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Preface

Throughout its history, science has focused on a reductionist approach. A
complicated phenomenon is studied by dissecting it into simpler components,
ascertaining how these components work and then putting it all back together again.
Most graduate students learn early in their careers to simplify. We are taught to
control as many variables as possible, to change one variable at a time and that many
simple experiments usually yield better results than one grand, but convoluted,
experiment. Indeed, this reductionist approach is largely responsible for the great
success of science. However, there comes a time when the limits of reductionism are
reached. As one colleague complained, "The easy experiments have all been
done."

We are now in a new era where the focus has shifted from the simple to the
complex. This in part reflects the success in tackling simple problems. It also
reflects a deeper sense that perhaps reductionism does not always work, that perhaps
there are some problems that cannot by understood from their parts. This change in
attitude has been spurred by the development of the appropriate mathematical tools
to handle complexity. Just as the advent of calculus stimulated the development of
Newtonian mechanics, the mathematics of complexity is promoting interest in
problems that just a few years ago where deemed too messy for proper
consideration. While "the calculus" provided a single unifying formalism for
approaching a wealth of problems, the current era sees a plethora of mathematical
techniques arising to comprehend complexity. There is now an arsenal of new
approaches. These go by different names: chaos, fractals, nonlinear dynamics, and
computational complexity are just a few of the subdisciplines that have arisen.
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How do you measure complexity? In our current formative period, there is no
single, easy answer to such a question. Most often, the mathematical techniques one
uses are dictated by the problem at hand. Fractal geometry offers a particularly
appealing, visual approach to understanding complex and disordered systems.
Fractal geometry is, amongst other things, a mathematical technique for handling
nonanalytic functions: the jagged, nondifferentiable curves that, for instance, occur
in the path of a lightning bolt. This new mathematics provides a new tool, the fractal
dimension, that in a sense is the equivalent of the derivative of calculus. This tool
can be used to describe those untidy, jagged structures that occur in nature.

Although fractals have found their greatest applications in condensed matter
physics, there have been a number of "little invasions" into other disciplines. One
can see a smattering of applications in diverse fields ranging from astrophysics to
organismal biology. This disordered advance of fractals into other fields has left its
share of skeptics. It is the goal of this book to pull together diverse applications and
to present a unified treatment of how fractals can be used in molecular biophysics.
This book is intended for two audiences: the biophysical chemist who is unfamiliar
with fractals, and the "practitioner" of fractals who is unfamiliar with biophysical
problems. It is my hope that this will stimulate both groups to work in this infant
field.

People not familiar with the mathematics of fractals often associate them with
fantastic repetitive poster images or unusual scenes of landscapes. An obvious
question then is: What do fractals have to do with molecular biophysics? There are
a number of answers to this question. A theme that runs through this book is the
close association of fractals and renormalization group theory. Renomalization
group theory is intimately associated with phase behavior of polymers and
aggregates (after all, much of biochemistry is polymer science). The renormalization
group will appear in different guises throughout the book. Basic fractal concepts and
their association with renormalization group theory are introduced in Chapter 1.
This chapter is a sufficient introduction to the field to allow the book to be self-
contained. However, Chapter 1 should be used by the interested laymen as an entree
into the fractal literature rather than as a comprehensive exposition.

In the following chapters (2 and 3) the association between polymer statistics
and fractal concepts is made in a pedagogical fashion. This association is illustrated
with examples describing the gross morphology of proteins as well as the loop
structure of both proteins and nucleic acids. A number of other special topics are
discussed as well. These two chapters might well have been written from a polymer
theory point of view without reference to fractals. What fractals do in these
examples is to provide a unifying formalism or umbrella for discussing complex
structures. This formalism will be put to good use in the later chapters that discuss
dynamic phenomena. Chapter 4 discusses the multifractal formalism, an extension
of fractal concepts to probability distributions. It describes the origin of multifractal
behavior and discusses its appearance in proteins. It provides a formal, mathemat-
ical association between the statistical mechanics of order-disorder transitions in
biopolymers and a generalization of fractal concepts (multifractals).

In the following three chapters (5-7), the application of fractals to temporal
phenomena is considered. Fractals provide a powerful connection between structure
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and dynamics, and this connection is used to advantage throughout the three
chapters. It is seen that fractal descriptions naturally lend themselves to the
complicated, nonexponential rate processes that are so pervasive in biological
systems. Chapter 5 deals with the effects of dimensionality on diffusional processes.
It considers chemical kinetics in restricted and fractal geometries. Applications to
hydrogen isotope exchange in proteins and diffusion in biomembranes are
considered. Chapter 6 discusses how and why protein dynamics might be fractal. It
examines specific results for ion channel gating kinetics. Vibrational relaxation
processes in proteins are considered in Chapter 7. This area is of great historical
value in the development of concepts such as the fracton. We revisit some of these
early applications with the hindsight accrued by the passage of time. In a treatment
close in spirit to the three chapters on dynamics, we consider the fractal analysis of
sequence data in proteins and nucleic acid in Chapter 8. This is an area of
considerable recent interest, as well as controversy.

The final two chapters (9 and 10) are reserved for processes that are perhaps the
best examples.of fractal phenomena in biophysics. In Chapter 9, we deal with
intrinsically fractal structures known as percolation clusters. It is seen that these
arise in a number of biochemical settings: antibody receptor clustering, micro-
domains in biomembranes, and in the hydration of proteins. Chapter 10 presents a
brief review of chaos in enzymatic systems. Chaos is a companion discipline to
fractals and utilizes fractal descriptions to describe complex dynamics. The "strange
attractors" characteristic of chaotic dynamics are fractals. Examples of two enzyme
systems that exhibit chaos are discussed.

As in any new and rapidly developing field, it is extremely difficult to keep up
with the literature. I apologize in advance for any oversight concerning references,
old or new. While I did intend to survey much of the field, I also wished to present
a cohesive and somewhat pedagogical treatment of fractals in molecular biophysics.
I have on occasion omitted results that were inconclusive or were tangential to the
themes of the book. I have had valuable discussion with a number of people and
wish to thank P. Pfeifer, L. Liebovitch, M. Saxton, A.Y. Grosberg, F. Family, and M.
Shlesinger for inputs of various kinds.

T. Gregory Dewey
Denver, 1996
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What Are Fractals?

River basins are fractal. So is the vasculation of the cornea. A lightning bolt shows
a certain hierarchical jaggedness characteristic of fractals. Fractals are self-similar
or scale-invariant objects. Regardless of the magnification with respect to a given
variable, the structure remains statistically invariant. Often the fractal nature of such
macroscopic phenomena, especially growth processes, is readily visualized. It is not
so easy to visualize the fractality of a microscopic object such as a protein or a
biomembrane. Temporal processes can also exhibit fractal time behavior. These too
are not always easily visualized.

A fractal is said to have no characteristic scale, whether it be spatial or
temporal. We are used to thinking in a "building block" fashion where smaller units
are assembled into larger ones. At each level of construction, one has a characteristic
length that appears in a natural way. An apartment building serves as a good
example of an assemblage with several scales. Starting with bricks and mortar, one
has, within an order of magnitude, a single size. Likewise, as a practical matter, most
rooms in apartment buildings are more or less the same size. While the size of the
building itself may vary considerably, usually these variations are not greater than
an order of magnitude. The apartment building has at least three characteristic sizes:
bricks, rooms, and the building itself. One can construct characteristic scales for
many such familiar objects. It may, in fact, be difficult to think of something without
characteristic sizes.

Consider a molecular liquid and the variety of characteristic lengths and
volumes associated with it. A few examples are the size of the atoms, the bond
lengths within the molecule, the specific volume of the molecule, and the nearest
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4 Fractals in Molecular Biophysics

neighbor distance between molecules. If the liquid has long-range order, like water,
then there are additional, more complicated spatial scales. For every spatial scale,
there often is a temporal counterpart. Liquids have a complicated array of
vibrational, collisional, and diffusive modes. Yet these modes would all appear to
have their own characteristic time scale.

If the pressure and temperature are adjusted so the liquid approaches its critical
point, it begins to show large-scale fluctuations. The fluid is caught between a liquid
and gaseous state and fluctuates between the two states. The fluctuations at one level
of magnification look essentially the same as those at another level. At the critical
point, fluctuations occur at all length scales. This gives rise to a light-scattering
phenomenon known as critical opalescence. The details of the various interactions
in the liquid become unimportant and the fluctuations are governed by certain
"universal" behavior. The "universality" is a result of the fluctuations between two
phases, and the microscopic details of the system are washed out.

This phase transition phenomenon is in a broad sense a fractal phenomenon. It
has been successfully treated theoretically using renormalization group theory
(Wilson, 1979). Renormalization group theory appears again and again in physics
and materials science. It reveals a plethora of phenomena that are scale invariant.
One of the goals of renormalization group approaches is to establish the universality
class of a set of phenomena. Once this is done, seemingly different phenomena can
be related to each other and the role of dimensionality in the system is more clearly
revealed.

A number of biochemical systems exhibit structures that are fractals. These
include percolation clusters in biomembranes, antibody aggregates, and the "strange
attractor" of chaotic enzyme reactions. In addition to these examples, we consider
biophysical phenomena that are fractal in the sense of renormalization group theory.
In the following chapters, scale invariance will appear in a range of settings that
include the polymer statistics of proteins, the symbolic dynamics of DNA
sequences, and the kinetics of the opening and closing of ion channels. It is the aim
of this book to provide a unified treatment of such phenomena.

In this introductory chapter the basic concepts of fractals and multifractals are
presented. This chapter is not meant to be a comprehensive discussion of the field
but rather is intended to provide sufficient background for the following chapters. It
will provide the interested reader with an entree into the subject. Indeed, entire
books are devoted to this material, and the interested reader is referred to the
excellent introductory texts by Feder (1988), Vicsek (1992), and Falconer (1990).
Of course, the very colorful The Fractal Geometry of Nature by Mandelbrot (1983)
is also strongly recommended. The chapter begins with an introduction to basic
ideas that will be used throughout the book. Chapter 2 provides a reinforcement of
this introduction by showing a direct application to polymer configurational
statistics, in general, and to the specific details of protein structure. An elementary
discussion of fractals and set theory is also provided. Often, simple set theoretical
arguments can be of great benefit when developing scaling laws. Such scaling
arguments are employed in most of the following chapters. This section is followed
by a discussion of self-affme fractals. Self-affine fractals are fractals that do not
scale identically along each coordinate. These occur in growth and dynamical
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processes and are particularly important in discussing diffusion phenomena. Finally,
a discussion of fractals and renormalization group theory is presented. Renormaliza-
tion group methods are used throughout the book and, as discussed above, provide
a physical underpinning for a number of examples. This chapter begins with a
particularly simple example of such methods. Throughout this chapter, the
motivation for using fractals as physical models is emphasized. This chapter focuses
more on the underlying physics rather than on mathematical rigor.

1.1 Basic Concepts

Elementary geometry provides simple relationships between parameters of different
dimensionalities. For simple forms, the perimeter, P, is related to the radius, R, as
P ~ R. Similarly, surface area, S, scales as S ~ R2 and volume, V, scales as V ~ R3.
Benoit Mandelbrot had the great insight to realize that complex forms, as often arise
in nature, follow more general scaling laws. Often, relationships, such as P ~ RD

with ] <D <.2 or S ~ RD with 2 < D < 3, will arise. In these instances, D is a
fractional exponent or fractal dimension. The object described by this "fractional
geometry" is a fractal. The fractal dimension can be used as a quantitative descriptor
of the morphology of a structure and, occasionally, can provide insight into how the
structure is formed. To gain some intuition regarding the nature of D, it is helpful
to examine simple, fractal structures.

One such example of an object with fractional scaling laws is the Sierpenski
carpet shown in Figure 1.1. This is a "deterministic fractal" because it is created
from an iterative process that completely dictates the final structure. Starting with a
triangle of area A and perimeter P, a new, large triangle is constructed by the
assembly of three smaller triangles. The perimeter of this first iterate, P1, is given
by P1 = 2P. The area, Al is given by: A1 = 3A. As seen in Figure 1.1, the second
iterate is constructed in a fashion identical to the first iterate, but now the first iterate
serves as the unit of construction. In the second "go around," one now has
P2 = 4P = 22 P and A2 = 9A = 32A. It can be seen that for the nth iteration, Pn = 2"P
and An = 3"A. If a fractal dimension, D, is defined as A ~ PD then one has D = In Anl
In Pn. Giving the initial triangle in the Sierpenski carpet a perimeter and area equal
to unity, the fractal dimension, D, is simply In 3/ln 2 ~ 1.585. Thus, the simple
algorithm, presented in Figure 1.1 results in a structure with fractional scaling. An
easy way of thinking about a dimension of 1.585 is that it takes up more space than
a line (D = 1) and less space than a plane (D = 2). Since this structure is constructed
on the plane, it is said to be "embedded" in a Euclidean dimension of 2.

It is interesting to note what happens in the above calculation when the central
triangle is included in the construction. In this case, the construction fills the plane
and should have a dimension of 2. This is also seen in the iterative accounting of
perimeter and area. The first iterate, P1, will still have a perimeter of P1 = 2P. As in
the Sierpenski carpet, higher order iterations obey: Pn = 2"P. The area, on the other
hand, behaves differently. The first iterate now gives: A1 =4A and higher order
constructs follow: A = 4nA. Seeking a relationship of the form A ~ PD gives
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D = In A,,/ln Pn = In 4/ln 2 = 2. Thus, the iterative scheme gives the expected result
that the triangles cover the plane and, therefore, have a fractal dimension of 2.

While the Sierpinski carpet is a very specific type of fractal, it does show
properties common to all fractals. It is constructed by two operations: scaling and
replacement. The initial triangle (top of Figure 1.1) is scaled to the size of the
triangle in the second iteration. The central triangle is then replaced with an open
region. This second structure is then scaled to the size of the third triangle, and again
all the central triangles are removed. The structures formed by these iterations are
called prefractals. Technically, a fractal is the infinite iteration of this process.
Figures 1.2 and 1.3 show two other popular, deterministic fractals. They are the
triadic Koch curve and the middle-third Cantor set, respectively. Again, in these
cases the initial structure is scaled (reduced in this instance) and line segments in the
original structure are replaced by the scaled structure.

All these examples are deterministic fractals. "Random" fractals can also be
generated by preserving the statistical properties or randomness at all magnifica-
tions. In this case, as the magnification is changed the structure is not identical but
does have a similar jaggedness. The jaggedness reflects the randomness of the
process used to form the fractal and the fractal dimension can be used as a measure
of that jaggedness. Lightning or dielectric breakdown is an example of such a
random fractal, with statistical similarity on many different scales. An example of
such a fractal is illustrated in Figure 1.4. Fractals form "naturally" in a number of
different settings. Some physiological structures are almost deterministic fractals.
The mammalian lung is an example of one of these (Shlesinger and West, 1991).
Often, a growth phenomenon, whether it is biological or chemical, leads to a fractal

FIGURE 1.1 Construction of the deterministic fractal known as the
triangular Sierpinski carpet. The fractal is created by an iterative
process of scaling and replacement of units from the previous iteration.
Each step is known as a prefractal and the fractal is formed after an
infinite number of iterations. The triangular carpet in the bottom of the
figure has concentric circles superimposed on it and allows the mass
fractal dimension to be calculated.



FIGURE 1.2 Construction of the triadic Koch curve.
Each line segment is replaced by a scaled version of the
previous iteration.

structure. A common growth process that forms a fractal is diffusion-limited
aggregation. A diffusion-limited aggregate is shown in Figure 1.5. These structures
have been observed in electrodeposition experiments and it has been possible to
simulate them on the computer. How and why these fractals form under otherwise
homogeneous conditions is one of the unsolved problems of fractal physics.

Although these physical systems may appear self-similar over a range of
magnifications, ultimately there will be lower and upper length cutoffs at which
fractal behavior cannot exist. Physical structures will not be infinitely repetitive. At
first appearance this would seem to limit greatly the ability of fractals to model a
physical phenomenon. In actuality this is not a serious constraint. The reason for this

FIGURE 1.3 Construction of the middle-third Cantor set. A unit line segment has the middle
third interval removed. Each subsequent iteration removes the middle third of the remaining line
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FIGURE 1.4 Image of a l ightning holt. An example
of a random fractal.

FIGURE 1.5 Image of a diffusion-limited aggre-
gate. Structure is formed by aggregation of diffusing
particles. Diffusing particles perform a random walk,
and when they hit the aggregate they stick. This simple
physical process creates a fractal, and has been
observed both experimentally and in computer
simulations.
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is that the properties ofprefractals (the finite iteration) rapidly approach those of the
true fractal. The examples shown in Figures 1.1-1.3 are all prefractals. Technically, it
is only when the iteration goes to infinity that a fractal is formed. Although the limit of
infinity rarely appears in physical applications, this turns out not to be a serious
constraint. Properties of the finite iteration so closely capture the true fractal that the
distinction between these two structures is often unimportant. Typically, fractal
models are used to predict scaling laws over several orders of magnitude of an
experimental parameter. The models will break down when the "length" scale is as
small as the fundamental unit or as large as the entire structure. Thus, there should be
well-defined limits for any fractal model. If enough physical insight exists on a given
problem, then the "crossover" points between regimes can be predicted. This can
greatly assist any effort to assess whether a limited scaling regime is due to fractal
behavior.

Another important consequence of the scale-invariant property of fractals is that
the functions describing them can never be smooth (witness the Koch curve, Figure
1.2). A common first approach to a problem in mathematical physics is to expand a
function to first order and solve the linearized problem. Because fractals are scale
invariant, one cannot find a scale on which they are smooth enough to linearize. Any
expansion will not generate a smooth, local region, but rather will generate an
identical structure, a consequence of self-similarity. Fractals intrinsically are
nonanalytic functions, i.e., they have undefined derivatives. This makes them
particularly useful in describing irregular shapes found in a range of natural
phenomena. Before the advent of fractal geometry, such functions were considered to
be mathematically "pathological."

Because of the nonanalytic behavior of fractals, the common tools of differential
calculus are inapplicable. In their place is the concept of the fractal dimension. The
irregular shape of a fractal is characterized by the fractal dimension(s) associated with
it. There are a number of different ways of defining this parameter and, depending on
the type of fractal one is dealing with, these definitions are not always equivalent.
Indeed, even the definition of a fractal itself has often been rather loose. K. J. Falconer
makes the analogy that a mathematician defining fractals is akin to a biologist
defining life. While no simple or general definition has come forth, workers in the
field still have a good sense of the attributes of the respective phenomenon. Thus, the
nebulous status of the definition of a fractal should not be misleading. In most
applications a very specific class of fractals is considered, which can be rigorously
defined. This lack of a general definition is also a reflection of the openness of the
ongoing research in this area.

In the present treatment, a pragmatic approach is taken and simple operational
definitions are used to define the fractal dimension. Initially, the fractal dimension,
DM, associated with "mass fractals" is considered. To measure a mass fractal
dimension, the total mass within concentric circles of radius, R, is determined. This
mass scales as:

M^RD" (1.1)

Thus, the slope of a log M versus log R plot gives DM. Note that for uniform
distributions in a Euclidean space of dimension £', the mass scales as M ~ pRE



Density distribution as in Eq. 1.2 occur for a variety of aggregation and growth
phenomena and have been studied extensively both experimentally and through
computer simulations.

There are situations where one has an image or set of points and does not know
the mass of the objects. For instance, an electron micrograph of the clustering of
proteins in a biological membrane gives information on point distributions but not
on the mass content. A similar situation arises when observing the distributions of
stars in a galaxy. In such cases, it is more convenient to define a different fractal
dimension known as the correlation dimension. This correlation dimension is
closely related to the mass dimension. To determine the correlation dimension, the
number of pairs of points, C(r), that lie within a radius, r, of each other is counted
(Grassberger and Procaccia, 1983). This quantity scales as:
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and D = E. For the Sierpinski carpet, in which the darkened triangles have
uniform mass, the mass dimension is readily determined (see Figure 1.1). Placing
the origin at one of the vertices of the carpet, concentric circles can be drawn
which include an integer number of triangles. For the carpet shown in Figure 1.1,
the total mass is taken as unity and the edge has unit length. For R = 1/4, one
triangle is enclosed and M= 1/9. For R = 1/2, three triangles are enclosed, giving
M= 1/3. For an infinite carpet the mass will scale as M= (1/3)" and R = (1/2)".
Using Eq. 1.1, the fractal dimension is now given as DM = In 3/ln 2, the same
number determined from area-perimeter relationships. Note that the density, p(R),
of a mass fractal embedded in a Eiuclidean space of dimension E is a function
of the radius. It scales as:

and the correlation dimension is determined from the slope of a log-log plot of C(r)
versus r. This definition has found popular application in determining the fractal
dimensions of the "strange attractors" that characterize a chaotic system. Chaos in
enzymatic systems is discussed in Chapter 10.

The fractal dimension may be defined in other ways. One such definition that
is computationally very useful is the "box-counting" dimension. Consider a set of
points (as in Figures 1.1-1.3) and find the minimum number, N, of boxes of edge
length 8 needed to cover all the points in the set. The covering of a smooth curve
is illustrated in Figure 1.6. (From a more technical point of view, hypercubes are
used to encompass the structure. For a structure embedded in a Euclidean space of
dimension E, the hypercube will have E orthogonal edges.) Now, the box size is
changed to determine how N depends on the length, 8. For a fractal structure this
dependence will be described by an inverse power law such that:

where DB is known as the "box-counting" dimension. The slope of a plot of log A'
versus log 8 provides this fractal dimension.
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FIGURE 1.6 Example of the covering of a smooth curve with
"boxes."

At first sight, this box-counting algorithm appears quite different from the one
for mass fractals. However, for self-similar, deterministic fractals both procedures
give the same dimension. As a simple example of the determination of a fractal
dimension by box counting, the triadic Koch curve shown in Figure 1.2 is treated.
Let the end-to-end length of the curve be of unit length. With a box of edge length
equal to 1/3, the number of boxes required to cover the curve is 4. Note that we
require the boxes to be centered on the line segments. Likewise, 16 boxes of length
1/9 are needed to cover the curve. It is seen that for boxes of length (1/3)", N= 4".
From Eq. 1.4 the fractal dimension for the triadic Koch curve is given by D = In 4/
In 3 ~ 1.2628. The curve "fills" more space than a line, D = 1, but less space than a
plane, D = 2. Consider now the Cantor set shown in Figure 1.3, again let the total
length be unity. Two boxes of diameter 1/3 can cover the set. Four boxes of diameter
1/9 also cover the set. It is seen that 2" boxes of length (1/3)" are required to cover
the set. Using Eq. 1.4 again, the fractal dimension is D = In 2/ln 3 ~ 0.6309. The
Cantor set or "dust" has a dimension less than 1 because it has fewer points than a
line.
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For self-similar fractals (as in Figures 1.1-1.3) the box-counting dimension is
identical to the more rigorous description of a fractal using the Hausdorff-
Bensicovitch dimension (see Mandelbrot, 1983). With the relationship given in Eq.
1.4, a number of other scaling laws can be established, and these allow for
"experimental" determinations of the fractal dimension. For example, the apparent
length of a curve, L(8), will depend on the size of the ruler. This length is simply
given by the ruler size, 8, multiplied by the number of steps, N(S). From our
definition in Eq. 1.4, W(8) = 8 ~D, one has:

Because the length of the curve is dependent on the size of the ruler, it is referred
to as an apparent length. For smooth curves, as the ruler size approaches zero the
length converges to a finite limit. For fractals, no such convergence occurs, rather
it diverges as the inverse power law of Eq. 1.4. This is the famous conundrum of the
"coastline" problem (Mandelbrot, 1967), which shows that the length of a coastline
or boundary depends on the size of the measuring device. By measuring the length
of a curve with different step sizes, the fractal dimension is readily determined from
a log-log plot.

Similarly, a surface area, 5(8), can be measured by covering the region of
interest with squares the edges of which have length 8. This gives:

Likewise a volume, V(8), is measured with cubes of edge length 8, giving:

The relationships shown in Eqs 1.5-1.7 establish the noninteger power law behavior
of fractal structures. This is a direct consequence of self-similarity (see Pietronero,
1988). When measuring, say the volume, of a fractal, if the length scale, 8, is
changed by a factor \, i.e. 8 —> X8, then one finds that:

Fractals generally obey functional equations of the form:

where a is an exponent that usually will not be an integer. Scaling relationships as
in Eq. 1.9 are common throughout thermodynamics. The most elementary example
is the scaling of state functions, such as the free energy, with extensive variables of
the system. In many cases, a = 1 and Euler's theorem is used to establish the
differential form of the state function.

A more interesting situation occurs for systems near their critical point.
Renormalization group theory leads to the following general expression for the free
fnnrow F of the system

where G is a regular function of a scaling field, x, of the system. Inhomogeneous
functional equations of the form of Eq. 1.10 arise in a number of applications. These
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include the theory of phase transitions (in both magnetic and nonmagnetic systems),
as well as the description of polymers near the theta point. As will be discussed in
the section on renormalization group approaches, the solution to the homogeneous
equation (equations of the form of Eq. 1.9) is similar to the inhomogeneous equation
(Eq. 1.10). The homogeneous solution is readily obtained by differentiating Eq. 1.10
with respect to X. and using the chain rule to give:

Integrating Eq. 1.11 and setting \ = 1 now gives the power law:

where C is the constant of integration. In most physical applications, C = 0.
From relationships such as Eq. 1.12, it is seen that self-similarity also implies

noninteger power law behavior. Power laws do not have a characteristic scale. This
might not be obvious, but can be readily seen by comparing a power law with an
exponential function that does have a "characteristic length." Typically, one does not
have a physical quantity, say /, raised to a fractional power unless it is a
dimensionless quantity. Therefore, a scaling relation as in Eq. 1.12 should really
contain a term such as: (l/L)a where L is a constant with the same physical units as
/. So why isn't L the characteristic length of the system? The lack of length in power
law scaling can be seen by comparison with exponential behavior, exp { -(//L)}.
Consider the behavior on the interval, (//L) = 1-10. In the exponential case the ratio
of the final value to the initial value is exp {-9}, while the ratio for the power law
is 10°. Now, consider the next decade, 10-100. The exponential behavior shows the
ratio, exp { -90}, while the power law is unchanged, 10a. The exponential is
greatly diminished over the second decade. On the other hand, the power law
behaves identically over the second decade as over the first. It is said to have no
characteristic length.

Equations 1.9-1.12 show that the self-similar property of fractals implies
nonanalytic behavior. There is a wealth of natural phenomena that can be described
by power laws or by exponentials of power laws. This has provided strong
motivation for the adoption of fractal models. However, the converse of this
proposition, i.e., power laws imply fractals, is not necessarily true. Consider the
common example of a density distribution that varies as 1/r, where r is the radial
distance from the origin. In this case the inverse power law does not imply a self-
similarity. If the center of the distribution is moved from the origin to another point,
the distribution for all other points changes accordingly. A self-similar fractal, on the
other hand, is independent of the origin. Self-similarity means that the same
structure will be generated regardless of location or magnification. Thus, our density
distribution clearly does not behave as a fractal and yet it has a power law associated
with it. The translational invariance property of self-similar fractals can be a serious
restriction when considering real physical models. This is especially true for finite
systems in which edge effects are important. For a system to be considered fractal,
power law behavior is not sufficient; rather, some degree of self-similarity must be
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established. A rigorous demonstration of fractality involves demonstrating scale
invariance in operations of dilation, translation, and rotation.

Returning to Eq. 1.12, it can be shown that this is still not the most general
solution to the homogeneous equation. Often solutions to functional equations have
a "unit periodic" term associated with them. These solutions are of the form:

where A(m) are the Fourier components that define the detailed shape of the
oscillations.

As seen in Eqs 1.14 and 1.15, fractal models can give rise to logarithmic
oscillations in addition to power laws. Have such oscillations ever been observed?
Numerical simulations of certain random walk problems display this behavior.
Oscillations have also been demonstrated experimentally for measurements of the
magnetoresistance of fabricated, submicron Sierpinski gaskets that are made of
aluminum (Doucot et al., 1986). Perhaps the most striking example of logarithmic
oscillations appears in the structure of the human lung. The human lung is a fractal
structure that has 23 generations of branches. (This is an unusually high number of
branching generations. Most deciduous trees have only 7 or 8 generations!)
Although the lung is asymmetric, it does show fractal behaviour. If the diameter of
the bronchial tube is plotted versus branch (or generation) number, logarithmic
oscillations are seen, as shown in Figure 1.7. Shlesinger and West (1991) have
analyzed this with a model that predicts a fractal dimension that is a complex
number as in Eq. 1.14. A number of protein dynamical phenomena show "wiggles"
in log-log plots, and these have also been analyzed with a generalized noise model
that yields complex fractal dimensions (Dewey and Bann, 1992).

In this section, we have discussed how to determine the fractal dimension of
objects. This is the basic tool of fractal geometry. However, the mathematics of

where z is a complex parameter. This shows that the fractal dimension need not be
restricted to real numbers, but can be complex as well. Even Eq. 1.14 is not a
completely general solution to the problem because the higher harmonics must also
be considered. The general solution is:

where Q = 2ir/ln X. This solution shows logarithmic oscillations in x.
If the parameter X is not uniquely determined by the problem, it can take any

value. In these cases, there is no physical reason for choosing a given Q and Eq. 1.12
is taken as the solution. However, in a range of problems X is restricted. For
instance, in the box covering that was used for the Koch curve and the Cantor set
(see Figures 1.2 and 1.3), the scaling behavior was simplified by using boxes of
diameter (1/3)". These specific values fit with the self-similar structure of the
specific fractals. Thus, in these instances, X = (l/3). Logarithmic oscillations will
occur in the mass covered as the radius is smoothly varied over the fractal.

Equation 1.13 can also be written as:
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FIGURE 1.7 Power law behavior and logarithmic oscillations in the
mammalian lungs. The log of the average bronchial diameter versus log of
the branch order (or generation number). Overall dependence is an inverse
power law (--); an oscillatory component (-) is superimposed on this.
(Figure from Shlesingen and West, 1991.)

fractals is richer than just a set of algorithms for assessing scale invariance. For
instance, the theory of fractal sets provides mathematical relationships that would be
extremely difficult to derive by more conventional approaches. These relationships
add to the predictive power of a given model and are often easily implemented. This
is the subject of the next section.

1.2 Fractals and Set Theory

To demonstrate the utility of set theory in the study of fractals, two operations are
considered: the product of fractal sets and the intersection of fractal sets. In both
instances, new fractal structures are formed and, often, the fractal dimension of the
new structure is readily determined if the dimensions of the initial fractals are
known. As a word of caution, theorems involving fractal sets are often given as
inequalities but frequently the limiting equality is used. It is sometimes possible to
find a counterexample that is not consistent with the equality. The interested reader
is referred to Falconer's book for a rigorous approach to these problems (Falconer,
1990). As will be seen in Chapters 2 and 5, simple set theoretical arguments can be
used to advantage when considering surface properties of proteins.



16 Fractals in Molecular Biophysics

FIGURE 1.8 Example of the product of two sets.
(Top) The product of a unit interval, A, with a curve,
B, to form an area, A X B. It is often easier to
determine the fractal dimension of the curve B rather
than the area, A X B. (Bottom) The product of the
unit interval, A, with the triadic Cantor set, B.

First, the product of two fractal sets is treated. The product of two sets, A and
B, is defined as the set of points in which the first coordinate is any point in A and
the second coordinate is any point in B. The dimensionality of the product is given
by:

For cases in which the curves are "smooth," the equality holds in Eq. 1.16. A simple
example is a line segment along the x-axis (set A) and a second line segment (set
B) along the y-axis. The product, A X B, is a rectangle in the xy plane. Each line
segment has dimensions of 1 (dim A = dim B = 1) and the product gives a rectangle
of dimension 2 (dim (A X B) = 2). Figure 1.8 (bottom) shows the product of a line
segment and the triadic Cantor set. The product of a line segment and the Cantor set
gives a set of dimension, 1 + In 2/ln 3. The Cantor set example shows that the
product of a fractal set with a nonfractal set is a fractal.

At first glance, the product theorem may not appear to be particularly useful.
Certainly, it can generate a number of new and unusual fractals and it provides a
relationship for determining the resulting fractal dimension. The utility of the
product theorem goes beyond this. Consider the situation in Figure 1.8 (top) where
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a product (set C) of a line segment (set A) and a curve (set B) is shown. To
determine the fractal dimension of the area (set C), the covering algorithm (Eq. 1.3)
for a surface could be used. Computationally, it is simpler and more efficient to
cover the curve (set B) and use Eq. 1.16. From the product theorem it is seen that
dim (C) = 1 + dim (B). Thus, to determine the fractal dimension of the area in
Figure 1.8 (top), one merely has to measure the dimension of the curve. This was
done in a study on the surface dimension of proteins. Pfeifer et al. (1985) measured
the boundary dimension of cross-sectional areas of the enzyme, lysozyme. It was
1.17. Using the product theorem, the surface dimension is given as 2.17. The
product theorem provides a useful relationship between structures of different
fractal dimensionalities. Surface dimensions of proteins are discussed more fully in
Chapter 2.

Fractal sets may also be generated by the intersection of two sets. The
intersection, set C, of two sets, A and B, is the set of points that are common to both
A and B. The dimensionality of the intersection is always less than that of the sets;.
For instance, two surfaces intersect to form a curve. Usually, the intersection of two
two-dimensional sets yields a single one-dimensional set. The exception is when the
two surfaces miss each other completely, giving a zero-dimensional set. Also, one
can envision a situation where the surfaces approach each other and intersect at a
single point. The relative position of the surfaces are crucial to the intersection, and
this is the reason why most set theoretical relationships are inequalities rather than
equalities. The law of "dimensional coadditivity" states that the dimension of set C,
the intersection of A and B, is given by:

d i m C > d i m A + d i m B - E (1.17)

where E is the Euclidean dimension in which the sets are embedded. Again, the
equality in Eq. 1.17 does not generally hold, yet there are a large number of cases
in which it does.

As an example of a physical application of the law of dimensional coadditivity,
the interactions of polymers can be considered. As will be discussed more
completely in Chapter 2, scaling relationships from polymer physics can be used to
find the fractal dimension of a polymer configuration. The value of the fractal
dimension depends on whether the polymer is in a good, ideal, or poor solvent.
Excluded volume polymers are polymers in a good solvent (above the "theta point")
and have a fractal dimension of 5/3. Ideal polymers occur at the theta point with a
dimension of 2. Polymer collapse occurs below the theta point and is characterized
by a fractal dimension of 3. As will be demonstrated in Chapter 2, globular proteins
behave as collapsed polymers with fractal dimensions close to 3.

Now consider the geometry of complexes formed by the interpenetration of
polymers. For protein -protein interpenetration (dim A = dim B = 3), the region of
overlap (set C) will have a dimension of 3, provided the interactions do not alter the
original dimensionality of the structure. For the interpenetration of a protein with an
excluded volume polymer or an ideal polymer, the overlapping region has the same
dimensionality as the polymer (5/3 or 2, respectively). Another interesting
construction is the intersection of a plane, perhaps representing a biological
membrane, with a polymer. For collapsed polymers this intersection has a
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FIGURE 1.9 Example of the intersection of two sets. A set of points corresponding to a polymer
intersects the plane of a membrane. The dimension of the intersection set (A X B) is determined from
Eq. 1.17.

dimension of 2. The intersection of a polymer with a membrane is illustrated in
Figure 1.9. This result suggests that the membrane surface excluded by a membrane-
bound protein will not be rugged. There will be few protein "fjords" in which
membrane lipids are trapped. A wide range of situations can be treated with the
intersection theorem. This theorem gives results that would be laborious to obtain by
conventional statistical mechanical theories. In these instances, there is a real utility
to the fractal approach.

A useful concept from set theory is that of the codimensional space. If one has
a fractal of dimension D, there is a space excluded by the fractal, its complement,
that is also a fractal. This is the codimensional space. The fractal and the
codimensional space have no overlap or intersection. Returning to Eq. 1.17, when
the union of these two sets is the null set, C = 0. If set A has fractal dimension D,
then the codimensional space, set B, will have fractal dimension of E - D. The two-
dimensional diffusion-limited aggregate shown in Figure 1.5 has a fractal dimension
of 1.71. The fjords surrounding this aggregate make up the codimensional space.
This space has a dimension of 2 - 1.71 = 0.29. Note that this space is less then 1
because of the disconnected regions that comprise it. In Chapter 5, codimensional
space will become important when considering hydrogen exchange kinetics in
proteins. In this situation, the exchangeable protons are at the fractal protein surface,
and the hydroxy ions that they react with is are in the surrounding aqueous
environment of the codimensional space. As discussed in Chapter 2, the fractal
surface of a protein is approximately 2.2. The surrounding aqueous region occupies
a complementary space of dimension 0.8.
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1.3 Self-Affine Fractals

In the "box-counting" algorithm, fractal sets are covered with boxes or "hyper-
cubes." What would happen if a different "covering" were used - spheres for
instance? Spherical coverings yield a fractal dimension known as the capacity
dimension. For self-similar fractals, the capacity dimension and the box-counting
dimension are the same. There is no dependence on the geometry or the nature of
the covering object. For another class of fractals, known as self-affine fractals, this
is not true. These fractals give different dimensions depending on the specific
geometry of the covering. Self-affine fractals depend on more than one variable and
show different scaling behavior with different variables. Despite this difficulty, it is
still possible to determine the different fractal dimensions associated with each
variable.

Subsets within a self-similar fractal can be related to each other via a similarity
transformation. In such a transformation a point, x = (x1, x2,. . ., XE), is transformed
into a second point, x', by x' = ( rx 1 , rx2, . .., rxE), where E is the Euclidean
dimension that supports the structure and r is the scaling ratio. In these instances, r
is identical for all dimensions. For a self-affine fractal, subsets are related via an
affine transformation. In this case, the scaling ratio can be different for each spatial
variable. Thus, the point x = (x1, x2, . . ., XE) is transformed into x' by x' = ( r 1 r 1 ,
r2x2, • •., rExE), where the ri terms are not all equal. This results in an asymmetric
stretching of the figure. The consequence of this affine transformation is that the
fractal scales differently in each direction. Following Barabasi and Stanley (1995),
the construction of a self-affine fractal is demonstrated in Figure 1.10. If one
magnifies a segment of the fractal, one now does not recover the original structure.
This is because the figure must be stretched more in one direction, a result of
anisotropic scaling. In general these fractals are more difficult to characterize, and
algorithms for determining their fractal dimensions require more computational
effort. These have been discussed extensively by Schepers et al. (1992).

Self-affine fractals have attracted recent attention because they occur frequently
. surface growth phenomena (Barabasi and Stanley, 1995). For instance, in surface
eposition experiments, the surface becomes uniformly covered in the plane while
ractal growth occurs in the direction perpendicular to the surface. Such growth

phenomena are intrinsically self-affine because all the growth occurs in one
direction. Progress has been made in establishing the universality of a number of
different growth processes. Such processes include fluid flow in porous media,
molecular beam epitaxy, etching, and spreading of flame fronts. Many of these
processes are well described by two critical exponents. The scaling laws for these
exponents can often be associated with a nonlinear growth equation know as the
KPZ equation.

Another well-studied example of a self-affine fractal is the trajectory of a
particle undergoing Brownian (or fractional Brownian) motion. In this instance,
there is a different scaling between the spatial and temporal variables. The number
of boxes, N, required to cover the trajectory will be proportional to the time, t ~ N.
The Einstein relationship provides a well-known relationship between the root mean
squared displacement, <x>, and the time, (x) <x> & r1/2. Thus, the box covering along a
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FIGURE 1.10 Construction of a deterministic self-affine object: (a) the region spanned by the object;
(b) the unit of construction; (c) obtained by replacing each line segment in (b) by its self-similar segment.
The box in (c) is the image of the original object, yet when rescaled does not reproduce that object (b).
This is a result of the self-affine transformation. (From Barabasi and Stanley, 1995. Reprinted with
permission of Cambridge University Press.)

spatial dimension will scale as: (x) <*• /V1/2. A recording of the mean displacement
versus time will then be a self-affine fractal with the scaling exponent (as
determined by box counting), being 1/2 along the spatial axes and 1 along the
temporal axes. More complicated diffusional processes can occur and can be
described as fractional Brownian motion. In these instances, the root mean squared
displacement shows a more general scaling of the form: (x) « ta, where a. can now
be a number between 0 and 1. The fractal dimension of the trajectory is now given
by: D = 2 - a. These more complicated diffusional processes are considered in
Chapter 5 where chemical kinetics in restricted environments is discussed. They are
also discussed in Chapter 7 when dealing with vibrational relaxation in polymers
and the concept of the "fraction." As will be seen in Chapter 8, sequence
information from DNA can be decoded into a "DNA walk." DNA walks are
trajectories that are created using the base sequence as a set of instructions for the
walker. DNA walks show self-affine trajectories and follow a scaling law consistent
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with fractional Brownian motion. These have been related to correlations within the
sequence. Finally, Chapter 9 deals with anomalous diffusion in biomembranes,
which is related to diffusion on fractal structures known as percolation clusters.

1.4 Multifractals and the Partition Function

By the mid-1980s, fractal concepts had fueled a wealth of applications in the
physical sciences. Yet by this time there was an increasing awareness of their
limitations. Fractal descriptions of physical models use sets of points, while it is
often more convenient to work with probability or density distributions. Although
parameters such as the box-counting dimension provide useful information for
characterizing complex forms, they clearly are limiting. For instance, it is possible
to have two structures with identical fractal dimension but which appear very
different to the eye. Often they will have a different texture. A number of pioneering
studies recognized that a "generalized fractal dimension" could be established (for
introductory material see Feder, 1988; Te'l, 1988; Stanley and Meakin, 1988). In
this new approach, probability distributions or densities are treated and a spectrum
of fractal dimensions can be determined using the moments of these distributions.
The box-counting dimension is a special case and represents only one of many
fractal dimensions. Because of this range of dimensions, these constructs were
termed "multifractals."

To show how multifractals are calculated, we return to the box-counting
algorithm, as illustrated in Figure 1.11. In determining the box-counting fractal
dimension, each box is given equal weight and the sum, .N(S), is calculated. Yet,
clearly, each box does not contain the same number of points. Thus, information
concerning the distribution of points in the boxes is being lost. To regain this
information, the density of points, ui, in each box is determined. A "weighted"
number of boxes, Z( l ) , can be calculated as a function of box size, 8:

where, by analogy with Eq. 1.4, r( l) is a generalized fractal dimension. Of course,
there is no need to restrict oneself to the first moment of the distribution. More
generally the qth moment can be considered:

Notice that when q = 0, the sum in Eq. 1.19 is merely the number of boxes needed
to cover the curve, and the original, box-counting fractal dimension (Eq. 1.2) is
recovered, i.e., T(()) = DB. Equation 1.19 now gives a fractal dimension for each
moment of the distribution; hence the term multifractal. Some applications allow q
to be both a positive and negative integer. In these cases, the positive moments are
dominated by boxes of high probability densities, while the negative moments are
dominated by those boxes with low probability densities. Interestingly, for scale-
invariant fractals such as the deterministic ones considered in Figures 1.1-1.3, the
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FIGURE 1.11 Illustration of the box-covering algorithm for determining the generalized fractal
dimension. The normal fractal dimension is determined by counting the minimal number of boxes of
length S required to cover the curve. The dimension is given by the scaling law in Eq. 1.17. A more
complete description of the curve requires that the density in each box be considered. The multifractal
spectrum results from the moments of the distribution as a function of 8. The multifractal spectrum is
calculated using Eq. 1.18.

probability distribution does not change from box to box, so the moments of the
distribution do not provide more information. In these cases, a single fractal
dimension is obtained rather than a spectrum.

The quantity, Z(q), has a strong analogy to the partition function of statistical
mechanics, and this can be exploited to reveal the nature of this sum. A number of
descriptions of this analogy have been given (see Stanley and Meakin, 1988; Te'l,
1988), and there are some notalional differences throughout the literature. Here we
follow the notation of Falconer (1990). Z(q) may also be written as:

where F(p) - In (n(p)) + q In (p) and the quantity in the rightmost equality is
essentially a partition function. The sum is over all probabilities, and n(p) is the
number of boxes with probability p. In many statistical applications, the sum is
dominated by the most probable distribution, p = p*, so that:

The physics (and morphology) of the problem enters from the dependence of n(p*)
and p* on the size of the system. Assuming scaling behaviour of the form:



it is demonstrated from Eqs 1.19 and 1.21 that:
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From the partition function form of Eq. 1.20, r(q) is associated with a "generalized
free energy," with q and / being the "generalized" temperature and energy,
respectively. With this analogy, it is natural to establish the "generalized entropy"

This formalism allows one to speak of the entropy of a curve. Bear in mind that this
is an analogy based on mathematical form and does not represent a true,
thermodynamic entropy. A more detailed discussion of Eqs 1.24 and 1.25 using
Legendre transforms and undetermined multipliers can be found elsewhere
(Mandelbrot, 1988). The plots of f(a, q) versus ot(q) are similar to the
"extrathermodynamic" relationships seen in some physical systems where free
energy and entropy are related.

The parameters f(a) and a are central to the interpretation of a multifractal
analysis. They are a pairwise representation of the fractal dimension, f, associated
with a singularity, a, of the fractal structure. Typically, a multifractal spectrum (f vs
a) shows a single maximum with well-defined intercepts. The normal box-counting
dimension is a single point on this curve (Figure 1.12). The very existence of this

FIGURE 1.12 Example of a multifractal spectrum. Multifractal
spectrum (f vs a) for a binomial multiplicative process with p =
0.25.
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spectrum indicates that the observed phenomenon has an underlying hierarchical
nature. Random processes or structures give very narrow multifractal spectra, while
hierarchical assemblies give broad spectra. A range of complex physical phenomena
has been analyzed using the multifractal approach. Studies on diffusion-limited
aggregation and on turbulence have received particular attention. In these instances,
hierarchical models are used to generate multifractal spectra similar to those
obtained from experimental data.

One of the simplest hierarchical models is the random multiplicative process,
and it is instructive to explore this model. Consider a one-dimensional distribution
over a unit length. The length is divided in half and a probability u0 = p is associated
with the first half, while a probability u1 = (1 —p) is associated with the second half.
This process is now repeated with each interval giving new interval lengths of 1/4,
i.e., 8 = (1/2)2). The probability for each box is now: m^oi l^o^i > M-i M-o- M-i MM • The
second and third boxes have degenerate probabilities, and further repetition of the
process will generate larger numbers of boxes with the same probability. This
number of degenerate boxes, n(p), is given simply by the binomial coefficient. Thus
Eq. 1.19 becomes:

and f ( q ) is given by Eq. 1.24. Figure 1.12 shows a plot of f versus a for a
multiplicative binomial process in which p = 0.25. This plot is highly characteristic
of a multifractal spectrum.

Simple random multiplicative processes may at first appear to be little more
than mathematical devices that show multifractal behavior. However, such models
have been used to analyze such diverse processes as the conductivity of percolating
clusters (see Stanley and Meakin, 1988) and thermal convection in fluids (Jensen et
al., 1985). In Chapter 4, a multifractal analysis of protein structure and of helix -
coil transitions in biopolymers is developed. These simple models of biopolymers
can also be represented by the random multiplicative process discussed here. For
polymer problems, multifractals can be used to provide a more complete
classification of subpopulations within an ensemble of biopolymers. This classifica-
tion reveals the complexity of such subpopulations. More general aspects of
multifractals and protein structure are also discussed in Chapter 4. Interestingly, it
is seen that naturally occurring structures give broad spectra, and "misfolded"

where N is the total number of boxes into which the unit length was divided, and
8= 1 /2N . Using Eq. 1.19 and eliminating N, the generalized fractal dimension is
obtained:

The "generalized entropy" is found using Eq. 1.25 and is:
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proteins give narrow spectra. The multifractal spectrum can be used as a diagnostic
tool for assessing the quality of protein folding algorithms. Chapter 8 develops a
correspondence between multifractals and random walk parameters. These are used
to discuss encoded walks from protein and DNA sequence data.

1.5 Fractals and the Renormalization Group

As discussed in the introduction to this chapter large-scale fluctuations occur in a
system at its critical point. Because these fluctuations occur over all length scales of
the system, the system no longer has a characteristic scale parameter. A consequence
of this loss of scale, or scalc-invariance, is that the various correlation functions
characterizing the system show nonanalytic behavior. Typically, these functions
follow fractional power laws. These fractional exponents show "universal" behavior
in that they apply to a diverse range of systems. They depend on the dimensionality
of the system rather than on its microscopic details. Thus, the fluctuations of the
system dominate the thermodynamic behavior, and the specificity of molecular
interactions is not as important.

The renormalization group (RG) theory was originally developed by Wilson to
describe critical phenomena. Since its inception, applications have expanded rapidly
to other areas of theoretical physics (for excellent introductions to RG theory see:
Ma, 1976; Creswick et al., 1992). As in fractal geometry, the concept of scale
invariance plays a major role in the RG approach. RG transformations involve two
steps: decimation or coarse graining, and scaling. In the decimation process the
degrees of freedom of the system that vary over short scales are averaged. Since the
system is dominated by fluctuations, these short-range interactions are unimportant.
After the length of the shortest interactions has been removed by the decimation
process, the system must be rescaled to regain its original length scale. In this step
all the lengths are redefined so that the coarse-grained unit corresponds to the
original unit. Figure 1.13 illustrates a real-space renormalization process used in
treating the configurational statistics of a polymer. For an excluded volume polymer,
the physical structure on a global scale appears similar to that on a local scale. The
polymer can be considered to be made up of a "string of pearls," yet if one looks
inside each pearl one sees a polymer structure much like the overall structure. The
renormalization procedure captures this self-similarity by a process of coarse-
graining and rescaling, This process is iterated until a given parameter, often the free
energy, of the system no longer changes. This is called the "fixed point" and
represents the scale-invariant limit.

To put these concepts into more concrete form, a simple and popular example
(see Maris and Kadanoff, 1978; Chandler, 1987) involving the renormalization of
the one-dimensional [sing model is considered. This development is primarily
heuristic, as the system does not show a phase transition. The main point of the
example is that it will produce an equation that is an analog to functional equations
describing fractals (Eq. 1.8). This analogy will be discussed in more detail below. It
serves our purposes well, as it introduces both Ising models and the decimation
procedure. Ising models of biopolymers will be discussed in more detail in Chapters
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FIGURE 1.13 Real-space renormalization description of a polymer. The two operations in the
renormalization process, scaling followed by a coarse graining step, are shown. (Diagram from Freed,
1987. Reprinted with permission of John Wiley & Sons.)

3 and 4. Applications of renormalization group theory arise throughout this book. In
Chapter 3, a small cell real space renormalization (a decimation procedure) is used
to calculate the statistics of loop formation in biopolymers. In Chapter 7, a
decimation approach is used to calculate the vibrational density of states for lattice
models applicable to alpha helices and double helices. In Chapter 9, we again turn
to renormalization methods when considering percolation models of biomembranes.

To proceed with the one-dimensional Ising model, consider a linear array of
spins in the absence of a magnetic field. Each spin can assume a value of a = ±1 and
only interacts with its nearest neighbor. The partition function, Z, is given by:

where J is the energy contribution from parallel spins, T is temperature, and k is the
Boltzmann constant. The summation is over all spin states. It is convenient to define
the coupling constant, K, as K = JlkT and to group even indices in the following
fashion:

The decimation step of the RG transformation is achieved by evaluating the
summation for every other lattice point. Evaluating all the even-numbered lattice
positions (CTeven = ±1), now gives the decimated partition function as:
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The next step of the transformation is to assert that the new decimated partition
function (Eq. 1.31) must have the same form as the original function (Eq. 1.29). This
is the scaling step and requires that:

Analogous expressions hold for all the lattice positions. The goal now is to
determine the form of f(K) and K' that "renormalizes" the decimated lattice. This is
done by considering all possible values (±1) for CT, and cr3 in Eq. 1.32. This gives
two independent equations:

The energy of the system will be proportional to N, the number of spins, and is
given by:

where £ is the unit energy and is independent of N. Using Eqs 1.31 and 1.32, it is
seen that:

Substituting Eq. 1.37 into Eq. 1.35 gives:

which is the inhomogeneous analog of the fractal scaling equation (Eq. 1.19).
The pair of equations (Eqs 1.33 and 1.34) provide the basic iterative scheme for

the RG analysis. If a limiting value for the partition function is known, Eq. 1.33
allows the recursive calculation of a new K, i.e., K'. The new energy, £(A"), is given
by Eq. 1.38. In systems that show a phase transition, this recursion converges to a
"fixed point," and the free energy near the critical point can be determined. In the
above example, the fixed point is zero and is not of great physical interest. An
inverse iteration yields a second fixed point at infinity, which again is of no physical
interest. This is a result of the one-dimensional Ising model not supporting a true
phase transition.

The key point for our discussion is that the renormalization approach gives
functional equations of the form:

where L is the decimation length, E is the Euclidean dimension, and 7 is an
eigenvalue of the functional equation.

Functional equations having the form of Eq. 1.39 appear not only in the RG
approach to phase transitions but also in a number of different models of random



Thus the renormalization group equations give both the fractional power law
behavior and the logarithmic oscillations described earlier for deterministic fractals
(Eq. 1.15). For any given physical problem the existence of logarithmic oscillations
will depend on whether X represents a physically realistic eigenvalue. Nevertheless, it
is seen that the physical description of phase transitions is centered on the concept of
scale invariance. The mathematical consequence of this is fractional power laws.
Power laws are the mathematical manifestations of the loss of characteristic scale.

1.6 Summary

In this chapter we have introduced the basic tools to be used throughout this book. We
have seen how simple geometric constructs that are self-similar can yield fractional
scaling laws. These constructs can be characterized by the fractal dimension.
Computational methods for determining the fractal dimension were discussed, with
emphasis on the mass dimension and the box-counting dimension. Simple set
theoretical relationships are also useful in determining fractal dimensions and can
prove very convenient computationally. Fractals are invariant to dilation, translation,
and rotation. Yet there are limitations to this definition. For growth and diffusion
problems, it is useful to introduce the concept of self-affine fractals. These fractals
show an anisotropy in their scaling properties. The fractal concept must also be
generalized when dealing with probability distributions. This generalization has led to
the concept of multifractals, and an overview of that formalism has been presented.
Finally, the strong ties between fractal geometry and renormalization group theory
have been discussed, and a simple example of a renormalization calculation
presented.
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Fractal Aspects of
Protein Structure

Proteins are individually sculpted molecules the three-dimensional structure of
which is dictated by their amino acid sequence. They are heteropolymers with a
variable composition of 20 different amino acids. The amino acid sequence is
referred to as the primary structure. For most proteins, the information contained
in the primary structure is sufficient to dictate the three-dimensional folding of
the protein. The peptide linkages that join the amino acid residues are planar and
have two characteristic dihedral angles associated with them. These bond
rotations are referred to as the & and ^ angles. For steric reasons, the bond
angles of proteins fall in localized regions of <t>^ space. These regions can be
used to classify the secondary structural units. Commonly discussed secondary
structural units are the alpha helix, beta sheet, beta turn, and random coil. The
specification of the folded configuration of the chain is called the tertiary
structure. The varied composition and nature of amino acid side-groups result in
a range of possible interactions within the polymer. Because of the compact
structure of most proteins, amino acid residues that are at distant points in the
sequence can be in close proximity in the folded state. These distant residues can
be linked by disulfide bridges, salt bridges (electrostatic), or hydrogen bonds.
These long-range interactions help dictate the final three-dimensional structure of
the molecule.

Given the strong dependence on sequence, it is not obvious that the
statistical laws of polymer physics are applicable. Scaling relations in polymer
physics are usually derived for large, homopolymers. By polymer physics
standards, proteins are very small, consisting of 50-300 amino acids, and are also
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of varied composition. Given that scaling relationships may not hold for proteins,
how could they be expected to be fractal? In the present chapter we explore the
sense in which proteins are fractals. Traditionally, protein chemists have looked
for relationships linking primary, secondary, and tertiary structural properties.
Fractal behavior is not to be found within these classifications. For instance, alpha
helices are not made up of smaller helices. As will be seen, proteins have an
intrinsic self-similarity with regard to the compactness and packing of their
structures. Although this is a simple form of fractal behavior, it has important
consequences for the gross morphology of a protein and for the statistical
thermodynamics of protein folding.

As an introduction, a general description of polymers as mass fractals is
presented. Section 2.1 provides a classical derivation of scaling laws for polymers,
and shows the relationship between these laws and the definition of the fractal
dimension. From these general polymer considerations, we move to fractal
descriptions of protein backbones (Section 2.2) and of protein surfaces (Section
2.3). These straightforward applications of fractal geometry are readily visualized
and have considerable heuristic value. The scaling of end-to-end distances in a
protein is seen to be identical on a global and local scale, and this provides the
justification of treating proteins as fractals. The algorithms by which this scaling
is obtained are discussed in Section 2.2. The fractal dimension of protein
backbones is shown to be very similar for all proteins studied to date. Proteins
are a very special form of collapsed polymer known as "crumpled globules."
Crumpled globules have the biological advantage of not forming knots. Methods
for determining the fractal surface dimension of a protein from high resolution
X-ray structures are discussed in Section 2.3. Again, similar results are obtained
over a variety of proteins and computational algorithms. This suggests that
universal behavior is also observed with respect to this parameter. Collectively,
these results indicate that the gross morphology of proteins is indeed governed by
statistical laws. The experimental determination of fractal dimensions using low-
angle scattering techniques is discussed in Section 2.4. This is a general technique
that has seen limited application to proteins, but provides a concrete example of
a physical measurement that can yield a fractal dimension. Finally, in the more
speculative Section 2.5, scaling laws for membrane proteins are derived by
considering the polymer confinement problem. Implications of these results for
transmembrane signaling are discussed.

The scaling laws determined in this chapter will be of great utility when
considering structural issues in later chapters. In Chapter 3, the configurational
statistics of loop formation is considered. A number of different loop topologies
exist and these will have characteristic scaling laws. These scaling laws are
dependent on the mass fractal dimension of the polymer. Considering the
complexity of protein structure, it is not surprising that protein dynamics are also
quite complicated. Such issues will be taken up in Chapter 5 and 7. In Chapter
5, the surface fractal dimension of protein is used to develop a chemical kinetic
model of hydrogen isotope exchange. The model relates structure and kinetics via
a fractal dimension, known as a spectral dimension. Chapter 7 considers a similar
connection for vibrational relaxation in proteins.
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2.1 Polymers as Mass Fractals

2.1.1 The Radius of Gyration and the Fractal Dimension

To introduce the application of fractal concepts to proteins, a simple discussion of
polymer scaling laws is useful. As will be seen, these laws are readily recast in the
fractal formalism and provide guideposts for the range of mass fractal dimensions
that can be obtained for polymers. This, of course, does not necessarily prove that
polymers are fractal. For a polymer to be a fractal, it must be self-similar over an
extended scaling regime. Additionally, it must be translationally invariant. The
success of the renormalization group in describing an excluded volume polymer
suggests that, statistically, such a polymer has similar configurational structures at
different levels of scaling. The assumption of self-similarity is inherent in the
successful renormalization group theory. For translational invariance to hold, the
statistical properties must be independent of the specific position within the
polymer. The theoretical manifestation of this is the superposition properties of
probability distribution functions. These properties provide a useful tool in polymer
physics (deGennes, 1979).

Central to the discussion of polymer statistics is the scaling of the radius of
gyration, Rg, of the polymer chain with number of units in the chain, N, The radius
of gyration is defined as the root mean squared distance of the constituent masses
of a polymer from the center of mass. This dependence is given by:

where v is a fractional exponent. The scaling exponent, v, takes on different values
depending on the solvent conditions. For a "good" solvent, the polymeric units have
a preferential interaction with the solvent rather than with each other. As a result, the
polymer is very extended and is referred to as an "excluded volume polymer." The
value of v is 3/5. In an ideal or "theta" solvent, the polymer interacts with the
solvent with identical strength as it interacts with itself. Consequently, the polymer
is more compact and v = 1/2. Polymer collapse occurs in the presence of a "poor"
solvent. In this case, polymer-polymer interactions are more favorable than
polymer-solvent interactions. The polymer forms a collapsed or globule state with
v = 1/3.

To describe polymers in terms of fractals, it is convenient to consider the
definition of the mass fractal dimension. The operational definition of a mass fractal
dimension, D, is considered first. As discussed in Chapter 1, to define such a
dimension, one draws concentric spheres around the center of an object. The mass
contained within each sphere is then determined. The mass fractal dimension is
defined by the scaling relationship:

where M is mass and R is radius. Typically, D would be obtained from the slope of
a plot of In R versus In M.

The contour of an excluded volume polymer backbone describes a mass fractal.
Instead of determining the mass within our hypothetical spheres, the behavior of the



Thus, the excluded volume polymer will have a fractal dimension of 5/3, and an
ideal polymer has a dimension of 2. A collapsed polymer (v = 1/3) will have a
fractal dimension of 3, i.e., it is space filling. It might at first be surprising to have
a one-dimensional structure such as a linear polymer chain assume a fractal
dimension of 3. Yet the familiar example of a ball of yarn readily shows how this
is possible. In a sense, a collapsed polymer has a "trivial" fractal dimension because
it is a homogeneous, space-filling object. Within the interior of the polymer globule,
it is scale invariant and translationally invariant in the same sense as found in simple
geometric objects such as a line segment or a plane.

2.7.2 Scaling of Excluded Volume, Ideal, and Collapsed Polymers

The scaling laws for polymers can be derived in a simple (and fortuitous) manner.
These were originally presented by Flory for the ideal and excluded volume
polymer (see Flory, 1953) and later extended by deGennes (1975, 1978) to collapsed
polymers. This derivation employs a minimization of the configurational free energy
with respect to a chain deformation parameter, a. The free energy is determined
from two terms: a local or deformation term, and a nonlocal term involving
interactions between polymer units at distant locations along the chain (see Chan
and Dill, 1991).

Flory determined the form of the deformation term from simple scaling
considerations. A full derivation is not presented here, but the outline of the
argument is given. A polymer in a theta solvent has a chain configuration that is
essentially a self-avoiding random walk. That is, the chain can be viewed as the
trajectory of a series of fixed steps that can occur in random directions. These
random steps are only restricted by the requirements that they cannot overlap or
occupy the same space. For bonds of fixed length, it can be shown that the
probability distribution function describing the end-to-end distance is a Gaussian
(Flory, 1953). The probability distribution of an end-to-end vector from the chain
origin to the location of the ith unit (xi yi, and zi) is given by:

where
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radius of gyration, Rg, is considered. The mass of a polymer, M, will be proportional
to the number of units, N, in the chain. The dependence of the radius of gyration, Rg,
on chain length is given by:

From Eqs 2.1 and 2.3, it is seen that:

and the parameter a is the bond length and N is the number of units in the polymer.



34 Fractals in Molecular Biophysics

We now let this ideal chain be deformed isotropically as a result of nonideal
solvent interactions. Upon isotropic deformation, the probability distribution
function. Pdcf, is given by:

where the dependence of the deformation factor, a, on N remains to be determined
from an energy minimization procedure. The deformation factor is defined as:

with R and R0 being the radius of gyration for the deformed and the ideal polymer,
respectively. In the ideal case, the free energy of deformation is determined solely
by an entropic contribution and has close parallels with the compression of an ideal
gas. For both cases, this is given by:

where kB is Boltzmann's constant, n is the number of polymers with a specific end-
to-end vector, V is the volume after deformation (or compression), and V0 is the
ideal (or initial) volume. Using the probability functions in Eqs 2.5 and 2.7, and
calculating the work of deformation as in Eq. 2.9, the deformation free energy, Fdef,
is shown to be:

The nonlocal energy term, Fnl, is determined by the interaction of polymer units
brought into close proximity by the folding of the chain. It will depend upon the
density of these units, and is best represented as a series expansion in powers of the
density. This term is given by:

where the density is:

with K being a numerical constant, and the right-hand equality in Eq. 2.12 is
obtained using Eqs 2.6 and 2.8. The parameter Wi is the ith virial coefficient related
to the interaction of subunits. Usually, only the first two coefficients are considered,
and these will account for two- and three-body interactions, respectively. The two-
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body interaction term, sometimes called the excluded volume coefficient, has the
following temperature dependence:

with CH) being the theta temperature and v is the volume associated with the
interaction. This volume will be roughly the size of a monomeric unit. For ideal
polymers, 7'= (H) and W\ - 0. For excluded volume polymers, T>® and the W1 term
dominates; in this case, W2 is usually ignored. In the treatment of collapsed
polymers, the W2 term becomes very important; in this case, T<S and W^ is
negative. This attractive term by itself would result in collapse of the polymer to
unrealistic densities. Consequently, the positive W2 term must be included to offset
this effect and obtain a realistic density distribution.

The total free energy to be minimized is now given by:

Setting the first derivative with respect to a equal to zero, one obtains:

Three cases are now considered: W1 = 0, an ideal polymer; W1 » 0, an excluded
volume polymer; and W1, « 0, the collapsed polymer. In the first case, where
W1, = 0 and W2 is small, one has a = 1. From Eqs 2.6, 2.8, and 2.15, it is seen that
R ~ N1/2, giving v = 1/2 and a fractal dimension of 2. When W1 » 1, the a5 term on
the left-hand side of Eq. 2.15 will dominate and a~N 1 / 1 0 . This gives R ~ N 3 / 5 .
Thus, v = 3/5 and the fractal dimension is 5/3. For the case when W1 « 1, the
dominant term of the left-hand side of Eq. 2.15 is the a-3 term. The value of v is 1/3,
and the fractal dimension is 3. Thus the entire range of fractal dimensions for
polymers can be derived from Flory's simple energy minimization scheme.

In the above derivation of the fractal dimensions of polymers, scaling laws were
obtained from a very traditional energy minimization scheme. No intrinsic fractal
properties, apart from the definition of a mass fractal, were evoked in the derivation.
An obvious question is: Are polymers legitimately fractals or have we just renamed
the scaling exponents so that they appear as fractal dimensions? The heart of the
answer lies in renormalization group (RG) theory and the scale-invariant properties
of polymers. As mentioned in the previous chapter, the RG approach represents a
succession of scaling and coarse-graining operations that, in an appropriate
application, converge to a fixed point. In a scale-invariant system this can be used
to extract the dominant behavior from the microscopic details. "Coarse-graining"
has been a dominant concept in polymer physics since the early approaches of Kuhn
(see Freed, 1987). As discussed in Chapter 1, a collection of subunits along the chain
can often be treated as a single "ideal" unit (creating a single pearl in a string of

>
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pearls). The details of the interactions within a unit are not important in determining
the overall configurational properties of the polymer. Quite often the actual size of
the unit is unimportant. The RG approach, especially in the real-space treatment,
extends these concepts by demonstrating the scale invariance intrinsic in the system.
In the excluded volume case, when scaled and coarse-grained, a large polymer
provides an adequate description of a segment within the polymer. Thus, the
renormalization procedure is not only a mathematical device, but also a physical
representation of the polymer, and highlights the scale invariance of the structure.
As will be seen in the next section, the self-similarity of proteins is very different
from that of an excluded volume polymer. The experimental basis of this self-
similarity is also discussed.

2.2 Fractal Dimension of the Protein Backbone

2.2.7 Measuring the Fractal Dimension

The previous discussion of fractal dimensions of polymers was based on statistical
arguments for homopolymers. Proteins, on the other hand, are heteropolymers and
each one has a specific primary sequence. There is a wealth of X-ray
crystallographic data on globular proteins that provide detailed structural informa-
tion. From this database, it is seen that each protein has a specific conformational
structure that is dictated by its respective amino acid sequence. The great structural
specificity of proteins is in apparent contrast to most synthetic homopolymers for
which the laws of polymer physics were derived. Nevertheless, there are common
structural motifs that recur in proteins, irrespective of the primary sequence
(Chothia, 1984). Also, it has long been recognized that globular proteins have
certain universal features with regard to surface areas, volumes, and packing
densities (for a review see Richards, 1977).

The question remains whether proteins can be described by statistical laws.
Figure 2.1 shows a log-log plot of the radius of gyration, Rg, versus number of
residues, N, for 43 different proteins (data from Abad-Zapatero and Lin, 1990). The
linearity of this plot demonstrates scaling behavior. The value of v is determined
directly from the slope. A value of 0.35 ± 0.03 is found, giving a fractal dimension
of 2.85. The data in Figure 2.1 are slightly scattered, and this may reflect the
variable amino acid compositions. Within experimental error this plot gives a fractal
dimension of 3 and demonstrates that proteins are collapsed polymers.

In previous work (Isogai and Itoh, 1984; Wang et al., 1990), the fractal
dimensions of individual proteins were determined from a direct, geometric
approach involving an analysis of X-ray structures. This early application of fractal
geometry turns out to be incorrect, and it is instructive to see how it can be corrected
(Dewey, 1993a, 1995). The data from the more extensive study (Wang et al., 1990)
are summarized in Table 2.1. In these works, the length, L, of the backbone was
measured by a stepwise connection of straight lines between the Ca atoms of the
protein backbone (Figure 2.2). This length was measured for different intervals of
m residues. For m = 3, for instance, a straight line was used to connect the C™ atoms



FIGURE 2.1 Log-log plot of the radius of gyration, Rg, versus
number of residues (amino acids) for 45 different proteins. A fractal
dimension of the protein backbone of 2.86 is determined from the
slope of this plot. (Data from Abad-Zapatero and Lin, 1990.)

TABLE 2.1 Fractal dimensions of protein backbones*

Number of Structures D

Class of Protein1

Alpha helices
Beta sheets
Alpha/beta mix
Small disulfide-rich
Small metal-rich
All categories

Theoretical models 2

Excluded volume polymer
(r>0)

Ideal polymer
(T=0)

Collapsed polymer
(T<0)

19
25
22
9

15
90

0.39 ± 0.03
0.31 ±0.07
0.31 ±0.04
0.39 ± 0.04
0.39 ± 0.04
0.35 ± 0.05

0.6

0.5

0.33

2.6
3.3
3.3
2.6
2.6
2.9

1.67

2.0

3.0

* Only data for the "global" dimension are used. This corresponds to D2 of Isogai and Itoh, (1984). See text for
details.

1 See Isogai and Itoh (1984) for classification scheme and results for individual protein structures.
2 T, temperature; 0, theta temperature of the polymer.

v



38 Fractals in Molecular Biophysics

FIGURE 2.2 Schematic representation of an algorithm to
determine the fractal dimension of a protein backbone. Line
segments are drawn between the Ca atoms in the backbone that
are spaced m amino acids apart. Total length, L, is computed as
a function of the step size m. Fractal dimensions are determined
from the slope of log L versus log m, as in Figure 2.3. (Figure
modified from Isogai and Itoh, 1984.)

on every third residue. The length of the backbone determined in this fashion
depends on the interval size, m. The fractal dimension of the backbone was obtained
from the slope of a log L versus log m plot. For 90 protein structures, this log-log
plot was bilinear with a slope of -0.38 (for m < 10) and -0.65 (for m > 10) (see
Figure 2.3 for a specific example). The bilinear plot is attributed to a "short" scaling
regime (small m) that crosses over into a "long" regime (large m). Note that even
the "long" regime is not a global property, as it consists of lengths much shorter than
the entire protein.

As discussed in Chapter 1 (Eq. 1.4), the fractal dimension of a curve may be
defined by measuring the length, L, with rulers of fixed length, E. The length is a
function of e and is given by:

where N(e) is the number of steps of length e that are needed to cover the curve. In
general, N(e) ~ e~n and L ~ el~D, where D is the fractal dimension of the curve. This
scaling law was used to determine fractal dimensions of 1.38 (short) and 1.65 (long)
from the experimental data. The global dimension corresponds to the large "ruler"
size, and the suggestion was made that the gross features of a protein are those of
an excluded-volume polymer (D = 5/3). This, of course, runs counter to the
experience of crystallographers who observe very compact structures. This
approach is inappropriate, since line segments drawn between Ca atoms on a protein
are not fixed-length increments and do not scale with m in a linear fashion (Dewey,



FIGURE 2.3 Representative data for determining the fractal dimension of a protein. Plot of
log L versus log m, where L is the total length of the protein and m is the step size (as in Figure
2.2). The plot shows two linear regions, which have been described as local and global. Analysis
of the slope of this plot yields the fractal dimension and is presented in the text. Numerical
results are summarized in Table 2.1. (From Wang et al., 1990. Reprinted by permission of Wang
Cun Xin.)

1993a). In actuality, the algorithm uses a variable-length ruler rather than a fixed-
length one.

For sufficiently long line segments, a scaling Ansatz similar to Eq. 2.2 is made.
The relationship between the root mean squared length of the segment, 8, and the
number of residues, m, is taken as 8 = amv', where v' is now a "local" exponent and
reflects the scaling of length within the protein. This is in contrast to v, which gives
the global scaling as determined by the radius of gyration. When measuring protein
backbones by the method described above, the number of line segments, N(8), is
given simply by NP/m where NP is the number of amino acid residues in the protein.
On average, the length of the protein, L(8), is given by:

The log L versus log m plot will now have a slope of v' - 1 or 1/D - 1. The previous
analyses that predicted an exponent of 1 - D do not properly determine the fractal
dimension for the protein backbone.

In principle, both the "short" and "long" scaling regimes in Figure 2.3 can be
interpreted. It is difficult to analyze the "short" region (m< 10) in a meaningful
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fashion because the units are not rigid enough to act as a fixed-length ruler (or "e
ruler" in our notation). Also, these units are not long enough that the statistical
dependence 8 = amv will hold. Thus, they will not be good "8 rulers" either. No
attempt is made to interpret this "local" scaling regime. As m increases, the scaling
Ansatz will be applicable, and this "global" regime can be interpreted using
Eq. 2.17.

The average value of v' for 90 protein structures is 0.35, giving a fractal
dimension of 2.86. This is in excellent agreement with the value of 2.85 from the
log-log plot shown in Figure 2.1. In Table 2.1, the data are grouped into specific
structural classes of proteins. Interestingly, it appears that the fractal dimension of
the backbone is independent of the secondary structural content of the protein. This
suggests that all classes of secondary structure formed in a protein are compatible
with collapsed conditions. This observation has been noted before in the context of
the energetics of protein folding (Chan and Dill, 1989).

2.2.2 Significance of the Fractal Dimension

At this point, a protein crystallographer might well ask: What has the fractal
approach told us that we do not already know? Viewing proteins as collapsed
polymers is completely consistent with long-standing ideas of protein structure.
Crystallographers have observed that proteins are extremely compact structures
with virtually no void volume. The density within a protein is almost identical to the
density of an amino acid crystal. Proteins generally have a dense, hydrophobic core
the units of which prefer to interact with each other rather than with the aqueous
solution. This behaviour is consistent with the thermodynamics of polymer collapse.
The effects of denaturants on proteins are also consistent with this view. Most
denaturants are solutes, such as urea or alcohols, that have some affinity for the
protein subunits. These solutes create interactions between the polymer and the
solution that are favorable. The solution is now no longer a poor solvent and a
transition occurs out of the collapsed state.

It might appear that the length analysis and the radius of gyration data provide
the same information regarding the fractal dimension of a protein, especially since
they agree so closely. However, this is not true. The scaling of the radius of gyration
with number of subunits in the entire polymer (Eq. 2.3) shows the behavior of the
end-to-end distance of the polymer. The length analysis provides information on the
scaling of two points separated by m units within the polymer. This distinction and
the dependence on length for a classical collapsed polymer and for a protein is
shown in Figure 2.4. A classical polymer will locally be "quasi-ideal" (deGennes,
1979). This means that it will be a Gaussian coil with v' = 1/2. These local Gaussian
coils will then pack globally into a collapsed polymer. This is sometimes referred to
as the string of pearls or bead model. The beads are made up of globules of polymer
that are ideal. When polymer collapse occurs these globules collapse and
interpenetrate. Despite this coalescence, the statistics within the globule still give
v' = 1/2. As m increases there will no longer be a local scaling, eventually scaling
as the entire polymer of length N. This results in the flat region in Figure 2.4. In this
region, snipping a small end of the polymer does not dramatically change Rg. The



FIGURE 2.4 Representation of length scaling in polymers. (Top) Comparison of
scaling of the radius of gyration and of internal lengths of the polymer. (Bottom) Plot
of log I. versus the logarithm of the number of units, log m. This plot shows how
proteins differ from "classical" collapsed polymers. (Adapted from Dewey, 1995.)

crossover behavior between local and global scaling occurs at the point m*, which
is given by m* = N2/3 for a collapsed polymer. As can be seen from the experimental
data in proteins (average behavior illustrated in Figure 2.4), a very different curve
is obtained. As discussed above, the initial, short length, scaling regime (m < 10)
may not be meaningful. However, the second regime (m > 10) behaves much
differently than a conventional polymer. In the protein case, m scales identically
with L as N scales with Rg. Thus, the end-to-end and the internal lengths both
behave identically. Proteins are self-similar in this respect. These results show that
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FIGURE 2.5 (Top) A second-generation cubic lattice created by combina-
tions of walks shown in the bottom of the figure. Both the individual walks and
the higher order constructs scale as a collapsed polymer. (Bottom): Example of
Hamiltonian walks on a cubic lattice. The cube is shown in a two-dimensional
projection; the bold line traces the path of the walk. (Adapted from Dewey,
1995.)

proteins behave very differently from classical collapsed polymers. This means that
some theories of polymer physics cannot be appropriately adapted to describe
protein structure.

Polymers that show compact local and global scaling have been referred to as
"crumpled globules" (Grosberg and Khokhlov, 1989). A simple way to model a
"crumpled globule" is through a mathematical structure known as a Hamiltonian
walk. A Hamiltonian walk is a lattice walk in which every lattice point is visited
once and only once, and no paths intersect. (Hamilton was originally interested in
such walks on a dodecahedron.) Hamiltonian walks have received considerable
attention from mathematicians, but have been used sparingly to describe collapsed
polymers and glass transitions (Gordon et al., 1976; Malakis, 1976; Pechold and
Grossmann, 1979). Figure 2.5 shows examples of Hamiltonian walks and how
larger walks can be constructed from units of the smaller ones. For a cubic lattice,
space-filling walks can be constructed in which v = 1/3 on all scales. A loose
analogy can be made between the unique individual walks that make up the larger
walk and secondary structural units of proteins. Because local scaling in proteins is
identical to global scaling, the secondary structural units must also be units of
collapsed polymer. Individual subsets of walks (or secondary structural units) can be
pieced together to give a larger walk (or protein) with identical scaling properties.
This analogy is not inappropriate considering the data in Table 2.1. As mentioned
previously, the fractal dimension of the backbone is independent of the secondary
structural content of the protein. This suggests that all classes of secondary structure
formed in a protein are compatible with collapsed conditions, i.e., all secondary
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structural classes are Hamiltonian walks. A potential physiological advantage of
having proteins form crumpled globules is that knot formation is prevented
(Grosberg et al., 1993). Knots have never been seen in proteins, presumably as a
result of the problems they create for protein synthesis and turnover.

Hamiltonian walk models of polymers (see Gordon et al., 1976; Malakis, 1976)
originally arose as a limiting case of the Gibbs-DiMarzio theory of glass transitions
(DiMarzio and Gribbs, 1958; Gibbs and DiMarzio, 1958). These models are simple
limiting cases of lattice models that consider solvent and monomers to occupy
lattice sites individually. In Flory-Huggins models of polymers, the Hamiltonian
walk is achieved simply by letting the number of solvent molecules approach zero.
However, the Flory-Huggins approximation is inaccurate because the number of
configurations, fl, is not properly computed. The starting point for statistical theories
of polymers is the configurational free energy contribution given by G = kT In fl If
the number of Hamiltonian walks of n steps, Hn, can be enumerated and the
following limit exists:

where z is the number of rotational isomeric states available to a peptide bond
rotation. It was argued that z is, at most, 3.8. The value of a' is given to first

then the number of configurations is given by fl = to". For special lattice structures,
Hn can be determined from recursion relationship generated by creating larger walks
from units of small walks (see Figure 2.5).

Originally, Gibbs and DiMarzio (1958) explored models of chains that could
assume gauche and syn configurations. Such models are readily adapted to consider
heteropolymers that contain polar and nonpolar residues. Dill's lattice model (Dill,
1985) of protein stability employs a mean-field, hydrophobicity energy term that is
analogous in form to the gauchelsyn configurational energetics. With such energy
terms, the Hamiltonian walk model is seen to show a coil-globule transition, similar
in nature to the glass transition of Gibbs and DiMarzio. The coil-globule transition
in proteins is marked by the favorable energetics of reducing the aqueous exposure
of hydrophobic residues. This driving force is opposed by the great configurational
restriction of collapsing the chain. To construct a statistical model of protein
stability, Dill considers a hypothetical two-step process associated with protein
folding. This process consists of random condensation followed by chain
reconfiguration. Random condensation is essentially collapse of the polymer to a
compact state. The chain reconfiguration step rearranges the hydrophobic residues
along the sequence to minimize the configurational energy with respect to both
polymer self-interactions and solvent interactions.

To calculate the random condensation contribution to the number of
configurations, Dill employed a Flory-Huggins approximation to a Hamiltonian
walk on a cubic lattice (Dill, 1985). This gives:
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approximation by e (= 2.7718). A slightly more sophisticated treatment gives (see
Flory, 1982):

2.3 Scaling Properties of Protein Surfaces

Since protein backbone conformations obey statistical laws, it is obvious to ask
whether surface areas follow similar laws. Except for the photosynthetic and visual
systems, the surface of a protein represents the first level of "communication" with
its environment. The geometry of the protein surface will presumably have a
significant effect on the nature of the solvation shell at the boundary. This in turn
will influence recognition events with solutes - events that are key to a diversity of
biochemical phenomena. The nature of the surface will also influence a range of
physical properties, such as isotope exchange and fluorescence quenching by small
molecules. The kinetics of isotope exchange in proteins is discussed in Chapter 5.
The surface properties of proteins also play a crucial role in determining the
thermodynamic stability of the final, folded state (see Chan and Dill, 1989), and to
some extent dictate the structure.

There are a number of ways to determine the surface area of a protein and these
various techniques all provide a similar statistical description of such surfaces.
Typically, X-ray structures are examined and surfaces are generated from van der
Waals radii (see Lewis and Rees, 1985; Fedorov et al., 1993) or isoenergetic
contours (Pfeifer et al., 1985). Techniques for determining fractal surface
dimensions fall into two main categories. In the first method, a "ball-rolling"
algorithm is used, as illustrated in Figure 2.6. In this algorithm, a spherical probe of
fixed radius, R, is rolled on the outside of the of the protein while maintaining
contact with the van der Waals surface. The center of this sphere will sweep out a
surface that is known as the "accessible surface." Because of the size of the sphere,
contact will not be made with the entire van der Waals surface of the protein. The
"contact surface" consists of the patches of the van der Waals surface that the probe
actually rolled over. The "re-entrant surface" is also a patchwork that represents the
inward surface of the probe when it is touching more than one atom. The contact and

where q is the coordination number of a lattice. Assuming a cubic lattice, q = 6 and
a' is 2.25. Using these estimates and Eq. 2.19, the entropy of polymer collapse can
be estimated. The number of configurations is further restricted by the chain
reconfiguration steps. Including these terms, entropy values consistent with
experimental values can be obtained. Because of the number of adjustable
parameters, it is difficult to determine how well the Flory-Huggins approximation
does in this case. Certainly, for a square lattice it does not do particularly well (see
Gordon et al., 1976). It is also difficult to provide a quantitative test of the cubic
lattice model of a protein. Nevertheless, the model provides a reasonable physical,
albeit qualitative, picture of the folding transition in proteins.
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FIGURE 2.6 Representation of a protein surface and the definition of different surfaces
from a ball-rolling algorithm. A cross-section of the van der Waals surface of a hypothetical
protein is shown. Numbered dots show atomic centers. Surfaces created by rolling balls of
two different radii are shown. (Figure reprinted, with permission, from Richards,
1977.)

re-entrant surface sum to make a continuous surface known as the "molecular
surface." Despite these multiple definitions, in practice the accessible surface has
been predominantly reported in the literature (see Richards, 1977).

Early on, it was recognized that the nature of the surface will depend on the size
of the probe molecule. For convenience a probe approximately the size of a water
molecule was often used, i.e., 1.4 or 1.5 A. Before the advent of fractal geometry,
the conundrum of surface areas dependent on the size of the measuring device had
to be faced, as witnessed by Richards' statement that "The accurate calculation of
even the static surface area is a complex geometrical problem" (Richards, 1977).
The fractal resolution of this problem lies in the definition of the fractal surface
dimension (see Eq. 1.5).

Using the ball-rolling algorithm, the fractal surface dimension, Ds, can be
determined in two ways. In the first approach, the probe radius, R, is varied for a
given protein, and the accessible surface area, As, is determined at each value of the
radius. The surface area is then given by As = N(R) R2, where N(R) is the number
of balls required to cover the surface. Recalling Eq. 1.5, one has N(R) ~ R~Ds. The
slope of a plot of log As versus log R is given by (Lewis and Rees, 1985):



FIGURE 2.7 Log-log plot of the molecular weight versus surface
area for 14 different proteins. As molecular weight is proportional to
volume, this plot was used to determine the fractal surface dimension
of 2.16. (Data from Chothia, 1975.)

In the data reported by Lewis and Rees (1985), these log-log plots did not show an
extensive linear region. The value of Ds for the linear region was approximately
2.4.

In an alternate treatment, the protein surface was varied by considering different
molecular weight proteins while the probe radius was held fixed (Dewey, 1993b,
1995). The volume of the protein is proportional to the molecular weight, Mw, and
the following scaling relationship was used:

A log-log plot of molecular weight versus surface area is shown in Figure 2.7 (data
for 14 different proteins, taken from Chothia (1975)). The slope of this plot gives
Ds = 2.16.

In another method of determining the surface dimension, the coastline of the
cross-sectional area of a protein is measured. This is achieved by cutting the protein
with a series of parallel planes. A resulting cross-section of a protein is shown in
Figure 2.8. The fractal dimension of the boundary of the protein appearing in a given
cross-section is determined. This is usually done using a box covering algorithm
(see Pfeifer et al., 1985) and the fractal dimension of the curve, Dc, is determine as
in Eq. 1.3. The surface dimension is then given by:
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FIGURE 2.8 Consecutive cross-section of the protein, lysozyme, at a 4 A spacing. Contours represent
isoenegetic points as determined computationally. The innermost contour line marks the sharp transition
from an attractive to a repulsive potential, and this line is considered the surface. (Figure adapted from
Clements et al., 1977.)

Eq. 2.23 can be derived from the set theoretical results discussed in Chapter 1 (Eq.
1.15); its validity has been discussed previously (Falconer, 1990). However, see the
discussion in Farin et al. (1985) for examples of failure. Typically, the values for all
the cross-sections are averaged to give the final answer. In Table 2.2, the surface
dimensions determined by these various methods are tabulated. Measurements have
also been made of the fractal dimension of the silhouette of a protein (Farin et al,
1985). In these cases, relationships equivalent to Eq. 2.23 are much less obvious,
and are not discussed further here.

Despite differences in computational techniques and proteins, the value of Ds

typically falls in the range from 2.1-2.2. However, values as high as 2.4 have been
observed. On the whole, these results indicate that proteins do not deviate greatly
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TABLE 2.2 Fractal dimensions of protein surfaces*

Protein

14 Proteins'
12 Proteins1
Lysozyme2

3 Proteins3

11 Proteins4

Dimension

2.16
2.06
2.17
2.44

2.11-2.13

Reference

Janin (1976)
Teller (1976)
Pfeifer et al. (1985)
Lewis and Rees (1985)
Fedorov et al. (1993)

* Table adapted from Dewey (1993a).
1 Data obtained from the slope of a log-log plot of surface area versus molecular weight.
2 Calculations for an isoenergetic surface instead of a van der Waals surface,
3 Data did not show an extensive linear region on a log-log plot of surface area versus probe radius.

4 Data taken from the van der Waals surface of individual proteins.

from a smooth, spherical surface, which, of course, would have Ds = 2. This may not
appear surprising, giving a picture of a protein that collapses into a globule with a
smooth surface. This is also consistent with statistical mechanical models of
polymer collapse (Dewey, 1993a). However, it is entirely possible to have a space-
filling structure (D = 3) with a highly corrugated surface (Ds significantly greater
than 2). It is conceivable that under some conditions a collapsed polymer could have
a rough surface.

The experimental data consistently show a surface fractal dimension slightly
greater than 2. Interestingly, the fractal dimension of a protein backbone is typically
slightly less than 3. Is there any significance to these slight variations in both fractal
dimensions? Recently, it was speculated that there is (Dewey, 1993b). The law of
additivity of fractal codimensions (Falconer, 1990; Pietronero, 1988) can be used to
relate the backbone dimension to the surface dimension. As discussed in Chapter 1
(Eq. 1.16), the intersection (space C) of two fractal sets (A and B) with fractal
dimensions of DA and DB, respectively, has a fractal dimension, Dc, which is given
by:

where E is the Euclidean dimension of the pace in which the structures are
embedded. The following question is now asked: "What must be the fractal
dimension of a set (B) that intersects the polymer (set A) in such a manner as to
produce a smooth surface, i.e., Dc - 2?" Taking the protein fractal dimension to be
DA = 1/v = 1/0.35 = 2.86, it is seen that DB = 2.14. The ball-rolling algorithm
creates a smooth surface (D = 2) which can be associated with Dc. Any surface that
intersects the fractal polymer structure in such a manner as to create this smooth
surface must by necessity have the dimension DB. This is the fractal dimension of
the protein surface that underlies the smooth ball-rolling surface and explains why
a fractal backbone dimension of slightly less than 3 gives a surface dimension
slightly greater than 2.

In Chapter 5 the surface dimension will be used to determine scaling laws for
the kinetics of hydrogen isotope exchange. In this model, isotope exchange occurs
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as a result of concentration fluctuations at the protein surface. The surface
dimension is used in a predictive fashion in a quantitative analysis of the kinetic
data. This model allows X-ray crystal structures to be used to calculate kinetic
scaling parameters.

2.4 Determining Fractal Dimensions by Scattering Techniques

2.4.1 Basic Concepts

Fractal dimensions of proteins have also been determined using low angle X-ray
diffraction (Chen and Teixeira, 1986). Scattering techniques can be extremely useful
in determining fractal dimensions of various kinds of aggregates (see Schmidt,
1989). A typical scattering arrangement is show in Figure 2.9. In such techniques the
scattered intensity, I(q), is measured as a function of the scattering vector, q. This
vector is varied by changing the collection angle, 0. The value of the scattering
vector q is determined by:

FIGURE 2.9 Schematic diagram showing the experimental set-up for measuring
low-angle scattering. (From Schmidt, 1989. Reprinted by permission of John Wiley &
Sons.)

where X is the wavelength of the incident radiation. To determine a fractal
dimension, one typically tries to make measurements that cover several orders of
magnitude in q. Power law behavior over a wide range of q provides confidence that
scattering from a fractal is occurring. Often, to achieve this range of q values, X-ray
and neutron scattering are supplemented with light scattering. In the Rayleigh-
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Debye-Gans approximation, identical equations are obtained for all these scattering
techniques. This regime occurs at angles such that O.l<ql, where / is a
characteristic size of the scatterer. For X-ray scattering, this conditions is usually
satisfied at very small scattering angles, 0 < 7°. Under these conditions sin (8/2) in
Eq. 2.25 is accurately approximated by 0/2. For light scattering, much wider angles
must be observed and this approximation does not hold. Typically, the largest values
of q from light scattering will be 3-10 times smaller than the smallest values of q
determined from X-ray or neutron scattering. The two techniques are com-
plementary and are often both required to span a large scattering regime.

The measured intensity of the scattered radiation for a randomly oriented
aggregate of N identical spherical scatterers is given by (see Schmidt, 1989; Vicsek,
1992):

where a is the diameter of the spheres, Jo(qa) is the scattering intensity that reflects
the interior structure of the sphere, and S(q) reflects the structure of the aggregate.
When considering scattering from a mass fractal, the variation of scattering with q
is contained in S(q) and lo(qa) is essentially constant. However, the case of a surface
fractal is just the opposite. A surface fractal such as a spherical object with a
roughened surface will have a constant density in the interior and a relatively short
fractal region on the surface. In this instance, S(q) will be constant and 10 (qa) will
vary. In the present treatment, our focus will be on mass fractals.

The scattering intensity of an aggregated structure will be dominated by S(q),
and is given by:

where I is the largest distance between a pair of scatterers within the aggregate and
g(r) is the pair correlation function. For a mass fractal the pair correlation function,
g(r), is given by a function of the form:

where f(rll) is a cutoff function. It falls rapidly to zero when r >> I and is constant
for r << I. Inserting Eq. 2.28 into Eq. 2.27 and changing variables such that z = qr,
one obtains:

The function f(r//) is such a slowly varying function that the resulting integral is
virtually independent of q and, therefore, is merely a constant. From Eq. 2.29, it is
seen that the scattering intensity will scale as:
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This scaling law has frequently been used to determine fractal dimensions from the
log-log plot of / versus q. It will be applicable in the regime 1// « q « I/a. For
aggregates where the range from 1II to I/a does not cover several orders of
magnitude, serious errors can occur in determining D in this manner. A more
complete analysis that uses a specific function for/(r//) is useful in this situation.
However, even in cases where a cutoff function is known, there can be statistical
constraints on the accurately of D. Intrinsic limits on this accuracy can be computed.
To determine the fractal dimension to within 5% error, the minimum number of data
points, Nmin, must satisfy the inequality Nmin > 42M, where M is the greatest integer
less then D (Smith, 1988).

2.4.2 Low-Angle Scattering from Proteins

The low-angle scattering from native proteins in solution is of small amplitudes.
However, when a detergent such as lithium dodecyl sulfate (LDS) is added, the

FIGURE 2.10 Scattering cross-section, /(k), for bovine serum
albumin at three different detergent concentrations versus q in a log-
log plot. Solid lines are fits to a model that assumes a specific cutoff
function. (From Chen and Teixeira, 1986, with permission.)



52 Fractals in Molecular Biophysics

amplitudes are greatly enhanced and the q dependence is easier to measure. Figure
2.10 shows a log-log plot of I(q) versus q for the protein bovine serum albumin in
the presence of three different concentrations of LDS (Chen and Teixera, 1986).
Increased detergent concentration will progressively denature the protein and causes
it to change from a compact structure to a random coil. The data in Figure 2.10 can
be fitted accurately using a model in which detergent micelles cluster on the protein
as a string of pearls. The analysis of this data is particularly interesting because it
uses both the small and large q regimes and determines structural parameters from
S(q) and l0(qa), respectively. The large q regime was treated as scattering from
spherical particles. It provides evidence for the micellar structure in the string of
pearls. From this regime a micellar radius of 18 A was determined. This radius
corresponds to the pearl size in our analogy.

The small q regime can be analyzed using a micelle-micelle pair correlation
function, as in Eq. 2.28. The cutoff function, f ( r I l ) , was assumed to be an
exponential. With this functional form, Eq. 2.29 can be integrated analytically and
the resulting expression could be fitted accurately to the data (see solid lines in
Figure 2.10). This fit provided a correlation length and the fractal dimension. It is
important to note that, when analyzed in this manner, the values obtained for the
fractal dimension were approximately 20% higher than those obtained using Eq.
2.30 and taking the slope of the linear region in Figure 2.10. This shows the system
to be in a regime where the cutoff function is important.

As the detergent concentration is increased, the protein is progressively
denatured. The observed fractal dimension decreases, presumably as a result of a
globule-coil transition. At the lowest level of detergent used, partially denatured
protein has a D value of 2.3. This puts a lower limit on the fractal dimension for the
native protein. The nondenatured protein would presumably have a fractal
dimension close to 3, consistent with the polymer collapse model. At the highest
concentration of detergent used, the fractal dimension was determined to be 1.76.
This is approaching the value of 5/3 expected for an excluded volume polymer and
suggests that the protein has completely unraveled. While the fractal dimension of
a protein in the presence of detergent is a rather specialized set of conditions, it is
of some interest because of increased work on the nature of the denatured state.
Also, gel electrophoresis of proteins is commonly performed in the presence of
detergents. The structure of these protein-detergent aggregates is required for a
deeper understanding of electrophoretic mobilities.

Scattering techniques can also be used to study protein-protein aggregation.
Such aggregates occur as a result of heating, cooling, or freeze-drying. Often these
phenomena have significant practical implications for the pharmaceutical industry.
To date, there have been few structural studies on protein aggregation. Low-angle
X-ray scattering has been used to investigate the aggregation of human transferrin
upon freeze-drying (Congiu Castellan et al., 1993). This scattering showed only a
limited scaling regime, and very low fractal dimensions were obtained from log-log
plots. These dimensions ranged from 1.13 to 1.38. No interpretation was given for
these results. In a separate kinetic scattering experiment, the heat-induced
aggregation of the antibody immunoglobulin G (IgG) was monitored by changes in
quasi-elastic light scattering with time (Feder et al, 1984; J0ssang et al., 1984;
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Feder, 1988). From these data, the radius of gyration of the antibody aggregates was
determined as a function of time. Using the Smoluchowski aggregation model, it
was shown that this radius would increase as Rg ~ (1 + yt)l/D, where y is a constant
and D is the fractal dimension of the aggregate. These results gave the a fractal
dimension of 2.56 for the protein aggregates. It is noteworthy that computer
simulations of diffusion-limited aggregates in two-dimensions give a fractal
dimension of 1.7, and in three-dimensions a fractal dimension of 2.5 (see Feder,
1988) is observed.

2.5 Scaling Laws for Membrane Proteins

The mechanisms by which membrane proteins transmit signals across the lipid
bilayer remain a crucial problem in physical biochemistry. This phenomenon is key
to a diversity of physiological functions. Examples of such "signaling" are the
activation of hormone receptors, the coordination of vectorial transport of
metabolites and the sensing of electrical potentials by ion channels. In each case,
information is being transferred over the rather long distance of the membrane (~ 50
A). For the above examples, this "information" is hormone concentration,
chemiosmotic potential, and membrane potential, respectively. How a protein
achieves this transmernbrane communication is of vital importance. While each set
of phenomena may have its specific mechanistic traits, it is probable that general
features of transmernbrane signaling will emerge as more detailed physical data
become available. For example, one common structural motif is the utilization of
seven membrane-spanning protein domains (see Dohlman et al., 1991). At this stage
our knowledge of the microscopic details of membrane proteins remains so sketchy
that most mechanistic models must be viewed as highly speculative (for a review of
ion transport models, see Tanford (1983)).

In this section, a heuristic presentation is given of scaling laws associated with
various physical parameters of membrane bound proteins. This treatment is similar
in spirit to deGennes' analysis of adsorbed polymers (deGennes, 1979). One could
readily adopt the more rigorous approach of Kosmas and Freed (1978), as the
membrane problem has strong analogies to their treatment of confined polymers.
Figure 2.11 shows a schematic representation of a membrane protein confined to a
region of width 8 and embedded in a membrane of thickness L. The two spatial
coordinates in the plane of the membrane are unconfined.

First, consider the length of the protein parallel to the membrane, R1. This will
be given by:

where Rf is the root mean squared radius of the free or unconfined protein. For
conditions of polymer collapse, Rf~ aN1/d, where d is the topological dimension.
Following deGennes, «t is a function of the dimensionless parameter Rf /A, and in the
limit of strong confinement is assumed to scale as <I>(R f /A) ~ (Rf/A)m, with m being
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FIGURE 2.11 Schematic representation of a mem-
brane-bound protein. The membrane thickness is L. As a
result of the membrane association, the protein is
confined to a slit of width A.

an exponent to be determined. As A becomes small, R1 will scale as a two-dimensional
collapsed polymer, R1 ~ Nl/2 and, therefore, using Eq. 2.31, (m + l)/3 = 1/2. This
gives the scaling law:

Thus, the length along the membrane scales with W as a two-dimensional
polymer.

Rll can be related to the membrane thickness, L, by a simple energy minimization
procedure. The excess free energy of confinement for the polymer, AG, is given by the
sum of two terms: the unfavorable entropy of confining the polymer in a slit of width
A, and the favorable energy of interaction of the polymer with the membrane. The
forms of these interaction terms are readily derived from scaling arguments. It is
assumed that the unfavorable entropy of confinement will be a term linear in N. Again,
consider the reduced variable defined as (Rf/A). In the limit of large A, there is no
confinement and the entropy should decrease to zero. In the limit of small A, the
confinement entropy will become infinite. Therefore, a scaling relationship for the
entropy can be assumed, and it takes the form AS1 = - (Rf/A)p. Because AS ~ N, and
for a collapsed polymer Rf ~ N1/3, one finds that p = 1/3. The first contribution to the
entropy will then be: AS = - (Rf /A ) 3 - N(a/A) 3 .

The second term is the favorable energy of interaction between the polymeric
units and the membrane. It is merely equal to the number of polymeric units in the
membrane, NM, times the average free energy of interaction per RT of a unit with
the membrane, y. The total excess free energy for a protein associating with a
membrane will be given by:

where NM is given by the fraction of units in the membrane times N. NM is given
simply by N(L/A). The distance A is unconstrained and is adjusted to minimize the
free energy. Upon minimization of AG with respect to A, a relationship between A
and L is obtained:



For a two-dimensional system g2 = Nla2, and in the limit of small A, n ~ A/a.
Therefore, for the membrane protein:

g( r ) = 8 2 ( r \ J g i ( r ± ) (2.40)

where gt represents a one-dimensional correlation function perpendicular to the
membrane. In the plane of the membrane, the protein is seen to have a pair
correlation function like a two-dimensional collapsed polymer.

The scaling results derived in this section provide a number of general
relationships for membrane bound proteins. These results suggest, not too
surprisingly, that in the plane of the membrane, the protein behaves as a two-
dimensional collapsed polymer. Equation 2.34 is of some interest as it relates
membrane properties, g and L, to the overall width of the molecule, 8. This simple
connection may be of importance for membrane signaling. Experimentally, the
membrane thickness is not easily varied. However, both lipid composition and protein
exposure can change. This could result in changes in g, the free energy of interaction
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This allows the variable A to be eliminated from most expressions. This is important
because A is not readily accessible experimentally, whereas L is known for a large
number of systems. Because L is determined primarily by the lipid composition of
the membrane, it is for the most part a constrained parameter. Using Eq. 2.34, one
obtains'

The scaling behavior of the pair correlation function, g(r), can also be demonstrated.
This function scales as (deGennes, 1979):

where n is the number of residues within a radius r, with r << Rf. For an unconfined,
collapsed polymer, n ~ (r/a)3 and g(r) ~ (N/a3). Considering the membrane
protein:

where rL is the direction perpendicular to the membrane surface. Using Eq. 2.32,
one obtains:
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between a residue and the membrane. For instance, membrane proteins such as the
adrenergic family of receptors, have hormone binding sites within the membranous
region rather than in the aqueous region. Hormone-receptor binding energies can be
quite large, easily of the order of 10 kcal/mol. Binding of hormone could produce
conformational changes that expose different portions of the protein and, thereby,
alter y. This, in turn, will change the width A in accord with Eq. 2.34 to minimize the
confinement energy. A change in A, especially an increase, could make the receptor
more accessible for secondary recognition events. This interrelationship shows how
properties in one region of the protein can influence those in others and, thereby, allow
for long-range "communication." Both the width and interaction potential of the
membrane limit the amount of protein exposed to the aqueous environment. Using Eq.
2.34, it is also seen that the membrane interaction parameter, y, is likely to be small
because y = 3a3/A2 L. The parameter a will be approximately a bond length and will
be several angstroms. The values of A and L will be approximately the same as the
thickness of membrane (~ 50-100 A). This indicates that proteins can be confined to a
membrane by fairly weak interactions. This is a consequence of the weaker
confinement entropy for a collapsed polymer. For an excluded volume polymer the
confinement entropy is proportional to (a/A)5/3, while for a collapsed polymer it is
(a/A)3. As (a/A) is small, the difference in exponents has a dramatic effect. Consistent
with this is the observation that the membrane has very little impact on the
compactness of the protein (Eq. 2.40). These effects all support the view that
membrane-bound proteins can exist without major structural alterations and will
maintain similar secondary structural properties as soluble proteins.

2.6 Summary

In this chapter, scaling laws of polymer physics have been presented for three
different polymeric states: excluded volume, ideal, and collapsed polymers. These
laws have been related to the mass fractal dimension. Structural data for proteins have
been examined, and it has been seen that proteins have fractal dimensions around 3
and are collapsed polymers. However, unlike classical collapsed polymers, proteins
show identical local and global scaling. Implications for statistical mechanical models
of proteins have been discussed. Protein surfaces also show similar fractal properties,
and these have fractal dimensions of approximately 2.2. The use of scattering
techniques to determine fractal dimensions has been discussed with particular
reference to protein-detergent aggregates. Finally, scaling laws for membrane
proteins have been derived by treating them as confined polymers.
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Loops, Polymer Statistics, and
Helix-Coil Transitions

As seen in the previous chapter, proteins follow scaling laws for collapsed polymers.
These extremely compact structures have a mass fractal dimension of 3. The scaling
laws of polymer physics were derived for extremely high molecular weight
homopolymers that show no branching. Perhaps it is fortuitous that proteins have a
scaling law similar to collapsed polymers? The diverse nature of amino acid side-
chains allows for a number of different types of interaction between subunits.
Consequently, most proteins show loop structures. Covalently attached loops can be
formed as a result of disulfide bond formation between cysteine residues. Often, the
protein will fold back on itself and form hydrogen bonds. The presence of such loop
structures presents another question. Perhaps proteins are really extended polymers
forming loops? Maybe the loop structures give an anomalously high fractal
dimension? The answer to these questions can be found in cell renormalization
studies of looped polymers (Family, 1982, 1984). This simple and elegant
renormalization technique will be explored later in this chapter.

Initially, the scaling properties of loops are considered, along with their
implications for biopolymer structure and function. We begin by introducing
elementary concepts of polymer chain statistics with a comparison of linear and
loop-forming chains. Because linear chains and ring polymers are in the same
universality class, many of the scaling laws are identical. These approaches can also
be used to investigate the "trail problem," the statistics of a linear polymer that
doubles back on itself. Small cell renormalization group or real-space renormaliza-
tion group (RSRG) theories can be used to explore this universality. Of all the
renormalization techniques, RSRG is probably the easiest to visualize because the
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diagrams used have a direct physical correspondence. In these applications, one
constructs all possible walks on a given lattice. The lattice is then decimated by
removing lattice sites. Often, every other point is removed. The probability of
finding a walk on the original lattice is then related to that of finding one on the
decimated lattice. This gives rise to the renormalization equations and allows the
determination of a fixed point. The decimation procedure allows one to determine
how the system scales with size and yields the critical exponent. Surprisingly, small
lattices can be used to obtain these exponents, and two specific examples will be
treated in the present chapter.

After establishing the corresponding behavior of linear and loop-forming
polymers, the question of the entropy of loop formation is treated. The probability
of ring closure for a number of different topologies is presented. After discussing
these theoretical results, experimental data on loop formation in proteins and nucleic
acids are presented. Using these results, limitations on the size of enzymes and
receptors are estimated. The binding sites of such proteins represent a trade-off
between the number of favorable contacts and the unfavorable entropy of loop
formation. In this section, we follow the arguments of deGennes (1990), suitably
updated to account for the polymer collapse nature of proteins. Finally, the
implication of loop thermodynamics on helix-coil transitions in nucleic acids is
examined. After a short excursion into the statistical mechanics of helix-coil
transitions, the crucial role of loop scaling laws in such order-disorder transitions
is demonstrated.

3.1 Random Walks and Loops

Random walk problems have been studied extensively and have seen application to
a wide range of phenomena. Polymers are often modeled as random walks, with the
trajectory of the walk representing the polymer chain. In the present section, general
features of random walks are discussed and special reference is made to the problem
of loop formation. A central goal for most walk problems is to calculate the
probability of a walk ending at a certain location after a given number of steps. For
such problems, the probability distribution function is usually very difficult to
obtain. For ideal and excluded volume polymers, the form of this probability
function, Pu(r), for a polymer of N units is given by (McKenzie, 1976):

where p N ( r ) is the probability of finding the Nth unit at a location r from the first
unit. A and B are constants, and the critical exponents, 0 and 8, can be expressed in
terms of the two universal critical exponents, v and y.

For an ideal polymer, 7 = 1 and v = 1/2.



where e = 4 - d. This ratio defines a universal constant for this system.
Another scaling law of particular importance relates the total number of

possible walks (or configurations), rN, to the size, N, of the system. This is given
by:
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Interestingly, the form of the probability function in Eq. 3.1 is the same for ring-
forming polymers when r is large (rlNv>> 1) (Baumgartner, 1982; Prentis, 1982).
The relationship in Eiq. 3.2b also holds for rings. However, Eq. 3.2a is not
universally valid, and values of 6 will depend on specific loop topology (Redneir,
1980). In the limit of short r (r/Nv << 1), the distribution function for loop-forming
polymers has the form:

where d is the Euclidean dimension in which the system is embedded. Usually, three
different loops are considered: end-to-end closure (or a ring), closure between an
end and an interior point (tadpole), and closure between two interior points.

In addition to Eq. 3.3, the scaling of the radius of gyration, R, with N is also
useful in characterizing a walk. This scaling law takes the form:

where v is a characteristic exponent. The scaling exponent v is the same for linear
and ring polymers. This is because these two systems are from the same universality
class. As discussed in Chapter 1, for a mass fractal Eq. 3.4 can provide the fractal
dimension, D, of the system, i.e., v = l/D. The ratio of the squared radius of gyration
for a self-avoiding ring and a linear polymer is a constant, given by (Prentis,
1982):

where u is the average connectivity constant. For many problems, FN is a rapidly
increasing function of N. For percolation problems, it shows divergent behavior and
allows for the study of phase transitions in surprisingly simple systems. Such
percolation problems are discussed with reference to microdomain formation in
biomembranes in Chapter 9.

In the loop problem, a law analogous to Eq. 3.6 also exists. Typically, a
"reduction factor" or cyclization probability R(N;iJ) is defined (see Chan and Dill,
1989, 1990). This is given by:

where i and j are the positions along the chain of the units that make contact. The
number of units in the loop, n, is given by n - 1 = i -j. Equation 3.7 is useful in
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considering thermodynamic data on loop closure, since the logarithm of the
reduction factor gives the entropy of loop formation as a function of the number of
units in the loop. Thus, it is important to determine v and 6 for various loop
topologies in order to understand the thermodynamics of loop formation in
biopolymers.

where PN,i is the probability of creating the ith configuration for a walk of N steps,
and K is the "fugacity" associated with a given step in the walk. The generating
function is an analogue of the grand canonical partition function of statistical
mechanics. It is mathematically similar to the "sequence generating function" that
is used in our later discussion of the statistical mechanics of biopolymers. For the
grand canonical partition function, A' has a physical meaning related to the chemical
potential of the system. In the present application, it is simpler to think of AT as a
mathematical device. It is an expansion variable the coefficients of which give the
probability of an N-step walk. The probability of the ith configuration is given by
the product of the probabilities of the individual, j steps, PN,i (J):

In the renormalization approach, the generating function for a decimated lattice is
equated to that of the normal lattice. This is a result of the scale invariance of the
problem. From this renormalization equation, the exponent v is calculated. To make
the connection with the critical exponent, the radius of gyration of the walk, R, is
calculated using the generating function. This is given by:

where Kc is the radius of convergence of the sum. The proportionality on the right-
hand side of Eq. 3.10 is made by using a common approximate relationship for gamma

3.2 Real Space Renormalization Groups

In many problems Eq. 3.1 is taken as an empirical law and the appropriate scaling
behavior (Eqs 3.4 and 3.6) is determined by a variety of methods. These methods
include computer simulations and renormalization group approaches (for some
examples see Vicsek (1992). We now consider the determination of v (and the
fractal dimension) using a renormalization approach, which is known as the small
cell RSRG (see Family, 1984; Creswick et al., 1992). This provides a simple and
very visual application of renormalization concepts. These real-space renormaliza-
tion techniques can also be applied to percolation problems, and are discussed again
in Chapter 9.

A generating function, G(K), is used to describe walks of all possible number
of steps, N. This is given by:
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functions, N^ == lim T(N+ v)/T(N). This, in conjunction with an application of the
binomial theorem, gives Eq. 3.10.

The renormalization group equations are derived by relating the fugacity of the
decimated lattice, K', to that of the normal lattice. This is done in accordance with
the weighting of individual steps in the walk, giving:

The double summation in Eq. 3,11 is best visualized by using the graphs for a
specific problem. The double sum represents all possible walks that span the lattice.
Note that there are walks with different numbers of steps. All of these are accounted
for in the first summation. There will also be walks that have the same number of
steps, but different probabilities associated with them. These are accounted for in the
inner summation. The probabilities assigned to steps in the walk are dictated by the
specific model of interest. For irreversible growth models, probabilities are assigned
on the basis of equal likelihood of all sites. Thus, the number of neighbors at the
growing end of the walk will determine the probability assigned to the next step. For
problems that treat equilibrium properties, each step is assigned an equal probability,
regardless of the number of available sites.

3.2.1 The Self-Avoiding Walk

The method is illustrated with a simple example of a self-avoiding walk (SAW), an
example that serves as a good model for an excluded volume polymer. In this
problem, we seek all walks that span a "lattice cell" in a self-avoiding fashion. In
Figure 3.1 a 2 X 2 cell on a square lattice is considered. The walks that start in the
lower-left corner and cross the cell vertically are depicted. In the decimated or
renormalized 1 X 1 cell, all these walks will be equivalent to the single graph with
one vertical step (see Figure 3.1). To model an excluded volume polymer, we deal
with equilibrium configurations or walks, so each step in the walk is given a weight,
K. The probability of a given graph is equal to Kn, where n is the number of steps
in the graph. For the problem illustrated in Figure 3.1, Eq. 3.11 becomes:

The critical point, Kc, is determined by the condition that K' = K. This is determined
numerically, and in this instance Kc = 0.4656.

To calculate the scaling exponent, the fugacity is expanded in a Taylor series
about the critical point. This gives:

where A = (dK'/8K)Kc. The scaling law (Eq. 3.10) for the decimated lattice now
becomes:

where b is the change in lattice spacing as a result of decimation. In this instance
b = 2, since two spaces are converted into one. Equation 3.14 is a consequence of
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FIGURE 3.1 Graphs of all random walks that span a 2 X 2 lattice. Renormalization equates
these graphs to the single graph (far right) that spans a 1 X 1 lattice.

the assumed scale invariance of the system. Using Eqs 3.13 and 3.14, the critical
exponent is now calculated using:

For the two-dimensional SAW problem, a value of v of 0.7152 is obtained. The
value predicted from Flory's theory is 3/4 (see Chapter 2). These renormalization
results can be improved by considering larger cells. In such cases, configurations
must be enumerated using a computer. Family (1984) treated the problem up to
b = 6, and using an extrapolation procedure determined a v of 0.746 ± 0.004. The
approach is readily extended to three dimensions, but again a computer enumeration
is required because of the dramatic increase in labor at the higher dimension.
Extremely accurate results are also obtained for the SAW in three dimensions.

The small cell renormalization can provide a facile means of calculating the
fractal dimension of complicated random walk problems. However, it is often
difficult a priori to assess the level of accuracy of these results. Typically, the
accuracy should improve as the cell size is increased. However, this improvement
may not always be dramatic and can sometimes give the appearance of converging
to a given value. Nevertheless, this method is computationally so simple that it is
often useful in determining the qualitative behavior of the system. It has proven
particularly powerful when investigating the dependence of a system on a particular
parameter. Such problems occur in the investigation of sol-gel transitions (see
Creswick et al., 1992) and in gel-fluid transitions in biomembranes (see Chapter 9).
In the present chapter, it is seen to provide a convenient approach to problems
regarding loop formation.
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FIGURE 3.2 Graphs for ring-forming walks on a 2 X 2 lattice. Walks originate in the lower
left corner and leave the cell at the top. The walk returns to the cell from the right-hand side and
joints the starting point. The graph on far right is the renornnalized, 1 x 1 lattice.

5.2.2 Ring Closure

The fractal dimension of a SAW that forms a ring is now considered. This problem
is illustrated in Figure 3.2 where a 2 X 2 cell is shown. The walk originates in the
lower left corner and leaves the cell at the top. It returns to the cell from the right
and joins its starting point. There are four such ring-closure walks for a 2 X 2 cell.
Note that the cell with fugacity, K6, has two point contacts. This walk renormalizes
to a single contact in the 1 X 1 cell and is, therefore, allowed. In this specific model,
a ring is formed when two points are common to the walk. If two bonds (the line
between points) are taken as common, very different results are obtained. The
renormalization equation associated with Figure 3.2 is (Family, 1982):

The fixed point is Kc = 0.62 and v = 0.79 (D = 1.27). When a 3 X 3 cell is used a
slightly lower v is obtained. However, renormalizing a 3 X 3 cell to a 2 X 2 cell
gives v = 0.75, in agreement with Flory's result for a linear polymer. Family verified
that a ring and a linear polymer are of the same universality class by considering a
two-parameter renormalization where different fugacities were associated with
spanning and returning configurations. The flow diagram associated with the
recursion relations shows that rings and linear SAWs reached the same critical point,
indicating that they are in the same universality class. Thus, the ring polymer will
have the same fractal dimension (1/v) as a linear polymer. These results parallel the
very different approach of Prentis (1982) and Baumgartner (1982), who essentially
established the same behavior using Eq. 3.5.

These results on simple rings are readily extended to more complicated loop
topologies. The problem of a SAW that has a single contact in its interior can also
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FIGURE 3.3 An example of a loop-forming
walk that spans the 3 X 3 lattice. Determining the
statistics of this type of walk is sometimes referred
to as the "trail" problem.

be treated with real-space renormalization techniques. This is sometimes referred to
as the "trail" problem. Figure 3.3 shows an example of a loop-forming SAW that
spans a 3 X 3 cell. (There are no loop-forming configurations that span a 2 X 2
cell). The fractal dimension of the SAW when interior loop-forming configurations
are allowed can be determined. When all spanning configurations are considered,
the renormalization equation for a 3 X 3 cell going to a 1 X 1 cell is (Family,
1982):

This gives a value of v of 0.72, which is very close to the Flory result. A two-
parameter renormalization can again be used to generate a flow diagram. This shows
that polymers with and without loops converge to the same fixed point. Once more,
this demonstrates that they are in the same universality class. Interestingly, if the
polymer is allowed to fold back on itself so that two bonds overlap, a very different
result is obtained. In this instance, it scales as an ideal, or theta, polymer.

These results show that loop formation will not affect the fractal dimension of
an excluded volume polymer. Thus, it is extremely unlikely that the high fractal
dimension of 2.8 obtained for a large data set of proteins (see Chapter 2) (Dewey,
1993) is a result of loops in such polymers. Independent of this argument, one might
not anticipate loop effects on the fractal dimension (or v) of collapsed polymers. In
such cases, interactions between units are so favorable that the polymer becomes
close packed. Since multiple contacts are numerous within the polymer, the concept
of a loop loses some of its meaning in this context.

As a word of caution, in the biochemical literature a loop region in a protein is
defined as a disordered region that occurs between regions of well-defined
secondary structures. In a recent, interesting study (Thomas, 1990), the end-to-end
lengths of such regions were determined from a large set of X-ray data. Although
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there is significant scatter in the data, it is seen that this subset of protein structures
scaled as a theta, or ideal, polymer. Thus, these disordered regions or "loops" give
a local structure consistent with the Gaussian statistics of ideal polymers.
Nevertheless, when proteins are viewed as global structures and units are not taken
in isolation, the structures appear as collapsed polymer.

3.3 The Entropy of Loop Formation

We now turn our attention to the thermodynamics of loop formation in biopolymers.
These entropic effects are important for the conformational stability of both proteins
and nucleic acids. As mentioned earlier, the entropy of loop formation is obtained
from the reduction factor (Eq. 3.7), the ratio of the number of loop configurations
to linear configurations. The entropy, S, of a loop of n units has the general
form:

where c is a constant. From Eq. 3.7, it is seen that c = v (d + 0). Originally, simple
theoretical arguments by Flory (Poland and Scheraga, 1966) and by Jacobsen and
Stockmayer (see Chan and Dill, 1989) predicted a value for c of d/2. This result
appears ingrained in the biophysical literature. However, more recent theoretical
results show that the value of c is much larger and will change with loop topology.
This is a result of changes in 6. Before considering these theoretical results, we
examine experimental data on the thermodynamic effects of loop formation in
proteins and nucleic acids.

3.3.1 Loop Formation in Proteins

It is not uncommon for proteins to form covalent loops as a result of disulfide
bridges between the side-chains of cysteine residues. This has the curious effect of
stabilizing the protein structure as a result of destabilizing the denatured state
(Johnson et al., 1978; Lin et al, 1984; Ueda et al., 1985; Pace et al., 1988). Protein
stability is determined by the difference in free energy between the native,
conformational state and the denatured state. The native state is usually a highly
specific, folded conformation. This restriction in number of configurations results in
a large unfavorable entropic contribution in this state. Often, such native states are
confined to a limited number of configurations, even when the disulfide bridge
forming a loop is broken. The denatured state, on the other hand, has considerable
configurational freedom. The imposition of a loop structure on this random state
now has a large unfavorable entropic impact. Thus loop structures destabilize the
denatured state much more than the native state. This results in increased protein
stability. This effect has been explored experimentally for a number of systems.

Stability studies have been performed on a variety of proteins with disulfide
linkages by studying thermal and urea denaturation. Perhaps the most elegant of
these investigations was the site-directed mutagenesis studies on ribonuclease T1
(Pace et al., 1988). In this work, the ribonuclease was genetically engineered so that
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FIGURE 3.4 Examples of different loop topographies possible in nucleic acids. (Top left) Hairpin
loop formed by self-complementary regions of single strands. (Top middle) Interior loops formed by
noncomplementary regions or "melted" regions of double strands. (Top right) Bulge loops formed by
noncomplementary regions in one strand of a complementary double strand. (Bottom) Comparison of a
double strand with two loops of j/2 units to a double strand with a single loop of j units. The single-loop
structure is favored entropically.

it contained zero, one, and two loops formed by disulfide bridges. Care was taken
in placing these mutations so that the native state was not disrupted by the
replacement of natural amino acids with loop-forming cysteines. In addition to
investigating these mutant proteins, Pace et al. compiled thermodynamic data from
other systems. The focus of the interpretation in this work was not on the value of
the exponent, c, but rather on the pre-exponential term associated with Eq. 3.18.
These results were analyzed assuming a value of c of 3/2 (the Flory result). If
these mutation results are analyzed with c as an adjustable parameter, a much higher
value (c = 2.41) gives the best fit to the experimental data (Chan and Dill, 1989).
Thus, the protein data are not in agreement with the early, simple theoretical results.
Nevertheless, they do emphasize the importance of loop effects in protein
stability.

3.3.2 Loop Formation in Nucleic Acids

Nucleic acids also form structures in which the entropy of loop formation influences
conformational stability. Because of the double stranded nature of many nucleic
acids, a wide range of loop topologies is possible. These are illustrated in Figure 3.4,
where structures known as hairpins, interior loops, and bulge loops are shown.
Hairpins result from self-complementarity in single-stranded structures. Nucleic
acids are composed of purines and pyrimidines that "complement" each other by
forming hydrogen bonded complexes called Watson-Crick base pairs. Thus a
specific sequence must find its complement to form a helix. When the nucleotide
bases are complementary and hydrogen bond with each other, the chain can fold
back on itself and form a double helical region. The bases in between the
complementary regions are forced into a loop structure. Bulge loops are formed in
double-stranded structures when a noncomplementary region occurs within one of



where the units are kilocalories per mole of loop formed. Surprisingly, these
empirical laws do not change with the different loop topologies shown in Figure 3,4.
The prelogarithmic factor, after correcting for proportionality constants, corre-
sponds to a c value of 2.59, slightly higher than the value of 2.41 determined from
protein data. Although it is unlikely that the three loop structures in Figure 3.4 will
all have the same c value, the quality of the data and the assumptions of the
thermodynamic model preclude a more accurate determination of this parameter.
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the two complementary strands. The interior loop can occur as a result of
noncomplementary regions in both halves of an otherwise complementary double
strand. The lengths of the loop region for each strand need not be identical. The
interior loop is important in considering the "melting" or strand separation behavior
of a double strand at high temperature. Short double-stranded polynucleotides will,
at high temperature, fray from the ends and separate. For longer double strands, the
melting is not from the ends, but rather from the growth of interior loops.

To recognize the importance of loop entropy in dictating how double helical
DNA melts, consider the situation illustrated in Figure 3.4. The figure shows a
double helix with one interior loop of size j. Compare this with the other double
helix with two interior loops of half the size, j/2. The single-loop structure has a
more favorable entropy than two loops with comparable number of loop bases. This
entropy difference between the single loop and the double loop is given by:

As can be seen, this difference is always positive for j > 4. This positive entropy
difference contributes a negative term to the free energy. This indicates that a single
large loop is thermodyamically more stable than two smaller loops. Since loops can
be very large in DNA, easily 100 to 1000 bases, a situation is created where a single
large loop will be dominant equilibrium structure. Although this effect is countered
by other energy contributions, it contributes very strongly to the cooperativity of
helix-coil transitions in nucleic acids. A detailed statistical mechanical treatment of
such effects is discussed in the next section.

The energetics of loop formation in nucleic acids has been investigated using
synthetic oligonucleotides of specific base sequences. The thermodynamics of
double helix formation can be determined for a given complementary sequence by
thermal denaturation. Single strands that contain the same complementary sequence
can then be constructed with an intervening noncomplementary sequence. By
varying the length of this intervening sequence, the loop size is varied. Usually it is
assumed that the energetics of the double helix is the same regardless of the loop
structure in the rest of the molecule. Thus the "excess" thermodynamic parameters
in the loop-forming sequence are due to the energetics of the loop. For short
oligonucleotides this interpretation provides empirical laws for the free energy of
loop formation that take the form (Bloomfield et al., 1974):
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FIGURE 3.5 Different loop topographies used in theoret-
ical calculations: (0) ring-forming polymer; (1) closure from
one end of a loop (tadpole); (2) an internal loop with two
ends.

3.3.3 Comparison with Theory

It is interesting to compare the experimental values of c with those obtained from
theoretical models. As mentioned earlier, initial theoretical work suggested that
c - d/2 for ring closure. A more sophisticated theoretical analysis by Fisher (1966)
gave c values of 1.46 and 1.75 in two and three dimensions, respectively. At the time
of Fisher's work it was recognized that excluded volume effects between the loop
and the "tails" of the polymer might have a significant effect. Later work confirmed
this. Three different exponents have been calculated. They are: loop formation by
the entire polymer (c0); a loop at the end of a long polymer chain (c,); and a loop
in the middle of a long chain (c2). These three cases are illustrated in Figure 3.5.
Unfortunately, these cases do not correspond with those in Figure 3.4, which are
relevant to nucleic acids. Nevertheless, they will be of importance in considering
protein structure. Numerical enumerations have provided values for each of these
constants. The value for end-to-end closure, c0, is now generally accepted to be 11/6
for SAWs in two dimensions and 23/12 for three dimensions. Redner (1980) has
tabulated values of c1, from a variety of approaches. There is some variation in these
values, but typically they are 2.13 for two dimensions and 2.12 for three dimensions.
An exact enumeration of lattice walks was used by Redner (1980) to determine c2,
and values of 2.95 and 2.16 are obtained in two and three dimensions, respectively.
These computational results are essentially in agreement with those obtained
from a renormalization group approach known as an e expansion (des Cloizeaux,
1980). Recall that e = 4-d and that c = v ( d + 0 ) . The e expansion gives
00 = e/4 + 9e2/128, 6, = e/2 - 3 e2/8, and B2 = e -15 e2/32. Although this expansion
agrees favorably with most computational results, higher order terms in the two-
dimensional e expansion give results that differ significantly from the computational
result of 2.95. In a smaller scale enumeration, Chan and Dill (1990) obtained values
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of 3.17 and 2.42 for c2 in two and three dimensions, respectively. Thus, excellent
(and probably fortuitous) agreement is obtained with the experimental results for
proteins (c2 = 2.41).

Interestingly, end-to-end closure is more probable in two than in three
dimensions, while loop formation in the middle of a polymer is more probable in
three dimensions. In the first case, the polymer finds it more difficult to return to the
origin when the dimension is increased. (A four-dimensional walk has virtually no
probability of returning to the origin.) For loop formation in the middle of the chain,
there is the added problem of the "tails" getting in the way and blocking loop
closure. This problem becomes more severe in compact spaces, making loop
formation less probable at lower dimensions. As mentioned above, the nucleic acid
results for a variety of loop topologies give a c value of 2.59. One should bear in
mind that this number was determined using a specific thermodynamics model of
nucleic acid interactions and from a limited data set. Consequently, the experimental
value may not be highly accurate. Nevertheless, it is a very high value that has
profound implications for the nature of the helix-coil transition. For c > 2,
theoretical arguments show that the system can support a first-order phase
transition. This has not been observed experimentally.

3.4 Constraints on the Size of Enzymes and Receptors

A typical enzyme or receptor will bind small molecules that are substrates or ligands
in a reversible fashion. For enzyme-substrate binding this equilibrium can be
represented as:

where E is enzyme, S is the substrate, and ES is the enzyme-substrate complex.
Biochemists typically discuss the strength of the complex using the dissociation
constant defined as Kd = [E]fS]/[ES], where the brackets represent concentrations.
This dissociation constant is usually in units of molarity. Although there is
considerable variation in this parameter, a typical dissociation constant might be
10 6M for an enzyme-substrate complex. Hormone receptors generally have a
greater affinity for their ligands, and a typical binding constant would be roughly
1CT9M. The binding energy for these two examples are 8.2 and 12.4kcal/mol at
300 K, respectively. The binding site for an enzyme or receptor can consist of a
range of amino acid side-groups, each capable of interacting with the ligand in a
specific fashion. While there is extreme variability in the nature and extent of these
ligand-protein interactions, a number of crude rules of thumb apply. Hydrogen
bonding, hydrophobic interactions, and salt bridges (electrostatic) are types of
ligand contacts that can contribute 2-10 kcal/mol per interaction (Fersht, 1985).
Mutagenesis and binding studies suggest that most interactions will fall in the lower
end of this range. Dissecting the binding of a ligand into specific pairwise
interactions is fraught with difficulties. Often the strength of a given interaction is
compromised to enhance other aspects of the binding. Bearing in mind these
difficulties, one can estimate the number of "contacts" in a typical enzyme or
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FIGURE 3.6 Schematic representation of the
loop structures required to bring specific amino
acids together to form an active site of an
enzyme.

receptor. It is not unrealistic to have three or four specific interactions that must
occur at the binding site to create a functional protein. Typically these interacting
sites are on distant residues, so that two or three loops must be created to position
these sites in a confined region. The confinement at the binding site and the loop
structure is shown in Figure 3.6.

Given this constraint, deGennes (1990) presented an insightful analysis on the
minimum size requirement for an enzyme or receptor. Unfortunately, this analysis
was based on the loops being Gaussian (or ideal) coils, an assumption inconsistent
with the scaling laws discussed in this and the previous chapter. In this section,
deGennes' arguments are recreated with the appropriate Hamiltonian walk behavior
of the protein inserted into the model. This analysis is based on the probability of
loop formation. First, we consider the distribution function, p(x,y,z), for finding a
polymer configuration of N units starting at the origin and ending at the point (x,y,z).
In the previous treatment (deGennes, 1990), this was given by:

where fl is the number of possible configurations and P(x,y,z) is taken as the
Gaussian probability function of Eq. 2.5.

Following a Flory-Huggins treatment (Flory, 1982) (see also Chapter 2), the
number of configurations was taken as O = (20/e)N, because there are 20 different
amino acids, each one with a different configuration. However, this is clearly an
overestimate as a given position on the chain will often be insensitive to substitution
by another amino acid. As was demonstrated in the previous chapter, globular
proteins with a variety of secondary structures are consistent with Hamiltonian walk
conditions. Therefore, the number of configurations in Eq. 3.21 should really be the
number of possible Hamiltonian walks. This is given by:
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where the constant, nH, is determined within the Flory-Huggins approximation
as:

where, again, z is the connectivity of the lattice. For a cubic lattice, z = 6, it was
shown that the Flory-Huggins approximation is surprisingly good (Pande et al.,
1994), Therefore, a physically more realistic approach gives the much smaller value
of (1 = (5/e)N.

In addition to correcting fl for polymer collapse, the function P (x,y,z) must also
be suitably changed. A simple modification of Eq. 2.5 would be to alter the
expression for R0 (Eq. 2.6). It should now be R() = NV a, where v= IID = 1/3.
However, this correction alone is not sufficient to give proper scaling behavior for
a collapsed polymer. As discussed earlier in this chapter (Eq. 3.1), a more general
form of the probability function is:

where 6 and 8 are critical exponents and B is a constant. As it turns out, the form
of the exponential is unimportant, because for loop formation r << R0, and because
the exponent 8 is approximately 1. For our present purpose, we need only to know
8, and we use values determined from the numerical simulations discussed in the
previous section.

With the above considerations and explicitly introducing the proportionality
constants, the distribution function for loop formation, ploop(r), is now given by:

The exponent, v(d + 9), is equal to c, and we will assume an interior loop and use
the c2 value of 2.16 determined numerically by Redner (1980). From Redner's work,
O2 is found to be 0.67, and the rla term will not strongly influence the final result.
Following deGennes, a value of 4 A is used for the length, a, of an amino acid in
a protein. The distance r will represent the size of binding pocket. For simplicity, we
assume a value of 4 A for this as well, and the (rid) term is eliminated.

Equation 3.25 represents a probability density. To calculate the probability, the
volume available to the protein in configurational space, w, must be estimated. This
volume is the variation in an active site locus that would still result in a functional
enzyme. Previously, this was taken as a the volume of thermal fluctuations in the
end-to-end distances in the loop (deGennes, 1990). The spatial variation was
assumed to be 0.2 A in each of three directions and the angular variation was taken
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N
FIGURE 3.7 Plot of the probability of a successful loop
orientation, ps, versus the number of amino acids in the loop, N. The
minimum size for a successful loop is approximately 50 units.

as 1/10 rad or 6°. Consequently, w was estimated as 8 X 10-6 A3 rad 3. It is assumed
that configurations are evenly distributed and are at low density. Consequently, a
Poisson distribution is used. The probability of no points in configuration space
falling into the volume w is now given by:

where pf is the probability of failure of a proper configuration being found. The
probability of success, Ps, of forming a properly folded loop is then ps = 1 -pf, and

these values are plotted for different values of W in Figure 3.7. As can be seen, the
smallest number of amino acids that could form a loop with a precise end-to-end
contact is approximately 50. This number is to be compared with deGennes' number
of 13 obtained for a Gaussian coil. It has been argued that the smallest loop size will
be independent of the number of loops in the structure. Consequently, a lower limit
on the size of an enzyme can be calculated.

To create an enzyme with three contacts at the active site, two loops are
required. Using the above arguments, the smallest possible enzyme should be
approximately 100 amino acids. There are few enzymes that have less than 100
amino acids. Ribonuclease and lysozyme are examples of small enzymes, being
composed of 124 and 129 amino acids, respectively. Examination of the active sites
of a number of enzymes shows that amino acids participating in catalysis are

and
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frequently well separated along the sequence. A separation of approximately 50
residues is not uncommon. However, considerably smaller and larger separations are
observed, and there is wide variability in the "loop structures" that form an active-
site. No attempts have been made to characterize the distribution of such structures.
However, from a survey of "textbook enzymes" the estimate of 50 residues between
contacts is not unreasonable.

3.5 The Statistical Mechanics of Biopolymers

During the late 1950s and 1960s, considerable effort went into developing
theoretical models of the helix-coil transition in biopolymers (see Poland and
Scheraga, 1970). Collectively this work represents one of the more successful
applications of statistical mechanics in molecular biophysics. Currently there is
renewed interest in this problem (Qian and Schellman, 1992). This is largely due to
advances in synthetic techniques that can provide specific sequences for both
polynucleotides and polyamino acids. With these sequences, it is now possible to
test a number of postulates underlying the theoretical models. In addition to these
fundamental considerations, there has been considerable interest in RNA structure
and stability (Turner et al., 1988). Even relatively short RNA sequences can show
a rich diversity of looped structures. With renewed attention to such problems, it is
important to re-examine the previous statistical mechanical models. It is also
important to reconsider these models in the light of the computational work on loop
entropies discussed in the previous section. The result of this work bears on the issue
of first-order phase transitions in biopolymers.

While a wide variety of biopolymer models have been explored, most efforts
have focused on two specific structures: the alpha helix used to describe polyamino
acids, and the double helix used to describe polynucleotides. Helix-coil transitions
in these two models are illustrated in Figure 3.8. In both cases, the units of the
polymer exist in an extremely compact, helical conformation. The alpha helix is
characterized by hydrogen bonding between the peptide linkage of every fourth
residue. The hydrogen of the amide group bonds to the carbonyl oxygen. These
hydrogen bonds are close to being parallel to the helix axis. For the double helix
model, helical segments hydrogen bonds between Watson-Crick base pairs on
opposing strands. This bonding is perpendicular to the helix axis. In both cases, the
helical regions create extremely compact structures, perhaps the most compact
structure possible. However, because of their high orientational order, at
intermediate length these structures are rigid rods. The energetics governing such
structures are a complex interplay of a variety of forces. A common "textbook"
mistake is to assume that the hydrogen bond energy holds them together. While
hydrogen bonding is important, no single contribution can account for the overall
stability of alpha or double helices. Because of the "zipper" nature of both
structures, they undergo thermal transitions that are highly cooperative. Typically, a
biopolymer can "melt" from a predominantly helical structure to a predominantly
coiled structure over the range of a few degrees. While the coil state is often
assumed in theoretical models to be that of an excluded volume polymer, there is
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FIGURE 3.8 Helix-coil transitions in an alpha helix and a
double stranded nucleic acid. The alpha helix has hydrogen
bonds between every fourth amino acid residue. These bonds
are approximately parallel to the helix axis. The double strand
has complementary nucleic acid bases that hydrogen bonds
between strands. These hydrogen bonds are perpendicular to
the helix axis. In both cases helix formation is favored by
nearest-neighbor interactions, making helix-coil transitions
highly cooperative.

little experimental information to support this contention. The steepness of this
order-disorder transition has intrigued experimentalists and theoreticians alike, and
has resulted in extensive work on this subject over the past 30 years.

There are a variety of statistical mechanical techniques used to investigate
order-disorder transitions in biopolymers. They fall into three main categories:
combinatoric, transfer matrix, and sequence generating functions. Each mathemat-
ical approach has its appeal and utility. In the current development, sequence
generating functions will be used. This approach provides a facile connection with
the multifractal formalism to be discussed in the next chapter. Also, recent advances
have given this method a wider range of applicability (Dewey, 1994). In the majority
of models, a unit of the biopolymer can exist in one of two states: helix or coil.
Statistical weights are then assigned to these states depending on their occurrence in
the sequence. Lifson developed the sequence generating function technique to
calculate the partition function for a number of statistical problems involving
biopolymers (Lifson, 1964; Litan and Lifson, 1965). This method is an extension of
Guggenheim's generalized divergent partition function (Guggenheim, 1939), which
is discussed in a rigorous fashion by Hill (1956). This approach has appeared in a
variety of applications, including one-dimensional gases (Runnels, 1965) and other
combinatorial problems (Temperley, 1956).
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3.5.1 Sequence-Generating Functions

Helix-coil (or order-disorder) transitions in linear chain biopolymers can be
described by the symbolic sequence representing the state of each unit in the
polymer. The helix-coil sequence of a biopolymer is determined by a state (h or c)
associated with each unit of the polymer. For a given polymer, the state can be
specified by giving the length of alternating sequences of type h and c, in the order
of their occurrence along the chain. Thus, a given microscopic state is determined
by:

where the i and j terms are the lengths of sequences containing c and h units,
respectively. If the polymer begins with an h unit then i0 = 0, and likewise if it ends
in a c then j0 = 0. All sequences, excluding the ends, contain at least one unit. This
means that the total length of sequences, 2s, cannot exceed the length in the
polymer, n. Also, the sum of the lengths of the sequences must be n:

To determine the partition function, a statistical weight, w(n;i0, . . . , jo), is
associated with each microscopic state and a sum is made over all microstates. A
widely used model is to give each sequence, ia and ja, within the microstate a
weight, Uia for c sequences and vj for h sequences. Such models assume that there
are no long-range interactions between sequences. The weight for a given microstate
is now given by:

The specific values of uia and y^ will depend on the model used and the nature of
the interactions. The restriction, U0 = v0 = 1, must hold for end sequences of zero
length, i.e., j0 & 0 and j0 = 0. The partition function, Z(n), for the polymer is the sum
over all microscopic states:

where k represents a microscopic state of the system and the first sum runs over all
possible states. In the second sum, { i s , J s } indicates that the summation is over all
possible lengths of sequences subject to the restriction in Eq. 3.28 with n and s being
held fixed. The difficulties imposed by this restriction are circumvented by inverting
the summations.

In Lifson's original work, the partition function was evaluated using a divergent
moment generating function, H, which is a function of an undetermined variable,
x:
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It is noted that the free energy, -kT\n Z(n), is proportional to the length, n, of the
polymer. Thus, a parameter x\ can be defined such that:

Similar sums over i0 andy'0 define U0(x) and V0(x), except that these summations
run from i = 0 to ac. The terms U and V can also differ from U0 and V0 when specific
end effects are considered. The specific forms associated with M, and v, are
determined from the model of interest and usually result in simple analytic forms for
U(x) and V(x). For Eq. 3.33 to diverge:

The crux of the method is that H(x) can be calculated directly, and its divergent
properties are now used to determine x1, and the partition function. For x > x1 the
series converges, but in the limit of x -> x1 it diverges. Equation 3.31 can be simply
represented as follows, using sequence generating functions:

where U and V are the sequence generating functions for coils and helices,
respectively. They are defined as:

The largest root of this equation gives x1 and, therefore, provides a direct
determination of the partition function.

In a later version of this technique, Lifson changed the definition of the
generating function, so that it was given by an ascending rather than inverse power
series in x (Litan and Lifson, 1965). Part of the motivation for the new definition
was that the generating function now becomes analogous to the grand canonical
partition function. Indeed, it is sometimes referred to as the "quasi-grand canonical
partition function." This definition lends itself to a closer association with standard
statistical mechanical relationships. The main drawback with the method is that the
method of "steepest descent" (Fowler, 1929; Schroedinger, 1989) is used to evaluate
the resulting contour integral. This requires that the number of units, n, is large.
Thus, the method cannot handle finite length polymers. However, this problem is
readily remedied, by returning to the original definition (Eq. 3.25) of the generating
function (Dewey, 1994). In the present application, the generating function is
nothing more than a mathematical device for determining the partition function.
There is no physical reason for making the association with the grand canonical
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partition function. Bearing this in mind, Cauchy's integral equation is applied to
Eq. 3.31. This gives:

where the contour C encompasses the singularities of the integrand. The evaluation
of the partition function using Eq. 3.37 is a powerful technique and has a
comparable utility to the popular "matrix method" (see Poland and Scherega, 1970).
In the case of self-complementary polymers that can form loops, the sequence
generating function is actually preferred to the matrix method (Go, 1967; Wiegel,
1983).

The validity (and utility) of Eq. 3.37 is readily demonstrated using a simple
calculation. The matrix method provides partition functions of the general form (see
Applequist, 1963):

Thus, application of Eq. 3.37 recovers the original partition function and confirms
the validity of the approach. In the next section, two simple problems are considered
and compared with results obtained by combinatoric and matrix approaches.

This demonstrates that the above approach is valid for all values of n, i.e., finite
polymers. This recent extension of the sequence generating function technique
(Dewey, 1994) greatly enhances its utility. For some problems, such as loops within
loops (see Go, 1967), it is clearly the method of choice.

3.5.2 Calculations on the Alpha Helix

In this section the Bragg-Zimm model of the alpha helix is treated with the
sequence generating function approach. After solving for the partition function, a
variety of parameters of experimental relevance are calculated. In the Bragg-Zimrn

where Cr is a constant and X,. is a root of a determinant of rank p. Taking this as a
general representation of a partition function, the sequence generating function can
be "back-calculated" as follows:
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model (Zimm and Bragg, 1959), the coils are given statistical weights of u, = 1, and
the helical units have weights such that v\ = (T1/2 and v, = as'~2 for ;' > 2, where cr is
the weight associated with the "boundaries" of the helical region and.? is the weight
associated with each helical unit. The term s is a Boltzmann factor that contains the
energetics of the favorable neighbor interactions within the helix. The boundary
effect is an unfavorable term because it is the start of a helical segment and the first
unit does not benefit from a favorable association with the preceding unit in the coil.
Nevertheless, this unit must adopt the restricted configuration of a helix (as opposed
to a random coil). Consequently, cr is a Boltzmann factor dominated by this
unfavorable entropy of configuration. Experimental values for o are typically in the
range 10-2 to 10-4. With these assignments the sequence generating functions
are:

In the Bragg-Zimm model the end sequences have slightly different generating
functions. As one does not usually start with a helical region on the end, V0 = 1 and
the coil generating function is given by:

where \n and \l are the roots of the quadratic in the denominator of the middle
expression in Eq. 3.37. By expressing Eq. 3.43 in terms of partial fractions, as in Eq.
3.39b, the partition function is determined by Eq. 3.40. Thus:
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The partition function is identical to the Bragg-Zimm model and is valid for finite
n. It is given by:

This result is identical to the one obtained with the transfer matrix technique
(Applequist, 1963).

Once the partition function has been determined, it can be used to calculate a
number of different quantities (see Poland and Scherega, 1970). Experimentally, the
most accessible quantity is the fraction of helical units, oh, per polymer. This is
often measured by the extent of change of a spectroscopic parameter. This parameter
is given by:

This parameter gives the entire "melting" curve for the helix-coil transition. The
transition temperature is defined as the point where ©h = 1/2. The scaling behavior
about this transition determines the order of the transition. A first-order phase
transition will have a discontinuity in 0h at the transition temperature. The
sharpness of the thermal transition is an important parameter and is readily
determined by taking the derivative of Eq. 3.40 with respect to temperature.
Commonly measured experimental parameters are the transition temperature and
the slope of &h versus T at the transition point.

Another parameter of interest is the number average length of a helical segment,
Lh, and this is given by:

For most models Eqs 3.46 and 3.47 provide tractable expression for analyzing the
melting behavior of a biopolymer and are central to the analysis of experimental
data. These expressions will also dictate phase behavior and scaling exponents.

3.5.3 The Finite Perfect Matching Double Strand

Turning now to the nucleic acid double helix, the perfect matching double strand is
treated. The development by Litan and Lifson (1963) is followed throughout. This
model consists of helical regions with sequence generating function V(x) and
weights v, = s', and loop regions with sequence generating function U(x) and
weights Uj = i~c, where c is the exponent associated with the loop entropy. As in the
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alpha helix model, the statistical weight for a coil is taken to be 1. The entropy of
the resulting internal loop is accounted for by the factor i~c in accordance with Eq.
3.18. A cooperativity parameter,Q (), is associated with the boundary between the

loop and helical regions. Including end effects, the generating functions are then
given by:

The quasi-grand partition function is now represented as a partial fraction,
giving:

and the values of Kr are determined from the roots of Eq. 3.51.

The summation over r in Eq. 3.49 runs over all the roots of Eq. 3.51. Once the root;
have been determined, Eq. 3.50 can be used to calculate the partition function a:
given in Eq. 3.38.

To solve Eq. 3.51, the transformations x = 1 + e and <,• = 1 + 8 are made and the
region where e and 8 are small is considered. The summation in Eq. 3.51 if
approximated by the form derived by Fisher (1966), (see also Poland and Scheraga
1970) to give the following algebraic equation:

where o' = o0 S™= E i c - 1 . Using Eq. 3.46, the melting behavior of the double strand
can be explored. It is seen that:

09
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From scaling arguments, two different types of behavior are seen. From previous
arguments (Fisher, 1966); Poland and Scheraga, 1970), the parameter
(8 + o') <* (T- TM) for T below the transition temperature, TM. For c < 2:

The fraction of the helix varies continuously for c < 2, and no first-order phase
transition exists. However, for c > 3/2, the slope of the melting curve will be
infinite and higher order transitions exist. For the case of c> 2, the following
scaling is seen:

Thus, in this case, the fraction of helix diverges as it approaches the transition
temperature, and a true, first-order phase transition is observed. Similar results
were obtained by Dewey (1994) within the context of the Yang-Lee theory of
phase transitions.

The initial observations of the "melting" of DNA over a very small
temperature range generated considerable excitement. At the time, it was thought
that a true phase transition could be occurring in a one-dimensional system. This
spurred theoretical efforts on phase transitions in one-dimensional systems, and it
was soon established that two conditions had to be met for a first-order phase
transition to occur (Poland and Scheraga, 1966a,b). Either the system had to be
infinite or the interactions between units must be infinite in range. As discussed
in the previous section, loop formation can support phase transitions in linear
polymers. This observation is not in conflict with the early theoretical work
because, strictly speaking, loop formation models are not one dimensional. When
incorporating loop statistics (via the exponent c) into a model, the three-
dimensional structure of the loop enters into the argument.

The formation of a loop in double strand models gives the appearance of
long-range interaction between helical regions. Two opposing entropic forces are
involved here. The favorable combinatorial entropy of alternating helical and coil
regions is counterbalanced by the unfavorable loop entropy of the coil regions.
This results in the helical regions not behaving independently, and gives the
appearance of long-range interactions. Interestingly, as the double strand approa-
ches its "melting" transition, the number of helical regions does not change
sharply, but rather the length of these regions changes. The determination of the
parameter, c, is crucial to assessing the possibility of phase behavior in this
system. The topological considerations implicit in a choice of c values build
features of higher dimensional models into this problem. As was seen in the
previous section, for loop formation in the middle of a polymer, c2 has
experimental and theoretical values greater than 2. Thus, first-order phase
transitions would be expected for infinitely long polymers. Such an abrupt
transition has, of course, not been observed. This presumably is the result of the

for
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finite length of the polymers observed in experimental settings (see Dewey,
1994).

3.6 Summary

In this chapter, the self-similarity of polymer loops has been explored using
applications of real-space renormalization group theory. These applications
employ a decimation procedure for renormalizing walks on a lattice. These
procedures allow critical exponents to be calculated. Similar approaches will
appear in Chapters 7 and 9. Using renormalization arguments, it has been seen
that loops are in the same universality classes as extended polymers. The scaling
exponents associated with the entropy of loop formation have been discussed
with respect to loop topology. Results from computer simulations and renormal-
ization theory have been compared with experimental results for proteins and
nucleic acids. The basic models governing the statistical mechanics of helix-coil
transitions in biopolymers have been introduced. These statistical methods and
models will be employed in the following chapter on multifractals. It has been
seen how the entropy of loop formation can play an important role in
determining the sharpness of order-disorder transitions in biopolymers.
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The Multifractality of
Biomacromolecules

The multifractal formalism provides a method of characterizing complex structures
and dynamics (for reviews see Pieteronero et al., 1988; Stanley and Meakin, 1988;
Tel, 1988). It has been used to investigate a diversity of phenomena such as
diffusion-limited aggregation, dielectric breakdown, and turbulence. This formalism
allows the association of fractal dimensions with specific, configurational subsets of
a given statistical problem. There are two general types of problem that have been
treated. In the first case, a single, complicated physical structure is considered and
fractal dimensions of subsets of this structure are determined using box-counting
algorithms (see Meisel et al., 1992). This approach has been successfully used to
characterize growth probabilities in aggregation models (see Vicsek, 1992). The
second case investigates the multifractal nature of an ensemble of structures or
trajectories (Evertsz and Lyklema, 1987). For random walk problems, subsets of
trajectories can be partitioned into equivalence classes with identical fractal
dimensionalities. Evertsz and Lyklema developed this approach to define a
generalized mean square displacement exponent for a specific linear growth model.
This application is closely related to the multifractal description of tree structures
used to characterize generalized Cantor sets and dynamical processes (Halsey et al,,
1986; Sarkar, 1987; Feigenbaum et al., 1986, 1989).

The present chapter explores multifractal descriptions of biomacromolecules.
We begin with a discussion of general features of multifractals and how they
originate in physical systems. Two situations that give rise to multifractals are
discussed. These are random multiplicative processes and random walks on random
lattices. The latter situation results in a convolution of two narrow probability
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functions, which results in a broad distribution. As an example of a probability
distribution on a disordered network, we consider simple binomial distributions on
Cantor sets. We then move on to a discussion of order-disorder configurations of
synthetic biopolymers. Models for both the alpha helix and the double helix can be
represented as "trajectories" on a binary tree and, therefore, can be represented as
random multiplicative processes. From this representation, the intrinsic multifractal
character of helix-coil transitions can be seen. The sequence generating function
method discussed in the Chapter 3 will be used to develop the multifractal
formalism for these models. The double helix model is especially interesting as it
shows a phase transition in the multifractal spectrum. After discussing simple
biopolymers, the more complicated issue of multifractality in proteins is considered.
Solvent accessibilities of protein side-chains, derived from X-ray structures, can be
analyzed by a "box-counting" algorithm and show multifractal behavior. These
multifractals provide a diagnostic test for proper protein folding, an important
consideration when considering protein structure prediction algorithms. Although
proteins are very different from model biopolymers such as the alpha helix, it is
anticipated that similar processes will contribute to their multifractal nature. It will
be argued that proteins, also, have an intrinsic multifractal nature due to the
convolution of probability functions. These arguments go to the heart of the origin
of multifractals. The Appendix to this chapter gives mathematical details showing
how to relate multifractal spectra to parameters for simple nearest neighbor models.
Also, the connection between sequence generating functions and the more popular
transfer matrix methods is made in that section.

4.1 Origins of Multifractality

Later in this chapter, we show that a box-counting analysis of protein solvent
accessibilities leads to a multifractal spectrum for each protein. To understand the
implications of such observed multifractality, one must address the question of the
very nature of multifractals. Indeed, this has been the topic of recent research (see
Stanley, 1991), and there is, at this time, no single answer to this question. However,
two phenomena are known to give rise to multifractal behavior. They are: random
multiplicative processes and processes that involve the convolution of two
probability functions. As will be seen, order-disorder configurations in biopolymers
can be represented by binary trees. These binary trees can be generated by random
multiplicative processes, and have interesting multifractal properties. Using a spin
glass analogy, it is seen that similar multifractal behavior can occur in protein
structures. Proteins are even more complicated because a probability convolution
appears in addition to the random multiplicative nature of the configuration.

4.1.1 Random Multiplicative Processes

To approach the question of the origin of multifractals in random multiplicative
processes, it is helpful to consider a biophysical example. Often, two-state models
can be used to characterize protein conformational transitions. Two-state models
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abound in biochemistry. Such models may be used to describe transitions from the
native to the denatured state of a protein or nucleic acid. They also appear in enzyme
kinetics where "inactive" and "active" forms of a native enzyme structure are
invoked. These two-state models are often successful in dealing with the
macroscopic kinetic and thermodynamic behavior of the system. However, they
belie the simplicity of the system. The work of Frauenfelder et al. (1991) suggests
that a single conformational state does not exist, but rather a conformation will have
many substates (see Chapter 6). There may be a hierarchy of states within states. To
proceed from one conformation to another requires a movement across an extremely
complicated potential energy surface. Let us, hypothetically, consider how such a
transition might occur. The probability of a conformational change happening
during a given time interval may be associated with a range of events. This overall
transition probability requires the determination of the probabilities of each of these
events. First, the protein must be in a given conformational substate (with
probability, PI). Additionally a specific side-chain, say a tyrosine, must be in a
specific rotameric configuration (with probability, P2) during the time interval.
There might be a requirement for a peptide bond to be in a specific vibrational state.
This will have probability P3. A multitude of independent events must coincide to
"kick" the protein from one conformation to another. The probability of the
transition, (P), is then given by:

Within this hypothetical model, it is seen that protein conformational changes are
random multiplicative processes, i.e., that they are represented by a product of
independent probabilities. In Chapter 6, we look at the nonexponential kinetic
behavior of such a multiplicative model.

Random multiplicative processes appear in a number of interesting settings.
Such diverse and colorful examples as the size of crushed rocks, scientific
productivity, and the distribution of wealth have all been implicated as random
multiplicative processes (see West and Shlesinger, 1989). Despite the ubiquity and
importance of multiplicative processes, the mathematics of such behavior is not well
understood. This is in contrast to the situation of random additive processes. Sums
of random variables are as equally pervasive in natural phenomena. However, such
processes are more readily handled using the central limit theorem. In the limit of
large numbers of random variables, sums of these variables can be represented by
the familiar Gaussian probability distribution function. Unfortunately, there is no
equivalent of the central limit theorem for random multiplicative processes, and this
is why multifractal descriptions are required.

One obvious trick is to take the logarithm of Eq. 4.1, so as to convert the
product into a sum:

Now, if Pj can be treated as a random variable, why not treat In Pi as a random
variable as well? Application of the central limit theorem to Eq. 4.2 leads to a
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distribution known as a log-normal distribution, i.e., a Gaussian in which the
random variable is In P. While this trick works for some cases, the argument is not
always valid (for a clear discussion of the failure of the log-normal distribution see
Redner, 1990). For the log-normal distribution, the probability function, (P), has a
narrow distribution the moments of which obey <Pq> = aq<P>q, where aq is some
nonsingular function in q. However, other pathological cases exist and the
multifractal formalism can be used to characterize such cases. Multifractal
distributions do not show simple moment relationships. This signifies a loss of
characteristic scales for the system. This results in an extremely broad distribution.
For multifractals the moments are such that:

where r(g) is the mass exponent (see Chapter 1). The multifractal spectrum is
obtained from Legendre transformations involving 7(4).

Thus, multifractals can result from random multiplicative processes, and these
processes are characterized by distributions given in Eq. 4.3. There are two major
differences between the behavior of multiplicative and additive random processes.
For multiplicative processes, a rare event (small Pi) can dominate the distribution,
while for additive processes, rare events have very little impact. The result is that
multiplicative processes have distributions with "long tails." Also, in multiplicative
processes short-range correlations can have a strong impact on the product in Eq.
4.1. Additive processes are insensitive to short-range correlations because correlated
pairs are often distributed as if they were a single random variable.

4.1.2 Random Walks on Random Media

Multifractal behavior can also arise in cases where a distribution results from a
convolution of two other distributions. This situation occurs in problems involving
random walks on random structures (Havlin and Bunde, 1989; Bunde et al., 1990).
Two probability functions enter into such problems: one to characterize the
structural disorder of the random substrate and one to treat the random nature of the
walk on such a substrate. To calculate the behavior of the entire system, an average
must be performed over all random substrate structures. The resulting probability of
the walk is a convolution of the two probability functions associated with the
problem. Even for two relatively narrow distributions, the convolution can result in
a broad logarithmic distribution. In such cases, the convolution exhibits multifractal
behavior.

In the random walk problem, the two distributions are P(l,t) and <$>(l,r), where
t is time, r is a Euclidean distance, and / is a "chemical" or polymer contour
distance, i.e., distance within the substrate. The dynamics of the problem is
associated with the probability of moving the walker along the random structure,
P(l,t). For a normal diffusion problem, the dynamics of the walker are represented
bv the Gaussian distribution:
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where D is the diffusion constant. The probability density, <£(/,r), represents the
distribution of the substrate or lattice in Euclidean space. This is the probability of
finding two sites separated by a chemical distance / while being separated by a
Euclidean distance, r. For a substrate formed by a random walk 4>(/,r) is also
Gaussian and is given by:

4.2 Multifractal Behavior of the Generalized Cantor Set

We now consider the case of a simple binomial distribution that is spatially
associated with a Cantor set. In a sense, this is a discrete version of the continues
distribution problem of Eq. 4.6. This problem mimics growth problems, such as
diffusion-limited aggregation, where growth probabilities are distributed unevenly
over a disordered structure. This scenario also has relevance for nonlinear dynamic
systems. In chaotic systems, trajectories are confined to a fractal structure known as
a "chaotic attractor." Points in phase space will fall on this attractor. If one asks how
frequently a given region of the attractor is visited, it is found that there is an uneven
probability distribution. This situation creates a multifractal as a result of a
probability distribution on a fractal.

Presently, we consider the simple example of a binomial distribution
superimposed on a Cantor set and calculate the multifractal parameters. We consider
the Cantor set in Figure 1.3. Initially the line segment is partitioned into two
segments. For a binomial distribution, we assign a weight of p to the first segment
and a weight of (1 -p) to the second one. In the second generation, each of these

where A is a constant.
The multifractal spectrum for a random walk on a random substrate is generated

by the convolution integral:

It can be shown (Stanley, 1991) that 7(q) ~ q1/3 for q > 0. This gives the nonlinear
dependence that makes the probability distribution multifractal. While each
probability function in the convolution may have a narrow distribution, the resulting
convolution gives a logaritmically broad distribution. These convolution problems
present a direct analytic theory of multifractal behavior. Later in this chapter, spin
glass models of protein structure are discussed. These show similar probability
convolutions and can produce multifractals. As a simple example of how the
underlying substrate can impart multifractal behavior to a random distribution, the
case of a binomial distribution on a fractal lattice, is considered in the next
section.

(4.6)

(4.5)



where D is the fractal dimension of the Cantor set. The other parameters are given
by:

dT
a = - — = D (4.1 la)

dq

f=T + qa=D (4. l1b)

From Eq. 4.11, the multifractal spectrum is a delta function at a = D with height
/= D. This delta function occurs for uniform distributions regardless of the
substrate. A uniform distribution on a regular deterministic fractal reflects only the
dimension of the fractal and has no multifractal character. In the above example, if
p * 0.5 then Eqs 4.10 and 4.11 are not so simple. In these instances, a broad
multifractal distribution exists rather than a single dimension. For simple models the
breadth of the multifractal spectrum is related to the uneven nature of the
distribution. The magnitude of the spectrum will reflect the underlying fractality of
the support. These consideration will be important when discussing multifractal
spectra derived from protein structural parameters.

(4.10)
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segments is broken into two and again assigned weight of p and (1 -p). The second
generation will yield four segments with weights of: p2, p(l -p), (\ -p)p, and
(1 -p)2. The process is repeated and ultimately the binomial distribution is spread
out over the Cantor dust.

The multifractal parameters for this distribution can be calculated by returning
toEq. 1.19:

(4.7)

where fji, is the probability density and 8 is the box size. For a single iteration, one
has three intervals of which the leftmost has probability p, the middle one has
probability of zero, and the rightmost has probability (1 -p). Normalizing the
interval size to unity, Eq. 4.7 becomes:

(4.8)

giving:

(4.9)

Recalling Eqs 1.24 and 1.25, the f versus a spectrum can be obtained.
For the case of a uniform distribution on the Cantor set, p = 1/2 and:
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4.3 Multifractality of Order-Disorder Transitions in
Biopolymers

As discussed in Chapter 1, the multifractal approach is closely related to the
partition function of statistical mechanics and provides a method for defining
"generalized" thermodynamic quantities. Indeed, many of the techniques of
statistical mechanics are readily adapted to the calculation of multifractal spectra.
The sequence generating function technique described in Chapter 3 for the
statistical mechanics of biopolymers is now adapted to the multifractal formal-
ism. Sequence-generating functions and their associated partition functions
(Dewey, 1994a,b) can be used to determine the multifractal spectrum for a
variety of one-dimensional systems. Our present emphasis is on order-disorder
transitions in biopolymers of the alpha helix and the perfectly matched double
stranded helix. When discussing order-disorder transitions, it is important to
distinguish the behavior of synthetic polypeptides from proteins. Homopolymers
have been investigated that can exist in a pure alpha helical state. Such polymers
will give the highly cooperative transitions that are the subject of this section.

FIGURE 4.1 Binary tree structure for the Bragg-Zimm model of an alpha helix. Units
in the linear polymer can exist in one of two states: h (helix) or c (coil). The top tree shows
the binary generation of all possible configurations. The bottom tree shows the statistical
weights associated with each sequence. Each coil unit gets a weight of 1, each helix a
weight of s and each coil-helix boundary provides a weight of a. Self-similar regions of the
weighted tree originate from branches that have a weight of 1. The box encloses a region
that is self-similar with the entire tree.
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Proteins are usually a complicated mixture of secondary structures, and cannot be
described by such simple statistical models. The multifractal behavior of proteins
is treated in the subsequent section.

As seen in Chapter 3, most theories consider the units of a linear polymer
as being in one of two states, helix (ordered) or coiled (disordered). The possible
states of a biopolymer can then be represented as a binary tree structure (Figure
4.1, top) where each generation represents an additional unit added to the
polymer. Statistical mechanical models associate a Boltzmann weight to each unit
of the sequence. In Figure 4.1, the weights used in the Bragg-Zimm model of
the alpha helix are superimposed on the "sequence tree." This model was
discussed in Chapter 3; it is a binary model with one-step memory. The reason
that the memory is one-step is that the probability of the new unit depends only
on the nature of the preceding unit. Double helix models that form loops do not
have this property and have long-term memory. Even for the simple Bragg-
Zimm weighting scheme, self-similar branching of the tree occurs. The region
enclosed in the box in Figure 4.1 is self-similar, demonstrating a fractal statistical
weighting of sequences.

4.3.1 Sequence-Generating Functions and Multifractals

In this section, the connection between binary sequences and the multifractal
formalism of Evertsz and Lyklema (1987) is made. Essentially, the multifractal
formalism is a way of classifying the branches of the tree according to the
probability of their occurrence. Similarly weighted branches will belong to the
same "equivalence class." Each equivalence class has its own "singularity
strength" and "generalized dimension" associated with it. A probability pk is
assigned to the kth microstate (or branch of a tree). The kth state will be some
specific sequence, {i0, . . ., j 0 ] , of helix and coil states (see Chapter 3 for the
notation used in this section). A singularity strength, ak, is defined as:

(4.12)

where II is the number of possible states that a unit can assume. For the helix-
coil problem, H = 2 (h and c). The formalism may be extended to the more
general case where fl is unrestricted by methods described previously (Lifson,
1964; Dewey, 1994c). The factor (I/ft)" enters Eq. 4.12 as the weight of a
microstate in which no preference is given for h or c states. This corresponds to
the weight of a symmetric random walk in the "trajectory" formalism and is the
counterpart of the box size in the box-counting formalism of multifractals. This
term is essentially a normalization factor for embedding a given microstate in the
set of all microstates. In constructing the multifractal spectrum, the probabilities
of a given sequence are used rather then the statistical weights, w, which are
Boltzmann factors.
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The set of all miicrostates can be subdivided into equivalence classes with
the same value of a. A different fractal dimension, /(a), can be found for each
of these subsets. This is done by first defining a generalized dimension, dq:

with the generalized sequence generating functions as

(4.18b)

(4.18a)

(4.17)

where the generalized moment generating function is

(4.13)

where

(4.14a)

(4.14b)

where now the summation of k runs over all microstates in the equivalence class.
The conversion from probabilities to Boltzmann factors is made in Eq. 4.14a by
dividing the weights by the normal partition function, now designated as Z(n, 1). In
Eq. 4.14b the partition function is represented as x*", and uia and V;T are the
Boltzmann weights for coil sequences of length ia and for helix sequences of length

_/'„, respectively. The dimension, dq, is the analog of the generalized dimension, Dir

found in the box-counting algorithm.
To obtain the multifractal spectrum, the fractal dimension, f ( a ( q ) ) , for each

singularity, a(q), is calculated. This is done using (Evertsz and Lyklema, 1987):

(4.15)

(4.16)

In the Evertsz and Lyklema notation, z(ot), is the counteipart of/(a). The main
computational task is centered on calculating, Tn (q). Once this has been done, the
straightforward manipulations of Eqs 4.13, 4.15, and 4.16 provide the multifractal
spectrum.

The sum in Eq. 4.14b can be handled as the sum in the partition function of
Chapter 3 (see Dewey, 1994c). Thus, a generalized treatment of sequence generating
functions gives:



Thus, the sequence generating function gives results equivalent to those obtained
with other very different approaches.

(4.25)

Noting that the probability of a u unit occurring in a sequence can be defined as
p = ul(u + v), Eq. 4.24 gives the expected result for a binomial multiplicative
process (Feder, 1988):

(4.24)
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(4.19)

(4.20)

The moment generating function, a(q,x), and the generalized "partition" function,
Z(q,n), are extensions of the normal definitions given in Chapter 3. The generalized
partition function will be of the form, Z(q,n) = x*(q)n and the probability weighted
function is given by Tn(q) = [x*(q)lx*(\J:i]n. Now the generalized dimension, dq,
is:

(4.21)

The second term on the right-hand side of Eq. 4.21 results from the introduction of
Z(n,l) inEq. 4.14a.

As a simple example, consider again the two state model with no nearest
neighbor interactions (see Chapter 3). The sequence generating functions are:

(4.22a)

(4.22b)

Equation 4.17 is solved by obtaining the roots, x*(q), of the following equation:

U(q,x)V(q,x) - 1 = 0 (4.23)

For this example, Z(q,n) = x*"(q) = (uq + v*)". The generalized dimension now
becomes:
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4.3.2 Alpha Helical Model

The multifractal nature of the distribution of configurations in an alpha helix is
treated within the framework of the Bragg-Zimm model (Zimm and Bragg,
1959). Essentially, we are examining the mathematics behind the self-similar
branching of the binary tree in Figure 4.1. To do this, the sequence generating
functions, Eqs 4.19 and 4.20, are given the specific form, ul = u'q and v? = crV9.
The parameters u and v represent the weight of a coil and helix unit,
respectively, and boundary interaction results in the weight, a. The generating
functions are:

(4.29)

Most studies of order-disorder transitions in biopolymers focus on the
transition region. For the alpha helix model, the midpoint of the transition is
defined as the point where the number of helical units equals the number of coil
units. This occurs in the Bragg-Zimm model when s = l . The cooperativity
parameter, a, determines the steepness of the transition as the temperature is
changed. This parameter is temperature independent and typically has values of
10 2-10~4 for polypeptides. Figure 4.2 shows the multifractal spectrum for the
alpha helix at the transition temperature (s = 1) for different values of a. As can
be seen from the figure, the curves become broader as cr decreases, i.e., as the
cooperativity increases The breadth of these curves reflects the wider range of
sequences that contribute to the distribution. A simple manifestation of this effect
is also seen in standard statistical mechanical results. The average length of a
helical segment, Lh, and the mean squared length, Lj, is calculated from the

For this situation, the integral in Eq. 4.17 is evaluated using Eq. 4.23 and
gives:

(4.26a)

(4.26b)

(4.27)

From Eqs 4.1.3, 4.15, and 4.16, expressions for the various multifractal para-
meters can be derived, and give:

(4.28)
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0 1 2 3 4 5 6 7

a
FIGURE 4.2 The multifractal spectra, z(a) versus a, for the
alpha helix at the transition temperature (.s = /). The parameter
z(a) is equivalent to /(a) in some notations. Three different
values of the eooperativity parameter, a, are shown. As a
decreases the distribution becomes broader.

partition function. The variance in length at the transition point, s = 1, is given
by (Poland and Scheraga, 1970):

(4.30)

Thus, as cr decreases the distribution of helical lengths gets larger, indicating a
broader range of sequences is being populated. This results in broader multifractal
spectra.

The scaling indices a can be understood by reference to Figure 4.1. The
multifractal spectrum is an ordering of the sequences in the binary tree according to
their singularity strengths. For instance, at s = 1, the sequences, hhh . . . hhh and ccc
. . . ccc have a probability associated with them of p", which is given by l/x*n.
Observing that x* = 1 + cr1'2, these sequences are seen to have a singularity strength at
the minimum a (f= 0). This is given by: amin - dx.= In (1 + crl/2)/ln 2. The se-
quences, hchc .. . hchc and chch . . . chch, on the other hand, have a probability of
1"/2 <jnl2lx*n giving the maximum a with oLmax = cL« = In (1 + o-1/2)/ln 2 - In a/2 In 2.
These latter sequences are the most improbable because the unfavorable he
boundary interaction has been maximized. The multifractal spectrum orders the
sequence tree via a folding or kneading process. In this application, a particularly
simple folding occurs: the tree is folded in half, over top of itself. The sequences
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such as hhh . . . hhh and ccc . . . ccc are next to each other on the extreme left of the
spectrum. Sequences such as hchchc . . . hchchc are now at the extreme right of the
spectrum.

Changes in the multifractal properties of the system can be followed as it moves
through the transition point. This is done by considering the behavior for three
cases: s < 1, s = 1, and s > 1. It proves more convenient to monitor the generalized
dimensions for these cases. Thus, we consider plots of dq versus q for these
conditions. From Eq. 4.21, one obtains the following results:

Using these expressions, the dq versus q curves in Figure 4.3 were generated. As can
be seen, the shapes of these curves are not dramatically affected by changes in the
value of s. The average length of a helical stretch, Lh, and the variance, A2, changes
significantly through the transition point. However, the relative variance, A2/L^,
does not change as dramatically. For s values of 0.9, 1.0, and 1.1, the relative
variance changes as 0.89, 0.97, and 0.99, respectively. This suggests that there is a
degree of symmetry between h and c states in the problem. For s < 1 the helix is the
favored state, while for s > 1 the coil becomes the favored state. The same sequences
exist in both states, so now an hhh . .. sequence at s < 1 will have a comparable
weighting to a ccc . . . sequence at s > 1. This results in the similarity between the
curves in Figure 4.3 for s = 0.9 and s= 1.1.

4.3.3 Perfect Matched Double Helix

In this section, the problem of a perfectly matched double stranded polymer is
considered (see Chapter 3 for a more complete description of the model). This

(4.3 la)

(4.3 Ib)

(4.3 Ic)

(4.32a)

(4.32b)

(4.32c)

and



FIGURE 4.3 Plot of the generalized dimension, d,r versus q for
the alpha helix as the system proceeds through the transition
temperature. Three different values of s are considered: s = 0.9 (-),
1.0 ( . . . ) , and 1.1 ( ). The plot is semilogarithmic, to enhance the
difference between the curves.

problem is somewhat more interesting then the alpha helix case and illustrates the
strength of the sequence generating function approach over more traditional transfer
matrix methods. In this case, the polymer no longer has one-step memory as in the
previous example of the alpha helix. The long-range effects of the loop entropy
create a situation where the sequence has long-term memory. From Chapter 3, recall
that the entropy of a loop is given by:

(4.33)

where c is a constant and TV is the number of members in the loop. The value of c
depends on loop topology and the dimension of the embedding space (see Chapter
3). This entropy term effectively provides a long-range interaction, as all /V members
of the loop contribute to it. Because the perfectly matched double strand cannot
simply be described by nearest neighbor effects, matrix techniques prove
cumbersome.

To explore the multifractal behavior of this model, the treatment of Litan and
Lifson (1965) is followed. The helical units are given Boltzmann weighting factors
of s, so that v, = si. The boundary factor, CT, is associated with the coil regions, and
the weight of the loop is given, in accordance with Eq. 4.33, by ui = crz ~c. Thus, the
sequence generating functions are now:

(4.34a)
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e(l) = 8 + (i c>2 (4.38b)

The implications of these solutions for the physics of the system have been explored
extensively (Fisher, 1966; Poland and Scheraga, 1966, 1970). When c> 2, the
system can exhibit a true first-order phase transition. In the context of the double
strand model, this means that the fraction of the polymer in the helical state can
abruptly drop to zero al a given temperature. Thus a pure coil phase will exist at high
temperatures. Equation 4.38 represents behavior of the partition function at
temperatures slightly below the transition temperature. From Eq. 4.38, it is seen that
the generalized dimension will be different for c < 2 compared with c> 2 as a result
of the e(l) term in Eq. 4.37. It is interesting to compare the dq versus q curves for
these two cases. When c > 2, the phase transition manifests itself as a discontinuity
in dq. This is because Eq. 4.36 has two different solutions depending on the value
of qc. In a manner similar to Eq. 4.38, there is one solution for qc < 2 and a different

(4.38a)

where e(q) is the solution to Eq. 4.36 for a given value of q.
It is instructive to first consider the solution to Eq. 4.58 for the case q=\. For

small e, there will be two different, approximate solutions depending upon the c
value. These are given by:

(4.36)

(4.37)

The generalized dimension is now given for small e by:

(4.34b)

The multifractal behavior is calculated from x* (q), which is obtained from the roots
of Eq. 4.23. One must obtain the solution to:

(4.35)

With this solution, and using Eq. 4.21, the multifractal properties for the double
strand are calculated.

Only the behavior of Eq. 4.35 in the interesting regime near the transition point,
s = 1, is considered here. Following Fisher (1966), we make the transformations,
x = 1 + e and s = 1 + 8. With these transformations and using Fisher's asymptotic
approximation for the summation, Eq. 4.35 can be greatly simplified. For the case
of q > 0, it becomes:
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FIGURE 4.4 Plots of the generalized dimension,
dq, versus qc, for the perfect matched double
slranded helix. The value of q is the moment of the
multifractal expansion, and <: is the exponent
characterizing the loop entropy. Plots are general
representations of the behavior of the system. The
bottom curve shows the phase transition.

one for qc > 2. The discontinuity in dq versus q occurs at qc = 2 and is illustrated in
Figure 4.4. Values of the generalized dimension at this discontinuity are given
by:

where in Eq. 4.39a q approaches 21 c from the right, and in Eq. 4.39b q approaches
from the left. One also can obtain the limit dx = cr/ln 2. For c < 2, one still has two
different solutions: one at qc > 2 and one at qc < 2. However, in this case no
discontinuity occurs, a consequence of there being no phase transitions for c < 2.
The curves for q < 0 can also be obtained. In this case, the summation in Eq. 4.35
is more easily handled. This results in a single simple solution that does not have
any discontinuities. The details of this calculation are omitted for brevity. The

(4.39a)

(4.39b)
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resulting generalized dimensions will have curves that appear as in Figure 4.4 for
the two conditions c < 2 and c> 2.

The phase behavior exhibited by this system is similar to that seen in chaotic
systems that exhibit intermittency (Csordas and Szepfalusy, 1989; Beck and
Schlogl, 1993). In these cases, dynamical phase transitions occur as a result of
anomalous scaling of sequence probabilities. For intermittent systems, the orbit
remains in a subregion of phase space for an extended period of time. It can become
almost periodic for this time and this results in long-time correlations in the
symbolic sequences. One finds a specific sequence for which the probability
decreases slower than exponentially with increasing length, N. Typically, one has
ip(sequence) ~ N~a, where a is a positive constant. This behavior is analogous to
the probability weighting for a sequence of units within a loop. This analogy
suggests that sequence generating function methods may find utility in the analysis
of intermittent systems.

4.4 Protein Structure and Multi-fractals

We now turn to the more difficult problem of inultifractals in proteins. This section
is considerably more empirical than the previous one. An analysis is presented of a
protein structural parameter, the solvent accessibilities of the amino acid side-
chains, that reveals the multifractal nature of proteins. The solvent accessibility of
an amino acid side-chain can be measured using the ball-rolling techniques
described in Chapter 2. These accessibilities are determined from X-ray crystallo-
graphic data and usually a single ball radius is used. The most convenient
representation is the fractional solvent accessibility. This is defined as the surface
area of the side-chain in the protein divided by the surface area of a fully exposed
amino acid side-chain in a tripeptide. This profile provides a sequential
representation of a parameter that reflects the packing of the side-chains in the three-
dimensional structure of the protein. In Figure 4.5, the solvent accessibilities of the
amino acid side-chains are shown as a function of position along the protein
backbone for the protein myoglobin. In Chapter 8, the hydrophobicity profile of the
protein is introduced. This sequential array reflects the chemical composition of the
protein.

Two questions are asked regarding such profiles. First, are there any correlations
in this seemingly random pattern? Secondly, if there are correlations, what are the
implications for the structure of the protein? There are a wide variety of methods for
analyzing correlations in "noisy data." Previously, a Hurst analysis was used to
demonstrate long-range correlations among Debye-Waller factors at different
positions along a protein chain (Dewey, 1993). The present focus is to develop the
multifractal formalism for analyzing sequential data (Balafas and Dewey, 1993;
Strait and Dewey, 1995). One reason for choosing this particular approach is that the
multifractal spectrum is a reflection of a hierarchical structure (as in a binary tree).
Ultimately, one would hope to relate the multifractal properties of proteins to other
hierarchical models such as the conformational substate model proposed by
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FIGURE 4.5 Solvent accessibility as a function of residue number for the
protein myoglobin (153 residues). A value of 1 represents full exposure of the
amino acid side-chain to the solvent; a value of 0 corresponds to the amino acid
being completely buried in the protein. (Data from Balafas and Dewey,
1995.)

Frauenfelder et al. (1991). As will be seen, the multifractal spectra of the solvent
accessibilities can also be used as a diagnostic test for proper protein folding. This is
potentially of great utility in testing structure prediction algorithms.

4.4.1 Algorithm for Calculating Multifractal Spectra

A generalized box-counting method similar to that described in Chapter 1 is used to
analyze sequential data (Figure 4.5) such as the solvent accessibilities. This method
is used to derive the "generalized" dimensions associated with the shape of the
curve. These generalized dimensions provide information on the hierarchical nature
of the "noise" in Figure 4.5. To proceed with the details of the method, consider the
solvent accessibilities as a sequence of numbers of length n:

(4.40)

where n is the number of amino acids in the protein. The solvent accessibilities are
ordered along a linear array according to their respective positions in the amino acid
sequence. This sequence is "covered" with boxes of a defined length and the
value(s) of the accessibilities within a given box is assigned to the box. Initially, one
starts with boxes of size 1 and covers a single amino acid residue. The value of the
accessibility of that residue is assigned to its respective box. In the second iteration,
the box size is doubled, giving two residues per box. The sum of the two
accessibilities covered is now assigned to the respective box. The procedure is
repeated with increasing box sizes. The following illustration shows how the box-
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counting algorithm is implemented for a linear data array. Boxes of size 8 = 1, 2, and
k are illustrated below:

where xt is the value of the solvent accessibility for the ith residue along the chain,
and uj is the sum in the y'th box:

(4.41)

A function, Zq (8), is now defined that provides the qth moment of the measure:

(4.42)

(4.43)

where T(q) is identical to the exponent described in Eq. 4.7. This exponent is
obtained from the initial or limiting slope of a log (Zq (8)) versus log (8) plot. This
procedure is represented as:

(4.44)

The singularities of the measure are again characterized by the exponent, a. This
parameter is related to T according to the relation:

(4.45)

The scaling Ansatz is made such that (Feder, 1988):
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a
FIGURE 4.6 Multifractal spectra of hexokinase using the wrap-around algorithm:
forward sequence (O) and reversed sequence (D). The multifractal spectrum for data
derived from a random number sequence having a length identical to hexokinase (374
residues) is also shown (A). Note the narrowness of the random number spectrum
compared to that of the protein. (Data from Balafas and Dewey, 1995.)

Substitution of Eq. 4.44 into Eq. 4.45 yields

(4.46)

Similarly, a(q) is obtained from the limiting slope of a plot of 27 |x/ In (\^j)IZq (8)
versus In (8). Now, the multifractal spectrum, f(a) versus a, can be calculated
according to f(a) = qa(q) + T(q).

Thus, a multifractal spectrum is generated for the profile by calculating Zq (8)
at a fixed q value and varying 8. From the two linear regressions, f(a) and a are
determined. The entire spectrum is then generated by varying q. Both positive and
negative integer values of q are used. For a given box size, 8, there may not be
sufficient residues in the last box to complete the sequence. To circumvent this
problem, an initial segment of the sequence was appended to the end of the sequence
to fill the last box (Balafas and Dewey, 1995). Thus, the algorithm uses a wrap-
around method to create periodic boundary conditions. As a check on the error
introduced by this procedure, periodic boundary conditions were applied for
sequences taken in both the forward (amino —» carboxy) and reverse (carboxy —>
amino) directions. This changes the content of the appended sequence. The wrap-
around algorithm produced essentially the same spectra, regardless of the direction
of the sequence. A typical comparison of forward and reverse sequence spectra is
shown in Figure 4.6.
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FIGURE 4.7 Multifractal spectra of solvent accessibilities. (A) Alpha class: (O)
cytochrome c; (D) calcium binding parvalbumin; (A) rnyoglobin. (B) Beta class: (O)
plastocyanin; (D) a-lytic protease; (A) concanavalin A; (V) elastase; (O) acid proteinase.
(Data from Balafas and Dewey, 1995.)

4.4.2 Multifractal Spectra of Solvent Accessibilities from Proteins

Using the algorithm given in the previous section, the multifractal spectra of the
solvent accessibilities of a number of proteins were examined (Balafas and Dewey,
1995). Figure 4.6 shows the spectrum for the protein hexokinase. As can be seen, a
simple convex spectrum is observed that can be characterized by its intercepts, amin

and oimax. Note that all spectra have a maximum at /= 1, reflecting the
dimensionality of the support, i.e., the linear array. As a comparison, the spectrum
for a random sequence was generated, and this is also shown in the figure. The
random number sequences have narrower spectra than the protein accessibility
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TABLE 4.1 Summary of the results of the multifractal analysis of proteins*

Protein class Protein Length (IP (00)

FeS

Alpha

Beta

Alpha/beta
alternate

Alpha/beta
segregate

Ferredoxin
Ferredoxin

Cytochrome c
Calcium binding parvalbumin
Myoglobin

Plastocyanin
a-Lytic protease
Concanavalin A
Acid proteinase

Flavodoxin
Adenylate kinasc
Carboxypeptidase A

Papain D
Actinidin
Carbonic anhydrase B
Thermolysin

54
98

103
107
153

99
198
237
330

138
194
307

212
218
261
316

0.88
0.76

0.79
0.87
0.73

0.82
0.75
0.73
0.71

0.75
0.71
0.7

0.7
0.7
0.75
0.7

1.12
1.53

1.47
1.36
1.52

1.51
1.73
2.12
2.13

2.49
2.04
2.88

2.46
2.4
2.53
2.93

0.54
0.59

0.58
0.55
0.60

0.57
0.60
0.60
0.61

0.59
0.61
0.62

0.62
0.62
0.60
0.62

0.46
0.35

0.36
0.39
0.35

0.35
0.30
0.23
0.23

0.18
0.24
0.14

0.18
0.19
0.17
0.13

fj (01J and <Jp(10) can be obtained from Eqs A4.9 and A4.I3.

sequences of corresponding length. Thus, the breadth of the multifractal spectrum of
the protein can be attributed to nonrandom effects within the data sequence.

In Figure 4.7, similar spectra for a number of different proteins are shown.
These particular spectra are for alpha-helix-rich proteins (Figure 4.7A) and beta-
sheet-rich proteins (Figure 4.7B). The spectra are generally asymmetric about the
maxima, with the region of large a values (right-hand side) being much broader. The
region to the left-hand side of the maximum is determined by the positive moments
of the distribution and is dominated by high probability sequences of accessibility
values. The region to the right of the maximum is due to the negative moments and,
consequently, is dominated by low probability sequences. Much of the broadness of
the entire spectra is due to these low probability sequences. The values of amin and
amax for a number of different proteins are given in Table 4.1.

Ideally, one can use amin and amax to extract information regarding the
underlying physics of this multifractal behavior. Such approaches are described in
the Appendix to this chapter and in Chapter 7. It is difficult to make this connection
because relatively simple multiplicative models can fit the spectra. Models are not
easily discriminated by their ability to reproduce the spectra. However, these results
do show that the underlying phenomenon does not require a complicated model to
describe its multifractal behavior. To test the validity of the multiplicative model,
one must provide an interpretation of the scaling parameters from a physical model.
For instance, one could relate the scaling factors to the Bragg-Zimm model of an
alpha helix in as described in the Appendix. Using these results, one obtains
physically unrealistic parameters for the cooperativity parameter. Not too surpris-
ingly, the helix-coil model of an alpha helix is seen not to be applicable to proteins.

otfnin QWit o-p(H)
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In Chapter 7, the multifractal analysis of hydrophilicity profiles is discussed. As will
be seen, these profiles follow an even simpler model than the solvent accessibility
profiles. Also, in Chapter 7, the connection is made between the multifractal
approach and encoded walks. Encoded walks have been used to examine sequence
correlations in both nucleic acids and proteins.

An interesting and very useful comparison can be made between the
multifractal behavior of sequences generated from native proteins and improperly
folded proteins. Computer simulations can be used to generate improperly folded
proteins (Novotny et al., 1984). This is done by selecting two proteins with a
commensurate number of amino acid residues but dissimilar structures. The
arnino acid side-chains of one protein are then placed in sequence on the
backbone of the other, and vice versa. The incorrectly folded structures were then
energy minimized using a geometry optimization algorithm. This minimization
procedure optimizes the local structure of the side-chains, while not affecting the
tertiary structure of the protein. The final "product" is a misfolded protein that
is not grossly incorrect.

A number of different protein pairs were used to generate misfolded protein
structures. After computing the solvent accessibility profiles for both the native
and misfolded pairs, the multifractal spectra were calculated. An example of such
a pair of spectra is shown in Figure 4.8 for the elastase-concanavalin A swap-
pair. The notable feature of the multifractal spectra of the misfolded structures is
that they are much narrower than the properly folded proteins. The reduced width
of the spectrum (Aa) for a number of misfolded proteins is shown in Table 4.2.

TABLE 4.2 Comparison of multifractal parameters for native and misfolded proteins

iProtein am... «,_„, Aa:'

Elastase
Misfold (concanavalin A frame)
Concanavalin A
Misfold (elastase frame)
Carboxypeptidase A
Misfold (thermolysin frame)
Adenylate kinase
Misfold (a-lytic protease frame)
Flavodoxin
Misfold (myoglobin frame)
Carboxypeptidase A
Misfold (Arabinose-binding protein frame)
Arabinose-binding Protein
Misfold (Carboxypeptidase A frame)
Ferredoxin
Misfold (Plastocyanin frame)
Plastocyanin
Misfold (ferredoxin frame)

0.76
0.78
0.74
0.76
0.7
0.7
0.71
0.71
0.75
0.75
0.7
0.74
0.77
0.70
0.76
0.83
0.82
0.81

1.96
1.71 (
2.14
1.72 (
2.88
2.06
2.04
1.76
2.49
1.70 (
2.88
1.96
2.21
2.26
1.53 (
1.40 (
1.51 (

1.42 (

.20
).93
.40

}.96
1.2
.4
.33
.05
.74

195
..2
.22
.44
.56

).77
).57
).69
).61

1 Aa = a,m - amm.



FIGURE 4.8 Multifractal spectra of solvent accessibilities of improperly folded proteins
and the corresponding properly folded structure. (A): (O) concanavalin A; (D) misfolded
concanavalin A on an elastase frame. (B): (O) elastase; (D) misfolded structure elastase on
a concanavalin A frame. Note that misfolded proteins give narrower spectra than properly
folded proteins. (Data from Balafas and Dewey, 1995.)

Visualization of the improperly folded proteins via computer graphics reveals that
the structures are not closely packed, containing many open regions. These open
spaces destroy the alternating regions of high and low solvent accessibilities of
the sequence found in properly folded proteins. They introduce more randomness
and less correlation into the sequence data. The narrowing of the spectrum is an
observation that exists for all the misfolded proteins except one, arabinose-
binding protein. In this case, the protein has a large binding cleft (Richardson,
1981), and thus a rather open structure. Improperly folding the arabinose-binding
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protein sequence on the carboxypeptidase A frame produced a well-packed
structure. Therefore, the multifractal spectrum of arabinose-binding protein is
narrower than that of the misfolded structure.

An important problem in biochemistry is the development of algorithms to
predict protein structure from sequence information (Fetrow and Bryant, 1993;
Blundell et al., 1987). As competing algorithms are developed, one would like to
assess their relative performance on protein sequences the structures of which are
not known. The multifractal approach potentially provides a diagnostic tool for
evaluating the performance of such algorithms. It is anticipated that the best
algorithm will generate the widest multifractal spectrum. Additionally, it is
important to compare structures determined from nuclear magnetic resonance
(NMR) and X-ray data. Often these structures are not the same, and it is not clear
whether the difference is due to environmental effects or to failings of the technique.
This algorithm provides a tool for a quantitative comparison. Since a correct
structure is expected to have a broader spectrum than an incorrect one, the
multifractal spectra may help sort out the causes of different X-ray and NMR
structures.

4.4.3 Origins of Multifractality in Proteins

The previous section showed that the solvent accessibility of amino acid side-chains
is distributed in a multifractal fashion along the length of the polymer. This
distribution is consistent with that generated by a random multiplicative process
with one-step memory. However, the physical implications of this are not so
obvious. Returning to our original arguments (Section 4.1), there are at least two
potential sources for the observed multifractality: a random multiplicative process
and a convolution of probability functions. Both these factors may contribute to the
multifractality of proteins.

As discussed in Section 4.3.2, the Bragg-Zirnm model of the alpha helix
exhibits multifractal behavior (Dewey, 1994a,b). This model can be mapped into the
2 X 2 P model used in the Appendix to analyze the experimental multifractal
spectrum. Such simple helix-coil models are inadequate for describing protein
structure because they give unrealistic physical parameters and thermodynamics.
Nevertheless, they can serve as a starting point for other statistical approaches.
Recent work has made the analogy between proteins and spin glasses (Bryngelson
and Wolynes, 1987, 1989; Wolynes, 1992). Helix-coil models are a form of the
Ising spin model. Similarly, spin glass models can be adapted to capture the long-
range order and intrinsic disorder in proteins. This is done by using a spin
Hamiltonian with random spin-spin coupling factors. Wolynes and coworkers have
exploited these analogies to model protein structure and folding. To determine the
energy of the system, averages over these random variables must be performed in
a specific way. One method of doing this is the replica approach developed by
Edwards (see Chan and Dill, 1991). This method results in a convolution of a
probability function with the partition function. This convolution will have features
of Eq. 4.6. With the spin glass analogy, multifractality in proteins can be attributed
to two sources. First, the Ising problem, even in one dimension, has an intrinsic
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fractal nature (Bak and Bruinsma, 1982; Bruinsma and Bak, 1983). This can be put
in the context of a random multiplicative process as done in Section 4.3. In addition
to this effect, the averaging of coupling constants introduces a convolution of
probability functions, a second potential source of multifractal behavior. More work
is required to put these ideas on a quantitative footing.

Finally, we turn to the intriguing question of why misfolded structures show
narrower multifractal spectrum than do properly folded structures. In plots of/(a)
versus a, the region to the left of the maximum corresponds to positive moments
(q > 0). This region is dominated by common events or sequences. In this region there
are not strong differences between the native and misfolded proteins. The region to the
right of the maximum is influenced by negative moments (q < 0). It is dominated by
rare events or sequences. The misfolded spectrum shows large changes in the right-
hand region. These changes make the misfolded protein appear closer to a random
sequence. A properly folded protein will have rare (or nonrandom) combinations of
exposed residues. The multifractal spectrum shows great sensitivity to correlated
packing of side-chains as reflected in this right-hand region.

4.5 Summary

The origins of multifractality have been explored in this chapter with specific
reference to biopolymers. Multifractals are probability distributions the moments of
which are characterized by an infinite number of fractal dimensions. Two common
sources of multifractal behavior are random multiplicative processes and convolu-
tions of distributions. As a simple example, we have considered a binomial
distribution on a Cantor set and shown how multifractal properties arise from such a
random distribution on a disordered substrate. We then turned to a discussion of
synthetic and natural biopolymers that show well-defined order-disorder transitions.
Typically, these are helix-coil transitions and can occur in nucleic acids as well as
polypeptides. Using the statistical mechanics of helix-coil models, the population
distribution could be represented as a random multiplicative process that has
multifractal behavior. Because of the diversity of secondary structural units and the
intrinsic disorder, proteins offer a more complicated milieu for multifractals. Analysis
of a structural parameter called the solvent accessibility show that the packing of
protein side-chains is distributed in a multifractal fashion. The origin of this behavior
is attributed to both random multiplicative and convolution effects, as demonstrated
in spin glass models of proteins.

Appendix: Extraction Procedures and Comparison with
Transfer Matrix Methods

Transfer matrix techniques have figured prominently in the statistical thermody-
namics formulation of dynamic processes. These methods provide a facile means of
extracting information on a dynamical process via the multifractal formalism. In this
section we discuss the connection between transfer matrix techniques and sequence



To develop the transfer matrix formalism it proves convenient to take the ratio of
the partition function at two successive generations (n and n + 1). This gives:

(A4.3)

(A4.2)

where N is the number of boxes in the box-counting algorithm and /'}") is the
probability in the /th box in the nth generation. Assuming the boxes are created from
a tree structure of n generations, then N = fl" where ft was defined previously as the
number of possible states in a generation. The exponent T is related to the
generalized dimension, dq, by:

(A4.1)
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generating function. Because of the heavy use of transfer matrix methods, it is
important to establish the correspondence between them and sequence generating
functions. The motivation for using sequence generating functions over the transfer
matrix is that they are more amenable for handling sequences with memory. We also
demonstrate how extraction techniques can be used to relate the features of the
multifractal spectrum to model parameters. Such extraction procedures are crucial in
proceeding from experimental data to theoretical models. While this section is more
mathematical in nature, it does provide useful results for analyzing multifractal
spectra.

Recently, a general description of three types of multifractal model was
presented using transfer matrix methods (Chhabra et al., 1989). Each of these three
approaches can be used to associate a multiplicative process with a singular
measure. These three approaches are known as the P, L, and LP models. The P
model is perhaps the most common and, for our present purpose, the most natural.
In this approach, the measure is covered with boxes of equal length and the
probability in each box is allowed to vary. The variation of these probabilities with
box size then reveals the complexity of the measure. In the L model, one requires
that each box encompass a region of equal probability. Thus, the box sizes must
vary, while the probabilities remain fixed. The probability in each box is then
reduced in a fixed fashion and the resulting adjustment of the length of the boxes
again reflects the complexity of the measure. The LP model is a hybrid model in
which both the box length and probability are adjusted in a prescribed manner. In
principle, each approach will provide identical information on the measure and the
method of choice is dictated by the computational ease for a specific problem. For
each of these transfer matrix formulations, a corresponding sequence generating
function approach can be developed. For sequences in biopolymers, the P model is
the most natural.

In the following development, the P model as described by Chhabra et al.
(1989) is used A partition function is defined as:
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FIGURE A4.1 A schematic diagram showing a portion of a
binary tree that corresponds to a random multiplicative process. The
multifractal spectrum of the protein solvent accessibility data cold be
analyzed with such a process. Sequences of exposed (e) or buried (£>)
units in the protein are generated by a random process. The
probability of a given step is determined by the preceding unit. The
Feigenbaum scaling functions, op(ij), are associated with the steps
indicated in the tree.

Scaling information can be readily extracted using a scaling function, ap, defined
as:

(A4.4)

where jP/n) is now explicitly represented as P(e,,, . . ., e0), where e,,, . . ., e() is the
string of states e that make up the ith box in the nth generation of the tree. The delta
functions in Eq. A4.4 insure that the probability ratio contains the same initial
sequence. This measure is an analog of the Feigenbaum scaling function. Substituting
Eq. A4.4 into A4.3 gives:

(A4.5)

where again the delta functions assure the similarity of the first n elements of the two
sequences and X ( - T) is the leading eigenvalue of the transfer matrix, T:

T e _ , , . . . , E o , ( e ; , , . . . , E ') = o-*(en + 1,. . . , e 0 )S E n X ] , . . ., 5Eo, e. (A4.6)

The transfer matrix is related to the exponent T through the largest eigenvalue,
X( - T) = fi~T. This provides the association between the probabilities of a given
model and the multifractal spectrum.
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It is helpful to consider an example of this formalism and the 2 X 2 P model
will be treated. Despite the simplicity of this model, it can be used in to generate the
inultifractal spectrum for a variety of mappings. This model can treat the two-scale
Cantor set and tree structures with one time-step memory. Figures A4.1 and 4.1
illustrate a binary random multiplicative process. In Figure A4.1 the scaling factors,
(TIJ, are given explicitly. In the 2X2 model, each unit in the sequence can exist in
one of two states. For heuristic purposes, the context of a protein with exposed or
buried units is considered. In Figure A4.1, the probability of an e or b is determined
by the preceding unit, so the model has one-step memory. These binary trees are
hierarchical structures, as the early branches dictate the region in which the
sequence finally appears.

The multifractality of such binary trees has been investigated extensively.
They give multifractal spectrum (f or z versus a) that can be characterized by
three independent parameters, o.min, ctmax, and fmax. An alternative (and equiva-
lent) representation is to plot dq versus q. For these plots, three points again
dominate the curve. They are: d0, dx, and d_x. These parameters can be derived
from the probabilities associated with each branch of the tree (see Chhabra et al.,
1989). The connection between these probabilities and the multifractal spectrum
is outlined here. For the model shown in Figure A4.1, there are four such scaling
factors: 0^(00), 0^(10), 0^(11), and o-^(Ol). These scaling factors are defined
as:

(A4.8)

(A4.9a)

(A4.9b)

where two conservation equations hold:

Equations A4.9a and A4.96 are a result of the conservation of probability in each
binary splitting of the tree. Thus, for the 2X2 model there are three independent
parameters, two from the transfer matrix and the parameter, fi> determining the
splitting ratio. These three values ultimately determine the shape of the f(a) versus
a and of the dq versus q curve. The leading eigenvalue of the transfer matrix is
determined by:

(A4.10)

(A4.7)

where P(ij) is the probability of an i unit following a j unit, and P(J) is the
probability of a j unit existing. The product of the scaling factors associated with
each branch gives the probability for a specific configuration or sequence.

The transfer matrix for the 2X2 binary model is now given by



The exponent T is readily calculated from this result as

(A4.12)

where in the present case f 1 is equal to 2. The generalized dimensions are given by
Eq. A4.2 and the multifractal spectrum may be calculated from Eq. 4.45.

Using the above results, the scaling functions can be extracted from the
multifractal spectrum. At the extrema of the spectra (f= 0), one can assign:

The conservation equations (Eq. A4.9) are then used to determine the other
parameters. The third independent parameter, fmax (or d0), is fixed by the value of
(1 and is unity for a binary process on a linear sequence. Chhabra et al. (1989) have
pointed out the problems associated with extracting information from multifractal
spectrum. Typically, experimental data produce simple convex curves that are not
very distinctive. These curves are readily fitted with three parameters, so often
2X2 models are completely adequate. This behavior makes it difficult to
discriminate physical models solely on the basis of curve fits of the multifractal
spectrum.

The connection between the sequence generating functions and the transfer
matrix is well illustrated with the example of a 2 X 2 P model. The equivalence of
the transfer matrix and generating function approaches can be demonstrated in two
ways. First, using the Boltzmann weights given in Section 4.3.1, identical
expressions can be derived, as with the Feigenbaum scaling functions used in this
section. Alternatively, the scaling functions can be incorporated directly in the
sequence generating function formalism. This second course is followed here. The
connection between the transfer matrix and sequence generating function approa-
ches can be made directly via the Feigenbaum scaling function. Using the notation
given in Section 4.3.1, it can be represented as:
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and is given explicitly by:

(A4.13a)

(A4.13b)
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(A4.14)

where the last equality in Eq. A4.14 is obtained from Z(n, 1) = x* (1)". The sequence
generating functions are derived by analogy with Eqs 4.19 and 4.20. First, consider
a sequence containing zeros. As the sequence must be initiated with a 1, the
generating function is given by:

(A4.15a)

(A4.15b)

A similar function is defined for the 1 sequence and is given by:

(A4.16)

The eigenvalue, \(q), of the transfer matrix problem is now given by the largest root
of Eq. A4.17 (equivalent to Eq. 4.23):

(A4.17)

and for the binary model this gives Eq. A4.11. Thus the two methods yield identical
results. The sequence generating function method presented in this section is
slightly different from the method in Section 4.3 where the development was based
on Boltzmann weights rather than Feigenbaum scaling factors. In the notation used
in Section 4.3, one has:

(A4.18)

This is a result of the different definitions of the sequence generating functions (Eqs
A.4.13 and A4.16 versus Eqs 4.19 and 4.20) in the two sections. Usually, Eqs 4.19
and 4.20 present less cumbersome forms and facilitate calculations.
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In the preceding chapters, the utility of the fractal formalism for describing
biopolymer structures was explored. We now turn to issues of the dynamics and
chemical kinetics associated with biological systems. It is not difficult to find
examples of nonexponential kinetics in biochemistry. Quite often this non-
exponential behavior is a result of the complexity of biopolymer structure. Again,
the fractal formalism can be especially useful in describing these phenomena. It
provides a direct and explicit mathematical connection between structure and
dynamics. This connection is achieved though a quantity known as the spectral
dimension. In the present chapter, the consequence of a fractal medium for diffusion
and reaction dynamics is considered.

We begin with a general discussion of diffusion in biological systems. There
is a significant literature, mostly theoretical, on the influence of "reduction in
dimensionality" on receptor-mediated processes. When recognition events are
confined to low-dimensional substrates, such as a biological membrane or the
contour of a DNA molecule, there is a considerable enhancement of the
effectiveness of the search process. These dimensional considerations are exten-
ded to include bimolecular associations on fractals. As will be seen, the fractal
dimensionality of a system can also strongly influence its dynamics. After a
discussion of diffusion, we consider chemical kinetics on fractals. An introductory
description of both transient and steady state reaction kinetics in restricted
geometries and on fractals is given. These scenarios yield strange effects, such as
time-dependent "rate constants" and anomalous reaction orders.
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Fractal Diffusion and
Chemical Kinetics
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To provide a concrete kinetic application of these concepts, the kinetics of
isotope exchange in proteins is treated. The rate of isotope exchange in proteins is
nonexponential and can cover eight orders of magnitude in time. A model is
developed that relates the anomalous kinetics of this process to a structural
parameter, the fractal surface dimension of proteins. The exchange reaction is
envisioned to occur in the codimensional space surrounding the fractal surface of
the protein. A scaling relationship is derived to describe the nonexponential kinetics.
This relationship uses experimental values for the surface dimension of a protein (as
discussed in Chapter 2) as an unadjusted parameter and accurately fits a range of
experimental data for the protein lysozyme.

Biomembranes also provide a milieu where anomalous diffusion occurs. Phase-
separated separated domains can exist in such membranes, providing restricted
geometries for diffusion and reaction. Abrupt changes in the connectivity of these
domains have dramatic effects on the chemical kinetics. The transition from a
collection of disconnected domains to a single, continuous one is known as
percolation. At the percolation threshold, fractal structures known as percolation
clusters are formed. These structures will be discussed more fully in Chapter 9. In
the present chapter, diffusion and reactions within phase-separated membranes is
treated in a qualitative fashion. Additionally, the problem of diffusion through
connected regions is also considered. Again, this is discussed within the context of
the biological membranes, and is particularly pertinent to the "crowding" problem
for membrane proteins.

5.1 Diffusion and Dimensionality

The importance of dimensionality in biological systems has long been recognized
(Adam and Delbriick, 1968). Changes in the dimensionality of a system can greatly
alter the rates at which a small, diffusable molecule binds to a receptor site. A well-
studied example of this is that of the lac represser binding to DNA. The lac
represser is a protein that binds to a specific site on DNA called the lac operon (Berg
etal., 1981; Winter et al., 1981; Winter and von Hippel 1981). The operon is a short
specific sequence encoded within the DNA. The lac represser binds to the operon
with a rate constant that is larger than expected for a diffusion-limited reaction. In
this case, binding rates are greatly enhanced because the represser does not find the
operon sequence in a large DNA molecule via three-dimensional diffusion. Rather,
it "nonspecifically" associates with the DNA and then diffuses one-dimensionally
along the backbone until it locates the DNA sequence in the operon and binds
specifically to it. One-dimensional diffusion greatly enhances the rate of the specific
binding process, giving bimolecular rate constants that are faster than expected for
diffusion in three dimensions.

In addition to the one-dimensional diffusion of DNA binding proteins,
membrane receptors will doubtless show a similar enhancement of binding rates
when ligands are restricted to the two-dimensional structure of the biological
membrane. A number of theoretical works have considered the problem of the
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diffusion of a ligand from the bulk solution to the membrane surface, followed
by two-dimensional diffusion in the membrane to the receptor (for a review see
DeLisi (1980)). The reduction of dimension at the membrane surface results in
a rate enhancement for diffusion-limited reactions. This effect has been investi-
gated for both the steady state (Berg and Purcell, 1977) and transient (Zwanzig
and Szabo, 1991) kinetics of ligand binding. These theoretical studies suggest
that the reduced dimensionality greatly enhances the kinetics of the ligand
binding process. However, recent work has shown that if the receptor-ligand
binding step in the reaction is "chemically" or reaction-limited, the enhancement
as a result of the reduction in dimensionality is greatly reduced (Axelrod and
Wang, 1994). Unfortunately, there are few experimental data that bear on this
issue.

The dramatic effect of dimensionality in diffusive processes is seen by a
simple scaling argument (see Pfeifer, 1987; Adam and Delbriick, 1968). The
source of the effect is that the classic dependence on time, t, of the root mean
squared displacement, r, for a diffusing molecule is independent of dimension.
For one, two, and three dimensions, the Einstein relationship, r2~t, holds. If a
diffusing molecule is visiting sites at a constant rate then the number of sites
visited, Wvisited, is proportional to time, Wvisite(] ~ t. Within a time t, the diffuser
will have access to all the sites within a volume, rd, where d is the spatial
dimension. The total number of sites, N,otal, available for a visit will be equal to
the density times this volume. Therefore, N,otal ~ rd. The ratio, R, of sites visited
to total sites is:

Now consider the behavior as t -> °°. In one dimension, R —> °c, indicating that all
sites will be visited infinitely many times. This is sometimes referred to as a
recurrent or "compact" exploration of sites. In two dimensions, on average each site
is visited once, i.e., R~ 1; in three dimensions, R —> 0 and most sites are never
visited. The three-dimensional case is nonrecurrent (or noncompact), while two
dimensions is the border between recurrent and nonrecurrent exploration. The mean
diffusion time T for a molecule to reach a specific target site in a space of diameter
L is proportional to L2 for one and two dimensions, and is proportional to L3 in three
dimensions. Thus, a biological system can greatly enhance the targeting of a small
molecule to a receptor by reduction of dimensionality.

Pfeifer (1987) has discussed the generalization of this dimensionality effect for
diffusion on fractal structures. For such processes, the mean squared displacement
is now given by:

where D is the fractal dimension of the structure in which the diffuser is embedded,
and d is a parameter known as the spectral dimension. Another way of viewing Eq.
5.2 is that diffusion on fractals has a time-dependent diffusion "constant." Equation
5.2 can be obtained from the solution of a classical diffusion equation that has been
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modified to account for the fractal geometry of the embedding space (see
O'Shaughnessy and Procaccia, 1985). This equation takes the form:

where p(r,t) is the probability that the diffusing particle is at position r at time t, D
is the fractal dimension of the space accessible to the dif'fuser, and K(r) is a distance-
dependent diffusion constant. Although Equation 5.3 has been successfully used to
model fractal diffusion, it has been considered before in other contexts (for an
interesting comparison of diffusion equations with distance-dependent diffusion
constants, see van Kainpen, (1981)). For the fractal case, it is assumed that K(r)
follows a power law:

where 6 is called the exponent of anomalous diffusion. The solution of Eq. 5.3 with
Eq. 5.4 is:

where F is the gamma function and the probability has been normalized over a
fractal space, i.e., a volume element of rD~' dr. From computer simulations of
diffusion on fractal lattices, it was seen that Eq. 5.5 provides a good quantitative
description of such processes (see O'Shaughnessy and Procaccia, 1985).

The "nontraditional" Einstein relationship derived from Eq. 5.5 is:

where (r2 (t)) is the mean squared displacement. Equation 5.6 shows a deviation
from the "classical" diffusion equation, i.e., (r2 (t)) = Dt. It is convenient to define
a "walk" dimension, dw, as:

In the above example, dw = 2 + 6. Using Eq. 5.2, the spectral dimension is given
by:

Equation 5.8 will appear repeatedly in this chapter and in Chapter 7. It provides a
convenient means of calculating the spectral dimension. The spectral dimension is
an interesting quantity as it combines a structural parameter, D, and a dynamical
parameter, dw. It provides a bridge between structure and dynamics. Our goal in the
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next section is to relate this diffusion behavior to chemical kinetics. In particular, the
scaling laws for "time-dependent" rate constants will be related to the spectral
dimension.

5.2 Fractal Chemical Kinetics

In textbook descriptions of macroscopic chemical kinetics, the rate constant is
treated as a time-independent entity. However, this condition only applies for
homogeneous, well-stirred solutions. When the reaction occurs in a restricted
geometry and depletion zones develop, concentration fluctuations can dominate the
kinetics of the process. Under these conditions, the rate "constant" will have a time
dependence (see Kang and Redner, 1984; Zumofen et al., 1985; Kopelman, 1988).
Considering a bimolecular reaction of the type, A + B —> products, one has:

where the time-dependent rate constant, k(t), has the form:

where k' is a time-independent constant and the exponent h is restricted to values
between 0 and 1. _

Most theories attempt to relate h to the spectral dimension, d. This relationship
depends on the universality class of the reaction (Kang_and Redner, 1984). For
instance, the reaction A + A -^products gives h = 1 - d/2, while the reaction
A + B —> products gives h = 1 - d/4. The spectral dimension, defined in Eq. 5.8, is
related to the fractal dimension, D, of the supporting medium and of the walk
dimension. For normal, diffusive processes in a homogeneous^ system dw = 2, and D
will merely be the Euclidean dimension. In these cases d = D, and anomalous
kinetics still occurs. Fractal geometry is not a prerequisite for anomalous chemical
kinetics. Generally, time-dependent rate constants, as in Eq. 5.10, give non-
exponential behavior. Depending on the type of reaction and concentration
conditions, a variety of integrated rate expressions are possible (see Pfeifer, 1987).
Typically these are power laws or stretched exponentials. A stretched exponential
has the functional form exp ( ~Ata), where 0 < a < 1. It gets its name from the
characteristic "long tail" of the decay.

5.2.7 Fluctuations and Anomalous Scaling

A theoretical development based on the diffusion equation (Eq. 5.3) can be used
to derive a time-dependent rate constant as in Eq. 5.10. This can be done using
the approach of Eigen (1954). Alternatively, simpler scaling arguments can be
employed and this treatment is followed for heuristic reasons. For reactions of the
type A + B —> products, fluctuations can effect the rate law over two different
time domains. For short times, local fluctuations in the density difference between
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A and B, ( P A - P B ) » will dominate the reaction kinetics and the reactant
concentration will decay as t"a. In the long-time regime, spatial fluctuations of
(he majority species dominate the reaction kinetics. In such cases, the reactant
concentration will follow a stretched exponential, exp(-A?a). The exponent a
can be related to the fractal properties of the system, as described by Kang and
Redner (1984) and it is seen that a= \-h. We present a simplified version of
those arguments.

Consider the number of reactants B in a reaction volume with fractal
dimension D. This number, NB, is given by:

where A^CO) is the average number of reactants in the volume and SA^ is the
number fluctuation. The parameter r is the distance a molecule can diffuse in time
t, and the square root term is a result of the standard relationship from statistical
mechanics, 8A'B ~ \NB(0). In unstirred solutions, concentration fluctuations of the
majority species will dominate the reaction kinetics. Taking B as the majority
species, the concentration fluctuations, 8pB, will scale as:

Now consider the volume explored by the reactant during a time t. The
generalized diffusion law found in Eq. 5.1 is used, i.e. r ~ tudw. Substituting Eq.
5.7 into Eq. 5.12, one obtains:

which gives a = d/4 and h = 1 - d/4.

.5.2.2 Scaling of Depletion Zones

In low dimensions, as the reaction proceeds depletion zones develop. These
regions segregating domains of reactants from each other will grow deeper and
deeper as time goes on (Figure 5.1). The depth of these zones can be estimated,
again from scaling arguments (Redner and Leyvraz, 1991). Consider the region
separating a domain of reactant A from a domain containing reactant B to have
thickness or gap distance €AB. A scaling Ansatz is made such that the gap
distance grows as €AB ~ fs. Our goal is to relate s to the dimensionality of the
embedding space. During a time, t, reactions will occur between molecules at the
boundary of the domains. At the boundary, the distance between like molecules
will be the same as the distance between different ones and will be approximately
€AB. Therefore, the number of molecules, Nboundary, at a boundary domain with
diffusive length r is given by Nhoundary ~ (r/€AB)d~'. The number density at the
boundary will then be pboundary ~ (r/(AB)d~l/rci ~ r'/2 rs<1 ~d), where in the second
proportionality it is assumed that diffusion is classical, r2 ~ t, and that the scaling
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FIGURE 5.1 A schematic representation of the segregation of reactants, A and
B, into domains in two dimensions. The width of the depletion zone, or gap
distance, is designated as lA B . Note that the density wi th in a domain decreases as
the edge of the domain is approached. (Figure adapted from Render and Leyvraz,
1991.)

Ansatz is evoked. Reactions will occur on the time scale that it takes a molecule to
diffuse across the gap distance. Therefore:

Taking the time derivative of Eq. 5.13 and equating it to Eq. 5.14 allows the
exponent, s, to be determined. Assuming classical diffusion and Euclidean
dimensions, one obtains:

This gives <; values of 3/8 and 1/3 in one- and two-dimensional systems, respectively.
This is in good agreement with results obtained by computer simulation (Redner and
Leyvraz, 1991). As the depletion zone grows, the "local" concentration of reactants
decreases, and consequently the rate of reaction declines.
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5.2.3 Anomalous Reaction Order

So far, we have only considered the transient behavior of a low-dimensional,
reacting system. The steady state regime also shows interesting and anomalous
behavior. If a source is present, a steady state regime can be achieved. In this regime,
by definition one has a time-independent rate constant, i.e., Eq. 5.10 is no longer
valid. Instead anomalous reaction orders are observed (see Kopelman, 1988). For
instance, in the reaction A + B —> products considered above, the steady state rate
law scales as:

where Eq. 5.13 has been used and kss is the steady state rate constant. The reaction
order x is given by:

Thus, reaction orders are greater than the value of 1, as expected by the mass action
law. In one dimension, an order of 5 will be obtained for A + B —> products.
Reactions of the type A + A -> products will give similar, but lower, anomalous
reaction orders. This case is also especially interesting because it shows segregation
and self-ordering of the two reactants. It would not be surprising, given the various
restricted geometries present in living cells, that such effects might play a role. For
instance, enzymes such as lipases catalyze reactions involving membrane con-
stituents and are, therefore, restricted to two dimensions. Such phenomena remain
to be explored.

5.2.4 Scaling in Chemically Controlled Reactions

While the importance of diffusion in biological systems has been emphasized,
paradoxically it is difficult to find biochemical reactions with bimolecular rate
constants at the diffusion limit. There are only two or three enzymes that catalyze
reactions at the diffusion-controlled limit. Even simple processes such as oxygen
binding to hemoglobin are not diffusion controlled. The reason for the slowness of
most biochemical reactions is the large number of orientation and recognition events
required to accomplish the reaction. This requirement for specific ligand-polymer
contacts slows the reaction and prevents most biochemical reactions from being
diffusion controlled. Thus, for the bulk of biochemical reactions, especially
metabolic processes, diffusion is not an important consideration. It is only in
reactions that involve small numbers of reactants or restricted geometries that
diffusion plays a key role. Such reactions are usually involved in sensory or
regulatory processes.

When considering fractal reaction kinetics, the diffusional step influences the
rate of reactions that are not strictly diffusion controlled. This is a consequence of
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the time dependence (Eq. 5.10) of the diffusion-controlled rate constant. This is seen
by considering the following standard mechanism in solution phase kinetics:

where A.B is an outer sphere (or encounter) complex. Traditionally, the encounter
complex is envisioned as having a specific structure. For instance, in ionic reactions
it would correspond to hydrated ions in contact with each other. However, this
"species" may be viewed in more general terms as two molecules merely being in
the vicinity of each other. The rate constants kt and k._t are the diffusion-controlled,
forward and reverse rate constants, respectively, and k2 is the unimolecular rate
constant for the "chemical" step. From general considerations (Eigen, 1954), the
equilibrium constant, K1, for the formation of the encounter complex, A", = k\lk_ 1,
can be determined. This will be independent of the kinetics of the process and
independent of time. Thus, when the diffusion-controlled forward rate constant
follows a time dependence, as in Eq. 5.10, there must be an identical time
dependence for the reverse rate constant: k_,(/) = k l ( t ) / K l . This gives a time-
dependent unimolecular rate constant.

An alternate argument for comparable scaling of the reverse rate comes from
the approach of Kang and Render (1984) described above. Their scaling arguments
were based in part on conservation considerations. For the diffusion-controlled
reaction of the type A + B —> products, a constant of motion of the system is
([A(0] - [B(t)]). The conservation of this quantity is exploited to yield an equation
of the form of Eq. 5.3. In the reversible, chemically limited mechanism, ([A(t)] -
[B(t)].D is still a constant of motion and Kang and Redner's arguments still hold.
Thus, the rate constant kl takes the form k \ ( t ) = k\t~h. One could argue for a
comparable dependence for k-1. For the reversible reaction A + B <-> C, there are
now two constants of motion: ( [A( f ) -B( / ) ] ) and ( [A( / )J + [C(f)]). The second
conservation relationship gives [C(t)] = Ctot~A(t) = C,ot-A' t h ~ { , where C,ot is
the total amount of reactant present and A' is a constant. The form derived from this
second relationship implies an identical scaling of the reverse constant as for the
forward rate constant.

The effect of a fractal diffusion process on the overall rate of the reaction is
most easily seen under conditions where a steady state is achieved for the encounter
complex (Dewey, 1994, 1995). Under these conditions, the observed forward rate,
k{, is given by:

where fractal rate constants have been introduced in the right-hand equality. To
obtain expressions for the time course of the concentration of A or B, kf must be
integrated over time (Dewey, 1995). However, one can directly see the behavior of
the system by examining the scaling for two limiting cases. For short times the rh

term will dominate the denominator in Eq. 5.19 and cancel the dependence in the
numerator. Consequently, k{ will be independent of time. In cases where one
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reactant is in excess, i.e., [A] « [B], an exponential decay in the limiting reactant
will occur. This will have a reciprocal time constant of K\k2. For the long-time
behavior, k2 will dominate the denominator and the fractal time dependence will be
retained. For limiting A, the time course will be a stretched exponential of the
form:

Thus, it is seen that fractal diffusion will influence the time course of a reaction even
if the reaction is not diffusion limited. This is a very significant result for biological
systems, where diffusion limited reactions are not common. The above analysis is
based on the assumption of steady state conditions for the encounter complex. More
general developments are possible and have been explored theoretically (Dewey,
1995). These more general cases show that Eq. 5.20 is retained in the long-time
limit.

5.3 Isotope Exchange Kinetics in Proteins

One of the legacies of the great success of X-ray crystallography was the view of
biopolymers as rigid, static structures. With the advent of a number of kinetic
techniques, it was shown that contrary to the static view, biopolymers in solution are
dynamic, fluctuating entities (for an interesting discussion of protein fluctuations,
see Cooper (1976). One of the oldest and most successful of these kinetic methods
was the observation of hydrogen exchange (Woodward et al., 1982; Englander and
Kallenbach, 1984). In this approach, a protein is exposed for an extended period of
time in a solution of deuterium or tritium oxide. Over a period of days, the
exchangeable hydrogens in the protein will be removed and replaced with the
corresponding isotope. The protein is then removed from the isotope solution and
returned to a normal aqueous solvent. The rate of hydrogen isotope exchange is
measured by infrared (IR) or nuclear magnetic resonance (NMR) spectroscopy for
deuterium exchange or by scintillation counting of radioactivity for tritium
exchange. Two-dimensional NMR techniques have now reached a level of
sophistication such that for small polypeptides every exchangeable proton can be
monitored (Englander and Mayne, 1992).

When total isotope exchange is observed, the exchange kinetics is non
exponential arid can cover a range of eight orders of magnitude in time. The
exchange reaction can be either base (OH") or acid (H3O+) catalyzed by the solvent
and is not a diffusion-limited reaction. For proteins, some of this broad temporal
distribution could be a result of intrinsically different exchange rates for protons on
different amino acids. However, in most cases the large time range reflects the
different rates for exchange at different depths in the protein. Even hydrogen atoms
that appear buried in X-ray structures can be exchanged, albeit at a very slow
rate.

Arrhenius plots for isotope exchange show two different temperature regimes.
These regimes have been attributed to different exchange mechanisms. At high
temperatures, the protein unfolds and directly exposes buried sites to the solvent.



FIGURE 5.2 The two-process model for hydrogen exchange from native proteins. Exchange of isotopically
labeled hydrogen, NH*, with solvent hydrogen atoms is shown for one exchanging site. (A) Exchange from the
folded state. The apparent activation energy for this process varies from 20 to 40 kcal/mol. (B) Exchange via
unfolding, k, and k2 are the rate constants of unfolding and folding for the major, cooperative denaturation
transition; krx is the chemical exchange rate constant. The apparent activation energy for the unfolding exchange
process varies between 60 and 120 kcal/mol, and is related to the enthalpy of the denaturation transition. (Figure
from Woodward et al., 1982. Reprinted by permission of Kluwer Academic Publishers.)
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The energy requirement for unfolding of the protein structure indicates a high
activation energy for this process. In the second mechanism, exchange occurs from
the folded state of the protein and is a process with a low activation energy. Two
general models for low energy exchange have been proposed. In one model,
hydronium or hydroxyl ions must migrate through the protein to exchange sites.
This mechanism is analogous to defect diffusion models in condensed phase physics
and is in keeping with fluorescence data on oxygen quenching (Welch, 1986). These
data show that molecular oxygen can collisionally quench the fluorescence of
tryptophan residues buried deep in the protein. In the second model, protein
fluctuations bring buried residues to the surface and expose them to the solvent.
During these fluctuations, the structural integrity and compactness of the protein are
maintained. Arrhenius plots show linear behavior at low temperatures, which is
consistent with one of the two "folded mechanisms." At high temperatures a change
in activation energy occurs, which is more in keeping with protein unfolding and
partial denaturation. Figure 5.2 illustrates these two different mechanisms. The
following discussion and analysis will be restricted to the low activation energy
process.

5.3.1 Models of Exchange in Lysozyme

Figure 5.3 shows the results of an experiment that observes the time dependence of
the "out-exchange" of tritium from the protein lysozyme (data from Wickett et al.
(1974). Lysozyme is a small enzyme with a large cleft that contains the catalytic site.
The left-hand graph in Figure 5.3 shows data for enzyme without an inhibitor bound
in the cleft, and the right-hand graph shows the data when the enzymatic inhibitor
is bound. Bound molecules tend to restrict the dynamics of a protein, and this is
reflected in the different time scales of the two plots. In both cases, the plots of log -
(tritium unexchanged) versus time shows considerable curvature. This is indicative
of a stretched exponential dependence and these data points are accurately fitted by
such a function. This dependence occurs over a wide temperature range, but is still
below the "high temperature regime" where the protein will denature partially. On
shorter time scales, hydrogen exchange is often observed to be exponential (data not
shown). Thus, the dependence predicted by the steady state analysis in Section 5.2
is followed.

The major contribution to the exchange reaction is from hydrogen atoms in the
amide backbone of the protein. The reaction is of the type A + B —» C + D, where
A is the tritiated amide linkage in a protein, B is H3 O

+ (or OFT, depending upon the
pH), C is the amide linkage with a hydrogen atom replacing the tritium, and D is
TH2O

+ (or OT~). The time course of the reaction at long times can be represented
by a macroscopic rate law that has a time-dependent rate constant, as in Eq. 5.9.
Since experiments are carried out in buffered solutions, [B] is essentially a constant
and the reaction is pseudo-first-order in A. Assuming a scaling form for the rate
constant as in Eq. 5.10, the rate expression can be integrated to give the stretched
exponential form of Eq. 5.20. The value of the exponent can be predicted and used
as an unadjusted parameter in fitting the experimental data.As seen in the previous
section, the exponent is related to the spectral dimension, d, of the system, and the
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FIGURE 5.3 Plot showing the hydrogen exchange kinetics of lysozyme. Log of the concentration of
unexchanged protons versus time is shown for six different temperatures: (O) 2°C, (D) 10°C, (A) 16°C,
(V) 23°C, (O) 31°C, ( ) 41°C. Curves obtained from a two-parameter, nonlinear least squares fit to a
stretched exponential (Eq. 5.26) with the parameter a held fixed at 0.21 for all temperatures. (Left)
Lysozyme with an inhibitor bound; (right) without inhibitor. (Data from Wickett et al., 1974.)

functional form will depend on the universality class of the reaction. Because this
is a bimolecular process, the exponent is given by:

To estimate (1 -h) from Eq. 5.21, several assumptions must be made regarding
the nature of the exchange reactions. As discussed above, there are two general
views on the mechanism of exchange. The first is that exchange occurs as a result
of solvent penetration through the protein matrix. This penetration occurs as a result
of protein fluctuations. The second view is that fluctuations expose new regions of
the protein to the surface, and thus allow exchange with the solvent. These two
models are represented in Figures 5.4 and 5.5. As seen from the figures, both models
represent a reaction in a low-dimensionality space because there are spatial regions
that are accessible to the protein side-chains but not accessible to solvent. The
reaction must occur in the space accessible to both solvent and reactants and is the
intersection of the set of points characterizing the accessible regions for solvent and
protein side-chains. As discussed in Chapter 1, the dimensionality of the intersection
of two sets is given by:

where D>soivent and Dpmotein are the dimensionalities of the two regions accessible to
each reactant. Figure 5.4 and 5.5 provide a visualization of how the regions might
appear. In Figure 5.4 the short line segments represent the space filled by



FIGURE 5.4 Schematic diagram showing the overlap in domains
accessible to solvent and to protein side-chains. A cross-sectional
area of a protein is depicted. Long line segments represent paths
through the protein that are accessible to solvent. Short line segments
are spatial regions accessible through fluctuations to protonated
groups on an amino acid. The intersection of the solvent accessible
and side-chain accessible region is the space in which the exchange
reaction occurs. This model suggests that such a space could be a
fractal "dust" with a dimension less than 1.

FIGURE 5.5 Schematic diagram depicting the hydrogen
exchange reaction occurring at the protein surface. In this model, the
solvent cannot penetrate the protein and is confined to the
"codimensional" space (dark area) excluded by the surface fractal.
This space has a fractal dimension of 3-£>s, where Ds is the fractal
dimension of the protein surface. The model assumes that the
reaction occurs in this codimensional space. For this to happen the
side-chains of the protein must be able to fill the three-dimensional
space via fluctuations.



134 Fractals in Molecular Biophysics

fluctuations in the exchangeable side-groups within the protein. The longer line
segments represent paths of migration of the solvent as it diffuses through the
protein. The intersection of these two regions represents the space in which the
reaction occurs. From this figure one can readily see how this intersecting region
might be a limited collection of points, i.e., D < 1.

While Figure 5.4 has a certain appeal, a potential problem with the model is that
one might not expect D to be the same for lysozyme with and without bound
inhibitor. Binding of an inhibitor to an enzyme will restrict the internal dynamics of
lysozyme and cause decreased overlap of reactant regions. Also, as the temperature
is changed the fluctuations should increase, and it might be anticipated that the
overlap of the two regions would increase, resulting in an increase in D with
temperature. This effect is not seen. A further argument against the defect diffusion
model is that the charge and hydration spheres of a hydronium or hydroxyl ion
would create a large activation barrier to diffusion within a protein matrix.
Additionally, mixed aqueous solvent effects are observed on the reaction kinetics
when it is not anticipated that the second solvent would be capable of penetrating
the protein structure. Such effects are inconsistent with the penetration model
(Calhoun and Englander, 1985).

Figure 5.5 represents an alternative explanation for the value of D. In this
model, the protein interior fluctuates in such a manner that over a long time all the
crevices within the protein are filled. Thus, the protein smoothes out its surface and
achieves a dimension of 3 via such fluctuations. The solvent, on the other hand,
cannot penetrate the protein, but through fluctuations still has access to the areas
within the crevices. Considering the protein as a surface fractal of dimensionality,
£>s, the solvent occupies the "codimensional" space, 3 - Ds. (See Chapter 1 for a
discussion of codimensional spaces.) With the application of Eq. 5.22, one now sees
that:

In an extremely careful study on lysozyme, a surface dimension of 2.17 was
determined (Pfeifer et al, 1985). This gives a value of D of 0.83, and a value of
1 - h of 0.21. This value was used, without adjustment, to fit the data in Figure 5.3.
As can be seen, excellent agreement is obtained between the theoretical curves and
the experimental data.

The experimental curves in Figure 5.3 were fitted using an equation of the
form:

where / is the fraction of tritium unexchanged, and A and T, are adjustable
parameters. As can be seen from Figure 5.3, accurate fits can be obtained at all
temperatures with one, unadjusted value of (1- h). The parameter A represents the
fraction of tritium at time t = 0. As can be seen from the figures, comparable values
for A will be obtained at all temperatures. It is unlikely that the solution structure of
the protein varies significantly over this temperature range, because structure-
sensitive properties, such as enzymatic activity, are not compromised. Consequently,
there are no gross morphological changes in the enzyme. Therefore, it is anticipated
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FIGURE 5.6 Arrhenius plot (log(reciprocal relaxation time)
versus reciprocal temperature) for the fitted parameters obtained
using Eq. 5.24 and the data in Figure 5.3. Top line (•), is lysozyme
with hound inhibitor; bottom line (•), without inhibitor.

that the fractal surface dimension will be insensitive to changes in temperature and
the scaling exponent will not have a large temperature dependence. Additionally, it
is unlikely that the binding of an inhibitor will grossly alter the surface morphology.
Consequently, both curves, i.e., the one for data obtained with inhibitor and the one
for data obtained without inhibitor, are adequately fitted using the same fixed
exponent. Note, however, the longer times occurring in the presence of inhibitor.

In addition to fitting the amplitudes in Eq. 5.24, the relaxation times were also
obtained. Arrhenius plots derived from these fitted relaxation times are shown in
Figure 5.6. From the slopes of these plots, activation energies of 18 ± 3 kcal/moi!
without bound inhibitor and 24 + 4 kcal/mol with bound inhibitor were obtained,
These are comparable to the value of 17.5 kcal/mol observed for hydrogen exchange-
in free peptides (Englander and Poulsen, 1969). For aqueous solutions under these
conditions, it is anticipated that approximately 4 kcal/mol of the activation energy is
due to viscosity effects and the remainder is due to the chemical barrier. In addition
to accurately fitting the data in Figure 5.3, the temperature dependence of the
relaxation times gives a realistic value for the activation energy. It is interesting that
the addition of the inhibitor to the enzyme has only a small effect on the activation
energy, while the time scale of the reaction has increased significantly. The inhibitor
effect appears in the entropy of activation, rather than in the activation energy.

As discussed in Chapter 2, a large number of proteins show a similar surface
dimension (approximately 2.2). This model would then predict that the parameter
(1 - h) would not change from protein to protein. As a check on the generality of
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these results, a second data set has been considered (Dewey, 1994) (data from Ellis
et al. (1975). The early time regime of this data can be fitted to an exponential decay,
as predicted from Eq. 5.12. The long-time regime shown is adequately fitted by a
stretched exponential. In this instance, (1-/0 was treated as an adjustable
parameter in Eq. 5.20. The fitted values for (1 - h) are 0.23 (20°C) and 0.16 (30°C).
Because of the limited number of data points, there is significant error in the
parameters of the nonlinear fit. Higher temperatures (> 40°C) do not fit the stretched
exponential well. This is most likely due to the high activation energy process
contributing to the kinetics. Thus, both the lysozyme and trypsin inhibitor data
analysis suggest that, over a limited range of temperatures, (1 -h) is a constant
having a value close to 0.2.

5.3.2 Reactions on Spheres and Surface Fractals

To elaborate on the surface model, a simple example is considered using the scaling
arguments given in Section 5.2. First, consider the protein to be a simple sphere of
fixed radius, R, containing reactants A. The A molecules are confined within the
sphere, but fluctuations can bring buried molecules into a region on the surface. This
sphere is embedded in a uniform medium containing the reactant B. As a result of
fluctuations during a time t, B molecules will enter a shell of width €, surrounding
the sphere. The time, t, is chosen so that l2 ~ t, i.e., diffusion is assumed to scale
according to a classical Einstein relationship. If anomalous diffusion is to be
incorporated in the model, one would have: €''"- ~ ;. The number of B molecules,
NB, in the shell will be NE ~ pB(0)/?2€, where pa(0) is the initial number density of
B. Since number fluctuations will be proportional to the square root of the number
of particles, the number density will vary as SpB ~ \]NB/R2€ ~ €~ 1/2. From the time
dependence of f, one now has 8pB ~ /" 1/4. Note that R has no time dependence and
is merely the radius of the protein. When fluctuations dominate the reaction, the
reaction has an apparent time dependent rate constant, as in Eq. 5.10. For the above
scaling relationship, the exponent for the rate constant is given by: 1 - h = 1/4.

This model can be extended to consider the case where the surface of the sphere
has a fractal dimension, Ds. The number of reactants B in the reaction volume with
fractal dimension D is given by (see Eq. 5.11):

where r is the distance a molecule can diffuse in time t, and the square root term is
a result of number fluctuations, 8A^B. We now make the assumption that the reaction
volume consists of the boundary volume of the fractal surface. The fractal
dimension of the boundary volume is given by £> = 3-D s . The concentration
fluctuations, 8pB, will scale as:

Again, it is assumed that at long-time scales, diffusion of the reactant into and
through the reaction volume will be classical, i.e., r2 ~ t. That is the walk dimension



Fractal Diffusion and Chemical Kinetics 137

of the reactant is 2. Parenthetically, one would also anticipate that in the long-time
limit the walk dimension of protein side-chains is also 2. Protein side-chains will
diffuse through fluctuations in the protein structure, akin to monomer diffusion in
polymer melts (deGenries, 1982). In this latter case, the short-time diffusion will be
anomalous, while the long-time limit will be classical, i.e., dw = 2. It is proposed
that proteins will show comparable behavior. However, if the hydroxyl (or
hydronium ion) is the dominant species, it will dictate the course the reactant, and
consideration of the protein dynamics is less important. With the assumptions of the
model, it is seen that 8pB ~ r (3~Ds)/4. Thus, one has 1 -h = (3 -Ds)/4 = 0.21.

5.3.3 Reaction Widths in Proteins

As the reaction proceeds, exchange will occur from tritiated groups deeper and
deeper in the protein structure. Consequently, a domain within the protein will arise
that separates tritiated residues from the solvent. Such domains can be seen by
combining neutron diffraction with isotope exchange (Kossiakoff, 1982). The size
of the reacted domain increases with time and this dependence can be estimated
using the scaling arguments discussed in Section 5.2. Consider the region separating
the tritiated portion of the protein (reactant A) from the solvent (reactant B) to have
thickness, €AB. Again, a scaling Ansatz is made such that €AB ~ t*. In the simple
spherical case treated above, one can make the association between € and €AB. In
this case, s is equal to 1/2. (This is to be compared with values of 3/8 and 1/3 for
simple one- and two-dimensional systems discussed previously.) For the refinement
to a sphere with a fractal surface, one now has:

It is possible to design neutron diffraction experiments to determine the rate of
growth of the depletion zone. In principle, this information could be used to
discriminate between isotope exchange mechanisms. If solvent penetration, as
discussed above, occurs as a result of channels in the protein, the kinetics could
strongly resemble a one-dimensional system. In this case, s = 0.375 and it would be
difficult in practice to distinguish this behavior from the fractal surface model (Eq,
5.27). Thus, the length of the depletion zone is probably not a good parameter for
discriminating between models.

5.3.4 Fractal Effects on Chemically Controlled Reactions

The activation parameters observed in Figure 5.6 and also those observed for simple
peptides in solution are much higher than expected for diffusion-controlled reactions
in aqueous solutions. Typically, a diffusion-controlled rate constant will have an
activation energy in the range 0-6 kcal/mol. The isotope exchange energy is clearly
well above this level. Yet the formalism of Eqs 5.9 and 5.10 pertains to diffusion-
controlled reactions. On the time scale of the tritium exchange experiment, this
reaction reaches the long-time domain discussed in Section 5.2, and becomes
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FIGURE 5.7 Schematic representation of the reaction of a
ligand with a sphere covered with receptors. Two rate constants
characterize this reaction. The constant ks characterizes the
collision of the ligand with the sphere. Reflective boundary
conditions are assumed. The constant k, is the rate constant
associated with the binding of the ligand to a receptor. The
theory of Zwanzig and Szabo (1991) accounts for the diffusive
interference resulting from the multiple sinks on the sphere. In
the isotope exchange problem, the disconnected receptors are
replaced by the boundary volume, another disconnected
space.

diffusion limited. The reaction is also unusual in that reactants diffuse to, but do not
diffuse within, the "reaction volume." This is a consequence of the boundary
volume having a dimensionality less than 1. To derive an expression for the
diffusion steps in the above process, the formalism and results of a kinetic problem
treated by Zwanzig and Szabo (1991) are examined. These workers considered the
problem of ligands in the bulk solution diffusing and binding to receptors partially
covering the surface of a sphere. This problem is illustrated in Figure 5.7.

This time-dependent treatment of the problem considers the diffusive
interference of different receptors on the sphere. It proves convenient to define the
Laplace transform of the diffusive rate constant, K (s), by:

In this problem, two diffusional fluxes were considered: flux to the surface of the
sphere and flux to the receptors. It was shown that the Laplace transform of the
overall, diffusive rate constant could be related to the corresponding transforms of
rate constants associated with these two diffusive steps. This gives:

where ksphere (s) is the Laplace transform of the bimolecular rate constant for a
ligand colliding with a sphere. It is given by:

where Ddiff is the sum of the diffusion constants of the sphere and the ligand, and
R is the radius of the sphere. In the original work, the receptor was taken to be a
partially absorbing disk and an appropriate expression was derived for that situation
(Zwanzig and Szabo, 1991).

Equation 5.29 is actually quite general and can be used to describe rate
processes that proceed through multiple domains. For our purposes, the boundary
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volume of the protein is considered to be the "receptor," kbv (S) = kreceptor (S). From
(he dimensional arguments presented in this section, one has:

Kb v(5)«s-d / 4 (5.31)

The long-time regime will correspond to the region where s —» 0. From Eqs
3.29-5.31, it is seen that this is the regime where £bv (s) will dominate. Under these
conditions, the diffusional rate constant in the forward direction will be given by
k t ( t ) = k( t ~h = k\ tl'd/4.To account for the overall time course of the reaction, one
must consider the effects of the reversibility of the reaction and the influence of the
chemical steps As argued in Section 5.2, the diffusional dissociation step will have
a comparable time dependence as the association step. In the long-time limit, one
then has: k_ , (t) = k'_\ t~h = k'_\ tl~d/4. Using the long-time formalism given in
Section 5.2, it is seen that the stretched exponential dependence of Eq. 5.26 is
retained.

5.3.5 Summary of Hydrogen Exchange in Proteins

Hydrogen exchange in proteins has been discussed in detail because it represents an
experimental setting in which a fractal structural parameter is related to the
dynamics of the system. Hydrogen exchange in proteins is viewed as a solvent-
catalyzed reaction between a hydronium or hydroxyl ion and the fractal surface of
the protein. However, the protein is not considered as a static structure, but rather as
having units that fluctuate to the surface. These fluctuations do not change the
overall shape of the surface and maintain a constant surface fractal dimension.
These fluctuations are considered to be similar in nature to those in polymer melts
(deGennes, 1982). This is not an inappropriate analogy, considering the dense
interior of most proteins. It should be emphasized that only the long-time behavior
of these systems is considered, a regime where units in the fluctuating protein show
normal diffusive behavior, i.e., dw = 2. A number of studies have focused only on
the short-time regime, and quite often these data show simple exponential behavior.
In the steady state model discussed in the previous section, the short-time regime
will be exponential and crossover to a stretched exponential in the long-time limit.
It is particularly interesting that fractal diffusion processes will strongly affect this
long-time limit, even for reactions that are not diffusion limited. This analysis also
demonstrates that isotope exchange data are a potentially useful tool for exploring
the fractality of protein surfaces under a variety of conditions. Clearly, at high
temperature or under denaturing conditions such a model is inappropriate. However,
data for acid-denatured proteins also show nonexponential behavior, and ultimately
may be interpretable by a fractal model relevant to the protein structure known as
the molten globule (see Shakhnovich and Finkelstein, 1989).

5.4 Diffusion and Reaction in an Archipelago

There are a number of other biological diffusion processes that have fractal aspects.
Of particular recent interest are diffusion and reaction in biological membranes.
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Biomembranes can be viewed as a two-dimensional fluid, and the kinetic processes
in this fluid are far from simple. There are two features that create inhomogeneities
in the membrane and result in restricted diffusion. First, in most native membranes,
proteins occupy a significant fraction of the surface area. These are large objects
compared to lipids and act as obstacles to diffusion. Additionally, most membrane
proteins have a boundary layer of tightly bound lipids. This affinity also serves to
obstruct lipid diffusion. The second common inhomogeneity is due to phase
separation of lipids. Often, biomembranes will consist of islands of one phase
surrounded by a sea or continuous region of a second phase (Thompson et al., 1992).
Diffusion in either phase is restricted by the presence of the second phase.
Obviously, diffusion within the island domains is very constrained, yet diffusion in
the continuous phase will also show the effects of island obstacles. It is also not
uncommon for membrane proteins to aggregate into domains, also forming large
impenetrable islands. These sources of heterogeneity in biomembranes can result in
anomalous diffusion for proteins as well as lipids. Such effects have been observed
experimentally using fluorescence photobleaching techniques. Additionally, advan-
ces in fluorescence microscopy have allowed the tracking of single particles
diffusing in the membrane. Often, the issue is not whether anomalous diffusion
occurs in biological systems, but rather on what time scale it appears.

Factors that control membrane heterogeneity in native membranes are difficult
to isolate and characterize. A large body of work exists on model systems, and it
shows that domains can be manipulated by a number of physical and compositional
parameters. It is possible to vary a parameter, usually temperature, so that island
domains in the membrane increase in size. At some point, these domains will
connect and become continuous, and what was previously the continuous region
will break up into islands. This point is known as the percolation threshold, and the
domain structure is a percolation cluster. Percolation clusters are fractal and have
been investigated extensively. Percolation in biomembranes will be discussed in
detail in Chapter 9. Presently, we consider the kinetic effects of the islands, i.e., the
domain structure just below (or above, depending on the phase being considered)
the percolation threshold.

It is instructive to consider the effects of island domains on a simple chemical
reaction. There have been a number of computer simulations on the simple
dimerization reaction A + A —» A2 and the self-annihilation reaction A + A —> O.
These are worth examining to provide a qualitative picture of how domains
influence reaction equilibria and kinetics. In addition to the computer work, a
number of similar, simple bimolecular reactions have been explored experimentally.
These include spin exchange between fatty acid spin labels and collisional
quenching of fluorescent fatty acids by spin labels. Although these reactions are
different from those studied by computer simulations, it is anticipated that both sets
of reactions will have similar qualitative behavior.

Thompson et al. (1992) have used numerical simulations to determine the
effects of "disconnection" on dimerization. Figure 5.8 shows the results for a
reversible dimerization reaction. In this case, the equilibrium concentration of dimer
was determined for a connected and disconnected domain. The ratio of these
concentrations is plotted versus the number of reactants A per domain. This ratio
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FIGURE 5.8 The ratio of the concentration of dimer in a disconnected
system to that in a connected system as a function of N, the initial average
number of monomers of A per domain. The system is initially all monomer
and is then allowed to equilibrate. Calculations were performed for
equilibrium constants of 1, 10, and 100. (From Thompson et al., 1992.
Reprinted by permission of Gordon and Breach Publishers.)

shows how the domain structure alters the normal (connected) equilibrium
properties. In the limit of a very small number of reactants, single particles will be
trapped in separate domains, and dimerization will be impossible. Thus the
concentration of dimers in disconnected domains will fall to zero at that limit. In the
high-concentration limit, local interactions will dominate and the domain structure
has minimal effect. Thus, the ratio of disconnected and connected dimer
concentration approaches 1. Interestingly, if one were determining an "apparent"
equilibrium constant from concentrations of monomer and dimer without a
knowledge of the domain structure, a smaller value would be obtained than the true
constant.

Reaction kinetics of a bimolecular annihilation reaction in disconnected
domains has also been investigated using Monte Carlo simulations (Newhouse and
Kopelman, 1986). The steady state kinetics of A + A annihilating each other on
islands showed a rate law with an anomalous reaction order (see Eq. 5.16 for the
A + B reaction). In this computer experiment there is a steady state production of A



FIGURE 5.9 Results of a computer simulation of the rate of
A + A —> O at steady state. The anomalous reaction order, X, is
plotted versus the reduced concentration of guests covering a two-
dimensional lattice. ( ) Crude error bounds. (Data taken from
Newhouse and Kopelman, 1986.)

at "guest" sites on a two-dimensional lattice. These guest sites form the reaction
domain. When the concentration of guest sites reaches the percolation threshold, CP,
then the reaction domain is continuous and the reaction order, X, equals 2, the
classical value. Below the percolation threshold, the fractal dimension of the guest
sites is less then 2. Because the reactants diffuse classically on the guest sites, the
walk dimension, dw, is 2 and the spectral dimension is equal to the fractal
dimension. For this reaction, the order is given by: X=l+2/d. Below the
percolation threshold, X will increase above 2. As the topology becomes more
disjointed, i.e., smaller islands, the guest sites will form a fractal "dust" and d —> 0.
This results in an infinite reaction order. These effects are illustrated in Figure 5.9,
were the reaction order is plotted as a function of the reduced guest concentration
(C/Cp). The expected sharp rise in X is seen.

The results of these kinetic and equilibrium simulations provide an intuitive
picture of the role of disconnected domains. Domains with small coverage of
reactants do not promote the reaction in the sense that the "equilibrium" favors the
monomeric form. The extreme limit of this case is when there is one reactant per
island. On the other hand, the rates of the reactions are strongly enhanced as the
domain size decreases. This is a result of the high local concentration of reactants.
Again, an extreme case would be the great enhancement of two reactants on a
shrinking island. Reactions on disjointed geometry can provide serious problems for
the interpretation of experimental data. This is especially true in the case of
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equilibrium measurements of macroscopic parameters. Without prior knowledge of
the domain structure or how to manipulate it, experimental equilibrium constants
must be viewed as "apparent," since they will reflect not only the energetics of the
reactions but also the geometric constraints.

The diffusion of particles in the continuous region surrounding island domains
is also of considerable interest and has a number of biological implications.
Anomalous diffusion of membrane proteins has been observed in single-particle
tracking experiments (Ghosh and Webb, 1990; Ghosh, 1991). Using computer-
enhanced video microscopy, a fluorescent-modified form of the low-density
lipoprotein-receptor complex could be monitored. The mean square displacement
for individual particles diffusing laterally in the cell membrane was measured. The
time dependence of this displacement was anomalous at short times, i.e., dw £ 2 in
Eq. 5.7, and a crossover to normal diffusive behavior was seen at long times. Similar
anomalous diffusion has been observed for membrane proteins using the
fluorescence photobleaching recovery technique (Brust-Mascher et al., 1993). Nagle
(1992) has recently pointed out problems associated with the conventional analysis
of photobleaching experiments when anomalous diffusion occurs. These problems
result from observing diffusion over a limited time scale. Diffusion constants
reported in the literature using this technique must be considered pertinent only
within the time-domain of the experiment.

In a recent series of papers, Saxton (1989, 1992, 1993a, b, 1994) has considered
the effects of obstacles on two-dimensional lateral diffusion using Monte Carlo
simulations. If these obstacles are immobile, percolation theory can be used to
understand long-range diffusional effects. Above the percolation threshold, long-
range diffusion is totally hindered. However, even below the percolation threshold
there will be a short-time regime in which the diffusion is anomalous. This time
regime increases as the threshold is approached. As the fraction of the two-
dimensional lattice covered with obstacles increases, the time regime that shows
anomalous diffusion also increases.

These two different temporal regimes are a result of the characteristic lengths
of the system. The obstacles formed by randomly filling a lattice are fractal over
short distances and appear homogeneous at distances longer than the correlation
length. These structures are discussed more fully in Chapter 9. Because of this
fractal behavior, there is a "crossover length," R*, characterizing diffusion of a
tracer. Below this crossover length, the mean-square displacement of the tracer is
described by:

where the diffusion constant is a function of C, the fraction of the lattice covered by
obstacles. The walk dimension is also a function of C and this dependence, obtained
from computer simulations, is shown in Figure 5.10. In this figure the dimensionless
parameter C/Cp is used, where CP is the fraction of coverage at the percolation
threshold. This parameter allows for the comparison of results from different
lattices. In the limit of small C (no obstacles), the walk dimension approaches 2 and
normal diffusion holds. At the percolation threshold, diffusion is anomalous at all
time scales, and dw approaches 2.87, the anticipated result in two dimensions



FIGURE 5.10 Walk dimension, dw, as a function of obstacle concentration for three different
geometries: point obstacles on a square lattice (SQ), point obstacles on a triangular lattice (TRI), and
hexagonal obstacles of unit radius on a triangular lattice (HEX). The reduced parameter C/CP is used so
all lattices can be represented equivalently. CP is the lattice coverage at the percolation threshold. (Figure
from Saxton, 1994.)

(Havlin and Bunde, 1991). The crossover length between the anomalous and normal
diffusive regime scales as:

where the scaling exponents in two-dimensions are v = 4/3 and 3 = 5/36. Thus, it is
seen that as C approaches CP, R* goes to infinity, indicating that anomalous
diffusion will occur at all length scales.

Using the Monte Carlo simulations, it is possible to explore the experimental
conditions that are likely to show anomalous diffusion and crossover to normal
diffusion (Saxton, 1994). Fluorescence photobleaching experiments have a time
resolution in the millisecond range, and video tracking experiments typically have
a resolution of 33 ms. Fluorescence quenching or excimer formation experiments
have time scales of the order of microseconds or faster. The crossover time for
anomalous diffusion depends on both the unobstructed diffusion constant and on the
coverage of obstacles, C. For most experimental situations, it is anticipated that
photobleaching and video tracking will observe normal diffusion, while the faster
time regime of fluorescent quenching and excimer experiments allows anomalous
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diffusion to be observed. However, proteins can have diffusion constants that are
lower than anticipated from hydrodynamic arguments. For instance, when the
diffusion constant is below 10™ 10 cm2/s, anomalous diffusion will be observed even
with the slower experimental techniques. With these considerations, it is not
surprising that anomalous diffusion has been observed over a wide range of time
scales. It is the challenge for both the experimentalist and the theorist to piece
together the disparate information obtained using a variety of techniques.

5.5 Other Diffusional Processes

Another very complicated diffusion problem involves modeling reaction dynamics
by diffusion over a potential surface (see Bagchi and Fleming, 1990). The biological
focus of such modeling is found in the work of Frauenfelder et al. (1988), and
involves photodissociation of carbon monoxide (CO) from myoglobin. When
photodissociation occurs at low temperatures the dissociated CO is entrapped in the
protein and either diffuses out of the protein or back to the heme pocket. The
kinetics of this process, is nonexponential and covers may orders of magnitude in
time. Initial diffusion models provided only a semiquantitative description of the
experimental data (Agmon and Hopfield, 1983a, b). Recently, a sophisticated
treatment involving diffusion on a two-dimensional potential surface has been
presented and used to analyze the myoglobin data in more detail (Agmon and
Rabinovich, 1992). These models predict power law behavior when there is
diffusional anisotropy. Under high anisotropy conditions, there are critical jumps in
power law exponents (Rabinovich and Agmon, 1993). While this latter condition
may not be of experimental relevance for this system, it is of great theoretical
interest. Protein dynamics will be discussed more fully in Chapter 6.

5.6 Summary

When considering diffusion and reaction in inhomogeneous environments, structure
and dynamics can be linked by a parameter known as the spectral dimension. The
spectral dimension is related to a structural parameter, the fractal dimension of the
medium, and a dynamical parameter, the walk dimension. As shown in this chapter,
the spectral dimension appears in kinetic scaling laws. In transient kinetics, it
appears as an exponent for a time-dependent rate constant. In steady state kinetics,
the spectral dimension appears in expressions for an anomalous reaction order. Such
behavior occurs when fluctuations dominate the reaction. Interestingly, we have
seen that, even for chemically controlled reactions, anomalous diffusion greatly
influences the reaction rate. With these considerations, a model of protein
fluctuations has been described that accurately fits data on the rate of isotope
exchange. This predictive model uses the fractal surface dimension of the protein as
an unadjusted parameter. Anomalous diffusion appears in biomembranes as a result
of inhomogeneous domains. Domain formation can strongly influence reaction and
diffusion of small molecules within both the disconnected and connected domains.
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In addition to chemical kinetics effects, these domains can result in departures from
bulk equilibrium behavior. Some biophysical phenomena can be model as diffusion
across a potential energy surface. This also can give rise to complicated rate
behavior.
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Are Protein Dynamics Fractal?

A molecule in a liquid is in a densely packed but disordered setting. It is also in a
very dynamic setting. Typically, it will have a handful of neighbors with which it is
constantly colliding. At room temperature, approximately one collision occurs every
picosecond (10 ~12 s). If we could "tag" two neighbors and follow their motion, we
would find that they collide with each other about a 1000 times before they drift
apart, unlikely to meet again. If we were to "tag" all the molecules within a sphere,
for the first few nanoseconds (10 ~ 9 s) the sphere would remain intact. As time goes
on, untagged molecules would enter the sphere, while tagged molecules would
diffuse outward. The sphere would have appear to be growing, but the tagged
molecules are being diluted.

Now consider another sphere of tagged molecules. This time all the tagged
species are connected by chemical bonds. As we observe the molecules, the sphere
will again grow as a result of "invasions" of the solvent. However, this time it will
stop when it reaches the radius of gyration of the polymer. The collisions with
solvent molecules are now doing something very different. Instead of an intricate
and densely packed set of billiard balls bouncing around elastically, we now have
bonds bending, twisting, and stretching. The translational energy of the solvent is
transferring energy to various deformation modes of the polymer. There is a random
distribution of energy entering and leaving our "sphere." The sphere contains the
random walk of a polymer chain. The overall energy transfer process is again one
of these problems involving a convolution of random processes - random energy
input on a random lattice. As discussed in Chapter 4, this should give rise to
multifractal behavior.
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While it is easy to describe a picture of polymer dynamics, putting this picture
into a mathematical model is not so simple. The energy transfer modes within the
polymer will depend on the nature of the bonding and internal connectivity of the
polymer. This makes proteins a particularly challenging problem. Most work
involves sorting through the phenomenology of protein dynamics and experimen-
tally exploring the multitude of relaxation processes that are occurring. In the next
section, an introductory discussion of protein dynamics is presented. The time,
length, and energy scales of an array of different processes are discussed.
Considering the complexity and range of protein dynamical processes, it is not
surprising that protein dynamical processes often have a nonexponential time
dependence. In Section 6.2 we examine a number of physically plausible and simple
models that generate nonexponential behavior. We see that these models can be
classified within two general schemes: structural disorder and dynamic disorder.
Within both schemes, fractal behavior is possible. In Section 6.3 the concept of
fractal time is introduced, and again we see that simple models are sufficient to
generate fractal time. This presentation is qualitative in nature, emphasizing why
protein dynamics might be fractal. In the final section, we examine in more detail
the kinetics of ion channel opening. This is a phenomenology that has been
investigated extensively using the fractal formalism.

6.1 Introduction to Protein Dynamics

There is an enormous and sometimes confusing literature on protein dynamics. This
is a result of the diversity of techniques and time scales used to probe proteins.
Virtually every available window for observing proteins yields a different dynamical
picture. Each dynamical regime is, in some way, associated with a specific structural
domain. The coupling between regimes occurs in a complicated fashion, and it is not
clear how relaxation processes at one time scale effect similar processes in another
regime. Indeed, one of the unresolved problems of molecular biophysics is to
understand the relationship and coupling between this multitude of protein
relaxation processes.

The motional properties of proteins are a direct consequence of their structural
properties (for reviews see Brooks et al., 1988; Nall and Dill, 1991; Creighton,
1992). The rigid, covalently bonded polypeptide chain provides a dynamic frame for
the protein. At a given instance, a protein might undergo a wide variety of motions
as a result of thermal motions. There is a constant background of collisions with
solvent molecules as well as collisions between the closely packed amino acid side-
chains within the protein. The bonding forces along the chain constrain these
dynamic responses in certain ways. The internal structural constraints can channel
thermal fluctuations into larger collective modes. Current thinking is that structure
and fluctuations are intimately entwined.

Each peptide linkage has two flexible internal rotations, the angles 4> and \\i, and
a rigid torsional angle u>. In addition to these backbone rotations, the amino acid
side-chains have some degree of flexibility. These side-chains usually have bonds
that are flexible enough for internal rotation. As an added complication to the
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bonding constraints of the polypeptide backbone, disulfide linkages provide
additional bonding interactions that bridge the polymer structure. Such interactions
and the weaker "salt links" that result from opposing charge pairs provide additional
structural features that constrain a protein's dynamics.

The density of amino acids within a protein is essentially the same as that in an
amino acid crystal. Because of the close packing and covalent constraints, motions
within a protein behave much as rigid bodies within a fluid. Internal rotations of
side-groups, such as the phenyl groups of tyrosine or the isopropyl groups of valine
or leucine, can undertake seemingly chaotic librations as a result of structural
constraints. These groups are limited to relatively small internal motions because of
the high energy of deformation of bond lengths and. angles. While many of these
motions are of no consequence for the function of the protein, there may be crucial
sets of functionally important motions (FIMs) (see Frauenfelder et al. 1988). These
are concerted fluctuations that drive the protein into a new and functionally
important conformational state. FIMs provide a path for the protein to enter entirely
new regions of conformational space. Most likely, these critical, functional motions
of a protein involve displacements of groups associated with torsional oscillations
about rotationally permissive single bonds. In this view, the majority of the internal
dynamics will not lead to any new conformational territory. For instance, high-
frequency vibrations that occur within the local groups are thought not to play a role
in the concerted, conformational motions of a protein.

The existence of fluctuations has been established using a number of
experimental techniques, including hydrogen isotope exchange, as discussed in
Chapter 5. However, our understanding of the biological role of fluctuations remains
incomplete. Fluctuations show local and global character and both are expected to
be important. In a protein, as in other rigid condensed systems, structural changes
arise from correlated fluctuations. Perturbations, such as ligand binding, can
produce conformational changes by introducing a structural bias that directs
fluctuations along a reaction path. This allows transitions from one structure to
another to occur with a minimal driving force. Fluctuations can be regarded as
searching out the path or paths that lead to conformational transitions.

In considering the internal motions of proteins, there is an interesting interplay
between dynamics and thermodynamics. Thermodynamics emphasizes the equilib-
r ium conformations, while dynamical studies have focused on large displacements
from equilibrium. In certain cases, some features of the dynamics may be
unimportant because the time scale is faster than the phenomenon of interest. An
example might be the fast local relaxation of atoms that are part of a much slower
binge-bending imotion or "breathing" mode of an enzyme. In this case, only the time
scale of the large-scale mode would be expected to be involved in determining the
rate of the catalytic process. In other situations, the detailed aspects of the atomic
fluctuations are a significant factor. This may be the case in the oxygen storage
protein myoglobin, where local side-chain motions appear to be essential for the
entrance and exit of ligands.

The range of dynamical processes of proteins and their functional role is
summarized in Table 6.1 (Brooks et al., 1988). A spectrum of internal motions has
been identified. These motions show displacements of 0.01-100 A, energies of



TABLE 6.1 Summary of internal motions of proteins (Brooks et al., 1988)

I. Local Motions (0.01-5 A, 10~ I5-10~ ' s)

(a) Atomic Fluctuations
1. Small displacements required for substrate binding (many enzymes)
2. Flexibility required for "rigid-body" motion (lysozyme, liver alcohol dehydrogenase,

1-arabinose binding protein)
3. Energy "source" for barrier crossing and other activated processes
4. Entropy "source" for ligand binding and structural changes

(b) Side-Chain Motions
1. Opening pathways for ligand to enter and exit (myoglobin)
2. Closing active site (carboxypeptidase)

(c) Loop Motions
1. Disorder-to-order transition covering active site (triose phosphate isomerase, penicillopepsin)
2. Rearrangement as part of rigid-body motion (liver alcohol dehydrogenase)
3. Disorder-to-order transition as part of enzyme activation (trypsinogen-trypsin)
4. Disorder-to-order transition as part of virus formation (tobacco mosaic virus, tomato bush stunt

virus)

(d) Terminal Arm Motion
1. Specificity of binding (X-rcpressor-opcrator interaction)

II. Rigid-Body Motions (1-10 A, 10 "-1 s)

(a) Helix Motions
1. Induction of larger scale structural change (insulin)
2. Transitions between substates (myoglobin)

(b) Domains (Hinge-Bending) Motions
1. Opening and closing of active-site region (hexokinase, liver alcohol dehydrogenase,

1-arabinose binding protein)
2. Increasing binding range of antigens (antibodies)

(c) Subunit Motions
1. Allosteric transitions that control binding and activity (hemoglobin, aspartate

transcarbamoylase)

III. Larger Scale Motions (> 5 A, 10-7-104 s)

(a) Helix-Coil Transition
1. Activation of hormones (glucagon)
2. Protein folding transition

(b) Dissociation/Association and Coupled Structural Changes
1. Formation of viruses (tomato bushy stunt virus, tobacco mosaic virus)
2. Activation of cell fusion protein (hemagglutinin)

(c) Opening and Distortional Fluctuations
1. Binding and activity (calcium-binding proteins)

(d) Folding and Unfolding Transition
1. Synthesis and degradation of proteins



Are Protein Dynamics Fractal? 153

0.1-100 kcal/mol, and time scales of 10-15-103 s. These physical scales are usually
correlated. For instance, an increase in the amplitude of the fluctuations will also
correspond to an increase in the energy and in a longer time scale. However, some
motions can be slowed by their setting. For instance, an aromatic ring flip occurs on
the time scale of seconds in a protein, while for a small molecule in solution it can
occur on a picosecond time scale. The difference is that localized events in proteins
can often be slowed by high activation barriers. These barriers result from the larger
scale, concerted motion required to create a ring flip within a protein.

6.2 The Origins of Nonexponential Behavior

6.2.1 Random Multiplicative Processes and the Log-Normal
Distribution

Protein dynamics provide a rich range of interconnected events occurring on many
time scales. Given this, it is not surprising that protein systems can exhibit
rionexponential behavior. To see, in general terms, how this nonexponential
behavior may arise, we consider a complicated process such as a conformational
change in a protein. We return to the random multiplicative processes discussed in
Chapter 4. For a complicated process to occur, a number of independent lower order
processes must be successfully completed. The completion of our complicated task
of changing the conformational state of a protein is assumed to happen during a
characteristic time period, T. The probability, P, of the conformational change
occurring during this time is given by:

where T and o-2 are the mean and variance of the T, terms. The prefactor to the
exponential is required to normalize the probability function. The above arguments

where PJ is the probability of the lower order process occurring. For protein
dynamics, this lower order process may be librational modes, bond rotations of side-
chains, concerted motions, or collective modes. One can well imagine that a number
of these events must occur, either simultaneously or in sequence, for a
conformational change to be triggered. If each of these subprocesses has a
characteristic time scale, T,-, then the probability of a process being completed
during time, T, is given by PJ = T7/T. Because of the multiplicative nature of these
probabilities, it is sometimes simpler to consider:

Now, if the PJ is an independent random variable so is \ogpj. If the appropriate
moments exist for this new distribution and n is sufficiently large, then the central
limit theorem can be applied (West and Shlesinger, 1989). This implies that log P
follows a normal distribution and P is log-normal:
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are completely general and can be applied to any complicated task that requires a
collection of independent subtasks to be completed before the task itself is
accomplished. For a colorful discussion of log-normal distributions, see West and
Shlesinger (1989).

Equation 6.3 has an interesting time dependence. At short times, it follows a
power law dependence, P(T) a T~ 1/2, and at longer times it shifts to the more
complicated exponential law. Although such a simple model may not be realistic, it
shows a number of features that appear in more sophisticated treatments. First, it
demonstrates how easily one can get away from the "exponential regime." The
present case shows a transition from one rate law (power law) to another (log-
normal). Neither of these are exponential. This model also shows how "power law"
behavior can be almost as pervasive as exponential. In the ion channel opening
experiments discussed later in this chapter, the probability of ion channel opening or
closing is give by P(T) oc T-a with 0 < a < 1. This is quite similar to the short-time
dependence predicted by the multiplicative model. Similar rate laws have been
derived by Millhauser using a reptation model adapted from polymer physics
(Millhauser, 1990; Oswald et al., 1991). While at first appearance the reptation
model is very different from the multiplicative process, the two models are actually
mathematically very similar.

6.2.2 Static and Dynamic Disorder Models

While protein dynamics are doubtless quite complex, with processes extending over
many orders of magnitude in time, this does not necessarily imply that they are
fractal. As will be discussed, complex dynamics may be treated with other
nonfractal models. Indeed the log-normal distribution just discussed has no intrinsic
fractal feature to it. Consequently, it is important to examine the assumptions of
those models that generate fractal dynamics to assess whether they can be
realistically applied to proteins. In addition to fractal models, there are more general
situations that predict nonexponential relaxation behavior in complex systems.
These are divided into two categories (Zwanzig, 1990; Dewey and Spencer, 1991;
Dewey, 1992): the static disorder model and the dynamical disorder model.

From a variety of theoretical (Brooks et al., 1988) and experimental results
(Frauenfelder et al., 1988, 1991), it is seen that the potential energy surface of a
protein is an extremely rugged landscape. Transitions across such a landscape can
result in nonexponential behavior. When considering such transitions, there are three
different temperature regimes that yield distinctly different behavior. These regimes
are static disorder, dynamic disorder, and rapid equilibration, and are illustrated in
Figure 6.1. The static disorder regime occurs at low temperature, where each
molecule is locked into a local well in the potential energy surface. The transition
from one conformation to another results from transitions directly out of the local
wells. Since each protein will have been locked into a different local minimum, each
one will have a slightly different activation energy for a given conformational
process. As the temperature is increased, the protein is no longer locked into a well
and transitions occur between local minima. At these intermediate temperatures, the
local transitions can be on a comparable time scale as the larger conformational



FIGURE 6.1 Illustration of kinetic regimes for a complicated
potential energy surface, (a) At low temperature each species is locked
into a substate, and a distribution of activation energies occurs as a result
of having many substates. This condition is called static disorder. (b) At
intermediate temperature the rate of exchange between substates is
comparable to the rate out of the energy well. The internal dynamics
influences the dynamics of removal from the well. This is dynamic
disorder. (c) At high temperature fast equilibration between substates
occurs. An average rate of disappearance from the well occurs. This
rapid equilibration limit gives exponential behavior.

transition. In this case, the protein does not have time to equilibrate, yet it "samples"
other local states. The internal dynamics will then influence the overall transition
rate. This condition is the dynamical disorder regime. At high temperatures, local
transitions occur rapidly and the internal states are essentially equilibrated. The
high-temperature regime results in conventional chemical kinetics, i.e., exponential
processes.

Experimental evidence for the static disorder model exists from the extensive
work of Frauenfelder and coworkers on the photodissociation of carbon monoxide
bound to myoglobin. In these studies, evidence from Raman scattering suggests that
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conformational substates exist in a protein. The details of this evidence have been
described in a number of review articles (Frauenfelder et al, 1988, 1991). Here, we
focus on the kinetic model, as opposed to spectroscopic evidence. At the very low
temperatures at which these experiments were performed, individual proteins are
locked into specific conformational substates. Because experimental observables are
based on an ensemble of molecules, each protein will see a slightly different
activation barrier. Thus, an average must be made over all possible activation
energies. Assuming a unimolecular, conformational change for the protein, (see
Figure 6.la), one has a microscopic rate constant, k(E), associated with each
conformational substate and its separate activation energy E. The microscopic rate
law for a protein in conformational state A undergoing a change to a state B is given
by:

[A] is the concentration of the conformational state and k(E) is a rate constant that
follows a normal Arrhenius law:

where k0 is the pre-exponential frequency factor. Equation 6.4 can be solved for
each state, and the resulting time dependence is averaged over the multitude of
conformational states. To perform this average the probability of finding a barrier of
a given height must be assumed. The rate law for the average decay, (A(t)), is then
given by:

where A(0) is the initial amount of A present and p(E) is the density of states with
barrier E. Note that E and k(E) are not functions of time. Thus there is no dynamic
interchange between substates, and Eq. (6.6) represents a static disorder problem.

There are two ways of handling data analysis based on Eq. 6.6. First, one can
assume a distribution for the density of states, solve Eq. 6.6, and see how the
resulting function fits the experimental data. This is the approach taken by Ansari et
al. (1985) and is discussed shortly. Alternatively, one can determine the functional
form of (A(t)) using experimental data. Subsequently, a Laplace transform of Eq.
6.6 and integration provides a direct determination of p(E). Liebovitch and Toth
(1991) explored this inversion method for a variety of cases, including when (A(t))
is a stretched exponential.

In previous applications to protein dynamics (Ansari et al., 1985), a uniform
box distribution was assumed for p(E):

In these studies, Eq. 6.6 was numerically integrated using Eq. 6.7. (Note, however,
that the integral is exactly solvable (Dewey, 1992).) This static disordered model
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could adequately fit experimental data on reassociation of carbon monoxide (CO) to
myoglobin at low temperatures (Ansari et al., 1985). It was later shown that the
effects observed in these data were due to kinetic hole-burning, and other analyses
are more appropriate (see Srajer et al., 1986; Srajer and Champion, 1991; Dewey
and Bann, 1992). Nevertheless, there is additional experimental evidence (for a
review, see Frauenfelder et al. (1988, 1991) that adds support for the existence of
conformational substates in a protein. It is perhaps not surprising that at the low
lemperatures studied (60-160 K) a complex structure such as a protein should have
a number of substate conformations available to it. At these low temperatures the
small barriers between substates become significant and have a profound effect on
the dynamics of the system.

As the temperature increases there can be a natural progression from static
disorder to dynamic disorder. This progression was investigated theoretically by
Agmon and Hopfield (I983a,b), who treated the high temperature regime as a bound
diffusion problem. In this dynamical model, the "reactant" CO molecule diffuses
over a potential energy surface. This theory provided qualitative agreement with the
photodissociation data on myoglobin (see also Agmon and Rabinovich, 1992). For
such a dynamical disorder model, the rate constant changes with time as a result of
temporal fluctuations In some physical parameter, B(t). When B(t) is a random
function in time and fluctuations occur on the same time scale as the conformational
transition then dynamic disorder occurs. The rate law in this case is

and the integrated form is

In very simplistic terms, it is seen that static disorder is an average over exponentials
(Eq. 6.6), while dynamic disorder is the exponential of an average (Eq. 6.9). If B
fluctuates very rapidly, then k(B(s)) can be replaced by its time average, (k). An
exponential decay is then recovered:

This is the high-temperature limit given in Figure 6.1.
Specific models of dynamical orders fall into two categories: discrete and

continuous (Zwanzig, 1990). In the discrete model, the value of B(t) fluctuates
between a fixed set of values (see van Kampen, 1981). In continuous models, B(t)
is determined from the solution of a Langevin equation. Both approaches usually
require numerical solutions to the problem. The previously mentioned applications
to CO recombination in myoglobin used the Langevin approach (Agmon and
Hopfield, 1983a,b; Agmon and Rabinovich, 1992). This model was considered
applicable for the high-temperature, low-viscosity limit of these experiments. It
gives "non-Kramers kinetics" and provides suitably nonexponential behavior.
However, a quantitative analysis of the data was not achieved. Also, when the CO
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photodissociation is performed close to physiological temperatures, the CO can
actually leave the myoglobin. This results in a normal, bimolecular diffusional
process that shows simple exponential kinetics. It is difficult to test the "bound
diffusion" model stringently, because of the limited temperature regime to which it
has access. At the very low temperatures used in Frauenfelder studies, structural
disorder will occur. At high temperatures, bimolecular dissociation complicates the
issue.

In principle, one might expect a system to proceed from static disorder to
dynamic disorder to conventional kinetics as the temperature is increased. To date,
no systems have been observed that convincingly follow these transitions. Such
observations are problematic, for a number of reasons. First, while it is easy to
discriminate between exponential and nonexponential behavior, it can be extremely
difficult to distinguish between nonexponential behavior of static versus dynamic
disorder. Basically, most nonexponential models provide very good fitting
functions. One must either go to elaborate statistical analyses to discriminate
between models (Korn and Horn, 1988; Marshall, 1989; Sansom et al., 1989) or,
ideally, to develop new experiments that allow a more direct testing of them
(Dewey, 1992). Additionally, there may be multiple fluctuation variables, B(t). As
the temperature is changed, the system may move out of a dynamic regime for one
variable and into a regime for a second variable. Thus, a single equation of the form
and parameters of Eq. 6.9 may not be adequate. Despite these problems,
nonexponential behavior has been investigated extensively, and successful models
have been constructed (Hamill and Funabashi, 1977; Bagchi and Fleming, 1990),
often relying on the physical appeal of the model.

Where do fractal dynamic models fall within the context of structural and
dynamic disorder? It will be seen that both classes of disorder model support fractal
behavior. Fractal models can be considered as a subset of these more general
models. Two microscopic models, the hierarchical and defect-diffusion model,
provide physically plausible descriptions of protein dynamics and show fractal
behavior. Concepts such as the hierarchy of states and FIMs arise naturally in these
models. Such concepts have been supported by other argument and have physical
appeal. In the next section, fractal kinetic models, or "fractal time," are introduced.
The conceptual basis for applying such models to protein dynamics is then
considered.

6.3 Fractal Time

6.3.1 Long Tail Distributions and Fractal Time

Time-dependent scaling laws involving noninteger exponents appear pervasively in
the kinetics of complex physical systems. Frequently these systems are frozen or
glassy materials, although simple heterogeneous systems show similar behavior (see
Chapter 5). Many of these diverse processes have been described using a concept
known as fractal time (Shlesinger, 1988). Fractal time describes highly intermittent,
self-similar behavior that does not possess a characteristic time scale. If the average
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time for an event is finite, then it has a characteristic time scale. Fractal time, on the
other hand, does not have such a finite average time; rather, the average time is
infinite. Examples of phenomena that show this lack of scale are electron-hole
recombination in amorphous material, particle dynamics in turbulent flow, and
phase rotation in a Josephson junction. While these examples appear far removed
from protein dynamics, the conceptual basis for them is actually quite close to the
concepts that exist in the biophysical literature. While the first modern application
of fractal time was in 1963 with Berger and Mandelbrot's description of
transmission errors in telephone networks, the basic concepts can be traced back to
the "Petersburg Game" of Bernoulli's (see Shlesinger, 1988 for a colorful historical
background). This "game" captures the fundamental features of fractal time.

In our present treatment, we illustrate this example of fractal time by putting it
into a biological setting. Consider a cell membrane that has a population of ion
channels. During a given long time period, a channel will flicker into an open
conformation for a short time period, T, with a probability of 1/2. When the channel
is open an ion diffuses down a transmembrane concentration gradient and passes
through the channel. This results in a change in electrical potential across the
membrane, a quantity that can be easily and accurately measured. Let the
probability of the channel opening for twice the length of time be 1/4. This longer
open period results in the transport of two ions across the membrane. Following this
scenario, the probability of an opening of duration m is (1/2)", with a concomitant
transport of 2" ions. Now, an order of magnitude more ions are transported with a
likelihood that is an order of magnitude less than for the previous time period. The
average number of ions transported is infinite, as determined by:

The paradox of the situation is that the median number of ions transported per
channel is 1. The ion channel has a long-tail distribution, i.e., the mean and the
median are very different. Also, the average transport for an ensemble of channels
is infinite. The infinite behavior of an average of a random variable is a hallmark of
fractals. While this is a fanciful example, long tail distributions with infinite
moments do arise in a number of physical situations and are no longer considered
to be paradoxical.

For a physical process in which the time between events can be considered as
a random variable, the average time between events <t> is a natural parameter to
consider. If <t> is finite than the system has a natural scale or characteristic time.
Events in such a system will occur at an average rate proportional to 1/<t>. If, on
the other hand, <t> should be infinite (or much longer than the measurement time)
than fractal time occurs. In this case, the sequence of event times looks as dissimilar
to a constant rate process as possible. Points in this sequence appear self-similar,
clustered in intervals as one might find in a random Cantor set. When fractal time
occurs the time correlation functions are characterized by the "stretched"
exponential. The corresponding behavior in the frequency domain is a broad (non-
Debye) amplitude dispersion curve.
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6.3.2 A Chemical Kinetic Model with Fractal Time

To put this discussion on a more concrete footing, a specific model is considered
that shows fractal time. Consider a conformational transition between two states of
a protein that fits into the static disorder scheme. For a protein with a rugged
conformational surface, there will be many different substates from which the
transitions can occur. For a given substate with barrier height E, the probability of
a transition occurring between some time / and t + dt is given by: k(E) exp [- k(E)t]
dt. For a system where many of the substates are populated, the probability of a
transition must be weighted by the distribution of k(E). The overall transition
probability, i|/(t), then becomes:

6.3.3 Hierarchical and Defect-Diffusion Models

One could debate whether the physical basis of this model (Eq. 6.13) is appropriate
for proteins. However, there are other fractal models that have more physical appeal.
They are the hierarchical model and the defect-diffusion model. Palmer and Stein
developed a model for spin relaxations in glasses and amorphous materials that
demonstrate kinetic behavior which is fractal in time (Palmer et al., 1984; Stein,
1985). In the original model, there is a hierarchy of relaxation events. In this
hierarchy, the fast relaxations must occur before a slower set of events occur.
Relaxations within a tier are considered to be uncorrelated. However, relaxation
times from one tier to the next are related by an empirical law, and this establishes

where p(k) describes the distribution of rate constants arising from the various
substates. It is often more natural to average over barrier heights, E, rather then rate
constants. As a result of the assumed Arrhenius behavior (Eq. 6.5), Eq. 6.12 can
result in complicated integrals involving exponentials of exponentials.

If the barrier heights are assumed to be distributed in a Poisson fashion, then the
distribution function of these heights, f(E), is given by:

where kT0 is the mean barrier height. To change variables in the integral in Eq. 6.12,
one uses f(£) dE = p(k) dk, and finds

The asymptotic behavior of this integral can be determined using Eq. 6.5
(Shlesinger, 1988), and this is given by

where (3 = T/TQ. The function \\i(t) can be used to calculate <t> from its first
moment. This model gives an interesting temperature dependence. At low
temperatures, T< T0, <t> is infinite, while with T> T0, <t> becomes finite. Thus a
transition from fractal time to conventional kinetics is made as the temperature
increases.

on
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FIGURE 6.2 Schematic representation of a hierarchical relaxa-
tion model. Spins (or rotamers) must exist in a specific configura-
tion before relaxation can proceed at the higher level. (Adapted
from Klafter and Drake, 1992.)

the final form of the function describing the overall relaxation. This model is
illustrated in Figure 6.2.

In initial work (Palmer et al., 1984), the following simple relationship was used
to relate the relaxation time on one tier, rn, to that on the next highest tier, T,,+ \:

where jin is the number of spins (or, in our case, rotamers) in a given level. In this
model the spins, or rotamers, in the next state are only free to relax after the ix,, spins
of the previous state have reached one specific configuration (see Figure 6.2). The
relaxation function, \\i(t), for the hierarchy of processes is then given by

where the sum is over all tiers, to,, is a weighting factor for the population of each
state, and A and p are the amplitude and fractional exponents of the "stretched"
exponential.

This hierarchical model may be an appropriate description of protein
conformational changes. In these models, a set of relaxation processes in one subset
of conformational states must occur before a second set proceeds. One way of
visualizing this process is that most of the bond rotations in a protein are physically
constrained. Those rotations that are not constrained must reach, in concert, a
specific configuration in order to free a second set of rotations. The barriers for the
second tier of processes are now low enough to allow these slower relaxations to
occur. Once the second tier rotations reach the appropriate configuration, a third tier
of processes is now accessible. The process then continues from tier to tier and to
progressively longer time scales. This model has conceptual, but not quantitative,
similarities with the model proposed by Frauenfelder and coworkers in analyzing
the dynamics of myoglobin after photodissociation of CO. From the temperature
dependence of this process, Frauenfelder proposed that four tiers occur in a
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FIGURE 6.3 Schematic representation of a defect-diffu-
sion model. Defects (O) must diffuse through a complex
medium and combine with a dipole (or rotamer) before
relaxation can occur. Parallel processes from multiple defects
result in a distribution of relaxation times.

hierarchical, glass-like transition (Ansari et al., 1985). The main feature determining
the dynamics of this model is the conformational substates within a given tier. The
Frauenfelder model represents a hierarchical model in which individual tiers follow
a nonfractal, static disorder model. Palmer's model has very similar physical
motivations and yet gives fractal time behavior. In a similar vein, the Markov chain
model, in which the rate constants are related by a geometric progression, will also
give similar behavior (Liebovitch, 1989). The key ingredient in all these models is
a hierarchical relationship in rate phenomena.

A second model, the defect-diffusion model, may also provide a reasonable
starting point for exploring protein dynamics. The defect-diffusion model has been
used to describe dielectric relaxation in amorphous material (Klafter and Blumen,
1985; Klafter and Shlesinger, 1986). In this model, a dipole is frozen in place until
a lattice defect diffuses into it. Upon fusion with the defect, the dipole abruptly
relaxes to a new orientation. Many defects are moving through the medium and each
one of these will have a different probability of combining with the dipole. The
relaxation of a given dipole reflects a parallel sequence of events. This resulting
parallel distribution of "waiting" times confers the stretched exponential behavior to
the relaxation process. The defect diffusion model is depicted in Figure 6.3.

These ideas can be adapted to proteins by adopting the concept of FIMs. As
mentioned previously, Frauenfelder suggested that certain, highly specific motions
within a protein are key to functionality. If this is so, then diffusion of defects
through the protein to the specific regions associated with FIMs could trigger a
conformational change. Presumably a number of defect diffusion pathways exist
within the protein and lead to this region. Upon combination of the defect with the
sensitive region, an FIM is generated. The FIMs then trigger a conformational
change of functional significance. Because of the parallel defect-diffusion paths, the
conformational transition will show fractal time behavior. Lauger (1988) has
proposed a defect-diffusion model for ion channel kinetics, and a one-dimensional
version of this has been solved analytically (Condat and Jackie, 1989). These
models show power law scaling and can adequately fit some of the data on channel
kinetics.
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The defect-diffusion and hierarchical models provide two very different
microscopic descriptions of protein dynamics. Despite this, they generate the same
"stretched" exponential behavior for conformational relaxation. These models from
condensed matter physics are not implausible models for protein dynamics.
Ultimately, however, plausibility is not an issue. The crux of the problem is devising
experimental methods that discriminate between models on grounds other than
statistical fits to kinetic data.

6.4 Ion Channel Kinetics

To date, the most comprehensive effort to establish fractality in a system has been
the work done by Liebovitch on ion channel dynamics (see Liebovitch and Toth,
1990a,b). Consequently the focus of this section will be on ion channels. Ion
channels appear in a wide variety of cellular settings. In nerve cells they generate
and propagate the action potential, in muscle they control calcium levels that initiate
contraction, in sensory cells they trigger electrical changes in signal transduction,
and in epithelial cells they are part of the pathway of net ionic movement across cell
layers. Such channels are membrane-bound proteins and are typically made up of
several subunits. Channels span the membrane and can permit transport of ions from
one side to another. This is the result of open conformations that allow free access
of the ions. Typically, the thermodynamic driving force for ion transport is the
concentration and electrical gradients that exist across the membrane. The channels
offer a means for ions to diffuse down their concentration gradients. Channels will
fluctuate between open and closed conformations, and thus the resulting ionic
current also fluctuates.

The spontaneous conformational fluctuations of individual channel molecules
can be measured because of the associated ionic conductivity changes. A cell
membrane will have a very low conductivity as a result of the hydrophobic nature
of the lipid bilayer. This creates a large activation energy for ion transport. However,
when a channel opens, a hydrophilic path becomes available through which ions can
diffuse. The great sensitivity of conductivity measurements can be used to observe
the opening and closing of individual channels. A technique known as the patch
clamp technique, developed by Neher and coworkers, allows these measurements to
be made (Sakmann and Neher, 1983). This technique is illustrated in Figure 6.4. In
this method, a conductivity electrode is made from a micropipette the tip size of
which is approximately 1 micron. The cell membrane is impaled with this tip and a
small piece adheres to the opening of the micropipette. Because the cell membrane
forms a high electrical resistance seal across the tip, the current measured across the
patch is due to ions moving exclusively through the channels. Recordings can be
made with the patch attached to the cell, or the micropipette can be removed and
exposed to the surrounding solution. Depending upon the technique used, the
membrane can be oriented either right side or inside out with respect to the
surrounding solution.

The beauty of the patch clamp technique is that extremely small currents can be
measured. This is achieved using electronic techniques where the voltage between
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FIGURE 6.4 Schematic representation of a patch clamp experiment. A
micron sized patch of membrane is sealed in a glass micropipette. The
current measured across the patch shows the sequence of open and closed
conformations of the channel. Individual proteins can be monitored using
this technique. (From Liebovitch and Toth, 1990a. Reprinted by permis-
sion of Biomedical Engineering Society.)

the electrode and a ground in the external buffer solution are held constant
("clamped") and small changes in current through the membrane patch are
converted to voltages, which are then amplified. Channels will open for periods of
milliseconds. During this time, of the order of 10,000 ions will diffuse through the
channel. This charge displacement gives picoamp changes in the conductivity, an
amount that is easily measured. The surface density of channels in most biological
systems is relatively low, and one can have a single channel in a one square micron
area on the tip of the micropipette. This means that the dynamics of a single protein
can be observed. There is no other technique of comparable accuracy that can be
used to make such an observation.

An example of the experimentally observed opening and closing of ion channels
is shown in Figure 6.5, where the current is plotted as a function of time. The current
follows the fluctuation of the channel between open and closed states. As can be seen,
there is significant variation in the length of time for which a given open or closed
state lasts. Such patch clamp traces are analyzed using dwell-time histograms. To
construct such a histogram, one considers a time interval, At, and counts how many
open (or closed) events had durations less than or equal to At Next one determines
how many events had durations between A/ and 2 A?. The entire histogram is
constructed by determining the number of events, N(i AO, in each of i intervals. The
probability density, f ( t ) , is the probability of an event having a duration within a
certain interval. Thus f(i A?) = N(i Af)/Af Ntot, where Ntot is the total number of
events. The cumulative probability, P(t), is the probability that a channel is open for
a duration greater than t and is equal to the integral of f(t) over time. In chemical
kinetic parlance,/(t) is equal to the \\i(t) in Eq. 6.12, and P(t) = - d^ldt.

The information concerning protein dynamics is contained in the behavior of
the functions, f(t) and P(t). At this point it appears that no "universal" or generic
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FIGURE 6.5 Trace showing the current through a membrane patch versus time. The
opening and closing of an adenosine triphosphate (ATP) sensitive potassium channel is
observed. Expansion of the time scale shows similar statistical sequences of openings
and closings. The trace visually illustrates the fractal nature of the phenomenon. (From
Liebovitch and Toth, 1990b. Reprinted by permission of the Annals of the New York
Academy of Sciences.)

behavior is seen. Some channels give simple exponential behavior for f(t). This is
referred to as Markov behavior. However, other channels appear to show fractal
time behavior. Inspection of the recording shown in Figure 6.5 shows the self-
similar characteristic of a given channel system. To the eye, a change in time scale
does not show appreciably different fluctuation behavior. A plot of P(t) versus t for
a channel that shows fractal behavior is shown in Figure 6.6. As can be seen from
the logarithmic scale of the plot, a simple exponential will not describe this
behavior. Liebovitch et al. (1987) found that for a number of different channels
accurate fits could be obtained with f(t) and P(t) of the form

Such a fit is shown in Figure 6.6. Some categories of channels are more
conveniently fitted by forms that appear to be asymptotic limits of Eqs 6.18 and
6.19. Thus good fits can be observed in certain cases to forms such as P(t) <*• t~ a and!
f(t) x t~ "' ~ '. In such cases, the best fit often gives values for a of 1/2. Referring to
our example in Eq. 6.15, this gives infinite <t>, i.e., fractal time.

While data from some channels clearly show fractal time, this phenomenon is
not universal. This dependence of the dynamics on the specific system under
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FIGURE 6.6 Plots of the number of closed time events versus the duration for a potassium channel
in the apical membrane of a corneal endothelia) cell. The left-hand plot is semilogarilhmic plot, while
right-hand plot is a log-log plot. The experimental data were fitted using the function in Eq. 6.18 and
are characteristic of fractal time. (From Liebovitch and Toth, 1990a. Reprinted by permission of Elsevier
Publishing Co., Inc.)

consideration has created controversy in the field. Additionally, more complicated
phenomenology has been observed that requires even more sophisticated models
than the simple fractal ones (Dewey and Bann, 1992). There will probably be no
single model that will encompass this diverse range of behaviors of ion channels. In
order to sort through this phenomenology, microscopic physical models of channel
gating will ultimately be required. This will allow independent testing of models
that goes beyond statistical analysis of dwell-time histograms. A number of attempts
have already been made to construct physical models to explain the complicated
dynamics (Luger, 1988; Condat and Jackie, 1989; Liebovitch et al., 1992; Oswald
et al., 1991). These models are very much in the spirit of the dynamic disorder
models discussed earlier.

6.5 Summary

In this chapter we have explored the complexity of protein dynamics and looked for
models that can incorporate the multitude of relaxation events into a single
formalism. Complicated physical processes that require the completion of several
independent tasks have been described as random multiplicative processes. Such
processes result in log-normal distributions and show nonexponential behavior.
Indeed, a number of plausible chemical kinetic models can yield complicated
scaling laws and stretched exponentials. These models fall into two main conceptual
categories: static disorder and structural disorder. In both cases, processes occur that
are said to be fractal in time. Fractal time is characterized by a finite mean event
time and an infinite average event time. They result in long-tail time distributions.
Using concepts derived from experimental results in the biophysical literature, two
physically plausible models of protein dynamics are discussed. These are a
hierarchical model adapted from spin-glass relaxation models and a defect-
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diffusion model. Both cases yield stretched exponential kinetics. The dynamics of
opening and closing of ion channels is discussed. Experimental data from a number
of different channels show open and closed probability distributions that are
consistent with a fractal time dependence.
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Fractons and Vibrational
Relaxation in Proteins

In his book on random walks, Howard Berg makes the memorable statement:
"Biology is wet and dynamic" (Berg, 1983). Indeed, biochemical processes are
inextricably linked to the solution chemistry of the aqueous milieu. One might
anticipate a continuum description, as given in Chapter 5, as being the most
appropriate for the diffusive processes of biochemistry. There is, nevertheless,
considerable interest in discrete or "jump" transport processes. Such processes often
provide a convenient mathematical limit for studying continuum events. However,
discrete models are more than mathematical devices. The starting point for the
formulation of vibrational relaxation in complex media are differential-difference
equations. These equations have a rich phenomenology and can give rise to complex
oscillatory and chaotic processes. The focus of the present chapter will be on
vibrational processes in proteins. There are a number of other biological settings that
are appropriately described by jump processes. Examples as diverse as the motion
of flagellated bacteria and exciton transport in photosystems fall in this realm. In the
companion chapter that follows (Chapter 8), we consider discrete processes
resulting from the decoding of sequence information in DNA and proteins.

To begin, the dynamics of simple one-dimensional jump processes are
considered (Section 7.1). Solutions to such problems provide a connection with the
results from the continuum problems considered in Chapter 5. In this context, the
model of Alexander and Orbach (1982) that describes "fracton dynamics" is
discussed. Jump processes with random coupling constants result in anomalous
scaling of the density of states. The scaling of the density of states can be
determined from experimental parameters using the temperature dependence of
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these parameters. Quantities such as the heat capacity, the inelastic neutron
scattering intensity, and the Raman relaxation time, directly involve the density of
states and will have characteristic exponents. These are discussed in Section 7.2,
along with specific results for biopolymers. With such techniques anomalous
temperature dependencies, i.e., a fractional scaling exponent, are often observed.
The frequency dependence of the density of states can then be determined from
these exponents using simple scaling arguments. Early on, Stapleton and coworkers
tried to interpret the anomalous temperature dependence of the Raman relaxation
rate of iron centers in proteins. This was one of the first attempts to ascribe a fractal
structure to anomalous scaling. It remains controversial for both theoretical and
experimental reasons. Yet Stapleton's work has stimulated a wealth of activity on
vibrational relaxation in complex media. We examine the main results of this work
with particular attention to effects due to geometry and those due to connectivity
(Section 7.3). A number of simple polymer models will be presented that show the
interplay of these two effects. The predicted scaling laws are compared with the
observed results from electron spin resonance studies of iron-containing proteins. In
the final section, the simple problem of a linear chain with multiple connectivities
is treated using a generating function approach. From the analytic results given in
this section, it is seen that complicated connectivity on its own does not yield
anomalous scaling. Rather, anomalous scaling is a result of randomness and disorder
in the system. The multiple connectivity model provides a starting point for future
work on more complicated polymer networks.

7.1 Lattice Diffusion and Fracton Dynamics

7. 1.1 Lattice Dynamics and Scaling Arguments

The dynamics of lattice walks have been studied extensively (see Montroll and
Shlesinger, 1984), and even one-dimensional systems can be surprisingly complex
(Lieb and Mattis, 1966; Alexander et al., 1981, Nakayama et al., 1994). Our goal in
this section is to consider some simple examples, as well as to present some results
for more complicated cases. This is not intended to be a rigorous presentation, but
rather provides the context for discussing later results. Initially, we consider a simple
random walk on a one-dimensional lattice. The "particle" on the lattice can hop one
unit at a time at unit frequency. Thus, the probability of finding a particle at the ith
site on the lattice will depend on the transition rate from the i + 1 or i - 1 sites. One
must also account for the loss of the particle to either of these two sites, and the
following dynamical equation is obtained:

The above differential-difference equation can be solved elegantly by using a
generating function approach (van Kampen, 1981) or directly from combinatorial
arguments. The generating function is used in Section 7.4 to solve problems
involving multiply connected lattices.
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For the case of the particle or "walker" starting at the origin at time t = 0, and
ending at site n at time t, the solution is

Equation 7,2 can be converted to the probability of finding the particle at a distance
r from the origin by making the transformation r= na, where a is the distance
between lattice points (and the distance traveled per unit time). The mean squared
distance, r2(t), is determined by:

The sum in Eq. 7.3 can be calculated explicitly and follows the normal Einstein
relationship r2 ~ t.

The vibrational dynamics of a linear chain presents a problem that is virtually
identical to the one-dimensional random walk. Consider a chain of point masses that
are connected by massless springs. Each point or bead on the chain will experience
a force as a result of displacements with respect to its neighbors. For a harmonic
potential between neighbors, the equation of motion for a single point (or bead) on
the chain is:

where £,• represents the displacement from the equilibrium position of the ith point,
m is the mass of the point, and / is the force constant of the spring. Using the
transformation

Eq. 7.4 becomes

where O is a frequency variable and is equal to ww2//.
Although Eq. 7.6 can be solved by conventional techniques, it is a convenient

starting point for a discussion of scaling arguments used in more complicated
problems. Such scaling arguments can be developed using a decimation procedure
(Stinchcoombe, 1988), similar to the lattice renormalization technique discussed in
Chapter 3. In the decimation procedure, one derives an expression analogous to Eq.
7.6 for the decimated lattice, i.e., a lattice with sites removed. By removing every
other site, a new lattice is created with a spacing a', that is twice that of the original
lattice constant a. However, the form of the dynamical equation (Eq. 7.6) is taken
to be invariant upon decimation (this is where the self-similarity enters). The
decimated lattice will also follows an equation of this form:
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This equation can be derived from Eq. 7.6 by adding and subtracting the appropriate
equations with ui+! and uf_i on the left-hand side. This substitution provides a
relationship between the frequency variable, f l ' , in the scaled expression (Eq. 7.7)
and its counterpart, (i in the original lattice (Eq. 7.6). For the linear chain, this
relationship is:

The frequency variable, 11', is appropriate for a lattice constant a' = 2a.
Equation 7.8 is a recursion relationship for the decimation process. Recursion

relationships of this quadratic form have been studied extensively in one-
dimensional problems that show chaotic behavior. In general, vibrational problems
associated with repetitive structures will give relationships of the form (Stinch-
coombe, 1988):

where X is a constant. Typically, the scaling behavior of fl is examined about the
fixed point, giving a functional equation of a form that was discussed in Chapter 1
(Eq. 1.7):

where the dependence on the lattice spacing is specifically shown. The solution of
this functional equation provides a scaling law between the frequency parameter and
the lattice spacing. It is:

where

With these results and dynamical scaling arguments (Lewis and Stinchcoombe,
1984), the scaling of the vibrational density of states, p(co), with frequency can be
obtained. The density with respect to the parameter, fi, is given by: p(Il) = dN/df\
where N is the number of units in the polymer. For a fractal structure one has
N ~ adf. Using this relationship and Eq. 7.11, ft ~ az, one obtains
p(fl) ~ adf~* ~ ildflz~ '. To determine the frequency dependence of the density, one
uses p(w) = p(fl)(a?fl/do)). Recall that (1 = o>2. The final result is:

where d is the spectral dimension introduced in Chapter 5. The solution of the
decimation problem (Eq. 7.9) allows the scaling of the density of states to be
determined by Eq. 7.13. The parameter z plays the role of the walk dimension, dw,
discussed in Chapter 5.

7.1.2 Fradons

There are a wide variety of problems in which the low-frequency modes have a
density of states as described in Eq. 7.13. Such problems have been investigated

l
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extensively by Orbach, Alexander, and coworkers (Alexander et al., 1981). These
problems are a modification of Eq. 7.1, such that:

7.2 Experimental Techniques for Determining the Density of
States

7.2.1 Heat Capacity Measurements on Biological Systems

Once the relationship in Eq. 7.13 has been determined, what do we do with it? The
scaling of the density of states relates structure (via d) to dynamics. The utility of
such a scaling law arises in the derivation of relationships for experimental

where now the transition probabilities, Wii+ ,, and the constant, Q, can be treated
as random variables that reflect the disorder in the system. Problems such as the
harmonic chain in which dP/dt is replaced by d2 P/dt2 can be treated similarly. In
these cases the force constants between units in the chain are treated as random
variables, again as a result of disorder in the system. Alexander and Orbach (1982)
were able to map the quantum vibrational problem into a classical diffusion
problem. They were able to determine the density of states from the Greens function
for the diffusional problem.

In many of the diffusion problems on disordered system, it is more convenient
to work with the Laplace transform of Eq. 7.14. The transform of the probability
function, Pn(co), is directly related to the density of states. Using a method originally
due to Dyson, averages can be performed over the random variables W,, + ) or C,
(Alexander et al., 1981) to determine (P,,(w)). This general approach can be used to
handle a variety of problems. Using the initial site correlation function, the density
of states is determined by:

In their seminal work, Alexander and Orbach (1982) introduced the concept of the
"fracton." At very low frequencies, complex networks will have vibrational modes
that are delocalized and act as normal phonon modes. These phonon modes span the
lattice structure. Above a cutoff frequency the vibrational modes become localized
and have a density of states that follows Eq. 7.13. These localized modes will
"diffuse" through the lattice much as a classical particle would, and are referred to
as fractons. There are a number of different structures and mechanisms that can
produce fractons. Fractons occur in disordered media and are particularly striking in
percolation clusters (see Havlin and Bunde, 1991). Percolation clusters are
discussed in Chapter 9.



where k' is a new numerical constant. The integral over x is independent of
temperature and can be taken as a constant. Consequently, Cv ~ Td. For a normal,
three-dimensional crystal, the familiar T3 power law is recovered. This result shows
that from a relatively easy measurement, one has a direct determination of the
spectral dimension. In practice, things are not that simple, as there are often multiple
scaling regimes that are not well separated.

Extreme care must be used in interpreting anomalous scaling as a fractal
phenomenon. Anisotropic materials will typically give rise to unusual scaling laws,
and these can give the appearance of being fractal (Krumhansl, 1986). For instance,
in the case of a crystal consisting of interacting polymer chains, the heat capacity is
given by:

where 6, and 03 are characteristic temperatures. At low temperatures this system
shows a classic 73 dependence, and at temperatures greater than 03 crosses over to
a linear dependence on T, as found for polymers. Initially, the system behaves as a
three-dimensional crystalline material, and the polymeric nature of the units is not
observed. At higher temperatures, the regime switches and reflects the one-
dimensional topology of the linear polymer.

For anisotropic layered systems, one similarly has a dependence that looks
three-dimensional at low temperature and crosses over to a two-dimensional
system at high temperature. Again, the high-temperature regime reflects the
dimensionality of the sheet or layered structure of the material. These scaling laws
are not fanciful theoretical constructs, but rather such transitions have been
experimentally observed with the low-temperature heat capacity of the polyamino
acid, poly(L-alanine) (Finegold and Cude, 1972). This polymer could be crystal-
lized into two different forms, alpha helix or beta sheet, depending on the
experimental conditions. The alpha helix data are best fitted by Eq. 7.18, the
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parameters. With standard statistical mechanical results, anomalous scaling, usually
with respect to temperature, can be determined. For instance, the vibrational
contribution to the constant-volume heat capacity, Cv, is given by:

where k is a constant, and ~h is Planck's constant divided by 2-rr. The anomalous
temperature scaling of a fractal object is seen by inserting Eq. 7.13 into 7.16 and
using a change of variables such that x = ~hu>/kT. This gives:
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interacting linear chain model. The beta sheets form two-dimensional arrays and
the anisotropic layered model fits this data better. Other more complicated
dependences that depend on the structure of the material (Krumhansl, 1986) are
possible. In principle, one can use this crossover phenomenon to distinguish
between fractal and conventional models. However, in practice, scaling regimes
can be limited because of the finite size of the system. Additionally, fractal
systems will also show crossover regimes from localized to fracton modes, giving
the appearance of an anistropic material. Clearly, one needs complementary
techniques to establish fractal behavior for any given situation.

In addition to the work on polyamino acids, there have been few measure-
ments of the low-temperature heat capacities of proteins (Edelman, 1992).
Anhydrous and partially hydrated powders of proteins were studied and the heat
capacities scaled as Cv~TcI for T<30K. Although this work did not employ a
fractal model, the values of d was determined directly from the data. For the
proteins insulin and chymotrypsin, values of d ranged from 1.6 to 1.8 in both
amorphous and hydrated samples. The effect of limited hydration was a slight
increase in this exponent. Interestingly, the dipeptide glycylgycine gave an
exponent of 2.3-2.5, implying that the protein structure rather than the peptide
linkage causes the low values of d.

7.2.2 Electron Spin Relaxation and Proteins with Iron Centers

Another experimental parameter that can give an anomalous temperature depend-
ence for fractal structures is the Raman relaxation time. This parameter is most
commonly measured using electron spin resonance (ESR). In this technique, the
relaxation to equilibrium of an excited electron spin state is measured. Three
different relaxation mechanisms have been identified, each with a characteristic
temperature dependence. These processes are referred to as: direct relaxation,
Orbach or resonance Raman relaxation, and Raman relaxation. The direct
mechanism involves the absorption or emission of a phonon at the characteristic
Zeeman splitting of the system. The reciprocal relaxation time, l/Tw, for the direct
mechanism has a linear dependence on temperature, T:

where g/3H is the Zeeman splitting. Often, the direct transfer mechanism can be so
efficient that the spin system can transfer Larmor energy into the vibrational system
faster than the vibrational system can equilibrate. In such systems, the direct process
becomes phonon-limited or bottlenecked. The relaxation rate then follows:

where [3' is the bottleneck factor. The squared dependence on temperature occurs
when the bottleneck is extreme ((3' » 1).



Equation 7.23 provides the experimental means for determining the spectral
dimension using the Raman relaxation time.

The Raman relaxation rate for simple Fe3 + salts at liquid helium temperatures
shows a T9 dependence, as would be expected for a three-dimensional solid. Iron
centers in proteins, on the other hand, show a more complicated dependence.
Typically, below 3 K a T or T2 dependence occurs. Above this temperature a
crossover to an anomalous temperature scaling occurs. This dependence typically
ranges from T5.7 to T6.3 (Stapleton, 1986). However, exponents as low as 4.8 have
been observed (Drews et al., 1990). This anomalous behavior was one of the first
phenomena to be interpreted using a fractal model. It gives spectral dimensions
between 1 and 2 for protein vibrational systems. The bulk of the data on heme
proteins give d values of 1.7 in agreement with the calorimetric results mentioned
above. Historically, this work greatly stimulated interest in this area. For this reason,
we discuss it in some detail. In the next section, the possible spectral dimensions
that can arise from polymeric structures are considered.

Raman relaxation in proteins remains extremely controversial, for a number of
reasons. First, it appears that the experimental results are extremely sensitive to
small changes in sample condition that should not alter the protein structure (Drews
et al., 1990). This casts doubt on whether the anomalous effects are actually
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A resonance Raman or Orbach relaxation process results in very efficient
energy transfer. This process can mask direct processes. The relaxation time for the
Orbach process has an exponential temperature dependence given by:

This resonance process occurs when the energy splitting between the ground and
first excited state of the paramagnetic ion is equal to the Zeeman energy. Thus, both
the direct and Orbach mechanisms involve phonon coupling at a single
frequency.

In contrast to the previous two processes, the Raman relaxation involves all the
high-frequency vibrational modes of the system. Typically, these can be 1-3 orders
of magnitude greater than the Larmor frequency. The Raman relaxation time, TR, for
an unpaired electron system is given by (see Drews et al., 1990):

where k is a constant. Assuming a vibrational density of states that scales as
p(w) ~ u>d, a substitution of variables is made and the integral in Eq. 7.22 is reduced
to a quantity that is independent of temperature. The integral is then merely a
proportionality constant. The temperature dependence is seen to be:
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associated with global modes in the protein. Secondly, there has been an increased
awareness that anomalous scaling can come from other sources and that fractals
need not be evoked to account for noninteger power laws (see Krumhansl, 1986;
Cusack and Doster, 1990).

where q is the wave vector, w is the frequency of scatter radiation, and U is the
Debye-Waller exponent. Frequently, the density of states is taken as being
temperature independent. This allows the Debye-Waller exponent to be determined
from the temperature dependence of the structure factor. Once this exponent has
been obtained, the density of states, p(w), can be determined directly from the
experimental data. Neutron scattering has considerable advantage over the previous
two techniques, since the entire functional form of p(w), can be determined rather
than the scaling relationship.

Neutron diffraction studies on hydrated myoglobin powders have been
performed; the frequency dependence of the density of states is shown in Figure 7.1
(Cusack and Doster, 1990). These data show a characteristic crossover frequency of
25 cm" -1. Below this frequency the density of states scales as w2, which is indicative
of a Debye-like three-dimensional crystal lattice. As is seen in the figure, anomalous
scaling occurs above the crossover frequency. No attempt was made to interpret this
region or to determine the scaling law. The temperature dependence of the Raman
relaxation rate was also determined from the scattering data. As with the ESR
results, a crossover regime was seen at low temperature. Below 5 K a Debye
dependence of T9 was seen, while above 5 K a significantly weaker dependence was
observed. Again, no scaling law was determined in the high-temperature regime, but
it has approximately the form expected from the ESR experiments. These results
differ from ESR results in the low-temperature regime, where a Tor T2 dependence
is typically seen. This may be due in part to the large difference in the sample
conditions (lyophilized powder vs frozen glass). Additionally, the neutron scattering
was measured at temperatures above 180 K, so the density of states would have to
be extremely insensitive to temperature to extrapolate to the liquid helium
temperatures used in the ESR experiments. It should be noted that a dynamical
transition is seen in the scattering data at about 180 K, and this effect may interfere
with the extrapolation to low temperature. In this transition, the scattering
contribution at the characteristic frequency is drastically reduced. The characteristic

7.2.3 Neutron Scattering from Proteins

The vibrational density of states can be determined directly using neutron scattering
measurements. In frequency regimes where the inelastic scattering dominates, the
contributions from elastic and quasielastic scattering are either small or easily
accounted for. In these regimes, the experimentally determined, incoherent structure
factor, S(q,u>,T), due to the inelastic contribution is given by (Cusack and Doster,
1990):



FIGURE 7.1 Log-log plot of the vibrational density of states
versus frequency for myoglobin at different temperatures: ( )
180 K, (• • • •) 250 K, (—) 300 K, ( ) 350 K. The straight line
has a slope of 2 as a three-dimensional Debye model. (Data adapted
from Cusack and Doster, 1990.)

frequency observed in the neutron scattering experiment may provide a key to why
the determination of the density of states is so problematic for the ESR experiments.
For acoustic modes it is argued that the crossover frequency corresponds to a length
scale of 40 A. With the length of an amino acid being approximately 4 A, there is
a limited spatial regime for establishing a scaling law. Regardless of the
experimental problems with ESR, the results from the limited neutron scattering
work on proteins indicate that anomalous scaling of the vibrational density of states
occurs. While the origin of these effects may be a result of a fractal phenomenon,
this has yet to be established convincingly.

7.3 Density of States of Simple Polymer Models

In this section, scaling arguments are used to determine the spectral dimension for
several, simple polymer models. In principle, these features could be incorporated
in global descriptions of protein relaxation modes. Such global models are appealing
in that they are usually more tractable than those involving specific, local effects.
However, models based exclusively on global properties may not always be
appropriate. When the dynamics associated with the specific function of a protein
(enzyme catalysis, for example) are considered, local modes are normally invoked.
In the case of proteins with large prosthetic groups, such as the heme proteins, local

178 Fractals in Molecular Biophysics



Fractons and Vibrational Relaxation in Proteins 179

behavior will clearly dominate. Experimental and theoretical results suggest (for a
review see Miller (1991)) that vibrational relaxation of a heme in a protein is much
like that of a heme in solution. First, the heme relaxes intramolecularly, and this is
followed by intermolecular relaxation to the surrounding protein. The protein itself
subsequently transports energy to the solvent. Thus, only the second step in this
complicated process would involve global modes. Relaxation of the protein could
proceed through the backbone and through the multiple connections resulting from
side-chain interactions. An argument against long-range transport of energy through
the backbone is that multiple contacts at the surface should result in loss of energy
to the solvent. A full description of vibrational relaxation in heme proteins will be
quite complicated, and relaxation of the heme may or may not be strongly coupled
to global relaxation modes.

Here, we focus on statistical models that provide information on the vibrational
density of states of a polymer. This information is the first step in the development
of dynamical models of protein relaxation that involve complete energy randomiza-
tion, i.e., models in the spirit of the Rice-Ramsperger-Kassel-Marcus (RRKM)
theory of chemical kinetics. Scaling arguments used to describe the density of states
for polymers of different connectivity are considered. These models were originally
developed to explain the Raman spin-lattice relaxation data described in the
previous section. As will be seen, one such model correctly predicts the scaling
exponents for a significant amount of the ESR data (Dewey, 1993). However, as
discussed previously, this area remains controversial.

The density of states for three different models of polymer connectivity is now
considered (Gates, 1984; Helman et al., 1984; Stapleton, 1984). These examples are
illustrated in Figure 7.2. The cases are:

A. a protein that has no connectivity except along the backbone of the chain;
B. a protein that has a high density of both local and nonlocal connections, the

density of these connections being as high as the connections along the chain;
and

C. a protein with a low density of local connections.

All three cases can be handled by relatively simple scaling arguments. It is
presumed that the polymer is a fractal structure with dimension df. Scaling
arguments are than used to determine z, the walk dimension. This allows the spectral
dimension to be calculated using Eq. 7.12. The temperature dependence of the
Raman relaxation time is likewise determined from Eq. 7.23, and a comparison with
the ESR results can be made. In Section 7.4, a polymer with regular, multiple
connectivities is considered and is solved exactly. This example represents a starting
point for developing more complicated models with random interactions. As shown
in Section 7.4, when the connectivity is regular, e.g., every fourth unit has an off-
backbone connection, as one might find in an a helix, the walk dimension, z, is 2.

For case A, the fractons diffuse exclusively down the length of the chain. As
mentioned in Chapter 4, the distance traveled along the chain is given the
unfortunate name, the "chemical" distance. It is proportional to N, the number of
units covered. For simple diffusion, N2 ~ t. We seek to relate this to the distance, r,
traveled in Euclidean space. For a mass fractal (see Chapter 1), one has
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r ~ Nv ~ Nlld<. The Einstein relationship becomes r2d< ~ t, which gives a walk
dimension z = 2df. The spectral dimension in this case is d = 2df/z = 1. With no off-
chain connections, the vibrational problem is still essentially a one-dimensional
problem, regardless of the fractal dimension of the structure.

Case B represents the other extreme. The connections are so plentiful that the
diffuser is not confined to a path along the chain. Consequently, it is diffusing as if
it where in a Euclidean space and will have a normal diffusion law, r2 ~ t. This gives
z = 2 and now the spectral dimension is equal to the fractal dimension, i.e., d = df.
Case C is a more complicated situation, and model calculations are used to argue for
the scaling law (Cates, 1984) This model is one in which all the connectivities are
"local," or short range. In this case, dw is dependent on the spatial dimension in
which the fractal is embedded. From model calculations involving the electrical
conductivity of networks of multiply connected resistors, it is seen that z = df + z,
where z is 0.92 in two dimensions and 1.46 in three dimensions. This third model
results in a spectral dimension that is intermediate between the two previous models.
The spectral dimension is now given by:

The results from these three cases can be compared with the experimental results
obtained from spin-lattice relaxation measurements of paramagnetic centers in
proteins. Values of the spectral dimension determined from the temperature
dependence of 1/TR range from 1.1 to 1.7, and there can be variability depending on
sample preparation (Drews et al., 1990). However, in general, the experimental

FIGURE 7.2 A schematic representation of a polymer with
three different levels of chain connectivity: (A) the polymer has
no off-chain connectivity; (B) the polymer has a high density of
connections, with connection between distant units; (C) the
polymer has only local off-chain connections.
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values fall into two categories. Hemeproteins give values of 1.67, while iron-sulfur
proteins have values of_1.34. Thus, the first model (no connections) cannot account
for the data, because d = 1. Recall from Chapter 2 that the fractal dimension of
globular proteins is_approximately 3. The second model, many connections, is also
ruled out, because d will be 3. The local bridge model gives d = 1.35 for polymer
collapse conditions, which is in excellent agreement with experimental results for
iron-sulfur proteins. None of the three models fit the data for hemeproteins
(d = 1.67).

Is it fortuitous that the iron-sulfur proteins fit this model while the heme
proteins do not? The X-ray structures of heme and Iron-sulfur proteins show very
different situations for the paramagnetic center. In the heme proteins, the iron is
embedded in the large prosthetic group, the porphyrin ring. In iron-sulfur proteins,
such as ferredoxin, the iron is bound directly to an amino acid side-chain, a cysteine.
Significant local effects due to the large porphyrin ring are to be expected with the
heme proteins. The paramagnetic center in iron-sulfur proteins would doubtless be
more sensitive to global relaxation modes as a consequence of its more direct
connection to the protein backbone. While the agreement of the local connectivity
model with the iron-sulfur data is encouraging, clearly there is a need for
alternative, less ambiguous, experimental techniques that provide additional
measurements of vibrational relaxation.

Apart from these ESR studies, applications of magnetic resonance techniques to
fractal problems have been limited. Recently, nuclear magnetic resonance (NMR)
results on the relaxation of water protons in muscle were analyzed as a fractal
problem (Giugliarelli and Cannistrato, 1990). From the frequency dependence of the
T{ relaxation time of water protons, a spectral dimension of 1.11 was determined.
While this was attributed to biopolymer backbone structure, the interpretation of
such a complicated system is not easy or obvious.

7.4 Random Walks on Multiply Connected Linear Arrays

There has been discussion in the literature concerning the role of connectivity, as
opposed to geometry, in producing anomalous scaling in vibrational systems
(Elber and Karplus, 1986; Cusack and Doster, 1990). In a sense this is something
of an arbitrary distinction, because the connectivity and the structure of biological
macromolecule are intricately entwined. As we will see in this section, con-
nectivity alone will not produce anomalous scaling in a one-dimensional system.
Rather, anomalous scaling arises from connectivities with a distribution of force
constants.

We start with the problem of a random walk on a linear chain. Initially, we treat
the simple case of a chain in which only the nearest neighbors are connected. This
is followed by the considerations where connections exist between remote units on
the chain. Such a system could be used to model vibrational relaxation in an alpha
helix, which has hydrogen bonds between every fourth residue (subunit) of the
chain. The carbonyl group of the peptide linkage forms hydrogen bonds to the amide
of a peptide linkage that is four amino acids away. These bonds are approximately
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parallel to the helix axis. The following diagram shows the connectivity of the alpha
helix:

The hydrogen bonds are represented by solid lines and the covalent connectivity is
given by dotted lines. Vibrations along the hydrogen bonds will doubtless have a
different force constant and complicate the model. Proteins can be considered to be
multiply connected polymers with random connectivity and random strength of
interactions. To create a model of relaxation in proteins, one might start with a
highly ordered, regular model and build in the random features. This section
provides the first step by considering the ordered model.

Problems of multiple connectivity are conveniently handled using a generating
function approach. The simple chain problem is considered first. Returning to Eq.
7.1, one has:

where the coupling constant has now been introduced explicitly. The constant W1

designates the appropriate transition rate for connections that are 1 unit apart.
Following van Kampen (1981), a probability generating function, F(z,t), is defined
as:

By summing Eq. 7.26 over all i sites and using Eq. 7.27, a differential equation for
F(z,t) is obtained:

where fl(z) is a constant from the integration. Choosing the boundary condition that
the walker is at site n at time t = 0, gives O (z) = 1. A standard relationship for the
modified Bessel function, Ik(z) can now be utilized:
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Using Eq. 7.30 in Eq, 7.29 and referring to the original series (Eq. 7.27), the
probability function is seen to be:

Pn([) = e'2w''lM(2Wlt) (7.31)

The asymptotic form of the Bessel function such that t —> =° and n —>«, while n2t
remains fixed gives the familiar form for the probability function:

The generating function approach provides a number of mathematical con-
veniences. The average displacement, < r(t)>, and mean squared displacement,
< r2(t)>, can be calculated directly from it rather than from Eqs 7.32 and 7.3. This
is done with:

The generating function may not always be in a form that allows for an easy or
useful extraction of the probability function. In such cases one can determine the
probability function from a contour integral similar to that for used to evaluate the
canonical partition function from the grand canonical function (see Chapter 3). This
is give by:

The integral in Eq. 7.34 is often evaluated using the method of steepest descents.
The case of the multiply connected linear array is now considered. The kinetic

equation governing this example is:

where the walker can jump to any unit that is i spaces away with a transition
probability of Wi. The generating function for this case becomes:

For the alpha helix problem, one has only nearest neighbor connections and
connections between every fourth site. For this special case, expanding Eq. 7.36 in
a series yields the probability function:

))
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Although Eq. 7.38 provides a solution to the problem, it is not in a form that is
especially easy to handle. On the other hand, the generating function (Eq. 7.36)
allows a convenient determination of a number of properties of interest. For
instance, using Eqs. 7.33a and 7.33b, one sees that the average distance, r, is equal
to zero. The root mean squared distance is given by:

Thus, the Einstein relationship for a multiply connected linear array shows a normal
one-dimensional time dependence. In other words, the walk dimension for this
problem, dw, is equal to 2. Consequently, this problem will not show anomalous
behavior with regard to the density of states. The multiply connected system will
appear as a normal harmonic chain. Using Eq. 7.34, the probability function can be
evaluated with the method of steepest descents. Particularly convenient forms are
determined when all the coupling constants are the same, Wt = Wj. This case gives
a normal Gaussian function such as in Eq. 7.32. In the limit of the number of
connections m approaching n, the function decays as an exponential.

These results indicate that a complicated linear structure cannot, by itself, yield
anomalous scaling of the density of states. To achieve such scaling requires that the
system show disorder. This disorder could be either dynamic (a time-dependent Wi)
or structural (Wi is a random variable). Proteins clearly will have structural disorder
as a result of their heterogeneous composition. The density of states for specific
protein structures has been explored computationally (Elber and Karplus, 1986). In
this work, protein X-ray structures were examined and the vibrational modes of
these structures were determined. However, a simple connectivity was employed.
Each amino acid was taken to have four connections, two along the chain and two
distant ones. Distant connections had to be greater than six residues away, thus
eliminating alpha helical hydrogen bonding as a connection. The normal mode
equations for the protein vibrations were solved using an effective-medium
approximation. The effective medium approximation is a way of incorporating the
distribution of coupling constants into a single frequency-dependent variable. Using
this approach, the scaling of the density of states was calculated. An "effective"
fractal dimension was determined from this scaling. These give the following
values: myoglobin, 1.6; cytochrome c551 , 1.4; and ferredoxin, 1.4 These numbers
are essentially in agreement with the ESR work. Again, this emphasizes that

The more general form, m connections, can also be obtained and this is given
by:
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connectivity per se does not result in anomalous scaling, but rather it is the
distribution of coupling constants that give such effects.

7.5 Summary

The scaling properties of differential-difference equations used to describe
vibrational relaxation were examined. Once again, the spectral dimension appears.
This time it is an exponent in the scaling of the frequency dependence of the
vibrational density of states. This scaling occurs in a regime where "fractons" exist.
These are localized vibrations that "diffuse" through the media as a classical
particle. The spectral dimension can be determined from the temperature
dependence of several different experimental parameters. Specific results obtained
from heat capacity, ESR, and neutron scattering measurements show that anomalous
scaling occurs in a number of biological settings. However, interpretation of these
exponents has been problematic. The spectral dimension for simple polymer models
with different degrees of connectivity was derived and compared with ESR results.
Models of vibrational relaxation in multiply connected polymers show that
anomalous scaling does not result from the connectivity properties of a system.
Rather it is more closely tied to the randomness of the coupling factors and the
disorder in the system.
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8

Encoded Walks and
Correlations in
Sequence Data

The statistical analysis of sequence data has generated ongoing interest. The statistical
properties of nucleic acid and protein sequences (see Doolittle, 1990; Volkenstein,
1994) provides important information on both the evolution and thermodynamic
stability of biomacromolecules. In addition to conventional statistical approaches (for
reviews, see, Karlin et al. (1991) and White (1994), fractal analyses of DNA and
protein sequences have given new insight into sequence correlations (Peng et al.,
1992; Voss, 1992;Buldyrevetal., 1993;Dewey, 1993;Pandeetal., 1994; Balafas and
Dewey, 1995). In this chapter, we consider such analyses. They represent a problem in
discrete dynamics very different from those discussed in the previous chapter. Lattice
walks can be constructed from sequence information in a variety of ways. These
encoded walks result from assigning a specific numerical value and spatial direction
to the members in the sequence. For instance, in DNA problems it is common to give
purines a + 1 step on a one-dimensional lattice and pyrimidines a - 1 step (Peng et al.,
1992; Voss, 1992; Buldyrev et al., 1993). Similar walks have been studied in protein
sequences and have been based on a specific chemical or physical property of the
rnonomeric unit (Pande et al., 1994). The resulting trajectories of these encoded walks
can be analyzed as diffusion problems. Deviation of the encoded walk from random
behavior provides evidence for long-range correlations.

In the following section, the construction and analysis of the scaling behavior
of encoded walks are examined. Section 8.2 describes the results and interpretation
of DNA walks. Significant controversy has surrounded encoded walks for DNA
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sequences, particularly with regard to correlations in noncoding or "junk" DNA (see
Stanley et al., 1994). We review these points of controversy. Using a variation of the
DNA walk known as the "Brownian bridge," correlations in protein sequences have
been examined and these are discussed in Section 8.3. The encoded walks for
proteins are based on physical parameters rather than on composition. Correlations
in these parameters have been attributed to evolutionary driving forces that are
shaped by physical aspects of protein structure. Using the protein sequence data, the
connection between encoded walks and the multifractal formalism discussed in
Chapter 4 is made. The advantage of the multifractal approach is that it allows
correlations within individual protein sequences to be determined accurately. This is
in contrast to encoded walks where the trajectory of an individual protein is too
"noisy" to obtain good statistics. Consequently, this latter approach has been
restricted to the study of "ensembles" of many protein sequences. Using the
multifractal approach, the ergodicity of protein sequences is examined. For a
comprehensive, nonredundant data set of protein sequences, it is seen that sequence
correlations within individual proteins are the same as correlations within an
ensemble of sequences. By establishing the ergodicity (in the information theory
sense), the information content of a protein sequence can be statistically related to
the number of probable sequences. From an analyses of protein sequences, the
information content of an amino acid in a protein sequence can be determined
(Section 8.5). Implications of these results for information theoretical considerations
of protein sequences are discussed.

8.1 Encoded Walks and Scaling Laws

An encoded walk is generated from a DNA or protein sequence using a numerical
correspondence between each subunit (amino acid or nucleic acid base) and a
physical or chemical property associated with it. This correspondence generates a
sequence of numbers, {£1, £2, • • •, £/,}, where £, is a numerical value associated with
the amino acid in the ith position along the sequence and L is the length of the
sequence. These numerical associations provide a set of directions for the walker to
follow. There are many different sets of instructions that one can devise for
generating a DNA walk. The simplest and perhaps most useful walk is the purine-
pyrimidine rule (see Stanley et al., 1994). In this case, a one-dimensional walk is
created from the sequence by assigning a step direction to each nucleic acid base in
the sequence. The walker begins at the origin and steps one unit up (+ 1) when it
comes to a purine (adenine (A) or guanine (G)). If the next base in the sequence is
a pyrimidine (cytosine (C) or a thymine (T)), the walker steps one unit in the negative
direction (- 1). The walk is generated by proceeding along the DNA sequence. The
position in the sequence takes the place of the time variable in a normal one-
dimensional walk problem. The generation of a trajectory from a DNA sequence
using the purine-pyrimidine rule is illustrated in Figure 8.1. Of course, other rules
can readily be generated for creating walks. For instance, higher dimensional walks
can also be devised. The four bases can be assigned a separate direction in a two-
dimensional space, i.e., step jumps of (0,1), (0, - 1), (1,0), (- 1,0) in the xy plane.
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FIGURE 8.1 (a) Schematic illustration of the definition of a "DNA walk." The walker steps up when
a pyrirnidine (C or T) occurs in the DNA sequence, and steps down when a purine (A or G) occurs, (b)
DNA walk for a DNA sequence consisting of 25,000 base pairs. (Figure adapted from Stanley et al.,
1992.)

While such higher dimensional walks have been explored (Berthelsen et al., 1992;
Korolev et al., 1994), the one-dimensional walk has received the most attention. This
is largely due to the greater ease of handling the statistical analysis for the one
dimensional problem. Consequently, such walks will be the focus of our attention.

What is the significance of these walks created from the genetic text? Do they
reveal anything about the text or are they merely a mathematical curiosity? A
number of approaches can be used to examine walk trajectories to determine if there
are correlations within the data set. There are three basic types of behavior that
might be expected, and these have close analogies with fractional Brownian motion
(see Chapter 1), The trajectories can be random, persistent or antipersistent. Random
walks retain no memory of the previous excursions. A step in one direction is
equally as probable as a step in the opposite direction. In a persistent walk,
movement in one direction increases the probability of further movement in that
direction. However, once an opposite step occurs, a trend will be favored in the new
direction. Such walks show large, relatively noise-free excursions from one extreme
to another. Antipersistence occurs when a step in one direction increases the
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FIGURE 8.2 Fractal landscapes of DNA walks. (Top) DNA walk for the human B-cardiac inyosin
heavy-chain gene sequence. (Middle) DNA walk for coding regions of the gene treated as a continuous
unit. (Bottom) DNA walk for bacteriophage lambda; this gene contains only coding regions. The lop
curve shows long-range correlations, while the other two curves are random. The top curve shows a much
larger number of nucleotides. (Figure adapted from Stanley et al . , 1992.)

probability of a step in the opposite direction. Antipersistent walks will appear more
"noisy" than random walks. Figure 8.2 shows DNA walks for both coding and
noncoding DNA sequences. Persistent behavior is seen in walks for noncoding
regions, while the coding regions are thought to be random. The noncoding regions
do not contain the sequence that encodes a gene product such as a protein or an
RNA. The observed persistence is indicative of long-range correlations in the DNA
sequence.

There are a number of mathematical devices for determining correlations within
a walk. Typically, these methods determine a scaling exponent. Results from
different statistical analyses can be compared using relationships between
exponents. In the original description of DNA walks, the root mean squared
fluctuation after / steps, F(l), was determined. With the purine-pyrimidine rule, the
individual displacement for the ith nucleotide, £,-, is + 1 for A or G and - 1 for C or
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T. The total displacement after / steps is >'(/) = Ej=i £,. The mean squared
fluctuation is given by:

where A>>(/) = j(/0 + Z) - X/o), ar>d 4) L0 is a position in the sequence. The bars indicate
averages over all positions in the sequence. This is given explicitly by:

where N is the number of bases in the sequence. The sum in Eq. 8.2 is the average
fluctuation. The autocorrelation function, C(l), is another parameter that is often
used to examine fluctuations. It is given by:

where the bars are defined in a similar fashion as in Eq. 8.2, except now the
individual displacements, (;,-, are used. The mean squared fluctuations are related to
the autocorrelation function through:

Another function that is commonly used in noise analysis is the spectral density,
S(f). This is the cosine transform of the autocorrelation function:

The scaling of F(l) with / provides information on the correlations within the
sequence. If the sequence is a random arrangement of purines and pyrimidines, then
the correlation function, C(l) will be zero for all values except for C(0) for which
it is 1. The double sum in Eq. 8.4 is equal to /, giving F(l) = /1/2. This is equivalent
to a Hurst exponent, H, of 1/2 for fractional Brownian motion (see Chapter 1). When
there are short-range correlations, the autocorrelation function decays exponentially,
i.e., C(l) - exp (- ///R), where R is a characteristic length for the system. For large
/, the double sum in Eq. 8.4 can be replaced by integrals and transformed into polar
coordinates. This gives F2(l) = { r exp (- rlR)dr. Solving the integral, it is seen that
in this case one also has F(l) ~ /1 / 2 . This demonstrates that a process with short-
range correlation shows the same scaling as a random process.

There can also be a situation where there is no characteristic length to the
system, i.e., the system has a "fractal landscape." In such a case power law scaling
for the autocorrelation function will occur, giving C(r) ~ ry, where y is an exponent
that cannot equal 1. Again converting the double sum in Eq. 8.4 into an integral, one
has:

Defining a scaling exponent for F9l0 as
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where a = 0.5, one has the relationship between exponents, a = (2 - y)/2. These
exponents can also be related to those for the spectral density. Assuming a scaling
of S(f) x f ~ B and using the cosine transform in Eq. 8.5, (3= 1 --y. This gives
a = (1 + |3)/2. Most of the computational work on DNA has determined a from the
log-log plots involving Eq. 8.1. However, Voss (1992) has used the spectral density
in his work. The relationships between exponents allow comparison of the results
from different methods.

8.2 Correlations in DNA Sequences

When Stanley and coworkers examined DNA sequences with the algorithm based
on Eqs 8.1 and 8.4, they made two controversial findings. First, they showed that for
regions of DNA that coded gene products, a = 0.5. Thus, coding regions show no
long-range correlations. When noncoding regions or intron-containing genes are
analyzed, a values greater than 0.5 were observed. These values are typically in the
range 0.5-0.7 (Peng et al., 1992). This result is somewhat surprising because the
coding region contains the information to make proteins and transfer RNAs
(tRNAs). This information is apparently conveyed in a statistically random
sequence of nucleotides. The noncoding regions do not have a gene product. The
physiological role of such "junk DNA" remains a mystery. Yet it is these filler, or
junk, regions that show the long-range correlations. Interestingly, the percentage of
junk DNA increases as one moves up the phylogenetic tree. Most bacteria, for
instance, have 100% coding DNA. Invertebrates typically have about 30% coding
regions, and mammals have only 5% of their DNA coding for a gene product.

There are other reasons why the DNA walk results are considered controversial.
Some workers suggest that a > 0.5 for coding regions as well as the noncoding
region (Voss, 1992). Other studies argue that for all regions, both coding and
noncoding, a = 0.5. A second controversial result is that for the noncoding regions
a increases with evolutionary time. For a variety of gene families and species the
following values of a where obtained: bacteria 0.50 ±0.014, invertebrates
0.525 ± 0.006, and vertebrates, 0.574 ± 0.006 (Buldyrev et al., 1993). Thus, higher
order organisms have more complex fractal scaling properties in the noncoding
region. Again, conflicting results appear in the literature.

To resolve these controversies, two issues must be addressed: (1) the quality of
the algorithm used to analyze the data, and (2) the choice of data sets. It has been
argued that the mean squared displacement algorithm used with a p u i n e - -
pyrimidine DNA walk provides the most "robust" indicator of long-image
correlations (Stanley et al., 1992, 1994). Additional modifications, known as
detrended fluctuation analyses, have been used to improve the analysis of smaller
data sets, such as those found in coding regions (Peng et al., 1994). The purpose of
these algorithms is to correct the random walk for overall compositional biases,
thereby removing any drift term from the fluctuations. These new analyses confirm
the original results. Extensive numerical simulations also show the algorithm
reliably to reflect truly random behavior, i.e., a is determined to be 0.5 in random
data sets. Despite some doubts (Tsonis et al., 1993), it appears that the algorithm is
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accurately calculating a. The second issue regarding choice of data sets is equally
tricky. Because of their short length, coding sequences have been examined as
pooled data. When taken from different gene families this potentially creates
problems. Additionally, strand bias can occur in these genes, and this bias is often
not corrected. To circumvent such problems, recent analyses have focused on a
single gene family, the myosin heavy chain (Buldyrev et al., 1993). These efforts
mark the most consistent and extensive exploration of evolutionary trends in long-
range correlations.

Presuming that inconsistencies in data and algorithms can be resolved, it is
tempting to speculate on the causes of these observed effects. The apparent
randomness of the coding region is perhaps easier to explain than are the
evolutionary effects. Recent work on protein folding (Shakhnovich and Gutin, 1990)
suggests that virtually all possible protein sequences could fold into a thermody-
namically dominant state. There may be kinetic problems with the folding of
random sequences (see Karplus and Shakhnovich, 1992). Thus, there is no
requirement for correlation within a protein sequence in order to create a protein
with a well-defined, native structure. An inspection of a large number of protein
sequences shows that approximately 50% of all amino acids in naturally occurring
proteins are polar and 50% are nonpolar (Klapper, 1977). This is again suggestive
of a random arrangement of amino acids in a protein. As will be seen in the next
section, proteins are not truly random, but should be considered to be "slightly
edited" by evolution. In considering the DNA walks, one must bear in mind that
purines and pyrimidines by themselves are not the genetic code, rather they are
letters in the code. One could make the analogy between the coding region and a
page of prose. The letters in the page are like the purines and pyrimidines. Words are
created by combination of letters. In the case of the genetic code, all words are three
letters long. The question then is: If the words are random are the letters also
random? But, the translation of this code is not random because there is a
rionuniform degeneracy in it. For example, leucine has six different "triplets" that
code for it, while tryptophan has only one. Despite such biases, there is still a strong
enough "mixing" of purine and pyrimidines in the code that virtually randomize
their content. Actually, one of the "fail-safe" mechanisms built into the code is
resistance to mutations that greatly alter the nature of the encoded amino acid. The
third position in the triplet code is particularly robust, since virtually any mutations
in that position result in the same or a similar amino acid. Such effects serve to
randomize the letters within the words. Given all the above considerations, it is not
surprising that coding regions in DNA have random purine-pyrimidine walks.

Correlations in noncoding DNA regions require a more elaborate explanation.
An "insertion-deletion" model has been proposed to describe the evolutionary
changes in these correlations (Buldyrev et al., 1993). This model mimics the
conversion of a random coding DNA into an intron containing gene. Initially, a
purine-rich, random array of nucleotides is taken as the coding DNA sequence.
Insertions/deletions are made in this sequence by randomly choosing a location
along the chain and forming a loop. As discussed extensively in Chapter 3, the
probability of forming a loop of length / is taken to obey a scaling law such that
P(/) x l -c', where c is the scaling exponent. In these simulations, c was assumed to
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be 2 (see Chapter 3 for more details on loop formation). Following a model of DNA
recombination, the loop is then cleaved (or annealed), and this results in the deletion
(or insertion) of a given sequence. These random events are allowed to continue
along the length of the DNA. When loops are inserted they are given an equal
probability of maintaining the original strand or flipping to a pyrimidine-rich strand.
Additionally, retroviral insertion is included in the model. The retrovirus is given a
sequence that contains equal amounts of purines and pyrimidine. This recombina-
tion event again has a length dependence derived from loop formation. The
retroviral insertion is important because, without it, at long "evolutionary" time the
sequence returns to an a value of 0.5. Using this computer model and analyzing the
sequences for correlation, one obtains increases in a. with the number of insertion/
deletion events, i.e., with evolutionary time. Features of this model will, doubtless,
be debated, and other models that give comparable behavior will be generated.
However, the important point is that one does not need a very sophisticated model
to generate long-range correlations.

Grosberg et al. (1993) have proposed a very different interpretation of long-
range correlations in DNA. This model is based on the physical constraints required
to package DNA into higher order structures such as chromosomes. A single strand
of eukaryotic DNA can be extremely long, yet is packed into a very small region.
For instance, a 1 m long strand of DNA is contained in the cell nucleus, which is
approximately 1 um in size (Grosberg et al., 1993). On this large scale, the DNA
must exist as a globule or collapsed polymer. Two different globule structures were
discussed in Chapters 2 and 3. They are globules consisting of Gaussian coils that
form dense structures by interpenetration, and the "crumpled globule," or globules
made up of small, locally dense globules that close pack but do not interpenetrate.
Globally, both types of globule scale as Rg ~ Nv, with Rg being the radius of gyration
and N is the number of subunits in the polymer. The exponent, v, is 1/3 in both cases.
Locally, a similar scaling holds, except that the Gaussian coil has v = 1/2 and the
crumpled globules will have v = 1/3. From a biological perspective, one of the main
problems with interpenetrating globules is that they have many configurations that
form knots. At a global level, knots would create difficulties for the biological
functions such as transcription, translation, and the packaging of DNA. Considering
these arguments, it is highly likely that DNA is not an interpenetrating globule, but
rather an unknotted, crumpled globule.

To relate the sequence properties to the physical properties of DNA packaging,
it was assumed that surface interactions play a key role in the association of DNA
globules. The sequence length, /, is proportional to the number of units, N, so the
radius of the globule scales as R ~ /1/3. The surface area, R2, of the globules will
scale as I2/3 . If this surface requires a specific physical or chemical property for
efficient chromosomal packing, then one would anticipate correlations over regions
in the sequence that scale as I2 / 3 . Such correlations would require Ay ~ /2/3, and this
gives an a value of 2/3. This is in excellent agreement with the value of 0.67 ± 0.01
obtained for the human pi-cardiac myosin heavy-chain gene. Other genes with a high
degree of introns show similar values. This model provides a physical picture of
long-range correlation, as opposed to the processing picture of the previous
computer model. Since bacteria do not have higher order organization such as
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chromosomes, there is no need for such a physical scaling law. This is consistent
with the lack of correlations in DNA sequences in prokaryotes. In principle, one
could test this picture by replacing the noncoding DNA in an organism with coding
(but not expressed) DNA and observe whether DNA packaging is compromised. In
practice, this would be a formidable technical feat.

8.3 The Brownian Bridge and Protein Sequences

Using the methods described for DNA, sequence walks for proteins can also be
created. If one were to encode protein sequences based on composition, a
20-dimensional walk (one dimension for each amino acid) would be needed, and the
analysis would be intractable. Alternatively, the sequence can be encoded using a
property of the amino acids. For instance, if an amino acid is hydrophobic, the
walker takes a step up. If it is polar, the walker steps down. Three different encoding
schemes were used to study the randomness of protein sequences (Pande et al.,
1994): hydrophobic, hydrogen bonding, and ionic charge. Three different random
walk trajectories can now be obtained for each protein. The randomness of such
trajectories provides information about the distribution of the respective interactions
along the protein sequence.

In the protein walk study, a device known as the "Brownian bridge" was
developed to account for the compositional bias or "drift" term in the walk. The
Brownian bridge is a walk with equal number of step-up events as step-down events.
In such a walk, the net displacement is zero. To achieve this, one defines the sum
of the individual displacements, y(l), as in the previous section. To correct for the
drift, a new variable, Y(l), is defined as:

where L is the total length of the sequence. Using the transformation in Eq. 8.8, the
walk will always return to the origin. At the midpoint of the walk, / = L/2, the root
mean squared displacement of Y(l) will be at a maximum and will be proportional
to \L for a random walk. Plotting the root mean squared displacement, r, versus the
reduced length, X (X = l/L), a "bridge" structure is seen, as shown in Figure 8.3.

Persistent and antipersistent behavior will show deviations from the bridge of
the purely random walker. For extremely strong persistence, the walk will proceed
as far as possible in one direction before turning around and returning to the origin.
A "tent" is created instead of a bridge (see Figure 8.3). The maximum displacement
of the tent will be L/2. For extreme antipersistence, the length of individual trends
will be minimal and a jagged line along the origin will occur. Thus deviations above
the random bridge indicate persistence, and deviations below the bridge result from
antipersistence.

One difficulty in applying this technique to proteins is that the sequence of a
single protein is too short to generate a smooth bridge. To reduce the noise in the
trajectories, a composite of many proteins must be considered. Thus, the trajectories
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FIGURE 8.3 Root mean squared displacement,
r, versus reduced distance, X, for the Brownian
bridge representation of a random walk. The
random walk is the smooth arc. Persistent walks lay
above the random curve, and a strongly persistent
walk wil l appear as a "tent" (top curve). Anti-
persistent walks are below the random curve.
Strongly antipersistent walks will track along the
origin of the line.

that are calculated represent an ensemble average over different proteins. This
creates some problems in terms of weighting sequences of different length, and a
correction for this was developed (Pande et al., 1994). An ensemble averaged
squared displacement (z2(/)) is defined as:

where the angle brackets represent averages over a large data set of different
proteins and the bars represent an average within a protein sequence. For example,
| = (1/L) Sf= i £/. The term L (£ - i)2 eliminates the L dependence and corrects for
different lengths and variances between proteins. The mean squared trajectory
follows a scaling law:

where the exponent a will, again, equal 0.5 for a random walk. When a is greater
than 0.5, the walk demonstrates persistence and an a value of less than 0.5 indicates
antipersistence.

The results of an analysis of an ensemble of protein sequences are displayed in
Figure 8.4. As can be seen, the three different encodings of the sequences all show
nonrandom behavior. Using an empirical function, the exponent, a, associated with
the walks was determined. A value for a of 0.520 was determined for walks based
on hydrophilic or hydrogen bonding, and an a value of 0.470 was obtained for
walks based on static charge distributions. Errors in a are typically a few percent.
These results indicate that hydrophobic and hydrogen bonding walks show
persistence, while Coulomb walks show antipersistence. This is not surprising from
general considerations of protein structure. Hydrophobic regions tend to exist in
clusters, packed in the interior of a protein. Hydrogen bonding residues are often on
loop structures exposed to the solvent, and consequently will also appear as clusters.
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FIGURE 8.4 Brownian walks for hydrophilic (X), hydrogen bonding (•), and Coulomb (X)
mappings of sequences of proteins. (Top) Plot for composite walks of globular proteins with catalytic
activity. (Bottom) Plot for composites of prokaryotic enzymes. Deviations above the random curve
indicate persistence (hydrophilic and hydrogen bonding) and excursions below the curve indicate
antipersistence (Coulomb). (Figure from Pande et al., 1994.)
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Such clusters will give correlations that appear persistent. With Coulomb
interactions the protein wants to avoid the possibility of a string of unfavorable
electrostatic interactions and, therefore, disperses the charges. This results in
antipersistence.

What are the implications of these results for the way in which a protein
evolves? If a prebiotic environment created amino acid heteropolymers at random,
the number of possible protein sequences is astronomical. For instance, for a
relatively small protein of 100 units, there are 20100 possible sequences. This
number is larger than the number of all the atoms in the universe. One can speak of
a "sequence space" as a multidimensional space in which all the possible protein
sequences occur as vertices of a hypercube (Eigen, 1992). Such a sequence space is
vast, especially with respect to the number of proteins that could have existed
throughout evolution. Estimates can vary widely, but from a crude calculation the
upper limit for the number of possible proteins that could have existed is 1048 (see
Kauffman, 1993). Thus, the number of proteins that have existed is a minute fraction
of the number of possible protein sequences. How could enzymes of well-defined
three-dimensional structure and exquisite selectivity evolve from such a myriad of
choices? There is evidence that the requirement for proper protein folding is not
such a stringent one, and that proteins are very close to being random. Computer
experiments show that randomly generated polymers with polar and hydrophobic
subunits will fold into a well-defined, thermodynamically stable conformation.
Consequently, the concept of proteins as "slightly edited random polymers"
(Volkenstein, 1994) has gained wider acceptance. In evolutionary terms, proteins
can be considered as arising from a dispersion of polymers in sequence space. Each
of these polymers begins to search its own local region of sequence space by an
"editing" process. This search leads to slight nonrandomness and to biological
function. The results from the encoded walks suggests that this "editing" process is
driven by physical properties, i.e., the selection process has physical criteria. These
criteria result in the correlations in hydrophobicity, hydrogen bonding, and charge
distributions that are observed in the Brownian walks. There will also be genetic
constraints to evolution that could result in sequence correlations. It is unclear how
such genetic effects would influence the clustering of physical properties.

8.4 The Connection with Multifractals

The multifractal approach described in Chapter 4 provides another method for
detecting correlations in protein sequences. It has been used to explore correlations
in the solvent accessibility profile and the hydrophilicity profile of a number of
proteins (Balafas and Dewey, 1995; Dewey and Strait, 1995; Strait and Dewey,
1995). In this analysis, one again starts with an encoding of the sequence as in the
walk problem. However, £i, do not take on values of ± 1, rather they are assigned
the continuous values associated either with the fractional solvent accessibility or
with the hydrophilicity index. As discussed in Chapter 4, the multifractal algorithm
covers the sequential array by boxes of length, /, and the trajectory within each box
is calculated. The procedure is repeated with increasing box sizes and the
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dependence of the trajectory on box size is found. In this approach, one is not
concerned with the displacement, y ( l ) , alone, but with the sum of displacements of
all the boxes. Also, one is not restricted to the first mioment. Rather, all moments of
the displacement, yq(l) or zq(l), are considered. These moments are used to
determine the "generalized" dimensions associated with the shape of the data
profile. These generalized dimensions provide information on the hierarchical
nature of the data set.

A "partition function," Zq(l), is defined to examine the qth moments of the
sequence, and is given by:

where j labels individual boxes or sequences of length / within the complete protein
sequence of length L. There will be a total of LI I of these boxes. Using a scaling
Ansatz, Zq(l) ~ l ~ T ( q ) , where T(q) is a generalized exponent. The properties of this
exponent are described in Chapter 4, where it is seen how a multifractal spectrum
is obtained from i(q).

At first, it may appear as if the multifractal approach is quite different from the
Brownian bridge. However, they are actually closely related. The main difference in
the two approaches is that multifractals are concerned with the moment distribution
of many short trajectories that make up a protein sequence, while the encoded walks
focus on the root mean displacement of a single trajectory from an ensemble of
protein sequences. Because the encoded walks rely on a single trajectory, an average
over many proteins must be considered to generate good statistics. However, given
a protein of a long enough sequence, one could, in principle, obtain a scaling law
(Eq. 8.10) for a single protein rather than for an ensemble average. In the
multifractal approach, the sum of trajectories generated from a given sequence
replaces the ensemble average of the encoded walk. If protein sequences are ergodic
in the information theory sense, then the statistics within an individual protein
sequence will be the same as those within the ensemble. In such cases, a
correspondence between the two approaches can be made.

Because of the finite length of a protein sequence, the number of trajectories in
the multifractal approach decreases with trajectory size as L/l. Consequently, to
relate the multifractal sum to the mean displacement of the encoded walks, one must
normalize the sum. The scaling of (z2) is related to the second moment of Zq(l)
by:

where a fractal dimension of 1 for the support, i.e., the linear sequence, is implicitly
assumed. Using Eqs 8.10 and 8.12, one obtains a relationship between the walk
exponent, a, and one of the multifractal exponents, T(2):

Thus, the result of the encoded walk trajectory is related to a single point in the
multifractal spectra.
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FIGURE 8.5 Hydrophilicity (top) and solvent accessibility (bottom) profiles for the
protein concanavalin A. The correlations within the two profiles are statistically very
different. (Data from Dewey and Strait, 1995.)

One could, of course, examine higher order moments of the average
displacement of the trajectory and establish a relationship such as (zq(/)) ~l lq(q)
These higher moments are related to the appropriate multifractal exponent by
(Dewey and Strait, 1995):

From this, it is seen that the multifractal approach has a direct correspondence with
the encoded walks, and that, except for the negative moments, it provides the same
information. The multifractal approach is the method of choice because it can
generate scaling exponents for single protein sequences.
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FIGURE 8.6 Multifractal spectra of concanavalin A: (D) spectrum
determined from the hydrophilicity profile; (O) theoretical curve for a
multiplicative binomial process used to fit the hydrophilicity curve; (A)
spectrum determined from the solvent accessibility profile. The broader
spectra indicate stronger deviations from random behavior.

The multifracial spectrum of the hydrophilicity profile (for a sample profile, see
Figure 8.5) of a large data set of proteins could be accurately fit using a
multiplicative binomial process (Strait and Dewey, 1995). This model provides the
following relationship for -r(q) (see Feder, 1988):

where p is the probability of finding a hydrophilic residue, and the factor of 2 results
from treating the problem as a binary process. Figure 8.6 shows a plot of versus
a (see Chapter 4) for the protein concanavalin A. The spectrum determined from the
profile shown in Figure 8.5 is shown along with the theoretical curve obtained from
Eq. 8.15. Using the value of p from the fitted curve, the walk exponent could be
calculated using Eqs 8.15 and 8.13.

The bottom profile in Figure 8.5 shows the solvent accessibility for
concanavalin A. The multifractal spectrum corresponding to this profile is shown in
Figure 8.6. Although, to the eye, the profiles in Figure 8.5 may appear similar,
multifractal analysis reveals that they are correlated in very different ways. The
spectrum for the solvent accessibilities is seen to be much broader than the one for
hydrophilicity. This difference is particularly interesting because solvent accessi-
bility is a parameter that reflects the folded structure of the protein, while
hydrophilicity is a parameter dependent on the amino acid composition of the
protein sequence. To fit the multifractal spectrum for the accessibility, one must use
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a more complicated model than the binomial multiplicative one. A multiplicative
model with one-step memory can adequately reproduce the spectrum (see Balafas
and Dewey, 1995). This model is discussed in Chapter 4.

The data sets show persistence when T(2) < 1 and antipersistence when
T(2) > 1. Binomial multiplicative processes will always show persistence as t(2)
must always be positive (see Eq. 8.15). In initial work, the average value for a
determined from hydrophobicity profiles was found to be 0.517 ±0.005 for 16
different proteins (Strait and Dewey, 1995). This is in excellent agreement with the
value of 0.520 ± 0.005 determined from the bridge analysis of the hydrophilicity of
an ensemble of proteins (Pande et al., 1994). The correspondence between the
average of walks within a protein to ensemble average walks suggests that protein
sequences are ergodic. The ergodicity of protein sequences has important
implications for information theory approaches to molecular evolution and sequence
statistics, because the central theorems of information theory assume ergodicity in
the signal or message. Recently, more extensive data sets have been explored
(Dewey and Strait, 1995; Strait and Dewey, 1995), and these gave essentially the
same results as the earlier one. These results are discussed in the next section with
reference to the ergodicity of protein sequences.

8.5 Information Theory and the Ergodicity of Protein
Sequences

We return now to a consideration of the number of possible protein sequences.
Much has been written about the size of this number (see Eigen, 1992; Kauffman,
1993); and its implication for molecular evolution. It has even been suggested that
the vast protein sequence space should be systematically searched in the hope of
finding new proteins with commercial or medicinal value. Yet it might be argued
that the useful corners of sequence space may not be extensive. From an information
theory perspective, the number of possible sequences is not as significant as the
number of most probable sequences. An analogy can be made with the information
content of languages. Certainly there are astronomical numbers of letter sequences
that one can generate, but this has nothing to do with the structure or information
content of the language. Should we be systematically generating random letter
sequences in order to acquire more knowledge or greater literature?

A basic theorem in information theory relates the most probable number of
messages, fl, of length A' to the information entropy, /, by (see Shannon and Weaver,
1962; Cover and Thomas, 1991):

This theorem was derived for ergodic messages. An ergodic message is one in which
the information statistics within the message is the same as the information statistics
of an ensemble of messages. Equation 8.16 can be used to calculate the most
probable number of protein sequences that populate sequence space. To calculate
this number properly, one must assume (or attempt to establish) the ergodicity of
protein sequences. Additionally, an accurate determination of / must be achieved.
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TABLE 8.1 Walk exponents derived from multifractal spectra

Sets
Concatenated set I
Concatenated set II
Average of individuals, set I
Average of individuals, set 11

Representative proteins
Cytochrome b562
Hemagglutinin
Aconitase
Tryptophan synthase

Size

30,309 amino acids
37,101 amino acids
155 proteins
190 proteins

106
328
754
248

av

0.516 ±
0.512 ±
0.517 ±
0.517 ±

0.523
0.521
0.516
0.512

0.001
0.001
0.007
0.006

To actually prove ergodicity is a difficult task and, at best, one can hope to
establish consistency or inconsistency with an assumed ergodicity. To this end, a
large, representative data set of protein sequences has been analyzed using
multifractal analysis to determine the walk exponent, a (Dewey and Strait, 1995).
Two such "representative" data sets were constructed using algorithms (Hobohm et
aI. , 1995) the goals of which were to reduce redundancy in the set while maximizing
sequence coverage. With these algorithms, representative sets of 155 (set I) and 190
(set II) different proteins sequences were examined; the average of the individual a
values of the entire data sets (I and II) are given in Table 8.1. The statistics of the
ensemble of proteins in the data set could be determined by concatenating the entire
data set into a single sequence and determining the multifractal spectrum; these a
values are also shown in Table 8.1. It can be seen that the mean of the individual
proteins is well within a standard deviation of the value for the ensemble of proteins.
This shows that the behavior of the hydrophilicity profile is consistent with
ergodicity of protein sequences.

The estimation of the information entropy is also a difficult matter, and one is
restricted to determining an upper limit for this parameter. The information entropy
can be estimated from the distribution of k-tuplets in a sequence. This has been done
for languages (Shannon and Weaver, 1962), for DNA sequences (Gatlin, 1972;
Volkenstein, 1994; Mantegna et al, 1995), and for protein sequences (Dewey and
Strait, 1995; Strait and Dewey, 1996). The protein sequence calculation has the
largest uncertainty as a result of a much more limited "text." At the lowest order
approximation, the entropy is defined as:

where pk is the probability of finding the kth amino acid and base 2 is used to
represent the entropy in terms of bits. At the lowest order of approximation, l0, each
amino acid is equally probable and l0 = In2 20 = 4.3219. The first-order approxima-
tion accounts for the nonuniform amino acid composition, and gives l1 =4.177 for
data set II.



where s represents a sequence that is m - 1 units long and the inner sum is over all
possible sequences of this length. The conditional probability, p ( k \ s ) , is the
probability of a klh amino acid following an s sequence. Doublet and triplet
frequencies give l2 = 4.161 and 73 = 3.988, respectively. Results for higher order
sequences drop precipitously. This is a result of the finite size of the text. The
number of possible k-tuplets exceeds the number in the text and gives the
appearance of an unusually low information content. From these data a value of
3.988 can be considered to be an upper limit. Recently, a Monte Carlo method was
used to computer-generate very large sequences from existing sequence data bases.
A k-tuplet analysis of these sequences suggests that the information content of an
amino acid in a protein could be as low as 2.5 bits per amino acid. Interestingly,
estimates of the information content of nucleic acid sequences (from an early and
limited data base, (Gatlin, 1972) found an / value of 1.94. Thus, two bases have
enough information in the genetic code.

With this lower estimate of the information entropy, Eq. 8.16 can be used to
calculate the most probable number of protein sequences. First, it is recast into a
more convenient form:

204 Fractals in Molecular Biophysics

Higher order approximations can be determined from the k-tuplet distribution
using (Shannon and Weaver, 1962):

For a protein that contains 100 amino acids fl is, at most, 2058, which is over
57 decades less than the number of possible sequences. This indicates that there
are significant regions of "sequence space" that have little or no probability of
being populated. Nevertheless, the "most probable sequence space" is still vast
and the number of proteins that have existed throughout evolution is still minute
compared with the number of "most probable" proteins. One must bear in mind
that the number of probable protein sequences is an upper estimate. The use of
more sophisticated data compression methods may reduce this number further.

The number of proteins that could have existed during our history is difficult
to estimate, and estimates ranging from 1035 to 1048 (see Eigen, 1992; Kauffman,
1993). Despite this wide range, these estimates are still small compared with the
number of possible sequences. This suggests that the conditions for forming a
protein from a random polymer cannot be all that stringent, and proteins can still
be considered "slightly edited random polymers." Yet the concept of a "slightly
edited random polymer" is extremely vague. The information estimates serve to
define this condition better. A "most probable" protein sequence is approximately
10-57 as likely as a random protein sequence, thus suggesting that considerable
editing has taken place. Yet, even with this, the sequence space for "most
probable sequences" is still much larger than the space that has been explored to
date. An existing sequence is roughly 10-25 as likely as a most probable
sequence.
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8.6 Summary

In this chapter we have looked at an unusual form of discrete dynamical processes.
These are the trajectories encoded in the sequences of nucleic acids and proteins.
Sequence data can readily be converted into a random walk trajectory, and there are
a number of statistical techniques for analyzing such walks. Controversial work on
DNA sequences reveals that coding DNA is random, while noncoding or junk DNA
has long-range correlations. Two plausible models for this finding have been
presented. Walks can also be created from protein sequences, and one such
algorithm, the Brownian bridge, provides a facile means of distinguishing between
random, persistent and antipersistent behavior. A quantitative connection can be
made between encoded walks and the multifractal analysis of sequence data. With
this connection, the ergodicity of protein sequences has been explored. The analysis
of a large data set of protein sequences suggests that the statistics within a sequence
is the same as the statistics within the library. This apparent ergodicity has important
consequences for information theoretical considerations.
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9

Percolation

The liquid crystalline phase transition of lipid bilayers has been studied extensively
and has important biological implications. There is an enormous literature in this
area, particularly on one-component model systems. Recently, attention has shifted
to two-and three-component systems and to protein-lipid systems. Simple two-
component membranes are often nonideal and exhibit complicated phase behavior.
Typically, each lipid component can exist in one of two states: solid (or gel) and
liquid (or fluid). In the solid state the hydrocarbon chains of the lipid are
immobilized and tightly packed in a two-dimensional lattice. The translational
diffusion of the lipid is greatly restricted, as is rotational diffusion about the long
axis. The tight packing also prohibits bond rotation in the hydrocarbon chains. At a
specific "melting temperature," Tm, a highly cooperative, order-disorder transition
results in a mobile, fluid phase. The cooperativity is a result of hydrocarbon bond
rotation and subsequent disruption of the packed array. This fluid phase now has
rapid translational motion as well as long-axis rotational motion.

The phase diagrams for a binary system (Figure 9.1) can become quite
complicated because conditions arise where each component, regardless of phase, is
immiscible in the other component (Almeida et al, 1993). For the cholesterol-
phospholipid system shown in Figure 9.1, five different phase regions exist. At low
cholesterol concentration, one has a homogeneous, liquid-disordered state above the
Tm (region (a)), while a solid, uniform phase occurs below the Tm (region (b)). As
the cholesterol concentration is increased, the high-temperature state undergoes a
transition from the liquid-disordered state to an immiscible mixture of a liquid-
disordered and a liquid-ordered state (region (d)). Likewise, in the low-temperature
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FIGURE 9.1 Phase diagrams for a cholesterol/distear-
oylphosphatidylcholine mixture (A) and a cholesterol/dimyr-
istoylphosphotidylcholine mixture (B). (a) Disordered liquid;
(b) solid; (c) ordered liquid; (d) a mixture of ordered and
disordered liquid; (e) a mixture of solid and ordered liquid. (•)
Percolation thresholds. (From Almeida et al., 1993. Reprinted
by permission of Biophysical Society,)

regime, the solid state becomes a mixture of solid and liquid-ordered states
(region(e)). As the cholesterol concentration is increased further, both the high- and
low-temperature phase undergo a transition to a single, homogeneous, liquid-
ordered state (region (c)).

Not only is the phase behavior of these systems intriguing, but the microscopic
structure within a given phase has generated considerable interest. With the advent
of tools such as fluorescence recovery after photobleaching (FRAP), it has become
possible to study the diffusion of fluorescent molecules within a phase domain.
From these experiments, domain structures have been observed in regions of
coexisting phases. These structures may be important in a number of biological
settings (for reviews, see Vaz and Almeida (1993) and Thompson (1992)). Figure
9.2 shows the phase diagram for a system in which domain structure has been
investigated. It consists of a simpler, binary system containing two different types
of phospholipid. In the region f, in Figure 9.2, both components exist in a miscible,

208 Fractals in Molecular Biophysics
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FIGURE 9.2 Phase diagram for a dipalmitoyiphosphatidylcholine
(DPPC)/dirnyristoylphosphatidylcholine (DMPC) mixture, f1, the
miscible fluid phase; s1, solid; s1 + f|, the region of coexistence of
fluid and liquid. (A) Percolation thresholds. (Data from Almeida and
Vaz., 1994.)

fluid phase. The region s1 represents a miscible solid phase. The region in between
these phases (region s, +f1) consists of a mixture of immiscible, fluid and solid
phases. At a given composition and at the low-temperature end of this mixed phase,
the fluid regions form patches or islands within the connected solid regions. As the
temperature increases, the percentage of area occupied by the fluid phase increases.
This could be a result of formation of more islands and/or the growth of larger
islands. Eventually, a temperature is reached at which the fluid domains merge,
forming a connected region. The solid phase now becomes disconnected and forms
islands. The transition from a disconnected domain to a continuous, connected one
is called percolation. The condition for the onset of percolation, called the
percolation point or threshold, is shown by the symbols in the phase diagrams in
Figures 9.1 and 9.2. These points are determined by FRAP. As discussed in Chapter
5, such domain structures can strongly influence diffusion and reaction in
membranes.

Percolation has been studied extensively by computer simulation as well as
other methods. The phenomenon has been of great interest to physicists because
it represents a "geometric" phase transition. In this chapter a modest introduction
to this vast subject is presented. As will be seen, percolation clusters (the
connected domain described above) are fractals. The statistical properties of
percolation clusters are discussed, with emphasis on static behavior (Section 9.1).
After presenting the basic scaling laws used to characterize such clusters, an
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exactly solvable model called the Cayley tree or Bethe lattice is considered in
Section 9.2. Such lattice models have been used to describe antibody-receptor
clustering in cell membranes. This clustering represents an initial response of the
immune system. This discussion is followed by a description of the experimental
and theoretical work on lipid domains and percolation in biological membranes
(Section 9.3). Finite size effects must be considered in handling such systems, and
this results in interesting scaling behavior. The hydration properties of lyophilized
proteins have also be treated as percolation phenomena (Section 9.4). Water will
adsorb on a protein surface and create hydrogen-bonded networks. At a critical
hydration level, conducting networks will form as a result of proton transfer
between water molecules. Experimental results on the dc conductivity of hydrated
powders reflect the percolation of these conducting networks. Percolation in
biological systems is generally not the random, geometric process studied in
computer simulations; rather, thermodynamics enters into the phenomenon,
causing percolation to be "correlated." In the Appendix, a simple model of two-
dimensional, correlated percolation is presented that incorporates features of the
order-disorder transition of the lipid membrane.

9.1 Introduction to Percolation Phenomena

9.7.7 Scaling Laws for Percolation

In this section, an introduction to percolation theory is presented, which is sufficient
to discuss biophysical examples. The literature on percolation phenomena is vast,
and there are a number of excellent treatises on the subject. Stauffer's book still
serves as a good introduction to the subject (Stauffer, 1985). Physical applications
can be found in the book by Sahimi (1994), and two excellent and wide-ranging
reviews are recommended (Bunde and Havlin, 1991; Havlin and Bunde, 1991). The
book chapters by Feder (1988) and Creswick et al. (1992) are also useful.

Percolation is a deceptively simple geometric problem that shows a geometric
phase transition. This phase behavior accounts for much of the appeal of this
subject. A good example of percolation is the growth of clusters on an infinite
square lattice. Consider such a lattice where particles are allowed to "rain" down
randomly onto the lattice sites. Initially, the particles will occupy sites that are
dispersed throughout the lattice. A cluster is defined as a group of particles that
forms contiguous nearest neighbors. (For a square lattice, each position has four
nearest neighbor sites. Diagonal sites are considered to be next nearest neighbors.)
As the "rain" continues, the density of filled sites increases and the size of the
clusters grows. Clusters formed in this fashion are sometimes referred to as "lattice
animals." As the process continues, regions between clusters will be filled in and
clusters will merge into single, large clusters. At a critical density of sites, all the
clusters will be connected into one infinite cluster. This is the percolation threshold.
The resulting percolation cluster is a fractal. The probability of finding an occupied
site anywhere on the lattice at the percolation threshold, pc, will depend on both the
dimensionality of the lattice and the lattice structure. Values of pc for some simple
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TABLE 9.1 Percolation parameters*

Parameter (Exponent)

Order parameter, P.x ((B)
Correlation length E; (v)
Mean cluster size, s (y)
Percolation threshold pc.
Lattice:

Triangular
Square
Honeycomb
Face centered cubic
Body centered cubic

Continuum (circles, spheres)

Two-dimensions

5/36
4/3

43/18

0.5
0.59
0.70
0.20
0.25
0.31

Three-dimensions

0.42
0.88
1.80

2sin(7r/18)
0.5

0.5-2sin(ir /18)
0.12
0.18
0.03

Adapted from Bunde and Havlin (1991).

lattices are given in Table 9.1. At the percolation threshold, the vacant sites have
now become discontinuous and the filled sites are fully connected. The problem
described here is known as a site percolation. One can also define a bond percolation
process. In this case, bridges are created between lattice sites, as opposed to the
lattice sites themselves being occupied. This generates connected networks or
clusters. The physical characteristics of percolation clusters can be described in a
number of ways, with a seeming multitude of scaling laws. This simple geometric
problem has a number of surprising nuances.

As a starting point for examining the percolation problem, consider the
calculation of the distribution of clusters of different size. Let p be the probability
of site occupation and n5(p) is the probability per lattice site of a cluster of size s
occurring. With a total of N sites, the average number of clusters of s units is Nns(p).
For a "cluster" containing a single site on a square lattice, one has:

which is the probability of a site being occupied times the probability of the
surrounding four sites being vacant. For clusters of size 2, n2(p) = 4p2(l -p)6,
where the factor of 4 arises from the four possible orientations of the cluster on the
lattice. With clusters of size 3, the configurational factor has already increased to 17
and by size 4 clusters of different "surface area" (number of boundary sites) appear.
The enumeration of all possible clusters at higher sizes becomes a formidable task.
In general, one has a sum:

where the sum is over clusters of different number of boundary sites, b, and gsb is
the number of configurations for a cluster of s sites and b boundary sites. The
quantity, gsb is not easily calculated, and consequently ns(p) is not readily
obtained.



The integral in Eq. 9.7 is now merely a proportionality constant, and the scaling is
contained in the lead term. Historically, the scaling of S has been defined by an
exponent, y, such that:
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Near the percolation threshold, pc a scaling Ansatz has proven successful in
describing n s(p). For large s, it is often assumed that ns(p) has the following
functional form:

where T and cr are critical exponents, and f is a function to be determined. Using this
assumed form, the critical exponents describing a number of different physical
processes can be derived. In our present application, all these exponents can be
related to T and a in Eq. 9.3.

For instance, consider the calculation of the average number of sites in a cluster.
The probability that a given site is in a cluster of size s is simply, sns(p). The relative
probability, ws (p), that among all the clusters available a given site belongs to an
s cluster is:

where the rightmost equality uses the definition of p as the number of filled sites
divided by the total number of sites. The scaling law for S can be derived by
considering the integral form of Eq. 9.5 and by using Eq. 9.3. This gives:

With a change of variables such that x = \p - pc\ sa, one obtains:

The average number of sites per cluster, S, is then given by

The following relationship between exponents is obtained: y = (3 - T)/Q. The
average number of sites in a cluster, 5, diverges as the percolation threshold is
approached. This behavior is illustrated in Figure 9.3, where S is plotted as a
function of p. At the percolation threshold, pc, a single cluster is formed. Since these
results hold for an infinite lattice, the "percolation cluster" has an infinite number of
sites. Figure 9.3 shows the critical nature of the transition. Equation 9.8 appears to
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FIGURE 9.3 Plot of the average number of sites, S, in a finite cluster as a
function of the site occupancy probability, p. At the percolation threshold, pci, the
number of sites diverges according to Eq. 7.8.

be a general relationship, with specific values of y applying for different geometries.
Some of these values are tabulated in Table 9.1.

Other properties of the cluster distribution will give similar scaling laws near
the percolation threshold. A parameter of particular interest is PK, the probability
that a random site will be part of the percolation cluster. This is the order parameter
for the system. It is defined by the relationship:

which essentially says that a particle must either exist in a finite cluster or in the
percolation cluster. Below the percolation threshold, there is no infinite cluster and
POC = 0. Above the threshold, a scaling relationship holds:

where p is the critical exponent. This exponent can be related to T and cr by
transforming the sum in Eq. 9.9 to an integral and using scaling arguments as before.
Again, the specific value of B will depend on the geometry of the system. The
behavior of ~c as a function of p is shown in Figure 9.4. The function becomes
nonzero at the percolation threshold and increases to 1 when all the sites are filled
( p = 1 ) .



FIGURE 9.4 Plot of the probability of a site being in the percolation
cluster, Px, versus the site occupancy probability, p. Below the
percolation threshold, pc, the percolation cluster does not exist. At high
occupancy all occupied sites are attached to the percolation cluster.
Near the percolation threshold the order parameter obeys Eq. 7.10.

A parameter of particular interest, especially when considering diffusion
problems, is the average radius of gyration of the clusters, £. This parameter is given
by:

Note that this definition of v differs from the result in Chapter 2 (Eq. 2.4) by the
factor Q. Theoretical methods, identical to those used the polymer case, can be used
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where Rs is the radius of gyration of an s cluster. Again, this parameter follows a
scaling law in the vicinity of the percolation threshold. The scaling defines the
exponent v as

As for the polymer case discussed in Chapter 2, the radius of gyration can be related
to the number of units by the scaling law Rs ~ S ] / d ' , where df is the fractal dimension
of the cluster. Inserting this scaling law into Eq. 9.11 and using the Ansatz of Eq.
9.3, one finds an expression of the form of Eq. 9.12. This provides the following
relationship between exponents:
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to determine v in percolation problems. The real-space renormalization techniques
described in Chapter 3 can be employed to compute values of pc and of v.

9.1.2 Real-Space Renormalization

As a simple example of such a renormalization calculation, percolation on a square
lattice is considered. The techniques used in Chapter 3 are more applicable to bond
percolation rather than site percolation. However, site percolation is readily treated
by an appropriate definition of the renormalized lattices. In the small-cell approach
(Creswick et al., 1992), a cell of lattice points maps into a decimated cell. We
consider a four-site, square lattice mapping to a single point. All configurations of
sites that span the cell from left to right are taken to be percolating and will map
onto a single point on the decimated lattice. Figure 9.5 shows the four-site lattices
that span the cell and their statistical weights. The probability of finding a
percolation cluster point on the decimated lattice, p', is now given by:

This renormalization group equation is the analog of Eq. 3.11 discussed in Chapter
3. The percolation threshold is determined from the fixed point, i.e., where P'=-p.
Equation 9.14 has trivial fixed points at 0 and 1 and a nontrivial one that gives
pc = 0.618. Considering the small size of the renormalization, this compares
favorably with the best computational estimate of 0.593 for percolation on a square
lattice. The exponent, v, is given by the equivalent of Eq. 3.15:

where b is the lattice decimation constant, which in this case is 2. Using Eq. 9.14,
the value for the fixed point, and Eq. 9.15, a v value of 1.635 is obtained. The
accepted value of v is 4/3, so the small cell does not do particularly well with this
parameter. To improve this estimate, one must go to significantly larger cells
(Creswick et al., 1992). Later in this chapter, this simple model will be extended to
treat correlated percolation in biomembranes.

9.1.3 Percolation Clusters as Fractals

The exponent, v, turns out to be a significant parameter because it will determine the
characteristic length of the system, £ (Eq. 9.12). This length is important in
establishing the crossover point in the scaling of clusters from a fractal regime to a
homogeneous one. It was Stanley (1977) who suggested that percolation clusters are
inherently fractal. This can be seen visually in Figure 9.6, where a percolation
cluster under different levels of magnification is shown. As can be seen, the
distribution of holes in the cluster appears the same, regardless of scale. Not only are
percolation clusters fractal, but their fractal dimension is a universal constant that is
determined by the dimensionality of the embedding space, d. To see this, consider



FIGURE 9.5 Percolating configurations of the four-site cluster
on the square lattice. 1 he statistical weights for each configuration
arc shown, with p being the probability of an occupied site and q
the probability of an unoccupied site. Percolation is taken as
connectivity from left to right. Numerical weights show the number
of equivalent structures.

(a)

FIGURE 9.6 A percolation cluster at the critical concentration. Magnifica-
tion of successive regions within the cluster shows its self-similar features.
The region enclosed in the box in (a) is given in (b), and (c) is the boxed region
in (b). (Percolation simulations courtesy of M Saxton.)
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(b)

FIGURE 9.6 b

(c)

FIGURE 9.6c
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The system shows a crossover between two scaling regimes at r ~ £. These length
scales have important implications for diffusional processes associated with such
systems and will result in crossovers in the time dependence of diffusion.

As seen in this brief introduction to percolation, percolation implies fractality.
When percolation occurs in a physical setting, such as biomembranes, one has to
deal with the fractal nature of the problem. We now move from the tidy world of
lattice geometry and computer simulations to the messy world of experiments on
biological systems. The computer simulations will serve as a guidepost to compare
experimental results too. However, before doing this, an exactly solvable model of
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the behavior of the infinite cluster probability function, Px. Instead of defining it by
Ea. 9.9, an alternative definition is:

where Ncluster and Nlattice are the number of sites in the infinite cluster and in the
lattice, respectively. The rightmost equality in Eq. 9.16 uses the standard scaling
relationship for the radius, r, and can be used to define the fractal dimension of the
cluster. Let the "ruler" used to measure the cluster be taken as £, so that one has
r= a£, where a is an arbitrary constant. With Eq. 9.16, one finds: Px ~ £d'~d. Using
Eqs 9.12 and 9.10, one also has:

Equation 9.17 provides the relationship between the exponents, giving:

Since (3 and v are universal constants determined by the dimensionality of the
system, the fractal dimension of the percolation cluster is also a constant. All
percolation clusters in two dimensions will have fractal dimensions of 91/48, an
exact result. In three dimensions, the fractal dimension obtained from numerical
simulations is 2.524 (Bunde and Havlin, 1991). Thus, percolation problems
intrinsically create fractals.

The above arguments are used to describe the fractal properties of the infinite
or percolation clusters. Yet the finite clusters that occur on either side of the
percolation threshold have a fractal character as well. At distances much shorter than
the correlation length, £, the clusters are fractal. At distances much longer than £, the
fine structure of the clusters is obscured and the lattice appears to have a
homogenous, "background" of clusters. The clusters are mass fractals, so that the
mass of points, M(r), within a radius, r scales as:
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percolation is discussed. This provides a concrete example of how the scaling laws
in the previous section can be derived. Additionally, it has relevance to a biological
problem, antibody-receptor clustering.

9.2 Antibody-Receptor Clustering and the Cayley Tree

9.2.7 Clustering and the Immune Response System

The immune system coordinates a complex interplay between molecular and
cellular events. Percolation models have been employed to describe the immune
response at several different levels. Because of the great complexity of these
systems, it is difficult to provide a quantitative description of the variety of effects
that can occur. In this section, we discuss one aspect, antibody-receptor clustering,
and show how percolation on a Cayley tree fits this one aspect of the overall
immune response. As a matter of convenience, we focus on the immune response of
one type of cell, basophils (or mast cells). These cells contain granules of histamine
that are released in response to an antigen. Receptors for the antibody,
immunoglobulin E (IgE), are located on the cell surface. These receptors have two
subunits and are membrane proteins. A typical cell has 5000-500,000 such
receptors on its surface (Goldstein and Dembo, 1984). Each receptor can bind the
antibody in such a fashion as to preserve the antibody's bivalent, antigen binding
capability (Figure 9.7). The antigens can have multiple binding sites for the IgE, and
the number of such sites is sometimes referred to as the antigen's functionality, f.
With a bivalent "crosslinker" such as IgE and an antigen of functionality, /, it is
possible to form a network of crosslinked receptors. (In Figure 9.7, different
antigens with functionalities of 2 and 6 are shown.) It is this aspect of the response
that can be treated as a Cayley tree and will be discussed presently. Percolation
theory has also been applied to immune networks between cell clones, a higher
cellular level process (see DeBoer and Hogeweg, 1989); this will not be discussed
here.

The immune response, the dumping of histamine granules from the cell, occurs
when a crosslinked structure of a critical size is reached. Figure 9.8 shows the
amount of histamine released versus antigen concentration. As antigen is increased,
the equilibrium favors antibody-antigen interactions, and larger crosslinked
structures appear. Using monovalent antibodies, it has been established experimen-
tally that cluster, and not just antibody-antigen, interaction is required for a
response. Some authors have suggested that a critical-sized cluster is required for
activation of the cell (see Perelson, 1984). This cluster, which consists of 10-20
receptors, is referred to as an "immunon." This effect accounts for the sharp initial
rise in the curve in Figure 9.8. Interestingly, at high antigen concentrations the
effects can be reversed, as seen by the decreasing portion of the curve.

This second phenomenon might occur in two ways. First, when the binding
equilibrium is not too strong and when the antigens are multifunctional, excess
antigen will compete with crosslinked structures, so that ultimately each antibody
only has one antigen (with two binding sites). Alternatively, an extremely larger



FIGURE 9.7 A schematic representation of antibody-antigen interactions, (a-d) A number of
different types of bivalent antibody (IgE)-receptor complexes. Antibody-receptor complexes can then
be linked together when antigen binds to the antibody. A bifunctional antigen is shown. (e,f) Clustering
of antibody-receptor induced by antigens of functionality 2 and 6. (From Perelson, 1984. Reprinted by
permission of Marcel Dekker, Inc.)

cluster can be formed at high antigen concentration and, for reasons that remain
unclear, the response is inhibited. In this system, one does not want to reach the
percolation threshold, rather it is better to have large, nonpercolating clusters.

Antibody-receptor clustering was treated in detail in the classic work of
DeLisi and Perelson (1976). They essentially solved, in a very different setting,
the problem of percolation on a Cayley tree. The Cayley tree is sometimes
referred to as percolation on a Bethe lattice. An example of such a structure is
shown in Figure 9.9. Continuing work on the antibody-receptor problem is aimed

220 Fractals in Molecular Biophysics



Percolation 221

at incorporating more physical and biological features in the model (see Perelson,
1984; Faro and Velasco, 1993). In this presentation, we restrict our attention to
the simple problem and follow the approach of Bunde and Havlin (1991). Figure
9.9 illustrates a Cayley tree with a connectivity parameter, z, equal to 3. The tree
is initiated with a central site from which z branches emanate. At the end of each
branch, a new site is formed which than generates z - I new, equal-length
branches. This processes is iterated indefinitely. For the antibody-receptor
problem a z value of 2 is a natural choice, because antibodies are bivalent. Notice
that there is no steric hindrance between branches and that no loops can be
formed. These unrealistic features are incorporated in the early antibody cluster
models (DeLisi and Perelson, 1976).

9.2.2 Percolation on the Cayley Tree

The percolation properties of the Cayley lattice can be calculated directly using a
combinatorial approach. In this problem, it is more meaningful to speak of a
"chemical distance," /, rather than a Euclidean distance. The chemical distance is the
distance traveled along the lattice. The number of sites at a distance, /, from the
central site is given simply by z(z - 1)1-. The correlation function, g ( l ) , is defined

FIGURE 9.8 Plot of the percentage of histamine released from mast cells versus the molarity of a
bifunctional antigen. Curves from top to bottom are for increasing amounts of a monovalent antigen. The
monovalent antigen inhibits cluster formation and, consequently, a higher concentration of bifunctional
antigen is required for cluster-induced release of histamine. At high bifunctional antigen concentration
the effect is reversed. This may again be a result of inhibition of cluster formation. (From Perelson et al.,
1984. Reprinted by permission of Marcel Dekker, Inc.)
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FIGURE 9.9 A Cayley tree with a con-
nectivity of 3.

as the mean number of sites on a cluster at a distance l from a second point on the
cluster. If p is the probability of finding a lattice point then:

When P ( z - 1 ) < 1, the correlation decays rapidly to zero. At the point p(z- 1) = 1,
it stays finite for infinite, /, thus providing the relationship for the percolation
threshold:

For a linear lattice, z = 2, percolation only occurs when the lattice is completely
covered, pc = 1.

Using the correlation function, exact expressions for a number of parameters
can be derived. The correlation length, £/, in chemical distance space is obtained
from:

For p <pc, the summations on the right-hand side of Eq. 9.22 can be evaluated
exactly from the binomial theorem or derivatives of it. Along with Eq. 9,21, this
gives:

Referring to Eq. 9.12, the critical exponent v for the Cayley tree is equal to 1,
regardless of the value of z. The mean mass of the finite clusters, S, can be derived
in a similar fashion. It is given by:



Referring to Eq. 9.8, it is seen that the exponent 7 is equal to 1. The other exponents
can be determined in a similar fashion. The exponent for the order parameter, Px,
in Eq. 9.10 is found to be p = 1. Thus, the scaling relationships in Section 9.1 are
obtained exactly for the Cayley tree. More complicated forms of this model have
been investigated (Coniglio, 1976; Coniglio et al., 1979, 1982), and have been
particularly useful in describing polymer gelation.

9.3 Percolation in Biomembranes

The "fluid mosaic" model of biological membranes was proposed over 20 years ago
and has been one of the most successful paradigms of biochemistry (Singer and
Nicholson, 1972). The original tenets of the model are that cell membranes consist
of a lipid bilayer, that the membrane is fluid in nature, and that membrane-spanning
proteins are adrift in this sea of lipids. Peripheral membrane proteins can also be
adsorbed on the surface of the membrane. In the intervening years, there has been
a wealth of work, on both native and model systems, that confirms the main features
of the model. Current work suggests a slight modification in terms of what
constitutes the "mosaic." Originally, the mosaic was conceived to be membrane
proteins. Now, it is apparent that there can be a variety of large, relatively immobile
"islands" in the lipid fluid. These can be protein aggregates, lipid-phase domains, or
combinations of the two. As discussed in the introduction to this chapter, even
simple lipid mixtures can show complex phase behavior, with coexisting immiscible
states. A native membrane could doubtless be in an extremely, heterogeneous
physical state with a variety of microdomains.

9.3.1 Fluorescence Recovery after Photobleaching

Initially, a large effort was directed at understanding the phase behavior of
biological membranes. These experimental efforts generally employed calorimetry
and a variety of spectroscopic techniques. This work established the bulk
thermodynamic properties of the system. It allowed for the construction of phase
diagrams such as those shown in Figures 9.1 and 9.2. More recent efforts have been
aimed at probing the microscopic domain structure of the lipid bilayer. This became
possible principally with the advent of the FRAP technique. Figure 9.10 shows a
simple schematic that illustrates the technique known as spot FRAP (see Cardullo
et al., 1991). In this technique a fluorescent molecule is embedded in a membrane
and a micron-size region is illuminated. The fluorescence from the molecules in the
region is monitored through a light microscope. The illumination source is usually
a laser. At a given instant, the illuminating intensity is increased by 103-104 orders
of magnitude so as to photobleach the fluorescent probes. Typically, 70% of the
molecules are bleached. The photobleaching is required to be irreversible and not
result in any adverse chemical reactions (such as crosslinking) by the photolysis
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t ime

FIGURE 9.10 Schematic diagram of spot FRAP and three
types of system response. Top schematic shows optical arrange-
ment for bleaching a spot on a lipid film. Bottom schematic
shows observed time courses: (a) fluorescence response for a
uniform, solid system-no recovery; (b) response for a fluid
system-complete recovery; (c) response in a system that contains
fluid microdomains-partial recovery. (From Cardullo et al., 1991.
Reprinted with permission of Plenum Publishing Corp.)

product. After the bleaching pulse, the illumination is returned to its initial level and
the fluorescence of the region is monitored. To study diffusion in the membrane,
there must be no competing external diffusional processes or bulk flow. For cellular
systems, this is achieved by immobilizing cells by adhering them to a microscope
slide. To study model lipid systems, a hydrated film of multibilayers is formed on
a slide.

Figure 9.10 shows three different scenarios that have been observed experi-
mentally. In (a), the probes are immobile in the membrane and a hole is "per-
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FIGURE 9.11 Plot of the fraction of fluorescence recovered in a FRAP experiment versus the area
fraction of the liquid. The system is a 1 : 1 mixture of DMPC/DSPC (see Table 9.2) with varying amounts
of cholesterol. The percolation point is taken as the inflection point of the curve. Mole fraction of
cholesterol: (top) - (A) 0, (O) 4, (•), (A) 10; (bottom) - (D) 15, (•) 18, (V) 20. (Data from Almeida
el al., 1993.)

manently" burned into the region. This results in an instantaneous decrease in
fluorescence with no subsequent recovery. In (b), the membrane is fluid and the
photolyzed molecules diffuse out of the illuminated region, while unbleached,
fluorescent molecules diffuse into it. The sample is initially bleached, but the
fluorescence will recover to its original level. The third example (c) shows the
response when nonpercolating, microscopic domains exist and the fluorescent
molecule is confined to a specific phase domain. The illuminated area will contain
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TABLE 9.2 Percolation thresholds of lipid membranes* and computer simulationst

System1,2

DMPC/DPPC
75 : 25
50 : 50
25 : 75

DMPC/cholcsterol
85 : 15
80:20
75 : 25

LigGalCer/DPPC
20: 80
33 : 67
50 : 50

DMPC/DSPC/cholesterol
48 : 48 : 4
45 : 45 : 10
41 :41 : 18
40 : 40 : 20

Fluid tracer/gel obstacle in computer simulations
Point/point
Hexagon (R = l)/point
Hexagon (R = 2)/point
Point/hexagon (R = 1)
Point/equilateral triangle
Point/dimer

Point/linear trimer

T(pc.)

27.5
32.0
36.5

23.6
23.5
22.5

42.0
42.0
46.0

38.0
37.0
26.0
20.0

PC

0.52
0.52
0.49

0.42
0.65
0.85

0.30
0.26
0.25

0.74
0.63
0.38
0.29

0.4990
0.1156
0.04823
0.5852
0.5256
0.4863
0.4609

* Data from Almeida and Vaz (1994).
t Data from Saxton (1993).
1 Ratios are of mole fractions. DMPC, dirnyristoylphosphatidylcholine; DPPC, dipalmitoylphospat idylchol inc;
DSPC, distearoylphosphatidykholine; LigGalCer, N-lignoceroyldihydrogalactosylceramide.
2R - 1 corresponds to an object of unit radius.

many microdomains. Those domains that are entirely within the illuminated area
will not recover, and exhibit behavior as in (a). Those domains that extend beyond
the edge of the illuminated region will contain unbleached molecules that will
eventually diffuse into the photolyzed region. These regions will show partial
recovery.

Traditionally, two experimental parameters have been determined in a FRAP
experiment: the time constant associated with the recovery process, and the fraction
of fluorescence recovered. From the time constant, one can, in principle, determine
the diffusion constant for the fluorescence probe. However, the analysis of the time
course is not always simple, and there is now an increased awareness of the
nonexponential behavior of recovery curves (Nagle, 1992) (see Chapter 5). The
percentage recovery can be used to determine the percolation threshold for a system.
Figure 9.11 shows the fraction of fluorescence recovered versus the area fraction of
the solid phase. These experimental results are for one of the binary lipid mixtures
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described in Figure 9.2. Regions that show 100% recovery are connected. As the
solid phase increases, it reaches a percolation threshold, which in this case is defined
as the inflection point of the curve. When the system becomes completely solid,
there is no recovery of fluorescence. Table 9.2 summarizes the results on percolation
thresholds in some model lipid systems.

9.3.2 Finite Size Scaling

If the system were infinite, the transition curve in Figure 9.11 would be a step
function. The experimental constraint on the system is the size of the illuminated
area, which is approximately 2.5 um. The effect of this finite size is to broaden the
transition. The analysis of the transition curve can yield the percolation threshold
and a "characteristic length" for the system. Stauffer's book provides a good
introduction to finite size scaling effects (Stauffer, 1985). To account for such
effects, typically a scaling law as in Eq. 9.3 is used. Such laws can be assumed for
the parameter of interest and, often, the exponents can be fixed from the limiting
behavior of the parameters. As an example, consider the probability, P, that a
random site belongs to a cluster that percolates across the finite length, L. This
parameter is the finite analog of Px (see Eq. 9.10). Following Stauffer (1985), the
scaling Ansatz gives:

where A and B are exponents to be determined, and F is an unspecified function. In
the limit of large L and p > pc, Eq. 9.10 should be recovered P ~ (p - Pc)B, and there
should be no dependence on length. In this limit F[x] ~ xB, and to eliminate the
length dependence (B = A/B. At the percolation threshold P = L - A F ( 0 ) , where F(0)
is now just a proportionality constant. Under these conditions, where a single cluster
spans the length L, one has:

where Nsites is the number of lattice sites in the spanning cluster and N is the total
number of sites in the d dimension lattice of length L. Recalling Eq. 9.18, Eq. 9.25
now becomes:

The parameter P is closely related to the fluorescence recovery parameter, R,
shown in Figure 9.11. R is the probability that a lattice of length L has a cluster that
percolates. For an infinite system, R is a step function, being 0 for p < pc and 1 for
p>pc. The value of R can be calculated directly from P because R ~ Ncluster P,
where Ncluster is the number of clusters. The number of clusters is proportional to
N/Nsites Using Eqs 9.26 and 9.27, one obtains:



FIGURE 9.12 Plot of the percolation threshold and system length versus
the mole fraction of cholesterol. Data taken from computer fits to the curves
in Figure 9.11. (Data from Almeida et al., 1993.)

If one knew the function, F(x), the parameters L and pc could be determined
from a statistical fit of the data in Figure 9.11. The slope of the curve is given
by:

At the percolation threshold this slope is given by dRIdp = L1/v F(0), and is,
consequently, a direct measure of the length of the system. As the system
becomes larger, this slope gets steeper, and for an infinite system the slope
becomes infinite, reflecting the step function.

In previous work, a specific function form was assumed for F(x), and FRAP
recovery data were fitted to determine L and pc (Almeida et al., 1993). The values for
these parameters in multibilayers consisting of a ternary mixture are shown in Figure
9.12 as a function of one of the components. As the cholesterol is varied in the ternary
mixture of dimyristoylphosphatidylcholine (DMPC)/distearoyl phosphatidylcholine
(DSPC) cholesterol, the fraction of fluid-phase molecules is also varied. Although it is
difficult on theoretical grounds to justify a specific form for the function, F(x), this
will not represent a serious problem. In a sense, all one needs is a curve-fitting device
that consistently provides a measure of the transition point and its steepness. In this
previous work, L was treated as a dimensionless parameter and is defined as L = w/0,
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where to is the radius of the bleached spot and 0 is a characteristic length of the
system. Typically, the characteristic lengths determined in this method will vary from
50 to 500 nm. Assuming these lengths are related to the size of the domains, then each
domain will contain approximately 104-105 lipid molecules.

From the data on the ternary system, it is interesting to note the behavior of
L as it approaches the percolation threshold. In previous work, a number of
scaling assumptions were made to determine the dependence of 0 on pc. In this
presentation, we follow a more direct approach, as described previously (Stauffer,
1985). Since the experimental observation is made on a multibilayer, one is
measuring an average response of many systems. To calculate this average, Eq.
9.29 is employed, since dR/dp gives the probability that the lattice percolates upon
increase of the fluid species concentration from p to p + dp. The average
probability, (p), for the onset of percolation is then given by (Stauffer, 1985):

where Eq. 9.2.9 was used in the rightmost equality. Making the substitution
x = (p -p c )L / v and employing the normalization condition, JQ (dR/dp) dp = 1,
one obtains:

where the integral is now just a proportionality constant. Equation 9.31 could be
used to determine both v and the percolation threshold for the infinite system. In
practice, such a determination is problematic because to change (p) the
composition is changed. Since percolation is not strictly geometric in these
systems, pc will also change with composition. Thus, both parameters on the left-
hand side of Eq. 9.32 will be changing. It is also difficult to obtain an
independent measure of pc. Nevertheless, the length dependence can be fitted
using empirical models (Almeida et al, 1993).

9.3.3 Continuum and Correlated Percolation Thresholds

Using the FRAP technique, percolation thresholds in a variety of lipid systems
can be measured, and some of these data are listed in Table 9.2. It is interesting
to compare these results with those of computer simulations (also given in Table
9.2). For the system DMPC/dipalmitoyl phosphatidyl choline (DPPC), the phase
diagram indicates ideal behavior, and the percolation threshold is 0.5, independ-
ent of composition. At different compositions a temperature must be reached
where there is a 50:50 mix of solid and liquid before percolation occurs. This
gives a constant "lever" ratio for the percolation point on the phase diagram (see
Figure 9.2). This value is consistent with percolation on two-dimensional lattices.
There are a number of systems that show percolation thresholds as low as 0.3,
and some that are as high as 0.8. In these systems the percolation thresholds
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change with composition. This change with composition means that either the
geometry of the percolation cluster is changing or that the percolation process is
not random. Nonrandom or correlated percolation has not received as much
attention as random, geometric percolation. Generally, it is much easier to
explain a low percolation threshold than a high one. Saxton (1993) investigated
site percolation in a triangular lattice in which the liquid phase tracer (a
"computer analog" to the fluorescent probe) and the solid phase obstacles had
specific structures. His results are shown in Table 9.2. They show that random
percolation involving objects of different geometry can significantly decrease the
percolation threshold below 0.5. However, such effects never result in an increase
in thresholds.

Continuum percolation is a process that can also yield variable threshold
values. In a continuum percolation problem, objects of a given shape are
"punched" out of a region at random. The punched-out regions are allowed to
overlap, giving the resulting region a Swiss cheese appearance. Percolation
occurs when the vacancies connect the edges of the region. For circular punches
in a two-dimensional region, the percolation threshold is 0.312 (Bunde and
Havlin, 1991). Using ellipses as the hole punch, the following empirical
relationship is obtained (Xia and Thorpe, 1988):

where y = (alb + bla) and the aspect ratio of the ellipse is b/a, with 2a and 2b
being the length of the major and minor axes, respectively. As pointed out by
Saxton (1993), when the ellipses assume an extreme, needle-like structure, the
percolation threshold can become very high, approaching 1. If the solid phase
showed such a needle-like structure, randomly criss-crossing the membrane, the
percolation threshold could be extremely high. However, this model alone cannot
account for observations of high thresholds, because it does not predict a change
in pc with temperature or composition. In such instances, a correlated percolation
model must be used that incorporates the thermodynamic features of lipid-lipid
interactions. Such a model would account for interactions between solid and
liquid phase molecules at the boundary of the cluster. A simple, heuristic model
based on small-cell renormalization is considered in the Appendix to this
chapter.

Correlated percolation models with thermodynamic features can show high
percolation thresholds (Napiorkowski and Hemmer, 1980). This can be nicely
seen by considering the case where neighboring occupied sites have extremely
strong repulsive energies. As the occupancy of the lattice approaches 0.5, the
occupied sites will arrange themselves at every other site, so as to avoid the
strong repulsive energy of another site (see Figure 9.13). This creates a sublattice
that contains no filled sites and is a decimated form of the original lattice. As the
site coverage increases, the addition of each site is random because each site has
an identical energy for occupancy. Thus, the filling of the sublattice will be a
random percolation problem. After filling half the sites, the system will then



percolate at pc of the sublattice. The percolation problem for strong repulsion
between sites will have a percolation threshold give by:

where pc(- °°) is the percolation threshold for the lattice with infinitely repelling
sites. The first term on the right-hand side of Eq. 9.33 represents the filling of every
other site, and the second term represents percolation on the sublattice. Taking
pc(suhlattice) == 0.50 for a random process, the result for the system is 0.75. As seen
in Table 9.2, numbers this high have been observed experimentally.

The results from FRAP in conjunction with calorimetric information convinc-
ingly show that percolation clusters occur in model, multibilayer lipid systems. But
how general are these results? Do similar effects occur in native membranes where the
composition is even more heterogeneous? Not surprisingly, the situation is not as
clear. FRAP experiments on a wide variety of different cell types show an
immobilized phase (for a review, see Tocanne et al., 1989). Clearly, heterogeneous
microdomains exist in cell membranes. However, in these cases the heterogeneity is
probably more a consequence of the large protein concentrations in the membrane
rather than lipid phase domains. Estimates have been made of the fraction of area
covered by proteins in a variety of native membranes (Saxton, 1989). Some
membranes, such as the mitochondrial inner membranes, can show exceedingly high
fractional area coverage by protein (0.4-0.5). Such membranes presumably have
percolating protein networks. In general, the protein coverage of native membranes is
considerably lower than this, with typical values of approximately 0.25. It is not
obvious whether these systems will be percolating and, unfortunately, membrane
composition in a native system is not easily manipulated. Thus it would be difficult to
perform a FRAP experiment at different coverage levels. An additional complication
is that native membranes often have a nonrandom distribution of proteins. This is
especially true for membrane components of specialized cells such as spermatozoa,
eggs, epithelia, retinae, and chloroplasts, in which proteins are segregated in well-
defined regions. The membrane organization in such cells clearly has a biological
function. The elucidation of the topography of the microdomains in such settings will
certainly offer a continuing challenge to the field.

FIGURE 9.13 Percolation problem on a square lattice with strongly repulsive
interactions between neighbors, (a) Lattice at occupancy (black sites) p = 0.5,
which creates a sublattice (b) in which addition of sites will be uncorrelated.
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9.4 Percolation of Proton Transport in Hydrated Proteins

Proteins in their native aqueous environment have polar residues at the surface and
hydrophobic residues tucked inside. Because of this, the protein surface will
naturally have an affinity for water. If a dehydrated protein powder is exposed to an
atmosphere containing water, the water will begin to adsorb to the surface of the
protein. From capacitance measurements on protein powders (Careri et al., 1985,
1986, 1987; Rupley et al. 1988), it appears that the adsorption process is a
percolation phenomenon. The dc conductivity of the protein powders can be
inferred from frequency-dependent capacitance measurements. At low levels of
hydration, this conductivity is low. It increases dramatically at a threshold, hydration
level, and this increase shows power law scaling. The observation of a hydrogen
isotope effect was crucial in unraveling the nature of this phenomenon, because it
implicates proton transfer reactions. The dielectric dispersion shows three relaxation
regimes. All three show a deuterium isotope effect that would be anticipated for
proton transfer reactions. This suggests that water bound at the protein surface is
responsible for the major component of the relaxation processes. Interestingly, the
threshold hydration levels are independent of isotope. Relaxation in the high-
frequency regime has been attributed to proton hopping through water networks on
the surface. The threshold effect is thought to occur when the bound water on the
surface of a single protein percolates and provides a conducting dc network.

The frequency-dependent capacitance, C(co), of a protein powder in a hydrated
atmosphere is given by:

where C* and e* are instrumental parameters, and T = e0(e/a), with (e/cr) being the
vacuum permittivity, e the dc dielectric constant, and Q the dc conductivity. Figure
9.14 shows changes in the capacitance as the hydration level of a lysozyme powder
is changed. These curves are similar in shape to those shown in Figure 9.11 for
percolation of membrane domains. In principle, finite size scaling theory could be
used to determine the characteristic length of the system. As seen by the change in
the slope at the inflection point, different frequencies will probe different length
scales.

While the threshold behavior of the capacitance is apparent at each of the three
frequencies shown, the threshold is more dramatically shown when the conductivity
is considered. The conductivity calculated from the experimental data using Eq.
9.34 is displayed in Figure 9.15. This quantity shows the following scaling
behavior:

where u is the critical exponent for dc conductivity, h is the hydration level (weight
adsorbed water per weight protein), and hc is the hydration level at the percolation
threshold. At low levels of hydration, all the water will be surface bound and the
probability of a site being occupied will be propoitional to the hydration level. The



FIGURE 9.14 Plot of capacitance versus the hydration level of a lysozyme powder. Capacitance was
measured at the indicated frequency. Curve E shows the rate of hydration. (From Careri et al., 1986.
Reprinted by permission of John A. Rupley.)

exponent, (x, differs from the exponents discussed previously in that it is a
dynamical quantity rather than a static one. In general, dynamical scaling is not as
well understood as static scaling. Dynamical effects in percolation are discussed in
the excellent review by Havlin and Bunde (1991) and will not be treated here. From
a variety of theoretical and computational determinations, u is found to be
approximately 1.3 in two dimensions and 1.9 in three dimensions.

The data for lysozyme show two scaling regimes. At hydration levels in a
limited regime close to the threshold, a (A value of 1.30 ±0.09 was determined
(Careri et al., 1988), consistent with two-dimensional percolation. Within experi-
mental error, there was no effect when deuterium oxide was used instead of water.
This is expected if the phenomenon is due strictly to site occupancy. Experiments
were also performed when the lysozyme had a substrate bound at the active site.
Having bound substrate will affect the dynamics of the protein, but probably does
not alter its gross morphology (see Chapter 5). Again, no change in scaling exponent
was observed. At higher levels of hydration the scaling exponent shifts and becomes
2.20 ±0.19. This higher value is anticipated for three-dimensional percolation. At

Percolation 233



FIGURE 9.15 Plot of normalized dc conductivity versus the hydration
level of lysozyme powder. Conductivity was determined from an analysis of
data similar to those in Figure 7.15 (see Eq. 9.34). Scaling behavior as in Eq.
9.35 is seen. (From Careri et al., 1988. Reprinted by permission of John A.
Rupley.)

these higher hydration levels, there may be more than a monolayer of water. If
connections are made between proteins by bridging water molecules, the system
could become three dimensional. Alternatively, these changes may be simply due to
the breakdown of Eq. 9.35 in a regime far from the threshold.

The percolation threshold can be determined from the values of hc. As in all
finite systems, there is a certain arbitrariness in defining hc. In the lysozyme work,
hc is defined by extrapolating a curve of dC/dh versus h to zero (Careri et al., 1986).
Typical values for lysozyme are of the order of 0.15g water/g protein. Fully
hydrated protein was measured to have a value of 0.38 g water/g protein. Assuming
that this represents a monolayer, the percolation threshold is given by the ratio of
these two numbers. A value for pc of 0.39 is obtained. Referring to Table 9.2, it is
seen that this value is lower than expected for two-dimensional lattices and higher
than for continuum percolation. This threshold does not show a hydrogen isotope
effect. However, the presence of a bound substrate does change the threshold, giving
apc value of 0.61. Also, at high pH a similar high value is obtained. Since these two
conditions probably do not grossly alter the surface morphology of the protein, such
effects argue against a random percolation process. The pH effect, in particular,
indicates a specific role of protein surface residues, either by direct hydrogen
bonding or by providing sites for bound water. Percolation of bound water on
protein surfaces may well represent another example of correlated percolation.
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Protonic percolation has been measured in arrays of the membrane protein
bacteriorhodopsin (Rupley et al., 1988) and in nucleic acids (see Pethig, 1979;
Bonincontro et al., 1988). Bacteriorhodopsin is a membrane protein that forms
dense, closely packed arrays. These aggregates form membrane sheets known as
"purple membrane." The experimental results in this system mirror those for
lysozyme and support a two-dimensional percolation model. However, unusually
low thresholds for percolation are obtained (pc ~ 0.18). This is a more complicated
system because of the aggregated state of the protein. The percolative process could
be along the membrane surface or through the membrane. Regardless, the unusual
low value is suggestive of a specific route or correlated percolation. The work on
DNA is quite controversial (see Pethig, 1979), for both experimental and theoretical
reasons. It will not be discussed here.

9.5 Summary

Percolation is a site-occupancy phenomenon that shows geometric phase transitions.
Percolation occurs when occupied lattice sites form a region that spans the lattice.
The resulting percolation cluster is intrinsically a fractal structure. There are a
number of interesting scaling relationships that characterize the structure of these
clusters. Percolation occurs in a number of biological settings, including antibody-
receptor clustering, microdomains in biomembranes, and hydration of protein
powders. Work on biomembranes provides the most complete characterization of
percolation phenomena in biological systems. Because of the domain structures
formed and the experimental constraints of the FRAP technique, finite size scaling
models must be used to analyze the biomembrane data. These data show percolation
thresholds that depend strongly on composition and temperature. Some of these
thresholds are extremely high, and correlated percolation models are required to
explain these results. Ultimately, a correlated model that incorporates the
thermodynamics of the system is required to understand phase-separated micro-
domains in biomembranes.

Appendix: A Correlated Percolation Model for Biomembranes

As seen in the previous sections, most examples of percolation in biological systems
are not "purely geometrical." Rather, the percolation threshold will depend on
thermodynamic variables of the system. This is particularly evident in the work on
biomembranes. As can be seen in Table 9.2, the percolation threshold will depend
on such quantities as temperature and composition. Clearly, one has to incorporate
thermodynamics into the percolation formalism to account for such phenomena.
Such a melding of theories will result in correlated percolative processes. In these
cases, occupancy of sites will not be random, but rather will depend on interactions
between neighbors. Theories of correlated percolation have arisen in considering the



236 Fractals in Molecular Biophysics

site-bond percolation problem that have applications to gelation phenomena in
polymer systems (see Coniglio, 1976; Nakanishi and Reynolds, 1979; Tanaka et al.,
1979; Coniglio et al., 1979, 1982).

In the site-bond problem, one considers a lattice that is partially covered
with monomers at specific sites. When monomers are neighbors, there is a fixed
probability that they will form a bond between each other, thus creating dimers,
trimers, and so forth. Thus, in addition to the probability of a site being
occupied, one must also consider the probability of bond formation. Percolation
occurs when a "polymer" formed in this manner traverses the lattice. The
percolation point represents the sol-gel transition of the polymer system. Here,
a simple model of biomembranes is considered. In this model the lipids are
considered to exist in one of two phases: fluid or solid. The fluid phase will
have a different energy per site than the solid. This determines the probability of
site occupancy. Additionally, there is an unfavorable energy associated with a
fluid and solid site being next to each other. Thus, fluid-fluid neighbors will
have a stronger "bond" than will fluid-solid ones. This problem is then closely
related to site-bond percolation. One big difference is that in the site-bond
model the total number of sites is fixed by experimental conditions, while in the
fluid-solidd membrane the number of fluid molecules will change with
temperature.

To illustrate how the thermodynamics of the lipid phase transition might be
incorporated into a percolation model, a small-cell renormalization approach is
considered. This approach is similar in spirit to a previous treatment of
percolation in an Ising model (Napiorkowski and Hemmer, 1980) and will give
essentially the same results. The square lattice used in the renormalization
calculation in Section 9.1 is used with added features. For consistency, the
notation used for helix-coil transitions of biopolymers (Chapter 3) is followed.
The Boltzmann weight for a fluid molecule is s, while solid or gel molecules are
assigned a weight of I. Boundary effects between a fluid and a solid are given
a statistical weight of Q1/2 (in correspondence to the helix - coil boundary in
biopolymers). In Figure A9.1 all possible sites for the 2X2 lattice are shown
along with their probabilities. The renormalization of this to a single-site lattice
is considered. To achieve this, the probability of percolation is first considered.
We seek a relationship of the form:

where p' and p are the probabilities of percolation of the decimated (single site)
and original (2 X 2) lattice, respectively. This requires that probabilities be
considered and the Boltzmann weights must be divided by the respective
partition functions. The partition function for the single site, Z', is given by:
Z' = I + s'. The partition function for the original lattice is:

The lattice configurations that percolate are indicated in Figure A9.1 and are used
to calculate the probability of occupancy for the 2X2 lattice. This allows the
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FIGURE A9.1 Renormalization model for correlated
percolation. Configurations and statistical weights for four-
site clusters are shown. Percolating configurations are shown
in the top. The statistical weights for each configuration are
determined with a weight of s for a filled site and a weight of
1 for an empty site. The boundary between filled and empty
sites has a weight of o~1/2.

calculation of the explicit form of Eq. A9.1 and gives the first of our
renormalization equations:

For a more rigorous approach, one would consider the probability of occupancy and
the probability of percolation separately. This would provide a critical surface in
which s and Q are variables. For simplicity, we restrict ourselves to the present
approach.

At this point, one could solve Eq. A9.3 for the fixed point and calculate the
scaling exponent as in Eq. 9.15. However, this would require that Q be considered
a fixed constant, which it is not. To obtain a second relationship, the energy of the
system must be renormalized, as was done in the example in Chapter 1. The energy
of the system with N lattice sites is given by:

where s is the energy per lattice site divided by kT. Since s should not depend on the
size of the systems, its value for the original and decimated lattice should be the
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same. This condition, along with the respective partition functions, provides a
second renormalization equation:

where the factor of 4 is a result of a fourfold reduction in number of sites upon
decimation. Substituting the respective partition functions into Eq. A9.5 gives:

Equations A9.3 and A9.6 constitute the two renormalization equations. The fixed
point is determined by setting s' = s. Normally, one would have a comparable
relationship for IT, but because of the small cells considered Q' never appears.
Equation A9.6 can be solved directly for cr, and it is seen that the only physical
solution occurs when Q = 1. This corresponds to zero energy of interaction between
occupied and unoccupied neighbors, and the fixed point will represent random
percolation. The fixed point for s is 0.618, which happens to give a percolation
threshold for the solid phase of 0.618. This result is identical to that obtained for the
Ising model (Napiorkowski and Hemmer, 1980).

Because the fixed point for this correlated percolation problem corresponds to
random percolation, the critical exponent, v, remains unchanged, even for correlated
situations. However, the percolation point will change and the specific value it
assumes will depend on experimental conditions. The critical surface will be a
trajectory of s, Q pairs determined from the renormalization equations that lead to
(or from) the fixed point. This critical surface separates regions of nonpercolating
structures from percolating structures. Different points along the critical surface will
have different thresholds. The change in percolation threshold with a given
thermodynamic variable can, in principle, be related to changes in s and Q. This
approach could lead to an analysis of the effects of temperature in real systems, as
seen in Table 9.2. However, composition must be included for a complete model of
percolation appropriate to biomembranes. Such models have been considered for
gel-sol problems (Coniglio et al., 1979, 1982), and could be adapted to the present
case.
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10

Chaos in Biochemical Systems

Chaos is a companion discipline to fractals. In the popular science literature, chaos
and fractals are used almost interchangeably. Yet they are distinct topics that borrow
heavily from each other. Fractals are used to deiscribe complex topographies,
whether they be temporal or spatial. Chaos, on the other hand, is concerned with the
dynamical processes that show an exquisite sensitivity to initial conditions and
which can generate complex fractal topographies in phase space. The language of
fractals provides a natural descriptor for chaotic systems. Chaotic behavior has
appeared in a number of biological settings (see May, 1976; Bassingthwaighte et al.,
1994) and may confer specific physiological advantages. The goal of the present
chapter is to provide the reader with a nonmathematical entree into the subject and
to discuss how fractal patterns arise naturally in chaotic systems. The emphasis will
be on biochemical systems the chemical kinetics of which have been reasonably
well defined. There are now a large number of introductory treatments of chaos, but
Baker and Gollub's book (1990) remains one of the more attractive and
approachable. For more mathematical treatments, see Rasband (1990) and the
rigorous treatment by Lichtenberg and Lieberman (1983). For discussions of chaos
in chemical and biochemical systems see the edited volume by Field and Gyogyi
(1993), the monograph by Bassingthwaighte et al. (1994), and the introductory texts
by Scott (1991) and Gray and Scott (1990).

Chaos arises from a deterministic system and gives seemingly random behavior.
Consequently, one must focus on the difference between chaotic and random
systems. There are a number of deep issues here. Operationally, chaotic systems are
marked by an extreme sensitivity to initial conditions and a sharp divergence of
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trajectories in phase space. Often, the trajectories of chaotic systems are drawn to an
"attractor" in phase space that is a fractal. Such an object is known as a "strange
attractor." Because chaotic systems are deterministic, they are often thought to be
amenable to deeper analysis and interpretation. In a sense, they are more
"mechanistic." Despite these mechanistic laws that underlie chaos, there must be
new descriptive formulations. This is where fractals have been so useful. Is our
understanding of chaotic systems really more mechanistic than for random systems?
As deeper understanding of the origins of different types of noise grows, random
processes become open to mechanistic interpretation. The scaling of stochastic
differential equations can be very closely linked to the types of fluctuation that drive
the system. The physical origins of these fluctuations provide mechanistic grounds
for interpretation. The chemical kinetics of biochemical system provide particularly
fertile ground for exploring issues of fluctuations, randomness, and chaos.

In the Section 10.1 we provide a description of chaos, with special reference to
chemical reaction systems. This has the advantage that the terminology of chaos is
introduced in a setting that has direct physical significance. In the same section,
methods for distinguishing chaotic behavior from random behavior are discussed. It
is seen that fractal geometry becomes a natural tool for developing such analyses.
In Section 10.1, the conditions required for chaos to exist in a chemical system are
enumerated. Chaos and oscillatory behavior in biochemical systems have already
developed a surprisingly long history. Chaos was observed in 1977 in the reaction
catalyzed by the enzyme horseradish peroxidase (Olsen and Degn, 1977), shortly
before it was discovered in the now famous, Belousov-Zhabotinsky reaction.
Interestingly, chaotic enzymatic systems represent an area where theory and
experiment have been closely tied and have developed in parallel. In Section 10.2
we discuss theoretical models of enzyme systems and explore what features are
required for oscillations and chaos. While there is a maturing of our understanding
of these systems, only a limited number of reactions have actually been investigated
to date. Section 10.3 contains a discussion of two experimental systems in which
chaos has been observed. These systems involve: phosphofructokinase from the
glycolytic pathway and the enzyme horseradish peroxidase. In a final, highly
speculative section, possible physiological advantages of chaos are discussed.

10.1 Chaos in Chemical Systems

10.1.1 Chemical Kinetics in Simple Systems

Traditionally, the goal of chemical kineticists has been to determine the
mechanism of a reaction, i.e., to identify the elementary steps, and to measure
quantities such as rate constants and activation parameters associated with these
elementary steps. Even simple classical reaction schemes can provide extremely
complicated rate laws that quite often are "underdetermined." In such cases, the
model has more parameters than the data permit one realistically to determine.
Consequently, the primary aim of kineticists has been to simplify. Often ingenious
experiments are devised to study elementary steps in isolation and to measure
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FIGURE 10.1 A phase space representation of the evolution of a chemical reaction.
Coordinates a and b are reactant concentrations and t is time. For a reaction in a closed system,
the trajectories will approach equilibrium in an exponential fashion. There is a net compression
of points in phase space, as illustrated in (a) where all points converge to a single attracting
point. (b) A system with two stable points (1 and 3) and an unstable regime (2). (From Scott,
1991. Reprinted by permission.)

their rate constants. Reactions in closed systems near equilibrium are ideally
suited for this purpose. Such systems are known as dissipative systems. In these
closed systems, a wide variety of initial conditions lead to a single set of final,
equilibrium conditions.

One can create an n-dimensional space (called phase space) that contains the
values of the n- independent concentrations of the reaction as parametric functions of
time. Many different starting points (at time t = 0) in this phase space lead, as the
reaction proceeds, to a single equilibrium point (at t = °°). In mathematical parlance,
this equilibrium point is known as an attractor. The attractor results in a compression
of phase space, and this is why the system is said to be dissipative. This effect is
illustrated in Figure 10.1. The key point for the chemical kineticist is that the
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approach to equilibrium of such systems always becomes exponential in time. This
allows for a facile determination of rate parameters. To sort out different parameters,
a kineticist will explore different regions of phase space by varying initial
concentrations over an extremely wide range. This allows more than a single
equilibrium point to be studied and assists in establishing the reaction order.
Regardless of the "volume" of initial starting conditions, there is always a net
compression in phase space as the equilibrium region is approached.

For most chemical reactions the final equilibrium state is achieved via a single
reaction path and the reactions are relatively insensitive to conditions such as initial
concentration, temperature, and pressure. However, there are reactions in closed
systems that show a great sensitivity to these conditions. A common example would
be the oxidation of hydrocarbons. For oxygen-hydrocarbon mixtures below the
flashpoint, reaching equilibrium is an immeasurably slow process. Yet a slight
increase in temperature to the flashpoint results in the rapid combustion of the
mixture. This reaction is far from equilibrium and may initially not display the nice
exponential approach to the final state. For reactions that are far from equilibrium
in a closed system, oscillatory behavior can occur, but it is always against a
background of changing reactant concentrations. Thus, sustained periodic behavior
will not occur in such environments, but, ultimately, as the system nears
equilibrium, exponential behavior will again appear.

10.1.2 Open Systems, Oscillations, and Chaos

Recently attention has turned from the examination of elementary reaction steps
near equilibrium to collections of reactions in open systems. These systems do not
exhibit the constraints of closed systems and, while perhaps more interesting, are
also more difficult to study. Often such open systems consist of a continuously
stirred tank reaction (CSTR), a device that allows a constant rate of flow of a
reactant through a reaction vessel. Such reactions have a rich phenomenology.
Figure 10.2 shows experimental results obtained with phosphofructokinase (PFK),
an enzyme in the glycolytic pathway. As can be seen, a variety of complicated
behavior is exhibited by one of the reactants as a function of time. This behavior is
extremely sensitive to the flow rate for the CSTR, and can show periodic, aperiodic,
and chaotic behavior, all as a result of slight changes in the flow rate.

For such flow reactions, behavior about a steady state is considered rather than
that about the equilibrium state. Removing the equilibrium conditions permits a
range of new phenomena. As can be seen from Figure 10.2, very regular oscillatory
behavior is possible. The two-dimensional phase space representation of such
oscillatory behavior is shown in Figure 10.3. The attractor, in this case, is a simple
cycle. Conditions can exist where the same oscillatory behavior is seen regardless
of the initial conditions. Such oscillations are said to occur in a limit cycle (see
Figure 10.3). With a slight change in a parameter, seemingly random patterns can be
generated. However, these patterns are not random at all. Rather, they are
chaotic.

In contrast to the behavior of random systems and of systems with limit cycles,
chaotic processes are characterized by an extreme sensitivity to initial conditions.
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Time

FIGURE 10.2 Example of sustained oscillations in a biochemical reaction.
Oscillations in the nicotinamide adenine dinucleotide (NADH) NADH
concentration in glycolysis are monitored by fluorescence changes. (From
Hess and Boiteux, 1971. Reprinted by permission of the Biophysical
Society.)

Trajectories that originate at points separated by minute concentration differences
will ultimately diverge into different regions of phase space. This divergence is
exponential in time and, consequently, is very fast. This divergence is illustrated in
the trajectory in Figure 10.4. Such a condition creates a paradoxical situation.
Chaotic systems are fully deterministic, yet one cannot experimentally reproduce a
given time course. It is simply impossible to recreate the precise initial condition,
regardless of the accuracy of the instrumentation. A second unusual condition
results from this extreme sensitivity. One cannot predict the long-time behavior of
this fully deterministic system. This is merely because the initial conditions cannot
be represented accurately by finite numbers. We can continue to add more and more
significant figures to specify our initial conditions, yet the exponential divergence
will always catch up and prevent accurate long-time prediction.

Another important characteristic of a chaotic system is the topography of the
attractor. Chaotic attractors are often fractals, and are called "strange attractors."
A strange attractor is shown in Figure 10.4. When the trajectory of a chaotic
system fills phase space it occupies the strange attractor. This is in sharp contrast
to a random system which will uniformly occupy phase space. Thus, random and
chaotic systems often have different topographies in phase space and this
difference can be determined by measuring the fractal dimension. Note that the
topography of the attractor is not a foolproof means of establishing chaos. There
are situations where a chaotic system can have a uniform phase space and a
random system can give a strange attractor. Barring these unusual cases, a random
system typically will have an integer dimension equal to the dimensionality of
phase space. A chaotic system will have a fractal dimension that is less than the
dimensionality of phase space.



FIGURE 10.3 A phase space representation of the evolution of a chemical reaction in an open system
that shows limit cycle behavior. Coordinates a and b are as in Figure 10.1. Trajectories are "attracted"
to the limit cycle regardless of initial conditions, (a) The trajectory of the reaction coordinate over time;
(b) a cross-section showing how all trajectories move into the limit cycle. (From Scott, 1991. Reprinted
by permission.)

FIGURE 10.4 A phase space repre-
sentation of the evolution of a chemical
reaction that shows chaos. Trajectories
diverge rapidly from each other and are
extremely sensitive to initial conditions.
Nevertheless, they will all migrate
toward the "strange attractor," a fractal
structure in phase space.
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10.1.3 Origins of Chaos

Given an observation such as in Figure 10.2, how does one know if it is chaotic or
random? The answer to such a question has a direct bearing on whether the
underlying nature of the observed phenomena is stochastic or deterministic. Most of
the mathematical work on chaos has focused on two different types of deterministic
system: those generated by low-dimensional difference equations, and those that
involve coupled nonlinear differential equations. Difference equations have
numerous applications in biological and ecological problems, as they are ideal for
treating seasonal phenomena. A common example of such an equation is the logistic
equation (May, 1976):

where x is a variable (such as the number of organisms in a population) in the nth
generation, and a is a proportionality constant known as a control parameter. The
logistic equation has been studied extensively and its chaotic properties are well
understood. It is an example of a process that gives a "period-doubling route to
chaos." Equation 10.1 is amazing in that such a simple equation can lead to such
complex behavior. Yet, in its differential form, the logistic equation is exactly
integrable and does not exhibit pathological behavior. This is an interesting
observation that differential equations that are integrable and well behaved will have
difference-equation counterparts that are chaotic.

Difference equations such as Eq. 10.1 are generally not found in chemical
kinetic applications. The exception is instances of reactions in very small systems
where differential equations do not apply. Reactions in small volumes often occur
in biological systems as a result of the compartmentalization of the cell. Also,
processes involved with gene regulation will also involve an extremely small
number of species. There has been very little work on the difference equations of
biochemical processes. Most chemical and biochemical investigations have focused
on macroscopic systems that follow conventional mass action rate laws. Such
systems that achieve chaos are governed by coupled, nonlinear differential
equations. The mathematical conditions required for oscillatory behavior and chaos
have been well established. For instance, a coupled linear two variable system can
show oscillations, but not chaos. To achieve such oscillations a nonlinear term such
as a cubic or exponential term must be present. A quadratic term in a two-variable
system is not sufficient to produce oscillations.

The conditions for chaotic behavior are more stringent than for oscillatory
behavior. The following rate equations show the simplest chaotic system
investigated to date (Rossler, 1976):



where X, Y, and Z are chemical species that vary, and A, are species in such high
concentrations that they are essentially constants. Note that chaos is created with
three variables, with the only nonlinearity arising from quadratic steps. The initial
two steps and the final step in the mechanism are autocatalytic. This is a common
feature in reactions that exhibit chaos. A feedback mechanism with an associated
nonlinearity will allow for chaotic behavior.

Numerical computations on differential equations such as in Eq. 10.2 or Eq.
10.3 show how chaotic behavior arises from a specific mechanism. Such
calculations have been very powerful in ascertaining the conditions required to
produce chaos. An experimentalist is often concerned with the inverse problem: For
a given time course of an experimental variable, how does one distinguish chaos
from random noise? In observations where parameters are readily varied, perhaps
the easiest way to establish chaos is to follow the example given in Figure 10.5. The
"period doubling route to chaos" is a much studied process by which chaos arises.
If an experimental parameter can be slightly altered and send the system first into
periodic oscillations and then into seemingly random oscillations, then one has
strong evidence of a chaotic system. This extreme sensitivity to experimental
conditions is illustrated in Figure 10.5 for a reaction catalyzed by the enzyme
peroxidase. In many physiological settings, the crucial system parameters are either
unknown or are not readily manipulated. In such instances, observation of a time
series is made and one must resort to statistical methods to establish chaos.

Time series in chaotic systems may appear random to the eye, but are actually
quite different from and more complicated than a random system. This is because the
time series reflects the underlying strange attractor. Conventional statistical methods
have been used to distinguish random and chaotic time series. These include power
spectrum analysis and autocorrelation techniques. For low-dimensional systems, one
can attempt to reconstruct the phase space and to measure the fractal dimension of the
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where x, y and z are variables, and a, b and c are constants. A minimum of three
variables is required to achieve chaos. As seen in the above example, quadratic
terms in a three-variable system are now sufficient to produce oscillations and
chaos. Unfortunately, the coupled equations in Eq. 10.2 are not appropriate for a
chemical reaction mechanism and much of the behavior of the trajectories involve
negative values of the variables, i.e., negative rate constants. More complicated
equations are required for a chemical mechanism. One such scheme that is
compatible with chemical kinetics (Willamowski and Rossler, 1980) is:
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FIGURE 10.5 Experimental results showing chaos in the peroxidase reaction.
Slight changes in reaction conditions create very different responses. The change
in oxygen concentration versus time is shown. Enzyme concentration: (a) 0.90
uM, (b) 0.55 uM, (c) 0.45 uM. (From Olsen and Degn, 1977. Reprinted by
permission of Nature Macmillan Magazines Ltd.)

strange attractor. This approach emphasizes the fractal nature of chaos and is
considered here. Reconstructing phase space is not trivial, and there can be a number
approaches as well as pitfalls (see Bassingthwaighte et al., 1994). For a time series or
profile, as shown in Figure 10.2 or 10.5, one has only a single parameter.
Computationally, one could calculate the parameter and its time derivative and create
a two-dimensional phase space from these two parameters. This would provide a
space that is analogous to the momentum-position phase space in classical statistical



FIGURE 10.6 Analysis of a time series using delay plots. (Bottom left) A sequence of random numbers.
(Bottom right) The resulting delay plot shows a uniform distribution. (Top left) The sequence of numbers
generated by the logistic map and the resulting delay plot (top right). Chaotic behavior gives a delay plot with
nonuniform distribution of points. This distribution can be characterized by a box-counting dimension. (Figure
adapted from Figure 7.9 and Figure 7.10 of Bassingthwaighte et al., 1994.)



Chaos in Biochemical Systems 251

mechanics. Often it is easier to create a phase space from a delay plot, that is a plot of
x(t) versus x(t + At) or of xn versus xn+J. Such a plot is shown in Figure 10.6 for a
random set of points and for points generated by the logistic map (Eq. 10.1). The main
problem in such analyses is how to choose the lag time, At or j. In practice, it is easy to
try a number of different times and see which one generates an image that looks most
like a chaotic attractor. For the logistic map in Eq. 10.1 ,j = 1 is the natural choice, and
this attractor is shown in Figure 10.6. The random data set will show a uniformly
distributed delay plot, regardless of the delay time.

Once a collection of points has been generated from the delay plot, the fractal
dimension of the image can be determined. There are a number of different
dimensions and algorithms that can be used for this purpose. It has been argued that
the simplest and most useful one is the box-counting dimension described in
Chapter 1 (Bassingthwaighte et al., 1994). With knowledge of the fractal dimension
of strange attractor, one can return to the differential equations and try to generate
a mechanism that will have an attractor of that dimension. The kineticist then returns
to the old problem of sorting through a number of different mechanisms to find the
one most consistent with the data.

10.2 Theoretical Models of Enzymatic Chaos

In the previous section, a number of necessary conditions required to achieve
chemical chaos were described. We now focus this discussion on enzyme systems.
As a minimal requirement for chaos, the system must be open and have nonlinear
feedback. Indeed, feedback mechanisms are central to the control of metabolic
processes at both the global and local level. Most metabolic reaction sequences have
a number of control points. These commonly occur at rate-limiting steps (often
referred to as the committed step) and before and after branching steps. There are
a number of ways of regulating enzymes at this point. These include allosterism,
covalent modification, and genetic control of enzyme expression. To date, allosteric
mechanisms have received the most attention in model explorations of chaotic
dynamics. This is perhaps due to the extensive work on glycolytic oscillations,
where the primary source of nonlinearity is the allosteric enzyme phospho-
fructokinase. The focus of the discussion in this section is simple allosteric control
models that result in chaotic behavior.

10.2.1 Mechanisms involving Michaelis-Menten Enzymes

To begin, we consider the difference between a simple, Michaelis-Menten enzyme
and an allosteric enzyme. Many of the enzymes that are not at metabolic control
points follow the Michaelis-Menten scheme. For a single substrate reaction, this
scheme is:

where E is the enzyme, S is the substrate (or reactant) and P is the product. The
species ES is the enzyme with the substrate bound at the catalytic site. The
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Michaelis-Menten equation relates the steady state velocity of the reaction, v, to the
substrate concentration. It makes a number of assumptions, including the steady
state approximation for ES which states that d[ES]/dt - 0. The steady state velocity
is given by:

10.2.2 Mechanisms involving Allosteric Enzymes

Allosteric enzymes are multisubunit enzymes that show cooperativity as a result of
interaction between enzymes within the complex. This cooperativity results in a
sigmoidal response of the initial velocity to substrate concentration. Figure 10.7
compares the behavior of an allosteric enzyme with the hyperbolic behavior of a

The first and last steps are the source and sink, respectively. Two enzyme species,
E1, and E2, are involved, and two products, P and Q, are formed. The first enzyme
obeys a normal Michaelis-Menten mechanism (see second step), but can bind
product, P (third step), at a site other than the catalytic site. The occupation of the
regulatory site enhances the enzymatic activity via its effect on the rate constants in
the fourth step. The third step provides a positive feedback. The second enzyme
serves as the Michaelis sink and is an additional source of nonlinearity. The
mechanism of Eq. 10.6 allows for oscillations, but does not support chaos. For chaos
to occur, a stronger nonlinearity must be present. This can be accomplished with
allosteric enzymes.

where the maximum velocity, Vmax, and the Michaelis constant, KM, are constants
containing the rate constants of the mechanism. The maximum velocity is
proportional to the enzyme concentration. The Michaelis-Menten equation is
nonlinear, showing hyperbolic behavior of the velocity with respect to the substrate
concentration. If a Michaelis enzyme is put into an open system where a source
produced substrate and a sink eliminated product, neither oscillatory nor chaotic
behavior is observed. While this system is nonlinear and open, it does not have
feedback or enough variables to support complex behavior.

If a product activation step is included along with a Michaelis sink in Eq. 10.4,
there is now enough nonlinearity in the system to support simple oscillations
(Goldbeter and Dupont, 1990). This mechanism is given by:
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FIGURE 10.7 Comparison of the behavior of a Michaelis
enzyme and an allosteric enzyme. Plot of the steady state rate of
catalysis versus substrate concentration. The Michaelis enzyme
shows simple, hyperbolic behavior. The allosteric enzyme shows
sigmoidal behavior. Allosteric enzymes introduce a greater
nonlinearity into a reaction sequence.

Michaelis-Menten enzyme. The cooperativity of this response is reflected by the
steepness of the curves at the inflection point. This cooperativity is affected by a
number of factors, including the number of units in the complex and the binding of
small molecule effectors at other sites. The term allosteric is derived from the Greek
and means "other site." Allosteric enzymes serve as metabolic "on-off" switches.
Enzymatic activity is controlled by the substrate concentration, being very low at
low substrate concentration and switching to high activity over a narrow range of
increasing substrate. The "other sites" are not catalytic, rather they have a regulatory
role. They work by providing an independent way of shifting the equilibria between
active and inactive forms.

There have been a number of models used to describe this cooperativity and
two popular ones are referred to as the (Monod-Wyman-Changeaux) (MWC) and
(Koshland-Nemethy-Filmer) (KNF) (for a review, see Neet, 1983). These models
have very different mechanistic details and, for any given enzyme, one model may
be favored over the other. The main point for our purposes is the nonlinearity
inherent in the enzyme's response. Both models lead to a mathematical form that
adequately describes the nonlinearites in the experimental data. The issue of the
most appropriate description may be sidestepped in favor of a purely empirical
description of the rate process. This is adequate for modeling the overall sequence
of reactions.



where the ability of the T state to produce substrate, the third line in Eq. 10.7, is
slower than the R state, second line in Eq. 10.7. The subscript i represents the
number of S molecules bound to the complex. This number can range from 0 to N-l.
Thus, there are N equations represented by the last three reactions in Eq. 10.7.
Because the substrate prefers the R state, the presence of increasing amounts of
substrates pulls the R-T equilibrium (first line in Eq. 10.7) to the left, creating more
open R sites. This generates more active enzyme and the overall enzymatic activity
rises sharply, causing the sigmoidal behavior shown in Figure 10.7. In addition to
substrate effects, allosteric sites (as opposed to catalytic ones) can shift the R-T
equilibrium as well. In Eq. 10.7, one sees product activation as a result of
preferential binding of product to an allosteric site in the R form. This creates a
positive feedback situation for the enzyme.

The MWC model makes a number of simplifying assumptions regarding the
equivalence of binding sites in the R and T forms. This allows for a particularly
compact rate expression. In Eq. 10.8 the steady state rate law is presented for
conditions where S does not bind at all to the T state (the third line does not exist
in Eq. 10.7). This gives:

254 Fractals in Molecular Biophysics

The MWC model provides a particularly simple functional form for the steady
state rate and is the one that is often considered in computational models. In the
MWC model the enzyme is a complex of N units that can exist in two
conformations: active and inactive. For historic reasons, these were designated
relaxed, R, and taut, T, respectively. The equilibrium for the two conformations
favors the taut or inactive state. Therefore, at low substrate concentrations most of
the enzyme is inactive and the overall activity is low. Substrate can bind at active
sites in both the R and T forms. However, it prefers the R form and is more
effectively converted to product when bound to this form. These processes are
shown in the following equations:

where Ks and KP are the dissociation constants for binding of substrate and product
to the R form, respectively, and L is the equilibrium constant for the R form going
to the T form. Equation 10.8 provides a much stronger source of nonlinearity than
the Michaelis-Menten equation (Eq. 10.5) and consequently allows for a wider
range of oscillatory and chaotic behavior.

Using this form of the MWC model for allosteric enzymes, a number of
different open systems have been investigated (see Goldbeter, 1995). If we merely
put an allosteric enzyme in a flow system where substrate is continually added and
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FIGURE 10.8 Models of enzymatic regulation that show complex behavior. E, Enzyme;
S, substate; P, product. Solid arrows represent the reaction path and broken arrows indicate
positive feedback on the enzyme. (Top) Product-activated allosteric enzyme supports
simple oscillations. (Middle) Product-activated allosteric enzyme in which product can also
be converted to substrate will permit birhythmic behavior. (Bottom) A succession of
product-activated allosteric enzymes can show chaotic behavior. (Adapted from Goldbeter,
1992.)

product is continually removed, then the feedback and nonlinearity are sufficient to
create oscillatory conditions. However, again there is not a sufficient number of
variables to generate chaos. If two allosteric enzymes are considered in a sequential
mechanism, a wide range of behavior is possible and chaos can be observed. These
two mechanisms are represented schematically in Figure 10.8. The rate expressions
for the two-enzyme mechanism are:

where Eq. 10.8 is used for the steady state rate for each allosteric enzyme, v is the
rate of production of S, or the source rate, and ks is the rate constant associated with
the sink for the P2 term. Each enzyme shows positive feedback from its product. In
the investigation of the rate laws given Eq. 10.9, an N value of 2 was assumed
(Decroly and Goldbeter, 1982).



FIGURE 10.9 Using the mechanism shown at the bottom of Figure 10.8, a number of complex time
courses are observed. Plots of substrate concentration versus time for different values of the rate of
removal of product: (a) simple periodicity; (b) "hard" excitation; (c) chaotic; (d) complicated periodicity.
(From Decroley and Goldbeter, 1982. Reprinted by permission of A. Goldbeter.)
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FIGURE 10.10 Plot showing regions of different behavior in parameter space. The mechanism shown
at the bottom of Figure 10.8 is considered, v Flux rate of substrate; k, rate of removal of product. Domains
were determined computationally. Chaos exists in only limited regions. (From Decroley and Goldbeter,
1982. Reprinted by permission of A. Goldbeter.)

The two enzyme mechanisms show a range of oscillatory and chaotic behavior.
Figure 10.9 shows the time course of [S1 ] as the sink rate constant is varied. Figure
10.9 gives examples of the different types of temporal behavior exhibited by the
system. As can be seen, there is extreme sensitivity to changes in the sink rate
constant, a hallmark of a chaotic system. This complex interplay of dynamic modes is
well illustrated by the behavioral domains shown in Figure 10.10. In this figure, the
behavior domains are shown in regions of a parameter space that consists of the source

FIGURE 10.11 Strange attractor from the chaotic
regime shown in Figure 10.10 (c). The phase space is
in concentration coordinates of the system. (From
Decroley and Goldbeter, 1982. Reprinted by permis-
sion of A. Goldbeter.)



258 Fractals in Molecular Biophysics

velocity and the sink rate constant. The chaotic domain actually represents a small
region of this parameter space. This suggests that a very specific set of conditions
would be required to achieve chaos. Figure 10.11 shows the strange attractor of the
chaotic regime. This trajectory of the time course in phase space (or concentration
space) has a characteristic appearance for a chaotic system. Although not apparent
from Figure 10.11, the attractor is a finely layered structure with scale-invariant
regions.

10.3 Experimental Systems

From the previous theoretical discussion, it is seen that the conditions necessary for
oscillations and chaos are not unusual in biochemical systems. Most metabolic
pathways have control mechanisms that result in feedback and in kinetic
nonlinearities. The feedback can be a result of both short- and long-range effects of a
metabolic product. Such mechanisms provide a means for both local control and
global integration of metabolic pathways. Nonlinearities commonly arise from
allosteric enzymes, a popular motif in metabolic pathways. However, other sources of
nonlinear kinetics exist, and these include zymogen activation, covalent modification,
and channel gating. These latter effects have not been explored extensively in
theoretical models.

Given these considerations, it would appear that metabolic systems provide ideal
settings for the observation of chaotic dynamics. Despite this, there are a limited
number of examples of enzymes that show oscillations. The two most studied cases,
systems that involve the enzymes phosphofructokinase (PFK) and horseradish
peroxidase, are considered here. PFK is responsible for oscillations in glycolysis, a
central pathway in intermediary metabolism. The glycolytic pathway exhibits
oscillations, but will not show chaos unless there is a periodic driving force.
Horseradish peroxidase catalyzes the reduction of molecular oxygen to water.
Peroxidase can show both oscillations and chaos under a wider range of conditions.
Oscillations and complex kinetic behavior have also been studied in a number of
cellular systems. These systems often involve signal transduction systems that are
mediated by calcium fluxes (see Meyer and Stryer, 1991). While these will doubtless
provide additional examples of chaotic behavior, their molecular origins are still
controversial. In the present treatment, we focus on the better defined systems.

10.3.1 Glycolytic Oscillations

Glycolysis is a central process in the energy metabolism of the cell. It oxidizes glucose
into two pyruvates. The process captures some of the energy of the "burning" of
glucose in the form of energy-rich molecules such as adenosine triphosphate (ATP).
ATP is the "energy currency" mediating the flow and utilization of energy between
anabolic and catabolic pathways. As such, it is an ideal molecule for signaling the
activation or deactivation of a given pathway. Thus ATP is used in the metabolism to
exert a global control of energy production. The glycolytic pathway has a number of
control points, the most important of which is at the enzyme PFK. PFK is an especially
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appropriate control site because it is at the committed step in the path. It catalyzes the
essentially irreversible phosphorylation by ATP of fructose 6-phosphate (F6P) to
fructrose 1,6-bisphosphate (F16P). Additionally, the reaction is a slow step in the path,
and consequently is a more important point of regulation.

The glycolytic pathway provided the first observations of oscillations in
biochemical systems (Ghosh and Chance, 1964). Many of these early studies involved
the observation of sustained oscillations in the concentration of nicotinamide adenine
dinucleotide (NADH), a product in glycolytic steps that follow the PFK step. This had
the advantage of providing a useful fluorescence indicator. Figure 10.2 shows an
example of such oscillations. Glycolytic oscillations have been observed in a wide
variety of physiological settings (for a comprehensive bibliography, see Scott (1991)).
Some progress has been made with reconstituted systems prepared from purified
enzymes (Hess and Boiteux, 1971; Eschrich et al., 1983).

Glycolytic oscillations were first modeled with a mechanism involving product
activation of PFK by F16P (Higgins, 1964). This product was subsequently removed
with a Michaelis enzyme. Thus, this mechanism has two sources of nonlinearity: the
activation of an allosteric enzyme, and the Michaelis removal of product. The
mechanism supports limit cycle oscillations, but not chaos. A more sophisticated
model that includes ADP activation was developed by Sel'kov (1968). This process
involves the binding of adenosine diphosphate (ADP) at allosteric sites in the enzyme.
This model is given by:

PFK is an allosteric enzyme consisting of two identical subunits. This is the
motivation for having two binding sites for ADP. The production of ATP from X is the
source term, and ADP is removed to Y as the sink. From the steady state enzyme
kinetics of this mechanism, the following differential equations are obtained where
the substrate x, and product, y, are presented in a dimensionless form:

where u is the rate of ATP production from the source, and a is a constant
containing rate constants for the mechanism. To create a dimensionless form, the

with



FIGURE 10.12 Equilibria and states for an allosteric model of phosphofructokinase. The model of Goldbeter
and Levefer (1972) is used. Large circles represent active state conformations of the enzyme with low affinity
for the substates. Squares represent inactive states with high substrate affinity. Small dark circles are substrate
molecules, and small open circles are products. (From Goldbeter and Lefever, 1972. Reprinted by permission of
the Biophysical Society.)
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FIGURE 10,13 General metabolic reaction scheme of the Markus -
Hess model for glycolysis. ADP feedback to the enzyme phospho-
fructokinase (PFK) results in oscillatory behavior of the Markus-Hess
model for glycolysis. ADP feedback to the enzyme phosphofructokinase
(PFK) results in oscillatory behavior. (Adapted from Markus and Hess,
1984.)

reactant concentrations are divided by an appropriately chosen quantity of rate
constants and steady state concentrations. Such transformations do not change the
behavior of the system, but rather create equations that are less cumbersome and
more easily manipulated. For small values of u, Eq. 10.11c can be approximated by
the simple cubic form f(x,y) = xy2 and fits into general models of cubic autocatalysis
(see Scott, 1991). This mechanism shows limit cycle behavior. Unfortunately, it has
some unrealistic physical features, such as unbounded growth in x for some
conditions, that make it unacceptable.

A more general form of the allosteric model has been used by Goldbeter and
Lefever (1972). This model is illustrated in Figure 10.12. Again, the crucial
variables are the ATP and ADP concentrations. As can be seen in the figure, a much
more complicated mechanism is considered, involving equilibrium processes for
both the active and inactive states. The key equilibrium is the interconversion of
these two forms of the enzyme when the enzyme has no bound activator (ADP).
Subsequent binding of any species to either of these forms shifts the equilibrium
further in its respective direction. The product (ADP activator) is assumed to bind
only to the active form, but the substrate (ATP) can bind to either form. However,
the catalytic rates for the inactive form are lower than for the active form.

This more complicated mechanism can again be reduced to a simple form using
a steady state analysis for the enzymatic species. The functional form of Eq. 10.11
is retained, but now f(x,y) shows behavior more akin to Eq. 10.8. Although this is
a complicated nonlinear form, it still consists of only two coupled differential
equations. Consequently, it will not support behavior more complicated than
sustained oscillations. To achieve chaos, the system must be periodically forced
through a variation of the parameter u. This general theoretical result is observed
experimentally as well. Many qualitative features of this model are in agreement
with experiment, and regions in parameter space have been found that show
birhythmicity if the product (ADP) is recycled into the substrate (ATP) by a
regenerating system (Moran and Goldbeter, 1984). While this may seem like a
convoluted set of conditions, it indeed does occur in the glycolytic pathway.
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Markus and Hess (1984) have produced a different model (see Figure 10.13).
This involves one feedback process, again through ADP, and two enzymatic species,
PFK and the enzyme pyruvate kinase (PK). A key intermediate in the pathway is the
energy-rich molecule, phosphoenolpyruvate (PEP). Pyruvate kinase is the final
enzyme in the glycolytic pathway, and is also an allosteric enzyme and a control
point. This system couples two different allosteric enzymes. Despite this, one again
only observes simple oscillations unless the system is periodically forced. The
equations for this system, including periodic driving forces, are:

where generalized forms of Eqs 10.5 and 10.8 are used for PK and PFK,
respectively, and the flux term, v I N , has a periodic forcing term added to it,
A sin (wt). Again, this model can be reduced to two coupled nonlinear equations
with dimensionless parameters. This system of equations shows a rich phenomenol-
ogy with a variety of periodic and chaotic regimes. A qualitative correspondence
exists between experimental and theoretical data for various regions of chaos at
different forcing frequencies. Without the forcing function this glycolytic mecha-
nism will not support chaos.

10.3.2 Horseradish Peroxidase

Unlike the glycolytic enzymes, horseradish peroxidase shows chaos even without
periodic perturbations. The peroxidase reaction is also different from glycolysis in
that allosterism does not play a crucial role. Rather, it is the complex interplay of
redox states that create a system capable of supporting chaos. This enzyme has a
long history, and chaos was actually observed in it before the Belousav-
Zhabotinsky reaction. Peroxidase catalysis is the oxidation of electron donors by
molecular oxygen. When this reaction takes place in a flow system with reduced
NADH, the concentrations of reactants (oxygen and NADH) as well as some of the
enzyme intermediates can be seen to oscillate with periods ranging from minutes to
about an hour, depending on the experimental conditions. Aperiodic oscillations
resembling random fluctuations are also observed for some conditions, and these
irregular oscillations were shown to be chaotic in a study by Olsen and Degn
(1977).

The peroxidase is the first step in a sequence of reactions in plants that
eventually culminates in the production of lignin. The enzyme is also involved in the
dark reactions of photosynthesis. Currently, the physiological significance of



The simplicity of the above reaction belies the complexity of the mechanism. The
enzyme itself will exist in five different forms: ferrous peroxidase, ferric peroxidase,
and three other forms known as compounds I, II, and III. The native form of the
enzyme is the ferric state. Compounds I, II, and III have oxidizing equivalents of+ 4,
+ 5, and +6, respectively. They are critical intermediates in the mechanism leading
to oscillations. The kinetics of reactions of III, in particular, are of interest in
understanding the oscillations.

Another critical species in the oscillatory reaction mechanism (both regular and
chaotic) is the free radical, NAD*. This species is thought to be produced
autocatalytically by a sequence of reactions involving NADH, molecular oxygen,
hydrogen peroxide and the superoxide radical (O2'). Several of the enzyme species
are also implicated in this process. Autocatalysis in a reaction mechanism which
also involves a termination pathway for the autocatalytic species is known to be a
sufficient explanation for the existence of oscillatory behavior. Whether or not this
structure exists in the peroxidase reaction remains to be seen.

Yamazaki et al. (1965) discovered that the peroxidase-catalyzed oxidation of
NADH occurs via damped oscillations when oxygen is continuously bubbled into
the reaction mixture. A very similar system where the oxygen is introduced through
a gas-liquid interface was shown to exhibit bistability, i.e., the existence of two
simultaneously stable steady states for the same oxygen concentration in the gas
phase. Brief perturbations in the oxygen concentration in the gas phase could induce
reversible switches from one steady state to the other. The bistability phenomenon
is thought to be due to inhibition of the enzyme by O2, and evidence was presented
that the active enzyme intermediate is identical to compound III. Degn (1968) later
showed that damped oscillations could also be obtained using the substrates
dihydroxyfumaric acid and indoleacetic acid instead of NADH. The oscillations
were accompanied by a chemiluminescence that was ascribed to free-radical
intermediates. This was taken as evidence for autocatalysis in the reaction mech-
anism.

Sustained oscillations in the peroxidase reaction were first obtained (Nakamura
et al., 1969) using NADPH as the substrate. NADPH was regenerated from the
oxidized form (NADP+) by glucose 6-phosphate and glucose-6-phosphate dehy-
drogenase. Sustained oscillations were found only when the modifiers 2,4-dichlor-
ophenol (DCP) and methylene blue were present. Olsen and Degan later reported
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oscillations and chaos in the peroxidase flow reaction remains unclear. However, the
existence of such chaotic behavior does suggest a number of interesting
physiological roles and possibilities. An obvious question is how pervasive is chaos
in physiological settings. If chaos can occur in a single enzyme reaction, then is it
inevitable in complex, interconnected metabolic systems? Does enzymatic chaos
provide a manageable control system? Is it beneficial to have such chaotic
processes? Such questions have only recently been formulated, let alone answered.
The final section of this chapter speculates on the significance of chaos in biological
systems.

The overall reaction catalyzed by peroxidase is:



FIGURE 10.14 Delay plots determined from experimental data on the time series of oxygen
concentration for the peroxidase reaction. Plots are for different oxygen flow rates, plot (A) being for the
highest and plot (D) for the lowest flow. Plots show period one (A), period two (B), period four (C) and
chaotic (D) behavior. (From Geest et al., 1992. Reprinted by permission of American Chemical
Society.)

sustained oscillations with a constant infusion of NADH, thus demonstrating that
glucose-6-phosphate dehydrogenase was unnecessary to sustain oscillations.
However, these authors found that the presence of DCP (and, perhaps, methylene
blue) was critical. Olsen and Degn (1978) provided further evidence that oscillatory
behavior is more likely a result of autocatalysis than substrate inhibition by
oxygen.

Olsen and Degn (1977) observed that the waveform of the peroxidase
oscillations depends strongly on the concentration of the enzyme. Simple periodic
oscillations with a period of about 5 minutes were obtained at enzyme
concentrations of about 1 uM. Below 0.5 uM, bursting oscillations with periods of
up to 60 minutes were seen. The oscillations were aperiodic and irregular at enzyme
concentrations slightly above 0.5 uM. These results are illustrated in Figure 10.5.
Analysis of a delay plot showed that a period-three cycle existed for certain initial
conditions. A theorem of Li and Yorke (1975) states that the existence of a period-
three oscillation implies chaos, so it can be argued that the irregular oscillations
were in fact chaotic.
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For a considerable time, the observation of period-three oscillations provided
only indirect evidence that the peroxidase reaction could support chaos. This
experimental evidence was supported by numerical simulations that yielded delay
plots very similar to the experimental ones. Recent work by Geest et al. (1992) has
demonstrated that chaos in the peroxidase reaction arises by the well-known period-
doubling route as well. The attractor in the delay plots for this range is shown in
Figure 10.14. A similar period-doubling route to chaos has been predicted from
simulations with a detailed model of the reactions for variations in the enzyme
concentration. This result has yet to be verified experimentally.

The fractal information dimension of the attractor was computed in a later study
(Geest et al., 1992) and compared with those obtained from computer models of the
reaction. These results are shown in Table 10.1. The fractal dimension measures the
information needed to specify the position of a point on an attractor to within a
given accuracy, and hence in some sense expresses the complexity of the motion.
Simple types of motion have low-integer dimensions. For example, the dimension
of a steady state is zero, whereas a limit cycle oscillation has a dimension of 1.
Chaotic motions usually have finite but noninteger dimensions. The dimension of
2.45-2.7 obtained for the experimental data is indicative of chaotic motion and is
also strikingly in accordance with theoretical values previously predicted from a
simple model of the peroxidase reaction. These experimental results thus confirm
that the irregular oscillations observed by Olsen and Degn (1978) are indeed
chaotic. Recent results have revealed the existence of quasi-periodic oscillations in
the peroxidase reaction using the same experimental configuration as Olsen and
Degn. Whether or not this quasi-periodicity is associated with a different route to
chaos is presently unknown. Both period doubling and quasi-periodicity are well-
known routes to chaos, and both have been found to be associated with chaos in
models of the peroxidase reactions.

!0.4 Physiological Advantages of Chaos

Since Claude Bernard introduced the concept in 1878, homeostasis has become
ingrained in the physiological literature. The basic idea is that an organism must
maintain some sort of balance or steady state via a series of control and feedback
mechanisms. This feedback confers a stability to the organism. An example might
be the sugar concentration in the blood. The organism can suffer dietary swings, yet
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TABLE 10.1 Fractal dimension, df, of the chaotic attractor in simulated
data from the peroxidase reaction (data from Larter et al.,

Species measured

Peroxidase III
02

Computer simulations

No. of Oscillations

46
48

>2000

and experimental
1993)

df,

2.45
2.64

2.09-2.26



266 Fractals in Molecular Biophysics

this quantity is reasonably insensitive to such changes. Homeostasis provides a
framework with which to view a range of physiological data (Cannon, 1929).
Recent, controversial work on chaos has challenged the underlying tenets of
"homeostasis" in favor of the new concept of "homeodynamics" (see Bas-
singthwaighte et al., 1994). Homeodynamics views organisms as dynamical systems
that must respond with great flexibility to challenges from the environment.
Complex and even unstable systems can respond more quickly and more effectively
to such changes (see Goldberger et al., 1990). While homeostatic systems are rigidly
constrained to steady state and concomitant dynamical paths, the homeodynamic
view offers a system that is free to move about phase space on a strange attractor.
The strange attractor provides the stability and at the same time allows the system
to respond dynamically. These ideas are not without controversy.

As we have seen in this chapter, the conditions for chaos in biochemical
reactions are not stringent. Certainly such conditions could exist in vivo. Thus it is
obvious to ask what, if any, physiological advantage a chaotic system can offer.
There have been a number of suggestions on the benefits of chaos. As mentioned
above, chaotic systems provide the flexibility to adjust to a changing environment
in a dynamic yet stable fashion. The variables of a chaotic system explore a much
wider range of values than do those of a system in rhythmic oscillation. Yet, at the
same time, they are constrained by the structure of the attractor. This provides a
certain flexibility within structure. Recently there has been considerable interest in
and work done on the control of chaotic systems. Such systems can be controlled
more finely and more quickly than linear systems. In linear systems, the response of
the output depends linearly on the input. Small changes in a parameter of a linear
system produce only small changes in the output. Chaotic systems, on the other
hand, can have bifurcations, i.e., qualitative changes in behavior, as a parameter is
varied. Thus small changes in a parameter of a chaotic system can produce very
large changes in the output. Hence a chaotic system is under much finer control.
Also, the changes of state in a linear system happen slowly. The sensitivity to initial
conditions of a chaotic system means that very small changes in the value of the
variables soon result in very different states of the system. Thus, a chaotic
physiological system can switch very rapidly from one physiological state to
another. This feature can have both good and bad aspects to it. Certainly, fast
response is important in some physiological settings. On the other hand, extreme
sensitivity could also be undesirable. Thus, there must be some tuning of the system
for it to be effective. The advantages of sensitivity and speed in the control of
chaotic systems have only recently been appreciated, yet a number of medical and
engineering applications are within reach. It remains to be seen whether the
homeodynamic view will overtake the traditional idea of homeostasis.

10.5 Summary

Chaotic systems are deterministic systems that show seemingly random behavior.
They are marked by extreme sensitivity to initial conditions. For chaotic systems,
neighboring trajectories in phase space will diverge from each other exponentially.
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Often, chaotic trajectories will move toward a fractal region of phase space known
as a "strange attractor." Fractals provide an important descriptor for such dynamical
systems. Chaos has been observed in a number of different chemical and
biochemical systems. For chaos to occur, the system must be open and have specific
feedback and nonlinear reaction steps. These features appear abundantly in
biochemical reaction sequences, especially in metabolism. A number of theoretical
models have shown chaos in simple biochemical reaction sequences involving
allosteric enzymes. Oscillations have been observed in the glycolytic pathway, and
this reaction sequence can be driven into chaos with a periodic perturbation. Chaos
also appears in the reaction mechanism of a single enzyme, horseradish peroxidase.
There may be a physiological role for chaotic systems because they are sensitive and
respond quickly. However, this concept of homeodynamics remains controversial.
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