n .
(13.27)

Thus, the total shear stress drop for compression process can be, in such a 
case, relatively small; the real stress drop relates to non-shear components. 

The coseismic rotations are opposite to the precursory rotations; it is the 
coseismic, rebound process that brings the release of rotation. According 
to (13.16) and (13.17), the total rotation releases at the  and  planes the 
precursory and rebound processes become:  

0 ,pre rebM M     0 .pre rebM M (13.28)

The final instantaneous rotation release for coalescence process on both 
planes and the total one are as follows: 

,reb indA
M N

B

reb indA
M n

B
,

(13.29)

reb reb reb ind indA
M M M N n

B
,

where A and B are the adequate proportionality coefficients. 
Comparing this result with that for the related stress drop (13.27) we 

find that at the compression load the related energy releases for the in-
duced shears are relatively smaller (a difference of stress drops related to 
parallel and perpendicular systems) than for the rotation related moment 
drops (a sum of moment drops). Under a compression load the rotation 
processes in fragmentation and fracturing play an essential role. 
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External shear load 0 0
12 21S S

For symmetric fields, in a similar way as above, we may put at the main, 
parallel plane  and at the perpendicular planes  (Fig. 13.4): 

12 0 ,preS 12 0 ,rebS 21 0 ,preS 21 0 ,rebS (13.30)

clockwise ,pre anticlockwise ,reb (13.31)

clockwise ,pre anticlockwise .reb (13.32)

Fig. 13.4  External shears: shear motion on perpendicularly orientated planes; an 
opposite sense of rotations 

For the regional shearing field 0 0 0
12 21( )S S S , the effects of processes at 

the main shearing and at auxiliary, perpendicular planes are (on both 
planes,  and 

0 ,pre pre preS S AN 0 ,reb reb rebS S AN (13.33)

0 ,pre pre preS S An 0 .reb reb rebS S An (13.34)

The shear stress drops on both planes,  and  , and the total shear 
stress drop is, respectively: 

,S A N     ,S A n     ( ) .rebS A N n (13.35)



13 Fracture-Band Geometry and Rotation Energy Release 181

The signs of rotation release on these planes are opposite; for instanta-
neous rotation release we get expression with a relatively smaller value 
(comparing to the former case)  

.reb A
M N n

B
(13.36)

Comparing this result with that for the related stress drop (13.35) we 
find that at a shear load the related energy releases for the shears are rela-
tively greater (a sum of stress drops related to parallel and perpendicular 
systems) than for the rotation related moment drops (a difference of mo-
ment drops). Under a shear load the shear processes play the main role in 
fragmentation and fracturing. 

Compression and shear load 0 0
11 22<S S

Assuming 0 0
11 22S S  we can present the initial stress state as a combination 

of the two cases presented above: 0 0
22 11S S  and 0 0 0 0

12 21 22 11

1

2
( )S S S S

(Fig. 13.5). 

Fig. 13.5  Compression and shear load: asymmetric shears and differentiated rota-
tions 

Such a combination leads to: (a) bigger precursory phenomena (sum of 
the precursory shear and induced shear); and (b) smaller shears on perpen-
dicular planes (difference of precursory and induced shears). 
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Hence, there follows a rule for earthquake asymmetry faulting (even in-
dependent of any previous stick-slips): 

–  a combined shear stress drop becomes 

[ ] ,reb ind indS A N N n n (13.37)

–  an instantaneous rotation release becomes 

[ ] .reb ind indR B N N n n (13.38)

Thus, for momentum and moment of momentum releases for the 2D band 
fracture model we obtain 

2 2[ ( ) ( )] ,ind indM A R D N N r d n n (13.37 )

2 2[ ( ) ( )] .ind indM B R D N N r d n n (13.38 )

13.6  Conclusions 

The fracture processes are determined by stress load and local stress con-
centrations due to accumulation of dislocations and partial mutual disloca-
tion annihilations. In such processes, the formation of dislocation arrays 
and microcracks related to the premonitory processes and its rebound 
event plays an essential role. Additional counterpart of stress moments 
appears due to the antisymmetric stresses related grain rotations and due to 
stress moments formed by the fracturing pattern. 

Rotations at source zones help to understand geometry of fracturing and 
releases of stress and rotation counterparts as a result of precursory and 
rebound processes. 
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14  Rotation Motions: Recording and Analysis 
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14.1  Introduction 

Rotation motions can be classified as those associated to the body seismic 
waves (displacement-related component and micromorphic component) 
and those which form independent fields (pure rotation and twist waves); 
see Chaps. 4–6. The equipment that records rotation motions may use vari-
ous sensors, like the Sagnac-effect based gyroscopes (see Chaps. 11, 12, 
29, 30, 31, 37), seismometers (Chaps. 15, 32, 33, 34), tiltmeters (Chap. 36) 
or rotation sensors (Chap. 35). 

In this Chap. we present some records obtained with a system of two 
horizontal seismometer pairs, each containing two pendulums suspended 
on a common axis  and  aligned  in opposite directions.  The pairs were 
oriented perpendicular to each other. The system was constructed by 
J. Suchcicki (see Teisseyre et al. 2003). Its ability has been improved by 
some numerical procedures normalizing the signals at the antiparallel 
channels. The errors caused by the inevitable small differences in seismo-
graph responses have been estimated and a reliability of recordings was 
tested in many ways: by filtering in the time domain (using some data ob-
tained from the same equipment as a reference, see Nowo y ski and Teis-
seyre KP 2003), or by numerical filtering procedure in the frequency do-
main and the learning procedure for filters (Teisseyre R et al. 2003a, b). 

Any serious analysis of rotation wave records would require, first of all, 
the existence of a network of recording stations; however, up to now, only 
few rotation-recording stations do exist, and these use various sensors. 
There is also a need for a more advanced theory describing propagation 
and reflection of the rotation waves. Such an advanced approach should 
follow the development of the classical seismology, starting with hodo-
graphs and separation of phases of rotation motions.  



         K.P. Teisseyre, J. Suchcicki 186

The independent rotation waves may travel with different, rather lower 
velocities than those related to the body waves. This is due to the different 
material constants that describe the stress response to rotational deforma-
tions. Such constants enter in the constitutive relation between the stress 
moments (or equivalently, the antisymmetric stresses) and angular motion 
(see Chaps. 4–6). To better understand the role of pure rotation and twist,
we shall take into account the fact that rotation of particles or grains in-
duces antisymmetric stresses (equivalent to stress moments). We expect 
the rotation rigidity (see Chap. 5) to be smaller than the rigidity modulus; 
hence, we could expect the late arrivals of the related rotation waves. To 
discover such late arrivals we shall start with hodographs for near field and 
gradually extend the required time interval of registrations. A first trial of 
such a near field hodograph is presented by Jaroszewicz et al. in Chap. 31. 
However, we shall also take into account an interrelation between the dis-
placement motion and rotation, which may lead to a kind of coupling of 
these motions; this is, among other things, discussed in this chapter. 

14.2  Examples of Records and Their Preliminary Analysis 

In this chapter we present some examples of rotation wave recordings, and 
their preliminary analysis. All the cases chosen were analyzed in the fre-
quency range of 2.6-43 Hz, some cases being studied also in the low fre-
quency range: 0.3-3 Hz. 

The main part of our analysis is based on the data from l’Aquila Obser-
vatory (central Italy). Twenty four cases were chosen, for which good 
quality of rotational components has been obtained; good quality means 
that the seismic event is seen not only in the plots of the so-called initial

data (displacement velocity V, after its correction by filtration), but in the 
plots of rotational motions ( ~ V/2l0 , where l0 is the reduced length of the 
seismometer) as well. Data acquisition took place in 2002; the chosen 
cases belong to the local seismic events. 

Among the events recorded in l’Aquila, the nearest occurred at a dis-
tance of 6.9 km, while the five most remote ones at a distance of about 
40 km from the measuring site in the Castello Cinquecentesco in the town 
of l’Aquila. The maxima of initial signals, Vmax , appear to lie between 
75 m/s (for the seismic event nearest to the station) and 1 m/s. The cal-
culated rotation motions achieved maximum values from 15.7 to 
0.37 rad/s, depending on the case. 

In all the cases except of four, the twist motions have slightly greater 
amplitudes than the spin ones (the four cases for which the spin curve had 
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a higher maximum value belong to a few cases of low intensity of initial 
and rotational signals, and high noise content in the latter). Generally 
speaking, with increasing distance, the signals relating to the seismic 
event, at both the spin and the twist plots, were less distinct from the noise.  

In the tectonic seismic events encountered near l’Aquila we found some 
discrepancy and shift between the curves of the displacement velocity sig-
nals (shown here after filtration and normalisation) and the curves of rota-
tion motion, especially profound at the beginning of the seismic event. The 
rotational motions were often unexpectedly large.  

Here we present the results for the three cases: one from the l’Aquila 
Observatory (Fig. 14.1); one for an earthquake in Podhale region (southern 
Poland, 30 November 2004 at 17:18; Fig. 14.2); and a seismic event in the 
mine in southern Poland (Upper Silesian mining region; Fig. 14.3). The 
latter two events were registered at the Ojców Observatory, southern Po-
land.

To study the differences between the displacement velocity curves and 
the rotational ones, and to analyse the course of seismic records, we intro-
duce index T, defined as a mean of the absolute values of differential sig-
nals.

12 34
12 1 2 34 3 4

0 0

1

2
,  =  ,  =  .

2 2

V V
T V V V V V V

l l

The plots of this mean (lower curves in Figs. 14.1.b, 14.2b, 14.3.b; also 
Figs. 14.1d, 14.2d and 14.3d) were compared to the curves of mean abso-
lute values of the displacement velocity signals 

1 2 3 4

1

4
U V V V V

seen in the upper portions of the same figures. Subsequently, on the basis 
of variation in shape and amplitude of both curves, we computed, for short 
time intervals, the new indices Rm defined as follows:

2 2
mR T U .

Index Rm is analogous to the indices R1 and R2 used in the study of differ-
ential motions at the Pasterze Glacier (see Chap. 15 and the references 
therein).

While analysing the l’Aquila data, indices Rm were in each case calcu-
lated for three time intervals: one at the beginning of seismic event, one 
somewhere in the middle and the last in that part where oscillations start to 
decline. Usually such an interval was 60 samples long  (which corresponds 
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Fig. 14.1a, b  Seismic event recorded at l’Aquila Observatory (20 Aug 2002, 
13:50, Aquilano region) for normal frequency range (2.6-43 Hz): (a) displacement 
velocities V2 and V3, spin, twist; (b) mean absolute velocities of displacement 
U (top) and mean absolute values of rotational motions (bottom)
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Fig. 14.1c, d  Seismic event recorded at l’Aquila Observatory (20 Aug 2002, 
13:50, Aquilano region) for low frequency range (0.3-3 Hz): (c) displacement ve-
locities V2 and V3, spin, twist; (d) mean absolute velocities of displacement 
U (top) and mean absolute values of rotational motions (bottom)
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Fig. 14.2a, b  Earthquake recorded at Ojców Observatory (30 Nov 2004, 17:18, 
Podhale region) for normal frequency range (2.6-43 Hz): (a) displacement veloci-
ties V2 and V3, spin, twist; (b) mean absolute velocities of displacement U  (top)
and mean absolute values of rotational motions (bottom)
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Fig. 14.2c, d  Earthquake recorded at Ojców Observatory (30 Nov 2004, 17:18, 
Podhale region) for low frequency range (0.3-3 Hz): (c) displacement velocities V2

and V3, spin, twist; (d) mean absolute velocities of displacement U  (top) and 
mean absolute values of rotational motions (bottom)
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(b)
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Fig. 14.3a, b  Mining seismic event recorded at Ojców Observatory (22 Mar 2004, 
23:48, the region of Upper Silesia) for normal frequency range (2.6-43 Hz): 
(a) displacement velocities V2 and V3; spin, twist; (b) mean absolute velocities of 
displacement U  (top) and mean absolute values of rotational motions (bottom)

(a) 
  

  
  

ra
d

/s
  

  
  

  
  

  
  

 r
a

d
/s

  
  

  
  

  
  

  
  

 m
/s

  
  

  
  

  
  

  
  

m
/s

 

s



14  Rotation Motions: Recording and Analysis 193

Fig. 14.3c, d  Mining seismic event recorded at Ojców Observatory (22 Mar 2004, 
23:48, the region of Upper Silesia) for low frequency range (0.3-3 Hz): (c) dis-
placement velocities V2 and V3, spin, twist; (d) mean absolute velocities of dis-
placement U  (top) and mean absolute values of rotational motions (bottom)
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to 0.6 s). In most cases, the results obtained had the following characteris-
tic feature: indices Rm calculated for the first and the last interval were 
greater than for the middle one, and the first had the greatest value. This 
result, emphasising temporal variation of the wave generation in the 
source, is not shown here. For simplicity, we only show, in Fig. 14.4a, the 
means of those three indices, denoted by squares. The same figure shows 
also maxima of rotational motion for the same cases (absolute values), de-
noted by asterisks. Both kinds of resulting data are ordered by the maxi-
mum (absolute) value of displacement velocity, Vmax.

Next, we have normalized the maximum amplitudes (Vmax) to the related 
epicentral distances. A damping effect is not included, but the distances 
considered are not drastically different. Then we put again these experi-
mental results in Fig. 14.4b, but rearranged according to new values at the 
abscissa. Now, the Rm-means are shown as triangles, and rotation motion 
maxima – as small five-pointed stars. We return to the obtained picture in 
the discussion.

Beside the above-mentioned discrepancy between the curves, the rota-
tion motions compared with the displacement motions differ also in minute 

Fig. 14.4a  Analysis of 24 seismic events recorded at l’Aquila; normal frequency 
range. Mean indices Rm (squares) and maxima of rotation motions amplitude (as-
terisks) versus maxima of displacement velocity 

Vmax
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Fig. 14.4b  Analysis of 24 seismic events recorded at l’Aquila; normal frequency 
range. Mean indices Rm (triangles) and maxima of rotation motions amplitude 
(stars) versus distance-normalized maxima of displacement velocity 

details – micro-differences look like results of a phase-shift on the way of 
seismic waves from the source to the station. Comparing the plots of 
U and T, we noticed that the same holds for the means.  

Similar observations are drawn from the analysis of an earthquake in the 
Podhale region. This seismic event had longer duration; therefore, finding 
the details of differences between separate curves is more difficult. 

Interestingly enough, an analysis of the same cases in the low frequency 
range (0.3-3 Hz), gives surprisingly different course of the studied event. 
We observed slightly later arrivals of distinct peaks, as compared to the re-
sults of analysis in normal (2.6-43 Hz) frequency range, especially visible 
in the plots of mean values (U and T, compare Fig. 14.1d with Fig. 14.1b). 
Also the general shape of recorded event is different; relatively high-
amplitude oscillations persist for longer time than in the higher frequen-
cies.

For the mining events (see Fig. 14.3), the rotation motions are more 
similar to the displacement fields, although we still find all the above-
mentioned differences: between curves of initial and differential data, and 

normalized Vmax
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between results obtained at low frequencies and in the normal frequency 
range. Here, the number of studied cases was small; nevertheless, it seems 
that the results of the mining events registered at Ojców have more in 
common with the results for mining events obtained at Ksi  Observatory 
(in Sudety Mts., southern Poland), than with the results of analysis of tec-
tonic earthquakes.

14.3  Discussion 

According to the analysis of l’Aquila data, we may tentatively state that, 
during the seismic event, the short intervals with the high content of rota-
tions interlace with intervals with a relatively low content of rotation 
waves. These results fit to a slip-rotation scheme of fracturing, presented in 
Chap. 13. Accordingly, we may say that a slip step unlocks a rotation step 
occurring with some delay; and vice versa: a rotation step is followed by a 
slip. A possible support for this hypothesis comes from an analysis of 
seismic events recorded at the Pasterze Glacier (Chap. 15). In the course of 
differential motion, obtained from this research, we have also noticed 
some precursory signals directly prior to the record of the event.

Experimental evidence from l’Aquila shows that there exist a hyperbolic 
relation Vmax · Rm = constant (see Figs. 14.4a, b). After the distance-normal-
isation of the abscissa, its relation with the indices Rm still resembles a hy-
perbole, but now the values of mean Rm in the higher-amplitude part of the 
plot are greater than before. These relations refer to situation closer to the 
source, and we see that the smaller the displacement amplitude (for a given 
case), the bigger the part of energy emanated as rotations. We may say: in 
smaller earthquakes, relatively bigger portions of energy release through 
rotational waves, and this relation has a hyperbolic character. However, it 
is still too early for any definite statements about the rotational aspect of 
seismicity around l’Aquila. 

Note that a picture similar to that in Fig. 14.4a was found for the seismic 
events occurring  in  Pasterze Glacier,  studied  in  the frequency range  of 
3-15 Hz (see Chap. 15). For the glacier events, however, no distance-nor-
malised values could be calculated, as we do not know the distances from 
the measuring site to the sources of registered seismic events. A few gla-
cial cases were analysed also in the frequency range of 0.3-3 Hz, and then 
no relation between Vmax and indices R1 or R2 was found.  

In the seismic events occurring in mines, studied so far, the generation 
of rotation motion is apparently more strictly bounded to the course of 
„regular” seismic waves generation. This may be explained by smaller 
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confining pressure in mines, as compared to the foci of tectonic earth-
quakes. Under the conditions present in the mine, no large rotations are 
needed to unlock the slip movement. 

To come upon conclusions, some discrepancies were found between ro-
tational and „classic” seismic motions emitted from the tectonic shock. 
The discrepancies were much milder in the cases of mining tremors. But 
we cannot make any firm statement about an influence of the local mate-
rial micromorphism on the results obtained at a given station, because out-
comes of detailed analyses are still sparse. Therefore, we must take into 
account the fact that the rock media between the source and the measuring 
station may distort the shape of rotation curves, to an unknown extent. For 
example, the minute time-differences between local peaks of displacement 
and rotational motions (these are seen after stretching the time scale) might 
reflect the processes in the source, but might also be results of phase-shift 
in the material between the focus and the measuring equipment.  

The low-frequency seismic waves seem to travel somewhat slower than 
the waves of higher frequencies (this is especially clearly seen in the dia-
grams showing rotation motions), but we cannot decide yet, whether this is 
a source-effect or an effect of rock media influence.  

We hope that further studies, with the networks of rotational seismic sta-
tions, will solve these, and many more questions. 
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15.1  Introduction 

The many-year seismic monitoring of the Hans Glacier (South Spitsber-
gen) made it possible to associate seismic events with dynamic processes 
taking place in the glacier and related to its movements. The first registra-
tions of seismic events in the Hans Glacier were made by Roman Teisseyre 
in the summer season of 1962 (Lewandowska and Teisseyre 1964). The 
study of seismic events on the Hans Glacier are based on two sources of 
recording. The first is the incessant recording of ice seismicity on the seis-
mological station (HSP) at the Polish Polar Station Hornsund (Górski 
1997). The other is the seasonal seismic survey carried out on the Hans 
Glacier. The results from the Hans Glacier were compared with analogous 
studies in the Antarctic and an Alpine glacier. 

The study of rotation waves which were generated and propagated in ice 
was initiated in the Hans Glacier region in 2000 (Teisseyre et al. 2004). 
The study was continued at the Pasterze Glacier in the Austrian Alps. 

There are two main types of seismic events generated in glaciers: 
icequakes (Fig. 15.1) related to the release of stresses accumulated in ice, 
and ice-vibrations (Fig. 15.2) of a relatively long duration and relatively 
low frequency spectrum (dominant frequencies of 2-12 Hz). 

15.2  Icequakes 

Observations of icequakes on the Hans Glacier lead to the conclusion that 
the recorded seismicity can be related to the release of stresses in the 
marginal zone of the glacier, on the boundary between the two parts of the  
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Fig. 15.1  Icequake event recorded on the Pasterze Glacier at 14:32 on 28 August 
2005

Fig. 15.2  Ice-vibrations event recorded on the Pasterze Glacier at 16:12 on 29 
August 2005 

glacier: the part which is strongly associated with rocky environment and 
the other which constitutes the glacier’s main stream. This can be seen in 
Fig. 15.3, in which we show the location of foci of icequakes recorded in 
two measurement series (Górski 2003). Icequakes are associated with re-
gions of large gradient of ice movement velocity, rather than with the large 
value of ice flow velocity itself (Fig. 15.4). The figure shows a comparison 
of the location of epicenters of icequakes with magnitudes greater than –
0.7, with the annual mean distribution of ice flow velocity at the glacier 
surface. The seismically active region is situated in the marginal zone of 
the glacier along the western border of the maximally cracked region; in 
this place the gradient (on a transverse profile) of the glacier velocity in its 
annual movement is large. The glacier’s bottom in this area is at depths 
from 0 to over 50 m below sea level.  

Spectral parameters of icequake foci have been determined for the series 
of events recorded at the Hans Glacier. The calculations were based on 
Brune’s model. A comparison was made of icequake series recorded in 
different seasons (Górski 2003). A comparison of the seismic moment–
focal radius and seismic moment–seismic energy relationships for spring 
and summer seasons point to seasonal changes of physical parameters of 
ice or focus structure. Figure 15.5 shows, for the event series of Fig. 15.3, 
the relation  between  the seismic moments  and  the source  radii:  lines  of 
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constant stress drop are marked. For comparison, we also present in this 
figure (gray-colour area), the groups of various earthquakes and mining 
tremors in South Africa gold mines (Abercrombie and Leary 1993). The 
ellipse represents the region occupied by icequakes recorded in an Antarc-
tic shelf glacier (Osten-Woldenburg 1990). The radii of icequakes are in 
the range of 10–100 m. It is seen in the figure that the location of points 
corresponding to the same values of the seismic moment for earthquakes 
differs from that for icequakes. Icequakes are shifted towards greater val-
ues of focus radii. This is a consequence the different physical properties 
of ice and rocks.

Fig. 15.3  Location of icequake epicentres of three series at the Hans Glacier and 
seismometer sites. The glacier’s margin is marked by a broken line 

15.3  Ice Vibrations 

Vibration-type events accompany glaciodynamical processes in the main 
glacier flow area (Fig. 15.4). These  vibrations  are  most  probably related 
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Fig. 15.4  Location of icequakes epicenters (circles) recorded in the Hans Glacier 
in April 1995 (Górski 1997). Arrows are the vectors of annual glacier motion 
velocity (Jania 1992)  

Fig. 15.5 Seismic moment vs. source radius. The circles, triangles and crosses mark 
icequake series recorded in the Hans Glacier. The lines labeled 0.0001, 0.001 and 
0.1 MPa represent the respective constant stress drops. The gray area represents 
the location of groups of various earthquakes and mining tremors in South Africa
gold mines, ellipse indicates icequakes recorded in Antarctic shelf glacier 
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to the processes occurring in the bottom zone of glacier and to displace-
ments of glacier parts due to gravity or uplift forces. Of interest is an 
analysis of these events in terms of coherent seismic waves in the glacier 
movement zones (self-organization processes). 

Spectral analysis of the recorded vibrations indicates that there exists a 
relation between their period and the scale of dynamic processes within the 
glacier (Górski 2004). Spectra of vibration-type seismic events contain 
characteristic resonance frequencies related to the scale of dynamic proc-
esses within the glacier. 

The measurements were made with the use of continuous recording and 
large sampling frequency, which enabled a full interpretation of the gen-
eration process of seismic events in the glacier, those of vibration-type in 
particular. The recordings made from April to August 2002 by an array of 
seismometers placed directly on surface of the Hans Glacier enabled us to 
fairly accurately locate the vibration-generating area. In Fig. 15.4 this area 
is shaded. The major part of the analysed material are the records of 
seismo-glacial events at the Hornsund station. Owing to the refinement of 
digitalisation of analog seismograms, a valuable comparative material was 
obtained from the vibration seismograms recorded by one of the authors at 
Huron Glacier of the Antarctic Peninsula (Fig. 15.6). Vibrations recorded 
at the Hans Glacier in Spitsbergen are shown in Fig. 15.7. Vibrations re-
corded at the Hans Glacier in Spitsbergen are also compared to the events 
of the same type recorded at Pasterze Glacier in the Alps (Fig. 15.8).  

15.3.1  Relation between rotation/tilt phenomena and the  
            Pasterze Glacier seismic events 

Measurements on the Pasterze Glacier, Austria, have been performed by 
means of one rotation seismograph system in September 2003, and two 
such systems in September 2005. Each of the systems consists of two ver-
tical seismometers (Fig. 15.9), their horizontal pendulums being aligned in 
opposite directions. Such a pair permits to record vertical displacements, 
and also a rotation/tilt around horizontal axis, as the difference between 
records from two separate sensors (cf. Chapter 14 by Teisseyre KP and 
Suchcicki, and Chapter 33 by Wiszniowski). The two systems were ori-
ented perpendicularly enabling to record rotations around two independent 
horizontal axes. Each of the rotation/tilt motions is a complex one: it is a 
sum of the spin and twist motions (see Chapters 3 and 4) and also may 
include the tilt variation component. We have no separate source of know- 
ledge about variations of the glacier’s surface tilt below the recording sys-
tems, so the signal differences are referred to the rotation/tilt motion.
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Fig. 15.6  Ice vibration event recorded on the Huron Glacier at 03:15 on 15 Janu-
ary 1991. The displacement seismogram recorded on the glacier is shown on top. 
The lower diagram presents the isolines of the spectrum; broken line denotes the 
dominant frequency 

Fig. 15.7  Ice vibration event recorded on the Hans Glacier at 06:35 on 21 August 
2002. The displacement seismogram recorded on the glacier is shown on top. The 
lower diagram presents the isolines of the spectrum; broken line denotes the domi-
nant frequency 
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Fig. 15.8  Ice vibration event recorded on the Pasterze Glacier at 00:53 on 30 
September 2003. The displacement seismogram recorded on the glacier is shown 
on top. The lower diagram presents the isolines of the spectrum; broken line de-
notes the dominant frequency 

Fig. 15.9  Horizontal rotation system constructed from two vertical seismometers 
suspended on a common axis and aligned in the opposite directions (construction: 
J. Suchcicki, see Wiszniowski et al. 2003; phot.: A. Skrzy ski)

The rotation/tilt phenomena recorded on the Pasterze Glacier indicated a 
distinct activity observed during the whole recording experiment. 

For analysis of seismic events, we have chosen single tremors and in 
some cases two or more tremors; the total number of analysed cases is 39. 
We estimate that from the data collected in 2005, most of the usable se-
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quences were taken into account; those with a high noise level were ex-
cluded from further study.  

The recorded displacement velocities are called initial data, in contrast 
to the differential data, which mean the rotation/tilt. Differential data are 
defined as the differences between the filtered signals from two parallel 
but oppositely oriented pendulum sensors, divided by the reduced distance 
between them. 

The maximum amplitudes of the displacement velocity for a given 
shock were generally in the range of 1.8-26 m/s; two smaller events were 
included, which will be mentioned later. 

An analysis of results shows that on the surface of glacier the relation 
between seismic displacement oscillations and the differential motions is 
complex (it seems to be much more complex than in rock media); the re-
cords show an almost constant rotation/tilt activity related to the glacier 
responses to the accumulated strains caused by glacier deformations and 
flow.

Studying the diagrams containing both the initial and differential data, 
we have distinguished several types of glacier responses revealing differ-
ent correlations between the initial and differential data: 

– an almost perfect correspondence: the seismic event is clearly seen 
both in the plots of the initial data and of differential ones; the influ-
ence of noise is negligible; 

– a good agreement:  the event is still clearly visible on the differen-
tial components, but the influence of noise is high; 

– in one of the differential signals, the seismic event may be distin-
guished with ease, while in the other it is not so; 

– in differential signals, the seismic events are invisible, or at least 
hard to find.

As mentioned above, the glacier seismic events include the icequakes 
and the ice vibrations (see Figs. 15.1 and 15.2). Typical examples of ana-
lysed cases including vertical displacement velocities and rotation/tilt mo-
tions are shown in Figs. 15.10 15.15. From the initial recordings, only two 
channels are shown, because channel V2 is visually indistinguishable from 
V1, and V4 from V3. The initial data are always shown unfiltered.  

In general, stronger seismic events are characterized by rather good 
agreement between vertical displacement velocities and the shape of 
differential data; the three strongest events belong to the first type. Their 
maximum amplitudes were 26 m/s, 20 m/s and 18 m/s; the fourth 
reached an amplitude of 14 m/s which was found also in two cases 
of worse initial-differential  data correspondence.  On the average, stronger 
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Fig. 15.10  Event on the Pasterze Glacier, 30 August 2005, 13:21. Channels V1 
and V3 present the vertical displacement velocities; channels T1 and T2 present 
rotation/tilt motions around two horizontal axes 

Fig. 15.11  Event on the Pasterze Glacier, 30 August 2005, 23:42. Channels V1 
and V3 present the vertical displacement velocities; channels T1 and T2 present 
rotation/tilt motions around two horizontal axes 
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Fig. 15.12  Event on the Pasterze Glacier, 30 August 2005, 11:27. Channels V1 
and V3 present the vertical displacement velocities; channels T1 and T2 present 
rotation/tilt motions around two horizontal axes 

Fig. 15.13  Event on the Pasterze Glacier, 30 August 2005, 01:06. Channels V1 
and V3 present the vertical displacement velocities; channels T1 and T2 present 
rotation/tilt motions around two horizontal axes 
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Fig. 15.14  Event on the Pasterze Glacier, 31 August 2005, 06:41. Channels V1 
and V3 present the vertical displacement velocities; channels T1 and T2 present 
rotation/tilt motions around two horizontal axes for the 0-3, 1-5 and 3-15 Hz fre-
quency ranges 

Fig. 15.15  Pasterze Glacier, 31 August 2005, 03:38. Seismic event of long-time, 
low-amplitude, ascribed to the ice vibration class. Differential motion curves are 
poorly correlated with those of the displacement motions. Channels V1 and V3 
present the vertical displacement velocities; channels T1 and T2 present rota-
tion/tilt motions around two horizontal axes for the 0-3, 1-5 and 3-15 Hz fre-
quency ranges 



         M. Górski, K.P. Teisseyre 210

events contain a relatively smaller contribution of the rotation/tilt motions, 
when analysed in the higher frequencies range.  

All initial data were pass-band filtered in the 3-15 Hz range. Ten cases 
were analysed also in the 0.3-3 Hz range and additionally in the 1-5 Hz 
range (Figs. 15.14 and 15.15); these cases were chosen because a high 
content of low frequency undulations was visible in the initial data. Cases 
shown in Figs. 15.14 and 15.15 belong to this group, other cases were 
analysed only in the higher-frequency part of the spectrum. 

In many cases, curves showing rotation/tilt correspond to the curves of 
initial data, especially for the strongest seismic events. Weaker seismic 
events, and probably those which occurred at a greater distance from the 
measuring site, showed more varied differential motions, as compared to 
the initial signals.

Icequakes of short-duration recorded at a close distance revealed a poor 
agreement of rotation/tilt motions with the initial data presenting dis-
placement motion (see Fig. 15.14). This is especially marked in low fre-
quencies.

For all the cases analysed in low frequencies, differential motions ap-
pear smaller than those obtained in an analysis in high frequencies, and 
bear less resemblance to the displacement motions. 

In order to make more precise analysis, we have calculated indexes R1

and R2 for a given interval, showing relation between mean rotation/tilt 
motion (squared) and the mean filtered displacement motion (squared), for 
each seismometer pair separately: 
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Vi are the displacement velocities recorded with separate sensors and 2l0 is 
the reduced distance between two sensors within a pair. Such indexes are 
compatible with the ratio R used in the analysis of data collected at the 
Pasterze Glacier in 2003 (Teisseyre KP et al. 2004.). These indexes were 
calculated for each of analysed cases, and always the case included the 
time interval of the seismic event and some short intervals before and after 
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it. For presentation purposes, somewhat longer time-windows are shown in 
Figs. 15.14 and 15.15.

Our analysis with the help of the calculated indexes R1 and R2 reveals 
that for higher frequencies the indexes decrease with increasing displace-
ment motions. This is shown in Fig. 15.16, together with a positive corre-
lation between maximum rotation/tilt amplitudes and those of the dis-
placement velocities. For low frequencies, no such correlations were found 
(see Fig. 15.17).

Indexes R1 and R2 calculated for the frequency range 3-15 Hz lie gener-
ally in the range 0.07-2.6. Differences between R1 and R2 are in many 
cases large. The strongest event, that of  26 m/s  amplitude, was analysed 
only in this higher-frequency part of the spectrum; indexes calculated for 
this case are amongst the lowest: R1 = 0.18; R2 = 0.32. The indexes calcu-
lated for low frequencies (0.3-3 Hz) are more uniform for each case; they 
lie in the range of 1.1-7.6.

Fig. 15.16  Maximum amplitudes of displacement velocity signals vs. maximum 
amplitude of differential signal in rad/s (asterisks), and mean value of R1 and R2

(circles). Pasterze Glacier, 2005; data analysed in the 3-15 Hz range 
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Fig. 15.17  Maximum amplitude of the displacement velocity signals signals vs.
maximum amplitude of differential signal in rad/s (asterisks), and mean value of 
R1 and R2 (circles). Pasterze Glacier, 2005; data analysed in the 0.3-3 Hz range

Two events clearly stand out; these are the smallest ones, whose maxi-
mum amplitudes were about 0.8 m/s while the neighbouring noise was 
reaching 0.1-0.2 m/s. In the first of these cases, the indices for higher 
frequencies are the greatest: R1 = R2 = 5.4; for low frequencies we obtained 
R1 = 6.7 and R2 = 6.6. The second event, which occurred 37 minutes later, 
also shows a large content of rotation/tilt motions, as the indices are again 
relatively large: R1 = 1.9, R2 = 2.4, and for low frequencies R1 = 6.4, 
R2 = 7.3.

We must remember that each time the window selected comprised, be-
side the recording of the event, also a certain sequence of just noise, before 
and after the seismic event. This noise might influence the results to some 
extent; on the other hand, the rotation/tilt activity appears frequently in the 
time periods without icequakes.  

Similar index R, calculated for some analysed cases belonging to the 
data collected on the Pasterze Glacier in 2003 (Teisseyre KP 2004), are 
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several times smaller. Maybe, the wider spectrum of those analysed data is 
the cause of such a profound difference, but this requires further research.

15.3.2  Transient quiescence in rotation motion or a variable
            geometry? 

The lack of distinct correspondence of differential motions with the initial 
data, revealed in many cases, is worth consideration. Let us assume that 
this disagreement between the curves is systematic. Indeed, in many such 
cases some strong fluctuations are seen on rotation/tilt plots before and 
after the seismic event, and they might well be related to the event. Also, a 
marked difference between two rotation/tilt channels and a certain quies-
cence in these channels is seen, being more visible in one of them (to em-
phasise this, the same case was shown in Fig. 15.14, with the frequency 
ranges for rotations/tilts: 0-3, 1-5, and 3-15 Hz).

We find two possible explanations. First, rotational noise is usually pre-
sent in the creeping glacier; these tiny motions facilitate the flow. When 
they are in a certain area blocked for some reason, the stress reaches higher 
values and an icequake occurs. This would be similar to the well-known 
seismic quiescence in a tectonically active region, but in a much shorter 
time scale. In this explanation, the above-mentioned special undulations 
before and after the icequake would be the signs of blocking and unblock-
ing of the creep-and-rotation activity in the area.  

Such a hypothesis assumes that the curve of differential motions reflects 
the preseismic activity in the focus lying at a small distance from the 
measurement site. These fluctuations might be a sign of preparation for 
rupture or slip process, and after the event they result in smaller motions in 
the focal area; during the seismic event itself, the majority of rotation/tilt 
motions becomes only two-dimensional, and this may be also the reason 
why rotational waves have a relatively smaller amplitude at this moment. 

More precise analysis, using several time windows (before, during, or 
after the shock) would probably enlighten the problem of disagreement 
between initial and differential motion curves, so often observed in the 
research at glaciers. We have made the first attempt: we calculated indexes 
R1 and R2 once more for two already investigated cases (Figs. 15.14 and 
15.15), but not for the same time intervals as previously, but in four or six 
time-windows separately. Two time-windows were chosen for periods of 
noise. In the first case, the seismic event was relatively short (see Fig. 
15.14) and was taken into analysis as a whole. In the analysis of the second 
case (see Fig. 15.15), the seismic event was divided into three parts of 
equal length. The last time-window was used to analyse the period just 
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after the seismic event. In each time-window, indexes R1 and R2 were cal-
culated for two spectral ranges: 0.3-3 and 3-15 Hz. For low frequencies, all 
the obtained indices lie in a very narrow range: 4.9-7.8. For higher fre-
quencies, the time interval when the shock was visible in initial data differs 
from time intervals before and after the seismic event. In the first case, 
R1 = 0.27 and R2 = 0.5 for the event and outside the seismic event these 
indices were in the range 4.6-5.8. In the second, ice-vibration case, during 
the shock these indices appeared to be in the range of 1.05-1.78, and for 
time outside the seismic shock the range was 3.6-5.9. Therefore we may 
conclude that (a) the relative weakness of high-frequency differential mo-
tions during the seismic event is proved, (b) the long-duration seismic 
event of the ice vibration character appeared to be similar to other events, 
despite its resemblance to the exaggerated noise (whatever it might be). 
Such conclusions are in agreement with the general picture seen in Figs. 
15.16 and 15.17. 

15.4  Discussion 

The results obtained show that in glaciers we observed probably more 
complex relations between the seismic events (icequakes and vibrations) 
and rotation/tilt phenomena. The rotation/tilt phenomena have always been 
present at the investigated glaciers. They may be signs of the ice flow. 
However, also opposite interpretation may be true: these tiny movements 
may facilitate the creep. Even the character of rotational/tilt noise, so often 
different for different orientations of sensors, also points to the complexity 
of seismic field at glaciers surface; such a complexity would be hard to 
detect with single sensors. 

Seismic events in ice are also rich in rotational compounds, especially at 
low frequency range (0-5 Hz). The differential data, calculated for many 
sensors, bring new information on the complex glacier responses to stress.  

To obtain deeper knowledge of dynamic processes occurring in the gla-
cier, more systems to record rotational/tilt data should operate on it simul-
taneously. Probably this would also help to refine some methods of analy-
sis.

We shall notice that the rotation/tilt activity might be different in cooler 
glaciers. It is also possible that the same or similar phenomena associated 
with relations between the glacier rotation noise and glacier flow exist in 
the tectonic regions of Earth’s crust and mantle. In the case of rocks, such 
a flow-related noise would be limited only to very low frequencies and 
would be detectable only with instruments of a very high sensitivity. How-
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ever, at deep parts of the seismotectonic regions, at elevated temperatures, 
the situation might be again similar to that in glaciers.  
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16.1  Introduction 

Motions in the earthquake source can be translational, rotational, rolling, 
vibrational, and rocking. The importance of the study of rotational motions 
occurring in the earthquake source stems from the fact that these motions 
may provide information regarding the structure as well as energy states of 
the source. This chapter estimates a rotational energy generated by rota-
tional motions in the earthquake sources. We derived here general expres-
sions for rotational energy of an earthquake in terms of dimensions of the 
earthquake source and of the total slip on the fault. In addition, the angular 
momentum generated in the earthquake source was considered. 

16.2  Modelling the Rotational Motions Excited
         in Earthquake Sources as Rolling Motions 

We consider here a simple model of an earthquake source composed of 
two tectonic plates and a large, round fragment of rock (shaped as a solid 
cylinder) between them. The tectonic plate A moves from right to left, but 
the tectonic plate B stays at rest. At the same time, the large, round frag-
ment of rock rolls from right to left. The rolling motion of the solid cylin-
der is a combination of purely translational and purely rotational motions. 
The rotation of the largest fragment of rock is conveyed to other, smaller 
rock fragments that rotate as well. Thus, in the earthquake source there are 
many rotating fragments of rocks that are the sources of seismic rotation 
waves. Figure 16.1 shows the schematic picture of a simple model of a 
rolling motion in the earthquake source.  
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Fig. 16.1  A simple model of rolling motion generated in the earthquake source. 
Due to the motion of tectonic plate A during an earthquake, the round fragment of 
rock shaped as a cylinder rolls from right to left. We assume here that plate B is at 
rest. The rolling motion is a combination of a translational motion over a distance 
s and a pure rotation in the counterclockwise direction 

16.3  Rolling in the Earthquake Source as Translation  
         and Rotation Combined 

Our starting point in exploring the rotational energy is to assume a rolling 
motion in the earthquake source. Here we consider only a solid rock cylin-
der that rolls smoothly along a tectonic plate surface; that is, the cylinder 
rolls without slipping or bouncing on the plate surface. Note that the center 
of the cross-section of the cylinder moves along a straight line parallel to 
the plate surface. A point on the cylinder’s rim moves along a curve called 
a cycloid. However, we can treat this motion as a superposition of transla-
tion of the cylinder’s central axis and rotation of the rest of the solid cylin-
der around that axis. If we observe the cross-section of the cylinder in 
Fig. 16.1 as it rolls along the tectonic plate, we can see the center of mass 
O of the circle (cross-section of the cylinder) moves from right to left at 
constant speed cm. The point D on the plate B where the circle makes con-
tact with the plate surface also moves from right to left at speed cm , so 
that point O remains directly above point D. During a time interval t, both 
O and D move from right to left by a distance s. We assume here that this 
distance  is equal  to the total tectonic slip  on a fault during an earthquake. 

 O  O
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The cylinder rotates through an angle  about central axis,  with the points 
of the cylinder that were touching the plate B at the beginning of t moving 
through arc length s. We can express the arc length s in terms of the rota-
tion angle :

s R  , (16.1)

where R is the radius of the solid cylinder. The linear speed cm of the cen-
ter of mass of this uniform cylinder is  ds/dt. The angular speed  of the 
cylinder about central axis is d / dt . Thus, differentiating Eq. (16.1) with 
respect to time yields 

d

dcm R R
t

 , (16.2)

where   is the angular speed of the cylinder.  
Every point on the cylinder rotates about central axis with angular speed 

. Bearing in mind that the motion of the cylinder rolling smoothly over a 
plate surface can be decomposed into purely rotational and purely transla-
tional motions, we can observe that the bottom part of the cylinder at point 
D is stationary and the top part at point C is moving at speed 2 cm , thus 
twice faster.  

16.4  The Kinetic Energy of Rolling in the Earthquake 
         Source 

Let us now calculate the kinetic energy of the rolling cylinder in the earth-
quake source. If we treat the rolling as a pure rotational motion about an 
axis through the point D on the bottom plate in Fig. 16.1, then we obtain 

21

2
DK I  , (16.3)

where ID is the rotational inertia of the cylinder about the axis through 
point D, and  is the angular speed of the cylinder. Using the parallel-axis 
theorem for the rotational inertia, we obtain 

2
D cmI I m R  , (16.4)

where Icm is the cylinder’s rotational inertia about an axis through its center 
of mass (central axis), and m is the mass of the solid cylinder. Combining 
Eqs. (16.4) and (16.3), we obtain 
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2 2 21 1

2 2
cmK I mR  . (16.5)

Using Eq. (16.2) gives the relation 

2 21 1

2 2
cm cmK I mv  . (16.6)

The physical interpretation of the first term in the above equation is that it 
describes the kinetic energy of the cylinder’s rotation about an axis 
through its center of mass, and the second term can be interpreted as the 
kinetic energy of the translational motion of the cylinder’s center of mass. 

If we assume that plate B is at rest and only plate A is moving, its speed 
will be twice larger than the speed of the cylinder’s center of mass. The 
plate’s speed equals the time derivative of the slip function, i.e., s v . The 
mass of the cylinder of length h is 2m R h . Thus, the kinetic energy 
generated in the earthquake source in terms of the slip rate is as follows: 

4 2 21

2
2K hR hR s  , (16.7)

where  is the material density of the rock cylinder. 
The above formula determines the kinetic rotational energy generated in 

the earthquake source in terms of the source dimensions and the tectonic 
slip rate. Here 2R is the distance between tectonic plates and h is the length 
of the rolling cylinder. 

When the rock cylinder rolls at constant velocity, it has no reason to 
slide at the contact point D, and thus the frictional force is zero there. 
However, when a net force is accelerating or decelerating the rolling mo-
tion of the cylinder, then that force generates acceleration acm of the cylin-
der’s center of mass along the direction of the tectonic fault. It also gener-
ates an angular acceleration or deceleration  of the cylinder. These 
accelerations can generate sliding motions of the cylinder at point D.
These motions create a frictional force between the cylinder and the plate 
at point D. When the cylinder does not slide, the static frictional force Fs is 
created, and the cylinder is rolling smoothly. We can then express the 
magnitude of the linear acceleration acm in terms of the angular accelera-
tion  by taking a time derivative of Eq. (16.2). Consequently, on the left 
side of this equation, we obtain d / dcmv t  that is equal to acm, and on the 
right side we obtain d / dt  that is equal to . Thus, in the case of smooth 
rolling we obtain the following relation: 
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cma R  . (16.8)

When the cylinder slides and the net force is not zero, then the kinetic fric-
tional force Fk acts at point D. In such a case, the motion is not smooth 
rolling, and Eq. (16.8) is not valid for this motion. The kinetic frictional 
force will be discussed in Section 16.6.  

16.5  Modelling Purely Rotational Motions  
         in the Earthquake Source 

Now let us consider a model of purely rotational motions in the earthquake 
source depicted in Fig. 16.2. Particularly, one can infer spin motions of the 
solid cylinder (Teisseyre 1973, 2004). We can also imagine such a situa-
tion that both tectonic plates will move in opposite directions and oscillate 
along the fault at the same time. During such a process, the tectonic plates 
vibrate in the opposite directions and the cylinder is in a twist motion. We 
can combine these two simple motions of tectonic plates together and ob-
tain a resulting motion of the cylinder with two components: twist and spin 
motions. 

Fig. 16.2  A model of purely rotational motions generated in the earthquake 
source. Due to the motion of tectonic plates A and B in opposite directions during 
an earthquake, the round fragment of rock shaped as a cylinder rotates counter-
clockwise. This situation corresponds to spin motions of the rotating cylinder. If 
the tectonic plates move back and forth, then the cylinder may have twist motions 

 O
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16.6  The Torque and Angular Momentum
         of the Earthquake Source 

The torque is equal to the vector representing the cylinder’s diameter per-
pendicular to the plate cross the kinetic frictional force between the cylin-
der and a tectonic plate: 

2 kR F  . (16.9)

We can also write that cmI . The angular momentum of the solid rock 
cylinder about central axis can be expressed as 

2 41 1

2 2
cmM I m R h R  . (16.10)

Since we use the solid rock cylinder to model rotations in the earthquake 
source, the magnitude of the seismic angular momentum generated in the 
source is as follows: 

41

2
M h R  . (16.11)

For 3D space rotation, the dynamical law corresponding to the law 
F = dp/dt , is that the torque vector is the rate of change with time of the 
angular momentum vector 

d / dtM  . (16.12)

If we take a vector sum of all external torques over all grains or blocks in 
the earthquake source, the external torque acting in the source is the time 
rate of change of the total angular momentum: 

d / dext total tM  . (16.13)

For a rotational motion in the source, one can calculate the work 

2

1

dW  . (16.14)

Consequently, one can find the power P for rotational motion in the earth-
quake source as 

P W  . (16.15)
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16.7  Modelling Rotational Motions in the Earthquake 
         Source as a Turbulence of Grains and Blocks 
         Between Moving Tectonic Plates 

Now let us model the rotational motions in the earthquake source as turbu-
lence of grains and blocks between moving tectonic plates. This model is 
depicted in Fig. 16.3. Such an approach will allow us to look at the prob-
lem of rotational energy from a broader perspective. The turbulent flow is 
in general rotational. We can describe turbulence in the framework of a 
micropolar theory of fluent media (Eringen 1966, 2001). It was found that 
there is some correspondence between plastic flow of solids and motions 
in micropolar fluids. Our aim is to estimate the angular momentum of such 
a turbulent motion of grains and blocks in the earthquake source. 

Fig. 16.3  A model of rotational motions in the earthquake source as a turbulence 
of grains and blocks between moving tectonic plates. The grains and blocks rotat-
ing counterclockwise at the angular speed  form the vortex 

In order to describe turbulence, we have to consider the problem at two 
levels: macroscopic and microscopic (Teisseyre and Majewski 2001, 2002, 
Nikolaevskiy 2003). Thus, we need two linear scales: the external scale L,
and the internal scale . We also need to consider a macrovolume V and 
a microvolume dv. The macrovolume and microvolume are displayed 
schematically in Fig. 16.4. The equations describing the microscopic level 
are usually differential equations. A complete description of turbulence re-
quires a separate set of equations for the description at the microscopic 
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level and another set of equations describing processes at the macroscopic 
level. The key idea here is that a small eddy (an element of turbulent meso-
structure) reveals its own dynamics as a structure element rotating at its 
own spin velocity. In order to describe the behaviour of such a system of 
rotating objects, one has to formulate the angular momentum balance for a 
macrovolume. This angular momentum is taken about a mass center of the 
macrovolume V.

Fig. 16.4  Microscopic and macroscopic levels of description of the turbulence. 
Here dv denotes the microvolume, and  – the internal scale, V – the macro-
volume (modified from Nikolaevskiy 2003) 

One can write the angular momentum balance in the form (Nikolaevskiy 
2003):

,

kmn n m kmn n p m m kpn n p p

m

kmn mp p p kpn np p kpn p n

m

u r u r u u u
t X

r r F
X

(16.16)

where <> denotes the average, kmn  is the Levi-Civita alternating tensor, 

 is the material density, ui are the velocity components, mp  are the vis-

cous stress components, Fn are the components of the mass force, xm and 
Xm are the microscale and macroscale coordinates, respectively, and 
rm = xm + Xm is a radius-vector relative to the mass center of the elementary 
volume. 

It is assumed that the macrovolume V contains i eddies. The spatial 
averaged angular momentum of one eddy is defined as 

k kpn n pM u r  . (16.17)
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16.8  Conclusions 

This chapter briefly presented a few models of rotational motions in the 
earthquake source. At first, rolling motions were considered and the ki-
netic energy of rolling was formulated. The second model deals with 
purely rotational motions. The kinetic energy, work, power, and angular 
momentum for this model were expressed in terms of earthquake dimen-
sions and the total tectonic slip on the fault. The third model treats rota-
tional motions in the earthquake source as turbulence of grains and blocks 
between moving tectonic plates. A general approach to the turbulence was 
discussed. A balance equation for the angular momentum was shown. An 
angular momentum for a small turbulent eddy was defined. 
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17.1  Introduction

Instrumental measurements in epicentral zones of earthquakes and espe-
cially on outcropped faults are still relatively rare. This also concerns mac-
roseismic observations during strong earthquakes. Issues regarding fault-
ing kinematics, distribution of effective forces, accelerations and other pa-
rameters of near-surface seismic process, and, consequently, the focus 
mechanisms in the case of their outcropping, are still insufficiently studied. 
Macroseismic observations and measurements that are available show 
various effects. We put a special attention to the following macroseismic 
observations: eruption of soil and hard rock with overturning in air; bounc-
ing of heavy blocks with simultaneous shifting 2-5 m aside; overturning of 
soil and ground blocks with 180º rotation along horizontal axis (Bolt 1978, 
Nikonov 1992). In Japan, movement of rectangular ledger blocks immedi-
ately near a fault formed  at the graveyard was noted (Nikonov 1992). It is 
essential that ledger stones were of standard size, and stood vertically on 
pins fixed in underlying horizontal slabs; the pins remained undamaged, 
whereas vertical slabs have been displaced along the fault to the opposite 
wall of the fault. Hence, not a mere shear movement but slab tossing in air 
by some angle to the horizon took place. 

Interesting data can be found in the publication by Popova (1990). Dur-
ing Kudmdag earthquake (March 14, 1983) in the South-Western Turkme-
nia, with  M = 5.4, I = 8, and focus depth  h = 3 km, a 20 km long fault 
cropped  out   crossing   the  settlement  built   on   a   plane.   Engineering 
-seismologic study revealed strengthening of shocking force by 0.5-0.7 
(comparing to average values for the settlement) in strips along the fault, 
150-400 m wide on one side, and 75-200 m wide on the other side of the 
fault. For earthquakes with high magnitude and intensity, the width of 
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zones with strengthened impact along outcropping faults increases signifi-
cantly. So, for earthquakes of epicentral intensity of 9-10, the width of the 
zone of highest intensity at the fault amounts to 2-6 km (Popova 1990).
We draw special attention to the measurements which showed differences 
with distance in acceleration values recorded by accelerographs; a repre-
sentative example is here the Rudbar earthquake in North Iran (20 June 
1990, Ms = 7.7). At this event, a 80-km long fault ripped on the surface in 
three areas; the left-lateral shifts had the horizontal extent of 0.6 m (maxi-
mum), and the vertical extent up to 0.95 m (Berberian et al. 1992). The 
peak accelerations recorded at different distances from the focus and fault 
plane are listed in Table 17.1. 

     Table 17.1  Peak accelerations of the Rudbar event of 20 June 1990 

Distance [km] Acceleration g 
Site

from epicenter from fault vertical horizontal 

Abbar 47 8 0.23 0.65 

Kazvin 80 50 0.09 0.19 

Abbar 77 75 0.06 0.13 

Tonekabon 130 95 0.03 0.11 

Karai 182 148 0.03 0.06 

It is seen that the values of vertical and horizontal accelerations increase 
exponentially up to 0.65g when approaching the ripped fault at a distance 
of 8 km, so that the value of 2g was possibly achieved at the fault’s edges. 
Many authors have noted clear features of non-linearity of intense soil 
movements in the zone of tectonic faults (Aksenov et al. 1992, 1993, Ak-
senov and Lokaji ek 1997, Li et al. 1994). The following features were ob-
served in all reports: 

– low-frequency oscillations (0.4-1.5 Hz), 
– high-amplitude monochromatic coherent oscillations, 
– low velocity  of  phase range  of 160-180 m/s  with  duration of up to 

5 minutes. 
All these three features have been observed only in a zone adjacent to 

the tectonic fault. Moreover, the distance from the fault walls where the 
non-linear effects are observed depends on the earthquake magnitude. It is 
important to note that there is a rather sharp boundary of the space beyond 
which all non-linear effects disappear (Li et al. 1994). Presentation of 
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models of mechanisms for all non-linear effects mentioned above, includ-
ing rupture mechanism, involves many problems. Basing on theoretical 
works on non-linear dynamics (Lyapunov 1892, Poincare 1928, Man-
delshtam 1950, Nicolis 1986), laboratory experiments and field studies, the 
author suggests a model based on bend-rotation waves as a mechanism of 
fracturing and macroseismic effects. 

17.2  Experimental Data 

First of all, it is necessary to select oscillation parameters describing seis-
mic soil movement to investigate dependence of the selected parameters 
on energy (magnitude), motion or destruction type, and distance from reg-
istration point to the tectonic fault. Determination of the mechanism caus-
ing macroseismic effects is the foremost issue. The following parameters 
have been selected as the main oscillation parameters: – amplitude char-
acterizing the signal intensity; – pulse width (the parameter of the assem-
blage of curves delineating envelope of oscillations); f0 – dominant fre-
quency (or period) of oscillations; S – spectrum width. 

The author used a laser vibrometer with flat characteristic from 0.1 Hz 
to 0.5 MHz. Models of three types were built, as shown in Fig. 17.1: the 
barrier model A (fine sandstone, coarse sandstone); the enclosed fault 
model B (perspex); and the open fault model C (granite).  

The barrier model A consisted of a parallelepiped with sides of 
20×30×10 cm. On sides, direct cuts at an angle of 45 degrees were made, 
leaving a barrier of 3 cm in the center. The sample loading was performed 
along vertical axis until the moment of the barrier destruction. Recording 
by the laser vibrometer was carried out in the center of the barrier. Figure 
17.2 shows time pulse records for model A (tracks 1, 2, 3 – fine sandstone; 
4, 5, 6 – coarse sandstone); pulse amplitude spectra are presented below. 
Tracks 1 and 4 are the typical records of pulses corresponding to beginning 
of the barrier destruction.  Pulses are short, with low amplitude.  They 
have high -frequency spectra. Dominant frequency is hard to isolate. The 
spectrum width is 60 kHz. We observe a typical interference of waves 
from independent oscillation sources.  

At increasing load (axial pressure P) we obtain different pulse shapes; 
tracks 2 and 5 and their spectra reflect qualitative transition of the system 
to another state. Amplitudes, i.e., the signal intensity, increased sharply, as 
well as the pulse width did. The base frequency of 80 kHz for track 2 is 
isolated. That for track 5 is 115 kHz. The spectrum width is 10 kHz in both 
cases.  Sidebands are present in the spectra. Such spectra occur  in the case 
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of modulated oscillations. Let us consider a simple amplitude-modulated 
oscillation. Initially, we had oscillations of the carrier frequency: Y = a0 sin

0 0( )t , and a modulating oscillation 1+ m f(t), where f(t) is the modu-
lating function, m  is the parameter characterizing the affection level. As a 
result of some operation, called “modulation”, both these oscillations are 
multiplied, yielding:  = a0 [1 + m f(t)] sin 0 0( )t . Then, the carrier fre-
quency is marked in the spectrum, and the modulating frequency is avail-
able on sides. This is true for periodic functions only. In case of non-
periodic modulating function, i.e., inharmonic oscillations, continuous 
sidebands will be observed in the spectrum instead of side lines. 

Tracks 3 and 6 (further increase of load) are examples of time oscilla-
tion records registered  before the final destruction  of the barrier.  The am- 

Fig. 17.1  The three models:  A – barrier model (P is the axial pressure, 1 denotes
the 2D luminous reflectance point); B – enclosed fault model (R0–R5 are the 2D
luminous reflectance points); C – open fault model (P1 is the axial pressure, P2 is
the lateral pressure, 1 and 2 are the 2D luminous reflectance points of waves from
independent oscillation sources) 
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plitudes and pulse widths are at maximum. The dominant frequency radi-
cally shifted to the low-frequency region. The period increases twofold for 
track 3, and sevenfold for track 6. The width of spectra sharply contracts, 
thus showing the coherence of oscillations.

The evolution of pulses and their spectra raises a number of questions. 
Which of the parameters of appearing fault (destruction of the barrier) 
causes this evolution? This problem can be solved with the help of the the-
ory of nonlinear dynamic systems. As follows from Ni olis (1986), if n in-
dependent oscillators with unit amplitude interfere in some point of space, 
then the total energy is proportional to the sum of energies of each oscilla-
tor:

2

iW E  , 

2 2 ( 1) / 2

1 1

cos sin 2 cos
n nn n

i i

i i i j

W n  , (17.1)

where i j ; for all  equal (complete coherence), 0 , and the 

energy becomes 

2( 1)W n n n n  . (17.2)

Fig. 17.2 Barrier model A, the wave shapes and spectra. Tracks 1-3 –  fine sand-
stone, tracks 4-6 – coarse sandstone 
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If phases are independent and distributed uniformly, then  has Simp-
son’s distribution (in the interval from  to ), and the energy of in-
coherent oscillators is 

2( 1)

1 0

( 1)
cos cos d

2

n n n n
W n n n  . (17.3)

So, it can be stated that the total energy density is proportional to the 
second power of the number of oscillators n2 (coherence) provided that the 
phases of all n oscillators are equal. If phases of oscillators are random and 
uniformly distributed over some, 2  long interval, then the total energy 
density is proportional to the number of oscillators n (incoherence). Thus, 
if only 10 out of 100 oscillators are coherent, then these 10 oscillators “be-
have” like the remaining ones, and are able to synchronize the rest of oscil-
lators. Of course, in the most abundant case we deal with time-limited par-
tial coherence.

Enclosed fault model B: In the perspex plate of 15×15×1.5 cm size, a 
cut was made in the center at an angle of 45º presenting “a fault” of 4 cm 
length. Under vertical pressure, the “fault” walls shift to opposite sides 
relative to each other making cyclic motion of the stick–slip type. Surface 
oscillation recording points  R0–R5 (Z-component) were placed on the 
straight line perpendicular to the "fault" with spacing of 10 cm. Recorded 
pulses shape and their spectra are shown in Fig. 17.3. At R0, a single uni-
polar pulse is recorded. Noteworthy is the high amplitude of the pulse, its 
small width, very low dominant frequency (610 Hz) and small width (  = 
0.001 s). The spectrum width is small as well. Typically, a single pulse of 
arbitrary shape has continuous spectrum within the frequency interval in 
which the period stays long as compared to the pulse length. At increasing 
frequency, when the period  becomes comparable with the pulse length ,
function S (spectrum) starts to decrease. As to the spectrum width, accord-
ing to Mandelshtam (1950), Charkievich (1953), and Nicolis (1986), the 
bell-shaped pulse exhibits a number of remarkable features. Out of all 
pulses of random shape, the maximum energy is concentrated in the bell-
shaped pulse. Its spectrum width is minimal, i.e. the wave is coherent. In 
other words, high energy is concentrated in such a pulse in short time in-
terval. Then, at points R2–R5 we have ordinary elastic oscillations with 
wide spectra. R1 is like a transitional point, and the distance R0–R1 can be 
called the zone of the pulse existence (action) with all the consequences. 

The open fault model C consists of three blocks subject to lateral pres-
sure 2.  The medium block  makes shear movements  under  vertical pres- 
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Fig. 17.3  The barrier model B: pulse shapes and their spectra  

sure 1. The objective of the experiment was to thoroughly study physics 
and “kinematics” of a shear movement. The laser vibrometer recorded os-
cillations (both velocity and displacement) directly on the contact surface 
of the “fault”, point 1 (see Fig. 17.1). 

At point 2 we recorded the total movement of the block relative to the 
support surface. Shapes of pulses recorded at point 1 (contact surface of 
the fault wall), and at point 2 (the total displacement of the block) are pre-
sented in Fig. 17.4. The shape of pulses approaches the bell-type one. 
Pulse width amounts to  = 0.01 s. Thus, the shear movement generates a 
pulse, and vice versa, a bell-shaped pulse generates shear movement. Ac-
cording to Mogi (1985), localization of deformation occurs at fault’s walls 
before shear movement. This local deformation was registered by Mogi 
(1985) by strain gage; however, the kinematics of the movement itself 
could not be registered for technical reasons. 

Upon combining the results of Mogi and the author’s own experiments, 
we can propose the bend-rotation wave (BRW) model, or, more specifi-
cally: Bend rotation wave as a mechanism of shear movement, macroseis-

mic effect, and ripping of tectonic fault's seam (rapture mechanism).  Let 
us consider a flexible thread lying on the support surface. A local deforma-
tion occurs due to shear stress (Mogi 1985), see Fig. 17.5. The thread rests 
on a flat support  at  its non-deformed sections.  The deformation  grows 
up to some value, and then the wave starts motion toward the zone of 
lower stresses. After moving over some interval  relative  to the support 
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Fig. 17.4  The open fault model C. The upper track – the total movement of the 
block. The lower track – the pulse recorded on the side of contact surface of the 
fixed block 

Fig. 17.5  Fracturing process and formation of the bend-rotation wave; motion of
an arbitrary point a on fracture plane is shown and a final slip X is indicated 
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surface, it transits to the position a1 being in resting state. Thus, upon en-
tering the wave, each point of the body makes wave incremental move-
ment and the entire body translates over the support surface.  

For better understanding the mass wave transfer as a physical phenome-
non, we present the diagram of discreet wave motion of the linear density. 
Figure 17.6 shows the macroparticle displacements under the influence of 
a wave of increased density (compression) and a wave of decreased den-
sity (tensile). During motion of the wave with increased density, a 
macroparticle velocity vector a coincides with the vector of the wave with 
decreased density, under the influence of which macroparticle ai shifts by 
+ xi. On the other hand, the velocity vector a in the wave with decreased 
density is directed oppositely, and the macroparticle ai shifts by – xi . The 
main feature of this motion is a chain process of small displacements of 
adjacent particles of the body subjected to the wave propagation. The wave 
propagates continuously, and the body’s particle moves in a pulse manner. 
Thus, a moving wave (compression or tension) serves as a mechanical 
transformer of continuous motion into discrete one. Let us show that the de 
formed section of the thread being in the wave moves without friction rela-
tive to the support (Fig. 17.5). 

The wave velocity is  Vy = V sin x , so 2 2(1 cos ) sinx x xV V   at 

x 0, Vx = 0; Vy = V, i.e., when the wave leading edge enters, point 0

has a velocity whose vector is directed perpendicularly upward, and at the 

(b)(a)

Fig. 17.6  Diagram of macroparticle displacements ai under the influence of com-
pression wave (a) and tensile wave (b). 1 – macroparticles, 2 – compressional 
wave in part (a) and tensile wave in part (b) 
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end of the wave trailing edge – perpendicularly downward to the contact 
surface. Such a wave is called the bend-rotation wave, since the non-
deformed thread that enters the wave before the leading edge deforms (un-
dergoes compression or depression), and is carried by the wave to the end 
of the trailing edge where the deformation is removed. 

17.3  Field Observations 

As already mentioned, a number of recordings which have been performed 
in-site, so almost in the focus, is extremely low, especially at walls of 
faults. But there are facilities creating laboratory conditions for earthquake 
registration. Such facilities comprise underground gas storages, which are 
of particular environmental hazard. Figure 17.7 presents layout of an un-
derground gas storage, coordinates of earthquakes, and dates of the strong-
est earthquakes (M = 1.69-1.24 as recorded in the region of P íbram of 
Czech Republic, in 1999–2001). The strongest earthquakes occurred in 
June and January. This fact can be explained as related to the period of gas 
injection (June) and the period of gas extraction (January). The difference 
between maximum and minimum pressures amounts to 9 MPa. The rock 
enclosing the gas storage is under variable load and, accordingly, shear 
stresses. As Revuzhenko (2000) showed, ordered structures are formed in 
homogenous medium under alternate load.  

Fig. 17.7  Layout of the underground gas storage 

DISPLACEMENT 

X [km] 
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These structures move relative to each other under shear stresses, thus 
forming faults. Figure 17.8 shows the seismograms for event   = 1.24  for 
stations L, K, J.  Figure 17.9 shows the use of 3 Hz low pass filter  to iden- 

Fig. 17.8  Records of the seismic event   = 1.24  for three stations 

Fig. 17.9  Waves forms after filtration (3 Hz low pass filter) 
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tify low-frequency component of the seismic signal. As a result, monopo-
lar pulses can be derived. Amplitudes of signals on non-filtered seismo-
grams (2-fold) at stations L and K are rather different, but become equal 
after filtration. Figure 17.10 shows displacements at the same stations. At 
L and K, displacements greatly differ from each other; station L is closer 
to the focus (Fig. 17.7), the distance being 700 m, but the displacement is 3 
times smaller than that at station K. This confirms the conclusions made by 
Li et al. (1994); station K is situated at the fault wall. At station K, accel-
eration reached 0.3g. For stations K and R, rotation of displacement vector 
was found, i.e. vector of sum of two components (N-S, E-W) was chang-
ing its direction from event to event. As a result, residual displacement ob-
tained rotational nature, and “rotational” dislocation occurred. 

17.4  Conclusions

Basing on the model of bend-rotation wave (BRW), it seems possible to 
interpret non-linear and macroseismic effects as the effect of  BRW on the 
medium. The BRW parameters (amplitude A, pulse width , velocity V) are 

Fig. 17.10  Recorded displacements (after integration, seismic event  = 1.24) for
the three components at the three stations 

displacement (µm) 

time (s)
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determined by local deformation. As experiments have shown, when the 
lateral pressure increases (Fig. 17.1, open fault model C), the pulse width 
increases too,  from   = 0.001 to 0.02 s.  For  the gas storage  (K station, 
E–W component, Fig. 17.9),  reaches 0.6 s. Due to long period, the BRW 
can create modulation. At passing of “rotation wave”, modulation involves 
n oscillators. Under «BRW» action, oscillators in the wave are synchro-
nized, and their total energy is proportional to n2 (Nicolis 1986). The oscil-
lation period grows too. Therefore, the released energy and the BRW pulse 
width are directly proportional. BRW is a 3-dimensional wave, and build-
ings, boulders, etc are affected with impact, related to a rotating vector 
(Fig. 17.5). However, the BRW amplitude is spatially limited, and, as a 
consequence, macroseismic effects are observed in a limited zone along 
the tectonic fault. 
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18.1 Introduction 

The problem related to crustal fault dynamics consists of identification of 
the processes and parameters that are responsible for sliding regimes in the 
faults. The concepts according to which the transition from creep to stick-
slip along the crustal fault, in most cases accompanied by a tectonic earth-
quake, is caused by geometrical inhomogeneities of fault surfaces, a de-
crease of friction in some segments of the fault and by anomalies of the 
pore pressure, are considered to be conventional (Ben-Zion and Rice 
1995). The deformational waves propagating along the faults and excited 
by elastic-rebound in the foci of the past earthquakes may also initiate 
seismic slips in crustal faults (Ulomov 1993). 

The deformational waves detected from changes in the geophysical 
fields (Nikolaevskiy 1998) are accompanied by migration of seismic activ-
ity in a number of cases (Ulomov 1993). The existence of these waves is 
known to be confirmed in the course of experimental studies of slow de-
formation processes in the crust (Nevskiy 1994). A lot of direct and indi-
rect evidences (Nikolaevskiy 1996) show that slow tectonic deformations 
are propagating as solitary waves – solitons. For this reason, theoretical 
studies (Garagash 1996, Nikolaevskiy 1996, Nikolaevskiy and Ramazanov 
1986) aimed at developing mathematical models that lead to soliton-like 
solutions and, at the same time, reflect the main features of wave deforma-
tion process occurring in the crust are of topical interest. 

In this chapter it is shown that local deformation effects at the meso-
scopic level related to decrease of friction at the contacts of inhomogene-
ous fault surfaces may cause solitary waves of activation whose evolution 
leads to macroscopic processes as seismic slips in crustal faults. The model 
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suggested describes the dynamics of relative displacements of fault sur-
faces including retarding and accumulation of energy necessary to provide 
a stick-slip process. As it is well known, the stick-slip is a necessary element 
to provide seismic events inside the earthquake focus. Analysis is made of 
asperity and friction effects in the fault on the evolution of velocity of 
waves of activation and also the amplitude and frequency of periodical 
load on fault dynamics. A relative role of different processes in the initia-
tion of seismic slip is investigated.  

18.2 Observational Evidence 

The concept of the deformational (tectonic) waves generated in the Earth is 
based on the results of the study of spatio-temporal density distribution and 
processes of crustal deformation. The results of observation of the oriented 
earthquake migration of direct and indirect in-situ measurements of defor-
mational waves or of their indications are most comprehensively shown 
and analyzed by Mogi (1968), Nersesov et al. (1990), Barabanov et al. 
(1994), Kasahara (1979), and Nikolaevskiy ( 1998). 

Quantitatively, the deformational wave processes are displayed in the 
rate of the earthquake foci migration and the presence of geophysical   
field anomalies close to the faults. In conventional approach, the most 
characteristic rates of these processes and the corresponding waves can be 
divided into two groups (two scales of manifestation): global tectonic 
waves and deformational waves generated in the faults. 

The global tectonic waves with velocities of 10-100 km/year are ob-
served in the following phenomena: the oriented migration of large earth-
quakes (Stein et al. 1997); seismic velocity anomalies (temporal varia-
tions of seismic wave velocities, travel-times and time discrepancies) 
(Nevskiy et al. 1987); changes of the underground water table along the 
fault zone due to waves (Barabanov et al. 1994); deformographic meas-
urements (Ishii et al. 1979); cyclic migration of aseismic gaps in the 
Earth’s mantle (Nikolaevskiy 1998); oscillation motions of seismic reflec-
tors (Bazavluk and Yudakhin 1993, Bormotov and Bykov 1999). Move-
ment of slow tectonic deformations occurs along the deep faults in a nar-
row “corridor” ( 100 km) (Nevskiy et al. 1989). 

Rapid migration of seismic activity occurring in vast areas prior to or 
after large earthquakes testifies indirectly about the existence of the      
deformational waves with velocities of 1-10 km/day generated in the 
faults (Hill et al. 1995, Barabanov et al. 1994). The seismic activity can be 
detected from the observable radon, electrokinetic and hydrogeodynamic 
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signals (Nikolaevskiy 1998), and exciting of the stress-and-strain waves  
at the explosion and vibration slips in initiation in the fault zone (Ruzhich 
et al. 1999). Geophysical signals have a shape of solitary waves and are 
propagating along the crustal faults (Nikolaevskiy 1998). 

18.3 Mathematical Model of Deformation Process 

The model includes two most important mechanisms providing interaction 
of the fault surfaces: friction, simulated by introduction of gouge viscosity 
in the fault, and geometrical inhomogeneities which are characterized by 
ratio of scales of asperity and sinusoidal parts of the internal fault surfaces, 
and external load. Thus, we now postulate the following equation: 

2 2

2 2
sin sin ,

U U U
U L U  (18.1) 

where 2 ,U u a ,x ap 0 ,t p 2 2 4 ,p a D mgh 2
0 ,D m

, ,a d gh H L U is the displacement of blocks located    

periodically along the fault length;  is the distance between the block cen-
ters; D is the tangential contact stiffness; m is the mass of the block; h is 
the distance between the block centers of the adjacent block layers; g is the 
gravity acceleration;  is the viscosity of the layer between the blocks; d is 
the diameter of the circular contact of the blocks;  is the layer thickness; 

 is the density of the block material;  and  are the parameters of friction 
and inhomogeneity, respectively; H, L are the height of asperities and the 
distance between them normalized to ap/ ( ) is the Dirac delta-function 
and  is the function which reflects the external load at the contact of 
the fault surfaces. Figure 18.1 shows schematic presentation of the fault 
surfaces. 

The left-hand side of the generalized sine-Gordon equation (18.1) corre-
sponds to the wave operator applied to the relative displacement of the 
fault surfaces. In the right-hand side of Eq. (18.1) the first term characterizes 
the “restoring” force, originating due to shear along the sinusoidal-
homogeneous surfaces of the fault; the second one – the friction force, 
which is proportional to the velocity relative to displacement; the third 
term corresponds to corrections for inhomogeneities which are distributed 
at a distance apL/ ; the fourth one describes the initiation external load on 
the fault. 



244   V.G. Bykov  

Fig. 18.1  Schematic diagram showing a change in contact between fault surfaces (a) 
and a change in the geometry of blocks contact (b-d):  2r, r is the radius of 
blocks  

The expression for parameter  is obtained proceeding from the con-
cepts of stick-slip (Dieterich 1987, Sleep 1995) and theory of dimension. 
Friction parameter  is mainly dependent on the average sizes of the 
blocks on the fault surface and also on the viscosity of the gouge, and as-
sumes the values 0.01-1.0. 

Inhomogeneity coefficient  is equal to ratio of height H of the asperity 
to length L of the sector of the sinusoidal-inhomogeneous surface and 
characterizes regular point asperities of the relief of the fault surfaces. This 
element of the model reflects the fractal structure of the fault surfaces in 
the first approximation. Variation of the inhomogeneity coefficient  is 
possible in the range from 0 to 1.0. The zero value means a complete ab-
sence of “cohesions” distinguished at the sinusoidal surface. The inho-
mogeneity coefficient value equal to 1.0 means coincidence of the height 
of the point asperity with the amplitude of the sinusoid. 

Note that the effect of block rotation suggests an explanation for the si-
nusoidal character of the “restoring” forces (Nikolaevskiy 1996). 

Integration of Eq. (18.1) has been made by the McLaughlin–Scott ap-
proximation method (Solerno et al. 1983), and numerical realization has 
been performed by the Runge-Kutta-Felberg scheme (Forsythe et al. 
1977). The parameters of the medium were as follows: = 3x103 kg/m3,
D = 104-106 N/m,  g = 9.8 m/s2, r = 0.1-1.0 m,  a = h = 2r. Computation 
has been carried out with variation of the parameters of friction  and    
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inhomogeneity , which characterize the state of the contact at the fault, 
and also the value of , that determines the external load.

18.4 Solitary Wave of Fault Activation 

Profile of velocity v of the particles (Fig. 18.2) on the fault surfaces has a 
shape of the soliton v(x,t) = vmaxsech(x–V t), moving along the fault with a 
velocity V . Variation of friction parameter  in the sine-Gordon equation 
clears up significantly the reasons for variations of velocity V  of the soli-
tary wave in the crustal fault, as well as the consequences related to this 
variation. Value of velocity v of a particle on the fault surface is dependent 
on the state of the contact, that is, the value of the parameter . It follows 
from the computations that in the case of low V , the value of v is insig-
nificant and the stable sliding (creep) occurs. For the relatively high values 
of velocity V max (of the order of 1-10 m/s) we obtain the soliton profile   
v ~ 0.1-1 m/s and the stepwise profile (kink) u(x, t) (see Fig. 18.2). A simi-
lar relationship for dynamic characteristics but without time shift of the 
maxima of V  and v can be obtained by analytical solution of the canonic 
sine-Gordon equation for a solitary wave in homogeneous fault without 
friction.

Fig. 18.2  Evolution of velocity V  of wave of activation, displacement u and slip 
velocity v in the fault 

Time interval between the peak values of V  and v depends on the pa-
rameters  and . The moment of time when V  attains the maximum value 
V max always occurs earlier as compared to the calculated time of vmax.  

Time lags between the transmitting of the solitary wave with the maximum 
velocity value and displacement umax are stipulated by friction and inho-
mogeneities in the fault. The possibility of attaining high values of the 
relative slip gives grounds for calling the wave v(V ) the solitary wave of 
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fault activation. The velocity maximum for the wave of activation, depend-
ing on the values of the chosen contact stiffness D in the faults does not 
exceed 10-100 m/s, that differs noticeably from velocities for the seismic 
waves, so from those for the deformational ones. 

18.5 Evolution of Waves of Fault Activation 

Velocity amplitude for the wave of activation increases to the value of 
about  0.9-1.8 m/s with subsequent transition to the stationary regime with 
the values V st  10-4-10-2 m/s (Fig. 18.3), corresponding to the velocities 
of the deformational waves at inhomogeneity coefficient  = 0.1-0.3 and a 
decrease of friction parameter  to 0.04. The creep regime is observed at      
t = 11.0-14.0 s. In the case of   > 0.3, stability is acquired far later and V st

may have the values of the order of 10-6-10-13 m/s. The value of V st de-
creases with increase of , which is a result of the additional friction: the 
asperities make impediments at sliding more often, and retarding of the 
wave of activation is enhanced (the sliding is damped). Also, a transition 
of the system to the “fault is locked” regime is possible when V  0.

Fig. 18.3  Evolution of velocity V  of wave of activation at different values of     
inhomogeneity coefficient   and = 0.04 

The greater the value of parameter  (“cohesion” of the fault surfaces 
when other parameters are constant), the greater the velocity maximum of 
the wave of activation and the quicker the process of acquiring the station-
ary regime of activation. Thus, at the beginning of the stable sliding regime 
the inhomogeneities contribute to accumulation of greater elastic energy 
which is determined in dimensionless form by the component (1+ )sinU in 
Eq. (18.1), and, vice versa, then they contribute to the fastest damping of 
the sliding. A long period of time is required to obtain V max at an increase 
of  and decrease of .
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Computation of fault dynamics shows that instability of sliding may be 
caused by a sharp decrease of the friction parameter which leads to an in-
crease in the velocity of the wave of activation, and, consequently, in the 
slip velocity for the fault surfaces. Change in the sliding regimes depend-
ent on the fault parameters occurs from 10 s (  = 0.04,  = 0.1) to 45 s (  = 
0.01,  = 0.1). 

18.6 Effect of Periodical Change of Friction in the Fault 

Evolution of velocity V  of the wave of activation in the fault depends on 
the friction parameter  This parameter has a periodically changing com-
ponent 1 that corresponds to the regime of the cyclic perturbation contri-
bution in some segments of the fault. Then the parameter  in Eq. (18.1) is 
transformed in  = 0 + 1 sin(  / ), where 0 , 1 ,  are some constants. 

Results of computation of Eq. (18.1) at = 0,  = 102, for varying 
0 , 1 , and  show (see Fig. 18.4) that the maximum of velocity V  is at-

tained at t = 2-8 s from the perturbation moment, the time interval within 
which V  corresponds to a slip 1-5 s. In fact, in real faults the sliding time 
is a value of the order of seconds at large earthquakes (Carlson 1991).  

Fig. 18.4  Evolution of velocity V  of wave of activation for different parameters 
of the state of contact for curves: (1) 0 = 0.02, 1 = 0.09,  = 0.9; (2) 0 = 0.09, 

1 = 0.09,  = 0.9;  (3) 0 = 0.01, 1 = 0.01,  = 0.9;  (4) 0 = 0.01, 1 = 0.01, 
 = 0.1; (5) 0 = 0.02, 1 = 0,  = 0.9 

If the inhomogeneity parameter is constant,  = 0.9, the maximum value 
of V  is registered at the same time moment, but curves 1, 2 and 3 differ in  
amplitude: the minimum value of V  corresponds to the maximum friction 
parameter 0 (Fig. 18.4). Curves 3 and 4, computed at different  and equal 
to 0, 1, at the time moment t = 30 s are merging and become indiscernible 
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further. It also follows from Fig. 18.4 that with increasing  the maximum 
value of V  is attained much earlier. At small 0 and 1 (curves 3 and 4) 
the velocity V  is attenuating gradually to zero. At the higher values of 0

and 1 (curves 1 and 2), V  acquires the periodical regime with velocities 
close to those of quick deformational waves reaching 1-10 km/day        
(Nikolaevskiy 1998). Evolution of V  is represented by curve 5 without pe-
riodically changing additional friction ( 1 = 0). This computation corre-
sponds to a single generation of the solitary wave with transition of the 
system in the “fault is locked” regime. 

Figure 18.4 shows that periodical generation of waves of activation with 
the velocities commensurable with those for the deformational waves is 
possible only under a certain state of the contacts of fault surfaces, that is, 
a combination of the friction and inhomogeneity parameters. 

From this it follows that Eq. (18.1) can be applied for modelling of the 
seismic process at the appropriate choice of the corresponding parameters. 
Similar cyclic changes in the slip velocity and displacement in the fault 
zone were obtained due to periodical variations of stress (Dieterich 1987) 
and pore pressure (Sleep 1995) in the models of unstable sliding. 

The increase in amplitude 1 of the periodical friction component leads 
to a decrease in the maximum velocity value v of the seismic slip in the 
fault if other parameters of the model are constant. On the contrary, the in-
crease of inhomogeneity parameter , which characterizes “cohesion” of 
the fault surfaces, causes the amplitude increase of velocity vmax of the 
seismic slip. 

18.7 Effect of Periodical Change of External Load 

Seismoactive faults undergo permanent external initiation effects of stress 
changes due to Earth tides, deformational waves from earthquakes or hy-
drological factors. Being active, these faults can generate oscillations, thus 
affecting other faults. Initiation of seismic slip may start because of inho-
mogeneity of physical properties along the faults due to constant external 
load.

We will simulate initiation of external load on the fault by including in 
Eq. (18.1) another periodical function = 0 sin( ), where 0 and 
are the dimensionless amplitude and frequency of the external load, the 
friction parameter  being constant. The instable slip being not affected by 
the external load, following (Sobolev et al. 1995), will be further called a 
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natural slip, while that initiated by the additional periodical external load – 
the initiated one. 

The profile of velocity V  of a solitary wave (curves 2 and 3) propagat-
ing along the fault differs sharply from the profile of velocity in the case 
with the natural slip (curve 1) (Fig. 18.5a). Within the initial part of veloc-
ity curves V  the shape of the curves coincides for all the cases, but it has 
significant distinctions after the velocity maximum is attained. At higher 
frequencies (curve 3), V  represents a periodical curve simulated by a de-
scending part of the velocity curve V , which is computed in the absence 
of the source of external load (curve 1). The low-frequency ( = 0.1) ex-
ternal load causes smoother changes of V , and the internal friction in the 
fault is not capable of compensating to the full extent the influence of the 
external load (Fig. 18.5a). 

It follows from Fig. 18.5b that the first initiated slip occurs earlier at any 
frequency of the external load as compared to the natural one (curve 1). 
For this version of the computation, the time interval  between V max

and vmax is larger for the natural slip (curve 1) than for the initiated one 
(curves 2 and 3). This time, the interval increases with increasing fre-
quency of the external load. The maximum velocity values of the wave of 
activation V , as well as those of slip velocity vmax , correspond to the 
minimum frequency of the external sinusoidal load ( = 0.1). 

The time delay of the initiated dynamic slip decreases with increasing 
amplitude of the external load (Fig. 18.6). This agrees well with laboratory 

Fig. 18.5  Evolution of velocity of wave of activation V  (a), and slip velocity v
(b) at natural (1) and initiated (2, 3) slips. Parameters:  = 0.04, = 0.9; 0 = 0 and   

 = 0 for curve 1; 0 = 0.01 and  = 0.1 for curve 2, 0 = 0.01 and  = 1.0 for 
curve 3 
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Fig. 18.6  Change of velocity of initiated slip v at constant frequency of external 
load  = 1.0 and different amplitudes of load 0. The dot-dash line – natural slip 
velocity profile. Parameters:  = 0.04,  = 0.9 

(Sobolev et al. 1991) and  field  (Ruzhich et al. 1999)  experiments. A 
number of slips occur instead of one slippage, and the velocity amplitude 
of the first slip is the maximum one. The slip velocity amplitudes and the 
time intervals between them are not equal. The values of velocity maxima 
coincide for almost all these seismic slips. The slip velocities are weakly 
dependent on the amplitude 0 of the external load (Figs. 18.6 and 18.7). 
The number of slips is proportional to the amplitude of the load. The num-
ber of slips  increases with  an increase  in the  frequency of  the constant 
sinusoidal  load,  while  the  time  interval  between the  successive  slips 
decreases (Fig. 18.6).  This also coincides with the  experiments (Ruzhich 
et al. 1999, Sobolev et al. 1995). 

Fig. 18.7  Dependence of slip velocity maximum vmax  in the fault on the frequency 
 ( 0 = 0.1) and the amplitude 0  (  = 10) of the external load. Parameters:        
 = 0.04,  = 0.9 
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A decrease in the frequency of the external load  leads to a significant 
amplitude increase in the slip velocity (Fig. 18.7). This is of particular im-
portance if we take into consideration that the process is starting to be ex-
tremely sensitive to the external load at the final stage of earthquake prepa-
ration. Thus, we can consider the external load on the fault as an 
amplification of the wave of activation by the deformational waves with 
different frequency, radiated by an impact, explosion or earthquake. 

It follows from the computed characteristics of the slips with different 
physical and mechanical parameters of the fault that the intensity and am-
plitude of the velocity of the initiated slip depend on the state of contacts 
of fault surfaces. 

18.8 Conclusions 

1. The generalized sine-Gordon equation can be applied for modeling 
peculiarities of fault dynamics. In fact, contribution of perturbation in the 
sine-Gordon equation in the form of friction and inhomogeneities leads to 
the solutions of the solitary-like waves that can be interpreted as the waves 
of fault activation. 

2. The value of velocity for these waves regulates the sliding regime in 
the fault. The value of vmax of the wave of activation increases with in-
creasing velocity V  of the wave. The slip velocity increases sharply for 
the wave velocity V  of 1 m/s and higher, and the values of displacement u
are compatible with the displacements of the fault surfaces that are ob-
served for earthquakes. 

3. At definite values of friction and inhomogeneity parameters,  and ,
the  solitary  wave  “acquires”  the  stationary regime  with  the  values  of 
V ~ 10-4-10-1 m/s or 10 km per day that correspond to the deformational 
waves. Earthquakes may be a source for deformational waves. These 
waves, migrating along the fault, may trigger the subsequent seismic 
events.

4. Periodical  changes in  the  friction  parameter  in  the  generalized 
sine-Gordon equation (18.1), which models, for example, the weakening of 
the fault due to cyclic fluid flow, lead to a periodical generation of waves 
with the velocities characteristic of the observed deformational waves. 

5. External periodical loading is the effective mechanism of the initia-
tion of unstable dynamic slip. The external high-frequency load is probable 
to initiate the fault activation, but it does not provide periodical generation 
of the deformational waves and manifestation of seismic slips, as in the 
case with the cyclically changing friction inside the fault. 



252   V.G. Bykov  

6. It is just the frequency of external loading that influences mainly the 
intensity of fault initiation, that is, the value of vmax and the time interval 
between them. The amplitude increase of the sinusoidal external loading 
leads to a reduction in the time delay of the initiated stick-slip.

Acknowledgment.   This research was supported by the Russian Basic 
Research Foundation (Grant 04-05-97001). 

References 

Barabanov VL, Grinevskiy AO, Belikov VM, Ishankuliev GA (1994) Migration 
of the crustal earthquakes. In: Nikolaev AV (ed) Dynamic processes in the 
geophysical medium. Nauka, Moscow, pp 149-167 (in Russian) 

Bazavluk TA, Yudakhin FN (1993) Deformation waves in earth crust of Tien-Shan 
on seismological data. Dokl Akad Nauk 329: 565-570 (in Russian) 

Ben-Zion Y, Rice JR (1995) Slip patterns and earthquake populations along dif-
ferent classes of faults in elastic solids. J Geophys Res 100: 12,959-12,983  

Bormotov VA, Bykov VG (1999) Seismological monitoring of the deformation 
process. Geol Pacific Ocean 18: 17-25  

Carlson JM (1991) Time intervals between characteristic earthquakes and correla-
tions with smaller events: An analysis based on a mechanical model of a fault. 
J Geophys Res 96: 4255-4267 

Dieterich JH (1987) Nucleation and triggering of earthquake slip: effect of peri-
odic stresses. Tectonophysics 144: 127-139 

Forsythe GE, Malcolm MA, Moler CB (1977) Computer methods for mathemati-
cal computations. Prentice Hall, Englewood Cliffs, New York 

Garagash IA (1996) Microdeformation of the prestress discrete geophysical me-
dia. Dokl Akad Nauk 347: 95-98 (in Russian) 

Hill DP, Johnston MJS, Langbein JO, Bilham R (1995) Response of Long Valley 
caldera to the Mw = 7.3 Landers, California, earthquake. J Geophys Res 100:
12,985-13,005 

Ishii H, Takagi A, Suzuki S (1979) Characteristic movement of crustal deforma-
tion in Northeast Honshu, Japan. Gerlands Beitr Geophys 88: 163-169  

Kasahara K (1979) Migration of crustal deformation. Tectonophysics 53: 329-341  
Mogi K (1968) Migration of seismic activity. Bull Earth Res Inst Tokyo Univ 46:

53-74  
Nersesov IL, Lukk AA, Zhuravlev VI, Galaganov ON (1990) On propagation of 

strain waves in the crust of South Middle Asia. Fizika Zemli 5: 102-112 (in 
Russian)

Nevskiy MV (1994) Extra long period waves of deformations on the lithosphere 
plate boundaries. In: Nikolaev AV (ed) Dynamic processes in the geophysical 
medium. Nauka, Moscow, pp 40-55 (in Russian) 



18 Solitary Waves in Crustal Faults and their Application to Earthquakes 253 

Nevskiy MV, Morozova LA, Zhurba MN (1987) The effect of propagation of the 
long-period strain perturbations. Dokl Akad Nauk 296: 1090-1093 (in Rus-
sian)

Nevskiy MV, Morozova LA, Fuis GS (1989) Long-period strain waves. In: Sa-
dovskiy MA (ed) Discrete properties of the geophysical medium. Nauka, 
Moscow, pp 18-33 (in Russian) 

Nikolaevskiy VN (1996) Geomechanics and Fluidodynamics: with Applications to 
Reservoir Engineering. Kluwer Acad Publish, Dordrecht Boston London 

Nikolaevskiy VN (1998) Tectonic stress migration as nonlinear wave process 
along earth crust faults. In: Adachi T, Oka F, Yashima A (eds) Proc of the 
Fourth Intern. Workshop on Localization and Bifurcation Theory for Soils and 
Rocks, Gifu, Japan, 28 Sept. - 2 Oct. 1997. AA Balkema, Rotterdam, pp 137-142 

Nikolaevskiy VN, Ramazanov TK (1986) Generation and propagation of tectonic 
waves along deep faults. Fizika Zemli 10: 3-13 (in Russian) 

Ruzhich VV, Truskov VA, Chernykh EN, Smekalin OP (1999) Recent move-
ments in the fault zones of Pribaikalia and mechanisms of their initiation. Geo 
Geofiz 40: 360-372 (in Russian) 

Sleep N (1995) Ductile creep, compaction, and rate and state dependent friction 
within major fault zones.  J Geophys Res 100: 13,065-13,080  

Sobolev GA, Koltsov AV, Andreev VO (1991) Effect of oscillation triggering in  
modelling of earthquake. Dokl Akad Nauk SSSR 319: 337-341(in Russian) 

Sobolev GA, Ponomarev AV, Koltsov AV (1995) Excitation of vibrations in a 
model of seismic source. Fizika Zemli 12: 72-78 (in Russian) 

Solerno M, Soerensen MP, Skovgaard O, Christiansen PL (1983) Perturbation 
theories for sine – Gordone soliton dynamics. Wave Motion 5: 49-58  

Stein RS, Barka AA, Dieterich JH (1997) Progressive failure on the North Anato-
lian fault since 1939 by earthquake stress triggering. Geophys J Int 128: 594-
604  

Ulomov VI (1993) Seismogeodynamic activization waves and the long-term pre-
diction of earthquakes. Fizika Zemli 4: 43-53 (in Russian) 



19  Seismic Rotation Waves: Spin and Twist

      Solitons 

Eugeniusz Majewski 

Institute of Geophysics, Polish Academy of Sciences 
ul. Ksi cia Janusza 64, 01-452 Warszawa, Poland 
e-mail: emaj@igf.edu.pl 

19.1  Introduction 

This chapter describes seismic rotation waves that can be excited by rota-
tional motions in earthquake sources. The existence of rotational motions 
excited by earthquakes was proposed by Teisseyre (1973). He considered 
theoretical aspects of this phenomenon in the framework of the mechanics 
of a micromorphic continuum. The micromorphic continuum allows for 
rotational motions of each microvolume of a continuum, so the behaviour 
of rocks and granular media during an earthquake can be modelled by this 
theory.  

Bouchon and Aki (1982) recorded simulated rotational ground motions 
in the near-source region. Takeo and Ito (1997) applied the Kondo geomet-
rical theory of defects and derived a general expression for rotational mo-
tions of seismic waves as a function of parameters of source defects. The 
ground rotational motions were observed and recorded by Nigbor (1994), 
Spudich et al. (1995), Stedman et al. (1995), McLeod et al. (1998), Spill-
man et al. (1998), Takeo (1998), and Igel et al. (2005). The measurements 
carried out by Takeo (1998) were recorded in the near-source region of 
earthquakes. The measurements by Spillman et al. (1998) were carried out 
far from an earthquake source (200 km and more). Trifunac and To-
dorovska (2001) estimated the rotational component of seismic waves 
from linear translations. It is noteworthy that other tectonic, volcanic, min-
ing, and land sliding events can be a source of rotational motions as well. 
Rotational motions in the earthquake source can excite seismic rotation 
waves. The seismic rotation waves were recorded by Teisseyre et al. 
(2003).  

Rotational effects occurring on the ground surface can be caused by the 
propagation of seismic rotation waves. These waves may rotate buildings, 
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towers, memorials, tombstones, bridges, and other objects situated on the 
Earth’s surface. There is a great deal of observational evidence of this kind 
of seismic activity on the Earth’s surface. Rotational waves are very dan-
gerous for tall buildings (Zembaty and Boffi 1994). These buildings are 
very sensitive to angular momentum carried by rotation waves. They are 
designed according to special building codes that take into account seismic 
rotational motions. Moreover, incident seismic rotation waves interact with 
the geological structures (e.g., granular medium) and may lead to their sof-
tening, degradation, damage or fracture. Geological media with rotational 
degrees of freedom (e.g., the so-called “liquid sands”) are extremely sensi-
tive to any rotational motions or vibrations.  

The aim of this chapter is to investigate the seismic rotation waves. We 
are particularly interested in seismic rotation waves that have a form of 
solitons. Thus, we have to consider nonlinear waves. The wave nonlinear-
ity introduces a new possibility that the rotation wave speed may depend 
on the magnitude of a rotation vector. In such a case, the wave width and 
amplitude are modulated during the process of propagation (Hanyga 
1986). Its profile changes as a function of the magnitude of a rotation vec-
tor. We will show that seismic rotation waves may take a form of solitary 
waves. The solitary waves or solitons are self-trapped packets of energy 
that propagate without loss of energy and momentum. The solitary wave is 
a result of the balance of nonlinearity (due to finite deformations and elas-
tic features of the medium) and dispersion (due to the microstructure of the 
medium).  

19.2  Modelling the Rotational Motions Excited in  
         Earthquake Sources 

We consider here a simple model of an earthquake source composed of 
two tectonic plates and a large, rounded fragment of rock (shaped as a cyl-
inder) between them. The tectonic plate A moves from right to left, while 
the tectonic plate B moves from left to right. At the same time, the large, 
rounded fragment of rock rotates counterclockwise. The rotation of the 
largest fragment of rock is conveyed to other, smaller rock fragments that 
rotate as well. Thus, in the earthquake source there are many rotating 
fragments of rocks that are the sources of seismic rotation waves. Figure 
19.1 shows the schematic picture of the mechanism that excites rotational 
motions in the earthquake source. One can infer spin motions of the solid 
cylinder and imagine a situation in which both tectonic plates move in op-
posite directions, oscillating along the fault at the same time. During such 
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a process, the tectonic plates vibrate in opposite directions and the cylinder 
is in a twist motion. We can combine these two simple motions together 
and obtain a resulting motion of the cylinder with two components: twist 
and spin motions.  

Fig. 19.1  A simple model of rotational motions excited in the earthquake source. 
Due to the motion of tectonic plates A and B in opposite directions during an 
earthquake, the largest, round fragment of rock rotates counterclockwise. It also 
conveys its rotational motion to other, smaller fragments of rocks. As a result, 
many fragments of rock rotate and become sources of seismic rotation waves 

19.3  Seismic Rotation Waves: PR and SR Waves 

The rotational motions generated in the earthquake source can excite seis-
mic rotation waves that propagate to the Earth’s surface. We distinguish 
two kinds of seismic rotation waves: (i) longitudinal rotation waves, i.e., 
PR waves, and (ii) shear rotation waves, i.e., SR waves. The PR wave has 
a rotation vector parallel to the direction of the wave propagation. In 
turn, the SR wave has a rotation vector perpendicular to the direction of 
the wave propagation. These seismic rotation waves are illustrated in 
Fig. 19.2. It should be added that when one makes measurements of the 
PR waves on the Earth’s surface, it is easy to see the intimate relations 
between PR waves and SH waves since both waves involve rock particles 
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vibrating in the same plane. Similar intimate relations can be seen between 
the SR waves and SV waves measured on the Earth’s surface. 

Fig. 19.2  Illustration of the seismic rotation waves excited in the earthquake 
source. (a) The seismic PR-wave. Here the direction of the rotation vector PR

is parallel to the direction of wave propagation PR. The rotations take place in  
the plane perpendicular to the direction of wave propagation. (b) The seismic 
SR-wave. Here the rotation vector SR is perpendicular to the direction of wave 
propagation SR. The rotations take place in the plane parallel to the direction of 
wave propagation 

We should also mention another important classification of rotation 
waves. From the point of view of rotational symmetry, the rotation waves 
can be divided in two groups: spin waves, and twist waves.  

19.4  The Slow Tectonic Rotation Waves

Seismic rotation waves propagate faster in solid rocks and much slower in 
fractured media along tectonic faults. Thus, in solid rocks far away from 
earthquake faults the seismic rotation waves propagate with velocities 
roughly comparable with velocities of other seismic waves propagating in 
the Earth’s interior. The so-called “slow” seismic rotation waves propagate 
in fractured rock media along earthquake faults with a velocity of about 
250-300 km/year (Nikolaevskiy 1996, 1998). They are excited by past 
earthquakes and can trigger new earthquakes on the fault (cf., Chap. 17 by 
Aksenov and Chap. 18 by Bykov). Thus, the “slow” seismic rotation 
waves (called also “deformational waves”) have the form of solitons and 
can be viewed as a mechanism triggering earthquakes on the faults. Such a 
slow rotation soliton is usually accompanied by a transverse wave. 
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19.5  Hamilton’s Principle 

The “action” S is defined by a momentum multiplied by a distance minus 
an energy multiplied by time 

,S E tp x (19.1)

where p is the momentum, x is the distance vector, E is an energy and t is 
time. However, we can also define the “action” S as the volume integral of 
the kinetic energy density K, minus the potential strain energy density P,
minus the potential of external volume forces B, plus the surface integral 

of surface forces W and Z acting on displacements u and on rotations ˆ ,
respectively, and the whole expression integrated over the time interval 
[t1, t2]

2

1

ˆd d d ,
t

t V V

S K P B V Wu Z A t (19.2)

where

,K P B L (19.3)

and L is the volume density of the Lagrange function. 
Bearing in mind that the kinetic and potential energies, as well as other 

variables are time-dependent, for each different possible path of integration 
one gets a different result for the “action”. Our aim is to find such a path in 
space for which the result is the smallest number. Thus, we seek the least 
action. Hamilton’s Principle can be viewed as a Principle of Least Action 
on intuitive grounds. We assume that the earthquake processes in the 
source follow Hamilton’s Principle. Starting from this Principle, we shall 
derive fundamental equations for seismic rotation waves. Before we pro-
ceed, we have to formulate basic constitutive equations for the micropolar 
elastic rock medium that can describe rotations. 

19.6  A Rock Medium Modelled as a Nonlinear Micropolar 
         Elastic Continuum 

In order to describe seismic rotation solitons, we have to consider a 
nonlinear rock medium with rotational degrees of freedom, nonlinear de-
formations, and nonlinear seismic waves. Thus, we have to take into con-
sideration both, the physical and geometrical sources of nonlinearity. First 
of all, we have to assume finite deformations. In the formulae for measures 
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of strains, relative distortions and microdistortions as functions of dis-
placements, we have to retain the nonlinear terms 
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where Eij is the Cauchy-Green tensor of elastic strain, kl is the relative dis-
tortion tensor (Nowacki 1970), ijk is the microdistortion gradient, and ij is 
the rotation tensor (Nowacki 1977, Eringen 1999).  

The kinetic energy density can be expressed as follows

1

2
( ) (u u + ) .K t j (19.5)

The potential strain energy density is 

( ) ,EP t P P (19.6)

where

1

2
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1

2
.kk ll kl lk kl klP (19.8)

From Hamilton’s Principle 

0 ,L A (19.9)

one can obtain a set of fundamental Euler equations. Here A denotes an 
elementary work produced by external forces during a virtual displace-
ment. These equations are the coupled partial differential equations de-
scribing the wave propagation processes. From the variation calculus one 
can obtain (Samsonov 2001, Erofeyev 2003) 
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19.7  The Nonlinear Field Equations 

We consider a micropolar elastic continuum that allows rotational defor-
mations. Rotation waves can propagate in such a medium. Micropolar ef-
fects are important in the excitation and propagation of seismic rotation 
waves. In order to reveal these effects, and the new physical properties de-
scribed beyond and above the seismic P and S waves, here we examine the 
dispersion of plane seismic waves in an isotropic micropolar elastic Earth. 
These considerations may be also helpful for experimental observations to 
determine the micropolar elastic constants for rock media. 

From Hamilton’s Principle in the form of Eq. (19.2), after some calcula-
tions and additional assumptions, one can obtain nonlinear field equations. 
The field equations of a micropolar elastic solid Earth may be expressed in 
the vectorial form 

1( 2 ) ( ) = ,u u u N (19.11)

2( ) 2u j N (19.12)

where  is the Laplacian,  is the gradient operator, u is the displacement 
vector,  is the rotation vector,  and  are Lamé’s constants,  is the 
Mooney constant, ,  and are elastic constants of microrotation,  is the 
material density, j is  the inertia vector for the macrovolume, N1 and N2 are 
the vectors that include nonlinear terms. 

19.8  The Linear Seismic Rotation Waves 

Disregarding the nonlinear terms (N1 = N2 = 0), the field equations (19.11) 
and (19.12) can be decomposed into scalar and vector wave equations by 
introducing scalar potentials (F, R) and vector potentials U,  (Eringen 
1999),  
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= + ,
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where U  0 and  0.
Equations (19.11) and (19.12) are satisfied if  
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Here VP , VS , VPR , u

SRV , l

SRV  are the magnitudes of phase velocities of the 

seismic P, S, PR, upper SR, and lower SR waves, respectively, and  is a 
constant.

We consider here plane harmonic waves, thus we have 

( , , , ) ( , , , ) exp[i ( )] ,F R g h W Z tU k x (19.17)

where k is the wave-vector and  is the angular frequency.  
The above equation allows us to formulate dispersion relations vs. k.

After investigations of the dispersion relations we can conclude that there 
are five different seismic waves propagating with five different phase ve-
locities.

– A longitudinal displacement wave propagates with the phase ve-
locity VP. This will be called the seismic P wave (P).

– A longitudinal rotation wave propagates with the velocity VPR.
This will be called the seismic PR wave (PR).

– A vector wave with phase velocity VS. This will be called the seis-
mic shears wave (S).
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– Two vector waves coupled with S wave that propagate with the 
phase velocities u

SRV  and l

SRV . They will be called the upper and 
lower seismic shear rotation waves (SR), respectively.  

Dispersion relations are sketched in Fig. 19.3. Except of the P wave, all 
waves are dispersive. The asymptotes of PR, SR, and S waves are depicted 
by broken lines. The asymptote of the PR wave is PRV k , the asymptote of 

the S wave is SV k  and the asymptotes of the upper and lower SR waves 

are u

SRV k  and l

SRV k , respectively.  

Fig. 19.3  Dispersion curves of seismic waves near k = 0 in a micropolar elastic 
Earth. P denotes the seismic P wave, S  the seismic S wave, PR  the seismic PR 

wave and SR  the seismic SR wave 

19.9  The Nonlinear Seismic Rotation Waves 

In order to formulate a set of field equations of nonlinear micropolar elas-
ticity, we should specify the nonlinear terms N1 and N2 in (19.11) and 
(19.12). However, they are long and tedious expressions. Due to the space 
limitations, we confine ourselves to the final results. We can solve this 
nonlinear problem for particular cases of wave interactions as a collinear 
propagation of P waves and of PR waves. We can also consider a collinear 
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propagation of P waves and SR waves. In this way, we will display some 
interesting physical phenomena that are lost in the linear theory. As a re-
sult, we can reduce the nonlinear field equations (19.11) and (19.12) to the 
following set of equations for coupled normal waves 

1/ 22
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1 2 3
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where b1, b2, b3, c1, and c2 are constants.  
A similar procedure was developed by Erofeyev (2003) in a context of 

acoustic waves. We can see that the left side of (19.18) contains a nonlin-
ear Schrödinger (NLS) equation and describes a dispersion branch off the 
upper seismic SR wave. In addition, the left side of (19.19) contains the 
Korteveg-de Vries-Burgers (KdVB) equations and describes a dispersion 
branch off the lower seismic SR wave. These two equations have solitary 
solutions. In a similar way, by retaining terms with higher order deriva-
tives, we can obtain the doubly dispersive equation DDE  as a branch of 
the lower SR wave. 

    Now we will pay attention to a collinear propagation of seismic P

waves and PR waves. To this end, we will focus on the paper by Maugin 
and Miled (1986) who studied one-dimensional rotation waves. They 
found solitary waves modelling the motions of ferromagnetic and ferro-
magnetic domain walls. We will outline their work and apply it to seis-
mology. They considered finite elastic deformations and used a Lagran-
gian frame-of-reference. Due to the fact that the transverse components of 
the displacement vector are equal to zero and the axis of rotation is the X
axis, we can write (cf., Eringen 1999) 

X, , , ,x X U t y Y z Z (19.21)
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1 0 0

0 cos sin ,

0 sin cos
kK

(19.22)

where U is the axial displacement and X, t  is the rotation angle about the 
X axis. 

The deformation tensor EKL and Wryness tensor KL are given by 
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We specify constitutive equations in the form 

, ,Kl lL Kl lL

KL LK

T M
C

(19.25)

where  is the free energy. For isotropic solids,  is a function of the in-
variants of EKL and KL. For a second-degree polynomial, it has the form 
(cf. Eringen 1999) 

2 2 2 2
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2 2
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x x

x x

U U
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After some calculations (for details, see: Maugin and Miled 1986, Eringen 
1999) the final equations may be written in nondimensional forms

2 2
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2 2
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U U
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Maugin and Miled (1986) showed that the coupled nonlinear equations 
(19.27) consist of a d’Alembert equation and a double sine-Gordon equa-
tion for . Finally, we have explicit solutions for the seismic PR wave in 
the form of a rotation soliton and for the axial displacement in the form of 
the longitudinal displacement soliton 

14 tan sinh ,PR p (19.29)
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19.10  Dispersion Curves and Rotation Solitons 

Now we collect our results and plot them in Fig. 19.4. One can see disper-
sion curves of different seismic waves and rotation solitons branching off 
the curves corresponding to rotation waves. On the horizontal axis we have 
the wave vector k, and on the vertical axis we have the wave number .
This means that for a critical value of the wavelength/grain size ratio, we 
can expect a branching seismic rotation soliton. 
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The seismic rotation solitons are depicted in Fig. 19.4 in the form of 
broken lines. They branch off dispersion curves of seismic rotation waves. 

Fig. 19.4  Seismic rotation solitons branching off dispersion curves for seismic 
waves in a micropolar Earth. P denotes the seismic P wave, S  the seismic 
S wave, PR  the seismic PR wave, SR  the seismic SR wave  KG – the Klein 
–Gordon rotation soliton, SG – the sine-Gordon rotation soliton both branching 
off the PR wave branch  NLS – Schrödinger’s soliton branching off the upper 
SR wave branch  and KdVB – the Korteveg de Vries Burgers rotation soliton, 
DDE – the DDE rotation soliton both branching off the lower SR-wave branch

19.11  The Seismic Rotation Solitons in the Degenerated  
           Continuum 

19.11.1  The seismic spin and twist solitons described by the  
              DDE equation 

In Chapter 5, a theory of the degenerated asymmetric continuum is devel-
oped, in which the displacement motions vanish, and only rotational mo-
tions are retained. Both the spin motions characterized by antisymmetric 
fields and the bend-twist motions characterized by symmetric fields have 
been considered (cf. Teisseyre 2004). Now we write equations for seismic 
spin and twist rotational waves in the form of the DDE equations
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where the velocities for spin and twist waves are equal 2 *2 /PRV , * is

the rotation rigidity,  is the material density,  is a small parameter, and ai

and bi (i = 1, 2, 3) are constant coefficients. The DDE equation was inves-
tigated by Samsonov (1988). He called it the doubly dispersive equation 
(DDE), describing dispersion and dissipation and having exact solitary so-
lutions. In our case, the seismic spin soliton has the form 

2 2
[ ] [ ] [ ]cosh ( ) ,s s sAm m (19.33)

where 10 2 3 46( ) /A a a a a  and phx V t , and phV  is the phase velocity 

of the wave, [ ]sm  is the parameter to be defined by the substitution of the 

above solution into Eq. (19.32a). 
Correspondingly, the seismic twist soliton has the form 

2 2
( ) ( ) ( )cosh ( ) ,t t tAm m (19.34)

where 10 2 3 46( ) /A b b b b , and ( )tm  is the parameter to be defined by the 

substitution of the above solution into Eq. (19.32b). 

19.11.2  The seismic spin and twist solitons described by the  
              Klein Gordon equation 

Now let us describe the seismic spin and bent-twist waves by using the 
Klein Gordon equation in the form

2 2
[ ] [ ] 3

[ ] [ ]2 2
,s s

s sA B
t x

(19.35)

2 2
( ) ( ) 3

( ) ( )2 2
,t t

t tY
t x

(19.36)

where the variable t was scaled, and  A , B, , and Y are positive constants. 
Upon choosing (x0) = 0, the soliton solutions of these equations are as fol-
lows
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Figure 19.5 illustrates the relationship between the seismic spin and 
twist solitons S(x) and T(x). These curves were obtained as kink solutions 
to the Klein-Gordon equations (19.10) and (19.11). In addition, the energy 
densities ES(x) and ET(x) of the seismic spin and twist solitons were de-
picted. It is noteworthy that the energy curves have pulse-like profiles.  

Fig. 19.5  The curves S x  and T x  display the seismic spin and twist solitons 
obtained as kink solutions of the Klein-Gordon equations (19.37) and (19.38), re-
spectively. The curves ES(x) and ET(x) depict the energy densities of the spin and 
twist solitons that are localized with their widths characterized by A 1/2 and 1 2,
respectively

19.11.3  The seismic spin soliton described by 
              the sine-Gordon equation 

Let us model the seismic spin wave by using the sine-Gordon (SN) equa-
tion in the form 
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where the variable t is scaled. This equation has a solitary solution in the 
form 

1

2

( )
4 tan exp ,

1

x ht

h
(19.40)

where 2 1 /h d d . Thus, Eq. (19.40) describes a seismic spin soliton. 

Figure 19.6 is the illustration of the seismic spin soliton modelled by the 
sine-Gordon equation (19.39). Solutions to the sine-Gordon and the Klein 

Gordon equations have “kink” profiles. In order to obtain pulse profiles, 
it is necessary to plot derivatives of the solutions. 

Fig. 19.6  The curve x  displays the seismic spin wave modelled by the kink so-
lution of the sine-Gordon equation (19.39). The curve uy depicts the corresponding 
transverse displacement. The broken line displays the spatial derivative of the 
transverse displacement with respect to variable x

19.12  Conclusions 

This chapter briefly presented the main results concerning seismic rotation 
waves and seismic rotation solitons, namely spin and twist solitons. A 
model of micropolar elastic medium was applied due to the fact that such a 
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medium allows rotational motions. Hamilton’s Principle was the starting 
point of our considerations. Based on this principle, nonlinear forms of 
wave equations were formulated and analyzed. On the basis of different 
methods of solving, we pointed out that the nonlinearity of wave equations 
and nonlinearity of the rock medium are essential factors for modelling the 
behavior of these waves in the Earth’s interior. The first conclusion can be 
drawn that the seismic rotation waves can branch into seismic rotation soli-
tons. Due to the fact that solitons can propagate without any loss of energy, 
these waves are extremely important carriers of seismic energy and they 
can trigger new earthquakes. Thus, the information or the message carried 
by seismic rotation solitons  as we will call the seismic solitary waves 
is very strong, because it starts from the earthquake source and reaches a 
recording station without any loss of information. We will show that these 
seismic rotation solitons (spin and twist solitons) traveling throughout dif-
ferent rock media can modify their amplitudes and widths in such a way 
that their energy (or carried information) is not lost. It is safe to say that 
the rotation waves carry crucial information concerning the earthquake 
source processes. We can also say that the rotation waves carry informa-
tion about the properties of rocks beneath the seismic station. Now, a new 
challenge emerges: how can we decipher this information? The nagging 
question naturally arises: what are the circumstances at which the seismic 
rotation waves branch into seismic rotation solitons? So far, we do not 
have a complete and definite answer to this question. We know only that 
there is a critical value of the ratio of a wavelength over the grain size, in 
which a soliton is branching from the seismic rotation wave. The problem 
is so complex that many factors and mechanisms can be responsible for the 
branching and the formation of solitons. Thus, the research on seismic ro-
tation solitons is essential for investigating the propagation of seismic 
waves and helps understand mechanisms triggering earthquakes. 
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20.1  Introduction 

Properties of seismicity such as grouping of earthquakes in space and time, 
their seismic energy and migration have been determined in the recent de-
cades. All these properties point to the wave nature of seismic process. The 
data available indicate that the earthquakes and some processes on a plane-
tary scale (atmospheric processes, variations of planet rotation, nutation of 
the Earth’s pole, heliophysical parameters, cosmic factors, etc.) are corre-
lated to the character of stress fields in the areas of earthquake foci.

The block character of seismically active strata is confirmed in many 
papers, among others those related to the vortex tectonics (e.g., Wezel 
1986) and it has been proved that the Earth has very strong non-linear pro-
perties. It has also been shown that the laws of seismicity in the belts can 
be described with analytical methods by means of non-linear wave equa-
tions (Zhuravlev 1983, Lyubushin 1991, Nikolaevsky 1996).  

The main conclusion of such a hierarchical approach is a strong non-
linearity of differential equations describing the seismic process. 

Thus, analytical models pretending to form an adequate description of 
the seismic process must contain strong non-linear wave equations, whose 
coefficients are determined by the structural properties of medium and 
seismicity (Vikulin 2003).  

In this chapter, we present a rotational wave model of seismic processes 
within the Pacific margin that is related to the assumption of seismofocal 
blocks rotating due to internal sources. An analytical expression is ob-
tained for the energy of seismofocal block interaction. Explanation is given 
for the velocity spectrum of seismicity migration. It is shown that the 
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known dislocation models of tectonic earthquake source are an extreme 
case of the rotational model when the source-block interaction can be ne-
glected. A possibility of using the rotational model to the problem of tec-
tonic movement is discussed.  

The new model presented here differs from the “local” Reid’s principle 
and supplements Reid’s theory with an interaction mode. 

20.2  Hypothesis 

There are many geological, geophysical and seismological data that point 
to the rotational movement of the Earth’s crust blocks and lithospheric pla-
tes. The vortex-related structures have been recognized in the material 
from all geologic periods at the Earth and surfaces of other planets and 
their satellites (Lee 1928, Melekestsev 1979, Wezel 1986, Mandeville 
2000, Vikulin 2004). 

Structural maps of the lithosphere show that the rotation traces of differ-
ent blocks can be regarded as manifestations of vortex-related processes in 
a geological medium. Vortex and ring structures of tectonic nature are dis-
tributed over the whole surface of the Earth (Scheidegger 1982, Kulakov 
2003, Vikulin 2004, Xie Xin-sheng 2004). The same structures have been 
detected on Mars (the period of rotation being 24.5 hours) and have not 
been traced on the “slowly” rotating planets (Mercury – 59 days, Venus – 
243 days) and satellites (Moon – 30 days) (Melekestsev 2004). This anal-
ogy gives grounds for assuming that accumulation and release of stresses 
within each of the elementary seismofocal blocks forming the largest 
earthquake sources is also caused by rotation of the planet (Vikulin and Iv-
anchin 2000), or at least related to it. This assumption is confirmed by geo-
logical evidence of the seismofocal block rotation in Ecuador and in the 
central part of Aleutian Islands in the Miocene-Pliocene (Daly 1989, Geist 
et al. 1988), in China, Caucasus, and in other regions in the Pliocene, Qua-
ternary and Miocene (Xie Xin-sheng 2004), and by the data supporting the 
connection between seismicity and rotation of the planet (Chao and Gross 
1995).  

Thus, the angular momentum of a block or a plate on a rotating planet 
must be compensated by the force moment; on the other hand, such a force 
moment can be related to an elastic field arising around the rotating vol-
ume (blocks or plates); hence, we face a problem of how to calculate the 
stress field in the areas of rotating hard blocks. 
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20.3  Stress Field Related to Rotation of Hard Bodies 

To approach the solution of our problem we will consider several stages as 
discussed below (Vikulin 2003, Vikulin and Ivanchin 2000, Vikulin and 
Krolevetz 2002). We consider a sphere block with radius R0, elastically 
coupled with its surrounding medium (matrix), and subjected to laws of 
the classical elasticity theory.  

1. The main idea based on the results of laboratory experiments and theo-
retical studies of polycrystalline body samples for real conditions is as fol-
lows. Some volume V (the seismofocal block) inside the rotating body ac-
quires – due to internal forces – an impulse momentum M. Due to rotation 
of the surrounding matrix, a change of the direction of this impulse mo-
mentum is expected and shall be compensated by a force moment 
K = dM/dt . Therefore, the rotation of seismofocal block results in elastic 
stress field excited around the block by the corresponding force moment.  

2. We consider two systems of coordinates which can rotate around the 
common axis; the axis Z in the first system is assumed to be parallel to the 
axis of rotation  of the matrix (Earth) and directed from the south to the 
north pole, while the axis Z of the second system is put parallel to the im-
pulse momentum M after its turn by the angle as caused by the elas-
tic coupling of rotated seismofocal volume V in respect to the matrix. 
The center of both systems of coordinates is put in the gravity centre of the 
volume V (Fig. 20.1).

The next mental experiment is made in order to determine the elastic 
stress excited in a matrix around the seismofocal volume V.

Fig. 20.1  Two systems of coordinates rotating around the common axis by angle .
Axis Z is parallel to the axis of the body rotation and directed from the south 
pole to the north pole 
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At first we stop rotation of the volume V applying an elastic stress 1

with the force moment K1, directed towards negative direction of the axis 
~
Z ; kinetic rotation energy of the volume V transforms entirely into the po-
tential energy of the elastic stress 1. Then we allow the seismofocal vol-
ume V to rotate with the whole matrix; there appears an elastic stress 2

with the force moment K2, directed parallel to the positive axis (Fig. 20.1). 
In other words, the kinetic energy the volume V

21

2
W I (20.1)

transforms into the elastic energy with the stress tensor 1. Here I is the 
inertial moment of the volume V, is the angular rotational velocity of 
the matrix (the Earth); when the considered volume V starts to rotate 
again conformably  with  the matrix,  the same kinetic energy  is produced 
due to the elastic stress 2.

As stated above, we consider the seismofocal block V as a sphere; its in-
ertial moment does not depend on the selection of the rotation axis. The 
equality of the kinetic and potential energies leads to the equality 

1 2K K .  When these vectors differ, the required force moment K0 ap-

pears as a result of the rotation of the volume V in the non-inertial coordi-
nate system: K0 = K2 – K1. Its module is found to be (Fig. 20.1): 

0 12 sin / 2K K   . (20.2)

It is to be noted that our approach differs essentially from other analo-
gous  approaches.  Let  us recall,  for example,  that according  to  Xie Xin 
-sheng (2004), the “rotational tectonic stress field is the result of non-
uniform motion of matter and dissymmetrical force actions in the nature”, 
while according to Mandeville (2000), “most geological changes and 
structural features in the crust of the Earth are created by changes in the lo-
cation of the spin axis and cyclical variations in Chandler’s wobble in re-
sponse to the gravity of the Moon and the Sun”. 

3. According to the assumptions presented above, the spherical (radius 
R0) seismofocal volume V, elastically coupled with its surrounding matrix, 
becomes rotated due to internal sources. The origin of the  coordinates xi is 
put in  the centre of the volume V. The  axis x3 = Z  (Fig. 20.1) is parallel 
to the axis . To determine the elastic displacement field U around the 
rotational volume V, we shall solve the equation of elastic equilibrium 
(Landau and Lifshits 1987): 

grad div rot rot 0U U , (20.3)
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where (1 2 ) 2(1 )  , and  is Poisson’s ratio; we apply zero 
boundary conditions in the infinity: 

1/ 22 2 2
1 2 30 with r x x xU (20.4)

and the forces acting on the surface of the volume V put as equal to zero 

d 0i ij i

S

F S  . (20.5)

The force moment independent of the size of volume V  is 

0d ( )i k ikl lj j

S

K x e S f R , (20.6)

where ij is the stress tensor, eikl is Levi-Civita’s symbol, the surface inte-
gral is over a surface of volume V(R0); the summation is according to re-
peating indexes. 

Solution to the problem (20.1)–(20.6)  has been given by Vikulin and 
Ivanchin (2000) and Vikulin (2003) in the spherical coordinate system 
(r, , ), with the origin of coordinates r = 0  in the centre of volume V,
the angle lying in the plane normal to the rotational axis of the block 
V, and the angle coinciding at   = /2  with the axis of rotation of 
volume V.  In the domain  r R0 , the displacement field U and stress 
field  become as follows: 

20, 3 sinrU U U Ar  , (20.7)

33

2
sinr r AG r  , (20.8)

where G is the shear modulus, A is the constant which will be determined 
below. The other components of the stress tensor are equal to zero.  

When putting the field determined in Eq. (20.8) into relation (20.6) for 
the force moment which creates the elastic field, we obtain 

2
3

1

0 0

sin d dz rK r  . (20.9)

The other components of the force moment are equal to zero: K1x = 
K1y = 0 (Fig. 20.1). 

4. The density of the elastic stress energy, W , can be written as follows: 
2 2/ 2( )ij ij ijW G , where  is the uniform compression module, 
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ij is the deformation, ij is the Kronecker symbol. To obtain the elastic en-
ergy W stored in the matrix (region r   R0) we perform the integration: 

0

2
2 4 2 3

0

0 0

9

2
sin d d d 4

R

W A G r r A GR  . (20.10)

The elastic energy W is created by the force moment K1 (or K1z in 
Eq. 20.9). Putting the elastic energy W equal to the kinetic energy (20.1), 
with inertial moment of the sphere 5

08 /15I R  , we obtain 

1/ 24
0 /15A R G  , (20.11)

where  is the average density of the body.  
Thus, by means of Eqs. (20.2) and (20.9)–(20.11) the force moment 

which excites the elastic field around the rotational volume V, and its 
energy, are determined from the following relations: 

2 4 1/ 2
06 ( /15 ) sin /2K R G  , (20.12)

2 5 2
016 /15 sin /2W R  . (20.13)

By means of relations (20.2), (20.7), (20.8), and (20.11), the field of the 
displacement U and the stress field  become: 

0rU U , 4 2 1/ 2
03 ( /15 ) sin sin /2U R r G , r  R0 , (20.14)

4 3 1/ 2
03/2 ( /15 ) sin sin /2r r R r G , r  R0 . (20.15)

The other components of the stress tensor are equal to zero. 

5. The estimations obtained show a good agreement between the theoreti-
cal values inferred from the rotational model (20.12)–(20.15), and the ex-
perimentally observed parameters characteristic of the largest Pacific 
earthquakes. Let us assume the model parameters: = 3 g/cm3,
G = 1011 N/m2, = 7.3×10-5 rad/s and the radius of the elementary spheri-
cal seismofocal block  R0 100 km. Its volume is equal to the average 
source of oval (elliptical) shape in the energy class of the largest Kurile-
Kamchatka  and Japan earthquakes.  Then any four parameters,  namely: 
displacement U 10 m, stress release   100 bar, seismic moment 
M0  1029 dyne·cm, seismic energy radiation W 1017 J and angle  10-4 rad 
(i.e., 10-2 degree) are automatically inferred from relations (20.12)–(20.15). 

Thus, the estimates obtained employing the rotational model for 
parameters related to the Pacific largest earthquake sources are seis-
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mologically and physically substantiated. Moreover, a possibility to de-
scribe comprehensively and analytically some physical quantities using 
our unique model points to the advantages of this model as compared to 
the known dislocation models for tectonic earthquake sources. 

20.4  Interaction Between Seismofocal Blocks 

The rotational model explains the earthquake source interaction, as dis-
cussed further on, as being related to the source migration (Duda 1963, 
Mogi 1968). In compliance with the concepts of our model, stresses gen-
erated around the seismofocal block are accumulated in the space sur-
rounding it; on the other hand, the seismofocal zone, as part of the litho-
sphere where the seismic processes occur, is a chain of seismofocal blocks 
– sources of the largest earthquakes. For this reason, in the rotational 
model, the stress accumulation in any part of the lithosphere is stipulated 
either by displacement of a closely located block or by the adjacent seis-
mofocal blocks. 

To determine the energy of seismofocal block interaction, let us make 
use of the proportionality of elastic energy to the strain square. The 
elastic energy for the model of two blocks can be written as 

2 2 2( ) d d d 2 da b V G a V b V ab V ,

where a and b are the elastic deformations caused by the rotation move-
ments of the first and second blocks, respectively; the integration is ex-
tended over the whole volume of the body. The first and second integrals 
on right-hand side are the elastic energies; each of them is calculated by 
formulae (20.13). The third integral determines the form of the energy of 
interaction Wint between the first and the second blocks:  

int 2 dW G ab V  .

This energy of the elastic interaction between two spherical blocks with 
radii R1 and R2 and centers at a distance r from each other was analytically 
determined as (Vikulin and Ivanchin 2000) 

2 4 4 3
int 1 2(3/ 2) cosW R R r , (20.16)

where  is the angle between the force moments of elastic fields around 
each of the blocks. A ratio of the interaction energy Wint to the block’s 
“own” energy W for 1 2 0R R R , can be estimated using relations (20.13) 
and (20.16) as follows: 
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3
0

2
int

45( / ) cos

32(sin /2)

W R r

W
 . 

One can see that the maximum distance between blocks at cos 1 ,
when the interaction energy is close to the block’s own energy ( 1) , is 

given by the expression 2 / 3 2 3
0 0 02 (10 10 )r R R . Thus, in this way the 

elastic fields created around rotating blocks became capable of remote ac-
tion (Vikulin and Duda 2001). Such rotary elastic fields allow us to esti-
mate the properties of a chain of blocks. 

20.5  Chain of Blocks: Application to Pacific Margin
         Seismic Belt 

Let us consider the seismic processes occurring within the Pacific margin 
(Vikulin 2003, Vikulin and Ivanchin 2000). We assume for simplicity that 
the seismofocal region volume consists of a one-dimensional chain of in-
teracting blocks of similar size. Each block is characterized by the inertia 
moment I and a similar volume  3

04 / 3V R . We can write the equation 
of motion for the block as 

2

int2t
I K K   , 

where K is the force moment corresponding to the elastic stress field ex-
cited around the block, independent of its interaction with other blocks 
in the chain, and is given by (20.12); Kint is the force moment responsi-
ble for interaction of the block with other blocks in the chain. 

It is necessary that quantity Kint be proportional to the elastic energy 
accumulated around the block, 2 2V z , and consequently to the energy 
accumulated for the other blocks in the chain.  For the latter, we choose the 
value equal to the average linear density of the elastic energy accumulated 
for the chain of blocks w. Here z is the coordinate along the source chain. 
Thus, we obtain 

2

int 2
w

z
K   . 

The final equation of motion for the block with in the coordinate z and 
time interval t can be written as the sine-Gordon (SG) equation (Vikulin 
and Ivanchin 2000): 
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2 2

2 2
sin  , 

where we define the non-dimensional coordinates  /2 , 0k z ,

0 0c k t , and constants c0 and k0 representing the velocity and wave num-
ber of the process. 

In the case of quasi-linear approximation (linearized SG equation), 
when the length of the exciton wave (like an “usual” elastic S wave) may 
be taken equal to the size of rotating block (Nikolaevsky 1996), we obtain 
the following expression for the value of the characteristic seismotectonic 
propagation velocity: 

2 2
0 03 15 8 / R Sc R G V V  , 

where 0RV R   and  /SV G   mean the values of the centrifugal and 

S-wave velocities. It can be seen, in the framework of the suggested model, 
that c0 is related to the value of the Earth’s angular rotation. Thus, the na-
me for the model, as given by the authors, is the wave rotary model. Using 
the above parameters we can find  c0  1 cm/s. 

Soliton’s solutions of SG equation are well known (e.g. Davydov 1982): 
the energy of solitons increases monotonically from zero to c0, which is the 
maximum velocity. 

In a long chain of blocks, the influence of its ends may be not consid-
ered, our soliton solutions have two peculiarities. The first peculiarity cor-
responds to the “zero” solution, when the block chain moves as a whole, 
without any deformation (Vikulin and Krolevetz 2002). The second pecu-
liarity is the following: the non-linear properties of a solution are not con-
nected with a discontinuous structure of chain but with non-linear proper-
ties of the medium. A seismic belt is considered as an analogue of the 
chain of the blocks. 

In the frame of the rotary model, all the observed values of the Pacific 
earthquakes migration velocities as functions of elastic energy  (magni-
tude ) are explained (Fig. 20.2).  Earthquake migration along the seismic 
belt (global migration)  corresponds  to the soliton’s  solution I  of the mo- 
del’s SG equation. The maximum value of soliton global migration veloc-
ity (under maxM M  8-8.5) is equal to  V0 c0. The soliton’s solution I

may be written down as (Vikulin and Ivanchin 2000) 

log 0.4logL V . (20.17)

Here L (in km) is the length of earthquake foci with the magnitude M.
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The migration of foreshocks and aftershocks within an earthquake focus 
is described by the exciton’s solution of the model SG equation (solu-

tion II, Fig. 20.2). The “zero” exciton’s solution (the movement of the 
seismic belt as a whole) describes quantitatively the Earth’s nutation (Vi-
kulin and Krolevetz 2002). The limit (under maxM M  8-8.5) velocity 
value for an exciton’s solution of model SG equation is close to the S-wave
velocity (solution II, Fig. 20.2).

It is possible, in the frame of the rotary model, to search for solutions 
concerning the allocation of seismic energy in the earthquake foci. 

20.6  Friction and Irregularities of Block Rotation:  
         Rotation Mechanics of Earthquake Foci  

Taking into account friction and irregularities of block’s rotation, the equa-
tion of  block’s movement in a chain reduces to an indignant Sine-Gordon 
equation, ISG (Vikulin et al. 2000): 

Fig. 20.2 The values of the Pacific earthquake migration speeds along the seismic
belt. The determined dependencies M(V): soliton’s solution I and exciton’s solu-

tion II. The dashed lines – the dependencies which were obtained earlier (Vikulin
and Ivanchin 2000). V0 is the characteristic velocity of the process defined by the
parameters of the model; VS is the velocity of the S wave 

log E 

log V 
[km/year]
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2 2

2 2 sin ( )sin  , 

where  is a friction coefficient, µ is a parameter characterizing the force 
which stimulates the block’s rotation,  is the delta function. The 

solutions for X, V and  for the parameters  0.1-1  and   10-4-10-2,
close to real breaks, are shown in Fig. 20.3. Here X is the distance covered 

by the wave, V is the wave velocity and  is the deformation velocity.  
Numeral investigation of the solutions allowed us to establish the exis-

tence of conservation laws. Firstly, the solution of the ISG equation de-
scribes the effect corresponding to the process of seizure of the wave by 
the block: asymptotic R0  (Fig. 20.3), and, consequently, to the process of 
interaction between the seismofocal block and the tectonic wave. Such a 
process of interaction contains the three specific phases: foreshock (first 

maximum of ), aftershock (second maximum of ) and the main shock 

between them (maximum of V, minimum of ).
Secondly, the tectonic wave has a spinning polarization. The theoretical 

formula for the wave momentum with its numeral estimation and the for-
mula for the seismic moment with its numeral value, become equal.  

Thirdly, during the foreshock stage the elastic field „turns“ relative to 
the considered block. The angle of this turn can be in the microscopic mo-

                 t [day]                                 t [day]                                    t [day]  

log X [m]                             log [m/c]                            -1log [c ]

Fig. 20.3 The solutions of the indignant sine-Gordon equation (Vikulin et al. 
2000) 
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dels related to an appearance of disclinations (rotational dislocations) as an 
analogue to a plane fracturing dislocation models (  45°). 

Fourthly, the limit (max.) exciton solution corresponding to the lin-
earized ISG equation (Fig. 20.2: solution II, the point Mmax – VS) is close 
to the usual elastic wave, with velocity Vmax and length Lmax equal to a 
seismic S-wave velocity (Vmax  VS) and the length of a seismofocal block 
Lmax = L(M  Mmax); see relation (20.10). 

The available data show that the earthquake foci models based on the 
near-action Reid principle (Reid 1911) can be considered as a particular 
case of the rotary model when the interaction between the earthquake foci 
is equal to zero. 

20.7  Some Consequences 

1. The one-dimensional SG equation is known to belong to the class of in-
tegrable equations, for which there exist the Lagrange function and con-
servation laws. Thus, the interaction energy of the chain of all blocks ( int)
is equal to the doubled kinetic energy kin of the system (from virial theo-
rem: int = 2Ekin). The seismic wave energy spreading out from earthquake 
foci can be, in a first approximation, compared to the kinetic energy. Then, 
in accordance with the virial theorem, for the model of two blocks, the va-
lue of seismic energy of the greatest earthquake must be equal to the half 
of the interaction energy  int = Wint  determined from (20.16). In reality, 
the model of two blocks is similar to the case of “doubled” shocks of the 
Great Kamchatka 1952, M = 8.5 earthquake. Its foci can be represented by 
two aftershock areas, each of 200-250 km size, 150-200 km apart from 
each other. The available published examples of multiple earthquakes data 
are collected in Vikulin (2003). On the basis of these data, putting R1 R2

= R0  100 km,  r  4R0 ,  =  , we obtain from (20.16) the seismic en-
ergy  int =  1017-18 J, that is known to be close to the instrumentally 
registered values of seismic energy of greatest earthquakes.  

It should be noticed that the seismic energy determined in this way, 
namely 

2 5
03/256 ( )E R f G (20.18)

coincides with the numerical factor from (20.13), the expression for the 
elastic field energy of the rotating block. Also, the obtained seismic energy 
is independent of the elastic modulus G. Physically this means that the ro-
tary mechanism allows “to inject” into the hard medium such a quantity of 
elastic energy that it can exceed its shear strength. 
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A possibility of determining the earthquake elastic energy value (20.18) 
may allow us to construct the earthquakes statistics (the statistical seismol-
ogy) based on the rotary model. 

2. The relation between tectonics and the problem of rotational move-
ment is not new (Lee 1928, Melekestsev 1979, 2004, Wezel 1986, Mande-
ville 2000, Xie Xin-sheng 2004). In the light of rotary concept, the plates 
as well as the “elementary” seismofocal blocks are surrounded by fields of 
elastic stresses (Vikulin 2004, Tveritinova and Vikulin 2005). 

Analytically, the problem of elastic stress fields arising in the whole 
body of a rotating planet with its turning plates and blocks has not been 
solved yet; it is necessary to check the adaptability of the rotary concept to 
tectonic problems. To this end,  we analyze the data characterizing the pla-
te sizes and the spreading velocity of the rifting zones of the Pacific. The 
results are shown in Fig. 20.4; the line on this figure is estimated by the 
least-squares method: 

log 0.4 0.1 log 3.2 0.3L V  . 

The dependence obtained is near to the soliton block relation (20.17). 
Our result shows that the rotary concept can be applied in principle to 

the tectonic problems, connected with the calculation of elastic stresses 
fields round the moving plates. The value of elastic energy corresponding 
to such a rotary interaction can exceed greatly the theoretical shear 
strength.

3. One can believe that in this way we can approach the forecast of the 
strength of the medium. The possibility for quantitative description of the 

Fig. 20.4 Data showing the existence of dependence between the length of plates
(logL in km) and the velocity of spreading-rifting (logV in mm/year) along their
boundaries (Tveritinova and Vikulin 2005) 
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foreshock and aftershock stages of the seismic cycle (Fig. 20.3) allows us 
to create a kind of earthquake prediction theory, containing the timing of 
events and their foci locations, which is more deterministic than statistic in 
character. 

As we can see, the rotary wave seismic model, explaining remote action 
effect between earthquake’s foci, may open new ways for the solution to 
the earthquake prediction problem. To this end, it would be necessary, 
firstly, to improve the presented theoretical approach and, secondly, to de-
velop a network of stations recording rotation waves, in place of the exist-
ing single stations of such a character (e.g. Huang 2001, Takeo 1998).  

In the frame of the rotary model, the nature of interaction between seis-
micity and the solar activity cycles could be studied, as the seismicity and 
its relation to the moment of momentum of blocks become related to the 
“complex dynamics of all the solar system” (Timashev 2003). 

4. Some aspects of the presented model in relation to geomechanical 
problems can also be discussed. The analysis of natural stress fields based 
on the results of measurements in mines on the territory of North Eurasia 
indicates that the whole body of the Earth’s crust is self-organizing in each 
moment of time. Such structures can be described by means of the “pendu-
lum” waves (Kurlenya and Oparin 2000) that are per se the tectonic soli-
tons.

Strong explosions (including the volcanic ones) do not radiate the rota-
tion/torsion waves. Thus, solutions of the related problems of the recogni-
tion of explosions can be supported by recording the torsional oscillations 
(Baumgard et al. 2001).  

5. The rotary wave model, utilizing the concept of stresses and force 
moments, was constructed in the frame of classical elasticity theory. In our 
approach, we did not need the concept of elasticity theories (Nowacki 
1975) based on Cosserat’s continuum (Cosserat and Cosserat 1909). It can 
be noted that the Cosserat’s elasticity theory, in contrast to the classic ela-
sticity theory (Landau and Lifshits 1987) is purely mathematical (Niko-
laevsky 1995). We think that this can be of consequence for only one rea-
son: the space in relation to asymmetrical tensor shall be considered as 
anisotropic (Vikulin and Ivanchin 2002). 

20.8  Conclusions 

It turns out that the idea of the Earth crust block which might rotate due to 
the internal sources, brings some new productive tools. In the frame of our 
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and other models it became possible to get quantitative description of the 
wide spectrum of geophysics phenomena (Lee 1928, Melekestsev 1979, 
2004, Wezel 1986, Kurlenya and Oparin 2000, Mandeville 2000, Kulakov 
2003,  Tveritinova and Vikulin 2005,  Vikulin 2000, 2002, 2003, 2004, 
Vikulin et al. 2000, Vikulin and Duda 2001, Vikulin and Ivanchin 2002, 
Vikulin and Krolevetz 2002, Xie Xin-sheng 2004). Thus, the basis of a 
new school, “the vortex dynamics of the lithosphere”, is founded. 

The relations between tectonic vortex movement intensity and planet’s 
rotation, as analyzed above, might be extended onto a search for similar re-
lations in the domain of atmosphere vortex movements, like cyclones, on 
the Earth and planets.  

Finally, we believe that the nature of vortex movements is connected 
with some more “deep” parameters related to the fine matter structure; 
such relations might become recognized along with the development of 
seismic technology of sufficiently high precision to study elastic nonlinear 
waves of spinning polarization. 

Acknowledgments. The author is grateful to S. Duda and R. Teisseyre 
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21.1  Introduction 

The aim of this chapter is to derive a nonlinear equation for seismic rota-
tion waves. To this end, we apply the theory of a linear elastic microstruc-
ture formulated by Mindlin (1964) and its nonlinear generalization devel-
oped by Engelbrecht and Pastrone (2003). The problem of seismic rotation 
waves in the continuum with nonlinear microstructure is considered here at 
two levels. We start with some balance equations employing a macro-
scopic stress that plays a crucial part in exciting seismic P waves and 
seismic rotation waves. We consider a nonlinear microstructure, which is 
determined by microrotations and microforces of interactions. In the mi-
crostructure we emphasize its nonlinearity resulting from a nonlinear term 
in the free energy function. Fundamental equations of the nonlinear micro-
structure are finally applied to the derivation of a nonlinear equation for 
seismic rotation waves. This equation describes double dispersion. These 
rotation waves are the waves that are excited by rotational motions in the 
earthquake source. At first, we divide the stresses and forces into two 
groups: macroscopic and microscopic. Next, we assume an additive de-
composition of the total macroscopic stresses, microstresses, and interac-
tion microforces into elastic and self-parts (plastic parts). The elastic parts 
of stresses and forces are our main field of interest. These stresses and 
forces are expressed in terms of the free energy function. At the first stage, 
a linear form of this function is considered. From this linear form of the 
free energy, we derive a linear equation of the seismic rotation waves. At 
the second stage, we add merely one cubic term containing a spatial de-
rivative of rotation. We consider a collinear propagation of the nonlinear 
seismic P waves and the nonlinear seismic rotation waves. As a result, we 
obtain a nonlinear equation describing the seismic rotation waves propa-
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gating in the solid Earth, which is modeled as a continuum with nonlinear 
microstructure. The concept of microstructure is, to some extent, similar to 
the concept of the dislocation superlattice applied to earthquake thermody-
namics (Majewski and Teisseyre 1997). In addition, the spinel lenses in 
anticracks considered by Majewski and Teisseyre (1998) form a certain 
material microstructure. 

21.2  Additivity of Elastic and Self-Parts of Stresses,
         Microstresses, and Interaction Microforces 

Our starting point in exploring the seismic rotation waves is to assume an 
additivity of the elastic and self-parts of stresses, microrotations, and mi-
croforces in the following form (Teisseyre and Majewski 2001, 2002): 

,T S
S S S     ,T S     ,T S (21.1)

where S
T is the Piola-Kirchhoff total stress, S is the Piola-Kirchhoff elastic 

stress, S
S is the Piola-Kirchoff self-stress, T is the total microstress,  is 

the elastic microstress, S is the self-microstress, T is the total interaction 
microforce,  is the elastic interaction microforce, and S is the interaction 
self-microforce. The self-parts can be treated as internal variables of the 
material continuum (Majewski 1993). 

21.3  The Macroscopic and Microscopic Balance  
         Equations

We outline here basic concepts of the theory of microstructure in linear 
elasticity constructed by Mindlin (1964) and its nonlinear generalization 
proposed by Engelbrecht and Pastrone (2003). Let us now write the mac-
roscopic momentum balance equation in the form 

L

d
d d d .

d
B B B

A V V
t

Sn F p (21.2)

The microscopic balance of momentum can be written as 

d
d d d ,

d
B B B

A V V
t

n F (21.3)

where B is the solid body volume under consideration, B is the outer sur-
face of the solid body B, n is the unit normal vector, S is the Piola-
Kirchhoff macrostress tensor,  is the microstress tensor, FL and F  are 
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the body macroforces and microforces, respectively,  is the interaction 
microforce, p x  is the linear macromomentum,  is the mass density, 

and x  is the macroscopic velocity, I  is the micromomentum, where 
I is the inertia tensor and  is the microscopic velocity. 

From Eqs. (21.2) and (21.3), one can obtain the following one-dimen-
sional relationships (Engelbrecht 1997, Eringen 1999, Engelbrecht and 
Pastrone 2003): 

,tt x Lu S F (21.4)

,tt xI F (21.5)

where u is the magnitude of the displacement, and the subscripts x, t de-
note spatial and time derivatives, respectively. 

In order to simplify Eqs. (21.4) and (21.5), we neglect the body forces 
and replace tt by tt, where  is the rotation. Thus, we obtain the following 
set of equations: 

,tt xu S (21.6)

.tt xI (21.7)

We assume a free energy function in the form 

, , ,x xu (21.8)

where ux is the spatial derivative of the longitudinal displacement,  is the 
rotation, and x is the spatial derivative of the rotation. 

The elastic components of the quantities defined by Eqs. (21.1), can be 
expressed in terms of the free energy 

,
x

S
u

,
x

. (21.9)

At first, let us consider the free energy function with quadratic terms 

2 2 21 1 1

2 2 2
,x x xau b u c d (21.10)

where a, b, c and d are constant coefficients. 
With help of the above relations, Eqs. (21.6) and (21.7) will take the fol-

lowing form: 

,tt xx xu au b (21.11)
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.tt xx xI d bu c (21.12)

The above set of wave equations can be interpreted as a collinear propaga-
tion of the seismic P wave and the seismic rotation wave.  

We use the following dimensionless quantities: 

0/ ,U u U      / ,X x L      / ,PT t V L (21.13)

where VP is the magnitude of velocity of the seismic P wave, 2 /PV a , in 
addition, U0 and L are constant intensity and wavelength of the initial exci-
tation. We must also introduce a scale parameter  of the microstructure, 
and two more dimensionless parameters 2 2/ ,L 0 /U L . After 

Engelbrecht and Pastrone (2003), we write for the inertia 2
0I I , and 

for the stress parameter 2
0d d , where I0 is dimensionless and d0 has the 

stress dimension. As a result, Eqs. (21.11) and (21.12) take the form 

0 ,TT XX XU U b (21.14)

0 0 ,TT XX XaI d b U c (21.15)

where 0 /b b a .
Equation (21.15) can be solved for UX as follows: 

0 0 .X XX TT

c
U d aI

b b
(21.16)

Now, we differentiate Eq. (21.16) twice with respect to X

0 0 ,XXX XX XX TT XX

c
U d aI

b b
(21.17)

and differentiate Eq. (21.16) twice with respect to time 

0 0 .XTT TT XX TT TT

c
U d aI

b b
(21.18)

We differentiate Eq. (21.14) with respect to X

0 .TTX XXX XXU U b (21.19)

Let us assume that XTT TTXU U , and write the above equation in the form 

0 .XTT XXX XXU U b (21.20)
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Substituting (21.17) and (21.18) into (21.20), we obtain a linear equa-
tion for seismic rotation waves in the form 

1
1 ,TT XX XX TT

c
(21.21)

where 0 /bb c , and 

0 0 ,XX XX TT XX
d aI (21.22)

0 0 .TT XX TT TT
d aI (21.23)

Equation (21.21) describes the linear seismic rotation wave in a solid Earth 
with microstructure. The wave velocity is different here than in the contin-
uum without microstructure due to the presence of the coefficient . The 
parameter   plays the crucial part here. The influence of the microstruc-
ture on the macrostructure is directly proportional to the value of parame-
ter . This parameter depends on the ratio of micro- and macroscales that 
are depicted in Fig. 21.1. This equation reveals the so-called double dis-
persion, because of the appearance of the spatial and time fourth order de-
rivatives XXTT and TTTT, which are present in the terms XX  and TT .
These results are, to some extent, similar to the results obtained by Maugin 
(1999).

Fig. 21.1  Microscopic and macroscopic levels of description of the excitation of 
seismic waves. Here dv denotes the microvolume,  the internal scale in the mi-
crovolume,  the direction of rotation of the microvolume, u the direction of the 
longitudinal displacement of the microvolume; and dV denotes the macrovolume 
and L the macroscopic scale in the macrovolume 



   E. Majewski 298

21.4  The Nonlinear Microstructure 

In order to keep the model simple, the macroscopic description is still lin-
ear. However, in the microstructure, after Engelbrecht and Pastrone 
(2003), we add a cubic term to the expression (21.10) for the free energy 
function. Thus, one can obtain 

2 2 2 31 1 1 1

2 2 2 3
.x x x xau b u c d e (21.24)

Now, instead of (21.11) and (21.12), we have 

,tt xx xu au b (21.25)

.tt xx x xx xI d e bu c (21.26)

where 2
0e e , and e0 is constant. 

Using the dimensionless quantities, we can write the above equations in 
the form: 

0 ,TT XX XU U b (21.27)

0 0 0 .TT XX X XX XaI d e bU c (21.28)

One can solve the last equation for UX as follows: 

0 0 0 .X XX TT X XX

c

b b
U d aI e (21.29)

Now, we differentiate the above equation twice with respect to X

0 0 0 ,XXX XX XX TT X XX XX

c

b b
U d aI e (21.30)

and differentiate twice with respect to time 

0 0 0 .XTT TT XX TT X XX TT

c

b b
U d aI e (21.31)

We differentiate Eq. (21.27) with respect to X

0 .TTX XXX XXU U b (21.32)

Now, we assume that XTT TTXU U , and write the above equation in the 
form: 
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0 .XTT XXX XXU U b (21.33)

Inserting (21.30) and (21.31) into (21.33), we obtain a nonlinear equa-
tion for seismic rotation waves in the form: 

1
1 ,TT XX XX TT

c
(21.34)

where 0 /bb c , and 

0 0 0 ,XX XX TT X XX XX
d aI e (21.35)

0 0 0 .TT XX TT X XX TT
d aI e (21.36)

The nonlinear wave properties are displayed in the last terms of expres-
sions (21.35) and (21.36).  

It is interesting to compare the nonlinear wave equation (21.34) with the 
DDE equation derived by Samsonov (2001) in the form: 

2 2
1 2 3 4 ( ) .TT XX XXTT XXXX XXU bU b U b U b U (21.37)

The above equation describes double dispersion and dissipation and has a 
solitary solution.  

21.5  Conclusions 

This chapter presented a few ideas concerning the continuum with nonlin-
ear microstructure. Such a continuum allows the propagation of nonlinear 
seismic rotation waves. These are the waves that are excited by rotational 
motions in the earthquake source. We considered a collinear propagation 
of the seismic P waves and the seismic rotation waves. As a result, we ob-
tained a nonlinear equation describing the seismic rotation waves propa-
gating in the solid Earth modeled as the continuum with nonlinear micro-
structure. We found that the influence of microstructure is visible in 
affecting the wave velocity. The microstructure provides us with the for-
malism that is essential in the description of double dispersion. The de-
rived nonlinear equation reveals the interplay between the nonlinearity and 
dispersion. It is noteworthy that the continuum is linear at the macroscopic 
level, but nonlinear at the microscopic level. Finally, we compared the 
nonlinear wave equation for rotation waves with the DDE equation derived 
by Samsonov (2001) for longitudinal waves in the solid rod. The DDE 
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equation has a solitary solution. The main difference between the DDE 
equation and the equation derived here consists in the appearance of fourth 
time derivatives in the latter equation and their absence in the DDE. We 
conclude that the equation derived here describes a different type of double 
dispersion than the DDE equation. The equation for rotation waves is more 
sensitive to time derivatives.
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22.1  Introduction 

The aim of this chapter is to determine two types of tectonic solitons ex-
cited in the earthquake source and propagating along the fault: longitudinal 
self-distortion (plastic) solitons and shear self-distortion solitons. The 
Earth’s interior is modeled as an elasto-plastic continuum. We summarize 
a few results of the gauge theory of elasto-plastic continuum with disloca-
tions that was formulated by Kadic and Edelen (1983), Edelen and 
Lagoudas (1988), Lagoudas (1989), Lagoudas and Edelen (1989). Elasto-
plastic waves were investigated by Erofeyev (2003). He derived two soli-
ton equations that describe elastic longitudinal and plastic shear distortion 
solitons. The problem of sine-Gordon solitons propagating along the fault 
was considered by Nikolaevskiy (1996). We outline his work and employ 
the solitons to the description of processes occurring on the fault. Teis-
seyre and Yamashita (1999) pioneered the method of splitting the stress 
motion equations into wave and fault-related parts. We apply their method 
in order to determine the solitons propagating along the fault. The first 
type of obtained solitons are the  seismic longitudinal self-distortion Klein 

Gordon’s solitons that were formulated by splitting a soliton equation for 
elastic longitudinal distortions into a field part and the fault-related self 
-part. The solitons of the second type are the seismic shear self-distortion 
Schrödinger’s solitons that also propagate along the fault.  

22.2  Seismic Waves in the Continuum with Dislocations 

Let us denote the displacement vector by u(x, t). We also assume that the 
total stress and total distortion can be decomposed into the elastic and self-
fields (plastic fields) as follows (Teisseyre 2004): 
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,T SS S S      .T S (22.1)

We limit our considerations to translational defects only, so the internal 
variable (Majewski 1993) can be described by the self-distortion tensor 

S

ij  (Eringen 1999, Teisseyre and Majewski 2001, 2002). 

In the framework of the gauge field theory applied to the medium with 
dislocations, the fundamental equations are obtained by variation of the 
gauge invariant Lagrangian. In the case of elastic and self-deformations, 
Lagrangian LT consists of two parts (Panin 1995, Erofeyev 2003) 

.T SL L L (22.2)

The first part describes the kinetic energy of total displacements minus the 
potential energy of elastic fields in the medium. It can be expressed as  

1

2 2

d ,
2 2

S Si i i k
ii kk

i k

S S S Sk i i k
ki ik ki ik

i k k i

u u u u
L

t t x x

u u u u
V

x x x x
(22.3)

where  is the medium density,  and  are Lamé’s constants, dV is the 
differential volume. 

The second part describes the kinetic minus the potential energy of dis-
locations. It can be written in the form 

d ,
2 2

S S
S km km

km km

B C
L V

t t
(22.4)

where B and C are the medium constants; B is proportional to the effective 
mass of dislocations in a unit volume, C is proportional to the self-energy 
of dislocations. The tensor of dislocation density km is determined as fol-
lows:

.
S

jm

km kij

kx
(22.5)

The medium is assumed to be plastically incompressible, i.e. under the 
self-deformation the following relations hold: 

Tr 0 .S S

ij ii (22.6)

The dissipation is determined by the Rayleigh function 
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,
S S

ij ij

ij ijI I
t t

(22.7)

where
S

ij

ijI
t

(22.8)

is the dislocation stream tensor, and  is the dissipation coefficient. 
After Erofeyev (2003), we can recall the equations of motion of elasto-

plastic continuum obtained as a result of taking a variation of Lagrangian 
(22.1) and dissipation function (22.7)  

2

2
,i ik

k

u S

t x
         

2

2
2 ,

S S

ij ijS

ijB S
t t

(22.9)

where the elastic stress tensor is expressed as follows: 

,j S Si k
ij ji ij ij

j j i

uu u
S

x x x
(22.10)

and the self-stress tensor takes the form 

2 2

,
S S

ij kjS

ij ij ij

k k k i

S S S C
x x x x

(22.11)

where   is a Lagrange factor, which can be determined from Eq. (22.5) 

22
.

3 3

S

k ki

k k i

u C

x x x
(22.12)

After Erofeyev (2003), we write equations (22.9) in the following form: 
2 2 2 2

2

0 ,

p q p q

p q q q q p

pq qp

q q

u u u u

t x x x x x x

x x
(22.13a)

2 2 2

2

2 0 .

pq pq jq i
pq

k k j p i

p q pq

pq qp pq

q p

u
B C

t x x x x x

u u

x x t
(22.13b) 
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22.3  Seismic P waves 

Erofeyev (2003) was seeking solutions of Eqs. (22.13a,b) in the form of 
travelling harmonic waves as 

(0)

0
exp(i i ) .

p p

pq pq

u u
t kx

Usually, it is assumed that the angular frequency  is real and the wave 
vector k is complex, i.e., 

Re Im ,k k k

where the real part is responsible for the wave propagation and the imagi-
nary part for the wave damping. Erofeyev (2003) considered nonlinear 
problems of elasto-plastic wave propagation. He investigated a collinear 
propagation of plain waves along the x1-axis with zero dissipation (  = 0). 
From some calculations concerning longitudinal waves, after assuming 
that u2,3 = 0, he obtained: 

2
1

112
1 1

2

1
11

1

( 2 )

3( 2 ) 0 ,

Si

S

u u

t x x

u

x
(22.14a)

22
11 1 1

11 112
1 1

2 3 0 .
2

S
S Su u

B
t x x

(22.14b) 

If one differentiates the first equation with respect to x1 and subtracts the 
second equation from the first one, then one will obtain an equation de-
scribing elastic distortion 

2
211

11 112

2
2

11 112
1

2 2

2 2
0 ,

t B B

x
(22.15)

where the elastic distortion is defined as 1
11 11

1

Su

x
 . 
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Equation (22.15) differs from the wave equation by one dispersion and 
two nonlinear terms. To estimate the value of each term Erofeyev (2003) 
introduced dimensionless variables 1 / ,x x  / ,PtV 11 0/ .

Here  and 0 are characteristic wavelength and amplitude of the elastic 
distortion wave, respectively. Equation (22.15) can be reduced to 

2 2 2
2 2

1 22 2 2
0 ,l

x x
(22.16)

where l = 2 /B is the parameter characterizing dispersion, 2
1 0 /B

and 2 0  are the parameters characterizing nonlinearity. 

Using the values for the wave number 10 /C , Erofeyev (2003) 

obtained 1 0/ 1/ ,l 2 0/ 30.95/l and 1 2/ 30.95 . He concluded 

that with such a choice of parameters the nonlinearity with coefficient 2

can be neglected. As a result, Erofeyev (2003) described the propagation 
of longitudinal elastic distortion wave in the form 

2 2
2

12 2
0 .l

x
(22.17)

This is a soliton equation. Equation (22.17) has a solitary solution in the 
form of slowly propagating soliton of elastic distortion.  

22.4  Splitting the Elastic Distortion Soliton Equation into 
         Seismic and Fault-Related Soliton Equations 

Teisseyre and Yamashita (1999) split the stress motion equations into 
seismic wave and fault-related fields (see Chap. 8). We apply this method 
to Eq. (22.17) and split the equation for elastic distortion solitons into 
seismic soliton and fault-related soliton equations. Equation (22.17) is 
nonlinear and superposition methods do not apply here; nevertheless, the 
elastic distortion field on a fault is small, because the self-distortion field is 
dominant, thus, in the limit, we can assume that the self-distortion field 
along the fault is almost equal to the total distortion field during an earth-
quake process. The equation for self-distortion obtained as a result of split-
ting Eq. (22.17) can be treated as an approximation. 

An elastic distortion  can now be presented as the difference T S

between the total T  field and the self S  distortion part, which is as-
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sumed to rapidly decrease away from the fault plane. We can identify these 
parts with a radiation field T  and a fault-related field S . After 
splitting, the first equation for the field takes the form 

2 2
2

12 2
0 .l

x
(22.18)

The fault-related equation for the self-distortion will be as follows: 
2 2

2
12 2

0 .l
x

(22.19)

The above two equations have soliton solutions. These solitons are longi-
tudinal seismic waves. The latter equation describes the tectonic soliton 
that can be excited by past earthquakes and may propagate slowly along 
the fault to trigger new earthquakes. Figure 22.1 depicts the splitting the 
elastic distortion soliton equation into seismic soliton and fault-related 
soliton equations. 

Fig. 22.1  Illustration of the splitting the elastic distortion soliton equation into 
seismic soliton and fault-related soliton equations 

22.5  Seismic S Waves 

From some calculations concerning shear waves, after assuming that 
u1 0, Erofeyev (2003) arrived at the following equations: 

32 2
2 2 2

212
1 1 1 1

2 ,Su u u

t x x x x
(22.20a)
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2 2
21 21 2

212 2
1 1

0 .
S S

Su
B C

t x x
(22.20b) 

One can evaluate u2/ x1 from the second equation and substitute the 
expression obtained into the first equation differentiated with respect to x1.
That allows reducing Eqs. (22.20a, b) into one equation 

2 22 4 4 4
0 0

2 2 4 2 2 2 4

32 22 2 2 2
0 0

2 2 2 2 2

222 2
0

2 2 2

22 2
2 30

2 2 2

1

3

3 ( ) ( ) ,

S S S S

S S

S S

P

S S

S

S

S S
S S

S

V V

V x V x

u VV

B V x V x

V

V x

V

V x
(22.21)

where 2
0 /V C B  and the following dimensionless variables were intro-

duced:

1 ,x x
B

,StV
B

2

0

,
u

v
u

21

0

.
S

S B

u
(22.22)

Erofeyev (2003) was seeking a solution of Eq. (22.22) in terms of har-
monic wave with amplitude and phase slowly changing in time and space 

( , ) , . . ,i t kxS x t x t e c c (22.23)

where (x, t) is the complex amplitude, c.c. denotes the complex conju-
gate,  and k satisfy the dispersion relations 

2 2
4 2 2 2 40 0

2 2
1 0 ,

S S

V V
k k

V V
(22.24)

1.x

k
(22.25)

After some calculations, Erofeyev (2003) arrived at the equation of quasi 
-harmonic wave envelope.  The envelope evolution is described by nonlin-
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ear Schrödinger’s (NLS) equation in coordinates  = t,  = x g t

moving with the group velocity g = d /dk

2
2

2
i | | 0 ,gv

k
(22.26)

where
2

0

2
2 3 2 0

2

,

4 2 1 2

P

S

S

V

V
V k

V

(22.27)

2 4 6
2 6 4 2 2 4 6 40 0 0

0 2 4 6

2 4 2
2 2 4 2 20 0 0

2 4 2

3 30 3 3

6 3 3 3 1 .

S S S

S S S

V V V
k k k k

V V V

V V V
k k k

V V V
(22.28)

Equation (23.26) is a fault-related nonlinear Schrödinger’s equation that 
describes shear self-distortion solitons. This type of equation usually has 
multi-soliton solutions. This means that many solitons can be excited and 
may propagate slowly along the fault.  

Figure 22.2 depicts the shear self-distortion soliton propagating along 
the fault. This soliton is a solution of nonlinear Schrödinger’s equation 
(22.26). 

Fig. 22.2  Illustration of Schrödinger’s soliton of shear self-distortion propagating 
along the fault 

22.6  Conclusions 

We summarized briefly a few results of the gauge theory of an elasto-
plastic continuum with dislocations. Two soliton equations for elastic and 
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self-distortions were presented by Erofeyev (2003). Here, these results 
were applied to modeling tectonic solitons propagating along the fault. The 
first soliton equation for longitudinal elastic distortions was considered and 
split into seismic soliton and fault-related tectonic soliton equations. The 
second soliton equation derived by Erofeyev (2003) describes shear self 
-distortion solitons, thus it was already in the fault-related form. Both soli-
tons can propagate slowly along the fault and trigger earthquakes.  
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23.1  Introduction 

This chapter deals with complexity of seismic rotation soliton propagation. 
It describes an excitation of seismic rotation solitons as a result of a collin-
ear propagation of a seismic P wave and a seismic rotation wave. We as-
sume that the solid Earth’s interior is modeled as a micropolar medium 
filled with uniformly distributed defects in the form of disclinations. Our 
starting point is a set of coupled nonlinear differential equations for the 
seismic P wave and for the amplitude of the rotation angle oscillations.  

23.2  Preliminary Assumptions 

We consider a continuum with defects. There are many examples of crys-
tal lattice defects as: vacancies, impurities, dislocations, and disclinations, 
to name just a few. The self-fields, mentioned above, are created as a result 
of dislocations (during translational motions) and disclinations (during ro-
tational motions). Dislocations are the results of incompatibility of the 
strains, and disclinations are the results of incompatibility in the rotation. 
According to Teisseyre and Boraty ski (see Chapter 4), and Teisseyre and 
Bia ecki (see Chapter 6), the evolution equations for disclinations and dis-
locations can be written in the following forms: 

2
( ) 0
S

kq ks

pq pmk pmk qns

m m n

Y
b

x x x

for disclination density,

(23.1a)

0kl
pl pmk pmk klq mq

m

J
Y

x

for dislocation density.

(23.1b)
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From the first equation (23.1a), we can infer a direct connection be-

tween disclination density rate pq  and the self-rotation rate S

ks . The both 

variables can be treated as internal variables in the continuum with defects 
(cf., Majewski 1993, Majewski and Teisseyre 1997, 1998, Teisseyre and 
Majewski 2001, 2002) 

23.3  Seismic Rotation Solitons 

Deformation dynamics of the continuum with dislocations and disclina-
tions was discussed in Eringen (1999) and Teisseyre (2001). We introduce 
the following assumptions concerning the continuum with disclinations. 
We consider a collinear propagation of the seismic P wave and a seismic 
rotation wave in a micropolar continuum with uniform disclination distri-
bution. In addition, we assume that the disclinations are not interacting 
with each other. 

Fig. 23.1  Illustration of the amplitude of the rotation angle oscillations during the 
propagation of the seismic rotation soliton 

Due to the fact that the propagating seismic P wave is longitudinal, we 
can express the longitudinal stress S exerted on the disclination as 

2 2 ,xS u (23.2)

where  and  are the Lamé constants,  is the elastic Mooney constant, 
ux is the spatial derivative of the longitudinal displacement,   is the discli-
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nation density,  is the rotation angle (Nowacki W 1970, Nowacki JP 
1977, Eringen 1999, Teisseyre 2001, 2004).  

A seismic plane P-wave propagation in the micropolar medium with de-
fects along the x-axis can be described using the following set of coupled 
nonlinear differential equations 

2
0 12 2 ( ) ,tt xx x x xu u b u (23.3a)

2
2 3 42 ,tt xI b u b b (23.3b)

where u is the component of the displacement vector along the x-axis di-
rection, I is the rotational inertia, b1, b2, b3, and b4 are constant coefficients, 

0 is the initial density of the material, VP is the magnitude of the seismic 
P-wave velocity and 2

0( 2 ) /PV .
Equation (23.3a) is formulated for the longitudinal displacement due to 

the propagation of a plane seismic P wave in the medium with disclina-
tions. Equation (23.3b) is formulated for the amplitude of the rotation an-
gle oscillations. A similar set of differential equations was considered by 
Erofeyev and Pegushin (2003, 2004) for longitudinal waves of deforma-
tion propagating in porous media.  

Making use of the above notations for Eqs. (23.3a, b) we have 

2 2 2
1 0( / )( ) ,tt P xx P x x xu V u V b u (23.4a)

2 2
2 3 4( / ) ( / ) ( / ) .tt P xb I V u b I b I (23.4b)

We are now in a position to solve Eq. (23.4b) for the spatial derivative of 
displacement. Thus, we obtain 

234
2 2 2

2 2 2

.x tt

P P P

bbI
u

b V b V b V
(23.5)

Let us introduce the following nondimensional quantities: 

0

, ,
x

X
2

,PV t
T (23.6)

where 0 is the initial rotation angle,  is the wavelength. 
Now, we first calculate the derivative of ux in Eq. (23.5) with respect to 

x and next with respect to time. We insert the obtained expression into 
Eq. (23.4a). As a result, we obtain a differential equation for the rotation 
angle in the form 
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4 1
2 2

2 2 2

2

2 2 23 0 0 4
12 2 2

2 2

( ) ( ) ,

TT XX TTTT TTXX

P

TT XX

P P P
XX

b b I

b V b b

b b
b

b V V b V
(23.7)

where  contains some higher-order nonlinear terms. 
The above equation contains dispersive and nonlinear terms. Both are 

due to the presence of defects in the medium. In general, the interplay of 
dispersion and nonlinearity yields soliton solutions of nonlinear equations.  

Now we seek a solution of Eq. (23.7) in the form of stationary wave of 
rotation

,PRx v t (23.8)

where PR is the velocity of the stationary wave and  is a new variable. 
Making use of the new variable , we come to the conclusion that the 

sought solution of Eq. (23.7) is also a solution to the following equation 
2 0 ,Y (23.9)

where  and Y are determined in the form: 
2

22 4 1
2 2 2 2

2 2

,
( 1) PR

PR PR P P

b b b
v

v v b V b V
(23.10a)

2
2 3 0 0 32 1 4

2 2 2 2 2
2 0 2 2

.
( 1) PR

PR PR P P P

b bb b b
Y v

v v b V V b V b
(23.10b) 

Finally, the sought solution in the form of the rotation soliton is  

2( ) cosh ,PRx v t
(23.11)

where 3 / 2Y , and 2 / .
A similar problem was considered by Nikolaevskiy (1996). However, he 

started from a different set of equations and considered a porous medium. 
As a result, he obtained the Schrödinger solitons. 

23.4  Conclusions 

Although seismic waves have been studied for many years, their soliton 
nature has only recently come to wide notice. Deformation solitons propa-
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gate along earthquake faults and induce earthquakes. Rotation solitons are 
generated in earthquake sources and propagate throughout the Earth. The 
conclusion to be reached from these quite disparate examples is that the re-
search on seismic solitons is essential for investigating the propagation of 
seismic waves and helps understand mechanisms triggering earthquakes.  

This chapter briefly presented the main results concerning seismic rota-
tion solitons. An interesting question would be to consider the problem of 
stability and duration of the seismic solitons. 
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24.1  Introduction 

Internal structures and discontinuities in the earth’s crust and mantle seem 
to have an essential influence on deformation in rocks. So, it is reasonable 
to believe that the notion of continuum with microstructure is an applicable 
tool in describing earthquake phenomena. The generalized micromorphic 
continuum is especially suitable for treating the microstructure (e.g. Su-
hubi and Eringen 1964, Eringen and Claus 1970). From this point of view, 
Teisseyre and Nagahama (1999) applied the micromorphic continuum to 
discuss the generation and propagation of the rotation seismic waves. 

Basic relations of the micromorphic continuum will now be applied to 
another phenomenon in solid Earth, i.e. lattice preferred orientation (LPO) 
of polycrystals. The LPO has been observed within the polycrystals for a 
long time (e.g. Schmidt 1925, Sander 1930). The nature of the LPO due to 
the intracrystalline slip (dislocation slip and twinning) depends on geomet-
ric constrains on the deformation. The LPO of the polycrystals is applied 
to  infer  deformed  conditions  of the rocks,  because  the  LPO  pattern 
depends on several physical conditions during the deformation, such as 
temperature and strain rate (e.g. Lister et al. 1978). In this analysis, the 
Taylor–Bishop–Hill (TBH) model has been often used to simulate devel-
opment of the LPO patterns (e.g. Lister et al. 1978), which was first intro-
duced by Taylor (1938) and treated more mathematically by Bishop and 
Hill (1951). Based on an assumption that strain is homogeneous through 
the polycrystals, the TBH model has reproduced the observed LPO in 
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quartzite (Lister et al. 1978), calcite (Takeshita et al. 1987) and olivine 
(Ribe and Yu 1991). Yamasaki and Nagahama (2002) theoretically derived 
the TBH model with the help of differential forms and a gauge theory. 
However, geometrical relations between the theory of micromorphic con-
tinuum and the TBH model have not been obtained yet. 

The plastic deformation or flows in the lower crust and upper mantle in-
duces the seismic (elastic) anisotropy, which affects how fast seismic 
waves propagate in different directions. In the lower crust, the seismic ani-
sotropies indicate the presence of faults or plastic shear zones (mylonite 
zones) (Ji and Salisbury 1993). On the other hand, the seismic anisotropies 
in the upper mantle reflect mantle flow related to global tectonics (see the 
review by Park and Levin 2002). Thus, the research on the seismic anisot-
ropy of the rocks is essential for investigating the propagation of the seis-
mic waves. 

Here we briefly introduce the relationship between the theory of micro-
morphic continuum with defects and the Taylor–Bishop–Hill theory, and 
review the LPO development and seismic anisotropy of the deformed 
rocks based on the relations between the TBH model and the micromor-
phic continuum. Moreover, analyzing differential forms of defects, we dis-
cuss relations between the TBH model and the Golebiewska gauge accord-
ing to Yamasaki and Nagahama (2002). 

24.2  Micromorphic Continuum with Defects 

In the micromorphic continuum it is assumed that a body possesses a cer-
tain microstructure. After Suhubi and Eringen (1964), we define the fol-
lowing strain measures (see also Teisseyre 1973, 1974, 1995, Teisseyre 
and Nagahama 1999, Nagahama and Teisseyre 1998, 2000, 2001a, b): 
strain tensor enl, microstrain tensor nl , and microstrain moment tensor 

klm. From compatibility conditions for the strains and microstrains, we ob-
tain:

n
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where un is a displacement and kl  is a microdisplacement. Here we will 
confine ourselves to a linear theory and the Cartesian coordinate system. 

For rotation, we have 

1

2

ji
ij

j i

uu

x x
, (24.2)

while the bend twist mi (gradient of rotation) is defined as follows: 

1

2
i l

mi ikl

m k m

u

x x x
,

1

2
i ijk jk .

(24.3)

Moreover, from Eq. (24.1), the total plastic strain is obtained by a sum of 
two strains (macrostrain and microstrain) and rotation 

ij ij ij ije . (24.4)

Now we assume that the microdisplacement ij  and the microstrain 
moment tensor ijk are independent sources of incompatibilities (Nagahama 
and Teisseyre 2001a: case II). In such a case, we obtain 

1

2
kn

sn smk

mx
. (24.5)

In this case, disclinations also appear and we shall relate the disclinations 
to moments of the microstrains: 

stkqstkq ,

kq stk
pq pmk pmk qst

m mx x
.

(24.6)

From Eqs. (24.5) and (24.6), dislocation density sn and disclination den-
sity pq  are related to the microdisplacement ij , and the deformation of 

the micromorphic continuum leads to an appearance of defects (i.e. dislo-
cations and disclinations). 
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24.3  Taylor–Bishop–Hill Model 

The derived formula on the theory of micromorphic continuum with de-
fects is applied to the lattice preferred orientation (LPO) of the polycrystals 
described by the Taylor–Bishop–Hill (TBH) model. In this section, we 
briefly introduce the TBH model (Gil Sevillano et al. 1980, Van Houtte 
and Wagner 1985, Fleck et al. 1994). 

External rotation must be created in the case of polycrystal deformation, 
because the deformation of each grain in the polycrystals is constrained by 
the surrounding grains (Fig. 24.1). The simplest model for the constrained 
deformation in the polycrystals is the Taylor homogeneous deformation 
hypothesis. Thus, the development of LPO is a natural outcome in the 
TBH model. In the TBH model, we assume that a material deforms 
through the crystal lattice by the intracrystalline slip and that the lattice 
undergoes the rotation. The basic relation in the TBH model used exten-
sively in plasticity of the polycrystals is given by 

S Rd d di i iu u u , (24.7)

where
Sd di ij ju x , Rd di ij ju x . (24.8)

Fig. 24.1 Schematic models for the additional crystalline lattice rotation dui
R with 

the intracrystalline slip dui
S: (a) The case when a crystal is not constrained by the 

external displacement. The base of the square rotates clockwise following the 
torque of the intracrystalline slip; (b) The case when the bases of the crystal are 
fixed by the piston. In this boundary condition, the crystal rotates counterclock-
wise against the torque of the intracrystalline slip. In the polycrystals, the piston is 
replaced with other crystals (modified from Wenk et al. 1986) 
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Here, dui
S is the relative displacement due to the intracrystalline slip and 

dui
R is due to an additional lattice rotation for bringing the crystal lattice to 

rotate. In Eq. (24.8), dui
S is linearly related to dxj via a slip tensor ij and 

dui
R is related to dxj via a rotation tensor ij . A particular slip system ( ) is 

specified by a slip vector si and a vector of the slip plane normal nj. The 
slip tensor ij is associated with an amount of the slip  ( ) on each of the ac-
tive slip systems, hence 

jiij ns , (24.9)

where the summation is taken over all active slip systems. 
The physical meaning of these equations is that the imposed strain in 

each crystal dui (i.e. macroscopic strain in the Taylor model) can be ac-
commodated by the strain created by multiple slips in the crystals dui

S and 
the additional lattice rotation dui

R generating the LPO. In other words, the 
strain compatibility leads to the appearance of the lattice rotation. From 
Eqs. (24.4) and (24.7), we have the correspondences of the variables, i.e. 

d i iju , Sd i ij iju e , Rd i iju . (24.10)

One-to-one correspondence (24.10) shows that the deformation of the mi-
cromorphic continuum is related to the TBH model. Moreover, the micro-
displacements ij  is equivalent  to the additional lattice  rotation  dui

R,  and 
the deformation  of the  micromorphic  continuum  creates anisotropic  tex- 
tures in the polycrystals. 

24.4  Quartz c-axis Preferred Orientation in Quartz Schist 

Since quartz is the most abundant mineral in the upper crust, its rheologi-
cal properties govern the rheological structures of the upper crust. In this 
section, we briefly review the results of quartz c-axis preferred orientation 
in quartz schist from the Sambagawa metamorphic belt, Japan, according 
to Tagami and Takeshita (1998). 

In each sample the c-axis orientations of 350 recrystallized quartz grains 
were measured with a universal stage which permits tilting of a thin sec-
tion at any angle  for measuring  the optical structure  of a crystal  in three 
-dimensions, using XZ thin sections (X is parallel to the fabric lineation di-
rection, and Z is chosen perpendicular to the foliation plane). Aspect ratio 
(ratio of long axis to short one) of quartz grains were also measured for es-
timation of strain magnitude. From the acquired mean aspect ratios, natural 
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octahedral strain  was determined according to Nadai (1963). Moreover, 
fabric intensity I (Lisle 1985) was also measured. 

Figure 24.2 displays the c-axis fabric diagrams of four specimens. The 
measured c-axis fabrics can be classified as type I crossed girdles (Lister et 
al. 1978). This fabric consists of symmetrically arranged 15-30º small cir-
cle girdles around the Z axis and a connecting girdle across the Y axis. This 
fabric pattern in the observed samples can be reproduced by the Taylor 
model quartzite B of Lister and Hobbs (1980) (see also Price 1985). The 
active slip systems in the model quartzite B are basal <a>, rhomb <a> and 
rhomb  <a+c>  (Lister  and  Hobbs  1980).  These  slip systems  are  in fact 

Fig. 24.2 Quartz c-axis fabric diagrams, strain magnitude , and fabric intensities 
I of four specimens on quartz schist in the Sambagawa metamorphic belt, Japan. 
Contour intervals: 1, 2, 3, 4, 5%. Broken lines represent 1%, and black regions 
above 5%.  Top circle represents  the main structural  direction  in the diagrams; 
X: parallel to the fabric lineation direction, Y: perpendicular to the fabric lineation 
direction, Z: perpendicular to the foliation plane (modified from Tagami and Take-
shita 1998) 
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proven to have been active in the natural quartzite deformed under a green-
schist facies condition, based on the crystallographic orientations of the ro-
tation axis of misorientation in the recrystallized grains (or subgrains) (e.g. 
Lloyd and Freeman 1991, 1994, Fliervoet and White 1995). In Fig. 24.2, 
the strain magnitude  and fabric intensity I of four specimens are also 
shown. The fabric intensity I increases with increasing the strain magni-
tude  in four specimens. In other words, the increase in the plastic de-
formation intensifies the degree of the concentration of the quartz c-axis
orientations.

24.5  Seismic Anisotropy due to LPO in Deformed Rocks 

Here, in this section, we briefly introduce the relations between the LPO of 
the minerals and the seismic anisotropies of the mantle rocks (i.e. lher-
zolite) according to Barruol and Kern (1996). Laboratory seismic velocity 
measurements were made in a cubic pressure apparatus using a pulse 
transmission technique. Cubic samples (43 mm edge) were cut parallel to 
main structural directions X, Y and Z. The P- and S-wave velocities were 
measured at high temperature (up to 600 or 700ºC) and 600 MPa confining 
pressure.

A lherzolite sample from the Ivrea zone (northern Italy) was selected for 
the laboratory seismic measurements. It is characterized by a typical coarse 
granular texture and displays an evidence of the plastic deformation. The 
sample numbers, along with the modal composition of the rocks  and the 
P-wave anisotropy, are shown in Fig. 24.3. Olivine shows an LPO with 
strong maxima of [010]-axes close to a pole of the foliation whereas the 
[100] are parallel to the lineation (X direction). The LPO pattern of or-
thopyroxene is typical of the upper mantle rocks (e.g. Boudier et al. 1984): 
the a-axes are grouped in a maximum close to the pole of the foliation 
(Z direction). The c-axes form a girdle in the foliation plane with a maxi-
mum close to the lineation (X direction). The P-wave properties are con-
trolled by olivine, which represents the major volume of the rock (about 
80%). The slow P-wave direction (VP = 7.95 km/s) is parallel to the olivine 
[010]-axes, while the fast P-wave direction (VP = 8.87 km/s) is parallel to 
the lineation direction characterized by the concentration of the olivine 
[100]-axes (fast P-wave direction in the olivine single crystal). From these 
analyses, the LPO of main constituents (olivine) induces the seismic ani-
sotropy in the upper mantle rocks. 
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Fig. 24.3 Lattice preferred orientation (LPO) diagrams, P-wave velocity distribu-
tion, and modal composition of a lherzolite sample in the Ivrea area. In the LPO 
diagrams, contour intervals: 1, 2, 3, 4, 6, 8, 10%, and broken lines represent 1%. 
A left small circle represents the main structural direction in the LPO diagrams 
and the P-wave velocity distribution. The modal composition is displayed in a pie 
diagram (modified from Barroul and Kern 1996) 

24.6  Discussion 

The deformation of the micromorphic continuum leads to the appearance 
of the defects. In Sections 24.2 and 24.3, we reconsidered the TBH models 
from the view point of the theory of micromorphic continuum with de-
fects. Then we briefly reviewed the results of the natural LPO develop-
ments and seismic anisotropies of the polycrystals (quartz schist and lher-
zolite). In the LPO of quartz schist, the fabric intensity I increases with the 
plastic strain  increasing. Moreover the LPO of olivine which is the main 
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constituent of lherzolite induces the seismic anisotropy of lherzolite. In the 
theory  of micromorphic  continuum,  the  plastic strain ij   is composed of 
the sum  of   the strain  eij,  rotation  ij  and  microdisplacement ij   corre- 
sponding to the additional lattice rotation dui

R. Thus, the increase in the de-
formation, i.e. the increase in the plastic strain ij ,  leads to the increase  in 

the additional lattice rotation dui
R  in Eq. (24.7).  As a result,  the fabric  in- 

tensity I increases with increasing the plastic strain . Regarding the 
seismic anisotropy in lherzolite, since the fast P-wave direction corre-
sponds to the direction of the olivine [100]-axes (fast P-wave direction in 
the olivine crystal), the LPO of the main constituent by the plastic defor-
mation induces the seismic anisotropy of lherzolite. Thus, the results of the 
LPO developments and seismic anisotropies of the deformed rocks (i.e. 
quartzite and lherzolite) are concordant with our theoretical considerations. 
As above mentioned in Sects. 24.2 and 24.3, the microdisplacements ij  in 
the micromorphic continuum correspond  to the  additional lattice  rotation 
dui

R in the polycrystals, and the deformation of the micromorphic contin-
uum induces the anisotropic textures and seismic anisotropy in the poly-
crystals. 

In the mathematical description of defect fields, the gauge theory has 
played main roles (e.g., Golebiewska-Lasota and Edelen 1979, Kadi  and 
Edelen 1983, Nagahama 2001, Yamasaki and Nagahama 2002). In the 
gauge theory, gauge potential field introduces a topological phase in direct 
analogy with the potential field in electromagnetism. Based on the anal-
ogy, Golebiewska-Lasota and Edelen (1979) demonstrated the gauge trans-
formation of defect (i.e. dislocations and disclinations) dynamics. Yama-
saki and Nagahama (2002) derived the TBH model from the Golebiewska 
gauge transformation. In the differential form, a physical quantity i can be 
transformed under the Golebiewska gauge transformation, as follows: 

Hi i i j

e j , (24.11)

where i

e  is called  an exact part of i ,  H is a linear homotopy  operator, 
i

j   is a connection 1-form  and  a symbol   denotes  an exterior product. 
From  the differential  geometrical  description  of  a deformed  medium 
including the defect field (Edelen and Lagoudas 1988), the physical quan-
tities  in the strain space-time  can be  expressed  as  follows:  i iB and

i j i

j K , where Bi and Ki represent the distortion-velocity 1-form and 
bend-twist-spin  2-form,  respectively.  From the definitions  HBi = ui,
HKi = ri, the relation (24.11) can be rewritten: 

di i iB u r . (24.12)
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Equation (24.12) means that the total distortions Bi are given by a differ-
ence of two terms: the gradient of displacement dui  and an internal rota-
tion ri. From one to one correspondences between Eqs. (24.7) and (24.12), 
the Golebiewska gauge transformation corresponds to another expression 
of the TBH model in the strain space-time (Yamasaki and Nagahama 
2002).

24.7  Conclusion 

Here we briefly introduced the relationships between the theory of micro-
morphic continuum with defects and the Taylor–Bishop–Hill theory. The 
deformation of the micromorphic structure (continuum) induces the ap-
pearance  of  the  defects  (dislocations  and  disclinations).  In  the  Taylor 
–Bishop–Hill theory for the polycrystals, the total strain of the polycrystals 
is decomposed into the multiple slips in the crystals and into the additional 
lattice rotation. From the correspondence between the theory of micromor-
phic continuum and the TBH model, the microdisplacement in the theory 
of micromorphic continuum with defects corresponds to the additional lat-
tice rotation which creates the anisotropic texture (i.e. LPO). Then, from 
the view point of the correspondences between the micromorphic contin-
uum and the TBH model, we reviewed the development of the natural LPO 
and seismic anisotropies of the deformed rocks (i.e. quartz schist and lher-
zolite). On the basis of the differential form of the defects, we pointed out 
that the additional lattice rotation in the TBH model is another expression 
of the Golebiewska gauge in the strain space-time. 
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25.1  Introduction 

In seismological studies, ray theory for high frequency wave has been dis-
cussed and extended by many researchers (e.g. Achenbach et al. 1982, 

ervený 2002). The seismic ray can be obtained either by solving the 
elasto-dynamic equations, (i.e. Euler–Lagrange equation or Hamilton 
equation) or by using a generalization of Fermat’s variational principle 
(Bóna and Slawi ski 2003). These geometrical ray theories are similar to 
the previous seismic ray theory (Teisseyre 1955, Babich 1961, 1994) and 
the other ray theories in acoustic ray (Ugincius 1972, Meyer and Schroeter 
1981) and light (Babich 1987, Joets and Ribotta 1994). 

Since a micromorphic continuum (Eringen and Suhubi 1964) can ex-
press a continuum with microstructure such as earthquake structure (Teis-
seyre 1973, Nagahama and Teisseyre 2000) and an anisotropic texture and 
seismic anisotropy in polycrystals (Mainprice and Nicolas 1989, Sieges-
mund et al. 1989, Muto et al. 2005), a new theory of the micromorphic 
continuum is needed for the propagation theory of seismic wave. The 
seismic wave propagating through the anisotropic medium can be regarded 
as a velocity vector field on each material point. 

The geometry of the medium consists of the crustal material point and 
the direction of the velocity attached on each point, and seismic rays are 
geodesics in Finsler space (Bernstein and Gerver 1978, Hanyga 1984). 
Moreover, Antonelli et al. (2003) have introduced the seismic Finsler met-
ric for anisotropic and inhomogeneous medium. From standpoints of 
higher-order geometry, the intrinsic behaviour of the ray velocity attached 
toeach point can be represented by the base connection in Kawaguchi 
space (Kawaguchi A 1931, 1966, Kawaguchi M 1962). 
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Here, we discuss a new seismic ray theory from the view point of 
higher-order geometry. Firstly, we introduce the Finsler geometry for 
seismic ray, and point out that the intrinsic behaviour of seismic ray veloc-
ity can be given by two covariant derivatives in higher-order space. Then, 
we proposed a relation between a metric of Kawaguchi space and a seis-
mic Finsler metric. From the view point of the differential geometry, we 
discuss how to estimate the anisotropy of crustal materials (structural me-
dium) from seismic ray path. This section is an extensional version of our 
previous study (Yajima and Nagahama 2004). 

25.2  Finsler Geometry and Seismic Ray 

The seismic ray path is regarded as an arclength along a curve xi = xi(t), 
where i = 1, 2, 3 and t is a traveltime. This geometrical interpretation is 
expressed by the theory of higher-order space called Kawaguchi space 
(Kawaguchi A 1931; 1966; Kawaguchi M 1962). In Kawaguchi space of 
order , the arclength is defined by 

1( , , , )d ,i iis F x x x t (25.1)

where x( )i = d xi/dt , and  F denotes a fundamental function or Lagrangian. 
In order to investigate the seismic ray,  we  will  regard the Lagrangian F
as a function of not only the position but also its velocity vector. In this 
case, the Lagrangian  F(xi, x(1)i, …, x( )i)  reduces F(xi, x(1)i) = F(xi, vi),
where x = (xi) is the position and the quantities v = (vi) = (dxi/dt) which are 
tangent to the ray represent the component of group velocity for seismic 
ray ( ervený 2002). In this case, since the ray is invariant under change of 
parameter t, the Lagrangian F is homogeneous of degree one in the vari-
able vi. Geometrically, the space defined by the function F(xi, x(1)i) is called 
Finsler space, i.e. higher-order space of order 1. Therefore, the seismic ray 
theory is geometrized in higher-order space. Here, the Latin indices refer 
to the general curvilinear coordinates and we use the Einstein summation 
convention.

Now,  in Finsler space,  when  we  chose  the  variables  (x, v),  then the 
v-dependence of seismic ray is geometrically represented by the connec-
tion coefficient i

jkC  given by the following covariant derivative for an ar-
bitrary vector field  = ( i) and i = 1, 2, 3: 

D d d d ,i i i j k i j k

jk jkx C v (25.2)

where i

jk  and i

jkC  denote the Finsler connection coefficients and charac-
terize x-field and v-field, respectively (Cartan 1934, Rund 1959). Then, we 
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consider the intrinsic behaviour of group velocity v whose parallelism dis-
tinguishes from the covariant derivative Eq. (25.2). Therefore, we intro-
duce a new parallelism of v. This new parallelism can be expressed by a 
base connection of the group velocity v in Kawaguchi space. The base 
connection vi is defined by 

d d d d d ,i i i j k i j k i k i k

jk jk k kv v x E v v P x G v (25.3)

where the new Finsler connection coefficients i

jk  and i

jkE  are different 

from the coefficients of Eq. (25.2), respectively, i.e. Dv v. We also put 
i i j

k jkP v  and i i i j

k k jkG E v . The coefficients i

jk  and i

jkE are func-

tions of  xi  and  vi. Here, from the general standpoints, we don’t assume 
the homogeneity conditions 0i j

jkC v  and 0i j

jkE v  as Cartan’s theory of 

Finsler  geometry  (Cartan 1934). Since  Dv v,  the covariant  derivative 
v is regarded as the intrinsic parallelism of group velocity v and we can 

consider the influence of structural medium on the group velocity. When 
the condition v = 0 holds, neighbouring vectors {v} are displaced parallel 
each other. This  state  corresponds  to  the  oriented  seismic  ray  velocity. 
If v is orientable as a function of x from the condition v = 0, then we get 
non-linear  connection 1( )l j l

k k jN P G   obtained  by  l k l

kv x N   and 

Eq. (25.2) is reduced to 

D d d ,i i i j k

jk x (25.4)

where i i l i

jk jk k jlN C . It is found that the x-field i

jk  and v-field i

jkC

are unified into one field i

jk  which expresses anisotropy in the crustal 

materials. In this case, the coefficient i

jk  is related to the non-linear con-

nection l

kN  expressed by the intrinsic property of group velocity v from 
the base connection Eq. (25.3).  

In this  section,  we  considered  the seismic  ray  in  higher-order  space. 
The behaviour of x-field and v-field is given by the covariant derivative 
(Eq. 25.2). Moreover, the intrinsic behaviour of v-field can be expressed 
by the base connection v (Eq. 25.3) in higher-order space. When the con-
dition v = 0 holds, a geometrical structure is expressed by Eq. (25.4).  

25.3  Seismic Finsler Metric and Kawaguchi Space 

The covariant derivative derives the geodesic equation. In Eq. (25.4), we 
put the vector i  on the contravariant component of ray velocity vi. Then, 
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the covariant derivative Dvi/dt = 0 is the geodesic equation. In this case, 
the condition vi = 0 holds good. Then, the torsion tensor [ ]2i i

jk kjT ap-

pears, and this space becomes generalized Berwald space which is a kind 
of Finsler space (Wagner 1943). 

Here, we define Lagrangian for seismic ray as follows: 

( , ) ,
( , )

j j
i i

i i

v v
F x v

V x v
(25.5)

where the ray velocity function V(x,v) is divided into the spatial function 
h(xi)  and  direction  function  (vi),  i.e.  V h(xi) (vi).  Especially,  the 
torsion tensor is given by semi-symmetric tensor i i i

jk j k k jT , where 

i / xi is an arbitrary contravariant vector,  = (xi) is a scalar function 
of position and i

j  is Kronecker’s delta. When we impose the Cartan’s 

condition, the space becomes Wagner space which is a kind of generalized 
Berwald space (Wagner 1943). In Wagner space, the Lagrangian can be 
written by (Hashiguchi 1977) 

( )e ( ),
ix iF F v (25.6)

where e and F  are spatial and velocity dependence part of F, respec-
tively.

In the two-dimensional case (x1: horizontal axis; x3: vertical axis), we 
write (xi) = (x1, x2, x3) = (x, 0, z) and the contravariant component of group 
velocity (vi) = (v1, v2, v3) = ),0,( zx . Moreover, we assume that the spatial 
change depends on only the depth z, i.e. h(x3) = h(z) = c1 + c2 z, where c1

and c2 are positive constants. From Eq. (25.5) and Eq. (25.6), the Lagran-
gian is expressed by 

1
ln ( )e ( ) ,h z m m mF x z (25.7)

where (x3) = –lnh(z) = –ln(c1 + c2 z)  and  mmm zxF /1)( , m  is not 
an index and is an even integer, m  2. This space is called seismic Finsler 
space (Antonelli et al. 2003). The Lagrangian equation (25.7) is a special 
1-form metric, i.e. m-th metric (Matsumoto and Shimada 1978). In Wagner 
space, the geodesic equation with m-th metric is given by (Antonelli and 
Shimada 1991) 

2
2

2

d d d
2 0 ,

d d d

i j k
i ij

j k j

x x x
F g

t t t
(25.8)
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where ijg  is the inverse of 2 2 2 i j

ijg F v v . This equation is the geo-

desic equation for seismic ray related to Eq. (25.4). Hence, the oriented di-
rection states vi = 0 for ray velocity is a necessary condition for Wagner 
space with seismic Finsler metric.  

More  generally,  the  m-th  metric  can  be  derived  from  Kawaguchi 
space. We show a relation between the Antonelli’s seismic Finsler metric 
(Eq. 25.7) and a special metric of Kawaguchi space. Hokari (1936, 1940) 
proposed a special form of fundamental function F

1

1

1/

( )( )

0

,K

K

p
K

a ia i

K i iF C b a a x x (25.9)

where KC = K!/{(K – )! !}, and K, p and are not indices and are con-
stants. Moreover, b  and ai are functions of x, x,(1) , x( - 1), respectively. 
Here, we can derive the Antonelli’s seismic Finsler metric from the fol-
lowing conditions: 

ln ( )1, e ,

1 ( 0 ; 0 ( 0 .

h z

i j ija a

b b
(25.10)

Moreover, since the dimension of the quantities in Eq. (25.7) must be con-
cordant with that in Eq. (25.9), we should put K = p = m after Eq. (25.10) 
applied Eq. (25.9). Under this constraint, the fundamental function Eq. 
(25.9) can be easily reduced to that in Eq. (25.7). From the view point of 
seismology, the m-value in Eq. (25.7) expresses the anisotropy of seismic 
wavefront, which is discussed in the next section. 

25.4  Discussion 

In Section 25.3, we derived the Antonelli’s seismic Finsler metric from a 
special form of the fundamental function in Kawaguchi space. The Ber-
wald’s Gauss curvature scalar R (Berwald 1947) for Antonelli’s seismic 
Finsler metric is given by 

2 2 2
2

2 (2 ) /

( ) [( 2) ]
,

4( 1) ( )

m m m

m m m m

m c z m x m z
R

m x z
(25.11)

(Antonelli et al. 2003). Here, the m-value in Eq. (25.11) corresponds to the 
m-value in Eq. (25.7). For m > 0 and c2 > 0, the seismic ray angle  can be 
determined where the curvature vanishes: 
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1

2
0 tan 1 .

mx
R

z m
(25.12)

Therefore, from Eq. (25.12), the ray angle  depends on the radical sign m,
and the m-value corresponds to the p-value in the special Kawaguchi space 
(Eq. 25.9). The case m = 2 is Euclidean, and m > 2 is Finslerian. The fun-
damental function (Eq. 25.7) can be related to the Minkowski metric. The 
two-dimensional Minkowski metric is expressed by 

1

| | | | .m m m
mD x z (25.13)

The set points for Dm = 1 are called the unit ball of the metric (Anderberg 
1973). For m = 2, the metric is Euclidean and the unit ball is the circle. 
When the even integer m takes 2 < m < , the unit ball is a convex curve. 
For m , the unit ball approaches the square and from Eq. (25.12) the 
ray angle is /4, i.e. a vertex of the square. Thus, in Eq. (25.7), at fixed 
point x, i f we put m = 2, the group velocity surface F = 1 ( ervený 2002), 

2 2 1/ 2exp[ ln ( )]( ) 1F h z x z  describes a circle in the ),( zx group 
velocity space, and the wavefront propagates isotropic. On the other hand, 
m > 2 as m , the circle approaches a square which defines the group 
velocity surface and the velocity space is anisotropic. Thus, the m-value in 
Eq. (25.7) means the anisotropy of seismic wavefront. Moreover, from a 
seismic ray path based on m-value, we can estimate the seismic anisotropy 
in structural medium (a continuum with microstructure) such as the earth-
quake structure (Teisseyre 1973, Nagahama and Teisseyre 2000) and the 
seismic anisotropy of polycrystalline rocks (Mainprice and Nicolas 1989, 
Siegesmund et al. 1989, Muto et al. 2005). 
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26.1  Introduction 

Internal structures and discontinuities in the lithosphere have an essential 
influence on fracturing. Hence, it is reasonable to believe that the notion of 
continuum with microstructures can be a suitable tool in describing earth-
quake phenomena (Teisseyre 1973). Generalized micromorphic continuum 
is especially suitable for introducing microstructure (Suhubi and Eringen 
1964). When the deformations imposed on a microstructural element fa-
vour its elongation rather than rotation during fracturing, the symmetric 
micromorphic continuum is suitable to our considerations on the role of 
microstructures in a seismic source zone (Teisseyre 1973, Nagahama and 
Teisseyre 2000, 2001). Takeo and Ito (1997) have discussed rotational ef-
fect by using continuous dislocation theories, which can be connected with 
the theory of micromorphic continuum (Teisseyre 1973, 1974). Moreover, 
when friction motion along precuts occurs during earthquakes, it is better 
to use the asymmetric micromorphic continuum (similar to the micropolar 
mechanics: Teisseyre 1973, Shimbo 1978, Iesan 1981, Pasternak et al. 
2003, 2004). For earthquakes, however, these theories have not been con-
sidered or unified using the concept of non-locality, asymmetry and inner 
-rotation of deformation. 

In this chapter, we will reconsider the continuum with microstructures 
taking into account the concepts of non-locality, asymmetry and inner 
-rotation of deformation from the viewpoint of the differential geometry of 
high-order spaces. Then we will discuss relations between the earthquake 
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phenomena and the continuum with microstructures, and between the 
characteristics of fractal patterns (faults or earthquakes) and the character-
istic length of structure caused by macrodislocations and microdisclina-
tions.

26.2  High-Order Spaces and Non-Locality of Deformation 

The high-order space (or the Kawaguchi space: Kawaguchi 1931, 1937, 
1962) of order M (= 1, 2, 3, ...) is a metrical space ( )M

nK  in which the arc 
lengths along a curve ( )x x t  (t is an arbitrary parameter) is given by 
the integral 

(1) (2) (3) ( ), , , , ..., d ,MS F tx x x x x (26.1)

where F means the fundamental function satisfying some homogeneity 
conditions and ( ) ( d d ; 1, 2, ..., 1)i ix x t M n  is an independent 
internal variable. Of course, this space is regarded as a generalized Rie-
mannian or Finsler space non-localized by ( )

x  (here (1)
x  is a vector, but 

( ) ( 2)x  are the tensors). It turns out that the Riemannian space is a 
higher-order space of order 0, the Finsler space is a higher-order space of 
order 1, and the Cartan space is a higher-order space of order 1n .
Moreover, when we regard the non-Riemannian space and ( )

x  as a base 
space and a fiber, respectively, this high-order space is a fiber bundle 
space (Kawaguchi 1931, 1937, 1962). 

We shall consider a geometrical grasp of the inherent law of an inde-
pendent internal variable. At first, we shall write such laws of ( )x  in the 
form 

( ) ( ) ( )
( )

1

d d ,x M x N x (26.2)

which are essentially regarded as the base connections of high order spaces 
(Kawaguchi 1962). In this equation, ( )M  and ( )N  represent the inter-

actions between each order of the internal variables. Concerning the con-
cept of “non-locality”, this is carried by the internal variable such as ( )x ,
so that a “non-local” field advanced by Yukawa (1950) can be obtained by 
attaching an internal variable to each point of a local (or Riemannian) 
field. This way of thinking descends from the theory of high order spaces 
(Kawaguchi 1931, 1962). 
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Finsler space can be regarded as a generalization of Cosserat continua 
(Cosserat and Cosserat 1909). When an independent internal variable (1)

x

is a vector attached to each point of the continuum, the space can be re-
garded as ordinary Cosserat continua. When an independent internal vari-
able (1)

x  is a deformable director attached to each point of the continuum, 
we can get the theory of continuum mechanics of oriented media (Ericksen 
and Trusdell 1958). Moreover, when an independent internal variable (1)

x

is a tensor attached to each point of the continuum, we can derive the mul-
tipolar theory (Green and Rivlin 1964). More generally, when an inde-
pendent internal variable (1)

x  is a m-dimensional manifold attached to each 
point of the continuum, we can derive Capriz’s continuum with micro-
structures (Capriz 1989). 

26.3  An Interaction Field Between Microscopic and  
         Macroscopic Deformation Fields 

In this section, we shall derive an interaction field between microscopic 
and macroscopic fields based on the base connections of high order spaces. 

At first, we shall consider an interaction field between microscopic de-
formation field (1)( )i ix  and macroscopic deformation field x  (in our 
notation the Latin index letter refers to the microscopic deformation field 
and the Greek one to the macroscopic deformation field). When micro-
scopic deformation fields j  satisfy the inherent laws, we can put 0j .
In this case, the base connection becomes 

d d ,i

ix A (26.3)

where iA  is the interaction coefficient between microscopic and macro-

scopic deformation fields and is equivalent to (1)iN . The interaction coeffi-

cient iA  is non-symmetrical in general. 
Next, based on the differential geometry methods (Kondo 1953), we 

shall consider geometrical backgrounds of the inner-rotation. If small dis-
turbances alone are considered, the deformation state of macroscopic de-
formation field can be grasped by the metric g  and the coefficient of 

connection after deformation in the form:  

( )2 ,j i

jig A A           ,i

i (26.4)
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,i

iA A           ,i

i (26.5)

where ( )  is an ordinary strain, i  represents deformation.  

The antisymmetric strain does not represent the metric imperfection, but 
the rotational characteristic of microelements. Moreover, using the sym-
metric and antisymmetric strains, the coefficient of connection after de-
formation can be expressed in the form: 

( ) [ ] . (26.6)

Thus, antisymmetric strains affect the metric imperfection, but the coeffi-
cient of connection after deformation remains unchanged. Let us introduce 
the inner-rotation ; the relation between the strain and the inner 
-rotation is generally given by 

.u (26.7)

Therefore, the object of anholonomity in the macroscopic deformation 
field after deformation can be expressed by 

[ ] [ ] . (26.8)

This shows the geometrical object for the inner-rotation. 
In the so-called Cosserat continuum (Cosserat and Cosserat 1909), the 

deformation and rotation tensors are given by 

( ) ( ) ( ) ( ) ,u u

[ ] [ ] [ ] [ ] ,u u
(26.9)

where u  is the displacement of a material element and  is the rotation 
independent of the rotation [ ]u  originating from the displacement. In the 
micromorphic continuum theory (Suhubi and Eringen 1964), the deforma-
tions are represented not only by the displacement vector u , but also by a 
new tensor that describes deformations and rotations of microelements 
(e.g., grains, blocks or some internal surface defects). It is a microdis-
placement tensor . The deformation can be now expressed by the fol-
lowing strain measures (e.g. Eringen 1968): 

     strain tensor                              ,e u (26.10)

     microstrain tensor                      ,u (26.11)
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     microstrain moment tensor      . (26.12)

The microdisplacement tensor  represents the relative deformation be-
tween microscopic and macroscopic fields. Regarding the microdisplace-
ment tensor  as the inner-rotation , Eq. (26.11) is equivalent to 
Eq. (26.9). In this case, the order of the microstrain moment is the order of 
the coefficient of connection, and microdisplacement tensor  plays an 
important role as the inner-rotation or the object of anholonomity in the 
macroscopic deformation field after deformation. 

26.4  Asymmetry and Anholonomity of Deformation 

Based on the base connections of high order spaces and the non-locality of 
deformation, an interaction field between microscopic and macroscopic 
deformation fields can be grasped by the ( , )-fieldsix A  as non-local 

fields. Moreover, based on the differential geometry methods (Kondo 
1953), the inner-rotations as asymmetric fields can be derived from the 
( , )-fieldsix A , and the geometrical backgrounds of the inner-rotation are 

considered. Therefore, the interaction coefficient iA  can be used to inves-

tigate the correlation between the macroscopic deformation field and the 
microscopic deformation field with microstructures. The metric and the 
coefficient of connection in strain space are dual to the stress and couple 
stress in stress space, respectively (Amari and Kagekawa 1964, Yamasakai 
and Nagahama 2002). This means that the asymmetrical fields originate 
from the non-local fields: an interaction field between microscopic and 
macroscopic deformation fields is a non-local field with internal variables 
as the inner-rotations  or ( )x . This internal variable ( ) -dependencex

is combined, in general, not only with the concept of “non-locality” but 
also the concept of “anisotropy” (Takano 1968). 

In the micromorphic continuum theory (Suhubi and Eringen 1964), ow-
ing to the axiom of affine motion, and by analogy with the deformation 
gradients, the microdisplacement as the inner-rotation is linked to the rela-
tive deformation defined by the position of a material point of the micro-
volume relative to the center of mass of the macrovolume of the body. In 
this case, non-linear or irreversible behaviours with the inner-rotation have 
not been clear and not been linked to anholonomity in an interaction field 
between microscopic and macroscopic deformation fields. According to 
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the theory of the physical interaction field (Ikeda 1972, 1975, Muto and 
Nagahama 2004), the inner-rotation plays an important role in the object of 
anholonomity in the macroscopic deformation field after deformation. The 
object of anholonomity can describe the non-linear or irreversible behav-
iour of an interaction field between microscopic and macroscopic fields, 
because the interaction coefficient iA  is non-symmetric in general. 

26.5  Discussion 

To complete our study of earthquake structures, we demand that deforma-
tions imposed on a microstructural element allow its elongation and rota-
tion. This justifies our choice of micromorphic continuum in which length 
deformations of the Cosserat directors are also allowed. A new microdis-
placement tensor  describes deformations and rotations of microele-
ments (e.g., grains, blocks or some internal surface defects: see Twiss and 
Unruh 1998, Twiss et al. 1991, 1993). In particular, while considering a 
focal region and its deformations, the micropolar theory (rotation only: 

) is rather inadequate for seismological problems (Teisseyre 
1973, Nagahama and Teisseyre 2000, 2001). But considering the friction 
motion along precuts, the asymmetric micromorphic continuum is suitable 
(micropolar mechanics: Shimbo 1978, Iesan 1981, Teisseyre 1995a, b, 
Pasternak et al. 2003, 2004). All these continuum definitions satisfy our 
non-local continuum theory discussed in this paper. 

For the past several years, the rotation seismic wave has become again a 
subject considered from theoretical and observational points of view 
(Takeo and Ito 1997, Moriya and Teisseyre 1999, Teisseyre 2002). Defects 
and internal structure contribute to processes of  generation and propaga-
tion of rotation waves. In the case of non-ideal elasticity, the seismic rota-
tional waves appear due to defect content (the non-symmetric disclina-
tions) in a medium or due to internal structure of a medium (micromorphic 
or micropolar media) of the source zone.  

In the classic approach to ideal elasticity, these waves would become 
rapidly attenuated. However, when introducing the elastic bonds for rota-
tion of particles, the antisymmetric stresses (or stress moments) will appear 
(an additional constitutive law joining such stresses with rotations will be 
introduced), and such attenuation of rotation waves will appear only as an 
effect of the inadequate theory (Teisseyre 2004, 2005). 

Another possibility is provided by coupling between the seismic body 
waves and defects or micromorphic structures of medium just beneath ob-
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servation sites. Teisseyre and Nagahama (1999) discussed such a coupling 
in micro-inertia continua defined as special cases of micromor-
phic/micropolar continuum. In these researches, the concept of the inner-
rotation, non-locality and asymmetry plays an important role. 

Kagan (1992, 1994) compared the properties (e.g., scale-invariance, 
symmetry and hierarchy) of seismicity with those of the turbulence of a 
fluid flow, and pointed out that: Most earthquake deformation is the effect 

of dislocations (translational defects), whereas disclinations (rotational 

defects) play a subordinate role. In turbulent motion of fluid, vortices (dis-
clinations) are primary vehicles of deformation. He believes that two 
modes of condensed matter deformation will yield significant new insight 
into the mechanics of both phenomena, and determined statistical features 
(spatial pattern T(3) and rotation SO(3)) of earthquakes by analyzing 
earthquake catalogs. These properties (e.g., symmetry and hierarchy) of 
seismicity are consistent with the concept of asymmetry and non-locality 
of deformation mentioned above. 

The Lagrangian of these defects is invariant with respect to three 
-dimensional rotations SO(3) and spatial translations T(3) (Kadi’c and 
Edelen 1983), and the deformation of micromorphic structure (continuum) 
induces the appearance of dislocations and disclinations, (3) (3)SO T .
These structural defects are related to anholonomity caused by the inner-
rotation (microdisplacement or microstrains moment) in the form: 

, (26.13)

where  denotes the microdislocation density (Nagahama and Teisseyre 
2001),  is Eddington’s epsilon (the skew-symmetric tensor; 0, 1, –1).  

Therefore, the internal nuclei (dislocations, disclinations, vacancies, 
thermal nuclei or electric nuclei) are the objects/sources that create internal 
stresses (self stresses) (Teisseyre 2002).  

On the other hand, we shall note the differences in the scales of these 
defects (Nagahama and Teisseyre 2001). The shear band model and mac-
rodislocations can be combined into a consistent model in which the gauge 
dislocations of a superlattice are replaced by macrodislocations. A micro-
morphic structure leads to formation of macrodislocations related to the 
characteristic length of structure L; we only need to replace the superlattice 
constant  by L. The macrodislocations could reach the value of the Bur-
gers vector b up to the characteristic length of the structure (Nagahama and 
Teisseyre 2001): 

.b L (26.14)
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This characteristic length of structure L is consistent with the concept of 
non-locality of deformation mentioned above. On a computational grid of 
cells as a discrete numerical system, the spatio-temporal complex slip, 
which induces scale-invariance, disappears in the well-defined continuum 
limit as the cell size diminishes (Rice 1993). If we can regard this cell size 
as the characteristic length of structure caused by internal variables (mac-
rodislocations and microdisclinations), this characteristic length of struc-
ture may become the characteristic length of fractal patterns (faults or 
earthquakes).
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27.1 Introduction 

Disasters are complex events that occur in complex 3-D environments. The 
structure of central Mexico involves an offshore subduction zone, a vol-
canic belt, an efficient Lg waveguide, several tectonic terranes that ac-
creted in different geological periods, and a variety of complicated local 
structures (Kennett and Furumura 2002, Ottemöller et al. 2002).  Disasters 
such as the 1985 earthquake strike Mexico City as a result of a combina-
tion of unusual factors. First, the city was located several hundred kilome-
ters inland from the epicenter of a damaging subduction earthquake off the 
Pacific coast. Second, the waves that caused the damage were coherent, 
monochromatic, high-amplitude surface waves of very long duration. 
These characteristic wave trains were recorded only on soft lake sediments 
in the downtown urban area. 

Finally, severe structural damage occurred mainly in modern, multistory 
office and apartment buildings. Traditional masonry construction per-
formed quite well, and so did low-income housing. 

The high degree of surprise still commonly associated with disasters is 
due to unexpected combinations of causes and circumstances. Some mod-
ern views of disasters reflect the embarrassing puzzlement of specialists in 
their preference for paradoxical explanations – such as that “nature, tech-
nology and society interact to generate vulnerability and resilience to haz-
ard” (Burton et al. 1993). The very concept of vulnerability is being ques-
tioned. The 1985 Mexico earthquake selectively destroyed the most highly 
developed part of the country and within it, those structures designed by 
engineers in accordance with a building code widely regarded as the most 
advanced in the world – while 300-year old Colonial churches and monu-
ments survived.
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27.2 Seismology: a Science in Trouble? 

After the 1906 San Francisco earthquake the Seismological Society of 
America was founded. At the same time a new discipline – earthquake en-
gineering – was born. It was initially very successful in controlling earth-
quake hazard, and in reducing human and economic sufferings from earth-
quake disasters. The vigorous response of society after the 1906 
earthquake disaster was yielding concrete benefits. At the mid-century 
point there was optimism that the threat from earthquakes would soon be a 
thing of the past. 

However, about 1955 or 1960 it was discovered that the losses from 
earthquakes had started climbing again. Presently they exceed all earlier 
world records. The cause of this upset is uncertain. It has been attributed to 
the population “explosion” or to urbanization, but it could also be related 
to some unfamiliar features in disaster causation, such as complexity, 
technology, and environmental change. Or, it might be due to our reluc-
tance to face these changes in a more effective way. The 2005 Katrina hur-
ricane has brought these considerations to the attention of a broader public. 

Take the development of seismological instrumentation. In the last 20 
years or more there has been no relevant technological innovation in the 
recording and interpretation of seismic signals. Yet other disciplines, such 
as astronomy, not only expanded significantly the width of the spectrum of 
observations beyond the visual range but also raised the level of descrip-
tion of the signals, for example, in the case of Very Large Telescope Inter-
ferometry (VLTI). 

After the 1985 Mexico earthquake an increasing amount of earthquake 
damage was observed on soft ground, yet no specific new instrumentation 
for recording rotational ground motions on soft ground has become avail-
able. The last important advance in seismic instrumentation was arguably 
Hugo Benioff’s strain seismograph, developed in 1935. 

Another aspect of the same problem is what we actually do with the ob-
servations.  Hypocentral location has been the bread-and-butter activity of 
seismology at least since Zoeppritz (1907). However, as the plane-earth 
approximation can no longer be sustained, the problem of earthquake loca-
tion becomes ill-posed (Lomnitz 2005). Various stopgap procedures have 
been used in an attempt to restore the posedness of the problem, but large 
location errors remain common. The uncertainty in earthquake location 
contaminates estimates of earth structure and earthquake hazard. 

Seismologists reacted by retreating behind the laws of geometrical op-
tics. The influential textbook by Aki and Richards (1980) redefined seis-
mology as the science of seismograms, and thus the ultimate purpose of 
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seismologists became a strenuous effort to fit or “synthesize” seismograms 
by a superposition of linear effects of reflection, refraction, and scattering. 
The physics of earthquakes shrunk to the status of a minor and esoteric 
specialty. 

27.3 Disasters in General, and Mexico City in Particular 

Disasters are extreme phenomena that occur at the nature-society interface. 
Nature and society are interacting complex systems. Wolf Dombrowsky 
(1984) has suggested that a disaster may be seen as a negation of progress.

The idea is that progress is falsified when the system can hit back. Rele-
vant properties of the system are ignored at our peril. 

Thus complex systems are creative: they have emergent properties. The 
term emergence refers to patterns or properties that cannot in general be 
predicted from the initial conditions, or from the rules of the system or sys-
tems. This implies that there are several levels of description of the system. 
Emergent phenomena are unexpected and unpredictable, not in general but 
in terms of some lower-level description. 

For example, a lower-level description of the 1985 Mexico earthquake 
might involve a source S, a path P, and a site or receiver R (Fig. 27.1). The 
seismogram, or  seismic  record, is  assumed to  be a convolution of source 

Fig. 27.1  A lower-level description of the 1985 Mexico earthquake as a convolu-
tion of source effects S, path effects P, and receiver effects R. The geology is 
highly idealized. Modified after Yoshida and Iai (1998) 
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effects S, path effects P, and receiver effects R:

( ) ( ) ( ) ( ) ,F S P R (27.1)

where  is frequency. The structure of the earth between the source and 
the receiver is assumed to be fully contained in the path function P.

Actually the deep structure under Mexico City is controversial and a 
concave basement is unlikely, as there is no evidence of a former river val-
ley. On the other hand, complex 3-D structures, especially when found in 
the neighbourhood of a site, are widely recognized to have complicated ef-
fects on the focusing and defocusing of seismic energy. But it is merely a 
matter of harnessing more computing power: the local influence of sedi-

mentary basins is large but needs fine scale representation (Kennett and 
Furumura 2002). This approach ignores the evidence on the enormous in-
crease of seismic energy that is observed on soft ground in Mexico City, 
and which cannot be accounted for at this level of description. 

Consider pairs of seismograms written on identical instruments at 
nearby stations for the same seismic event (Fig. 27.2). The epicentral dis-
tance of the Mexican coastal earthquake in the figure was not quite 400 km 

Fig. 27.2  Radial component recordings of the off-Michoacan, Mexico, earthquake 
of 11 January 1997, M7.1, at two stations in the Mexico City basin. Top: station 
on soft ground at Texcoco seismic array. Bottom: Texcoco station on hard ground. 
Epicentral distance was about 380 km.  Distance between stations  was less  than 
10 km. Both records were produced on identical FBA23 accerelographs. Note that 
the acceleration scales differ by a factor of 10 
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and the distance between stations was less than 10 km. Both stations were 
located in the Valley of Mexico, but the lower record was written on hard 
ground while the upper one was on soft ground nearby. The thickness of 
the soft layer was less than the wavelength of regional surface or body 
waves: thus one might expect that all three functions S, P, and R should 
have been similar or identical. Yet the two seismograms are very different. 
The amplitude ratio is very significant for two neighbouring stations in the 
same sedimentary basin. Note that the amplitude scale differs by a factor 
of 10. Perhaps more important is the fact that the prominent monochro-
matic phase which dominates the signal on soft ground appears to be ab-
sent on hard ground. 

Singh and Ordaz (1993) attempted to minimize the importance of such 
differences by suggesting that the seismograms on hard ground can also 
have long durations. It is merely a matter of turning up the gain. The im-
plication was that the large signal observed in the sedimentary basin might 
have been generated by incoming surface waves. However, Chavez-Garcia 
and Bard (1994) proved that 1-D amplification of ground motion cannot 
explain the long duration of strong shaking; and Barker et al. (1997) 
showed from 2-D and 3-D array analysis that the waves in the soft-ground 
area of downtown Mexico City originate mostly from the near edges of the 
soft layer, not from incoming surface waves. Independently of their back-
azimuth, waves from the far edges are systematically damped out. Thus, 
the high-amplitude surface waves which caused severe damage in Mexico 
City represent a strictly local phenomenon. 

In conclusion, a nagging question remains: where did all the energy in 
the former lake area come from? 

27.4 A Higher Level of Description 

Whenever a lower explanatory level is exhausted, we may feel entitled to 
search for a higher level of description of the system. This is true for 
hardware (telescopes or molecular machinery) as well as for software. It is 
true of disaster science. 

Societies build bridges to nature in order to dominate or exploit it, or 
parapets to protect themselves against the onslaughts of nature. This fron-
tier between nature and society is known as technology. It is where disas-
ters attack. 

The Mexico City building code was believed to be among the most 
modern in the world.  The technology of reinforced concrete-frame struc-
tures was  thought to  be well  understood. Yet  after the 1985  disaster  the 
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Fig. 27.3  Response spectrum for the 1985 earthquake recorded at station SCT1 on 
soft ground. The design spectra for the 1976 and 1987 versions of the Mexico City 
Building Code are given for reference. Both versions predict a broad, flat-topped 
response spectrum which falls short of the recorded 1985 spectrum 

engineers (including the authors of the building code) recognized that the 
ordinances had been inadequate. The 1987 amendments to the Mexico City 
Building Code raised the peak spectral design accelerations by up to 66% 
(Fig. 27.3). But the code still predicted ground motions based on geometri-
cal optics. 

Geometrical optics is based on a high-frequency approximation. Surface 
features the size of a wavelength, such as the mud layer under Mexico 
City, will cause problems, as will features like edges. The next higher level 
of description which we may invoke is the waveguide. A waveguide is a 
conductor of wave energy. It differs from an optical ray bundle in that it 
has discrete propagation modes. 

In Fig. 27.4 we show a diagram representing the 1985 Mexico earth-
quake in terms of two waveguides: (a) a regional or crustal waveguide 
which includes the source and the upper 2 kilometers of the continental 
crust, and (b) a local waveguide consisting in a flat layer of soft mud. 
Layer (b) is embedded in the crustal waveguide (a). When the crustal 
waveguide  is  excited  by  a  seismic  transient  the  two  waveguides  may 
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Fig. 27.4  Subduction model of the 1985 earthquake. An E-W idealized geological 
section is shown. In a large earthquake, efficient transmission of seismic energy 
inland over the regional Lg waveguide (a) enables 0.4 Hz modes to be trapped in 
an embedded soft local waveguide (b) which underlies downtown Mexico City. 
Severe damage is caused by prolonged excitation of monochromatic, coherent, 
short surface waves of very long duration 

couple and seismic energy at a specific frequency ƒc may flow from 
waveguide (a) into waveguide (b).  Under certain conditions which have to 
do with the number of propagating and evanescent modes at the bounda-
ries, the mode of frequency ƒc may be trapped in the shallow waveguide. If 
the rate of inflowing energy exceeds the attenuation in the mud, seismic 
energy of frequency ƒc will accumulate in the waveguide for the duration 
of the earthquake. In other words, the duration of the earthquake will be 
defined by the time span during which the influx of energy exceeds the 
rate of energy expended in damping and in causing damage to structures. 

Before we proceed, let us attempt to consolidate our argument. Firstly, it 
might be argued that the waveguide model contributes no new features 
since “the trapping of waves within sedimentary basins is well known and 
leads to complex, elongated wavetrains” (Kennett and Furumura 2002). 
This is quite true, but a bundle or packet of rays should reach a sedimen-
tary basin with a fairly uniform power cross-section. Optical trapping can-
not explain large power variations between neighbouring points within a 
basin such as those observed in Fig. 27.2. 

Secondly, coupling between modes seems to require or to imply some 
nonlinear behaviour, as linear modes in 1-D layered systems are orthogo-
nal. Uniform  wavetrain solutions of the nonlinear Schrödinger equation 
would most likely be unstable, as Infeld and Rowlands (2000) have found 
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for 1-D deep-water gravity waves. However, seismic signals are transients. 
As Infeld and Rowlands also pointed out, in time the higher unstable 
modes tend to decay and transfer their energy to the fundamental mode. 
Indeed the seismogram becomes quasi-cyclic, as can also be observed in 
water waves (“Fermi-Ulam-Pasta recurrence”). 

Finally, given a fixed amount of earthquake energy at the source, why 
should a system prefer one form of energy transfer over another? It seems 
that coupled modes in waveguides might represent a very lossy mechanism 
as compared to straightforward seismic propagation with optical amplifica-
tion due to impedance contrasts.  

The latter objection is of particular interest and will be discussed here. 

27.5 Nonlinearity and Non-Equilibrium Thermodynamics 

A complex system provides many options or routes of evolution. How 
does the system choose among these options? An answer may be found in 
the emerging field of non-equilibrium thermodynamics (Kleidon and Lo-
renz 2005). 

Consider the work output of a complex system such as the earth. It is 
governed by heat flow and by the Carnot efficiency for that heat flow. For 
this system to be found in a steady state, the frictional dissipation must 
balance the work production. But circulation of heat and of matter is a 
combination of many flow modes.  

Let the ith mode be characterized by a heat transport Fi and a loss by 
dissipation Li . Some modes may be very efficient (low L/F) while others 
may be very inefficient (high L/F). If the work output and the dissipation 
are to be balanced, we must have L  F· T/T at steady state (Lorenz 2005). 

But this condition can be achieved in many different ways. In other 
words, the steady state can be reached by many microscopic combinations 
of modes, especially when the steady state has a high work output and a 
high dissipation. Suppose that all possible combinations are populated with 
equal probability: then the most likely states are those with higher dissipa-
tion. This is called the Principle of Maximum Entropy Production (Dewar 
2003) ).

                                                     
) In a popular form this may be expressed as Murphy’s Law: If anything can go 

wrong, it will. Another version is as follows: If there is a possibility of several 

things going wrong, the one that will cause the most damage will be the one to go 
wrong — and if there is a worse time for something to go wrong, it will happen 

then.
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The validity of the principle is quite general but there has been some 
confusion with the “principle of minimum entropy production” formulated 
by Prigogine (1962). Actually there is no contradiction. Prigogine’s work 
applies to linear systems with fixed boundary conditions near equilibrium. 
Such systems have one unique steady state, which indeed represents a state 
of minimum entropy production with respect to neighbouring non-steady 
state conditions. But disasters involve nonlinear processes far from equi-
librium that can have an infinity of degrees of freedom, and thus of steady 
states — among which the state of maximum entropy production is se-
lected. Note that the argument by Kleidon and Lorenz applies also to tran-
sient processes such as earthquakes. 

But why should one wish to invoke nonlinearity when a linear approach 
will do? The answer to this objection is fundamental if we wish to under-
stand the causes of disasters.  Let us consider the specific case of the 1985 
Mexico earthquake, which we may later attempt to extend to disasters in 
general.

Unlike rocks, soil is a  nonlinear  material. The  stress-strain  curvature 
at the  origin  is  negligible for  rocks,  and a maximum for soils. The 
stress-strain  propagation  behaviour  in soils may be represented  by an 
empirical 1-D equation of state (Lomnitz 1994): 

d
,

d

d

c (27.2)

where  is a shear strain component,  is the corresponding stress compo-
nent, and d is a fractal dimension. Note that this equation contains elastic 
waves (d = 0) as well as gravity waves in fluids (d /d  = 0). It also con-
tains the Hardin and Drnevich (1972) empirical equation for soils (d = 2).

Soils as well as other soft condensed matter behave as solids at low 
strains, and as liquids at high strains. As tends to infinity, the shear 
modulus = d /d  decays to zero. This is known as shear-modulus degra-
dation.

Mexico City mud has a substantial rate of shear-modulus degradation. 
Under realistic conditions the rigidity  will be halved after every three or 
four strain cycles. Also, the initial value of  is extremely low, as the shear 

velocity is around 50m/s.sV  Thus, during a large earthquake, 

the shear strength will be further reduced, and only the molecular forces 
known as cohesion will prevent the material from flowing like saturated 
sand. The proper terminology for this behaviour is cyclic mobility, as op-
posed to liquefaction in sands. Cyclic strain value estimated in the 1985 
earthquake on the linear assumption (i.e., assuming  not to decay during 
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the earthquake) were around 0.3% but the actual values were certainly 
much larger, as was also found in Japanese earthquakes (Yoshida and Iai 
1998).

In addition, because of the large impedance contrast between the mud 
layer and the underlying volcanic tuff, there was a very substantial passive 
amplification. This behaviour was well known and had been specified in 
the Mexico City Building Code. Nonlinear behaviour was not foreseen, 
however. The important effects of nonlinearity are not primarily in the 
amplitude but in other dynamic effects. Gravity must be considered in very 
soft materials. 

Weakly nonlinear wave propagation in soils is governed by the 
Schrödinger equation, a universal nonlinear equation of wave propagation 
(Infeld and Rowlands 2000, Chap. 5). In the case of the Mexican earth-
quake we may write the wave potential as

( , ) ( , ) exp[i( )] ,x t a x t kx t (27.3)

where k and  represent the wavenumber and frequency of the marginally 
stable mode (here the fundamental shear resonance of the mud layer), and 
the nonlinear effects are in the amplitude factor a.

Nonlinearity may be introduced in a number of ways. For example, Ew-
ing et al. (1957) invoked coupling between acoustic waves and Rayleigh 
waves in a soft soil layer when the Rayleigh phase velocity is lower than 
the speed of sound in air. This coupled mode is monochromatic and is 
known in petroleum prospecting as ground roll. But nonlinearity in the 
stress-strain  relations is probably  the most  obvious  cause  of  coupling 
between two waveguides. 

Coupling enables a receiver – in this case, the mud layer – to trap in-
coming modes that match the resonant modes in the layer, as when an an-
tenna is tuned to a specific frequency. The Mexican Volcanic Belt, with a 
thickness of around 2 km, has a major impedance contrast with the under-
lying Cretaceous limestones found at sea level. The crustal waveguide 
propagates multiply reflected and refracted body waves known as Lg from 
epicenters in the subduction zone toward Mexico City. Propagation is par-
ticularly efficient in the frequency range of 0.3 to 1 Hz (Campillo et al. 
1989). The Mexico City mud layer is embedded in this waveguide.  

The mud layer is around h = 30 m thick and its shear-wave velocity is 
around VS = 50 m/s.  Thus the incoming Lg waves can excite the mud layer 
at its quarter-wavelength resonance ƒ = 50/(4·30)  0.4 Hz. When the in-
flux of energy from the Lg waveguide cannot make up for losses from at-
tenuation in the mud the strong-motion output is short-lived. However, for 
earthquakes of magnitude 6.5 and above, the energy trapped in the mud 
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layer will exceed the damping loss. The higher the magnitude, the more 
energy is trapped in the surface layer. The result is a strong, coherent, 
monochromatic wave train of very long duration. 

Because of shear-modulus degradation in the mud, the shear-wave ve-
locity decays at near-constant input frequency and the wavelength shortens 
during the earthquake. As it approaches the characteristic wavelength for 
gravity waves in shallow water, gravity competes with elasticity as a re-
storing force and visual observations of slowly traveling pseudo-gravity 
waves are reported. Long structures such as freeways or aqueducts sway or 
buckle and elongated buildings capsize. As the amplitude fades, the wavy 
ground motion freezes and permanent deformations of up to 20 m wave-
length are left in the downtown area. Similar observations have been made 
in other large earthquakes on soft ground (see, e.g., Matuzawa 1925).  

The interaction between natural and social phenomena in disasters is 
still poorly understood. The more we claim to understand disasters, and 
that we are on the verge of being able to predict them in terms of probabil-
ity, the worse is disaster’s revenge. Most authors agree that the response of 
society to extreme events “should be re-examined”, and that our methods 
“cry out for refinement” (Burton et al. 1993). Similar criticisms were 
voiced after the 2005 Katrina disaster. However, examples of collaborative 
disaster research between social and natural scientists are still rare. 

To summarize, we propose a new model of disaster causation for the 
1985 Mexico earthquake. Our model invokes a nonlinear interaction be-
tween higher-level structures, rather than a passive response of lower-level 
structures to linear wave propagation. Interaction between geology and so-
cial structures remains a major unsolved problem. 

In order to buttress our argument, we have suggested a variety of new 
effects based on insights in mechanics of guided-wave propagation and 
non-equilibrium thermodynamics. Some of these effects had been noted 
many years ago but were not fully explored by seismologists. As a notable 
example, Lord Rayleigh recognized that surface waves propagated as 
guided waves, and he noted in his Theory of Sound  that:  

Anything that confines the sound will tend to diminish the falling off of 

intensity. Thus over the flat surface of still water, a sound carries further 

than over broken ground; the corner between a smooth pavement and a 
vertical wall is still better; but the most effective of all is a tube-like enclo-

sure, which prevents spreading altogether. . . Sound might be thus con-

veyed with little loss to very great distances. 

We submit that when two waveguides couple during an earthquake, 
seismic energy at 0.4 Hz can flow from one waveguide to the other. The 
receiver layer acts as a filter or antenna that soaks up and traps shear 
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modes at resonant frequencies. Structures built upon the receiver will be 
excited to the extent that their own eigenfrequencies match the frequencies 
in the ground. Reinforced concrete structures are particularly vulnerable to 
resonance as their intrinsic damping is quite low, usually below 5% of 
critical. To bring such buildings to the point of structural collapse, as in the 
1985 Mexico earthquake, extreme seismic inputs are essential. 

From the observations of the behaviour of structures made after the dis-
aster it appears that the very long duration of strong ground shaking played 
a major unexpected role in causing the damage. Another unforeseen factor 
was the presence of coherent monochromatic wave trains. Finally, the 
presence of prograde surface waves similar to water waves may have in-
troduced some unforeseen factors such as the excessive swaying of tall 
buildings, and the whiplash effect in the upper stories. 

Let us now address the main objection to this argument, namely that our 
model is contrived and that it needlessly invokes nonlinearity, wave-wave 
coupling and other emergent features of complex systems. 

27.6 A Theory of Disasters as Unexpected Events 

Consider the following reasoning: 

Proposition 1: All disasters are unexpected. 
Proposition 2: Unexpected events occur. 
Conclusion:  Always expect the unexpected. 

Let us overlook some formal objections for the moment and consider the 
above reasoning as an example of empirical logic. Else Barth (1985) has 
pointed out that real arguments and real debates deserve to be studied as 
such, and that the suitability of a social science approach to argument does 
not in the least derogate from the importance of logical pursuits. We argue 
that disasters may occur because they are unexpected, and that they are 
preventable to the extent that a multiplicity of possible combinations of 
causative factors can be anticipated or foreseen. 

As we are dealing with complex systems having a virtually inexhausti-
ble number of modes, the chances of anticipating all possible disasters are 
slim. But one approach to prevention may always be effective, namely 
strengthening society against all types of adversity. If there is social cohe-
sion, if there are no obvious social inequalities, if there is security, and if 
there is a vigorous economy with access to opportunity for all, such a soci-
ety will take all needed precautions and develop the necessary resilience 
against disasters of every kind.  
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Of course, the above conclusion (“always expect the unexpected”) may 
be regarded as sophistry, or as an example of Russell’s Paradox, since one 
can hardly expect the unexpected without eliminating all unexpected 
events. This contradicts Proposition 2. However, an imaginative solution 
of this apparent contradiction might be the only practical way of prevent-
ing disasters. 

Against all evidence, it has sometimes been maintained that disasters 
such as the 1985 Mexico earthquake, the 2004 Indian Ocean tsunami or the 
2005 Katrina hurricane were predicted. The large number of casualties and 
the degree of damage to society seem to point in a different direction. A 
valid disaster prediction can be socially usefully on condition that there is 
a way of telling it apart from the large amount of similar predictions that 
are regularly issued and which fail to materialize. As far as the 1985 Mex-
ico earthquake is concerned, it is true that the Mexican subduction zone 
had been recognized as a source of large earthquakes but the specific epi-
central area of Michoacan had also been tentatively designated as inactive 
(Singh et al. 1980). The hazardous soft-ground area in downtown Mexico 
City had been mapped and duly labeled. The prescribed design accelera-
tions in the Mexico City Building Code were much stricter in the hazard-
ous area. They took into account the well-known fact that some builders 
would attempt to cut corners. Yet the earthquake demolished many build-
ings that had been designed under earthquake regulations while sparing 
neighbouring structures that hadn’t. 

Prior to the 1985 Mexico earthquake it had been widely believed that 
high damping in soft soil should reduce the seismic amplitude as compared 
to sites on rock (Finn 1991). Peak accelerations on soft ground were re-
vised sharply upward after the Mexico and Loma Prieta earthquakes. Yet 
the number of full-fledged seismic stations on soft ground remains negli-
gible worldwide as compared to stations on rock. 

Disasters are not caused by recklessness, nor can they be attributed to a 
single physical event such as a hurricane or an earthquake. A study of spe-
cific disasters and major “accidents” suggests that there is a chain of seem-
ingly unconnected and unlikely physical and social circumstances which 
we  have  called  a Perrow  chain  (Perrow 1999). The  following  Perrow 
chain appears to fit this description. 

1. The earthquake occurred at almost 400 km in an area where geo-
physicists had not expected the next large seismic event to occur. 

2. It hit hardest in the capital and in the heart of the most advanced 
modern area of the country, but it caused only moderate damage in 
the epicentral area and in underdeveloped regions. 
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3. It caused severe structural damage in a relatively small urban area 
on soft ground, which had been correctly identified and recognized 
as hazardous in the Building Code. 

4. It destroyed exclusively modern reinforced concrete high-rise build-
ings designed and built by professionals according to seismic regu-
lations believed to be among the most advanced in the world. No 
traditional old masonry structures collapsed. 

5. The strong ground motion in the soft-ground area of Mexico City 
was monochromatic, coherent and of extremely long duration.  

6. So-called “visible surface waves” in the same area were described as 
similar to water waves. Residual wavy deformation was observed on 
pavement. 

7. Important critical facilities such as hospitals, schools, telephone and 
communications hubs and emergency centers collapsed. The number 
of casualties was extremely high.  

Most of these circumstances were unexpected. Our hypothesis may pro-
vide an adequate causative link to this Perrow chain, thus helping to ac-
count for the element of surprise. No two earthquakes ever affect society in 
the same way. Charles Richter used to say that earthquakes tend to recur in 
the same place but are never the same events. This might be due to the fact 
that both earth and society are evolving complex systems. Social change 
outpaces and overtakes geological change. Mexico City today is a different 
city than it was in 1985, and Mexican society is a different society. 

We submit that the objection against a nonlinear approach to disaster 
causation amounts to a misuse of Occam’s Razor. The fact that many sci-
entists have agreed on a linear approach for explaining the 1985 Mexico 
earthquake disaster should not be used as an argument to rule out a differ-
ent approach, particularly when the linear approach failed to account for a 
crucial element in disaster causation, namely its extremely long duration. 
Even if the linear approach were able to explain all features of the disaster 
but this particular one, it would fail because no wholesale collapse of 
buildings would have occurred if the duration of the earthquake had been 
normal. Kant warned against reductionism and argued that the variety of 
being should not rashly be reduced.  

Disasters are not ordinary events. They cannot be prevented unless we 
are prepared to recognize the relevance of many modes of causation. In a 
sense, the Mexico earthquake has a history that goes back to the founda-
tion of Mexico City in 1325. In searching for likely Perrow chains it is 
sensible to keep in mind the principle of maximum entropy production. 
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27.7 Disasters and Society 

Burton et al. (1993) have compared disaster trends in different countries 
and concluded that the long-term thrust of development in nations is to-

ward reducing the social cost of hazard to society – but in periods of rapid 
transition, society becomes peculiarly vulnerable to hazard. Translation: 
disaster strikes mainly in developing countries. 

The basic idea, due to White (1945), is that the risk R (or probable loss) 
is proportional to the hazard H times the vulnerability V:

,R H V (27.4)

where H represents the contribution of nature and V that of society. This 
linear concept of disasters represented a substantial advance at the time 
and it is still widely accepted. But it implies, against all evidence, that 
natural and social factors are independent. This sounds logical until we 
take a closer look. The years 2004 and 2005 were the worst disaster years 
in history. The Indian Ocean tsunami caused an estimated 270,000 deaths, 
yet in terms of the incidence of damaging events 2004 was rated an “aver-
age year” (Münchener Rück 2005). The worst 2004 disasters did not occur 
in developing countries but in industrial nations such as the United States 
(hurricanes Charley, Frances, Ivan and Jeanne, $68 billion) and Japan 
(Niigata earthquake, $30 billion, typhoons Songda, Tokage and Chaba, 
$18.5 billion). The Indian Ocean earthquake and tsunami disaster caused 
an estimated damage of $10 billion, and damage in the 1985 Mexico 
earthquake was rated at $4 billion. 

Thus the statement that disaster hazard is inversely related to economic 
development needs to be qualified. In the case of the 1985 Mexico earth-
quake the main damage occurred in the most highly developed part of the 
country. Some industrial installations were damaged in the epicentral area 
and two people were killed in a highway accident due to loss of steering. 

The 7- to 20-story reinforced concrete buildings which collapsed in 
Mexico City were designed by engineers trained in the U.S. after a code 
which followed U.S. standards (Suh 1985). Tens of thousands of homes 
self-built by the poor, using scavenged materials, and hundreds of age-old 
churches and palaces were also built on soft ground and survived the 
earthquake.

Casualties also followed an unexpected pattern. The poor were largely 
spared. Most of the victims belonged to the urban middle class. They had 
made the mistake of investing their modest savings in modern “earth-
quake-proof” apartments. Fortunately the earthquake occurred at 7:19 a.m. 
when most of  the  working  population was  on their way to work, before 
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office hours and before schools had opened. But several modern hospital 
buildings collapsed. Days after the earthquake, 16 newborn babies were 
rescued alive from the Juarez Hospital maternity ward. Many young 
women were killed in buildings that harboured illegal sweatshops of the 
garment industry. One survivor, a young girl, was rescued alive by friends 
but died ten years later of AIDS. She had received a blood transfusion. 
Thus disaster assistance can contribute to spreading epidemics. 

Relatives found that they were not allowed to bury their dead as they 
had no proof of identity. As a result of clandestine burials, the number of 
victims is not even approximately known. There was no official investiga-
tion of the disaster. 

Not everybody was surprised by the disaster. The chief geophysicist of a 
major European reinsurance corporation came to Mexico City five years 
ahead of the earthquake and took some notes on a walk downtown. When 
the earthquake struck his advance estimate of damage turned out to have 
been within 5% of the true amount. Experience of disasters can certainly 
lead to preventive action.

Social scientists are often misunderstood because they are immersed in 
their object of study, which happens to be society. Social science is self-
referential (Habermas 1981). This awkward situation is not necessarily a 
drawback. After all, our ideas on the natural world seem to be changing at 
least as rapidly as those on society. No two disasters are alike, and it seems 
to be impossible to anticipate all the combinations of adverse situations 
that might occur. However, actively hardening the resilience of society 
against all kinds of mishaps is presently the only rational response to disas-
ters.
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28.1 Introduction 

Various authors, even in the pre-scientific age, hypothesised the existence 
of rotational waves, or at least the existence of  “vortical motions”. As the 
evidence of such motions, scientists have always distinguished the rotation 
of pinnacles and other ornamental elements of churches and monumental 
buildings. That kind of rotation is cited in various direct observation re-
ports on the effects of Italian earthquakes. 

Numerous sources that document the effects of historical earthquakes 
describe this type of events within some complex descriptive frameworks, 
affected by the cultural and scientific context inside which the sources 
were produced. Even when the strangeness of these effects was observed 
and stressed, the sources do not always put forward any hypotheses as to 
the causes. Although specific research has not been performed on these as-
pects, a thorough systematic research into historical seismology for the 
creation of the Catalogue of Strong Earthquakes in Italy (Boschi et al.
2000) provides a large case history of occurrences of such effects. It was 
necessary to wait until the mid-19 century in Italy to have reports of rota-
tional movements written with a “scientific” intention. Pedini (1742), on 
the occasion of the Livorno earthquake (Northern Italy) on 27 January 
1742 recalls that it was as though the earth had “a vortical motion”. But it 
was only after the Lisbon earthquakes (1 November 1755) and those of 
Calabria (5 February – 28 March 1783) that the scientists’ attention started 
to be focused on the effects induced by the so-called “vortical” waves. Per-
haps the most famous report as to the effects is the one relating to the rota-
tion of two obelisks (Fig. 28.1) of the Charterhouse of Serra San Bruno in 
Calabria. This effect is documented in the account of Michele Sarconi 
(1784)  about the mission of scientists  guided around  the places struck  by 
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Fig. 28.1  The 1783 Calabrian earthquake. Rotation of two ornamental obelisks of 
the Charterhouse of Serra San Bruno in Calabria, in an etching contained in the 
“Atlante” by Schiantarelli and Stile (1784). This famous image was reproduced 
and commented on by many scholars of the earth sciences in the early 20th cen-
tury, but only a few of them traced it back to the “rotational” waves caused by the 
earthquakes 

the earthquakes in February–March 1783 and by one of the etchings on the 
effects on the villages and the natu-ral environment, contained in the “At-
lante” (Schiantarelli and Stile 1784, etching XXI) enclosed in the report by 
Sarconi. In many other points of his report, Sarconi (1784) makes explicit 
reference to the vortex movement of the earth caused by the earthquake. 

The image in Fig. 28.1 was referred to by several authors and cited as an 
example of vortical movements induced by earthquakes; among the first 
and most illustrious were Charles Lyell (1797–1875) Charles Darwin 
(1809–1882), Robert Mallet (1810–1881), and Alexander Von Humboldt 
(1769–1859). 

Charles Lyell, who published a reproduction of the two rotated obelisks 
within a broad treatise on the Calabria earthquakes wrote in his work 
“Principles of Geology” (Lyell 1830): It appears that the wave-like mo-

tions, and those which are called vorticose or whirling in a vortex, often 

produced effects of the most capricious kind.
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Even Charles Darwin goes back upon the issue of the vortex motions in 
the description of the effects of the 20 February 1835, earthquake in Con-
cepcion (Chile): Some square ornaments on the coping of these same 

walls, were moved by the earthquake into a diagonal position. A similar 

circumstance was observed after an earthquake at Valparaiso, Calabria, 

and other places, including some of the ancient Greek temples. This twist-

ing displacement, at first appears to indicate a vorticose movement be-
neath each point thus affected; but this is highly improbable. (Darwin 
1845)

Robert Mallet, who was inspired by Lyell in many of his studies, con-
tested Lyell’s interpretation of the movements of the obelisks, being in 
agreement with the perplexities expressed by Darwin (Ferrari and McCon-
nell 2005). Subsequently, Mallet honed an original method for the deter-
mination of the epicenter and the hypocenter of an earthquake starting 
from the study of the direction of the collapses, the shifting or the rotation 
of objects, buildings or parts of them (Mallet 1862, Ferrari and McConnell 
2005) (Fig. 28.2). 

Fig. 28.2  Particular of an etching depicting the archway of San Bernardo in Pa-
dula (Salerno, Southern Italy) in which R. Mallet indicated the behaviour of the 
ornamental parts. In particular, note the pinnacles A and B that Mallet reports 
“turned from left to right” 
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It is in the wake of the interest and the emotions aroused by the Calabria 
earthquakes of 1783 that some scholars dealt with the design and the test-
ing of seismic instruments, not the very first ones, but among the first.  

At that time, however, it was still too early, to find instruments predis-
posed for the recording of “vortex” motions  induced  by  earthquakes. The 
very first instruments of which we have reports that they have actually be-
ing made and used, are those of Jean de Hautefeuille in 1703, Nicola 
Cirillo in 1731 and Andrea Bina in 1751 (see Ferrari 1992). These instru-
ments were very simple and exploited the principle of simple pendulum 
and the transfer of liquids from receptacles. It was necessary to wait until 
the mid-19 century, and in particular the mid-1870s, for the complex and 
pioneering phase of seismometry in which numerous scientists around the 
world became engaged in designing and testing of seismoscopes and seis-
mographs, paying particular attention to the directions and components of 
the seismic  motion.  In 1875 one of  these scholars,  Filippo Cecchi, the 
director of  the Ximeniano  Observatory of  Florence, designed  the first 
instrument with an apparatus specially prepared to record the “vortical mo- 

Fig. 28.3 The Cecchi electrical seismograph with sliding smoked paper (Cecchi 
1875), after restoration 
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tions” as well (of the rotational waves): Cecchi’s electrical seismograph 
with sliding smoked paper (Fig. 28.3). The instrument, described later on, 
still exists in two specimens: one is in Rome at the Ufficio Centrale di 
Ecologia Agraria and the other, is the prototype preserved at the Xime-
niano Observatory in Florence. The first one was restored in 2002 by SGA 
and exposed at the ESC General Assembly in Genoa. 

28.2 Electrical Seismograph with Sliding Smoked Paper 

The electrical seismograph with sliding smoked paper  was developed by  
P. Filippo Cecchi, the director of the Osservatorio Ximeniano of Florence, 
in 1875. Models of this instrument have operated at the following Obser-
vatories: Ximeniano of Florence and Seminario of Fiesole (Florence, 
Northern Italy), Geodinamico of the Collegio “Carlo Alberto” of Moncal-
ieri (Turin, Northern Italy), and Meteorologico “Vincenzo Nigri” of Fog-
gia (Southern Italy). 

The equipment (Fig. 28.3) allowed for a great deal of information to be 
collected regarding the earthquake components movements (horizontal, 
vertical and “whirling”), the number of shocks, the intensity, the timing of 
the first two shocks, each one’s duration and the interval between them. 

At our present state of knowledge, only two specimens of this instru-
ment have survived: the one of the Osservatorio Ximeniano of Florence 
and that of the Collegio  “Carlo Alberto” at  Moncalieri, kept today in the 
Museum of Ufficio Centrale di Ecologia Agraria (UCEA) in Rome. The 
former is the prototype designed by Filippo Cecchi, which has been in use 
at the Observatory from 1875, identical to the description Cecchi made of 
it in three articles (Cecchi 1875, 1876, 1877), and which was subsequently 
followed up with reference to Fig. 28.3. The second instrument, which op-
erated at the Moncalieri Observatory from 1875 until the early 20 century 
is, however, significantly different in terms of its recording start-up sys-
tem. 

The part of the apparatus dedicated to the detection and the recording of 
the horizontal movement components is formed by two pendulums oscil-
lating on planes N-S and E-W. Each pendulum is formed by a rectangular 
iron triangle, with the minor cathetus as the axis of oscillation and the op-
posite vertex occupied by a lenticular mass to which a circular arch (made 
of chromed brass) is attached, whose radius is equal to the pendulum 
length. At the end of the arch a silk string is attached wrapped around a 
pulley to which it transmits the movement of the pendulum.  An arm is at-
tached to the pulley, and in turn connected to a pen-nib that records the 
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movements of the pendulum on the smoked paper amplifying them three-
fold. The coupling pendulum-pulley recording mechanism lengthens the 
period of the oscillating system by about 1 second. The movements of the 
two pendulums are recorded on smoked glass plates or sheets of smoked 
paper, placed on the faces of a hollow metal square-based parallelepiped, 
capable of sliding vertically by means of 4 small wheels, along an internal 
groove. The 40 cm long parallelepiped is connected by means of an iron 
rectangle to a string that from the fixed pulley wraps itself round a drum, 
ending up with a weight. 

The vertical movements are detected by the apparatus that consists of a 
small brass and leaden cylinder, axially driven by a barrel, only free to 
move vertically thanks to the presence of 4 pulleys placed in two pairs be-
low and above the cylinder. The upper extremity of the barrel is attached 
to a silk thread, that is twice wrapped around a fixed pulley and is tied to a 
spiral spring encased by a tube and fixed to the top. The axis of pulley car-
ries a spring with pen-nib function that lies on a smoked sheet, placed on a 
third face of the parallelepiped, tracing the curve of the vertical movement. 

The so-called “whirling” or torsion movements are recorded on the 
fourth face of the parallelepiped (Fig. 28.4). These movements had been 
hypothesized by some authors, including F. Cecchi, to explain the rotation 
effects of parts of columns, pinnacles in the facades of the churches, etc. 
The movement recorded is that of a balance-wheel having two large leaden  

Fig. 28.4  Particular of the Cecchi electrical seismograph with sliding smoked pa-
per (Cecchi 1875) showing the recording system (on the left) and the apparatus for 
the surveying of the so-called “rotational” movements
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lenticular masses at the extremities. This balance-wheel can move horizon-
tally, and from one of the two lenses there extends a string that wraps a 
horizontal pulley placed behind the parallelepiped and terminates with a 
spiral spring fixed to the wall. A pen-nib protrudes from the horizontal pul-
ley, tracing the “whirling movement” on a fourth smoked sheet.  

The recording parallelepiped, stationary under conditions of stillness, 
starts moving in the event of an earthquake falling 20 cm in 20 seconds. 
The axis of drum bears a cogged wheel that moves a perpetual screw. The 
axis of this screw is prolonged upwards and with a protruding arm fitted 
with a long slit makes the conical pendulum turn, serving as a movement 
regulator. This pendulum hangs by means of a cardan joint I and carries 
two weights, so that its movement is not disturbed even by the strongest 
seismic events. 

This instrument recorded the main tremor of the earthquake on 23 Feb-
ruary 1887. The recording, published in Denza (1887), concerns the EW 
component (Fig. 28.5), while according to Denza himself, the recordings 
of the remaining 3 components (NS, Z and “whirling movements”) did not 
present significant traces. 

Fig. 28.5  Seismogram of the Ligurian earthquake of 23 February 1887, recorded 
at the Moncalieri Observatory with the UCEA’s restored Cecchi electrical seismo-
graph with sliding smoked paper. The recording, published in Denza (1887) re-
gards the EW component, while Denza himself states that the recordings of the 
remaining 3 components (NS, Z and “whirling movements”) did not present sig-
nificant traces 
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28.3 Electrical Seismograph with Sliding Smoked Paper 
– Second Model 

This instrument, of which there is only one surviving specimen at the Mu-
seum of the UCEA (Fig. 28.6), is reminiscent of the electrical seismograph 
with sliding smoked paper, described above. 

Following the perfecting of the design, first of all the device appears 
more compact, more sophisticated in its recording mechanism of several 
shocks and endowed with greater amplification. The recording occurs on a 
sheet of smoked paper wrapped around a rotating drum. Unlike most of the 
instruments designed by Cecchi, this one does not have its published de-
scription with it. The instrument, subjected to conservative and integrative 
restoration, had some parts missing; that made its complete reconstruction 
and proper functioning all the more difficult.  

The instrument is installed on a wooden column painted with a fake 
marble design, having a square base (30 cm sides), 250 cm in height. 

Fig. 28.6  The Cecchi electrical seismograph with sliding smoked paper – second 
model (1880s), particular of the detection system of the so-called “rotational” 
movements 
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Akin to the instrument from which it is derived, this seismograph is ca-
pable of recording  the three components of the seismic movement and the 
so-called “whirling movements” (Fig. 28.6). 

The part of the instrument dedicated to the detection of the horizontal 
movements is formed by two pendulums that are wholly identical to those 
of the previously described instrument, oscillating on two orthogonal 
planes, generally arranged N-S and E-W, one fixed to the right-hand face 
of the column and one to the rear side, and thus not visible. The pendulums 
transmit their movement to two pulleys equipped with a writing pen-nib 
onto a sheet of smoked paper wrapped around the recording drum, a verti-
cal cylinder.  

The vertical movements are detected by a mechanism made up of a ver-
tical spiral spring, about 80 cm long, held tight in the lower part by a mass.  

The part of the apparatus dedicated to the “whirling movements” is 
made up of a balance-wheel, equipped with two lenticular masses at the 
extremities, which have been restored in that they had gone missing. The 
movement of that balance-wheel is limited to the horizontal plane; by one 
of the two masses it horizontally expands a string that goes through a pul-
ley and from this is directed towards a lower pulley upon which it accom-
plishes a rotation ending up connected to a weight which guarantees its 
traction. A fourth pen-nib protrudes from the latter, which akin to the oth-
ers, transforms the movement of the balance-wheel into a recording on the 
smoked paper.  

These instruments have worked for several years without ever observing 
in either type of instrument the functioning of the apparatus for the “rota-
tional waves”. The research hitherto performed on the seismic instruments 
designed and developed in Italy over the last 200 years seem to show the 
uniqueness of Cecchi’s attempts to make instruments suited to recording or 
even just evidencing rotational waves. 
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29.1 Introduction 

Although their importance was understood (Aki and Richards 2002), rota-
tions have long been neglected in seismic studies because no suitable sen-
sors existed. The technology for seismometers exploiting the inertia of a 
test mass, on the other hand, is well established and such sensors are 
nowadays sensitive, reliable and reasonably cheap. In general, there is a 
variety of different concepts for rotation sensors available, such as a pen-
dulum, micromechanic tuning fork gyros, fiber optic gyros and ring lasers. 
The latter, when scaled up, have the advantage of an extremely high sensi-
tivity.  

Over the last 40 years, ring laser gyroscopes have become one of the 
most important instruments in the field of inertial navigation and precise 
rotation measurements. They have a high resolution, good stability and a 
wide dynamic range. Furthermore, no spinning mechanical parts are re-
quired, so these sensors can be manufactured in a very robust way. These 
properties made them very suitable for aircraft navigation. For more than 
10 years, very large perimeter ring laser gyroscopes have been specifically 
developed for applications in geodesy and geophysics (Schreiber et al. 
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2001). By increasing the effective ring laser area by up to a factor of 
24,000 over the size of an aircraft gyro, the sensitivity of these ring lasers 
to rotation has improved by at least 5 orders of magnitude, while the drift 
rate of the instruments has been reduced substantially. With several of 
these highly stable large ring lasers, very small periodic signals coming 
from polar motion, solid Earth tides and ocean loading have been success-
fully measured (Schreiber et al. 2003, 2004a). However, rotational signal 
signatures caused by remote earthquakes are stronger than these small per-
turbations of Earth rotation (McLeod et al. 1998, Pancha et al. 2000). The 
range of  angular  velocities to be  covered is  very wide: 10 14 rad/s s

1 rad/s, with the required frequency bandwidth for the seismic waves in the 
range of 3 mHz fs 10 Hz (Schreiber et al. 2004b). Currently, the large 
ring lasers are the only available rotation sensors which fulfil these de-
mands. Three such devices mounted in orthogonal orientations may even-
tually provide the quantitative detection of rotations from shear, Love and 
Rayleigh waves. These properties inspired the development of a highly 
sensitive ring laser gyro dedicated to seismological applications. It is im-
portant to note that ring laser gyroscopes are sensitive only to rotations 
around their area normal vector. From that point of view, they provide ad-
ditional information.  

The goal of the GEOsensor project was the construction and evaluation 
of a field-deployable demonstrator unit, which will eventually provide ac-
cess to all 6 degrees of freedom of motion. The recording of the (complete) 
earthquake-induced rotational motion is expected to be particularly useful 
for: (1) further constraining earthquake source processes when observed 
close to the active faults (Takeo and Ito 1997); (2) estimating permanent 
displacement from seismic recordings (Trifunac and Todorovska 2001); 
(3) estimating local (horizontal) phase velocities from collocated observa-
tions of translations and rotations (Igel et al. 2005). Because of the rela-
tively short duration of an earthquake, such ring lasers do not need a long 
term stability over weeks or months, which is difficult and expensive to 
obtain. An instrumental stability of approximately one hour during a seis-
mic event is sufficient. Therefore it is possible to use a steel structure at-
tached to a solid concrete platform as the main components of the Sagnac 
interferometer. As indicated above, ring lasers for seismic studies require a 
high data rate of at least 20 Hz, because of the wide bandwidth of seismic 
frequencies near an earthquake source. While large ring lasers for geodetic 
applications are usually optimized for measuring variations in the rotation 
rate of the Earth in a frequency band below 1 mHz, autoregressive algo-
rithms can be used to determine the Sagnac frequency with a resolution be-
low the Nyquist limit. While this method can still be employed for the 
strongly bandwidth limited teleseismic signals (McLeod et al. 2001), an 
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entirely different detection scheme is needed for the data evaluation of re-
gional or local seismic events. 

29.2 Properties of Ring Lasers 

Ring lasers are active Sagnac interferometers, where two monomode laser 
beams circulate around a triangular or square closed cavity in opposite di-
rections (Aronowitz 1971, Stedman 1997). If the whole apparatus is placed 
on  a platform rotating with respect to inertial space, the effective cavity 
length differs between the co-rotating and the anti-rotating laser beams and 
one obtains a frequency splitting of the two counter propagating optical 
waves, the magnitude of which is directly proportional to the rate of rota-
tion. The Sagnac frequency f  is 

4
,

A
f

P
n (29.1)

where A is the area, P is the perimeter enclosed by the beam path and  is 
the optical wavelength of the laser oscillation.  is the angular velocity at 
which the instrument is turning and n is the normal vector to the laser 
beam plane. In order to understand the functions of such a Sagnac interfer-
ometer with respect to applications in seismology, one can distinguish 
three independent mechanisms contributing to the measured beat fre-
quency .f  These are: scale factor 4 /A P , orientation n· , and rotation 
velocity (t).

29.2.1 Scale factor 

A number of helium/neon ring lasers with square resonators have been 
successfully constructed over the last 15 years. Basic design features 
common to all of them are laser cavities with an extremely high Q around 
1012 (Q = , with  the optical frequency and  the cavity decay time) 
and a rf-plasma excitation scheme. All these ring lasers are operated near 
laser threshold, using mode competition as a natural selection criterion to 
ensure single longitudinal mode operation for each sense of rotation 
(Stedman 1997). The lock-in threshold is well below 1 Hz; therefore, all of 
these rings are always unlocked at the rate bias generated from the rotating 
Earth. From Eq. (29.1) one can see that the geometrical stability of the ring 
laser cavity is very important, because small variations in the scale factor 
impact on the Sagnac frequency. For relatively small ring lasers, which can 
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be manufactured from a monolithic Zerodur body such as C-II (A = 1 m2)
and G (A = 16 m2), it is possible to fulfil this condition. However, for very 
large ring lasers, namely UG1 (A = 367 m2) and UG2 (A = 832 m2) it is 
impossible to keep the scale factor constant. These instruments are made 
from stainless steel tubes mounted on small concrete piers inside the 
Cashmere Cavern in Christchurch, New Zealand. Apart from distortions of 
the cave caused by changes in temperature and atmospheric pressure, such 
a ring laser is also exposed to a variable strain field induced by the gravita-
tional forces of the moon.  

Fig. 29.1  Area strain for the UG1 ring laser location computed from global model 
for the day 304 in 2002. The maximum peak to peak variation of the perimeter is 
around 2.5 µm

Figure 29.1 shows an example for the modelled area strain acting on the 
UG1 ring laser. The perimeter changes by as much as 2.5 µm as a result of 
the deformation of the Earth crust caused by lunar attraction. However this 
is not the only effect. Atmospheric pressure changes also cause deforma-
tions to the Cashmere cavern. A way to analyse these variations of the ring 
laser perimeter is to operate the ring laser in two neighbouring longitudinal 
modes and the measurement of the resultant beat frequency, which corre-
sponds to the free spectral range (FSR) of the cavity. The FSR is defined 
as  FSR = C/P and when measured can be used to determine the perimeter 
(P) of the ring laser accurately. For the UG1 ring laser the FSR is 
3.8969041 MHz. In order to allow a detailed study of the variation of the 
cavity length this rf-signal was downconverted to an audio signal of 
around 282 Hz with a help of a GPS-stabilized signal generator. Figure 
29.2 shows the result.

Good agreement has been obtained between model and measurement. 
Since the atmospheric pressure constantly dropped over the time of the 
measurement, it was included into the analysis as a linear drift. As a result 
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of this investigation one can conclude that it is impossible to keep the pe-
rimeter and therefore the scale factor constant for very large rings. 

Fig. 29.2  Area strain for the UG1 ring laser location computed from a global 
model extended with a linear drift from atmospheric pressure changes (solid 
curve) superimposed on FSR measurements of the ring laser cavity (dotted curve) 

Fig. 29.3  Example of a timeseries of the Sagnac frequency variations from UG1. 
here is a general sensor drift apparent, but strain related scale factor changes are 
not present 

Figure 29.3 shows an arbitrary example of a longer timeseries of Earth 
rotation measurements from the UG1 ring laser. One can see that there are 
no apparent contributions of the scale factor variations in this dataset. 
Since Fig. 29.3 has a measurement resolution of approx. 1 ppm (part per 
million) of the measurement quantity, this is surprising. According to the 
ring laser equation, Eq. 29.1, the scaling factor is depending on the perime-
ter and area. The wavelength of the laser is given by 
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= ,
P

I
(29.2)

where P is the perimeter and I the index of the longitudinal mode. For a 
square cavity and under the assumption that any change in area also re-
flects in the corresponding change of the perimeter (that is, in the absence 
of distortions of the ring laser), one finds that the scaling factor is inde-
pendent of the wavelength and the ring laser dimensions as long as the 
same longitudinal index of the laser mode is maintained. The Sagnac for-
mula then can be written as 

2

4
n ,

I A
f
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(29.3)

For an exact square cavity, where one side is a, the scale factor reduces 
to I/4. Since area and perimeter changes correspond to each other in gen-
eral, this means that the scale factor variations of this type do not appear in 
the Sagnac frequency as long as the longitudinal mode index does not 
change. This is usually the case. As the area changes, the perimeter and the 
instantaneous optical frequency inside the laser cavity will respond to 
compensate for the changes. This means, the large ring lasers are suitable 
instruments for seismic studies. 

29.2.2 Ring laser orientation 

Because of the inner product in Eq. 29.1, the value of the measurement 
quantity also depends on the projection of the rotation vector on the ring 
laser normal vector. Geophysical signals such as the solid Earth tides, 
ocean loading and diurnal polar motion become measurable via the varia-
tion of this projection (Schreiber et al. 2003, 2004a). Therefore, it is also 
important to look at this effect for the interpretation of seismic wave detec-
tions. Figure 29.4 gives an example of a M = 6.8 earthquake that occurred 
in Algeria on May 21 in 2003. It was recorded at the G ring laser facility of 
the geodetic observatory Wettzell in Southern Germany. 

The upper part of the diagram shows the Sagnac frequency converted to 
a rotation rate as measured during the earthquake. The lower part of the 
diagram was obtained by taking the simultaneously recorded tiltmeter 
readings (referenced to local g) and converting them to a projection-
induced variation of the rotation rate. In comparison, one can see that this 
tilt signal contributes less than 5% to the total signal. For an earthquake 
with a large epicentral distance, this effect is smaller, but for much closer 
earthquakes it may well become a dominant signal source. This again 
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shows how important it will be to measure all 6 degrees of freedom of mo-
tion close to an earthquake source. 

Fig. 29.4  Ring laser seismogram of an earthquake in Algeria (M = 6.8) of 21 May 
2003, recorded by the G ring laser in Wettzell. The tilt induced contribution to the 
measurement quantity is as large as 5% 

29.2.3 Instrumental dynamic range 

Unlike seismometers, the concept of a Sagnac interferometer is not based 
on mass inertia. As a consequence, ring lasers have no moving mechanical 
parts. This has the advantage that there is no restitution process required 
for the extraction of the true ground motion from the transfer function of 
the measurement device. In order to distinguish true measured ground rota-
tions from possible unknown sensor artefacts, two independent ring lasers 
were co-located and operated at the same place. The first ring laser is C-II, 
a monolithic solid body structure with an effective area of 1 m2, the second 
ring is the heterogeneous UG1, built on many small independent concrete 
pedestals around the inner perimeter of the Cashmere cave. UG1 has an ef-
fective area of 467 m2. C-II is placed inside UG1 and the area normal vec-
tors of both ring laser planes are collinear. 

According to the ring laser equation, the relationship between the ob-
tained Sagnac frequency and the input rotation rate is linear over a wide 
dynamic range. The  M = 7.7 earthquake near the Fiji Islands on 19 August 
2002, was recorded on both ring lasers simultaneously. Figure 29.5 shows 
the first 15 seconds of this earthquake. The measured raw Sagnac fre-
quency as a function of time was converted to rotation rate in nanoradians 
per second using Eq. (29.1). Apart from this conversion the data has not 
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been modified. The dataset from the C-II ring laser is much more noisy 
than the data from UG1, because there is almost a factor of 20 difference 
in the respective scale factors. Nevertheless one can see that both ring la-
sers measure exactly the same signal in phase as well as in amplitude. It 
has to be stressed again that apart from the unit conversion, the comparison 
in Fig. 29.5 uses raw data only. 

Fig. 29.5  Comparison of two ring laser seismograms from the same M = 7.7 
earthquake near Fiji on 19 August 2002. Both ring lasers were located in the same 
place with identical orientation. Apart from the higher noise level of the smaller 
instrument the recordings are identical 

29.2.4 Detection properties 

Ring lasers provide optical interferograms where the external rate of rota-
tion is proportional to the rate of change of the fringe pattern. This signal 
becomes available as an audio-frequency at the output of a photomultiplier 
tube. In seismology it is important to detect the rate of change of this fre-
quency at 50 ms intervals (20 Hz) very accurately. Since frequency count-
ing techniques do not provide a sufficient resolution at such short averag-
ing intervals, a frequency demodulation concept has been developed. A 
voltage controlled oscillator is phase locked to the Sagnac frequency of the 
ring laser, exploiting the fact that Earth rotation provides a constant rate 
bias in the absence of any seismically induced rotation signals. In the event 
of an earthquake, one obtains the rate of change of the Sagnac frequency at 
the feedback line of the voltage controlled oscillator. This voltage can be 
digitized and averaged at the required 20 Hz rate or higher. Currently, the 
upper limit for the detectable rate of change from a large ring laser is not 
set by the rotation sensor itself but by the frequency extraction process.
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Fig. 29.6  Comparison of recorded rotation spectra from an teleseismic event 
(Hokkaido: 9 September 2003) and a regional earthquake (France: 22 February 
2003). The much higher bandwidth of the rotational wave spectra requires alterna-
tive data acquisition techniques such as the demodulator 

To outline the importance of the frequency demodulation technique two 
earthquakes with distinctly different properties are compared. Figure 29.6 
shows an example for a teleseismic event and an example from a much 
closer regional earthquake. While for the remote earthquake the spectral 
power density essentially drops off to zero above frequencies of 0.1 Hz, 
one can still see some signal signature up to about 4 Hz for the regional 
event. Frequencies with a rate of change above 2 Hz, however, are already 
outside the regime of reliable representation in phase and amplitude by 
conventional frequency counting and second order autoregression fre-
quency analysis (McLeod et al. 2001). 

29.3 Detection of Seismic Signals 

For example, the 4 4 m2 ring laser G installed in the Geodetic Observatory 
Wettzell has a sensor resolution of -11 1/2= 9 10 rad/s .  This outstanding 
sensitivity is appropriate for the detection of both teleseismic waves and 
near source seismic signals. Typical seismic signals require a high sensor 
stability for up to one hour of continuous data acquisition. This require-
ment is much reduced as compared to the long-term stability necessity of 
the instrument G for the geodetic applications for which it has been built.
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Fig. 29.7  Sensor resolution of different rotation sensor concepts in relation to the 
observed signal strength of some earthquakes at different epicentral distances 

Figure 29.7 illustrates some basic characteristics for the detection of ro-
tations from seismic signals. The diagram shows most of the measurement 
range of interest for seismic studies. The relevant frequency window is 
plotted horizontally, while the magnitude of the respective rotation rates is 
displayed on the vertical. In order to keep this diagram simple the strong 
motion region is not shown. In the lower part of the plot one can see a line 
which indicates the resolution limit for current ring lasers. Depending on 
the actual scale factor, the sensitivity differs from one ring laser to another. 
However, within the y-scale of this chart this line gives a good representa-
tion for the existing large ring lasers in general. The current high quality 
fiber optic gyros (FOG) exhibit a sensor resolution 1/20.1 / h  or 
slightly less. The upper line was derived from  test measurements of a 
sample FOG type instrument: µFORS-1 manufactured by LITEF in Ger-
many. Both lines are sloping over the frequency range of interest. This re-
flects the improvement resulting from longer integration as the frequency 
of interest reduces. To give an idea of the real sensor requirement, three 
very different examples of earthquakes are indicated on the graph. The de-
tails of these earthquakes are given in Table 29.1. Since the Earth crust 
acts as a lowpass filter one can see that the earthquakes at the right side of 
the Fig. 29.7 plot are the closest.  
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  Table 29.1 Details of some earthquakes 
  recorded in Germany 

Source Magnitude Distance 
[km] 

Sumatra 9.3 > 10000 

Algeria 6.8 1550 

France 5.4 400 

All events listed here produced datasets with good signal to noise ratio 
on the G ring laser. Figure 29.8 shows a raw dataset as an example. 

Fig. 29.8  The raw rotation measurement of the M = 9.3 Sumatra earthquake from 
26 December 2004. The dataset was recorded with a good signal to noise ratio 

None of these events would have been within the sensor resolution of 
FOG. As clearly seen in Fig. 29.7, the application of FOGs for seismic 
studies is currently possible only for strong motion applications. 

29.4 GEOsensor 

Based on the discussion of the previous sections one can formulate a con-
cept for a sensitive seismic rotation sensor. In order to obtain a stable inter-
ferogram of the two laser beams, the cavity length has to be kept constant 
to within a fraction of a wavelength. Therefore, usually ring laser bodies 
are made from Zerodur, a glass ceramic which exhibits a very small rela-
tive thermal expansion of = 5 10 8 per K. Since a ring laser for seismic 
applications requires an enclosed area of more than 1 m2, a monolithic ring 
construction would be both too expensive and not transportable. 
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Fig. 29.9  Photo of the GEOsensor ring laser during sensor integration 

Figure 9 shows the actual ring laser hardware. The laser cavity has the 
shape of a square. The four adjustable mirrors are each located in a solid 
corner box for maximum mechanical stability. The adjustable mirrors are 
located inside steel containers which in turn are connected together with 
stainless steel tubes, forming an evacuated enclosure for the laser beams. 
In the middle of the far side the steel tubes are reduced to a small glass 
capillary of 4 mm in diameter and a length of 10 cm, which is required for 
gain medium excitation. When operated, the ring laser cavity is first 
evacuated and then filled with a mixture of helium and neon reaching a to-
tal gas pressure of approximately 6 hPa. In the background of Fig. 29.9 the 
vacuum pump and filling station can be seen. Other subsystems like the 
seismometer, the rf-transmitter and the beampower stabilizer are placed in-
side the ring laser boundary. The following two important considerations 
are unique for the GEOsensor design:  

Since the ring laser is constructed from several components, it requires a 
stable concrete platform base at the location of deployment. Such a pad 
is simple to specify and can be prepared totally independently of the ac-
tual GEOsensor deployment. 
The actual area of the ring laser component is not predetermined by the 
design. The instrument can be built according to the available space at 
the host observatory. Different GEOsensor realizations may therefore 
have different size and consequently different instrumental resolution. 
The length of the current instrument is 1.6 m on a side, which provides 
an area of 2.56 m2.
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In order to operate the GEOsensor, the cavity must be evacuated, baked 
and filled with a He/Ne gas mixture. This procedure requires a turbo mo-
lecular pump system and a manifold with a supply of 4He, 20Ne and 22Ne.
The pump system is not required during the operation of the GEOsensor, 
but is necessary for the preparation of the instrument and once or twice a 
year in order to change the laser gas. Laser excitation itself is achieved via 
a high frequency generator, matched to a symmetrical high impedance an-
tenna at the gain tube. A feedback loop maintains the level of intensity in-
side the ring laser and ensures monomode operation. When the ring laser is 
operated it detects the beat note caused by Earth rotation as a rate bias. The 
magnitude of this beat frequency depends on sin , with the latitude of 
the ring laser location. Table 29.2 shows the value of the Earth’s rate bias 
for a few locations of interest, for the GEOsensor with 1.6 m arms. 

 Table 29.2 Earth rotation bias for some  
  GEOsensor locations 

Location Frequency 
[Hz] 

Wettzell, Germany  (49.145 N) 138 

Pinon Flat, CA (33.6 N) 102 

Tokyo, Japan (35.4 N) 106 

Cashmere, NZ (43.57 S) 127 

To date, the GEOsensor has been operated at the first two locations. 
Since the Earth rotation acts like a rate bias on our ring laser measure-
ments, any rotations caused by earthquakes will show up as a frequency 
modulation around the measured Earth rate. 
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30.1  Introduction 

The rotational part of earthquake-induced ground motion has basically 
been ignored in the past decades, compared to the substantial research in 
observing, processing and inverting translational ground motions, even 
though there are theoretical considerations that suggest that the observation 
of such motions may indeed be useful and provide additional information. 
In the past years, interest in this potentially new observable for seismology 
has risen, primarily because – with modern acquisition technology such as 
fiber-optical or ring laser gyros – rotational motions  have actually been 
observed, the resolution is steadily increasing, and the observations are 
becoming consistent with collocated recordings of translational ground 
motions. Even though the real benefit to Earth sciences is still under inves-
tigation, recent results suggest that collocated measurements of rotations 
and translations may allow the estimation of wavefield properties (such as 
phase velocities, direction of propagation) that otherwise can only be de-
termined through array measurements or additional strain observations. In 
this paper we focus on studies of the vertical rotational component (twist, 
spin, or rotation around a vertical axis) and review recent results on the 
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fundamental concepts that are necessary to understand the current broad-
band observations of a wide distance and magnitude range, and show that 
the classical theory of linear elasticity is sufficient to explain these obser-
vations. In addition to direct measurements of rotational motions using 
ring laser technology, we describe the method to derive rotational motions 
from seismic arrays and present some initial results. Sophisticated 3D mo-
delling of the rotational ground motions of teleseismic events illustrate the 
accuracy with which observed horizontal phase velocities match with theo-
retical predictions, even though the precise waveforms are quite different 
due to inaccuracies in crustal models or kinematic rupture properties. This 
may have implications for sparse networks or situations where extremely 
few or even single-station observations are taken (e.g., in remote areas or 
planetary seismology).  

To fully characterize the motion of a deformable body at a given point 
in the context of infinitesimal deformation, one needs three components of 
translation, six components of strain, and three components of rotation, a 
vectorial quantity. Rotational motions induced by seismic waves have been 
essentially ignored for a long time, first because rotational effects were 
thought to be small (Bouchon and Aki 1982), and second because sensitive 
measuring devices were not available. Indeed, Aki and Richards (1980, 
p. 489) point out that the state-of-the-art sensitivity of the general rotation 

sensor is not yet enough for a useful geophysical application.
However, there have been many reports of rotational effects associated 

with earthquakes (like twisting of tombstones, or statues). It is certainly 
possible that some of these effects are due to the asymmetry of the con-
struction. Indeed, as is well known, when the center of mass is not located 
at the geometric center, a mere translation may induce a local rotation of 
that structure. However, some field evidences suggest that it is at least not 
always the case (Galitzin 1914, p. 172). The rotational angles calculated by 
Bouchon and Aki (1982) for realistic cases of earthquake scenarios (about 
10-4 radians) seem indeed too small to be responsible for damages, except, 
maybe for the case of long structures. However, as, roughly speaking, rota-
tions are proportional to displacement divided by the phase velocity (see 
Section 30.2.3), when the wave velocity becomes smaller, rotations be-
come comparatively larger. This happens in soft or unconsolidated sedi-
mentary and/or fluid-infiltrated porous media, where wave speeds might 
be as low as about 50 m/s, hence smaller than usual by about a factor of 
50. Thus, it is not implausible that, near seismic sources – where rotations 
and strains become relatively large even in normal media – rotations and 
strains become really large and be responsible for the above mentioned 
damages (there is also growing seismological evidence that rotational am-
plitudes have been underestimated (Castellani and Zembaty 1996)). Obvi-
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ously, in such a situation, the assumption of infinitesimal deformation 
would then fail and the theory of finite deformations would be necessary.  

As an attempt to measure rotational motions with high sensitivity, in the 
past years ring laser gyroscopes were developed, primarily to observe 
variations in Earth’s absolute rotation rate with high precision (Stedman et 
al. 1995, Stedman 1997). One of these instruments – located near Christ-
church, New Zealand – recorded seismically induced signals of ground ro-
tation rate for several large earthquakes (McLeod et al. 1998, Pancha et al. 
2000). These observations gave evidence that the optical sensors indeed 
provide sufficient accuracy to record seismic rotations. However, they 
were not fully consistent in phase and amplitude with translational motions 
recorded with collocated seismometers, the limited consistency being ob-
tained only in a narrow frequency band. Earlier attempts to observe ground 
rotations with other devices (e.g., solid state rotational velocity sensors, fi-
ber-optical gyros) were limited to large signals close to artificial or earth-
quake sources (Nigbor 1994, Takeo 1998) and did not lead so far to an in-
strument of general interest. This explains why Aki and Richards (2002, 
p. 608) note that as of this writing seismology still awaits a suitable in-

strument for making such measurements. However, the subsequent devel-
opment of ring laser technology indicates that a significant part of the gap 
has recently been filled, as demonstrated by Schreiber et al. (2003b) and 
Igel et al. (2005b) and exemplified later in this paper. Rotations can also be 
determined with array measurements, but with important limitations; see 
Section 30.3.1 and Suryanto et al. (2005).  

The recording of even small, non potentially damaging, rotational mo-
tions is expected to be very useful. First, translation recordings are polluted 
by rotations. There is a purely geometrical effect (the reference axis of the 
seismometer is rotated), introducing a cosine factor, hence negligible for 
very small deformations, but which could become significant in case of 
very strong ground motion. More importantly, there is also an inertial con-
tribution. It is well known that surface tilt (horizontal rotation – see Sec-
tion 30.2.2) induces a translational signal (Aki and Richards 2002, p. 604). 
A similar effect exists for vertical rotation (Trifunac and Todorovska 
2001). Measuring the three components of rotation allows in principle to 
correct for these effects. Second, as the measure of rotation provides addi-
tional information, it helps constraining physical models. For example, the 
measure of vertical rotation and horizontal acceleration allows the estima-
tion of the local Love wave phase velocity and of its propagation direction 
(see Section 30.2.3 and Igel et al. 2005a). It is also expected (Takeo and 
Ito 1997) that the measure of rotations will allow to better constrain earth-
quake rupture histories.  
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The above discussion has been deliberately restricted to classical elastic-
ity, for which the stress and strain tensors are symmetric. In some extreme 
cases (e.g., large stress gradient) near crack tips or in granular materials, 
the material can no longer be treated as a continuum. A continuous formal-
ism may still be used for an effective medium in which additional – intrin-
sic – rotations (i.e., not related to displacement) may exist. In such 
Cosserat/micropolar media, the stress and strain tensors are no longer 
symmetric. See, e.g., Dyszlewicz 2004, Nowacki 1986, Maugin 1998, 
Lakes 1995, Teisseyre and Majewski 2001, Teisseyre et al. 2003, and other 
papers in this monograph. In the following of this chapter we remain in the 
framework of classical elasticity. 

30.2  Fundamental Theory 

In the framework of classical elasticity, and further assuming infinitesimal 
deformations, displacement of a point x is related to that of a neighbouring 
point x x   by (e.g., Aki and Richards 2002, p. 13) 

( ) ( )

( )

( ) ,

u x x u x G x

u x x x

u x x x

(30.1)

where G, ,  are the gradient, strain, and rotation second order tensors, 
respectively, and  

1
( )

2
u x (30.2)

is a (pseudo-) vector which does not enter Hooke’s law and represents the 
angle of rigid rotation generated by the disturbance. This illustrates that 
one needs three components of translation, six components of strain and 
three components of rotation to fully characterize the change in the medi-
um around point x.

30.2.1  Rotations and strain due to a double couple 
point source 

Aki and Richards (2002, Fig. 4.4 and Eqs. 4.32 and 4.33) give the expres-
sion for the displacement u(x) generated by a point source shear disloca-
tion (double couple) in an infinite, homogeneous, isotropic medium. The 
dislocation is in the xy plane with slip along x (Fig. 30.1).

Following the same notations, we can then determine the rotation as 
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Fig. 30.1 Geometry and notations for the double couple expressions 
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where

ˆ ˆcos sin cos cos2R
A (30.4)

is the radiation pattern of the three components of rotation (the radial com-
ponent being zero). Likewise, the divergence (or trace of the strain tensor, 
representing volumetric change) is given by 

0 0 02 3 3 2 4

3 3 1
( )

4

DA r r r
M t M t M t

r r r
u x , (30.5)

where

cos sin 2DA (30.6)

is the radiation pattern of the divergence.  
Figure 30.2 shows displacement, velocity, divergence and rotation, and 

divergence and rotation rates, as a function of time at a given point (see 
caption for details). 

(30.3)
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Fig. 30.2 From top to bottom: Displacement, velocity, divergence and rotation, di-
vergence and rotation rates, as a function of time at a given point due to a double 
couple in an infinite, homogeneous, isotropic medium. The dislocation is in the xy

plane with slip along x, as in Aki and Richards (2002, Fig. 4.4) and in Fig. 30.1. 
The observation point is defined as (r, , ) = (3 km, /8, /8) in spherical coor-

dinates. The moment is 1015 N·m (M 4) and the source time function rate is a 
Gaussian of the form exp(–(t/T)2 )  with  T = 0.05 s. The density of the medium is  

 = 2800 kg/m3, the S and P wave velocities are   = 3 km/s and 3 .  Con-

cerning displacement and velocity, the usual terminology is used for the near, in-
termediate, and far fields, but not concerning divergence and rotation (and their 

rates) (see text). The radial components (along r̂ ) are plotted black, the ˆ  com-

ponents, dashed, and the ˆ  components, dotted; the divergence and divergence 
rate evolutions are plotted gray 
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Since the gradient tensor is merely split into symmetric and antisym-
metric tensors, we intuitively derive from Eq. (30.1) and see from the fig-
ure, that rotations and strains are of the same order of magnitude. 

Not surprisingly, rotations are zero at the P wave front, and only start at 
the S wave arrival (and have no radial component), even in the displace-
ment near field region (this is also true for, e.g., single forces or single 
couples). This could however appear strange at first sight, as, e.g., the rota-
tion associated with the far field P term is not zero. This is obvious when 
looking at its radiation pattern (Fig. 4.5a of Aki and Richards 2002) and is 
in fact given by 3 2

0 ( / ) /(4 ).RM t r rA  It turns out that this contri-
bution cancels out with part of the curl of the intermediate field at the P
front, the other part canceling in turn with the near field contribution. 
(Nevertheless, rotations may not be obtained by taking the curl of only the 
transverse displacement terms in Eq. 4.32 of Aki and Richards 2002.) 
Analogous comments may be made for strains, which are active around the 
P front only. Therefore, the usual classification for displacement in near, 
intermediate, and far field terms cannot be applied to rotations and strains. 
As rotations and strains comprise terms proportional to 1/r, 1/r2, 1/r3, it is 
convenient to refer to them as far, intermediate, and near field terms, re-
spectively, which has been done in Fig. 30.2. However, this could be mis-
leading, since, if the far and intermediate displacement fields also decrease 
as 1/r and 1/r2, respectively, the near field displacement term, proportional 

to (1/r4)
/

0/
( )d

r

r
M t  essentially decreases as 1/r2, not 1/r3.

We conclude the section by noting that the rotation radiation pattern AR

can be calculated from the transverse (or S) far field radiation pattern 
ˆ ˆcos2 cos cos sinFS

A   (Eq. 4.33 of Aki and Richards 2002, 

p. 78) as  /FS R rA A ; thus, AFS and AR are orthogonal. Similarly, AD

is related to the radial (or P) far field radiation pattern  AFP = AD
r.

30.2.2  Effect of free surface — rotation and tilt 

Assuming the surface corresponds to the xy plane, the zero traction bound-
ary condition at the free surface implies that  3i = 0 (i = x, y, z). Direct 

application of Hooke’s law  2ij kk ij ij   in a homogeneous, iso-

tropic medium leads to  

, , .
2

y yx z z x x
u uu u u u u

z x z y z x y
(30.7)
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It then directly follows (Eq. 30.2) that

,z z
x y

u u

y x
 , (30.8)

hence that at the Earth’s surface, horizontal rotation corresponds to tilt.
As a consequence, P waves generate horizontal rotation at the surface 

whereas they are irrotational in the bulk. There is an additional contribu-
tion to horizontal rotation due to P-to-SV converted waves at the surface 
(also due to the free surface boundary condition). It is still an open ques-
tion what technology is best for the various components of rotation. For 
the vertical component, the results presented here and in other studies sug-
gest that the optical devices are the way to go. Those optical devices could 
be advantageous compared to classical tiltmeters for the horizontal com-
ponents as well (regardless of metrological characteristics – accuracy, sen-
sitivity, etc. – which remain to be assessed): indeed, classical tiltmeters 
measure a change of angle with respect to the local vertical, determined by 
gravity; thus, they cannot discriminate between true rotation and a pure 
change in the local gravity (e.g., due to mass redistribution). 

30.2.3  Comparison of rotation and translations 

Obviously, if we know, or assume we know, the full expression for dis-
placement u, we can determine rotation  from the measurement of u

(Eq. 30.2) by differentiating. If we do not fully know u, the measurement 
of  brings in additional information. 

First, consider the case of a transversely polarized plane wave with dis-
placement  u(x, y, z, t) = (0, uy(t – x/c), 0)  propagating in the x direction, 
with c being the horizontal phase velocity. Rotation is thus given as 

( , , , ) (1/2) ( , , , ) (0,0, ( / ) /(2 )).yx y z t x y z t u t x c cu  Thus  we have 

( , , , )
( , , , )

2
y

z

u x y z t
x y z t

c
 . (30.9)

Surface waves are composed of both Love waves, with horizontal trans-
verse polarization, and Rayleigh waves, with displacement in a vertical 
plane assuming elastic isotropy. So Rayleigh waves do not generate a ver-
tical component of rotation. Thus, for a given earthquake for which the 
distance to the station is large enough compared with the source dimension 
and the wavelength of interest so that the plane wave assumption is valid, 
from the measurement of rotation and displacement of a surface wave train 
one can in principle infer both the phase velocity and the direction of the 
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incoming wave train. In practice, we have so far dealt only with earth-
quakes of known location, and have assumed that the surface trains were 
traveling along the great circle, thus providing the direction (Igel et al. 
2005b, and Section 30.4 below). There are now observations of ground ro-
tations of several dozens of earthquakes with a wide magnitude and epi-
central distance range. The accuracy of the phase velocity estimates is cur-
rently under investigation by comparison with complete wave simulations 
(see below), and array-derived phase velocities (Suryanto et al. 2005) as 
well as theoretical predictions of Love-wave dispersion for local Earth 
models. 

30.3  Rotational Measurements 

Rotational ground motions can be observed by (1) finite-differencing of 
seismic array data or (2) directly (ring laser, fiber-optical or mechanical 
gyros). In this section we briefly review both approaches and give relevant 
references.

30.3.1  Array derived rotations 

One way of estimating the components of the deformation gradient G,
hence of computing strains and rotations, is through array measurements 
(e.g., Spudich et al. 1995, Bodin et al. 1997, Huang 2003). Using the first 
of Eqs. (30.1) with a non infinitesimal quantity R as the position vector be-
tween two points in place of x, we get ( ) ( ) FD

d u x R u x G R  where 
G

FD is a first order approximation of G, i.e., exact if u varies linearly be-
tween x and x + R. Using three non aligned points, one gets two such vec-
torial equations (six equations in Cartesian coordinates) with a common 
point, relating, say, d1 and d2 to R1 and R2, and one can then solve for the 
six approximations of the partial derivatives in the plane defined by the 
three points. Specifically, if we measure the ground displacement at three 
stations on the surface, whose relative positions are known, we can deter-
mine (without using the free surface boundary condition) estimations of 

/ , / , / , / , / , / .x x y y z zu x u y u x u y u x u y  This is what is 
commonly used in finite element methods to calculate the spatial deriva-
tives in triangular cells (e.g., Cook 1974); for example, one gets 

2 1 1 2/ ( ) /(2 )x x x x xu y d R d R S , where S is the surface of the triangle. 
In particular, we can determine an estimation of the vertical component 

of rotation
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When more than three stations are used, the equations  di = GFD
Ri (where 

i + 1  is the number of stations) can be solved by using a least square pro-
cedure (e.g., Spudich et al. 1995). This is how we proceed in Sect. 30.4.2.

Note that the rotation-induced translational signals, as explained in the 
introduction, affect the array-derived rotation calculations as described just 
above. It should be possible to devise an iterative procedure to correct for 
this effect, but this has not been attempted in this paper.  

Using the free surface boundary condition, one can also estimate the 
horizontal components of rotation, and, if further assuming the quantity 

/( 2 )  known, /zu z  (cf. Sect. 30.2.2). Note that z cannot be de-
termined by means of tiltmeters or strainmeters. Array-derived rotations 
are subjected to an important limitation. The instruments should be as 
close as possible for the finite difference approximations to be as close as 
possible to the true gradients. However, for a given instrumental noise 
level, the uncertainty in the gradients will be larger if the instruments are 
closer; see Suryanto et al. (2005) for a more in-depth discussion of noise 
contribution. Finally, the assumption of linearity of the displacement will 
be greatly affected by site effects at the stations. 

30.3.2  Ring laser rotational measurements 

In 1913, G. Sagnac showed that two counter-propagating light beams, stee-
red around a closed area A inside an interferometer, generated a phase shift 
when the instrument was rotating at an angular frequency  with respect 
to an inertial frame. In our active square laser cavities, lasing at a single 
mode per sense of rotation is achieved when an integral number of wave-
lengths circumscribe the ring perimeter. Since the path length is slightly 
different for the co-rotating and counter-rotating laser beams, we obtain a 
beat frequency  instead of the phase shift. This has the advantage that, 
technically, a frequency can be measured much more precisely than a pha-
se shift. With P the perimeter of our instrument, the Sagnac equation for an 
active ring laser cavity reads 

4A

P

n
 , (30.11)

where  is the rest wavelength of the laser and n is the unit vector per-
pendicular to the ring laser area. Inherently, this equation has three contri-
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butions which reflect upon the beat frequency .  Variations of the scale 
factor (4 / )A P  have to be avoided by making the instrument mechani-
cally as rigid and stable as possible. Changes in orientation enter the beat 
frequency via the inner product. Finally, variations in  are representing 
the most dominant contribution to changes in  and are the focus of our 
seismic studies here. Technically, our rings are realized as high Q Heli-
um/Neon lasers, operated close to laser threshold in order to satisfy the 
single mode condition (Stedman 1997). The body is made from Zerodur, a 
glass ceramic with extremely low thermal expansion, to ensure the re-
quired scaling factor stability. Mirrors with a total loss of around 15 ppm 
each are used to minimize errors arising from coupling between the two 
counter-rotating beams through backscattered light. The larger the ring la-
ser can be made, the higher is the sensitivity to rotation (Schreiber et al. 
2003c).

All ring lasers are rigidly attached to bedrock and very small changes of 
orientation caused by Earth tides, ocean loading (Schreiber et al. 2003a) 
and, in particular, diurnal polar motion (Schreiber et al. 2004) were suc-
cessfully detected. Ring lasers have two major advantages for applications 
in seismic studies. They are measuring absolute rotation with respect to the 
local universe and they do not depend on accelerated masses. In particular 
this last property ensures an extremely wide dynamic range of operation, 
reaching from a few µHz for geophysical signals up to more than 10 Hz as 
obtained from regional earthquakes. 

30.4  Observations and Simulations of Rotational Motions 

In this section we shall present direct (ring laser) and array-derived rota-
tions and compare them with observations of transverse acceleration and 
theoretical rotation rate calculated for a 3D Earth model.  

30.4.1  Ring laser observation of rotational motions, 
            comparison with simulations 

In the last years the capabilities of simulating the propagation of seismic 
waves resulting from earthquakes on a global scale have improved signifi-
cantly. This is not only due to the still increasing computer resources, but 
also due to improved and highly sophisticated numerical methods. The 
“spectral element method” (Komatitsch 1997, Komatitsch and Tromp 
2002a, b), for example, allows very accurate modelling of elastic waves in 



         A. Cochard et al. 402

three-dimensional model structures of the Earth’s interior, additionally in-
corporating various effects, such as topography/bathymetry, anelasticity, 
anisotropy, ocean loading and rotation as well as gravitation of the Earth. 
The method proved to give very good results in terms of fit to observed da-
ta when using current 3D tomographic Earth models (Komatitsch et al. 
2003, Igel et al. 2005b, Schuberth et al. 2005). For this study, we used a 
modified version of the spectral element program SPECFEM3D, in which 
we implemented the calculation and output of rotational ground motions 
for comparison with the ring laser data from Wettzell, Germany. The ac-
tual computation of the rotations in the code is straightforward, the spatial 
derivatives of the displacement /xu x  etc. being already available as 
they are needed for the calculation of the translational motions. Thus we 
can easily obtain the rotational motion as the curl of the displacement field 
(Eq. 30.2).  

For this study, simulations were carried out using a finite source model 
of the M7.3 Irian Jaya earthquake in Indonesia on 7 February 2004 (Ji et 
al. 2002, Ji 2004). Most of the available options described above were in-
corporated in the model, thus including 3D models for the crust and the 
mantle (crust2.0 and S20RTS, respectively), attenuation, transverse iso-
tropy, topography/bathymetry, ocean loading as well as gravity and rota-
tion of the Earth. The resolution of the model allowed for numerical seis-
mograms accurate down to periods of 20 s. 

As shown in Section 30.2.3, the rate of rotation and the transverse com-
ponent of acceleration at the same location should be in phase for an in-
coming plane wave. Furthermore, when assuming a horizontally propaga-
ting wave, one can estimate the phase velocity. The results of the simula- 
tion demonstrate this in a very clear way, as the seismograms are inher-
ently noise free. Figure 30.3 shows the comparison of observed rotation ra-
te (gray) and transverse acceleration (black) for the M7.3 Irian Jaya earth-
quake of 7 February 2004. The real data (top left) were filtered between 
1000- and 20-second periods, that lower limit being controlled by the ac-
curacy of the synthetic data. The amplitudes of acceleration were scaled by 
an arbitrary phase velocity of 3000 m/s. Shown in the lower left part of the 
figure is the correlation coefficient of a 30-second sliding window. Despite 
the relatively low signal-to-noise ratio in the ring laser data, the normal-
ized correlation coefficient reaches values close to one (perfect match) for 
most of the surface wave train between 3200 s and 4200 s. The right part 
of the figure shows the same for the modeled data which is inherently noi-
se free. The correlation is higher for the simulated data, but showing a 
similar behaviour for the body and surface wave parts of the seismogram. 
The synthetic data  do not  fit  exactly  the observed  data,  but  show  some 
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Fig. 30.3 Comparison of correlation coefficients, obtained with a 30-s sliding win-
dow, of acceleration and rotation rate for the M = 7.3 Irian Jaya (Indonesia) earth-
quake of 7 February 2004. Left: observed; right: synthetics. Top: scaled (see text) 
transverse acceleration (black) and rotation rate (gray – shifted for legibility) 

Fig. 30.4 Estimation of phase velocities (lower plot shows velocities from ob-
served data as crosses and velocities from simulation as circles) by correlation of 
observed rotation rate (gray) and transverse acceleration (black) in upper plots (the 
bottom trace is the residual). The chosen time window only displays part of the 
whole seismogram where mainly surface waves appear. See text for more details 

Observations



         A. Cochard et al. 404

strong similarities in the surface waves, where the signal-to-noise ratio 
(especially for the ring laser) gets better. The difference between synthetic 
and real data may either be due to an inaccurate model of the rupture pro-
cess and/or to incorrect crustal or mantle models.  

In Fig. 30.4, horizontal phase velocities are estimated by sliding a 30 s 
time window along the time series of rotation rate and transverse accelera-
tion and dividing peak amplitudes in time windows where the waveform fit 
is good (normalized maximum correlation coefficient greater than 0.95). 
The figure shows observed rotation rate and scaled transverse acceleration 
(top), theoretical rotation rate and scaled transverse acceleration (mid) and 
the phase velocity estimates  (bottom)  in a time window  containing  Love 
waves. Despite the difference in waveform and amplitude between synthe-
tics and observations, the time-dependent phase velocities match sur-
prisingly well the observations, supporting the conclusions from the analy-
sis of another large event (Igel et al. 2005b). The Love wave phase 
velocity curve as a function of frequency is expected to reflect the material 
properties of some volume around the receiver location and may well be 
used for structural inversion if other information is not available. However, 
the uncertainties of this phase-velocity estimations still need to be investi-
gated.

30.4.2  Array based determination of rotational motion 

As explained in Section 30.3.1, all three components of rotation can in 
theory be derived from data acquired by an array of three-component 
seismometers at the Earth’s surface. Indeed, in several array studies, rota-
tion rate of seismic wavefields after large earthquakes was estimated (e.g., 
Huang 2003). However, there is only one study where array-derived rota-
tion rate was compared with direct measurements (Suryanto et al. 2005) 
and the results indicate that – as expected – array derived rotation is sensi-
tive to noise. As indicated above and shown in Igel et al. (2005b), with ap-
propriate scaling the broadband transverse acceleration can be almost iden-
tical to rotation rate provided that the assumption of plane wave 
propagation holds. Here we compare array-derived rotation rate with 
transverse acceleration scaled with the appropriate phase velocity, to match 
the rotation rate amplitudes. This complements the studies of consistency 
between rotations and translations in phase and amplitude. 

In December 2003 an array of seismometers was installed in Wettzell, 
about 150 km NE of Munich, Germany (Fig. 30.5) around the location of 
the ring laser. The radius of the array was about 1.5 km. A broadband 
seismometer of the German Regional Seismic Network (GRSN) is colloca- 
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Fig. 30.5 Topographic map of the Wettzell area, SE Germany. The Fundamental 
Wettzell Station (WET) is denoted by a triangle. The ring laser and the broadband 
GRSN seismometer are both located in WET (about 250 m away from each other) 

ted with the ring laser. The experiment ran up to early March 2004. The 
observational system consisted of 3 components of a Le3D-5s velocity 
sensor having a flat response in velocity between 0.2 and 40 Hz, with a 
400 V/m/s generator constant. The seismometers were either buried in soft 
ground at a bottom depth of about 50 cm or put on outcropping igneous 
rock boulders. The GRSN station is using a STS-2 instrument, with a flat 
response of the ground velocity from 8.33 mHz (120 s) to 50 Hz. 

Several teleseismic events with magnitude larger than 5.5 were observed 
during the experiment. Here we analyze one event: the M = 6.6 Bam (Iran) 
earthquake of 26 December 2003, with an estimated moment of  M0 = 
6.6×1018 N·m  and an epicentral distance of 4425 km. Rotations were de-
termined as described in Sect. 30.3.1. In this study, we use four stations for 
both events to derive the rotation rates (Fig. 30.6). 

In Section 30.2.3 we have shown that, assuming a plane wave propaga-
tion,  the transverse horizontal acceleration  and the vertical component  of 
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Fig. 30.6 Horizontal components of the velocity recorded by the array seismome-
ters for the 26 December 2003, Bam (Iran) earthquake. The data from stations 2, 
5, 6 and broadband are used to derive the rotations. Top: E-W components, bot-
tom: N-S components 

rotational rate should be in phase and their ratio equal to twice the horizon-
tal phase velocity. Since the data from the ring laser was not available for 
this event, we use the transverse acceleration data to compare with the cal-
culated array-derived rotational rate. This is justified given the substantial 
fit between rotation rate and transverse acceleration reported by Igel et al. 
(2005b) and Igel et al. (2005a) particularly for time windows containing 
the surface wave trains. For this purpose, a band pass filter (0.03–0.08 Hz) 
is used to isolate the main phase of the surface waves contained in the seis-
mograms. The transverse acceleration is scaled (i.e., converted to rotation 
rate) by dividing by twice a constant phase velocity (5000 m/s). Figure 
30.7 shows the computed time histories of the scaled transverse accelera-
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tion (black lines) superimposed with the vertical component of ground ro-
tation rate (gray lines) across the array for the Bam earthquake. There is 
considerable phase match (maximum correlation coefficient above 0.9) be-
tween array-derived rotation rate and scaled transverse acceleration. This 
suggests and further supports the conclusion that the array seismograms, 
the broadband sensor and the ring laser (Suryanto et al. 2005) consistently 
provide the same information on the rotational part of the wave field. 

Fig. 30.7 Comparison of collocated (scaled) transverse acceleration (black) ob-
served by the GRSN broadband seismometer with array derived rotation rate 
(gray) for the Bam earthquake  

30.5  Discussion and Conclusions 

Are measurements of rotational ground motions useful for seismology and 
related fields in the earth sciences? While the tremendous success of re-
search on the translational part of ground motions in the past decades 
would suggest that this is not the case, the question posed can only now be 
addressed in the context of real observations. The ring laser technology 
that was extended towards high resolution measurements of absolute rota-
tions in the past years (Schreiber et al. 2003a, 2004) with the major aim of 
measuring changes of the Earth’s rotation rate, was successfully trans-
ferred to the field of seismology, which required adaptation in terms of ac-
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quisition parameters and timing accuracy. The resolution of ring laser type 
measurements is now such that observations can be directly compared with 
those from broadband standard seismometers. In broadband global seis-
mology we do not expect major information gain from rotation sensors as 
seismic network densities are ever increasing and many of the wavefield 
properties can be extracted by array processing. However – given the fact 
that we are dealing with a new observable – long period teleseismic broad-
band data provide an excellent opportunity to test the consistency of this 
new observable, thus the correct measurement of the ring laser instrument 
and its potential applicability in other domains of seismology (e.g., strong 
ground motion, source inversion, etc.).  

As motivated in the theoretical section, assuming plane wave propaga-
tion, we can directly compare rotation rate with transverse acceleration as 
they should be in phase and related by a factor proportional to phase veloc-
ity. The first earthquake-induced observations with the German ring laser 
system (Igel et al. 2005b) demonstrate that indeed – particularly for time 
windows containing the transversely polarized Love surface waves – the 
fit between those independent observations is almost perfect, providing the 
test for phase consistency. The amplitude relation between acceleration 
and rotation rate can be used to estimate horizontal phase velocities as well 
as propagation directions. As shown in Fig. 30.4 these phase velocities 
match well those predicted by the most sophisticated forward modelling 
possible today. The accuracy and uncertainties of phase velocity estimates 
are still being investigated but it is important to note that – with collocated 
measurements of translation and rotation – it is thus possible to extract in-
formation from the wavefield that otherwise could only be obtained 
through seismic arrays. This may be useful in case of a very sparse net-
work or when only single stations are possible, a situation likely in plane-
tary seismology, but current technology would not yet allow a light sensor 
with the required sensitivity given the payload restrictions of space mis-
sions.

Sampling the seismic wavefield at the Earth’s surface with an appropri-
ate array allows the estimation of the rotational part by finite differencing 
the three components of ground motion for the given array geometry. 
While the first – surprisingly successful – direct comparison of ring-laser-
based direct observation and array-derived rotational motions is given by 
Suryanto et al. (2005), it is clear that the logistic effort to determine rota-
tions from array is considerably larger than direct measurements. This 
holds particularly for temporary arrays when the installation may be het-
erogeneous in terms of station quality. However, the fact that we are sam-
pling the same rotation wavefield properties with the ring laser, broadband 
sensor and the array is further supported by the results shown in Fig. 30.7. 
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The rotation rate converted from the broadband transverse acceleration is 
close to the array-derived rotation rate as expected from theory.  

We consider these studies as a contribution towards the demonstration 
of the accuracy and consistency of a new observable quantity in broadband 
seismology: the vertical component of rotation. While the acquisition 
technology will continue to improve, there are still many open questions 
that need to be answered before it is clear what the new observable is good 
for. These questions involve: (1) the sensitivity of rotations vs. translations 
with respect to the Earth structure; (2) the importance of ground rotations 
in shaking hazard issues particularly in the presence of very unconsoli-
dated low-seismic-velocity near surface structures; (3) the effects of 
strongly scattering structures and anisotropy; (4) the sensitivity of rotations 
with respect to finite fault scenarios; (5) the development of low-resolution 
portable sensors with the appropriate sensitivity for near source (e.g., after-
shock) studies. Many of these issues can now be addressed using modern 
wave propagation simulation technology as was used in this study to 
model teleseismic observations. 

Acknowledgments.  This work was supported by the German Ministry 
of Research and Education (BMBF-Geotechnologien). We also acknowl-
edge the support by the German Academic Exchange Service (IQN-
Georisk), and by the KONWIHR project. We are grateful to J. Tromp and 
D. Komatitsch for providing their SEM code and to Ji Chen for the finite 
source parameters. We acknowledge the contributions of the Bundesamt 
für Kartographie und Geodäsie (BKG) towards the installation and opera-
tion of the G ring laser at the geodetic observatory Wettzell. Thanks to the 
Munich Leibniz Computing Center for providing access to their super-
computing facilities. 

References 

Aki K, Richards PG (1980) Quantitative seismology: theory and methods. W.H. 
Freeman and Company, San Francisco, CA 

Aki K, Richards PG (2002) Quantitative seismology. University Science Books, 
2nd ed, Sausalito, CA 

Bodin P, Gomberg J, Sing SK, Santoyo M (1997) Dynamic deformations of shal-
low sediments in the valley of Mexico. Part I. Three-dimensional strains and 
rotations recorded on a seismic array. Bull Seism Soc Am 87: 528-539 

Bouchon M, Aki K (1982) Strain, tilt, and rotation associated with strong ground 
motion in the vicinity of earthquake faults. Bull Seism Soc Am 72: 1717-1738  



         A. Cochard et al. 410

Castellani A, Zembaty Z (1996) Comparison between earthquake spectra obtained 
by different experimental sources. Engng Struct 18: 597-603 

Cook RD (1974) Concepts and applications of finite element analysis. John Wiley 
& Sons, New York 

Dyszlewicz J (2004) Micropolar theory of elasticity. Springer, Berlin–New York 
Galitzin F (1914) Vorlesungen über Seismometrie. BG Teubner, Leipzig–Berlin 

(in German)  
Huang B-S (2003) Ground rotational motions of the 1999 Chi-Chi, Taiwan earth-

quake as inferred from dense array observations. Geophys Res Lett 30: 1307-
1310, doi:10.1029/2002GL015157  

Igel H, Flaws A, Cochard A, Wassermann J, Schreiber U, Velikoseltsev A (2005a) 
Rotational and translational motions induced by local, regional and global 
seismic events. I. Observations and processing (in preparation)  

Igel H, Schreiber U, Flaws A, Schuberth B, Velikoseltsev A, Cochard A (2005b) 
Rotational motions induced by the M8.1 Tokachi-oki earthquake, September 
25, 2003. Geophys Res Lett 32: L08309, doi:10.1029/2004GL022336 

Ji C (2004) URL http://www.gps.caltech.edu/˜jichen 
Ji C, Wald DJ, Helmberger DV (2002) Source description of the 1999 Hector 

mine, California earthquake. Part I. Bull Seism Soc Am 92: 4, 1192-1207 
Komatitsch D (1997) Méthodes spectrales et éléments spectraux pour l’équation 

de l’élastodynamique 2D  et  3D en milieu hétérogène  (Spectral  and spectral 
-element methods for the 2D and 3D elastodynamics equations in heterogene-
ous media). PhD thesis, Institut de Physique du Globe, Paris, France 

Komatitsch D, Tromp J (2002a) Spectral-element simulations of global seismic 
wave propagation – I. Validation. Geophys J Int 149: 390-412 

Komatitsch D, Tromp J (2002b) Spectral-element simulations of global seismic 
wave propagation – II. 3-D models, oceans, rotation, and self-gravitation. 
Geophys J Int 150: 303-318 

Komatitsch D, Tsuboi S, Ji C, Tromp J (2003) A 14.6 billion degrees of freedom, 
5 teraflops, 2.5 terabyte earthquake simulation on the Earth Simulator. Proc. 
ACM/IEEE Supercomputing SC’2003 conference. Published on CD-ROM 
and at www.sc-conference.org/sc2003 

Lakes RS (1995) Experimental methods for study of Cosserat elastic solids and 
other generalized continua. In: Mühlhaus HB (ed) Continuum models for ma-
terials with microstructure, Chap 1, pp 1-22. John Wiley & Sons, London 

Maugin GA (1998) On the structure of the theory of polar elasticity. Phil Trans R 
Soc 356: 1367-1395 

McLeod DP, Stedman GE, Webb TH, Schreiber U (1998) Comparison of standard 
and ring laser rotational seismograms. Bull Seism Soc Am 88: 1495-1503 

Nigbor RL (1994) Six-degree-of-freedom ground-motion measurement. Bull 
Seism Soc Am 84: 1665–1669 

Nowacki W (1986) Theory of asymmetric elasticity. Pergamon Press–Oxford and 
PWN–Warszawa 

Pancha A, Webb TH, Stedman GE, McLeod DP, Schreiber KU (2000) Ring laser 
detection of rotations from teleseismic waves. Geophys Res Lett 27: 3553-
3556  



30  Rotational Motions in Seismology: Theory, Observation, Simulation 411

Schreiber KU, Klügel T, Stedman GE (2003a) Earth tide and tilt detection by a 
ring laser gyroscope. J Geophys Res 108: 21-32, 10.1029/2001JB000569 

Schreiber KU, Velikoseltsev A, Igel H, Cochard A, Flaws A, Drewitz W, Muller F 
(2003b) The GEOsensor: A new instrument for seismology. In: GEO-TECH- 
NOLOGIEN Science Report No. 3: Observation of the System Earth from 
Space, Status Seminar, Programme and Abstracts. Munich, 12-13 June, Ba-
varian State Mapping Agency (BLVA) 

Schreiber KU, Velikoseltsev A, Stedman GE, Hurst RB, Klugel T (2003c) New 
applications of very large ring lasers. In: Sorg H (ed) Symposium Gyro Tech-
nology, pp 8.0-8.7 

Schreiber KU, Velikoseltsev A, Rothacher M, Klügel T, Stedman GE, Wiltshire 
DL (2004) Direct measurement of diurnal polar motion by ring laser gyro-
scopes. J Geophys Res 109: B06405 

Schuberth B, Ewald M, Igel H, Treml M, Wang H, Brietzke G (2005). Computa-
tional seismology: narrowing the gap between theory and observations. In: 
Bode A, Durst F (eds) High performance computing in science and engineer-
ing – Garching 2004. Springer, Heidelberg, pp 251-262 

Spudich P, Steck LK, Hellweg M, Fletcher JB, Baker LM (1995) Transient 
stresses at Park-field, California, produced by the m 7.4 Landers earthquake 
of June 28, 1992: Observations from the UPSAR dense seismograph array. 
J Geophys Res 100: 675-690 

Stedman GE (1997) Ring laser tests of fundamental physics and geophysics. Re-
ports Progr Phys 60: 615-688 

Stedman GE, Li Z, Bilger HR (1995) Sideband analysis and seismic detection in a 
large ring laser. Appl Opt 34: 7390-7396 

Suryanto W, Igel H, Wassermann J, Cochard A, Schubert B, Vollmer D, Scher-
baum F (2005) Comparison of seismic array-derived rotational motions with 
direct ring laser measurements. Bull Seismol Soc Am (submitted) 

Takeo M (1998) Ground rotational motions recorded in near-source region of 
earthquakes. Geophys Res Lett 25: 789-792 

Takeo M, Ito HM (1997) What can be learned from rotational motions excited by 
earthquakes. Geophys J Int 129: 319-329 

Teisseyre R, Majewski E (2001) Earthquake thermodynamics and phase transfor-
mation in the earth’s interior. Academic Press, San Diego 

Teisseyre R, Suchcicki J, Teisseyre KP, Wiszniowski J, Palangio P (2003) Seis-
mic rotation waves: basic elements of theory and recording. Annali di Geofi-
sica 46: 671-685 

Trifunac MD, Todorovska MI (2001) A note on the useable dynamic range of ac-
celerographs recording translation. Soil Dyn and Earth Eng 21: 275-286 



31  Absolute Rotation Measurement Based on

      the Sagnac Effect 

Leszek R. Jaroszewicz, Zbigniew Krajewski, Lech Solarz 

Institute of Applied Physics, Military University of Technology 
ul. Kaliskiego 2, 00-908 Warszawa, Poland 
e-mail: jarosz@wat.edu.pl 

31.1  Introduction 

This chapter deals with technical aspects of absolute rotation measurement 
based on the Sagnac effect. Starting from a brief description of this effect, 
its explanation based on different physical approaches is presented. Over-
views of optical gyroscopes as a technical implementation of the Sagnac 
effect for angular position measurement are shown. Differences between 
gyro and rotation measurements are pointed out. On this basis, fundamen-
tal investigations connected with attainable accuracy of the designed fibre-
optic rotational seismometers (FORS) are presented. Sensitivity, resolu-
tion, noise and drift phenomena are discussed. Finally, technical imple-
mentation of different constructions of FORS are proposed.  

31.2  Sagnac Effect 

The absolute rotation measurement is based on the Sagnac effect (Sagnac 
1913). The Sagnac effect is a consequence of the fact that an optical path 
length difference is experienced by light beams propagating in opposite di-
rections in a rotating frame. It is the measurement of this optical path dif-
ference (proportional to the absolute rotation) that forms the basis of all the 
optical gyros.  

31.2.1  Sagnac effect in a vacuum 

For simplicity, the usual explanation of the Sagnac effect starts by consid-
ering a circular ring interferometer in vacuum (Post 1967). The light enter-
ing the system is divided into two counter-propagating waves which return 
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in phase after having travelled along the same path in opposite directions 
(Fig. 31.1a). When the interferometer rotates (about an axis perpendicular 
to the interferometer plane) with angular velocity , an observer at rest in 
the inertial reference frame sees the light entering the interferometer at 
point P (Fig. 31.1b). Then the light travels with the same vacuum velocity 
c0, in opposite directions, but, during the transit time through the loop, the 
beamsplitter has moved to P , and our observer sees that the co-rotating 
wave has had to propagate over a longer path than the counter-rotating 
one. The optical path length difference, L, experienced by light propagat-
ing in opposite directions along the interferometer (Sagnac 1913, Post 
1967) is given by 

0

4
,L

c

A
(31.1)

where A is the vector of the geometrical area  |A| = R2  enclosed by the 
wave path, c0 is the velocity of light in vacuum, is the rotation vector.  

The rigorous derivation of this formula (Post 1967) is based on the 
propagation of light in a rotating frame, i.e., an accelerating frame of refer-
ence, where the general theory of relativity must be used to perform the 
exact calculation. However, a simple way of explaining this formula (Post 
1967) is to consider the ring interferometer shown in Fig. 31.1 as a rotating 
disc. At a given point on the perimeter, designed by P in Fig. 31.1a, identi-
cal photons are sent in the counter-directions (ccw and cw) along the pe-
rimeter. If , the photons traveling at the speed of light, c0, will arrive 
at the starting point P  after covering  an identical distance 2 R in the same 
time t = 2 R/c0. In the presence of angular rotation  (Fig. 31.1b), the ccw

photons will arrive at the starting point on the disc, now located at point P ,

Fig. 31.1 Sagnac effect in a circular ring interferometer: (a) at rest in an inertial 
frame of reference; (b) rotating with respect to an inertial frame of reference. No-
tation: R – radius of loop, Lcw – distance in clockwise direction, Lccw – distance in 
counter-clockwise direction,  angular velocity of interferometer rotation
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after covering distance Lccw, which is shorter than the perimeter 2 R, given
by

2 ,ccw ccw ccw ccwL R R t c t (31.2)

where R  is the tangential velocity of the ring and tccw is the time taken to 
cover the distance Lccw. It should be noted that Lccw is also given by the 
product of the velocity of light cccw in the ccw direction and tccw. For 
propagation in a vacuum, cccw = c0 . 

Similarly, the photons propagating in the cw direction will arrive at the 
starting point now located at P  and will experience a longer effective pe-
rimeter Lcw given by 

2 ,cw cw cw cwL R R t c t (31.3)

where tcw is the time taken to cover the distance Lcw , and again ccw = c0 for
propagation in a vacuum. 

The last two equations can be solved for tccw and tcw , and we can obtain 
the difference, t, between clockwise and counter-clockwise propagation 

2 2 2

2 2 2
0 0

4 4 4
.cw ccw

o

R R A
t t t

c c c
(31.4)

Hence, the path length L travelled by light in a time t is

0
0

4
,

A
L c t

c
(31.5)

which is identical with Eq. (31.1) for rotation speed perpendicular to the 
disc area.

31.2.2  Sagnac effect in a medium 

If light propagates in a medium, it can be demonstrated that the Sagnac re-
sults are unchanged (Post 1967, Arditty and Lefevre 1981a, b). Because 
the waves travel n times slower (n is the index of refraction for the me-
dium), the splitter point has moved n times further when the waves recom-
bine. The path difference is then longer than in the vacuum. But the me-
dium is also moving, and there is a Fizeau drag that increases the velocity 
for the longer path and decreases it for the shorter path. The magnitude of 
this drag is such that it may completely eliminate the effect of the medium. 
An electrodynamic approach using propagation equation in a rotating 
frame of reference (Arditty and Lefevre 1981b, Lefevre and Arditty 1982) 
confirms this result. 
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In order to give an orientation about the magnitude of L, we present in 
Table 31.1 the data for different characteristic rotation speeds under the as-
sumption that an area  A = 100 cm2.

Table 31.1  The magnitude of L for different rotation speeds 

Rotation speed 
          

Magnitude of 
         L

             Comment 

1.00 rad/s 1.3 10-8  cm 
1.00 rad/h 3.7 10-12 cm 
0.26 rad/h 9.7 10-13 cm Earth rotation rate 
0.01 deg/h 1.0 10-15 cm Navigation grade performance 

1.0 10-8 rad/s 2.0 10-16 cm Expected magnitude of seismic 
     rotational waves 

We see that this distance is very small indeed, especially when compared 
with the wavelength of light, which is about 5 10-5 cm, or the diameter of 
hydrogen atom, which is about 10-8 cm. 

31.3  Optical Gyroscopes as Systems Utilizing  
         the Sagnac Effect 

The practical application of the Sagnac effect is the construction of an op-
tical gyroscope designed to detect the angular position changes in three-
dimensional space. This is accomplished by detecting rotation rate via the 
Sagnac effect measurement, and calculating angular position in integration 
process over a given time range. Because distance L generated by the 
Sagnac effect is extremely small, special interferometric methods are ap-
plied for its measurement. In general, all these methods can be divided into 
passive and active ones, as shown in Fig. 31.2.  

31.3.1  Passive resonator method 

The passive resonator method (Meyer et al. 1983) of measuring L in fi-
ber-optic implementation is shown in Fig. 31.2c. In this case, light having 
a frequency f enters the resonator at one-directional coupler, along the cw

(or +) direction and also along the ccw (or –) direction. The light excites 
the fiber resonator at the same coupler, as shown in the figure. In the ab-
sence of rotation, the resonance frequencies of the cavity for (+) and (–) 
propagation are identical and given by fq
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Fig. 31.2  Interferometric systems for Sagnac effect detection: (a) active method in 
ring-laser approach, (b) passive method in two-beam interferometer approach, 
(c) passive method in passive resonator approach. Parameters IIN, IUOT are the in-
tensities of input and output beams, respectively 

0 ,q

c
f q

nP (31.6)

where nP is the optical perimeter of the resonator, n is the refractive index 
of the fiber and q is an integer representing the longitudinal mode number 
for the fiber resonator. 

In the presence of rotation normal to the plane of the fiber resonator, the 
optical perimeter nP will be different for (+) and (–) propagation directions 
as predicted by the Sagnac effect (Eq. 31.5). In other words, P = nP+ – nP–

= L and it generates a frequency difference, f, between the (+) and (–) 
resonances of the cavity, given by 

0 0 4
,

q

c c A
f f f q q

nP nP nP
(31.7)

where q = c0 /fq. The width of each resonance shown in the bottom part of 
Fig. 31.2c is determined by the loss in the resonator. Moreover, for the 
N-turn fiber resonator the frequency difference f is identical with that for 
the single-turn resonator.

To measure rotation using the resonator method, it is necessary to meas-
ure f using some external means. 

31.3.2  Ring-laser method 

The ring-laser set up for the measurement of L, shown in Fig. 31.2a, is 
similar to the passive resonator set up, except that an optical amplifier is 
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included within the resonator (Rosenthal 1962, Macek and Davis 1963, 
Killpatrick 1966). Such an amplifier enables laser oscillation at fq along the 
(+) and also (–) directions within the resonator (bottom part of Fig. 31.2a). 

In the presence of rotation , we get the frequency difference f, given 
by  

0 0 4
.

q

c c A
f f f q q

P P P
(31.8)

The advantage of the ring-laser method is that no external means are 
needed to measure f, since f + and f – are automatically generated within 
the ring laser and may be coupled out through one of the mirrors. To ob-
tain f, one simply beats the f + and f – outputs outside the ring laser.

The ring-laser approach using a He-Ne amplifier (Aronowitz 1971) was 
the first successful optical gyroscope and is now being used in a number of 
civilian and military inertial navigation systems. To avoid mode competi-
tion when the cavity resonances at centre of the gain curve, two isotopes of 
Ne are used (Aronowitz 1971). Since the isotope shift of 500 MHz is 
smaller than the 1.5 GHz bandwidth of the Ne amplifying transition, stable 
oscillations can simultaneously take place along both directions of propa-
gation.

31.3.3  Two-beam interferometer method 

The fiber-optic version (Vali and Shorthill 1976) of two-beam interfero-
meter method applies the fiber loop interferometer configuration with a 
3 dB fiber coupler as input-output gate for optical beam (Fig. 31.2b). In 
such a system, a phase shift is produced between cw and ccw propagating 
light of magnitude , given by 

0 0 0

2 8
,

A
L

c
(31.9)

where 0 is the wavelength on the light in vacuum.  
The bottom part of Fig. 31.2b shows the cosinusoidal variation of the 

output intensity from this interferometer, IOUT, as a function of . There-
fore, to measure  we need to measure the change in IOUT. In the case of a 
fiber interferometer, however, it is possible to loop the fiber many times 
(Vali and Shorthill 1976), say N times, before returning to the fiber cou-
pler. In this case, t, as well as L, become N times longer and the corre-
sponding  becomes 
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0 0 0

2 8
.

AN
L N

c
(31.10)

For a fiber of length L wound in a coil of diameter D, we have 

2

   and    .
4

D L
A N

D
(31.11)

Substituting the above into Eq. (31.10), we get 

0 0 0 0

8 2
.

AN LD

c c
(31.12)

In other words, the sensitivity of the Sagnac interferometer in this ap-
proach is enhanced by a factor of N. The limit on the magnitude of N will 
of course depend on the loss in the fiber.

31.4  Fundamental Measurement Limits 

Since the magnitude of f or can be very small, depending on the pre-
cision required, it is worthwhile to examine what determines the funda-
mental limit in such a measurement. For the fiber-optic interferometer with 
perfect components, the measurement limit is imposed by the shot noise in 
the light as measured by the detector (Davis and Ezekiel 1978, Lin and Gi-
allorenzi 1979). In other words,  which represents the uncertainty in the 
measurement of is generated by uncertainty in the measurement of the 
Sagnac phase shift and can be expressed by the formula presented in Ta-
ble 31.2 (Davis and Ezekiel 1979). In the case of passive multiturn fiber 
resonator with perfect components, the fundamental limit  is determined by 
the uncertainty in the measurement of f due to the shot noise on the light 
at the detectors (Lin and Giallorenzi 1979). For this method the formula 
for   in a simplified form,  is presented in Table 31.2, too.  The last for- 

Table 31.2  Fundamental measurement limits for different methods.  
                    (Symbols explained in the text) 

Fiber-optic 
interferometer gyro 

Passive resonator gyro Ring-laser gyro 

0 0 / 2

ph D

c

LD n

(31.13) 
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mula in Table 31.2 describes fundamental limit on  for the ring-laser 
gyro which is imposed by the uncorrelated jitter in the counterpropagating 
laser frequencies (Dorschner et al. 1980) which limits the measurement of 

f. Under ideal conditions, it is the spontaneous emission generated in the 
laser amplifier.

Simplified expressions for  are shown in Table 31.2, using the fol-
lowing notation: nph is the number of photons/s arriving at the detector, D

is the photodetector quantum efficiency,  is the averaging time, c is the 
cavity linewidth, and the other parameters are as defined in Eqs. (31.7) and 
(31.12).  

As can be seen, the fundamental limit on  in the ring laser gyro is very 
close to that for the passive resonator gyro, assuming the same A, P, c,
nph and The technical abilities for increasing the system sensitivity (i.e., 
decreasing  are connected with enlarging the system area A. In this 
way, practical solution can be obtained only in the case of fiber-optic inter-
ferometer, because this can be accomplished by extending fiber length L
without dramatical growth in size of all the system. 

31.5  Fiber-Optic Rotational Seismometer (FORS) 

For the above reason, the idea of seismic rotation waves recording based 
on the Sagnac effect in an optical system seems to be an attractive proposi-
tion. The main advantage of such a system is the measurement of the abso-
lute rotation rate around any axis perpendicular to the optical path plane, 
nonsensitive to the uniform linear motion or distortion (Post 1967). The 
comparison of standard seismograms and a ring laser as a sensor for rota-
tional events has shown some advantages of the latter (McLeod et al. 
1998), mainly in its extremely high sensitivity (Cochard et al. 2003). How-
ever, such a ring laser is as expensive as a motionless device.  

Therefore, the relatively cheap version of fiber-optic rotational seis-
mometer (FORS), made in fiber-optic technique seems to be a better solu-
tion. The sensors described below are based on configuration well known 
from the classic fiber-optic gyroscope (FOG) system (Ezekiel and Arditty 
1982). The success of FOG is due to the Sagnac interferometer, a com-
mon-path, reciprocal configuration that is inherently highly stable. Its ac-
curacy is generally limited by a small number of extraneous effects arising 
from undesirable properties of the loop fiber, namely Rayleigh backscat-
tering (Cutler et al. 1980) and the Kerr (Lefevre 1993, Burns 1994), Fara-
day (Lefevre 1993) and Shupe (1981) effects. These deleterious effects in-
duce short-term noise and/or long-term drift in the gyro output, which limit 
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the ability to accurately measure small rotation rates over long periods of 
time. These issues have been successfully resolved with clever engineering 
solutions. However, the basic FORS optimization for detection of the rota-
tion only, without conversion for angular changes, distinguishes this sys-
tem from gyro applications (Jaroszewicz and Krajewski 2002). On the 
other hand, the compact system construction makes the device movable 
that is advantageous in comparison with the ring laser system. Thus, the 
contents of this chapter is mainly focused on the fiber-optic rotational 
seismometer designed to be used for two antiparallel pendulum seismome-
ters (TAPS) (Moriya and Teisseyre 1999) as well as for detection of seis-
mic rotational effects (SRE). A new method of TAPS calibration and some 
conclusions obtained basing on the first tests of the SRE registration simul-
taneously by the TAPS and the FORS are also presented.  

31.5.1  Application of FORS for standard rotational  
            seismometer investigation 

An application of the fiber-optic Sagnac interferometer as the fiber-optic 
rotational seismometer may be an attractive proposition for the TAPS cali-
bration; however, the system must be optimized for seismic area of opera-
tion. For the above reason, a special construction of optical part of the sys-
tem as well as signal processing is required. According to optical part of 
the system, the main parameter is the maximum sensitivity (in the range of 
10-7–10-10 rad/s), so the sensor loop should contain a long section of the 
optical fiber wound in the shape of a loop with maximum radius and ex-
tremely high-power optical sources. Compatibility with the standard seis-
mic recording unit (KST), appropriate band of detection and sampling 
scheme are the main parameters for the constructed signal processing unit. 

For the above reason, the existing construction of FOG has been 
adopted for introductory investigation of its usefulness for SRE detection 
according to the scheme shown in Fig. 31.3. 

Fig. 31.3  General scheme of the FORS-I system 
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This system, named FORS-I, uses 1.0 mW light source operating at 
wavelength  1300 nm  and a sensor loop with radius R = 0.1 m con-
taining L = 400 m  PANDA fiber. The detection unit, based on lock-in 
amplifier 7260 (EG and G), carries out the synchronic detection through-
out the phase modulator operating at 147.7 kHz. Because the calculated to-
tal optical loss was about 30 dB, the theoretical system sensitivity con-
nected with the noise level is 6.8 10-7 rad/s1/2 (Jaroszewicz and Krajewski 
2002). The practical system calibration has been made basing on the con-
stant Earth rotation component detection for Warsaw latitude (  = 52o20 ),
as described in detail by Jaroszewicz and Krajewski (2002). Because the 
Sagnac effect detects only the absolute rotation speed in plane of interfer-
ometric loop (Post 1967), the FORS-I placed in the north or the south di-
rection should give rotation signal  E =  11.86 deg/h, and in the west-
east direction (see Fig. 31.4a) should be 0 deg/h. The calibration procedure 
gives the signal equal to 400 mV and 20 mV for the FORS-I placed in the 
N-S and the W-E directions, respectively, as shown in Fig. 31.4b. These 
data have been used for calculation of FORS-I sensitivity; it is equal to 
2.3 10-6 rad/s which is twice worse than expected for this system in the 
applied detection band. The main source of this error is the occurrence of 
fluctuations of polarization parameters of the light source used (Jarosze-
wicz et al. 2003). Finally, the standard seismic recording unit KST has 
been used for the data processing. The analogue-digital converter samples 
the signal with frequency 1 kHz and after re-sampling stores it with fre-
quency fs = 100 Hz.

The drift phenomenon is a well-known problem for the fiber-optic loop 
interferometer applied as an optical gyroscope, because all the FOG sys-
tems give angular position as a result of time integration of the detected ro- 

(a) (b) 

Fig. 31.4 (a) The FORS-I positioned in W-E direction, and (b) oscillogram of 
electronic signals from the FORS-I system during calibration (Jaroszewicz and 
Krajewski 2002) 
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tation speed. Therefore, the final system accuracy is very sensitive to the 
integration process. The system’s sensitivity grows with narrowing inte-
gration time, but the drift minimisation needs an opposite operation  the 
time widening (Ezekiel and Arditty 1982). Hence, the drift connected with 
the constant component of the output signal has an influence on final FOG 
accuracy and must be taken into consideration. The application of the fi-
ber-optic loop interferometer such as the FORS, where the final parameter 
is rotation speed directly obtained from the Sagnac phase shift (Post 1967), 
does not require the integration process. This gives a possibility to elimi-
nate the drift influence on the system accuracy by a suitable choice of band 
of output signal. The digital filter included to the KST provides such a se-
lection because its lower frequency of 0.1 Hz generally eliminates envi-
ronmental fluctuation of the fiber-optic loop interferometer (Jaroszewicz 
2001), whereas the upper frequency of 20 Hz is just equal to the frequency 
put by lock-in system (for time constant  = 50 ms used by lock-in). It is 
worth mentioning that the above frequency band is connected with the ex-
pected frequency characteristic of rotational seismic effects (Teisseyre et 
al. 2003). 

Comparison of TAPS and FORS-I systems in the laboratory 

The FORS-I system has been used for the TAPS testing. Figure 31.5a 
shows the TAPS and the FORS-I placed on the rotation table in such a way 
that the rotational event is dominated by displacement. The rotation with a 
speed equal to the Earth rotation for Warsaw latitude (i.e., about 12.86 
deg/h) gives 400 mV signal generated in KST: in-phase signals from the 
TAPS channels. These data have been used for the evaluation of rotation 
components with additional TAPS left channel equalisation by the follow-
ing method (Teisseyre 2002) 

,L L R R L Lu u u u u u (31.16)

where uR and uL are two SEM recorded by right and left seismometer of 
TAPS.

The results presented in Fig. 31.5b show good conformity of TAPS and 
FORS-I for the above events; however, the TAPS system seems to gener-
ate worse response to rotation. As one can see, the rotational signal ob-
tained from the TAPS is fuzzed, whereas the signal from the FORS-I is 
very smooth.  This results show the advantage  of direct method of rotation 
measurement by the FORS in comparison to the differential method real-
ised  by the TAPS.  Hence, the sources of disturbances  in the TAPS opera- 
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  (a) (b) 

Fig. 31.5 (a) The rotation table with the TAPS (bottom box) and the FORS-I sys-
tem (top box), and (b) output signals from the FORS-I and the TAPS after proper 
numerical processing (Jaroszewicz and Krajewski 2002) 

tion should be analysed and some methods of their minimization should be 
proposed.

Estimation of the main error sources of TAPS operation 

Most probably, the non-identical characteristics of two seismographs used 
in the TAPS construction are the main source of the fluctuation. The ap-
plied channel’s equalisation method described by Eq. (31.16) seems to be 
too weak. It should be noticed that correlation like (31.16) is not adequate 
to the presented data, because it minimizes the mean square of the sum uL

and uR, which contains the anticorrelated rotational components; thus, rela-
tion (31.16) minimizes  at the same time  both the errors  and the rotations, 

   (a) (b) 

Fig. 31.6 (a) Simulated rotational and displacement components of a seismic 
event, and (b) rotation signal detected by TAPS system (Jaroszewicz et al. 2003) 
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destroying the latter. Moreover, our simulation analysis (Jaroszewicz et al. 
2003) has shown that this procedure can be ineffective, especially if the 
TAPS system components have different attenuation characteristics. In 
such a situation, the existing finite components sensitivities connected with 
signal sampling procedure used during the data recording generate error 
signal, as shown in Fig. 31.6. In this simulation, the difference between left 
and right seismographs attenuation,  has been assumed to be equal to 
0.05. Moreover, two seismographs as elements with different noise levels 
have been considered.

As one can see, the main error signal exists in the region where the rota-
tional components have small amplitude in comparison to the displace-
ment. Because, in fact, it is the expected region of the rotational seismic 
effects, the method of TAPS calibration is a crucial problem for credibility 
of its operation. 

Method of improving the TAPS performance 

The reasons signalized in the preceding section have led to a search for 
other methods of improving the TAPS performance. The recent proposi-
tions apply, for example, the filtering procedure in the FFT domain (Teis-
seyre et al. 2003) or the time-domain (Nowo y ski and Teisseyre 2003). 
However, these methods use the so-called test positioning of the TAPS 
(the seismographs of the system are turned so as to make them situated in 
the parallel-parallel position), that generally changes the conditions of the 
TAPS operation. For this reason, another procedure of the recorded data 
processing has been proposed (Solarz et al. 2004). Generally speaking, this 
procedure is based on smoothing by the spline functions (Kojdecki 2002, 
Eubank 2000). The recorded digital data Y = {Yi, i = 0, …, N} with sam-
pling at t is smoothed by the spline function 

3 2( ) , ( 1) ,j j j jS t a b c d j t t j t

                        , 0, ..., 1.t j t j N

(31.17)

In this way, the functional 
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reaches its minimum. It should be emphasized that there exists a relation 
between parameter p of the above functional and mean square error 
Kojdecki 2002) defined as 
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This relation calculated for pi = 1 (i = 0, …, N) (Kojdecki 2002) by imple-
mentation of the falsi method (Flannery 1998) is shown in Fig. 31.7a. As 
one can see, the smoothing procedure generates an error by one order of 
magnitude greater for TAPS than for FORS-I.  

The effectiveness of this method for improving the recording of rotation 
events by TAPS (in comparison with the method presented in Fig. 31.5b) 
is shown in Fig. 31.7b. For the spline function, the parameter p equal to
5 10-6 has been chosen as optimum for smoothing. It is high enough for 
rotational component smoothing without decreasing the really existing 
displacement component (see Fig. 31.7c)  (Solarz et al. 2004).  It should be 
noticed that rotational effects have been by one order of magnitude higher 
than the displacement ones.  Such a situation  is possible  during laboratory 

       (a)      (b) 

                                                   (c)               

Fig. 31.7 (a) Dependence between the mean square error and parameter p for 
TAPS and FORS-I systems, (b) the rotational component recorded during the test 
presented in Fig. 31.5b after smoothing, and (c) additional displacement effect re-
corded by TAPS 
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tests only; in practice, the relation between these events is reversed 
(Bouchon and Aki 1982).  

31.5.2  Usefulness of FORS for seismic rotational effects  
            investigation  

The results presented above have shown the usefulness of FORS-I in ap-
plication to the standard rotational seismometer TAPS. Unfortunately, the 
data recorded in the period of 2002 2003 by the FORS-I at the Ksi
Seismic Observatory (Poland) during small earthquakes showed that this 
sensor has too small sensitivity to record SRE. For this reason, a new con-
struction of a high-sensitivity fiber-optic rotational seismometer, named 
FORS-II, has been proposed  (Jaroszewicz et al. 2005). 

We will now briefly discuss the FORS-II system construction as well as 
its application for detection and investigation of SRE. It should be noticed 
that the presented analysis is based on the data obtained simultaneously by 
the FORS-II and the TAPS during the seismic events recorded between 18 
August 2004 and 4 January 2005. On this ground, new aspects of the SRE 
are discussed. 

Design of the fibre-optic rotational seismometer FORS-II 

Figure 31.8 shows the FORS-II system representing again a classical fiber-
optic gyroscope configuration  (Jaroszewicz et al. 2005).  Application  of a  

Fig. 31.8  General scheme of the FORS-II system 



   L.R. Jaroszewicz et al. 428

standard single-mode fiber 11,130 m long in 0.63 m diameter sensor loop, 
high optical power source (superluminescent diode, SLD, of 10.2 mW 
power and 35.1 nm spectral-band operating at 1285 nm) and the total opti-
cal loss equal to 21 dB gives a theoretical sensitivity of the system equal to 
4.4 10-9 rad/s1/2. Moreover, a cascade polarizer consisting of two fiber-
optic polarizers (Phoenix Photonics of extinction ratio equal to 49 dB and 
40.9 dB) and special loop wind for Shupe effect reduction (Xuhan et al. 
2002) has been used for minimization of the drift phenomenon. Moreover, 
because the sensor loop is extremely long, the system operates on depolar-
ized light, which allows to reduce the polarization influence on the output 
signal (Urlich 1994). For this reason, the system of two fiber depolarizers 
has been applied. One of them (Phoenix Photonics) with extinction ratio 
equal to 0.05 dB is placed behind the source. The second one is the sensor 
loop whose operation is equivalent to the depolarization for the applied 
wide-band source (Krajewski et al. 2005). The detection unit, based on 
lock-in amplifier 7260 (EG and G) realizes synchronic detection with op-
timization  for frequency  equal to 9.0 kHz  (Jaroszewicz et al. 2005).  The 

(a)                                                             (b) 

(c)                                                              (d) 

Fig. 31.9 (a) General view of FORS-II system during the calibration process: N-S 
direction, (b) the output signal for the Earth rotation rate measurement, (c) the sys-
tem directed W-E, and (d) the measured noise level of the system 
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output signal is stored in IBM/PC by the seismic recording system, which 
contains 24-bit Sigma-Delta type ADC (with 2 V resolution and input 
signal range ± 10 V). The recording system samples a signal with fre-
quency of 1 kHz and after the re-sampling it stores the signal with the fre-
quency  fs = 100 Hz. The digital filter included in the system provides a 
suitable band selection (from 0.1 to 20 Hz) for the frequency characteristic 
of the SRE (Teisseyre 2002). Additional system contains a clock synchro-
nized by a DCF77 radio signal or by a GPS receiver for the precise global 
time recording (with 1 ms resolution). 

The laboratory FORS-II investigation has confirmed the achievement of 
the required system sensitivity (Jaroszewicz et al. 2004). The system of 
calibration basing on the Earth rotation (Fig. 31.9a) indicates that the sen-
sor used for measuring the Earth rotational component in Warsaw (i.e., 
4.45 10-5 rad/s for latitude 52°20 provides an output signal equal to 
7500 V, as shown in Fig. 31.9c. Because the noise level for the FORS-II 
directed E-W (Fig. 31.9c), i.e. the direction for which Earth component is 
zero, is 7.2 V, the estimated FORS-II sensitivity is 4.27 10-8 rad/s (for 
2 in the used 20 Hz detection band, as shown in Fig. 31.9d. The obtained 
sensitivity is two times worse than the theoretical one. This is caused 
mainly by inefficient depolarisation of light in the system. 

Results of the SRE recording in Ojców 

The FORS-II and a set of two TAPS have been installed in Ojców Seismic 
Observatory (see Fig. 31.10a)  in order  to record the SRE.  The initial im- 
pact test showed that all the electronic channels of the seismic recording 
system give the same time delay,  as shown in Fig. 31.10b  (Jaroszewicz et 

(a) (b) 

Fig. 31.10 (a) The FORS-II and a set of two TAPS in Ojców, (b) and seismogram
of the impact test on 3 September 2004 at 08h16m
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Fig. 31.11  Seismograms of the seismic events recorded on 21 October 
2004 at 11h37m

Fig. 31.12  Seismograms of the seismic events recorded on 22 October 2004 at 
08h13m by FORS-II and the TAPS-2 with two domains selected for future consid-
erations. Additional windows show the method of time delay identification be-
tween S waves (Sn line) and P waves (Pn line) 

al. 2005). It should be noticed that only the FORS-II shows the rotational 
component in a direct way. The rotational components from the TAPS sys-
tems are calculated basing on the recorded linear motion by two channels, 
applying a suitable mathematical procedure, which is widely described in 
the previous paper (Solarz et al. 2004). 

The data shown in Figs. 31.11 and 31.12 are examples of seismic events 
recorded in Ojców on 21 October 2004 at 11h44m and on 22 October 2004 
at 8h18m, respectively. The source of these events is a quarry situated near 
Ojców. Because a set of two TAPS has been installed in Ojców (one per-
pendicular to the other), Fig. 31.11 presents five seismograms (two for 
TAPS-1, and two for TAPS-2, separated by FORS-II).  
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As one can see, all the recorded data resulting from the real seismic 
events show that the FORS-II has registered the SRE time delay ( tR) with 
respect to the characteristic linear motion of this earthquake registered by 
the TAPS channels, as shown in Fig. 31.12. The final results of the nu-
merical processing (spline function approximation with  = 0.3; Solarz et 
al. 2004) applied for the data presented in Fig. 31.12, oriented towards cal-
culation of the rotational component by the TAPS, is shown in Fig. 31.13. 
In general, Fig. 31.13 concerns the data for two time domains of the seis-
mic events  shown  in Fig. 31.12.  Figures 31.13a, b, c  have been  obtained 

(a) (d) 

(b) (e) 

(c) (f) 

Fig. 31.13  Recognition of SRE by the TAPS-2 and FORS-II from the data pre-
sented in Fig. 31.12. Panels (a, b, c) for domain I;  (d, e, f) for domain II 
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from the data from FORS-II and TAPS in domain I, i.e., at the moment 
when the TAPS registered the linear motion (40 s following 8h15m50s).
Figures 31.13d, e, f present the calculations in the domain II, i.e., at the 
moment when the FORS-II recognized the rotation motion (25 s following 
8h16m30s). Moreover, the calculated spectra of all the signals presented in 
Fig. 31.13 are shown in Fig. 31.14 with the same table structure as in 
Fig. 31.13. 

An analysis of the above data shows that the rotational components re-
corded by the TAPS system in domain I (at 8h15m50s) are connected only 
with the system sensitivity to the linear motion (classic seismic waves). In 
these moments there exist strong translational components (Fig. 31.13c). 
Because the FORS-II has not recorded any rotation and the spectra of the 
rotational  and  translational components  recorded  by the TAPS  have the 

(a) (d) 

(b) (e) 

(c) (f) 

Fig. 31.14  Spectra of components of the seismic events presented in Fig. 31.13. 
Panels (a, b, c) for domain I;  (d, e, f) for domain II 



31 Absolute Rotation Measurement Based on the Sagnac Effect 433

same frequency and amplitude characteristics (see Fig. 31.14b and c), the 
rotation calculated from the TAPS represents only the error related to dif-
ferent characteristics of the two channels (Jaroszewicz et al. 2003).  

On the other hand, the numerical calculation performed using the data 
obtained in domain II (at 8h16m30s) reveals the existence of a rotational 
component in the FORS-II as well as in the TAPS records. In this region 
there does not exist a translational component (see Fig. 31.13f). Moreover, 
the characteristics recorded by the TAPS and the FORS-II are the same 
(also in the spectrum range – see Fig. 31.14e and f). On this ground we 
conclude that SRW exists only at this moment and its amplitude is con-
tained in the range of 4 10-7 rad/s, as shown in Fig. 31.15.  

Fig. 31.15  Amplitude of the SRW calculated basing on the FORS-II recordings 

31.6  Investigation of the SRE Propagation Velocity 

The main conclusion to be drawn from the above results is that the SRE 
are seismic events which propagate with velocities different from the clas-
sical longitudinal or transversal seismic waves.  

Because the seismic S waves have higher velocity than the P waves and 
both of them have different attenuation and frequency characteristics, the 
delay time between them ( t  see windows in Fig. 31.12) may be used for 
calculating the distance from the seismic events epicentre as  L = 7.86 t.
Additionally, for each recorded seismic event, the time delay tR between 
the P waves and the SRE may also be calculated according to the scheme 
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shown in Fig. 31.12 (Jaroszewicz et al. 2005). The results of the above es-
timation for the SRE in the seismic events recorded in the Ojców seismic 
observatory are summarized in a graphical form in Fig. 31.16 as a depend-
ence between the distance from the event epicentre and the time delay.  

The data presented in Fig. 31.16 show the appearance of a linear de-
pendence between the time delay tR and the distance L from the seismic 
wave sources. Such results suggest the existence of a different velocity of 
SRE in comparison to the classical seismic waves (S or P types), which 
can be calculated from the following formula: 

,
P

R P

R

V L
V

V t L
(31.20)

where VP is the velocity for the P waves, which (basing on Jeffreys-Bullen 
travel-time curves; Bullen 1963) is equal to 5500-5800 m/s for the seismic 
events from the Silesia mining region and 5900-6000 m/s for the Lubin 
mining region. For distant seismic events, V P is equal to 8000-10,000 m/s. 
The results of the estimation of SRW parameters in the seismic events re-
corded in Ojców are summarized in Table 31.3. As one can see, for the 
near events (the Silesia or Lubin regions) the SRE velocity is contained 
within the range of 400 m/s ,  determined with the error VR  estimated at 
5-8%, while for the distant seismic events VR it is of about 580 m/s with 
the measurement error of 1%. Unfortunately, we have not collected more 
representative data about the last events, so these estimates should be con-
firmed in future research. 

Fig. 31.16  Time delays versus the distance from the seismic event epicentre of the 
SRE for the data recorded in Ojców 
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Table 31.3  Parameters of the SRE calculated basing on the events recorded in the 
Ojców Seismic Observatory (Poland) 

Initial time 
Year(Day)Time 

      VP

     [m/s]
t = |Sn-Pn|

[s] 
L = 7.86 t

[s] 
tR

[s] 
VR

[m/s] 
VR

[%] 

04 (230) 08:17:17.2a 5500 1.82 14.3 33.92   391.57 6.9 
04 (232) 11:51:18.9a 5500 1.91 15 38.6   362.96 6.6 
04 (232) 12:00:52.4a 5500 2.32 18.2 38.83   431.9 5.4 
04 (238) 11:28:30.9a 5500 1.89 14.9 33.1   416.1 6.6 
04 (239) 11:28:02.7a 5500 1.99 15.6 34   423.49 6.3 
04 (239) 12:17:16.6a 5500 2.15 16.9 37.68   414.7 5.9 
04 (243) 11:29:36.5a 5500 1.97 15.5 34.58   414.46 6.4 
04 (247) 08:09:12.8a 5500 2.24 17.6 47.77   345.3 5.6 
04 (247) 08:16:59.1a 5500 2.00 15.7 34.9   415.84 6.3 
04 (260) 11:28:57.3a 5500 1.90 14.9 34.1   404.79 6.6 
04 (264) 08:19:02.8a 5500 1.96 15.4 35   407.41 6.4 
04 (260) 08:17:55.9a 5500 1.95 15.3 33.7   419.39 6.5 
04 (273) 08:14:31.2a 5500 1.92 15.1 34.2   408.71 6.5 
04 (274) 11:15:33.2a 5500 1.82 14.3 29.2   449.69 6.9 
04 (295) 11:42:11.7a 5500 1.69 13.3 29.2   420.64 7.4 
04 (295) 11:43:44.9a 5500 1.51 11.9 29.6   374.64 8.3 
04 (296) 08:15.54.1a 5500 1.74 13.6 35.5   358.15 7.3 
04 (296) 11:38.52.1a 5500 1.55 12.1 29.4   382.91 8.1 
04 (364) 12:26.56.8a 5500 2.40 18 36   458.33 5.5 
04 (366) 04:03.09.2b 5900 13.60 109 168   584.53 1 
04 (366) 10:03.25.1a 5500 6.40 50 206   232.46 2 
05 (003) 12:06.23.0a 5500 3.40 26 120   208.46 3.8 
05 (003) 12:42.10.5a 5500 4.50 34 105   305.81 3 
05 (004) 09:24.26.4c

10000 1017.80 8000 402 6658.6 0.7 
a Seismic events from the Silesia mining region 
b Seismic events from the Lubin mining region 
c Seismic events from the Andaman region 

The physical confirmation of different velocities of the SRE treated as 
seismic rotational waves in comparison to the classical ones may be per-
formed basing on the theoretical work by Teisseyre et al. (2003), where the 
velocity of the SRE is estimated as 4 */  The recorded difference be-
tween VR and V P suggests that * (rotation rigidity) is smaller than the 
rigidity. Such an approach opens a new area for investigation of the SRE 
as well as their role during the earthquakes.  

31.7  Conclusions 

The idea and the first experimental results of the fiber-optic loop interfer-
ometer application for detecting the SRE presented in this chapter are very 
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promising for several reasons. Firstly, the presented FORS system is de-
signed to detect absolute rotation, which is probably impossible to realise 
in another way. It seems that the data obtained are clear for identification. 
Moreover, FORS is a system operating in real time, so it gives immediate 
information about such events, that is an additional advantage. Secondly, it 
can be used for investigation of other kinds of rotational seismometers, for 
example, the TAPS. The presented results have become an impulse for de-
veloping a new method of analysis of data recorded by the TAPS. This 
method, based on smoothing by the spline function, gives more clear re-
sults of rotational events measured by the TAPS system.  

The FORS-II system is characterized  by a sensitivity of 4.27 10-8 rad/s 
in 20 Hz detection band and it seems to be a very promising device for the 
rotational seismic events investigation, because it ensures detection of the 
absolute rotation, which is probably impossible to realize in other way. 
The data obtained by this sensor are clear for identification. In comparison 
to the laser ring rotational seismometer, the presented fiber-optic system is 
cheaper and easily moveable.  

The results obtained in the Ojców seismic observatory are very promis-
ing. The data recorded simultaneously by the TAPS and the FORS-II dur-
ing the earthquakes show that SREs propagate with different velocities 
than the longitudinal or shear seismic waves. It was shown that SRE are 
delayed in time in comparison to the classical seismic waves of earth-
quakes. Moreover, it has been evaluated that SRE connected with near 
seismic events have an amplitude of about 4 10-7 rad/s and velocity about 
400 m/s. In the authors’ opinion, the experimentally confirmed conclusions 
are the first reports touching this aspect of SRE nature. Unfortunately, the 
collected data are not representative for different types of earthquake 
sources and they are mainly limited to the near seismic events. In conse-
quence, extension of this estimate for other seismic events should be con-
firmed in future research. We expect that by analogy to the Jeffreys-Bullen 
travel-time curves for classic seismic waves, the seismic rotational waves 
should present a similar dependence  different velocities depending on 
their distance and location in relation to the source of an event.  
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32.1  Introduction 

Rotation component of seismic waves  is one  of the strain components 
(extension, rotation and twist-bend) caused by the seismic waves passing 
through the observation site. Our interests have been inspired by the fact 
that tombstones and small rigid bodies had been rotated after strong earth-
quakes. It is suggested that destruction of the buildings might be caused 
not only by a strong motion, but also by a strong dynamic strain. Takeo 
and Ito (1997) and Teisseyre (1973) have discussed the importance of rota-
tion motions caused by the earthquakes. The conventional translation 
seismometers, however, cannot observe the rotation component of seismic 
waves. Therefore, rotation seismometer is required to investigate the na-
ture of rotation components. There are many sensors to measure rotation 
movement, such as gyro-sensor (Henkel 1993), laser-gyro for car naviga-
tion and airplane control (e.g., GYROSTAR produced by Murta Ltd.). 
They are sensitive to pure rotation motion, but their sensitivity is too low 
to observe seismic waves. However, the very strong vibrations have been 
observed (Nigbor 1994). Hence, the gyro-sensor is useful as a calibrating 
tool. In this situation, we decided to design the rotation seismometer (Mo-
riya and Marumo 1998, Moriya and Teisseyre 1999). Overcoming some 
difficulties, we were able to design and manufacture the rotation seis-
mometer and observe local earthquakes at three observation sites where 
surface geological conditions were different.  
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32.2  Design of the Rotation Seismometer 

We intended to measure not only the rotation component but also the 
twist-bend component (Moriya and Teisseyre 1999). We used two pairs of 
seismic translation sensors to obtain spatial differentiation of the seismic 
waves. The rotation component R around the normal axis is defined as 

R = A – B (32.1) 

while the twist-bend component T is 

T = A + B , (32.2)

where
1

2
xu

A
y

,
1

2
yu

B
x

, and ux and uy are the horizontal spatial de-

rivatives along east-west and north-south directions of the ground. To 
measure A and B, two seismic sensors have to be set at a small distance 
(22 cm). Then to obtain R and T, outputs A and B of the two pairs of sen-
sors must be added and subtracted. The problem is, however, that the am-
plitude and phase characteristics of seismic sensors are not the same or at 
least similar enough for detecting the spatial differentiation. For this rea-
son, many seismologists have abandoned the idea of measuring rotation 
component. We developed a technique to select the seismic sensors with 
the same amplitude and phase characteristics; moreover, by using elec-
tronic equalizer circuit we managed to obtain seismic sensors which have 
almost the same amplitude and phase characteristics.  

32.2.1  Equalization of the sensors 

Selection of the sensor 

While constructing the rotation seismometer, a great difficulty is the lack 
of sensors whose characteristics, sensitivity, phase characteristics, coil re-
sistance, and the like, would be perfectly the same. Out of many L22d seis-
mometers (Mark Products Ltd.), we must select appropriate pairs, by com-
paring their sensitivities, and phase differences from observation of the 
microtremor spectrum. We tested about 60 of L22d seismometers and 
found that 1/4 of them have phase characteristics differing by less than 1 
degree.

Equalization by electronic circuits 

To reduce the small differences of the selected L22d instruments, the over-
damping  and  integration  method  (Moriya et al. 1998a)  was applied. The 
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strong over-damping is achieved by connecting to the negative input an 
impedance amplifier (Sakurai and Shimoda 1984), and applying negative 
and positive feedbacks to the operational amplifier. The integration is 
made by band-pass filter (T0 = 5.0 s, Q = 0.7). The electric parts, resistors 
and condensers, are selected to be perfectly the same. The circuit diagram 
of the electronics is shown in Fig. 32.1. Figure 32.2 shows difference of 
spectra of microtremors observed by a single EW horizontal component 
sensor and subtraction component obtained by two EW translation sensors. 
The translation resonance frequency of 2.44 Hz of the laboratory building 
is canceled by subtraction, and the rotation resonance frequency of 2.60 Hz 
is preserved. Four L22d seismometers are set rigidly on the aluminum 
plate 11 cm apart from the center of the plate (Fig. 32.3). Therefore, the 
twist-bend component is observed through the rigidity of the aluminum 
plate. The rotation seismometers were calibrated by the spectrum compari-
son method with the gyro-sensor. Five-minute averaged spectra of two 
sensors were obtained by manual rotation of the sensors on the rotation ta-
ble. Through this experiment, we confirmed that the rotation seismometer 
has a sensitivity for rotation velocity of 300 mV/deg·s-1 at 4 Hz, which is 
8.91 dB higher than that of the gyro-sensor (Fig. 32.4). The equality of two 
rotation sensors was confirmed by comparing the spectra of microtremor 
(Fig. 32.5).

Fig. 32.1  Circuit diagram of negative input impedance and band-pass filter 



         T. Moriya, R. Teisseyre 442

Fig. 32.2 Spectra of microtremor observed by single EW translation (A) and sub-
traction (B, amplified 22 dB) components by two EW sensors set apart 22 cm 

Fig. 32.3 Photograph of three-axis rotation seismometers 



32  Design of Rotation Seismometer and Non-Linear Behaviour of Rotation 443

Fig. 32.4 Calibration of the rotation seismometer by comparison with gyro-sensor 

Fig. 32.5 A comparison of the spectra of microtremor observed by two rotation 
seismometers, showing two instruments have almost the same characteristics. 
A peak of 2.60 Hz is a rotational resonance frequency of the building 

- B

B
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32.3  Absolute Rotation Component Amplitudes for 
         Earthquakes Observed at Sites of Different Surface 
         Geological Conditions 

32.3.1  Temporary observation 

To examine the absolute rotation amplitudes of earthquakes, we executed 
temporary earthquake observations at three stations. Observation sites 
were selected  in places  where  the crustal structure  has been investigated. 

Fig. 32.6a  Seismograms of earthquake which occurred  in southern Hokkaido,
observed by three translation and rotation seismometers 
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These were: Mitsuishi (MUJ), Obihiro (OBI), and Showa-Shinzan (SWZ) 
in Hokkaido. Station MUJ was situated on the foot of the Hidaka Moun-
tains where the crusts of Northern Honshu and Kurile have collided, and 
the complicated structure was ascertained (e.g., Moriya et al. 1998b, Iwa-
saki et al. 2004). Station OBI was situated in the Tokachi plane where 
thick sedimentary layers have been developed. Station SWZ is situated 
very close to the Showa-Shinzan and Usu volcanoes and is covered by 
lava, where we observed volcanic earthquakes accompanied by the erup-
tion of Usu volcano in March 2000. We used three components of transla-
tion and rotation seismometers. At MUJ, we tentatively recorded subtrac-
tion components (A and B of Eq. 32.1) of normal axis. Figures 32.6a, b 
and c  show seven-component seismograms  of  two local  and  one distant 

Fig. 32.6b Same as Fig. 32.6a, but for earthquake which occurred south off Hok-
kaido 
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Fig. 32.6c  Same as Fig. 32.6a, but for earthquake which occurred in Molucca sea 

earthquake observed at MUJ. Subtraction traces (lower two traces in Figs. 
32.6a, b and c) of seismograms, which correspond to A and B of (31.1) 
and (31.2), show slight differences between the two traces, suggesting the 
existence of twist-bend mode (Moriya and Teisseyre 1999); however, 
those differences are very small, almost at the level of critical values of the 
sensor’s resolution. 

32.3.2  Relation between amplitudes of translation 
            and rotation components 

From the seismograms obtained by temporary observations we inferred 
rough estimates of amplitudes of rotation velocity movements, which 
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amounted to several tens of micro radians per second for felt earthquakes 
(Japanese Standard Intensity of 1–2). To obtain a relation between ampli-
tudes of translation and rotation observed at three stations, we read the 
maximum amplitude of seismograms. Figures 32.7a, b and c show rela-
tions between maximum amplitudes of translation and rotation of the same 
phases observed at the three stations – MUJ, OBI and SWZ. The absolute 
amplitudes of rotation component vary between 3 and 300 rad/s; these 
values are very small, as expected. Apparently, rotation amplitude Ar and 
translation amplitude At are linked by the empirical relation 

log logA m Ar t (32.3)

We obtained the following values: m = 1.4  at MUJ, m = 1.2 at OBI, and 
m = 0.84  at SWZ. The relation suggests that on the site of complicated 
surface geology, m takes a large value. If the empirical relation holds in the 
range of very large intensities, 5-6 (Japanese Standard Seismic Intensity), 
the rotation amplitude could reach 0.3-3 rad/s. It is not clear whether  the 
rotation amplitude of 0.3-3 rad/s is enough to make tombstones  rotate, but 
a very strong rotation movement can occur when a very strong seismic 
wave shakes the ground.  This means that the ground is distorted by a seis- 

Fig. 32.7a  Plots  of amplitudes  of  rotation against translation  of  earthquakes 
observed at MUJ observatory
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Fig. 32.7b  Same as Fig. 32.7a, but for earthquakes observed at OBI observatory 

Fig. 32.7c  Same as Fig. 32.7a, but for earthquakes observed at SWZ observatory 
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mic wave passing through. On a more complicated surface geology, the 
seismic wave generates stronger rotation strain. We have found that some 
tombstones and small constructions were rotated after a strong earthquake. 
Our observation suggests that rotation of the constructions by large earth-
quakes is not accidental. If empirical relation (32.3) is valid, m represents 
one of the parameters of inhomogeneity of the surface and shallow under-
ground structure. Abrupt amplitude changes of translation components of 
propagating seismic waves have been thought to be caused by complicated 
and inhomogeneous structure. We think that the rotation amplitude corre-
sponds to dynamic strain caused by seismic waves and is inversely propor-
tional to wavelength; hence, parameter m is a new geophysical parameter 
to characterize the transmission of seismic waves in inhomogeneous me-
dia.

32.4  Results and Future Scope 

We have demonstrated that our rotation seismic sensors are reliable and 
have high sensitivity for observing local and distant earthquakes. To con-
firm the validity of relation (32.3) for strong earthquakes, a strong motion 
rotation/twist-bend seismometer is required because the rotation seis-
mometer designed here is saturated at about 3000 rad/s. The strong mo-
tion rotation/twist-bend seismometer will become a tool for examining the 
relation between strain of the ground associated with strong earthquakes 
and the disaster, because a seismic disaster is caused not only by strong vi-
bration, but also large dynamic strain of the ground. 
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33.1  Introduction 

The measurement of rotation has been discussed by Aki and Richards 
(1980), who raised doubts as to the possibility of measuring rotation either 
by seismometers with mass in the center or by an array of seismometers 
(Saito 1968). In the latter case, the attention was drawn to the shallow het-
erogeneities in the Earth’s structure. 

There are several papers dealing with the rotation measurement, mainly 
relating to the near-source regions (Bouchon and Aki 1982, Nigbor 1994, 
Minoru 1988). Source-related rotations quickly decrease with distance. 
The measurements reported here concern rotation in the far-field, con-
nected with seismic waves. The measurement of that rotation was dealt 
with by Smith and Kasahara (1969) or Saito (1968), mainly with the aim 
of separating the SH waves. 

The aim of measurements with the use of sensors described here was not 
only to detect the S-wave rotation, but also to measure the proper rotations 
generated by seismic waves and rotations that propagate as waves (Moriya 
and Teisseyre 1999). Therefore, we used the pendulum sensors which are 
able to measure transient deformation related to seismic waves, yet sensi-
tive enough to measure very small values.  

The pendulum sensors are being used as tiltmeters. They are very well 
described by Dunkan (1986). They have been applied to the measurement 
of very slow rotations or very long seismic waves. In contrast to those 
measurements, we were interested in rotations of higher frequencies, cov-
ering the frequencies of seismic waves. Hence, the main problem was how 
to distinguish the signal due to rotation from that due to straight-line vibra-
tions.
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33.2  Behaviour of a Pendulum Seismometer During
         Measurement of Rotations – Static Approach 

Figure 33.1 shows a schematic of a simple pendulum electromagnetic 
seismometer discussed in this chapter. The pendulum moves relative to the 
seismometer’s enclosure in the plane of the diagram. Additionally, we 
show the centre of inertia of a simple pendulum, which will be useful for 
our further analysis. In seismometry, the operation of seismometer is usu-
ally discussed with the help of a simple (mathematical) pendulum model, 
in which the mass is reduced to one point (Bullen and Bolt 1985, Aki and 
Richards 1980). Such an approach is sufficient when we study a simple, 
linear movement and the rotation is measured by many seismometers. In 
the next section we will describe a seismometer employing a compound 
pendulum model. 

Movements in all the figures are seen from an inertial coordinate sys-
tem, relative to which the earth rotates. 

Figure 33.2 shows the mechanism of movement of a seismometer with a 
simple pendulum.  The following elements are considered:  the pivot of the  

Fig. 33.1  Schematic of simple pendulum electromagnetic seismometer; l0  is the 
reduced length of pendulum, lc is the length of pendulum from its pivot to the coil. 
The seismometer consists of: pendulum P, pivot (axis of rotation) A, magnet M, 
coil C, mass center B and enclosure E 

Fig. 33.2  Motion of units of a simple pendulum seismometer; ua is the displace-
ment of the pivot of seismometer, u0 is the displacement of the enclosure of seis-
mometer at the point of reduced length of pendulum, um is the displacement of the 
magnet, and uc is the displacement of the coil. Grey colour refers to the seismo-
meter after displacement 
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pendulum with displacement ua, and magnet with displacement um, both 
rigidly fixed to the enclosure, and the pendulum with a coil which is mov-
able relative to the enclosure. 

,m a

cu u l (33.1)

where  is the rotation of the Earth’s surface and thereby the seismometer. 
We have denoted rotation by symbol  to make it distinct from the rotation 
 as used by Teisseyre et al. (2003a), since we treat seismometer’s parts as 

rigid bodies. The displacement and rotations are treated as very small. 
The centre of inertia of a simple pendulum does not move. The reduced 

length of the pendulum counted from the pendulum’s pivot is denoted by 
l0. The pendulum’s coil is movable. This movement is related to the 
movement of the pivot through the relation 

0 0

,
c a

c

u u

l l l
(33.2)

where uc is the displacement of coil. 
The seismometer records the coil displacements U relative to the mag-

net:

.m cU u u (33.3)

Substituting Eqs. (33.2) and (33.1) to (33.3) we obtain the formula for the 
signal recorded by the seismometer, composed of the rotational component 
and displacement, 

0
0

.aclU u l
l

(33.4)

A similar formula was presented by Moriya and Teisseyre (1999). The 
seismometer records displacement of the pivot of the pendulum and rota-
tion.

It is also possible to present a formula for recording the displacement 
component alone, without rotation. Provided that changes of the stress 
tensor along the seismometer pendulum are negligible, we may assume 
that

0
0 ,au u l (33.5)

where u0 is the displacement in the point of inertia centre, and we get 

0 00 .
a m

c

c

u l l u l
u

l
(33.6)



   J. Wiszniowski 454

Using Eqs. (33.1), (33.4) and (33.6), we obtain 

0

0

.clU u
l

(33.7)

The pendulum seismometer is then equivalent to a seismometer with 
straight-line movement of inertial mass placed in the centre of inertia of a 
simple pendulum.  

In the next section we will describe the measurement by a pair of seis-
mometers where the position of seismometers will mean the position of 
inertial mass of seismometer pendulum. The main problem is how to ob-
tain rotation signal by eliminating the linear motion. Both seismometers 
will record velocity. 

33.3  Measurement of Rotations by a Pair of 
         Seismometers – Influence of Seismic Waves 
         on Signal 

We expect from the rotation recording instruments to be able to measure 
both the linear motions and proper rotation. At the same time we are aware 
of the fact that the seismometers in pairs are excited by linear vibrations of 
both the rotation-free P waves and the rotation-bearing S waves, and per-
haps also the proper rotation waves.  

The principle of the rotation measurement is the following: two sensors 
record ground motions of velocities vg1 and vg2, which differ from each 
other, and then the linear signal is eliminated by using the calculated dif-
ference in the signals recorded by these seismometers. These signals con-
tain both linear and rotational vibrations. At first we assume that the in-
strument’ responses are ideally the same. The effect of differences in re-
sponses will be analysed in the next section. 

We assume that the two seismometers are located at opposite sides in a 
continuous elastic medium penetrated by plane seismic P and S waves 
(Fig. 33.3). The angle between the P-wave direction and the line of seis-
mometers is  (Fig. 33.3a).

The second seismometer is shifted by vector x = ( x, y, z) relative to 
the first one (for instance, in Fig. 33.3 we have z = 0). We assume that 
this vector is relatively small. The velocity increment v between the two 
seismometers is  

.x (33.8)
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a) b) 
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Fig. 33.3  Excitation of the pair of seismometers by P waves (a) and S waves (b). 
Notation: v1 – ground motion velocity for the first seismometer, 1

gv  – the compo-

nent of vibrations acting on the first seismometer, v2 – ground motion velocity for 
the second seismometer, 2

gv  – component of vibrations acting on the second seis-

mometer,  – the angle between the seismometer pair and the direction of the 
arriving wave. The wave travels in the y direction, and the particle vibrations are 
in the y direction for the P wave and x for the S wave 

The pendulums of the two seismometers move in the direction described 
by versor ng, so the velocity recorded by the seismometers is  

.gv ng (33.9)

In the pair of seismometers positioned for the rotation measurement, the 
direction of seismometer’s motion is perpendicular to the seismometers 
line, hence 

0 .x ng (33.10)

For two ideal seismometers, the velocity difference is 

.gv x ng (33.11)

For the P wave from Fig. 33.3a, the measured signal will be 

1

2
sin 2 ,y

g

v
v L

y
(33.12)

where L = | x| is the distance between the mass centers of the mathemati-
cal pendulums. For a sine wave, we have 

sin 2 ,g

L v
v (3.13)
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where  is the wavelength. This means that the difference in signals from 
the two seismometers will be nonzero also for non-rotational waves. It will 
depend on the angle at which the wave arrives. This difference will be zero 
for waves coming from the direction of seismometers line and perpendicu-
lar to it. The value measured by the pair of seismometers corresponds to 
the compressional deformations when the rotation is zero. 

For the S wave (Fig. 33.3b) the measured value of the signal will be 

2cos ( ) .x
g

v
v L

y
(33.14)

In this case the term xv y  corresponds to rotation. For the S wave the 
value of the rotation measurement depends on the direction and is correct 
only for the wave coming from the direction of seismometers line. For the 
wave coming perpendicularly to it, nothing should be recorded. 

If we use two pairs of seismometers, the second pair being rotated by 
90  relative to the first one, then the sum of differences defined as rota- 
tion R by the formula (Teisseyre et al. 2003b) 

1 2

2
g gv v

R (33.15)

is

1 1

4 4
sin(2 ) sin 2 ( 90) 0 ,y yv v

R L L
y y

(33.16)

for the P wave from Fig. 33.3a, and  

2 21 1 1

2 2 2
cos ( ) cos 90 ,x x xv v v

R L L L
y y y

for the S wave from Fig. 33.3b. 

Generally speaking, on the basis of relations (33.10), (33.11) and 
(33.15), for the four seismometers positioned in the above manner, we 

obtain 1

2
rotR Ln vs , where ns is the normal to the plane at which the 

seismometers are located. For the example of Fig. 33.3 this gives the fol-
lowing value: 

1

2
.yx

vv
R L

y x
(33.17)
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It follows from the above that the sum of signals from the ideal four seis-
mometers is zero for the P waves and corresponds to the S-wave rotation 
regardless of the direction the waves arrive. 

Twist is defined as a difference in the signals from the seismometer 
pairs (Teisseyre et al. 2003b) 

1 2

.
2

g gv v
T (33.18)

For the P wave the twist will be

1 1 1

4 4 2
sin(2 ) sin 2( 90) sin(2 ) ,y y yv v v

T L L L
y y y

(33.19)

while for the S wave it will be

2 21 1 1

2 2 2
cos ( ) sin ( ) cos(2 ) .x x xv v v

T L L L
y y y

In general, for the waves in Fig. 33.3 we have 

1 1

2 2
sin (2 ) cos (2 ) .y yx x

v vv v
T L L

y x y x
(33.20)

For both, the P and S waves, the value of T depends on the direction  of 
the wave arrival. 

Let us now consider a more general case. The seismometers are placed 
at edges of a regular polygon of side length L. Figure 33.4 shows such a 
distribution for a square. According to the Stokes formula, if we assume 
that for each side 

d ,g

L

Lv l (33.21)

and that the polygon surface is relatively small and rotation can be treated 
as constant, we obtain 

1

rot ,
N

i

g

i

L
v

A
(33.22)

where i

gv  is the velocity measured by the i-th seismometer, N is the num-

ber of sides, and A is the surface area. For the four seismometers from 
Fig. 33.4 the rotation is 

4

1

1
rot .i

g

i

v
L

(33.23)
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Hence, the sum of signals from the four evenly distributed seismometers 
corresponds to rotation of ground motions, in accordance with (33.17). 

Fig. 33.4  System of four seismometers; rotation is calculated on the periphery of 
the square 

For the measurement of rotation it is enough to have three seismometers 
in a triangle; however, in order to ensure the fulfillment of assumption 
(33.21) and because of differences in the seismometr’s responses, it is 
better to use a greater number of seismometers distributed on a regular 
polygon. When the distribution is arbitrary, we must use scaling coeffi-
cients. Saito (1968) uses coefficients that minimize the difference between 

x  and coefficients.
Instead of a great number of seismometers, we can use a Sagnac inter-

ferometer (Jaroszewicz et al. 2001, and McLeod et al. 1998), where a pulse 
of light is sent in opposite directions around a circular loop and the differ-
ence in time ( t) of the pulse arrivals is measured. It amounts to 

2 2 2

d d d
rot ,

A
t

c v c v c v c

r r r
(33.24)

where c is the speed of light. 
The above analysis gives grounds for concluding that it is improper to 

determine rotation on the basis of seismometer pair, since we do not have 
any information on the motion parallel to the seismometer pair. Still, the 
measurement of rotation by a pair of seismometers can be made when the 
seismometers are placed on a rigid body. 

For measurements described by Teisseyre et al. (2003a), a double-pend- 
ulum seismometer in one trunk (Fig. 33.5) was applied. The problem how  
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the continuous medium affects a rigid body is complicated and disputable. 
The solid body is treated as part of the continuous medium for which the 
deformation tensor is zero (Aki and Richards 1980). It is a problem of 
discussion how the body affects the continuous medium. If the solid body 
is part of a continuous medium, then the instrument base rotates by the 
angle

1

2

yx
vv

y x

(Smith and Kasahara 1969); the other option is to assume that the interac-
tion takes place through elastic support points. At the same time, the cavity 
in which the sensor is placed has an influence on the creation of various 
vibrations, including rotational ones (Dunkan 1986, Harrison 1976). We 
assume that the excitation of the solid body of the sensor takes place 
through the support points. The problem of connection with the basement 
applies to the Sagnac interferometer too. 

The construction shown in Fig. 33.5 is fixed to the ground in three 
points. It is a solid body stimulated through the support points. In such a 
situation, in order to ensure the recording of rotation of seismic waves 
regardless of their arrival angle, these points must be evenly distributed 
relative to the mass center. The sensors used for the measurement of rota-
tion and twist waves have the support points in the shape of a plane trian-
gle, which makes the signal dependent on the wave direction. In such a 
case, in order to measure rotation we need two such sensors, yet the meas-
urement of twist (33.18) by those two sensors is then possible. In the next 
sections, the seismometer pair and the rigid seismometer will be treated as 
rigid bodies. 

Fig. 33.5  Double pendulum horizontal electromagnetic seismometer 
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33.4  Influence of Small Differences in Channel
         Responses on Rotation Measurement 
         – Dynamic Approach 

The two-seismometer system can measure rotation, provided that the re-
sponse functions of the two pendulums are the same. Unfortunately, the 
responses of seismometers and recording channels are not the same. 

In the recording path, we can specify the following elements: sensor 
(seismometer) S, analogue amplifiers-filter F, sampling device P, analog 
-digital converter A and digital filters D. In fact, we can vary only the re-
corded digital signals c1 and c2 , so that  

ci = vg
i  Si  Fi  Pi  C  D = vg

i Hi . (33.25)

Elements S, F, P, C, D are dynamic, so sign  means convolution in time 
domain as well as multiplication in the frequency or S (Laplace transform) 
domain. 

Digital filters are identical by assumption. The analog-digital converter 
is one for all channels in the applied recording device. These two elements 
can be ignored. Responses of the remaining parts have an influence on the 
difference of channels. Additionally, noise of seismometers and recording 
device adds to error of difference. As a result, the difference of signals 
(33.25) is 

c = A D (S1 F1 P1 – S2 F2 P2)  vg

           + A D S F P L + e = cerr + cR + e ,
(33.26)

where e is the noise of recording device, cR is the signal from rotation re-
corded by the device, and cerr is the linear motion that was not eliminated 
because of differences of seismometers. A large value of cerr precludes a 
correct determination of rotation, so the most important problem is to 
translate the signals so as to make this value very small, or to separate 
frequencies of large cerr from frequencies of .

33.4.1  Differences in seismometer responses 

We adopt a standard seismometer model, in which the dependence of volt-
age Es on ground motion frequency is given by the formula 

2

2 2
0 0 0

( ) ,
2

s
s

s G
E S s v v

s s
(33.27)
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where Gs is the electromotive constant of the main coil, 0 is the circular 
frequency of free vibrations, and 0 is the damping coefficient. 

When the recording is made by two seismometers, coefficients in 
Eq. (33.27) will have different values. In the sensors, we used pendulums 
of seismometers SM-3. The coefficients of the two seismometers were the 
following: Gs  135 Vs/m,  0  2 /1.5 Hz, 0  0.7. 

In the classical operation of seismometers, while the linear vibrations 
are measured, it is enough for the coefficients of seismometers to differ by 
no more than 5%. Such an error is too high for rotation measurements. 

To eliminate the linear component from the recorded signal, it is not 
enough to correct the gain Gs. The response of the signal created by differ-
ence of the values recorded by sensors whose free periods and damping 
differ by 5% is shown in Fig. 33.6. The gain was assumed to be 1. We see 
that the difference for channels for which the damping and free period 
differ by only 5%, may produce a signal that is only 20 times smaller than 
the linear signal coming into the sensors. This means that signal 
Cerr  0.05Cr may be much higher than L Crr and will jam the rotational 
signal.

                                                                         a)                                                                        b)

Fig. 33.6  Differences in responses of seismometers S1 and S2: (a) the damping of 
the second seismometer differs from that of the first by 5%; (b) the free period of 
the second seismometer differs from that of the first by 5% 

One of the methods to eliminate this problem was to apply a very large 
damping of seismometer with the use of negative resistance. This causes 
the extension of the poles of the response (33.27) beyond the recording 
band and diminishes the effect of 0 and 0 on the error of the difference 
(33.26). The differences of the response are not only lower, but also dis-
placed beyond the frequency recording band (Fig. 33.7). This method 
gives good results for measurements of strong signals close to epicenter, 
since it amplifies the noise of recording. 
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Fig. 33.7  Difference in responses of seismometers overdamped by  = 20, whose 
free period differs by 5% 

Another approach is to use long-period seismometers, in which the 
poles of the response are for low frequencies, below the band of measured 
rotation vibrations.  

33.4.2  Sampling delays between channels 

The delay between channels resulting from signal multiplexing and a sin-
gle sampling device causes the time-lag between the signal samples.  
For adjacent channels of the recording system, it amounts to 1/12800/3 s 
(26 s) (Wiszniowski 2002). For a frequency of, say, 10 Hz, the phase lag 
between any channels will be c × 0.094  ( c × 0.0016 rad), where c is the 
difference in channel number (of course, c = 1 for channels 1 and 2). For 
the instrument WiRek-HDD, the delay between the adjacent channels is 
31.25 s. The maximum phase lag for channels 1 and 8, for frequency of 
10 Hz, will be 0.014 rad. We should keep in mind that for a sine signal  

cos ( ) cos 2 sin sin ,
2 2

A t A t A t (33.28)

which means that the difference in sine signals, one with a phase shift ,
gives a signal of the same period (with about 90  phase shift) and the am-
plitude

.A A (33.29)

This means that for 10 Hz the maximum error associated with the shift 
of sampling will be Cerr  0.0016C for the instrument MK-6 (two chan-
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nels) and Cerr  0.0059C for the instrument WiRek (four channels). Figure 
33.8a shows the seismic signal sampled at a rate of 100 sps and its differ-
ence from the signal shifted by 31.5 s. 

The relative delay resulting from sampling is known and it may be re-
moved by resampling. 

The same method can be used to adjust the channels recorded by differ-
ent sampling systems, as in the case of recording from two seismometers at 
Ojców and Ksi . In this case, it is necessary to know the exact time of 
sampling. 

Resampling is performed by the spline method (de Boor 1978) with the 
use of Matlab. It is not possible to reconstruct the situation before the de-
lay because of filtration and sampling of the signal. However, as seen in 
Fig. 33.8b, the error due to the time shift between the channels can be ef-
fectively reduced. 

                                                      a) b) 

Fig. 33.8  Effect of time shift of sampling on the signal differences and the result 
of error correction through the resampling spline: a) – original signal sampled at 
100 Hz (grey) and a difference for the same signal but sampled with 31 s delay 
(black); b) – enlarged difference of signals from panel a) (grey), and difference of 
signals after the delay has been corrected with the spline method (black) 

In this manner we can eliminate constant and known time shifts result-
ing from the multiplexer effect and the use of different converters for vari-
ous channels. I think, however, that it is not safe to estimate the time-lag 
between the channels to eliminate, for instance, the differences in re-
sponses, since we can confuse the time-lag in the recording channel re-
sponses with the delay in the wave onsets when the wave is recorded by 
one sensor. We have 
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( ) ,f t x (33.30)

where x is the distance and v is the wave velocity, while for the other sen-
sor at this time we have 

( ) ( )

( ) ( ) ,

f t x L

f t x L (33.31)

where L is the distance between the sensors,   is the rotation, and  is the 
time-lag between the channels. 

The effect of sampling delay is the same as that of rotation. However, 
the S-wave signal should be recorded as twist vibrations and an attempt at 
estimating the delay treated as differences in channel recordings may lead 
to elimination of these vibrations. An exception is the method of seismo-
meter paralleling (Teisseyre et al. 2003b).  

A separate problem of the same kind is a comparison of signals recorded 
by the A/C converters with independent sampling. The sampling moments 
may differ by no more than half the sampling period; in our case by 5 ms. 
Knowing the exact time of signal sampling, synchronized by DCF or GPS, 
one should make resampling before summing the signals. 

33.4.3  Methods of measurement of seismometer response 
            differences and their reduction 

One approach is to estimate seismometer responses and make their correc-
tion before the signal is subtracted. In the course of measurements we ex-
amined several ways of determining the relative response of seismometers:  

– Through sine-signal calibration of the two seismometers; 
– Through transposition of the seismometer to a parallel position and 

estimation of differences in responses under the assumption that in 
the parallel position they record the same signal. In this method, there 
are various ways of estimating the response difference. 

Calibration by a sine signal should give fairly good results, since the 
calibrating signal is related to the ground vibration accelerations according 
to the formula: 

0 ,c c
c

s

I G l
a

K
(33.32)

where Gc is the electromotive force of the calibration coil and Ic is the cali-
bration current. It follows from this formula that if the current signal is 
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given in series on calibration coils of all the seismometers, their excitation 
will differ by a constant value only. This will enable us to determine the 
dynamic parameters of the seismometers in an exact manner.  

An attempt at using this method for two seismometer pairs at Ksi
failed. This was a consequence of very specific conditions prevailing there. 
Because of high humidity, reaching 100%, and the presence of calcium 
salts, the calibration coils were not insulated from measurement coils, and 
the calibration signal acted not only through acceleration but had a direct 
electrical influence as well. 

The other method consists in the following: 
– parallel positioning of seismometers, so that they will record the 

same signal, 
– determining their relative responses, 
– positioning of seismometers in the opposite arrangement, 
– calculating the signal difference, taking into account the earlier 

measurements. 
In Fig. 33.5 we see the construction adjusted to such measurements. The 
method was described by Teisseyre et al. (2003b) 

Basing on the measurement we can search for a filter to eliminate the 
linear term from the signal, as it was done by Nowo y ski and Teisseyre 
KP (2003), or eliminate R in the frequency domain, as done by Teisseyre 
et al. (2003a, b). Those solutions can be characterized by non parametric 
approach.

Another approach is to modify the seismometer to attain elimination of 
linear motions already during recording. 

33.5  The Pendulum Seismometer for Measurement 
         of Rotations Alone 

A simple (mathematical) pendulum model of seismometer, which assumes 
that the moment of inertia relative to the pendulum’s barycentre, Is , is 
zero, is not sufficient for our further analysis. The motion of the barycentre 
of a compound (physical) pendulum is schematically shown in Fig. 33.9. 
The physical pendulum has a mass ms and a moment of inertia Is relative to 
the barycentre, situated at a distance ls from the pendulum pivot. The dis-
placement of coil in relation to the magnet is 

,
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u l m
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(33.33)
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where 2
s s s sK m l I  is, according to Steiner’s theorem, the moment of 

inertia of the pendulum relative to the pendulum pivot. Adopting the re-
duced pendulum length 

0 ,s s s

s s s s

l K K
l

K I m l
(33.34)

formula (33.33) simplifies to (33.4). 

Fig. 33.9  Diagram of motion of the units of compound pendulum seismometer. 
Notation: ua is the displacement of the seismometer’s pivot, up is the displacement 
of the barycentre of seismometers pendulum,  p is the rotation angle of the pendu-
lum, um is the displacement of the magnet and uc is the displacement of the coil. 
Grey color marks seismometer after displacement 

Having a possibility of adjusting ls, we can control, in a proportional 
manner, the ratio of rotations to the linear motion in the signal recorded by 
the seismometer. We can simplify Eq. (33.33) to Eq. (33.7), which does 
not contain the rotation component, but the displacement  will then be 
measured at the point which is at a distance equal to the reduced pendulum 
length l0 in formula (33.34). This point may even be located beyond the 
seismometer. Of course, large metrics do not make sense for elastic media. 

When we place the barycentre on the seismometer pivot, then ls 0 and 
Ks Is , and 

,cU l (33.35)

which means that such a seismometer will record nothing else but rota-
tions.

The signal recorded by the seismometer can be written as a sum of dis-
locations and rotation functions 

( ) ( ) .aU U u U (33.36)

We will now define the quantity that would represent the compliance of 
a pendulum seismometer to rotation measurement; it will be the ratio of 
the rotation motion function to the linear motion function in the signal 
recorded by the seismometer: 
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.R a

U
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U u
(33.37)

Let us name this quantity the rotation compliance CR. For a simple pen-
dulum seismometer CR = l0 . For example, for seismometer SM-3, the rota-
tion compliance is CR = 0.083 m. Figure 33.10 demonstrates the depend-
ence of the reduced length of the pendulum on the distance from the bary-
centre to the pendulum pivot, according to formula (33.34) (we assume  
Is = constant). It may be seen that the increase of CR may be achieved in 
two ways: we can either move the barycentre farther away from the pivot 
(thus enlarging the size of pendulum and seismometer) or bring the pivot 
closer to the barycentre. The latter option is more convenient because it is 
possible to reach a large value of CR without creating a gigantic seismome-
ter. For an ideal solution, when the barycentre is at the pendulum axis, 
CR =  . 

Fig. 33.10  The reduced length of pendulum l0 as a function of distance of bary-
centre from the pivot of physical pendulum ls

The construction we propose, fulfilling the demand of rotational motion 
measurement (large CR), is a seismometer with the pendulums rigidly 
joined with each other (Fig. 33.11). Therefore, we named it the rigid seis-
mometer (RS). 

Fig. 33.11  Schematic of rigid seismometer made up of two pendulums joined 
together 
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In our design, the barycentre is at the rotation axis. The moment of iner-
tia is 

2
02 ,s s s sK I l m (33.38)

where ls0 means here the reduced length of each pendulum, and ms is the 
mass of each pendulum. On the basis of Eqs. (33.33), (33.37) and (33.38), 
the rotation compliance is 

2
02

,s
R

s

l
C

l
(33.39)

where ls0 is the deviation of positioning of the pivot (metric of the bary-
centre of both pendulums to the pivot). 

If we want Cr to be a thousand times larger than that for seismometer 
SM-3 (l0 = 8.3 cm), then ls must be less than 0.083 mm. Adjustments of ls

were realized by adding small weights whose bearings were controllable 
on screws. The balance is tested by investigating the stability of location of 
the pendulum for different directions of the seismometer. 

The basic problem relating to the seismometer of this type is its ability 
to record the signal. At stations of the Institute of Geophysics in Poland, 
the S waves of the recorded signals achieve, roughly speaking, a value of 
~3 m/s for 3.5 magnitude earthquakes. We have the relationship (Teis-
seyre et al. 2003a): 

d d
,

d d

u C u

x V t
(33.40)

where V is the S-wave velocity (emergence) and C is the coefficient taking 
into account the site effect (C = 1 for pure rotation of torsional waves). The 
signal recorded by a seismometer corresponds to the velocity of rotational 
motions multiplied by the pendulum length up to the coil position lc. Ac-
cording to Eq. (33.40), the angular velocity is equal to  

d
,

d
c c

c

C l C l a
l

V t V
(33.41)

where  is the velocity and a is the acceleration of ground vibrations. We 
can expect the seismograph to be able to measure signals of the order of 
~1 nm/s, for the S-wave frequency of 1-2 Hz, lc = 14 cm, provided that 
there is a lack of rotation other than the pure S-wave rotation (C = 1). The 
measured values may be 2-3 thousand times smaller than the measured 
dislocations. The problems relating to measurement of a very small signal 
against noise of seismometer with amplifier have been discussed by Rod-
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gers (1994), and it has been demonstrated how difficult it is to measure a 
signal below nm/s. 

The values of mass ms and spring parameters were selected so as to ob-
tain the free vibration period of RS equal to that of SM-3 (i.e., about 
1.5 s). Results of measurements by this seismometer were presented by 
Wiszniowski et al. (2003). 

33.6  Conclusions 

To measure rotation, it is better to use a system with two seismometers in 
one enclosure, evenly (at three or more points) fixed to the basement. To 
measure rotation and twist, however, it is better to use a system of four 
independent seismometers (separately fixed to the basement), or a system 
fixed to the basement in a manner enhancing a specified direction. 

The measurement by a pair of sensors is based on the difference of sig-
nals. The main problem for the seismometer pair is how to eliminate dif-
ferences in the seismometer’s responses and their recording paths. Another 
approach is to eliminate signals already in the sensor. This function is per-
formed by a rigid seismometer whose two arms are mechanically balanced. 

It should be kept in mind that the seismometers operate an inhomogene-
ous medium, at the Earth’s surface or in caves. Already this gives rise to 
twist waves. Also the housing of sensors, while excited by linear vibra-
tions, generates the twist vibrations.
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34.1 Introduction 

In contrast to classical seismological measurements where ground dis-
placements  do not  usually exceed 1 mm  and  accelerations  are less  than 
1 mg, amplitudes of strong ground motion can exceed 1 m of displacement 
and acceleration of more than 1g. Most instruments recording strong 
ground motion are pendulum accelerographs operating on the same princi-
ples as classical seismographs. Strong-motion data are used in seismologi-
cal studies and in earthquake engineering. For many years, from its birth in 
the 1930s, strong-motion seismology was mostly oriented toward earth-
quake engineering with very little impact on seismology. On the other 
hand, strong-motion also means that records are obtained in the near-field 
of an earthquake or explosion, and therefore seismologists started using 
near-field strong-motion records as a tool to study the earthquake source 
process. Compared to teleseismic records, near-field data present an oppor-
tunity to take a close look at a seismic source with much less distortion by 
the wave propagation path. Source studies also lead investigators to look at 
the possibilities of extracting more information from the records than what 
is possible with classical strong-motion data processing (Trifunac 1971, 
Trifunac and Lee 1973, Shakal et al. 2003). New methods of data process-
ing were developed, allowing determination of ground motion including 
residual displacement from accelerograms (Bogdanov and Graizer 1976, 
Graizer 1979, Iwan et al. 1985, Boore 2001). 

Strong-motion seismometry employed the same pendulum type instru-
ments as used in classical seismology. The main differences between 
strong-motion and weak-motion seismometers are that (1) strong-motion 
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instruments are less sensitive to the ground motion, and (2) their output is 
proportional to the acceleration as opposed to velocity or displacement in 
classical seismology. During the 1930s the assumptions used in classical 
weak-motion  seismology  were  simply  transposed onto the area of 
strong-motion. The most questionable perception brought from classical 
seismology into strong-motion is the assumption of simple linear input 
motion of the ground, with rotational (tilt) component being negligible. 
These assumptions lead to two consequences: After 70 years of recording 
strong motion: (1) we still have very primitive knowledge about this im-
portant component of strong ground motion, with only theoretical or indi-
rect assessments about the rotational components (Trifunac 1982, Bouchon 
and Aki 1982, Lee and Trifunac 1985, 1987, Niazi 1986, Oliveira and Bolt 
1989); (2) we approximate the output of the instruments as translational 
acceleration. As a result, by integrating this signal we have to assume that 
this results in translational velocity and displacement.  

In real near-field of an earthquake, the rotational components may not 
be negligible as compared to accelerations of the linear motion. As a re-
sult, the records that are assumed to represent translational accelerations 
are actually a sum of acceleration and tilt. (It is well-known that the same 
type of pendulums can also be used as tiltmeters in the low frequency 
range, for example, for frequencies lower than 0.01 Hz). 

Evidently, in the near-field of an earthquake it is necessary to measure 
all six components of motion: three linear and three rotational. There are 
different ways of implementing this (Golitsyn 1912, Kharin and Simonov 
1969, Farrell 1969, Bradner and Reichle 1973, Graizer 1987, 1989, 1991, 
Nigbor 1994). The general solution is to combine the three linear motion 
sensors with the corresponding three rotational ones at the same point of 
measurement. Another way is to assure that the seismic sensors are mov-
ing strictly linearly in space, for example, by using a gyroscopic platform 
(similar to the inertial navigation). 

The need to consider rotational motions becomes especially important 
now because of the new trends in technology and data processing. The 
high-resolution digital accelerographs developed recently provide new 
possibilities for data processing. Processing and analysis of those data 
must be performed with full understanding of the basics and the possible 
errors in data recording. Different groups of researchers apply various 
techniques of acceleration data processing, including permanent displace-
ment calculations, but this can be done only if certain conditions apply. 
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34.2 Theory of the Pendulum 

Looking at the basic equation of pendulum motion one can discover the 
following interesting fact: It is written differently in different classical 
seismological sources (Golitsyn 1912, Rodgers 1968, Aki and Richards 
1980).  

Fig. 34.1  Schematic representation of three transducers in an accelerograph. The 
coordinate axes X1, X2 and X3 serve to describe the motion of the L, T and V trans-
ducers, respectively. Angles 1,, 2 and 3 describe the deflection of the transducer 
pendulums (modified from Trifunac and Todorovska 2001) 

Figure 34.1 shows a schematic representation of an accelerograph. The 
differential equation of a horizontal pendulum oscillating in a horizontal 
plane can be written as (coordinate system is preliminarily oriented to the 
static state of the pendulum): 

2
1 1 1 1 1 1 1 2 3 1 2 1L: y 2 y y ," D ' x" g "l x " (34.1a)

2
2 2 2 2 2 2 2 1 3 2 1 2T: 2 ,y " D y ' y x " g "l x" (34.1b)

where: y1 is the recorded response of the instrument, 1 is the angle of 
pendulum rotation, l1 is the length of pendulum arm, y1 = 1 l1 , 1 and D1

are, respectively, the natural frequency and fraction of critical damping of 
the ith transducer, g is the acceleration due to gravity oriented vertically, 
x1" is the ground acceleration in 1th direction, 1 is the angle of  rotation of 
the ground surface about xi axis.

Equations (34.1a) and (34.1b) for the two horizontal directions L (longi-
tudinal) and T (transverse) describe the pendulum response to low ampli-
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tude motions when sin 1 1. Directions 1 and 2 are horizontal (L and T), 
and direction 3 is vertical (V).  

Sensitivity of the vertical pendulum to tilts is different. For small tilts it 
is proportional to  

21 cos and cos 1 2 ./

The equation of the vertical pendulum can be written as follows: 

1

2 2
3 3 3 3 3 3 3 1 3 2 3V: y 2 y y / 2 ." D ' x " g "l x "

Thus, the vertical pendulum is sensitive to the vertical acceleration, an-
gular acceleration, and cross axis motion, but is less sensitive to tilts (for 
small tilts). Neglecting 

1

2 / 2g  gives

2
3 3 3 3 3 3 3 1 3 2 3V: y 2 y y ." D ' x " "l x " (34.1c)

Thus, the horizontal pendulums (34.1a) or (34.1b) are sensitive to the 
acceleration of linear motion, tilt, angular acceleration, and cross-axis ex-
citations. Regrettably, the completeness of representing Eq. (34.1) in the 
seismological literature varies. For example, Golitsyn (1912) does not take 
into account the cross-axis sensitivity, while Aki and Richards (1980) ig-
nore the angular acceleration term. The difference in tilt sensitivity of ver-
tical and horizontal pendulums is well known to the instrument designers, 
but is usually ignored in data analysis.  

For correct interpretation of strong-motion recordings, it is important to 
study the sensitivity of a pendulum to the second, third and fourth terms on 
the right-hand side of Eqs. (34.1a), (34.1b) and (34.1c). In teleseismic 
studies using typical seismometers, the effect of these terms is usually con-
sidered to be small enough to be neglected (Golistyn 1912, Rodgers 1968, 
Aki and Richards 1980). The question is then: Is this also true for the 
strong-motion in the near-field studies? If the answer is “No”, then: Which 
terms on the right-hand side of the equations will influence the output of 
the strong-motion instrument?  

Possible impacts of different terms in the right-hand side of Eqs (34.1) 
were studied by Graizer (1989), Trifunac and Todorovska (2001), Wong 
and Trifunac (1977) and Todorovska (1998). Based on numerical simula-
tions performed for a number of typical strong-motion instruments, Gra-
izer (1989) concluded that tilts could influence significantly the output of 
the horizontal pendulums. The effect of angular acceleration is significant  
for  instruments  with  a  long  pendulum  arm   li ,  as  in  the  case  of  
classical   seismometers   (VBP:  li = 65 cm,   S5S:   li = 42.5 cm,  SKM-3: 
li = 16.5 cm, SM-3:  li = 8.5cm), but is small for typical accelerometers 
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with a short  pendulum arm  (SSRZ:  li = 2.4 cm)  (Fig. 34.2a). The effect 
of cross-axis sensitivity may reach few percents for accelerations higher 
than  2g,  and  for  accelerometers  with a natural  frequency  of  25 Hz 
(Fig. 34.2c). Cross-axis sensitivity is almost negligible for modern accel-
erometers that have  natural frequency of about 100 Hz and short pendu-
lum arm. The terms caused by tilting are always present for the horizontal 
pendulum, and cannot be neglected (Fig. 34.2b).  

Fig. 34.2  Effect of angular acceleration (a): tilt (b) and cross axis sensitivity (c) 
on response of pendulum for different types of seismographs and accelerographs. 
Panel (a): 1 – seismograph VBP, 2 – S5S, 3 – SKM-3, 4 – SM-3 and 5 – accelero-
graph SSRZ; Panel (b): 1 – seismograph SM-3, and 2 – accelerograph SSRZ; 
Panel (c): 1 – accelerographs with natural frequencies of 10 Hz, 2 – of 15 Hz and 
3 – of 20 Hz  

For small oscillations, the vertical seismometer is almost not sensitive to 
tilts, and neglecting the cross-axis sensitivity terms simplifies the differen-
tial equations of the horizontal and vertical pendulums to: 

(34.2a)

(34.2b) 

2
1 1 1 1 1 1 1 2

2
2 2 2 2 2 2 2 1

2
3 3 3 3 3 3 3

L: y 2 y y ,

T: y 2 y y ,

V: y 2 y y .

" D ' x" g

" D ' x " g

" D ' x " (34.2c)

Thus, in a typical strong-motion tri-axial instrument the two horizontal 
sensors are responding to the combination of inputs corresponding to hori-
zontal accelerations and tilts, while the vertical sensor is mainly respond-
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ing to the vertical acceleration. This may have important consequences, 
and raises the following questions when dealing with strong-motion re-
cords from earthquakes: 

To what extent is tilt responsible for the differences between horizon- 
tal and vertical components in long periods during a real earthquake?  

Is there a principal difference in spectral content of horizontal and 
vertical motions, or does this difference mainly result from errors in re-
cording horizontal accelerations which are contaminated with tilt? 

The horizontal sensor (see Eqs. (34.2a) and (34.2b)) is sensitive to the 
second derivative of displacement and to tilt. This means that double inte-
gration of Eqs. (34.2a) or (34.2b) will produce the sum of displacement 
and double integrated tilt. Assuming that tilt is proportional to velocity 
(Trifunac and Todorovska, 2001), double integration will give results pro-
portional to the integral of displacement, and the result can look like long-
period noise.  

Based on Eqs. (34.2a)–(34.2c) we suggest performing a simple test of 
tri-axial accelerograms: Compare long-period components of the two hori-
zontal and one vertical records. The true vertical and horizontal motions 
generated by an earthquake are expected to have similar low frequency 
content. If their recorded levels are of the same order, this can give us 
more confidence in attributing long periods to ground displacement. If the 
recorded level of long-period motion is significantly higher in the horizon-
tal components, this could possibly be due to tilts.  

34.3 Residual Displacements and what can be Done in 
Absence of Recorded Rotations (Tilts) 

Consider the differential equation of pendulum motion in the absence of 
rotations. In this case Eqs. (34.2a) and (34.2b) can be simplified and will 
be similar to (34.2c) for both, vertical and horizontal, components: 

2y 2 y y ," D ' Vx" (34.3)

where V represents a magnification factor. The ground displacement x(t)
can be found by integrating recorded output of the instrument y(t).

The first algorithm for computation of residual ground displacements 
from recorded strong motion accelerograms appears to have been given by 
Bogdanov and Graizer (1976), and later modified by Graizer (1979). A key 
part of  the  proposed  method involves  baseline  correction  that  can be 
accomplished by minimizing the functional W which is based on realistic 
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assumptions about minimum velocity at the beginning and at the end of an 
earthquake ground motion: 

1

2

2 2

0

[ ( )] d [ ( )] d ,
T T

T

W x' t t x' t t (34.4)

where T is the length of the recorded signal and T1 and T2 are times such 
that 0 < T1 < T2 < T.  This approach is based on the assumption that time in-
tervals [0, T1] and [T2, T] can be found during which the ground motion is 
small (<10-15%) compared to the strongest amplitudes on the record (Gra-
izer, 1979). Recent strong-motion accelerographs have enough preevent 
memory and also continue recording after acceleration is below a certain 
level. A baseline was first approximated by polynomials of up to the third 
degree, and later up to the higher degrees. In real applications of this 
method, polynomials of the 2nd to 5th degrees were used for baseline cor-
rection.

The challenging part was to convince the seismological community that 
it is possible to recover residual displacement from records of real accel-
erographs. The first series of tests were performed with the Soviet analog-
type accelerograph SSRZ (very similar to the SMA-1). The instruments 
were placed on a shake-table (or a specially designed cart), and their per-
manent displacements were recorded independently by a ruler or a special 
gauge. The results of the tests were published in a series of papers (Bogda-
nov and Graizer 1976, Graizer 1979) and reports. Two tests of this type are  
shown in Fig. 34.3. In those two experiments the actual motion of the 
shake-table (1) was independently recorded together with the response of 
an accelerograph (2). Accelerogram was first digitized and processed to 
get displacement using Graizer’s method (3). In those tests performed with 
analog-type accelerographs the error of residual displacement calculation 
was less than 25%. This is the most convincing classical way of testing the 
methods of data processing. The shake-table tests proved that residual dis-
placement could be recovered from the record. Later, similar tests were 
performed in 1991 at the Institut de Physique du Globe (Strasbourg, 
France) and in 1993 with the Kinemetrics FBA, Terra Tech SSA-302, 
Sundstrand  SSD3  and  Teledyne  SA-220  sensors  in  cooperation  with 
W. Lee of the U.S. Geological Survey in Menlo Park (1993). 

During the first series of experiments performed at the end of the 1970s, 
we “discovered” (Bogdanov and Graizer 1976, Graizer 1979) that if the in-
strument is even slightly tilted during its movement, it makes recovery of 
permanent displacement almost impossible. First, series of tests were sim-
ply performed by sliding the accelerograph along the surface of the table. 
In this case,  to overcome  the static friction at the beginning of the motion, 
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tilting of  the instrument may occur. To  avoid this  problem a cart or 
shake-table was used in later tests (Graizer 1979, 1989, 1991). Compari-
sons were also made of results obtained from different instruments in-
stalled at the same place, for example, from accelerograph and seismo-
graph (Graizer 1979).  

Fig. 34.3  Comparison of the shake-table displacements with calculated displace-
ments for the two tests (a) and (b): true independently recorded displacement of 
the shake-table (1), recorded acceleration (2), results of displacement calculations 
using Graizer’s method (3) 

Another group of analyses was performed by numerical testing of the 
algorithm. In this case the ideal (calculated) response of the instrument 
was distorted by systematic and random errors. This group of tests is valu-
able because it allows to study the effects of each factor separately. It also 
allowed formulation of the requirements for the quality (dynamic range) of 
the records necessary to obtain permanent displacements. These tests also 
showed that random errors in acceleration can result in long-period distur-
bance after double integration (Graizer 1979). In this set of tests it was as-
sumed that random errors have normal distribution with zero mean (Trifu-
nac et al. 1971). Double integrated random noise may results in additional 
errors in permanent displacement calculations. Similar to this result, Boore 
(2003) concluded that analog-to-digital conversion of the signal can intro-
duce significant drifts in displacements derived from digitally recorded ac-
celerations. 
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The results of all these tests lead to conclusion that the processing of 
real accelerograms to get true ground displacement (including permanent 
displacement) requires the following conditions to be satisfied: 

1. The input ground motion must be purely translational without any 
tilting or any other natural distortions. 

2. The record must contain clear beginning and ending parts with rela-
tively small amplitudes to allow the baseline correction. 

3. The signal-to-noise level of the record must be high enough, at least 
40 dB. 

    Compliance with the second and third conditions is usually possible 
(and can be verified), especially for digital records. But the first condition 
cannot be verified unless independent measurements of rotations are per-
formed.

34.4 Numerical Tests of the Effects of Tilt on 
Computations of Displacement 

Tests were performed to study the influence of tilt on the ability of nu-
merical algorithms to compute displacements, including permanent dis-
placement (Gaizer 2005). Figure 34.4 shows the first test in which the ac-
celeration record was “contaminated” by tilt. The record was produced by 
correcting the accelerogram of the Northridge earthquake, recorded at Los 
Angeles – University Hospital Grounds (LAU). The test record was proc-
essed using the standard CSMIP procedure of filtering (same as the proce-
dure of Trifunac 1971). This test acceleration record does not have any 
long periods, and when integrated twice it does not produce permanent 
displacement (Fig. 34.4c, dashed line). 

The ideal test acceleration record (Fig. 34.4a) was contaminated by tilt 
record shown in Fig. 34.4b. The maximum amplitude of tilt was 0.6

o
, and 

had a simple shape of one period of a sinusoid (with a period of ~0.7 s). 
The maximum amplitude of acceleration resulting from tilt alone is about 
2% of the peak translational acceleration. The displacement calculated by 
double integration of the acceleration record “contaminated” by tilt (ideal 
record + tilt record) produces displacements (Fig. 34.4c, full line) that look 
like a perfect case of displacement with permanent displacement. 

The results of  another  test are  shown in Fig. 34.5. The record  that 
contains permanent displacements (Fig. 34.5a) was “contaminated” by tilt. 
This record was created by using the corrected displacement curve from 
the  Hector  station  during  the  Hector  Mine earthquake (N-S component, 
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Fig. 34.4  Comparison of the “true” displacement and displacement calculated us-
ing accelerogram contaminated by “realistic” tilt: (a) test acceleration, (b) tilt with 
maximum amplitude of 0.3o, (c) true displacement calculated from the test accel-
eration (dashed line) and displacement calculated from the record contaminated by 
tilt (full line) 

HEC-N). It was assumed that this specific solution is an ideal ground mo-
tion with the corresponding ideal acceleration shown in Fig. 34.5a. The tilt 
record was generated based on the assumption that the tilt spectrum is pro-
portional to the ground velocity spectrum (Trifunac and Todorovska 
2001). The ground velocity curve was normalized to the maximum ampli-
tude corresponding to the tilt of 0.1o. In this case, the  maximum amplitude 
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of tilt motion (g ) was less than 1% of peak translational acceleration. 
Figure 34.5c shows the following three curves: true or ideal displacement 
(dashed line), displacement obtained by double integration of true accel-
eration contaminated by tilt (dotted line), displacement calculated using 
Graizer’s algorithm for baseline correction (full line). 

Fig. 34.5  Comparison of the “true” displacement and displacement calculated us-
ing accelerogram contaminated by “realistic” tilt: (a) test acceleration, (b) tilt with 
maximum amplitude of 0.1o, (c) true displacement calculated from the test accel-
eration (dashed line) and displacement calculated from the record contaminated by 
tilt (dotted line), and displacement obtained using Graizer’s algorithm for baseline 
correction (Graizer 1979) 
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Application of the baseline correction  algorithm (Graizer 1979) makes 
the displacement solution look very real, but it produces an error of about 
21% in permanent displacement calculation. 

These test examples are applicable to accelerograms from horizontal 
sensors. The results shown in Figs. 34.4 and 34.5 clearly demonstrate that 
tilt of the instrument during an earthquake motion can contaminate results 
of ground motion calculations with what resembles permanent displace-
ment. Their influence will result in non-reliable permanent displacement. 
Results of these experiments (Figs. 34.4 and 34.5) show that short and long 
tilting of the instrument during an earthquake motion can result in what 
appears as permanent displacement of the ground. If tilting occurs during 
the strong motion it may look like a realistic permanent ground displace-
ment. 

Tilt can also result in differences in the long-period component of the 
horizontal and vertical motions, since the vertical pendulum is much less 
sensitive to tilts than the horizontal ones. Thus, only records of vertical 
sensors (for tilts less than ~10o) can be used for permanent displacement 
calculations.

The above results show that only a six-component accelerometer (meas-
uring three translations and three rotations) or a three-component acceler-
ometer in combination with gyroscopes (similar to those used in inertial 
navigation) allow reliable measurements of permanent displacements from 
recorded accelerograms. Coming back to the analysis of existing three 
component accelerograms, it is possible to conclude that conservative pro-
cedure developed by Trifunac and Lee (Trifunac 1971, Trifunac and Lee 
1973) and other similar ones are the only way for routine processing of ex-
isting strong-motion data. 

34.5 Conclusions 

Analysis of the response of pendular accelerometers to complex input mo-
tion that includes translational and rotational components was performed. 
It is shown that even for small oscillations the pendulum is sensitive to the 
translational acceleration, angular acceleration, cross axis motion and tilt. 

Strong-motion instruments which are used in seismological and earth-
quake engineering measurements are sensitive not only to the translational 
motion, but also to tilt. This sensitivity can be neglected in some far-field 
measurements, but must be included in the near-field studies. Numerical 
experiments demonstrate that ignoring the tilt effects in strong-motion 
studies can introduce long-period errors, especially for calculation of re-
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sidual displacements. In contrast to horizontal sensors, vertical sensors are 
less sensitive to tilt.  This makes them  potentially more  usable for the 
long-period and residual displacement calculations. 

If: (1) the input ground motion is purely translational, (2) the recorded 
acceleration has a relatively high signal-to-noise ratio and (3) it also con-
tains beginning and ending part to allow for baseline correction, it is possi-
ble to calculate displacement including permanent one. A number of re-
cently recorded near-field digital strong-motion records comply with the 
second and third conditions, but the first condition cannot be verified 
unless independent measurements of rotations are performed. 

Conservative methods of strong-motion data processing that involve fil-
tering in a limited frequency band have a clear advantage for routine data 
processing, because digital filters can eliminate the long-period compo-
nents partially introduced by tilting. 

Thus it is desirable to start measuring the rotational components of the 
strong-ground motion in combination with measurements of translational 
motion in the vicinity of active faults. 
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35.1 Introduction 

Rotation components of seismic vibrations can be radiated from the 
source, or can be generated when seismic waves propagate through anisot-
ropic (micromorphic) rock massif; they can also appear as a response of 
structures to translation excitation.

Rotation components of strong vibrations could cause a non-negligible 
contribution to the whole earthquake hazard to building structures in  near-
source zones. The excitation of rotation vibration depends on the structure 
of subsoil, the dynamic response of building structures and built-in com-
ponents. This is especially true for high structures of prevailing linear 
shape, such as pipelines and rail rapid transit lines, for objects with great 
seismic risk (e.g. nuclear power facilities), great seismic vulnerability (e.g. 
astronomical instruments) and for buildings of great historical value.  

In order to experimentally study the rotation components, we con-
structed a new sensor of strong motion rotational vibrations, which is 
briefly described here. The pickup we constructed is based on the principle 
of flywheel, which must be balanced very accurately to attain a very high  
rotation-to-translation sensitivity ratio. The rotation oscillatory system is 
realized as a strong motion electromagnetic converter. The instrument is 
constructed from cooling air blower, which is a standard component of PC.  

35.2 Experimental Setup 

The prototype is made by slightly reconstructed cooling air blower 
SUNON 12V 2.8W, KDE 1029 PTS1 (external dimensions: 120 x 120 x 
35 mm). The bearing of rotation shaft is composed of very precise ball 
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bearings (external diameter of 8 mm, internal diameter of 2 mm and height 
of 2 mm). The restoring momentum of the airscrew is produced by mag-
netic attraction force between the magnetic ring and the electromagnetic 
armature of the air blower. The permanent magnetic ring is fixed to the ro-
tation shaft and the armature is fixed to the frame.  

Mechanic reconstruction of the blower consists only in switching-over 
the electromagnet coil tags, connected in series to output clips. Their elec-
tric resistance is RS = 82 Ohm and inductivity LS = 0.15 H. This instrument 
is described in greater detail by Buben and Rudajev (2004). 

The voltage sensitivity was determined by measuring the angular deflec-
tion d  as a function of the applied voltage dV on the coil. The measure-
ment yielded the sensitivity dV/d  = 0.180 V/deg. 

The natural vibration frequency fS = 4.76 Hz of this system was deter-
mined  from the  variation of free vibrations exited by Dirac’s impulse 
(Fig. 35.1). 

The damping constant D = 0.12 was determined from the relation 

log
0.733 0.733 log ,

1 (0.733log )2

v
D v

v

where   = Ai /Ai+1 is the ratio of successive amplitudes at an interval of 
one period T.

The two parameters of the pickup, i.e., damping D and natural frequen-
cy fS , can be adjusted in the ranges 0.07 < D < 0.6 and 1 Hz < fS < 5 Hz. 
Damping can be enlarged by submerging the pickup into a vessel with 
mineral oil, while the frequency can be reduced by an additional fly wheel. 
Frequency  of 1 Hz can be  adjusted by using duralumin flywheel with dia-  

Fig. 35.1  Response of rotation sensors to Dirac’s impulse 
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meter of 120 mm and a height of 5 mm. The course of free vibration is il-
lustrated in Fig. 35.1. 

The envelope of the amplitude curve (Fig. 35.1) can be described by the 
exponential function: 

( ) exp( ) 639.8 exp( 1.795 ) ,mV t a bt t

and the damped harmonic oscillation by the relation: 

1( / ) exp( ) .i iv A A bT

Substitution of the measured values b and period T gives  

exp( 1.795 0.210) 0.686v

From this  equation it follows  that D = 0.733 log  = 0.12 = 0.733 · 0.164. 
The method of determining D from the envelope curve uses statistical ap-
proaches and yields reliable results. 

35.3 Experimental Records 

The pickup with  fS = 4.7 Hz  and  D = 0.12 was tested both in laboratory 
and in the field.

Laboratory testing 

The rotation sensor was sited on a seismic pillar in the cellar of the Insti-
tute’s building in Prague. Its induction coil was connected to the analogue 
input of the BR3 recorder (Brož et al. 2003) adjusted to the gain of 40 dB. 

Figure 35.2 illustrates the records of artificially generated signal and its 
Fourier spectrum. The vibrations were excited by low hops (20 cm) of a 
person on the concrete floor at a distance of about 2 m from the pillar. The 
recording was made by a pickup with vertically oriented rotation axis (this 
means, the system was sensitive to horizontal movement). The maximum 
voltage amplitude on the coil of pickup is dV = 0.25 mV 

Taking into account the pickup sensitivity dV/d  = 0.180 V/deg, the 
maximum angular amplitude is   = 0.0014 deg = 5". The maximum volt-
age amplitude on the coil of pickup is dV = 0.5 mV. 

The maximum spectral amplitude is observed for frequencies of about 
5.0–5.5 Hz. For this frequency band, the dynamic magnification C of the 
pickup is C = ½ D = 4.17. With regard to this dynamic magnification, the 
amplitude of vibration was 5"/ 4.17  1.2".
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Fig. 35.2  Records of man-made signal at a distance of 2 m 

Records of production blasting in  the Špi ka quarry 

Millisecond blasting of 1588 kg charge (102 kg per one step, time intervals 
of 17 and 8 ms) was fired on 10 December 2004 at 12:30:31 UTC in 
Špi ka stone quarry (latitude  = 50°N, longitude = 14.323°E, Z = 296 m 
above sea level) situated in the vicinity of Radotín village near Praha. The 
straight line of 16 boreholes (21 m deep) was oriented in approximately 
SW-NE  direction,  and the free  face surface  of the quarry  was in the SE 
direction. The focal distance from the focus to the measuring point was 
327 m and the azimuth of the line from focus to the station was 215°. 

The rotation sensor with vertical rotation axis was sited on the concrete 
floor of a cellars shanty. Its induction coil was connected to the analogue 
input of the BR3 recorder (Brož et al. 2003) adjusted to the gain of 40 dB.  
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Fig. 35.3  Wave trace of horizontal rotation component excited by blasting 

The  signal  amplifier  with  flat  (±3 dB) frequency  band  in  the  range 
0-45 Hz was installed in the recorder. The analog-to-digital convector 
ADS8341 had a discrimination of 16 bit (1:65536) and input range of ±5V.  

All functions are controlled by microprocessor PIC16F877 with fre-
quency of 20 MHz. Data are stored in the binary code on the memory card 
MMC (16-128 MB). Data reading is carried out by PC through interface 
SPI. Pre-event time is realized by RAM memory, which is continuously 
rewritten (FIFO). The record of rotation component is shown in Fig. 35.3. 

The   maximum  amplitudes  of  the   amplifier  input   voltage  reach  
dV  0.08 mV. The prevailing frequency of maximum amplitudes is about 
11 Hz. The maximum angular amplitude is  

 = dV/ 0.18 V/deg = 0.00044 deg = 1.6" .

The described experiments proved the existence of rotational ground 
motion with measurable amplitudes, generated both by impacts and blast-
ing.

35.4 Conclusions 

A special pickup for recording rotational components of strong motion was 
constructed. This instrument was tested in laboratory and in the field. In 
both cases, the existence of rotational components was proved. The pro-
duction of this pickup is technically easy and therefore a great number of 
such instruments can be available for investigation of rotational waves 
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generated by various sources. The use of such pickups the in networks or 
seismic profiles makes it possible to study attenuation of rotational ampli-
tudes with distance.

The robustness and simple application of sensors with automated digital 
records is suitable for installing on building or engineering structures and 
monitoring their rotational response in the case of dangerous earthquakes. 

Acknowledgement.   Authors would like to thank Mr. Libor Žanda for 
realization of field measurements. 

This work was supported partially by the project of the Academy of Sci-
ences of the Czech Republic No. S3046201: “Experimental determination 
of seismic vibration attenuation in the Bohemian massif” and Institutional 
Research Plan No. A VOZ30460519. 

References 

Brož M, Štrunc J, Žanda L, MálekJ,  ermák L (2003) Using of  BR-3 recorder  
for seismic profiles measurement. Proc. of the 12th regional conference with 
international participation: “New results of seismological, geophysical and 
geotechnical survey”,  Ostrava 2003, pp 39-42 (in Czech)  

Buben J, Rudajev V (2004) Recorder of rotational ground vibration. Acta Geodyn 
Geomater 1: 133, 143-147 



36  High-Resolution Wide-Range Tiltmeter:

      Observations of Earth Free Oscillations 

      Excited by the 26 December 2004 Sumatra 

      -Andaman Earthquake 

Marek Kaczorowski 

Space Research Centre, Polish Academy of Sciences 
ul. Bartycka 18A, 00-716 Warszawa, Poland 
e-mail: marekk@cbk.waw.pl 

36.1  Introduction 

Observations of plumb line variations phenomenon have been carried out 
in the Low Silesian Geophysical Observatory in Ksi  by means of quartz 
horizontal pendulums for thirty years. The observations were adjusted with 
the help of least square method. The thirty-year-long permanent observa-
tions made it possible to determine interaction between tidal waves and the 
Earth core, improve the model of ocean indirect effects (Kaczorowski 
1991), investigate the tidal waves seasonal modulation (Chojnicki 1991a, 
1991b, 1999b, and Kaczorowski 1989), as well as investigate seasonal varia-
tions of the ocean indirect effects (Kaczorowski 1989). However, because of 
limitations of quartz horizontal pendulums, mainly their low sensitivity 
and instrumental drift, our investigations had to be concentrated on tidal 
phenomena only.  

In 1997, taking into account possibilities of installing a long water-tube 
tiltmeter as well as expected improvements of measurements, we began to 
construct new instruments. The water-tube tiltmeter consists of two per-
pendicular tubes, 65 and 83 m long, partially filled with water. The idea of 
measurements applies the principle of hydrostatic equilibrium. Inside the 
hydrodynamic system of the instrument, the Luni-Solar forces as well as 
some great-scale geodynamic phenomena produce variations of water 
level. The water level changes are measured at the ends of the tubes with 
the interference technique (Kaczorowski 1999a, b). The water-tube tiltme-
ter has very advantageous properties, such as high sensitivity of measure-
ment, lack of instrumental drift, and absolute units of measurement (length 
of wave of He-Ne laser light). These properties result from applying the 
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interference method of measurement of water variations in the hydrody-
namic system of the instrument. The accuracy of measurements is close to 
single nanometers. For the hundred-meter long tube, changes of water 
level of the order of 10-9 m correspond to plumb line variations of the order 
of 10-3 mas (millisecond of arc). This precision allows us to determine 
plumb line variations with an accuracy better than 10-2 mas, being the most 
sensitive method of measurements of plumb line variations (Bower 1973). 
Simultaneously, this method possesses the property of absolute measure-
ments technique. We obtained verification of measurement system of the 
instrument after the very strong earthquake (8.6 magnitude) which took 
place on 25 September 2003 near Japanese coast as well as after the Suma-
tra-Andaman catastrophic earthquake (9.1 magnitude) of 26 December 
2004 (Sect. 36.8). Both earthquakes generated free oscillations in the Earth 
body (Pekeris and Jarosch 1958, and Alterman et al. 1959), causing plumb 
line variations of a few mas. Effects of plumb line variations associated 
with Earth free oscillations were registered by long water-tube. In the wa-
ter system of the instrument, the low-pass filters were installed to diminish 
the rate of water level waving and to reduce the number of cycle-slip ef-
fects during the main phase of free oscillations.  

36.2  Natural Conditions in the Low Silesian Geophysical 
         Observatory  

In the case of long water-tube tiltmeter, the measurements of plumb line 
variations are related to the Earth crust. The measurements of this kind 
require high mechanical stability of the orogen, fixed firmly with deeper 
geological structure. The geological and morphological conditions of the 
Low Silesian Geophysical Observatory are as follows:  

The bedrock is mechanically stable. Tunnels of the observatory were 
made in hard-fixed Devonian conglomerates joined with deeper lay-
ers of the Earth’s crust. 
The thickness of the rocky cover of the underground amounts to 
52 m.  
Entrance to the underground is situated 338 m above sea level and 
about 40 m above the bottom of the valley. 
The observatory is situated in the central part of the Sudeten Moun-
tains, about 5 kilometers west of the Sudetic marginal fold.  
Geographical coordinates are 50o51 N and 16o18 E.
The temperature variations are less than 0.5oC during the year, and 
the average temperature is 7.8oC.
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Variations of relative humidity in the undergrounds range from 85% 
to 94%.  

36.3  Principle of Operation of the Long Water-Tube
         Tiltmeter  

The principle of operation of the long water-tube tiltmeter takes advantage 
of fluids property (Moulton 1919), concerning the response of fluid free 
surface under the influence of mass forces. The construction of the hydro-
dynamic system of tiltmeter (Section 36.4) assures that fluid, particularly 
water, preserves free surface along the full length of the system. We will 
present the behavior of the fluid with free surface under the influence of 
the field of potential forces resulting from the second-order tidal potential 
W2.. In the equilibrium state of fluid, the velocity  = 0 and the Euler equa-
tion of motion will take the form: 

2

1
grad grad ,W p (36.1)

where p is the pressure, and  is the fluid density. Let us discuss the equa-
tion of state of a fluid,  = (p, t), where t is temperature. For isothermal 
or adiabatic processes, t = const or t = t(p), we will get the equation of state 
in the form  = (p). For  = (p) there exists differentiable function V(p)

in the form of definite integral over the pressure variations 
0

dp

p

p . The 

gradient of function V(p) is 

1
grad ( ) grad .V p p (36.2)

Substituting Eq. (36.2) into (36.1) we will get  grad(V(p)) + grad(W2) = 0. 
Hence,

2( ) const .V p W (36.3)

From Eq. (36.3) it follows that if the fluid surface is the equipotential 
surface W2 = const, then the function V(p) is constant. In such a case, from 
Eq. (36.2) it follows that p and (p) are constant. Thus, the fluid is in hy-
drostatic equilibrium state. Inversely, if the fluid is in hydrostatic equilib-
rium state, i.e., p = const and  = (p) = const, then by virtue of Eq. (36.2), 
function V(p) is constant, so the tidal potential W2 is also constant. Thus, in 
the hydrostatic equilibrium state, the free surface of the fluid is an equipo-
tential surface.
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This law is the principle of operation of the long water-tube tiltmeter. 
When we measure the variations of the fluid free surface in the state close 
to hydrostatic equilibrium (quasi-equilibrium-approximation of adiabatic 
process), we simultaneously determine the variations of equipotential sur-
face. The influence of tidal forces resulting from potential W2 on the Earth 
globe causes, among other phenomena, the following two effects:  

Appearance of a horizontal component of gravity, which causes 
variation of the absolute direction of the plumb line;  
Deformation of the shape of the Earth and generation of absolute tilt 
of the Earth surface. 

We will apply solutions of the linear theory of elasticity for radially sym-
metric Earth model (Love 1911).  

Changes of the absolute direction of the plumb line caused by tidal po-
tential W2 (Love 1927), described with help of Love’s numbers h and k, are 
as follows:

21 1
NS

Wk

g a
(36.4)

for the meridian component, and  

21

sinEW

Wk

a g
(36.5)

for the parallel component. At the same time, the absolute tilts of the Earth 
surface are: 

21
NS

Wh

g a
(36.6)

for the meridian component, and  

2

sinEW

Wh

a g
(36.7)

for the parallel component. Considering both phenomena, the plumb line 
variations  measured in relation to the Earth’s crust are:  

21 1
(1 )NS NS

W
k h

g a
(36.8)

for the meridian component, and 

21 1
(1 )

sinEW EW

W
k h

g a
(36.9)

for the parallel component (see Fig. 36.1). 
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Fig. 36.1  Determination of angle  of plumb line variations on the basis of meas-
urement of water level variations 

The combination of Love’s numbers (1+k h) in Eqs. (36.8) and (36.9) 
is the tidal amplitude factor  of plumb line variations. Factors  

2(1/ ) /a W  and 2(1/ sin ) /a W  are horizontal components of the 
additional gravity, resulting from the second order tidal potential W2.

In the case of the long water-tube the variations of water free surface are 
measured relative to the base lens (Fig. 36.2). The lens is rigidly connected 
to the surrounding orogen as well as to the Earth’s crust. The observed 
variations of water level H result from the two effects:  changes H  of wa-
ter level caused by changes of absolute direction of  the plumb line, and 
changes H  of water level caused by tilts of the Earth surface (Fig. 36.1) 

.H H H (36.10)

Dividing Eq. (36.10) by half length of the tube, L/2, we get the ap-
proximation for small angles: 

2
,H H

L
(36.11)

where  is the plumb line variation measured in relation to the Earth’s 
crust. Therefore, on the basis of formula (36.11), measurements of the 
water level changes H allow us to determine angle  =  of plumb line 
variations. The quality of approximation of the water-surface to the equi-
potential surface depends on the rate of changes of the field of potential 
forces, the hydrodynamic parameters of the system, the viscosity of the 
applied fluid, as well as the level of local-origin disturbances. We made a 
large effort to adjust the hydrodynamic system of the long water-tube tilt-
meter to measurements of the phenomena whose periods are longer than 
one minute (Sects. 36.4 and 36.8).  
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36.4  The Hydrodynamic System of the Long Water-Tube  
         Tiltmeter 

The main elements of the tiltmeter are two independent hydrodynamic 
systems consisting of two perpendicular tubes, 65.24 and 83.51 m long, 
situated at azimuths –31.4o and –121.4o The hydrodynamic system of the 
tiltmeter contains many vents compensating differences of the air pressure 
inside the tubes and the surroundings. While constructing the tiltmeter, our 
aim was to preserve free surface of the fluid in the whole length of the 
hydrodynamic system. The reasons of selecting water instead of other flu-
ids are the following: 

The viscosity of water is sufficiently low to make it possible to regis-
ter phenomena whose periods are longer than hundred seconds.  
The high relative humidity in the underground (Sect. 36.2) preserves 
the constant mass of water in the hydrodynamic system. At such the 
mass of other fluids such as alcohols would grow. Otherwise, the vis-
cosity of oils at a temperature of 8oC is too high.  
The values of diffraction factors on the air-water and water-glass 
boundaries are close to each other (Sect. 36.5), which ensures high 
level of contrast of images.  
Ecological aspects, as well as availability of water in the under-
ground.  

The tubes were divided into fifteen or more four-meter long sections, 
separated by division walls. Water can flow between sections through the 
holes and narrow tubes in the division walls. These elements act as low-
pass filters in the hydrodynamic system. The low-pass filters reduce the 
rate of phase variations of interference images. That is why the number of 
cycle-slip effects has been significantly diminished (Sect. 36.6.4). The 
most critical place of the interferometer is the measurement chamber. The 
chamber is half filled with water. The reflecting lens is located at its bot-
tom (Fig. 36.2).  

36.5  The Optic Module of Interference Gauge of the Water
         Level Variations Measurements 

In the long water-tube, measurements of water-level variations are carried 
out using the interference method. The interference system of measure-
ment consists of the four modules:  

1. Base plate module.  
2. TV camera module. 
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3. Laser module with the light-separating plate and a system of the 
laser beam shaping. 

4. Reflecting-lens module. 
The base plate module consists of a granite plate and three adjusting 

screws. The reflecting lens module is fixed to the base plate (Fig. 36.2). 
The camera module is situated upon the surface of the base plate. It regis-
ters the interference images created directly on CCD element of the cam-
era. This solution minimizes the number of optical elements as well as 
enables us to avoid additional reflections, interferences, and deformations 
of images. We are able to move the camera module in the plane of the base 
plate to choose the fragments of the interference images that are most suit-
able for further analyses.  

Fig. 36.2  The reflecting lens module 

The laser module contains the following elements:  
The He-Ne laser (632.8 nm) of single mode of work and high sta-
bility of light wavelength. 
The optic system of the laser beam shaping. 
The light-separating plate. 
The heating system to prevent against moisture on the light-separa-
ting plate.

The reflecting lens module contains:  
The body of the lens module. 
The fixing system of the reflecting lens. 
The reflecting lens. 
The system of connections of the measurement chamber to the 
main tube. 
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The reflecting lens module connects the interferometer with the main 
water-tube. We chose radius of reflecting lens curvature so as to obtain 
three Newtonian rings on CCD element of camera (Fig. 36.3). 

Fig. 36.3  The optic system of Newtonian interferometer 

The measurement chamber is situated under the laser module inside the 
lens module. On the bottom of the chamber, about 8 mm under the water 
surface, there is a fixed flat-convex reflecting lens. Interference occurs 
between the light beam reflected from the convex surface of the lens and 
the light beam reflected from the water surface (Fig. 36.3). On account of 
the analysis it is important to obtain interference images with a central 
interference ring. To obtain central rings we must fulfill the two condi-
tions: perpendicularity of the light beam to the water surface, as well as the 
co-linearity of the light beam with radius of the reflecting lens curvature. 
We can find the central position of interference rings applying the follow-
ing motions:  
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Inclinations of the base plate. These motions help us to fulfill the per-
pendicularity of the laser beam to the water surface.  

The flat displacement of the laser module relative to the reflecting 
lens module to attain co-linearity of the light beam with the radius of 
reflecting lens curvature. 

The Newtonian rings correspond to isolines of depth of the water above 
the reflecting lens. The water level variations are observed as “floating” of 
the interference rings (Fig. 36.4).  

Fig. 36.4  Ten-second interval sequence of the images representing a decreasing 
water level 

The process of measurement of water level variations is based on the 
registration of time series of interference images. We determine from them 
the series of phases of interference images applied to calculate the water 
level changes. Our discussion is concentrated on the function of brightness 
distribution (r) of the interference images as well as on the relation be-
tween variations of the interference image phases and changes of the water 
layer thickness. The optic model of the interferometer was related to the 
situation in which flat monochromatic wave propagates along axis Z of 
Cartesian system XYZ (Fig. 36.5). The flat wave reflects from the water 
surface (plane z = 0), and then from the surface of the convex lens of cur-
vature radius R. After propagation through the water layer, the wave re-
flected from the lens interferes with the wave directly reflected from the 
water surface.  

Fig. 36.5  Scheme of interference system in Cartesian coordinates XYZ
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The position of axis Z of the coordinate system was selected on the pro-
longation of the curvature radius of the reflecting lens. Therefore, axis Z is 
the axis of symmetry of the optic system.  

We adopted the following values of the diffraction factors: n1 = 1 of air, 
nw = 1.33 of water, and ng = 1.68 of the RG7 glass. From the formula: 

2

2 1

2 1

,
n n

n n
(36.12)

we calculated the reflection factors on the air-water and water-glass 
boundaries, getting the following values: w  0.02 and g  0.0135, re-
spectively. We assume that the optical system (Fig. 36.5) is lit up by a 
monochromatic flat wave described by the formula: 

0( , , , ) exp( i ) .U x y z t A (36.13)

The phase element is given by the equation  = t kz kn a(x, y, z),
where  is the angular velocity of a light wave, 2 /k  is the wave num-
ber, and  is the wavelength in vacuum. The phase element kn a(x, y, z)
contains the wave number, the factor of air diffraction n1 = 1, and a func-
tion describing aberration of the wave’s front as well as a small discrep-
ancy of the beam. Part of the light beam is reflected at the boundary of air-
water environments. Function 

1 0( , , , ) exp(i ) ,wU x y z t A (36.14)

describes the wave directly reflected from the water surface. The rest of 
the wave, passing through water, is described by the function: 

0( , , , ) (1 ) exp( i ) .wU x y z t A (36.15)

After propagation through the water layer, this wave is reflected from the 
water-glass boundary, and passes again through the water layer and air-
water boundary; this is described by the formula: 

2
2 0( , , , ) (1 ) exp i( ) .g wU x y z t A (36.16)

The amplitude of the wave U (x, y, z, t) (Eq. 36.15) was multiplied by 
the factor g(1 w). This results from the reflection of the wave on the 
water-glass boundary (factor g) and propagation of the wave through air-
water boundary (factor 1 w). In the phase module of Eq. (36.16) there 
appeared component  resulting from the change of the wave phase caused 
by reflection of the wave from the lens spherical surface, as well as from 
double-passing of the wave through the layer of water.  
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2

( ) 2 ,
2w

r
r kn d

R
(36.17)

where nw is the water diffraction factor, r is the distance from the axis of 
symmetry Z of Cartesian system, d is the distance between the top of the 
reflecting lens and the water surface. The phase element  describes the 
difference of phases between the reflected waves U1(x, y, z, t) and 
U2(x, y, z, t). According to the coherent waves summation law, the function 
of brightness distribution (r) is expressed by the equation: 

1 1 2 2 1 2 2 1( ) ,r U U U U U U U U (36.18)

where * denotes the complex conjugate. The function of brightness distri-
bution (r) is radial symmetric on account of axial symmetry of the prob-
lem. From the property of complex numbers we get 

1 1 2 2 1 2( ) 2Re{ }cos( ) ,r U U U U U U (36.19)

where Re is the real part of the expression 1 2{ }U U . Hence, the function of 
brightness distribution for the thickness d of water layer is given by the 
equation:

( ) cos ( ) ,r A B r (36.20)

where the phase element is 

2

( ) 2 .w

r
r n k d

R
(36.21)

Constants A and B, describing the level of background brightness and 
the amplitude of brightness of interference rings are given by the equa-
tions:

                            2 2 4
1 1 2 2 ~ (1 )w g wA U U U U

and                      2
1 22 { } ~ 2 (1 ) .e w g wB R U U

We can express the thickness of water layer above the lens in the form:  

,wd n N d (36.22)

where N  is the multiplicity of light wavelength and d is the residuum. 
After substitution of Eq. (36.22) into (36.21), the equation of phase will 
take the form:
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2( ) 2 2 4 .w wn n
r N r d

R
(36.23)

The function of brightness distribution will be  

2( ) cos ( ) ,r A B Cr F d (36.24)

where
2 wn

C
R

. The variable element of phase ( ) 4 wn
F d d  is a 

linear function of the water level variations d. Therefore, the determina-
tion of the phase change F( d) enables us to calculate the water level 
variations d from the formula: 

1
( ) .

4 w

d F d
n

(36.25)

Substituting the numerical values into the right-hand side of Eq. (36.25)  
and converting angle 4  into the angular measure we obtain: 

1
0.6608 nm/deg .

720 wn

Hence, the formula describing the relation between variation of phase 
F( d) of the following interference images and the variation of water 

level d is 

0.6608[nm/deg] ( ) .d F d (36.26)

Equation (36.26) was applied in an algorithm to calculate time series of the 
water level changes on the basis of time series of interference image phase 
variations.

36.6  Determination of the Function of Plumb Line
         Variations 

The initial result of the measurements of the water-tube tiltmeter is the 
time series of interference images. The time series of images contains in-
formation about water level variations in the hydrodynamic system of the 
instrument. Determination of the time series of water level variations en-
ables us to calculate the final product, i.e., plumb line variation. One of the 
main problems with processing the long water-tube observations is the 
necessity of processing 12 million files of interference images in yearly 
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series. The number of images results from the necessity of supporting reg-
istration on four channels with a frequency of one photo per ten seconds. 
Taking into account the quality of registration, the frequency ought to be 
as high as possible. For the high frequency of registration, cycle-slip ef-
fects (Sect. 36.6.4) will never appear. The chosen frequency of registration 
results from technical limitations of computer such as the number of stored 
files as well as image-processing abilities. The observations are performed 
under the control of the MS Windows 2000 system applying the Pentium 4 
with 2.7GB clock. The main algorithms applied in data processing pro-
grams are presented further on.  

36.6.1  Determination of brightness profiles of interference 
            images  

The time-consuming element of the observation analysis is the determina-
tion of the series { n (r, t)} of brightness profiles distribution of interfer-
ence images, where r is the distance from the center of symmetry of inter-
ference image, and t is the parameter denoting the time of image genera-
tion. During the registration, the collection of images was divided into 
few-week long blocks. For each block, the following three parameters 
were manually chosen: 

Locations of the centers of the brightness section independently for 
each series. 
Angle of tilt of brightness section in relation to interference image.  
Color of brightness section.  

Picking up the location of profile, we choose the low-noise area of the 
image; it should be as long as possible, while the distance of the profile 
from the center of symmetry of interference images should be small 
(Fig. 36.6). To obtain high dynamics of the brightness function n (r, t), 
we choose the color of section without exceeding the scale of brightness 
(range < 0-255 >). Due to the invariability of location of the symmetry axis 
of the Newtonian rings in epoch of a few weeks as well as to the invariable 
location of the interference noise on the images, it is enough to select the 
location of the section of brightness only at the beginning of the analyzed 
several-week long data block.  

A possible displacement of the location of the brightness section in rela-
tion to the image axis of symmetry causes a shift of the whole few-week 
series by a constant. However, it does not affect the result of the final 
analysis.  
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Fig. 36.6  Profile of brightness n (r, t) of interference image 

36.6.2  Division of daily series of brightness profiles into  
            similarity classes 

Time series of brightness profiles { n (r, t)} of interference images are the 
initial data for calculating – with the help of the least square method – the 
time series of theoretical brightness profiles { n (r, t)} as well as for de-
termining time series {Fn(t)} of the phases of interference images (Sect. 
36.6.3). Because the process of determining the phase F of a single inter-
ference image is time-consuming, we perform time series of brightness 
profiles { n (r, t)} before the analysis. The applied algorithm is based on 
the repeatability of the interference images as well as repeatability of their 
brightness profiles ( )r .

The profiles of brightness of interference images are not differentiated 
when their phases differ by the full angle. Basing on this property, we in-
troduce equivalent relation “to be similar to” into the series of brightness 
profiles { n (r, t)}.

The equivalent relation divides series of brightness profiles into dis-
joined classes. Each class contains the images whose brightness profiles 
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are similar. Next, applying adjustment process, we determine for each 
class one phase F of brightness profiles of pattern image (Sect. 36.6.3). 

The number of classes generated by the algorithm in a series of profiles 
depends on the value of similarity coefficient. When the number of classes 
is too small, the smoothness of the function of plumb line variations (quan-
tification of values) is violated; when it is too large, the process of further 
elaboration is significantly prolonged. The experience has shown that the 
optimum number of brightness profile classes is between 400 and 600 
(Fig. 36.7). 

Fig. 36.7  Influence of the number of classes on quantification of data 

The algorithm automatically chooses the value of similarity coefficient 
to obtain the appropriate number of classes. Application of the division of 
daily series of brightness profiles into similarity classes reduces the num-
ber of necessary adjustments of the brightness function (r) from 34,000 
to about 2,000 per day. 

36.6.3  Determination of phase F of the interference image on
            the basis of brightness profiles ( )r

Adjustment of the theoretical function (r) (Eq. 36.24) of brightness pro-
files requires that the observed brightness function ( )r  be normalized 
before analysis. The normalization improves the contrast of interference 
rings, eliminates inhomogeneity of the image brightness as well as de-
creases the effects of interference noise created in laser optic, the light-
separating plate, and water surface pollutions. The algorithm determines 
the mean value of brightness and then introduces correction to normalize 
the level of brightness. To determine phase F of interference images, we 
compared empirical function ( )r  of brightness profile with the theoreti-
cal function of brightness profile (r). We assume that conformability 
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between the empirical and theoretical images will be reached when the 
square function of the difference of empirical ( )r  and theoretical (r)
functions of brightness reaches minimum. The mathematical formula for 
the condition of the images conformability was expressed by putting the 
first derivatives of the sum of squares of differences equal to zero. We 
applied the theoretical function of brightness (Eq. 36.24). 

2( ) cos( ) .r A B Cr F (36.27)

Variable r is the distance from the image axis of symmetry. The ampli-
tude coefficients, A and B, represent the level of background brightness 
and the amplitude of brightness of interference rings. Constant C is given 
by the formula: C = 2 nw/ R (Sect. 36. 5). The phase variable F is associ-
ated with water level variations above the reflecting lens (Sect. 36.5). The 
difference of empirical ( )r  and theoretical (r) functions is given by the 
formula 

2( ) ( ) cos( ) .r r A B Cr F (36.28)

Applying the identity 

2 2 2cos( ) cos( )cos( ) sin( )sin( )B Cr F B Cr F B Cr F

and substituting the formulae: 

1 cos( )V B F ,      2 sin( )V B F ,

2
1 cos( )X Cr , 2

2 sin( )X Cr ,

we obtained Eq. (36.28) in a new form:  

1 1 2 2( ) ( ) .r r A X V X V (36.29)

After squaring and differentiating Eq. (36.29) with respect to A, V1, V2 we 
obtained three differential equations. To fulfill the requirement of extre-
mum, the differential equations were equated to zero. 

1 1 2

( )
2 ( ) ( 1) 0 ,

r
r A X V X V

1 1 2 1
1

( )
2 ( ) ( ) 0 ,

r
r A X V X V X

V

1 1 2 2
2

( )
2 ( ) ( ) 0 .

r
r A X V X V X

V

(36.30)
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For each point of the brightness profile ( )r  we defined a system of equa-
tions identical to (36.30). Next, we summed up the corresponding compo-
nents of equation system. The solutions of system (36.30) allowed us to 
determine variables A, V1, V2. To calculate phase F of theoretical interfer-
ence image best fitting to the real image, we used the formula:  

2 1arctg ( / ) .V V F (36.31)

The algorithm of calculation of the real image phase F gives the phase 
in angular measure. The resolution of calculation is equal to one degree 
and variable F is an integer from the interval 0 to 359.  

36.6.4  The calculation of time series of progressive phases  
{Sn(t)} of interference images 

After calculation of time series {Fn(t)} of interference image phases, the 
next step is to calculate the time series of progressive phases {Sn(t)}. This 
is realized in several iterations. The first is based on the principle of choos-
ing “the shorter step”. We chose the following formulae for calculating the 
next element of the series of progressive phases {Sn+1(t)}:

for o
1 180n nF F

1 1( ) ( ) ;n n n nS t S t F F (36.32)

for o
1 180n nF F

o o
1 1 1

o o
1 1

( ) ( ) (360 ) when 180 ,

( ) ( ) (360 ) when 180 .

n n n n n

n n n n n

S t S t F F F

S t S t F F F

(36.33)

The greater the reliability of correctness of “the shorter step” choice, the 
smaller the value of 1n nF F . In the case of tidal phenomena, the rate of 
the image phase variations never exceeds 100 deg/min. For 10-second 
period of sampling images (Sect. 36.6) and for tidal periods, we obtain: 

o
1 10n nF F . For slow variations of image phases o

1 180n nF F

there is a real chance that the chosen method of progressive phases deter-
mination is correct. Incidentally, due to local as well as some geodynamic 
effects we observe differences of phases 1n nF F  close to 180o or larger 
(Sect. 36.8). For differences o

1 100n nF F  the application of “the 
shorter step” principle becomes controversial. Therefore, in the case of 
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high-dynamics phenomena, producing large and rapid variability of 
phases, the process of sticking successive phases is a source of errors 
(Sect. 36.8). The errors of sticking process resulting from discontinuity of 
phases {Fn(t)} are called cycle-slip effects.  

The second iteration of the determination of series of progressive phases 
{Sn(t)} is the elimination of some discontinuities (jumps) arisen because 
of errors of sticking process (first iteration). In the case of typical disconti-
nuities, the algorithm automatically detects and eliminates such errors. 
Other errors can be partially eliminated by comparing signals obtained 
from opposite ends of the tube or by comparing the signal with tidal 
ephemerides function.  

36.6.5  Determination of series of plumb line variations {Tn(t)}
             on the basis of series of progressive phases {Sn(t)} 
             measured on one side of the tube 

To determine time series of plumb line variations {Tn(t)}, the series {Sn(t)} 
of progressive phases were multiplied by the coefficient of proportionality 
K (in mas/deg). The coefficient K was calculated from Eq. (36.26). Both 
sides of Eq. (36.26) were divided by half lengths of the water-tubes, L / 2 
(Eq. 36.11). Next, the radians were converted into millisecond of arc 
(mas).  

For the tube in azimuth –121.4o, whose length is 65.24 m, the coeffi-
cient is 

3
1 2.089 10 mas/deg .AK (36.34)

For the tube in azimuth –31.4o, whose length is 83.51 m, the coefficient 
is

3
1 1.632 10 mas/deg .BK (36.35)

For tube A1 located in azimuth –121.4o, the time series of plumb line 
variations {Tn(t)} is calculated from the formula 

3
1 1{ ( )} 2.089 10 [mas/deg] { ( )} .n A n AT t S t (36.36)

For tube B1 located in azimuth –31.4o, the time series of plumb line 
variations {Tn(t)}, are calculated from the formula 

3
1 1{ ( )} 1.632 10 [mas/deg] { ( )} .n B n BT t S t (36.37)

Sensitivity of the tiltmeter in azimuth –121.4o (the shorter tube) is 78% 
of that of the tiltmeter in azimuth 31.4o (the longer tube). Equations 
(36.36) and (36.37) determined limits of the long water-tube measure-
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ments. If the accuracy of determination of time series {Sn(t)} is close to 
several degrees, then we are able to determine plumb line variations with 
an accuracy better than 10-2mas in single measurement. For comparison, 
the accuracy of measurements of the quartz horizontal pendulums ap-
proaches 0.8 mas in yearly series of observations. 

36.6.6  The difference method of plumb line variations  
            measurements

In the previous section we described the method of determination of plumb 
line variations on the basis of single series of observations of water level 
variations obtained from one end of the tube. Simultaneous measurements 
of water changes on both sides of the tube enable us to apply the difference 
method of measurements. The measurements on both ends of the tube 
open additional possibilities of signals verification. The signals of plumb 
line variations consist of local signals as well as large-scale signals of geo-
dynamic origin. The geodynamic phenomena such as direct and indirect 
tides, meteorological-origin loading effects, and Earth free oscillations, 
generate large scale signals of plumb line variations.  

On account of the relation between the length of the tube (tens of me-
ters) and tilt waves  associated with large-scale phenomena (thousands of 
kilometers), the effects of water level variations generated at the ends of 
the tube are opposite (increasing and decreasing). The water-tube stays all 
the time on one slope of the tilt wave; never on both slopes. Therefore, the 
water level changes generated by large-scale phenomena are exactly corre-
lated in opposite phases. Otherwise, local signals originated in the sur-
roundings of the instrument or inside the hydrodynamic system of the in-
strument produce signals of conformable phases or signals appearing at 
one end of the tube only. All local signals (noise) were interpreted as a 
source of errors. On the basis of the series of progressive phases {Sn(t)}A11

and {Sn(t)}A12 obtained on the opposite ends of the tube, we determine the 
time series of plumb line variations {Tn(t)}A12 , from the formula 

3 11 12
12

{ ( )} { ( )}
{ ( )} 2.089 10 [mas/deg] .

2
n A n A

n A

S t S t
T t (36.38)

Likewise, for the second tube, on the basis of progressive phases series 
{Sn(t)}B11 and {Sn(t)}B12, we calculate time series of plumb line variations 
{Tn(t)}B12 , from the formula 

3 11 12
12

{ ( )} { ( )}
{ ( )} 1.632 10 [mas/deg] .

2
n B n B

n B

S t S t
T t (36.39)
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Simple subtraction of signals from opposite ends of the tube (Eqs. 36.38 
and 36.39) causes double amplification of all large scale geodynamic sig-
nals and partial reduction of local signals (noise). On the other hand, the 
summation of series of progressive phases {Sn(t)}A11 and {Sn(t)}A12, as well 
as the summation of series of progressive phases {Sn(t)}B11 and {Sn(t)}B12,
caused elimination of large-scale geodynamic signals and summation er-
rors. These errors originated mainly from the surroundings of the instru-
ment and errors of data processing, such as cycle-slip effects. The time 
series of errors { n(t)}A12 and { n(t)}B12 , are given by the formulae: 

3 11 12
12

{ ( )} { ( )}
{ ( )} 2.089 10 [mas/deg] ,

2
n A n A

n A

S t S t
t (36.40)

3 11 12
12

{ ( )} { ( )}
{ ( )} 1.632 10 [mas/deg] .

2
n B n B

n B

S t S t
t (36.41)

Basing on the comparative method we try to separate series of errors 
{ n(t)}A12 and { n(t)}B12 into two channels, associated with the two ends of 
the tube. Applying the comparative method we are looking for effects 
which were registered only in one channel and effects whose plots have 
conformable shapes and conformable phases. If the process of separating 
series of errors into two channels is correct, we obtain an opportunity to 
additionally improve the large-scale geodynamic signals. 

36.7  Determination of tidal wave coefficients on the basis
         of the long water-tube measurements 

To determine the  tidal wave coefficients we made a standard analysis of 
the 2003 yearly series of plumb line variations. The values of amplitude 
and phase coefficients were applied in the following section to calculate 
tidal ephemeredes and to separate plumb line variations of tidal and non-
tidal origin, while the Earth free oscillations were of 26 December 2004. 
The tidal analysis of the 2003 yearly series was made with the help of the 
algorithm of Chojnicki (1977), basing on the least-squares method. The 
accuracy of tidal wave parameters was obtained from the Fourier analysis 
of residuum (Chojnicki 1978). For tidal adjustment we applied expansion 
of tidal potential given by Cartwright and Tayler (1971). The data adjust-
ment was made independently for each of the tubes in their azimuths, 
–121.4o and 31.4o, calculated from north to west. The interval of observa-
tions applied in the adjustment process amounts to 13 months in the years 
2003/2004. The tidal waves spectrum was divided into 18 groups, repre-



36 High-Resolution Tiltmeter: Observations of Earth Free Oscillations 513

senting main tidal waves. From the tidal analysis we determined the values 
of amplitude coefficients and phase retardations for 18 tidal waves. We 
also obtained the mean square errors of all the observations. For both 
tubes, the results of adjustment showed relatively large values of mean 
square errors of tilt signals, close to 0.5 mas (Kaczorowski 2004, 2005). 
We explain the relatively large values of mean square errors (in compari-
son to sensitivity of measurement system – Sect. 36.6.5) by local effects 
associated with the phenomenon of air pressure compensation between the 
outside and the underground. This thesis is well confirmed by a coinci-
dence of windy days and days of increased level of noise in registrations of 
plumb line variations. Other sources of errors are associated with cycle-
slip effects in the progressive phases determination.  

36.8  Observations of anomalous plumb line variations
         associated with Earth free oscillations on  
         26 December 2004 

Phenomenon of the Earth free oscillations is generated by extremely strong 
seismic events. Dozen or so hours after the earthquake of MS equal to 9.1, 
which took place near the coast of Sumatra-Andaman Islands on 26 De-
cember 2004 (Seismological Bulletin 2004), we observed non-tidal plumb 
line variations. The Earth free oscillations are associated with several ef-
fects such as body waves, surface waves, compressions and dilatations of 
the Earth medium (Pekeris and Jarosch 1958, Alterman et al. 1959). Si-
multaneously, there are generated gravity and inertial accelerations as well 
as plumb line variations. Plumb line variations related to the Earth crust 
consist of tilt effects produced by surface waves and horizontal compo-
nents of gravity and inertial accelerations.  

Over two hours after the first seismic signals onset, that is, at 01h 11m

UT, we observed strong inertial signals. Horizontal components of inertial 
signals produced tilts and rotation of water surface in the measurement 
chamber of instrument (Sect. 36.5). Sequence of the following images 
showed displacements of the centers of Newtonian rings as well as their 
deformations from circular into elliptical shape (Fig. 36.8). Duration of 
inertial impulses amounted to just single seconds, and did not affect the 
water level in hydrodynamic system of tiltmeter. During the later phase 
of free oscillations, we did not observe inertial effects. The Sumatra 
-Andaman earthquake provided an opportunity to verify the hydrodynamic 
system of tiltmeter (Sect. 36.4). The results of observations show that the 
low-pass filters considerably reduce the contribution of short-period 
effects and effectively protect the hydrodynamic system against resonance.  
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Fig. 36.8  Sequence of the Newtonian rings during the first hour of Earth free 
oscillations on 26 December 2004, as obtained from the water-tube situated in 
azimuth –121.4o

This circumstance enables us to register a later phase of free oscillations 
(Figs. 36.9, 36.10, and 36.11). During the first two hours of the event we 
observed rapid variations of water level caused by the passing of surface 
waves (periods from hundred seconds up to tens of minutes) as well as 
effects of additional gravity and inertial accelerations. Accidentally, varia-
tions of water level became too rapid to be firmly registered. The ten-
second period of interference image sampling was too long and we ob-
tained a significant number of cycle-slip errors. Two hours later, the cycle-
slip errors became incidental.  

In Figs. 36.10 and 36.11, plots of plumb line variations registered by 
both tubes on 26 December 2004 are shown. Black plots represent the 
observed plumb line variations – difference of signals from ends of the 
tubes (Sect. 36.6.6). Dark grey plots describe noise – the sum of signals. 
Light grey lines present the modeled tide calculated on the basis of ephem-
erid obtained from the previous observations (Sect. 36.7). Results of sub-
traction of tidal signals from observations are shown in Figs. 36.12 and 
36.13. The upper plots represent non-tidal-origin plumb line variations as-
sociated with free oscillations. The maximum amplitude observed reached 
5 mas and decreases to 0.5 mas after two and a half hours. The lower plots 
describe the noise level (Sect. 36.6.6). These plots contain errors of data 
treatment caused by cycle-slip effects mainly. During the first two hours, 
amplitudes of errors caused by cycle-slip effects were close to the ampli-
tudes of plumb line variations. 
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Fig. 36.9  Water level variations reduced to milliseconds of arc (mas) of plumb 
line variations obtained from two ends of the tube (channels 1 and 2) placed in 
azimuth –121.4o

Fig. 36.10  The plumb line variations in azimuth 121.4o on 26 December 2004. 
Visible anomaly of plumb line variations associated with Earth free oscillations 
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Fig. 36.11  The plumb line variations in azimuth –31.4o on 26 December 2004. 
Visible anomaly of plumb line variations associated with Earth free oscillations 

In a later phase of the event, the level of noise decreased to tenth of mas. 
On the basis of data obtained from both water-tubes we assembled a plot 
of plumb line variations in space (Fig. 36.14). On this figure, the tubes are 
situated exactly on the axis of coordinates. The plumb line variations were 
shown in azimuths of measurements: azimuths of the tubes –31.4o and 
–121.4o. The magnified fragment of plot shows large complications of tilts 
signals affecting the instrument. The presented fragment was chosen from 
the end of third hour of the event and spread over fifteen minutes. During 
this interval, the amplitude of non-tidal plumb line variations was close to 
one mas. Then, the amplitudes of non-tidal tilt waves reduced to several 
tenth of mas. From Fig. 36.14 we can notice that non-tidal signals slightly 
affected tidal trends and that tilt waves associated with free oscillations 
cause only around-tidal variations of plumb line.  

36.9  Conclusions 

Several years of measurements carried out with the long water-tube tiltme-
ter confirm attractive features of this instrument (Kaczorowski 2004). The 
long water-tube construction provides us with measuring system whose 
internal accuracy of measurement is close to several thousandths mas 
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(Sect. 36.6.5). Application of difference method for data processing elimi-
nated the effect of instrumental drift (Sect. 36.6.6). The comparison of 
results of observations from previous years confirmed the high stability of 
the measurement system sensitivity. 

We obtained a perfect correlation between tidal signals observed on 
26 December 2004 and modelled tides calculated on the basis of observa-
tions from previous years (Figs. 36.10 and 36.11). Discrepancies between 
plots are associated with non-tidal plumb line variations of the Earth free 
oscillations. Several years of experience provided information about posi-
tive features of new instrument as well as information about some draw-
backs of measuring system.  

Fig. 36.12  Plots of differences and sum of signals from both ends of the tube in 
azimuth 121.4o after subtraction of the tidal signal. Differences of signals (upper 
plot) represent effect of plumb line variations caused by Earth free oscillations. 
Sum of signals (lower plot) represents the noise level (Sect. 36.6.6) 
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Fig. 36.13  Plots of differences and sum of signals from both ends of the tube in 
azimuth 31.4o after subtraction of the tidal signal. Differences of signals (upper 
plot) represent effect of plumb line variations caused by Earth free oscillations. 
Sum of signals (lower plot) represents the noise level (Sect. 36.6.6) 

There are two main problems of measurement: the cycle-slip effects 
(Sect. 36.6.4) and the pressure gradient appearing along the water-tubes of 
instrument. The pressure gradient disturbs water free surface through the 
inverse barometric effect. Gradient of the order of 10-6 hPa/m can be erro-
neously interpreted as plumb line variations. Both problems can be solved. 
Cycle-slip effects will be eliminated by changing the method of image 
registration from regular (every ten seconds) into irregular control by 
phase variations between the succeeding interference images. Application 
of a new system of registration will reduce the number of cycle-slip effects 
as well as the number of stored images. The second problem related to 
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pressure gradient in underground tunnels can be solved by limitating the 
air exchange between underground and the outside. The phenomenon of 
air pressure compensation in the underground plays the main role in gener-
ating the water free surface disturbances producing signals of the order of 
0.5 mas (values of the mean square errors – see Sect. 36.7). For this pur-
pose, we are going to build two partition walls separating tunnels with the 
instrument from the rest of the  underground. Our experiences with the 
long water-tube tiltmeter confirm particular properties of the new instru-
ment, such as high sensitivity, lack of instrumental drift, constant and well 
determined sensitivity of measuring system, constant and well known azi-
muth of measurements as well as effectiveness of damping the system for 
short-period seismic effects. Simultaneously, differential method of data 
treatment helps us to reduce the level of errors of instrumental origin (Sec-
tion 36.6.6). The features of the long water-tube confirmed the usefulness 
of our instrument for investigation of wide range of long-period geody-
namic phenomena such as Earth free oscillations, tidal effects, as non-
periodic loading effects of atmospheric origin as well as tectonic plates 
motions.  

Fig. 36.14  Plumb line variations in space, assembled on the basis of measure-
ments from the two water-tubes 



   M. Kaczorowski 520

References 

Alterman Z, Jarosch H, Pekeris CL (1959) Oscillations of the earth. Proc Roy Soc 
London A 252: 80 

Bower DR (1973) A Sensitive water-level tiltmeter. Measurem, Interpretat, Changes 
of strain in the Earth. Phil Trans Roy Soc A 274: 1239, 223-226 

Cartwright DE, Tayler RJ (1971) New computations of the tidal-generating poten-
tial. Geophys J Roy astron Soc 23: 45-73 

Chojnicki T (1977) Sur l’analyse des observations de marees terrestres. Ann Geo-
phys 33: 157-160 

Chojnicki T (1978) Estimation of accuracy of tidal data adjustment results based 
on a  residual spectrum. Publs Inst Geophys Pol Acad Sc F-4: 129, 3-9 

Chojnicki T (1991a) Détermination des variations des amplitudes des ondes de 
marées. Bull Inform Marees Terr, no 109, Obs Royal de Belgique, Bruxelles, 
7877-7884 

Chojnicki T (1991b) Modulation of some tidal waves of horizontal constituents. 
Proceed of the XI Intern Symp on Earth Tides, Helsinki '89, E Schw Verlagsb 
Stuttgart, Germany, 249-255 

Kaczorowski M (1989) Seasonal variations of the ocean indirect effects, Proc 11th 

Intern Symp on Earth Tides, Helsinki, 321-334 
Kaczorowski M (1991) The ocean indirect effect model for European tidal stations. 

Publs Inst Geophys Pol Acad Sc F-17: 237, 103-124 
Kaczorowski M (1999a) The long water-tube clinometer in Ksi  Geophysical 

Station. Promotion of the works. Artificial Satellites 33: 2, 77-93 
Kaczorowski M (1999b) The results of preliminary tilt measurements by use of 

the long water-tube clinometer in Ksi  Geophysical Station. Artificial Satel-
lites 33: 2, 77-93 

Kaczorowski M (2004) Water tube tiltmeter in Low Silesian Geophysical Obser-
vatory results of preliminary observations. Artificial Satellites 39: 2, 147-154 

Kaczorowski M (2005) Discussion on the results of analyses of yearly observa-
tions (2003) of plumb line variations from horizontal pendulums and long wa-
ter-tube tiltmeters. Acta Geodyn Geomater 2: 3 (139), 1-7 

Love AEH (1911) Some problems of geodynamics. Cambridge University Press, 
Cambridge, pp. XXVIII+180 

Love AEH (1927) A treatise on the mathematical theory of elasticity. Cambridge 
University Press, Cambridge, pp XVIII+643 

Moulton FR (1919) Theory of tides in pipes on a rigid earth. Astroph Journ 50: 346-
355

Ozawa I (1967) On the tidal observation by means of a recording water-tube tiltme-
ter. Journ Geod Soc Japan 12: 151-156 

Pekeris C, Jarosch H (1958) The free oscillations of the earth. In: Benioff H, Ew-
ing M, Howell BF, Press F (eds) Contributions in Geophysics, Pergamon 
Press, London, pp 171-192  

Seismological Bulletin 2004, Publs Inst Geophys Pol Acad Sc (in print) 



37 Fiber Optic Sensors for Seismic Monitoring 

William B. Spillman Jr.1,  Dryver R. Huston2,  Junru Wu1

1Physics Department, University of Vermont, Burlington, VT, USA 
e-mails: wspillma@vt.edu;  jun-ru.wu@uvm.edu 

2Mechanical Engineering, University of Vermont, Burlington, VT, USA 
e-mail: drhuston@verizon.net 

37.1 Introduction 

Damage in civil structures due to earthquakes is a serious problem. New 
approaches in active damping of earthquake induced structural vibrations 
can mitigate this problem if sufficient warning time is given for an im-
pending earthquake. A number of approaches have been implemented in 
seismic sensing technology to provide this warning. Seismic sensing is 
also critical in detecting and characterizing underground nuclear tests. 
Most approaches employ either a single point sensor or an array of such 
sensors. In this paper, we explore the possibility of using very long gauge 
length fiber optic sensing technology to create very high sensitivity seis-
mic sensors that have the ability to focus on particular fault regions or nu-
clear test sites through the use of particular spatial antenna configurations.

37.2 Seismic Monitoring 

Detection of seismic waves has been found to be one of most effective ways 
for the earthquake prediction. Compared with other physical phenomena as-
sociated with earthquakes such as heat flow, static displacement, strain and 
electromagnetic radiation, seismic waves have the following advantages 
(Aki and Richards 1980): 1. The high resolution and accuracy are attainable 
as seismic  waves  have  the shortest  wavelength  of any  wave that  can  be 
observed after passing through structures inside the earth; 2. Seismic waves 
undergo the least distortion in waveform and the attenuation in amplitude. 

Generally speaking, the three types of earthquake waves (P, S and 
Rayleigh waves) are  generated  during  an earthquake; P waves travel 



522   W.B. Spillman Jr. et al. 

fastest and are followed by S waves and Rayleigh waves. Thus, P waves 
are also called the primary waves. Analysis and interpretation of seismo-
grams can help to determine the epicenter and strength of an earthquake. 
Since the wavelengths of all three waves are usually long, the very long 
gauge length fiber optical detectors have obvious advantage compared 
with other detectors. A schematic showing characteristic detected ampli-
tudes from an earthquake are shown in Fig. 37.1. Also shown is a charac-
teristic signature from an underground nuclear test such as have been car-
ried out recently by India and Pakistan. As can be seen, a clear distinction 
can be made between the natural and artificial events. 

The conventional method of sensing seismic motions is to use an array of 
accelerometers that measure the accelerations at a particular point. Seismic 
accelerations are fairly difficult to measure because of the wide dynamic 
amplitude ranges that occur between earthquakes and  tremors and the  
sub-Hertz frequencies that have to be measured and the rarity and short du-
ration of strong earthquakes. Nonetheless, these problems have been 
largely overcome through the use of carefully selected accelerometer 
proof masses, springs, triggering mechanisms and storage media. Measur-
ing seismic behaviour over an extended region requires using an array of 
synchronized accelerometers. This is a fairly expensive proposition, but 
has been accomplished successfully for a few strong earthquakes, such as 
the El Centro earthquake. An alternative point sensor array technique is to 
use an array of voice-coil velocimeters known as geophones. Geophone ar-
rays are commonly used in seismic exploration for oil with detonated 
charges.

Fig. 37.1  Different types of seismic waves 
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37.3 Sensor/Ground Coupling 

The interaction of a seismic event and a civil structure, such as a building, 
bridge or dam, is quite complicated due to the traveling of elastic waves 
through non-homogeneous soil and rock media into a flexible solid struc-
ture with its own dynamic stiffness, damping and inertia. Depending on the 
level of complexity required, several different types of engineering models 
of soil-structure interaction are used. The simplest model is one where it is 
assumed that the dynamics of the structure do not appreciably affect the 
soil motions at the base of the structure. In this case, the ground motions 
are simply used as an input into the structure, thereby causing an inertial 
loading in the form of base excitation. The ground motions that occur in an 
earthquake can vary quite widely from location to location. The variation 
is attributed to the ability of the localized soil elasticity to amplify the 
ground motions. Site amplification is particularly bad when there is a soft 
soil layer over a solid rock base, such as in Mexico City. An additional 
complication arises if the structure is of sufficient size so that the localized 
site motions are appreciably different at different parts of the structure. An 
example would be a long suspension bridge. In this case, the different base 
motions must be accounted for in the analysis, by methods such as pseudo-
static functions. If the stiffness and inertia of the structure appreciably af-
fect ground motion, then a set of coupled field equations between the 
elasto-dynamics of the soil and structure has to be solved. With the excep-
tion of a few simple geometries, the analysis requires numerical simula-
tion.

37.4 Fiber Optic Sensing 

The field of fiber optic sensing was born in the late 1970’s as an adjunct to 
fiber optic telecommunications (Miller and Chynoweth 1979). Optical fi-
bers are very small cylinders of glass of arbitrary lengths that are essen-
tially lossless transmission media for optical signals of the appropriate 
wavelength. In general, optical fibers have an inner glass core region in 
which light travels more slowly than in a surrounding glass cladding re-
gion. The glass fiber is protected from the environment by a non-glass 
buffer coating. A fiber optic sensor consists of an optical source, optical 
fiber to carry the light from the optical source to the sensing region, a 
transducer to couple the parameter of interest to changes in the optical sig-
nal, a fiber to take the modulated optical signal to a signal processing loca-
tion where the optical signal is then converted to a digital electrical signal 
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and a computer which processes the digital signals to extract the informa-
tion of interest. If the light is extracted from the fiber by the transducer, 
modulated and then re-injected into the fiber, the sensor is called an extrin-
sic fiber optic sensor. If, on the other hand, the light never leaves the fiber, 
the sensor is called an intrinsic fiber optic sensor. Fiber optic sensors pos-
sess a number of advantages including: 

arbitrary separation between sensing location and signal processing 
location (lossless transmission), 

immunity to electromagnetic interference, 
high sensitivity and large dynamic range, 
small size and light weight, 
scalability, 
non-metallic and electrically passive (secure signal transmission), 
geometric flexibility, 
ability to be multiplexed, 
ability to sense a wide spectrum of different parameters.

37.4.1 Types of fiber optic sensors 

The light traveling through an optical fiber has a number of characteristics 
that can be modulated by a transducer to encode information about the pa-
rameter of interest. These include the intensity of the light, its polarization 
state, its wavelength (frequency), its coherence and its speed. It is impor-
tant to note, however, that in the final analysis what is always detected is 
the intensity of the light as a function of time. The light may be interfered 
with a reference signal, passed through a polarizer or reflected off a grating 
to disperse its different wavelength components into different directions, 
but in the end, one converts an optical intensity signal into a digital electri-
cal signal that is analyzed appropriately to extract information about some 
parameter or parameters of interest. 

Since the inception of the field of fiber optic sensing, a very large num-
ber of different transducer mechanisms have been proposed and investi-
gated, too many to list here. However, some of the more significant types 
of fiber optic sensors that have been demonstrated include: 

Mach–Zhender interferometric sensors: these were the first practical fi-
ber optic sensors that were developed. These sensors are now the basis 
of extremely sensitive hydrophone arrays deployed by the U.S. Navy 
and others. This type of sensor is based upon a measurement of a differ-
ence in travel times between a sensing fiber optic pathway and a refer-
ence pathway. The speed in the sensing arm is modulated by stress-



37 Fiber Optic Sensors for Seismic Monitoring 525 

induced changes in the refractive index and length of the optical fiber. 
When the signal from the sensing arm is compared with a signal that has 
passed through the reference arm (interfered), the integrated stress along 
the sensing fiber can be inferred. Since the basic effect is very small, 
very long lengths of fiber must be used, although they are generally 
wrapped around small mandrels, making these sensors essentially sen-
sors which only measure changes at a point. 

Sagnac interferometers: these sensors are used to measure rotation rate 
in a highly accurate manner. This type of sensor is based upon the fact 
that if a loop of fiber is rotated, one end of the fiber moves away from 
the optical signal transmission direction and the other end moves to-
wards the optical signal transmission direction. This results in a differ-
ence in transit time for signals going clockwise and anti-clockwise. 
When this difference in transit time is determined (by interfering the 
two signals), the rotation rate can be inferred. This type of sensor is cur-
rently installed and used on a number of different types of aircraft. 

Photoelastic sensors: these sensors are based upon the fact that many 
materials, when stressed, have different speeds of light depending upon 
whether the direction of electric field of the light is parallel to or per-
pendicular to the stress direction. Glass, polycarbonate and many other 
materials exhibit this effect. Sensors of this type have been used as fluid 
level monitors in large oil containment vessels in China. 

Grating based sensors: these types of sensors rely on the properties of 
gratings to modulate optical signals. The relative motion of two gratings 
can be used to modulate the intensity of an optical signal. The rotation 
of a diffraction grating can be used to modulate the wavelength distribu-
tion of an optical signal to encode rotary position, while a spatially chir-
ped grating can be used to encode linear displacement. One of the more 
successful grating based sensors is called the fiber Bragg grating sensor. 
In this sensor, periodic index of refraction (speed) variations are created 
in an optical fiber in a very small region. When the period of the grating 
is one half the wavelength of light in the fiber, constructive interference 
occurs and a large backscattered signal results. If the grating period is 
changed due to some parameter of interest, the wavelength of backscat-
tered light changes accordingly, assuming that a broadband (large num-
ber of wavelengths) was incident on the grating to begin with. These ty-
pes of sensors have been used to monitor many different composite and 
civil structures. 

Fabry–Perot sensors: this type of sensor was first developed in the late 
1980’s. It is based upon the fact that an optical cavity with partially re-
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flecting boundaries will transmit or reflect light in a way that is ex-
tremely well characterized and depends only on the reflectivity of the 
boundaries and the distance across the cavity. If the distance across the 
cavity is modulated, then this can be detected as either an intensity 
modulation (for a monochromatic signal) or a wavelength modulation 
(if a broadband signal is used). This kind of sensor has been utilized in a 
number of applications and is part of the product lines of a number of 
commercial enterprises. 

Fig. 37.2  Point versus distributed sensor systems 
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37.4.2 Point versus long gauge length sensing 

There are numerous ways in which sensing systems can be configured. 
These are: single point sensor, multiple single point sensors, point sensors 
configured into a spatially ordered array, quasi-distributed sensors, spa-
tially integrating distributed sensors and fully distributed sensors. To ap-
preciate the advantages and disadvantages of some of these system types, 
we consider the use of a number of point sensors configured into a spa-
tially ordered array versus a spatially integrating distributed sensor for the 
purposes of monitoring a spatially confined source of seismic signals. This 
situation is shown in Fig. 37.2. As can be seen, both systems are config-
ured so that signals from the seismic source arrive in phase to the sensors. 
For the case of the point sensor array, however, each individual sensor has 
its own dedicated transmission path to the signal conditioning and data 
processing location. The summing of all the sensor signals is done elec-
tronically to provide the final output. In the case of the spatially distributed 
integrating sensor, however, only one transmission path is required and the 
summing of signals is done directly along that transmission path. This re-
sults in a significant reduction in the cost and complexity of the integrated 
system versus the point sensor array as can be seen. In order for this situa-
tion to be effective, however, domain knowledge must exist as to the loca-
tion and distribution of the potential source of seismic waves of interest.  

37.4.3 Simple displacement sensing 

Some of the earliest seismic monitors involved a proof mass attached to a 
spring, with a pen attached to the mass that wrote on a long strip of paper 
that continuously scrolled by. A modern version of this type of monitor 
could be made using optics as shown in Fig. 37.3. This type of sensor has 
been demonstrated for the purposes of very high sensitivity underwater 
acoustic detection (Spillman 1981). The technique, as shown in Fig. 37.3, 
involves the use of a pair of equivalent optical absorption gratings that are 
offset by one quarter of a grating period. One grating is free to move (at-
tached to the spring and proof mass) while the other grating is fixed. When 
the moving grating moves towards alignment with the fixed grating, the 
optical signal transmitted through the grating pair increases. When the 
moving grating moves in the opposite direction, the optical signal transmit-
ted through the grating pair decreases. Motions of the proof mass will then 
modulate the intensity of any optical signal transmitted through the grating 
pair. The dynamic range of such a system will be equal to displacements of  
one  quarter  of a  grating  period at  the  maximum end and  approximately 
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Fig. 37.3  Conceptual optical point seismic transducer 

a million times smaller than that for minimum displacement detection (as-
suming a relatively low power shot noise limited source and no other 
sources of vibration noise). In the acoustic sensor work previously noted, 
the grating period was of the order of 5 m, which gives an indication of 
how sensitive optical techniques can be when applied in a simple fashion 
to the problem of the detection of displacements due to seismic distur-
bances.

37.4.4 Statistical mode (STM) sensing 

One of the better ways to carry out spatially distributed integrating sensing 
is to use fiber optic technology. Numerous different types of sensors have 
been developed which can be configured with very long gauge lengths. We 
have investigated what is called a statistical mode sensor (STM) for this 
purpose. In this type of sensor, coherent light is injected into a multimode 
fiber. Since there are many propagation modes with different propagation 
constants, the light exiting the fiber exhibits a complex interference pat-
tern. Perturbation of the fiber changes the distribution of optical power 
within the output cone but not its integrated value. Since the change in pat-
tern is due to relative phase changes, perturbations along the fiber sum and 
the device output depends upon the integrated perturbation, P. The STM 
device essentially takes a picture of the output power distribution and 
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stores it. It then takes a second picture and sums the absolute values of the 
differences between all of the small corresponding elements of the two pic-
tures. The first picture is then replaced by the second, a new picture is 
taken and the process is repeated. It has been shown (Spillman et al. 1989) 
that the STM output is directly proportional to the absolute value of first 
time derivative of the integrated perturbation, i.e. 

d
signal = .

d

P
C

t
(37.1)

A schematic diagram of this kind of sensing is shown in Fig. 37.4 

Fig. 37.4  Schematic diagram of STM spatially integrating fiber optic sensor 

37.4.5 High order mode excitation (HOME) sensing 

Another method of using fiber optics to perform spatially distributed inte-
grating sensing involves the use of modal conversion. In HOME sensing 
(Herczfeld et al. 1990), light is injected into a multimode fiber so that only 
the higher order (high angle) modes are excited.  In the absence of pertur-
bation, light exiting the fiber forms an annulus when projected on a screen. 
Perturbation of the fiber converts some of the higher order modes into low 
order modes, i.e. optical power appears in the what was the un-illuminated 
center of the annulus. If a large area detector is placed so that it only inter-
cepts the inside of the original annulus, it will produce a signal that is di-
rectly proportional to the perturbation integrated along the fiber, i.e. 

signal = ( ) .C P t (37.2)

A schematic diagram of this kind of sensing is shown in Fig. 37.5 
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Fig. 37.5  Schematic diagram of HOME spatially integrating fiber optic sensor 

37.4.6 Combined large dynamic range STM/HOME sensing 

Both the STM and HOME sensors have advantages and disadvantages. 
The STM sensor, which is basically a multi-path optical interferometer, 
has extremely high sensitivity up until the point when the effect of the in-
tegrated perturbation causes phase shifts greater than 2  between the inter-
fering modes. This point represents the upper limit of the dynamic range of 
this type of sensor. The HOME sensor, on the other hand, requires rather 
large physical displacements of the fiber before the mode conversion 
mechanism becomes significant. It is possible, however, to combine both 
techniques into a single  sensor as shown in Fig. 37.6. In  this case high  
order coherent modes are created in the fiber, resulting in an output annulus 
having a speckle pattern. If this is projected onto a digital camera and 
processed in the same fashion as a standard STM sensor, a high sensitivity 
output will result. When the perturbations become so large as to saturate 
the STM technique, modal conversion comes into play, with the summed 
intensity of the previously unilluminated pixels at the center of the annulus 
providing  the  equivalent  of a  HOME sensor  output. This  type of hybrid 

Fig. 37.6  Combined STM/HOME spatially integrating fiber optic sensor 
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sensor possesses the advantages of both types of spatially distributed inte-
grating sensor while providing a greatly extended dynamic range (Meiss-
ner and Spillman 2004). 

37.5 Matched Filtering/Antenna Gain 

Very long gauge length sensors can be configured so that they serve as 
matched filters for spatially distributed parameter fields of interest. This 
has previously been demonstrated for particular mode signal enhancement 
in simply supported vibrating beams (Spillman and Huston 1995) and for 
vehicle identification (Spillman and Huston 1996). If one wishes to detect 
and discriminate for a given parameter field as shown in Fig. 37.7, then 
both the spatial configuration and sensitivity weighting of the long gauge 
length sensor must be optimized. 

Fig. 37.7 Matched filtering 

In order to see this, it will be assumed that the parameter field of interest 
is given by the parametric function P[xP(s)], where s ranges from 0 to L,
and is zero elsewhere. It is also assumed that there is a long gauge length 
sensor described by the parametric function of sensitivity S[xS(s')], where 
s' ranges from 0 to L, but the functional dependency, xS(s'), is undeter-
mined. The sensor output will be given by the integration of the value of 
the parameter field of interest times the sensitivity along the sensor length 
at those positions where the two functions spatially overlap, i.e. 

0 0

signal = d d d s .
L L

P s p ss s' P s S s' s 'x x x x (37.3)

The  sensor   output  is  clearly   maximized  when  xS(s') = xP(s)  or  
xS(L – s') = xP(s), i.e. the sensor gives the maximum output when it is spa-
tially configured to match the spatial distribution of the parameter field it 
is trying to detect. 
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Once the sensor is spatially configured to match the parameter field of 
interest, one must consider how to optimize the sensitivity distribution to 
select for P[xP(s)] as opposed to other parameter fields that might be pre-
sent. If the sensor is spatially matched to the desired parameter field, then 

0

signal d .
L

s P s S s (37.4)

If P and S are unrelated (uncorrelated), then they can each be replaced 
by their expectation values and the signal will be (L<P> <S>). If S is some 
constant value, S0, then the signal would be [LS0<P>]. Finally, if S is com-
pletely correlated with P (i.e. S = P), then the signal would be [L<P2>]. To 
compare these, consider that both P and S are normalized and uniformly 
distributed on the interval [0,1]. Their expectation values would then be 
<S> = <P> = 0.5. Also assume that S0 = 0.5 (i.e., its expectation value is 
the same as for the uncorrelated case). Then for both the uncorrelated S

and the constant S cases, the signal would be [0.25 L]. For the complete 
correlated case, the signal would be given by 

2 2

0

signal = d 0.333 .
L

L P L Lx x (37.5)

It is then clear that by making the sensitivity distribution of the long 
gauge length sensor equal to the parameter distribution sought, the signal 
output is enhanced by 33% over what would be produced by an uncorre-
lated parameter distribution in the same spatial configuration. For optimum 
matched filtering with long gauge length integrating sensors: 

Sensor spatial distribution must be matched to desired parameter spa-
tial distribution; 

Sensor sensitivity distribution must be matched to desired parameter 
distribution.

In order to better understand the matched filtering concept, we modeled 
a seismic signal from a distant source in two ways, as a circular wave (near 
field) and as a plane wave (far field). A square tone burst was used as the 
signal function. In the circular wave case, the wave was modeled so as to 
have its energy density fall off as a function of r–2 from some point source. 
The plane wave was assumed to have a uniform energy density. The effect 
of each type of wave on two different types of spatially distributed inte-
grating sensor configurations was calculated, a circular antenna segment 
and a linear antenna segment, both of the same length. The effects of both 
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rotation and displacement of the antenna segments relative to the incident 
waves were considered. In Fig. 37.8, a circular wave is shown impinging 
upon a circular antenna segment. During rotation, the segment is rotated 
around  a point on the  midpoint  of the segment  cord on the  x-axis. In  
Fig. 37.9, a plane wave is shown impinging on a straight line antenna seg-
ment. During rotation, the segment is rotated around a point on the mid-
point of the segment on the x-axis. For zero rotation, both segments were 
assumed to intersect the x-axis at the same point. The interactions of a 
plane wave with a circular antenna segment and a circular wave with a 
straight line antenna segment were also calculated. 

Fig. 37.8  Circular antenna segment in a circular wave field 

Fig. 37.9  Straight line antenna segment in a circular wave field 

Figure 37.10 shows the effects of rotation of a circular antenna segment 
centered on a circular wave signal source. Only for 0 degree rotation is the 
true signal recovered. For other angles, phase cancellation occurs and the 
signal duration expands as the antenna segment intercepts the wave for 
longer and longer periods of time. In Fig. 37.11, the same circular wave is 
intercepted by a straight line antenna. The square tone burst envelope is 
lost for this configuration and frequency information is only present for 
low angles of rotation. Similarly, when a plane wave is incident upon a 
straight line antenna segment (Fig. 37.12), the true signal is recovered for 0 
degree rotation, but for other angles. Frequency information is lost along 
with an accurate measure of the tone burst envelope. When the plane wave 
is incident on the circular antenna segment (Fig. 37.13), frequency infor-
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mation is only present for low angles of rotation and information about the 
actual tone burst envelope is not lost. 

Fig. 37.10  Circular antenna segment response to a circular wave as a function of 
rotation 

Fig. 37.11  Straight line antenna segment response to a circular wave as a function 
of rotation 
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Fig. 37.12  Straight line antenna segment response to a planar wave as a function 
of rotation 

Fig. 37.13  Circular antenna segment response to a planar wave as a function of 
rotation 
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When the antenna segments are fixed at 0 degrees rotation and then rela-
tively displaced along the x-axis, a different kind of behaviour is observed. 
In Fig. 37.14 with a circular wave incident upon a circular antenna seg-
ment, signal detection delay as a function of displacement is clearly seen. 
The true signal is only recovered when the antenna segment lies on a circle 
whose center is the center of the circular wave disturbance. Otherwise, the 
signal is largest when nearest the source (r-2 behaviour) and significant dc 
signal components are present. In Fig. 37.15, where the circular wave in-
tercepts the straight line antenna segment, signal detection delay is also 
observed, basic signal shape remains the same with its amplitude falling 
off as r-2. In Fig. 37.16, only signal detection delay is observed since the 
plane wave has uniform energy density. The true signal is recovered in 
every case. For a plane wave impinging upon a circular antenna segment, 
the signal is distorted due to the mismatch between wave shape and an-
tenna shape, signal detection delay is observed and signal shape and ampli-
tude remain constant. 

As can be seen, only when the antenna shape precisely matches the 
shape of the parameter field will the actual wave function be recovered 
(matched filtering) 

Fig. 37.14  Circular antenna segment response to a circular wave as a function of 
displacement 
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Fig. 37.15  Straight line antenna segment response to a circular wave as a function 
of displacement 

Fig. 37.16  Straight line antenna segment response to a planar wave as a function 
of displacement 
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Fig. 37.17  Circular antenna segment response to a planar wave as a function of 
displacement 

37.6 Physical Simulation Results Using STM 

An experiment was set-up to physically simulate Rayleigh seismic wave 
antenna interactions in a subscale fashion. A square wooden tank, 109 x 
109 x 5 cm was fabricated and lined with plastic. The tank was then lev-
eled and filled with water to a depth of 1 cm. The integrated sensing length 
was taped to piece of plastic on the surface of the water in either a linear or 
circular arc antenna configuration. Waves generated on the surface of the 
water in the tank perturbed the sensing length in the same way that a 
Rayleigh earthquake wave would perturb a much larger sensing element.  

Seismic wavefronts seen at a sensing location depend upon the prox-
imity of the sensor to the event. All Rayleigh waves will consist of circular 
waves propagating outward from the epicenter. To lowest order, near the 
epicenter, Rayleigh waves will exhibit significant curvature when meas-
urement lengths of the order of a kilometer are considered. As the distance 
from the epicenter increases, the amount of curvature over a kilometer 
length begins to approximate a plane wave. The subscale simulatation was 
then designed to produce and to detect both circular and linear (plane) 
transverse waves. 
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In order to detect the linear and circular waves produced in the simula-
tion, linear and circular arc antennas were created by taping sensor lengths 
to the plastic on the surface of the water in the appropriate configurations.  
The linear length and circular arc length were made the same for the pur-
poses of direct comparison.

The antenna was a single strand of 200/240 µm multimode fiber optic 
cable. The fiber was excited by a multimode laser diode operating at      
780 nm and the output speckle pattern was detected and processed using a 
CCD array (STM sensing configuration). The sensor output was digitized 
and analyzed using a Macintosh computer. Linear waves were produced 
with a long aluminum meter stick while circular waves were produced 
with a 10 cm high x 13 cm diameter plexiglass cylinder having a solid bot-
tom with the exception of a 2 cm centered hole. 

Linear waves were generated by uniform motion of the meter stick 
through the water to produce a linear wave propagating normal to the axis 
of the linear antenna and parallel to the walls of the tank. Circular waves 
were produced by supporting the plexiglass cylinder at the surface of the 
water centered over the center of the circle incorporating the circular arc 
antenna. The cylinder was rapidly forced to the bottom of the tank, which 
resulted in the creation of the circular wave. Since there was variation in 
this manual generation of waves, eight sets of measurements were taken 
for each of the four experimental configurations to permit statistical com-
parisons.

Typical experimental results for the simulated seismic detection with 
antenna gain are shown in Figs. 37.18–37.21.  

Figure 37.18 shows a typical output for a circular wave interacting with 
a circular antenna segment while Fig. 37.19 shows the result of a circular 
wave interacting with a straight line antenna segment. In Fig. 37.20, the 
signal resulting from a plane wave incident on a straight line antenna seg-
ment is shown. One can see the original signal detection, the detection of 
the wave reflected from the near tank wall and on the far right side of the 
plot the second wave reflection (from the far wall). Finally, Fig. 37.21 
shows the signal resulting from the interaction of a plane wave with the 
circular antenna segment. Since the distances of the walls from the antenna 
were known, this allowed calculation of the wave speed of 33 cm/s. Calcu-
lations were done on the 8 runs for each experiment type to determine the 
mean value of the maximum of the sensor output in each case and the 
standard deviation. In terms of mean value of maximum ±1 , the calcula-
tions yielded: 3316.6±268.4 for linear wave/linear antenna, 2117.9±277.5 
for linear wave/circular antenna, 883.7±214.3 for circular wave/linear an-
tenna, and 2055.9±188.5 for circular wave, circular antenna. The ratio of 
average maxima for linear wave/linear antenna to linear wave/circular an-
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tenna was 1.57 and the ratio of maxima for circular wave/circular antenna 
to circular wave/linear antenna was 2.47. 

Fig. 37.18  Typical response from circular wave/circular antenna segment interac-
tion 

Fig. 37.19  Typical response from circular wave/straight line antenna segment in-
teraction 
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Fig. 37.20  Typical response from planar wave/straight line antenna segment in-
teraction 

Fig. 37.21  Typical response from planar wave/circular antenna segment interac-
tion 
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37.7 Discussion and Summary 

Both the model results and the subscale experimental simulation results 
demonstrate the potential for the creation of very long gauge length seis-
mic sensors based using antenna gain. The tone burst model predicted that 
when an antenna segment intercepted a wave to which it was matched, a 
signal increase of more than a factor of 2 could be expected over detection 
of equivalent power waves to which it was not matched. The average en-
hancement factor from the experiments for the linear antenna segment was 
1.57, while for the circular antenna segment it was 2.47. The variance be-
tween the model and experimental subscale simulation results could be due 
to several factors. The assumption in the model based on summing the z
direction displacements due to the presence of the wave of all of the an-
tenna segments from their equilibrium points might not be correct. Weight-
ing of different portions of the antenna might be non-uniform, i.e. bending 
at the antenna ends might contribute more to the output than common dis-
placements (between adjacent segments) toward the middle of the antenna. 
Another contributing factor could be edge effects in linear wave propaga-
tion, creating curvature in the wave, thereby reducing the physical differ-
ence between it and a pure circular wave. Nonetheless, antenna gain has 
clearly been shown. 

There are numerous ways in which very long gauge length sensing can 
be carried out, both electrical (TDR) and optical (OTDR, interferometry, 
polarimetric sensing). Optical techniques are attractive because the gauge 
lengths that can be used can be arbitrarily long for all practical purposes 
due to the very low loss nature of optical fiber transmission. The same is 
not true of electrical techniques in which gauge lengths greater than a few 
hundred meters are probably not achievable. We shall therefore limit our 
consideration to fiber optic techniques for fieldable fiber optic seismic 
sensing systems.

Early in the development of fiber optic sensors, it was assumed that the 
amount of fiber that could be used as sensing element only depended upon 
the loss characteristics of the fibers used. Predictions were made that fiber 
optic magnetic field sensors would soon surpass the performance of 
SQUID devices. In fact the fiber optic device performance never came 
within more than a few orders of magnitude of the SQUID devices. The 
reason for this was shown to be statistical fluctuations in the index of re-
fraction of the fiber optic sensing element which increased as the length of 
the sensing element increased, eventually becoming the dominant noise 
source (Glenn 1989). When that occurred, increased signal due to in-
creased length was exactly compensated for by increased noise level in the 
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same proportion, resulting in a static signal to noise ratio. This effect was 
minimized in Mach–Zehnder hydrophones due to the fact that the very 
long gauge length of fiber was confined to a relatively small uniform tem-
perature volume around a mandrel. For seismic sensing, in which the long 
gauge length will be spatially distributed, the noise due to thermal fluctua-
tions, even within the Earth, will be much more of a problem. In order to 
optimize sensor design, thermal fluctuation caused changes in the optical 
path length will have to be considered.  

Although there are numerous different possible spatially distributed    
integrating fiber optic seismic sensing techniques, the combined 
STM/HOME technique offers particular advantages. It exhibits high inter-
ferometric sensitivity that could allow the detection of relatively low en-
ergy precursor signals while at the same time being able to detect and 
characterize the large amplitude signals present in the waves from the 
seismic event itself. In addition, the sensitivity of a combined STM/HOME 
sensor can be enhanced in two ways. First, the gauge length can be in-
creased up to the point at which thermal noise fluctuations come into play. 
Secondly, the sensitivity can be increased by optimizing the ground/sensor 
coupling, i.e. burying the buffer clad sensing fiber in soil whose particle 
size is selected to optimize that coupling (the particles would have diame-
ters that matched one of the microbending loss periods in the fiber). These 
types of sensitivity enhancements are shown schematically in Fig. 37.22. 
In addition to these types of advantages, the combined STM/HOME sensor 
has the potential to be wireless (Spillman et al. 2004) and very cost effective. 

Fig. 37.22  Implementation options for spatially distributed integrating fiber optic 
seismic sensing 
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The scaling up of systems from the laboratory to the field will require 
attention to both issues of scale and practical issues of field deployment. 
The issues of scale depend largely on those related to sensing the large mo-
tions over large distances. A typical measurement may be to detect a 1 Hz 
seismic signal in a medium with a wave speed of 3.5 km/s (typical for S
waves), with a 1 g acceleration. The sensor must then be sensitive to a 
relative motion on the order of a 0.2 to 0.5 m over a 3.5 km distance. Field 
installation requires the deployment of a ruggedized, possibly specialized 
non-communication style, fiber optic cable over an extended range. Using 
existing communication, utility or transportation structures as a backbone 
may reduce the cost of the system. 

Depending on the particular requirements, it may be very useful to de-
sign antenna arrays that are particularly sensitive to certain types of waves. 
The distinction of S and P waves is an important consideration in detecting 
underground nuclear blasts. The large scale coherence of S waves has im-
plications in structural safety in earthquakes. The measurement of 
Rayleigh waves can be useful in identifying mechanical properties of sur-
face materials. The P, S and surface waves are all manifested differently 
on the surface of the Earth. P waves appear as a compressive and exten-
sional motion where relative surface points move closer together and then 
farther away. S waves appear as a shearing motion where relative points on 
the surface move sideways and vertically relative to one another. If the an-
tenna array can be configured to be sensitive to either compressive or shear 
motions, then it can be selectively sensitive to either S or P waves.
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38.1  Introduction and Formulation of the Problem 

In conventional earthquake engineering, seismic loads on structures are 
formulated only in terms of the three translational components of ground 
motion. Of these three, the two horizontal actions are usually decisive in 
structural design because civil engineering structures are much stiffer in 
the vertical direction than in the horizontal ones. In addition, with only a 
few exceptions (e.g. the 1995 Northridge earthquake) the vertical compo-
nent is generally less intensive than any of the two horizontal ones. 

Nevertheless, each site on the surface of the ground can be subjected to 
six motions: three translations along x, y and z axes as well as three rota-
tions about these axes. The rotation about vertical axis z will be called here 
torsion while the rotations about two horizontal axes will be called rock-
ings. In the mid seventies of the past century, Penzien and Watabe (1975) 
have introduced a system of the so-called principal axes on the surface of 
the ground (Fig. 38.1) in which horizontal axis x is directed towards epi-
center, the second horizontal axis, perpendicular to x, is denoted by y, and 
z represents vertical axis. Penzien and Watabe have shown that the three 
components of ground motions, u(t), v(t) and w(t), along the respective x, y

and z axes  may  be  regarded  as  uncorrelated.  Furthermore,  when  ana-
lyzing spatial seismic effects at two points, A and B, on the ground surface, 
the respective coherence matrix transforms as a tensor with changes of the 
coordinate system (e.g. Zembaty 1997). This convenient system of coordi-
nates shown in Fig. 38.1 will be applied throughout this paper. Only two 
rotational components, i.e., rocking about the y axis, , and torsion about 
the z axis, , are usually analyzed, as there is a rationale for their existence 
when considering the respective wave decomposition at the ground sur-
face.
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Fig. 38.1  Principal axes and two rotations on the ground surface (after Zembaty et 
al. 1993) 

The most natural way to obtain these rotations would be to differentiate 
the spatial field of strong motion with respect to spatial coordinates. For 
these purposes, basic formulae of the continuum mechanics can be applied. 
For example, torsion (about the z axis) is given by the following formula: 

y

u

x

v

2

1
. (38.1)

Since the tangential strains can be assumed zero at the free surface, the 
surface rocking motion (about the y-axis) can be obtained as simple differ-
entiation of vertical field of motion w(x, y, t) (see e.g. Oliveira and Bolt 
1989):

x

tyxw ),,(
. (38.2)

Consider a stiff, massive structure founded on compliant soil, under 
horizontal excitations (Fig. 38.2). The interaction of structural vibrations 
with the soil motion (soil-structure interaction) leads to structural rotations 
even from horizontal excitations only and can particularly be important for 
structures with small, massive foundations, for which the lowest (funda-
mental) natural frequency is just the rocking one. The rotation, although 
important in seismic response analyses, should however be distinguished 
from the actual rotational excitations analyzed here. This type of rotation 
during earthquakes was observed very early (e.g. Imamura 1937), but its 
analysis does not require considering wave propagation. It takes place dur-
ing kinematic excitations of any structure with substantial moment of iner-
tia resting on compliant soil. This effect is also observed during shaking 
table tests and is treated as an unwanted, spurious motion to be eliminated 
by the control software of the shaking table (see e.g. Juhasova et al. 2000, 
2002). For in-depth analyses of these effects, one may read the vast litera-
ture on soil structure interaction (e.g. a book by Wolf 1985). This situation 
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shows also an evident difficulty in observing rotations or carrying out their 
eventual measurements. 

Fig. 38.2  Rocking of a massive structure on compliant soil as excited only by 
horizontal ground motion U(t)

The engineering importance of rotational components of seismic strong 
ground motion was noted during late sixties and early seventies of the 20th 
century (Newmark and Hall 1969, Newmark and Rosenblueth 1971). In 
their book Newmark and Rosenblueth (1971) also quote eyewitness ac-
counts even for gravitational waves observed as slowly moving, visible 
waves on the surface of the ground. Such waves might easily generate 
rocking motion. Later an interesting contribution in this field was a simula-
tion study of rotational effects in layered media and near-field excitations 
by Bouchon and Aki (1982). At a distance of a few kilometers from the 
fault,  they  estimated  torsional  displacements  at  about  3×10-4  rad,  tor-
sional velocity at about 1.5×10-4 rad/s and rocking displacements at about 
7-8×10-4 rad. 

Finally, two different approaches emerged in the literature: 
Theoretical reasoning based on wave passage effects (Trifunac 
1982, Lee and Trifunac 1985, 1987, Rutenberg and Heidebrecht 
1985, Castellani and Boffi 1989, Zembaty et al. 1993, Castellani 
and Zembaty 1996). 
Experimental analyses utilizing the measurements from synchro-
nized dense arrays of accelerometers like SMART 1 in Taiwan, 
leading first to stochastic models of spatial ground motion (e.g. 
Tamura and Aizawa 1992, Loh 1985) and then to estimations of ro-
tational ground motion (Oliveira and Bolt 1989, Castellani and 
Zembaty 1994, 1996). 

This paper presents an approach to modelling the rotational effects in 
terms of stationary stochastic processes and random fields. More general 



   Z. Zembaty 552

non-stationary approach is given by Zembaty et al. (1993). The importance 
of applying these effects to some types of structures will also be briefly 
shown (Zembaty and Boffi 1994). Due to space limitations only the rock-
ing component will be analyzed. For detailed analyses of the torsional 
component as excited by the incident SH wave propagation the reader may 
refer to the paper by Lee and Trifunac (1985), whereas an experimental 
account for the torsional surface effects may be found in Oliveira and Bolt 
(1989).

38.2  Spectral Decomposition of Translational
         Components of Seismic Ground Motion 

Before proceeding with further analyses of surface rotations, the spectral 
decomposition of random processes representing translational accelera-
tions of ground motion is introduced. Consider the stationary (steady) 
ground vibrations in the form of accelerations along the principal axes of 
seismic ground motion )(tu , )(tv  and )(tw  (Fig. 38.1). The classic spec-
tral representations of the above three components of seismic motion, 
treated as stationary stochastic processes take the following form: 

)(ˆde)( i utu t ,   )(ˆde)( i vtv t ,   )(ˆde)( i wtw t
(38.3)

in which dashed symbols are random processes in the frequency domain 
with orthogonal increments. This means that e.g. for )(tu  we have: 
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where the symbol < > denotes mathematical expectation, an asterisk de-
notes complex conjugate, )(uS represents power spectral density of the 

acceleration process )(tu  and  is the angular frequency (in rad/s). 

For two different processes, e.g. )(tu  and )(tw , formula (38.4) takes the 
form: 
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in which )(wuS  is the co-spectral density. If the Penzien and Watabe 
(1975) assumption of the lack of correlation of motions among the princi-
pal axes holds, then the co-spectra )(vuS , )(wuS , )(vwS vanish.

38.3  Rocking from Body Waves Decomposition 

Consider  now  body  waves  in  the  vertical  plane  containing  the  focus 
(Fig. 38.3). The in plane motions are given by two harmonic components 

)(ˆde),(ˆde ii wu (38.6)

in the frequency band interval ( , +d ). The motion corresponding to 
this band interval can be written as the sum of P and SV wave contribu-
tions:

d d d ,

d d d .
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P S

u u u

w w w
(38.7)

Fig. 38.3  Body waves incident on the ground surface (after Zembaty et al. 1993) 

Substituting the spectral representations (38.3) for u and w one obtains 
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where )(
ˆ

P , )(
ˆ

S  are the random functions with orthogonal incre-
ments (Eqs. 38.4 and 38.5), and UP, US, WP, WS are the coefficients given 
by the following formulae (Fig. 38.3): 
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(38.9)

PP, PS, SP, SS are the coefficients of body wave reflections at the free sur-
face. They can be found in monographs on wave propagation (e.g. Achen-
bach 1973 or Aki and Richards 1980) 
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The angle of incidence  has been assumed here for simplicity to be the 
same for P and SV waves, and it holds only for homogeneous half space. 
Eventual generalization for layered media is straightforward (see e.g. pa-
pers by Haskell from fifties and sixties of the past century). The angles PS

and SP are the angles of the reflected S and P waves, respectively: 
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Scc SPPS /sin/sin , (38.11)

PSSP cc /sin/sin , (38.12)

and p = sin /cP stands for the horizontal slowness of incident P waves for 
Eqs. (38.10a,b), while for Eqs. (38.10c,d) p = sin /cS represents the hori-
zontal slowness of incident SV waves, whereas cP and cS are the propaga-
tion velocities of P and S waves, respectively. The coefficients UP, US rep-
resent the horizontal component of motion driven by P and SV waves, 
respectively, and WP, WS correspond to vertical motion.  

Solving the system of equations (38.8) for the P and SV waves contribu-
tions one obtains the inverse of Eqs. (38.8): 

i i iˆ ˆ ˆe d ( ) e d ( ) e d ( )t t tS S
P

W U
u w

D D
,

i i iˆ ˆ ˆe d ( ) e d ( ) e d ( )t t tP P
S

U W
w u

D D
,

(38.13)

where D = UPWS  WPUS. Hence, the incremental vertical motion can be 
presented as the sum of two wave terms propagating in the x direction with 
different velocities 
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The incremental rocking acceleration becomes: 
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x
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Substituting x = 0 and taking into account Eq. (38.13) one obtains 
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Introducing new coefficients 
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results in 

)(ˆde)i(),(d i uWt t
x )(ˆde)i( i wW t

z . (38.19)

Finally, after integrating in the whole frequency domain one obtains the 
spectral decomposition of the rocking component 

)(ˆde)i()( i uWt t
x )(ˆde)i( i wW t

z , (38.20)

which can easily be applied to obtain any stochastic characteristic of ,
e.g. correlation function, power spectral density etc. For example, the 
mean square rocking acceleration is given by 

d)(222
ux SW * 22 ( ) dx z uwW W S

                                      
2 2 ( ) dz wW S .

(38.21)

The integrand in the above equation is the power spectral density of the 
rocking component: 

)()(2)()( 2222
wzwuzxux SWSWWSWS . (38.22)
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It can be seen from the derived formulae that the rotational spectrum is a 
function of the first time derivatives of the vertical and horizontal accelera-
tions (the 2 multiplier), i.e., the function of the third derivative of respec-

tive displacements as )()( 6
uSSu . It should also be noted that if one 

follows  the  Penzien  and  Watabe  (1975)  assumption,  the  second  term 
of Eq. (38.22) vanishes, as there is no correlation between vertical and 
horizontal components. In this case, Eq. (38.22) can further be simplified 
when assuming the same spectral density for both horizontal and vertical 
ground motions differing only by intensity factor , i.e., 

)()( 2
uw SS . (38.23)

This leads to 

)()( 222
uzx SWWS . (38.24)

The value of  can be estimated from the statistical analysis of earth-
quake records. For example, following Trifunac and Brady (1975) it can be 
taken as approximately 0.5. On the other hand, in the near field the vertical 
component can be as intensive as the horizontal one (e.g. the 1995 North-
ridge earthquake). In any case the contribution to the total rocking of verti-
cal vs. horizontal components is controlled by the values of the coeffi-
cients Wx and Wz .

In Fig. 38.4a and b the moduli of these two coefficients are presented as 
functions of the incidence angle  of body waves (both P and SV). The 
plots include three sets of data given in detail in Table 38.1 

Table 38.1  Data to numerical calculations (according to Zembaty et al. 1993) 

cp = 6800 m/s cp = 5200 m/s cp = 4500 m/s 
cS [m/s] 3000 3000 3000 
S = cP/cS 2.27 1.73 1.50 
Poisson modulus,  0.38 0.25 0.10 

cr [deg] 26.14 35.26  41.81 

For < cr coefficient Wx is real and negative while Wz is also real but 
positive, although in any case the signs are lost when formulating the spec-
tral density. It can be seen from Fig. 38.4a, b that Wx and Wz increase for 
an overcritical angle with considerable variation with respect to the values 
of Poisson’s ratio  for Wx and with little variation for Wz . In Fig. 38.4c 

the coefficient of formula (38.24), i.e., 22 |||| zx WW  is shown for three 
values of  vs. incidence angle . To investigate the contribution of possi-
ble cross-correlation of horizontal and vertical components one may as-
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sume (although it is unlikely) an extreme case of full (100%) correlation. 
In this case, formula (38.22) takes the following form: 

2 2 2 2( ) (| | 2 | | ) ( )x x z z wS W W W W S . (38.25)

The multiplier of the last equation, i.e., 2 2 2| | 2 | |x x z zW W W W  is plot-
ted in Fig. 38.4d. It can be seen that Poisson’s ratio influences the rocking 
response substantially. 

Fig. 38.4  Modulus  of  Wx  (a)  and  Wz (b)  and  the coefficients  of  rocking spec-
tral densities with zero translational correlation (c) and with full correlation (d). 
All data shown for three values of Poisson coefficient : curve (1) for 0.38, curve 
(2) for 0.25 and curve (3) for 0.10 (according to Zembaty et al. 1993) 

Particularly, the difference for = 0.38 and = 0.25 is substantial. It can 
also be seen that cross-correlation between vertical and horizontal compo-
nents may increase the rocking ground motion by about 30%. All plots in 
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Fig. 38.4 show dramatic increase in the rocking component for greater in-
cidence angles. On the other hand, it should be noted that when the layered 
media are analyzed the refracted P and SV waves at the surface would ap-
pear at smaller angles. However, the wave energy carried by surface waves 
would continue to be associated with large incidence angles. 

38.4  Rocking from Surface Waves 

A quantitative estimation of the contribution of surface waves to the total 
ground motion is not an easy task. Identification of the wave types for the 
strong events at a particular site becomes possible via dispersion analysis, 
when large scale measurements of ground motion are carried out as in the 
spatial measurements of the SMART-1 network in Lotung, Taiwan. A 
rough and simple idea has been proposed by Sugito et al. (1984). Analyz-
ing some Japanese strong motion records they proposed to separate surface 
waves from the total ground motion by using the criterion of first arrival 
time tS and band limit S. Following their approach, the motion due to sur-
face waves should be subtracted from the total motion and treated sepa-
rately (Fig. 38.5).  

Fig. 38.5  Body and surface waves separation (from Zembaty et al. 1993) 

When considering the rocking component we restrict our example to 
Rayleigh waves. In analogy to the earlier treatment, the acceleration due to 
surface waves in the frequency range ( , +d ) can be taken as a result of 
a wave propagating in the horizontal direction with the velocity of 
Rayleigh waves cR as follows: 

)(ˆdiexpd w
c

x
tw

R

R . (38.26)
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From the above equation the incremental surface rocking can be written as 

0
),,(dd

xRR xtw
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)(ˆde
i i w
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R

. (38.27)

Since the first arrival time of Rayleigh waves is tS , in the stationary 
analysis one should consider the validity of this approach only in the re-
spective time windows. Taking into account the above criterion of wave 
separation leads to 
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S

S

wW t
RR )(ˆde)i( i   for Stt , (38.29)

where WR = 1/cR. From this equation and Eqs. (38.4) and (38.5) one may 
write the equation for spectral density of the rocking acceleration contrib-
uted by the surface waves 

),(),( 22 tSWtS wR   for SS   and Stt . (38.30)

This formula shows only roughly the dependence between vertical and ro-
tational spectral density on Rayleigh waves propagation. The analysis of 
joint effects of body and surface waves should be done in both time and 
frequency domain. Such a general approach, including the non-stationary, 
evolutionary description of stochastic processes is presented in detail by 
Zembaty et al. (1993). 

38.5  Rocking from Spatial Field of Ground Motion 

To derive the rocking component on a surface point it suffices to consider 
a random field with respect to time and only one spatial coordinate x (di-
rected towards the epicenter – as in Fig. 38.1). Assuming for simplicity the 
stationarity with respect to time and spatial coordinates, the vertical accel-
eration of this point can be presented in the form of spectral representation 
(38.3) with an additional spatial variable x:

),(ˆde),( i xwxtw t , (38.31)
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where ),(ˆ xw is a random function with orthogonal increments defined 
both in time and spatial domain as follows: 
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where ),( xS
BA WW

 is a complex co-spectrum, )(
W

S  is the respective 

point spectrum (for xA = xB) which does not depend on the position along 
the x axis. Following Eqs. (38.31) and (38.32) one may derive a formula 
for the correlation function of the vertical random field: 
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(38.33)

Introducing new variables   = t  t   and  xAB = xA  xB  one obtains 

de),(),( i
ABWWABw xSxK

BA
. (38.34)

For  = 0 one has the following space correlation function 

d),()( ABWWABw xSxK
BA

, (38.35)

while for both  = 0 and xAB = 0 the mean square value is given by 

d)(2
Ww S . (38.36)

From the time-space stationarity it follows that the point spectra are the 
same at points A and B, i.e., )0,()()( ABWWW

xSSS
BA

. Introduc-
ing then the coherence function 
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one obtains 

( ) ( , ) ( ) dw AB w AB W
K x x S , (38.38)

where ),( ABW
xS  denotes complex co-spectrum, while )(

W
S  stands for 

real valued point spectrum. Separating modulus and phase of the coher-
ence function gives 

),(ie),(),( ABx
ABwABw xx . (38.39)

Now, using the notation introduced above one may consider the rocking 
acceleration component as the respective spatial derivative 

),(/ yxwx  (Eq. 38.2). Substituting Eq. (38.39) into (38.33) and then 

 = t  t as well as xAB = xA  xB, after some algebra one obtains for  = 0:

2 2

2 2
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For xAB = 0 the integrand in this formula can be interpreted as a spectral 
density function of the rocking acceleration: 
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It is interesting to note that ),( ABW
xS , although generally complex, is 

real for xAB = 0 as we require for )(
W

S . It can be seen from Eq. (38.41) 

that for rocking spectrum one needs a spatial spectrum of the vertical sur-
face motion. Such spectra are available from SMART-1 array measure-
ments (e.g. Abrahamson et al. 1987). Unfortunately, most of the research-
ers indicate substantial reduction of accuracy of experiments at short 
distances. Thus, direct differentiation at xAB = 0 should be avoided. Instead, 
the finite difference method seems more reasonable in this case. Applying, 
e.g. the second central finite difference one obtains: 
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Taking into account that ),( xS
W

 is a Hermitian complex function in 
both frequency and space domains one can write that ( , )

W
S x

),( xS
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 and consequently 
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Substituting )(),(),(
WWW

SxxS , one finally obtains the follow-

ing approximation for the spectral density of rocking component: 
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The information required to calculate rocking spectral density from the 
spatial random field of seismic motion is the actual acceleration spectral 
density function of vertical accelerations as well as respective spatial co-
herency function.  

The simplifications made in deriving Eq. (38.44) are as follows: 
a) the stationarity with respect to time, 
b) the stationarity with respect to space distance, 
c) the arbitrariness of the assumption of finite difference parameter 

x.

The first simplification seems very crude but in fact one may say that the 
proportion between vertical and rocking motion may be the same whether 
the stationarity assumption is relaxed or not. The second and third simpli-
fications are more serious. Particularly the third assumption seems arbi-
trary, but the distance parameter should be treated as a space scale parame-
ter assumed equal to the shortest structural foundation dimension which 
would yield greater rotation effect. 

38.6  Code Proposals and Approximate Formulae 

In the modern civil engineering seismic codes, the calculation of seismic 
forces is usually based on the response spectrum which is a plot of maxi-
mum quantity of interest vs. natural period of a single degree of freedom 
(SDOF) system. In a draft version of Eurocode 8 part II (bridges) two for-
mulae were proposed for rotational response spectra: 
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for the rocking response spectrum 

)(TRrR ,        
Tc

r
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7.1
, (38.45)

for the torsional response spectrum 

)(TRrR ,         
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r
S

0.2
, (38.46)

where cS is the shear wave velocity, T is the natural period of an oscillator, 
R(T) is the pseudo-acceleration response spectrum defined for translations. 
As can be seen, the main parameter influencing the rotational excitations is 
the shear wave velocity. Unfortunately, as is usually the case for engineer-
ing codes, no explanation is given regarding the scientific justification of 
these formulae.  

On the other hand, one may propose another approximate formula for 
rocking component based on the derived formula (38.44). Assuming that 
the ratio of rotational to vertical motion remains approximately the same 
for the root mean square response as for respective response spectra (Cas-
tellani and Zembaty 1996) one obtains the following approximate formula 
in the form of a rotational coefficient: 

),(Re1
4.1

x
x

r
W

, (38.47)

which depends directly on the foundation separation distance x (as in 
Eq. 38.44). Formula (38.47) may be used as a multiplier for vertical re-
sponse spectra, but its validity should still be verified, possibly with re-
corded rotations. 

38.7  Application Example: A Slender Tower Under  
         Horizontal-Rocking Excitations 

Consider now the seismic response of a slender tower, a tall industrial 
chimney or TV-tower. Following standard structural dynamic methods 
(e.g. Clough and Penzien 1993) the discrete equation of motion of this 
structure  under  seismic  horizontal )(tu  and  rocking )(t  excitations 
(Fig. 38.6) takes the following form: 

( ) ( ) ( ) ,efft t tBx Cx Kx Blu Bh p (38.48)
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where upper and lower case bold letters denote matrices and vectors re-
spectively, x is the vector of relative response of the structure, 1 is a unit 
vector, h is the vector containing heights above ground of discretized 
masses, B, C, K are the matrices of inertia, damping and stiffness, respec-
tively. 
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tx
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t hlxx (38.49)

The solution of Eq. (38.48) was obtained by generalized response spec-
trum method. Details are given in the paper by Zembaty and Boffi (1994). 
To assess the contribution of the rocking component in the overall struc-
tural response, a 160 m reinforced concrete industrial chimney has been 
chosen. The data of the chimney were taken from the book by Ciesielski et 
al. (1968). The chimney has the external radius of 4 m at the top and 5.92 
m at the bottom. The foundation has a radius of 10 m. Some realistic data 
on soil compliance are in turn taken from Eurocode 8 (soil profile C): cS is
200 m/s, density of soil is 1800 kg/m3, Poisson’s ratio is 0.25. 

Fig. 38.6  A discrete dynamic model of a slender tower on compliant soil (Zem-
baty and Boffi 1994) 
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Discrete dynamic model of the structure is presented in Fig. 38.6 in 
which mi denotes discrete mass at height hi, k  and kh denote rocking and 
horizontal soil stiffness, EJ stands for bending stiffness of the chimney and 
u(t) and (t) represent horizontal and rocking excitation components, re-
spectively. Five percent structural damping ratio has been applied. The 
most critical response parameter describing the seismic response of a slen-
der tower it is the bending moment appearing in the respective horizontal 
cross-sections of the structure. In Fig. 38.7, this bending moment is plotted 
vs. the height above the ground. In the computations, Eurocode 8 design 
response spectrum has been applied together with formula (38.45) (solid 
line) as well as approximation (38.47) (dashed line). It can be seen from 
Fig. 38.7 that the contribution of rocking excitations is quite substantial, 
reaching almost 50% of the total response. The bending moment as calcu-
lated by applying Eurocode 8 is slightly higher than the approximation 
(38.47). 

Fig. 38.7  Bending moment vs. height for a 160 m slender tower. Total value and 
contribution of rocking component: Eq. (38.45) – solid line, Eq. (38.47) – dashed 
line (Zembaty and Boffi 1994) 

38.8  Summary and Conclusions 

Two engineering approaches for the analyses of the rotational component 
of surface seismic ground motion have been presented. Rocking compo-
nent of ground motion about the horizontal axis was studied in detail. The 
first  method  is  based  on  the decomposition  of  the ground  motion  into 
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respective wave components and then differentiation with respect to hori-
zontal, spatial coordinate. The resulting rocking component appeared to be 
a direct function the wave parameters and time derivative of translational 
accelerations (third derivative of displacement translations). The second 
method utilizes the vertical random field of ground motion from spatial ar-
rays of the SMART-1 type. The resulting rocking component is then a func-
tion of spatial coherency of the measured vertical accelerations at a se-
lected spatial distance. 

Subsequent approximate analysis of the seismic response of a slender 
tower shows that rotational excitations may, in some cases, be as important 
as the horizontal ones applied in conventional seismic engineering.  
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39.1 Introduction 

In traditional earthquake engineering, structures are designed to resist only 
simplified representation of strong earthquake ground motion, in terms of 
the horizontal translational components of acceleration. Occasionally, in 
the design of important structures with long spans, the vertical component 
of excitation is also considered. Rotational excitation by the torsional and 
rocking components of strong ground motion is almost never considered. 
The significance of the rotational components of strong motion for the 
overall response of structures can be evaluated using analytical solutions 
of the soil-structure interaction problems, by means of numerical model-
ing, or with probabilistic representations of response. At present, there are 
only a few isolated recordings of the rotational components of strong 
ground motion, and it is therefore possible only to work with their simula-
tions.

This chapter presents the methods for construction of artificial torsional 
and rocking strong motion accelerations, using the theory of linear wave 
propagation in a layered half space. These synthetic rotational motions, 
along with the corresponding translational components of motion, can be 
used to evaluate the response of typical structures. The significance of the 
rotational components of excitation can be evaluated by comparing the re-
sponses computed with and without participation of rotational components 
in the general forcing functions. 

The generation of seismic waves can be viewed from two different lev-
els. The first is the classical macroscopic view, which starts with kinematic 
representation of faulting (Haskell 1969) and then follows the radiated 
elastic waves using the first-order linear theory of elasticity. If nonlinear 
phenomena occur along the wave path, and if those are investigated, the 
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analysis is usually restricted to the response of soft soil deposits near 
ground surface. The second level involves the microphysics of fracture in 
rocks and includes the irreversible deformations from dislocations, discli-
nations and micro cracks (Teisseyre and Majewski 2002). In the following 
review of the effects of rotational strong ground motion on the response of 
man-made structures, only the first, or macroscopic representation will be 
considered.

Rotational ground motions, accompanying seismic waves and their ef-
fects on simple objects (obelisks, grave stones) and buildings are men-
tioned in many older texts, which by describing the consequences of strong 
shaking aim to decipher its physical nature (Hobbs 1907, Davison 1927, 
Gutenberg 1927, Richter 1958, Imamura 1937). Deployment of strong mo-
tion accelerographs in many seismic areas of the world during the past 
seventy years has produced data on translational components of motion 
during many strong earthquakes. This data describes strong motion in three 
orthogonal directions (two horizontal and one vertical), but because the 
spacing of the recording sites is much larger than the wavelengths of the 
recorded motions, little is known today about the accompanying differen-
tial and rotational motions. 

The effects of differential motions on man-made structures include 
strains (Lee 1990), curvatures (Trifunac 1990), torsion (Newmark 1969, 
Luco 1976, Scanlan 1976, Lee and Trifunac 1985) and rocking excitation 
(Lee and Trifunac 1987) of foundations, which, for flexible, extended, 
multiple and separate foundations (e.g. bridges) can lead to large pseudo-
static shears and moments (Trifunac and Todorovska 1997a). Many struc-
tural failures and much of the damage caused by earthquakes have been 
linked to differential and rotational ground motions. Hart et al. (1975) 
showed that large torsional responses of tall buildings in Los Angeles, dur-
ing the San Fernando, California, earthquake in 1971, could be ascribed to 
torsional excitation, while longitudinal differential motions may have 
caused the collapse of bridges during San Fernando 1971, Miyagi-ken-Oki 
1978 (Bycroft 1980) and Northridge 1994 (Trifunac et al. 1996) earth-
quakes. Earthquake damage to pipelines that is not associated with faulting 
or landslides but is due to large differential motions and strains in the soil 
reflects the consequences of traveling seismic waves and of the associated 
large rotations and twisting of soil blocks caused by lateral spreads and 
early stages of liquefaction (Ariman and Muleski 1981, Trifunac and To-
dorovska 1997b, 1998, 1999, Trifunac 1997, 2003).  

Studies of the rotational components of strong motion and of their ef-
fects on man-made structures are relatively young. Much can be antici-
pated and studied theoretically, but our understanding of these motions 
will gain sound and realistic basis only when a large number of recorded 
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rotational accelerograms becomes available. This may take several decades 
and will require deployment of a large number of new strong motion in-
struments, which will record all six components of motion (three transla-
tions and three rotations; Trifunac and Todorovska 2001a, b). 

39.2 Rotational Strong Ground Motion 

Rotational components of strong ground motion accompany the dis-
placements induced by seismic waves. In linear elastic media, rotations are 
expressed by space derivatives of the displacements. Other contributions to 
rotational motion result from the internal structure of the medium, non-
symmetric processes of fracture, and friction (Teisseyre et al. 2003). How-
ever, once generated, these additional rotational motions are believed to at-
tenuate quickly, and so, to be studied experimentally, they have to be re-
corded in the near field (Teisseyre 2002, Teisseyre and Boraty ski 2002). 

During the past thirty years, the inversion of recorded strong ground 
motion (Trifunac 1974, Trifunac and Udwadia 1974) has been developed 
to such a degree that it now can describe spatial and temporal variations of 
slip on the fault surface. Many inverse studies of the source mechanism 
have shown that the distribution of slip can be very irregular (Jordanovski 
and Todorovska 2002). Along the edges of fault planes and near abrupt 
changes of fault slip, tensile fractures can contribute to radiation of rota-
tional waves (Takeo and Ito 1997). A comparison of computed and re-
corded rotational velocity during an earthquake swarm, in March 1997, off 
the shore of Izu peninsula in Japan, Takeo (1998) showed that the recorded 
rotations were several times larger than the simulated rotations computed 
from linear displacements excited by dislocations on the fault (Bouchon 
and Aki 1982). He showed that agreement between recorded and simulated 
rotations can be improved if “direct excitation of rotational motions due to 
spatial variations of slip velocity and due to rotational strains” is added to 
the rotations excited by dislocations alone. 

Translational and rotational components of strong motion radiated from 
an earthquake source are modified along the propagation path through in-
terference, focusing, scattering, and diffraction. For example, reflection of 
plane P and SV waves from half space can lead to large displacement am-
plitudes for incident angles between 30  and 43 , but the associated rota-
tions (rocking for P and SV waves, and torsion for SH waves) change 
monotonically and do not lead to large amplifications (Trifunac 1982, Lin 
et al. 2001). Scattering and diffraction of plane waves from topographic 
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features can lead to focusing and to amplification for both displacements 
and rotations (Sanchez-Sesma et al. 2002). 

Beyond the results of linear theory, in the near field the non-linear re-
sponse of soil and ultimately soil failure and liquefaction can lead to large 
transient and permanent rotations. Four types of ground failure can follow 
liquefaction: lateral spreading, ground oscillations, flow failure, and loss of 
bearing strength. Lateral spreads involve displacements of surface blocks 
of sediment facilitated by liquefaction in a subsurface layer. This type of 
failure may occur on slopes up to 3  and is particularly destructive to pipe-
lines, bridge piers, and other long and shallow structures situated in flood 
plain areas adjacent to rivers. Ground oscillations occur when the slopes 
are too small to result in lateral spreads following liquefaction at depth. 
The overlying surface blocks break one from another and then oscillate on 
liquefied substrate. Flow failures are  a more catastrophic form of material 
transport and usually occur on slopes greater than 3 . The flow consists of 
liquefied soil and blocks of intact material riding on and with liquefied 
substrate, on land or under the sea (e.g., at Seward and Valdez during the 
1964 Alaska earthquake; Trifunac and Todorovska 2003). Loss of bearing 

strength can occur when the soil liquefies under a structure. The buildings 
can settle, tip, or float upward, if the structure is buoyant. The accompany-
ing motions can lead to large transient and permanent rotations, which so 
far have been neither evaluated through simulation nor recorded by strong 
motion instruments. 

39.3 Recording Rotational Strong Motion 

Direct instrumental data on rotational components of earthquake ground 
motion (Farrell 1969, Shibata et al. 1976, Teisseyre et al. 2003, Takeo 
1998) and of the motions in the vicinity of large explosions (Nigbor 1994) 
are rare. This can be attributed to two things. First, in traditional seismol-
ogy recorded motions are small because of the large epicentral distances, 
and thus the recording of the associated rotations has received little atten-
tion. Second, relative to the design of transducers for measurement of 
translational motions, it is more difficult to design transducers to measure 
rotations (Graizer 1989). Following the development of strong motion ac-
celerographs since the 1930s, which was influenced by experience with the 
design of seismological transducers, it is now becoming clear that for 
complete characterization of strong motion — and in particular for compu-
tation of permanent displacements following earthquakes — in the near-
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field, all three translational and three rotational motions must be recorded 
(Trifunac and Todorovska 2001b). 

Stedman et al. (1995) observed, using a ring laser gyro, torsional ground 
motion excited by a magnitude 6.3 earthquake in New Zealand, at an epi-
central distance of 200 km. Other ring laser interferometers (gyroscopes 
with zero inertial moment) for recording angular motion are described in 
Takeo and Ito (1997), Jaroszewicz et al. (2001) and Cochard et al. (2003). 

Takeo (1998) described and analyzed three translational and three rota-
tional components of ground velocity recorded during two earthquakes 
offshore of Ito on Izu peninsula, Japan, in 1997. He measured rotational 
motions with Systron Donner triaxial gyro sensors, with a full-scale output 
capacity of 8.7 10-1 rad/s and with flat frequency response from 0 to 75 Hz. 

A rotational seismograph consisting of two penduli with opposite orien-
tations and with identical mechanical properties (Graizer 1989, Moriya and 
Marumo 1998) in Ojców Observatory, Poland, recorded a small Silesian 
earthquake event, magnitude 1.5, at an epicentral distance of about 60 km, 
on 11 July 2001 (Teisseyre et al. 2003). So far, nobody has succeeded in re-
cording strong rotational motion in the near field of large earthquakes. 

Average “rotational motions” can be approximated from the differences 
in the recordings of at least two translational records, from an array of sta-
tions on the ground (Huang 2003, Castellani and Boffi 1986, 1989, 
Oliveira and Bolt 1989, Nathan and MacKenzie 1975, Droste and Teis-
seyre 1976) and in structures (Moslem and Trifunac 1986, Trifunac and 
Todorovska 2001c, Trifunac and Ivanovic 2003). Such estimates can at 
best approximate the average rotations over the distance separating the two 
translational records, and in principle they will approximate the rotations at 
a point only for the wave-lengths that are much longer than this separation 
distance. This is a limitation for the studies of rotational strong motion in 
the ground and in the flexible foundations of structures (Trifunac et al. 
1999, Trifunac and Todorovska 2001c), but the method is a suitable and 
desirable form of describing relative rotations in engineering analyses of 
the responses of buildings in terms of inter-story drifts (Trifunac and 
Ivanovic 2003). 

39.4 Generation of Synthetic Rotational Motions 

In the following it is assumed that the x1-axis coincides with the radial 
coordinate, in the plane containing the earthquake source and the recording 
station. The x3-axis is perpendicular to this plane and coincides with the 
transverse direction relative to the earthquake source. The vertical coordi-
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nate, x2, is perpendicular to the surface of the half space. Then, in elastic 
isotropic, layered half space, P, SV, and Rayleigh waves will produce only 
horizontal x1, vertical x2, and rocking 

3x  (about the x3 axis) motions, 
while SH and Love waves will produce only transverse x3 and torsional 

2x (about the x2 axis) motions. 
An early engineering suggestion, that torsional ground motion occurs 

during strong earthquake ground motion, may have been made by Rosen-
blueth (1957). The first proposal on how this torsional excitation could    
be estimated was made by Newmark (1969), who assumed that apparent 
velocities of strong motion can be approximated by one equivalent velo-
city, c, for all frequencies of transverse motion. Newmark’s idea was 
adopted and further explored in the studies of Nathan and MacKenzie 
(1975), Morgan et al. (1983), Awad and Humar (1984), and Rutenberg and 
Heidebrecht (1985). Through spectral analyses of the responses of tall 
buildings during the 1971 San Fernando earthquake in California, Hart et 
al. (1975) showed that torsional motions can indeed contribute signifi-
cantly to the overall response. Their study was limited by the fact that 
there was only one strong motion accelerograph on the roof of each build-
ing, which prevented them from quantitatively separating out the torsional 
contributions to total response. With the introduction in the mid-1970s of 
central recording systems that employ distributed one-channel recorders 
throughout the buildings, this limitation was partly eliminated, so that the 
recordings made since the late 1970s (e.g., Kojic et al. 1984, Trifunac and 
Ivanovic 2003) could be used to separate the contributions to the response 
of translation and the torsion of structures. 

Analyses showing that the rocking response of structures is caused not 
only by the compliance of soil during soil-structure interaction but also by 
the rocking of foundations caused by the passage of P, SV, and Rayleigh 
waves started to appear in the earthquake engineering literature in the mid-
1980s (Castellani and Bofi 1986, 1989, Lee and Trifunac 1987). Many 
analytical studies showed the significance of those rocking excitations for 
continuous (e.g., Todorovska and Trifunac 1990a, b, 1991, 1992a, b) and 
for the base isolated structures (Todorovska and Trifunac, 1993), but dur-
ing the past 20 years the studies of rocking excitation have been outnum-
bered by the studies of torsional excitation and response. Proper separation 
of the effects of rocking excitation and the rocking associated with soil-
structure interaction are essential for interpretation of the observed inter-
story drifts in full-scale structures. However, with the current instrumenta-
tion in tall buildings, which typically consists only of translational trans-
ducers, this separation cannot be carried out even approximately (Trifunac 
et al. 2001a, b, c, Trifunac and Ivanovic 2003). For buildings with large 
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floor plans, warping and deformation of the foundation (Trifunac et al. 
1999, Hayir et al. 2001, Todorovska et al. 2001), differential translational, 
and rocking seismic waves further complicate both analysis and recording 
of the response of full-scale structures. Further work needs to be done in 
this area before the role of rocking excitation can be understood and then 
included in engineering design. 

In the absence of recorded rotational components of strong motion, it is 
important for engineering studies of response to have at least preliminary 
and physically realistic simulations of such motions. At present, the 
method of Lee and Trifunac (1985, 1987) meets most of these require-
ments, and it is outlined below. 

The method of Lee and Trifunac for generation of artificial torsional and 
rocking accelerograms is an exact analytical method if it is accepted that 
(1) the motion occurs in linear elastic, layered half space and (2) that syn-
thetic ground motion can be constructed by superposition of body P and 
SV and surface Rayleigh waves for rocking (Lee and Trifunac 1987), and 
by body SH and surface Love waves for torsion (Lee and Trifunac 1985). 
This method has been extended to predict the associated strains (Lee 1990) 
and curvatures near the surface over time (Trifunac 1990), during passage 
of seismic waves. 

Synthesis of translational motions is based on the procedure proposed 
by Trifunac (1971) and later refined by Wong and Trifunac (1979). This 
procedure generates random, transient time series data, with arrival times 
determined by the empirical travel times of P and S waves in the area and 
by computed arrivals of surface waves determined from phase and group 
velocities in the given layered structure. After random time series have 
been created, their amplitudes are scaled to produce correct (desired) Fou-
rier (or response) spectrum amplitudes, based on empirical scaling laws for 
such spectra in terms of earthquake magnitude, distance, and local soil and 
geologic site conditions (e.g., Lee 2002a). At the end, the frequency-
dependent duration of each random time series is modified to agree with 
empirical estimates of the duration of strong motion in terms of selected 
empirical scaling equations for duration of strong motion (e.g., Lee 
2002b). Because in this process of generating translational accelerograms 
all characteristics of incident body and surface waves are known, those can 
be used for the computation of rotations, strains, and curvograms (Lee 
2002c).



576   M.D. Trifunac 

39.5 Response of Structures 

Computation of the dynamic response of structures to earthquake shaking 
requires selection of the forcing functions and of the mathematical models 
of structures. How close the result will be to the actual response can be de-
termined only by full scale experiments, preferably through a comparison 
with recorded response during earthquake shaking. In traditional earth-
quake engineering only one or two translational horizontal components of 
strong motion acceleration are used as forcing functions. Vertical accelera-
tions are usually neglected, because the methods of solution are formulated 
assuming small deflections. Combined effects of vertical, rocking, and tor-
sional accelerations cannot be neglected in the computation of response of 
bridge structures (e.g., Werner et al. 1979). Thus, most earthquake engi-
neering calculations of response do not consider the effects of gravity and 
vertical accelerations, and by adopting these simplifying assumptions ig-
nore the consequences of dynamic instability (Lee 1979). Because both are 
significant during the collapsing stage of response, it is seen that for typi-
cal selection of forcing functions, meaningful prediction of response is 
possible only for relatively small response amplitudes. Excitation by rota-
tional components of strong motion (torsion and rocking) is also usually 
ignored. Some analytical studies do include torsional excitation (Luco 
1976, Todorovska et al. 1988), but explicit consideration of rocking excita-
tion is very rare. 

An elementary representation of simple structural systems is often based 
on a model with a rigid foundation slab supporting a one-dimensional  set 
of lumped masses interconnected by massless springs, and with dashpots 
to simulate local dissipation of vibrational energy. Such models have been 
used to analyze elementary consequences of soil-structure interaction and 
are common in many studies and applications of the Response Spectrum 
Method (Biot 1942, Trifunac 2002, Gupta and Trifunac 1987a, 1990a). 
These models have also been studied and used in some detail to evaluate 
the significance of the effects of torsional excitation (Gupta and Trifunac 
1987b, 1989, 1990c) and of rocking excitation (Gupta and Trifunac 1988a, 
1990b, 1991). By using the order statistics of the peaks in earthquake re-
sponse (Gupta and Trifunac 1988b) the contribution of torsional and rock-
ing excitation has been characterized in terms of tens of the largest peaks 
of response, not just the largest peak, which forms the basis for the Re-
sponse Spectrum Method. These studies have shown how significant tor-
sional and rocking excitations can be and for what combinations of struc-
tural and soil properties. It has been shown, for example, that rocking 
excitation becomes important for tall structures supported by soft soil de-
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posits, while torsional excitations can dominate in the response of long and 
stiff structures supported by soft soils. 

Observations of the response of buildings during earthquake shaking 
lead to similar findings. For a seven-story, symmetric, reinforced concrete 
structure, for example, which was damaged in 1971 by the San Fernando 
Earthquake and again in 1994 by the Northridge earthquake, torsional re-
sponse contributed up to 40 percent of motion at the roof (Trifunac and 
Ivanovic 2003). Coupled with the non-linear response of soils and large 
excentricities in soil-structure interaction, torsional and rocking excitations 
of ground motion contributed to significant damage to this building (Trifu-
nac et al. 2001b, c). In another well-studied building (Hollywood Storage 
building) in Los Angeles, asymmetry of the foundation and strong tor-
sional excitation by surface waves propagating essentially along the longi-
tudinal axis of the building resulted in large torsional response (Trifunac et 
al. 2001a). 

Recording, analysis, and interpretation of the contributions of torsional 
and rocking excitations to the total inter-story drifts in structures are also 
essential for future development of earthquake-resistant design codes. 
Without proper consideration of these contributions, the observed drifts 
may be erroneously assumed to result completely from relative displace-
ment of structures, and this can lead to false confidence that the current de-
sign methods are “conservative” (Trifunac and Ivanovic 2003). 
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